Bhattacharya, Kaushik; Mohanty, Subhendra; Rangarajan, Raghavan
2006-03-31
If the initial state of the inflaton field is taken to have a thermal distribution instead of the conventional zero particle vacuum state then the curvature power spectrum gets modified by a temperature dependent factor such that the fluctuation spectrum of the microwave background radiation is enhanced at larger angles. We compare this modified cosmic microwave background spectrum with Wilkinson microwave anisotropy probe data to obtain an upper bound on the temperature of the inflaton at the time our current horizon crossed the horizon during inflation. We further conclude that there must be additional -foldings of inflation beyond what is needed to solve the horizon problem.
A flat Universe from high-resolution maps of the cosmic microwave background radiation
de Bernardis P; Ade; Bock; Bond; Borrill; Boscaleri; Coble; Crill; De Gasperis G; Farese; Ferreira; Ganga; Giacometti; Hivon; Hristov; Iacoangeli; Jaffe; Lange; Martinis; Masi; Mason; Mauskopf; Melchiorri; Miglio; Montroy; Netterfield
2000-04-27
The blackbody radiation left over from the Big Bang has been transformed by the expansion of the Universe into the nearly isotropic 2.73 K cosmic microwave background. Tiny inhomogeneities in the early Universe left their imprint on the microwave background in the form of small anisotropies in its temperature. These anisotropies contain information about basic cosmological parameters, particularly the total energy density and curvature of the Universe. Here we report the first images of resolved structure in the microwave background anisotropies over a significant part of the sky. Maps at four frequencies clearly distinguish the microwave background from foreground emission. We compute the angular power spectrum of the microwave background, and find a peak at Legendre multipole Ipeak = (197 +/- 6), with an amplitude delta T200 = (69 +/- 8) microK. This is consistent with that expected for cold dark matter models in a flat (euclidean) Universe, as favoured by standard inflationary models.
Topology of microwave background fluctuations - Theory
NASA Technical Reports Server (NTRS)
Gott, J. Richard, III; Park, Changbom; Bies, William E.; Bennett, David P.; Juszkiewicz, Roman
1990-01-01
Topological measures are used to characterize the microwave background temperature fluctuations produced by 'standard' scenarios (Gaussian) and by cosmic strings (non-Gaussian). Three topological quantities: total area of the excursion regions, total length, and total curvature (genus) of the isotemperature contours, are studied for simulated Gaussian microwave background anisotropy maps and then compared with those of the non-Gaussian anisotropy pattern produced by cosmic strings. In general, the temperature gradient field shows the non-Gaussian behavior of the string map more distinctively than the temperature field for all topology measures. The total contour length and the genus are found to be more sensitive to the existence of a stringy pattern than the usual temperature histogram. Situations when instrumental noise is superposed on the map, are considered to find the critical signal-to-noise ratio for which strings can be detected.
Long-range correlation in cosmic microwave background radiation.
Movahed, M Sadegh; Ghasemi, F; Rahvar, Sohrab; Tabar, M Reza Rahimi
2011-08-01
We investigate the statistical anisotropy and gaussianity of temperature fluctuations of Cosmic Microwave Background (CMB) radiation data from the Wilkinson Microwave Anisotropy Probe survey, using the Multifractal Detrended Fluctuation Analysis, Rescaled Range, and Scaled Windowed Variance methods. Multifractal Detrended Fluctuation Analysis shows that CMB fluctuations has a long-range correlation function with a multifractal behavior. By comparing the shuffled and surrogate series of CMB data, we conclude that the multifractality nature of the temperature fluctuation of CMB radiation is mainly due to the long-range correlations, and the map is consistent with a gaussian distribution.
Enhanced polarization of the cosmic microwave background radiation from thermal gravitational waves.
Bhattacharya, Kaushik; Mohanty, Subhendra; Nautiyal, Akhilesh
2006-12-22
If inflation was preceded by a radiation era, then at the time of inflation there will exist a decoupled thermal distribution of gravitons. Gravitational waves generated during inflation will be amplified by the process of stimulated emission into the existing thermal distribution of gravitons. Consequently, the usual zero temperature scale invariant tensor spectrum is modified by a temperature dependent factor. This thermal correction factor amplifies the B-mode polarization of the cosmic microwave background radiation by an order of magnitude at large angles, which may now be in the range of observability of the Wilkinson Microwave Anisotropy Probe.
Sherwin, Blake D; Dunkley, Joanna; Das, Sudeep; Appel, John W; Bond, J Richard; Carvalho, C Sofia; Devlin, Mark J; Dünner, Rolando; Essinger-Hileman, Thomas; Fowler, Joseph W; Hajian, Amir; Halpern, Mark; Hasselfield, Matthew; Hincks, Adam D; Hlozek, Renée; Hughes, John P; Irwin, Kent D; Klein, Jeff; Kosowsky, Arthur; Marriage, Tobias A; Marsden, Danica; Moodley, Kavilan; Menanteau, Felipe; Niemack, Michael D; Nolta, Michael R; Page, Lyman A; Parker, Lucas; Reese, Erik D; Schmitt, Benjamin L; Sehgal, Neelima; Sievers, Jon; Spergel, David N; Staggs, Suzanne T; Swetz, Daniel S; Switzer, Eric R; Thornton, Robert; Visnjic, Katerina; Wollack, Ed
2011-07-08
For the first time, measurements of the cosmic microwave background radiation (CMB) alone favor cosmologies with w = -1 dark energy over models without dark energy at a 3.2-sigma level. We demonstrate this by combining the CMB lensing deflection power spectrum from the Atacama Cosmology Telescope with temperature and polarization power spectra from the Wilkinson Microwave Anisotropy Probe. The lensing data break the geometric degeneracy of different cosmological models with similar CMB temperature power spectra. Our CMB-only measurement of the dark energy density Ω(Λ) confirms other measurements from supernovae, galaxy clusters, and baryon acoustic oscillations, and demonstrates the power of CMB lensing as a new cosmological tool.
NASA Technical Reports Server (NTRS)
Sherwin, Blake D.; Dunkley, Joanna; Das, Sudeep; Appel, John W.; Bond, J. Richard; Carvalho, C. Sofia; Devlin, Mark J.; Duenner, Rolando; Essinger-Hileman, Thomas; Fowler, Joesph J.;
2011-01-01
For the first time, measurements of the cosmic microwave background radiation (CMB) alone favor cosmologies with w = -1 dark energy over models without dark energy at a 3.2-sigma level. We demonstrate this by combining the CMB lensing deflection power spectrum from the Atacama Cosmology Telescope with temperature and polarization power spectra from the "Wilkinson Microwave Anisotropy Probe. The lensing data break the geometric degeneracy of different cosmological models with similar CMB temperature power spectra. Our CMB-only measurement of the dark energy density Omega(delta) confirms other measurements from supernovae, galaxy clusters and baryon acoustic oscillations, and demonstrates the power of CMB lensing as a new cosmological tool.
A Parallel, High-Fidelity Radar Model
2010-09-01
THIS PAGE unclassified Standard Form 298 (Rev. 8-98) Prescribed by ANSI Std Z39-18 . TCMB is the temperature due to the cosmic microwave background ...per unit area, per unit frequency. In the microwave regime, this is usually given the name brightness temperature, . There are various sources...which contribute to the brightness temperature. They include external sources outside of the earth’s atmosphere (e.g. cosmic or galactic noise
NASA Technical Reports Server (NTRS)
Kogut, A.; Banday, A. J.; Bennett, C. L.; Hinshaw, G.; Lubin, P. M.; Smoot, G. F.
1995-01-01
We use the two-point correlation function of the extrema points (peaks and valleys) in the Cosmic Background Explorer (COBE) Differential Microwave Radiometers (DMR) 2 year sky maps as a test for non-Gaussian temperature distribution in the cosmic microwave background anisotropy. A maximum-likelihood analysis compares the DMR data to n = 1 toy models whose random-phase spherical harmonic components a(sub lm) are drawn from either Gaussian, chi-square, or log-normal parent populations. The likelihood of the 53 GHz (A+B)/2 data is greatest for the exact Gaussian model. There is less than 10% chance that the non-Gaussian models tested describe the DMR data, limited primarily by type II errors in the statistical inference. The extrema correlation function is a stronger test for this class of non-Gaussian models than topological statistics such as the genus.
NASA Technical Reports Server (NTRS)
De Amici, Giovanni; Limon, Michele; Smoot, George F.; Bersanelli, Marco; Kogut, AL; Levin, Steve
1991-01-01
As part of an international collaboration to measure the low-frequency spectrum of the cosmic microwave background (CMB) radiation, its temperature was measured at a frequency of 3.8 GHz, during the austral spring of 1989, obtaining a brightness temperature, T(CMB), of 2.64 +/-0.07 K (68 percent confidence level). The new result is in agreement with previous measurements at the same frequency obtained in 1986-88 from a very different site and has comparable error bars. Combining measurements from all years, T(CMB) = 2.64 +/-0.06 K is obtained.
Bayesian Analysis of the Cosmic Microwave Background
NASA Technical Reports Server (NTRS)
Jewell, Jeffrey
2007-01-01
There is a wealth of cosmological information encoded in the spatial power spectrum of temperature anisotropies of the cosmic microwave background! Experiments designed to map the microwave sky are returning a flood of data (time streams of instrument response as a beam is swept over the sky) at several different frequencies (from 30 to 900 GHz), all with different resolutions and noise properties. The resulting analysis challenge is to estimate, and quantify our uncertainty in, the spatial power spectrum of the cosmic microwave background given the complexities of "missing data", foreground emission, and complicated instrumental noise. Bayesian formulation of this problem allows consistent treatment of many complexities including complicated instrumental noise and foregrounds, and can be numerically implemented with Gibbs sampling. Gibbs sampling has now been validated as an efficient, statistically exact, and practically useful method for low-resolution (as demonstrated on WMAP 1 and 3 year temperature and polarization data). Continuing development for Planck - the goal is to exploit the unique capabilities of Gibbs sampling to directly propagate uncertainties in both foreground and instrument models to total uncertainty in cosmological parameters.
Scientific results from the Cosmic Background Explorer (COBE)
Bennett, C. L.; Boggess, N. W.; Cheng, E. S.; Hauser, M. G.; Kelsall, T.; Mather, J. C.; Moseley, S. H.; Murdock, T. L.; Shafer, R. A.; Silverberg, R. F.; Smoot, G. F.; Weiss, R.; Wright, E. L.
1993-01-01
The National Aeronautics and Space Administration (NASA) has flown the COBE satellite to observe the Big Bang and the subsequent formation of galaxies and large-scale structure. Data from the Far-Infrared Absolute Spectrophotometer (FIRAS) show that the spectrum of the cosmic microwave background is that of a black body of temperature T = 2.73 ± 0.06 K, with no deviation from a black-body spectrum greater than 0.25% of the peak brightness. The data from the Differential Microwave Radiometers (DMR) show statistically significant cosmic microwave background anisotropy, consistent with a scale-invariant primordial density fluctuation spectrum. Measurements from the Diffuse Infrared Background Experiment (DIRBE) provide new conservative upper limits to the cosmic infrared background. Extensive modeling of solar system and galactic infrared foregrounds is required for further improvement in the cosmic infrared background limits. PMID:11607383
Probing large-scale magnetism with the cosmic microwave background
NASA Astrophysics Data System (ADS)
Giovannini, Massimo
2018-04-01
Prior to photon decoupling magnetic random fields of comoving intensity in the nano-Gauss range distort the temperature and the polarization anisotropies of the microwave background, potentially induce a peculiar B-mode power spectrum and may even generate a frequency-dependent circularly polarized V-mode. We critically analyze the theoretical foundations and the recent achievements of an interesting trialogue involving plasma physics, general relativity and astrophysics.
Demonstration of Cosmic Microwave Background Delensing Using the Cosmic Infrared Background.
Larsen, Patricia; Challinor, Anthony; Sherwin, Blake D; Mak, Daisy
2016-10-07
Delensing is an increasingly important technique to reverse the gravitational lensing of the cosmic microwave background (CMB) and thus reveal primordial signals the lensing may obscure. We present a first demonstration of delensing on Planck temperature maps using the cosmic infrared background (CIB). Reversing the lensing deflections in Planck CMB temperature maps using a linear combination of the 545 and 857 GHz maps as a lensing tracer, we find that the lensing effects in the temperature power spectrum are reduced in a manner consistent with theoretical expectations. In particular, the characteristic sharpening of the acoustic peaks of the temperature power spectrum resulting from successful delensing is detected at a significance of 16σ, with an amplitude of A_{delens}=1.12±0.07 relative to the expected value of unity. This first demonstration on data of CIB delensing, and of delensing techniques in general, is significant because lensing removal will soon be essential for achieving high-precision constraints on inflationary B-mode polarization.
Mohammed, Muzaffer; Aslan, Kadir
2013-01-01
We demonstrate the design and the proof-of-concept use of a new, circular poly(methyl methacrylate)-based bioassay platform (PMMA platform), which affords for the rapid processing of 16 samples at once. The circular PMMA platform (5 cm in diameter) was coated with a silver nanoparticle film to accelerate the bioassay steps by microwave heating. A model colorimetric bioassay for biotinylated albumin (using streptavidin-labeled horse radish peroxidase) was performed on the PMMA platform coated with and without silver nanoparticles (a control experiment), and at room temperature and using microwave heating. It was shown that the simulated temperature profile of the PMMA platform during microwave heating were comparable to the real-time temperature profile during actual microwave heating of the constructed PMMA platform in a commercial microwave oven. The model colorimetric bioassay for biotinylated albumin was successfully completed in ~2 min (total assay time) using microwave heating, as compared to 90 min at room temperature (total assay time), which indicates a ~45-fold decrease in assay time. Our PMMA platform design afforded for significant reduction in non-specific interactions and low background signal as compared to non-silvered PMMA surfaces when employed in a microwave-accelerated bioassay carried out in a conventional microwave cavity.
Introduction to temperature anisotropies of Cosmic Microwave Background radiation
NASA Astrophysics Data System (ADS)
Sugiyama, Naoshi
2014-06-01
Since its serendipitous discovery, Cosmic Microwave Background (CMB) radiation has been recognized as the most important probe of Big Bang cosmology. This review focuses on temperature anisotropies of CMB which make it possible to establish precision cosmology. Following a brief history of CMB research, the physical processes working on the evolution of CMB anisotropies are discussed, including gravitational redshift, acoustic oscillations, and diffusion dumping. Accordingly, dependencies of the angular power spectrum on various cosmological parameters, such as the baryon density, the matter density, space curvature of the universe, and so on, are examined and intuitive explanations of these dependencies are given.
Anomalous cosmic-microwave-background polarization and gravitational chirality.
Contaldi, Carlo R; Magueijo, João; Smolin, Lee
2008-10-03
We consider the possibility that gravity breaks parity, with left and right-handed gravitons coupling to matter with a different Newton's constant and show that this would affect their zero-point vacuum fluctuations during inflation. Should there be a cosmic background of gravity waves, the effect would translate into anomalous cosmic microwave background polarization. Nonvanishing temperature-magnetic (TB) mode [and electric-magnetic mode] components emerge, revealing interesting experimental targets. Indeed, if reasonable chirality is present a TB measurement would provide the easiest way to detect a gravitational wave background. We speculate on the theoretical implications of such an observation.
The COBE cosmic 3 K anisotropy experiment: A gravity wave and cosmic string probe
NASA Technical Reports Server (NTRS)
Bennett, Charles L.; Smoot, George F.
1989-01-01
Among the experiments to be carried into orbit next year, by the COBE satellite, are differential microwave radiometers. They will make sensitive all-sky maps of the temperature of the cosmic microwave background radiation at three frequencies, giving dipole, quadrupole, and higher order multipole measurements of the background radiation. The experiment will either detect, or place significant constraints on, the existence of cosmic strings and long wavelength gravity waves.
Patterns of the cosmic microwave background from evolving string networks
NASA Technical Reports Server (NTRS)
Bouchet, Francois R.; Bennett, David P.; Stebbins, Albert
1988-01-01
A network of cosmic strings generated in the early universe may still exist today. As the strings move across the sky, they produce, by gravitational lensing, a characteristic pattern of anisotropies in the temperature of the cosmic microwave background. The observed absence of such anisotropies places constraints on theories in which galaxy formation is seeded by strings, but it is anticipated that the next generation of experiments will detect them.
A measurement of the cosmic microwave background temperature at 7.5 GHz
NASA Technical Reports Server (NTRS)
Levin, S.; Bensadoun, M.; Bersanelli, M.; De Amici, G.; Kogut, A.; Limon, M.; Smoot, G.
1992-01-01
The temperature of the cosmic microwave background (CMB) radiation at a frequency of 7.5 GHz (4 cm wavelength) is measured, obtaining a brightness temperature of T(CMB) = 2.70 +/- 0.08 K (68 percent confidence level). The measurement was made from a site near the geographical South Pole during the austral spring of 1989 and was part of an international collaboration to measure the CMB spectrum at low frequencies with a variety of radiometers from several different sites. This recent result is in agreement with the 1988 measurement at the same frequency, which was made from a different site with significantly different systematic errors. The combined result of the 1988 and 1989 measurements is 2.64 +/- 0.06 K.
Results from the Wilkinson Microwave Anisotropy Probe
NASA Technical Reports Server (NTRS)
Komatsu, E.; Bennett, Charles L.; Komatsu, Eiichiro
2015-01-01
The Wilkinson Microwave Anisotropy Probe (WMAP) mapped the distribution of temperature and polarization over the entire sky in five microwave frequency bands. These full-sky maps were used to obtain measurements of temperature and polarization anisotropy of the cosmic microwave background with the unprecedented accuracy and precision. The analysis of two-point correlation functions of temperature and polarization data gives determinations of the fundamental cosmological parameters such as the age and composition of the universe, as well as the key parameters describing the physics of inflation, which is further constrained by three-point correlation functions. WMAP observations alone reduced the flat ? cold dark matter (Lambda Cold Dark Matter) cosmological model (six) parameter volume by a factor of > 68, 000 compared with pre-WMAP measurements. The WMAP observations (sometimes in combination with other astrophysical probes) convincingly show the existence of non-baryonic dark matter, the cosmic neutrino background, flatness of spatial geometry of the universe, a deviation from a scale-invariant spectrum of initial scalar fluctuations, and that the current universe is undergoing an accelerated expansion. The WMAP observations provide the strongest ever support for inflation; namely, the structures we see in the universe originate from quantum fluctuations generated during inflation.
NASA Technical Reports Server (NTRS)
Wanjek, Christopher
2003-01-01
In June, NASA plans to launch the Microwave Anisotropy Probe (MAP) to survey the ancient radiation in unprecedented detail. MAP will map slight temperature fluctuations within the microwave background that vary by only 0.00001 C across a chilly radiation that now averages 2.73 C above absolute zero. The temperature differences today point back to density differences in the fiery baby universe, in which there was a little more matter here and a little less matter there. Areas of slightly enhanced density had stronger gravity than low-density areas. The high-density areas pulled back on the background radiation, making it appear slightly cooler in those directions.
Ding, Junjia; Ade, P. A. R.; Anderson, A. J.; ...
2016-12-15
In this study, we describe the optimization of transition-edge-sensor (TES) detector arrays for the thirdgeneration camera for the South PoleTelescope.The camera,which contains ~16 000 detectors, will make high-angular-resolution maps of the temperature and polarization of the cosmic microwave background. Our key results are scatter in the transition temperature of Ti/Au TESs is reduced by fabricating the TESs on a thin Ti(5 nm)/Au(5 nm) buffer layer and the thermal conductivity of the legs that support our detector islands is dominated by the SiOx dielectric in the microstrip transmission lines that run along
Cosmology with the cosmic microwave background temperature-polarization correlation
NASA Astrophysics Data System (ADS)
Couchot, F.; Henrot-Versillé, S.; Perdereau, O.; Plaszczynski, S.; Rouillé d'Orfeuil, B.; Spinelli, M.; Tristram, M.
2017-06-01
We demonstrate that the cosmic microwave background (CMB) temperature-polarization cross-correlation provides accurate and robust constraints on cosmological parameters. We compare them with the results from temperature or polarization and investigate the impact of foregrounds, cosmic variance, and instrumental noise. This analysis makes use of the Planck high-ℓ HiLLiPOP likelihood based on angular power spectra, which takes into account systematics from the instrument and foreground residuals directly modelled using Planck measurements. The temperature-polarization correlation (TE) spectrum is less contaminated by astrophysical emissions than the temperature power spectrum (TT), allowing constraints that are less sensitive to foreground uncertainties to be derived. For ΛCDM parameters, TE gives very competitive results compared to TT. For basic ΛCDM model extensions (such as AL, ∑mν, or Neff), it is still limited by the instrumental noise level in the polarization maps.
Cosmic microwave background dipole spectrum measured by the COBE FIRAS instrument
NASA Technical Reports Server (NTRS)
Fixsen, D. J.; Cheng, E. S.; Cottingham, D. A.; Eplee, R. E., Jr.; Isaacman, R. B.; Mather, J. C.; Meyer, S. S.; Noerdlinger, P. D.; Shafer, R. A.; Weiss, R.
1994-01-01
The Far-Infrared Absolute Spectrophotometer (FIRAS) instrument on the Cosmic Background Explorer (COBE) has determined the dipole spectrum of the cosmic microwave background radiation (CMBR) from 2 to 20/cm. For each frequency the signal is decomposed by fitting to a monopole, a dipole, and a Galactic template for approximately 60% of the sky. The overall dipole spectrum fits the derivative of a Planck function with an amplitude of 3.343 +/- 0.016 mK (95% confidence level), a temperature of 2.714 +/- 0.022 K (95% confidence level), and an rms deviation of 6 x 10(exp -9) ergs/sq cm/s/sr cm limited by a detector and cosmic-ray noise. The monopole temperature is consistent with that determined by direct measurement in the accompanying article by Mather et al.
Cosmic microwave background bispectrum from recombination.
Huang, Zhiqi; Vernizzi, Filippo
2013-03-08
We compute the cosmic microwave background temperature bispectrum generated by nonlinearities at recombination on all scales. We use CosmoLib2nd, a numerical Boltzmann code at second order to compute cosmic microwave background bispectra on the full sky. We consistently include all effects except gravitational lensing, which can be added to our result using standard methods. The bispectrum is peaked on squeezed triangles and agrees with the analytic approximation in the squeezed limit at the few percent level for all the scales where this is applicable. On smaller scales, we recover previous results on perturbed recombination. For cosmic-variance limited data to l(max)=2000, its signal-to-noise ratio is S/N=0.47, corresponding to f(NL)(eff)=-2.79, and will bias a local signal by f(NL)(loc) ~/= 0.82.
Photogrammetrically Measured Distortions of Composite Structure Microwave Reflectors at -90K
NASA Technical Reports Server (NTRS)
Mule, Peter; Hill, Michael D.; Sampler, Henry P.
2000-01-01
The Microwave Anisotropy Probe (MAP) Observatory, scheduled for a late 2000 launch, is designed to measure temperature fluctuations (anisotropy) and produce a high sensitivity and high spatial resolution (better than 0.3 deg. at 90 GHz.) map of the Cosmic Microwave Background (CMB) radiation over the entire sky between 22 and 90 GHz. MAP utilizes back-to-back composite Gregorian telescopes supported on a composite truss structure to focus the microwave signals into 10 differential microwave receivers. Proper position and shape of the telescope reflectors at the operating temperature of -90 K is a critical element to ensure mission success. We describe the methods and analysis used to validate the in-flight position and shape predictions for the reflectors based on photogrammetric metrology data taken under vacuum with the reflectors at -90 K. Contour maps showing reflector distortion were generated. The resulting reflector distortion data are shown to be crucial to the analytical assessment of the MAP instrument's microwave system in-flight performance.
NASA Technical Reports Server (NTRS)
Mule, Peter; Hill, Michael D.; Sampler, Henry P.
2000-01-01
The Microwave Anisotropy Probe (MAP) Observatory, scheduled for a fall 2000 launch, is designed to measure temperature fluctuations (anisotropy) and produce a high sensitivity and high spatial resolution (better than 0.3 deg.) map of the cosmic microwave background (CMB) radiation over the entire sky between 22 and 90 GHz. MAP utilizes back-to-back composite Gregorian telescopes supported on a composite truss structure to focus the microwave signals into 10 differential microwave receivers. Proper position and shape of the telescope reflectors at the operating temperature of approximately 90 K is a critical element to ensuring mission success. We describe the methods and analysis used to validate the in-flight position and shape predictions for the reflectors based on photogrammetric (PG) metrology data taken under vacuum with the reflectors at approximately 90 K. Contour maps showing reflector distortion analytical extrapolations were generated. The resulting reflector distortion data are shown to be crucial to the analytical assessment of the MAP instrument's microwave system in-flight performance.
An Analysis of Recent Measurements of the Temperature of the Cosmic Microwave Background Radiation
DOE R&D Accomplishments Database
Smoot, G.; Levin, S. M.; Witebsky, C.; De Amici, G.; Rephaeli, Y.
1987-07-01
This paper presents an analysis of the results of recent temperature measurements of the cosmic microwave background radiation (CMBR). The observations for wavelengths longer than 0.1 cum are well fit by a blackbody spectrum at 2.74{+ or -}0.0w K; however, including the new data of Matsumoto et al. (1987) the result is no longer consistent with a Planckian spectrum. The data are described by a Thomson-distortion parameter u=0.021{+ or -}0.002 and temperature 2.823{+ or -}0.010 K at the 68% confidence level. Fitting the low-frequency data to a Bose-Einstein spectral distortion yields a 95% confidence level upper limit of 1.4 x 10{sup -2} on the chemical potential mu{sub 0}. These limits on spectral distortions place restrictions on a number of potentially interesting sources of energy release to the CMBR, including the hot intergalactic medium proposed as the source of the X-ray background.
The Python Sky Model: software for simulating the Galactic microwave sky
NASA Astrophysics Data System (ADS)
Thorne, B.; Dunkley, J.; Alonso, D.; Næss, S.
2017-08-01
We present a numerical code to simulate maps of Galactic emission in intensity and polarization at microwave frequencies, aiding in the design of cosmic microwave background experiments. This python code builds on existing efforts to simulate the sky by providing an easy-to-use interface and is based on publicly available data from the WMAP (Wilkinson Microwave Anisotropy Probe) and Planck satellite missions. We simulate synchrotron, thermal dust, free-free and anomalous microwave emission over the whole sky, in addition to the cosmic microwave background, and include a set of alternative prescriptions for the frequency dependence of each component, for example, polarized dust with multiple temperatures and a decorrelation of the signals with frequency, which introduce complexity that is consistent with current data. We also present a new prescription for adding small-scale realizations of these components at resolutions greater than current all-sky measurements. The usefulness of the code is demonstrated by forecasting the impact of varying foreground complexity on the recovered tensor-to-scalar ratio for the LiteBIRD satellite. The code is available at: https://github.com/bthorne93/PySM_public.
Imprints of spherical nontrivial topologies on the cosmic microwave background.
Niarchou, Anastasia; Jaffe, Andrew
2007-08-24
The apparent low power in the cosmic microwave background (CMB) temperature anisotropy power spectrum derived from the Wilkinson Microwave Anisotropy Probe motivated us to consider the possibility of a nontrivial topology. We focus on simple spherical multiconnected manifolds and discuss their implications for the CMB in terms of the power spectrum, maps, and the correlation matrix. We perform a Bayesian model comparison against the fiducial best-fit cold dark matter model with a cosmological constant based both on the power spectrum and the correlation matrix to assess their statistical significance. We find that the first-year power spectrum shows a slight preference for the truncated cube space, but the three-year data show no evidence for any of these spaces.
Searching for CPT violation with cosmic microwave background data from WMAP and BOOMERANG.
Feng, Bo; Li, Mingzhe; Xia, Jun-Qing; Chen, Xuelei; Zhang, Xinmin
2006-06-09
We search for signatures of Lorentz and violations in the cosmic microwave background (CMB) temperature and polarization anisotropies by using the Wilkinson Microwave Anisotropy Probe (WMAP) and the 2003 flight of BOOMERANG (B03) data. We note that if the Lorentz and symmetries are broken by a Chern-Simons term in the effective Lagrangian, which couples the dual electromagnetic field strength tensor to an external four-vector, the polarization vectors of propagating CMB photons will get rotated. Using the WMAP data alone, one could put an interesting constraint on the size of such a term. Combined with the B03 data, we found that a nonzero rotation angle of the photons is mildly favored: [Formula: See Text].
NASA Astrophysics Data System (ADS)
Simonetti, John H.; Dennison, Brian; Topasna, Gregory A.
1996-02-01
We made a sensitive, wide-field H alpha image of the north celestial polar region. Using this image, we constrain the contribution of irregularities in interstellar free-free emission to the degree-scale anisotropies in the cosmic microwave background detected in recent observations at Saskatoon by the Princeton group. The analysis of the H alpha image mimics the Saskatoon data analysis: the resulting signal is the strength of irregularities sampled with the Saskatoon beam (i.e., degree-scale) along the 85 deg declination circle. We found no such irregularities that could be attributed to H alpha emission. The implied upper bound on the rms variation in free-free brightness temperature is less than 4.6 mu K at 27.5 GHz. The observed cosmic microwave background anisotropies are much larger. Therefore, the contribution of irregularities in interstellar free-free emission to the observed anisotropies is negligible.
Bayesian Analysis of the Power Spectrum of the Cosmic Microwave Background
NASA Technical Reports Server (NTRS)
Jewell, Jeffrey B.; Eriksen, H. K.; O'Dwyer, I. J.; Wandelt, B. D.
2005-01-01
There is a wealth of cosmological information encoded in the spatial power spectrum of temperature anisotropies of the cosmic microwave background. The sky, when viewed in the microwave, is very uniform, with a nearly perfect blackbody spectrum at 2.7 degrees. Very small amplitude brightness fluctuations (to one part in a million!!) trace small density perturbations in the early universe (roughly 300,000 years after the Big Bang), which later grow through gravitational instability to the large-scale structure seen in redshift surveys... In this talk, I will discuss a Bayesian formulation of this problem; discuss a Gibbs sampling approach to numerically sampling from the Bayesian posterior, and the application of this approach to the first-year data from the Wilkinson Microwave Anisotropy Probe. I will also comment on recent algorithmic developments for this approach to be tractable for the even more massive data set to be returned from the Planck satellite.
Identification and Classification of Transient Signatures in Over-Land SSM/I Imagery
NASA Technical Reports Server (NTRS)
Petty, Grant W.; Conner, Mark D.
1994-01-01
Two distinct yet related factors make it difficult to reliably detect precipitation over land with passive microwave techniques, such as those developed during recent years for the Special Sensor Microwave/Imager (SSM/I). The first factor is the general lack of contrast between radiances from the strongly emitting land background and that from a non-scattering atmosphere. Indeed. for certain common combinations of surface emissivity and temperature (both surface and atmospheric), significant changes in atmospheric opacity due to liquid water may have a negligible effect on satellite observed brightness temperatures. and whatever minor change occurs may be of either positive or negative sign. For this reason it is generally necessary for some degree of volume scattering by precipitation-size ice particles to be present in order to reduce the brightness temperature of the atmosphere relative to the warm background. by which process the precipitation may be observed.
Measurements of the cosmic microwave background temperature at 1.47 GHz
NASA Technical Reports Server (NTRS)
Bensadoun, M.; Bersanelli, M.; De Amici, G.; Kogut, A.; Levin, S. M.; Limon, M.; Smoot, G. F.; Witebsky, C.
1993-01-01
We have used a radio-frequency-gain total-power radiometer to measure the intensity of the cosmic microwave background (CMB) at a frequency of 1.47 GHz (20.4 cm wavelength) from White Mountain, California in 1988 September and from the South Pole in 1989 December. The CMB thermodynamic temperature, T(CMB), is 2.27 +/- 0.25 K (68 percent confidence limit) measured from White Mountain and 2.26 +/- 0.20 K from the South Pole site. The combined result is 2.26 +/- 0.19 K. The correction for Galactic emission has been derived from scaled low-frequency maps and constitutes the main source of error. The atmospheric signal is extrapolated from our zenith scan measurements at higher frequencies. These results are consistent with our previous measurement at 1.41 GHz and about 2.5 sigma from the 2.74 +/- 0.01 K global average CMB temperature.
The Cosmic Microwave Background Radiation - A Unique Window on the Early Universe
NASA Technical Reports Server (NTRS)
Hinshaw, Gary F.
2009-01-01
The cosmic microwave background radiation is the remnant heat from the Big Bang. It provides us with a unique probe of conditions in the early universe, long before any organized structures had yet formed. The anisotropy in the radiation's brightness yields important clues about primordial structure and additionally provides a wealth of information about the physics of the early universe. Within the framework of inflationary dark matter models, observations of the anisotropy on sub-degree angular scales reveals the signatures of acoustic oscillations of the photon-baryon fluid at a redshift of approx. 1100. Data from the first five years of operation of the Wilkinson Microwave Anisotropy Probe (WMAP) satellite provide detailed full-sky maps of the cosmic microwave background temperature and polarization anisotropy. Together, the data provide a wealth of cosmological information, including the age of the universe, the epoch when the first stars formed, and the overall composition of baryonic matter, dark matter, and dark energy. The results also provide constraints on the period of inflationary expansion in the very first moments of time.
The imprint of proper motion of nonlinear structures on the cosmic microwave background
NASA Technical Reports Server (NTRS)
Tuluie, Robin; Laguna, Pablo
1995-01-01
We investigate the imprint of nonlinear matter condensations on the cosmic microwave background (CMB) in an Omega = 1, cold dark matter (CDM) model universe. Temperature anisotropies are obtained by numerically evolving matter inhomogeneities and CMB photons from the beginning of decoupling until the present epoch. The underlying density field produced by the inhomogeneities is followed from the linear, through the weakly clustered, into the fully nonlinear regime. We concentrate on CMB temperature distortions arising from variations in the gravitational potentials of nonlinear structures. We find two sources of temperature fluctuations produced by time-varying potentials: (1) anisotropies due to intrinsic changes in the gravitational potentials of the inhomogeneities and (2) anisotropies generated by the peculiar, bulk motion of the structures across the microwave sky. Both effects generate CMB anisotropies in the range of 10(exp -7) approximately less than or equal to (Delta T/T) approximately less than or equal to 10(exp -6) on scales of approximately 1 deg. For isolated structures, anisotropies due to proper motion exhibit a dipole-like signature in the CMB sky that in principle could yield information on the transverse velocity of the structures.
NASA Astrophysics Data System (ADS)
Mukherjee, Suvodip; Souradeep, Tarun
2016-06-01
Recent measurements of the temperature field of the cosmic microwave background (CMB) provide tantalizing evidence for violation of statistical isotropy (SI) that constitutes a fundamental tenet of contemporary cosmology. CMB space based missions, WMAP, and Planck have observed a 7% departure in the SI temperature field at large angular scales. However, due to higher cosmic variance at low multipoles, the significance of this measurement is not expected to improve from any future CMB temperature measurements. We demonstrate that weak lensing of the CMB due to scalar perturbations produces a corresponding SI violation in B modes of CMB polarization at smaller angular scales. The measurability of this phenomenon depends upon the scales (l range) over which power asymmetry is present. Power asymmetry, which is restricted only to l <64 in the temperature field, cannot lead to any significant observable effect from this new window. However, this effect can put an independent bound on the spatial range of scales of hemispherical asymmetry present in the scalar sector.
Mukherjee, Suvodip; Souradeep, Tarun
2016-06-03
Recent measurements of the temperature field of the cosmic microwave background (CMB) provide tantalizing evidence for violation of statistical isotropy (SI) that constitutes a fundamental tenet of contemporary cosmology. CMB space based missions, WMAP, and Planck have observed a 7% departure in the SI temperature field at large angular scales. However, due to higher cosmic variance at low multipoles, the significance of this measurement is not expected to improve from any future CMB temperature measurements. We demonstrate that weak lensing of the CMB due to scalar perturbations produces a corresponding SI violation in B modes of CMB polarization at smaller angular scales. The measurability of this phenomenon depends upon the scales (l range) over which power asymmetry is present. Power asymmetry, which is restricted only to l<64 in the temperature field, cannot lead to any significant observable effect from this new window. However, this effect can put an independent bound on the spatial range of scales of hemispherical asymmetry present in the scalar sector.
Illuminating the Background: Topics in Cosmic Microwave Background Polarization Research
NASA Astrophysics Data System (ADS)
Miller, Nathan J.
The cosmic microwave background provides a wealth of information about the origin and history of the universe. The statistics of the anisotropy and the polarization of the cosmic microwave background, among other things, can tell us about the distribution of matter, the redshift of reionization, and the nature of the primordial uctuations. From the lensing of cosmic microwave background due to intervening matter, we can extract information about neutrinos and the equation of state of dark energy. A measurement of the large angular scale B-mode polarization has been called the "smoking gun" of in ation, a theory that describes a possible early rapid expansion of the universe. The focus of current experiments is to measure this B-mode polarization, while several experiments, such as POLARBEAR, are also looking to measure the lensing of the cosmic microwave background. This dissertation will discuss several different topics in cosmic microwave background polarization research. I will make predictions for future experiments and I will also show analysis for two current experiments, POLARBEAR and BICEP. I will show how beam systematics affect the measurement of cosmological parameters and how well we must limit these systematics in order to get unbiased constraints on cosmological parameters for future experiments. I will discuss a novel way of using the temperature-polarization cross correlation to constrain the amount of inflationary gravitational waves. Through Markov Chain Monte Carlo methods, I will determine how well future experiments will be able to constrain the neutrino masses and their degeneracy parameters. I will show results from current data analysis and calibration being done on the Cedar Flat deployment for the POLARBEAR experiment which is currently being constructed in the Atacama desert in Chile. Finally, I will analyze the claim of detection of cosmological birefringence in the BICEP data and show that there is reason to believe it is due to systematic effects in the data.
Determining neutrino mass from the cosmic microwave background alone.
Kaplinghat, Manoj; Knox, Lloyd; Song, Yong-Seon
2003-12-12
Distortions of cosmic microwave background temperature and polarization maps caused by gravitational lensing, observable with high angular resolution and high sensitivity, can be used to measure the neutrino mass. Assuming two massless species and one with mass m(nu), we forecast sigma(m(nu))=0.15 eV from the Planck satellite and sigma(m(nu))=0.04 eV from observations with twice the angular resolution and approximately 20 times the sensitivity. A detection is likely at this higher sensitivity since the observation of atmospheric neutrino oscillations requires Deltam(2)(nu) greater, similar (0.04 eV)(2).
NASA Technical Reports Server (NTRS)
Mather, J. C.; Cheng, E. S.; Shafer, R. A.; Bennett, C. L.; Boggess, N. W.; Dwek, E.; Hauser, M. G.; Kelsall, T.; Moseley, S. H., Jr.; Silverberg, R. F.
1990-01-01
A preliminary spectrum is presented of the background radiation between 1 and 20/cm from regions near the north Galactic pole, as observed by the FIRAS instrument on the COBE satellite. The spectral resolution is 1/cm. The spectrum is well fitted by a blackbody with a temperature of 2.735 + or - 0.06 K, and the deviation from a blackbody is less than 1 percent of the peak intensity over the range 1-20/cm. These new data show no evidence for the submillimeter excess previously reported by Matsumoto et al. (1988) in the cosmic microwave background. Further analysis and additional data are expected to improve the sensitivity to deviations from a blackbody spectrum by an order of magnitude.
Interstellar cyanogen and the temperature of the cosmic microwave background radiation
NASA Technical Reports Server (NTRS)
Roth, Katherine C.; Meyer, David M.; Hawkins, Isabel
1993-01-01
We present the results of a recently completed effort to determine the amount of CN rotational excitation in five diffuse interstellar clouds for the purpose of accurately measuring the temperature of the cosmic microwave background radiation (CMBR). In addition, we report a new detection of emission from the strongest hyperfine component of the 2.64 mm CN rotational transition (N = 1-0) in the direction toward HD 21483. We have used this result in combination with existing emission measurements toward our other stars to correct for local excitation effects within diffuse clouds which raise the measured CN rotational temperature above that of the CMBR. After making this correction, we find a weighted mean value of T(CMBR) = 2.729 (+0.023, -0.031) K. This temperature is in excellent agreement with the new COBE measurement of 2.726 +/- 0.010 K (Mather et al., 1993). Our result, which samples the CMBR far from the near-Earth environment, attests to the accuracy of the COBE measurement and reaffirms the cosmic nature of this background radiation. From the observed agreement between our CMBR temperature and the COBE result, we conclude that corrections for local CN excitation based on millimeter emission measurements provide an accurate adjustment to the measured rotational excitation.
Microwave Radiation and Thermoregulation.
1981-11-01
AD-Alll 244 JOHN B PIERCE FOUNDATION LAB NEW HAVEN CONN F/S 6/18 MICROWAVE RADIATION AND THERMOREGULATION .(U) NOV 81 E R ADAIR AFOSR-77-3420...KEY WORDS rCo ntinue on reverse ,ide if necessary end identify by block number) behavioral thermoregulation squirrel monkey autonomic thermoregulation ...GOVERNMENT ~ j ~3Approved f or public release TABLE OF CONTENTS Page SUMMARY 1 BACKGROUND 3 A. Temperature changes and thermoregulation 3 B. Basic data on
NASA Technical Reports Server (NTRS)
Hans-Juergen, C. B.; Kendall, B. M.; Fedors, J. C.
1977-01-01
A technique to measure remotely sea surface temperature and salinity was demonstrated with a dual frequency microwave radiometer system. Accuracies in temperature of 1 C and in salinity of part thousand for salinity greater than 5 parts per thousand were attained after correcting for the influence of extraterrestrial background radiation, atmospheric radiation and attenuation, sea-surface roughness, and antenna beamwidth. The radiometers, operating at 1.43 and 2.65 GHz, comprise a third-generation system using null balancing and feedback noise injection. Flight measurements from an aircraft at an altitude of 1.4 km over the lower Chesapeake Bay and coastal areas of the Atlantic Ocean resulted in contour maps of sea-surface temperature and salinity with a spatial resolution of 0.5 km.
Microwave properties of a quiet sea
NASA Technical Reports Server (NTRS)
Stacey, J.
1985-01-01
The microwave flux responses of a quiet sea are observed at five microwave frequencies and with both horizontal and vertical polarizations at each frequency--a simultaneous 10 channel receiving system. The measurements are taken from Earth orbit with an articulating antenna. The 10 channel responses are taken simultaneously since they share a common articulating collector with a multifrequency feed. The plotted flux responses show: (1) the effects of the relative, on-axis-gain of the collecting aperture for each frequency; (2) the effects of polarization rotation in the output responses of the receive when the collecting aperture mechanically rotates about a feed that is fixed; (3) the difference between the flux magnitudes for the horizontal and vertical channels, at each of the five frequencies, and for each pointing position, over a 44 degree scan angle; and (4) the RMS value of the clutter--as reckoned over the interval of a full swath for each of the 10 channels. The clutter is derived from the standard error of estimate of the plotted swath response for each channel. The expected value of the background temperature is computed for each of the three quiet seas. The background temperature includes contributions from the cosmic background, the downwelling path, the sea surface, and the upwelling path.
Wang, Peiyu; Li, Zhencheng; Pei, Yongmao
2018-04-16
An in situ high temperature microwave microscope was built for detecting surface and sub-subsurface structures and defects. This system was heated with a self-designed quartz lamp radiation module, which is capable of heating to 800°C. A line scanning of a metal grating showed a super resolution of 0.5 mm (λ/600) at 1 GHz. In situ scanning detections of surface hole defects on an aluminium plate and a glass fiber reinforced plastic (GFRP) plate were conducted at different high temperatures. A post processing algorithm was proposed to remove the background noises induced by high temperatures and the 3.0 mm-spaced hole defects were clearly resolved. Besides, hexagonal honeycomb lattices were in situ detected and clearly resolved under a 1.0 mm-thick face panel at 20°C and 50°C, respectively. The core wall positions and bonding width were accurately detected and evaluated. In summary, this in situ microwave microscope is feasible and effective in sub-surface detection and super resolution imaging at different high temperatures.
Kovac, J M; Leitch, E M; Pryke, C; Carlstrom, J E; Halverson, N W; Holzapfel, W L
The past several years have seen the emergence of a standard cosmological model, in which small temperature differences in the cosmic microwave background (CMB) radiation on angular scales of the order of a degree are understood to arise from acoustic oscillations in the hot plasma of the early Universe, arising from primordial density fluctuations. Within the context of this model, recent measurements of the temperature fluctuations have led to profound conclusions about the origin, evolution and composition of the Universe. Using the measured temperature fluctuations, the theoretical framework predicts the level of polarization of the CMB with essentially no free parameters. Therefore, a measurement of the polarization is a critical test of the theory and thus of the validity of the cosmological parameters derived from the CMB measurements. Here we report the detection of polarization of the CMB with the Degree Angular Scale Interferometer (DASI). The polarization is deteced with high confidence, and its level and spatial distribution are in excellent agreement with the predictions of the standard theory.
A review of applications of microwave radiometry to oceanography
NASA Technical Reports Server (NTRS)
Wilheit, T. T., Jr.
1978-01-01
Following a review of the essential physics of microwave radiative transfer, oceanographic applications of this background physics are discussed using data from electrically scanning microwave radiometers on the Nimbus 5 and 6 satellites operating at 1.55-cm and 8-mm wavelengths, respectively. These data are interpreted in terms of rain rate, ice coverage, and first-year versus multiyear ice determination. It is shown that multifrequency radiometer measurements make it possible to separate the surface and atmospheric effects and to obtain useful measurements of sea surface temperature, surface wind speed, and atmospheric parameters along with improved measurements of rain and ice.
Mapping the CMB with the Wilkinson Microwave Anisotropy Probe
NASA Technical Reports Server (NTRS)
Hinshaw, Gary
2007-01-01
The data from the Wilkinson Microwave Anisotropy Probe (WMAP) satellite provide detailed full-sky maps of the cosmic microwave background temperature anisotropy and new full-sky maps of the polarization. Together, the data provide a wealth of cosmological information, including the age of the universe, the epoch when the first stars formed, and the overall composition of baryonic matter, dark matter, and dark energy. The results also provide constraints on the period of inflationary expansion in the very first moments of time. These and other aspects of the mission results will be discussed and commented on.
Empirical studies of the microwave radiometric response to rainfall in the tropics and midlatitudes
NASA Technical Reports Server (NTRS)
Petty, Grant W.; Katsaros, Kristina B.
1989-01-01
Results are presented from quantitative comparisons between satellite microwave radiometer observations and digital radar observations of equatorial convective cloud clusters and midlatitude frontal precipitation. Simultaneous data from the Winter Monsoon Experiment digital radar and the SMMR for December 1978 are analyzed. It is found that the most important differences between the microwave response to rainfall in the equatorial tropics and to stratiform rain in oceanic midlatitude fronts is caused by the different spatial characteristics of stratiform and convective rainfall and by the different background brightness temperature fields associated with tropical and midlatitude levels of atmospheric water vapor.
Liu, Guo-Chin; Lee, Seokcheon; Ng, Kin-Wang
2006-10-20
We present the full set of power spectra of cosmic microwave background (CMB) temperature and polarization anisotropies due to the coupling between quintessence and pseudoscalar of electromagnetism. This coupling induces a rotation of the polarization plane of the CMB, thus resulting in a nonvanishing B mode and parity-violating TB and EB modes. Using the BOOMERANG data from the flight of 2003, we derive the most stringent constraint on the coupling strength. We find that in some cases the rotation-induced B mode can confuse the hunting for the gravitational lensing-induced B mode.
Ellipsoidal universe can solve the cosmic microwave background quadrupole problem.
Campanelli, L; Cea, P; Tedesco, L
2006-09-29
The recent 3 yr Wilkinson Microwave Anisotropy Probe data have confirmed the anomaly concerning the low quadrupole amplitude compared to the best-fit Lambda-cold dark matter prediction. We show that by allowing the large-scale spatial geometry of our universe to be plane symmetric with eccentricity at decoupling or order 10(-2), the quadrupole amplitude can be drastically reduced without affecting higher multipoles of the angular power spectrum of the temperature anisotropy.
Microwave hydrology: A trilogy
NASA Technical Reports Server (NTRS)
Stacey, J. M.; Johnston, E. J.; Girard, M. A.; Regusters, H. A.
1985-01-01
Microwave hydrology, as the term in construed in this trilogy, deals with the investigation of important hydrological features on the Earth's surface as they are remotely, and passively, sensed by orbiting microwave receivers. Microwave wavelengths penetrate clouds, foliage, ground cover, and soil, in varying degrees, and reveal the occurrence of standing liquid water on and beneath the surface. The manifestation of liquid water appearing on or near the surface is reported by a microwave receiver as a signal with a low flux level, or, equivalently, a cold temperature. Actually, the surface of the liquid water reflects the low flux level from the cosmic background into the input terminals of the receiver. This trilogy describes and shows by microwave flux images: the hydrological features that sustain Lake Baykal as an extraordinary freshwater resource; manifestations of subsurface water in Iran; and the major water features of the Congo Basin, a rain forest.
2013-01-01
Background Research studies on the influence of radiofrequency electromagnetic radiation on implants in vitro have failed to investigate temperature changes in the tissues adjacent to the implants under microwave therapy. We therefore, used a rabbit model in an effort to determine the impact of microwave therapy on temperature changes in tissues adjacent to the titanium alloy implants and the safety profile thereof. Methods Titanium alloy internal fixation plates were implanted in New Zealand rabbits in the middle of femur. Microwave therapy was performed by a 2450 MHz microwave generator 3 days after the surgery. Temperature changes of muscles adjacent to the implants were recorded under exposure to dose-gradient microwave radiation from 20w to 60w. Results Significant difference between control and microwave treatment group at peak temperatures (Tpeak) and temperature gap (Tgap= Tpeak-Tvally) were observed in deep muscles (Tpeak, 41.63 ± 0.21°C vs. 44.40 ± 0.17°C, P < 0.01; Tgap, 5.33 ± 0.21°C vs. 8.10 ± 0.36°C, P < 0.01) and superficial muscles (Tpeak, 41.53 ± 0.15°C vs. 42.03 ± 0.23°C, P = 0.04; Tgap, 5.23 ± 0.21°C vs. 5.80 ± 0.17°C, P = 0.013) under 60 w, and deep muscles (Tpeak, 40.93 ± 0.25°C vs. 41.87 ± 0.23°C, P = 0.01; Tgap, 4.73 ± 0.20°C vs. 5.63 ± 0.35°C, P = 0.037) under 50w, but not under 20, 30 and 40w. Conclusion Our results suggest that low-dose (20w-40w) continuous-wave microwave irradiation delivered by a 2450 MHz microwave generator might be a promising treatment for patients with titanium alloy internal fixation, as it did not raise temperature in muscle tissues adjacent to the titanium alloy implant. PMID:24365389
Detectors for the Atacama Cosmology Telescope
NASA Astrophysics Data System (ADS)
Marriage, Tobias Andrew
The Atacama Cosmology Telescope (ACT) will make measurements of the brightness temperature anisotropy in the Cosmic Microwave Background (CMB) on degree to arcminute angular scales. The ACT observing site is located 5200 m near the top of Cerro Toco in the Atacama Desert of northern Chile. This thesis presents research on the detectors which capture the image of the CMB formed at ACT's focal plane. In the first chapter, the primary brightness temperature fluctuations in the Cosmic Microwave Background are reviewed. In Chapter 2, a calculation shows how the CMB brightness is translated by ACT to an input power to the detectors. Chapter 3 describes the ACT detectors in detail and presents the response and sensitivity of the detectors to the input power computed in Chapter 2. Chapter 4 describes the detector fabrication at NASA Goddard Space Flight Center. Chapter 5 summarizes experiments which characterize the ACT detector performance.
Zhang, Han; Fu, Tengfei; Jiang, Lan; Bai, Yuehong
2013-01-01
Background Microwave is a method for improving fracture repair. However, one of the contraindications for microwave treatment listed in the literature is surgically implanted metal plates in the treatment field. The reason is that the reflection of electromagnetic waves and the eddy current stimulated by microwave would increase the temperature of magnetic implants and cause heat damage in tissues. Comparing with traditional medical stainless steel, titanium alloy is a kind of medical implants with low magnetic permeability and electric conductivity. But the effects of microwave treatment on fracture with titanium alloy internal fixation in vivo were not reported. The aim of this article was to evaluate the security and effects of microwave on healing of a fracture with titanium alloy internal fixation. Methods Titanium alloy internal fixation systems were implanted in New Zealand rabbits with a 3.0 mm bone defect in the middle of femur. We applied a 30-day microwave treatment (2,450MHz, 25W, 10 min per day) to the fracture 3 days after operation. Temperature changes of muscle tissues around implants were measured during the irradiation. Normalized radiographic density of the fracture gap was measured on the 10th day and 30th day of the microwave treatment. All of the animals were killed after 10 and 30 days microwave treatment with histologic and histomorphometric examinations performed on the harvested tissues. Findings The temperatures did not increase significantly in animals with titanium alloy implants. The security of microwave treatment was also supported by histology of muscles, nerve and bone around the implants. Radiographic assessment, histologic and histomorphometric examinations revealed significant improvement in the healing bone. Conclusion Our results suggest that, in the healing of fracture with titanium alloy internal fixation, a low dose of microwave treatment may be a promising method. PMID:24086626
NASA Technical Reports Server (NTRS)
Stompor, Radoslaw; Gorski, Krzysztof M.
1994-01-01
We obtain predictions for cosmic microwave background anisotropies at angular scales near 1 deg in the context of cold dark matter models with a nonzero cosmological constant, normalized to the Cosmic Background Explorer (COBE) Differential Microwave Radiometer (DMR) detection. The results are compared to those computed in the matter-dominated models. We show that the coherence length of the Cosmic Microwave Background (CMB) anisotropy is almost insensitive to cosmological parameters, and the rms amplitude of the anisotropy increases moderately with decreasing total matter density, while being most sensitive to the baryon abundance. We apply these results in the statistical analysis of the published data from the UCSB South Pole (SP) experiment (Gaier et al. 1992; Schuster et al. 1993). We reject most of the Cold Dark Matter (CDM)-Lambda models at the 95% confidence level when both SP scans are simulated together (although the combined data set renders less stringent limits than the Gaier et al. data alone). However, the Schuster et al. data considered alone as well as the results of some other recent experiments (MAX, MSAM, Saskatoon), suggest that typical temperature fluctuations on degree scales may be larger than is indicated by the Gaier et al. scan. If so, CDM-Lambda models may indeed provide, from a point of view of CMB anisotropies, an acceptable alternative to flat CDM models.
Evaluation of brightness temperature from a forward model of ground-based microwave radiometer
NASA Astrophysics Data System (ADS)
Rambabu, S.; Pillai, J. S.; Agarwal, A.; Pandithurai, G.
2014-06-01
Ground-based microwave radiometers are getting great attention in recent years due to their capability to profile the temperature and humidity at high temporal and vertical resolution in the lower troposphere. The process of retrieving these parameters from the measurements of radiometric brightness temperature ( T B ) includes the inversion algorithm, which uses the back ground information from a forward model. In the present study, an algorithm development and evaluation of this forward model for a ground-based microwave radiometer, being developed by Society for Applied Microwave Electronics Engineering and Research (SAMEER) of India, is presented. Initially, the analysis of absorption coefficient and weighting function at different frequencies was made to select the channels. Further the range of variation of T B for these selected channels for the year 2011, over the two stations Mumbai and Delhi is discussed. Finally the comparison between forward-model simulated T B s and radiometer measured T B s at Mahabaleshwar (73.66 ∘E and 17.93∘N) is done to evaluate the model. There is good agreement between model simulations and radiometer observations, which suggests that these forward model simulations can be used as background for inversion models for retrieving the temperature and humidity profiles.
NASA Astrophysics Data System (ADS)
Fisenko, Anatoliy I.; Lemberg, Vladimir
2014-07-01
Using the explicit form of the functions to describe the monopole and dipole spectra of the Cosmic Microwave Background (CMB) radiation, the exact expressions for the temperature dependences of the radiative and thermodynamic functions, such as the total radiation power per unit area, total energy density, number density of photons, Helmholtz free energy density, entropy density, heat capacity at constant volume, and pressure in the finite range of frequencies v 1≤ v≤ v 2 are obtained. Since the dependence of temperature upon the redshift z is known, the obtained expressions can be simply presented in z representation. Utilizing experimental data for the monopole and dipole spectra measured by the COBE FIRAS instrument in the 60-600 GHz frequency interval at the temperature T=2.72548 K, the values of the radiative and thermodynamic functions, as well as the radiation density constant a and the Stefan-Boltzmann constant σ are calculated. In the case of the dipole spectrum, the constants a and σ, and the radiative and thermodynamic properties of the CMB radiation are obtained using the mean amplitude T amp=3.358 mK. It is shown that the Doppler shift leads to a renormalization of the radiation density constant a, the Stefan-Boltzmann constant σ, and the corresponding constants for the thermodynamic functions. The expressions for new astrophysical parameters, such as the entropy density/Boltzmann constant, and number density of CMB photons are obtained. The radiative and thermodynamic properties of the Cosmic Microwave Background radiation for the monopole and dipole spectra at redshift z≈1089 are calculated.
Luminet, Jean-Pierre; Weeks, Jeffrey R; Riazuelo, Alain; Lehoucq, Roland; Uzan, Jean-Philippe
2003-10-09
The current 'standard model' of cosmology posits an infinite flat universe forever expanding under the pressure of dark energy. First-year data from the Wilkinson Microwave Anisotropy Probe (WMAP) confirm this model to spectacular precision on all but the largest scales. Temperature correlations across the microwave sky match expectations on angular scales narrower than 60 degrees but, contrary to predictions, vanish on scales wider than 60 degrees. Several explanations have been proposed. One natural approach questions the underlying geometry of space--namely, its curvature and topology. In an infinite flat space, waves from the Big Bang would fill the universe on all length scales. The observed lack of temperature correlations on scales beyond 60 degrees means that the broadest waves are missing, perhaps because space itself is not big enough to support them. Here we present a simple geometrical model of a finite space--the Poincaré dodecahedral space--which accounts for WMAP's observations with no fine-tuning required. The predicted density is Omega(0) approximately 1.013 > 1, and the model also predicts temperature correlations in matching circles on the sky.
NASA Technical Reports Server (NTRS)
Bennett, C. L.; Boggess, N. W.; Cheng, E. S.; Hauser, M. G.; Kelsall, T.; Mather, J. C.; Moseley, S. H., Jr.; Murdock, T. L.; Shafer, R. A.; Silverberg, R. F.
1993-01-01
NASA's Cosmic Background Explorer (COBE) carries three scientific instruments to make precise measurements of the spectrum and anisotropy of the cosmic microwave background (CMB) radiation on angular scales greater than 7 deg and to conduct a search for a diffuse cosmic infrared background (CIB) radiation with 0.7 deg angular resolution. Data from the Far-Infrared Absolute Spectrophotometer (FIRAS) show that the spectrum of the CMB is that of a blackbody of temperature T = 2.73 +/- 0.06 K, with no deviation from a blackbody spectrum greater than 0.25% of the peak brightness. The first year of data from the Differential Microwave Radiometers (DMR) show statistically significant CMB anisotropy. The anisotropy is consistent with a scale invariant primordial density fluctuation spectrum. Infrared sky brightness measurements from the Diffuse Infrared Background Experiment (DIRBE) provide new conservative upper limits to the CIB. Extensive modeling of solar system and galactic infrared foregrounds is required for further improvement in the CIB limits.
NASA Technical Reports Server (NTRS)
Hill, Michael D.; Herrera, Acey A.; Crane, J. Allen; Packard, Edward A.; Aviado, Carlos; Sampler, Henry P.
2000-01-01
The Microwave Anisotropy Probe (MAP) Observatory, scheduled for a fall 2000 launch, is designed to measure temperature fluctuations (anisotropy) and produce a high sensitivity and high spatial resolution (approximately 0.2 degree) map of the cosmic microwave background (CMB) radiation over the entire sky between 22 and 90 GHz. MAP utilizes back-to-back Gregorian telescopes to focus the microwave signals into 10 differential microwave receivers, via 20 feed horns. Proper alignment of the telescope reflectors and the feed horns at the operating temperature of 90 K is a critical element to ensure mission success. We describe the hardware and methods used to validate the displacement/deformation predictions of the reflectors and the microwave feed horns during thermal/vacuum testing of the reflectors and the microwave instrument. The smallest deformation predictions to be measured were on the order of +/- 0.030 inches (+/- 0.762 mm). Performance of these alignment measurements inside a thermal/vacuum chamber with conventional alignment equipment posed several limitations. The most troublesome limitation was the inability to send personnel into the chamber to perform the measurements during the test due to vacuum and the temperature extremes. The photogrammetry (PG) system was chosen to perform the measurements since it is a non- contact measurement system, the measurements can be made relatively quickly and accurately, and the photogrammetric camera can be operated remotely. The hardware and methods developed to perform the MAP alignment measurements using PG proved to be highly successful. The measurements met the desired requirements, for the metal structures enabling the desired distortions to be measured resolving deformations an order of magnitude smaller than the imposed requirements. Viable data were provided to the MAP Project for a full analysis of the on-orbit performance of the Instrument's microwave system.
NASA Astrophysics Data System (ADS)
Skulachev, Dmitrii P.
2010-07-01
A comparison is made of cosmic microwave background anisotropy data obtained from the WMAP satellite in 2001 - 2006 and from the Relikt-1 satellite in 1983 - 1984. It is shown that low-temperature area found by Relikt-1 is the location of the 'coldest spot' of the WMAP radiomap. The mutual correlation of the two datasets is estimated and found to be positive for all sky regions surveyed. The conclusion is made that with the 98% probability, the Relikt-1 experiment had detected the same signal that was later identified by WMAP. A discussion is given of whether the Relikt-1 experiment parameters were chosen correctly.
Detecting Patchy Reionization in the Cosmic Microwave Background.
Smith, Kendrick M; Ferraro, Simone
2017-07-14
Upcoming cosmic microwave background (CMB) experiments will measure temperature fluctuations on small angular scales with unprecedented precision. Small-scale CMB fluctuations are a mixture of late-time effects: gravitational lensing, Doppler shifting of CMB photons by moving electrons [the kinematic Sunyaev-Zel'dovich (KSZ) effect], and residual foregrounds. We propose a new statistic which separates the KSZ signal from the others, and also allows the KSZ signal to be decomposed in redshift bins. The decomposition extends to high redshift and does not require external data sets such as galaxy surveys. In particular, the high-redshift signal from patchy reionization can be cleanly isolated, enabling future CMB experiments to make high-significance and qualitatively new measurements of the reionization era.
Passive microwave measurements of temperature and salinity in coastal zones
NASA Technical Reports Server (NTRS)
Blume, H.-J. C.; Kendall, B. M.
1982-01-01
Experimental methods and results from the maritime remote sensing (MARSEN) experiments using dual frequency microwave radiometer detecting systems on board aircraft are described. The radiometers were operated at 1.43 and 2.65 GHz and flown above U.S. Atlantic coastal areas, Chesapeake Bay, around Puerto Rico, and over the German Bight. The advanced switched radiometers used were configured to be independent of gain variations and errors originating from front-end losses and determined the absolute brightness temperatures to within a few tenths Kelvin. Corrections to the observed brightness temperature of the ocean are analytically defined, including accounts made for roughness, the cosmic background radiation, and the solar radio source. The coastal flight data for salinity gradients and surface temperatures were compared with sea truth measured from ships and found to be accurate to within 1 C and 1 pph.
Non-Gaussian microwave background fluctuations from nonlinear gravitational effects
NASA Technical Reports Server (NTRS)
Salopek, D. S.; Kunstatter, G. (Editor)
1991-01-01
Whether the statistics of primordial fluctuations for structure formation are Gaussian or otherwise may be determined if the Cosmic Background Explorer (COBE) Satellite makes a detection of the cosmic microwave-background temperature anisotropy delta T(sub CMB)/T(sub CMB). Non-Gaussian fluctuations may be generated in the chaotic inflationary model if two scalar fields interact nonlinearly with gravity. Theoretical contour maps are calculated for the resulting Sachs-Wolfe temperature fluctuations at large angular scales (greater than 3 degrees). In the long-wavelength approximation, one can confidently determine the nonlinear evolution of quantum noise with gravity during the inflationary epoch because: (1) different spatial points are no longer in causal contact; and (2) quantum gravity corrections are typically small-- it is sufficient to model the system using classical random fields. If the potential for two scalar fields V(phi sub 1, phi sub 2) possesses a sharp feature, then non-Gaussian fluctuations may arise. An explicit model is given where cold spots in delta T(sub CMB)/T(sub CMB) maps are suppressed as compared to the Gaussian case. The fluctuations are essentially scale-invariant.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Samal, Pramoda Kumar; Jain, Pankaj; Saha, Rajib
We estimate cosmic microwave background (CMB) polarization and temperature power spectra using Wilkinson Microwave Anisotropy Probe (WMAP) 5 year foreground contaminated maps. The power spectrum is estimated by using a model-independent method, which does not utilize directly the diffuse foreground templates nor the detector noise model. The method essentially consists of two steps: (1) removal of diffuse foregrounds contamination by making linear combination of individual maps in harmonic space and (2) cross-correlation of foreground cleaned maps to minimize detector noise bias. For the temperature power spectrum we also estimate and subtract residual unresolved point source contamination in the cross-power spectrummore » using the point source model provided by the WMAP science team. Our TT, TE, and EE power spectra are in good agreement with the published results of the WMAP science team. We perform detailed numerical simulations to test for bias in our procedure. We find that the bias is small in almost all cases. A negative bias at low l in TT power spectrum has been pointed out in an earlier publication. We find that the bias-corrected quadrupole power (l(l + 1)C{sub l} /2{pi}) is 532 {mu}K{sup 2}, approximately 2.5 times the estimate (213.4 {mu}K{sup 2}) made by the WMAP team.« less
Signatures of Hydrometeor Species from Airborne Passive Microwave Data for Frequencies 10-183 GHz
NASA Technical Reports Server (NTRS)
Cecil, Daniel J.; Leppert, Kenneth, II
2014-01-01
There are 2 basic precipitation retrieval methods using passive microwave measurements: (1) Emission-based: Based on the tendency of liquid precipitation to cause an increase in brightness temperature (BT) primarily at frequencies below 22 GHz over a radiometrically cold background, often an ocean background (e.g., Spencer et al. 1989; Adler et al. 1991; McGaughey et al. 1996); and (2) Scattering-based: Based on the tendency of precipitation-sized ice to scatter upwelling radiation, thereby reducing the measured BT over a relatively warmer (usually land) background at frequencies generally 37 GHz (e.g., Spencer et al. 1989; Smith et al. 1992; Ferraro and Marks 1995). Passive microwave measurements have also been used to detect intense convection (e.g., Spencer and Santek 1985) and for the detection of hail (e.g., Cecil 2009; Cecil and Blankenship 2012; Ferraro et al. 2014). The Global Precipitation Measurement (GPM) mission expands upon the successful Tropical Rainfall Measurement Mission program to provide global rainfall and snowfall observations every 3 hours (Hou et al. 2014). One of the instruments on board the GPM Core Observatory is the GPM Microwave Imager (GMI) which is a conically-scanning microwave radiometer with 13 channels ranging from 10-183 GHz. Goal of this study: Determine the signatures of various hydrometeor species in terms of BTs measured at frequencies used by GMI by using data collected on 3 case days (all having intense/severe convection) during the Mid-latitude Continental Convective Clouds Experiment conducted over Oklahoma in 2011.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hanamura, S.; Smith, B.W.; Winefordner, J.D.
1983-11-01
By means of thermal vaporization, inorganic, organic, and metallorganic species are separated and elemental emission in a microwave plasma is detected as a function of vaporization temperature. Solid samples of 250 mg or more are used to avoid problems with sample heterogeneity. The precision of characteristic appearance temperatures is +/-2/sup 0/C. The single electrode atmosphere pressure microwave plasma system is extremely tolerant to the introduction of water, organic solvents, and air. The measurement system contained a repetition wavelength scan device to allow background correction. The plasma temperature was 5500 K. The system was used to measure C, H, N, O,more » and Hg in orchard leaves and in tuna fish. 9 figures, 5 tables.« less
Could multiple voids explain the cosmic microwave background Cold Spot anomaly?
Naidoo, Krishna; Benoit-Levy, Aurelien; Lahav, Ofer
2016-03-20
Understanding the observed Cold Spot (CS) (temperature of ~ -150 mu K at its centre) on the Cosmic Microwave Background (CMB) is an outstanding problem. Explanations vary from assuming it is just a ≳ 3σ primordial Gaussian fluctuation to the imprint of a supervoid via the Integrated Sachs-Wolfe and Rees-Sciama (ISW+RS) effects. Since single spherical supervoids cannot account for the full profile, the ISW+RS of multiple line-of-sight voids is studied here to mimic the structure of the cosmic web. Two structure configurations are considered. The first, through simulations of 20 voids, produces a central mean temperature of ~-50 mu K.more » In this model the central CS temperature lies at ~ 2σ but fails to explain the CS hot ring. An alternative multi-void model (using more pronounced compensated voids) produces much smaller temperature profiles, but contains a prominent hot ring. Arrangements containing closely placed voids at low redshift are found to be particularly well suited to produce CS-like profiles. We then measure the significance of the CS if CS-like profiles (which are fitted to the ISW+RS of multi-void scenarios) are removed. Furthermore, the CS tension with the LCDM model can be reduced dramatically for an array of temperature profiles smaller than the CS itself.« less
NASA Astrophysics Data System (ADS)
Liu, Guo-Chin; Ichiki, Kiyotomo; Tashiro, Hiroyuki; Sugiyama, Naoshi
2016-07-01
Scattering of cosmic microwave background (CMB) radiation in galaxy clusters induces polarization signals determined by the quadrupole anisotropy in the photon distribution at the location of clusters. This `remote quadrupole' derived from the measurements of the induced polarization in galaxy clusters provides an opportunity to reconstruct local CMB temperature anisotropies. In this Letter, we develop an algorithm of the reconstruction through the estimation of the underlying primordial gravitational potential, which is the origin of the CMB temperature and polarization fluctuations and CMB induced polarization in galaxy clusters. We found a nice reconstruction for the quadrupole and octopole components of the CMB temperature anisotropies with the assistance of the CMB induced polarization signals. The reconstruction can be an important consistency test on the puzzles of CMB anomalies, especially for the low-quadrupole and axis-of-evil problems reported in Wilkinson Microwave Anisotropy Probe and Planck data.
van de Bruck, Carsten; Morrice, Jack; Vu, Susan
2013-10-18
Certain modified gravity theories predict the existence of an additional, nonconformally coupled scalar field. A disformal coupling of the field to the cosmic microwave background (CMB) is shown to affect the evolution of the energy density in the radiation fluid and produces a modification of the distribution function of the CMB, which vanishes if photons and baryons couple in the same way to the scalar. We find the constraints on the couplings to matter and photons coming from the measurement of the CMB temperature evolution and from current upper limits on the μ distortion of the CMB spectrum. We also point out that the measured equation of state of photons differs from w(γ)=1/3 in the presence of disformal couplings.
Comparison of Measured Galactic Background Radiation at L-Band with Model
NASA Technical Reports Server (NTRS)
LeVine, David M.; Abraham, Saji; Kerr, Yann H.; Wilson, William J.; Skou, Niels; Sobjaerg, Sten
2004-01-01
Radiation from the celestial sky in the spectral window at 1.413 GHz is strong and an accurate accounting of this background radiation is needed for calibration and retrieval algorithms. Modern radio astronomy measurements in this window have been converted into a brightness temperature map of the celestial sky at L-band suitable for such applications. This paper presents a comparison of the background predicted by this map with the measurements of several modern L-band remote sensing radiometer Keywords-Galactic background, microwave radiometry; remote sensing;
Imaging Gravity Waves in Lower Stratospheric AMSU-A Radiances. Part 1: Simple Forward Model
2006-08-14
brightening” of microwave radiances acquired from purely vertical background temperature profiles by cross- track scanners. Waves propagating along track...three-dimensional wave fields. For example, some limb sensors return high- resolution vertical temperature profiles with wave oscilla- tions...provide only ver- tical profiles of wave oscillations, similar to radiosonde and rocketsonde data. Similarly, limb-tracking measurements from the
Measurement of the cosmic microwave background spectrum by the COBE FIRAS instrument
NASA Technical Reports Server (NTRS)
Mather, J. C.; Cheng, E. S.; Cottingham, D. A.; Eplee, R. E., Jr.; Fixsen, D. J.; Hewagama, T.; Isaacman, R. B.; Jensen, K. A.; Meyer, S. S.; Noerdlinger, P. D.
1994-01-01
The cosmic microwave background radiation (CMBR) has a blackbody spectrum within 3.4 x 10(exp -8) ergs/sq cm/s/sr cm over the frequency range from 2 to 20/cm (5-0.5 mm). These measurements, derived from the Far-Infrared Absolute Spectrophotomer (FIRAS) instrument on the Cosmic Background Explorer (COBE) satellite, imply stringent limits on energy release in the early universe after t approximately 1 year and redshift z approximately 3 x 10(exp 6). The deviations are less than 0.30% of the peak brightness, with an rms value of 0.01%, and the dimensionless cosmological distortion parameters are limited to the absolute value of y is less than 2.5 x 10(exp -5) and the absolute value of mu is less than 3.3 x 10(exp -4) (95% confidence level). The temperature of the CMBR is 2.726 +/- 0.010 K (95% confidence level systematic).
Follin, Brent; Knox, Lloyd; Millea, Marius; Pan, Zhen
2015-08-28
The unimpeded relativistic propagation of cosmological neutrinos prior to recombination of the baryon-photon plasma alters gravitational potentials and therefore the details of the time-dependent gravitational driving of acoustic oscillations. We report here a first detection of the resulting shifts in the temporal phase of the oscillations, which we infer from their signature in the cosmic microwave background temperature power spectrum.
Energy spectrum of extragalactic gamma-ray sources
NASA Technical Reports Server (NTRS)
Protheroe, R. J.
1985-01-01
The result of Monte Carlo electron photon cascade calculations for propagation of gamma rays through regions of extragalactic space containing no magnetic field are given. These calculations then provide upper limits to the expected flux from extragalactic sources. Since gamma rays in the 10 to the 14th power eV to 10 to the 17th power eV energy range are of interest, interactions of electrons and photons with the 3 K microwave background radiation are considered. To obtain an upper limit to the expected gamma ray flux from sources, the intergalactic field is assumed to be so low that it can be ignored. Interactions with photons of the near-infrared background radiation are not considered here although these will have important implications for gamma rays below 10 to the 14th power eV if the near infrared background radiation is universal. Interaction lengths of electrons and photons in the microwave background radiation at a temperature of 2.96 K were calculated and are given.
Statistics and topology of the COBE differential microwave radiometer first-year sky maps
NASA Technical Reports Server (NTRS)
Smoot, G. F.; Tenorio, L.; Banday, A. J.; Kogut, A.; Wright, E. L.; Hinshaw, G.; Bennett, C. L.
1994-01-01
We use statistical and topological quantities to test the Cosmic Background Explorer (COBE) Differential Microwave Radiometer (DMR) first-year sky maps against the hypothesis that the observed temperature fluctuations reflect Gaussian initial density perturbations with random phases. Recent papers discuss specific quantities as discriminators between Gaussian and non-Gaussian behavior, but the treatment of instrumental noise on the data is largely ignored. The presence of noise in the data biases many statistical quantities in a manner dependent on both the noise properties and the unknown cosmic microwave background temperature field. Appropriate weighting schemes can minimize this effect, but it cannot be completely eliminated. Analytic expressions are presented for these biases, and Monte Carlo simulations are used to assess the best strategy for determining cosmologically interesting information from noisy data. The genus is a robust discriminator that can be used to estimate the power-law quadrupole-normalized amplitude, Q(sub rms-PS), independently of the two-point correlation function. The genus of the DMR data is consistent with Gaussian initial fluctuations with Q(sub rms-PS) = (15.7 +/- 2.2) - (6.6 +/- 0.3)(n - 1) micro-K, where n is the power-law index. Fitting the rms temperature variations at various smoothing angles gives Q(sub rms-PS) = 13.2 +/- 2.5 micro-K and n = 1.7(sup (+0.3) sub (-0.6)). While consistent with Gaussian fluctuations, the first year data are only sufficient to rule out strongly non-Gaussian distributions of fluctuations.
The observable signature of late heating of the Universe during cosmic reionization.
Fialkov, Anastasia; Barkana, Rennan; Visbal, Eli
2014-02-13
Models and simulations of the epoch of reionization predict that spectra of the 21-centimetre transition of atomic hydrogen will show a clear fluctuation peak, at a redshift and scale, respectively, that mark the central stage of reionization and the characteristic size of ionized bubbles. This is based on the assumption that the cosmic gas was heated by stellar remnants-particularly X-ray binaries-to temperatures well above the cosmic microwave background at that time (about 30 kelvin). Here we show instead that the hard spectra (that is, spectra with more high-energy photons than low-energy photons) of X-ray binaries make such heating ineffective, resulting in a delayed and spatially uniform heating that modifies the 21-centimetre signature of reionization. Rather than looking for a simple rise and fall of the large-scale fluctuations (peaking at several millikelvin), we must expect a more complex signal also featuring a distinct minimum (at less than a millikelvin) that marks the rise of the cosmic mean gas temperature above the microwave background. Observing this signal, possibly with radio telescopes in operation today, will demonstrate the presence of a cosmic background of hard X-rays at that early time.
The integrated Sachs-Wolfe signal from BOSS superstructures
NASA Astrophysics Data System (ADS)
Granett, B. R.; Kovács, A.; Hawken, A. J.
2015-12-01
Cosmic structures leave an imprint on the microwave background radiation through the integrated Sachs-Wolfe (ISW) effect. We construct a template map of the linear signal using the Sloan Digital Sky Survey-III Baryon Acoustic Oscillation Survey at redshift 0.43 < z < 0.65. We verify the imprint of this map on the Planck cosmic microwave background (CMB) temperature map at the 97 per cent confidence level and show consistency with the density-temperature cross-correlation measurement. Using this ISW reconstruction as a template, we investigate the presence of ISW sources and further examine the properties of the Granett-Neyrinck-Szapudi supervoid and supercluster catalogue. We characterize the three-dimensional density profiles of these structures for the first time and demonstrate that they are significant structures. Model fits demonstrate that the supervoids are elongated along the line of sight and we suggest that this special orientation may be picked out by the void-finding algorithm in photometric redshift space. We measure the mean temperature profiles in Planck maps from public void and cluster catalogues. In an attempt to maximize the stacked ISW signal, we construct a new catalogue of superstructures based upon local peaks and troughs of the gravitational potential. However, we do not find a significant correlation between these structures and the CMB temperature.
Wu, E Y S; Ade, P; Bock, J; Bowden, M; Brown, M L; Cahill, G; Castro, P G; Church, S; Culverhouse, T; Friedman, R B; Ganga, K; Gear, W K; Gupta, S; Hinderks, J; Kovac, J; Lange, A E; Leitch, E; Melhuish, S J; Memari, Y; Murphy, J A; Orlando, A; Piccirillo, L; Pryke, C; Rajguru, N; Rusholme, B; Schwarz, R; O'Sullivan, C; Taylor, A N; Thompson, K L; Turner, A H; Zemcov, M
2009-04-24
We constrain parity-violating interactions to the surface of last scattering using spectra from the QUaD experiment's second and third seasons of observations by searching for a possible systematic rotation of the polarization directions of cosmic microwave background photons. We measure the rotation angle due to such a possible "cosmological birefringence" to be 0.55 degrees +/-0.82 degrees (random) +/-0.5 degrees (systematic) using QUaD's 100 and 150 GHz temperature-curl and gradient-curl spectra over the spectra over the multipole range 200
The cosmic web and microwave background fossilize the first turbulent combustion
NASA Astrophysics Data System (ADS)
Gibson, Carl H.
2015-09-01
The weblike structure of the cosmic microwave background CMB temperature fluctuations are interpreted as fossils of the first turbulent combustion that drives the big bang1,2,3. Modern turbulence theory3 requires that inertial vortex forces cause turbulence to always cascade from small scales to large, contrary to the standard turbulence model where the cascade is reversed. Assuming that the universe begins at Planck length 10-35 m and temperature 1032 K, the mechanism of the big bang is a powerful turbulent combustion instability, where turbulence forms at the Kolmogorov scale and mass-energy is extracted by < -10113 Pa negative stresses from big bang turbulence working against gravity. Prograde accretion of a Planck antiparticle on a spinning particle-antiparticle pair releases 42% of a particle rest mass from the Kerr metric, producing a spinning gas of turbulent Planck particles that cascades to larger scales at smaller temperatures (10-27 m, 1027 K) retaining the Planck density 1097 kg m-3, where quarks form and gluon viscosity fossilizes the turbulence. Viscous stress powers inflation to ~ 10 m and ~ 10100 kg. The CMB shows signatures of both plasma and big bang turbulence. Direct numerical simulations support the new turbulence theory6.
NASA Astrophysics Data System (ADS)
Wang, N. Y.; You, Y.; Ferraro, R. R.; Guch, I.
2014-12-01
Microwave satellite remote sensing of precipitation over land is a challenging problem due to the highly variable land surface emissivity, which, if not properly accounted for, can be much greater than the precipitation signal itself, especially in light rain/snow conditions. Additionally, surfaces such as arid land, deserts and snow cover have brightness temperatures characteristics similar to precipitation Ongoing work by NASA's GPM microwave radiometer team is constructing databases for the GPROF algorithm through a variety of means, however, there is much uncertainty as to what is the optimal information needed for the wide array of sensors in the GPM constellation, including examination of regional conditions. The at-launch database focuses on stratification by emissivity class, surface temperature and total precipitable water (TPW). We'll perform sensitivity studies to determine the potential role of environmental factors such as land surface temperature, surface elevation, and relative humidity and storm morphology such as storm vertical structure, height, and ice thickness to improve precipitation estimation over land, including rain and snow. In other words, what information outside of the satellite radiances can help describe the background and subsequent departures from it that are active precipitating regions? It is likely that this information will be a function of the various precipitation regimes. Statistical methods such as Principal Component Analysis (PCA) will be utilized in this task. Databases from a variety of sources are being constructed. They include existing satellite microwave measurements of precipitating and non-precipitating conditions, ground radar precipitation rate estimates, surface emissivity climatology from satellites, surface temperature and TPW from NWP reanalysis. Results from the analysis of these databases with respect to the microwave precipitation sensitivity to the variety of environmental conditions in different climate regimes will be discussed.
Investigating Satellite Microwave observations of Precipitation in Different Climate Regimes
NASA Astrophysics Data System (ADS)
Wang, N.; Ferraro, R. R.
2013-12-01
Microwave satellite remote sensing of precipitation over land is a challenging problem due to the highly variable land surface emissivity, which, if not properly accounted for, can be much greater than the precipitation signal itself, especially in light rain/snow conditions. Additionally, surfaces such as arid land, deserts and snow cover have brightness temperature characteristics similar to precipitation Ongoing work by GPM microwave radiometer team is constructing databases through a variety of means, however, there is much uncertainty as to what is the optimal information needed for the wide array of sensors in the GPM constellation, including examination of regional conditions. The original data sets will focus on stratification by emissivity class, surface temperature and total perceptible water. We'll perform sensitivity studies to determine the potential role of ancillary data (e.g., land surface temperature, snow cover/water equivalent, etc.) to improve precipitation estimation over land in different climate regimes, including rain and snow. In other words, what information outside of the radiances can help describe the background and subsequent departures from it that are active precipitating regions? It is likely that this information will be a function of the various precipitation regimes. Statistical methods such as Principal Component Analysis (PCA) will be utilized in this task. Databases from a variety of sources are being constructed. They include existing satellite microwave measurements of precipitating and non-precipitating conditions, ground radar precipitation rate estimates, surface emissivity climatology from satellites, surface temperature and TPW from NWP reanalysis. Results from the analysis of these databases with respect to the microwave precipitation sensitivity to the variety of environmental conditions in different climate regimes will be discussed.
Spectral measurements of the cosmic microwave background
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kogut, A.J.
1989-04-01
Three experiments have measured the intensity of the Cosmic Microwave Background (CMB) at wavelengths 4.0, 3.0, and 0.21 cm. The measurement at 4.0 cm used a direct-gain total-power radiometer to measure the difference in power between the zenith sky and a large cryogenic reference target. Foreground signals are measured with the same instrument and subtracted from the zenith signal, leaving the CMB as the residual. The reference target consists of a large open-mouth cryostat with a microwave absorber submerged in liquid helium; thin windows block the radiative heat load and prevent condensation atmospheric gases within the cryostat. The thermodynamic temperaturemore » of the CMB at 4.0 cm is 2.59 +- 0.07 K. The measurement at 3.0 cm used a superheterodyne Dicke-switched radiometer with a similar reference target to measure the zenith sky temperature. A rotating mirror allowed one of the antenna beams to be redirected to a series of zenith angles, permitting automated atmospheric measurements without moving the radiometer. A weighted average of 5 years of data provided the thermodynamic temperature of the CMB at 3.0 cm of 2.62 +- 0.06 K. The measurement at 0.21 cm used Very Large Array observations of interstellar ortho-formaldehyde to determine the CMB intensity in molecular clouds toward the giant HII region W51A (G49.5-0.4). Solutions of the radiative transfer problem in the context of a large velocity gradient model provided estimates of the CMB temperature within the foreground clouds. Collisional excitation from neutral hydrogen molecules within the clouds limited the precision of the result. The thermodynamic temperature of the CMB at 0.21 cm is 3.2 +- 0.9 K. 72 refs., 27 figs., 38 tabs.« less
Microwave produced plasma in a Toroidal Device
NASA Astrophysics Data System (ADS)
Singh, A. K.; Edwards, W. F.; Held, E. D.
2010-11-01
A currentless toroidal plasma device exhibits a large range of interesting basic plasma physics phenomena. Such a device is not in equilibrium in a strict magneto hydrodynamic sense. There are many sources of free energy in the form of gradients in plasma density, temperature, the background magnetic field and the curvature of the magnetic field. These free energy sources excite waves and instabilities which have been the focus of studies in several devices in last two decades. A full understanding of these simple plasmas is far from complete. At Utah State University we have recently designed and installed a microwave plasma generation system on a small tokamak borrowed from the University of Saskatchewan, Saskatoon, Canada. Microwaves are generated at 2.45 GHz in a pulsed dc mode using a magnetron from a commercial kitchen microwave oven. The device is equipped with horizontal and vertical magnetic fields and a transformer to impose a toroidal electric field for current drive. Plasmas can be obtained over a wide range of pressure with and without magnetic fields. We present some preliminary measurements of plasma density and potential profiles. Measurements of plasma temperature at different operating conditions are also presented.
Plasma Properties of Microwave Produced Plasma in a Toroidal Device
NASA Astrophysics Data System (ADS)
Singh, Ajay; Edwards, W. F.; Held, Eric
2011-10-01
We have modified a small tokamak, STOR-1M, on loan from University of Saskatchewan, to operate as a low-temperature (~5 eV) toroidal plasma machine with externally induced toroidal magnetic fields ranging from zero to ~50 G. The plasma is produced using microwave discharges at relatively high pressures. Microwaves are produced by a kitchen microwave-oven magnetron operating at 2.45 GHz in continuous operating mode, resulting in pulses ~0.5 s in duration. Initial measurements of plasma formation in this device with and without applied magnetic fields are presented. Plasma density and temperature profiles have been measured using Langmuir probes and the magnetic field profile inside the plasma has been obtained using Hall probes. When the discharge is created with no applied toroidal magnetic field, the plasma does not fill the entire torus due to high background pressure. However, when a toroidal magnetic field is applied, the plasma flows along the applied field, filling the torus. Increasing the applied magnetic field seems to aid plasma formation - the peak density increases and the density gradient becomes steeper. Above a threshold magnetic field, the plasma develops low-frequency density oscillations due to probable excitation of flute modes in the plasma.
Testing of a Microwave Blade Tip Clearance Sensor at the NASA Glenn Research Center
NASA Technical Reports Server (NTRS)
Woike, Mark R.; Roeder, James W.; Hughes, Christopher E.; Bencic, Timothy J.
2009-01-01
The development of new active tip clearance control and structural health monitoring schemes in turbine engines and other types of rotating machinery requires sensors that are highly accurate and can operate in a high-temperature environment. The use of a microwave sensor to acquire blade tip clearance and tip timing measurements is being explored at the NASA Glenn Research Center. The microwave blade tip clearance sensor works on principles that are very similar to a short-range radar system. The sensor sends a continuous microwave signal towards a target and measures the reflected signal. The phase difference of the reflected signal is directly proportional to the distance between the sensor and the target being measured. This type of sensor is beneficial in that it has the ability to operate at extremely high temperatures and is unaffected by contaminants that may be present in turbine engines. The use of microwave sensors for this application is a new concept. Techniques on calibrating the sensors along with installation effects are not well quantified as they are for other sensor technologies. Developing calibration techniques and evaluating installation effects are essential in using these sensors to make tip clearance and tip timing measurements. As a means of better understanding these issues, the microwave sensors were used on a benchtop calibration rig, a large axial vane fan, and a turbofan. Background on the microwave tip clearance sensor, an overview of their calibration, and the results from their use on the axial vane fan and the turbofan will be presented in this paper.
Testing of a Microwave Blade Tip Clearance Sensor at the NASA Glenn Research Center
NASA Technical Reports Server (NTRS)
Woike, Mark R.; Roeder, James W.; Hughes, Christopher E.; Bencic, Timothy J.
2009-01-01
The development of new active tip clearance control and structural health monitoring schemes in turbine engines and other types of rotating machinery requires sensors that are highly accurate and can operate in a high temperature environment. The use of a microwave sensor to acquire blade tip clearance and tip timing measurements is being explored at the NASA Glenn Research Center. The microwave blade tip clearance sensor works on principles that are very similar to a short range radar system. The sensor sends a continuous microwave signal towards a target and measures the reflected signal. The phase difference of the reflected signal is directly proportional to the distance between the sensor and the target being measured. This type of sensor is beneficial in that it has the ability to operate at extremely high temperatures and is unaffected by contaminants that may be present in turbine engines. The use of microwave sensors for this application is a new concept. Techniques on calibrating the sensors along with installation effects are not well quantified as they are for other sensor technologies. Developing calibration techniques and evaluating installation effects are essential in using these sensors to make tip clearance and tip timing measurements. As a means of better understanding these issues, the microwave sensors were used on a bench top calibration rig, a large axial vane fan, and a turbofan. Background on the microwave tip clearance sensor, an overview of their calibration, and the results from their use on the axial vane fan and the turbofan will be presented in this paper.
NASA Technical Reports Server (NTRS)
Hill, Michael D.; Herrera, Acey A.; Crane, J. Allen; Packard, Edward A.; Aviado, Carlos; Sampler, Henry P.; Obenschain, Arthur (Technical Monitor)
2000-01-01
The Microwave Anisotropy Probe (MAP) Observatory, scheduled for a late 2000 launch, is designed to measure temperature fluctuations (anisotropy) and produce a high sensitivity and high spatial resolution (< 0.3 deg at 90 GHz.) map of the cosmic microwave background (CMB) radiation over the entire sky between 22 and 90 GHz. MAP utilizes back-to-back Gregorian telescopes to focus the microwave signals into 10 differential microwave receivers, via 20 feed horns. Proper alignment of the telescope reflectors and the feed horns at the operating temperature of 90 K is a critical element to ensure mission success. We describe the hardware and methods used to validate the displacement/deformation predictions of the reflectors and the microwave feed horns during thermal/vacuum testing of the reflectors and the microwave instrument. The smallest deformations to be resolved by the measurement system were on the order of +/- 0.030 inches (0.762 mm). Performance of these alignment measurements inside a thermal/vacuum chamber with conventional alignment equipment posed several limitations. A photogrammetry (PG) system was chosen to perform the measurements since it is a non-contact measurement system, the measurements can be made relatively quickly and accurately, and the photogrammetric camera can be operated remotely. The hardware and methods developed to perform the MAP alignment measurements using PG proved to be highly successful. The PG measurements met the desired requirements, enabling the desired deformations to be measured and even resolved to an order of magnitude smaller than the imposed requirements. Viable data were provided to the MAP Project for a full analysis of the on-orbit performance of the Instrument's microwave system.
Gravitational-wave cosmology across 29 decades in frequency
Lasky, Paul D.; Mingarelli, Chiara M. F.; Smith, Tristan L.; ...
2016-03-31
Here, quantum fluctuations of the gravitational field in the early Universe, amplified by inflation, produce a primordial gravitational-wave background across a broad frequency band. We derive constraints on the spectrum of this gravitational radiation, and hence on theories of the early Universe, by combining experiments that cover 29 orders of magnitude in frequency. These include Planck observations of cosmic microwave background temperature and polarization power spectra and lensing, together with baryon acoustic oscillations and big bang nucleosynthesis measurements, as well as new pulsar timing array and ground-based interferometer limits. While individual experiments constrain the gravitational-wave energy density in specific frequencymore » bands, the combination of experiments allows us to constrain cosmological parameters, including the inflationary spectral index n t and the tensor-to-scalar ratio r. Results from individual experiments include the most stringent nanohertz limit of the primordial background to date from the Parkes Pulsar Timing Array, Ω GW(f) < 2.3 × 10 -10. Observations of the cosmic microwave background alone limit the gravitational-wave spectral index at 95% confidence to n t ≲ 5 for a tensor-toscalar ratio of r = 0.11. However, the combination of all the above experiments limits n t < 0.36. Future Advanced LIGO observations are expected to further constrain n t < 0.34 by 2020. When cosmic microwave background experiments detect a nonzero r, our results will imply even more stringent constraints on n t and, hence, theories of the early Universe.« less
The Cosmic Microwave Background Radiation - A Unique Window on the Early Universe
NASA Technical Reports Server (NTRS)
Hinshaw, Gary F.
2009-01-01
The cosmic microwave background radiation is the remnant heat from the Big Bang. It provides us with a unique probe of conditions in the early universe, long before any organized structures had yet formed. The anisotropy in the radiation's brightness yields important clues about primordial structure and additionally provides a wealth of information about the physics of the early universe. Within the framework of inflationary dark matter models, observations of the anisotropy on sub-degree angular scales reveals the signatures of acoustic oscillations of the photon-baryon fluid at a redshift of approximately 1100. Data from the first five years of operation of the Wilkinson Microwave Anisotropy Probe (WMAP) satellite provide detailed full-sky maps of the cosmic microwave background temperature and polarization anisotropy. Together, the data provide a wealth of cosmological information, including the age of the universe, the epoch when the first stars formed, and the overall composition of baryonic matter, dark matter, and dark energy. The results also provide constraints on the period of inflationary expansion in the very first moments of time. WMAP, part of NASA's Explorers program, was launched on June 30, 2001. The WMAP satellite was produced in a partnership between the Goddard Space Flight Center and Princeton University. The WMAP team also includes researchers at the Johns Hopkins University; the Canadian Institute of Theoretical Astrophysics; University of Texas; Oxford University; University of Chicago; Brown University; University of British Columbia; and University of California, Los Angeles.
The Cosmic Microwave Background Radiation - A Unique Window on the Early Universe
NASA Technical Reports Server (NTRS)
Hinshaw, Gary F.
2008-01-01
The cosmic microwave background radiation is the remnant heat from the Big Bang. It provides us with a unique probe of conditions in the early universe, long before any organized structures had yet formed. The anisotropy in the radiation's brightness yields important clues about primordial structure and additionally provides a wealth of information about the physics of the early universe. Within the framework of inflationary dark matter models, observations of the anisotropy on sub-degree angular scales reveals the signatures of acoustic oscillations of the photon-baryon fluid at a redshift of approximately 1100. Data from the first five years of operation of the Wilkinson Microwave Anisotropy Probe (WMAP) satellite provide detailed full-sky maps of the cosmic microwave background temperature and polarization anisotropy. Together, the data provide a wealth of cosmological information, including the age of the universe, the epoch when the first stars formed, and the overall composition of baryonic matter, dark matter, and dark energy. The results also provide constraints on the period of inflationary expansion in the very first moments of time. WMAP, part of NASA's Explorers program, was launched on June 30, 2001. The WMAP satellite was produced in a partnership between the Goddard Space Flight Center and Princeton University. The WMAP team also includes researchers at Johns Hopkins University; the Canadian Institute of Theoretical Astrophysics; University of Texas; Oxford University; University of Chicago; Brown university; University of British Columbia; and University of California, Los Angeles.
The Cosmic Microwave Background Radiation-A Unique Window on the Early Universe
NASA Technical Reports Server (NTRS)
Hinshaw, Gary
2010-01-01
The cosmic microwave background radiation is the remnant heat from the Big Bang. It provides us with a unique probe of conditions in the early universe, long before any organized structures had yet formed. The anisotropy in the radiation's brightness yields important clues about primordial structure and additionally provides a wealth of information about the physics of the early universe. Within the framework of inflationary dark matter models, observations of the anisotropy on sub-degree angular scales reveals the signatures of acoustic oscillations of the photon-baryon fluid at a redshift of 11 00. Data from the first seven years of operation of the Wilkinson Microwave Anisotropy Probe (WMAP) satellite provide detailed full-sky maps of the cosmic microwave background temperature and polarization anisotropy. Together, the data provide a wealth of cosmological information, including the age of the universe, the epoch when the first stars formed, and the overall composition of baryonic matter, dark matter, and dark energy. The results also provide constraints on the period of inflationary expansion in the very first moments of time. WMAP, part of NASA's Explorers program, was launched on June 30, 2001. The WMAP satellite was produced in a partnership between the Goddard Space Flight Center and Princeton University. The WMAP team also includes researchers at the Johns Hopkins University; the Canadian Institute of Theoretical Astrophysics; University of Texas; Oxford University; University of Chicago; Brown University; University of British Columbia; and University of California, Los Angeles.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Atrio-Barandela, F.; Kashlinsky, A., E-mail: atrio@usal.es, E-mail: Alexander.Kashlinsky@nasa.gov
The epoch of first star formation and the state of the intergalactic medium (IGM) at that time are not directly observable with current telescopes. The radiation from those early sources is now part of the cosmic infrared background (CIB) and, as these sources ionize the gas around them, the IGM plasma would produce faint temperature anisotropies in the cosmic microwave background (CMB) via the thermal Sunyaev-Zeldovich (TSZ) effect. While these TSZ anisotropies are too faint to be detected, we show that the cross-correlation of maps of source-subtracted CIB fluctuations from Euclid, with suitably constructed microwave maps at different frequencies, canmore » probe the physical state of the gas during reionization and test/constrain models of the early CIB sources. We identify the frequency-combined, CMB-subtracted microwave maps from space- and ground-based instruments to show that they can be cross-correlated with the forthcoming all-sky Euclid CIB maps to detect the cross-power at scales ∼5'-60' with signal-to-noise ratios (S/Ns) of up to S/N ∼ 4-8 depending on the contribution to the Thomson optical depth during those pre-reionization epochs (Δτ ≅ 0.05) and the temperature of the IGM (up to ∼10{sup 4} K). Such a measurement would offer a new window to explore the emergence and physical properties of these first light sources.« less
Taking the Measure of the Universe: Cosmology from the WMAP Mission
NASA Technical Reports Server (NTRS)
Hinshaw, Gary F.
2007-01-01
The data from the first three years of operation of the Wilkinson Microwave Anisotropy Probe (WMAP) satellite provide detailed full-sky maps of the cosmic microwave background temperature anisotropy and new full-sky maps of the polarization. Together, the data provide a wealth of cosmological information, including the age of the universe, the epoch when the first stars formed, and the overall composition of baryonic matter, dark matter, and dark energy. The results also provide constraints on the period of inflationary expansion in the very first moments of time. These and other aspects of the mission will be discussed.
Detection of Galaxy Cluster Motions with the Kinematic Sunyaev-Zel'dovich Effect
NASA Technical Reports Server (NTRS)
Hand, Nick; Addison, Graeme E.; Aubourg, Eric; Battaglia, Nick; Battistelli, Elia S.; Bizyaev, Dmitry; Bond, J. Richard; Brewington, Howard; Brinkmann, Jon; Brown, Benjamin R.;
2012-01-01
Using high-resolution microwave sky maps made by the Atacama Cosmology Telescope, we for the first time detect motions of galaxy clusters and groups via microwave background .temperature distortions due to the kinematic Sunyaev.Zel'dovich effect. Galaxy clusters are identified by their constituent luminous galaxies observed by the Baryon Oscillation Spectroscopic Survey, part of the Sloan Digital Sky Survey III. The mean pairwise momentum of clusters is measured. at a statistical. significance of 3.8 sigma, and the signal is consistent with the growth of cosmic structure in the standard model of cosmology
Constraints on galaxy formation theories
NASA Technical Reports Server (NTRS)
Szalay, A. S.
1986-01-01
The present theories of galaxy formation are reviewed. The relation between peculiar velocities, temperature fluctuations of the microwave background and the correlation function of galaxies point to the possibility that galaxies do not form uniformly everywhere. The velocity data provide strong constraints on the theories even in the case when light does not follow mass of the universe.
Higgs field and cosmological parameters in the fractal quantum system
NASA Astrophysics Data System (ADS)
Abramov, Valeriy
2017-10-01
For the fractal model of the Universe the relations of cosmological parameters and the Higgs field are established. Estimates of the critical density, the expansion and speed-up parameters of the Universe (the Hubble constant and the cosmological redshift); temperature and anisotropy of the cosmic microwave background radiation were performed.
How Isotropic is the Universe?
Saadeh, Daniela; Feeney, Stephen M; Pontzen, Andrew; Peiris, Hiranya V; McEwen, Jason D
2016-09-23
A fundamental assumption in the standard model of cosmology is that the Universe is isotropic on large scales. Breaking this assumption leads to a set of solutions to Einstein's field equations, known as Bianchi cosmologies, only a subset of which have ever been tested against data. For the first time, we consider all degrees of freedom in these solutions to conduct a general test of isotropy using cosmic microwave background temperature and polarization data from Planck. For the vector mode (associated with vorticity), we obtain a limit on the anisotropic expansion of (σ_{V}/H)_{0}<4.7×10^{-11} (95% C.L.), which is an order of magnitude tighter than previous Planck results that used cosmic microwave background temperature only. We also place upper limits on other modes of anisotropic expansion, with the weakest limit arising from the regular tensor mode, (σ_{T,reg}/H)_{0}<1.0×10^{-6} (95% C.L.). Including all degrees of freedom simultaneously for the first time, anisotropic expansion of the Universe is strongly disfavored, with odds of 121 000:1 against.
NASA Astrophysics Data System (ADS)
Sunyaev, Rashid A.; Khatri, Rishi
2013-03-01
y-type spectral distortions of the cosmic microwave background allow us to detect clusters and groups of galaxies, filaments of hot gas and the non-uniformities in the warm hot intergalactic medium. Several CMB experiments (on small areas of sky) and theoretical groups (for full sky) have recently published y-type distortion maps. We propose to search for two artificial hot spots in such y-type maps resulting from the incomplete subtraction of the effect of the motion induced dipole on the cosmic microwave background sky. This dipole introduces, at second order, additional temperature and y-distortion anisotropy on the sky of amplitude few μK which could potentially be measured by Planck HFI and Pixie experiments and can be used as a source of cross channel calibration by CMB experiments. This y-type distortion is present in every pixel and is not the result of averaging the whole sky. This distortion, calculated exactly from the known linear dipole, can be subtracted from the final y-type maps, if desired.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sunyaev, Rashid A.; Khatri, Rishi, E-mail: sunyaev@mpa-garching.mpg.de, E-mail: khatri@mpa-garching.mpg.de
2013-03-01
y-type spectral distortions of the cosmic microwave background allow us to detect clusters and groups of galaxies, filaments of hot gas and the non-uniformities in the warm hot intergalactic medium. Several CMB experiments (on small areas of sky) and theoretical groups (for full sky) have recently published y-type distortion maps. We propose to search for two artificial hot spots in such y-type maps resulting from the incomplete subtraction of the effect of the motion induced dipole on the cosmic microwave background sky. This dipole introduces, at second order, additional temperature and y-distortion anisotropy on the sky of amplitude few μKmore » which could potentially be measured by Planck HFI and Pixie experiments and can be used as a source of cross channel calibration by CMB experiments. This y-type distortion is present in every pixel and is not the result of averaging the whole sky. This distortion, calculated exactly from the known linear dipole, can be subtracted from the final y-type maps, if desired.« less
Simulated cosmic microwave background maps at 0.5 deg resolution: Unresolved features
NASA Technical Reports Server (NTRS)
Kogut, A.; Hinshaw, G.; Bennett, C. L.
1995-01-01
High-contrast peaks in the cosmic microwave background (CMB) anisotropy can appear as unresolved sources to observers. We fit simluated CMB maps generated with a cold dark matter model to a set of unresolved features at instrumental resolution 0.5 deg-1.5 deg to derive the integral number density per steradian n (greater than absolute value of T) of features brighter than threshold temperature absolute value of T and compare the results to recent experiments. A typical medium-scale experiment observing 0.001 sr at 0.5 deg resolution would expect to observe one feature brighter than 85 micro-K after convolution with the beam profile, with less than 5% probability to observe a source brighter than 150 micro-K. Increasing the power-law index of primordial density perturbations n from 1 to 1.5 raises these temperature limits absolute value of T by a factor of 2. The MSAM features are in agreement with standard cold dark matter models and are not necessarily evidence for processes beyond the standard model.
Experimental and numerical modeling research of rubber material during microwave heating process
NASA Astrophysics Data System (ADS)
Chen, Hailong; Li, Tao; Li, Kunling; Li, Qingling
2018-05-01
This paper aims to investigate the heating behaviors of block rubber by experimental and simulated method. The COMSOL Multiphysics 5.0 software was utilized in numerical simulation work. The effects of microwave frequency, power and sample size on temperature distribution are examined. The effect of frequency on temperature distribution is obvious. The maximum and minimum temperatures of block rubber increase first and then decrease with frequency increasing. The microwave heating efficiency is maximum in the microwave frequency of 2450 MHz. However, more uniform temperature distribution is presented in other microwave frequencies. The influence of microwave power on temperature distribution is also remarkable. The smaller the power, the more uniform the temperature distribution on the block rubber. The effect of power on microwave heating efficiency is not obvious. The effect of sample size on temperature distribution is evidently found. The smaller the sample size, the more uniform the temperature distribution on the block rubber. However, the smaller the sample size, the lower the microwave heating efficiency. The results can serve as references for the research on heating rubber material by microwave technology.
Component separation for cosmic microwave background radiation
NASA Astrophysics Data System (ADS)
Fernández-Cobos, R.; Vielva, P.; Barreiro, R. B.; Martínez-González, E.
2011-11-01
Cosmic microwave background (CMB) radiation data obtained by different experiments contains, besides the desired signal, a superposition of microwave sky contributions mainly due to, on the one hand, synchrotron radiation, free-free emission and re-emission of dust clouds in our galaxy; and, on the other hand, extragalactic sources. We present an analytical method, using a wavelet decomposition on the sphere, to recover the CMB signal from microwave maps. Being applied to both temperature and polarization data, it is shown as a significant powerful tool when it is used in particularly polluted regions of the sky. The applied wavelet has the advantages of requiring little computering time in its calculations being adapted to the HEALPix pixelization scheme (which is the format that the community uses to report the CMB data) and offering the possibility of multi-resolution analysis. The decomposition is implemented as part of a template fitting method, minimizing the variance of the resulting map. The method was tested with simulations of WMAP data and results have been positive, with improvements up to 12% in the variance of the resulting full sky map and about 3% in low contaminate regions. Finally, we also present some preliminary results with WMAP data in the form of an angular cross power spectrum C_ℓ^{TE}, consistent with the spectrum offered by WMAP team.
Recent Climate Variability in Antarctica from Satellite-derived Temperature Data
NASA Technical Reports Server (NTRS)
Schneider, David P.; Steig, Eric J.; Comiso, Josefino C.
2004-01-01
Recent Antarctic climate variability on month-to-month to interannual time scales is assessed through joint analysis of surface temperatures from satellite thermal infrared observations (T(sub IR)) and passive microwave brightness temperatures (T(sub B)). Although Tw data are limited to clear-sky conditions and T(sub B) data are a product of the temperature and emissivity of the upper approx. 1m of snow, the two data sets share significant covariance. This covariance is largely explained by three empirical modes, which illustrate the spatial and temporal variability of Antarctic surface temperatures. T(sub B) variations are damped compared to TIR variations, as determined by the period of the temperature forcing and the microwave emission depth; however, microwave emissivity does not vary significantly in time. Comparison of the temperature modes with Southern Hemisphere (SH) 500-hPa geopotential height anomalies demonstrates that Antarctic temperature anomalies are predominantly controlled by the principal patterns of SH atmospheric circulation. The leading surface temperature mode strongly correlates with the Southern Annular Mode (SAM) in geopotential height. The second temperature mode reflects the combined influences of the zonal wavenumber-3 and Pacific South American (PSA) patterns in 500-hPa height on month-to-month timescales. ENSO variability projects onto this mode on interannual timescales, but is not by itself a good predictor of Antarctic temperature anomalies. The third temperature mode explains winter warming trends, which may be caused by blocking events, over a large region of the East Antarctic plateau. These results help to place recent climate changes in the context of Antarctica's background climate variability and will aid in the interpretation of ice core paleoclimate records.
Das, Sudeep; Sherwin, Blake D; Aguirre, Paula; Appel, John W; Bond, J Richard; Carvalho, C Sofia; Devlin, Mark J; Dunkley, Joanna; Dünner, Rolando; Essinger-Hileman, Thomas; Fowler, Joseph W; Hajian, Amir; Halpern, Mark; Hasselfield, Matthew; Hincks, Adam D; Hlozek, Renée; Huffenberger, Kevin M; Hughes, John P; Irwin, Kent D; Klein, Jeff; Kosowsky, Arthur; Lupton, Robert H; Marriage, Tobias A; Marsden, Danica; Menanteau, Felipe; Moodley, Kavilan; Niemack, Michael D; Nolta, Michael R; Page, Lyman A; Parker, Lucas; Reese, Erik D; Schmitt, Benjamin L; Sehgal, Neelima; Sievers, Jon; Spergel, David N; Staggs, Suzanne T; Swetz, Daniel S; Switzer, Eric R; Thornton, Robert; Visnjic, Katerina; Wollack, Ed
2011-07-08
We report the first detection of the gravitational lensing of the cosmic microwave background through a measurement of the four-point correlation function in the temperature maps made by the Atacama Cosmology Telescope. We verify our detection by calculating the levels of potential contaminants and performing a number of null tests. The resulting convergence power spectrum at 2° angular scales measures the amplitude of matter density fluctuations on comoving length scales of around 100 Mpc at redshifts around 0.5 to 3. The measured amplitude of the signal agrees with Lambda cold dark matter cosmology predictions. Since the amplitude of the convergence power spectrum scales as the square of the amplitude of the density fluctuations, the 4σ detection of the lensing signal measures the amplitude of density fluctuations to 12%.
Herrero, M Antonia; Kremsner, Jennifer M; Kappe, C Oliver
2008-01-04
The concept of nonthermal microwave effects has received considerable attention in recent years and is the subject of intense debate in the scientific community. Nonthermal microwave effects have been postulated to result from a direct stabilizing interaction of the electric field with specific (polar) molecules in the reaction medium that is not related to a macroscopic temperature effect. In order to probe the existence of nonthermal microwave effects, four synthetic transformations (Diels-Alder cycloaddition, alkylation of triphenylphosphine and 1,2,4-triazole, direct amide bond formation) were reevaluated under both microwave dielectric heating and conventional thermal heating. In all four cases, previous studies have claimed the existence of nonthermal microwave effects in these reactions. Experimentally, significant differences in conversion and/or product distribution comparing the conventionally and microwave-heated experiments performed at the same measured reaction temperature were found. The current reevaluation of these reactions was performed in a dedicated reactor setup that allowed accurate internal reaction temperature measurements using a multiple fiber-optic probe system. Using this technology, the importance of efficient stirring and internal temperature measurement in microwave-heated reactions was made evident. Inefficient agitation leads to temperature gradients within the reaction mixture due to field inhomogeneities in the microwave cavity. Using external infrared temperature sensors in some cases results in significant inaccuracies in the temperature measurement. Applying the fiber-optic probe temperature monitoring device, a critical reevaluation of all four reactions has provided no evidence for the existence of nonthermal microwave effects. Ensuring efficient agitation of the reaction mixture via magnetic stirring, no significant differences in terms of conversion and selectivity between experiments performed under microwave or oil bath conditions at the same internally measured reaction temperatures were experienced. The observed effects were purely thermal and not related to the microwave field.
A correlation between the cosmic microwave background and large-scale structure in the Universe.
Boughn, Stephen; Crittenden, Robert
2004-01-01
Observations of distant supernovae and the fluctuations in the cosmic microwave background (CMB) indicate that the expansion of the Universe may be accelerating under the action of a 'cosmological constant' or some other form of 'dark energy'. This dark energy now appears to dominate the Universe and not only alters its expansion rate, but also affects the evolution of fluctuations in the density of matter, slowing down the gravitational collapse of material (into, for example, clusters of galaxies) in recent times. Additional fluctuations in the temperature of CMB photons are induced as they pass through large-scale structures and these fluctuations are necessarily correlated with the distribution of relatively nearby matter. Here we report the detection of correlations between recent CMB data and two probes of large-scale structure: the X-ray background and the distribution of radio galaxies. These correlations are consistent with those predicted by dark energy, indicating that we are seeing the imprint of dark energy on the growth of structure in the Universe.
Impact of advanced technology microwave sounder data in the NCMRWF 4D-VAR data assimilation system
NASA Astrophysics Data System (ADS)
Rani, S. Indira; Srinivas, D.; Mallick, Swapan; George, John P.
2016-05-01
This study demonstrates the added benefits of assimilating the Advanced Technology Microwave Sounder (ATMS) radiances from the Suomi-NPP satellite in the NCMRWF Unified Model (NCUM). ATMS is a cross-track scanning microwave radiometer inherited the legacy of two very successful instrument namely, Advanced Microwave Sounding Unit-A (AMSU-A) and Microwave Humidity Sounder (MHS). ATMS has 22 channels: 11 temperature sounding channels around 50-60 GHz oxygen band and 6 moisture sounding channels around the 183GHz water vapour band in addition to 5 channels sensitive to the surface in clear conditions, or to water vapour, rain, and cloud when conditions are not clear (at 23, 31, 50, 51 and 89 GHz). Before operational assimilation of any new observation by NWP centres it is standard practice to assess data quality with respect to NWP model background (short-forecast) fields. Quality of all channels is estimated against the model background and the biases are computed and compared against that from the similar observations. The impact of the ATMS data on global analyses and forecasts is tested by adding the ATMS data in the NCUM Observation Processing system (OPS) and 4D-Var variational assimilation (VAR) system. This paper also discusses the pre-operational numerical experiments conducted to assess the impact of ATMS radiances in the NCUM assimilation system. It is noted that the performance of ATMS is stable and it contributes to the performance of the model, complimenting observations from other instruments.
Tasei, Yugo; Yamakami, Takuya; Kawamura, Izuru; Fujito, Teruaki; Ushida, Kiminori; Sato, Motoyasu; Naito, Akira
2015-05-01
Microwave heating is widely used to accelerate organic reactions and enhance the activity of enzymes. However, the detailed molecular mechanism for the effect of microwave on chemical reactions is not yet fully understood. To investigate the effects of microwave heating on organic compounds, we have developed an in situ microwave irradiation NMR spectroscopy. (1)H NMR spectra of 1-(4'-cyanophenyl)-4-propylcyclohexane (PCH3) in the liquid crystalline and isotropic phases were observed under microwave irradiation. When the temperature was regulated at slightly higher than the phase transition temperature (Tc=45 °C) under a gas flow temperature control system, liquid crystalline phase mostly changed to the isotropic phase. Under microwave irradiation and with the gas flow temperature maintained at 20 °C, which is 25 °C below the Tc, the isotropic phase appeared stationary as an approximately 2% fraction in the liquid crystalline phase. The temperature of the liquid crystalline state was estimated to be 38 °C according to the line width, which is at least 7 °C lower than the Tc. The temperature of this isotropic phase should be higher than 45 °C, which is considered to be a non-equilibrium local heating state induced by microwave irradiation. Microwaves at a power of 195 W were irradiated to the isotropic phase of PCH3 at 50 °C and after 2 min, the temperature reached 220 °C. The temperature of PCH3 under microwave irradiation was estimated by measurement of the chemical shift changes of individual protons in the molecule. These results demonstrate that microwave heating generates very high temperature within a short time using an in situ microwave irradiation NMR spectrometer. Copyright © 2015 Elsevier Inc. All rights reserved.
2017-01-01
The complexity and challenges in noncontact temperature measurements inside microwave-heated catalytic reactors are presented in this paper. A custom-designed microwave cavity has been used to focus the microwave field on the catalyst and enable monitoring of the temperature field in 2D. A methodology to study the temperature distribution in the catalytic bed by using a thermal camera in combination with a thermocouple for a heterogeneous catalytic reaction (methane dry reforming) under microwave heating has been demonstrated. The effects of various variables that affect the accuracy of temperature recordings are discussed in detail. The necessity of having at least one contact sensor, such as a thermocouple, or some other microwave transparent sensor, is recommended to keep track of the temperature changes occurring in the catalytic bed during the reaction under microwave heating. PMID:29170599
NASA Astrophysics Data System (ADS)
Singal, Jack Edward
2006-02-01
This work presents a measurement of the radiometric temperature of the Cosmic Microwave Background (CMB) and of the intensity of Galactic emission at 8.1 and 8.3 GHz. These are the science results of the first flight of the ARCADE 2 instrument, on which the author's design, fabrication, and data analysis work forms the basis of this dissertation. ARCADE 2 (Absolute Radiometer for Cosmology, Astrophysics, and Diffuse Emission) is a balloon-borne instrument designed to perform measurements of the radiometric temperatures of the sky at six microwave frequency bands, from 3 to 90 GHz, to milliKelvin precision. ARCADE 2 features a novel cryogenic design and sophisticated radiometry as described herein. During the first flight of the instrument, a mechanical failure allowed for the accumulation of scientifically meaningful data in only one frequency band, and those results are not as well constrained as that from future flights will be. However, the measurement presented here of the radiometric temperature of the CMB is in fact the one of most well constrained below 10 GHz, and the measurement of Galactic free-free and synchrotron emission presented here is a potentially significant confirmation of existing results. The temperature of the CMB at 8.0 and 8.3 GHz is found to be 2.90 × .12 K and 2.77 × .16 K respectively. The level of Galactic synchrotron emission at these frequencies is found to be that which would be expected by naively interpolating the previously available data at other frequencies, and the level of Galactic free-free emission is found to be two-thirds as high, providing an independent confirmation of changes recently announced in the three year Galactic foreground results release from the WMAP satellite. The first section of this work is a comprehensive review of important topics in cosmology, the CMB, and deviations from a blackbody spectrum therein, as well as Galactic microwave emission. The second section describes the ARCADE 2 instrument and instrumental considerations, with some emphasis on design and fabrication contributions by the author. The third section presents the data obtained from the first flight of the instrument, the data analysis as carried out by the author, and the science results.
Controlled Microwave Heating Accelerates Rolling Circle Amplification.
Yoshimura, Takeo; Suzuki, Takamasa; Mineki, Shigeru; Ohuchi, Shokichi
2015-01-01
Rolling circle amplification (RCA) generates single-stranded DNAs or RNA, and the diverse applications of this isothermal technique range from the sensitive detection of nucleic acids to analysis of single nucleotide polymorphisms. Microwave chemistry is widely applied to increase reaction rate as well as product yield and purity. The objectives of the present research were to apply microwave heating to RCA and indicate factors that contribute to the microwave selective heating effect. The microwave reaction temperature was strictly controlled using a microwave applicator optimized for enzymatic-scale reactions. Here, we showed that microwave-assisted RCA reactions catalyzed by either of the four thermostable DNA polymerases were accelerated over 4-folds compared with conventional RCA. Furthermore, the temperatures of the individual buffer components were specifically influenced by microwave heating. We concluded that microwave heating accelerated isothermal RCA of DNA because of the differential heating mechanisms of microwaves on the temperatures of reaction components, although the overall reaction temperatures were the same.
Patchy screening of the cosmic microwave background by inhomogeneous reionization
NASA Astrophysics Data System (ADS)
Gluscevic, Vera; Kamionkowski, Marc; Hanson, Duncan
2013-02-01
We derive a constraint on patchy screening of the cosmic microwave background from inhomogeneous reionization using off-diagonal TB and TT correlations in WMAP-7 temperature/polarization data. We interpret this as a constraint on the rms optical-depth fluctuation Δτ as a function of a coherence multipole LC. We relate these parameters to a comoving coherence scale, of bubble size RC, in a phenomenological model where reionization is instantaneous but occurs on a crinkly surface, and also to the bubble size in a model of “Swiss cheese” reionization where bubbles of fixed size are spread over some range of redshifts. The current WMAP data are still too weak, by several orders of magnitude, to constrain reasonable models, but forthcoming Planck and future EPIC data should begin to approach interesting regimes of parameter space. We also present constraints on the parameter space imposed by the recent results from the EDGES experiment.
NASA Astrophysics Data System (ADS)
Yamazaki, Dai G.; Ichiki, Kiyotomo; Takahashi, Keitaro
2011-12-01
We study the effect of primordial magnetic fields (PMFs) on the anisotropies of the cosmic microwave background (CMB). We assume the spectrum of PMFs is described by log-normal distribution which has a characteristic scale, rather than power-law spectrum. This scale is expected to reflect the generation mechanisms and our analysis is complementary to previous studies with power-law spectrum. We calculate power spectra of energy density and Lorentz force of the log-normal PMFs, and then calculate CMB temperature and polarization angular power spectra from scalar, vector, and tensor modes of perturbations generated from such PMFs. By comparing these spectra with WMAP7, QUaD, CBI, Boomerang, and ACBAR data sets, we find that the current CMB data set places the strongest constraint at k≃10-2.5Mpc-1 with the upper limit B≲3nG.
Cosmic microwave background bispectrum from primordial magnetic fields on large angular scales.
Seshadri, T R; Subramanian, Kandaswamy
2009-08-21
Primordial magnetic fields lead to non-Gaussian signals in the cosmic microwave background (CMB) even at the lowest order, as magnetic stresses and the temperature anisotropy they induce depend quadratically on the magnetic field. In contrast, CMB non-Gaussianity due to inflationary scalar perturbations arises only as a higher-order effect. We propose a novel probe of stochastic primordial magnetic fields that exploits the characteristic CMB non-Gaussianity that they induce. We compute the CMB bispectrum (b(l1l2l3)) induced by such fields on large angular scales. We find a typical value of l1(l1 + 1)l3(l3 + 1)b(l1l2l3) approximately 10(-22), for magnetic fields of strength B0 approximately 3 nG and with a nearly scale invariant magnetic spectrum. Observational limits on the bispectrum allow us to set upper limits on B0 approximately 35 nG.
Anisotropy of the Cosmic Microwave Background Radiation on Large and Medium Angular Scales
NASA Technical Reports Server (NTRS)
Houghton, Anthony; Timbie, Peter
1998-01-01
This grant has supported work at Brown University on measurements of the 2.7 K Cosmic Microwave Background Radiation (CMB). The goal has been to characterize the spatial variations in the temperature of the CMB in order to understand the formation of large-scale structure in the universe. We have concurrently pursued two measurements using millimeter-wave telescopes carried aloft by scientific balloons. Both systems operate over a range of wavelengths, chosen to allow spectral removal of foreground sources such as the atmosphere, Galaxy, etc. The angular resolution of approx. 25 arcminutes is near the angular scale at which the most structure is predicted by current models to be visible in the CMB angular power spectrum. The main goal is to determine the angular scale of this structure; in turn we can infer the density parameter, Omega, for the universe as well as other cosmological parameters, such as the Hubble constant.
Fitting cosmic microwave background data with cosmic strings and inflation.
Bevis, Neil; Hindmarsh, Mark; Kunz, Martin; Urrestilla, Jon
2008-01-18
We perform a multiparameter likelihood analysis to compare measurements of the cosmic microwave background (CMB) power spectra with predictions from models involving cosmic strings. Adding strings to the standard case of a primordial spectrum with power-law tilt ns, we find a 2sigma detection of strings: f10=0.11+/-0.05, where f10 is the fractional contribution made by strings in the temperature power spectrum (at l=10). CMB data give moderate preference to the model ns=1 with cosmic strings over the standard zero-strings model with variable tilt. When additional non-CMB data are incorporated, the two models become on a par. With variable ns and these extra data, we find that f10<0.11, which corresponds to Gmicro<0.7x10(-6) (where micro is the string tension and G is the gravitational constant).
NASA Technical Reports Server (NTRS)
Luo, Xiaochun; Schramm, David N.
1993-01-01
One of the crucial aspects of density perturbations that are produced by the standard inflation scenario is that they are Gaussian where seeds produced by topological defects tend to be non-Gaussian. The three-point correlation function of the temperature anisotropy of the cosmic microwave background radiation (CBR) provides a sensitive test of this aspect of the primordial density field. In this paper, this function is calculated in the general context of various allowed non-Gaussian models. It is shown that the Cosmic Background Explorer and the forthcoming South Pole and balloon CBR anisotropy data may be able to provide a crucial test of the Gaussian nature of the perturbations.
Fabrication and Test of Large Area Spider-Web Bolometers for CMB Measurements
NASA Astrophysics Data System (ADS)
Biasotti, M.; Ceriale, V.; Corsini, D.; De Gerone, M.; Gatti, F.; Orlando, A.; Pizzigoni, G.
2016-08-01
Detecting the primordial 'B-mode' polarization of the cosmic microwave background is one of the major challenges of modern observational cosmology. Microwave telescopes need sensitive cryogenic bolometers with an overall equivalent noise temperature in the nK range. In this paper, we present the development status of large area (about 1 cm2) spider-web bolometer, which imply additional fabrication challenges. The spider-web is a suspended Si3N4 1 \\upmu m-thick and 8-mm diameter with mesh size of 250 \\upmu m. The thermal sensitive element is a superconducting transition edge sensor (TES) at the center of the bolometer. The first prototype is a Ti-Au TES with transition temperature tuned around 350 mK, new devices will be a Mo-Au bilayer tuned to have a transition temperature of 500 mK. We present the fabrication process with micro-machining techniques from silicon wafer covered with SiO2 - Si3N4 CVD films, 0.3 and 1 \\upmu m- thick, respectively, and preliminary tests.
Microwave furnace having microwave compatible dilatometer
Kimrey, Jr., Harold D.; Janney, Mark A.; Ferber, Mattison K.
1992-01-01
An apparatus for measuring and monitoring a change in the dimension of a sample being heated by microwave energy is described. The apparatus comprises a microwave heating device for heating a sample by microwave energy, a microwave compatible dilatometer for measuring and monitoring a change in the dimension of the sample being heated by microwave energy without leaking microwaves out of the microwave heating device, and a temperature determination device for measuring and monitoring the temperature of the sample being heated by microwave energy.
Microwave furnace having microwave compatible dilatometer
Kimrey, H.D. Jr.; Janney, M.A.; Ferber, M.K.
1992-03-24
An apparatus for measuring and monitoring a change in the dimension of a sample being heated by microwave energy is described. The apparatus comprises a microwave heating device for heating a sample by microwave energy, a microwave compatible dilatometer for measuring and monitoring a change in the dimension of the sample being heated by microwave energy without leaking microwaves out of the microwave heating device, and a temperature determination device for measuring and monitoring the temperature of the sample being heated by microwave energy. 2 figs.
NASA Astrophysics Data System (ADS)
Dai, Wei-Ming; Guo, Zong-Kuan; Cai, Rong-Gen; Zhang, Yuan-Zhong
2017-06-01
We investigate constraints on Lorentz invariance violation in the neutrino sector from a joint analysis of big bang nucleosynthesis and the cosmic microwave background. The effect of Lorentz invariance violation during the epoch of big bang nucleosynthesis changes the predicted helium-4 abundance, which influences the power spectrum of the cosmic microwave background at the recombination epoch. In combination with the latest measurement of the primordial helium-4 abundance, the Planck 2015 data of the cosmic microwave background anisotropies give a strong constraint on the deformation parameter since adding the primordial helium measurement breaks the degeneracy between the deformation parameter and the physical dark matter density.
Controlled Microwave Heating Accelerates Rolling Circle Amplification
Yoshimura, Takeo; Suzuki, Takamasa; Mineki, Shigeru; Ohuchi, Shokichi
2015-01-01
Rolling circle amplification (RCA) generates single-stranded DNAs or RNA, and the diverse applications of this isothermal technique range from the sensitive detection of nucleic acids to analysis of single nucleotide polymorphisms. Microwave chemistry is widely applied to increase reaction rate as well as product yield and purity. The objectives of the present research were to apply microwave heating to RCA and indicate factors that contribute to the microwave selective heating effect. The microwave reaction temperature was strictly controlled using a microwave applicator optimized for enzymatic-scale reactions. Here, we showed that microwave-assisted RCA reactions catalyzed by either of the four thermostable DNA polymerases were accelerated over 4-folds compared with conventional RCA. Furthermore, the temperatures of the individual buffer components were specifically influenced by microwave heating. We concluded that microwave heating accelerated isothermal RCA of DNA because of the differential heating mechanisms of microwaves on the temperatures of reaction components, although the overall reaction temperatures were the same. PMID:26348227
NASA Technical Reports Server (NTRS)
Bennett, Charles
2004-01-01
The first findings from a year of WMAP satellite operations provide a detailed full sky map of the cosmic microwave background radiation. The observed temperature anisotropy, combined with the associated polarization information, encodes a wealth of cosmological information. The results have implications for the history, content, and evolution of the universe, and its large scale properties. These and other aspects of the mission will be discussed.
Plasma-assisted microwave processing of materials
NASA Technical Reports Server (NTRS)
Barmatz, Martin (Inventor); Jackson, Henry (Inventor); Ylin, Tzu-yuan (Inventor)
1998-01-01
A microwave plasma assisted method and system for heating and joining materials. The invention uses a microwave induced plasma to controllably preheat workpiece materials that are poorly microwave absorbing. The plasma preheats the workpiece to a temperature that improves the materials' ability to absorb microwave energy. The plasma is extinguished and microwave energy is able to volumetrically heat the workpiece. Localized heating of good microwave absorbing materials is done by shielding certain parts of the workpiece and igniting the plasma in the areas not shielded. Microwave induced plasma is also used to induce self-propagating high temperature synthesis (SHS) process for the joining of materials. Preferably, a microwave induced plasma preheats the material and then microwave energy ignites the center of the material, thereby causing a high temperature spherical wave front from the center outward.
Full-time response of starch subjected to microwave heating.
Fan, Daming; Wang, Liyun; Zhang, Nana; Xiong, Lei; Huang, Luelue; Zhao, Jianxin; Wang, Mingfu; Zhang, Hao
2017-06-21
The effect of non-ionizing microwave radiation on starch is due to a gelatinization temperature range that changes starch structure and properties. However, the changes in starch upon microwave heating are observable throughout the heating process. We compared the effects on starch heating by microwaves to the effects by rapid and regular conventional heating. Our results show that microwave heating promotes the rapid rearrangement of starch molecules at low temperatures; starch showed a stable dielectric response and a high dielectric constant. Microwave heating changed the Cole-Cole curve and the polarization of starch suspension at low temperatures. A marked transition at 2.45 GHz resulted in a double-polarization phenomenon. At temperatures below gelatinization, microwave-induced dielectric rearrangement and changes in the polarization characteristics of starch suspensions reduced the absorption properties; at temperatures above gelatinization, these characteristics became consistent with conventional heating. Throughout the heating process, microwaves change the electrical response and polarization characteristics of the starch at low temperatures, but on the macro level, there is no enhancement of the material's microwave absorption properties. In contrast, with the warming process, the starch exhibited a "blocking effect", and the absorption properties of the starch quickly returned to the level observed in conductive heating after gelatinization.
A Degree-Scale Measurement of the Anisotropy in the Cosmic Microwave Background
NASA Technical Reports Server (NTRS)
Wollack, Ed; Jarosik, Norm; Netterfield, Barth; Page, Lyman; Wilkinson, David
1995-01-01
We report the detection of anisotropy in the microwave sky at 3O GHz and at l deg angular scales. The most economical interpretation of the data is that the fluctuations are intrinsic to the cosmic microwave background. However, galactic free-free emission is ruled out with only 90% confidence. The most likely root-mean-squared amplitude of the fluctuations, assuming they are described by a Gaussian auto-correlation function with a coherence angle of 1.2 deg, is 41(+16/-13) (mu)K. We also present limits on the anisotropy of the polarization of the cosmic microwave background.
NASA Astrophysics Data System (ADS)
Hsu, Leonardo; Hsu, Jong-Ping
2018-01-01
Based on the limiting continuation of Lorentz-Poincaré invariance, we propose an alternative formulation of the generalized Planck distribution for inertial and noninertial frames. The Lorentz invariant Planck distribution law leads to a new physical interpretation of the dipole anisotropy of the Cosmic Microwave Background. The Big Jets model predicts a distant `antimatter blackbody,' whose radiations could make 50% of the sky very slightly warmer than the isotropic CMB temperature TCMB with a cosine function. The other 50% of the sky has the same isotropic temperature TCMB. Thus, we could have a pseudo-dipole anisotropy because the microwaves emitted from the antimatter blackbody are totally absorbed by our matter blackbody. We suggest that accurate data of satellite experiments might be used to search for the pseudo-dipole anisotropy and the missing half of the antimatter universe.
The microwave background anisotropies: Observations
Wilkinson, David
1998-01-01
Most cosmologists now believe that we live in an evolving universe that has been expanding and cooling since its origin about 15 billion years ago. Strong evidence for this standard cosmological model comes from studies of the cosmic microwave background radiation (CMBR), the remnant heat from the initial fireball. The CMBR spectrum is blackbody, as predicted from the hot Big Bang model before the discovery of the remnant radiation in 1964. In 1992 the cosmic background explorer (COBE) satellite finally detected the anisotropy of the radiation—fingerprints left by tiny temperature fluctuations in the initial bang. Careful design of the COBE satellite, and a bit of luck, allowed the 30 μK fluctuations in the CMBR temperature (2.73 K) to be pulled out of instrument noise and spurious foreground emissions. Further advances in detector technology and experiment design are allowing current CMBR experiments to search for predicted features in the anisotropy power spectrum at angular scales of 1° and smaller. If they exist, these features were formed at an important epoch in the evolution of the universe—the decoupling of matter and radiation at a temperature of about 4,000 K and a time about 300,000 years after the bang. CMBR anisotropy measurements probe directly some detailed physics of the early universe. Also, parameters of the cosmological model can be measured because the anisotropy power spectrum depends on constituent densities and the horizon scale at a known cosmological epoch. As sophisticated experiments on the ground and on balloons pursue these measurements, two CMBR anisotropy satellite missions are being prepared for launch early in the next century. PMID:9419320
Method for heat treating and sintering metal oxides with microwave radiation
Holcombe, Cressie E.; Dykes, Norman L.; Meek, Thomas T.
1989-01-01
A method for microwave sintering materials, primarily metal oxides, is described. Metal oxides do not normally absorb microwave radiation at temperatures ranging from about room temperature to several hundred degrees centrigrade are sintered with microwave radiation without the use of the heretofore required sintering aids. This sintering is achieved by enclosing a compact of the oxide material in a housing or capsule formed of a oxide which has microwave coupling properties at room temprature up to at least the microwave coupling temperature of the oxide material forming the compact. The heating of the housing effects the initial heating of the oxide material forming the compact by heat transference and then functions as a thermal insulator for the encased oxide material after the oxide material reaches a sufficient temperature to adequately absorb or couple with microwave radiation for heating thereof to sintering temperature.
NASA Technical Reports Server (NTRS)
De Martino, I.; Atrio-Barandela, F.; Da Silva, A.; Ebling, H.; Kashlinsky, A.; Kocevski, D.; Martins, C. J. A. P.
2012-01-01
We study the capability of Planck data to constrain deviations of the cosmic microwave background (CMB) blackbody temperature from adiabatic evolution using the thermal Sunyaev-Zeldovich anisotropy induced by clusters of galaxies. We consider two types of data sets depending on how the cosmological signal is removed: using a CMB template or using the 217 GHz map. We apply two different statistical estimators, based on the ratio of temperature anisotropies at two different frequencies and on a fit to the spectral variation of the cluster signal with frequency. The ratio method is biased if CMB residuals with amplitude approximately 1 microK or larger are present in the data, while residuals are not so critical for the fit method. To test for systematics, we construct a template from clusters drawn from a hydro-simulation included in the pre-launch Planck Sky Model. We demonstrate that, using a proprietary catalog of X-ray-selected clusters with measured redshifts, electron densities, and X-ray temperatures, we can constrain deviations of adiabatic evolution, measured by the parameter a in the redshift scaling T (z) = T0(1 + z)(sup 1-alpha), with an accuracy of sigma(sub alpha) = 0.011 in the most optimal case and with sigma alpha = 0.018 for a less optimal case. These results represent a factor of 2-3 improvement over similar measurements carried out using quasar spectral lines and a factor 6-20 with respect to earlier results using smaller cluster samples.
Microwave heating of a high-Tc YBa2Cu3O6.9 superconductor through a Josephson-junction system
NASA Astrophysics Data System (ADS)
Stankowski, J.; Czyak, B.; Martinek, J.
1990-12-01
An overheating of a Josephson-junction system (JJS) in ceramic YBa2Cu3O6.9 samples was induced by microwave irradiation in a microwave cavity. The amplitude of the Josephson microwave absorption (JMA) was used as a monitor of the local JJS temperature. The difference between the JJS temperature and a sample temperature depends linearly on the power of the microwave field. A thermal hysteresis of Tc for heating and cooling is proportional to the microwave power applied in the JMA experiment.
NASA Astrophysics Data System (ADS)
Shenfeld, Ofer; Belotserkovsky, Edward; Goldwasser, Benad; Zur, Albert; Katzir, Abraham
1993-02-01
The heating of tissue by microwave radiation has attained a place of importance in various medical fields, such as the treatment of malignancies, urinary retention, and hypothermia. Accurate temperature measurements in these treated tissues is important for treatment planning and for the control of the heating process. It is also important to be able to measure spacial temperature distribution in the tissues because they are heated in a nonuniform way by the microwave radiation. Conventional temperature sensors used today are inaccurate in the presence of microwave radiation and require contact with the heated tissue. Fiber optic radiometry makes it possible to measure temperatures accurately in the presence of microwave radiation and does not require contact with the tissue. Accurate temperature measurements of tissues heated by microwave was obtained using a silver halide optic radiometer, enabling control of the heating process in other regions of the tissue samples. Temperature mappings of the heated tissues were performed and the nonuniform temperature distributions in these tissues was demonstrated.
Propagation of Polarized Cosmic Microwave Background Radiation in an Anisotropic Magnetized Plasma
DOE Office of Scientific and Technical Information (OSTI.GOV)
Moskaliuk, S. S.
2010-01-01
The polarization plane of the cosmic microwave background radiation (CMBR) can be rotated either in a space-time with metric of anisotropic type and in a magnetized plasma or in the presence of a quintessential background with pseudoscalar coupling to electromagnetism. A unified treatment of these three phenomena is presented for cold anisotropic plasma at the pre-recombination epoch. It is argued that the generalized expressions derived in the present study may be relevant for direct searches of a possible rotation of the cosmic microwave background polarization.
Microwave Sensor for Blade Tip Clearance and Structural Health Measurements
NASA Technical Reports Server (NTRS)
Woike, Mark R.; Bencic, Timothy J.
2008-01-01
The use of microwave based sensors for the health monitoring of rotating machinery is being explored at the NASA Glenn Research Center. The microwave sensor works on the principle of sending a continuous signal towards a rotating component and measuring the reflected signal. The phase shift of the reflected signal is proportional to the distance between the sensor and the component that is being measured. This type of sensor is beneficial in that it has the ability to operate at extremely high temperatures and is unaffected by contaminants that may be present in the rotating machinery. It is intended to use these probes in the hot sections of turbine engines for closed loop turbine clearance control and structural health measurements. Background on the sensors, an overview of their calibration and preliminary results from using them to make blade tip clearance and health measurements on a large axial vane fan will be presented.
NASA Technical Reports Server (NTRS)
Mather, John
2015-01-01
A: The cosmic microwave background (CMB) radiation fills the universe and travels in all directions. As we see it from here in satellite maps, it is about equally bright in all directions, and thats one of the main reasons we know its cosmic.
The ellipsoidal universe in the Planck satellite era
NASA Astrophysics Data System (ADS)
Cea, Paolo
2014-06-01
Recent Planck data confirm that the cosmic microwave background displays the quadrupole power suppression together with large-scale anomalies. Progressing from previous results, that focused on the quadrupole anomaly, we strengthen the proposal that the slightly anisotropic ellipsoidal universe may account for these anomalies. We solved at large scales the Boltzmann equation for the photon distribution functions by taking into account both the effects of the inflation produced primordial scalar perturbations and the anisotropy of the geometry in the ellipsoidal universe. We showed that the low quadrupole temperature correlations allowed us to fix the eccentricity at decoupling, edec = (0.86 ± 0.14) 10-2, and to constraint the direction of the symmetry axis. We found that the anisotropy of the geometry of the universe contributes only to the large-scale temperature anisotropies without affecting the higher multipoles of the angular power spectrum. Moreover, we showed that the ellipsoidal geometry of the universe induces sizeable polarization signal at large scales without invoking the reionization scenario. We explicitly evaluated the quadrupole TE and EE correlations. We found an average large-scale polarization ΔTpol = (1.20 ± 0.38) μK. We point out that great care is needed in the experimental determination of the large-scale polarization correlations since the average temperature polarization could be misinterpreted as foreground emission leading, thereby, to a considerable underestimate of the cosmic microwave background polarization signal.
High Resolution UAV-based Passive Microwave L-band Imaging of Soil Moisture
NASA Astrophysics Data System (ADS)
Gasiewski, A. J.; Stachura, M.; Elston, J.; McIntyre, E. M.
2013-12-01
Due to long electrical wavelengths and aperture size limitations the scaling of passive microwave remote sensing of soil moisture from spaceborne low-resolution applications to high resolution applications suitable for precision agriculture requires use of low flying aerial vehicles. This presentation summarizes a project to develop a commercial Unmanned Aerial Vehicle (UAV) hosting a precision microwave radiometer for mapping of soil moisture in high-value shallow root-zone crops. The project is based on the use of the Tempest electric-powered UAV and a compact digital L-band (1400-1427 MHz) passive microwave radiometer developed specifically for extremely small and lightweight aerial platforms or man-portable, tractor, or tower-based applications. Notable in this combination are a highly integrated UAV/radiometer antenna design and use of both the upwelling emitted signal from the surface and downwelling cold space signal for precise calibration using a lobe-correlating radiometer architecture. The system achieves a spatial resolution comparable to the altitude of the UAV above the ground while referencing upwelling measurements to the constant and well-known background temperature of cold space. The radiometer incorporates digital sampling and radio frequency interference mitigation along with infrared, near-infrared, and visible (red) sensors for surface temperature and vegetation biomass correction. This NASA-sponsored project is being developed both for commercial application in cropland water management, L-band satellite validation, and estuarian plume studies.
Nonuniformity of Temperatures in Microwave Steam Heating of Lobster Tail.
Fleischman, Gregory J
2016-11-01
The biennial Conference for Food Protection provides a formal process for all interested parties to influence food safety guidance. At a recent conference, an issue was raised culminating in a formal request to the U.S. Food and Drug Administration to change its Food Code recommendation for safe cooking of seafood using microwave energy when steaming was also employed. The request was to treat microwave steam cooked seafood as a conventionally cooked raw animal product rather than a microwave cooked product, for which the safe cooking recommendation is more extensive owing to the complex temperature distributions in microwave heating. The request was motivated by a literature study that revealed a more uniform temperature distribution in microwave steam cooked whole lobster. In that study, single-point temperatures were recorded in various sections of the whole lobster, but only one temperature was recorded in the tail, although the large size of the tail could translate to multiple hot and cold points. The present study was conducted to examine lobster tail specifically, measuring temperatures at multiple points during microwave steam cooking. Large temperature differences, greater than 60°C at times, were found throughout the heating period. To compensate for such differences, the Food Code recommends a more extensive level of cooking when microwave energy, rather than conventional heat sources, is used. Therefore, a change in the Food Code regarding microwave steam heating cannot be recommended.
Taking the Measure of the Universe: Cosmology from the WMAP Mission
NASA Technical Reports Server (NTRS)
Hinshaw, Gary F.
2003-01-01
The data from the first year of operation of the Wilkinson Microwave Anisotropy Probe (WMAP) satellite provide the first detailed full sky map of the cosmic microwave background radiation. The anisotropy in the radiation temperature provides a wealth of cosmological information, including the age of the universe, the epoch when the first stars formed, and the overall composition of baryonic matter, dark matter, and dark energy. The results also provide constraints on the period of inflationary expansion in the very first moments of time. These and other aspects of the mission will be discussed. The WMAP satellite was built in a close partnership between Princeton University and the Goddard Space Flight Center.
2001-06-19
KENNEDY SPACE CENTER, Fla. -- At Launch Complex 17-B, Cape Canaveral Air Force Station, the canister is removed from the Microwave Anisotropy Probe (MAP). Launch of MAP via a Boeing Delta II rocket is scheduled for June 30. The launch will place MAP into a lunar-assisted trajectory to the Sun-Earth for a 27-month mission. The probe will measure small fluctuations in the temperature of the cosmic microwave background radiation to an accuracy of one millionth of a degree. These measurements should reveal the size, matter content, age, geometry and fate of the universe. They will also reveal the primordial structure that grew to form galaxies and will test ideas about the origins of these primordial structures
2001-06-19
KENNEDY SPACE CENTER, Fla. -- Workers at Launch Complex 17-B, Cape Canaveral Air Force Station, place protective covers around the Microwave Anisotropy Probe (MAP) spacecraft. Launch of MAP via a Boeing Delta II rocket is scheduled for June 30. The launch will place MAP into a lunar-assisted trajectory to the Sun-Earth for a 27-month mission. The probe will measure small fluctuations in the temperature of the cosmic microwave background radiation to an accuracy of one millionth of a degree. These measurements should reveal the size, matter content, age, geometry and fate of the universe. They will also reveal the primordial structure that grew to form galaxies and will test ideas about the origins of these primordial structures
Cosmic microwave background radiation of black hole universe
NASA Astrophysics Data System (ADS)
Zhang, T. X.
2010-11-01
Modifying slightly the big bang theory, the author has recently developed a new cosmological model called black hole universe. This new cosmological model is consistent with the Mach principle, Einsteinian general theory of relativity, and observations of the universe. The origin, structure, evolution, and expansion of the black hole universe have been presented in the recent sequence of American Astronomical Society (AAS) meetings and published recently in a scientific journal: Progress in Physics. This paper explains the observed 2.725 K cosmic microwave background radiation of the black hole universe, which grew from a star-like black hole with several solar masses through a supermassive black hole with billions of solar masses to the present universe with hundred billion-trillions of solar masses. According to the black hole universe model, the observed cosmic microwave background radiation can be explained as the black body radiation of the black hole universe, which can be considered as an ideal black body. When a hot and dense star-like black hole accretes its ambient materials and merges with other black holes, it expands and cools down. A governing equation that expresses the possible thermal history of the black hole universe is derived from the Planck law of black body radiation and radiation energy conservation. The result obtained by solving the governing equation indicates that the radiation temperature of the present universe can be ˜2.725 K if the universe originated from a hot star-like black hole, and is therefore consistent with the observation of the cosmic microwave background radiation. A smaller or younger black hole universe usually cools down faster. The characteristics of the original star-like or supermassive black hole are not critical to the physical properties of the black hole universe at present, because matter and radiation are mainly from the outside space, i.e., the mother universe.
Cyanogen Excitation Measurements of the Cosmic Microwave Background Temperature at 2.64 mm
NASA Astrophysics Data System (ADS)
Roth, K. C.; Meyer, D. M.
1993-01-01
We have measured CN excitation temperatures in the diffuse lines of sight toward the stars zeta Ophiuchi, zeta Persei, HD 27778, HD 21483 and HD 154368. We find respective 2.64 mm rotational excitation temperatures of 2.737 +/- 0.025, 2.774 +/- 0.086, 2.769 +/- (0.093}_{0.099), 2.771 +/- (0.057}_{0.060) and 2.68 +/- (0.22}_{0.33)K. The fact that these values are all consistent with each other even though the associated CN column densities range over an order of magnitude strongly suggests that local processes contribute little to the excitation. We have corrected our temperatures for the small local collisional effects utilizing millimeter searches for CN line emission. The resulting values give a weighted average temperature for the cosmic microwave background radiation (CMBR) at 2.64 mm of 2.733 +/- (0.023}_{0.031)K. We also find a CMBR temperature at 1.32 mm of 2.657 +/- 0.057 K. Our result is entirely consistent with the CMBR temperature results from COBE (Mather et al. 1990, Ap.J. 354, L37) and the COBRA rocket experiment (Gush, Halpern and Wishnow 1990, Phys. Rev. Lett. 65, 537) of 2.735 +/- 0.06 and 2.736 +/- 0.017 K, respectively. CN excitation determinations are not susceptible to the same systematic errors as are the direct measurement experiments. In addition, our temperatures originate in physically separate Galactic locations far from the near-Earth environment. The excellent agreement among the results from these independent methods attests to the accuracy of each approach and reaffirms the global nature of the background radiation. Our measurements stem from a large set of observations utilizing CCD detectors with various telescope and instrument combinations. The data were analyzed in a consistent manner designed to expose systematic equivalent width measurement errors resulting from the different instrumental configurations. We have found no evidence for such a bias and feel this illustrates the potential for using CCD detectors in sensitive spectral applications for making accurate measurements of weak absorption features.
The Undiscovered World Cosmology from WMAP
NASA Technical Reports Server (NTRS)
Bennett, Charles
2004-01-01
The first findings from a year of WMAP satellite operations provide a detailed full sky map of the cosmic microwave background radiation. The observed temperature anisotropy, combined with the associated polarization information, encodes a wealth of cosmological information. The results have implications for the history, content, and evolution of the universe, and its large scale properties. These and other aspects of the mission will be discussed.
The Undiscovered World: Cosmology from WMAP
NASA Technical Reports Server (NTRS)
Bennett, Charles
2004-01-01
The first findings from a year of WMAP satellite operations provide a detailed full sky map of the cosmic microwave background radiation. The observed temperature anisotropy, combined with the associated polarization information, encodes a wealth of cosmological information. The results have implications for the history, content, and evolution of the universe, and its large scale properties. These and other aspects of the mission will be discussed.
Infrared fiber optic temperature monitoring of biological tissues heated in a microwave oven
NASA Astrophysics Data System (ADS)
Belotserkovsky, Edward; Ashkenasy, Y.; Shenfeld, Ofer; Drizlikh, S.; Zur, Albert; Katzir, Abraham
1993-05-01
The heating of tissue by microwave radiation has attained a place of importance in various medical fields such as the treatment of malignancies, urinary retention and hypothermia. Accurate temperature measurements in these treated tissues is important for treatment planning and for the control of the heating process. It is also important to be able to measure spacial temperature distribution in the tissues because they are heated in a non uniform way by the microwave radiation. Fiber optic radiometry makes possible accurate temperature measurement in the presence of microwave radiation and does not require contact with the tissue. Using a IR silver halide fiber optic radiometric temperature sensor we obtained accurate temperature measurements of tissues heated by microwave, enabling us to control the heating process in all regions of the tissue. We also performed temperature mapping of the heated tissues and demonstrated the non-uniform temperature distributions in them.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ding, Junjia; Ade, P. A. R.; Anderson, A. J.
In this study, we describe the optimization of transition-edge-sensor (TES) detector arrays for the thirdgeneration camera for the South PoleTelescope.The camera,which contains ~16 000 detectors, will make high-angular-resolution maps of the temperature and polarization of the cosmic microwave background. Our key results are scatter in the transition temperature of Ti/Au TESs is reduced by fabricating the TESs on a thin Ti(5 nm)/Au(5 nm) buffer layer and the thermal conductivity of the legs that support our detector islands is dominated by the SiOx dielectric in the microstrip transmission lines that run along
Quantum effects in the cosmic microwave background radiation
NASA Astrophysics Data System (ADS)
Messer, J.
1990-11-01
Based on the quantum correlated general relativistic Vlasov equations in an Einstein-de Sitter universe, we show that quantum effects are beyond measurability in the cosmic microwave background radiation.
Xian-jun Li; Ke-yang Lu; Lan-ying Lin; Yong-dong Zhou; Zhi-yong Cai; Feng Fu
2010-01-01
In this study, the effects of microwave radiation intensity, radiation time and initial wood moisture content (MC) on the properties of temperature development in Eucalyptus urophylla wood samples during the microwave explosion pretreatment have been investigated using a new microwave pretreatment equipment. The results show that 1) with the increase of microwave...
Low temperature regeneration of activated carbons using microwaves: revising conventional wisdom.
Calışkan, E; Bermúdez, J M; Parra, J B; Menéndez, J A; Mahramanlıoğlu, M; Ania, C O
2012-07-15
The purpose of this work was to explore the application of microwaves for the low temperature regeneration of activated carbons saturated with a pharmaceutical compound (promethazine). Contrary to expectations, microwave-assisted regeneration did not lead to better results than those obtained under conventional electric heating. At low temperatures the regeneration was incomplete either under microwave and conventional heating, being this attributed to the insufficient input energy. At mild temperatures, a fall in the adsorption capacity upon cycling was obtained in both devices, although this was much more pronounced for the microwave. These results contrast with previous studies on the benefits of microwaves for the regeneration of carbon materials. The fall in the adsorption capacity after regeneration was due to the thermal cracking of the adsorbed molecules inside the carbon porous network, although this effect applies to both devices. When microwaves are used, along with the thermal heating of the carbon bed, a fraction of the microwave energy seemed to be directly used in the decomposition of promethazine through the excitation of the molecular bonds by microwaves (microwave-lysis). These results point out that the nature of the adsorbate and its ability to interact with microwave are key factors that control the application of microwaves for regeneration of exhausted activated carbons. Copyright © 2012 Elsevier Ltd. All rights reserved.
Obermayer, David; Kappe, C Oliver
2010-01-07
The temperature profiles obtained from both an external infrared and internal fiber-optic sensor were compared for heating and synthesizing the ionic liquid 1-butyl-3-methylimidazolium bromide (bmimBr) under microwave conditions. Utilizing a single-mode microwave reactor that allows simultaneous infrared/fiber-optic temperature measurements, significant differences between the two methods of temperature monitoring were revealed. Due to the strong microwave absorptivity of ionic liquids and the delay experienced in monitoring temperature on the outer surface of a heavy-walled glass vial, external infrared temperature sensors can not be used to accurately control the temperature in the heating of ionic liquids under microwave conditions. The use of internal fiber-optic probes allows the monitoring and control of the heating behavior in a much better way. In order to prevent the strong exotherm in the synthesis of bmimBr under microwave conditions the use of a reaction vessel made out of silicon carbide is the method of choice. Because of the high thermal conductivity and effusivity of silicon carbide, the heat generated during the ionic liquid formation is efficiently exchanged with the comparatively cool air in the microwave cavity via the silicon carbide ceramic.
NASA Astrophysics Data System (ADS)
Barrentine, Emily Margaret
In this thesis the development of a Transition-Edge Hot-Electron Microbolometer (THM) is presented. This detector will have the capacity to make sensitive and broadband astrophysical observations when deployed in large detector arrays in future ground- or space-based instruments, over frequencies ranging from 30-300 GHz (10-1 mm). This thesis focuses on the development of the THM for observations of the Cosmic Microwave Background (CMB), and specifically for observations of the CMB polarization signal. The THM is a micron-sized bolometer that is fabricated photolithographically. It consists of a superconducting Molybdenum/Gold Transition-Edge Sensor (TES) and a thin-film semi-metal Bismuth microwave absorber, both of which are deposited directly on the substrate. The THM employs the decoupling between electrons and phonons at low temperatures (˜100-300 mK) to provide thermal isolation for the bolometer. The devices are read out with Superconducting Quantum Interference Devices (SQUIDs). In this thesis a summary of the thermal and electrical models for the THM detector is presented. The physical processes within the detector, with particular attention to electron-phonon decoupling, and the lateral proximity effect between the superconducting leads and the TES, are also discussed. This understanding of the detector and these models are used to interpret measurements of thermal conductance, noise, responsivity and the transition behaviour of a variety of THM test devices. The optimization of the THM design, based on these models and measurements, is also discussed, and the thesis concludes with a presentation of the recommended THM design for CMB applications. In addition, a planar-microwave circuit design and a quasi-optical scheme for coupling microwave radiation to the THM detector are presented.
ArtDeco: a beam-deconvolution code for absolute cosmic microwave background measurements
NASA Astrophysics Data System (ADS)
Keihänen, E.; Reinecke, M.
2012-12-01
We present a method for beam-deconvolving cosmic microwave background (CMB) anisotropy measurements. The code takes as input the time-ordered data along with the corresponding detector pointings and known beam shapes, and produces as output the harmonic aTlm, aElm, and aBlm coefficients of the observed sky. From these one can derive temperature and Q and U polarisation maps. The method is applicable to absolute CMB measurements with wide sky coverage, and is independent of the scanning strategy. We tested the code with extensive simulations, mimicking the resolution and data volume of Planck 30 GHz and 70 GHz channels, but with exaggerated beam asymmetry. We applied it to multipoles up to l = 1700 and examined the results in both pixel space and harmonic space. We also tested the method in presence of white noise. The code is released under the terms of the GNU General Public License and can be obtained from http://sourceforge.net/projects/art-deco/
Multi-variate joint PDF for non-Gaussianities: exact formulation and generic approximations
DOE Office of Scientific and Technical Information (OSTI.GOV)
Verde, Licia; Jimenez, Raul; Alvarez-Gaume, Luis
2013-06-01
We provide an exact expression for the multi-variate joint probability distribution function of non-Gaussian fields primordially arising from local transformations of a Gaussian field. This kind of non-Gaussianity is generated in many models of inflation. We apply our expression to the non-Gaussianity estimation from Cosmic Microwave Background maps and the halo mass function where we obtain analytical expressions. We also provide analytic approximations and their range of validity. For the Cosmic Microwave Background we give a fast way to compute the PDF which is valid up to more than 7σ for f{sub NL} values (both true and sampled) not ruledmore » out by current observations, which consists of expressing the PDF as a combination of bispectrum and trispectrum of the temperature maps. The resulting expression is valid for any kind of non-Gaussianity and is not limited to the local type. The above results may serve as the basis for a fully Bayesian analysis of the non-Gaussianity parameter.« less
Cosmic microwave background trispectrum and primordial magnetic field limits.
Trivedi, Pranjal; Seshadri, T R; Subramanian, Kandaswamy
2012-06-08
Primordial magnetic fields will generate non-gaussian signals in the cosmic microwave background (CMB) as magnetic stresses and the temperature anisotropy they induce depend quadratically on the magnetic field. We compute a new measure of magnetic non-gaussianity, the CMB trispectrum, on large angular scales, sourced via the Sachs-Wolfe effect. The trispectra induced by magnetic energy density and by magnetic scalar anisotropic stress are found to have typical magnitudes of approximately a few times 10(-29) and 10(-19), respectively. Observational limits on CMB non-gaussianity from WMAP data allow us to conservatively set upper limits of a nG, and plausibly sub-nG, on the present value of the primordial cosmic magnetic field. This represents the tightest limit so far on the strength of primordial magnetic fields, on Mpc scales, and is better than limits from the CMB bispectrum and all modes in the CMB power spectrum. Thus, the CMB trispectrum is a new and more sensitive probe of primordial magnetic fields on large scales.
Rotation of the cosmic microwave background polarization from weak gravitational lensing.
Dai, Liang
2014-01-31
When a cosmic microwave background (CMB) photon travels from the surface of last scatter through spacetime metric perturbations, the polarization vector may rotate about its direction of propagation. This gravitational rotation is distinct from, and occurs in addition to, the lensing deflection of the photon trajectory. This rotation can be sourced by linear vector or tensor metric perturbations and is fully coherent with the curl deflection field. Therefore, lensing corrections to the CMB polarization power spectra as well as the temperature-polarization cross correlations due to nonscalar perturbations are modified. The rotation does not affect lensing by linear scalar perturbations, but needs to be included when calculations go to higher orders. We present complete results for weak lensing of the full-sky CMB power spectra by general linear metric perturbations, taking into account both deflection of the photon trajectory and rotation of the polarization. For the case of lensing by gravitational waves, we show that the B modes induced by the rotation largely cancel those induced by the curl component of deflection.
Recent discoveries from the cosmic microwave background: a review of recent progress
NASA Astrophysics Data System (ADS)
Staggs, Suzanne; Dunkley, Jo; Page, Lyman
2018-04-01
Measurements of the anisotropies in the cosmic microwave background (CMB) radiation have provided a wealth of information about the cosmological model that describes the contents and evolution of the universe. These data have led to a standard model described by just six parameters. In this review we focus on discoveries made in the past decade from satellite and ground-based experiments, and look ahead to those anticipated in the coming decade. We provide an introduction to the key CMB observables including temperature and polarization anisotropies, and describe recent progress towards understanding the initial conditions of structure formation, and establishing the properties of the contents of the universe including neutrinos. Results are now being derived both from the primordial CMB signal that traces the behavior of the universe at 400 000 years of cosmic time, as well as from the signals imprinted at later times due to scattering from galaxy clusters, from the motion of electrons in the ionized universe, and from the gravitational lensing of the CMB photons. We describe current experimental methods to measure the CMB, particularly focusing on details relevant for ground and balloon-based instruments, and give an overview of the broad data analysis methods required to convert measurements of the microwave sky into cosmological parameters.
Recent discoveries from the cosmic microwave background: a review of recent progress.
Staggs, Suzanne; Dunkley, Jo; Page, Lyman
2018-04-01
Measurements of the anisotropies in the cosmic microwave background (CMB) radiation have provided a wealth of information about the cosmological model that describes the contents and evolution of the universe. These data have led to a standard model described by just six parameters. In this review we focus on discoveries made in the past decade from satellite and ground-based experiments, and look ahead to those anticipated in the coming decade. We provide an introduction to the key CMB observables including temperature and polarization anisotropies, and describe recent progress towards understanding the initial conditions of structure formation, and establishing the properties of the contents of the universe including neutrinos. Results are now being derived both from the primordial CMB signal that traces the behavior of the universe at 400 000 years of cosmic time, as well as from the signals imprinted at later times due to scattering from galaxy clusters, from the motion of electrons in the ionized universe, and from the gravitational lensing of the CMB photons. We describe current experimental methods to measure the CMB, particularly focusing on details relevant for ground and balloon-based instruments, and give an overview of the broad data analysis methods required to convert measurements of the microwave sky into cosmological parameters.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gorski, K.M.
1991-03-01
The relation between cosmic microwave background (CMB) anisotropies and large-scale galaxy streaming motions is examined within the framework of inflationary cosmology. The minimal Sachs and Wolfe (1967) CMB anisotropies at large angular scales in the models with initial Harrison-Zel'dovich spectrum of inhomogeneity normalized to the local large-scale bulk flow, which are independent of the Hubble constant and specific nature of dark matter, are found to be within the anticipated ultimate sensitivity limits of COBE's Differential Microwave Radiometer experiment. For example, the most likely value of the quadrupole coefficient is predicted to be a2 not less than 7 x 10 tomore » the -6th, where equality applies to the limiting minimal model. If (1) COBE's DMR instruments perform well throughout the two-year period; (2) the anisotropy data are not marred by the systematic errors; (3) the large-scale motions retain their present observational status; (4) there is no statistical conspiracy in a sense of the measured bulk flow being of untypically high and the large-scale anisotropy of untypically low amplitudes; and (5) the low-order multipoles in the all-sky primordial fireball temperature map are not detected, the inflationary paradigm will have to be questioned. 19 refs.« less
Anisotropies in the cosmic microwave background: an analytic approach
NASA Astrophysics Data System (ADS)
Hu, Wayne; Sugiyama, Naoshi
1995-05-01
We introduce a conceptually simple yet powerful analytic method which traces the structure of cosmic microwave background anisotropies to better than 5%-10% in temperature fluctuations on all scales. It is applicable to any model in which the gravitational potential is known and last scattering is sufficiently early. Moreover, it recovers and explains the presence of the 'Doppler peaks' at degree scales as driven acoustic oscillations of the photon-baryon fluid. We treat in detail such subtleties as the time dependence of the gravitational driving force, anisotropic stress from the neutrino quadrupole, and damping during the recombination process, again all from an analytic standpoint. We apply this formalism to the standard cold dark matter model to gain physical insight into the anisotropies, including the dependence of the peak locations and heights on cosmological parameters such as Omegab and h. Furthermore, the ionization history controls damping due to the finite thickness of the last scattering surface, which is in fact mianly caused by photon diffusion. In addition to being a powerful probe into the nature of anisotropies, this treatment can be used in place of the standard Boltzmann code where 5%-10% accuracy in temperature fluctuations is satisfactory and/or speed is essential. Equally importantly, it can be used as a portable standard by which numerical codes can be tested and compared.
Validation of microwave radiometry for measuring the internal temperature profile of human tissue
NASA Astrophysics Data System (ADS)
Levick, A.; Land, D.; Hand, J.
2011-06-01
A phantom target with a known linear temperature gradient has been developed for validating microwave radiometry for measuring internal temperature profiles within human tissue. The purpose of the phantom target is to simulate the temperature gradient found within the surface layers of a baby's brain during hypothermal neuroprotection therapy, in which the outer surface of the phantom represents the skin surface and the inner surface the brain core. The target comprises a volume of phantom tissue material with similar dielectric properties to high water-content human tissue, contained between two copper plates at known temperatures. The antenna of a microwave radiometer is in contact with one surface of the phantom material. We have measured the microwave temperature of the phantom with microwave radiometry in a frequency band of 3.0-3.5 GHz. Our microwave temperature measurements have small 0.05 °C (type A) uncertainties associated with random effects and provide temperatures consistent with values determined using theoretical models of the antenna-target system within uncertainties. The measurements are in good agreement with the major signal contribution being formed over a near plane-wave response within the material with a much smaller contribution from close to the antenna face.
NASA Astrophysics Data System (ADS)
Cortázar, O. D.; Megía-Macías, A.; Vizcaíno-de-Julián, A.
2012-10-01
An experimental study of temperature and density evolution during breakdown in off-resonance ECR hydrogen plasma is presented. Under square 2.45 GHz microwave excitation pulses with a frequency of 50 Hz and relative high microwave power, unexpected transient temperature peaks that reach 18 eV during 20 μs are reported at very beginning of plasma breakdown. Decays of such peaks reach final stable temperatures of 5 eV at flat top microwave excitation pulse. Evidence of interplay between incoming power and duty cycle giving different kind of plasma parameters evolutions engaged to microwave coupling times is observed. Under relative high power conditions where short microwave coupling times are recorded, high temperature peaks are measured. However, for lower incoming powers and longer coupling times, temperature evolves gradually to a higher final temperature without peaking. On the other hand, the early instant where temperature peaks are observed also suggest a possible connection with preglow processes during breakdown in ECRIS plasmas.
2001-06-19
KENNEDY SPACE CENTER, Fla. -- At Launch Complex 17-B, Cape Canaveral Air Force Station, workers keep watch while the Microwave Anisotropy Probe (MAP) is lowered into position on the Delta II rocket below. Launch of MAP via a Boeing Delta II rocket is scheduled for June 30. The launch will place MAP into a lunar-assisted trajectory to the Sun-Earth for a 27-month mission. The probe will measure small fluctuations in the temperature of the cosmic microwave background radiation to an accuracy of one millionth of a degree. These measurements should reveal the size, matter content, age, geometry and fate of the universe. They will also reveal the primordial structure that grew to form galaxies and will test ideas about the origins of these primordial structures
The cosmic microwave background radiation
NASA Technical Reports Server (NTRS)
Silk, Joseph
1992-01-01
A review the implications of the spectrum and anisotropy of the cosmic microwave background for cosmology. Thermalization and processes generating spectral distortions are discussed. Anisotropy predictions are described and compared with observational constraints. If the evidence for large-scale power in the galaxy distribution in excess of that predicted by the cold dark matter model is vindicated, and the observed structure originated via gravitational instabilities of primordial density fluctuations, the predicted amplitude of microwave background anisotropies on angular scales of a degree and larger must be at least several parts in 10 exp 6.
Ano, Taishi; Kishimoto, Fuminao; Sasaki, Ryo; Tsubaki, Shuntaro; Maitani, Masato M; Suzuki, Eiichi; Wada, Yuji
2016-05-11
We demonstrate two novel methods for the measurement of the temperatures of reaction spaces locally heated by microwaves, which have been applied here to two example systems, i.e., BaTiO3 particles covered with a SiO2 shell (BaTiO3-SiO2) and layered tungstate particles. Photoluminescent (PL) probes showing the temperature-sensitivity in their PL lifetimes are located in the nanospaces of the above systems. In the case of BaTiO3-SiO2 core-shell particles, rhodamine B is loaded into the mesopores of the SiO2 shell covering the BaTiO3 core, which generates the heat through the dielectric loss of microwaves. The inner nanospace temperature of the SiO2 shell is determined to be 28 °C higher than the bulk temperature under microwave irradiation at 24 W. On the other hand, Eu(3+) is immobilized in the interlayer space of layered tungstate as the PL probe, showing that the nanospace temperature of the interlayer is only 4 °C higher than the bulk temperature. This method for temperature-measurement is powerful for controlling microwave heating and elucidates the ambiguous mechanisms of microwave special effects often observed in chemical reactions, contributing greatly to the practical application of microwaves in chemistry and materials sciences.
Lorentz-violating electrodynamics and the cosmic microwave background.
Kostelecký, V Alan; Mewes, Matthew
2007-07-06
Possible Lorentz-violating effects in the cosmic microwave background are studied. We provide a systematic classification of renormalizable and nonrenormalizable operators for Lorentz violation in electrodynamics and use polarimetric observations to search for the associated violations.
Crites, A. T.; Henning, J. W.; Ade, P. A. R.; ...
2015-05-18
Here, we present measurements ofmore » $E$-mode polarization and temperature-$E$$-mode correlation in the cosmic microwave background (CMB) using data from the first season of observations with SPTpol, the polarization-sensitive receiver currently installed on the South Pole Telescope (SPT). The observations used in this work cover 100~\\sqdeg\\ of sky with arcminute resolution at $$150\\,$GHz. We also report the $E$-mode angular auto-power spectrum ($EE$) and the temperature-$E$-mode angular cross-power spectrum ($TE$) over the multipole range $$500 < \\ell \\leq5000$$. These power spectra improve on previous measurements in the high-$$\\ell$$ (small-scale) regime. We fit the combination of the SPTpol power spectra, data from \\planck\\, and previous SPT measurements with a six-parameter \\LCDM cosmological model. Furthermore, we find that the best-fit parameters are consistent with previous results. The improvement in high-$$\\ell$$ sensitivity over previous measurements leads to a significant improvement in the limit on polarized point-source power: after masking sources brighter than 50\\,mJy in unpolarized flux at 150\\,GHz, we find a 95\\% confidence upper limit on unclustered point-source power in the $EE$ spectrum of $$D_\\ell = \\ell (\\ell+1) C_\\ell / 2 \\pi < 0.40 \\ \\mu{\\mbox{K}}^2$$ at $$\\ell=3000$$, indicating that future $EE$ measurements will not be limited by power from unclustered point sources in the multipole range $$\\ell < 3600$$, and possibly much higher in $$\\ell.$$« less
Taking the Universe's Temperature with Spectral Distortions of the Cosmic Microwave Background.
Hill, J Colin; Battaglia, Nick; Chluba, Jens; Ferraro, Simone; Schaan, Emmanuel; Spergel, David N
2015-12-31
The cosmic microwave background (CMB) energy spectrum is a near-perfect blackbody. The standard model of cosmology predicts small spectral distortions to this form, but no such distortion of the sky-averaged CMB spectrum has yet been measured. We calculate the largest expected distortion, which arises from the inverse Compton scattering of CMB photons off hot, free electrons, known as the thermal Sunyaev-Zel'dovich (TSZ) effect. We show that the predicted signal is roughly one order of magnitude below the current bound from the COBE-FIRAS experiment, but it can be detected at enormous significance (≳1000σ) by the proposed Primordial Inflation Explorer (PIXIE). Although cosmic variance reduces the effective signal-to-noise ratio to 230σ, this measurement will still yield a subpercent constraint on the total thermal energy of electrons in the observable Universe. Furthermore, we show that PIXIE can detect subtle relativistic effects in the sky-averaged TSZ signal at 30σ, which directly probe moments of the optical depth-weighted intracluster medium electron temperature distribution. These effects break the degeneracy between the electron density and the temperature in the mean TSZ signal, allowing a direct inference of the mean baryon density at low redshift. Future spectral distortion probes will thus determine the global thermodynamic properties of ionized gas in the Universe with unprecedented precision. These measurements will impose a fundamental "integral constraint" on models of galaxy formation and the injection of feedback energy over cosmic time.
NASA Technical Reports Server (NTRS)
Vanbavel, C. H. M.; Lascano, R. J.
1982-01-01
A comprehensive, yet fairly simple model of water disposition in a bare soil profile under the sequential impact of rain storms and other atmospheric influences, as they occur from hour to hour is presented. This model is intended mostly to support field studies of soil moisture dynamics by our current team, to serve as a background for the microwave measurements, and, eventually, to serve as a point of departure for soil moisture predictions for estimates based in part upon airborne measurements. The main distinction of the current model is that it accounts not only for the moisture flow in the soil-atmosphere system, but also for the energy flow and, hence, calculates system temperatures. Also, the model is of a dynamic nature, capable of supporting any required degree of resolution in time and space. Much critical testing of the sample is needed before the complexities of the hydrology of a vegetated surface can be related meaningfully to microwave observations.
High temperature acoustic and hybrid microwave/acoustic levitators for materials processing
NASA Technical Reports Server (NTRS)
Barmatz, Martin
1990-01-01
The physical acoustics group at the Jet Propulsion Laboratory developed a single mode acoustic levitator technique for advanced containerless materials processing. The technique was successfully demonstrated in ground based studies to temperatures of about 1000 C in a uniform temperature furnace environment and to temperatures of about 1500 C using laser beams to locally heat the sample. Researchers are evaluating microwaves as a more efficient means than lasers for locally heating a positioned sample. Recent tests of a prototype single mode hybrid microwave/acoustic levitator successfully demonstrated the feasibility of using microwave power as a heating source. The potential advantages of combining acoustic positioning forces and microwave heating for containerless processing investigations are presented in outline form.
Effect of microwave irradiation on TATB explosive (II): temperature response and other risk.
Yu, Weifei; Zhang, Tonglai; Zuo, Jun; Huang, Yigang; Li, Gang; Han, Chao; Li, Jinshan; Huang, Hui
2010-01-15
TATB (1,3,5-triamino-2,4,6-trinitrobenzene) explosives were safely irradiated with microwave and showed no visible change according to XPS and XRD spectra. Temperature of TATB sample increased quickly at the beginning and gently during sequent continuous irradiation with temperature less than 140 degrees C after 60 min, 480 W irradiation, and increased more quickly in 300 g at 480 W than in 150 g at 480 W, both implied that heat dissipation was in the majority of microwave energy. Two major risk factors in microwave irradiation were concerned including overheating which should be avoidable with temperature monitor and microwave discharge which should be controllable experimentally though dielectric breakdown mechanism was not elucidated theoretically yet.
Microwave quantum illumination.
Barzanjeh, Shabir; Guha, Saikat; Weedbrook, Christian; Vitali, David; Shapiro, Jeffrey H; Pirandola, Stefano
2015-02-27
Quantum illumination is a quantum-optical sensing technique in which an entangled source is exploited to improve the detection of a low-reflectivity object that is immersed in a bright thermal background. Here, we describe and analyze a system for applying this technique at microwave frequencies, a more appropriate spectral region for target detection than the optical, due to the naturally occurring bright thermal background in the microwave regime. We use an electro-optomechanical converter to entangle microwave signal and optical idler fields, with the former being sent to probe the target region and the latter being retained at the source. The microwave radiation collected from the target region is then phase conjugated and upconverted into an optical field that is combined with the retained idler in a joint-detection quantum measurement. The error probability of this microwave quantum-illumination system, or quantum radar, is shown to be superior to that of any classical microwave radar of equal transmitted energy.
Mapping the CMB with the Wilkinson Microwave Anisotropy Probe
NASA Technical Reports Server (NTRS)
Hinshaw, Gary F.
2007-01-01
The data from the Wilkinson Microwave Anisotropy Probe (WMAP) satellite provide detailed full-sky maps of the cosmic microwave background temperature anisotropy and new full-sky maps of the polarization. Together, the data provide a wealth of cosmological information, including the age of the universe, the epoch when the first stars formed, and the overall composition of baryonic matter, dark matter, and dark energy. The results also provide constraints on the period of inflationary expansion in the very first moments of time. These and other aspects of the mission results will be discussed and commented on. WMAP, part of NASA's Explorers program, was launched on June 30,200 1. The WMAP satellite was produced in a partnership between the Goddard Space Flight Center and Princeton University. The WMAP team also includes researchers at the Johns Hopkins University; the Canadian Institute of Theoretical Astrophysics; University of Texas; University of Chicago; Brown University; University of British Columbia; and University of California, Los Angeles.
Copper-granule-catalyzed microwave-assisted click synthesis of polyphenol dendrimers.
Lee, Choon Young; Held, Rich; Sharma, Ajit; Baral, Rom; Nanah, Cyprien; Dumas, Dan; Jenkins, Shannon; Upadhaya, Samik; Du, Wenjun
2013-11-15
Syringaldehyde- and vanillin-based antioxidant dendrimers were synthesized via microwave-assisted alkyne-azide 1,3-dipolar cycloaddition using copper granules as a catalyst. The use of Cu(I) as a catalyst resulted in copper contaminated dendrimers. To produce copper-free antioxidant dendrimers for biological applications, Cu(I) was substituted with copper granules. Copper granules were ineffective at both room temperature and under reflux conditions (<5% yield). However, they were an excellent catalyst when dendrimer synthesis was performed under microwave irradiation, giving yields up to 94% within 8 h. ICP-mass analysis of the antioxidant dendrimers obtained with this method showed virtually no copper contamination (9 ppm), which was the same as the background level. The synthesized antioxidants, free from copper contamination, demonstrated potent radical scavenging with IC50 values of less than 3 μM in the 2,2-diphenyl-1-picrylhydrazyl (DPPH) assay. In comparison, dendrimers synthesized from Cu(I)-catalyzed click chemistry showed a high level of copper contamination (4800 ppm) and no detectable antioxidant activity.
Trajectory Design for the Microwave Anisotropy Probe (MAP)
NASA Technical Reports Server (NTRS)
Newman, Lauri Kraft; Rohrbaugh, David; Bauer, Frank H. (Technical Monitor)
2001-01-01
The Microwave Anisotropy, Probe (MAP) is a Medium Class Explorers (MIDEX) Mission produced in partnership between Goddard Space Flight Center (GSFC) and Princeton University. The goal of the MAP mission is to produce an accurate fill-sky, map of the cosmic microwave background temperature fluctuations (anisotropy). The mission orbit is a Lissajous orbit about the L(sub 2) Sun-Earth Lagrange point. The trajectory design for MAP is complex, having many requirements that must be met including shadow avoidance, sun angle constraints, Lissqjous size and shape characteristics, and limited Delta-V budget. In order to find a trajectory that met the design requirements for the entire 4-year mission lifetime goal, GSFC Flight Dynamics engineers performed many analyses, the results of which are presented herein. The paper discusses the preliminary trade-offs to establish a baseline trajectory, analysis to establish the nominal daily trajectory, and the launch window determination to widen the opportunity from instantaneous to several minutes for each launch date.
Compensation for large tensor modes with iso-curvature perturbations in CMB anisotropies
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kawasaki, Masahiro; Yokoyama, Shuichiro, E-mail: kawasaki@icrr.u-tokyo.ac.jp, E-mail: shu@icrr.u-tokyo.ac.jp
Recently, BICEP2 has reported the large tensor-to-scalar ratio r = 0.2{sup +0.07}{sub −0.05} from the observation of the cosmic microwave background (CMB) B-mode at degree-scales. Since tensor modes induce not only CMB B-mode but also the temperature fluctuations on large scales, to realize the consistent temperature fluctuations with the Planck result we should consider suppression of scalar perturbations on corresponding large scales. To realize such a suppression, we consider anti-correlated iso-curvature perturbations which could be realized in the simple curvaton model.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ding, Junjia; Ade, P. A. R.; Anderson, A. J.
In this paper, we describe the optimization of transition-edge-sensor (TES) detector arrays for the third-generation camera for the South PoleTelescope. The camera, which contains similar to 16 000 detectors, will make high-angular-resolution maps of the temperature and polarization of the cosmic microwave background. Our key results are scatter in the transition temperature of Ti/Au TESs is reduced by fabricating the TESs on a thin Ti(5 nm)/Au(5 nm) buffer layer and the thermal conductivity of the legs that support our detector islands is dominated by the SiOx dielectric in the microstrip transmission lines that run along the legs.
Microwave temperature-jump nuclear magnetic resonance system for aqueous solutions
NASA Astrophysics Data System (ADS)
Kawakami, Masaru; Akasaka, Kazuyuki
1998-09-01
A microwave temperature-jump nuclear magnetic resonance (NMR) system suitable for aqueous solutions has been developed. A microwave pulse of a desired length is generated at a frequency of 2.46 GHz from a 1.3 kW magnetron, and is delivered through a waveguide and a coaxial cable to a coupling loop which works as an antenna to the dielectric resonator in the NMR probe. Inside the dielectric resonator, the microwave power is efficiently absorbed by the sample solution (about 100 μl) contained in a glass tube, causing a temperature jump by about 25 °C in less than 20 ms. The temperature after the jump can be maintained by applying intermittent microwave pulses of shorter length. A saddle-type radio-frequency coil is placed around the sample tube inside the hollow of the dielectric resonator to excite spins and detect NMR signals. Both the microwave pulses and the radio-frequency pulses are gated by a pulse programmer of the NMR spectrometer to form a desired temperature-jump pulse sequence. A mechanical mixing device is introduced, which significantly reduces the temperature gradient of the sample solution well within 100 ms after the jump. Application to an aqueous solution of ribonuclease A showed that the protein unfolds within 20 ms of microwave heating.
A Microwave Technique for Mapping Ice Temperature in the Arctic Seasonal Sea Ice Zone
NASA Technical Reports Server (NTRS)
St.Germain, Karen M.; Cavalieri, Donald J.
1997-01-01
A technique for deriving ice temperature in the Arctic seasonal sea ice zone from passive microwave radiances has been developed. The algorithm operates on brightness temperatures derived from the Special Sensor Microwave/Imager (SSM/I) and uses ice concentration and type from a previously developed thin ice algorithm to estimate the surface emissivity. Comparisons of the microwave derived temperatures with estimates derived from infrared imagery of the Bering Strait yield a correlation coefficient of 0.93 and an RMS difference of 2.1 K when coastal and cloud contaminated pixels are removed. SSM/I temperatures were also compared with a time series of air temperature observations from Gambell on St. Lawrence Island and from Point Barrow, AK weather stations. These comparisons indicate that the relationship between the air temperature and the ice temperature depends on ice type.
Evidence of lensing of the cosmic microwave background by dark matter halos.
Madhavacheril, Mathew; Sehgal, Neelima; Allison, Rupert; Battaglia, Nick; Bond, J Richard; Calabrese, Erminia; Caligiuri, Jerod; Coughlin, Kevin; Crichton, Devin; Datta, Rahul; Devlin, Mark J; Dunkley, Joanna; Dünner, Rolando; Fogarty, Kevin; Grace, Emily; Hajian, Amir; Hasselfield, Matthew; Hill, J Colin; Hilton, Matt; Hincks, Adam D; Hlozek, Renée; Hughes, John P; Kosowsky, Arthur; Louis, Thibaut; Lungu, Marius; McMahon, Jeff; Moodley, Kavilan; Munson, Charles; Naess, Sigurd; Nati, Federico; Newburgh, Laura; Niemack, Michael D; Page, Lyman A; Partridge, Bruce; Schmitt, Benjamin; Sherwin, Blake D; Sievers, Jon; Spergel, David N; Staggs, Suzanne T; Thornton, Robert; Van Engelen, Alexander; Ward, Jonathan T; Wollack, Edward J
2015-04-17
We present evidence of the gravitational lensing of the cosmic microwave background by 10(13) solar mass dark matter halos. Lensing convergence maps from the Atacama Cosmology Telescope Polarimeter (ACTPol) are stacked at the positions of around 12 000 optically selected CMASS galaxies from the SDSS-III/BOSS survey. The mean lensing signal is consistent with simulated dark matter halo profiles and is favored over a null signal at 3.2σ significance. This result demonstrates the potential of microwave background lensing to probe the dark matter distribution in galaxy group and galaxy cluster halos.
Noise correlations in cosmic microwave background experiments
NASA Technical Reports Server (NTRS)
Dodelson, Scott; Kosowsky, Arthur; Myers, Steven T.
1995-01-01
Many analysis of microwave background experiments neglect the correlation of noise in different frequency of polarization channels. We show that these correlations, should they be present, can lead to serve misinterpretation of an experiment. In particular, correlated noise arising from either electronics or atmosphere may mimic a cosmic signal. We quantify how the likelihood function for a given experiment varies with noise correlation, using both simple analytic models and actual data. For a typical microwave background anisotropy experiment, noise correlations at the level of 1% of the overall noise can seriously reduce the significance of a given detection.
Correlated perturbations from inflation and the cosmic microwave background.
Amendola, Luca; Gordon, Christopher; Wands, David; Sasaki, Misao
2002-05-27
We compare the latest cosmic microwave background data with theoretical predictions including correlated adiabatic and cold dark matter (CDM) isocurvature perturbations with a simple power-law dependence. We find that there is a degeneracy between the amplitude of correlated isocurvature perturbations and the spectral tilt. A negative (red) tilt is found to be compatible with a larger isocurvature contribution. Estimates of the baryon and CDM densities are found to be almost independent of the isocurvature amplitude. The main result is that current microwave background data do not exclude a dominant contribution from CDM isocurvature fluctuations on large scales.
NASA Technical Reports Server (NTRS)
Sunyayev, R. A.
1979-01-01
Secondary heating and ionization of the intergalactic gas at redshifts z approximately 10-30 could lead to the large optical depth of the Universe for Thomson scattering and could smooth the primordial fluctuations formed at z approximately 1500. It is shown that the gas motions connected with the large scale density perturbations at z approximately 10-15 must lead to the generation of secondary fluctuations of microwave background. The contribution of the rich clusters of galaxies and young galaxies to the fluctuations of microwave background is also estimated.
Magnetic Trapping and Coherent Control of Laser-Cooled Molecules
NASA Astrophysics Data System (ADS)
Williams, H. J.; Caldwell, L.; Fitch, N. J.; Truppe, S.; Rodewald, J.; Hinds, E. A.; Sauer, B. E.; Tarbutt, M. R.
2018-04-01
We demonstrate coherent microwave control of the rotational, hyperfine, and Zeeman states of ultracold CaF molecules, and the magnetic trapping of these molecules in a single, selectable quantum state. We trap about 5 ×103 molecules for almost 2 s at a temperature of 70 (8 ) μ K and a density of 1.2 ×105 cm-3. We measure the state-specific loss rate due to collisions with background helium.
NASA Technical Reports Server (NTRS)
Bhasin, K. B.; Warner, J. D.; Romanofsky, R. R.; Heinen, V. O.; Chorey, C. M.
1990-01-01
Epitaxial YBa2Cu3O7 films were grown on several microwave substrates. Surface resistance and penetration depth measurements were performed to determine the quality of these films. Here the properties of these films on key microwave substrates are described. The fabrication and characterization of a microwave ring resonator circuit to determine transmission line losses are presented. Lower losses than those observed in gold resonator circuits were observed at temperatures lower than critical transition temperature. Based on these results, potential applications of microwave superconducting circuits such as filters, resonators, oscillators, phase shifters, and antenna elements in space communication systems are identified.
NASA Technical Reports Server (NTRS)
Bhasin, K. B.; Warner, J. D.; Romanofsky, R. R.; Heinen, V. O.; Chorey, C. M.
1990-01-01
Epitaxial YBa2Cu3O7 films were grown on several microwave substrates. Surface resistance and penetration depth measurements were performed to determine the quality of these films. Here, the properties of these films on key microwave substrates are described. The fabrication and characterization of a microwave ring resonator circuit to determine transmission line losses are presented. Lower losses than those observed in gold resonator circuits were observed at temperatures lower than critical transition temperature. Based on these results, potential applications of microwave superconducting circuits such as filters, resonators, oscillators, phase shifters, and antenna elements in space communication systems are identified.
The Microwave SQUID Multiplexer
NASA Astrophysics Data System (ADS)
Mates, John Arthur Benson
2011-12-01
This thesis describes a multiplexer of Superconducting Quantum Interference Devices (SQUIDs) with low-noise, ultra-low power dissipation, and great scalability. The multiplexer circuit measures the magnetic flux in a large number of unshunted rf SQUIDs by coupling each SQUID to a superconducting microwave resonator tuned to a unique resonance frequency and driving the resonators from a common feedline. A superposition of microwave tones measures each SQUID simultaneously using only two coaxial cables between the cryogenic device and room temperature. This multiplexer will enable the instrumentation of arrays with hundreds of thousands of low-temperature detectors for new applications in cosmology, materials analysis, and nuclear non-proliferation. The driving application of the Microwave SQUID Multiplexer is the readout of large arrays of superconducting transition-edge sensors, by some figures of merit the most sensitive detectors of electromagnetic signals over a span of more than nine orders of magnitude in energy, from 40 GHz microwaves to 200 keV gamma rays. Modern transition-edge sensors have noise-equivalent power as low as 10-20 W / Hz1/2 and energy resolution as good as 2 eV at 6 keV. These per-pixel sensitivities approach theoretical limits set by the underlying signals, motivating a rapid increase in pixel count to access new science. Compelling applications, like the non-destructive assay of nuclear material for treaty verification or the search for primordial gravity waves from inflation use arrays of these detectors to increase collection area or tile a focal plane. We developed three generations of SQUID multiplexers, optimizing the first for flux noise 0.17 muPhi0 / Hz1/2, the second for input current noise 19 pA / Hz1/2, and the last for practical multiplexing of large arrays of cosmic microwave background polarimeters based on transition-edge sensors. Using the last design we demonstrated multiplexed readout of prototype polarimeters with the performance required for the future development of a large-scale astronomical instrument.
Microwave signatures of ice hydrometeors from ground-based observations above Summit, Greenland
Pettersen, Claire; Bennartz, Ralf; Kulie, Mark S.; ...
2016-04-15
Multi-instrument, ground-based measurements provide unique and comprehensive data sets of the atmosphere for a specific location over long periods of time and resulting data compliment past and existing global satellite observations. Our paper explores the effect of ice hydrometeors on ground-based, high-frequency passive microwave measurements and attempts to isolate an ice signature for summer seasons at Summit, Greenland, from 2010 to 2013. Furthermore, data from a combination of passive microwave, cloud radar, radiosonde, and ceilometer were examined to isolate the ice signature at microwave wavelengths. By limiting the study to a cloud liquid water path of 40 g m -2more » or less, the cloud radar can identify cases where the precipitation was dominated by ice. These cases were examined using liquid water and gas microwave absorption models, and brightness temperatures were calculated for the high-frequency microwave channels: 90, 150, and 225GHz. By comparing the measured brightness temperatures from the microwave radiometers and the calculated brightness temperature using only gas and liquid contributions, any residual brightness temperature difference is due to emission and scattering of microwave radiation from the ice hydrometeors in the column. The ice signature in the 90, 150, and 225 GHz channels for the Summit Station summer months was isolated. Then, this measured ice signature was compared to an equivalent brightness temperature difference calculated with a radiative transfer model including microwave single-scattering properties for several ice habits. Furthermore, initial model results compare well against the 4 years of summer season isolated ice signature in the high-frequency microwave channels.« less
Drude-jellium model for the microwave conductivity of electrolyte solutions
NASA Astrophysics Data System (ADS)
Nhan, Tran Thi; Theu, Luong Thi; Tuan, Le; Viet, Nguyen Ai
2018-05-01
The microwave conductivity characteristics of electrolyte solutions have attracted much interest of researchers because a good understanding of their properties plays a key role to study fundamental processes in biology and chemistry. In this work, we consider the solution of sodium chloride as a plasma consisting of ions with water background. Its plasmon frequency is calculated by the jellium theory. The linear dependence of the microwave conductivity on the ion concentration of the electrolyte solutions is explained by a microscopic approach and described by a combination of this plasmon relationship and the simplified Drude formula for dielectric constant. Furthermore, the dependence of the microwave conductivity on the frequency of the salt solution is also examined. We suggest that it obeys the logistic distribution. We found a good agreement between theoretical calculations and experimental data. The values of the damping coefficient γ for the conductive solutions at low frequencies and the cutting frequency are estimated. The linear dependence of the diffusion coefficient on the temperature of the salt solution is also shown, in similarity with the result in the other model. The application of the Drude-jellium model could be done for the other electrolyte solutions in order to study theirs electro-dynamic properties.
Fast microwave assisted pyrolysis of biomass using microwave absorbent.
Borges, Fernanda Cabral; Du, Zhenyi; Xie, Qinglong; Trierweiler, Jorge Otávio; Cheng, Yanling; Wan, Yiqin; Liu, Yuhuan; Zhu, Rongbi; Lin, Xiangyang; Chen, Paul; Ruan, Roger
2014-03-01
A novel concept of fast microwave assisted pyrolysis (fMAP) in the presence of microwave absorbents was presented and examined. Wood sawdust and corn stover were pyrolyzed by means of microwave heating and silicon carbide (SiC) as microwave absorbent. The bio-oil was characterized, and the effects of temperature, feedstock loading, particle sizes, and vacuum degree were analyzed. For wood sawdust, a temperature of 480°C, 50 grit SiC, with 2g/min of biomass feeding, were the optimal conditions, with a maximum bio-oil yield of 65 wt.%. For corn stover, temperatures ranging from 490°C to 560°C, biomass particle sizes from 0.9mm to 1.9mm, and vacuum degree lower than 100mmHg obtained a maximum bio-oil yield of 64 wt.%. This study shows that the use of microwave absorbents for fMAP is feasible and a promising technology to improve the practical values and commercial application outlook of microwave based pyrolysis. Copyright © 2014 Elsevier Ltd. All rights reserved.
The Cosmic Microwave Background Anisotropy
NASA Astrophysics Data System (ADS)
Bennett, C. L.
1994-12-01
The properties of the cosmic microwave background radiation provide unique constraints on the history and evolution of the universe. The first detection of anisotropy of the microwave radiation was reported by the COBE Team in 1992, based on the first year of flight data. The latest analyses of the first two years of COBE data are reviewed in this talk, including the amplitude of the microwave anisotropy as a function of angular scale and the statistical nature of the fluctuations. The two-year results are generally consistent with the earlier first year results, but the additional data allow for a better determination of the key cosmological parameters. In this talk the COBE results are compared with other observational anisotropy results and directions for future cosmic microwave anisotropy observations will be discussed. The National Aeronautics and Space Administration/Goddard Space Flight Center (NASA/GSFC) is responsible for the design, development, and operation of the Cosmic Background Explorer (COBE). Scientific guidance is provided by the COBE Science Working Group.
Liu, Zhen; Wang, Han-Qing; Zhou, Yue-Yun; Zhang, Xiao-Dong; Liu, Jian-Wen
2017-07-01
The present study focuses on pretreatment of enhancing the properties of refuse-derived fuel (RDF) via low-temperature microwave irradiation. These improved properties include lower chlorine content, a more porous surface structure and better combustion characteristics. In this study, low-temperature microwave irradiation was carried out in a modified microwave apparatus and the range of temperature was set to be 220-300℃. We found that the microwave absorbability of RDF was enhanced after being partly carbonized. Moreover, with the increasing of the final temperature, the organochlorine removal ratio was greatly increased to 80% and the content of chlorine was dramatically decreased to an extremely low level. It was also interesting to find that the chlorine of RDF was mainly released as HCl rather than organic chloride volatiles. The finding is just the same as the polyvinyl chloride pyrolysis process. In addition, pores and channels emerged during the modifying operation and the modified RDF has better combustibility and combustion stability than traditional RDF. This work revealed that low-temperature modification of RDF via microwave irradiation is significant for enhancing the quality of RDF and avoiding HCl erosion of equipment substantially.
Lechowich, R. V.; Beuchat, L. R.; Fox, K. I.; Webster, F. H.
1969-01-01
Modifications of a commercial 2,450-megahertz microwave oven were made so that 6 ml of microbial suspension could be exposed to the microwave field for various periods of time. The microorganisms were contained in the central tube of a modified Liebig condenser positioned in the approximate geometric center of the oven cavity. Kerosene at -25 C was circulated through the jacket of the condenser during microwave exposure permitting microwaves to reach the microbial suspension. Flow rates of the kerosene were varied to permit the temperature of the suspension to range from 25 to 55 C during microwave exposure. Conductive heating experiments using similar temperatures were also conducted. A thermocouple-relay system was employed to measure the suspension temperature immediately after the magnetron shutoff. Continuous application of microwaves to suspensions of 108 to 109 Streptococcus faecalis or Saccharomyces cerevisiae per ml appeared to produce no lethal effects other than those produced by heat. Respiration rates of microwave-exposed Scerevisiae were directly related to decreases in viable count produced by increased microwave exposure times. Images PMID:4975450
NASA Technical Reports Server (NTRS)
Freeman, Jon C.
2004-01-01
A key parameter in the design trade-offs made during AlGaN/GaN HEMTs development for microwave power amplifiers is the channel temperature. An accurate determination can, in general, only be found using detailed software; however, a quick estimate is always helpful, as it speeds up the design cycle. This paper gives a simple technique to estimate the channel temperature of a generic microwave AlGaN/GaN HEMT on SiC or Sapphire, while incorporating the temperature dependence of the thermal conductivity. The procedure is validated by comparing its predictions with the experimentally measured temperatures in microwave devices presented in three recently published articles. The model predicts the temperature to within 5 to 10 percent of the true average channel temperature. The calculation strategy is extended to determine device temperature in power combining MMICs for solid-state power amplifiers (SSPAs).
2001-06-19
KENNEDY SPACE CENTER, Fla. -- The Microwave Anisotropy Probe (MAP) spacecraft is lifted up the gantry on Launch Complex 17-B, Cape Canaveral Air Force Station, where it will undergo final testing and installation of the payload fairing. Launch of MAP via a Boeing Delta II rocket is scheduled for June 30. The launch will place MAP into a lunar-assisted trajectory to the Sun-Earth for a 27-month mission. The probe will measure small fluctuations in the temperature of the cosmic microwave background radiation to an accuracy of one millionth of a degree. These measurements should reveal the size, matter content, age, geometry and fate of the universe. They will also reveal the primordial structure that grew to form galaxies and will test ideas about the origins of these primordial structures
2001-06-26
KENNEDY SPACE CENTER, Fla. -- The fairing closes around the Microwave Anisotropy Probe (MAP) spacecraft at Launch Complex 17-B, Cape Canaveral Air Force Station. MAP is scheduled for launch on June 30 aboard a Boeing Delta II rocket. The launch will place MAP into a lunar-assisted trajectory to the Sun-Earth for a 27-month mission. The probe will measure small fluctuations in the temperature of the cosmic microwave background radiation to an accuracy of one millionth of a degree. These measurements should reveal the size, matter content, age, geometry and fate of the universe. They will also reveal the primordial structure that grew to form galaxies and will test ideas about the origins of these primordial structures. The MAP instrument will be continuously shaded from the Sun, Earth, and Moon by the spacecraft
2001-06-26
KENNEDY SPACE CENTER, Fla. -- Workers at Launch Complex 17-B, Cape Canaveral Air Force Station, watch as fairing moves into position around the Microwave Anisotropy Probe (MAP) spacecraft. MAP is scheduled for launch on June 30 aboard a Boeing Delta II rocket. The launch will place MAP into a lunar-assisted trajectory to the Sun-Earth for a 27-month mission. The probe will measure small fluctuations in the temperature of the cosmic microwave background radiation to an accuracy of one millionth of a degree. These measurements should reveal the size, matter content, age, geometry and fate of the universe. They will also reveal the primordial structure that grew to form galaxies and will test ideas about the origins of these primordial structures. The MAP instrument will be continuously shaded from the Sun, Earth, and Moon by the spacecraft
2001-06-26
KENNEDY SPACE CENTER, Fla. -- Workers at Launch Complex 17-B, Cape Canaveral Air Force Station, oversee the fairing installation on the Microwave Anisotropy Probe (MAP) spacecraft. MAP is scheduled for launch on June 30 aboard a Boeing Delta II rocket. The launch will place MAP into a lunar-assisted trajectory to the Sun-Earth for a 27-month mission. The probe will measure small fluctuations in the temperature of the cosmic microwave background radiation to an accuracy of one millionth of a degree. These measurements should reveal the size, matter content, age, geometry and fate of the universe. They will also reveal the primordial structure that grew to form galaxies and will test ideas about the origins of these primordial structures. The MAP instrument will be continuously shaded from the Sun, Earth, and Moon by the spacecraft
2001-06-15
KENNEDY SPACE CENTER, Fla. -- The Microwave Anisotropy Probe (MAP) is lowered onto the upper stage of the Boeing Delta II rocket. The rocket is scheduled to launch the MAP instrument June 30 into a lunar-assisted trajectory to the Sun-Earth for a 27-month mission. MAP will measure small fluctuations in the temperature of the cosmic microwave background radiation to an accuracy of one millionth of a degree. These measurements should reveal the size, matter content, age, geometry and fate of the universe. They will also reveal the primordial structure that grew to form galaxies and will test ideas about the origins of these primordial structures. The MAP instrument will be continuously shaded from the Sun, Earth, and Moon by the spacecraft. It is a product of Goddard Space Flight Center in partnership with Princeton University
2001-06-26
KENNEDY SPACE CENTER, Fla. -- At Launch Complex 17-B, Cape Canaveral Air Force Station, the fairing is moved into position around the Microwave Anisotropy Probe (MAP) spacecraft. MAP is scheduled for launch on June 30 aboard a Boeing Delta II rocket. The launch will place MAP into a lunar-assisted trajectory to the Sun-Earth for a 27-month mission. The probe will measure small fluctuations in the temperature of the cosmic microwave background radiation to an accuracy of one millionth of a degree. These measurements should reveal the size, matter content, age, geometry and fate of the universe. They will also reveal the primordial structure that grew to form galaxies and will test ideas about the origins of these primordial structures. The MAP instrument will be continuously shaded from the Sun, Earth, and Moon by the spacecraft
Thermal characteristics analysis of microwaves reactor for pyrolysis of used cooking oil
NASA Astrophysics Data System (ADS)
Anis, Samsudin; Shahadati, Laily; Sumbodo, Wirawan; Wahyudi
2017-03-01
The research is objected to develop microwave reactor for pyrolysis of used cooking oil. The effect of microwave power as well as addition of char as absorber towards its thermal characteristic were investigated. Domestic microwave was modified and used to test the thermal characteristic of used cooking oil in the terms of temperature evolution, heating rate, and thermal efficiency. The samples were examined under various microwave power of 347W, 399W, 572W and 642W for 25 minutes of irradiation time. The char loading was tested in the level of 0, 50, and 100 g. Microwave reactor consists of microwave unit with a maximum power of 642W, a ceramic reactor, and a condenser equipped with temperature measurement system was successfully developed. It was found that microwave power and addition of absorber significantly influenced the thermal characteristic of microwave reactor. Under investigated condition, the optimum result was obtained at microwave power of 642W and 100 g of char. The condition was able to provide temperature of 480°C, heating rate of 18.2°C/min and thermal efficiency of 53% that is suitable to pyrolyze used cooking oil.
Application of Monte Carlo algorithms to the Bayesian analysis of the Cosmic Microwave Background
NASA Technical Reports Server (NTRS)
Jewell, J.; Levin, S.; Anderson, C. H.
2004-01-01
Power spectrum estimation and evaluation of associated errors in the presence of incomplete sky coverage; nonhomogeneous, correlated instrumental noise; and foreground emission are problems of central importance for the extraction of cosmological information from the cosmic microwave background (CMB).
Schiffmann, Robert F
2013-01-01
The introduction of several Not-Ready-to-Eat (NRTE) products, beginning in 2007, has resulted in several recalls and has caused serious concerns about their safe-cooking in microwave ovens. These products are not fully-thermally processed prior to sale but depend upon the consumer to finish cooking them to the safe minimum temperatures, defined by the USDA, in order to destroy any sources of foodborne illnesses. While microwave ovens are a primary means of this finish-cooking step, they are known to cook foods unevenly in terms of temperature distribution, especially from a frozen state, and this may cause parts of the food to be below the required safe-temperature. Hence there are concerns regarding how reliably microwave ovens can provide the minimum required safe temperatures in order to avoid the possibility of foodborne illnesses. To determine this, temperature profiling tests were preformed upon three frozen NRTE entrées, heating them in eight new brand-name 1100-watt and 1200-watt microwave ovens in order to evaluate how well the minimum temperatures were reached throughout the products. By comparison, these same tests were repeated using three "smart" microwave ovens in which internal computer-control makes them user-independent. In addition, a comparison was also made of the microwave output power claimed by the manufacturers of these ovens to that determined using the IEC procedures.
Disinfection of Wastewater by Microwaves.
1980-01-01
used. Thermophilic B. stearothermophilus cells were used to try to determine if the mechanism of destruction was thermal. The microwave oven was set at...curve for E. coli B cells heated in a microwave oven temperature programed for 600 C ...... ............ 8 7. Survivor curve for B. stearothermophilus ...ATCC 12980 cells heated in a microwave oven temperature programed for 600 C. 98. Survivor curve for B. stearothermophilus AICC 12980 ........ 9 9
A study on experimental characteristic of microwave-assisted pyrolysis of microalgae.
Hu, Zhifeng; Ma, Xiaoqian; Chen, Chunxiang
2012-03-01
The microwave-assisted pyrolysis of Chlorella vulgaris was carried out under different microwave power levels, catalysts and contents of activated carbon and solid residue. The products, pyrolysis temperature and temperature rising rate were analyzed in order to obtain the optimal conditions. The results indicated that the higher the microwave power level was, the higher the maximum temperature rising rate and pyrolysis temperature were. The maximum bio-oil yield (35.83 wt.%) and gas yield (52.37%) were achieved under the microwave power of 1500 W and 2250 W, respectively. And 2250 W was the optimal power to obtain bio-fuel product. High microwave power level and catalyst can enhance the production of gas. Catalysts can promote the pyrolysis of C. vulgaris, and activated carbon was the best among the tested catalysts followed by the solid residue. The optimal content of activated carbon is 5% with the maximum bio-fuel yield of 87.47%. Copyright © 2011 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Yang, Wei; Zhou, Qianhong; Dong, Zhiwei
2017-01-01
We report a simulation study on nitrogen vibrational and translational temperature in 3 μs pulse 110 GHz microwave air breakdown at pressure from 1 Torr to 100 Torr. The one-dimensional model is based on a self-consistent solution to Helmholtz equation for microwave field, electron density equation, and the average energy equation for electrons, nitrogen vibrational, and translational degrees. The breakdown threshold is calculated from the transmitted microwave profile, and it agrees well with that from experiment. The spatio-temporal characteristics of vibrational and translational temperature are shown, and the peak values at the end of pulse are compared to the results fitted from optical emission spectroscopy. The dependences of vibrational and translational temperature on normalized microwave fields and gas pressure are investigated, and the underlying mechanisms are unveiled.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Moriyama, E.; Salcman, M.; Broadwell, R.D.
The effect of microwave-induced hyperthermia on the blood-brain barrier was studied in 21 Sprague-Dawley rats. Under sodium pentobarbital anesthesia, animals were place in a stereotactic frame, and an interstitial microwave antenna operating at 2450 MHz was inserted in a bony groove drilled parallel to the sagittal suture. Some antennae were equipped with an external cooling jacket. Temperature measurements were made lateral to the antenna by fluoroptical thermometry, and power was calculated from the time-temperature profile. Five minutes prior to termination of microwave irradiation, horseradish peroxidase (1 mg/20 g body weight) was injected intravenously. Extravasation of horseradish peroxidase was observed inmore » brain tissue heated above 44.3 degrees C for 30 minutes and at 42.5 degrees C for 60 minutes. Microwave irradiation failed to open the blood-brain barrier when brain temperatures were sustained below 40.3 degrees C by the cooling system. Extravasation of blood-borne peroxidase occurred at sites of maximal temperature elevation, even when these did not coincide with the site of maximum power density. The data suggest that microwave-induced hyperthermia is an effective means for opening the blood-brain barrier and that the mechanism is not related to the nonthermal effect of microwaves.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ramanayaka, A. N.; Mani, R. G.; Wegscheider, W.
2013-12-04
We extract the electron temperature in the microwave photo-excited high mobility GaAs/AlGaAs two dimensional electron system (2DES) by studying the influence of microwave radiation on the amplitude of Shubnikov-de Haas oscillations (SdHOs) in a regime where the cyclotron frequency, ω{sub c}, and the microwave angular frequency, ω, satisfy 2ω ≤ ω{sub c} ≤ 3.5ω The results indicate that increasing the incident microwave power has a weak effect on the amplitude of the SdHOs and therefore the electron temperature, in comparison to the influence of modest temperature changes on the dark-specimen SdH effect. The results indicate negligible electron heating under modestmore » microwave photo-excitation, in good agreement with theoretical predictions.« less
Sakiyan, Ozge; Sumnu, Gulum; Sahin, Serpil; Meda, Venkatesh
2007-05-01
Dielectric properties can be used to understand the behavior of food materials during microwave processing. Dielectric properties influence the level of interaction between food and high frequency electromagnetic energy. Dielectric properties are, therefore, important in the design of foods intended for microwave preparation. In this study, it was aimed to determine the variation of dielectric properties of different cake formulations during baking in microwave and infrared-microwave combination oven. In addition, the effects of formulation and temperature on dielectric properties of cake batter were examined. Dielectric constant and loss factor of cake samples were shown to be dependent on formulation, baking time, and temperature. The increase in baking time and temperature decreased dielectric constant and loss factor of all formulations. Fat content was shown to increase dielectric constant and loss factor of cakes.
The intrinsic B-mode polarisation of the Cosmic Microwave Background
DOE Office of Scientific and Technical Information (OSTI.GOV)
Fidler, Christian; Pettinari, Guido W.; Crittenden, Robert
2014-07-01
We estimate the B-polarisation induced in the Cosmic Microwave Background by the non-linear evolution of density perturbations. Using the second-order Boltzmann code SONG, our analysis incorporates, for the first time, all physical effects at recombination. We also include novel contributions from the redshift part of the Boltzmann equation and from the bolometric definition of the temperature in the presence of polarisation. The remaining line-of-sight terms (lensing and time-delay) have previously been studied and must be calculated non-perturbatively. The intrinsic B-mode polarisation is present independent of the initial conditions and might contaminate the signal from primordial gravitational waves. We find thismore » contamination to be comparable to a primordial tensor-to-scalar ratio of r ≅ 10{sup −7} at the angular scale ℓ ≅ 100, where the primordial signal peaks, and r ≅ 5 × 10{sup −5} at ℓ ≅ 700, where the intrinsic signal peaks. Therefore, we conclude that the intrinsic B-polarisation from second-order effects is not likely to contaminate future searches of primordial gravitational waves.« less
Planck Visualization Project: Seeing and Hearing the Cosmic Microwave Background
NASA Astrophysics Data System (ADS)
van der Veen, J.
2010-08-01
The Planck Mission, launched May 14, 2009, will measure the sky over nine frequency channels, with temperature sensitivity of a few microKelvin, and angular resolution of up to 5 arc minutes. Planck is expected to provide the data needed to set tight constraints on cosmological parameters, study the ionization history of the Universe, probe the dynamics of the inflationary era, and test fundamental physics. The Planck Education and Public Outreach collaborators at NASA's Jet Propulsion Laboratory, the University of California, Santa Barbara and Purdue University are preparing a variety of materials to present the science goals of the Planck Mission to the public. Two products currently under development are an interactive simulation of the mission which can be run in a virtual reality environment, and an interactive presentation on interpreting the power spectrum of the Cosmic Microwave Background with music. In this paper we present a brief overview of CMB research and the Planck Mission, and discuss how to explain, to non-technical audiences, the theory of how we derive information about the early universe from the power spectrum of the CMB by using the physics of music.
Impact of Next-to-Leading Order Contributions to Cosmic Microwave Background Lensing.
Marozzi, Giovanni; Fanizza, Giuseppe; Di Dio, Enea; Durrer, Ruth
2017-05-26
In this Letter we study the impact on cosmological parameter estimation, from present and future surveys, due to lensing corrections on cosmic microwave background temperature and polarization anisotropies beyond leading order. In particular, we show how post-Born corrections, large-scale structure effects, and the correction due to the change in the polarization direction between the emission at the source and the detection at the observer are non-negligible in the determination of the polarization spectra. They have to be taken into account for an accurate estimation of cosmological parameters sensitive to or even based on these spectra. We study in detail the impact of higher order lensing on the determination of the tensor-to-scalar ratio r and on the estimation of the effective number of relativistic species N_{eff}. We find that neglecting higher order lensing terms can lead to misinterpreting these corrections as a primordial tensor-to-scalar ratio of about O(10^{-3}). Furthermore, it leads to a shift of the parameter N_{eff} by nearly 2σ considering the level of accuracy aimed by future S4 surveys.
Witnessing the reionization history using Cosmic Microwave Background observation from Planck
NASA Astrophysics Data System (ADS)
Hazra, Dhiraj Kumar; Smoot, George F.
2017-11-01
We constrain the history of reionization using the data from Planck 2015 Cosmic Microwave Background (CMB) temperature and polarization anisotropy observations. We also use prior constraints on the reionization history at redshifts ~7-8 obtained from Lyman-α emission observations. Using the free electron fractions at different redshifts as free parameters, we construct the complete reionization history using polynomials. Our construction provides an extremely flexible framework to search for the history of reionization as a function of redshifts. We present a conservative and an optimistic constraint on reionization that are categorized by the flexibilities of the models and datasets used to constrain them, and we report that CMB data marginally favors extended reionization histories. In both the cases, we find the mean values of optical depth to be larger (≈0.09 and 0.1) than what we find in standard steplike reionization histories (0.079 ± 0.017). At the same time we also find that the maximum free electron fraction allowed by the data for redshifts more than 15 is ~0.25 at 95.4% confidence limit in the case of optimistic constraint.
Large-Angle Anomalies in the CMB
Copi, Craig J.; Huterer, Dragan; Schwarz, Dominik J.; ...
2010-01-01
We review the recently found large-scale anomalies in the maps of temperature anisotropies in the cosmic microwave background. These include alignments of the largest modes of CMB anisotropy with each other and with geometry and direction of motion of the solar ssystem, and the unusually low power at these largest scales. We discuss these findings in relation to expectation from standard inflationary cosmology, their statistical significance, the tools to study them, and the various attempts to explain them.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Pettersen, Claire; Bennartz, Ralf; Kulie, Mark S.
Multi-instrument, ground-based measurements provide unique and comprehensive data sets of the atmosphere for a specific location over long periods of time and resulting data compliment past and existing global satellite observations. Our paper explores the effect of ice hydrometeors on ground-based, high-frequency passive microwave measurements and attempts to isolate an ice signature for summer seasons at Summit, Greenland, from 2010 to 2013. Furthermore, data from a combination of passive microwave, cloud radar, radiosonde, and ceilometer were examined to isolate the ice signature at microwave wavelengths. By limiting the study to a cloud liquid water path of 40 g m -2more » or less, the cloud radar can identify cases where the precipitation was dominated by ice. These cases were examined using liquid water and gas microwave absorption models, and brightness temperatures were calculated for the high-frequency microwave channels: 90, 150, and 225GHz. By comparing the measured brightness temperatures from the microwave radiometers and the calculated brightness temperature using only gas and liquid contributions, any residual brightness temperature difference is due to emission and scattering of microwave radiation from the ice hydrometeors in the column. The ice signature in the 90, 150, and 225 GHz channels for the Summit Station summer months was isolated. Then, this measured ice signature was compared to an equivalent brightness temperature difference calculated with a radiative transfer model including microwave single-scattering properties for several ice habits. Furthermore, initial model results compare well against the 4 years of summer season isolated ice signature in the high-frequency microwave channels.« less
Vidaček, Sanja; De Las Heras, Cristina; Solas, Maria Teresa; García, Maria Luisa; Mendizábal, Angel; Tejada, Margarita
2011-12-01
Inactivation of parasites in food by microwave treatment may vary due to differences in the characteristics of microwave ovens and food properties. Microwave treatment in standard domestic ovens results in hot and cold spots, and the microwaves do not penetrate all areas of the samples depending on the thickness, which makes it difficult to compare microwave with conventional heat treatments. The viability of Anisakis simplex (isolated larvae and infected fish muscle) heated in a microwave oven with precise temperature control was compared with that of larvae heated in a water bath to investigate any additional effect of the microwaves. At a given temperature, less time was required to kill the larvae by microwaves than by heated water. Microwave treatment killed A. simplex larvae faster than did conventional cooking when the microwaves fully penetrated the samples and resulted in fewer changes in the fish muscle. However, the heat-stable allergen Ani s 4 was detected by immunohistochemistry in the fish muscle after both heat treatments, even at 70°C, suggesting that Ani s 4 allergens were released from the larvae into the surrounding tissue and that the tissues retained their allergenicity even after the larvae were killed by both heat treatments. Thus, microwave cooking will not render fish safe for individuals already sensitized to A. simplex heat-resistant allergens.
Large-angle correlations in the cosmic microwave background
NASA Astrophysics Data System (ADS)
Efstathiou, George; Ma, Yin-Zhe; Hanson, Duncan
2010-10-01
It has been argued recently by Copi et al. 2009 that the lack of large angular correlations of the CMB temperature field provides strong evidence against the standard, statistically isotropic, inflationary Lambda cold dark matter (ΛCDM) cosmology. We compare various estimators of the temperature correlation function showing how they depend on assumptions of statistical isotropy and how they perform on the Wilkinson Microwave Anisotropy Probe (WMAP) 5-yr Internal Linear Combination (ILC) maps with and without a sky cut. We show that the low multipole harmonics that determine the large-scale features of the temperature correlation function can be reconstructed accurately from the data that lie outside the sky cuts. The reconstructions are only weakly dependent on the assumed statistical properties of the temperature field. The temperature correlation functions computed from these reconstructions are in good agreement with those computed from the ILC map over the whole sky. We conclude that the large-scale angular correlation function for our realization of the sky is well determined. A Bayesian analysis of the large-scale correlations is presented, which shows that the data cannot exclude the standard ΛCDM model. We discuss the differences between our results and those of Copi et al. Either there exists a violation of statistical isotropy as claimed by Copi et al., or these authors have overestimated the significance of the discrepancy because of a posteriori choices of estimator, statistic and sky cut.
Imprint of DES superstructures on the cosmic microwave background
Kovács, A.; Sánchez, C.; García-Bellido, J.; ...
2016-11-17
Here, small temperature anisotropies in the Cosmic Microwave Background can be sourced by density perturbations via the late-time integrated Sachs-Wolfe effect. Large voids and superclusters are excellent environments to make a localized measurement of this tiny imprint. In some cases excess signals have been reported. We probed these claims with an independent data set, using the first year data of the Dark Energy Survey in a different footprint, and using a different super-structure finding strategy. We identified 52 large voids and 102 superclusters at redshiftsmore » $0.2 < z < 0.65$. We used the Jubilee simulation to a priori evaluate the optimal ISW measurement configuration for our compensated top-hat filtering technique, and then performed a stacking measurement of the CMB temperature field based on the DES data. For optimal configurations, we detected a cumulative cold imprint of voids with $$\\Delta T_{f} \\approx -5.0\\pm3.7~\\mu K$$ and a hot imprint of superclusters $$\\Delta T_{f} \\approx 5.1\\pm3.2~\\mu K$$ ; this is $$\\sim1.2\\sigma$$ higher than the expected $$|\\Delta T_{f}| \\approx 0.6~\\mu K$$ imprint of such super-structures in $$\\Lambda$$CDM. If we instead use an a posteriori selected filter size ($$R/R_{v}=0.6$$), we can find a temperature decrement as large as $$\\Delta T_{f} \\approx -9.8\\pm4.7~\\mu K$$ for voids, which is $$\\sim2\\sigma$$ above $$\\Lambda$$CDM expectations and is comparable to previous measurements made using SDSS super-structure data.« less
Imprint of DES superstructures on the cosmic microwave background
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kovács, A.; Sánchez, C.; García-Bellido, J.
Here, small temperature anisotropies in the Cosmic Microwave Background can be sourced by density perturbations via the late-time integrated Sachs-Wolfe effect. Large voids and superclusters are excellent environments to make a localized measurement of this tiny imprint. In some cases excess signals have been reported. We probed these claims with an independent data set, using the first year data of the Dark Energy Survey in a different footprint, and using a different super-structure finding strategy. We identified 52 large voids and 102 superclusters at redshiftsmore » $0.2 < z < 0.65$. We used the Jubilee simulation to a priori evaluate the optimal ISW measurement configuration for our compensated top-hat filtering technique, and then performed a stacking measurement of the CMB temperature field based on the DES data. For optimal configurations, we detected a cumulative cold imprint of voids with $$\\Delta T_{f} \\approx -5.0\\pm3.7~\\mu K$$ and a hot imprint of superclusters $$\\Delta T_{f} \\approx 5.1\\pm3.2~\\mu K$$ ; this is $$\\sim1.2\\sigma$$ higher than the expected $$|\\Delta T_{f}| \\approx 0.6~\\mu K$$ imprint of such super-structures in $$\\Lambda$$CDM. If we instead use an a posteriori selected filter size ($$R/R_{v}=0.6$$), we can find a temperature decrement as large as $$\\Delta T_{f} \\approx -9.8\\pm4.7~\\mu K$$ for voids, which is $$\\sim2\\sigma$$ above $$\\Lambda$$CDM expectations and is comparable to previous measurements made using SDSS super-structure data.« less
USDA-ARS?s Scientific Manuscript database
Microwave heating offers a number of advantages over conventional heating methods, such as, rapid and volumetric heating, precise temperature control, energy efficiency and lower temperature gradient. In this article we demonstrate the use of 2450 MHz microwave traveling wave reactor to heat the cat...
New microwave spectrometer/imager has possible applications for pollution monitoring
NASA Technical Reports Server (NTRS)
Tooley, R. D.
1970-01-01
Microwave imager forms thermal-emissivity image of solid portion of planet Venus and provides data on the planet's atmosphere, surface, terminator, and temperature changes. These thermally produced multifrequency microwaves for image production of temperature profiles can be applied to water pollution monitoring, agriculture, and forestry survey.
The large-scale microwave background anisotropy in decaying particle cosmology
NASA Technical Reports Server (NTRS)
Panek, Miroslaw
1988-01-01
The quadrupole anisotropy of the microwave background radiation in cosmological models with decaying particles is investigated. A conservative upper limit on value of the quadrupole moment combined with other constraints gives an upper limit on the redshift of the decay z(d) of less than 3-6.
Cosmic Microwave Background Timeline
about 2.3 K 1948: George Gamow, Ralph Alpher, and Robert Herman predict that a Big Bang universe perfect blackbody spectrum and thereby strongly supporting the hot big bang model, the thermal history of anisotropy in the cosmic microwave background, this strongly supports the big bang model with gravitational
Monte Carlo Algorithms for a Bayesian Analysis of the Cosmic Microwave Background
NASA Technical Reports Server (NTRS)
Jewell, Jeffrey B.; Eriksen, H. K.; ODwyer, I. J.; Wandelt, B. D.; Gorski, K.; Knox, L.; Chu, M.
2006-01-01
A viewgraph presentation on the review of Bayesian approach to Cosmic Microwave Background (CMB) analysis, numerical implementation with Gibbs sampling, a summary of application to WMAP I and work in progress with generalizations to polarization, foregrounds, asymmetric beams, and 1/f noise is given.
Effects of microwaves on the colony-forming capacity of haemopoietic stem cells in mice.
Rotkovská, D; Vacek, A; Bartonícková, A
1987-01-01
A suspension of bone marrow cells from femurs of female (CBA X C57Bl)F1 mice was exposed to 2450 MHz CW microwaves in a specially designed waveguide exposure system. The temperature of the suspension rose, during exposure to microwaves, from 20 degrees C to 45 degrees C, and at an interval within 20 degrees C to 45 degrees C the number of haemopoietic stem cells (CFUs) was determined by the spleen exocolony method. The time of exposure of bone marrow cells to each temperature studied was 20 s. Control suspensions of bone marrow cells were exposed to a water bath temperature. There were no significant effects of the CFUs with the water bath temperature, while after exposure to microwaves the number of spleen colonies was elevated with a nadir at the temperature of 37 degrees C. With a microwave-induced increase of the temperature above 41 degrees C the number of CFUs in the bone marrow suspension decreased. The increase in the number of colonies was related to the rise in the seeding rate of the CFUs as well as to a rise in their proliferative activity, while the drop in the number of colonies was influenced also by heat-killing of the CFUs by microwave exposure.
Mechanism of microwave sterilization in the dry state.
Jeng, D K; Kaczmarek, K A; Woodworth, A G; Balasky, G
1987-01-01
With an automated computerized temperature control and a specialized temperature measurement system, dry spores of Bacillus subtilis subsp. niger were treated with heat simultaneously in a convection dry-heat oven and a microwave oven. The temperature of the microwave oven was monitored such that the temperature profiles of the spore samples in both heat sources were nearly identical. Under these experimental conditions, we unequivocally demonstrated that the mechanism of sporicidal action of the microwaves was caused solely by thermal effects. Nonthermal effects were not significant in a dry microwave sterilization process. Both heating systems showed that a dwelling time of more than 45 min was required to sterilize 10(5) inoculated spores in dry glass vials at 137 degrees C. The D values of both heating systems were 88, 14, and 7 min at 117, 130, and 137 degrees C, respectively. The Z value was estimated to be 18 degrees C. PMID:3118807
Microwave remote sensing of soil water content
NASA Technical Reports Server (NTRS)
Cihlar, J.; Ulaby, F. T.
1975-01-01
Microwave remote sensing of soils to determine water content was considered. A layered water balance model was developed for determining soil water content in the upper zone (top 30 cm), while soil moisture at greater depths and near the surface during the diurnal cycle was studied using experimental measurements. Soil temperature was investigated by means of a simulation model. Based on both models, moisture and temperature profiles of a hypothetical soil were generated and used to compute microwave soil parameters for a clear summer day. The results suggest that, (1) soil moisture in the upper zone can be predicted on a daily basis for 1 cm depth increments, (2) soil temperature presents no problem if surface temperature can be measured with infrared radiometers, and (3) the microwave response of a bare soil is determined primarily by the moisture at and near the surface. An algorithm is proposed for monitoring large areas which combines the water balance and microwave methods.
NASA Technical Reports Server (NTRS)
Kogut, Alan J.; Fixsen, D. J.; Chuss, D. T.; Dotson, J.; Dwek, E.; Halpern, M.; Hinshaw, G. F.; Meyer, S. M.; Moseley, S. H.; Seiffert, M. D.;
2011-01-01
The Primordial Inflation Explorer (PIXIE) is a concept for an Explorer-class mission to measure the gravity-wave signature of primordial inflation through its distinctive imprint on the linear polarization of the cosmic microwave background. The instrument consists of a polarizing Michelson interferometer configured as a nulling polarimeter to measure the difference spectrum between orthogonal linear polarizations from two co-aligned beams. Either input can view the sky or a temperature-controlled absolute reference blackbody calibrator. Rhe proposed instrument can map the absolute intensity and linear polarization (Stokes I, Q, and U parameters) over the full sky in 400 spectral channels spanning 2.5 decades in frequency from 30 GHz to 6 THz (1 cm to 50 micron wavelength). Multi-moded optics provide background-limited sensitivity using only 4 detectors, while the highly symmetric design and multiple signal modulations provide robust rejection of potential systematic errors. The principal science goal is the detection and characterization of linear polarization from an inflationary epoch in the early universe, with tensor-to-scalar ratio r < 10..3 at 5 standard deviations. The rich PIXIE data set can also constrain physical processes ranging from Big Bang cosmology to the nature of the first stars to physical conditions within the interstellar medium of the Galaxy.
The microwave background: Its smoothness and frequency distribution as an astrophysical product
NASA Astrophysics Data System (ADS)
Hoyle, Fred; Wickramasinghe, N. C.; Burbidge, Geoffrey
1990-12-01
The use of astrophysical sources in providing an understanding of the total energy density of the background is reviewed. The need of a thermalizing agent is stressed. The nearer such an agent comes to establishing thermodynamic equilibrium, the smoother the background becomes. This is shown to be true despite irregularities in the distribution of the thermalizer. The ejection of iron whiskers from galaxies and the ways in which such whiskers could affect the microwave background are discussed.
Lansiquot, Carisse; Boone-Kukoyi, Zainab; Shortt, Raquel; Thompson, Nishone; Ajifa, Hillary; Kioko, Bridgit; Constance, Edward Ned; Clement, Travis; Ozturk, Birol; Aslan, Kadir
2017-01-01
The use of indium tin oxide (ITO) and focused monomode microwave heating for the ultra-rapid crystallization of L-alanine (a model amino acid) is reported. Commercially available ITO dots (< 5 mm) attached to blank poly(methyl)methacrylate (PMMA, 5 cm in diameter with 21-well silicon isolators: referred to as the iCrystal plates) were found to withstand prolonged microwave heating during crystallization experiments. Crystallization of L-alanine was performed at room temperature (a control experiment), with the use of two microwave sources: a 2.45 GHz conventional microwave (900 W, power level 1, a control experiment) and 8 GHz (20 W) solid state, monomode microwave source with an applicator tip that focuses the microwave field to a 5-mm cavity. Initial appearance of L-alanine crystals and on iCrystal plates with ITO dots took 47 ± 2.9 min, 12 ± 7.6 min and 1.5 ± 0.5 min at room temperature, using a conventional microwave and focused monomode microwave heating, respectively. Complete evaporation of the solvent using the focused microwaves was achieved in 3.2 ± 0.5 min, which is ~52-fold and ~172-fold faster than that observed at room temperature and using conventional microwave heating, respectively. The size and number of L-alanine crystals was dependent on the type of the 21-well iCrystal plates and the microwave heating method: 33 crystals of 585 ± 137 μm in size at room temperature > 37 crystals of 542 ± 100 μm in size with conventional microwave heating > 331 crystals of 311 ± 190 μm in size with focused monomode microwave. FTIR, optical microscopy and powder X-ray diffraction analysis showed that the chemical composition and crystallinity of the L-alanine crystals did not change when exposed to microwave heating and ITO surfaces. In addition, theoretical simulations for the binding of L-alanine molecules to ITO and other metals showed the predicted nature of hydrogen bonds formed between L-alanine and these surfaces.
Lansiquot, Carisse; Boone-Kukoyi, Zainab; Shortt, Raquel; Thompson, Nishone; Ajifa, Hillary; Kioko, Bridgit; Constance, Edward Ned; Clement, Travis; Ozturk, Birol; Aslan, Kadir
2018-01-01
The use of indium tin oxide (ITO) and focused monomode microwave heating for the ultra-rapid crystallization of L-alanine (a model amino acid) is reported. Commercially available ITO dots (< 5 mm) attached to blank poly(methyl)methacrylate (PMMA, 5 cm in diameter with 21-well silicon isolators: referred to as the iCrystal plates) were found to withstand prolonged microwave heating during crystallization experiments. Crystallization of L-alanine was performed at room temperature (a control experiment), with the use of two microwave sources: a 2.45 GHz conventional microwave (900 W, power level 1, a control experiment) and 8 GHz (20 W) solid state, monomode microwave source with an applicator tip that focuses the microwave field to a 5-mm cavity. Initial appearance of L-alanine crystals and on iCrystal plates with ITO dots took 47 ± 2.9 min, 12 ± 7.6 min and 1.5 ± 0.5 min at room temperature, using a conventional microwave and focused monomode microwave heating, respectively. Complete evaporation of the solvent using the focused microwaves was achieved in 3.2 ± 0.5 min, which is ~52-fold and ~172-fold faster than that observed at room temperature and using conventional microwave heating, respectively. The size and number of L-alanine crystals was dependent on the type of the 21-well iCrystal plates and the microwave heating method: 33 crystals of 585 ± 137 μm in size at room temperature > 37 crystals of 542 ± 100 μm in size with conventional microwave heating > 331 crystals of 311 ± 190 μm in size with focused monomode microwave. FTIR, optical microscopy and powder X-ray diffraction analysis showed that the chemical composition and crystallinity of the L-alanine crystals did not change when exposed to microwave heating and ITO surfaces. In addition, theoretical simulations for the binding of L-alanine molecules to ITO and other metals showed the predicted nature of hydrogen bonds formed between L-alanine and these surfaces. PMID:29657884
NASA Astrophysics Data System (ADS)
Simatos, N.; Perivolaropoulos, L.
2001-01-01
We use the publicly available code CMBFAST, as modified by Pogosian and Vachaspati, to simulate the effects of wiggly cosmic strings on the cosmic microwave background (CMB). Using the modified CMBFAST code, which takes into account vector modes and models wiggly cosmic strings by the one-scale model, we go beyond the angular power spectrum to construct CMB temperature maps with a resolution of a few degrees. The statistics of these maps are then studied using conventional and recently proposed statistical tests optimized for the detection of hidden temperature discontinuities induced by the Gott-Kaiser-Stebbins effect. We show, however, that these realistic maps cannot be distinguished in a statistically significant way from purely Gaussian maps with an identical power spectrum.
CMB temperature trispectrum of cosmic strings
NASA Astrophysics Data System (ADS)
Hindmarsh, Mark; Ringeval, Christophe; Suyama, Teruaki
2010-03-01
We provide an analytical expression for the trispectrum of the cosmic microwave background (CMB) temperature anisotropies induced by cosmic strings. Our result is derived for the small angular scales under the assumption that the temperature anisotropy is induced by the Gott-Kaiser-Stebbins effect. The trispectrum is predicted to decay with a noninteger power-law exponent ℓ-ρ with 6<ρ<7, depending on the string microstructure, and thus on the string model. For Nambu-Goto strings, this exponent is related to the string mean square velocity and the loop distribution function. We then explore two classes of wave number configuration in Fourier space, the kite and trapezium quadrilaterals. The trispectrum can be of any sign and appears to be strongly enhanced for all squeezed quadrilaterals.
NASA Astrophysics Data System (ADS)
Keangin, P.; Narumitbowonkul, U.; Rattanadecho, P.
2018-01-01
Natural rubber (NR) is the key raw material used in the manufacture of other products such as rubber band, tire and shoes. Recently, the NR is used in natural rubber glove ( NRG) manufacturing in the industrial and medical fields. This research aims to investigate the electromagnetic wave propagation and heat transfer in NRG due to heating with microwave energy within the microwave oven at a microwave frequency of 2.45 GHz. Three-dimensional model of NRG and microwave oven are considered in this work. The comparative effects of waveguide position on the electric field and temperature profile in NRG when subjected to microwave energy are discussed. The finite element method (FEM) is used to solve the transient Maxwell’s equation coupled with the transient heat transfer equation. The simulation results with computer programs are validated with experimental results. The placement of waveguides in three cases are left hand side of microwave oven, right hand side of microwave oven and left and right hand sides of microwave oven are investigated. The findings revealed that the placing the waveguide on the right side of the microwave oven gives the highest electric field and temperature profile. The values obtained provide an indication toward understanding the study of heat transfer in NRG during microwave heating in the industry.
2016-01-01
Physical stability of synthetic skin samples during their exposure to microwave heating was investigated to demonstrate the use of the metal-assisted and microwave-accelerated decrystallization (MAMAD) technique for potential biomedical applications. In this regard, optical microscopy and temperature measurements were employed for the qualitative and quantitative assessment of damage to synthetic skin samples during 20 s intermittent microwave heating using a monomode microwave source (at 8 GHz, 2–20 W) up to 120 s. The extent of damage to synthetic skin samples, assessed by the change in the surface area of skin samples, was negligible for microwave power of ≤7 W and more extensive damage (>50%) to skin samples occurred when exposed to >7 W at initial temperature range of 20–39 °C. The initial temperature of synthetic skin samples significantly affected the extent of change in temperature of synthetic skin samples during their exposure to microwave heating. The proof of principle use of the MAMAD technique was demonstrated for the decrystallization of a model biological crystal (l-alanine) placed under synthetic skin samples in the presence of gold nanoparticles. Our results showed that the size (initial size ∼850 μm) of l-alanine crystals can be reduced up to 60% in 120 s without damage to synthetic skin samples using the MAMAD technique. Finite-difference time-domain-based simulations of the electric field distribution of an 8 GHz monomode microwave radiation showed that synthetic skin samples are predicted to absorb ∼92.2% of the microwave radiation. PMID:27917407
Superconducting noise bolometer with microwave bias and readout for array applications
NASA Astrophysics Data System (ADS)
Kuzmin, A. A.; Semenov, A. D.; Shitov, S. V.; Merker, M.; Wuensch, S. H.; Ustinov, A. V.; Siegel, M.
2017-07-01
We present a superconducting noise bolometer for terahertz radiation, which is suitable for large-format arrays. It is based on an antenna-coupled superconducting micro-bridge embedded in a high-quality factor superconducting resonator for a microwave bias and readout with frequency-division multiplexing in the GHz range. The micro-bridge is kept below its critical temperature and biased with a microwave current of slightly lower amplitude than the critical current of the micro-bridge. The response of the detector is the rate of superconducting fluctuations, which depends exponentially on the concentration of quasiparticles in the micro-bridge. Excess quasiparticles are generated by an incident THz signal. Since the quasiparticle lifetime increases exponentially at lower operation temperature, the noise equivalent power rapidly decreases. This approach allows for large arrays of noise bolometers operating above 1 K with sensitivity, limited by 300-K background noise. Moreover, the response of the bolometer always dominates the noise of the readout due to relatively large amplitude of the bias current. We performed a feasibility study on a proof-of-concept device with a 1.0 × 0.5 μm2 micro-bridge from a 9-nm thin Nb film on a sapphire substrate. Having a critical temperature of 5.8 K, it operates at 4.2 K and is biased at the frequency 5.6 GHz. For the quasioptical input at 0.65 THz, we measured the noise equivalent power ≈3 × 10-12 W/Hz1/2, which is close to expectations for this particular device in the noise-response regime.
Microwave, Millimeter, Submillimeter, and Far Infrared Spectral Databases
NASA Technical Reports Server (NTRS)
Pearson, J. C.; Pickett, H. M.; Drouin, B. J.; Chen, P.; Cohen, E. A.
2002-01-01
The spectrum of most known astrophysical molecules is derived from transitions between a few hundred to a few hundred thousand energy levels populated at room temperature. In the microwave and millimeter wave regions. spectroscopy is almost always performed with traditional microwave techniques. In the submillimeter and far infrared microwave technique becomes progressively more technologically challenging and infrared techniques become more widely employed as the wavelength gets shorter. Infrared techniques are typically one to two orders of magnitude less precise but they do generate all the strong features in the spectrum. With microwave technique, it is generally impossible and rarely necessary to measure every single transition of a molecular species, so careful fitting of quantum mechanical Hamiltonians to the transitions measured are required to produce the complete spectral picture of the molecule required by astronomers. The fitting process produces the most precise data possible and is required in the interpret heterodyne observations. The drawback of traditional microwave technique is that precise knowledge of the band origins of low lying excited states is rarely gained. The fitting of data interpolates well for the range of quantum numbers where there is laboratory data, but extrapolation is almost never precise. The majority of high resolution spectroscopic data is millimeter or longer in wavelength and a very limited number of molecules have ever been studied with microwave techniques at wavelengths shorter than 0.3 millimeters. The situation with infrared technique is similarly dire in the submillimeter and far infrared because the black body sources used are competing with a very significant thermal background making the signal to noise poor. Regardless of the technique used the data must be archived in a way useful for the interpretation of observations.
Tropical cyclone warm core analyses with FY-3 microwave temperature sounder data
NASA Astrophysics Data System (ADS)
Liu, Zhe; Bai, Jie; Zhang, Wenjun; Yan, Jun; Zhou, Zhuhua
2014-05-01
Space-borne microwave instruments are well suited to analyze Tropical Cyclone (TC) warm core structure, because certain wavelengths of microwave energy are able to penetrate the cirrus above TC. With the vector discrete-ordinate microwave radiative transfer model, the basic atmospheric parameters of Hurricane BOB are used to simulate the upwelling brightness temperatures on each channel of the Microwave Temperature Sounder (MWTS) onboard FY-3A/3B observation. Based on the simulation, the characteristic of 1109 super typhoon "Muifa" warm core structure is analyzed with the MWTS channel 3. Through the radiative and hydrostatic equation, TC warm core brightness temperature anomalies are related to surface pressure anomalies. In order to correct the radiation attenuation caused by MWTS scan geometric features, and improve the capability in capturing the relatively complete warm core radiation, a proposed algorithm is devised to correct the bias from receiving warm core microwave radiation, shows similar time-variant tendency with "Muifa" minimal sea level pressure as described by TC best track data. As the next generation of FY-3 satellite will be launched in 2012, this method will be further verified
Al-Armaghany, Allann; Tong, Kenneth; Highton, David; Leung, Terence S
2016-01-01
We have previously developed a hybrid microwave-optical system to monitor microvascular changes in response to thermal provocation in muscle. The hybrid probe is capable of inducing deep heat from the skin surface using mild microwaves (1-3 W) and raises the tissue temperature by a few degrees Celsius. This causes vasodilation and the subsequent increase in blood volume is detected by the hybrid probe using near infrared spectroscopy. The hybrid probe is also equipped with a skin cooling system which lowers the skin temperature while allowing microwaves to warm up deeper tissues. The hybrid system can be used to assess the condition of the vasculature in response to thermal stimulation. In this validation study, thermal imaging has been used to assess the temperature distribution on the surface of phantoms and human calf, following microwave warming. The results show that the hybrid system is capable of changing the skin temperature with a combination of microwave warming and skin cooling. It can also detect thermal responses in terms of changes of oxy/deoxy-hemoglobin concentrations.
2001-06-15
KENNEDY SPACE CENTER, Fla. -- In the Spacecraft Assembly and Encapsulation Facility -2, the Microwave Anisotropy Probe (MAP) is lifted for moving to the upper stage of the Boeing Delta II rocket. The rocket is scheduled to launch the MAP instrument June 30 into a lunar-assisted trajectory to the Sun-Earth for a 27-month mission. MAP will measure small fluctuations in the temperature of the cosmic microwave background radiation to an accuracy of one millionth of a degree. These measurements should reveal the size, matter content, age, geometry and fate of the universe. They will also reveal the primordial structure that grew to form galaxies and will test ideas about the origins of these primordial structures. The MAP instrument will be continuously shaded from the Sun, Earth, and Moon by the spacecraft. It is a product of Goddard Space Flight Center in partnership with Princeton University
A finite element method based microwave heat transfer modeling of frozen multi-component foods
NASA Astrophysics Data System (ADS)
Pitchai, Krishnamoorthy
Microwave heating is fast and convenient, but is highly non-uniform. Non-uniform heating in microwave cooking affects not only food quality but also food safety. Most food industries develop microwavable food products based on "cook-and-look" approach. This approach is time-consuming, labor intensive and expensive and may not result in optimal food product design that assures food safety and quality. Design of microwavable food can be realized through a simulation model which describes the physical mechanisms of microwave heating in mathematical expressions. The objective of this study was to develop a microwave heat transfer model to predict spatial and temporal profiles of various heterogeneous foods such as multi-component meal (chicken nuggets and mashed potato), multi-component and multi-layered meal (lasagna), and multi-layered food with active packages (pizza) during microwave heating. A microwave heat transfer model was developed by solving electromagnetic and heat transfer equations using finite element method in commercially available COMSOL Multiphysics v4.4 software. The microwave heat transfer model included detailed geometry of the cavity, phase change, and rotation of the food on the turntable. The predicted spatial surface temperature patterns and temporal profiles were validated against the experimental temperature profiles obtained using a thermal imaging camera and fiber-optic sensors. The predicted spatial surface temperature profile of different multi-component foods was in good agreement with the corresponding experimental profiles in terms of hot and cold spot patterns. The root mean square error values of temporal profiles ranged from 5.8 °C to 26.2 °C in chicken nuggets as compared 4.3 °C to 4.7 °C in mashed potatoes. In frozen lasagna, root mean square error values at six locations ranged from 6.6 °C to 20.0 °C for 6 min of heating. A microwave heat transfer model was developed to include susceptor assisted microwave heating of a frozen pizza. The root mean square error values of transient temperature profiles of five locations ranged from 5.0 °C to 12.6 °C. A methodology was developed to incorporate electromagnetic frequency spectrum in the coupled electromagnetic and heat transfer model. Implementing the electromagnetic frequency spectrum in the simulation improved the accuracy of temperature field pattern and transient temperature profile as compared to mono-chromatic frequency of 2.45 GHz. The bulk moisture diffusion coefficient of cooked pasta was calculated as a function of temperature at a constant water activity using desorption isotherms.
Microwave blackbodies for spaceborne receivers
NASA Technical Reports Server (NTRS)
Stacey, J. M.
1985-01-01
The properties of microwave blackbody targets are explained as they apply to the calibration of spaceborne receivers. Also described are several practicable, blackbody targets used to test and calibrate receivers in the laboratory and in the thermal vacuum chamber. Problems with the precision and the accuracy of blackbody targets, and blackbody target design concepts that overcome some of the accuracy limitations present in existing target designs, are presented. The principle of the Brewster angle blackbody target is described where the blackbody is applied as a fixed-temperature test target in the laboratory and as a variable-temperature target in the thermal vacuum chamber. The reflectivity of a Brewster angle target is measured in the laboratory. From this measurement, the emissivity of the target is calculated. Radiatively cooled thermal suspensions are discussed as the coolants of blackbody targets and waveguide terminations that function as calibration devices in spaceborne receivers. Examples are given for the design of radiatively cooled thermal suspensions. Corrugated-horn antennas used to observe the cosmic background and to provide a cold-calibration source for spaceborne receivers are described.
Kurtosis, skewness, and non-Gaussian cosmological density perturbations
NASA Technical Reports Server (NTRS)
Luo, Xiaochun; Schramm, David N.
1993-01-01
Cosmological topological defects as well as some nonstandard inflation models can give rise to non-Gaussian density perturbations. Skewness and kurtosis are the third and fourth moments that measure the deviation of a distribution from a Gaussian. Measurement of these moments for the cosmological density field and for the microwave background temperature anisotropy can provide a test of the Gaussian nature of the primordial fluctuation spectrum. In the case of the density field, the importance of measuring the kurtosis is stressed since it will be preserved through the weakly nonlinear gravitational evolution epoch. Current constraints on skewness and kurtosis of primeval perturbations are obtained from the observed density contrast on small scales and from recent COBE observations of temperature anisotropies on large scales. It is also shown how, in principle, future microwave anisotropy experiments might be able to reveal the initial skewness and kurtosis. It is shown that present data argue that if the initial spectrum is adiabatic, then it is probably Gaussian, but non-Gaussian isocurvature fluctuations are still allowed, and these are what topological defects provide.
Hot spots in the microwave sky
NASA Technical Reports Server (NTRS)
Vittorio, Nicola; Juszkiewicz, Roman
1987-01-01
Tha assumption that the cosmic background fluctuations can be approximated as a random Gaussian field implies specific predictions for the radiation temperature pattern. Using this assumption, the abundances and angular sizes are calculated for regions of various levels of brightness expected to appear in the sky. Different observational strategies are assessed in the context of these results. Calculations for both large-angle and small-angle anisotropy generated by scale-invariant fluctuations in a flat universe are presented. Also discussed are simple generalizations to open cosmological models.
Lensing of the CMB: non-Gaussian aspects.
Zaldarriaga, M
2001-06-01
We compute the small angle limit of the three- and four-point function of the cosmic microwave background (CMB) temperature induced by the gravitational lensing effect by the large-scale structure of the universe. We relate the non-Gaussian aspects presented in this paper with those in our previous studies of the lensing effects. We interpret the statistics proposed in previous work in terms of different configurations of the four-point function and show how they relate to the statistic that maximizes the S/N.
NASA Astrophysics Data System (ADS)
qin, kai; Wu, Lixin; De Santis, Angelo; Zhang, Bin
2016-04-01
Pre-seismic thermal IR anomalies and ionosphere disturbances have been widely reported by using the Earth observation system (EOS). To investigate the possible physical mechanisms, a series of detecting experiments on rock loaded to fracturing were conducted. Some experiments studies have demonstrated that microwave radiation energy will increase under the loaded rock in specific frequency and the feature of radiation property can reflect the deformation process of rock fracture. This experimental result indicates the possibility that microwaves are emitted before earthquakes. Such microwaves signals are recently found to be detectable before some earthquake cases from the brightness temperature data obtained by the microwave-radiometer Advanced Microwave-Scanning Radiometer for the EOS (AMSR-E) aboard the satellite Aqua. This suggested that AMSR-E with vertical- and horizontal-polarization capability for six frequency bands (6.925, 10.65, 18.7, 23.8, 36.5, and 89.0 GHz) would be feasible to detect an earthquake which is associated with rock crash or plate slip. However, the statistical analysis of the correlation between satellite-observed microwave emission anomalies and seismic activity are firstly required. Here, we focus on the Kamchatka peninsula to carry out a statistical study, considering its high seismicity activity and the dense orbits covering of AMSR-E in high latitudes. 8-years (2003-2010) AMSR-E microwave brightness temperature data were used to reveal the spatio-temporal association between microwave emission anomalies and 17 earthquake events (M>5). Firstly, obvious spatial difference of microwave brightness temperatures between the seismic zone at the eastern side and the non-seismic zone the western side within the Kamchatka peninsula are found. Secondly, using both vertical- and horizontal-polarization to extract the temporal association, it is found that abnormal changes of microwave brightness temperatures appear generally 2 months before the M>6 earthquakes. Since the microwave emissions observed by AMSR-E are affected by various factors (e.g., emission of the earth's surface and emission, absorption and scattering of the atmosphere), further study together with the surface temperature, soil moisture and atmospheric water vapor will remove the weather and climate influences.
2001-04-20
KENNEDY SPACE CENTER, FLA. -- Inside the Spacecraft Assembly and Encapsulation Facility 2, a covered Microwave Anisotropy Probe (MAP) satellite is revealed after removal of the container (far right). MAP will undergo testing in the SAEF-2 before its scheduled launch June 30 from Cape Canaveral Air Force Station on a Delta II rocket into a lunar-assisted trajectory to the Sun-Earth for a 27-month mission (3 months transit, 24 months observing). The MAP instrument consists of a set of passively cooled microwave radiometers with 1.4x 1.6-meter diameter primary reflectors to provide the desired angular resolution. MAP measures small fluctuations in the temperature of the cosmic microwave background radiation to an accuracy of one millionth of a degree. These measurements should reveal the size, matter content, age, geometry and fate of the universe. They will also reveal the primordial structure that grew to form galaxies and will test ideas about the origins of these primordial structures. The MAP instrument will be continuously shaded from the Sun, Earth, and Moon by the spacecraft. It is a product of Goddard Space Flight Center in partnership with Princeton University
2001-04-20
KENNEDY SPACE CENTER, FLA. -- The Microwave Anisotropy Probe (MAP) satellite arrives at KSC’s Spacecraft Assembly and Encapsulation Facility 2. MAP will undergo testing in the SAEF-2 before its scheduled launch June 30 from Cape Canaveral Air Force Station on a Delta II rocket into a lunar-assisted trajectory to the Sun-Earth for a 27-month mission (3 months transit, 24 months observing). The MAP instrument consists of a set of passively cooled microwave radiometers with 1.4x 1.6-meter diameter primary reflectors to provide the desired angular resolution. MAP measures small fluctuations in the temperature of the cosmic microwave background radiation to an accuracy of one millionth of a degree. These measurements should reveal the size, matter content, age, geometry and fate of the universe. They will also reveal the primordial structure that grew to form galaxies and will test ideas about the origins of these primordial structures. The MAP instrument will be continuously shaded from the Sun, Earth, and Moon by the spacecraft. It is a product of Goddard Space Flight Center in partnership with Princeton University
2001-04-20
KENNEDY SPACE CENTER, FLA. -- The container with the Microwave Anisotropy Probe (MAP) satellite inside is backed into the Spacecraft Assembly and Encapsulation Facility 2. MAP will undergo testing in the SAEF-2 before its scheduled launch June 30 from Cape Canaveral Air Force Station on a Delta II rocket into a lunar-assisted trajectory to the Sun-Earth for a 27-month mission (3 months transit, 24 months observing). The MAP instrument consists of a set of passively cooled microwave radiometers with 1.4x 1.6-meter diameter primary reflectors to provide the desired angular resolution. MAP measures small fluctuations in the temperature of the cosmic microwave background radiation to an accuracy of one millionth of a degree. These measurements should reveal the size, matter content, age, geometry and fate of the universe. They will also reveal the primordial structure that grew to form galaxies and will test ideas about the origins of these primordial structures. The MAP instrument will be continuously shaded from the Sun, Earth, and Moon by the spacecraft. It is a product of Goddard Space Flight Center in partnership with Princeton University
2001-04-20
KENNEDY SPACE CENTER, FLA. -- The container with the Microwave Anisotropy Probe (MAP) satellite inside moves into the Spacecraft Assembly and Encapsulation Facility 2. MAP will undergo testing in the SAEF-2 before its scheduled launch June 30 from Cape Canaveral Air Force Station on a Delta II rocket into a lunar-assisted trajectory to the Sun-Earth for a 27-month mission (3 months transit, 24 months observing). The MAP instrument consists of a set of passively cooled microwave radiometers with 1.4x 1.6-meter diameter primary reflectors to provide the desired angular resolution. MAP measures small fluctuations in the temperature of the cosmic microwave background radiation to an accuracy of one millionth of a degree. These measurements should reveal the size, matter content, age, geometry and fate of the universe. They will also reveal the primordial structure that grew to form galaxies and will test ideas about the origins of these primordial structures. The MAP instrument will be continuously shaded from the Sun, Earth, and Moon by the spacecraft. It is a product of Goddard Space Flight Center in partnership with Princeton University
Snowpack monitoring in North America and Eurasia using passive microwave satellite data
NASA Technical Reports Server (NTRS)
Foster, J. L.; Rango, A.; Hall, D. K.; Chang, A. T. C.; Allison, L. J.; Diesen, B. C., III
1980-01-01
Areas of the Canadian high plains, the Montana and North Dakota high plains, and the steppes of central Russia have been studied in an effort to determine the utility of spaceborne microwave radiometers for monitoring snow depths in different geographic areas. Significant regression relationships between snow depth and microwave brightness temperatures were developed for each of these homogeneous areas. In each of the study areas investigated in this paper, Nimbus-6 (0.81 cm) ESMR data produced higher correlations than Nimbus-5 (1.55 cm) ESMR data in relating microwave brightness temperature to snow depth. It is difficult to extrapolate relationships between microwave brightness temperature and snow depth from one area to another because different geographic areas are likely to have different snowpack conditions.
Heavy thunderstorms observed over land by the Nimbus 7 scanning multichannel microwave radiometer
NASA Technical Reports Server (NTRS)
Spencer, R. W.; Olson, W. S.; Martin, D. W.; Weinman, J. A.; Santek, D. A.; Wu, R.
1983-01-01
Brightness temperatures obtained through examination of microwave data from the Nimbus 7 satellite are noted to be much lower than those expected on the strength of radiation emanating from rain-producing clouds. Very cold brightness temperature cases all coincided with heavy thunderstorm rainfall, with the cold temperatures being attributable to scattering by a layer of ice hydrometeors in the upper parts of the storms. It is accordingly suggested that brightness temperatures observed by satellite microwave radiometers can sometimes distinguish heavy rain over land.
Microwave and hot air drying of garlic puree: drying kinetics and quality characteristics
NASA Astrophysics Data System (ADS)
İlter, Işıl; Akyıl, Saniye; Devseren, Esra; Okut, Dilara; Koç, Mehmet; Kaymak Ertekin, Figen
2018-02-01
In this study, the effect of hot air and microwave drying on drying kinetics and some quality characteristics such as water activity, color, optic index and volatile oil of garlic puree was investigated. Optic index representing browning of the garlic puree increased excessively with an increase in microwave power and hot air drying temperature. However, volatile oil content of the dried samples was decreased by increasing of temperature and microwave power. By increasing drying temperature (50, 60 and 70 °C) and microwave power (180, 360 and 540 W), the drying time decreased from 8.5 h to 4 min. In order to determine the kinetic parameters, the experimental drying data were fitted to various semi-empirical models beside 2nd Fick's diffusion equation. Among them, the Page model gave a better fit for microwave-drying, while Logarithmic model gave a better fit for hot air drying. By increasing the microwave power and hot air drying temperature, the effective moisture diffusivity, De values ranged from 0.76×10-8 to 2.85×10-8 m2/s and from 2.21×10-10 to 3.07×10-10 m2/s, respectively. The activation energy was calculated as 20.90 kJ/mol for hot air drying and 21.96 W/g for microwave drying using an Arrhenius type equation.
NASA Astrophysics Data System (ADS)
Sanò, P.; Panegrossi, G.; Casella, D.; Di Paola, F.; Milani, L.; Mugnai, A.; Petracca, M.; Dietrich, S.
2015-02-01
The purpose of this study is to describe a new algorithm based on a neural network approach (Passive microwave Neural network Precipitation Retrieval - PNPR) for precipitation rate estimation from AMSU/MHS observations, and to provide examples of its performance for specific case studies over the European/Mediterranean area. The algorithm optimally exploits the different characteristics of Advanced Microwave Sounding Unit-A (AMSU-A) and the Microwave Humidity Sounder (MHS) channels, and their combinations, including the brightness temperature (TB) differences of the 183.31 channels, with the goal of having a single neural network for different types of background surfaces (vegetated land, snow-covered surface, coast and ocean). The training of the neural network is based on the use of a cloud-radiation database, built from cloud-resolving model simulations coupled to a radiative transfer model, representative of the European and Mediterranean Basin precipitation climatology. The algorithm provides also the phase of the precipitation and a pixel-based confidence index for the evaluation of the reliability of the retrieval. Applied to different weather conditions in Europe, the algorithm shows good performance both in the identification of precipitation areas and in the retrieval of precipitation, which is particularly valuable over the extremely variable environmental and meteorological conditions of the region. The PNPR is particularly efficient in (1) screening and retrieval of precipitation over different background surfaces; (2) identification and retrieval of heavy rain for convective events; and (3) identification of precipitation over a cold/iced background, with increased uncertainties affecting light precipitation. In this paper, examples of good agreement of precipitation pattern and intensity with ground-based data (radar and rain gauges) are provided for four different case studies. The algorithm has been developed in order to be easily tailored to new radiometers as they become available (such as the cross-track scanning Suomi National Polar-orbiting Partnership (NPP) Advanced Technology Microwave Sounder (ATMS)), and it is suitable for operational use as it is computationally very efficient. PNPR has been recently extended for applications to the regions of Africa and the South Atlantic, and an extended validation over these regions (using 2 yr of data acquired by the Tropical Rainfall Measuring Mission precipitation radar for comparison) is the subject of a paper in preparation. The PNPR is currently used operationally within the EUMETSAT Hydrology Satellite Application Facility (H-SAF) to provide instantaneous precipitation from passive microwave cross-track scanning radiometers. It undergoes routinely thorough extensive validation over Europe carried out by the H-SAF Precipitation Products Validation Team.
Possible detection of the M 31 rotation in WMAP data
NASA Astrophysics Data System (ADS)
de Paolis, F.; Gurzadyan, V. G.; Ingrosso, G.; Jetzer, Ph.; Nucita, A. A.; Qadir, A.; Vetrugno, D.; Kashin, A. L.; Khachatryan, H. G.; Mirzoyan, S.
2011-10-01
Data on the cosmic microwave background (CMB) radiation by the Wilkinson Microwave Anisotropy Probe (WMAP) had a profound impact on the understanding of a variety of physical processes in the early phases of the Universe and on the estimation of the cosmological parameters. Here, the 7-year WMAP data are used to trace the disk and the halo of the nearby giant spiral galaxy M 31. We analyzed the temperature excess in three WMAP bands (W, V, and Q) by dividing the region of the sky around M 31 into several concentric circular areas. An asymmetry in the mean microwave temperature in the M 31 disk along the direction of the M 31 rotation is observed with a temperature contrast up to ≃ 130 μK/pixel. We also find a temperature asymmetry in the M 31 halo, which is much weaker than for the disk, up to a galactocentric distance of about 10° (≃ 120 kpc) with a peak temperature contrast of about 40 μK/pixel. We studied the robustness of these possible detections by considering 500 random control fields in the real WMAP maps and simulating 500 sky maps from the best-fitted cosmological parameters. By comparing the obtained temperature contrast profiles with the real ones towards the M 31 galaxy, we find that the temperature asymmetry in the M 31 disk is fairly robust, while the effect in the halo is weaker. Although the confidence level of the signal is not high, if estimated purely statistically, which could be expected due to the weakness of the effect, the geometrical structure of the temperature asymmetry points towards a definite effect modulated by the rotation of the M 31 halo. This result might open a new way to probe these relatively less studied galactic objects using high-accuracy CMB measurements, such as those with the Planck satellite or planned balloon-based experiments, which could prove or disprove our conclusions. Table 1 and Figs. 4, 5 are available in electronic form at http://www.aanda.org
Cluster richness-mass calibration with cosmic microwave background lensing
NASA Astrophysics Data System (ADS)
Geach, James E.; Peacock, John A.
2017-11-01
Identifying galaxy clusters through overdensities of galaxies in photometric surveys is the oldest1,2 and arguably the most economical and mass-sensitive detection method3,4, compared with X-ray5-7 and Sunyaev-Zel'dovich effect8 surveys that detect the hot intracluster medium. However, a perennial problem has been the mapping of optical `richness' measurements onto total cluster mass3,9-12. Emitted at a conformal distance of 14 gigaparsecs, the cosmic microwave background acts as a backlight to all intervening mass in the Universe, and therefore has been gravitationally lensed13-15. Experiments such as the Atacama Cosmology Telescope16, South Pole Telescope17-19 and the Planck20 satellite have now detected gravitational lensing of the cosmic microwave background and produced large-area maps of the foreground deflecting structures. Here we present a calibration of cluster optical richness at the 10% level by measuring the average cosmic microwave background lensing measured by Planck towards the positions of large numbers of optically selected clusters, detecting the deflection of photons by structures of total mass of order 1014 M⊙. Although mainly aimed at the study of larger-scale structures, the Planck estimate of the cosmic microwave background lensing field can be used to recover a nearly unbiased lensing signal for stacked clusters on arcminute scales15,21. This approach offers a clean measure of total cluster masses over most of cosmic history, largely independent of baryon physics.
Hybrid microwave/conventionally heated calorimeter
NASA Astrophysics Data System (ADS)
Binner, Jon G. P.; Price, Duncan M.; Reading, Mike; Vaidhyanathan, Bala
2005-06-01
The design and construction of a calorimeter in which the specimen may be heated by microwave radiation and/or hot air is described. The apparatus was used to examine the effect of microwave radiation on the melting of benzil (89°C) and the solid-state phase transition of silver iodide (147°C). Reproducibility of transition temperature determinations were within ±1°C. No changes were observed for benzil but silver iodide exhibited an apparent reduction in transition temperature to around 120°C in the presence of microwaves, which increased with the level of microwave irradiation.
Microwave Assisted Helicon Plasmas
NASA Astrophysics Data System (ADS)
McKee, John; Caron, David; Jemiolo, Andrew; Scime, Earl
2017-10-01
The use of two (or more) rf sources at different frequencies is a common technique in the plasma processing industry to control ion energy characteristics separately from plasma generation. A similar approach is presented here with the focus on modifying the electron population in argon and helium plasmas. The plasma is generated by a helicon source at a frequency f0 = 13.56 MHz. Microwaves of frequency f1 = 2.45 GHz are then injected into the helicon source chamber perpendicular to the background magnetic field. The microwaves damp on the electrons via X-mode Electron Cyclotron Heating (ECH) at the upper hybrid resonance, providing additional energy input into the electrons. The effects of this secondary-source heating on electron density, temperature, and energy distribution function are examined and compared to helicon-only single source plasmas as well as numeric models suggesting that the heating is not evenly distributed. Optical Emission Spectroscopy (OES) is used to examine the impact of the energetic tail of the electron distribution on ion and neutral species via collisional excitation. Large enhancements of neutral spectral lines are observed in both Ar and He. While small enhancement of ion lines is seen in Ar, ion lines not normally present in He are observed during microwave injection. U.S. National Science Foundation Grant No. PHY-1360278.
Ai, Haiming; Wu, Shuicai; Gao, Hongjian; Zhao, Lei; Yang, Chunlan; Zeng, Yi
2012-01-01
The temperature distribution in the region near a microwave antenna is a critical factor that affects the entire temperature field during microwave ablation of tissue. It is challenging to predict this distribution precisely, because the temperature in the near-antenna region varies greatly. The effects of water vaporisation and subsequent tissue carbonisation in an ex vivo porcine liver were therefore studied experimentally and in simulations. The enthalpy and high-temperature specific absorption rate (SAR) of liver tissues were calculated and incorporated into the simulation process. The accuracy of predictions for near-field temperatures in our simulations has reached the level where the average maximum error is less than 5°C. In addition, a modified thermal model that accounts for water vaporisation and the change in the SAR distribution pattern is proposed and validated with experiment. The results from this study may be useful in the clinical practice of microwave ablation and can be applied to predict the temperature field in surgical planning.
Microwave thermal radiation effects on skin tissues
NASA Astrophysics Data System (ADS)
Yoon, Hargsoon; Song, Kyo D.; Lee, Uhn; Choi, Sang H.
2012-10-01
Microwave/RF energy has been used for wireless power transmission including many therapeutic applications, such as transurethral microwave therapy (TUMT). For safe uses of RF power, it is important to know how to deliver microwave energy on focused area and control the temperature changes not to drastically increase on adjacent areas. Graphical analysis of thermal loading factor is important to understand how to achieve effective transmission of microwave through the tissue. The loss mechanism while transmission often appears as thermal effects due to absorption of microwave, especially for materials such as human skin, muscles, and other organic parts including brain. In this paper, microwave thermal effects are investigated to measure temperatures, penetration depth through animal skins in terms of input power and various frequencies. This result will be compare with the case of human applications.
Features of Changing Microwave Radiation from Loaded Rock in Elastic Phase
NASA Astrophysics Data System (ADS)
Wu, Lixin; Mao, Wenfei; Huang, Jianwei; Liu, Shanjun; Xu, Zhongying
2017-04-01
Since the discovery of satellite infrared anomaly occurred before some earthquake by Russian geo-scientists in 1980's, both satellite remote sensing on seismic activities and experimental infrared detection on rock physics in process of rock loading were undertaken in many counties including China, Japan, Europe nations and United States. Infrared imager and spectrum instruments were applied to detect the changed infrared radiation from loaded rock to fracturing, which lead to the development of Remote Sensing Rock Mechanics. However, the change of microwave radiation from loaded rock was not so much studied, even if abnormal changes of microwave brightness temperature (MBT) preceding some large earthquakes were observed by satellite sensors such as AMSR-E on boarded Aqua. To monitor rock hazards, seismic activities, and to make earthquake precautions by via of microwave detection or microwave remote sensing, it is fairly demanded to explore the laws of microwave radiation variation with changed stress and to uncover the rock physics. We developed a large scale rock loading system with capability of 500 tons and 10 tons of load, respectively, at two horizontal loading head, and designed a group of microwave detectors in C, K, and Ka bands. To investigate the changed microwave radiation from loaded granite and sandstone in its elastics deformation phase, the first horizontal stress was circularly applied on rock samples of size 10×30×60cm3 at a constant second horizontal stress, and the changes microwave radiation was detected by the detectors hanged overhead the rock sample. The experiments were conducted outdoor at nighttime to keep off environmental radiation and to simulate the satellite observation conditions in background of cool sky. The first horizontal stress and the microwave radiations were synchronically detected and recorded. After reducing the random noise of detected microwave signals with wavelet method, we found the MBT increase with stress rising and decrease with stress dropping, and the correlation factor (R2) of MBT-stress reached 0.88. The experiments and results revealed an important rock physical phenomenon of rock dielectric property changing with stress, which leads to detectable MBT variation.
High-impedance NbSi TES sensors for studying the cosmic microwave background radiation
NASA Astrophysics Data System (ADS)
Nones, C.; Marnieros, S.; Benoit, A.; Bergé, L.; Bideaud, A.; Camus, P.; Dumoulin, L.; Monfardini, A.; Rigaut, O.
2012-12-01
Precise measurements of the cosmic microwave background (CMB) are crucial in cosmology because any proposed model of the universe must account for the features of this radiation. The CMB has a thermal blackbody spectrum at a temperature of 2.725 K, i.e. the spectrum peaks in the microwave range frequency of 160.2 GHz, corresponding to a 1.9-mm wavelength. Of all CMB measurements that the scientific community has not yet been able to perform, the CMB B-mode polarization is probably the most challenging from the instrumental point of view. The signature of primordial gravitational waves, which give rise to a B-type polarization, is one of the goals in cosmology today and amongst the first objectives in the field. For this purpose, high-performance low-temperature bolometric cameras, made of thousands of pixels, are currently being developed by many groups, which will improve the sensitivity to B-mode CMB polarization by one or two orders of magnitude compared to the Planck satellite HFI detectors. We present here a new bolometer structure that is able to increase the pixel sensitivities and to simplify the fabrication procedure. This innovative device replaces delicate membrane-based structures and eliminates the mediation of phonons: the incoming energy is directly captured and measured in the electron bath of an appropriate sensor and the thermal decoupling is achieved via the intrinsic electron-phonon decoupling of the sensor at very low temperature. Reported results come from a 204-pixel array of NbxSi1-x transition edge sensors with a meander structure fabricated on a 2-inch silicon wafer using electron-beam co-evaporation and a cleanroom lithography process. To validate the application of this device to CMB measurements, we have performed an optical calibration of our sample in the focal plane of a dilution cryostat test bench. We have demonstrated a light absorption close to 20% and an optical noise equivalent power of about 7×10-16 W/√Hz, which is highly encouraging given the scope for improvement in this type of detectors.
Microwave surface resistance of bulk YBa2Cu3O6+x material
NASA Astrophysics Data System (ADS)
Fathy, A.; Kalokitis, D.; Belohoubek, E.; Sundar, H. G. K.; Safari, A.
1988-10-01
Superconducting Y-Ba-Cu-O samples were prepared by conventional solid-state reaction. The microwave surface resistance of 1:2:3 compound superconductor material was measured in a special disk resonator structure at 10 GHz. At liquid-nitrogen temperatures the microwave surface resistance is comparable to that of Au. At lower temperature (~10 K) the surface resistance is an order of magnitude lower than that of Au at the same temperature.
Xiao, Xiaohua; Song, Wei; Wang, Jiayue; Li, Gongke
2012-01-27
In this study, low temperature vacuum microwave-assisted extraction, which simultaneous performed microwave-assisted extraction (MAE) in low temperature and in vacuo environment, was proposed. The influencing parameters including solid/liquid ratio, extraction temperature, extraction time, degree of vacuum and microwave power were discussed. The predominance of low temperature vacuum microwave-assisted extraction was investigated by comparing the extraction yields of vitamin C, β-carotene, aloin A and astaxanthin in different foods with that in MAE and solvent extraction, and 5.2-243% increments were obtained. On the other hand, the chemical kinetics of vitamin C and aloin A, which composed two different steps including the extraction step of analyte transferred from matrix into solvent and the decomposition step of analyte degraded in the extraction solvent, were proposed. All of the decomposition rates (K(2)) for the selected analyte in low temperature, in vacuo and in nitrogen atmosphere decreased significantly comparing with that in conventional MAE, which are in agreement with that obtained from experiments. Consequently, the present method was successfully applied to extract labile compound from different food samples. These results showed that low temperature and/or in vacuo environment in microwave-assisted extraction system was especially important to prevent the degradation of labile components and have good potential on the extraction of labile compound in foods, pharmaceutical and natural products. Copyright © 2011 Elsevier B.V. All rights reserved.
Mazubert, Alex; Taylor, Cameron; Aubin, Joelle; Poux, Martine
2014-06-01
Microwave effects have been quantified, comparing activation energies and pre-exponential factors to those obtained in a conventionally-heated reactor for biodiesel production from waste cooking oils via transesterification and esterification reactions. Several publications report an enhancement of biodiesel production using microwaves, however recent reviews highlight poor temperature measurements in microwave reactors give misleading reaction performances. Operating conditions have therefore been carefully chosen to investigate non-thermal microwave effects alone. Temperature is monitored by an optical fiber sensor, which is more accurate than infrared sensors. For the transesterification reaction, the activation energy is 37.1kJ/mol (20.1-54.2kJ/mol) in the microwave-heated reactor compared with 31.6kJ/mol (14.6-48.7kJ/mol) in the conventionally-heated reactor. For the esterification reaction, the activation energy is 45.4kJ/mol (31.8-58.9kJ/mol) for the microwave-heated reactor compared with 56.1kJ/mol (55.7-56.4kJ/mol) for conventionally-heated reactor. The results confirm the absence of non-thermal microwave effects for homogenous-catalyzed reactions. Copyright © 2014 Elsevier Ltd. All rights reserved.
Grell, Tsehai A.J.; Alabanza, Anginelle M.; Gaskell, Karen; Aslan, Kadir
2013-01-01
A rapid surface modification technique for the formation of self-assembled monolayers (SAMs) of alkanethiols on gold thin films using microwave heating in less than 10 min is reported. In this regard, SAMs of two model alkanethiols, 11-mercaptoundecanoic acid (11-MUDA, to generate a hydrophilic surface) and undecanethiol (UDET, a hydrophobic surface), were successfully formed on gold thin films using selective microwave heating in 1) a semi-continuous and 2) a continuous fashion and at room temperature (24 hours, control experiment, no microwave heating). The formation of SAMs of 11-MUDA and UDET were confirmed by contact angle measurements, Fourier–transform infrared (FT-IR) spectroscopy and X-ray photoelectron spectroscopy (XPS). The contact angles for water on SAMs formed by the selective microwave heating and conventional room temperature incubation technique (24 hours) were measured to be similar for 11-MUDA and UDET. FT-IR spectroscopy results confirmed that the internal structure of SAMs prepared using both microwave heating and at room temperature were similar. XPS results revealed that the organic and sulfate contaminants found on bare gold thin films were replaced by SAMs after the surface modification process was carried out using both microwave heating and at room temperature. PMID:24083414
4He sample probe for combined microwave and dc transport measurements
NASA Astrophysics Data System (ADS)
Dobrovolskiy, Oleksandr V.; Franke, Jörg; Huth, Michael
2015-03-01
Combined microwave and dc electrical transport measurements at low temperatures represent a valuable experimental method in many research areas. In particular, when samples are conventional superconductors, a typical experiment requires a combination of helium temperatures, a wide range of magnetic fields, and the utilization of coaxial lines along with the usual dc wiring. We report on the general design features and the microwave performance of a custom-made low-temperature sample probe, with a measurement bandwidth tested from dc to 20 GHz. Equipped with six coaxial cables, a heater, Hall and temperature sensors, the probe fits into a ⊘32 mm shaft. We present our setup, analyze its microwave performance, and describe two representative experiments enabled by this system. The proposed setup will be essential for a systematic study of the dc and ac response of the vortex dynamics in nanopatterned superconductors subject to combined dc and microwave stimuli. Besides, it will be valuable for the investigation of a broad class of nonlinear stochastic systems where a combination of dc and high-frequency ac driving in a wide temperature range is necessary.
Microwave Dielectric Heating of Drops in Microfluidic Devices†
Issadore, David; Humphry, Katherine J.; Brown, Keith A.; Sandberg, Lori; Weitz, David; Westervelt, Robert M.
2010-01-01
We present a technique to locally and rapidly heat water drops in microfluidic devices with microwave dielectric heating. Water absorbs microwave power more efficiently than polymers, glass, and oils due to its permanent molecular dipole moment that has a large dielectric loss at GHz frequencies. The relevant heat capacity of the system is a single thermally isolated picoliter drop of water and this enables very fast thermal cycling. We demonstrate microwave dielectric heating in a microfluidic device that integrates a flow-focusing drop maker, drop splitters, and metal electrodes to locally deliver microwave power from an inexpensive, commercially available 3.0 GHz source and amplifier. The temperature of the drops is measured by observing the temperature dependent fluorescence intensity of cadmium selenide nanocrystals suspended in the water drops. We demonstrate characteristic heating times as short as 15 ms to steady-state temperatures as large as 30°C above the base temperature of the microfluidic device. Many common biological and chemical applications require rapid and local control of temperature, such as PCR amplification of DNA, and can benefit from this new technique. PMID:19495453
Login, G R; Leonard, J B; Dvorak, A M
1998-06-01
Rapid and reproducible fixation of brain and peripheral nerve tissue for light and electron microscopy studies can be done in a microwave oven. In this review we report a standardized nomenclature for diverse fixation techniques that use microwave heating: (1) microwave stabilization, (2) fast and ultrafast primary microwave-chemical fixation, (3) microwave irradiation followed by chemical fixation, (4) primary chemical fixation followed by microwave irradiation, and (5) microwave fixation used in various combinations with freeze fixation. All of these methods are well suited to fix brain tissue for light microscopy. Fast primary microwave-chemical fixation is best for immunoelectron microscopy studies. We also review how the physical characteristics of the microwave frequency and the dimensions of microwave oven cavities can compromise microwave fixation results. A microwave oven can be calibrated for fixation when the following parameters are standardized: irradiation time; water load volume, initial temperature, and placement within the oven; fixative composition, volume, and initial temperature; and specimen container shape and placement within the oven. Using two recently developed calibration tools, the neon bulb array and the agar-saline-Giemsa tissue phantom, we report a simple calibration protocol that identifies regions within a microwave oven for uniform microwave fixation. Copyright 1998 Academic Press.
First microwave map of the Moon with Chang'E-1 data: The role of local time in global imaging
NASA Astrophysics Data System (ADS)
Zheng, Y. C.; Tsang, K. T.; Chan, K. L.; Zou, Y. L.; Zhang, F.; Ouyang, Z. Y.
2012-05-01
Among recent lunar orbiters, only the Chinese Chang'E-1 (CE-1) was equipped with a passive microwave radiometer (MRM) to measure the natural microwave emission from the lunar surface. The microwave emission, characterized by a frequency-dependent brightness temperature (TB), is related to the physical temperature and dielectric properties of the lunar surface. By measuring the brightness temperature at different frequencies, detailed thermal behavior and properties of the lunar surface can be retrieved. Using CE-1's microwave data, we present here a set of microwave maps of the Moon constructed through a rescaling of TB to noontime or midnight. The adopted processing technique helps to reduce the effect of mixing up the temporal and spatial variations introduced by the satellite's localized measurements which cover different locations of the globe at different lunar local times. The resulting maps show fine structures unseen in previous microwave maps that disregarded the local time effect. We discussed the new features revealed and their possible connections with the lunar geology.
Zielińska, Magdalena; Cydzik-Kwiatkowska, Agnieszka; Zieliński, Marcin; Dębowski, Marcin
2013-02-01
This study analyzed dairy wastewater fermentation in convection- and microwave-heated hybrid reactors at loadings of 1 and 2 kg COD/(m3 d) and temperatures of 35 and 55 °C. The biomass was investigated at a molecular level to determine the links between the operational parameters of anaerobic digestion and methanogenic Archaea structure. The highest production of biogas with methane content of ca. 67% was noted in the mesophilic microwave-heated reactors. The production of methane-rich biogas and the overall diversity of Archaea was determined by Methanosarcinaceae presence. The temperature and the application of microwaves were the main factors explaining the variations in the methanogen community. At 35 °C, the microwave heating stimulated the growth of highly diverse methanogen assemblages, promoting Methanosarcina barkeri presence and excluding Methanosarcina harudinacea from the biomass. A temperature increase to 55 °C lowered Methanosarcinaceae abundance and induced a replacement of Methanoculleus palmolei by Methanosarcina thermophila. Copyright © 2012 Elsevier Ltd. All rights reserved.
Using a conformal water bolus to adjust heating patterns of microwave waveguide applicators
NASA Astrophysics Data System (ADS)
Stauffer, Paul R.; Rodrigues, Dario B.; Sinahon, Randolf; Sbarro, Lyndsey; Beckhoff, Valeria; Hurwitz, Mark D.
2017-02-01
Background: Hyperthermia, i.e., raising tissue temperature to 40-45°C for 60 min, has been demonstrated to increase the effectiveness of radiation and chemotherapy for cancer. Although multi-element conformal heat applicators are under development to provide more adjustable heating of contoured anatomy, to date the most often used applicator to heat superficial disease is the simple microwave waveguide. With only a single power input, the operator must be resourceful to adjust heat treatment to accommodate variable size and shape tumors spreading across contoured anatomy. Methods: We used multiphysics simulation software that couples electromagnetic, thermal and fluid dynamics physics to simulate heating patterns in superficial tumors from commercially available microwave waveguide applicators. Temperature distributions were calculated inside homogenous muscle and layered skin-fat-muscle-tumor-bone tissue loads for a typical range of applicator coupling configurations and size of waterbolus. Variable thickness waterbolus was simulated as necessary to accommodate contoured anatomy. Physical models of several treatment configurations were constructed for comparison of simulation results with experimental specific absorption rate (SAR) measurements in homogenous muscle phantom. Results: Accuracy of the simulation model was confirmed with experimental SAR measurements of three unique applicator setups. Simulations demonstrated the ability to generate a wide range of power deposition patterns with commercially available waveguide antennas by controllably varying size and thickness of the waterbolus layer. Conclusion: Heating characteristics of 915 MHz waveguide antennas can be varied over a wide range by controlled adjustment of microwave power, coupling configuration, and waterbolus lateral size and thickness. The uniformity of thermal dose delivered to superficial tumors can be improved by cyclic switching of waterbolus thickness during treatment to proactively shift heat peaks and nulls around under the aperture, thereby reducing patient pain while increasing minimum thermal dose by end of treatment.
NASA Technical Reports Server (NTRS)
Smoot, G. F.; Aymon, J.; De Amici, G.; Bennett, C. L.; Kogut, A.; Gulkis, S.; Backus, C.; Galuk, K.; Jackson, P. D.; Keegstra, P.
1991-01-01
The concept and operation of the Differential Microwave Radiometers (DMR) instrument aboard NASA's Cosmic Background Explorer satellite are reviewed, with emphasis on the software identification and subtraction of potential systematic effects. Preliminary results obtained from the first six months of DMR data are presented, and implications for cosmology are discussed.
NASA Technical Reports Server (NTRS)
Wade, L. A.; Levy, A. R.
1996-01-01
A continuous operation, vibration-free, long-life 25K sorption cryocooler has been built and is now in final integration and performance testing. This cooler wil be flown on the University of California at Santa Barbara (UCSB) Long Duration Balloon (LDB) Cosmic Microwave Background Radiation Experiment.
A dipole moment of the microwave background as a cosmological effect
NASA Astrophysics Data System (ADS)
Paczynski, Bohdan; Piran, Tsvi
1990-12-01
A spherically symmetrical Tolman-Bondi cosmological model is presented in which the curvature of space and the entropy variety with distance from the center. The dipole and quadrupole moments in the distribution of the microwave background radiation are calculated as a function of cosmic time and position of an observer, assuming that the distance to the horizon is much smaller than any characteristic scale in the model. The quadrupole moment is found to be affected mostly by the gradient in the curvature of space while the dipole moment is dominated by the gradient of entropy. The results indicate that the observed dipole in the microwave background may be cosmological in origin. Observational tests of this argument are suggested.
A dipole moment of the microwave background as a cosmological effect
NASA Technical Reports Server (NTRS)
Paczynski, Bohdan; Piran, Tsvi
1990-01-01
A spherically symmetrical Tolman-Bondi cosmological model is presented in which the curvature of space and the entropy variety with distance from the center. The dipole and quadrupole moments in the distribution of the microwave background radiation are calculated as a function of cosmic time and position of an observer, assuming that the distance to the horizon is much smaller than any characteristic scale in the model. The quadrupole moment is found to be affected mostly by the gradient in the curvature of space while the dipole moment is dominated by the gradient of entropy. The results indicate that the observed dipole in the microwave background may be cosmological in origin. Observational tests of this argument are suggested.
Circular Bioassay Platforms for Applications in Microwave-Accelerated Techniques.
Mohammed, Muzaffer; Clement, Travis C; Aslan, Kadir
2014-12-02
In this paper, we present the design of four different circular bioassay platforms, which are suitable for homogeneous microwave heating, using theoretical calculations (i.e., COMSOL™ multiphysics software). Circular bioassay platforms are constructed from poly(methyl methacrylate) (PMMA) for optical transparency between 400-800 nm, has multiple sample capacity (12, 16, 19 and 21 wells) and modified with silver nanoparticle films (SNFs) to be used in microwave-accelerated bioassays (MABs). In addition, a small monomode microwave cavity, which can be operated with an external microwave generator (100 W), for use with the bioassay platforms in MABs is also developed. Our design parameters for the circular bioassay platforms and monomode microwave cavity during microwave heating were: (i) temperature profiles, (ii) electric field distributions, (iii) location of the circular bioassay platforms inside the microwave cavity, and (iv) design and number of wells on the circular bioassay platforms. We have also carried out additional simulations to assess the use of circular bioassay platforms in a conventional kitchen microwave oven (e.g., 900 W). Our results show that the location of the circular bioassay platforms in the microwave cavity was predicted to have a significant effect on the homogeneous heating of these platforms. The 21-well circular bioassay platform design in our monomode microwave cavity was predicted to offer a homogeneous heating pattern, where inter-well temperature was observed to be in between 23.72-24.13°C and intra-well temperature difference was less than 0.21°C for 60 seconds of microwave heating, which was also verified experimentally.
Circular Bioassay Platforms for Applications in Microwave-Accelerated Techniques
Mohammed, Muzaffer; Clement, Travis C.; Aslan, Kadir
2014-01-01
In this paper, we present the design of four different circular bioassay platforms, which are suitable for homogeneous microwave heating, using theoretical calculations (i.e., COMSOL™ multiphysics software). Circular bioassay platforms are constructed from poly(methyl methacrylate) (PMMA) for optical transparency between 400–800 nm, has multiple sample capacity (12, 16, 19 and 21 wells) and modified with silver nanoparticle films (SNFs) to be used in microwave-accelerated bioassays (MABs). In addition, a small monomode microwave cavity, which can be operated with an external microwave generator (100 W), for use with the bioassay platforms in MABs is also developed. Our design parameters for the circular bioassay platforms and monomode microwave cavity during microwave heating were: (i) temperature profiles, (ii) electric field distributions, (iii) location of the circular bioassay platforms inside the microwave cavity, and (iv) design and number of wells on the circular bioassay platforms. We have also carried out additional simulations to assess the use of circular bioassay platforms in a conventional kitchen microwave oven (e.g., 900 W). Our results show that the location of the circular bioassay platforms in the microwave cavity was predicted to have a significant effect on the homogeneous heating of these platforms. The 21-well circular bioassay platform design in our monomode microwave cavity was predicted to offer a homogeneous heating pattern, where inter-well temperature was observed to be in between 23.72–24.13°C and intra-well temperature difference was less than 0.21°C for 60 seconds of microwave heating, which was also verified experimentally. PMID:25568813
First measurement of the bulk flow of nearby galaxies using the cosmic microwave background
NASA Astrophysics Data System (ADS)
Lavaux, Guilhem; Afshordi, Niayesh; Hudson, Michael J.
2013-04-01
Peculiar velocities in the nearby Universe can be measured via the kinetic Sunyaev-Zel'dovich (kSZ) effect. Using a statistical method based on an optimized cross-correlation with nearby galaxies, we extract the kSZ signal generated by plasma halo of galaxies from the cosmic microwave background (CMB) temperature anisotropies observed by the Wilkinson Microwave Anisotropy Probe (WMAP). Marginalizing over the thermal Sunyaev-Zel'dovich contribution from clusters of galaxies, possible unresolved point source contamination, and Galactic foregrounds, we find a kSZ bulk flow signal present at the ˜90 per cent confidence level in the seven-year WMAP data. When only galaxies within 50 h-1 Mpc are included in the kSZ template, we find a bulk flow in the CMB frame of |V| = 533 ± 263 km s-1, in the direction l = 324 ± 27, b = -7 ± 17, consistent with bulk flow measurements on a similar scale using classical distance indicators. We show how this comparison constrains, for the first time, the (ionized) baryonic budget in the local universe. On very large (˜500 h-1 Mpc) scales, we find a 95 per cent upper limit of 470 km s-1, inconsistent with some analyses of bulk flow of clusters from the kSZ. We estimate that the significance of the bulk flow signal may increase to 3σ-5σ using data from the Planck probe.
History of COBE project Structure in the COBE differential microwave radiometer first-year maps. Smoot, et (Wilkinson Microwave Anisotropy Probe) CMB satellite 5 year data papers Introduction NASA's COBE (Cosmic compare the spectrum of the cosmic microwave background radiation with that from a precise blackbody. Data
Billeter, Thomas R.; Philipp, Lee D.; Schemmel, Richard R.
1976-01-01
A microwave fluid flow meter is described utilizing two spaced microwave sensors positioned along a fluid flow path. Each sensor includes a microwave cavity having a frequency of resonance dependent upon the static pressure of the fluid at the sensor locations. The resonant response of each cavity with respect to a variation in pressure of the monitored fluid is represented by a corresponding electrical output which can be calibrated into a direct pressure reading. The pressure drop between sensor locations is then correlated as a measure of fluid velocity. In the preferred embodiment the individual sensor cavities are strategically positioned outside the path of fluid flow and are designed to resonate in two distinct frequency modes yielding a measure of temperature as well as pressure. The temperature response can then be used in correcting for pressure responses of the microwave cavity encountered due to temperature fluctuations.
Drying kinetics of onion ( Allium cepa L.) slices with convective and microwave drying
NASA Astrophysics Data System (ADS)
Demiray, Engin; Seker, Anıl; Tulek, Yahya
2017-05-01
Onion slices were dried using two different drying techniques, convective and microwave drying. Convective drying treatments were carried out at different temperatures (50, 60 and 70 °C). Three different microwave output powers 328, 447 and 557 W were used in microwave drying. In convective drying, effective moisture diffusivity was estimated to be between 3.49 × 10-8 and 9.44 × 10-8 m2 s-1 within the temperature range studied. The effect of temperature on the diffusivity was described by the Arrhenius equation with an activation energy of 45.60 kJ mol-1. At increasing microwave power values, the effective moisture diffusivity values ranged from 2.59 × 10-7 and 5.08 × 10-8 m2 s-1. The activation energy for microwave drying of samples was calculated using an exponential expression based on Arrhenius equation. Among of the models proposed, Page's model gave a better fit for all drying conditions used.
Model Stirrer Based on a Multi-Material Turntable for Microwave Processing Materials
Ye, Jinghua; Hong, Tao; Wu, Yuanyuan; Wu, Li; Liao, Yinhong; Zhu, Huacheng; Yang, Yang; Huang, Kama
2017-01-01
Microwaves have been widely used in the treatment of materials, such as heating, drying, and sterilization. However, the heating in the commonly used microwave applicators is usually uneven. In this paper, a novel multi-material turntable structure is creatively proposed to improve the temperature uniformity in microwave ovens. Three customized turntables consisting of polyethylene (PE) and alumina, PE and aluminum, and alumina and aluminum are, respectively, utilized in a domestic microwave oven in simulation. During the heating process, the processed material is placed on a fixed Teflon bracket which covers the constantly rotating turntable. Experiments are conducted to measure the surface and point temperatures using an infrared thermal imaging camera and optical fibers. Simulated results are compared qualitatively with the measured ones, which verifies the simulated models. Compared with the turntables consisting of a single material, a 26%–47% increase in temperature uniformity from adapting the multi-material turntable can be observed for the microwave-processed materials. PMID:28772457
Pyrolysis of tyre powder using microwave thermogravimetric analysis: Effect of microwave power.
Song, Zhanlong; Yang, Yaqing; Zhou, Long; Zhao, Xiqiang; Wang, Wenlong; Mao, Yanpeng; Ma, Chunyuan
2017-02-01
The pyrolytic characteristics of tyre powder treated under different microwave powers (300, 500, and 700 W) were studied via microwave thermogravimetric analysis. The product yields at different power levels were studied, along with comparative analysis of microwave pyrolysis and conventional pyrolysis. The feedstock underwent preheating, intense pyrolysis, and final pyrolysis in sequence. The main and secondary weight loss peaks observed during the intense pyrolysis stage were attributed to the decomposition of natural rubbers and synthetic rubbers, respectively. The total mass loss rates, bulk temperatures, and maximum temperatures were distinctively higher at higher powers. However, the maximum mass loss rate (0.005 s -1 ), the highest yields of liquid product (53%), and the minimum yields of residual solid samples (43.83%) were obtained at 500 W. Compared with conventional pyrolysis, microwave pyrolysis exhibited significantly different behaviour with faster reaction rates, which can decrease the decomposition temperatures of both natural and synthetic rubber by approximately 110 °C-140 °C.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hummelt, J. S.; Shapiro, M. A.; Temkin, R. J.
2012-12-15
Temperature measurements are presented of a non-equilibrium air breakdown plasma using optical emission spectroscopy. A plasma is created with a focused 110 GHz 3 {mu}s pulse gyrotron beam in air that produces power fluxes exceeding 1 MW/cm{sup 2}. Rotational and vibrational temperatures are spectroscopically measured over a pressure range of 1-100 Torr as the gyrotron power is varied above threshold. The temperature dependence on microwave field as well as pressure is examined. Rotational temperature measurements of the plasma reveal gas temperatures in the range of 300-500 K and vibrational temperatures in the range of 4200-6200 K. The vibrational and rotationalmore » temperatures increase slowly with increasing applied microwave field over the range of microwave fields investigated.« less
NASA Astrophysics Data System (ADS)
Verschuur, G. L.; Schmelz, J. T.
2018-02-01
A detailed comparison of the full range of PLANCK and Wilkinson Microwave Anisotropy Probe data for small (2° × 2°) areas of sky and the Cosmic Microwave Background Internal Linear Combination (ILC) maps reveals that the structure of foreground dust may be more complex than previously thought. If 857 and 353 GHz emission is dominated by galactic dust at a distance < few hundred light years, then it should not resemble the cosmological ILC structure originating at a distance ∼13 billion light years. In some areas of sky, however, we find strong morphological correlations, forcing us to consider the possibility that the foreground subtraction is not complete. Our data also show that there is no single answer for the question: “to what extent does dust contaminate the cosmologically important 143 GHz data?” In some directions, the contamination appears to be quite strong, but in others, it is less of an issue. This complexity needs to be taken in account in order to derive an accurate foreground mask in the quest to understand the Cosmic Microwave Background small-scale structure. We hope that a continued investigation of these data will lead to a definitive answer to the question above and, possibly, to new scientific insights on interstellar matter, the Cosmic Microwave Background, or both.
High-Temperature-Superconductor Films In Microwave Circuits
NASA Technical Reports Server (NTRS)
Bhasin, K. B.; Warner, J. D.; Romanofsky, R. R.; Heinen, V. O.; Chorey, C. M.
1993-01-01
Report discusses recent developments in continuing research on fabrication and characterization of thin films of high-temperature superconducting material and incorporation of such films into microwave circuits. Research motivated by prospect of exploiting superconductivity to reduce electrical losses and thereby enhancing performance of such critical microwave components as ring resonators, filters, transmission lines, phase shifters, and feed lines in phased-array antennas.
USDA-ARS?s Scientific Manuscript database
Graft copolymers of waxy maize starch and poly-y-glutamic acid (PGA) were produced in an aqueous solution using microwave irradiation. The microwave reaction conditions were optimized with regard to temperature and pH. The temperature of 180 deg C and pH 7.0 were the best reaction conditions resulti...
NASA Technical Reports Server (NTRS)
Mason, B. S.; Pearson, T. J.; Readhead, A. C. S.; Shepherd, M. C.; Sievers, J.; Udomprasert, P. S.; Cartwright, J. K.; Farmer, A. J.; Padin, S.; Myers, S. T.;
2002-01-01
We report measurements of anisotropy in the cosmic microwave background radiation over the multipole range l approximately 200 (right arrow) 3500 with the Cosmic Background Imager based on deep observations of three fields. These results confirm the drop in power with increasing l first reported in earlier measurements with this instrument, and extend the observations of this decline in power out to l approximately 2000. The decline in power is consistent with the predicted damping of primary anisotropies. At larger multipoles, l = 2000-3500, the power is 3.1 sigma greater than standard models for intrinsic microwave background anisotropy in this multipole range, and 3.5 sigma greater than zero. This excess power is not consistent with expected levels of residual radio source contamination but, for sigma 8 is approximately greater than 1, is consistent with predicted levels due to a secondary Sunyaev-Zeldovich anisotropy. Further observations are necessary to confirm the level of this excess and, if confirmed, determine its origin.
Data Quality Assessment of FY-3C MWRI Microwave Imager from CMA, ECMWF and the Met Office
NASA Astrophysics Data System (ADS)
Lu, Q.; WU, S.; Dou, F.; Sun, F.; Lawrence, H.; Geer, A.; English, S.; Newman, S.; Bell, W.; Bormann, N.; Carminati, F.
2017-12-01
MWRI is a conical-scanning microwave imager following on from the heritage of similar instruments such as SSMI/S and AMSR-2, with ten channels at frequencies between 10.65 GHz and 89 GHz. MWRI is flown on the China Meteorological Administration's (CMA's) Feng-Yun-3 (FY-3) satellite series, including on FY-3C and the upcoming FY-3D, scheduled for launch in September 2017. Here we present an evaluation of the data from MWRI on the FY-3C satellite launched in 2013. At CMA, the MWRI instrumental parameters and statistics between observation and simulation from RTTOV and CRTM radiative transfer modeling were monitored to characterise instrumental uncertainty from calibration and assess the data quality. The data were also assessed using model-equivalent brightness temperatures from the ECMWF and Met Office short-range forecasts. The forecasts were first transformed into brightness temperature space using the RTTOV radiative transfer code. By analysing observed minus model background ("O-B") brightness temperature departures we were able to investigate the instrument and geophysical state dependence of biases. We show examples of how biases can impact the data quality, related to ascending/descending node differences and radio frequency interference. We discuss the prospects of assimilation of MWRI data at NWP centres.
NASA Astrophysics Data System (ADS)
Story, K. T.; Hanson, D.; Ade, P. A. R.; Aird, K. A.; Austermann, J. E.; Beall, J. A.; Bender, A. N.; Benson, B. A.; Bleem, L. E.; Carlstrom, J. E.; Chang, C. L.; Chiang, H. C.; Cho, H.-M.; Citron, R.; Crawford, T. M.; Crites, A. T.; de Haan, T.; Dobbs, M. A.; Everett, W.; Gallicchio, J.; Gao, J.; George, E. M.; Gilbert, A.; Halverson, N. W.; Harrington, N.; Henning, J. W.; Hilton, G. C.; Holder, G. P.; Holzapfel, W. L.; Hoover, S.; Hou, Z.; Hrubes, J. D.; Huang, N.; Hubmayr, J.; Irwin, K. D.; Keisler, R.; Knox, L.; Lee, A. T.; Leitch, E. M.; Li, D.; Liang, C.; Luong-Van, D.; McMahon, J. J.; Mehl, J.; Meyer, S. S.; Mocanu, L.; Montroy, T. E.; Natoli, T.; Nibarger, J. P.; Novosad, V.; Padin, S.; Pryke, C.; Reichardt, C. L.; Ruhl, J. E.; Saliwanchik, B. R.; Sayre, J. T.; Schaffer, K. K.; Smecher, G.; Stark, A. A.; Tucker, C.; Vanderlinde, K.; Vieira, J. D.; Wang, G.; Whitehorn, N.; Yefremenko, V.; Zahn, O.
2015-09-01
We present a measurement of the cosmic microwave background (CMB) gravitational lensing potential using data from the first two seasons of observations with SPTpol, the polarization-sensitive receiver currently installed on the South Pole Telescope. The observations used in this work cover 100 deg2 of sky with arcminute resolution at 150 GHz. Using a quadratic estimator, we make maps of the CMB lensing potential from combinations of CMB temperature and polarization maps. We combine these lensing potential maps to form a minimum-variance (MV) map. The lensing potential is measured with a signal-to-noise ratio of greater than one for angular multipoles between 100\\lt L\\lt 250. This is the highest signal-to-noise mass map made from the CMB to date and will be powerful in cross-correlation with other tracers of large-scale structure. We calculate the power spectrum of the lensing potential for each estimator, and we report the value of the MV power spectrum between 100\\lt L\\lt 2000 as our primary result. We constrain the ratio of the spectrum to a fiducial ΛCDM model to be AMV = 0.92 ± 0.14 (Stat.) ± 0.08 (Sys.). Restricting ourselves to polarized data only, we find APOL = 0.92 ± 0.24 (Stat.) ± 0.11 (Sys.). This measurement rejects the hypothesis of no lensing at 5.9σ using polarization data alone, and at 14σ using both temperature and polarization data.
NASA Astrophysics Data System (ADS)
McCarthy, Darragh; Trappe, Neil; Murphy, J. Anthony; O'Sullivan, Créidhe; Gradziel, Marcin; Doherty, Stephen; Huggard, Peter G.; Polegro, Arturo; van der Vorst, Maarten
2016-05-01
In order to investigate the origins of the Universe, it is necessary to carry out full sky surveys of the temperature and polarisation of the Cosmic Microwave Background (CMB) radiation, the remnant of the Big Bang. Missions such as COBE and Planck have previously mapped the CMB temperature, however in order to further constrain evolutionary and inflationary models, it is necessary to measure the polarisation of the CMB with greater accuracy and sensitivity than before. Missions undertaking such observations require large arrays of feed horn antennas to feed the detector arrays. Corrugated horns provide the best performance, however owing to the large number required (circa 5000 in the case of the proposed COrE+ mission), such horns are prohibitive in terms of thermal, mechanical and cost limitations. In this paper we consider the optimisation of an alternative smooth-walled piecewise conical profiled horn, using the mode-matching technique alongside a genetic algorithm. The technique is optimised to return a suitable design using efficient modelling software and standard desktop computing power. A design is presented showing a directional beam pattern and low levels of return loss, cross-polar power and sidelobes, as required by future CMB missions. This design is manufactured and the measured results compared with simulation, showing excellent agreement and meeting the required performance criteria. The optimisation process described here is robust and can be applied to many other applications where specific performance characteristics are required, with the user simply defining the beam requirements.
CMB temperature trispectrum of cosmic strings
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hindmarsh, Mark; Ringeval, Christophe; Suyama, Teruaki
2010-03-15
We provide an analytical expression for the trispectrum of the cosmic microwave background (CMB) temperature anisotropies induced by cosmic strings. Our result is derived for the small angular scales under the assumption that the temperature anisotropy is induced by the Gott-Kaiser-Stebbins effect. The trispectrum is predicted to decay with a noninteger power-law exponent l{sup -{rho}}with 6<{rho}<7, depending on the string microstructure, and thus on the string model. For Nambu-Goto strings, this exponent is related to the string mean square velocity and the loop distribution function. We then explore two classes of wave number configuration in Fourier space, the kite andmore » trapezium quadrilaterals. The trispectrum can be of any sign and appears to be strongly enhanced for all squeezed quadrilaterals.« less
Zhang, Kou-Dong; Tong, Lin-Rong; Wang, Shui-Ming; Peng, Rui-Yun; Huang, Hai-Dong; Dong, Yu-Chao; Zhang, Xing-Xing; Li, Qiang; Bai, Chong
2017-01-01
Background: Microwave therapy is a minimal invasive procedure and has been employed in clinical practice for the treatment of various types of cancers. However, its therapeutic application in non-small-cell lung cancer and the underlying mechanism remains to be investigated. This study aimed to investigate its effect on Lewis lung carcinoma (LLC) tumor in vivo. Methods: Fifty LLC tumor-bearing C57BL/6 mice were adopted to assess the effect of microwave radiation on the growth and apoptosis of LLC tumor in vivo. These mice were randomly assigned to 10 groups with 5 mice in each group. Five groups were treated by single pulse microwave at different doses for different time, and the other five groups were radiated by multiple-pulse treatment of a single dose. Apoptosis of cancer cells was determined by terminal deoxynucleotidyl transferase dUTP nick-end labeling assay. Western blotting was applied to detect the expression of proteins. Results: Single pulse of microwave radiation for 5 min had little effect on the mice. Only 15-min microwave radiation at 30 mW/cm2 significantly increased the mice body temperature (2.20 ± 0.82)°C as compared with the other groups (0.78 ± 0.29 °C, 1.24 ± 0.52 °C, 0.78 ± 0.42 °C, respectively), but it did not affect the apoptosis of LLC tumor cells significantly. Continous microwave radiation exposure, single dose microwave radiation once per day for up to seven days, inhibited cell division and induced apoptosis of LLC tumor cells in a dose- and duration-dependent manner. It upregulated the protein levels of p53, Caspase 3, Bax and downregulated Bcl-2 protein. Conclusions: Multiple exposures of LLC-bearing mice to microwave radiation effectively induced tumor cell apoptosis at least partly by upregulating proapoptotic proteins and downregulating antiapoptotic proteins. Continuous radiation at low microwave intensity for a short time per day is promising in treating non-small-cell lung cancer. PMID:28051018
Design of the PIXIE Adiabatic Demagnetization Refrigerators
NASA Technical Reports Server (NTRS)
Shirron, Peter J.; Kimball, Mark Oliver; Fixsen, Dale J.; Kogut, Alan J.; Li, Xiaoyi; DiPirro, Michael
2012-01-01
The Primordial Inflation Explorer (PIXIE) is a proposed mission to densely map the polarization of the cosmic microwave background. It will operate in a scanning mode from a sun-synchronous orbit, using low temperature detectors (at 0.1 K) and located inside a teslescope that is cooled to approximately 2.73 K - to match the background temperature. A mechanical cryocooler operating at 4.5 K establishes a low base temperature from which two adiabatic demagnetization refrigerator (ADR) assemblies will cool the telescope and detectors. To achieve continuous scanning capability, the ADRs must operate continuously. Complicating the design are two factors: 1) the need to systematically vary the temperature of various telescope components in order to separate the small polarization signal variations from those that may arise from temperature drifts and changing gradients within the telescope, and 2) the orbital and monthly variations in lunar irradiance into the telescope barrels. These factors require the telescope ADR to reject quasi-continuous heat loads of 2-3 millwatts, while maintaining a peak heat reject rate of less than 12 milliwatts. The detector heat load at 0.1 K is comparatively small at 1-2 microwatts. This paper will describe the 3-stage and 2-stage continuous ADRs that will be used to meet the cooling power and temperature stability requirements of the PIXIE detectors and telescope.
NASA Astrophysics Data System (ADS)
Tsel'Sov, Iu. G.; Kondrat'ev, A. S.
1990-12-01
A method is developed for determining the temperature of an ionized gas on the basis of electron-density sounding. This technique is used to measure the cross-sectional temperature distribution of an axisymmetric ionized gas flow using microwave diagnostics.
NASA Astrophysics Data System (ADS)
Houtz, Derek Anderson
Microwave radiometers allow remote sensing of earth and atmospheric temperatures from space, anytime, anywhere, through clouds, and in the dark. Data from microwave radiometers are high-impact operational inputs to weather forecasts, and are used to provide a vast array of climate data products including land and sea surface temperatures, soil moisture, ocean salinity, cloud precipitation and moisture height profiles, and even wind speed and direction, to name a few. Space-borne microwave radiometers have a major weakness when it comes to long-term climate trends due to their lack of traceability. Because there is no standard, or absolute reference, for microwave brightness temperature, nationally or internationally, individual instruments must each rely on their own internal calibration source to set an absolute reference to the fundamental unit of Kelvin. This causes each subsequent instrument to have a calibration offset and there is no 'true' reference. The work introduced in this thesis addresses this vacancy by proposing and introducing a NIST microwave brightness temperature source that may act as the primary reference. The NIST standard will allow pre-launch calibration of radiometers across a broad range of remote sensing pertinent frequencies between 18 GHz and 220 GHz. The blackbody will be capable of reaching temperatures ranging between liquid nitrogen boiling at approximately 77 K and warm-target temperature of 350 K. The brightness temperature of the source has associated standard uncertainty ranging as a function of frequency between 0.084 K and 0.111 K. The standard can be transferred to the calibration source in the instrument, providing traceability of all subsequent measurements back to the primary standard. The development of the NIST standard source involved predicting and measuring its brightness temperature, and minimizing the associated uncertainty of this quantity. Uniform and constant physical temperature along with well characterized and maximized emissivity are fundamental to a well characterized blackbody. The chosen geometry is a microwave absorber coated copper cone. Electromagnetic and thermal simulations are introduced to optimize the design. Experimental verifications of the simulated quantities confirm the predicted performance of the blackbody.
Global universe anisotropy probed by the alignment of structures in the cosmic microwave background.
Wiaux, Y; Vielva, P; Martínez-González, E; Vandergheynst, P
2006-04-21
We question the global universe isotropy by probing the alignment of local structures in the cosmic microwave background (CMB) radiation. The original method proposed relies on a steerable wavelet decomposition of the CMB signal on the sphere. The analysis of the first-year Wilkinson Microwave Anisotropy Probe data identifies a mean preferred plane with a normal direction close to the CMB dipole axis, and a mean preferred direction in this plane, very close to the ecliptic poles axis. Previous statistical anisotropy results are thereby synthesized, but further analyses are still required to establish their origin.
Model-independent test for scale-dependent non-Gaussianities in the cosmic microwave background.
Räth, C; Morfill, G E; Rossmanith, G; Banday, A J; Górski, K M
2009-04-03
We present a model-independent method to test for scale-dependent non-Gaussianities in combination with scaling indices as test statistics. Therefore, surrogate data sets are generated, in which the power spectrum of the original data is preserved, while the higher order correlations are partly randomized by applying a scale-dependent shuffling procedure to the Fourier phases. We apply this method to the Wilkinson Microwave Anisotropy Probe data of the cosmic microwave background and find signatures for non-Gaussianities on large scales. Further tests are required to elucidate the origin of the detected anomalies.
High Temperature Microwave Dielectric Properties of JSC-1AC Lunar Simulant
NASA Technical Reports Server (NTRS)
Allan, Shawn M.; Merritt, Brandon J.; Griffin, Brittany F.; Hintze, Paul E.; Shulman, Holly S.
2011-01-01
Microwave heating has many potential lunar applications including sintering regolith for lunar surface stabilization and heating regolith for various oxygen production reactors. The microwave properties of lunar simulants must be understood so this technology can be applied to lunar operations. Dielectric properties at microwave frequencies for a common lunar simulant, JSC-1AC, were measured up to 1100 C, which is approximately the melting point. The experimentally determined dielectric properties included real and imaginary permittivity (epsilon', epsilon"), loss tangent (tan delta), and half-power depth, the di stance at which a material absorbs 50% of incident microwave energy. Measurements at 2.45 GHz revealed tan delta of JSC-1A increases from 0.02 at 25 C to 0.31 at 110 C. The corresponding half-power depth decreases from a peak of 286 mm at 110 C, to 13 mm at 1100 C. These data indicate that JSC-1AC becomes more absorbing, and thus a better microwave heater as temperature increases. A half-power depth maximum at 100-200 C presents a barrier to direct microwave heating at low temperatures. Microwave heating experiments confirm the sluggish heating effect of weak absorption below 200 C, and increasingly strong absorption above 200 C, leading to rapid heating and melting of JSC-1AC.
Behavioral and autonomic thermoregulation in hamsters during microwave-induced heat exposure
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gordon, C.J.; Long, M.D.; Fehlner, K.S.
1984-01-01
Preferred ambient temperature (Ta) and ventilatory frequency were measured in free-moving hamsters exposed to 2450-MHz microwaves. A waveguide exposure system that permits continuous monitoring of the absorbed heat load accrued from microwave exposure was imposed with a longitudinal temperature gradient which allowed hamsters to select their preferred Ta. Ventilatory frequency was monitored remotely by analysing the rhythmic shifts in unabsorbed microwave energy passing down the waveguide. Without microwave exposure hamsters selected an average T2 of 30.2 C. This preferred Ta did not change until the rate of heat absorption (SAR) from microwave exposure exceeded approx. 2 W kg-1. In amore » separate experiment, a SAR of 2.0 W kg-1 at a Ta of 30C was shown to promote an average 0.5 C increase in colonic temperature. Hamsters maintained their ventilatory frequency at baseline levels by selecting a cooler Ta during microwave exposure. These data support previous studies suggesting that during thermal stress behavioral thermo-regulation (i.e. preferred Ta) takes prescedence over autonomic thermoregulation (i.e. ventilatory frequency). It is apparent that selecting a cooler Ta is a more efficient and/or effective than autonomic thermoregulation for dissipating a heat load accrued from microwave exposure.« less
Pulse Tube Interference in Cryogenic Sensor Resonant Circuits - Final Paper
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lam, Tyler
2015-08-27
Transition edge sensors (TES) are extremely sensitive superconducting sensors, operating at 100 mK, which can be used to detect X-rays and Cosmic Microwave Background. The goal of our project is to design the electronics to read out an array of 10000 of these sensors by using microwave signals. However, we noticed the pulse tube used to maintain cryogenic temperatures caused interference in our readout. To determine the cause of the signal distortions, we used a detector with a 370 MHz sampling rate to collect and analyze sensor data. Although this data provided little information towards the nature of the noise,more » it was determined through a maintenance procedure than the 0.3 mm stainless steel wires were being vibrated due to acoustic waves, which distorted the signal. Replacing this wire appeared to cease the interference from the sensor data.« less
Pulse Tube Interference in Cryogenic Sensors - Oral Presentation
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lam, Tyler
2015-08-24
Transition edge sensors (TES) are extremely sensitive superconducting sensors, operating at 100 mK, which can be used to detect X-rays and Cosmic Microwave Background. The goal of our project is to design the electronics to read out an array of 10000 of these sensors by using microwave signals. However, we noticed the pulse tube used to maintain cryogenic temperatures caused interference in our readout. To determine the cause of the signal distortions, we used a detector with a 370 MHz sampling rate to collect and analyze sensor data. Although this data provided little information towards the nature of the noise,more » it was determined through a maintenance procedure than the 0.3 mm stainless steel wires were being vibrated due to acoustic waves, which distorted the signal. Replacing this wire appeared to cease the interference from the sensor data.« less
2001-06-15
KENNEDY SPACE CENTER, Fla. -- In the Spacecraft Assembly and Encapsulation Facility -2, the Microwave Anisotropy Probe (MAP), suspended by a crane, crosses the facility to the upper stage of the Boeing Delta II rocket. The rocket is scheduled to launch the MAP instrument June 30 into a lunar-assisted trajectory to the Sun-Earth for a 27-month mission. MAP will measure small fluctuations in the temperature of the cosmic microwave background radiation to an accuracy of one millionth of a degree. These measurements should reveal the size, matter content, age, geometry and fate of the universe. They will also reveal the primordial structure that grew to form galaxies and will test ideas about the origins of these primordial structures. The MAP instrument will be continuously shaded from the Sun, Earth, and Moon by the spacecraft. It is a product of Goddard Space Flight Center in partnership with Princeton University
2001-06-15
KENNEDY SPACE CENTER, Fla. -- Photographers gather in the Spacecraft Assembly and Encapsulation Facility -2 for a media showing of the Microwave Anisotropy Probe (MAP). The MAP is mated to the upper stage of the Boeing Delta II rocket. The rocket is scheduled to launch the MAP instrument June 30 into a lunar-assisted trajectory to the Sun-Earth for a 27-month mission. MAP will measure small fluctuations in the temperature of the cosmic microwave background radiation to an accuracy of one millionth of a degree. These measurements should reveal the size, matter content, age, geometry and fate of the universe. They will also reveal the primordial structure that grew to form galaxies and will test ideas about the origins of these primordial structures. The MAP instrument will be continuously shaded from the Sun, Earth, and Moon by the spacecraft. It is a product of Goddard Space Flight Center in partnership with Princeton University
2001-05-29
KENNEDY SPACE CENTER, FLA. -- On Launch Complex 17-B, Cape Canaveral Air Force Station, the second stage of a Boeing Delta 7425-10 rocket is lifted into position as preparations to launch NASA's Microwave Anisotropy Probe (MAP) on June 30 continue. The launch will place MAP into a lunar-assisted trajectory to the Sun-Earth for a 27-month mission.; The probe will measure small fluctuations in the temperature of the cosmic microwave background radiation to an accuracy of one millionth of a degree. These measurements should reveal the size, matter content, age, geometry and fate of the universe. They will also reveal the primordial structure that grew to form galaxies and will test ideas about the origins of these primordial structures. The MAP instrument will be continuously shaded from the Sun, Earth, and Moon by the spacecraft. The probe is a product of Goddard Space Flight Center in partnership with Princeton University
2001-05-31
KENNEDY SPACE CENTER, FLA. -- Scientists and other workers watch as the solar panels on the Microwave Anisotropy Probe (MAP) spacecraft are deployed in the Spacecraft Assembly and Encapsulation Facility 2. MAP is scheduled for launch on June 30 aboard a Boeing Delta II rocket. The launch will place MAP into a lunar-assisted trajectory to the Sun-Earth for a 27-month mission. The probe will measure small fluctuations in the temperature of the cosmic microwave background radiation to an accuracy of one millionth of a degree. These measurements should reveal the size, matter content, age, geometry and fate of the universe. They will also reveal the primordial structure that grew to form galaxies and will test ideas about the origins of these primordial structures. The MAP instrument will be continuously shaded from the Sun, Earth, and Moon by the spacecraft. The probe is a product of Goddard Space Flight Center in partnership with Princeton University
2001-06-15
KENNEDY SPACE CENTER, Fla. -- Workers in the Spacecraft Assembly and Encapsulation Facility -2 prepare the Microwave Anisotropy Probe (MAP) for a media showing. The MAP is mated to the upper stage of the Boeing Delta II rocket. The rocket is scheduled to launch the MAP instrument June 30 into a lunar-assisted trajectory to the Sun-Earth for a 27-month mission. MAP will measure small fluctuations in the temperature of the cosmic microwave background radiation to an accuracy of one millionth of a degree. These measurements should reveal the size, matter content, age, geometry and fate of the universe. They will also reveal the primordial structure that grew to form galaxies and will test ideas about the origins of these primordial structures. The MAP instrument will be continuously shaded from the Sun, Earth, and Moon by the spacecraft. It is a product of Goddard Space Flight Center in partnership with Princeton University
2001-06-15
KENNEDY SPACE CENTER, Fla. -- Workers in the Spacecraft Assembly and Encapsulation Facility -2 prepare the Microwave Anisotropy Probe (MAP) for a media showing. The MAP is mated to the upper stage of the Boeing Delta II rocket. The rocket is scheduled to launch the MAP instrument June 30 into a lunar-assisted trajectory to the Sun-Earth for a 27-month mission. MAP will measure small fluctuations in the temperature of the cosmic microwave background radiation to an accuracy of one millionth of a degree. These measurements should reveal the size, matter content, age, geometry and fate of the universe. They will also reveal the primordial structure that grew to form galaxies and will test ideas about the origins of these primordial structures. The MAP instrument will be continuously shaded from the Sun, Earth, and Moon by the spacecraft. It is a product of Goddard Space Flight Center in partnership with Princeton University
2001-06-30
KENNEDY SPACE CENTER, Fla. -- Wrapped in billows of smoke and steam, the Boeing Delta II rocket lifts off Launch Complex 17-A, Cape Canaveral Air Force Station, carrying the Microwave Anisotropy Probe (MAP) spacecraft. The successful launch occurred at 3:46:46 p.m. EDT. The launch will place MAP into a lunar-assisted trajectory to the Sun-Earth for a 27-month mission. The probe will measure small fluctuations in the temperature of the cosmic microwave background radiation to an accuracy of one millionth of a degree. These measurements should reveal the size, matter content, age, geometry and fate of the universe. They will also reveal the primordial structure that grew to form galaxies and will test ideas about the origins of these primordial structures. The MAP instrument will be continuously shaded from the Sun, Earth, and Moon by the spacecraft. The probe is a product of Goddard Space Flight Center in partnership with Princeton University
2001-05-29
On Launch Complex 17-B, Cape Canaveral Air Force Station, the second stage of a Boeing Delta 7425-10 rocket is lifted into position as preparations to launch NASA's Microwave Anisotropy Probe (MAP) on June 30 continue. The launch will place MAP into a lunar-assisted trajectory to the Sun-Earth for a 27-month mission.; The probe will measure small fluctuations in the temperature of the cosmic microwave background radiation to an accuracy of one millionth of a degree. These measurements should reveal the size, matter content, age, geometry and fate of the universe. They will also reveal the primordial structure that grew to form galaxies and will test ideas about the origins of these primordial structures. The MAP instrument will be continuously shaded from the Sun, Earth, and Moon by the spacecraft. The probe is a product of Goddard Space Flight Center in partnership with Princeton University
2001-05-31
KENNEDY SPACE CENTER, FLA. -- Scientists and other workers watch as the solar panels on the Microwave Anisotropy Probe (MAP) spacecraft are deployed in the Spacecraft Assembly and Encapsulation Facility 2. MAP is scheduled for launch on June 30 aboard a Boeing Delta II rocket. The launch will place MAP into a lunar-assisted trajectory to the Sun-Earth for a 27-month mission. The probe will measure small fluctuations in the temperature of the cosmic microwave background radiation to an accuracy of one millionth of a degree. These measurements should reveal the size, matter content, age, geometry and fate of the universe. They will also reveal the primordial structure that grew to form galaxies and will test ideas about the origins of these primordial structures. The MAP instrument will be continuously shaded from the Sun, Earth, and Moon by the spacecraft. The probe is a product of Goddard Space Flight Center in partnership with Princeton University
2001-05-29
On Launch Complex 17-B, Cape Canaveral Air Force Station, the second stage of a Boeing Delta 7425-10 rocket is lifted into position as preparations to launch NASA's Microwave Anisotropy Probe (MAP) on June 30 continue. The launch will place MAP into a lunar-assisted trajectory to the Sun-Earth for a 27-month mission.; The probe will measure small fluctuations in the temperature of the cosmic microwave background radiation to an accuracy of one millionth of a degree. These measurements should reveal the size, matter content, age, geometry and fate of the universe. They will also reveal the primordial structure that grew to form galaxies and will test ideas about the origins of these primordial structures. The MAP instrument will be continuously shaded from the Sun, Earth, and Moon by the spacecraft. The probe is a product of Goddard Space Flight Center in partnership with Princeton University
Time-resolved microplasma excitation temperature in a pulsed microwave discharge
NASA Astrophysics Data System (ADS)
Hopwood, Jeffrey; Monfared, Shabnam; Hoskinson, Alan
2013-09-01
Microwave-driven microplasmas are usually operated in a steady-state mode such that the electron temperature is constant in time. Transient measurements of excitation temperature and helium emission lines, however, suggest that short microwave pulses can be used to raise the electron energy by 20-30% for approximately 100 ns. Time-resolved optical emission spectrometry reveals an initial burst of light emission from the igniting microplasma. This emission overshoot is also correlated with a measured increase in excitation temperature. Excimer emission lags atomic emission, however, and does not overshoot. A simple model demonstrates that an increase in electron temperature is responsible for the overshoot of atomic optical emission at the beginning of each microwave pulse. The formation of dimers and subsequent excimer emission requires slower three-body collisions with the excited rare gas atom; this is why excimer emission does not overshoot the steady state value. Similar experimental and modeling results are observed in argon gas. The overshoot in electron temperature may be used to manipulate the collisional production of species in microplasmas using short, low-duty cycle microwave pulses. This material is based upon work supported by the USAF and Physical Sciences Inc., under contract No. FA8650-C-12-C-2312. Additional support was provided by the DARPA MPD program under award FA9550-12-1-0006.
Takahashi, Hideyuki; Imai, Yoshinori; Maeda, Atsutaka
2016-06-01
We present a design for a tunneling-current-assisted scanning near-field microwave microscope. For stable operation at cryogenic temperatures, making a small and rigid microwave probe is important. Our coaxial resonator probe has a length of approximately 30 mm and can fit inside the 2-in. bore of a superconducting magnet. The probe design includes an insulating joint, which separates DC and microwave signals without degrading the quality factor. By applying the SMM to the imaging of an electrically inhomogeneous superconductor, we obtain the spatial distribution of the microwave response with a spatial resolution of approximately 200 nm. Furthermore, we present an analysis of our SMM probe based on a simple lumped-element circuit model along with the near-field microwave measurements of silicon wafers having different conductivities.
Method of nitriding, carburizing, or oxidizing refractory metal articles using microwaves
Holcombe, Cressie E.; Dykes, Norman L.; Tiegs, Terry N.
1992-01-01
A method of nitriding an article of refractory-nitride-forming metal or metalloids. A consolidated metal or metalloid article is placed inside a microwave oven and nitrogen containing gas is introduced into the microwave oven. The metal or metalloid article is heated to a temperature sufficient to react the metal or metalloid with the nitrogen by applying a microwave energy within the microwave oven. The metal or metalloid article is maintained at that temperature for a period of time sufficient to convert the article of metal or metalloid to an article of refractory nitride. in addition, a method of applying a coating, such as a coating of an oxide, a carbide, or a carbo-nitride, to an article of metal or metalloid by microwave heating.
Method of nitriding, carburizing, or oxidizing refractory metal articles using microwaves
Holcombe, C.E.; Dykes, N.L.; Tiegs, T.N.
1992-10-13
A method of nitriding an article of refractory-nitride-forming metal or metalloids. A consolidated metal or metalloid article is placed inside a microwave oven and nitrogen containing gas is introduced into the microwave oven. The metal or metalloid article is heated to a temperature sufficient to react the metal or metalloid with the nitrogen by applying a microwave energy within the microwave oven. The metal or metalloid article is maintained at that temperature for a period of time sufficient to convert the article of metal or metalloid to an article of refractory nitride. in addition, a method of applying a coating, such as a coating of an oxide, a carbide, or a carbo-nitride, to an article of metal or metalloid by microwave heating.
NASA Astrophysics Data System (ADS)
Takahashi, Hideyuki; Imai, Yoshinori; Maeda, Atsutaka
2016-06-01
We present a design for a tunneling-current-assisted scanning near-field microwave microscope. For stable operation at cryogenic temperatures, making a small and rigid microwave probe is important. Our coaxial resonator probe has a length of approximately 30 mm and can fit inside the 2-in. bore of a superconducting magnet. The probe design includes an insulating joint, which separates DC and microwave signals without degrading the quality factor. By applying the SMM to the imaging of an electrically inhomogeneous superconductor, we obtain the spatial distribution of the microwave response with a spatial resolution of approximately 200 nm. Furthermore, we present an analysis of our SMM probe based on a simple lumped-element circuit model along with the near-field microwave measurements of silicon wafers having different conductivities.
In Vivo Simulator for Microwave Treatment
NASA Technical Reports Server (NTRS)
Arndt, G. Dickey (Inventor); Carl, James R. (Inventor); Raffoul, George W. (Inventor); Karasack, Vincent G. (Inventor); Pacifico, Antonio (Inventor); Pieper, Carl F. (Inventor)
2001-01-01
Method and apparatus are provided for propagating microwave energy into heart tissues to produce a desired temperature profile therein at tissue depths sufficient for thermally ablating arrhythmogenic cardiac tissue to treat ventricular tachycardia and other arrhythmias while preventing excessive heating of surrounding tissues, organs, and blood. A wide bandwidth double-disk antenna is effective for this purpose over a bandwidth of about 6 GHz. A computer simulation provides initial screening capabilities for an antenna such as antenna. frequency, power level, and power application duration. The simulation also allows optimization of techniques for specific patients or conditions. In operation, microwave energy between about 1 GHz and 12 GHz is applied to monopole microwave radiator having a surface wave limiter. A test setup provides physical testing of microwave radiators to determine the temperature profile created in actual heart tissue or ersatz heart tissue. Saline solution pumped over the heart tissue with a peristaltic pump simulates blood flow. Optical temperature sensors disposed at various tissue depths within the heart tissue detect the temperature profile without creating any electromagnetic interference. The method may be used to produce a desired temperature profile in other body tissues reachable by catheter such as tumors and the like.
Transcatheter Antenna For Microwave Treatment
NASA Technical Reports Server (NTRS)
Arndt, G. Dickey (Inventor); Carl, James R. (Inventor); Raffoul, George W. (Inventor); Karasack, Vincent G. (Inventor); Pacifico, Antonio (Inventor); Pieper, Carl F. (Inventor)
2000-01-01
Method and apparatus are provided for propagating microwave energy into heart tissues to produce a desired temperature profile therein at tissue depths sufficient for thermally ablating arrhythmogenic cardiac tissue to treat ventricular tachycardia and other arrhythmias while preventing excessive heating of surrounding tissues, organs, and blood. A wide bandwidth double-disk antenna is effective for this purpose over a bandwidth of about six gigahertz. A computer simulation provides initial screening capabilities for an antenna such as antenna, frequency, power level, and power application duration. The simulation also allows optimization of techniques for specific patients or conditions. In operation, microwave energy between about 1 Gigahertz and 12 Gigahertz is applied to monopole microwave radiation having a surface wave limiter. A test setup provides physical testing of microwave radiators to determine the temperature profile created in actual heart tissue or ersatz heart tissue. Saline solution pumped over the heart tissue with a peristaltic pump simulates blood flow. Optical temperature sensors disposed at various tissue depths within the heart tissue detect the temperature profile without creating any electromagnetic interference. The method may he used to produce a desired temperature profile in other body tissues reachable by catheter such as tumors and the like.
Microwave Treatment for Cardiac Arrhythmias
NASA Technical Reports Server (NTRS)
Arndt, G. Dickey (Inventor); Carl, James R. (Inventor); Raffoul, George W. (Inventor); Pacifico, Antonio (Inventor)
1999-01-01
Method and apparatus are provided for propagating microwave energy into heart tissues to produce a desired temperature profile therein at tissue depths sufficient for thermally ablating arrhythmogenic cardiac tissue to treat ventricular tachycardia and other arrhythmias while preventing excessive heating of surrounding tissues, organs, and blood. A wide bandwidth double-disk antenna is effective for this purpose over a bandwidth of about six gigahertz. A computer simulation provides initial screening capabilities for an antenna such as antenna, frequency, power level, and power application duration. The simulation also allows optimization of techniques for specific patients or conditions. In operation, microwave energy between about 1 Gigahertz and 12 Gigahertz is applied to monopole microwave radiator having a surface wave limiter. A test setup provides physical testing of microwave radiators to determine the temperature profile created in actual heart tissue or ersatz heart tissue. Saline solution pumped over the heart tissue with a peristaltic pump simulates blood flow. Optical temperature sensors disposed at various tissue depths within the heart tissue detect the temperature profile without creating any electromagnetic interference. The method may be used to produce a desired temperature profile in other body tissues reachable by catheter such as tumors and the like.
Using Microwaves for Extracting Water from the Moon
NASA Technical Reports Server (NTRS)
Ethridge, Edwin C.
2009-01-01
Twenty years ago, the Lunar Prospector remote sensing satellite provided evidence of relatively large hydrogen concentrations at the lunar poles and in particular concentrated in permanently shadowed craters. The scientific hypothesis is that the hydrogen is in the form of cryo-trapped water just under the surface of the soil. If true this would mean that an average of about 2% water ice is mixed with the lunar soil existing in the form of ice at cryogenic temperatures. For 5 years we have been investigating the use of microwaves for the processing of lunar soil. One of the early uses could be to use microwave energy to extract volatiles and in particular water from the lunar permafrost. Prototype experiments have shown that microwave energy at 2.45 GHz, as in consumer microwave ovens, will couple with and heat cryogenically cooled lunar soil permafrost simulant, resulting in the rapid sublimation of water vapor into the vacuum chamber. The water vapor has been collected on a cryogenic cold trap with high efficiency. The primary advantage of microwave processing is that the volatiles can be extracted in situ. Excavation would not be required. Microwave frequency dielectric property measurements are being made of different lunar soil simulants and plans are to measure Apollo lunar soil at different frequencies and over a range of temperatures. The materials properties are being used to evaluate the heating of lunar soil and develop COMSOL models that can be used to evaluate different microwave extraction scenarios. With COMSOL the heating from cryogenic temperatures can be calculated and COMSOL will permit temperature dependent materials properties to be used during the heating process. Calculations at different microwave frequencies will allow the evaluation of the type of hardware that would be needed to most efficiently extract the water and other volatiles.
Cosmic microwave background power asymmetry from non-Gaussian modulation.
Schmidt, Fabian; Hui, Lam
2013-01-04
Non-Gaussianity in the inflationary perturbations can couple observable scales to modes of much longer wavelength (even superhorizon), leaving as a signature a large-angle modulation of the observed cosmic microwave background power spectrum. This provides an alternative origin for a power asymmetry that is otherwise often ascribed to a breaking of statistical isotropy. The non-Gaussian modulation effect can be significant even for typical ~10(-5) perturbations while respecting current constraints on non-Gaussianity if the squeezed limit of the bispectrum is sufficiently infrared divergent. Just such a strongly infrared-divergent bispectrum has been claimed for inflation models with a non-Bunch-Davies initial state, for instance. Upper limits on the observed cosmic microwave background power asymmetry place stringent constraints on the duration of inflation in such models.
A cosmic microwave background feature consistent with a cosmic texture.
Cruz, M; Turok, N; Vielva, P; Martínez-González, E; Hobson, M
2007-12-07
The Cosmic Microwave Background provides our most ancient image of the universe and our best tool for studying its early evolution. Theories of high-energy physics predict the formation of various types of topological defects in the very early universe, including cosmic texture, which would generate hot and cold spots in the Cosmic Microwave Background. We show through a Bayesian statistical analysis that the most prominent 5 degrees -radius cold spot observed in all-sky images, which is otherwise hard to explain, is compatible with having being caused by a texture. From this model, we constrain the fundamental symmetry-breaking energy scale to be (0) approximately 8.7 x 10(15) gigaelectron volts. If confirmed, this detection of a cosmic defect will probe physics at energies exceeding any conceivable terrestrial experiment.
NASA Astrophysics Data System (ADS)
Raichev, O. E.
2015-06-01
The response of two-dimensional electron gas to a temperature gradient in perpendicular magnetic field under steady-state microwave irradiation is studied theoretically. The electric currents induced by the temperature gradient and the thermopower coefficients are calculated taking into account both diffusive and phonon-drag mechanisms. The modification of thermopower by microwaves takes place because of Landau quantization of the electron energy spectrum and is governed by the microscopic mechanisms which are similar to those responsible for microwave-induced oscillations of electrical resistivity. The magnetic-field dependence of microwave-induced corrections to phonon-drag thermopower is determined by mixing of phonon resonance frequencies with radiation frequency, which leads to interference oscillations. The transverse thermopower is modified by microwave irradiation much stronger than the longitudinal one. Apart from showing prominent microwave-induced oscillations as a function of magnetic field, the transverse thermopower appears to be highly sensitive to the direction of linear polarization of microwave radiation.
Duan, Dengle; Ruan, Roger; Wang, Yunpu; Liu, Yuhuan; Dai, Leilei; Zhao, Yunfeng; Zhou, Yue; Wu, Qiuhao
2018-03-01
This study performed microwave-assisted acid pretreatment on pure lignin. The effects of microwave temperature, microwave time, and hydrochloric acid concentration on characteristics and pyrolysis behavior of lignin were examined. Results of ultimate analysis revealed better properties of all pretreated samples than those of raw lignin. Fourier transform infrared spectroscopy analysis showed breakage of βO4 bond and aliphatic side chain, decrease in OH groups, and formation of CO groups in pretreatment. Microwave temperature exerted more significant influence on lignin structure. Thermal stability of treated lignin was improved and insensitive to short microwave time and acid concentration under mild conditions. Resulting from improved alkyl-phenols and decreased alkoxy-phenols, microwave-assisted acid pretreatment of lignin yielded bio-oil with excellent quality. Total yield of phenols in pyrolysis vapors (200 °C) improved to 14.15%, whereas that of guaiacols decreased to 22.36%. This study shows that microwave-assisted acid pretreatment is a promising technology for lignin conversion. Copyright © 2017 Elsevier Ltd. All rights reserved.
Su, Shujing; Lu, Fei; Wu, Guozhu; Wu, Dezhi; Tan, Qiulin; Dong, Helei; Xiong, Jijun
2017-08-25
The highly sensitive pressure sensor presented in this paper aims at wireless passive sensing in a high temperature environment by using microwave backscattering technology. The structure of the re-entrant resonator was analyzed and optimized using theoretical calculation, software simulation, and its equivalent lump circuit model was first modified by us. Micro-machining and high-temperature co-fired ceramic (HTCC) process technologies were applied to fabricate the sensor, solving the common problem of cavity sealing during the air pressure loading test. In addition, to prevent the response signal from being immersed in the strong background clutter of the hermetic metal chamber, which makes its detection difficult, we proposed two key techniques to improve the signal to noise ratio: the suppression of strong background clutter and the detection of the weak backscattered signal of the sensor. The pressure sensor demonstrated in this paper works well for gas pressure loading between 40 and 120 kPa in a temperature range of 24 °C to 800 °C. The experimental results show that the sensor resonant frequency lies at 2.1065 GHz, with a maximum pressure sensitivity of 73.125 kHz/kPa.
The Radio Background below 100 MHz
NASA Astrophysics Data System (ADS)
Dowell, Jayce; Taylor, Greg B.
2018-05-01
The recent detection of the “cosmic dawn” redshifted 21 cm signal at 78 MHz by the Experiment to Detect the Global EoR Signatures (EDGES) differs significantly from theoretical predictions. In particular, the absorption trough is roughly a factor of two stronger than the most optimistic theoretical models. The early interpretations of the origin of this discrepancy fall into two categories. The first is that there is increased cooling of the gas due to interactions with dark matter, while the second is that the background radiation field includes a contribution from a component in addition to the cosmic microwave background (CMB). In this Letter we examine the feasibility of the second idea using new data from the first station of the Long Wavelength Array. The data span 40–80 MHz and provide important constraints on the present-day background in a frequency range where there are few surveys with absolute temperature calibration suitable for measuring the strength of the radio monopole. We find support for a strong, diffuse radio background that was suggested by the ARCARDE 2 results in the 3–10 GHz range. We find that this background is well modeled by a power law with a spectral index of ‑2.58 ± 0.05 and a temperature at the rest frame 21 cm frequency of {603}-92+102 mK.
NASA Astrophysics Data System (ADS)
Wang, Wankun; Wang, Fuchun; Lu, Fanghai
2017-12-01
Microwave alkaline roasting-water dissolving process was proposed to improve the germanium (Ge) extraction from zinc oxide (ZnO) dust. The effects of important parameters were investigated and the process conditions were optimized using response surface methodology (RSM). The Ge extraction is consistent with the linear polynomial model type. Alkali-material ratio, microwave heating temperature and leaching temperature are the significant factors for this process. The optimized conditions are obtained as follows, alkali-material ratio of 0.9 kg/kg, aging time of 1.12 day, microwave heating at 658 K for 10 min, liquid-solid ratio of 4.31 L/kg, leaching temperature at 330 K, leaching time of 47 min with the Ge extraction about 99.38%. It is in consistence with the predictive value of 99.31%. Compared to the existed alkaline roasting process heated by electric furnace in literature, the alkaline roasting temperature and holding time. It shows a good prospect on leaching Ge from ZnO dust with microwave alkaline roasting-water dissolving process.
2.45 GHz Microwave Processing and Its Influence on Glass Fiber Reinforced Plastics.
Teufl, Daniel; Zaremba, Swen
2018-05-18
During the production of fiber-reinforced composite materials, liquid resin is introduced into the fiber material and cured, i.e., hardened. An elevated temperature is needed for this curing. Microwave curing of composites has been investigated for some time, but it has mostly been done using small domestic or laboratory equipment. However, no investigation has been carried out using an industrial-sized chamber-microwave for glass fiber-reinforced plastic (GFRP). Here, we show that microwave curing produces laminates of the same quality as oven-cured ones. The study shows that, if the process is done right, GFRP samples can be produced with an industrial scale microwave. Even if not fully cured, microwave samples show a glass transition temperature measured with DMA ( T g-DMA ) that is comparable to the T g-DMA according to the proposed cure cycle on the data sheet. Specific microwave-cured configurations show better inter-laminar shear strength than oven specimens. The results show that microwave-based heat introduction can be a beneficial curing method for GFRP laminates. A microwave-optimized process is faster and leads to better mechanical properties.
Optomechanical detection of weak microwave signals with the assistance of a plasmonic wave
NASA Astrophysics Data System (ADS)
Nejad, A. Asghari; Askari, H. R.; Baghshahi, H. R.
2018-05-01
Entanglement between optical fields and microwave signals can be used as a quantum optical sensing technique to detect received microwave signals from a low-reflecting object which is encompassed by a bright thermal environment. Here, we introduce and analyze an optomechanical system for detecting weak reflected microwave signals from an object of low reflectivity. In our system, coupling and consequently entanglement between microwave and optical photons are achieved by means of a plasmonic wave. The main problem that can be moderated in the field of quantum optical sensing of weak microwave signals is suppressing the destructive effect of high temperatures on the entanglement between microwave signals and optical photons. For this purpose, we will show that our system can perform at high temperatures as well as low ones. It will be shown that the presence of the plasmonic wave can reduce the destructive effect of the thermal noises on the entanglement between microwave and optical photons. Also, we will show that the optomechanical interaction is vital to create an appropriate entanglement between microwave and optical photons.
2.45 GHz Microwave Processing and Its Influence on Glass Fiber Reinforced Plastics
Zaremba, Swen
2018-01-01
During the production of fiber-reinforced composite materials, liquid resin is introduced into the fiber material and cured, i.e., hardened. An elevated temperature is needed for this curing. Microwave curing of composites has been investigated for some time, but it has mostly been done using small domestic or laboratory equipment. However, no investigation has been carried out using an industrial-sized chamber-microwave for glass fiber-reinforced plastic (GFRP). Here, we show that microwave curing produces laminates of the same quality as oven-cured ones. The study shows that, if the process is done right, GFRP samples can be produced with an industrial scale microwave. Even if not fully cured, microwave samples show a glass transition temperature measured with DMA (Tg-DMA) that is comparable to the Tg-DMA according to the proposed cure cycle on the data sheet. Specific microwave-cured configurations show better inter-laminar shear strength than oven specimens. The results show that microwave-based heat introduction can be a beneficial curing method for GFRP laminates. A microwave-optimized process is faster and leads to better mechanical properties. PMID:29783684
Microwave Brightness Temperatures of Tilted Convective Systems
NASA Technical Reports Server (NTRS)
Hong, Ye; Haferman, Jeffrey L.; Olson, William S.; Kummerow, Christian D.
1998-01-01
Aircraft and ground-based radar data from the Tropical Ocean and Global Atmosphere Coupled-Ocean Atmosphere Response Experiment (TOGA COARE) show that convective systems are not always vertical. Instead, many are tilted from vertical. Satellite passive microwave radiometers observe the atmosphere at a viewing angle. For example, the Special Sensor Microwave/Imager (SSM/I) on Defense Meteorological Satellite Program (DMSP) satellites and the Tropical Rainfall Measurement Mission (TRMM) Microwave Imager (TMI) on the TRMM satellite have an incident angle of about 50deg. Thus, the brightness temperature measured from one direction of tilt may be different than that viewed from the opposite direction due to the different optical depth. This paper presents the investigation of passive microwave brightness temperatures of tilted convective systems. To account for the effect of tilt, a 3-D backward Monte Carlo radiative transfer model has been applied to a simple tilted cloud model and a dynamically evolving cloud model to derive the brightness temperature. The radiative transfer results indicate that brightness temperature varies when the viewing angle changes because of the different optical depth. The tilt increases the displacements between high 19 GHz brightness temperature (Tb(sub 19)) due to liquid emission from lower level of cloud and the low 85 GHz brightness temperature (Tb(sub 85)) due to ice scattering from upper level of cloud. As the resolution degrades, the difference of brightness temperature due to the change of viewing angle decreases dramatically. The dislocation between Tb(sub 19) and Tb(sub 85), however, remains prominent.
Non-Gaussianity from isocurvature perturbations
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kawasaki, Masahiro; Nakayama, Kazunori; Sekiguchi, Toyokazu
2008-11-15
We develop a formalism for studying non-Gaussianity in both curvature and isocurvature perturbations. It is shown that non-Gaussianity in the isocurvature perturbation between dark matter and photons leaves distinct signatures in the cosmic microwave background temperature fluctuations, which may be confirmed in future experiments, or possibly even in the currently available observational data. As an explicit example, we consider the quantum chromodynamics axion and show that it can actually induce sizable non-Gaussianity for the inflationary scale, H{sub inf} = O(10{sup 9}-10{sup 11}) GeV.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Basu, Sumit, E-mail: sumit.basu@cern.ch; Chatterjee, Rupa; Nayak, Tapan K.
Heavy-ion collisions at ultra-relativistic energies are often referred to as little bangs. We propose for the first time to map the heavy-ion collisions at ultra-relativistic energies, similar to the maps of the cosmic microwave background radiation, using fluctuations of energy density and temperature in small phase space bins. We study the evolution of fluctuations at each stage of the collision using an event-by-event hydrodynamic framework. We demonstrate the feasibility of making fluctuation maps from experimental data and its usefulness in extracting considerable information regarding the early stages of the collision and its evolution.
Damm, Markus; Nusshold, Christoph; Cantillo, David; Rechberger, Gerald N.; Gruber, Karl; Sattler, Wolfgang; Kappe, C. Oliver
2012-01-01
This study reevaluates the putative advantages of microwave-assisted tryptic digests compared to conventionally heated protocols performed at the same temperature. An initial investigation of enzyme stability in a temperature range of 37–80 °C demonstrated that trypsin activity declines sharply at temperatures above 60 °C, regardless if microwave dielectric heating or conventional heating is employed. Tryptic digests of three proteins of different size (bovine serum albumin, cytochrome c and β-casein) were thus performed at 37 °C and 50 °C using both microwave and conventional heating applying accurate internal fiber-optic probe reaction temperature measurements. The impact of the heating method on protein degradation and peptide fragment generation was analyzed by SDS-PAGE and MALDI-TOF-MS. Time-dependent tryptic digestion of the three proteins and subsequent analysis of the corresponding cleavage products by MALDI-TOF provided virtually identical results for both microwave and conventional heating. In addition, the impact of electromagnetic field strength on the tertiary structure of trypsin and BSA was evaluated by molecular mechanics calculations. These simulations revealed that the applied field in a typical laboratory microwave reactor is 3–4 orders of magnitude too low to induce conformational changes in proteins or enzymes. PMID:22889711
Lazebnik, Mariya; Converse, Mark C; Booske, John H; Hagness, Susan C
2006-04-07
The development of ultrawideband (UWB) microwave diagnostic and therapeutic technologies, such as UWB microwave breast cancer detection and hyperthermia treatment, is facilitated by accurate knowledge of the temperature- and frequency-dependent dielectric properties of biological tissues. To this end, we characterize the temperature-dependent dielectric properties of a representative tissue type-animal liver-from 0.5 to 20 GHz. Since discrete-frequency linear temperature coefficients are impractical and inappropriate for applications spanning wide frequency and temperature ranges, we propose a novel and compact data representation technique. A single-pole Cole-Cole model is used to fit the dielectric properties data as a function of frequency, and a second-order polynomial is used to fit the Cole-Cole parameters as a function of temperature. This approach permits rapid estimation of tissue dielectric properties at any temperature and frequency.
Planck 2015 results. X. Diffuse component separation: Foreground maps
NASA Astrophysics Data System (ADS)
Planck Collaboration; Adam, R.; Ade, P. A. R.; Aghanim, N.; Alves, M. I. R.; Arnaud, M.; Ashdown, M.; Aumont, J.; Baccigalupi, C.; Banday, A. J.; Barreiro, R. B.; Bartlett, J. G.; Bartolo, N.; Battaner, E.; Benabed, K.; Benoît, A.; Benoit-Lévy, A.; Bernard, J.-P.; Bersanelli, M.; Bielewicz, P.; Bock, J. J.; Bonaldi, A.; Bonavera, L.; Bond, J. R.; Borrill, J.; Bouchet, F. R.; Boulanger, F.; Bucher, M.; Burigana, C.; Butler, R. C.; Calabrese, E.; Cardoso, J.-F.; Catalano, A.; Challinor, A.; Chamballu, A.; Chary, R.-R.; Chiang, H. C.; Christensen, P. R.; Clements, D. L.; Colombi, S.; Colombo, L. P. L.; Combet, C.; Couchot, F.; Coulais, A.; Crill, B. P.; Curto, A.; Cuttaia, F.; Danese, L.; Davies, R. D.; Davis, R. J.; de Bernardis, P.; de Rosa, A.; de Zotti, G.; Delabrouille, J.; Désert, F.-X.; Dickinson, C.; Diego, J. M.; Dole, H.; Donzelli, S.; Doré, O.; Douspis, M.; Ducout, A.; Dupac, X.; Efstathiou, G.; Elsner, F.; Enßlin, T. A.; Eriksen, H. K.; Falgarone, E.; Fergusson, J.; Finelli, F.; Forni, O.; Frailis, M.; Fraisse, A. A.; Franceschi, E.; Frejsel, A.; Galeotta, S.; Galli, S.; Ganga, K.; Ghosh, T.; Giard, M.; Giraud-Héraud, Y.; Gjerløw, E.; González-Nuevo, J.; Górski, K. M.; Gratton, S.; Gregorio, A.; Gruppuso, A.; Gudmundsson, J. E.; Hansen, F. K.; Hanson, D.; Harrison, D. L.; Helou, G.; Henrot-Versillé, S.; Hernández-Monteagudo, C.; Herranz, D.; Hildebrandt, S. R.; Hivon, E.; Hobson, M.; Holmes, W. A.; Hornstrup, A.; Hovest, W.; Huffenberger, K. M.; Hurier, G.; Jaffe, A. H.; Jaffe, T. R.; Jones, W. C.; Juvela, M.; Keihänen, E.; Keskitalo, R.; Kisner, T. S.; Kneissl, R.; Knoche, J.; Kunz, M.; Kurki-Suonio, H.; Lagache, G.; Lähteenmäki, A.; Lamarre, J.-M.; Lasenby, A.; Lattanzi, M.; Lawrence, C. R.; Le Jeune, M.; Leahy, J. P.; Leonardi, R.; Lesgourgues, J.; Levrier, F.; Liguori, M.; Lilje, P. B.; Linden-Vørnle, M.; López-Caniego, M.; Lubin, P. M.; Macías-Pérez, J. F.; Maggio, G.; Maino, D.; Mandolesi, N.; Mangilli, A.; Maris, M.; Marshall, D. J.; Martin, P. G.; Martínez-González, E.; Masi, S.; Matarrese, S.; McGehee, P.; Meinhold, P. R.; Melchiorri, A.; Mendes, L.; Mennella, A.; Migliaccio, M.; Mitra, S.; Miville-Deschênes, M.-A.; Moneti, A.; Montier, L.; Morgante, G.; Mortlock, D.; Moss, A.; Munshi, D.; Murphy, J. A.; Naselsky, P.; Nati, F.; Natoli, P.; Netterfield, C. B.; Nørgaard-Nielsen, H. U.; Noviello, F.; Novikov, D.; Novikov, I.; Orlando, E.; Oxborrow, C. A.; Paci, F.; Pagano, L.; Pajot, F.; Paladini, R.; Paoletti, D.; Partridge, B.; Pasian, F.; Patanchon, G.; Pearson, T. J.; Perdereau, O.; Perotto, L.; Perrotta, F.; Pettorino, V.; Piacentini, F.; Piat, M.; Pierpaoli, E.; Pietrobon, D.; Plaszczynski, S.; Pointecouteau, E.; Polenta, G.; Pratt, G. W.; Prézeau, G.; Prunet, S.; Puget, J.-L.; Rachen, J. P.; Reach, W. T.; Rebolo, R.; Reinecke, M.; Remazeilles, M.; Renault, C.; Renzi, A.; Ristorcelli, I.; Rocha, G.; Rosset, C.; Rossetti, M.; Roudier, G.; Rubiño-Martín, J. A.; Rusholme, B.; Sandri, M.; Santos, D.; Savelainen, M.; Savini, G.; Scott, D.; Seiffert, M. D.; Shellard, E. P. S.; Spencer, L. D.; Stolyarov, V.; Stompor, R.; Strong, A. W.; Sudiwala, R.; Sunyaev, R.; Sutton, D.; Suur-Uski, A.-S.; Sygnet, J.-F.; Tauber, J. A.; Terenzi, L.; Toffolatti, L.; Tomasi, M.; Tristram, M.; Tucci, M.; Tuovinen, J.; Umana, G.; Valenziano, L.; Valiviita, J.; Van Tent, F.; Vielva, P.; Villa, F.; Wade, L. A.; Wandelt, B. D.; Wehus, I. K.; Wilkinson, A.; Yvon, D.; Zacchei, A.; Zonca, A.
2016-09-01
Planck has mapped the microwave sky in temperature over nine frequency bands between 30 and 857 GHz and in polarization over seven frequency bands between 30 and 353 GHz in polarization. In this paper we consider the problem of diffuse astrophysical component separation, and process these maps within a Bayesian framework to derive an internally consistent set of full-sky astrophysical component maps. Component separation dedicated to cosmic microwave background (CMB) reconstruction is described in a companion paper. For the temperature analysis, we combine the Planck observations with the 9-yr Wilkinson Microwave Anisotropy Probe (WMAP) sky maps and the Haslam et al. 408 MHz map, to derive a joint model of CMB, synchrotron, free-free, spinning dust, CO, line emission in the 94 and 100 GHz channels, and thermal dust emission. Full-sky maps are provided for each component, with an angular resolution varying between 7.´5 and 1deg. Global parameters (monopoles, dipoles, relative calibration, and bandpass errors) are fitted jointly with the sky model, and best-fit values are tabulated. For polarization, the model includes CMB, synchrotron, and thermal dust emission. These models provide excellent fits to the observed data, with rms temperature residuals smaller than 4μK over 93% of the sky for all Planck frequencies up to 353 GHz, and fractional errors smaller than 1% in the remaining 7% of the sky. The main limitations of the temperature model at the lower frequencies are internal degeneracies among the spinning dust, free-free, and synchrotron components; additional observations from external low-frequency experiments will be essential to break these degeneracies. The main limitations of the temperature model at the higher frequencies are uncertainties in the 545 and 857 GHz calibration and zero-points. For polarization, the main outstanding issues are instrumental systematics in the 100-353 GHz bands on large angular scales in the form of temperature-to-polarization leakage, uncertainties in the analogue-to-digital conversion, and corrections for the very long time constant of the bolometer detectors, all of which are expected to improve in the near future.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Adam, R.; Ade, P. A. R.; Aghanim, N.
We report that Planck has mapped the microwave sky in temperature over nine frequency bands between 30 and 857 GHz and in polarization over seven frequency bands between 30 and 353 GHz in polarization. In this paper we consider the problem of diffuse astrophysical component separation, and process these maps within a Bayesian framework to derive an internally consistent set of full-sky astrophysical component maps. Component separation dedicated to cosmic microwave background (CMB) reconstruction is described in a companion paper. For the temperature analysis, we combine the Planck observations with the 9-yr Wilkinson Microwave Anisotropy Probe (WMAP) sky maps andmore » the Haslam et al. 408 MHz map, to derive a joint model of CMB, synchrotron, free-free, spinning dust, CO, line emission in the 94 and 100 GHz channels, and thermal dust emission. Full-sky maps are provided for each component, with an angular resolution varying between 7.5 and 1deg. Global parameters (monopoles, dipoles, relative calibration, and bandpass errors) are fitted jointly with the sky model, and best-fit values are tabulated. For polarization, the model includes CMB, synchrotron, and thermal dust emission. These models provide excellent fits to the observed data, with rms temperature residuals smaller than 4μK over 93% of the sky for all Planck frequencies up to 353 GHz, and fractional errors smaller than 1% in the remaining 7% of the sky. The main limitations of the temperature model at the lower frequencies are internal degeneracies among the spinning dust, free-free, and synchrotron components; additional observations from external low-frequency experiments will be essential to break these degeneracies. The main limitations of the temperature model at the higher frequencies are uncertainties in the 545 and 857 GHz calibration and zero-points. For polarization, the main outstanding issues are instrumental systematics in the 100–353 GHz bands on large angular scales in the form of temperature-to-polarization leakage, uncertainties in the analogue-to-digital conversion, and corrections for the very long time constant of the bolometer detectors, all of which are expected to improve in the near future.« less
Planck 2015 results: X. Diffuse component separation: Foreground maps
Adam, R.; Ade, P. A. R.; Aghanim, N.; ...
2016-09-20
We report that Planck has mapped the microwave sky in temperature over nine frequency bands between 30 and 857 GHz and in polarization over seven frequency bands between 30 and 353 GHz in polarization. In this paper we consider the problem of diffuse astrophysical component separation, and process these maps within a Bayesian framework to derive an internally consistent set of full-sky astrophysical component maps. Component separation dedicated to cosmic microwave background (CMB) reconstruction is described in a companion paper. For the temperature analysis, we combine the Planck observations with the 9-yr Wilkinson Microwave Anisotropy Probe (WMAP) sky maps andmore » the Haslam et al. 408 MHz map, to derive a joint model of CMB, synchrotron, free-free, spinning dust, CO, line emission in the 94 and 100 GHz channels, and thermal dust emission. Full-sky maps are provided for each component, with an angular resolution varying between 7.5 and 1deg. Global parameters (monopoles, dipoles, relative calibration, and bandpass errors) are fitted jointly with the sky model, and best-fit values are tabulated. For polarization, the model includes CMB, synchrotron, and thermal dust emission. These models provide excellent fits to the observed data, with rms temperature residuals smaller than 4μK over 93% of the sky for all Planck frequencies up to 353 GHz, and fractional errors smaller than 1% in the remaining 7% of the sky. The main limitations of the temperature model at the lower frequencies are internal degeneracies among the spinning dust, free-free, and synchrotron components; additional observations from external low-frequency experiments will be essential to break these degeneracies. The main limitations of the temperature model at the higher frequencies are uncertainties in the 545 and 857 GHz calibration and zero-points. For polarization, the main outstanding issues are instrumental systematics in the 100–353 GHz bands on large angular scales in the form of temperature-to-polarization leakage, uncertainties in the analogue-to-digital conversion, and corrections for the very long time constant of the bolometer detectors, all of which are expected to improve in the near future.« less
Inhalation trauma due to overheating in a microwave oven.
Zanen, A L; Rietveld, A P
1993-01-01
The microwave oven is a kitchen appliance that has become increasingly popular in recent years. In some instances the temperature in the microwave oven can become exceedingly high. A case is discussed of a patient with respiratory distress after inhalation of gas from an overheated microwave oven. Images PMID:8497834
Destruction kinetic of PCDDs/Fs in MSWI fly ash using microwave peroxide oxidation.
Chang, Yu-Min; Fang, Wen-Bin; Tsai, Kuo-Sheng; Kao, Jimmy C M; Lin, Kae-Long; Chen, Ching-Ho
2015-01-01
Microwave peroxide oxidation is a less greenhouse gas emission and energy-efficient technology to destroy toxic organic compounds in hazardous waste. The research novelty is to adopt the innovative microwave peroxide oxidation in H2SO4/HNO3 solution to efficiently destroy the polychlorinated dibenzo-p-dioxins (PCDDs)/Fs in municipal solid waste incineration fly ash. The major objective of this paper is to study dynamic destruction of PCDDs/Fs using the microwave peroxide oxidation. Almost all PCDDs/Fs in the raw fly ash can be destructed in 120 min at a temperature of 423 K using the microwave peroxide oxidation treatment. It was found that the microwave peroxide oxidation provides the potential to destruct the PCDDs/Fs content in municipal solid waste incinerator (MSWI) fly ash to a low level as a function of treatment time. A useful kinetic correlation between destruction efficiency and treatment conditions is proposed on the basis of the experimental data obtained in this study. The significance of this work in terms of practical engineering applications is that the necessary minimum treatment time can be solved using a proposed graphic illustration method, by which the minimum treatment time is obtained if the desired destruction efficiency and treatment temperature are known. Because of inorganic salt dissolution, the temperature would be a critical factor facilitating the parts of fly ash dissolution. Material loss problem caused by the microwave peroxide oxidation and the effects of treatment time and temperature are also discussed in this paper.
Superconducting Detector Arrays for Astrophysics
NASA Technical Reports Server (NTRS)
Chervenak, James
2008-01-01
The next generation of astrophysics instruments will feature an order of magnitude more photon sensors or sensors that have an order of magnitude greater sensitivity. Since detector noise scales with temperature, a number of candidate technologies have been developed that use the intrinsic advantages of detector systems that operate below 1 Kelvin. Many of these systems employ of the superconducting phenomena that occur in metals at these temperatures to build ultrasensitive detectors and low-noise, low-power readout architectures. I will present one such system in use today to meet the needs of the astrophysics community at millimeter and x-ray wavelengths. Our group at NASA in collaboration with Princeton, NIST, Boulder and a number of other groups is building large format arrays of superconducting transition edge sensors (TES) read out with multiplexed superconducting quantum interference devices (SQUID). I will present the high sensitivity we have achieved in multiplexed x-ray sensors with the TES technology and describe the construction of a 1000-sensor TES/SQUID array for microwave measurements. With our collaboration's deployment of a kilopixel TES array for 2 mm radiation at the Atacarna Cosmology Telescope in November 2007, we have first images of the lensed Cosmic Microwave Background at fine angular scales.
Chromospheric Signatures of the Subdued Cycle 23/24 Solar Minimum in Microwaves
NASA Technical Reports Server (NTRS)
Yashiro, S.; Makela, P.; Shibasaki, K.; Hathaway, D.
2011-01-01
Coronal holes appear brighter than the quiet Sun in microwave images, with a brightness enhancement of 500 to 2000 K. The brightness enhancement corresponds to the upper chromosphere, where the plasma temperature is about 10000 K. We constructed a microwave butterfly diagram using the synoptic images obtained by the Nobeyama radio-heliograph (NoRH) showing the evolution of the polar and low latitude brightness temperature. While the polar brightness reveals the chromospheric conditions, the low latitude brightness is attributed to active regions in the corona. When we compared the microwave butterfly diagram with the magnetic butterfly diagram, we found a good correlation between the microwave brightness enhancement and the polar field strength. The microwave butterfly diagram covers part of solar cycle 22, whole of cycle 23, and part of cycle 24, thus enabling comparison between the cycle 23/24 and cycle 22/23 minima. The microwave brightness during the cycle 23/24 minimum was found to be lower than that during the cycle 22/23 minimum by approx.250 K. The reduced brightness temperature is consistent with the reduced polar field strength during the cycle 23/24 minimum seen in the magnetic butterfly diagram. We suggest that the microwave brightness at the solar poles is a good indicator of the speed of the solar wind sampled by Ulysses at high latitudes.
NASA Astrophysics Data System (ADS)
Itoh, Naoki; Nozawa, Satoshi; Kohyama, Yasuharu
2000-04-01
We extend the formalism of relativistic thermal and kinematic Sunyaev-Zeldovich effects and include the polarization of the cosmic microwave background photons. We consider the situation of a cluster of galaxies moving with a velocity β≡v/c with respect to the cosmic microwave background radiation. In the present formalism, polarization of the scattered cosmic microwave background radiation caused by the proper motion of a cluster of galaxies is naturally derived as a special case of the kinematic Sunyaev-Zeldovich effect. The relativistic corrections are also included in a natural way. Our results are in complete agreement with the recent results of relativistic corrections obtained by Challinor, Ford, & Lasenby with an entirely different method, as well as the nonrelativistic limit obtained by Sunyaev & Zeldovich. The relativistic correction becomes significant in the Wien region.
The cosmic microwave background
NASA Technical Reports Server (NTRS)
Silk, Joseph
1991-01-01
Recent limits on spectral distortions and angular anisotropies in the cosmic microwave background are reviewed. The various backgrounds are described, and the theoretical implications are assessed. Constraints on inflationary cosmology dominated by cold dark matter (CDM) and on open cosmological models dominated by baryonic dark matter (BDM), with, respectively, primordial random phase scale-invariant curvature fluctuations or non-gaussian isocurvature fluctuations are described. More exotic theories are addressed, and I conclude with the 'bottom line': what theorists expect experimentalists to be measuring within the next two to three years without having to abandon their most cherished theories.
High temperature superconducting YBCO microwave filters
NASA Astrophysics Data System (ADS)
Aghabagheri, S.; Rasti, M.; Mohammadizadeh, M. R.; Kameli, P.; Salamati, H.; Mohammadpour-Aghdam, K.; Faraji-Dana, R.
2018-06-01
Epitaxial thin films of YBCO high temperature superconductor are widely used in telecommunication technology such as microwave filter, antenna, coupler and etc., due to their lower surface resistance and lower microwave loss than their normal conductor counterparts. Thin films of YBCO were fabricated by PLD technique on LAO substrate. Transition temperature and width were 88 K and 3 K, respectively. A filter pattern was designed and implemented by wet photolithography method on the films. Characterization of the filter at 77 K has been compared with the simulation results and the results for a made gold filter. Both YBCO and gold filters show high microwave loss. For YBCO filter, the reason may be due to the improper contacts on the feedlines and for gold filter, low thickness of the gold film has caused the loss increased.
35 GHz Measurements of CO2 Crystals for Simulating Observations of the Martian Polar Caps
NASA Technical Reports Server (NTRS)
Foster, J. L.; Chang, A. T. C.; Hall, D. K.; Tait, A. B.; Barton, J. S.
1998-01-01
In order to learn more about the Martian polar caps, it is important to compare and contrast the behavior of both frozen H2O and CO2 in different parts of the electromagnetic spectrum. Relatively little attention has been given, thus far, to observing the thermal microwave part of the spectrum. In this experiment, passive microwave radiation emanating from within a 33 cm snowpack was measured with a 35 GHz hand-held radiometer, and in addition to the natural snow measurements, the radiometer was used to measure the microwave emission and scattering from layers of manufactured CO2 (dry ice). A 1 m x 2 m plate of aluminum sheet metal was positioned beneath the natural snow so that microwave emissions from the underlying soil layers would be minimized. Compared to the natural snow crystals, results for the dry ice layers exhibit lower' microwave brightness temperatures for similar thicknesses, regardless of the incidence angle of the radiometer. For example, at 50 degree H (horizontal polarization) and with a covering of 21 cm of snow and 18 cm of dry ice, the brightness temperatures were 150 K and 76 K, respectively. When the snow depth was 33 cm, the brightness temperature was 144 K, and when the total thickness of the dry ice was 27 cm, the brightness temperature was 86 K. The lower brightness temperatures are due to a combination of the lower physical temperature and the larger crystal sizes of the commercial CO2 Crystals compared to the snow crystals. As the crystal size approaches the size of the microwave wavelength, it scatters microwave radiation more effectively, thus lowering the brightness temperature. The dry ice crystals in this experiment were about an order of magnitude larger than the snow crystals and three orders of magnitude larger than the CO2 Crystals produced in the cold stage of a scanning electron microscope. Spreading soil, approximately 2 mm in thickness, on the dry ice appeared to have no effect on the brightness temperatures.
COBE's search for structure in the Big Bang
NASA Technical Reports Server (NTRS)
Soffen, Gerald (Editor); Guerny, Gene (Editor); Keating, Thomas (Editor); Moe, Karen (Editor); Sullivan, Walter (Editor); Truszkowski, Walt (Editor)
1989-01-01
The launch of Cosmic Background Explorer (COBE) and the definition of Earth Observing System (EOS) are two of the major events at NASA-Goddard. The three experiments contained in COBE (Differential Microwave Radiometer (DMR), Far Infrared Absolute Spectrophotometer (FIRAS), and Diffuse Infrared Background Experiment (DIRBE)) are very important in measuring the big bang. DMR measures the isotropy of the cosmic background (direction of the radiation). FIRAS looks at the spectrum over the whole sky, searching for deviations, and DIRBE operates in the infrared part of the spectrum gathering evidence of the earliest galaxy formation. By special techniques, the radiation coming from the solar system will be distinguished from that of extragalactic origin. Unique graphics will be used to represent the temperature of the emitting material. A cosmic event will be modeled of such importance that it will affect cosmological theory for generations to come. EOS will monitor changes in the Earth's geophysics during a whole solar color cycle.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bechtold, J.K.; Booty, M.R.; Kriegsmann, G.A.
1996-12-31
In recent years, microwave heating has been proposed as an alternative to ignite materials during the process of self-propagating high-temperature synthesis. The microwave heating and ignition of a combustible material is modeled and analyzed in the small Biot number and large activation energy regimes. Both the temporal and spatial evolution of the temperature within the material are described. The ignition characteristics are determined by a localized equation for the perturbation to the inert temperature, which is shown to exhibit thermal runaway behavior. Analysis of this local equation provides explicit ignition conditions in terms of the physical parameters in the problem.
NASA Technical Reports Server (NTRS)
Netterfield, C. B.; Ade, P. A. R.; Bock, J. J.; Bond, J. R.; Borrill, J.; Boscaleri, A.; Coble, K.; Contaldi, C. R.; Crill, B. P.; Bernardis, P. de;
2001-01-01
This paper presents a measurement of the angular power spectrum of the Cosmic Microwave Background from l = 75 to l = 1025 (10' to 5 degrees) from a combined analysis of four 150 GHz channels in the BOOMERANG experiment. The spectrum contains multiple peaks and minima, as predicted by standard adiabatic-inflationary models in which the primordial plasma undergoes acoustic oscillations.
Sea Surface Signature of Tropical Cyclones Using Microwave Remote Sensing
2013-01-01
due to the ionosphere and troposphere, which have to be compensated for, and components due to the galactic and cosmic background radiation those...and corrections for sun glint, galactic and cosmic background radiation, and Stokes effects of the ionosphere. The accuracy of a given retrieval...RESPONSIBLE PERSON 19b. TELEPHONE NUMBER (Include area code) Sea surface signature of tropical cyclones using microwave remote sensing Bumjun Kil
Primary and Secondary Anisotropies of Cosmic Microwave Background
NASA Technical Reports Server (NTRS)
Seljak, Uros
2002-01-01
The three main topics we proposed to do are linear calculations (continuing development of CMBFAST), nonlinear calculations of gas physics relevant to Cosmic Microwave Background (CMB) (Sunyaev-Zeldovich effect, etc.) and nonlinear effects on CMB due to dark matter (gravitational lensing, etc.). We describe each of these topics, as well as additional topics PI and his group worked on that are related to the topics in the proposal.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ghosh, Shamik; Kothari, Rahul; Jain, Pankaj
We propose a dipole modulation model for the Cosmic Microwave Background Radiation (CMBR) polarization field. We show that the model leads to correlations between l and l+1 multipoles, exactly as in the case of temperature. We obtain results for the case of TE, EE and BB correlations. An anisotropic or inhomogeneous model of primordial power spectrum which leads to such correlations in temperature field also predicts similar correlations in CMBR polarization. We analyze the CMBR temperature and polarization data in order to extract the signal of these correlation between l and l+1 multipoles. Our results for the case of temperaturemore » using the latest PLANCK data agree with those obtained by an earlier analysis. A detailed study of the correlation in the polarization data is not possible at present. Hence we restrict ourselves to a preliminary investigation in this case.« less
A device for microwave sintering large ceramic articles
Kimrey, H.D. Jr.
1987-07-24
A microwave sintering system is provided for uniform sintering of large and/or irregular shapes ceramic articles at microwave frequencies of at least 28 GHz in the hundreds of kilowatts power range in an untuned cavity. A 28 GHz, 200 kw gyrotron with variable power output is used as the microwave source connected to an untuned microwave cavity formed of an electrically conductive housing. The part to be sintered is placed in the cavity and supported on a removable high temperature table in a central location within the cavity. The part is surrounded by a microwave transparent bulk insulating material to reduce thermal heat loss at the part surfaces and maintain more uniform temperature. The cavity may be operated at a high vacuum to aid in preventing arcing. The system allows controlled increased heating rates of greater than 200/degree/C/min to provide rapid heating of a ceramic part to a selected sintering temperature where it is maintained by regulating the microwave power applied to the part. As a result of rapid heating, the extent on non-isothermal processes such as segregation of impurities to the grain boundaries are minimized and exaggerated grain growth is reduced, thereby strengthening the mechanical properties of the ceramic part being sintered. 1 fig.
Polar Chromospheric Signatures of the Subdued Cycle 23/24 Solar Minimum
NASA Technical Reports Server (NTRS)
Gopalswamy, N.; Yashiro, S.; Makela, P.; Shibasaki, K.; Hathaway, D.
2010-01-01
Coronal holes appear brighter than the quiet Sun in microwave images, with a brightness enhancement of 500 to 2000 K. The brightness enhancement corresponds to the upper chromosphere, where the plasma temperature is about 10000 K. We constructed a microwave butterfly diagram using the synoptic images obtained by the Nobeyama radioheliograph (NoRH) showing the evolution of the polar and low latitude brightness temperature. While the polar brightness reveals the chromospheric conditions, the low latitude brightness is attributed to active regions in the corona. When we compared the microwave butterfly diagram with the magnetic butterfly diagram, we found a good correlation between the microwave brightness enhancement and the polar field strength. The microwave butterfly diagram covers part of solar cycle 22, whole of cycle 23, and part of cycle 24, thus enabling comparison between the cycle 23/24 and cycle 22/23 minima. The microwave brightness during the cycle 23/24 minimum was found to be lower than that during the cycle 22/23 minimum by approximately 250 K. The reduced brightness temperature is consistent with the reduced polar field strength during the cycle 23/24 minimum seen in the magnetic butterfly diagram. We suggest that the microwave brightness at the solar poles is a good indicator of the speed of the solar wind sampled by Ulysses at high latitudes.
Passive microwave studies of snowpack properties. [Walden and Steamboat Spring, Colorado
NASA Technical Reports Server (NTRS)
Hall, D. K.; Chang, A. T. C.; Foster, J. L.; Rango, A.; Schmugge, T.
1978-01-01
Microwave brightness temperatures were measured for the snowpacks at Walden and Steamboat Springs, Colorado during 1976 and 1977 aircraft experiments. Variations in measured brightness temperatures are attributed to snow grain and crystal sizes, liquid water content, and snowpack temperature. Results demonstrate that shorter wavelength radiation is scattered more strongly than longer wavelength radiation.
Thermoregulation in intense microwave fields
DOE Office of Scientific and Technical Information (OSTI.GOV)
Michaelson, S.M.
1981-10-01
These studies clearly indicate the thermoregulatory capacity of the dog to withstand exposure to high microwave fields at specific absorption rates (SAR) of 3.7 and 6.1 W/kg. It appears that adequate thermoregulation takes place at an SAR of 3.7 W/kg but only transiently at 6.1 W/kg. These values, compared with the standardized resting metabolic rate of 3.29 W/kg (0.75), provide a basis for assessing the relationship of the thermal burden and thermo-regulatory disruption by microwaves in the dog. To elucidate the thermal potential of microwave exposure, it was helpful to conduct these exposures at various ambient temperatures in which themore » normal body temperature remained stable, thus permitting comparison of heat production and dissipation with our without microwaves. The zone of the thermal neutrality or thermoneutral zone of vasomotor activity, 22-26.5 deg C, where body temperature is regulated by changes in vasomotor tonus, fulfilled this requirement.« less
NASA Astrophysics Data System (ADS)
Génova-Santos, Ricardo; Suárez-Velásquez, I.; Atrio-Barandela, F.; Mücket, J. P.
2013-07-01
The fraction of ionized gas in the warm-hot intergalactic medium induces temperature anisotropies on the cosmic microwave background similar to those of clusters of galaxies. The Sunyaev-Zel'dovich (SZ) anisotropies due to these low-density, weakly non-linear, baryon filaments cannot be distinguished from that of clusters using frequency information, but they can be separated since their angular scales are very different. To determine the relative contribution of the WHIM SZ signal to the radiation power spectrum of temperature anisotropies, we explore the parameter space of the concordance Λ cold dark matter model using Monte Carlo Markov chains and the Wilkinson Microwave Anisotropy Probe 7 yr and South Pole Telescope data. We find marginal evidence of a contribution by diffuse gas, with amplitudes of AWHIM = 10-20 μK2, but the results are also compatible with a null contribution from the WHIM, allowing us to set an upper limit of AWHIM < 43 μK2 (95.4 per cent CL). The signal produced by galaxy clusters remains at ACL = 4.5 μK2, a value similar to what is obtained when no WHIM is included. From the measured WHIM amplitude, we constrain the temperature-density phase diagram of the diffuse gas, and find it to be compatible with numerical simulations. The corresponding baryon fraction in the WHIM varies from 0.43 to 0.47, depending on model parameters. The forthcoming Planck data could set tighter constraints on the temperature-density relation.
NASA Technical Reports Server (NTRS)
Hasselfield, Matthew; Moodley, Kavilan; Bond, J. Richard; Das, Sudeep; Devlin, Mark J.; Dunkley, Joanna; Dunner, Rolando; Fowler, Joseph W.; Gallardo, Patricio; Gralla, Megan B.;
2013-01-01
We describe the measurement of the beam profiles and window functions for the Atacama Cosmology Telescope (ACT), which operated from 2007 to 2010 with kilopixel bolometer arrays centered at 148, 218, and 277 GHz. Maps of Saturn are used to measure the beam shape in each array and for each season of observations. Radial profiles are transformed to Fourier space in a way that preserves the spatial correlations in the beam uncertainty to derive window functions relevant for angular power spectrum analysis. Several corrections are applied to the resulting beam transforms, including an empirical correction measured from the final cosmic microwave background (CMB) survey maps to account for the effects of mild pointing variation and alignment errors. Observations of Uranus made regularly throughout each observing season are used to measure the effects of atmospheric opacity and to monitor deviations in telescope focus over the season. Using the WMAP-based calibration of the ACT maps to the CMB blackbody, we obtain precise measurements of the brightness temperatures of the Uranus and Saturn disks at effective frequencies of 149 and 219 GHz. For Uranus we obtain thermodynamic brightness temperatures T(149/U) = 106.7 +/- 2.2 K and T(219/U) = 100.1 +/- 3.1 K. For Saturn, we model the effects of the ring opacity and emission using a simple model and obtain resulting (unobscured) disk temperatures of T(149/S) = 137.3 +/- 3.2 K and T(219/S) = 137.3 +/- 4.7 K.
Testing relativity with orbiting clocks
NASA Astrophysics Data System (ADS)
Nissen, J. A.; Lipa, J. A.; Wang, S.; Avaloff, D.; Stricker, D. A.
2011-02-01
We describe the background and status of a superconducting microwave clock suitable for relativity experiments in earth orbit. The project has the capability of performing improved tests of Lorentz invariance via a Michelson-Morley type experiment, and setting new limits on nine parameters in the Standard Model Extension. If flown with a high stability atomic clock, a Kennedy-Thorndike experiment along with additional tests in general relativity could be performed.In orbit, unwanted cavity frequency variations are expected to be caused mainly by acceleration effects due to residual drag and vibration, temperature variations, and fluctuations in the energy stored in the cavity. A cavity support system has been designed to reduce acceleration effects and a high resolution thermometer has been implemented to improve temperature control.
A passive terahertz video camera based on lumped element kinetic inductance detectors
DOE Office of Scientific and Technical Information (OSTI.GOV)
Rowe, Sam, E-mail: sam.rowe@astro.cf.ac.uk; Pascale, Enzo; Doyle, Simon
We have developed a passive 350 GHz (850 μm) video-camera to demonstrate lumped element kinetic inductance detectors (LEKIDs)—designed originally for far-infrared astronomy—as an option for general purpose terrestrial terahertz imaging applications. The camera currently operates at a quasi-video frame rate of 2 Hz with a noise equivalent temperature difference per frame of ∼0.1 K, which is close to the background limit. The 152 element superconducting LEKID array is fabricated from a simple 40 nm aluminum film on a silicon dielectric substrate and is read out through a single microwave feedline with a cryogenic low noise amplifier and room temperature frequencymore » domain multiplexing electronics.« less
2015-11-01
National Guard PLR Division of Polar Programs SMM /I Special Sensor Microwave/Imager SMMR Scanning Multi-channel Microwave Radiometer ERDC/CRREL...and the Special Sensor Microwave/Imager ( SMM /I). The satellite-based technique uses a difference in the passive microwave brightness temperatures
NASA Technical Reports Server (NTRS)
Fu, C. M.; Chen, C. M.; Lin, H. C.; Wu, K. H.; Juang, J. Y.; Uen, T. M.; Gou, Y. S.
1995-01-01
We have studied systematically the effect of microwave irradiation on the temperature dependent resistivity (R(I) and the current-voltage (I-V) characteristics of YBa2Gu3O(7 - x) (YBCO) bicrystalline grain boundary weak-links (GBWL's), with grain boundary of three different tilt angles. The superconducting transition temperature, T(sub c), has significant enhancement upon microwave irradiation. The microwave enhanced T(sub c) is increased as a function of incident microwave power, but limited to an optimum power level. The GBWL's of 45 deg tilt boundary has shown to be most sensitive to the microwave irradiation power, and the GBWL's of 36.8 deg tilt boundary has displayed a moderate response. In contrast, no enhancement of T(sub c) was observed in the GBWL's of 24 deg tilt boundary, as well as in the uniform films. Under the microwave irradiation, the R(T) dependent is hystertic as the transition taken from superconducting state to normal state and vice versa. Mechanisms associated with the redistribution of nonequilibrium quasiparticles under microwave irradiation are discussed.
Multiscale multichroic focal planes for measurements of the cosmic microwave background
NASA Astrophysics Data System (ADS)
Cukierman, Ari; Lee, Adrian T.; Raum, Christopher; Suzuki, Aritoki; Westbrook, Benjamin
2018-01-01
We report on the development of multiscale multichroic focal planes for measurements of the cosmic microwave background (CMB). A multichroic focal plane, i.e., one that consists of pixels that are simultaneously sensitive in multiple frequency bands, is an efficient architecture for increasing the sensitivity of an experiment as well as for disentangling the contamination due to galactic foregrounds, which is increasingly becoming the limiting factor in extracting cosmological information from CMB measurements. To achieve these goals, it is necessary to observe across a broad frequency range spanning roughly 30-350 GHz. For this purpose, the Berkeley CMB group has been developing multichroic pixels consisting of planar superconducting sinuous antennas coupled to extended hemispherical lenslets, which operate at sub-Kelvin temperatures. The sinuous antennas, microwave circuitry and the transition-edge-sensor (TES) bolometers to which they are coupled are integrated in a single lithographed wafer.We describe the design, fabrication, testing and performance of multichroic pixels with bandwidths of 3:1 and 4:1 across the entire frequency range of interest. Additionally, we report on a demonstration of multiscale pixels, i.e., pixels whose effective size changes as a function of frequency. This property keeps the beam width approximately constant across all frequencies, which in turn allows the sensitivity of the experiment to be optimal in every frequency band. We achieve this by creating phased arrays from neighboring lenslet-coupled sinuous antennas, where the size of each phased array is chosen independently for each frequency band. We describe the microwave circuitry in detail as well as the benefits of a multiscale architecture, e.g., mitigation of beam non-idealities, reduced readout requirements, etc. Finally, we discuss the design and fabrication of the detector modules and focal-plane structures including cryogenic readout components, which enable the integration of our devices in current and future CMB experiments.
A Microwave Thermostatic Reactor for Processing Liquid Materials Based on a Heat-Exchanger.
Zhou, Yongqiang; Zhang, Chun; Xie, Tian; Hong, Tao; Zhu, Huacheng; Yang, Yang; Liu, Changjun; Huang, Kama
2017-10-08
Microwaves have been widely used in the treatment of different materials. However, the existing adjustable power thermostatic reactors cannot be used to analyze materials characteristics under microwave effects. In this paper, a microwave thermostatic chemical reactor for processing liquid materials is proposed, by controlling the velocity of coolant based on PLC (programmable logic controller) in different liquid under different constant electric field intensity. A nonpolar coolant (Polydimethylsiloxane), which is completely microwave transparent, is employed to cool the liquid materials. Experiments are performed to measure the liquid temperature using optical fibers, the results show that the precision of temperature control is at the range of ±0.5 °C. Compared with the adjustable power thermostatic control system, the effect of electric field changes on material properties are avoided and it also can be used to detect the properties of liquid materials and special microwave effects.
A Microwave Thermostatic Reactor for Processing Liquid Materials Based on a Heat-Exchanger
Zhou, Yongqiang; Zhang, Chun; Xie, Tian; Hong, Tao; Yang, Yang; Liu, Changjun; Huang, Kama
2017-01-01
Microwaves have been widely used in the treatment of different materials. However, the existing adjustable power thermostatic reactors cannot be used to analyze materials characteristics under microwave effects. In this paper, a microwave thermostatic chemical reactor for processing liquid materials is proposed, by controlling the velocity of coolant based on PLC (programmable logic controller) in different liquid under different constant electric field intensity. A nonpolar coolant (Polydimethylsiloxane), which is completely microwave transparent, is employed to cool the liquid materials. Experiments are performed to measure the liquid temperature using optical fibers, the results show that the precision of temperature control is at the range of ±0.5 °C. Compared with the adjustable power thermostatic control system, the effect of electric field changes on material properties are avoided and it also can be used to detect the properties of liquid materials and special microwave effects. PMID:28991195
Fast Microwave-assisted Pretreatment for Bioconversion of Sawdust Lignocellulose to Glucose
NASA Astrophysics Data System (ADS)
Nyoman Sudiana, I.; Mitsudo, Seitaro; Endang Susilowati, Prima; Ketut Sutiari, Desak; Widana Arsana, Made; Zamrun Firihu, Muhammad; Ode Ngkoimani, La; Aba, La; Sahaluddin Hasan, Erzam; Cahyono, Edi; Sabchevski, Svilen; Aripin, Haji; Gde Suastika, Komang
2017-05-01
A preliminary study of application microwave energy for bioconversion of cellulosic sawdust to glucose was performed. The effects of the microwave were compared to those of the conventional method for each solvent. It was expected that a broader mechanism responsible for the microwave effects on the chemical processes, especially the pretreatment on the hydrolysis of cellulose can be explained. Reagents used were an acid (HCl), an alkali (NaOH), and distilled water (H2O). The experimental results showed that the microwave-assisted pretreatment on the lignocellulosic sawdust faster than by using conventional heating (hotplate). Moreover by using microwave a higher glucose content compared to the conventional method was found. With microwave during hydrolisis, high temperatures and high reagent concentrations were not required. Pretreatment with a microwave at 800 Watt and solvent NaOH 22,50 mg/mL at a temperature of 120°c appeared to be most efficient found in this experiment. These results indicate that microwave effective for bioconversion of cellulosic sawdust to glucose. The microstructure evaluation by using SEM and XRD should be performed to understand more detail the effect especially on their cellulosic structural evolution.
NASA Astrophysics Data System (ADS)
Bafrooei, H. Barzegar; Nassaj, E. Taheri; Hu, C. F.; Huang, Q.; Ebadzadeh, T.
2014-12-01
High density ZnNb2O6 ceramics were successfully fabricated by microwave sintering of ZnO-Nb2O5 and ZnNb2O6 nanopowders. Phase formation, microstructure and microwave electrical properties of the microwave sintered (MS) and microwave reaction sintered (MRS) specimens were examined using X-ray diffraction, field emission scanning electron microscopy and microwave dielectric properties measurement. Specimens were sintered in a temperature range from 950 to 1075 °C for 30 min at an interval of 25 °C using a microwave furnace operated at 2.45 GHz frequency, 3 kW power. XRD pattern revealed the formation of pure columbite phase of ZnNb2O6. The SEM micrographs show grain growth and reduction in porosity of specimens with the increase in sintering temperature. Good combination of microwave dielectric properties (εr~23.6, Qf~64,300 GHz and τf~-66 ppm/°C and εr~24, Qf~75,800 GHz and τf~-64 ppm/°C) was obtained for MS- and MRS-prepared samples at 1000 °C and 1050 °C for 30 min, respectively.
Microwave cryogenic thermal-noise standards
NASA Technical Reports Server (NTRS)
Stelzried, C. T.
1971-01-01
Field operational waveguide noise standard with nominal noise temperature of 78.09 plus/minus 0.12 deg K is calibrated more precisely than before. Calibration technique applies to various disciplines such as microwave radiometry, antenna temperature and loss measurement, and low-noise amplifier performance evaluation.
Story, K. T.; Hanson, D.; Ade, P. A. R.; ...
2015-08-28
Here, we present a measurement of the cosmic microwave background (CMB) gravitational lensing potential using data from the first two seasons of observations with SPTpol, the polarization-sensitive receiver currently installed on the South Pole Telescope. The observations used in this work cover 100 deg 2 of sky with arcminute resolution at 150 GHz. Using a quadratic estimator, we make maps of the CMB lensing potential from combinations of CMB temperature and polarization maps. We combine these lensing potential maps to form a minimum-variance (MV) map. The lensing potential is measured with a signal-to-noise ratio of greater than one for angular multipoles betweenmore » $$100\\lt L\\lt 250$$. This is the highest signal-to-noise mass map made from the CMB to date and will be powerful in cross-correlation with other tracers of large-scale structure. We calculate the power spectrum of the lensing potential for each estimator, and we report the value of the MV power spectrum between $$100\\lt L\\lt 2000$$ as our primary result. We constrain the ratio of the spectrum to a fiducial ΛCDM model to be AMV = 0.92 ± 0.14 (Stat.) ± 0.08 (Sys.). Restricting ourselves to polarized data only, we find A POL = 0.92 ± 0.24 (Stat.) ± 0.11 (Sys.). This measurement rejects the hypothesis of no lensing at $$5.9\\sigma $$ using polarization data alone, and at $$14\\sigma $$ using both temperature and polarization data.« less
Microwave Radiative Transfer: Theory and Applications
NASA Astrophysics Data System (ADS)
Wilheit, T. T.
2006-12-01
The same physical laws govern visible, infrared and microwave radiative transfer. However, frequency dependence of the Planck function and of the properties of geophysically important materials create apparent differences. The applicability of the Rayleigh-Jeans to most of the microwave spectrum is a convenience, and makes it easier to illustrate some physical principles, but is of very little fundamental importance. Line widths of gaseous constituents are determined by collision frequencies and are of the order of 1 GHz throughout the troposphere in the visible, infrared and microwave portions of the spectrum. However, it is easy to make a radiometer that has a bandwidth small compared to this width in the microwave portion of the spectrum and significantly more difficult in the infrared and visible. As a result, computations in the microwave are monochromatic (or very close to it). In the microwave portion of the spectrum there is no need for elaborate band models. Clouds are a fundamental difference because the opacity of most clouds is very high in the visible and infrared and fairly small in the microwave. This quantitative difference necessitates qualitative differences in approach. Probably, the most counter-intuitive differences between the microwave regions and shorter wavelengths result from the preponderance of highly reflective surfaces in the microwave. The oceans reflect on the order of 50% but the details depend strongly on frequency, polarization and view angle. The large glaciers of Greenland and Antarctica are also highly reflective but less dependant on view angle and polarization. This high reflectivity means that introducing an absorber into the atmosphere at a temperature colder than the surface temperature will, nevertheless increase the observed radiance. This has fundamental importance for the retrieval of constituents from the atmosphere. Even over land surfaces, the observed radiance in microwave window channels depends more on the reflectivity than on the temperature. Thus, microwave observations can yield information on the surface composition (soil moisture, vegetation cover).
A comparison of direct heating during radiofrequency and microwave ablation in ex vivo liver
Andreano, Anita; Brace, Christopher L
2012-01-01
Purpose To determine the magnitude and spatial distribution of temperature elevations when using 480 kHz RF and 2.45 GHz microwave energy in ex vivo liver models. Materials and Methods A total of sixty heating cycles (20 s at 90 W) were performed in normal, RF ablated and microwave ablated liver tissues (n=10 RF and n=10 microwave in each tissue type). Heating cycles were performed using a 480 kHz generator and 3 cm cooled-tip electrode (RF) or a 2.45 GHz generator and 14-gauge monopole (microwave) and designed to isolate direct heating from each energy type. Tissue temperatures were measured using fiberoptic thermosensors 5, 10 and 15 mm radially from the ablation applicator at the depth of maximal heating. Power delivered, sensor location, heating rates and maximal temperatures were compared using mixed effects regression models. Results No significant differences were noted in mean power delivered or thermosensor locations between RF and microwave heating groups (P>0.05). Microwaves produced significantly more rapid heating than RF at 5, 10 and 15mm in normal tissue (3.0 vs. 0.73, 0.85 vs. 0.21 and 0.17 vs. 0.09 °C/s; P<.05); and at 5 and 10mm in ablated tissues (2.3 ± 1.4 vs. 0.7 ± 0.3, 0.5 ± 0.3 vs. 0.2 ± 0.0 C/s, P<.05). The radial depth of heating was approximately 5mm greater for microwaves than RF. Conclusions Direct heating obtained with 2.45 GHz microwave energy using a single needle-like applicator is faster and covers a larger volume of tissue than 480 kHz RF energy. Keywords: microwave ablation, direct heating, thermal ablation PMID:22572764
Rapid microwave-assisted synthesis of sub-30nm lipid nanoparticles.
Dunn, Stuart S; Beckford Vera, Denis R; Benhabbour, S Rahima; Parrott, Matthew C
2017-02-15
Accessing the phase inversion temperature by microwave heating may enable the rapid synthesis of small lipid nanoparticles. Nanoparticle formulations consisted of surfactants Brij 78 and Vitamin E TPGS, and trilaurin, trimyristin, or miglyol 812 as nanoparticle lipid cores. Each formulation was placed in water and heated by microwave irradiation at temperatures ranging from 65°C to 245°C. We observed a phase inversion temperature (PIT) for these formulations based on a dramatic decrease in particle Z-average diameters. Subsequently, nanoparticles were manufactured above and below the PIT and studied for (a) stability toward dilution, (b) stability over time, (c) fabrication as a function of reaction time, and (d) transmittance of lipid nanoparticle dispersions. Lipid-based nanoparticles with distinct sizes down to 20-30nm and low polydispersity could be attained by a simple, one-pot microwave synthesis. This was carried out by accessing the phase inversion temperature using microwave heating. Nanoparticles could be synthesized in just one minute and select compositions demonstrated high stability. The notable stability of these particles may be explained by the combination of van der Waals interactions and steric repulsion. 20-30nm nanoparticles were found to be optically transparent. Published by Elsevier Inc.
NASA Technical Reports Server (NTRS)
Roberts, J. Brent
2010-01-01
Detailed studies of the energy and water cycles require accurate estimation of the turbulent fluxes of moisture and heat across the atmosphere-ocean interface at regional to basin scale. Providing estimates of these latent and sensible heat fluxes over the global ocean necessitates the use of satellite or reanalysis-based estimates of near surface variables. Recent studies have shown that errors in the surface (10 meter)estimates of humidity and temperature are currently the largest sources of uncertainty in the production of turbulent fluxes from satellite observations. Therefore, emphasis has been placed on reducing the systematic errors in the retrieval of these parameters from microwave radiometers. This study discusses recent improvements in the retrieval of air temperature and humidity through improvements in the choice of algorithms (linear vs. nonlinear) and the choice of microwave sensors. Particular focus is placed on improvements using a neural network approach with a single sensor (Special Sensor Microwave/Imager) and the use of combined sensors from the NASA AQUA satellite platform. The latter algorithm utilizes the unique sampling available on AQUA from the Advanced Microwave Scanning Radiometer (AMSR-E) and the Advanced Microwave Sounding Unit (AMSU-A). Current estimates of uncertainty in the near-surface humidity and temperature from single and multi-sensor approaches are discussed and used to estimate errors in the turbulent fluxes.
NASA Technical Reports Server (NTRS)
Olson, William S.; Raymond, William H.
1990-01-01
The physical retrieval of geophysical parameters based upon remotely sensed data requires a sensor response model which relates the upwelling radiances that the sensor observes to the parameters to be retrieved. In the retrieval of precipitation water contents from satellite passive microwave observations, the sensor response model has two basic components. First, a description of the radiative transfer of microwaves through a precipitating atmosphere must be considered, because it is necessary to establish the physical relationship between precipitation water content and upwelling microwave brightness temperature. Also the spatial response of the satellite microwave sensor (or antenna pattern) must be included in the description of sensor response, since precipitation and the associated brightness temperature field can vary over a typical microwave sensor resolution footprint. A 'population' of convective cells, as well as stratiform clouds, are simulated using a computationally-efficient multi-cylinder cloud model. Ensembles of clouds selected at random from the population, distributed over a 25 km x 25 km model domain, serve as the basis for radiative transfer calculations of upwelling brightness temperatures at the SSM/I frequencies. Sensor spatial response is treated explicitly by convolving the upwelling brightness temperature by the domain-integrated SSM/I antenna patterns. The sensor response model is utilized in precipitation water content retrievals.
Birkelund, Yngve; Klemetsen, Øystein; Jacobsen, Svein K; Arunachalam, Kavitha; Maccarini, Paolo; Stauffer, Paul R
2011-11-01
We have investigated the use of microwave heating and radiometry to safely heat urine inside a pediatric bladder. The medical application for this research is to create a safe and reliable method to detect vesicoureteral reflux, a pediatric disorder, where urine flow is reversed and flows from the bladder back up into the kidney. Using fat and muscle tissue models, we have performed both experimental and numerical simulations of a pediatric bladder model using planar dual concentric conductor microstrip antennas at 915 MHz for microwave heating. A planar elliptical antenna connected to a 500 MHz bandwidth microwave radiometer centered at 3.5 GHz was used for noninvasive temperature measurement inside tissue. Temperatures were measured in the phantom models at points during the experiment with implanted fiberoptic sensors, and 2-D distributions in cut planes at depth in the phantom with an infrared camera at the end of the experiment. Cycling between 20 s with 20 Watts power for heating, and 10 s without power to allow for undisturbed microwave radiometry measurements, the experimental results show that the target tissue temperature inside the phantom increases fast and that the radiometer provides useful measurements of spatially averaged temperature of the illuminated volume. The presented numerical and experimental results show excellent concordance, which confirms that the proposed system for microwave heating and radiometry is applicable for safe and reliable heating of pediatric bladder.
Ma, Shuang-Chen; Gao, Li; Ma, Jing-Xiang; Jin, Xin; Yao, Juan-Juan; Zhao, Yi
2012-06-01
This paper describes the research background and chemistry of desulfurization and denitrification technology using microwave irradiation. Microwave-induced catalysis combined with activated carbon adsorption and reduction can reduce nitric oxide to nitrogen and sulfur dioxide to sulfur from flue gas effectively. This paper also highlights the main drawbacks of this technology and discusses future development trends. It is reported that the removal of sulfur dioxide and nitric oxide using microwave irradiation has broad prospects for development in the field of air pollution control.
Introducing Multisensor Satellite Radiance-Based Evaluation for Regional Earth System Modeling
NASA Technical Reports Server (NTRS)
Matsui, T.; Santanello, J.; Shi, J. J.; Tao, W.-K.; Wu, D.; Peters-Lidard, C.; Kemp, E.; Chin, M.; Starr, D.; Sekiguchi, M.;
2014-01-01
Earth System modeling has become more complex, and its evaluation using satellite data has also become more difficult due to model and data diversity. Therefore, the fundamental methodology of using satellite direct measurements with instrumental simulators should be addressed especially for modeling community members lacking a solid background of radiative transfer and scattering theory. This manuscript introduces principles of multisatellite, multisensor radiance-based evaluation methods for a fully coupled regional Earth System model: NASA-Unified Weather Research and Forecasting (NU-WRF) model. We use a NU-WRF case study simulation over West Africa as an example of evaluating aerosol-cloud-precipitation-land processes with various satellite observations. NU-WRF-simulated geophysical parameters are converted to the satellite-observable raw radiance and backscatter under nearly consistent physics assumptions via the multisensor satellite simulator, the Goddard Satellite Data Simulator Unit. We present varied examples of simple yet robust methods that characterize forecast errors and model physics biases through the spatial and statistical interpretation of various satellite raw signals: infrared brightness temperature (Tb) for surface skin temperature and cloud top temperature, microwave Tb for precipitation ice and surface flooding, and radar and lidar backscatter for aerosol-cloud profiling simultaneously. Because raw satellite signals integrate many sources of geophysical information, we demonstrate user-defined thresholds and a simple statistical process to facilitate evaluations, including the infrared-microwave-based cloud types and lidar/radar-based profile classifications.
Planck 2015 results: V. LFI calibration
Ade, P. A. R.; Aghanim, N.; Ashdown, M.; ...
2016-09-20
In this paper, we present a description of the pipeline used to calibrate the Planck Low Frequency Instrument (LFI) timelines into thermodynamic temperatures for the Planck 2015 data release, covering four years of uninterrupted operations. As in the 2013 data release, our calibrator is provided by the spin-synchronous modulation of the cosmic microwave background dipole, but we now use the orbital component, rather than adopting the Wilkinson Microwave Anisotropy Probe (WMAP) solar dipole. This allows our 2015 LFI analysis to provide an independent Solar dipole estimate, which is in excellent agreement with that of HFI and within 1σ (0.3% inmore » amplitude) of the WMAP value. This 0.3% shift in the peak-to-peak dipole temperature from WMAP and a general overhaul of the iterative calibration code increases the overall level of the LFI maps by 0.45% (30 GHz), 0.64% (44 GHz), and 0.82% (70 GHz) in temperature with respect to the 2013 Planck data release, thus reducing the discrepancy with the power spectrum measured by WMAP. We estimate that the LFI calibration uncertainty is now at the level of 0.20% for the 70 GHz map, 0.26% for the 44 GHz map, and 0.35% for the 30 GHz map. Finally, we provide a detailed description of the impact of all the changes implemented in the calibration since the previous data release.« less
Planck 2015 results: V. LFI calibration
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ade, P. A. R.; Aghanim, N.; Ashdown, M.
In this paper, we present a description of the pipeline used to calibrate the Planck Low Frequency Instrument (LFI) timelines into thermodynamic temperatures for the Planck 2015 data release, covering four years of uninterrupted operations. As in the 2013 data release, our calibrator is provided by the spin-synchronous modulation of the cosmic microwave background dipole, but we now use the orbital component, rather than adopting the Wilkinson Microwave Anisotropy Probe (WMAP) solar dipole. This allows our 2015 LFI analysis to provide an independent Solar dipole estimate, which is in excellent agreement with that of HFI and within 1σ (0.3% inmore » amplitude) of the WMAP value. This 0.3% shift in the peak-to-peak dipole temperature from WMAP and a general overhaul of the iterative calibration code increases the overall level of the LFI maps by 0.45% (30 GHz), 0.64% (44 GHz), and 0.82% (70 GHz) in temperature with respect to the 2013 Planck data release, thus reducing the discrepancy with the power spectrum measured by WMAP. We estimate that the LFI calibration uncertainty is now at the level of 0.20% for the 70 GHz map, 0.26% for the 44 GHz map, and 0.35% for the 30 GHz map. Finally, we provide a detailed description of the impact of all the changes implemented in the calibration since the previous data release.« less
Planck 2015 results. V. LFI calibration
NASA Astrophysics Data System (ADS)
Planck Collaboration; Ade, P. A. R.; Aghanim, N.; Ashdown, M.; Aumont, J.; Baccigalupi, C.; Banday, A. J.; Barreiro, R. B.; Bartolo, N.; Battaglia, P.; Battaner, E.; Benabed, K.; Benoît, A.; Benoit-Lévy, A.; Bernard, J.-P.; Bersanelli, M.; Bielewicz, P.; Bock, J. J.; Bonaldi, A.; Bonavera, L.; Bond, J. R.; Borrill, J.; Bouchet, F. R.; Bucher, M.; Burigana, C.; Butler, R. C.; Calabrese, E.; Cardoso, J.-F.; Catalano, A.; Chamballu, A.; Christensen, P. R.; Colombi, S.; Colombo, L. P. L.; Crill, B. P.; Curto, A.; Cuttaia, F.; Danese, L.; Davies, R. D.; Davis, R. J.; de Bernardis, P.; de Rosa, A.; de Zotti, G.; Delabrouille, J.; Dickinson, C.; Diego, J. M.; Dole, H.; Donzelli, S.; Doré, O.; Douspis, M.; Ducout, A.; Dupac, X.; Efstathiou, G.; Elsner, F.; Enßlin, T. A.; Eriksen, H. K.; Fergusson, J.; Finelli, F.; Forni, O.; Frailis, M.; Franceschi, E.; Frejsel, A.; Galeotta, S.; Galli, S.; Ganga, K.; Giard, M.; Giraud-Héraud, Y.; Gjerløw, E.; González-Nuevo, J.; Górski, K. M.; Gratton, S.; Gregorio, A.; Gruppuso, A.; Hansen, F. K.; Hanson, D.; Harrison, D. L.; Henrot-Versillé, S.; Herranz, D.; Hildebrandt, S. R.; Hivon, E.; Hobson, M.; Holmes, W. A.; Hornstrup, A.; Hovest, W.; Huffenberger, K. M.; Hurier, G.; Jaffe, A. H.; Jaffe, T. R.; Juvela, M.; Keihänen, E.; Keskitalo, R.; Kisner, T. S.; Knoche, J.; Krachmalnicoff, N.; Kunz, M.; Kurki-Suonio, H.; Lagache, G.; Lähteenmäki, A.; Lamarre, J.-M.; Lasenby, A.; Lattanzi, M.; Lawrence, C. R.; Leahy, J. P.; Leonardi, R.; Lesgourgues, J.; Levrier, F.; Liguori, M.; Lilje, P. B.; Linden-Vørnle, M.; López-Caniego, M.; Lubin, P. M.; Macías-Pérez, J. F.; Maggio, G.; Maino, D.; Mandolesi, N.; Mangilli, A.; Maris, M.; Martin, P. G.; Martínez-González, E.; Masi, S.; Matarrese, S.; McGehee, P.; Meinhold, P. R.; Melchiorri, A.; Mendes, L.; Mennella, A.; Migliaccio, M.; Mitra, S.; Montier, L.; Morgante, G.; Mortlock, D.; Moss, A.; Munshi, D.; Murphy, J. A.; Naselsky, P.; Nati, F.; Natoli, P.; Netterfield, C. B.; Nørgaard-Nielsen, H. U.; Novikov, D.; Novikov, I.; Paci, F.; Pagano, L.; Pajot, F.; Paoletti, D.; Partridge, B.; Pasian, F.; Patanchon, G.; Pearson, T. J.; Peel, M.; Perdereau, O.; Perotto, L.; Perrotta, F.; Pettorino, V.; Piacentini, F.; Pierpaoli, E.; Pietrobon, D.; Pointecouteau, E.; Polenta, G.; Pratt, G. W.; Prézeau, G.; Prunet, S.; Puget, J.-L.; Rachen, J. P.; Rebolo, R.; Reinecke, M.; Remazeilles, M.; Renzi, A.; Rocha, G.; Romelli, E.; Rosset, C.; Rossetti, M.; Roudier, G.; Rubiño-Martín, J. A.; Rusholme, B.; Sandri, M.; Santos, D.; Savelainen, M.; Scott, D.; Seiffert, M. D.; Shellard, E. P. S.; Spencer, L. D.; Stolyarov, V.; Sutton, D.; Suur-Uski, A.-S.; Sygnet, J.-F.; Tauber, J. A.; Tavagnacco, D.; Terenzi, L.; Toffolatti, L.; Tomasi, M.; Tristram, M.; Tucci, M.; Tuovinen, J.; Türler, M.; Umana, G.; Valenziano, L.; Valiviita, J.; Van Tent, B.; Vassallo, T.; Vielva, P.; Villa, F.; Wade, L. A.; Wandelt, B. D.; Watson, R.; Wehus, I. K.; Wilkinson, A.; Yvon, D.; Zacchei, A.; Zonca, A.
2016-09-01
We present a description of the pipeline used to calibrate the Planck Low Frequency Instrument (LFI) timelines into thermodynamic temperatures for the Planck 2015 data release, covering four years of uninterrupted operations. As in the 2013 data release, our calibrator is provided by the spin-synchronous modulation of the cosmic microwave background dipole, but we now use the orbital component, rather than adopting the Wilkinson Microwave Anisotropy Probe (WMAP) solar dipole. This allows our 2015 LFI analysis to provide an independent Solar dipole estimate, which is in excellent agreement with that of HFI and within 1σ (0.3% in amplitude) of the WMAP value. This 0.3% shift in the peak-to-peak dipole temperature from WMAP and a general overhaul of the iterative calibration code increases the overall level of the LFI maps by 0.45% (30 GHz), 0.64% (44 GHz), and 0.82% (70 GHz) in temperature with respect to the 2013 Planck data release, thus reducing the discrepancy with the power spectrum measured by WMAP. We estimate that the LFI calibration uncertainty is now at the level of 0.20% for the 70 GHz map, 0.26% for the 44 GHz map, and 0.35% for the 30 GHz map. We provide a detailed description of the impact of all the changes implemented in the calibration since the previous data release.
Radiative decays of massive relic particles and the submillimeter background
NASA Technical Reports Server (NTRS)
Field, George B.; Walker, Terry P.
1989-01-01
The interaction of the decay photons of an unstable relic particle species with the microwave background radiation is considered. The radiative decays of these particles delay recombination and serve as an energy source for the resultant plasma. Nonrelativistic Compton scattering by these electrons couples the decay photons to the microwave background, producing submillimeter distortions. If the decay products close the universe, they must decay with a radiative branching ratio larger than 2.5 x 10 to the -5th in order to produce recently observed excess submillimeter background radiation. To be consistent with measurements of the UV background, their mass m is much greater than 114 keV and their decay redshift z is much greater than 5200.
Microwave off-gas treatment apparatus and process
Schulz, Rebecca L.; Clark, David E.; Wicks, George G.
2003-01-01
The invention discloses a microwave off-gas system in which microwave energy is used to treat gaseous waste. A treatment chamber is used to remediate off-gases from an emission source by passing the off-gases through a susceptor matrix, the matrix being exposed to microwave radiation. The microwave radiation and elevated temperatures within the combustion chamber provide for significant reductions in the qualitative and quantitative emissions of the gas waste stream.
Snowpack monitoring in North America and Eurasia using passive microwave satellite data
NASA Technical Reports Server (NTRS)
Foster, J. L.; Rango, A.; Hall, D. K.
1980-01-01
Areas of the Canadian high plains, the Montana and North Dakota high plains, and the steppes of central Russia were studied in an effort to determine the utility of spaceborne electrical scanning microwave radiometers (ESMR) for monitoring snow depths in different geographic areas. Significant regression relationships between snow depth and microwave brightness temperatures were developed for each of these homogeneous areas. In the areas investigated, Nimbus 6 (.081 cm) ESMR data produced higher correlations than Nimbus 5 (1.55 cm) ESMR data in relating microwave brightness temperature and snow depth from one area to another because different geographic areas are likely to have different snowpack conditions.
High-temperature superconductivity for avionic electronic warfare and radar systems
NASA Astrophysics Data System (ADS)
Ryan, Paul A.
1994-01-01
The electronic warfare (EW) and radar communities expect to be major beneficiaries of the performance advantages high-temperature superconductivity (HTS) has to offer over conventional technology. Near term upgrades to system hardware can be envisioned using extremely small, high Q, microwave filters and resonators; compact, wideband, low loss, microwave delay and transmission lines; as well as, wideband, low loss, monolithic microwave integrated circuit phase shifters. The most dramatic impact will be in the far term, using HTS to develop new, real time threat identification and response strategy receiver/processing systems designed to utilize the unique high frequency properties of microwave and ultimately digital HTS.
Using Microwaves for Extracting Water from the Moon
NASA Technical Reports Server (NTRS)
Ethridge, Edwin C.; Kaukler, William; Hepburn, Frank
2009-01-01
This disk contains 2 videos that accompanies the talk. Twenty years ago, the Lunar Prospector remote sensing satellite provided evidence of relatively large hydrogen concentrations at the lunar poles and in particular concentrated in permanently shadowed craters. The scientific hypothesis is that the hydrogen is in the form of cryo-trapped water just under the surface of the soil. If true this would mean that an average of about 2% water ice is mixed with the lunar soil existing in the form of ice at cryogenic temperatures. For 5 years we have been investigating the use of microwaves for the processing of lunar soil. One of the early uses could be to use microwave energy to extract volatiles and in particular water from the lunar permafrost. Prototype experiments have shown that microwave energy at 2.45 GHz, as in consumer microwave ovens, will couple with and heat cryogenically cooled lunar soil permafrost simulant, resulting in the rapid sublimation of water vapor into the vacuum chamber. The water vapor has been collected on a cryogenic cold trap with high efficiency. The primary advantage of microwave processing is that the volatiles can be extracted in situ. Excavation would not be required. Microwave frequency dielectric property measurements are being made of different lunar soil simulants and plans are to measure Apollo lunar soil at different frequencies and over a range of temperatures. The materials properties are being used to evaluate the heating of lunar soil and develop COMSOL models that can be used to evaluate different microwave extraction scenarios. With COMSOL the heating from cryogenic temperatures can be calculated and COMSOL will permit temperature dependent materials properties to be used during the heating process. Calculations at different microwave frequencies will allow the evaluation of the type of hardware that would be needed to most efficiently extract the water and other volatiles. The 1st video shows the results of the COMSOL models. The second video shows brief views of the lunar surface.
Using Microwaves for Extracting Water from the Moon
NASA Technical Reports Server (NTRS)
Ethridge, Edwin C.; Kaukler, William; Hepburn, Frank
2009-01-01
This disk contains a video that accompanies the talk. Twenty years ago, the Lunar Prospector remote sensing satellite provided evidence of relatively large hydrogen concentrations at the lunar poles and in particular concentrated in permanently shadowed craters. The scientific hypothesis is that the hydrogen is in the form of cryo-trapped water just under the surface of the soil. If true this would mean that an average of about 2% water ice is mixed with the lunar soil existing in the form of ice at cryogenic temperatures. For 5 years we have been investigating the use of microwaves for the processing of lunar soil. One of the early uses could be to use microwave energy to extract volatiles and in particular water from the lunar permafrost. Prototype experiments have shown that microwave energy at 2.45 GHz, as in consumer microwave ovens, will couple with and heat cryogenically cooled lunar soil permafrost simulant, resulting in the rapid sublimation of water vapor into the vacuum chamber. The water vapor has been collected on a cryogenic cold trap with high efficiency. The primary advantage of microwave processing is that the volatiles can be extracted in situ. Excavation would not be required. Microwave frequency dielectric property measurements are being made of different lunar soil simulants and plans are to measure Apollo lunar soil at different frequencies and over a range of temperatures. The materials properties are being used to evaluate the heating of lunar soil and develop COMSOL models that can be used to evaluate different microwave extraction scenarios. With COMSOL the heating from cryogenic temperatures can be calculated and COMSOL will permit temperature dependent materials properties to be used during the heating process. Calculations at different microwave frequencies will allow the evaluation of the type of hardware that would be needed to most efficiently extract the water and other volatiles. The video shows the partial results of the COMSOL modeling.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Haidar, S. M., E-mail: haidar@imr.tohoku.ac.jp; Lustikova, J.; Shiomi, Y.
2015-10-12
We have investigated microwave power dependence of dc voltage generated upon ferromagnetic resonance in a La{sub 0.67}Sr{sub 0.33}MnO{sub 3}/SrRuO{sub 3} epitaxial bilayer film at room temperature. With increasing microwave power above ∼75 mW, the magnitude of the voltage signal decreases as the sample temperature approaches the Curie temperature of La{sub 0.67}Sr{sub 0.33}MnO{sub 3} due to heating effects. By analyzing the dependence of the voltage signal on the direction of the magnetic field, we show that with increasing microwave power the contribution from the inverse spin Hall effect becomes more dominant than that from the anisotropic magnetoresistance effect.
Conventional and Microwave Joining of Silicon Carbide Using Displacement Reactions
NASA Technical Reports Server (NTRS)
Kingsley, J.; Yiin, T.; Barmatz, M.
1995-01-01
Microwave heating was used to join Silicon Carbide rods using a thin TiC /Si tape interlayer . Microwaves quickly heated the rods and tape to temperatures where solid-state displacement reactions between TiC and Si occurred.
Method of nitriding refractory metal articles
Tiegs, Terry N.; Holcombe, Cressie E.; Dykes, Norman L.; Omatete, Ogbemi O.; Young, Albert C.
1994-01-01
A method of nitriding a refractory-nitride forming metal or metalloid articles and composite articles. A consolidated metal or metalloid article or composite is placed inside a microwave oven and nitrogen containing gas is introduced into the microwave oven. The metal or metalloid article or composite is heated to a temperature sufficient to react the metal or metalloid with the nitrogen by applying a microwave energy within the microwave oven. The metal or metalloid article or composite is maintained at that temperature for a period of time sufficient to convert the article of metal or metalloid or composite to an article or composite of refractory nitride. In addition, a method of applying a coating, such as a coating of an oxide, a carbide, or a carbo-nitride, to an article of metal or metalloid by microwave heating.
Method of nitriding refractory metal articles
Tiegs, T.N.; Holcombe, C.E.; Dykes, N.L.; Omatete, O.O.; Young, A.C.
1994-03-15
A method of nitriding a refractory-nitride forming metal or metalloid articles and composite articles. A consolidated metal or metalloid article or composite is placed inside a microwave oven and nitrogen containing gas is introduced into the microwave oven. The metal or metalloid article or composite is heated to a temperature sufficient to react the metal or metalloid with the nitrogen by applying a microwave energy within the microwave oven. The metal or metalloid article or composite is maintained at that temperature for a period of time sufficient to convert the article of metal or metalloid or composite to an article or composite of refractory nitride. In addition, a method of applying a coating, such as a coating of an oxide, a carbide, or a carbo-nitride, to an article of metal or metalloid by microwave heating.
NASA Technical Reports Server (NTRS)
Yueh, Simon H.
2004-01-01
Active and passive microwave remote sensing techniques have been investigated for the remote sensing of ocean surface wind and salinity. We revised an ocean surface spectrum using the CMOD-5 geophysical model function (GMF) for the European Remote Sensing (ERS) C-band scatterometer and the Ku-band GMF for the NASA SeaWinds scatterometer. The predictions of microwave brightness temperatures from this model agree well with satellite, aircraft and tower-based microwave radiometer data. This suggests that the impact of surface roughness on microwave brightness temperatures and radar scattering coefficients of sea surfaces can be consistently characterized by a roughness spectrum, providing physical basis for using combined active and passive remote sensing techniques for ocean surface wind and salinity remote sensing.
NASA Technical Reports Server (NTRS)
Oneill, P.; Jackson, T.; Blanchard, B. J.; Vandenhoek, R.; Gould, W.; Wang, J.; Glazar, W.; Mcmurtrey, J., III
1983-01-01
Field experiments to (1) study the biomass and geometrical structure properties of vegetation canopies to determine their impact on microwave emission data, and (2) to verify whether time series microwave data can be related to soil hydrologic properties for use in soil type classification. Truck mounted radiometers at 1.4 GHz and 5 GHz were used to obtain microwave brightness temperatures of bare vegetated test plots under different conditions of soil wetness, plant water content and canopy structure. Observations of soil moisture, soil temperature, vegetation biomass and other soil and canopy parameters were made concurrently with the microwave measurements. The experimental design and data collection procedures for both experiments are documented and the reduced data are presented in tabular form.
Cosmic microwave background constraints on primordial black hole dark matter
NASA Astrophysics Data System (ADS)
Aloni, Daniel; Blum, Kfir; Flauger, Raphael
2017-05-01
We revisit cosmic microwave background (CMB) constraints on primordial black hole dark matter. Spectral distortion limits from COBE/FIRAS do not impose a relevant constraint. Planck CMB anisotropy power spectra imply that primordial black holes with mBHgtrsim 5 Msolar are disfavored. However, this is susceptible to sizeable uncertainties due to the treatment of the black hole accretion process. These constraints are weaker than those quoted in earlier literature for the same observables.
NASA Astrophysics Data System (ADS)
Yang, Wei; Zhou, Qianhong; Dong, Zhiwei
2018-01-01
This paper reports a simulation study on a focused microwave (frequency 9.4 GHz, pulse width 2.5 μs, and peak electric field 1.2 kV/cm) discharge in 200 Pa nitrogen. A one-dimensional (1D) fluid model is based on the wave equation for the microwave field propagating through the gas breakdown plasma, the continuity equations for electron, ion and neutral particle densities, and the energy balance equations for mean electron temperature, and nitrogen vibrational and translational temperatures. These equations are numerically solved in a self-consistent manner with a simplified plasma chemistry set, in which the reaction rates involving electrons are calculated from the electron energy distribution function (EEDF) using a two-term expansion method. The spatial and temporal characteristics of the focused microwave breakdown in nitrogen are demonstrated, which include the amplitude of the microwave electric field, and the densities and temperatures of the plasma components. The temporal evolution of the plasma electron density agrees reasonably well with that measured with a microwave interferometer. The spatial-temporal distributions of metastable states are discussed on the plasma chemistry and the character of mean electron temperature. The spatially integrated N2(C3) density shows similar trends with the measured temporal intensity of optical emission spectroscopy, except for a time delay of 100-300 ns. The quantitative discrepancies are explained in light of limitations of the 1D model with a two-term expansion of EEDF. The theoretical model is found to describe the gas breakdown plasma generated by focused microwave beams at least qualitatively.
Exploring the Large Scale Anisotropy in the Cosmic Microwave Background Radiation at 170 GHz
NASA Astrophysics Data System (ADS)
Ganga, Kenneth Matthew
1994-01-01
In this thesis, data from the Far Infra-Red Survey (FIRS), a balloon-borne experiment designed to measure the large scale anisotropy in the cosmic microwave background radiation, are analyzed. The FIRS operates in four frequency bands at 170, 280, 480, and 670 GHz, using an approximately Gaussian beam with a 3.8 deg full-width-at-half-maximum. A cross-correlation with the COBE/DMR first-year maps yields significant results, confirming the DMR detection of anisotropy in the cosmic microwave background radiation. Analysis of the FIRS data alone sets bounds on the amplitude of anisotropy under the assumption that the fluctuations are described by a Harrison-Peebles-Zel'dovich spectrum and further analysis sets limits on the index of the primordial density fluctuations for an Einstein-DeSitter universe. Galactic dust emission is discussed and limits are set on the magnitude of possible systematic errors in the measurement.
High temperature gradient cobalt based clad developed using microwave hybrid heating
NASA Astrophysics Data System (ADS)
Prasad, C. Durga; Joladarashi, Sharnappa; Ramesh, M. R.; Sarkar, Anunoy
2018-04-01
The development of cobalt based cladding on a titanium substrate using microwave cladding technique is benchmark in coating area. The developed cladding would serve the function of a corrosion resistant coating under high temperatures. Clads of thickness 500 µm have been developed by microwave hybrid heating. A microwave furnace of 2.45GHz frequency was used at a 900W power level for processing. Impact of processing time on melting and adhesion of clad has been discussed. The study also extended to static thermal analysis of simple parts with cladding using commercial Finite Element analysis (FEA) software. A comparative study is explored between four variants of the clad being developed. The analysis has been conducted using a square sample. Similar temperature gradient is also shown for a proposed multi-layer coating, which includes a thermal barrier coating yttria stabilized zirconia (YSZ) on top of the corrosion resistant clad. The YSZ coating would protect the corrosion resistant cladding and substrate from high temperatures.
Adaption of a microwave plasma source for low temperature diamond deposition
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ulczynski, M.; Reinhard, D.K.; Asmussen, J.
1996-12-31
This report describes the adaption of a microwave plasma reactor for low temperature diamond deposition. The reactor is of a resonant cavity design. Three approaches have been taken to establish plasma conditions for diamond deposition on substrates which are in the range of 450 C to 550 C. In the first, the substrate is heated only by the plasma and the source is operated at pressures on the order of 10 torr, such that the volumetric power density is sufficiently low to achieve these temperatures. In the second, the plasma pressure and microwave input power were reduced and a substratemore » heater was used to maintain the desired deposition temperatures. In the third approach, the plasma pressure and microwave power were increased and a substrate cooler was used to keep the substrate temperature in the desired range. Reactor performance and deposition results will be described for the three configurations. For the plasma heated substrate assembly, substrate dimensions were up to 10 cm diameter. For the heated and cooled substrate assemblies, substrate dimensions were up to 7.5 cm diameter. Deposition results on a variety of substrates will be reported including low-temperature substrates such as borosilicate glass.« less
Gravitational Thermodynamics for Interstellar Gas and Weakly Degenerate Quantum Gas
NASA Astrophysics Data System (ADS)
Zhu, Ding Yu; Shen, Jian Qi
2016-03-01
The temperature distribution of an ideal gas in gravitational fields has been identified as a longstanding problem in thermodynamics and statistical physics. According to the principle of entropy increase (i.e., the principle of maximum entropy), we apply a variational principle to the thermodynamical entropy functional of an ideal gas and establish a relationship between temperature gradient and gravitational field strength. As an illustrative example, the temperature and density distributions of an ideal gas in two simple but typical gravitational fields (i.e., a uniform gravitational field and an inverse-square gravitational field) are considered on the basis of entropic and hydrostatic equilibrium conditions. The effect of temperature inhomogeneity in gravitational fields is also addressed for a weakly degenerate quantum gas (e.g., Fermi and Bose gas). The present gravitational thermodynamics of a gas would have potential applications in quantum fluids, e.g., Bose-Einstein condensates in Earth’s gravitational field and the temperature fluctuation spectrum in cosmic microwave background radiation.
Master Equation Analysis of Thermal and Nonthermal Microwave Effects.
Ma, Jianyi
2016-10-11
Master equation is a successful model to describe the conventional heating reaction, it is expanded to capture the "microwave effect" in this work. The work equation of "microwave effect" included master equation presents the direct heating, indirect heating, and nonthermal effect about the microwave field. The modified master equation provides a clear physics picture to the nonthermal microwave effect: (1) The absorption and the emission of the microwave, which is dominated by the transition dipole moment between two corresponding states and the intensity of the microwave field, provides a new path to change the reaction rate constants. (2) In the strong microwave field, the distribution of internal states of the molecules will deviate from the equilibrium distribution, and the system temperature defined in the conventional heating reaction is no longer available. According to the general form of "microwave effect" included master equation, a two states model for unimolecular dissociation is proposed and is used to discuss the microwave nonthermal effect particularly. The average rate constants can be increased up to 2400 times for some given cases without the temperature changed in the two states model. Additionally, the simulation of a model system was executed using our State Specified Master Equation package. Three important conclusions can be obtained in present work: (1) A reasonable definition of the nonthermal microwave effect is given in the work equation of "microwave effect" included master equation. (2) Nonthermal microwave effect possibly exists theoretically. (3) The reaction rate constants perhaps can be changed obviously by the microwave field for the non-RRKM and the mode-specified reactions.
Microwave Brightness Temperature and Its Relation to Atmospheric General Circulation Features
1989-05-17
absolute temperature. Molecules may absorb electromagnetic radiation and transition to a higher energy level, or emit radiation and transition to a lower...Walker, 1970). In the microwave region, thermal emission is the only 10 source of radiation and is dependent on the absolute temperature of the...substance as determined by the Planck function. The relationship between absolute temperature and radiation emitted is given by Planck’s Law for a
NASA Astrophysics Data System (ADS)
Hidayat, Mas Irfan P.; Fellicia, Dian Mughni; Rafandi, Ferdiansyah Iqbal
2018-04-01
Microwave assisted heating has been extensively used in materials processing particularly in extraction of TiO2 from Ilmenite (FeTiO3) minerals. Nevertheless, this method could generate non-uniform temperature distribution during the heating process. The observation of this phenomena in cylindrical ilmenite has been conducted by numerical simulation using finite element method according to the Poynthing's theorem. Four different cylinders with variation on its height were simulated in ANSYS 17 with input microwave power of 5.5 Kw. The results indicated that height of heated object could vigorously influence the uniformity of temperature inside the body.
Cosmic microwave background probes models of inflation
NASA Technical Reports Server (NTRS)
Davis, Richard L.; Hodges, Hardy M.; Smoot, George F.; Steinhardt, Paul J.; Turner, Michael S.
1992-01-01
Inflation creates both scalar (density) and tensor (gravity wave) metric perturbations. We find that the tensor-mode contribution to the cosmic microwave background anisotropy on large-angular scales can only exceed that of the scalar mode in models where the spectrum of perturbations deviates significantly from scale invariance. If the tensor mode dominates at large-angular scales, then the value of DeltaT/T predicted on 1 deg is less than if the scalar mode dominates, and, for cold-dark-matter models, bias factors greater than 1 can be made consistent with Cosmic Background Explorer (COBE) DMR results.
Sigurdson, Kris; Cooray, Asantha
2005-11-18
We propose a new method for removing gravitational lensing from maps of cosmic microwave background (CMB) polarization anisotropies. Using observations of anisotropies or structures in the cosmic 21 cm radiation, emitted or absorbed by neutral hydrogen atoms at redshifts 10 to 200, the CMB can be delensed. We find this method could allow CMB experiments to have increased sensitivity to a background of inflationary gravitational waves (IGWs) compared to methods relying on the CMB alone and may constrain models of inflation which were heretofore considered to have undetectable IGW amplitudes.
Salinity surveys using an airborne microwave radiometer
NASA Technical Reports Server (NTRS)
Paris, J. F.; Droppleman, J. D.; Evans, D. E.
1972-01-01
The Barnes PRT-5 infrared radiometer and L-band channel of the multifrequency microwave radiometer are used to survey the distribution of surface water temperature and salinity. These remote sensors were flown repetitively in November 1971 over the outflow of the Mississippi River into the Gulf of Mexico. Data reduction parameters were determined through the use of flight data obtained over a known water area. With these parameters, the measured infrared and microwave radiances were analyzed in terms of the surface temperature and salinity.
A satellite technique for quantitatively mapping rainfall rates over the oceans
NASA Technical Reports Server (NTRS)
Wilheit, T. T.; Roa, M. S. V.; Chang, T. C.; Rodgers, E. B.; Theon, J. S.
1975-01-01
A theoretical model for calculating microwave radiative transfer in raining atmospheres is developed. These calculations are compared with microwave brightness temperatures at a wavelength of 1.55 cm measured on the Nimbus-5 satellite and rain rates derived from WSR-57 meteorological radar measurements. A specially designed ground based verification experiment was also performed wherein upward viewing microwave brightness temperature measurements at wavelengths of 1.55 cm and 0.81 cm were compared with directly measured rain rates.
The information content of cosmic microwave background anisotropies
NASA Astrophysics Data System (ADS)
Scott, Douglas; Contreras, Dagoberto; Narimani, Ali; Ma, Yin-Zhe
2016-06-01
The cosmic microwave background (CMB) contains perturbations that are close to Gaussian and isotropic. This means that its information content, in the sense of the ability to constrain cosmological models, is closely related to the number of modes probed in CMB power spectra. Rather than making forecasts for specific experimental setups, here we take a more pedagogical approach and ask how much information we can extract from the CMB if we are only limited by sample variance. We show that, compared with temperature measurements, the addition of E-mode polarization doubles the number of modes available out to a fixed maximum multipole, provided that all of the TT, TE, and EE power spectra are measured. However, the situation in terms of constraints on particular parameters is more complicated, as we explain and illustrate graphically. We also discuss the enhancements in information that can come from adding B-mode polarization and gravitational lensing. We show how well one could ever determine the basic cosmological parameters from CMB data compared with what has been achieved with Planck, which has already probed a substantial fraction of the TT information. Lastly, we look at constraints on neutrino mass as a specific example of how lensing information improves future prospects beyond the current 6-parameter model.
The information content of cosmic microwave background anisotropies
DOE Office of Scientific and Technical Information (OSTI.GOV)
Scott, Douglas; Contreras, Dagoberto; Narimani, Ali
The cosmic microwave background (CMB) contains perturbations that are close to Gaussian and isotropic. This means that its information content, in the sense of the ability to constrain cosmological models, is closely related to the number of modes probed in CMB power spectra. Rather than making forecasts for specific experimental setups, here we take a more pedagogical approach and ask how much information we can extract from the CMB if we are only limited by sample variance. We show that, compared with temperature measurements, the addition of E -mode polarization doubles the number of modes available out to a fixedmore » maximum multipole, provided that all of the TT , TE , and EE power spectra are measured. However, the situation in terms of constraints on particular parameters is more complicated, as we explain and illustrate graphically. We also discuss the enhancements in information that can come from adding B -mode polarization and gravitational lensing. We show how well one could ever determine the basic cosmological parameters from CMB data compared with what has been achieved with Planck , which has already probed a substantial fraction of the TT information. Lastly, we look at constraints on neutrino mass as a specific example of how lensing information improves future prospects beyond the current 6-parameter model.« less
The Primordial Inflation Explorer (PIXIE) Mission
NASA Technical Reports Server (NTRS)
Kogut, Alan J.; Chuss, David T.; Dotson, Jessie L.; Fixsen, Dale J.; Halpern, Mark; Hinshaw, Gary F.; Meyer, Stephan M.; Moseley, S. Harvey; Seiffert, Michael D.; Spergel, David N.;
2011-01-01
The Primordial Inflation Explorer (PIXIE) is an Explorer-class mission to map the absolute intensity and linear polarization of the cosmic microwave background and diffuse astrophysical foregrounds over the full sky from frequencies 30 GHz to 6 THz (I cm to 50 I-tm wavelength). PIXIE uses a polarizing Michelson interferometer with 2.7 K optics to measure the difference spectrum between two orthogonal linear polarizations from two co-aligned beams. Either input can view either the sky or a temperature-controlled absolute reference blackbody calibrator. The multimoded optics and high etendu provide sensitivity comparable to kilo-pixel focal plane arrays, but with greatly expanded frequency coverage while using only 4 detectors total. PIXIE builds on the highly successful COBEIFIRAS design by adding large-area polarization-sensitive detectors whose fully symmetric optics are maintained in thermal equilibrium with the CMB. The highly symmetric nulled design provides redundant rejection of major sources of systematic uncertainty. The principal science goal is the detection and characterization of linear polarization from an inflationary epoch in the early universe, with tensor-to-scalar ratio r much less than 10(exp -3). PIXIE will also return a rich data set constraining physical processes ranging from Big Bang cosmology, reionization, and large-scale structure to the local interstellar medium. Keywords: cosmic microwave background, polarization, FTS, bolometer
NASA Astrophysics Data System (ADS)
Norouzi, H.; Temimi, M.; Turk, J.; Prigent, C.; Furuzawa, F.; Tian, Y.
2013-12-01
Microwave land surface emissivity acts as the background signal to estimate rain rate, cloud liquid water, and total precipitable water. Therefore, its accuracy can directly affect the uncertainty of such measurements. Over land, unlike over oceans, the microwave emissivity is relatively high and and varies significantly as surface conditions and land cover change. Lack of ground truth measurement of microwave emissivity especially on global scale has made the uncertainty analysis of this parameter very challenging. The present study investigates the consistency among the existing global land emissivity estimates from different microwave sensors. The products are determined from various sensors and frequencies ranging from 7 to 90 GHz. The selected emissivity products in this study are from the Advanced Microwave Scanning Radiometer for EOS (AMSR-E) by NOAA - Cooperative remote Sensing and Science and Technology Center (CREST), the Special Sensor Microwave Imager (SSM/I) by The Centre National de la Recherche Scientifique (CNRS) in France, TRMM Microwave Imager (TMI) by Nagoya University, Japan, and WindSat by NASA Jet Propulsion Laboratory (JPL). The emissivity estimates are based on different algorithms and ancillary data sets. This work investigates the difference among these emissivity products from 2003 to 2008 dynamically and spectrally. The similarities and discrepancies of the retrievals are studied at different land cover types. The mean relative difference (MRD) and other statistical parameters are calculated temporally for all five years of the study. Some inherent discrepancies between the selected products can be attributed to the difference in geometry in terms of incident angle, spectral response, and the foot print size which can affect the estimations. The results reveal that in lower frequencies (=<19 GHz) ancillary data especially skin temperature data set is the major source of difference in emissivity retrievals, while in higher frequencies (>19 GHz) the residuals of atmospheric effect on the signal cause inconsistency among the products. The time series and correlation between emissivity maps were analyzed over different land classes to assess the consistency of emissivity variations with geophysical variable such as soil moisture, precipitation, and vegetation.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dawson, Elizabeth A.; Parkes, Gareth M. B.; Bond, Gary
This article describes a system to investigate the parameters for the remediation of organic vapors using microwave-induced plasma on fluidized carbon granules. The system is based on a single mode microwave apparatus with a variable power (2.45 GHz) generator. Carbon granules are fluidized in a silica tube situated in the sample section of a waveguide incorporating two additional ports to allow plasma intensity monitoring using a light sensor and imaging with a digital camera. A fluoroptic probe is used for in situ measurement of the carbon granule temperature, while the effluent gas temperature is measured with a thermocouple situated inmore » the silica tube outside the cavity. Data acquisition and control software allow experiments using a variety of microwave power regimes while simultaneously recording the light intensity of any plasma generated within the carbon bed, together with its temperature. Evaluation using two different granular activated carbons and ethyl acetate, introduced as a vapor into the fluidizing air stream at a concentration of 1 ppm, yielded results which indicated that significant destruction of ethyl acetate, as monitored using a mass spectrometer, was achieved only with the carbon granules showing high plasma activity under pulsed microwave conditions. The system is therefore suitable for comparison of the relative microwave activities of various activated carbon granules and their performance in microwave remediation and regeneration.« less
Method and device for microwave sintering large ceramic articles
Kimrey, Jr., Harold D.
1990-01-01
A microwave sintering system and method are provided for extremely uniform sintering of large and/or irregular shaped ceramic articles at microwave frequencies of at least 28 GHz in the hundreds of kilowatts power range in an untuned cavity. A 28 GHz, 200 kw gyrotron with variable power output is used as the microwave source connected to an untuned microwave cavity formed of an electrically conductive housing through an overmoded waveguide arrangement which acts in conjunction with a mode promoter within the cavity to achieve unexpected field uniformity. The part to be sintered is placed in the cavity and supported on a removable high temperature table in a central location within the cavity. The part is surrounded by a microwave transparent bulk insulating material to reduce thermal heat loss at the part surfaces and maintain more uniform temperature. The cavity may be operated at a high vacuum to aid in preventing arcing. The system allows controlled increased heating rates of greater than 200.degree. C./min to provide rapid heating of a ceramic part to a selected sintering temperature where it is maintained by regulating the microwave power applied to the part. As a result of rapid heating, the extent of non-isothermal processes such as segregation of impurities to the grain boundaries are minimized and exaggerated grain growth is reduced, thereby strengthening the mechanical properties of the ceramic part being sintered.
Dielectric properties and carbothermic reduction of zinc oxide and zinc ferrite by microwave heating
Fabritius, Timo; Heikkinen, Eetu-Pekka; Chen, Guo
2017-01-01
This paper aims to study the dielectric properties and carbothermic reduction of zinc oxide (zincite, ZnO) and zinc ferrite (franklinite, ZnFe2O4) by microwave heating. To achieve this aim, the dielectric properties were measured with an open-ended coaxial method to understand the behaviour of the samples under microwave irradiation. The effects of microwave power, duration time and sample mass on the heating rate, and the effects of the stoichiometric amount of graphite on the reduction of ZnO and decomposition of ZnFe2O4 were investigated. The results show that ZnFe2O4 has significantly higher dielectric properties compared to ZnO. Generally, for both samples, the dielectric values at room temperature were quite low, indicating that both ZnO and ZnFe2O4 are poor microwave absorbers. It was found that the temperatures have a more significant effect on the imaginary permittivities than on the real permittivities. The heating rate showed that the sample temperature increased with increase in microwave power and sample mass. Using 700 W of microwave power and two times the stoichiometric amount of graphite, almost complete reduction of ZnO was achieved in 12 min, while ZnFe2O4 completely decomposed to zincite and wustite in 3 min. PMID:28989772
Ye, Dongmei; Xu, Yiming; Zhang, Han; Fu, Tengfei; Jiang, Lan; Bai, Yuehong
2013-01-01
Microwave is a method for improving fracture repair. However, one of the contraindications for microwave treatment listed in the literature is surgically implanted metal plates in the treatment field. The reason is that the reflection of electromagnetic waves and the eddy current stimulated by microwave would increase the temperature of magnetic implants and cause heat damage in tissues. Comparing with traditional medical stainless steel, titanium alloy is a kind of medical implants with low magnetic permeability and electric conductivity. But the effects of microwave treatment on fracture with titanium alloy internal fixation in vivo were not reported. The aim of this article was to evaluate the security and effects of microwave on healing of a fracture with titanium alloy internal fixation. Titanium alloy internal fixation systems were implanted in New Zealand rabbits with a 3.0 mm bone defect in the middle of femur. We applied a 30-day microwave treatment (2,450MHz, 25W, 10 min per day) to the fracture 3 days after operation. Temperature changes of muscle tissues around implants were measured during the irradiation. Normalized radiographic density of the fracture gap was measured on the 10th day and 30th day of the microwave treatment. All of the animals were killed after 10 and 30 days microwave treatment with histologic and histomorphometric examinations performed on the harvested tissues. The temperatures did not increase significantly in animals with titanium alloy implants. The security of microwave treatment was also supported by histology of muscles, nerve and bone around the implants. Radiographic assessment, histologic and histomorphometric examinations revealed significant improvement in the healing bone. Our results suggest that, in the healing of fracture with titanium alloy internal fixation, a low dose of microwave treatment may be a promising method.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sommer, C. M., E-mail: christof.sommer@med.uni-heidelberg.de; Arnegger, F.; Koch, V.
2012-06-15
Purpose: This study was designed to analyze the effect of two different ablation modes ('temperature control' and 'power control') of a microwave system on procedural outcome in porcine kidneys in vivo. Methods: A commercially available microwave system (Avecure Microwave Generator; MedWaves, San Diego, CA) was used. The system offers the possibility to ablate with two different ablation modes: temperature control and power control. Thirty-two microwave ablations were performed in 16 kidneys of 8 pigs. In each animal, one kidney was ablated twice by applying temperature control (ablation duration set point at 60 s, ablation temperature set point at 96 Degree-Signmore » C, automatic power set point; group I). The other kidney was ablated twice by applying power control (ablation duration set point at 60 s, ablation temperature set point at 96 Degree-Sign C, ablation power set point at 24 W; group II). Procedural outcome was analyzed: (1) technical success (e.g., system failures, duration of the ablation cycle), and (2) ablation geometry (e.g., long axis diameter, short axis diameter, and circularity). Results: System failures occurred in 0% in group I and 13% in group II. Duration of the ablation cycle was 60 {+-} 0 s in group I and 102 {+-} 21 s in group II. Long axis diameter was 20.3 {+-} 4.6 mm in group I and 19.8 {+-} 3.5 mm in group II (not significant (NS)). Short axis diameter was 10.3 {+-} 2 mm in group I and 10.5 {+-} 2.4 mm in group II (NS). Circularity was 0.5 {+-} 0.1 in group I and 0.5 {+-} 0.1 in group II (NS). Conclusions: Microwave ablations performed with temperature control showed fewer system failures and were finished faster. Both ablation modes demonstrated no significant differences with respect to ablation geometry.« less
, Ivone F. M.; Smoot, George F. 07/2006 Power Spectrum Analysis of Far-IR Background Fluctuations in 160 Microwave Background Anisotropies. Jeong, E.; Smoot, G. F. 2005 Power Spectrum Analysis of Far-IR Background
Microwave sintering of sol-gel derived abrasive grain
Plovnick, Ross; Celikkaya, Ahmet; Blake, Rodger D.
1997-01-01
A method is provided for making microwave-sintered, free flowing alpha alumina-based ceramic abrasive grain, under conditions effective to couple microwaves with calcined alpha alumina-based abrasive gain precursor and sinter it at a temperature of at least about 1150.degree. C.
Cosmic microwave background constraints on primordial black hole dark matter
DOE Office of Scientific and Technical Information (OSTI.GOV)
Aloni, Daniel; Blum, Kfir; Flauger, Raphael, E-mail: daniel.aloni@weizmann.ac.il, E-mail: kfir.blum@weizmann.ac.il, E-mail: flauger@physics.ucsd.edu
We revisit cosmic microwave background (CMB) constraints on primordial black hole dark matter. Spectral distortion limits from COBE/FIRAS do not impose a relevant constraint. Planck CMB anisotropy power spectra imply that primordial black holes with m {sub BH}∼> 5 M {sub ⊙} are disfavored. However, this is susceptible to sizeable uncertainties due to the treatment of the black hole accretion process. These constraints are weaker than those quoted in earlier literature for the same observables.
Moroi, Takeo; Takahashi, Tomo
2004-03-05
We consider cosmic microwave background (CMB) anisotropy in models with quintessence, taking into account isocurvature fluctuation. It is shown that, if the primordial fluctuation of the quintessence has a correlation with the adiabatic density fluctuations, the CMB angular power spectrum C(l) at low multipoles can be suppressed without affecting C(l) at high multipoles. A possible scenario for generating a correlated mixture of the quintessence and adiabatic fluctuations is also discussed.
The effect of a scanning flat fold mirror on a cosmic microwave background B-mode experiment.
Grainger, William F; North, Chris E; Ade, Peter A R
2011-06-01
We investigate the possibility of using a flat-fold beam steering mirror for a cosmic microwave background B-mode experiment. An aluminium flat-fold mirror is found to add ∼0.075% polarization, which varies in a scan synchronous way. Time-domain simulations of a realistic scanning pattern are performed, and the effect on the power-spectrum illustrated, and a possible method of correction applied. © 2011 American Institute of Physics
Microwave Imaging with Infrared 2-D Lock-in Amplifier
NASA Astrophysics Data System (ADS)
Chiyo, Noritaka; Arai, Mizuki; Tanaka, Yasuhiro; Nishikata, Atsuhiro; Maeno, Takashi
We have developed a 3-D electromagnetic field measurement system using 2-D lock-in amplifier. This system uses an amplitude modulated electromagnetic wave source to heat a resistive screen. A very small change of temperature on a screen illuminated with the modulated electromagnetic wave is measured using an infrared thermograph camera. In this paper, we attempted to apply our system to microwave imaging. By placing conductor patches in front of the resistive screen and illuminating with microwave, the shape of each conductor was clearly observed as the temperature difference image of the screen. In this way, the conductor pattern inside the non-contact type IC card could be visualized. Moreover, we could observe the temperature difference image reflecting the shape of a Konnyaku (a gelatinous food made from devil's-tonge starch) or a dried fishbone, both as non-conducting material resembling human body. These results proved that our method is applicable to microwave see-through imaging.
Measuring the global distribution of intense convection over land with passive microwave radiometry
NASA Technical Reports Server (NTRS)
Spencer, R. W.; Santek, D. A.
1985-01-01
The global distribution of intense convective activity over land is shown to be measurable with satellite passive-microwave methods through a comparison of an empirical rain rate algorithm with a climatology of thunderstorm days for the months of June-August. With the 18 and 37 GHz channels of the Nimbus-7 Scanning Multichannel Microwave Radiometer (SMMR), the strong volume scattering effects of precipitation can be measured. Even though a single frequency (37 GHz) is responsive to the scattering signature, two frequencies are needed to remove most of the effect that variations in thermometric temperatures and soil moisture have on the brightness temperatures. Because snow cover is also a volume scatterer of microwave energy at these microwavelengths, a discrimination procedure involving four of the SMMR channels is employed to separate the rain and snow classes, based upon their differences in average thermometric temperature.
Characterization of zero-bias microwave diode power detectors at cryogenic temperature.
Giordano, Vincent; Fluhr, Christophe; Dubois, Benoît; Rubiola, Enrico
2016-08-01
We present the characterization of commercial tunnel diode low-level microwave power detectors at room and cryogenic temperatures. The sensitivity as well as the output voltage noise of the tunnel diodes is measured as functions of the applied microwave power. We highlight strong variations of the diode characteristics when the applied microwave power is higher than a few microwatts. For a diode operating at 4 K, the differential gain increases from 1000 V/W to about 4500 V/W when the power passes from -30 dBm to -20 dBm. The diode white noise floor is equivalent to a Noise Equivalent Power of 0.8 pW/Hz and 8 pW/Hz at 4 K and 300 K, respectively. Its flicker noise is equivalent to a relative amplitude noise power spectral density Sα(1 Hz) = - 120 dB/Hz at 4 K. Flicker noise is 10 dB higher at room temperature.
NASA Astrophysics Data System (ADS)
Ueda, Kengo; Kuwahara, Kiyoshi; Fujiyama, Hiroshi
1999-07-01
Soot containing fullerenes, such as C60 and C70, was synthesized with He plasmas generated in a quartz tube by microwave-glow discharge. A reticulated vitreous carbon (RVC) heated by the microwave He plasmas with an electric field of TE10 mode was used as the carbon source. Swan bands of C2 molecules were observed during the synthesis by optical emission spectroscopy (OES) in order to investigate the effect of the vibrational temperature of C2 molecules on the formation of the fullerenes. The soot deposited on the quartz tube was analyzed by laser desorption time-of-flight mass-spectroscopy (LD-TOF-MS). The intensities of the mass spectra of fullerenes were confirmed to be maximum for the conditions as follows: the absorbed microwave power Pab=200 W and the He gas pressure P=100 Torr, while the C2 vibrational temperature was approximately 7000 K.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Fu, C.M.; Chen, C.M.; Lin, H.C.
1994-12-31
We have studied systematically the effect of microwave irradiation on the temperature dependent resistivity R(T) and the current-voltage (I-V) characteristics of YBa{sub 2}Cu{sub 3}O{sub 7-x} (YBCO) bicrystalline grain boundary weak-links (GBWLs), with grain boundary of three different tilt angles. The superconducting transition temperature, T{sub c}, has significant enhancement upon microwave irradiation. The microwave enhanced T{sub c} is increased as a function of incidence microwave power, but limited to an optimum power level. The GBWLs of 45{degrees} tilt boundary has shown to be most sensitive to the microwave irradiation power, and the GBWLs of 36.8{degrees} tilt boundary has displayed a moderatemore » response. In contrast, no enhancement of T{sub c} was observed in the GBWLs of 24{degrees} tilt boundary, as well as in the uniform films. Under the microwave irradiation, the R(T) dependence is hysteretic as the transition taken from superconducting state to normal state and vice versa. Mechanisms associated with the redistribution of nonequilibrium quasiparticles under microwave irradiation are discussed.« less
NASA Astrophysics Data System (ADS)
Bartlett, D. V.; Costley, A. E.; Porte, L.; Prentice, R.; Salmon, N. A.; Sips, G.
1990-12-01
The potential of electron cyclotron emission and microwave reflectometry as techniques for measuring the electron temperature and density in the edge region of tokamak plasmas is investigated. Experiments to realize this potential on JET are described and some illustrative results presented.
Influence of solvent type on microwave-assisted liquefaction of bamboo
Jiulong Xie; Chung Hse; Todd F. Shupe; Tingxing Hu
2016-01-01
Microwave-assisted liquefaction of bamboo in glycerol, polyethylene glycerol (PEG), methanol, ethanol, and water were comparatively investigated by evaluating the temperature-dependence for conversion and liquefied residue characteristics. The conversion for the liquefaction in methanol, ethanol, and water increased with an increase in reaction temperature, while that...
Effect of neutrino rest mass on ionization equilibrium freeze-out
DOE Office of Scientific and Technical Information (OSTI.GOV)
Grohs, Evan Bradley; Fuller, George M.; Kishimoto, Chad T.
2015-12-23
We show how small neutrino rest masses can increase the expansion rate near the photon decoupling epoch in the early Universe, causing an earlier, higher temperature freeze-out for ionization equilibrium compared to the massless neutrino case. This yields a larger free-electron fraction, thereby affecting the photon diffusion length differently than the sound horizon at photon decoupling. This neutrino-mass and recombination effect depends strongly on the neutrino rest masses. Ultimately, though below current sensitivity, this effect could be probed by next-generation cosmic microwave background experiments, giving another observational handle on neutrino rest mass.
ACTPol: On-Sky Performance and Characterization
NASA Technical Reports Server (NTRS)
Grace, E.; Beall, J.; Bond, J. R.; Cho, H. M.; Datta, R.; Devlin, M. J.; Dunner, R.; Fox, A. E.; Gallardo, P.; Hasselfield, M.;
2014-01-01
ACTPol is the polarization-sensitive receiver on the Atacama Cosmology Telescope. ACTPol enables sensitive millimeter wavelength measurements of the temperature and polarization anisotropies of the Cosmic Microwave Background (CMB) at arcminute angular scales. These measurements are designed to explore the process of cosmic structure formation, constrain or determine the sum of the neutrino masses, probe dark energy, and provide a foundation for a host of other cosmological tests. We present an overview of the first season of ACTPol observations focusing on the optimization and calibration of the first detector array as well as detailing the on-sky performance.
A 3D model of polarized dust emission in the Milky Way
NASA Astrophysics Data System (ADS)
Martínez-Solaeche, Ginés; Karakci, Ata; Delabrouille, Jacques
2018-05-01
We present a three-dimensional model of polarized galactic dust emission that takes into account the variation of the dust density, spectral index and temperature along the line of sight, and contains randomly generated small-scale polarization fluctuations. The model is constrained to match observed dust emission on large scales, and match on smaller scales extrapolations of observed intensity and polarization power spectra. This model can be used to investigate the impact of plausible complexity of the polarized dust foreground emission on the analysis and interpretation of future cosmic microwave background polarization observations.
New Target for Cosmic Axion Searches.
Baumann, Daniel; Green, Daniel; Wallisch, Benjamin
2016-10-21
Future cosmic microwave background experiments have the potential to probe the density of relativistic species at the subpercent level. This sensitivity allows light thermal relics to be detected up to arbitrarily high decoupling temperatures. Conversely, the absence of a detection would require extra light species never to have been in equilibrium with the Standard Model. In this Letter, we exploit this feature to demonstrate the sensitivity of future cosmological observations to the couplings of axions to photons, gluons, and charged fermions. In many cases, the constraints achievable from cosmology will surpass existing bounds from laboratory experiments and astrophysical observations by orders of magnitude.
2001-05-25
KENNEDY SPACE CENTER, FLA. -- On Launch Complex 17-B, Cape Canaveral Air Force Station, the Delta II rocket waits to be mated to four solid rocket boosters (behind the Delta). The rocket will launch the MAP instrument into a lunar-assisted trajectory to the Sun-Earth for a 27-month mission. The MAP mission will examine conditions in the early universe by measuring temperature differences in cosmic microwave background radiation, which is the radiant heat left over from the Big Bang. The properties of this radiation directly reflect conditions in the early universe. MAP is scheduled to launch June 30 at 3:46:46 p.m. EDT
Microwave Memristive-like Nonlinearity in a Dielectric Metamaterial
NASA Astrophysics Data System (ADS)
Wu, Hongya; Zhou, Ji; Lan, Chuwen; Guo, Yunsheng; Bi, Ke
2014-06-01
Memristor exhibit interesting and valuable circuit properties and have thus become the subject of increasing scientific interest. Scientists wonder if they can conceive a microwave memristor that behaves as a memristor operating with electromagnetic fields. Here, we report a microwave memristive-like nonlinear phenomenon at room temperature in dielectric metamaterials consisting of CaTiO3-ZrO2 ceramic dielectric cubes. Hysteretic transmission-incident field power loops (similar to the hysteretic I-V loop of memristor which is the fingerprint of memristor) with various characteristics were systematically observed in the metamaterials, which exhibited designable microwave memristive-like behavior. The effect is attributed to the decreasing permittivity of the dielectric cubes with the increasing temperature generated by the interaction between the electromagnetic waves and the dielectric cubes. This work demonstrates the feasibility of fabrication transient photonic memristor at microwave frequencies with metamaterials.
Masuda, Shumpei; Tan, Kuan Y; Partanen, Matti; Lake, Russell E; Govenius, Joonas; Silveri, Matti; Grabert, Hermann; Möttönen, Mikko
2018-03-02
We experimentally study nanoscale normal-metal-insulator-superconductor junctions coupled to a superconducting microwave resonator. We observe that bias-voltage-controllable single-electron tunneling through the junctions gives rise to a direct conversion between the electrostatic energy and that of microwave photons. The measured power spectral density of the microwave radiation emitted by the resonator exceeds at high bias voltages that of an equivalent single-mode radiation source at 2.5 K although the phonon and electron reservoirs are at subkelvin temperatures. Measurements of the generated power quantitatively agree with a theoretical model in a wide range of bias voltages. Thus, we have developed a microwave source which is compatible with low-temperature electronics and offers convenient in-situ electrical control of the incoherent photon emission rate with a predetermined frequency, without relying on intrinsic voltage fluctuations of heated normal-metal components or suffering from unwanted losses in room temperature cables. Importantly, our observation of negative generated power at relatively low bias voltages provides a novel type of verification of the working principles of the recently discovered quantum-circuit refrigerator.
High-Power, High-Temperature Superconductor Technology Development
NASA Technical Reports Server (NTRS)
Bhasin, Kul B.
2005-01-01
Since the first discovery of high-temperature superconductors (HTS) 10 years ago, the most promising areas for their applications in microwave systems have been as passive components for communication systems. Soon after the discovery, experiments showed that passive microwave circuits made from HTS material exceeded the performance of conventional devices for low-power applications and could be 10 times as small or smaller. However, for superconducting microwave components, high-power microwave applications have remained elusive until now. In 1996, DuPont and Com Dev Ltd. developed high-power superconducting materials and components for communication applications under a NASA Lewis Research Center cooperative agreement, NCC3-344 "High Power High Temperature Superconductor (HTS) Technology Development." The agreement was cost shared between the Defense Advanced Research Projects Agency's (DARPA) Technology Reinvestment Program Office and the two industrial partners. It has the following objectives: 1) Material development and characterization for high-power HTS applications; 2) Development and validation of generic high-power microwave components; 3) Development of a proof-of-concept model for a high-power six-channel HTS output multiplexer.
Investigation on microwave heating for direct leaching of chalcopyrite ores and concentrates
NASA Astrophysics Data System (ADS)
Onol, Kubra; Saridede, Muhlis Nezihi
2013-03-01
The use of microwave energy in materials processing is a relatively new development presenting numerous advantages because of the rapid heating feature. Microwave technology has great potential to improve the extraction efficiency of metals in terms of both a reduction in required leaching time and an increase in the recovery of valuable metals. This method is especially pertinent in view of the increased demand for environment-friendly processes. In the present study, the influence of microwave heating on the direct leaching of chalcopyrite ores and concentrates were investigated. The results of microwave leaching experiments were compared with those obtained under conventional conditions. During these processes, parameters such as leaching media, temperature, and time have been worked to determine the optimum conditions for proper copper dissolution. Experimental results show that microwave leaching is more efficient than conventional leaching. The optimum leaching conditions for microwave leaching are the solid-to-liquid ratio of 1:100 g/mL, the temperature of 140°C, the solution of 0.5 M H2SO4 + 0.05 M Fe2(SO4)3, and the time of 1 h.
Microwave frequency effect in the formation of Au nanocolloids in polar and non-polar solvents
NASA Astrophysics Data System (ADS)
Horikoshi, Satoshi; Abe, Hideki; Sumi, Takuya; Torigoe, Kanjiro; Sakai, Hideki; Serpone, Nick; Abe, Masahiko
2011-04-01
Given earlier observations that microwave frequencies can have a substantial effect on the photoactivity of a well-known photocatalyst (TiO2), in the synthesis of 3,6-diphenyl-4-n-butylpyridazine through a Diels-Alder process, and in the one-pot solvent-free synthesis of a room-temperature ionic liquid, we proceeded to examine the frequency effects of the 5.8 and 2.45 GHz microwave (MW) radiation in the synthesis of gold nanoparticles in non-polar media, such as oleylamine, which have a low dielectric constant (ε'), and we further examine differences in shape and size under otherwise identical temperature conditions when the synthesis of the gold nanoparticles was carried out in an ethylene glycol polar medium in the presence of polyvinylpyrrolidone. Whereas a change in microwave frequency from 2.45 to 5.8 GHz at equal microwave power levels led to the synthesis of gold nanoparticles in the non-polar media, a change in the microwave frequency had no effect on the size and shape of the gold nanoparticles synthesized in polar media for identical microwave power levels.
Microwave frequency effect in the formation of Au nanocolloids in polar and non-polar solvents.
Horikoshi, Satoshi; Abe, Hideki; Sumi, Takuya; Torigoe, Kanjiro; Sakai, Hideki; Serpone, Nick; Abe, Masahiko
2011-04-01
Given earlier observations that microwave frequencies can have a substantial effect on the photoactivity of a well-known photocatalyst (TiO(2)), in the synthesis of 3,6-diphenyl-4-n-butylpyridazine through a Diels-Alder process, and in the one-pot solvent-free synthesis of a room-temperature ionic liquid, we proceeded to examine the frequency effects of the 5.8 and 2.45 GHz microwave (MW) radiation in the synthesis of gold nanoparticles in non-polar media, such as oleylamine, which have a low dielectric constant (ε'), and we further examine differences in shape and size under otherwise identical temperature conditions when the synthesis of the gold nanoparticles was carried out in an ethylene glycol polar medium in the presence of polyvinylpyrrolidone. Whereas a change in microwave frequency from 2.45 to 5.8 GHz at equal microwave power levels led to the synthesis of gold nanoparticles in the non-polar media, a change in the microwave frequency had no effect on the size and shape of the gold nanoparticles synthesized in polar media for identical microwave power levels.
Remote monitoring of soil moisture using airborne microwave radiometers
NASA Technical Reports Server (NTRS)
Kroll, C. L.
1973-01-01
The current status of microwave radiometry is provided. The fundamentals of the microwave radiometer are reviewed with particular reference to airborne operations, and the interpretative procedures normally used for the modeling of the apparent temperature are presented. Airborne microwave radiometer measurements were made over selected flight lines in Chickasha, Oklahoma and Weslaco, Texas. Extensive ground measurements of soil moisture were made in support of the aircraft mission over the two locations. In addition, laboratory determination of the complex permittivities of soil samples taken from the flight lines were made with varying moisture contents. The data were analyzed to determine the degree of correlation between measured apparent temperatures and soil moisture content.
Interpretation of Nimbus-7 37 GHz microwave brightness temperature data in semi-arid southern Africa
NASA Technical Reports Server (NTRS)
Prince, S. D.; Choudhury, B. J.
1989-01-01
Monthly 37 GHz microwave polarization difference temperatures (MPDT) derived from the Nimbus-7 scanning multichannel microwave radiometer (SMMR) for southern Africa from 1979 to 1985 are compared with rainfall and Advanced Very High Resolution Radiometer (AVHRR) normalized difference vegetation index (NDVI) data. MPDT rose sharply during a drought episode which occurred within the period included in the data. The rise was seen not only in the growing season, but also in the dry season MPDT when no actively photosynthetic, water-containing leaves are present. The results suggest that scattering of the emitted microwave radiation by dead and living vegetation is a more important factor than has previously been recognized.
NASA Astrophysics Data System (ADS)
Ueda, Kengo; Kuwahara, Kiyoshi; Fujiyama, Hiroshi
1998-10-01
The soot containing C_60 and C_70 was synthesized in helium plasmas generated in a quartz tube by microwave discharge. We used reticulated vitreous carbon (RVC) that was heated by electric field of TE_10 mode microwave and the plasma. During soot deposition, optical emission of plasmas was observed with a monochromator. The soot deposited on the quartz tube was analyzed by the laser desorption time-of-flight mass-spectroscopy (LD-TOF-MS). Up to the present, the most intense C_60 mass spectrum intensity was obtained for the condition of absorbed microwave power 200W and pressure 100Torr, where C2 vibrational temperature was about 5500K.
Development of an Inductively Coupled Thermometer for a Cryogenic Half-Wave Plate
NASA Astrophysics Data System (ADS)
Madurowicz, Alexander; Kusaka, Akito
2017-01-01
The current state of Cosmic Microwave Background (CMB) research has focused much attention on the measurement of polarization. In an effort to modulate the CMB polarization while also minimizing photon noise due to thermal emission, we are developing a sapphire half-wave plate (HWP) cooled to 50 K rotating at 2 Hz on a superconducting magnetic levitating bearing. In order to measure the temperature of the rotor without making physical contact, we designed an inductively coupled cryogenic thermometer. The complex impedance of the circuit has a resonant peak when driven around 1 MHz. The width of this resonance is dependent on the value of the resistor, which varies with temperature and functions as a thermometer once calibrated. In this talk, we will present results from stationary measurements of this impedance and discuss the temperature accuracy of this thermometer, as well as a preliminary circuit design to measure this impedance during the HWP rotation.
Determination of cloud liquid water content using the SSM/I
NASA Technical Reports Server (NTRS)
Alishouse, John C.; Snider, Jack B.; Westwater, Ed R.; Swift, Calvin T.; Ruf, Christopher S.
1990-01-01
As part of a calibration/validation effort for the special sensor microwave/imager (SSM/I), coincident observations of SSM/I brightness temperatures and surface-based observations of cloud liquid water were obtained. These observations were used to validate initial algorithms and to derive an improved algorithm. The initial algorithms were divided into latitudinal-, seasonal-, and surface-type zones. It was found that these initial algorithms, which were of the D-matrix type, did not yield sufficiently accurate results. The surface-based measurements of channels were investigated; however, the 85V channel was excluded because of excessive noise. It was found that there is no significant correlation between the SSM/I brightness temperatures and the surface-based cloud liquid water determination when the background surface is land or snow. A high correlation was found between brightness temperatures and ground-based measurements over the ocean.
Measurement of a Cosmographic Distance Ratio with Galaxy and Cosmic Microwave Background Lensing.
Miyatake, Hironao; Madhavacheril, Mathew S; Sehgal, Neelima; Slosar, Anže; Spergel, David N; Sherwin, Blake; van Engelen, Alexander
2017-04-21
We measure the gravitational lensing shear signal around dark matter halos hosting constant mass galaxies using light sources at z∼1 (background galaxies) and at the surface of last scattering at z∼1100 (the cosmic microwave background). The galaxy shear measurement uses data from the CFHTLenS survey, and the microwave background shear measurement uses data from the Planck satellite. The ratio of shears from these cross-correlations provides a purely geometric distance measurement across the longest possible cosmological lever arm. This is because the matter distribution around the halos, including uncertainties in galaxy bias and systematic errors such as miscentering, cancels in the ratio for halos in thin redshift slices. We measure this distance ratio in three different redshift slices of the constant mass (CMASS) sample and combine them to obtain a 17% measurement of the distance ratio, r=0.390_{-0.062}^{+0.070}, at an effective redshift of z=0.53. This is consistent with the predicted ratio from the Planck best-fit cold dark matter model with a cosmological constant cosmology of r=0.419.
NASA Astrophysics Data System (ADS)
Donzelli, S.; Maino, D.; Bersanelli, M.; Childers, J.; Figueiredo, N.; Lubin, P. M.; Meinhold, P. R.; O'Dwyer, I. J.; Seiffert, M. D.; Villela, T.; Wandelt, B. D.; Wuensche, C. A.
2006-06-01
We present the angular power spectrum of the cosmic microwave background (CMB) component extracted with FASTICA from the Background Emission Anisotropy Scanning Telescope (BEAST) data. BEAST is a 2.2-m off-axis telescope with a focal plane comprising eight elements at Q (38-45 GHz) and Ka (26-36 GHz) bands. It operates from the UC (University of California) White Mountain Research Station at an altitude of 3800 m. The BEAST CMB angular power spectrum has already been calculated by O'Dwyer et al. using only the Q-band data. With two input channels, FASTICA returns two possible independent components. We found that one of these two has an unphysical spectral behaviour, while the other is a reasonable CMB component. After a detailed calibration procedure based on Monte Carlo (MC) simulations, we extracted the angular power spectrum for the identified CMB component and found a very good agreement with the already published BEAST CMB angular power spectrum and with the Wilkinson Microwave Anisotropy Probe (WMAP) data.
VizieR Online Data Catalog: Planck Catalog of Compact Sources Release 1 (Planck, 2013)
NASA Astrophysics Data System (ADS)
Planck Collaboration
2013-03-01
Planck is a European Space Agency (ESA) mission, with significant contributions from the U.S. National Aeronautics and Space Agency (NASA). It is the third generation of space-based cosmic microwave background experiments, after the Cosmic Background Explorer (COBE) and the Wilkinson Microwave Anisotropy Probe (WMAP). Planck was launched on 14 May 2009 on an Ariane 5 rocket from Kourou, French Guiana. Following a cruise to the Earth-Sun L2 Lagrange point, cooling and in orbit checkout, Planck initiated the First Light Survey on 13 August 2009. Since then, Planck has been continuously measuring the intensity of the sky over a range of frequencies from 30 to 857GHz (wavelengths of 1cm to 350μm) with spatial resolutions ranging from about 33' to 5' respectively. The Low Frequency Instrument (LFI) on Planck provides temperature and polarization information using radiometers which operate between 30 and 70GHz. The High Frequency Instrument (HFI) uses pairs of polarization-sensitive bolometers at each of four frequencies between 100 and 353GHz but does not measure polarization information in the two upper HFI bands at 545 and 857GHz. The lowest frequencies overlap with WMAP, and the highest frequencies extend far into the submillimeter in order to improve separation between Galactic foregrounds and the cosmic microwave background (CMB). By extending to wavelengths longer than those at which the Infrared Astronomical Satellite (IRAS) operated, Planck is providing an unprecedented window into dust emission at far-infrared and submillimeter wavelengths. The PCCS (Planck Catalog of Compact Sources) is the list of sources detected in the first 15 months of Planck "nominal" mission. It consists of nine single-frequency catalogues of compact sources, both Galactic and extragalactic, detected over the entire sky. The PCCS covers the frequency range 30-857 GHz with higher sensitivity (it is 90% complete at 180mJy in the best channel) and better angular resolution than previous all-sky surveys in the microwave band. By construction its reliability is >80% and more than 65% of the sources have been detected at least in two contiguous Planck channels. Many of the Planck PCCS sources can be associated with stars with dust shells, stellar cores, radio galaxies, blazars, infrared luminous galaxies and Galactic interstellar medium features. (12 data files).
Poojary, Mahesha M; Passamonti, Paolo
2016-12-09
This paper reports on improved conventional thermal silylation (CTS) and microwave-assisted silylation (MAS) methods for simultaneous determination of tocopherols and sterols by gas chromatography. Reaction parameters in each of the methods developed were systematically optimized using a full factorial design followed by a central composite design. Initially, experimental conditions for CTS were optimized using a block heater. Further, a rapid MAS was developed and optimized. To understand microwave heating mechanisms, MAS was optimized by two distinct modes of microwave heating: temperature-controlled MAS and power-controlled MAS, using dedicated instruments where reaction temperature and microwave power level were controlled and monitored online. Developed methods: were compared with routine overnight derivatization. On a comprehensive level, while both CTS and MAS were found to be efficient derivatization techniques, MAS significantly reduced the reaction time. The optimal derivatization temperature and time for CTS found to be 55°C and 54min, while it was 87°C and 1.2min for temperature-controlled MAS. Further, a microwave power of 300W and a derivatization time 0.5min found to be optimal for power-controlled MAS. The use of an appropriate derivatization solvent, such as pyridine, was found to be critical for the successful determination. Catalysts, like potassium acetate and 4-dimethylaminopyridine, enhanced the efficiency slightly. The developed methods showed excellent analytical performance in terms of linearity, accuracy and precision. Copyright © 2016 Elsevier B.V. All rights reserved.
Recent results and perspectives on cosmology and fundamental physics from microwave surveys
NASA Astrophysics Data System (ADS)
Burigana, Carlo; Battistelli, Elia Stefano; Benetti, Micol; Cabass, Giovanni; de Bernardis, Paolo; di Serego Alighieri, Sperello; di Valentino, Eleonora; Gerbino, Martina; Giusarma, Elena; Gruppuso, Alessandro; Liguori, Michele; Masi, Silvia; Norgaard-Nielsen, Hans Ulrik; Rosati, Piero; Salvati, Laura; Trombetti, Tiziana; Vielva, Patricio
2016-04-01
Recent cosmic microwave background (CMB) data in temperature and polarization have reached high precision in estimating all the parameters that describe the current so-called standard cosmological model. Recent results about the integrated Sachs-Wolfe (ISW) effect from CMB anisotropies, galaxy surveys, and their cross-correlations are presented. Looking at fine signatures in the CMB, such as the lack of power at low multipoles, the primordial power spectrum (PPS) and the bounds on non-Gaussianities, complemented by galaxy surveys, we discuss inflationary physics and the generation of primordial perturbations in the early universe. Three important topics in particle physics, the bounds on neutrinos masses and parameters, on thermal axion mass and on the neutron lifetime derived from cosmological data are reviewed, with attention to the comparison with laboratory experiment results. Recent results from cosmic polarization rotation (CPR) analyses aimed at testing the Einstein equivalence principle (EEP) are presented. Finally, we discuss the perspectives of next radio facilities for the improvement of the analysis of future CMB spectral distortion experiments.
Taking the Measure of the Universe: Cosmology from the WMAP Mission
NASA Technical Reports Server (NTRS)
Hinshaw, Gary F.
2006-01-01
The data from the first three years of operation of the Wilkinson Microwave Anisotropy Probe (WMAP) satellite provide detailed full-sky maps of the cosmic microwave background temperature anisotropy and new full-sky maps of the polarization. Together, the data provide a wealth of cosmological information, including the age of the universe, the epoch when the first stars formed, and the overall composition of baryonic matter, dark matter, and dark energy. The results also provide constraints on the period of inflationary expansion in the very first moments of time. These and other aspects of the mission will be discussed. WMAP, part of NASA's Explorers program, was launched on June 30,2001. The WMAP satellite was produced in a partnership between the Goddard Space Flight Center and Princeton University. The WMAP team also includes researchers at the Johns Hopkins University; the Canadian Institute of Theoretical Astrophysics; University of Texas; Cornel1 University; University of Chicago; Brown University; University of British Columbia; University of Pennsylvania; and University of California, Los Angeles
Cross-correlation of WISE galaxies with the cosmic microwave background
NASA Astrophysics Data System (ADS)
Goto, Tomotsugu; Szapudi, István.; Granett, Benjamin R.
2012-05-01
We estimated the cross-power spectra of a galaxy sample from the Wide-field Infrared Survey Explorer (WISE) survey with the 7-year Wilkinson Microwave Anisotropy Probe (WMAP) temperature anisotropy maps. A conservatively selected galaxy sample covers ˜13 000 deg2 with a median redshift of z= 0.15. Cross-power spectra show correlations between the two data sets with no discernible dependence on the WMAPQ, V and W frequency bands. We interpret these results in terms of the integrated Sachs-Wolfe (ISW) effect: for the |b| > 20° sample at l= 6-87, we measure the amplitude (normalized to be 1 for vanilla Λ cold dark matter expectation) of the signal to be 3.4 ± 1.1, i.e. 3.1σ detection. We discuss other possibilities, but at face value the detection of the linear ISW effect in a flat universe is caused by large-scale decaying potentials, a sign of accelerated expansion driven by dark energy.
Lack of large-angle TT correlations persists in WMAP and Planck
NASA Astrophysics Data System (ADS)
Copi, Craig J.; Huterer, Dragan; Schwarz, Dominik J.; Starkman, Glenn D.
2015-08-01
The lack of large-angle correlations in the observed microwave background temperature fluctuations persists in the final-year maps from Wilkinson Microwave Anisotropy Probe (WMAP) and the first cosmological data release from Planck. We find a statistically robust and significant result: p-values for the missing correlations lying below 0.24 per cent (i.e. evidence at more than 3σ) for foreground cleaned maps, in complete agreement with previous analyses based upon earlier WMAP data. A cut-sky analysis of the Planck HFI 100 GHz frequency band, the `cleanest CMB channel' of this instrument, returns a p-value as small as 0.03 per cent, based on the conservative mask defined by WMAP. These findings are in stark contrast to expectations from the inflationary Lambda cold dark matter model and still lack a convincing explanation. If this lack of large-angle correlations is a true feature of our Universe, and not just a statistical fluke, then the cosmological dipole must be considerably smaller than that predicted in the best-fitting model.
2001-06-30
KENNEDY SPACE CENTER, Fla. -- The morning sky is nearly clear over Launch Complex 17-A, Cape Canaveral Air Force Station, and the waiting Boeing/Delta II rocket. The Atlantic Ocean can be seen on the horizon. Topping the rocket is the payload, the Microwave Anisotropy Probe (MAP) spacecraft. Launch is scheduled at 3:46 p.m. EDT June 30. The launch will place MAP into a lunar-assisted trajectory to the Sun-Earth for a 27-month mission. The probe will measure small fluctuations in the temperature of the cosmic microwave background radiation to an accuracy of one millionth of a degree. These measurements should reveal the size, matter content, age, geometry and fate of the universe. They will also reveal the primordial structure that grew to form galaxies and will test ideas about the origins of these primordial structures. The MAP instrument will be continuously shaded from the Sun, Earth, and Moon by the spacecraft. The probe is a product of Goddard Space Flight Center in partnership with Princeton University
2001-05-31
At the gantry on Complex 17-A, Cape Canaveral Air Force Station, the fairing for the Microwave Anisotropy Probe (MAP) spacecraft is raised for its lift to the White Room. There it will wait for the arrival of the spacecraft. MAP is scheduled for launch on June 30 aboard a Boeing Delta II rocket. The launch will place MAP into a lunar-assisted trajectory to the Sun-Earth for a 27-month mission. The probe will measure small fluctuations in the temperature of the cosmic microwave background radiation to an accuracy of one millionth of a degree. These measurements should reveal the size, matter content, age, geometry and fate of the universe. They will also reveal the primordial structure that grew to form galaxies and will test ideas about the origins of these primordial structures. The MAP instrument will be continuously shaded from the Sun, Earth, and Moon by the spacecraft. The probe is a product of Goddard Space Flight Center in partnership with Princeton University
2001-05-31
KENNEDY SPACE CENTER, FLA. -- At the gantry on Complex 17-A, Cape Canaveral Air Force Station, the fairing for the Microwave Anisotropy Probe (MAP) spacecraft arrives in the White Room. There it will wait for the arrival of the spacecraft. MAP is scheduled for launch on June 30 aboard a Boeing Delta II rocket. The launch will place MAP into a lunar-assisted trajectory to the Sun-Earth for a 27-month mission. The probe will measure small fluctuations in the temperature of the cosmic microwave background radiation to an accuracy of one millionth of a degree. These measurements should reveal the size, matter content, age, geometry and fate of the universe. They will also reveal the primordial structure that grew to form galaxies and will test ideas about the origins of these primordial structures. The MAP instrument will be continuously shaded from the Sun, Earth, and Moon by the spacecraft. The probe is a product of Goddard Space Flight Center in partnership with Princeton University
2001-06-30
KENNEDY SPACE CENTER, Fla. -- The Delta II rocket, carrying the Microwave Anisotropy Probe (MAP) spacecraft, arcs through the cloud-washed blue sky while photographers try to capture the spectacle from the ground. The successful launch from Launch Complex 17-A, Cape Canaveral Air Force Station, occurred at 3:46:46 p.m. EDT. The launch will place MAP into a lunar-assisted trajectory to the Sun-Earth for a 27-month mission. The probe will measure small fluctuations in the temperature of the cosmic microwave background radiation to an accuracy of one millionth of a degree. These measurements should reveal the size, matter content, age, geometry and fate of the universe. They will also reveal the primordial structure that grew to form galaxies and will test ideas about the origins of these primordial structures. The MAP instrument will be continuously shaded from the Sun, Earth, and Moon by the spacecraft. The probe is a product of Goddard Space Flight Center in partnership with Princeton University
2001-06-30
KENNEDY SPACE CENTER, Fla. -- Engineers in Hangar A&E, Cape Canaveral Air Force Station, wait to track the launch of the Boeing Delta II rocket carrying the Microwave Anisotropy Probe (MAP) spacecraft. The screens above the console show the rocket on the launch pad. The launch will place MAP into a lunar-assisted trajectory to the Sun-Earth for a 27-month mission. The probe will measure small fluctuations in the temperature of the cosmic microwave background radiation to an accuracy of one millionth of a degree. These measurements should reveal the size, matter content, age, geometry and fate of the universe. They will also reveal the primordial structure that grew to form galaxies and will test ideas about the origins of these primordial structures. The MAP instrument will be continuously shaded from the Sun, Earth, and Moon by the spacecraft. The probe is a product of Goddard Space Flight Center in partnership with Princeton University. Launch is scheduled for 3:46 p.m. EDT
2001-06-30
KENNEDY SPACE CENTER, Fla. -- The Boeing Delta II rocket is poised for flight on Launch Complex 17-A, Cape Canaveral Air Force Station, after rollback of the Mobile Service Tower. Topping the rocket is the payload, the Microwave Anisotropy Probe (MAP) spacecraft. Launch is scheduled at 3:46 p.m. EDT June 30. The launch will place MAP into a lunar-assisted trajectory to the Sun-Earth for a 27-month mission. The probe will measure small fluctuations in the temperature of the cosmic microwave background radiation to an accuracy of one millionth of a degree. These measurements should reveal the size, matter content, age, geometry and fate of the universe. They will also reveal the primordial structure that grew to form galaxies and will test ideas about the origins of these primordial structures. The MAP instrument will be continuously shaded from the Sun, Earth, and Moon by the spacecraft. The probe is a product of Goddard Space Flight Center in partnership with Princeton University
2001-06-30
KENNEDY SPACE CENTER, Fla. -- The Boeing Delta II rocket is poised for flight on Launch Complex 17-A, Cape Canaveral Air Force Station, after rollback of the Mobile Service Tower (right). Topping the rocket is the payload, the Microwave Anisotropy Probe (MAP) spacecraft. Launch is scheduled at 3:46 p.m. EDT June 30. The launch will place MAP into a lunar-assisted trajectory to the Sun-Earth for a 27-month mission. The probe will measure small fluctuations in the temperature of the cosmic microwave background radiation to an accuracy of one millionth of a degree. These measurements should reveal the size, matter content, age, geometry and fate of the universe. They will also reveal the primordial structure that grew to form galaxies and will test ideas about the origins of these primordial structures. The MAP instrument will be continuously shaded from the Sun, Earth, and Moon by the spacecraft. The probe is a product of Goddard Space Flight Center in partnership with Princeton University
Low-Temperature Dynamic Nuclear Polarization at 9.4 Tesla With a 30 Milliwatt Microwave Source
Thurber, Kent R.; Yau, Wai-Ming; Tycko, Robert
2010-01-01
Dynamic nuclear polarization (DNP) can provide large signal enhancements in nuclear magnetic resonance (NMR) by transfer of polarization from electron spins to nuclear spins. We discuss several aspects of DNP experiments at 9.4 Tesla (400 MHz resonant frequency for 1H, 264 GHz for electron spins in organic radicals) in the 7–80 K temperature range, using a 30 mW, frequency-tunable microwave source and a quasi-optical microwave bridge for polarization control and low-loss microwave transmission. In experiments on frozen glycerol/water doped with nitroxide radicals, DNP signal enhancements up to a factor of 80 are observed (relative to 1H NMR signals with thermal equilibrium spin polarization). The largest sensitivity enhancements are observed with a new triradical dopant, DOTOPA-TEMPO. Field modulation with a 10 G root-mean-squared amplitude during DNP increases the nuclear spin polarizations by up to 135%. Dependencies of 1H NMR signal amplitudes, nuclear spin relaxation times, and DNP build-up times on the dopant and its concentration, temperature, microwave power, and modulation frequency are reported and discussed. The benefits of low-temperature DNP can be dramatic: the 1H spin polarization is increased approximately 1000-fold at 7 K with DNP, relative to thermal polarization at 80 K. PMID:20392658
Behavior of Solar Cycles 23 and 24 Revealed by Microwave Observations
NASA Technical Reports Server (NTRS)
Gopalswamy, N.; Yashiro, S.; Maekelae, P.; Michalek, G.; Shibasaki, K.; Hathaway, D. H.
2012-01-01
Using magnetic and microwave butterfly diagrams, we compare the behavior of solar polar regions to show that (1) the polar magnetic field and the microwave brightness temperature during solar minimum substantially diminished during the cycle 23/24 minimum compared to the 22/23 minimum. (2) The polar microwave brightness temperature (Tb) seems to be a good proxy for the underlying magnetic field strength (B). The analysis indicates a relationship, B = 0.0067Tb - 70, where B is in G and Tb in K. (3) Both the brightness temperature and the magnetic field strength show north-south asymmetry most of the time except for a short period during the maximum phase. (4) The rush-to-the-pole phenomenon observed in the prominence eruption (PE) activity seems to be complete in the northern hemisphere as of 2012 March. (5) The decline of the microwave brightness temperature in the north polar region to the quiet-Sun levels and the sustained PE activity poleward of 60degN suggest that solar maximum conditions have arrived at the northern hemisphere. The southern hemisphere continues to exhibit conditions corresponding to the rise phase of solar cycle 24. Key words: Sun: chromosphere Sun: coronal mass ejections (CMEs) Sun: filaments, prominences Sun: photosphere Sun: radio radiation Sun: surface magnetism
NASA Astrophysics Data System (ADS)
Xu, L.; Terashita, F.; Nonaka, H.; Ogino, A.; Nagata, T.; Koide, Y.; Nanko, S.; Kurawaki, I.; Nagatsu, M.
2006-01-01
The discharge conditions required for low-temperature plasma sterilization were investigated using low-pressure surface-wave plasma (SWP). The discharge conditions for both continuous wave (CW) and pulse-modulated SWPs in low-temperature sterilization of Geobacillus stearothermophilus with a population of 1.5 × 106 and 3.0 × 106 were studied by varying the microwave input power from 500 W to 3 kW, and the effective plasma treatment time from 40 to 300 s. Results showed that sterilization was possible in a shorter treatment time using a higher microwave power for both CW and pulse-modulated SWPs. Pulse-modulated SWPs gave effective sterilization at a temperature roughly 10 to 20 °C below that of CW SWPs under the same average microwave power.
Thin-Film Ferroelectric Tunable Microwave Devices Being Developed
NASA Technical Reports Server (NTRS)
VanKeuls, Frederick W.
1999-01-01
Electronically tunable microwave components have become the subject of intense research efforts in recent years. Many new communications systems would greatly benefit from these components. For example, planned low Earth orbiting satellite networks have a need for electronically scanned antennas. Thin ferroelectric films are one of the major technologies competing to fill these applications. When a direct-current (dc) voltage is applied to ferroelectric film, the dielectric constant of the film can be decreased by nearly an order of magnitude, changing the high-frequency wavelength in the microwave device. Recent advances in film growth have demonstrated high-quality ferroelectric thin films. This technology may allow microwave devices that have very low power and are compact, lightweight, simple, robust, planar, voltage tunable, and affordable. The NASA Lewis Research Center has been designing, fabricating, and testing proof-of-concept tunable microwave devices. This work, which is being done in-house with funding from the Lewis Director's Discretionary Fund, is focusing on introducing better microwave designs to utilize these materials. We have demonstrated Ku- and K-band phase shifters, tunable local oscillators, tunable filters, and tunable diplexers. Many of our devices employ SrTiO3 as the ferroelectric. Although it is one of the more tunable and easily grown ferroelectrics, SrTiO3 must be used at cryogenic temperatures, usually below 100 K. At these temperatures, we frequently use high-temperature superconducting thin films of YBa2Cu3O7-8 to carry the microwave signals. However, much of our recent work has concentrated on inserting room-temperature ferroelectric thin films, such as BaxSr1- xTiO3 into these devices. The BaxSr1-xTiO3 films are used in conjuction with normal metal conductors, such as gold.
Pedrotti, Matheus F; Pereira, Leticia S F; Bizzi, Cezar A; Paniz, Jose N G; Barin, Juliano S; Flores, Erico M M
2017-11-01
In the present work, for the first time a systematic study was performed using an infrared camera and scanning electron microscopy (SEM) coupled to energy dispersive X-ray spectrometry (EDS) to evaluate the mechanisms involved in microwave-induced combustion method, which has been extensively used for sample preparation. Cellulose and glass fiber discs, wetted with the igniter solution (6molL -1 NH 4 NO 3 ), were evaluated under microwave field in a monomode system. The temperature of the discs surface was recorded during microwave irradiation and the effect of NH 4 NO 3 concentration and irradiation time on cellulose oxidation was evaluated. The morphology of the discs surface was characterized by SEM before and after irradiation in an inert atmosphere. According to the results, the surface temperature of the discs increased near to 100°C and remained in this temperature for few seconds while water evaporate. After that, temperature increased over 200°C due to the thermal decomposition of NH 4 NO 3 salt, releasing a large amount of energy that accelerates cellulose oxidation. The higher the igniter concentration, the shorter was the microwave irradiation time for cellulose oxidation. The SEM images revealed that cellulose disc was more porous after microwave irradiation, enhancing oxygen diffusion within the paper and making easier its ignition. The EDS spectrum of cellulose and glass fiber discs showed that signal intensity for nitrogen decreased after microwave irradiation, showing that NH 4 NO 3 was consumed during this process. Therefore, it was demonstrated that the ignition process is the result of synergic interaction of NH 4 NO 3 thermal decomposition and organic matter oxidation (cellulose) releasing heat and feeding the chain reaction. Copyright © 2017 Elsevier B.V. All rights reserved.
Multiphysics modeling of microwave heating of whole tomato
USDA-ARS?s Scientific Manuscript database
A mathematical model of a food is useful for prediction of temperature profiles during microwave heating. However, due to their complex geometry and interaction with electromagnetic fields, whole tomatoes resist an analytical approach to modeling the fruit as it is subjected to microwave energy. T...
Microwave-assisted synthesis of noble nanostructures (Au, Pt, and Pd) using biodegradable polymer carboxymethyl cellulose (CMC) under microwave irradiation (MW) at 100 0C is reported. The reaction occurs within a few minutes, whereas at room temperature the reaction does not pro...
Microwave drying of wood strands
Guanben Du; Siqun Wang; Zhiyong Cai
2005-01-01
Characteristics of microwave drying of wood strands with different initial moisture contents and geometries were investigated using a commercial small microwave oven under different power inputs. Temperature and moisture changes along with the drying efficiency were examined at different drying scenarios. Extractives were analyzed using gas chromatography=mass...
Effective Thermal Inactivation of the Spores of Bacillus cereus Biofilms Using Microwave.
Park, Hyong Seok; Yang, Jungwoo; Choi, Hee Jung; Kim, Kyoung Heon
2017-07-28
Microwave sterilization was performed to inactivate the spores of biofilms of Bacillus cereus involved in foodborne illness. The sterilization conditions, such as the amount of water and the operating temperature and treatment time, were optimized using statistical analysis based on 15 runs of experimental results designed by the Box-Behnken method. Statistical analysis showed that the optimal conditions for the inactivation of B. cereus biofilms were 14 ml of water, 108°C of temperature, and 15 min of treatment time. Interestingly, response surface plots showed that the amount of water is the most important factor for microwave sterilization under the present conditions. Complete inactivation by microwaves was achieved in 5 min, and the inactivation efficiency by microwave was obviously higher than that by conventional steam autoclave. Finally, confocal laser scanning microscopy images showed that the principal effect of microwave treatment was cell membrane disruption. Thus, this study can contribute to the development of a process to control food-associated pathogens.
The Peculiar Solar Minimum 23/24 Revealed by the Microwave Butterfly Diagram
NASA Technical Reports Server (NTRS)
Gopalswamy, Natchimuthuk; Yashiro, Seiji; Makela, Pertti; Shibasaki, Kiyoto; Hathaway, David
2010-01-01
The diminished polar magnetic field strength during the minimum between cycles 23 and 24 is also reflected in the thermal radio emission originating from the polar chromosphere. During solar minima, the polar corona has extended coronal holes containing intense unipolar flux. In microwave images, the coronal holes appear bright, with a brightness enhancement of 500 to 2000 K with respect to the quiet Sun. The brightness enhancement corresponds to the upper chromosphere, where the plasma temperature is approx.10000 K. We constructed a microwave butterfly diagram using the synoptic images obtained by the Nobeyama radioheliograph (NoRH) showing the evolution of the polar and low latitude brightness temperature. While the polar brightness reveals the chromospheric conditions, the low latitude brightness is attributed to active regions in the corona. When we compared the microwave butterfly diagram with the magnetic butterfly diagram, we found a good correlation between the microwave brightness enhancement and the polar field strength. The microwave butterfly diagram covers part of solar cycle 22, whole of cycle 23, and part of cycle 24, thus enabling comparison between the cycle 23/24 and cycle 22/23 minima. The microwave brightness during the cycle 23/24 minimum was found to be lower than that during the cycle 22/23 minimum by approx.250 K. The reduced brightness temperature is consistent with the reduced polar field strength during the cycle 23/24 minimum seen in the magnetic butterfly diagram. We suggest that the microwave brightness at the solar poles is a good indicator of the speed of the solar wind sampled by Ulysses at high latitudes..
NASA Astrophysics Data System (ADS)
Levy, Alan Robert
2006-07-01
The past two decades have been an exciting time in the field of cosmology and, in particular, studies of the Cosmic Microwave Background (CMB). One of the hot topics in cosmology research today is measuring and mapping CMB polarization. The White Mountain Polarimeter (WMPol) is a dedicated, ground-based microwave telescope and receiver system to measure CMB polarization which was installed in the Barcroft Observatory of the University of California White Mountain Research Station in September 2003. Presented here is a brief review of our current understanding of big bang cosmology and a description of the WMPol instrument, the observing conditions at the 3880-meter altitude Barcroft site, the data acquired during the 2004 observing campaign, and the data analysis.
Hoover, Kelli; Uzunovic, Adnan; Gething, Brad; Dale, Angela; Leung, Karen; Ostiguy, Nancy; Janowiak, John J.
2010-01-01
To reduce the risks associated with global transport of wood infested with pinewood nematode Bursaphelenchus xylophilus, microwave irradiation was tested at 14 temperatures in replicated wood samples to determine the temperature that would kill 99.9968% of nematodes in a sample of ≥ 100,000 organisms, meeting a level of efficacy of Probit 9. Treatment of these heavily infested wood samples (mean of > 1,000 nematodes/g of sapwood) produced 100% mortality at 56 °C and above, held for 1 min. Because this “brute force” approach to Probit 9 treats individual nematodes as the observational unit regardless of the number of wood samples it takes to treat this number of organisms, we also used a modeling approach. The best fit was to a Probit function, which estimated lethal temperature at 62.2 (95% confidence interval 59.0-70.0) °C. This discrepancy between the observed and predicted temperature to achieve Probit 9 efficacy may have been the result of an inherently limited sample size when predicting the true mean from the total population. The rate of temperature increase in the small wood samples (rise time) did not affect final nematode mortality at 56 °C. In addition, microwave treatment of industrial size, infested wood blocks killed 100% of > 200,000 nematodes at ≥ 56 °C held for 1 min in replicated wood samples. The 3rd-stage juvenile (J3) of the nematode, that is resistant to cold temperatures and desiccation, was abundant in our wood samples and did not show any resistance to microwave treatment. Regression analysis of internal wood temperatures as a function of surface temperature produced a regression equation that could be used with a relatively high degree of accuracy to predict internal wood temperatures, under the conditions of this study. These results provide strong evidence of the ability of microwave treatment to successfully eradicate B. xylophilus in infested wood at or above 56 °C held for 1 min. PMID:22736846
Microwave Switching and Attenuation with Superconductors.
NASA Astrophysics Data System (ADS)
Poulin, Grant Darcy
1995-01-01
The discovery of high temperature superconducting (HTS) materials having a critical temperature above the boiling point of liquid nitrogen has generated a large amount of interest in both the basic and applied scientific communities. Considerable research effort has been expended in developing HTS microwave devices, since thin film, passive, microwave components will likely be the first area to be successfully commercialized. This thesis describes a new thin film HTS microwave device that can be operated as a switch or as a continuously variable attenuator. It is well suited for low power analog signal control applications and can easily be integrated with other HTS devices. Due to its small size and mass, the device is expected to find application as a receiver protection switch or as an automatic gain control element, both used in satellite communications receivers. The device has a very low insertion loss, and the isolation in the OFF state is continuously variable to 25 dB. With minor modifications, an isolation exceeding 50 dB is readily achievable. A patent application for the device has been filed, with the patent rights assigned to COM DEV. The device is based on an unusual non-linear response in HTS materials. Under a non-zero DC voltage bias, the current through a superconducting bridge is essentially voltage independent. We have proposed a thermal instability to account for this behaviour. Thermal modelling in conjunction with direct temperature measurements were used to confirm the validity of the model. We have developed a detailed model explaining the microwave response of the device. The model accurately predicts the microwave attenuation as a function of the applied DC control voltage and fully explains the device operation. A key feature is that the device acts as a pure resistive element at microwave frequencies, with no reactance. The resistance is continuously variable, controlled by the DC bias voltage. This distinguishes it from a PIN diode, since PIN diodes have a capacitive reactance that limits their frequency range. Measurements made to confirm the microwave model validity resulted in the development of a new cryogenic de-embedding technique. The technique allows accurate microwave measurements to be made on devices at cryogenic temperatures using only room temperature calibration standards. We have also investigated the effect of kinetic inductance on coplanar waveguide transmission lines, and indicate under what conditions kinetic inductance must be considered in transmission line design.
Microwave antenna array for prostrate hyperthermia
NASA Astrophysics Data System (ADS)
Trembly, B. Stuart; Hoopes, P. Jack; Moodie, Karen L.; Dvinsky, Arik S.
1999-05-01
A pair of microwave applicators was developed to produce controlled elevation of temperature in the prostate. One applicator was designed for placement in the urethra; it has a diameter of 6 mm and is flexible. This applicator incorporates a choked, resonant microwave dipole with an omnidirectional heating pattern and an air cooling system to control the temperature of the urothelium. The second applicator was designed for placement in the rectum; it has a diameter of 18 mm and is rigid. It incorporates an eccentric, choked, resonant microwave dipole that radiates toward the prostate with a front-to-back power ratio of about twenty. An air cooling system controls the temperature of the rectal mucosa. The applicators are driven at 915 MHz with a phase difference chosen to produce the maximum temperature in the central prostate. We heated the prostates of eight canine subjects with the transurethral and transrectal applicators. After one or two months of followup in four subjects, the prostates and surrounding tissues were evaluated histologically. We present experimental measurements of the power deposition patterns of the applicators and the 3D temperature distributions in vivo, and we correlate the thermal dose with histopathological observations.
NASA Technical Reports Server (NTRS)
Mcfarland, M. J.; Harder, P. H., II; Wilke, G. D.; Huebner, G. L., Jr.
1984-01-01
Moisture content of snow-free, unfrozen soil is inferred using passive microwave brightness temperatures from the scanning multichannel microwave radiometer (SMMR) on Nimbus-7. Investigation is restricted to the two polarizations of the 1.66 cm wavelength sensor. Passive microwave estimates of soil moisture are of two basic categories; those based upon soil emissivity and those based upon the polarization of soil emission. The two methods are compared and contrasted through the investigation of 54 potential functions of polarized brightness temperatures and, in some cases, ground-based temperature measurements. Of these indices, three are selected for the estimated emissivity, the difference between polarized brightness temperatures, and the normalized polarization difference. Each of these indices is about equally effective for monitoring soil moisture. Using an antecedent precipitation index (API) as ground control data, temporal and spatial analyses show that emissivity data consistently give slightly better soil moisture estimates than depolarization data. The difference, however, is not statistically significant. It is concluded that polarization data alone can provide estimates of soil moisture in areas where the emissivity cannot be inferred due to nonavailability of surface temperature data.
21-cm radiation: a new probe of variation in the fine-structure constant.
Khatri, Rishi; Wandelt, Benjamin D
2007-03-16
We investigate the effect of variation in the value of the fine-structure constant (alpha) at high redshifts (recombination > z > 30) on the absorption of the cosmic microwave background (CMB) at 21 cm hyperfine transition of the neutral atomic hydrogen. We find that the 21 cm signal is very sensitive to the variations in alpha and it is so far the only probe of the fine-structure constant in this redshift range. A change in the value of alpha by 1% changes the mean brightness temperature decrement of the CMB due to 21 cm absorption by >5% over the redshift range z < 50. There is an effect of similar magnitude on the amplitude of the fluctuations in the brightness temperature. The redshift of maximum absorption also changes by approximately 5%.
Beyond CMB cosmic variance limits on reionization with the polarized Sunyaev-Zel'dovich effect
NASA Astrophysics Data System (ADS)
Meyers, Joel; Meerburg, P. Daniel; van Engelen, Alexander; Battaglia, Nicholas
2018-05-01
Upcoming cosmic microwave background (CMB) surveys will soon make the first detection of the polarized Sunyaev-Zel'dovich effect, the linear polarization generated by the scattering of CMB photons on the free electrons present in collapsed objects. Measurement of this polarization along with knowledge of the electron density of the objects allows a determination of the quadrupolar temperature anisotropy of the CMB as viewed from the space-time location of the objects. Maps of these remote temperature quadrupoles have several cosmological applications. Here we propose a new application: the reconstruction of the cosmological reionization history. We show that with quadrupole measurements out to redshift 3, constraints on the mean optical depth can be improved by an order of magnitude beyond the CMB cosmic variance limit.
NASA Technical Reports Server (NTRS)
Kerr, Yann H.; Njoku, Eni G.
1990-01-01
A radiative-transfer model for simulating microwave brightness temperatures over land surfaces is described. The model takes into account sensor viewing conditions (spacecraft altitude, viewing angle, frequency, and polarization) and atmospheric parameters over a soil surface characterized by its moisture, roughness, and temperature and covered with a layer of vegetation characterized by its temperature, water content, single scattering albedo, structure, and percent coverage. In order to reduce the influence of atmospheric and surface temperature effects, the brightness temperatures are expressed as polarization ratios that depend primarily on the soil moisture and roughness, canopy water content, and percentage of cover. The sensitivity of the polarization ratio to these parameters is investigated. Simulation of the temporal evolution of the microwave signal over semiarid areas in the African Sahel is presented and compared to actual satellite data from the SMMR instrument on Nimbus-7.
Microwave brightness temperature of a windblown sea
NASA Technical Reports Server (NTRS)
Hall, F. G.
1972-01-01
A mathematical model is developed for the apparent temperature of the sea at all microwave frequencies. The model is a numerical model in which both the clear water structure and white water are accounted for as a function of wind speed. The model produces results similar to Stogryn's model at 19.35 GHz for wind speeds less than 8 m/sec; it can use radiosonde data to calculate atmospheric effects and can incorporate an empirically determined antenna gain pattern. The corresponding computer program is of modular design and the logic of the main program is capable of treating a horizontally inhomogeneous surface or atmosphere. It is shown that a variation of microwave brightness temperature with zenith angle is necessary to produce the wind sensitivity of the horizontally polarized brightness temperature; the variation of sky temperature with frequency is sufficient to produce a frequency dependent wind sensitivity.
NASA Technical Reports Server (NTRS)
Njoku, E. G.; Christensen, E. J.; Cofield, R. E.
1980-01-01
The antenna temperatures measured by the Seasat scanning multichannel microwave radiometer (SMMR) differ from the true brightness temperatures of the observed scene due to antenna pattern effects, principally from antenna sidelobe contributions and cross-polarization coupling. To provide accurate brightness temperatures convenient for geophysical parameter retrievals the antenna temperatures are processed through a series of stages, collectively known as the antenna pattern correction (APC) algorithm. A description of the development and implementation of the APC algorithm is given, along with an error analysis of the resulting brightness temperatures.
NASA Astrophysics Data System (ADS)
Rudenko, E.; Tsybrii, Z.; Sizov, F.; Korotash, I.; Polotskiy, D.; Skoryk, M.; Vuichyk, M.; Svezhentsova, K.
2017-04-01
Aluminum nitride (AlN) film coatings on flexible substrates (polymeric Teflon, Mylar) have been obtained using a hybrid helicon-arc ion-plasma deposition technique with high adhesion of coatings. Studies of optical, morphological, and structural properties of AlN films have been carried out. It was found that AlN coatings on Teflon and Mylar thin-film substrates substantially suppress transmission of infrared (IR) radiation within the spectral range λ ˜ 5-20 μm at certain technological parameters and thickness of AlN. Transmission in THz regions by using quasioptics attains T ≈ 79%-95%, and losses measured in the channels within the microwave region 2 to 36 GHz are <0.06 dB. The obtained composite structures (AlN coatings on Teflon and Mylar thin-film substrates), due to a high thermal conductivity of AlN, could be used as efficient blocking structures in the infrared spectral range ("infrared stealth") withdrawing the heat from filters warmed by IR radiation. At the same time, they can be used as the transparent ones in the microwave and THz regions, which can be important for low-temperature detector components of navigation, positioning, and telecommunication systems due to reducing the background noise.
2001-04-21
KENNEDY SPACE CENTER, FLA. -- Workers in the Spacecraft Assembly and Encapsulation Facility 2 place an antenna on the Microwave Anisotropy Probe (MAP). Several other milestones must be completed while MAP is at SAEF-2, including solar array installation, solar array deployment and illumination testing, a spacecraft comprehensive performance test, fueling with hydrazine propellant and a spin balance test. MAP will then be ready for integration with the solid propellant Payload Assist Module upper stage booster. MAP is scheduled for launch June 30 from Cape Canaveral Air Force Station on a Delta II rocket into a lunar-assisted trajectory to the Sun-Earth for a 27-month mission. The MAP instrument consists of a set of passively cooled microwave radiometers with 1.4x 1.6-meter diameter primary reflectors to provide the desired angular resolution. MAP measures small fluctuations in the temperature of the cosmic microwave background radiation to an accuracy of one millionth of a degree These measurements should reveal the size, matter content, age, geometry and fate of the universe. They will also reveal the primordial structure that grew to form galaxies and will test ideas about the origins of these primordial structures. The MAP instrument will be continuously shaded from the Sun, Earth, and Moon by the spacecraft. It is a product of Goddard Space Flight Center in partnership with Princeton University
2001-04-23
KENNEDY SPACE CENTER, FLA. -- In the Spacecraft Assembly and Encapsulation Facility 2, the Microwave Anisotropy Probe (MAP) undergoes testing and checkout. Several milestones must be completed while MAP is at SAEF-2, including antenna and solar array installation, solar array deployment and illumination testing, a spacecraft comprehensive performance test, fueling with hydrazine propellant and a spin balance test. MAP will then be ready for integration with the solid propellant Payload Assist Module upper stage booster. MAP is scheduled for launch June 30 from Cape Canaveral Air Force Station on a Delta II rocket into a lunar-assisted trajectory to the Sun-Earth for a 27-month mission. The MAP instrument consists of a set of passively cooled microwave radiometers with 1.4x 1.6-meter diameter primary reflectors to provide the desired angular resolution. MAP measures small fluctuations in the temperature of the cosmic microwave background radiation to an accuracy of one millionth of a degree These measurements should reveal the size, matter content, age, geometry and fate of the universe. They will also reveal the primordial structure that grew to form galaxies and will test ideas about the origins of these primordial structures. The MAP instrument will be continuously shaded from the Sun, Earth, and Moon by the spacecraft. It is a product of Goddard Space Flight Center in partnership with Princeton University
2001-04-21
KENNEDY SPACE CENTER, FLA. -- The Microwave Anisotropy Probe (MAP) is worked on in the Spacecraft Assembly and Encapsulation Facility 2. Several milestones must be completed while MAP is at SAEF-2, including antenna installations, solar array installation, solar array deployment and illumination testing, a spacecraft comprehensive performance test, fueling with hydrazine propellant and a spin balance test. MAP will then be ready for integration with the solid propellant Payload Assist Module upper stage booster. MAP is scheduled for launch June 30 from Cape Canaveral Air Force Station on a Delta II rocket into a lunar-assisted trajectory to the Sun-Earth for a 27-month mission. The MAP instrument consists of a set of passively cooled microwave radiometers with 1.4x 1.6-meter diameter primary reflectors to provide the desired angular resolution. MAP measures small fluctuations in the temperature of the cosmic microwave background radiation to an accuracy of one millionth of a degree These measurements should reveal the size, matter content, age, geometry and fate of the universe. They will also reveal the primordial structure that grew to form galaxies and will test ideas about the origins of these primordial structures. The MAP instrument will be continuously shaded from the Sun, Earth, and Moon by the spacecraft. It is a product of Goddard Space Flight Center in partnership with Princeton University
NASA Technical Reports Server (NTRS)
Olsen, E.; Backus, C.; Gulkis, S.; Levin, S.
1993-01-01
The NASA High Resolution Microwave Survey (HRMS) Sky Survey component will survey the entire celestial sphere over the microwave frequency band to search for signals of intelligent origin which originate from beyond our solar system.
The Cosmic Background Explorer.
ERIC Educational Resources Information Center
Gulkis, Samuel; And Others
1990-01-01
Outlines the Cosmic Background Explorer (COBE) mission to measure celestial radiation. Describes the instruments used and experiments involving differential microwave radiometers, and a far infrared absolute spectrophotometer. (YP)
Method of sintering materials with microwave radiation
Kimrey, Jr., Harold D.; Holcombe, Jr., Cressie E.; Dykes, Norman L.
1994-01-01
A method of sintering ceramic materials following: A compacted article comprising inorganic particles coated with carbon is provided, the carbon providing improved microwave coupling. The compacted article is then heated by microwave radiation to a temperature and for a period of time sufficient to sinter the compacted article.
Microwave Heating of TV-Dinner Type Products
USDA-ARS?s Scientific Manuscript database
Modified from an inverter-based microwave oven, a new microwave system was developed to pasteurize mechanically tenderized beef, inoculated with Escherichia coli O157:H7 and placed into a 12 oz CPET tray containing de-ionized water. The system allowed the sample surface temperature to first increas...
Spectral distortions of the cosmic microwave background
NASA Technical Reports Server (NTRS)
Adams, Fred C.; Mcdowell, Jonathan C.; Freese, Katherine; Levin, Janna
1989-01-01
Recent experiments indicate that the spectrum of the cosmic microwave background deviates from a pure blackbody; here, spectral distortions produced by cosmic dust are considered. The main result is that cosmic dust in conjunction with an injected radiation field (perhaps produced by an early generation of very massive stars) can explain the observed spectral distortions without violating existing cosmological constraints. In addition, it is shown that Compton y-distortions can also explain the observed spectral shape, but the energetic requirements are more severe.
Characteristic microwave-background distortions from collapsing spherical domain walls
NASA Technical Reports Server (NTRS)
Goetz, Guenter; Notzold, Dirk
1990-01-01
The redshift distortion induced by collapsing spherical domain walls is calculated. The most frequent microwave background distortions are found to occur at large angles in the form of blue disks. This is the angular region currently measured by the COBE satellite. COBE could therefore detect signals predicted here for domain walls with surface energy density of the order of MeV. Such values for sigma are proposed in the late-time phase-transition scenario of Hill et al. (1989).
Lee, Jeffrey S; Cleaver, Gerald B
2017-10-01
In this note, the Cosmic Microwave Background (CMB) Radiation is shown to be capable of functioning as a Random Bit Generator, and constitutes an effectively infinite supply of truly random one-time pad values of arbitrary length. It is further argued that the CMB power spectrum potentially conforms to the FIPS 140-2 standard. Additionally, its applicability to the generation of a (n × n) random key matrix for a Vernam cipher is established.
D-term inflation, cosmic strings, and consistency with cosmic microwave background measurements.
Rocher, Jonathan; Sakellariadou, Mairi
2005-01-14
Standard D-term inflation is studied in the framework of supergravity. D-term inflation produces cosmic strings; however, it can still be compatible with cosmic microwave background (CMB) measurements without invoking any new physics. The cosmic strings contribution to the CMB data is not constant, nor dominant, contrary to some previous results. Using current CMB measurements, the free parameters (gauge and superpotential couplings, as well as the Fayet-Iliopoulos term) of D-term inflation are constrained.
Microwave techniques for measuring complex permittivity and permeability of materials
DOE Office of Scientific and Technical Information (OSTI.GOV)
Guillon, P.
1995-08-01
Different materials are of fundamental importance to the aerospace, microwave, electronics and communications industries, and include for example microwave absorbing materials, antennas lenses and radomes, substrates for MMIC and microwave components and antennaes. Basic measurements for the complex permittivity and permeability of those homogeneous solid materials in the microwave spectral region are described including hardware, instrumentation and analysis. Elevated temperature measurements as well as measurements intercomparisons, with a discussion of the strengths and weaknesses of each techniques are also presented.
USDA-ARS?s Scientific Manuscript database
Maize bran was treated with microwave irradiation (160 – 200 °C for 2 – 20 min) to release feruolyated arabinoxylo-oligosaccharides (AXOS). Lower temperatures and shorter treatment times were consistent with low AXOS yields, while higher temperatures and longer reaction times also resulted in low y...
Jiulong Xie; Jinqiu Qi; Chungyun Hse; Todd F. Shupe
2015-01-01
Bamboo residues were liquefied in a mixture of glycerol and methanol in the presence of sulfuric acid using microwave energy. We investigated the effects of liquefaction conditions, including glycerol/methanol ratio, liquefaction temperature, and reaction time on the conversion yield. The optimal liquefaction conditions were under the temperature of 120
The influence of tissue layering on microwave thermographic measurements.
Hawley, M S; Conway, J; Anderson, A P; Cudd, P A
1988-01-01
Non-invasive thermal imaging and temperature measurement by microwave radiometry has been investigated for medical diagnostic applications and monitoring hyperthermia treatment of cancer, in the context of heterogeneous body structure. The temperature measured by a radiometer is a function of the emission and propagation of microwaves in tissue and the receiving characteristics of the radiometric probe. Propagation of microwaves in lossy media was analysed by a spectral diffraction approach. Extension of this technique via a cascade transmission line model provides an efficient algorithm for predicting the field patterns of aperture antennas contacting multi-layered tissue. A coherent radiative transfer analysis was used to relate the field pattern of a radiating antenna to its receiving characteristics when used as a radiometer probe, leading to a method for simulating radiometric data. Measurements and simulations were used to assess the effect of overlying fat layers upon radiometer response to temperature hot spots in muscle-type media. Results suggest that dielectric layering in tissue greatly influences measured temperatures and should be accounted for in the interpretation of radiometric data.