Science.gov

Sample records for microwave heating optimization

  1. Heat transfer in microwave heating

    NASA Astrophysics Data System (ADS)

    Peng, Zhiwei

    , which is a typical magnetic dielectric, was simulated by using an explicit finite-difference approach. It is demonstrated that the heat generation due to microwave irradiation dominates the initial temperature rise in the heating and the heat radiation heavily affects the temperature distribution, giving rise to a hot spot in the predicted temperature profile. Microwave heating at 915 MHz exhibits better heating homogeneity than that at 2450 MHz due to larger microwave penetration depth. To minimize/avoid temperature nonuniformity during microwave heating the optimization of object dimension should be considered. The calculated reflection loss over the temperature range of heating is found to be useful for obtaining a rapid optimization of absorber dimension, which increases microwave absorption and achieves relatively uniform heating. To further improve the heating effectiveness, a function for evaluating absorber impedance matching in microwave heating was proposed. It is found that the maximum absorption is associated with perfect impedance matching, which can be achieved by either selecting a reasonable sample dimension or modifying the microwave parameters of the sample.

  2. Multiple tube structure for heating uniformity and efficiency optimization of microwave ovens

    NASA Astrophysics Data System (ADS)

    Zhou, Rong; Yang, Xiaoqing; Sun, Di; Jia, Guozhu

    2015-02-01

    Microwave heating is widely applied to microwave assisted chemical reactions in modified domestic microwave ovens, however, the potential issues (non-uniformity and low heating efficiency) still exist during the heating process. In this paper, a new heating model of multiple tube structure is proposed and the relevant simulations and experiments of heating water were performed based on the computational platform COMSOL Multi-physics software in order to achieve the better temperature uniformity and heating efficiency. Besides, the influence of the instability of microwave ovens on the heating performances of the optimal heating models was analyzed. The simulation results show that the heating uniformity and efficiency of water in optimal six tube structure increased by 7.1% and 68.5% (30 mL), 9.2% and 61% (60 mL) respectively compared with the optimal single tube structure. Moreover, the heating performances of the optimal heating models do not change obviously, while the working frequency and power change slightly. The simulation results are in good agreement with the experiment data.

  3. Optimization and stabilization of gold nanoparticles by using herbal plant extract with microwave heating.

    PubMed

    Yasmin, Akbar; Ramesh, Kumaraswamy; Rajeshkumar, Shanmugam

    2014-01-01

    In this study, we have synthesized the gold nanoparticles by using Hibiscus rosa-sinensis, a medicinal plant. The gold nanoparticles were synthesized rapidly by the involvement of microwave heating. By changing of plant extract concentration, gold solution concentration, microwave heating time and power of microwave heating the optimized condition was identified. The surface Plasmon resonance found at 520 nm confirmed the gold nanoparticles synthesis. The spherical sized nanoparticles in the size range of 16-30 nm were confirmed by Transmission Electron Microscope (TEM). The stability of the nanoparticles is very well proved in the invitro stability tests. The biochemical like alkaloids and flavonoids play a vital role in the nanoparticles synthesis was identified using the Fourier Transform Infrared Spectroscopy (FTIR). Combining the phytochemical and microwave heating, the rapid synthesis of gold nanoparticles is the novel process for the medically applicable gold nanoparticles production.

  4. Optimization and stabilization of gold nanoparticles by using herbal plant extract with microwave heating

    NASA Astrophysics Data System (ADS)

    Yasmin, Akbar; Ramesh, Kumaraswamy; Rajeshkumar, Shanmugam

    2014-04-01

    In this study, we have synthesized the gold nanoparticles by using Hibiscus rosa-sinensis, a medicinal plant. The gold nanoparticles were synthesized rapidly by the involvement of microwave heating. By changing of plant extract concentration, gold solution concentration, microwave heating time and power of microwave heating the optimized condition was identified. The surface Plasmon resonance found at 520 nm confirmed the gold nanoparticles synthesis. The spherical sized nanoparticles in the size range of 16-30 nm were confirmed by Transmission Electron Microscope (TEM). The stability of the nanoparticles is very well proved in the invitro stability tests. The biochemical like alkaloids and flavonoids play a vital role in the nanoparticles synthesis was identified using the Fourier Transform Infrared Spectroscopy (FTIR). Combining the phytochemical and microwave heating, the rapid synthesis of gold nanoparticles is the novel process for the medically applicable gold nanoparticles production.

  5. Optimization of hydrous ferrous sulfate dehydration by microwave heating using response surface methodology.

    PubMed

    Yu, Yan-Tao; Liu, Bing-Guo; Chen, Guo; Peng, Jin-Hui; Srinivasakannan, C

    2012-01-01

    The work relates to assessing the ability of the microwave for dehydration of large amount of waste hydrous ferrous sulfate generated from the titanium pigment process industry. The popular process optimization tool of response surface methodology with central composite design was adopted to estimate the effect of dehydration. The process variables were chosen to be power input, duration of heating and the bed thickness, while the response variable being the weight loss. An increase in all the three process variables were found to significantly increase the weight loss, while the effect of interaction among the parameters were found to be insignificant. The optimized process conditions that contribute to the maximum weight loss were identified to be a power input of 960 W, duration of heating of 14 min and bed thickness of 5 cm, resulting in a weight loss of 31.44%. The validity of the optimization process was tested with the repeat runs at optimized conditions.

  6. The Analysis of Parametric Sensitivity Based on Designing and Optimization of a New Microwave Heating System

    NASA Astrophysics Data System (ADS)

    Chen, Hua; Zhang, Jin; Fan, Zebin; Peng, Jinhui; Ju, Shaohua

    2017-09-01

    Microwave-assisted heating technology has become a popular alternative to conventional heating technologies because of its many advantages. However, the matching performance of microwave heating system is of particular concern because it provides an important index of the utilization efficiency of microwave energy. In this work, a new microwave heating system is designed by the theory of optical resonator in first. Then the comprehensive analysis of the mutual coupling of high sensitive geometrical and material parameters were investigated based on this new microwave heating system at 2.45 GHz. It is demonstrated that the thickness of materials dramatically influences microwave energy absorption efficiency and should be carefully considered and perhaps given priority. Moreover, it is shown that matching performance is the best when the titanium concentrates thickness at about 0.075 m.

  7. Controlled Microwave Heating Accelerates Rolling Circle Amplification.

    PubMed

    Yoshimura, Takeo; Suzuki, Takamasa; Mineki, Shigeru; Ohuchi, Shokichi

    2015-01-01

    Rolling circle amplification (RCA) generates single-stranded DNAs or RNA, and the diverse applications of this isothermal technique range from the sensitive detection of nucleic acids to analysis of single nucleotide polymorphisms. Microwave chemistry is widely applied to increase reaction rate as well as product yield and purity. The objectives of the present research were to apply microwave heating to RCA and indicate factors that contribute to the microwave selective heating effect. The microwave reaction temperature was strictly controlled using a microwave applicator optimized for enzymatic-scale reactions. Here, we showed that microwave-assisted RCA reactions catalyzed by either of the four thermostable DNA polymerases were accelerated over 4-folds compared with conventional RCA. Furthermore, the temperatures of the individual buffer components were specifically influenced by microwave heating. We concluded that microwave heating accelerated isothermal RCA of DNA because of the differential heating mechanisms of microwaves on the temperatures of reaction components, although the overall reaction temperatures were the same.

  8. Preparation of Reduced Iron Powders from Mill Scale with Microwave Heating: Optimization Using Response Surface Methodology

    NASA Astrophysics Data System (ADS)

    Ye, Qianxu; Zhu, Hongbo; Peng, Jinhui; Srinivasa Kannan, C.; Chen, Jian; Dai, Linqing; Liu, Peng

    2013-12-01

    Preparation of the reduced iron powder has been attempted with mill scale as the iron-bearing material and with wood charcoal as the reducing agent through microwave heating. The response surface methodology (RSM) is used to optimize the process conditions, with wood charcoal, process temperature, and holding time being the three process parameters. The regressed model equation eliminating the insignificant parameters through an analysis of variance (ANOVA) was used to optimize the process conditions. The optimum process parameters for the preparation of reduced iron powders have been identified to be the wood charcoal of 13.8 pct, a process temperature of 1391 K (1118 °C), and a holding time of 43 minutes. The optimum conditions resulted in reduced iron powders with a total iron content of 98.60 pct and a metallization ratio of 98.71 pct. X-ray fluorescence (XRF) was used to estimate the elemental contents of the reduced iron powder, which meets the specification of the HY100.23 first-class iron powder standard. Additionally X-ray diffraction (XRD), energy-dispersive spectroscopy (EDS), and scanning electron microscopy (SEM) analysis were performed and the results are compiled.

  9. Application of response surface methodology for optimization of parameters for microwave heating of rare earth carbonates

    NASA Astrophysics Data System (ADS)

    Yin, Shaohua; Lin, Guo; Li, Shiwei; Peng, Jinhui; Zhang, Libo

    2016-09-01

    Microwave heating has been applied in the field of drying rare earth carbonates to improve drying efficiency and reduce energy consumption. The effects of power density, material thickness and drying time on the weight reduction (WR) are studied using response surface methodology (RSM). The results show that RSM is feasible to describe the relationship between the independent variables and weight reduction. Based on the analysis of variance (ANOVA), the model is in accordance with the experimental data. The optimum experiment conditions are power density 6 w/g, material thickness 15 mm and drying time 15 min, resulting in an experimental weight reduction of 73%. Comparative experiments show that microwave drying has the advantages of rapid dehydration and energy conservation. Particle analysis shows that the size distribution of rare earth carbonates after microwave drying is more even than those in an oven. Based on these findings, microwave heating technology has an important meaning to energy-saving and improvement of production efficiency for rare earth smelting enterprises and is a green heating process.

  10. Optimizing electro-thermo Helds for soot oxidation using microwave heating and metal

    NASA Astrophysics Data System (ADS)

    Al-Wakeel, Haitham B.; Karim, Z. A. Abdul; Al-Kayiem, Hussain H.

    2015-04-01

    Soot is produced by incomplete combustion of various carbon-containing compounds. Soot is one of the main environmental pollutants and has become an important environmental and specific objective. To reduce soot from exhaust emission of diesel engine, a new technique is proposed and implemented by using metal inserted in the soot exposed to electromagnetic radiation. This paper presents a simulation to obtain optimum metal length and shape that give optimum electric field for attaining temperature enough for soot oxidation using microwave heating and a thin metal rod. Four cases were numerically examined to investigate the electric field and temperature distributions in a mono-mode TE10 microwave cavity having closed surfaces of perfect electric conductors. The operating frequency is 2.45 GHz, and power supply is 1500 W. The simulation methodology is coupling the absorbed electromagnetic energy with heat transfer energy. The absorbed electromagnetic energy is found from the electric field within the soot. The simulation was run using ANSYS based on finite element method. The results of the four simulation cases show that the optimum simulation is represented by case 2 where the value of electric field is 39000 V/m and heating time to arrive at the oxidation temperature (873 K) is 35 s using cylindrical metal rod of 8 mm length. It is revealed that the concept of achieving high temperature for soot oxidation by using thin metal rod inside a microwave cavity can be applied.

  11. Variable frequency microwave heating apparatus

    DOEpatents

    Bible, Don W.; Lauf, Robert J.; Johnson, Arvid C.; Thigpen, Larry T.

    1999-01-01

    A variable frequency microwave heating apparatus (10) designed to allow modulation of the frequency of the microwaves introduced into a multi-mode microwave cavity (34) for testing or other selected applications. The variable frequency microwave heating apparatus (10) includes a microwave signal generator (12) and a high-power microwave amplifier (20) or a high-power microwave oscillator (14). A power supply (22) is provided for operation of the high-power microwave oscillator (14) or microwave amplifier (20). A directional coupler (24) is provided for detecting the direction and amplitude of signals incident upon and reflected from the microwave cavity (34). A first power meter (30) is provided for measuring the power delivered to the microwave furnace (32). A second power meter (26) detects the magnitude of reflected power. Reflected power is dissipated in the reflected power load (28).

  12. Variable frequency microwave heating apparatus

    SciTech Connect

    Bible, D.W.; Lauf, R.J.; Johnson, A.C.; Thigpen, L.T.

    1999-10-05

    A variable frequency microwave heating apparatus (10) designed to allow modulation of the frequency of the microwaves introduced into a multi-mode microwave cavity (34) for testing or other selected applications. The variable frequency microwave heating apparatus (10) includes a microwave signal generator (12) and a high-power microwave amplifier (20) or a high-power microwave oscillator (14). A power supply (22) is provided for operation of the high-power microwave oscillator (14) or microwave amplifier (20). A directional coupler (24) is provided for detecting the direction and amplitude of signals incident upon and reflected from the microwave cavity (34). A first power meter (30) is provided for measuring the power delivered to the microwave furnace (32). A second power meter (26) detects the magnitude of reflected power. Reflected power is dissipated in the reflected power load (28).

  13. Controlled Microwave Heating Accelerates Rolling Circle Amplification

    PubMed Central

    Yoshimura, Takeo; Suzuki, Takamasa; Mineki, Shigeru; Ohuchi, Shokichi

    2015-01-01

    Rolling circle amplification (RCA) generates single-stranded DNAs or RNA, and the diverse applications of this isothermal technique range from the sensitive detection of nucleic acids to analysis of single nucleotide polymorphisms. Microwave chemistry is widely applied to increase reaction rate as well as product yield and purity. The objectives of the present research were to apply microwave heating to RCA and indicate factors that contribute to the microwave selective heating effect. The microwave reaction temperature was strictly controlled using a microwave applicator optimized for enzymatic-scale reactions. Here, we showed that microwave-assisted RCA reactions catalyzed by either of the four thermostable DNA polymerases were accelerated over 4-folds compared with conventional RCA. Furthermore, the temperatures of the individual buffer components were specifically influenced by microwave heating. We concluded that microwave heating accelerated isothermal RCA of DNA because of the differential heating mechanisms of microwaves on the temperatures of reaction components, although the overall reaction temperatures were the same. PMID:26348227

  14. Rapid alkali catalyzed transesterification of microalgae lipids to biodiesel using simultaneous cooling and microwave heating and its optimization.

    PubMed

    Chee Loong, Teo; Idris, Ani

    2014-12-01

    Biodiesel with improved yield was produced from microalgae biomass under simultaneous cooling and microwave heating (SCMH). Nannochloropsis sp. and Tetraselmis sp. which were known to contain higher lipid species were used. The yield obtained using this novel technique was compared with the conventional heating (CH) and microwave heating (MWH) as the control method. The results revealed that the yields obtained using the novel SCMH were higher; Nannochloropsis sp. (83.33%) and Tetraselmis sp. (77.14%) than the control methods. Maximum yields were obtained using SCMH when the microwave was set at 50°C, 800W, 16h of reaction with simultaneous cooling at 15°C; and water content and lipid to methanol ratio in reaction mixture was kept to 0 and 1:12 respectively. GC analysis depicted that the biodiesel produced from this technique has lower carbon components (<19 C) and has both reasonable CN and IV reflecting good ignition and lubricating properties.

  15. Hybrid microwave-cavity heat engine.

    PubMed

    Bergenfeldt, Christian; Samuelsson, Peter; Sothmann, Björn; Flindt, Christian; Büttiker, Markus

    2014-02-21

    We propose and analyze the use of hybrid microwave cavities as quantum heat engines. A possible realization consists of two macroscopically separated quantum-dot conductors coupled capacitively to the fundamental mode of a microwave cavity. We demonstrate that an electrical current can be induced in one conductor through cavity-mediated processes by heating up the other conductor. The heat engine can reach Carnot efficiency with optimal conversion of heat to work. When the system delivers the maximum power, the efficiency can be a large fraction of the Carnot efficiency. The heat engine functions even with moderate electronic relaxation and dephasing in the quantum dots. We provide detailed estimates for the electrical current and output power using realistic parameters.

  16. [Microwave-induced heating injury].

    PubMed

    Frey, F J

    2004-12-01

    The case reported herein involves burns at the lower extremities leading to amputation followed by an MRSA infection with subsequent myocardial infarction and death in a patient with diabetes on chronic ambulatory peritoneal dialysis. The burns were produced by the use of a warm-up pillow containing natural stones (grape seeds) heated by microwaves. This represents another of the strange potential hazards of serious microwave related injuries.

  17. Microwave heating of porous media

    SciTech Connect

    Gori, F.; Martini, L. ); Gentili, G.B. )

    1987-05-01

    The technique actually used for recycling in place asphaltic concrete pavements is the following: heating of the surface layer of the pavement with special infrared lamps (gas-fed); hot removal and remixing in place of the materials with the addition of new binder; in-line reconstruction of the pavement layer with rolling. Such a technique is highly efficient and economic but it suffers an important disadvantage: The low thermal conductivity of the asphalt causes a strong temperature decrease with depth. Further on, the infrared radiation produces carbonization of the pavement skin with possible modification of the rheological properties of the bitumen. The technology of microwave generators (Magnetron, Klystron, and Amplitron) has registered some recent advances. It is now possible, and in some cases convenient, to use microwave energy for industrial heating of low-thermal-conductivity materials. Actually the microwaves are employed for drying wood, paper, and textiles, and for freeze-drying, cooking, and defrosting foods. One of the most interesting features of the microwave process is the rate and uniformity of the heating inside the material. Some preliminary experiments have been carried out for recycling in place asphaltic concrete pavements. The goal of the present paper is to propose a theoretical model capable of describing the phenomena occurring in a soil during a microwave heating process.

  18. Microwave heating apparatus and method

    DOEpatents

    Johnson, Andrew J.; Petersen, Robert D.; Swanson, Stephen D.

    1990-01-01

    An apparatus is provided for heating and melting materials using microwave energy, and for permitting them to solidify. The apparatus includes a microwave energy source, a resonant cavity having an opening in its floor, a microwave energy choke encompassing the opening in the floor of the cavity, a metal container to hold the materials to be heated and melted, a turntable, and a lift-table. During operation, the combined action of the turntable and the lift-table position the metal container so that the top of the container is level with the floor of the cavity, is in substantial registration with the floor opening, and is encompassed by the microwave energy choke; thus, during operation, the interior of the container defines part of the resonant cavity. Additionally, a screw feeder, extending into the cavity and sheltered from microwave energy by a conveyor choke, may convey the materials to be heated to the container. Also, preferably, the floor of the resonant cavity may include perforatins, so that the offgases and dust generated in the apparatus may be removed from the resonant cavity by pulling outside air between the container choke and the exterior wall of the container into the resonant cavity and out from the cavity through the perforations.

  19. Microwave heat treating of manufactured components

    DOEpatents

    Ripley, Edward B.

    2007-01-09

    An apparatus for heat treating manufactured components using microwave energy and microwave susceptor material. Heat treating medium such as eutectic salts may be employed. A fluidized bed introduces process gases which may include carburizing or nitriding gases. The process may be operated in a batch mode or continuous process mode. A microwave heating probe may be used to restart a frozen eutectic salt bath.

  20. Microwave heating characteristics of magnetite ore

    NASA Astrophysics Data System (ADS)

    Rajavaram, Ramaraghavulu; Lee, Jaehong; Oh, Joon Seok; Kim, Han Gyeol; Lee, Joonho

    2016-11-01

    The heating characteristics of magnetite ore under microwave irradiation were investigated as a function of incident microwave power, particle size, and magnetite ore mass. The results showed that the heating rate of magnetite ore is highly dependent on microwave power and magnetite ore mass. The maximum heating rate was obtained at a microwave irradiation power of 1.70 kW with a mass of 25 g and particle size between 53-75 µm. The volumetric heating rate of magnetite ore was investigated by measuring the temperature at different depths during microwave irradiation. Microwave irradiation resulted in modification of the microstructure of the magnetite ore, but new phases such as FeO or Fe2O3 were not formed. In addition, the crystal size decreased from 115 nm to 63 nm after microwave irradiation up to 1573 K.

  1. Heating And Positioning In A Microwave Cavity

    NASA Technical Reports Server (NTRS)

    Jackson, Henry W.; Barmatz, Martin B; Watkins, John L.

    1994-01-01

    Two reports describe theoretical and experimental studies of microwave dielectrophoretic positioning of spherical sample of lossy dielectric material in microwave resonant cavity and heating of positioned sphere by electro-magnetic field. Studies part of continuing effort to develop techniques for containerless processing of materials in microgravity. Previous studies in this series described in "Microwave Dielectrophoretic Levitation in Microgravity" (NPO-18824).

  2. Modeling of microwave heating of particulate metals

    NASA Astrophysics Data System (ADS)

    Mishra, P.; Upadhyaya, A.; Sethi, G.

    2006-10-01

    Recent studies have shown that metal powder compacts can be heated to high temperatures using microwaves. While microwave heating of ceramics is well understood and modeled, there is still uncertainty about the exact mechanism and mode of microwave heating of particulate metals. The current study describes an approach for modeling the microwave heating of metal powder compacts using an electromagnetic-thermal model. The model predicts the variation in temperature with time during sintering. The effect of powder size, emissivity, and susceptor heating on the heating rate has also been assessed. These predictions have been validated by the experimental observations of the thermal profiles of Sn-, Cu-, and W-alloy compacts, using a 2.45 GHz multimode microwave furnace.

  3. Aspects of microwave-heating uniformity

    SciTech Connect

    Ginsberg, T.; Makowitz, H.

    1983-01-01

    Interest has been shown in the field of nuclear reactor safety in the use of microwave heating to simulate the nuclear heat source. The objective of the investigation reported here was to evaluate the usefulness of microwave dielectric heating as a simulator of the nuclear heat source in experiments which simulate the process of boiling of molten mixtures of nuclear fuel and steel. This paper summarizes the results of studies of several aspects of energy deposition in dielectric liquid samples which are exposed to microwave radiation.

  4. Automatic control during microwave heating of ceramics

    SciTech Connect

    Li, M.; Beale, G.O.; Tian, Yong Lai

    1995-12-31

    This paper presents results on the development of a feedback control system for regulating temperature in ceramic samples being heated by microwave energy for the purpose of joining. The main objective of the control system is to prevent thermal runaway in the ceramic samples during heating. Microwave power level and the positions of a movable iris and plunger are the variables being controlled. Results obtained from heating mullite and silicon carbide are presented. These results indicate the ability of the control system to prevent thermal runaway during microwave heating of the samples.

  5. Optimization of Heat Exchangers

    SciTech Connect

    Ivan Catton

    2010-10-01

    The objective of this research is to develop tools to design and optimize heat exchangers (HE) and compact heat exchangers (CHE) for intermediate loop heat transport systems found in the very high temperature reator (VHTR) and other Generation IV designs by addressing heat transfer surface augmentation and conjugate modeling. To optimize heat exchanger, a fast running model must be created that will allow for multiple designs to be compared quickly. To model a heat exchanger, volume averaging theory, VAT, is used. VAT allows for the conservation of mass, momentum and energy to be solved for point by point in a 3 dimensional computer model of a heat exchanger. The end product of this project is a computer code that can predict an optimal configuration for a heat exchanger given only a few constraints (input fluids, size, cost, etc.). As VAT computer code can be used to model characteristics )pumping power, temperatures, and cost) of heat exchangers more quickly than traditional CFD or experiment, optimization of every geometric parameter simultaneously can be made. Using design of experiment, DOE and genetric algorithms, GE, to optimize the results of the computer code will improve heat exchanger disign.

  6. Modelling batch microwave heating of water

    NASA Astrophysics Data System (ADS)

    Yeong, S. P.; Law, M. C.; Lee, C. C. Vincent; Chan, Y. S.

    2017-07-01

    A numerical model of the microwave heating of distilled water is developed using COMSOL Multiphysics software to investigate the microwave effects on the heating rate. Three frequencies (0.915GHz, 2GHz and 2.45 GHz) have been applied in the model in order to study their influences on the water temperature. It is found that the water heats up at 2GHz and 2.45GHz, however, there is no sign of heating at 915MHz. This is supported with the figures of the electric field distribution in the microwave cavity. The results shown in the developed model is validated with the experimental results obtained at 2.45 GHz.

  7. Using Microwaves to Heat Lunar Soil

    NASA Technical Reports Server (NTRS)

    Ethridge, Edwin C.

    2011-01-01

    This slide presentation reviews the use of microwaves to heat lunar soil in order to obtain water. There appears to be large amounts of water in the lunar poles, in Martian areas in lower latitudes and some of the Moons of Jupiter. The presence of water in the south lunar polar region was demonstrated by the Lunar CRater Observation and Sensing Satellite (LCROSS) mission. Microwaves can be used to extract water from lunar soil without excavation. Using microwaves on a lunar soil simulant at least 95% of the water from the regolith permafrost simulant was extracted (2 minutes). The process is modeled using COMSOL Multiphysics Finite Element analysis microwave physics module and demonstrated usingan experiment of an microwave apparatus on a rover.

  8. [Study on catalytic oxidation of benzene by microwave heating].

    PubMed

    Zhang, Yu-cai; Bo, Long-li; Wang, Xiao-hui; Liu, Hai-nan; Zhang, Hao

    2012-08-01

    The performance in catalytic oxidation of benzene was investigated in two different heating modes, microwave heating and conventional electric furnace heating. The effects of copper (Cu)-manganese (Mn) mass ratio, doping dose of cerium (Ce) and calcination temperature on the catalytic activity of Cu-Mn-Ce/molecular sieve catalyst were also checked in catalytic oxidation of benzene with microwave heating, and the catalysts were subsequently characterized by scanning electron microscope (SEM) and X-ray diffraction (XRD). The results showed that the catalyst had better catalytic activity for the oxidation of benzene under microwave heating than electric furnace heating, and high oxidation efficiency for benzene was reached due to the "local hot spots" and dipole polarization effect of microwave and stable bed reaction temperature. Under the conditions of Cu, Mn and Ce mass ratio 1:1:0.33 and calcination temperature 500 degrees C, the catalyst had the optimal catalytic activity for benzene oxidation, and its light-off temperature and complete combustion temperature were 165 degrees C and 230 degrees C, respectively. It was indicated by characteristics of XRD and SEM that the presence of copper and manganese oxides and Cu1.5Mn1.5O4 with spinel crystal improved the catalytic activity of the catalyst, and the doping of Ce promoted the dispersion and regularization of active components. High calcination temperature led to the sintering of the catalyst surface and agglomeration of active components, which decreased the catalytic activity of the catalyst in the catalytic oxidation

  9. Selection of biological indicator for validating microwave heating sterilization.

    PubMed

    Sasaki, K; Mori, Y; Honda, W; Miyake, Y

    1998-01-01

    For the purpose of selecting an appropriate biological indicator for evaluation of the effects of microwave heating sterilization, we examined aerobic bacterial spores to determine whether microwaves have non-thermal sterilization effects. After microwave irradiation on dry bacterial spores (three species), none of the bacterial spores were killed. The survival rate of the spores after microwave irradiation of spore suspensions (twelve species) was compared with that after heating by a conventional method. The order of heat resistance in the bacterial species was similar between the two heating methods. Bacillus stearothermophilus spores were the most heat-resistant. These results suggest that microwaves have no non-thermal sterilization effects on bacterial spores, the specific resistant spores to microwave heating, and microwave heating sterilization can be evaluated in the same way as for conventional heating sterilization. As a biological indicator for evaluation of overkill sterilization, B. stearothermophilus spores may be appropriate for microwave heating sterilization as well as steam sterilization.

  10. Topology optimization of microwave waveguide filters

    NASA Astrophysics Data System (ADS)

    Aage, N.; Egede Johansen, V.

    2017-10-01

    We present a density based topology optimization approach for the design of metallic microwave insert filters. A two-phase optimization procedure is proposed in which we, starting from a uniform design, first optimize to obtain a set of spectral varying resonators followed by a band gap optimization for the desired filter characteristics. This is illustrated through numerical experiments and comparison to a standard band pass filter design. It is seen that the carefully optimized topologies can sharpen the filter characteristics and improve performance. Furthermore, the obtained designs share little resemblance to standard filter layouts and hence the proposed design method offers a new design tool in microwave engineering.

  11. Optimal spectral windows for microwave diversity imaging

    NASA Technical Reports Server (NTRS)

    Farhat, Nabil H.; Bai, Baocheng

    1991-01-01

    Tomographic microwave diversity imaging is analyzed using linear system theory concepts, and optimal spectral windows for data acquisition are obtained either by considering window position in the spectral domain or by using simulated annealing to find an optimal phase weighting of the object frequency response samples collected over the specified spectral window. This study provides a means of microwave image formation that is applicable under general assumptions. Results of numerical simulations and representative images reconstructed from realistic experimental microwave scattering data are given, demonstrating that the proposed approach is superior to previous image reconstruction methods.

  12. Apparatus for microwave heat treatment of manufactured components

    DOEpatents

    Ripley, Edward B.

    2008-04-15

    An apparatus for heat treating manufactured components using microwave energy and microwave susceptor material. Heat treating medium such as eutectic salts may be employed. A fluidized bed introduces process gases which may include carburizing or nitriding gases. The process may be operated in a batch mode or continuous process mode. A microwave heating probe may be used to restart a frozen eutectic salt bath.

  13. Methods for microwave heat treatment of manufactured components

    SciTech Connect

    Ripley, Edward B.

    2010-08-03

    An apparatus for heat treating manufactured components using microwave energy and microwave susceptor material. Heat treating medium such as eutectic salts may be employed. A fluidized bed introduces process gases which may include carburizing or nitriding gases. The process may be operated in a batch mode or continuous process mode. A microwave heating probe may be used to restart a frozen eutectic salt bath.

  14. Apparatus for microwave heat treatment of manufactured components

    DOEpatents

    Babcock & Wilcox Technical Services Y-12, LLC

    2008-04-15

    An apparatus for heat treating manufactured components using microwave energy and microwave susceptor material. Heat treating medium such as eutectic salts may be employed. A fluidized bed introduces process gases which may include carburizing or nitriding gases. The process may be operated in a batch mode or continuous process mode. A microwave heating probe may be used to restart a frozen eutectic salt bath.

  15. Glycerol citrate polyesters produced through microwave heating

    USDA-ARS?s Scientific Manuscript database

    The influence of various heating methods without catalysis to prepare copolyesters from citric acid:glycerol blends were studied. In the presence of short term microwave treatments, i.e., 60 sec at 1200 W, blends of glycerol and citric acid invariably formed solid amorphous copolyesters. Fourier tra...

  16. Effect of Microwave Heating on Phytosterol Oxidation.

    PubMed

    Leal-Castañeda, Everth Jimena; Inchingolo, Raffaella; Cardenia, Vladimiro; Hernandez-Becerra, Josafat Alberto; Romani, Santina; Rodriguez-Estrada, María Teresa; Galindo, Hugo Sergio García

    2015-06-10

    The oxidative stability of phytosterols during microwave heating was evaluated. Two different model systems (a solid film made with a phytosterol mixture (PSF) and a liquid mixture of phytosterols and triolein (1:100, PS + TAG (triacylglycerol))) were heated for 1.5, 3, 6, 12, 20, and 30 min at 1000 W. PS degraded faster when they were microwaved alone than in the presence of TAG, following a first-order kinetic model. Up to 6 min, no phytosterol oxidation products (POPs) were generated in both systems. At 12 min of heating, the POP content reached a higher level in PSF (90.96 μg/mg of phytosterols) than in PS + TAG (22.66 μg/mg of phytosterols), but after 30 min of treatment, the opposite trend was observed. 7-Keto derivates were the most abundant POPs in both systems. The extent of phytosterol degradation depends on both the heating time and the surrounding medium, which can impact the quality and safety of the food product destined to microwave heating/cooking.

  17. Microwave heating of lunar materials. Appendix A

    NASA Technical Reports Server (NTRS)

    Meek, Thomas T.

    1992-01-01

    Microwave heating of nonmetallic inorganic material has been of interest for many years. Von Hippel in the late 1940's and early 1950's investigated how microwave radiation up to 10 GHz couples to various insulator materials. Perhaps the most work has been done by Wayne Tinga at the University of Edmonton. Most of the work to date has been done at the two frequency bands allowed in industrial use (0.915 GHz and 2.45 GHz). However some work has recently been carried out at 28 GHz and 60 GHz. Work done in this area at Los Alamos National Laboratory is discussed.

  18. Review on Microwave-Matter Interaction Fundamentals and Efficient Microwave-Associated Heating Strategies.

    PubMed

    Sun, Jing; Wang, Wenlong; Yue, Qinyan

    2016-03-25

    Microwave heating is rapidly emerging as an effective and efficient tool in various technological and scientific fields. A comprehensive understanding of the fundamentals of microwave-matter interactions is the precondition for better utilization of microwave technology. However, microwave heating is usually only known as dielectric heating, and the contribution of the magnetic field component of microwaves is often ignored, which, in fact, contributes greatly to microwave heating of some aqueous electrolyte solutions, magnetic dielectric materials and certain conductive powder materials, etc. This paper focuses on this point and presents a careful review of microwave heating mechanisms in a comprehensive manner. Moreover, in addition to the acknowledged conventional microwave heating mechanisms, the special interaction mechanisms between microwave and metal-based materials are attracting increasing interest for a variety of metallurgical, plasma and discharge applications, and therefore are reviewed particularly regarding the aspects of the reflection, heating and discharge effects. Finally, several distinct strategies to improve microwave energy utilization efficiencies are proposed and discussed with the aim of tackling the energy-efficiency-related issues arising from the application of microwave heating. This work can present a strategic guideline for the developed understanding and utilization of the microwave heating technology.

  19. Graphene oxide reduction by microwave heating

    SciTech Connect

    Longo, Angela; Carotenuto, Gianfranco

    2016-05-18

    The possibility to prepare thermal reduced graphene oxide (Tr-GO) colloidal suspensions by microwave heating of graphene oxide (GO) suspensions in N-methyl-2-pyrrolidone (NMP) has been investigated. According to transmission electron microscopy (TEM) and absorption and emission spectroscopy characterization, such a type of thermal reduction does not lead to graphene quantum dots formation because only mono-functional oxygen-containing groups are removed.

  20. Review on Microwave-Matter Interaction Fundamentals and Efficient Microwave-Associated Heating Strategies

    PubMed Central

    Sun, Jing; Wang, Wenlong; Yue, Qinyan

    2016-01-01

    Microwave heating is rapidly emerging as an effective and efficient tool in various technological and scientific fields. A comprehensive understanding of the fundamentals of microwave–matter interactions is the precondition for better utilization of microwave technology. However, microwave heating is usually only known as dielectric heating, and the contribution of the magnetic field component of microwaves is often ignored, which, in fact, contributes greatly to microwave heating of some aqueous electrolyte solutions, magnetic dielectric materials and certain conductive powder materials, etc. This paper focuses on this point and presents a careful review of microwave heating mechanisms in a comprehensive manner. Moreover, in addition to the acknowledged conventional microwave heating mechanisms, the special interaction mechanisms between microwave and metal-based materials are attracting increasing interest for a variety of metallurgical, plasma and discharge applications, and therefore are reviewed particularly regarding the aspects of the reflection, heating and discharge effects. Finally, several distinct strategies to improve microwave energy utilization efficiencies are proposed and discussed with the aim of tackling the energy-efficiency-related issues arising from the application of microwave heating. This work can present a strategic guideline for the developed understanding and utilization of the microwave heating technology. PMID:28773355

  1. Effect of Microwave Heating Conditions on the Preparation of High Surface Area Activated Carbon from Waste Bamboo

    NASA Astrophysics Data System (ADS)

    Wu, Jian; Hongying Xia; Zhang, Libo; Xia, Yi; Peng, Jinhui; Wang, Shixing; Zheng, Zhaoqiang; Zhang, Shengzhou

    2015-11-01

    The present study reports the effect of microwave power and microwave heating time on activated carbon adsorption ability. The waste bamboo was used to preparing high surface area activated carbon via microwave heating. The bamboo was carbonized for 2 h at 600°C to be used as the raw material. According to the results, microwave power and microwave heating time had a significant impact on the activating effect. The optimal KOH/C ratio of 4 was identified when microwave power and microwave heating time were 700 W and 15 min, respectively. Under the optimal conditions, surface area was estimated to be 3441 m2/g with pore volume of 2.093 ml/g and the significant proportion of activated carbon was microporous (62.3%). The results of Fourier transform infrared spectroscopy (FTIR) were illustrated that activated carbon surface had abundant functional groups. Additionally the pore structure is characterized using Scanning Electron Microscope (SEM).

  2. Microwave frequency material properties of PBS 9501 and PBX 9501 and small scale heating experiments

    NASA Astrophysics Data System (ADS)

    Glover, B. B.; Daily, M. E.; Son, S. F.; Groven, L. J.

    2014-05-01

    This work reports the microwave frequency dielectric properties of PBX 9501 and one of its representative mocks, PBS 9501, within 1-20 GHz. From these measurements it is shown that the binder system has a strong influence on microwave heating of such compositions resulting in significant temperature gradients within the individual HMX or sugar crystals at high microwave heating rates. Using the measured dielectric properties, COMSOL 4.3 Multiphysics was used to simulate and optimize a microwave applicator with a high electric field to input power ratio. The simulated applicator design indicated subsecond heating to decomposition for PBX 9501 and was validated with small scale experiments on both PBS 9501 and PBX 9501. At approximately 2.45 GHz and 100 W applied power, PBS 9501 decomposition was observed shortly (< 34 ms) after a measured surface temperature of 70 °C (binder system melts). Finally, rapid heating of PBX 9501 was also shown in the optimized cavity.

  3. A container for heat treating materials in microwave ovens

    DOEpatents

    Holcombe, C.E.; Dykes, N.L.; Kimrey, H.D. Jr.; Mills, J.E.

    1988-01-26

    The efficiency of a microwave oven of a conventional two-source configuration and energy level is increased by providing the oven with a container for housing a refractory material to be treated. The container is formed to top and bottom walls transparent to microwaves while the sidewalls, in a circular configuration, are formed of a nonmetallic material opaque to microwave radiation for reflecting the radiation penetrating the top and bottom walls radially inwardly into the center of the container wherein a casket of heat-insulating material is provided for housing the material to be heat treated. The reflection of the microwave radiation from the sidewalls increases the concentration of the microwaves upon the material being heat treated while the concentration of the microwaves upon the material being heat treated while the casket retains the heat to permit the heating of the material to a substantially higher temperature than achievable in the oven without the container.

  4. Design and Validation of a Ten-Port Waveguide Reflectometer Sensor: Application to Efficiency Measurement and Optimization of Microwave-Heating Ovens

    PubMed Central

    Pedreño-Molina, Juan L.; Monzó-Cabrera, Juan; Lozano-Guerrero, Antonio; Toledo-Moreo, Ana

    2008-01-01

    This work presents the design, manufacturing process, calibration and validation of a new microwave ten-port waveguide reflectometer based on the use of neural networks. This low-cost novel device solves some of the shortcomings of previous reflectometers such as non-linear behavior of power sensors, noise presence and the complexity of the calibration procedure, which is often based on complex mathematical equations. These problems, which imply the reduction of the reflection coefficient measurement accuracy, have been overcome by using a higher number of probes than usual six-port configurations and by means of the use of Radial Basis Function (RBF) neural networks in order to reduce the influence of noise and non-linear processes over the measurements. Additionally, this sensor can be reconfigured whenever some of the eight coaxial power detectors fail, still providing accurate values in real time. The ten-port performance has been compared against a high-cost measurement instrument such as a vector network analyzer and applied to the measurement and optimization of energy efficiency of microwave ovens, with good results. PMID:27873961

  5. Microwave radiometry for continuous non-contact temperature measurements during microwave heating.

    PubMed

    Stephan, Karl D; Pearce, John A

    2005-01-01

    Temperature measurement during microwave heating in industrial and commercial processes can improve quality, throughput, and energy conservation. Conventional ways of measuring temperature inside a microwave oven cavity are costly, inconvenient, or unsuitable for high-volume industrial applications. In this paper, we describe the theory of microwave radiometry as applied to the measurement of temperature during microwave heating. By extending the theory of radiative transfer to the case of thermal microwave radiation inside a cavity, we show that the same characteristics which make a microwave cavity suitable for heating materials also assist in obtaining meaningful temperature data with microwave radiometry. We present experimental data from the heating of liquid and solid materials which confirm the essential features of the theory, and show agreement between this method and more conventional methods of +/-4 degrees C.

  6. Microwave heating and current drive in tokamaks

    SciTech Connect

    Cohen, B.I.; Cohen, R.H.; Kerbel, G.D.; Logan, B.G.; Matsuda, Y.; McCoy, M.G.; Nevins, W.M.; Rognlien, T.D.; Smith, G.R.; Harvey, R.W.; Kritz, A.H.; Bonoli, P.T.; Porkolab, M.

    1988-08-23

    The use of powerful microwave sources provide unique opportunities for novel and efficient heating and current-drive schemes in the electron-cyclotron and lower-hybrid ranges of frequencies. Free- electron lasers and relativistic klystrons are new sources that have a number of technical advantages over conventional, lower-intensity sources; their use can lead to improved current-drive efficiencies and better penetration into a reactor-grade plasma in specific cases. This paper reports on modeling of absorption and current drive, in intense-pulse and quasilinear regimes, and on analysis of parametric instabilities and self-focusing. 16 refs., 2 figs.

  7. Progress on conformal microwave array applicators for heating chestwall disease

    NASA Astrophysics Data System (ADS)

    Stauffer, P. R.; Maccarini, P. F.; Juang, T.; Jacobsen, S. K.; Gaeta, C. J.; Schlorff, J. L.; Milligan, A. J.

    2007-02-01

    Previous studies have reported the computer modeling, CAD design, and theoretical performance of single and multiple antenna arrays of Dual Concentric Conductor (DCC) square slot radiators driven at 915 and 433 MHz. Subsequently, practical CAD designs of microstrip antenna arrays constructed on thin and flexible printed circuit board (PCB) material were reported which evolved into large Conformal Microwave Array (CMA) sheets that could wrap around the surface of the human torso for delivering microwave energy to large areas of superficial tissue. Although uniform and adjustable radiation patterns have been demonstrated from multiple element applicators radiating into simple homogeneous phantom loads, the contoured and heterogeneous tissue loads typical of chestwall recurrent breast cancer have required additional design efforts to achieve good coupling and efficient heating from the increasingly larger conformal array applicators used to treat large area contoured patient anatomy. Thus recent work has extended the theoretical optimization of DCC antennas to improve radiation efficiency of each individual aperture and reduce mismatch reflections, radiation losses, noise, and cross coupling of the feedline distribution network of large array configurations. Design improvements have also been incorporated into the supporting bolus structure to maintain effective coupling of DCC antennas into contoured anatomy and to monitor and control surface temperatures under the entire array. New approaches for non-invasive monitoring of surface and sub-surface tissue temperatures under each independent heat source are described that make use of microwave radiometry and flexible sheet grid arrays of thermal sensors. Efforts to optimize the clinical patient interface and move from planar rectangular shapes to contoured vest applicators that accommodate entire disease in a larger number of patients are summarized. By applying heat more uniformly to large areas of contoured anatomy

  8. A New Automated Microwave Heating Process for Cooking and Pasteurization of Microwaveable Foods Containing Raw Meats

    USDA-ARS?s Scientific Manuscript database

    A new microwave heating process was developed for cooking microwaveable foods containing raw meats. A commercially available inverter-based microwave oven was modified for pasteurization of mechanically tenderized beef, inoculated with Escherichia coli O157:H7 (~ 5 log cfu/g) and packaged in a 12 o...

  9. Wood liquefaction with phenol by microwave heating and FTIR evaluation

    Treesearch

    Gaiyun Li; Chungyun Hse; Tefu Qin

    2015-01-01

    We examined wood liquefaction using phenol and mixed acid catalysts with microwave heating, and compared that with similar processes that use oil bath heating. The reaction time for microwave heating to achieve a residue content was one sixth, one eighteenth, and one twenty-fourth of that from oil bath heating, respectively, for phenol to wood (P/W) ratios of 2.5/1, 2/...

  10. Container for heat treating materials in microwave ovens

    DOEpatents

    Holcombe, Cressie E.; Dykes, Norman L.; Kimrey, Jr., Harold D.; Mills, James E.

    1989-01-01

    The efficiency of a microwave oven of a conventional two-source configuration and energy level is increased by providing the oven with a container for housing a refractory material to be treated. The container is formed of top and bottom walls transparent to microwaves while the sidewalls, in a circular configuration, are formed of a nonmetallic material opaque to microwave radiation reflecting the radiation penetrating the top and bottom walls radially inwardly into the center of the container wherein a casket of heat-insulating material is provided for housing the material to be heat treated. The reflection of the microwave radiation from the sidewalls increases the concentration of the microwaves upon the material being heat treated while the casket retains the heat to permit the heating of the material to a substantially higher temperature than achieveable in the oven without the container.

  11. Container for heat treating materials in microwave ovens

    SciTech Connect

    Holcombe, C.E.; Dykes, N.L.; Kimrey, H.D. Jr.; Mills, J.E.

    1989-03-07

    The efficiency of a microwave oven of a conventional two-source configuration and energy level is increased by providing the oven with a container for housing a refractory material to be treated. The container is formed of top and bottom walls transparent to microwaves while the sidewalls, in a circular configuration, are formed of a nonmetallic material opaque to microwave radiation reflecting the radiation penetrating the top and bottom walls radially inwardly into the center of the container wherein a casket of heat-insulating material is provided for housing the material to be heat treated. The reflection of the microwave radiation from the sidewalls increases the concentration of the microwaves upon the material being heat treated while the casket retains the heat to permit the heating of the material to a substantially higher temperature than achieveable in the oven without the container.

  12. Mineral balance in milk heated using microwave energy.

    PubMed

    de la Fuente, Miguel Angel; Olano, Agustín; Juárez, Manuela

    2002-04-10

    Milk heated to 75 and 85 degrees C in a water bath or in a microwave oven was assayed for changes in salt partitioning after cooling to room temperature. To properly to assess differences and draw valid comparisons, the two heating methods used in the experiment were applied to samples for identical exposure times, and the samples were heated to attain the same final temperatures. Although the soluble Ca and P(i) contents were lower in the heated milk samples, no significant differences in salt partitioning were found between microwave and conventional heating. Ionic calcium levels in the milk samples pasteurized using microwave energy were very close to the levels in the samples heated in a conventional water bath (approximately 90% of the level in the untreated milk samples). The microwave heating-induced changes were completely reversed after storage at 20 degrees C for 24 h. The coagulation properties of the heated milk samples were also examined, and the coagulation time was longer and the curd formation rate slower in the microwave-heated milk than in the raw milk. Still, the experimental results demonstrated that microwave heating was no more detrimental to the milk than conventional heating and could thus be used for pasteurization purposes.

  13. Synthesis of hydroxyapatite nanostructures using microwave heating.

    PubMed

    Cabrera, J L; Velázquez-Castillo, R; Rivera-Muñoz, E M

    2011-06-01

    Hydroxyapatite (HAp) nanoplates and nanofibers have been synthesized using CaNO3, KOH and K2HPO4 as chemical precursors. The concentration of these precursors was kept constant in all experiments. Synthesis reactions were carried out inside of pressurized Teflon vessels. The energy required for the synthesis was supplied by microwaves. Most of the reactions were performed in the presence of glutamic acid. The concentration of this substance was the only difference in the formulation of the reacting mixture, and its effect on the morphology of nanostructures has been evaluated. The use of pressurized vessels and the heating by microwaves in the synthesis reactions made easier the obtaining of HAp crystals. The morphology of nanostructures was influenced through the differences in the concentration of glutamic acid. The variations on the reaction time were useful to obtain nanofibers with an adequate size. The nanoplates and nanofibers obtained will be used to synthesize an organic-inorganic composite which has potential application on medicine and odontology. X-ray diffraction and FTIR were performed to verify the obtaining of a hydroxyapatite phase. High-resolution electron microscopy was carried out for microstructure analyses. Energy-dispersive X-ray spectroscopy was used to evaluate the Ca/P ratio in all nanostructures.

  14. Compact Directional Microwave Antenna for Localized Heating

    NASA Technical Reports Server (NTRS)

    Fink, Patrick W.; Lin, Gregory Y.; Chu, Andrew W.; Dobbins, Justin A.; Arndt, G. Dickey; Ngo, Phong

    2008-01-01

    A directional, catheter-sized cylindrical antenna has been developed for localized delivery of microwave radiation for heating (and thus killing) diseased tissue without excessively heating nearby healthy tissue. By "localized" is meant that the antenna radiates much more in a selected azimuthal direction than in the opposite radial direction, so that it heats tissue much more on one side than it does on the opposite side. This antenna can be inserted using either a catheter or a syringe. A 2.4-mm prototype was tested, although smaller antennas are possible. Prior compact, cylindrical antennas designed for therapeutic localized hyperthermia do not exhibit such directionality; that is, they radiate in approximately axisymmetric patterns. Prior directional antennas designed for the same purpose have been, variously, (1) too large to fit within catheters or (2) too large, after deployment from catheters, to fit within the confines of most human organs. In contrast, the present antenna offers a high degree of directionality and is compact enough to be useable as a catheter in some applications.

  15. New prospects in pretreatment of cotton fabrics using microwave heating.

    PubMed

    Hashem, M; Taleb, M Abou; El-Shall, F N; Haggag, K

    2014-03-15

    As microwaves are known to give fast and rapid volume heating, the present study is undertaken to investigate the use of microwave heating for pretreatment cotton fabrics to reduce the pretreatment time, chemicals and water. The onset of the microwave heating technique on the physicochemical and performance properties of desized, scoured and bleached cotton fabric is elucidated and compared with those obtained on using conventional thermal heating. Combined one-step process for desizing, scouring and bleaching of cotton fabric under microwave heating was also investigated. The dual effect of adding urea, (as microwave absorber and hydrogen peroxide activator) has been exploiting to accelerate the pretreatment reaction of cotton fabric. DSC, FT-IR and SEM have been used to investigate the onset of microwave on the morphological and chemical change of cotton cellulose after pretreatment and bleaching under microwave heating. Results obtained show that, a complete fabric preparation was obtained in just 5 min on using microwave in pretreatments process and the fabric properties were comparable to those obtained in traditional pretreatment process which requires 2.5-3h for completion.

  16. The catalytic pyrolysis of food waste by microwave heating.

    PubMed

    Liu, Haili; Ma, Xiaoqian; Li, Longjun; Hu, ZhiFeng; Guo, Pingsheng; Jiang, Yuhui

    2014-08-01

    This study describes a series of experiments that tested the use of microwave pyrolysis for treating food waste. Characteristics including rise in temperature, and the three-phase products, were analyzed at different microwave power levels, after adding 5% (mass basis) metal oxides and chloride salts to the food waste. Results indicated that, the metal oxides MgO, Fe₂O₃ and MnO₂ and the chloride salts CuCl₂ and NaCl can lower the yield of bio-oil and enhance the yield of gas. Meanwhile, the metal oxides MgO and MnO₂ can also lower the low heating value (LHV) of solid residues and increase the pH values of the lower layer bio-oils. However, the chloride salts CuCl₂ and NaCl had the opposite effects. The optimal microwave power for treating food waste was 400W; among the tested catalysts, CuCl₂ was the best catalyst and had the largest energy ratio of production to consumption (ERPC), followed by MnO₂. Copyright © 2014 Elsevier Ltd. All rights reserved.

  17. A finite element method based microwave heat transfer modeling of frozen multi-component foods

    NASA Astrophysics Data System (ADS)

    Pitchai, Krishnamoorthy

    Microwave heating is fast and convenient, but is highly non-uniform. Non-uniform heating in microwave cooking affects not only food quality but also food safety. Most food industries develop microwavable food products based on "cook-and-look" approach. This approach is time-consuming, labor intensive and expensive and may not result in optimal food product design that assures food safety and quality. Design of microwavable food can be realized through a simulation model which describes the physical mechanisms of microwave heating in mathematical expressions. The objective of this study was to develop a microwave heat transfer model to predict spatial and temporal profiles of various heterogeneous foods such as multi-component meal (chicken nuggets and mashed potato), multi-component and multi-layered meal (lasagna), and multi-layered food with active packages (pizza) during microwave heating. A microwave heat transfer model was developed by solving electromagnetic and heat transfer equations using finite element method in commercially available COMSOL Multiphysics v4.4 software. The microwave heat transfer model included detailed geometry of the cavity, phase change, and rotation of the food on the turntable. The predicted spatial surface temperature patterns and temporal profiles were validated against the experimental temperature profiles obtained using a thermal imaging camera and fiber-optic sensors. The predicted spatial surface temperature profile of different multi-component foods was in good agreement with the corresponding experimental profiles in terms of hot and cold spot patterns. The root mean square error values of temporal profiles ranged from 5.8 °C to 26.2 °C in chicken nuggets as compared 4.3 °C to 4.7 °C in mashed potatoes. In frozen lasagna, root mean square error values at six locations ranged from 6.6 °C to 20.0 °C for 6 min of heating. A microwave heat transfer model was developed to include susceptor assisted microwave heating of a

  18. The scientific base of heating water by microwave

    SciTech Connect

    Akdoğan, Ender; Çiftçi, Muharrem

    2016-03-25

    This article is based on the master thesis [4] related to our invention which was published in World Intellectual Property Organization (WO/2011/048506) as a microwave water heater. In the project, a prototype was produced to use microwave in industrial heating. In order to produce the prototype, the most appropriate material kind for microwave-water experiments was determined by a new energy loss rate calculation technique. This new energy loss calculation is a determinative factor for material permeability at microwave frequency band (1-100 GHz). This experimental series aim to investigate the rationality of using microwave in heating industry. Theoretically, heating water by microwave (with steady frequency 2.45 GHz) is analyzed from sub-molecular to Classical Mechanic results of heating. In the study, we examined Quantum Mechanical base of heating water by microwave experiments. As a result, we derived a Semi-Quantum Mechanical equation for microwave-water interactions and thus, Wien displacement law can be derived to verify experimental observations by this equation.

  19. The scientific base of heating water by microwave

    NASA Astrophysics Data System (ADS)

    Akdoǧan, Ender; ćiftçi, Muharrem

    2016-03-01

    This article is based on the master thesis [4] related to our invention which was published in World Intellectual Property Organization (WO/2011/048506) as a microwave water heater. In the project, a prototype was produced to use microwave in industrial heating. In order to produce the prototype, the most appropriate material kind for microwave-water experiments was determined by a new energy loss rate calculation technique. This new energy loss calculation is a determinative factor for material permeability at microwave frequency band (1-100 GHz). This experimental series aim to investigate the rationality of using microwave in heating industry. Theoretically, heating water by microwave (with steady frequency 2.45 GHz) is analyzed from sub-molecular to Classical Mechanic results of heating. In the study, we examined Quantum Mechanical base of heating water by microwave experiments. As a result, we derived a Semi-Quantum Mechanical equation for microwave-water interactions and thus, Wien displacement law can be derived to verify experimental observations by this equation.

  20. Microwave heating for the rapid generation of glycosylhydrazides.

    PubMed

    Mallevre, F; Roget, A; Minon, T; Kervella, Y; Ropartz, D; Ralet, M C; Canut, H; Livache, T

    2013-07-17

    Conditions for simple derivatization of reducing carbohydrates via adipic acid dihydrazide microwave-assisted condensation are described. We demonstrate with a diverse set of oligo- and polysaccharides how to improve a restrictive and labor intensive conventional conjugation protocol by using microwave-assisted chemistry. We show that 5 min of microwave heating in basic or acidic conditions are adequate to generate, in increased yields, intact and functional glycosylhydrazides, whereas hours to days and acidic conditions are generally required under conventional methods.

  1. Heating behavior and crystal growth mechanism in microwave field.

    PubMed

    Yang, Gang; Kong, Yan; Hou, Wenhua; Yan, Qijie

    2005-02-03

    A simple microwave solid-state reactor was designed on the basis of a domestic microwave oven by using graphite powder as heating medium. The heating behavior of the reactor was studied by using an on-line computer to monitor the real-time temperature during irradiation. It was found that the temperature (T) was related to the time (t) and that microwave power depended on the duty cycle (x) of microwave irradiation. Two empirical equations were proposed and could be applied to the similar microwave solid-state reactors. Four inorganic layered materials, LiV(3)O(8), KNb(3)O(8), KTiNbO(5), and KSr(2)Nb(3)O(10), were successfully synthesized in the designed reactor at a suitable heating rate and temperature that were fully controlled by the empirical equations. Characterization results of X-ray diffraction (XRD), Fourier transform infrared (FTIR) and Raman spectroscopy, and scanning (SEM) and transmission (TEM) electron microscopy indicated that the phases of samples prepared by traditional and microwave methods were in good agreement; nevertheless, the heating nature and the morphologies of products were quite different. The samples synthesized in the microwave field had crystallographic defects and showed an incompactly stacking structure of nanosheets. Due to the rapid formation of crystallites and different extended growth rate along the crystal axis of the products in microwave field, the crystal growth mechanism of layered metal oxides was not according to that of the traditional method and is briefly discussed.

  2. Multiphysics modeling of microwave heating of whole tomato

    USDA-ARS?s Scientific Manuscript database

    A mathematical model of a food is useful for prediction of temperature profiles during microwave heating. However, due to their complex geometry and interaction with electromagnetic fields, whole tomatoes resist an analytical approach to modeling the fruit as it is subjected to microwave energy. T...

  3. Nonuniformity of Temperatures in Microwave Steam Heating of Lobster Tail.

    PubMed

    Fleischman, Gregory J

    2016-11-01

    The biennial Conference for Food Protection provides a formal process for all interested parties to influence food safety guidance. At a recent conference, an issue was raised culminating in a formal request to the U.S. Food and Drug Administration to change its Food Code recommendation for safe cooking of seafood using microwave energy when steaming was also employed. The request was to treat microwave steam cooked seafood as a conventionally cooked raw animal product rather than a microwave cooked product, for which the safe cooking recommendation is more extensive owing to the complex temperature distributions in microwave heating. The request was motivated by a literature study that revealed a more uniform temperature distribution in microwave steam cooked whole lobster. In that study, single-point temperatures were recorded in various sections of the whole lobster, but only one temperature was recorded in the tail, although the large size of the tail could translate to multiple hot and cold points. The present study was conducted to examine lobster tail specifically, measuring temperatures at multiple points during microwave steam cooking. Large temperature differences, greater than 60°C at times, were found throughout the heating period. To compensate for such differences, the Food Code recommends a more extensive level of cooking when microwave energy, rather than conventional heat sources, is used. Therefore, a change in the Food Code regarding microwave steam heating cannot be recommended.

  4. Flow-Dependent Vascular Heat Transfer during Microwave Thermal Ablation

    PubMed Central

    Chiang, Jason; Hynes, Kieran; Brace, Christopher L.

    2012-01-01

    Microwave tumor ablation is an attractive option for thermal ablation because of its inherent benefits over radiofrequency ablation (RFA) in the treatment of solid tumors such as hepatocellular carcinoma (HCC). Microwave energy heats tissue to higher temperatures and at a faster rate than RFA, creating larger, more homogenous ablation zones. In this study, we investigate microwave heating near large vasculature using coupled fluid-flow and thermal analysis. Low-flow conditions are predicted to be more likely to cause cytotoxic heating and, therefore, vessel thrombosis and endothelial damage of downstream tissues. Such conditions may be more prevalent in patient with severe cirrhosis or compromised blood flow. High-flow conditions create the more familiar heat-sink effect that can protect perivascular tissues from the intended thermal damage. These results may help guide placement and use of microwave ablation technologies in future studies. PMID:23367194

  5. Flow-dependent vascular heat transfer during microwave thermal ablation.

    PubMed

    Chiang, Jason; Hynes, Kieran; Brace, Christopher L

    2012-01-01

    Microwave tumor ablation is an attractive option for thermal ablation because of its inherent benefits over radiofrequency ablation (RFA) in the treatment of solid tumors such as hepatocellular carcinoma (HCC). Microwave energy heats tissue to higher temperatures and at a faster rate than RFA, creating larger, more homogenous ablation zones. In this study, we investigate microwave heating near large vasculature using coupled fluid-flow and thermal analysis. Low-flow conditions are predicted to be more likely to cause cytotoxic heating and, therefore, vessel thrombosis and endothelial damage of downstream tissues. Such conditions may be more prevalent in patient with severe cirrhosis or compromised blood flow. High-flow conditions create the more familiar heat-sink effect that can protect perivascular tissues from the intended thermal damage. These results may help guide placement and use of microwave ablation technologies in future studies.

  6. Synthesis and Modification of Carbon Nanomaterials utilizing Microwave Heating.

    PubMed

    Schwenke, Almut M; Hoeppener, Stephanie; Schubert, Ulrich S

    2015-07-22

    Microwave-assisted synthesis and processing represents a growing field in materials research and successfully entered the field of carbon nanomaterials during the last decade. Due to the strong interaction of carbon materials with microwave radiation, fast heating rates and localized heating can be achieved. These features enable the acceleration of reaction processes, as well as the formation of nanostructures with special morphologies. A comprehensive overview is provided here on the possibilities and achievements in the field of carbon-nanomaterial research when using microwave-based heating approaches. This includes the synthesis and processing of carbon nanotubes and fibers, graphene materials, carbon nanoparticles, and capsules, as well as porous carbon materials. Additionally, the principles of microwave-heating, in particular of carbon materials, are introduced and important issues, i.e., safety and reproducibility, are discussed.

  7. Microwave absorption in powders of small conducting particles for heating applications.

    PubMed

    Porch, Adrian; Slocombe, Daniel; Edwards, Peter P

    2013-02-28

    In microwave chemistry there is a common misconception that small, highly conducting particles heat profusely when placed in a large microwave electric field. However, this is not the case; with the simple physical explanation that the electric field (which drives the heating) within a highly conducting particle is highly screened. Instead, it is the magnetic absorption associated with induction that accounts for the large experimental heating rates observed for small metal particles. We present simple principles for the effective heating of particles in microwave fields from calculations of electric and magnetic dipole absorptions for a range of practical values of particle size and conductivity. For highly conducting particles, magnetic absorption dominates electric absorption over a wide range of particle radii, with an optimum absorption set by the ratio of mean particle radius a to the skin depth δ (specifically, by the condition a = 2.41δ). This means that for particles of any conductivity, optimized magnetic absorption (and hence microwave heating by magnetic induction) can be achieved by simple selection of the mean particle size. For weakly conducting samples, electric dipole absorption dominates, and is maximized when the conductivity is approximately σ ≈ 3ωε(0) ≈ 0.4 S m(-1), independent of particle radius. Therefore, although electric dipole heating can be as effective as magnetic dipole heating for a powder sample of the same volume, it is harder to obtain optimized conditions at a fixed frequency of microwave field. The absorption of sub-micron particles is ineffective in both magnetic and electric fields. However, if the particles are magnetic, with a lossy part to their complex permeability, then magnetic dipole losses are dramatically enhanced compared to their values for non-magnetic particles. An interesting application of this is the use of very small magnetic particles for the selective microwave heating of biological samples.

  8. Low-power microwave-mediated heating for microchip-based PCR.

    PubMed

    Marchiarullo, Daniel J; Sklavounos, Angelique H; Oh, Kyudam; Poe, Brian L; Barker, N Scott; Landers, James P

    2013-09-07

    Microwave energy has been used to rapidly heat food and drinks for decades, in addition to assisting other chemical reactions. However, only recently has microwave energy been applied in microfluidic systems to heat solution in reaction chambers, in particular, the polymerase chain reaction (PCR). One of the difficulties in developing microwave-mediated heating on a microchip is the construction of the appropriate architecture for delivery of the energy to specific micro-areas on the microchip. This work employs commercially-available microwave components commonly used in the wireless communications industry to generate a microwave signal, and a microstrip transmission line to deliver the energy to a 1 μL reaction chamber fabricated in plastic microdevices. A model was developed to create transmission lines that would optimally transmit energy to the reaction chamber at a given frequency, minimizing energy usage while focusing microwave delivery to the target chamber. Two different temperature control methods were demonstrated, varying microwave power or frequency. This system was used to amplify a fragment of the lambda-phage genome, thereby demonstrating its potential for integration into a portable PCR system.

  9. Numerical study and optimization of interstitial antennas for microwave ablation therapy

    NASA Astrophysics Data System (ADS)

    Komarov, Vyacheslav V.

    2014-10-01

    Electromagnetic and thermal characteristics of coaxial monopole antennas of 2.45 GHz and 24.125 GHz for microwave ablation of malignant tumors are investigated. Microwave heating processes in an interaction domain (biological tissue) are described by the coupled electromagnetic and heat transfer problem, which was solved numerically in the present study. Proposed applicators provide reducing of reflected power and localized distribution of temperature in the near-field zone. Different mathematical models are used to optimize the antennas sizes and simulate heating patterns.

  10. Microwave heating and the acceleration of polymerization processes

    NASA Astrophysics Data System (ADS)

    Parodi, Fabrizio

    1999-12-01

    Microwave power irradiation of dielectrics is nowadays well recognized and extensively used as an exceptionally efficient and versatile heating technique. Besides this, it revealed since the early 1980s an unexpected, and still far from being elucidated, capacity of causing reaction and yield enhancements in a great variety of chemical processes. These phenomena are currently referred to as specific or nonthermal effects of microwaves. An overview of them and their interpretations given to date in achievements in the microwave processing of slow-curing thermosetting resins is also given. Tailored, quaternary cyanoalkoxyalkyl ammonium halide catalysts, further emphasizing the microwave enhancements of curing kinetics of isocyanate/epoxy and epoxy/anhydride resin systems, are here presented. Their catalytic efficiency under microwave irradiation, microwave heatability, and dielectric properties are discussed and interpreted by the aid of the result of semi-empirical quantum mechanics calculations and molecule dynamics simulations in vacuo. An ion-hopping conduction mechanism has been recognized as the dominant source of the microwave absorption capacities of these catalysts. Dipolar relaxation losses by their strongly dipolar cations, viceversa, would preferably be responsible for the peculiar catalytic effects displayed under microwave heating. This would occur through a well-focused, molecular microwave overheating of intermediate reactive anionic groupings, they could indirectly cause as the nearest neighbors of such negatively-charged molecular sites.

  11. Container for heat treating materials in microwave ovens

    SciTech Connect

    Holcombe, C.E.; Dykes, N.L.; Kimrey, H.D. Jr.; Mills, J.E.

    1989-03-07

    This patent describes a container for heating refractory material in a microwave oven to receive microwave radiation from microwave radiation emitting means disposed on at least one of vertically separated sides of a volume in the oven. The container positionable within and essentially filling the vertical expanse of the volume and comprising top wall means and bottom wall means each formed of a material substantially transparent to and non-coupling with microwave radiation, vertical wall means disposed between and contacting the top wall means and the bottom wall means for defining therewith an enclosed chamber. The vertical wall means being formed of graphite or a graphite composite characterized by being substantially opaque to and non-coupling with microwave radiation for reflecting microwave radiation inwardly into the chamber.

  12. New automated microwave heating process for cooking and pasteurization of microwaveable foods containing raw meats.

    PubMed

    Huang, Lihan; Sites, Joseph

    2010-03-01

    A new microwave heating process was developed for cooking microwaveable foods containing raw meats. A commercially available inverter-based microwave oven was modified for pasteurization of mechanically tenderized beef, inoculated with Escherichia coli O157:H7 (approximately 5 log(10) CFU/g) and packaged in a 12-oz CPET tray containing 150-mL de-ionized water. The new microwave heating system was equipped with an infrared sensor and a proportional feedback mechanism to allow temperature controlled microwave heating. A 2-stage heating strategy was adopted to cook the product. In the primary heating stage, the sample surface temperature was increased to an initial temperature set-point (ITSP, 65, 70, 75, or 80 degrees C). In the secondary heating stage, the heating was continued with a small fraction of microwave power. The effect of ITSP, hold time (0 to 3 min), and sample elevation (0, 0.03, and 0.07 m above turntable) on inactivation of E. coli O157:H7 and background microflora was evaluated. It was observed that only a small number (approximately 1.3 logs) of E. coli O157:H7 and background microflora were inactivated in the primary heating stage. The elevation 0.07 m, which was in the proximity of the geometric center of the metal cavity, was more effective in inactivating both E. coli O157:H7 and background microflora. Substantially more bacteria were inactivated in the secondary heating stage. Complete inactivation of E. coli and background microflora was observed with heating at temperatures above 70 degrees C for more than 1 min. This study demonstrated a new approach for ensuring the safety of microwaveable products containing raw meats.

  13. Microwave-assisted extraction of lignin from triticale straw: optimization and microwave effects.

    PubMed

    Monteil-Rivera, Fanny; Huang, Guang Hai; Paquet, Louise; Deschamps, Stéphane; Beaulieu, Chantale; Hawari, Jalal

    2012-01-01

    Presently lignin is used as fuel but recent interests in biomaterials encourage the use of this polymer as a renewable feedstock in manufacturing. The present study was undertaken to explore the potential applicability of microwaves to isolate lignin from agricultural residues. A central composite design (CCD) was used to optimize the processing conditions for the microwave (MW)-assisted extraction of lignin from triticale straw. Maximal lignin yield (91%) was found when using 92% EtOH, 0.64 N H(2)SO(4), and 148 °C. The yield and chemical structure of MW-extracted lignin were compared to those of lignin extracted with conventional heating. Under similar conditions, MW irradiation led to higher lignin yields, lignins of lower sugar content, and lignins of smaller molecular weights. Except for these differences the lignins resulting from both types of heating exhibited comparable chemical structures. The present findings should provide a clean source of lignin for potential testing in manufacturing of biomaterials. Crown Copyright © 2011. Published by Elsevier Ltd. All rights reserved.

  14. Optimizing Sustainable Geothermal Heat Extraction

    NASA Astrophysics Data System (ADS)

    Patel, Iti; Bielicki, Jeffrey; Buscheck, Thomas

    2016-04-01

    Geothermal heat, though renewable, can be depleted over time if the rate of heat extraction exceeds the natural rate of renewal. As such, the sustainability of a geothermal resource is typically viewed as preserving the energy of the reservoir by weighing heat extraction against renewability. But heat that is extracted from a geothermal reservoir is used to provide a service to society and an economic gain to the provider of that service. For heat extraction used for market commodities, sustainability entails balancing the rate at which the reservoir temperature renews with the rate at which heat is extracted and converted into economic profit. We present a model for managing geothermal resources that combines simulations of geothermal reservoir performance with natural resource economics in order to develop optimal heat mining strategies. Similar optimal control approaches have been developed for managing other renewable resources, like fisheries and forests. We used the Non-isothermal Unsaturated-saturated Flow and Transport (NUFT) model to simulate the performance of a sedimentary geothermal reservoir under a variety of geologic and operational situations. The results of NUFT are integrated into the optimization model to determine the extraction path over time that maximizes the net present profit given the performance of the geothermal resource. Results suggest that the discount rate that is used to calculate the net present value of economic gain is a major determinant of the optimal extraction path, particularly for shallower and cooler reservoirs, where the regeneration of energy due to the natural geothermal heat flux is a smaller percentage of the amount of energy that is extracted from the reservoir.

  15. Elimination of Salmonella in Microwaveable Non-Ready-to-Eat Meats by Power-Controlled Microwave Heating

    USDA-ARS?s Scientific Manuscript database

    Microwaveable non-ready-to-eat (NRTE) foods belong to a category of products that contain raw ingredients (such as chicken meats). These products are usually frozen and heated in a microwave oven prior to consumption. As the products are not uniformly cooked during microwave heating, human pathoge...

  16. Factors affecting the catalytic oligomerization of methane via microwave heating

    NASA Astrophysics Data System (ADS)

    Conde, Luis Daniel

    Catalytic microwave heating has been used as a method for the oligomerization of methane to higher hydrocarbons. Many catalysts were tested in this reaction. Nickel powder, raney nickel, iron powder and activated carbon were the most active and efficient catalysts for the production of higher hydrocarbons. When helium was used as a diluent gas and the applied power was optimized, the selectivities were controlled to the most desired products. In general, the most abundant products for all the experiments were C2s. Iron powder was active only at high power (1130 W). At these conditions acetylene was avoided and ethylene and ethane were produced in the same proportion. Activated carbon catalysts with helium as diluent led to a selectivity towards benzene up to 33%. Some manganese oxides such as OMS-1, OMS-2 and MnO2 (dielectric constant, epsilon ≈ 104) were not active in these reactions. These data suggest that the dielectric constant is not the most important factor in the oligomerization of methane via microwave heating. Conversion and activities of these materials are not proportionally related to the surface area of the catalysts. Higher catalytic activity was observed for Raney nickel than for regular nickel powder. The maximum conversion obtained was 24% at 400 W and 10 min of irradiation time. For regular nickel powder that conversion can be achieved only after 700 W of power and more than 20 min of reaction. BET surface area, Scanning Electron Microscopy, X-ray Photoelectron Spectroscopy, and Temperature-Programmed Desorption and Reduction analysis were performed to characterize the catalyst before and after reaction. Deactivation of Raney nickel by fouling and sintering was observed after 500 W and/or 15 min of reaction. The effect of microwave radiation frequency on activity and product distribution for methane oligomerization has been studied. Nickel, iron, and activated carbon catalysts were used in these studies. Experiments were done with pure methane

  17. Assessment of heating rate and non-uniform heating in domestic microwave ovens.

    PubMed

    Pitchai, Krishnamoorthy; Birla, Sohan L; Jones, David; Subbiah, Jeyamkondan

    2012-01-01

    Due to the inherent nature of standing wave patterns of microwaves inside a domestic microwave oven cavity and varying dielectric properties of different food components, microwave heating produces non-uniform distribution of energy inside the food. Non-uniform heating is a major food safety concern in not-ready-to-eat (NRTE) microwaveable foods. In this study, we present a method for assessing heating rate and non-uniform heating in domestic microwave ovens. In this study a custom designed container was used to assess heating rate and non-uniform heating of a range of microwave ovens using a hedgehog of 30 T-type thermocouples. The mean and standard deviation of heating rate along the radial distance and sector of the container were measured and analyzed. The effect of the location of rings and sectors was analyzed using ANOVA to identify the best location for placing food on the turntable. The study suggested that the best location to place food in a microwave oven is not at the center but near the edge of the turntable assuming uniform heating is desired. The effect of rated power and cavity size on heating rate and non-uniform heating was also studied for a range of microwave ovens. As the rated power and cavity size increases, heating rate increases while non-uniform heating decreases. Sectors in the container also influenced heating rate (p < 0.0001), even though it did not have clear trend on heating rate. In general, sectors close to the magnetron tend to heat slightly faster than sectors away from the magnetron. However, the variation in heating rate among sectors was only 2 degrees C/min and considered not practically important. Overall heating performance such as mean heating rate and non-uniform heating did not significantly vary between the two replications that were performed 4 h apart. However, microwave ovens were inconsistent in producing the same heating patterns between the two replications that were performed 4 h apart.

  18. Cardiac tissue ablation with catheter-based microwave heating.

    PubMed

    Rappaport, C

    2004-11-01

    The common condition of atrial fibrillation is often treated by cutting diseased cardiac tissue to disrupt abnormal electrical conduction pathways. Heating abnormal tissue with electromagnetic power provides a minimally invasive surgical alternative to treat these cardiac arrhythmias. Radio frequency ablation has become the method of choice of many physicians. Recently, microwave power has also been shown to have great therapeutic benefit in medical treatment requiring precise heating of biological tissue. Since microwave power tends to be deposited throughout the volume of biological media, microwave heating offers advantages over other heating modalities that tend to heat primarily the contacting surface. It is also possible to heat a deeper volume of tissue with more precise control using microwaves than with purely thermal conduction or RF electrode heating. Microwave Cardiac Ablation (MCA) is used to treat heart tissue that allows abnormal electrical conduction by heating it to the point of inactivation. Microwave antennas that fit within catheter systems can be positioned close to diseased tissue. Specialized antenna designs that unfurl from the catheter within the heart can then radiate specifically shaped fields, which overcome problems such as excessive surface heating at the contact point. The state of the art in MCA is reviewed in this paper and a novel catheter-based unfurling wide aperture antenna is described. This antenna consists of the centre conductor of a coaxial line, shaped into a spiral and insulated from blood and tissue by a non-conductive fluid filled balloon. Initially stretched straight inside a catheter for transluminal guiding, once in place at the cardiac target, the coiled spiral antenna is advanced into the inflated balloon. Power is applied in the range of 50-150 W at the reserved industrial, scientific and medical (ISM) frequency of 915 MHz for 30-90 s to create an irreversible lesion. The antenna is then retracted back into the

  19. Containerless synthesis of ceramic materials using microwave heating

    NASA Technical Reports Server (NTRS)

    Dunn, B.; Crouch-Baker, S.

    1990-01-01

    It was demonstrated that microwave heating technique may be employed for the synthesis of a number of multicomponent ceramic oxide-based materials, e.g., YBa2Cu3O7 and CuFe2O4. A characteristic, and potentially extremely useful, feature of such synthesis is that they occur in significantly less time than that required using conventional furnace-based techniques. However, the information obtained to date is necessarily rather empirical, and systematic investigations of the use of microwave heating for the synthesis of ceramic materials are required. The synthesis of ceramic materials at high temperatures are often affected by unwanted, deleterious reactions of the reactants and/or products with the reaction container. Consequently, it is of interest to investigate the high temperature synthesis of ceramic materials using microwave heating in a containerless environment.

  20. Synthesis of ultrafine powders by microwave heating

    DOEpatents

    Meek, T.T.; Sheinberg, H.; Blake, R.D.

    1987-04-24

    A method of synthesizing ultrafine powders using microwaves is described. A water soluble material is dissolved in water and the resulting aqueous solution is exposed to microwaves until the water has dissolved. The resulting material is an ultrafine powder. This method can be used to make Al/sub 2/O/sub 3/, NiO /plus/ Al/sub 2/O/sub 3/ and NiO as well as a number of other materials including GaBa/sub 2/Cu/sub 3/O/sub x/. 1 tab.

  1. Synthesis of ultrafine powders by microwave heating

    DOEpatents

    Meek, Thomas T.; Sheinberg, Haskell; Blake, Rodger D.

    1988-01-01

    A method of synthesizing ultrafine powders using microwaves is described. A water soluble material is dissolved in water and the resulting aqueous solution is exposed to microwaves until the water has been removed. The resulting material is an ultrafine powder. This method can be used to make Al.sub.2 O.sub.3, NiO+Al.sub.2 O.sub.3 and NiO as well as a number of other materials including GaBa.sub.2 Cu.sub.3 O.sub.x.

  2. Beneficial effects of microwave-assisted heating versus conventional heating in noble metal nanoparticle synthesis.

    PubMed

    Dahal, Naween; García, Stephany; Zhou, Jiping; Humphrey, Simon M

    2012-11-27

    An extensive comparative study of the effects of microwave versus conventional heating on the nucleation and growth of near-monodisperse Rh, Pd, and Pt nanoparticles has revealed distinct and preferential effects of the microwave heating method. A one-pot synthetic method has been investigated, which combines nucleation and growth in a single reaction via precise control over the precursor addition rate. Using this method, microwave-assisted heating enables the convenient preparation of polymer-capped nanoparticles with improved monodispersity, morphological control, and higher crystallinity, compared with samples heated conventionally under otherwise identical conditions. Extensive studies of Rh nanoparticle formation reveal fundamental differences during the nucleation phase that is directly dependent on the heating method; microwave irradiation was found to provide more uniform seeds for the subsequent growth of larger nanostructures of desired size and surface structure. Nanoparticle growth kinetics are also markedly different under microwave heating. While conventional heating generally yields particles with mixed morphologies, microwave synthesis consistently provides a majority of tetrahedral particles at intermediate sizes (5-7 nm) or larger cubes (8+ nm) upon further growth. High-resolution transmission electron microscopy indicates that Rh seeds and larger nanoparticles obtained from microwave-assisted synthesis are more highly crystalline and faceted versus their conventionally prepared counterparts. Microwave-prepared Rh nanoparticles also show approximately twice the catalytic activity of similar-sized conventionally prepared particles, as demonstrated in the vapor-phase hydrogenation of cyclohexene. Ligand exchange reactions to replace polymer capping agents with molecular stabilizing agents are also easily facilitated under microwave heating, due to the excitation of polar organic moieties; the ligand exchange proceeds with excellent retention of

  3. Directional melting of alumina via polarized microwave heating

    NASA Astrophysics Data System (ADS)

    Hu, Yuan; Nakano, Aiichiro; Wang, Joseph

    2017-01-01

    Dynamical instabilities and melting of crystals upon heating are fundamental problems in physics and materials science. Using molecular dynamics simulations, we found that drastically different melting temperatures and behaviors can be achieved in α-alumina using microwave heating, where the electric field is aligned with different crystallographic orientations. Namely, alumina melts much earlier at lower temperatures when the electric field is parallel to the c-axis. The atomistic mechanism was identified as selective liberation of the Al sublattice due to the shear instability along the c-axis. This directional melting concept may be used for triggering distinct dynamical instabilities and melting of dielectric crystals using polarized microwave fields.

  4. Numerical Analysis of Microwave Heating on Saponification Reaction

    NASA Astrophysics Data System (ADS)

    Huang, Kama; Jia, Kun

    2005-01-01

    Currently, microwave is widely used in chemical industry to accelerate chemical reactions. Saponification reaction has important applications in industry; some research results have shown that microwave heating can significantly accelerate the reaction [1]. But so far, no efficient method has been reported for the analysis of the heating process and design of an efficient reactor powered by microwave. In this paper, we present a method to study the microwave heating process on saponification reaction, where the reactant in a test tube is considered as a mixture of dilute solution. According to the preliminary measurement results, the effective permittivity of the mixture is approximately the permittivity of water, but the conductivity, which could change with the reaction, is derived from the reaction equation (RE). The electromagnetic field equation and reaction equation are coupled by the conductivity. Following that, the whole heating processes, which is described by Maxwell's equations, the reaction equation and heat transport equation (HTE), is analyzed by finite difference time domain (FDTD) method. The temperature rising in the test tube are measured and compared with the computational results. Good agreement can be seen between the measured and calculated results.

  5. Microwave Dielectric Heating of Drops in Microfluidic Devices†

    PubMed Central

    Issadore, David; Humphry, Katherine J.; Brown, Keith A.; Sandberg, Lori; Weitz, David; Westervelt, Robert M.

    2010-01-01

    We present a technique to locally and rapidly heat water drops in microfluidic devices with microwave dielectric heating. Water absorbs microwave power more efficiently than polymers, glass, and oils due to its permanent molecular dipole moment that has a large dielectric loss at GHz frequencies. The relevant heat capacity of the system is a single thermally isolated picoliter drop of water and this enables very fast thermal cycling. We demonstrate microwave dielectric heating in a microfluidic device that integrates a flow-focusing drop maker, drop splitters, and metal electrodes to locally deliver microwave power from an inexpensive, commercially available 3.0 GHz source and amplifier. The temperature of the drops is measured by observing the temperature dependent fluorescence intensity of cadmium selenide nanocrystals suspended in the water drops. We demonstrate characteristic heating times as short as 15 ms to steady-state temperatures as large as 30°C above the base temperature of the microfluidic device. Many common biological and chemical applications require rapid and local control of temperature, such as PCR amplification of DNA, and can benefit from this new technique. PMID:19495453

  6. Microwave dielectric heating of drops in microfluidic devices.

    PubMed

    Issadore, David; Humphry, Katherine J; Brown, Keith A; Sandberg, Lori; Weitz, David A; Westervelt, Robert M

    2009-06-21

    We present a technique to locally and rapidly heat water drops in microfluidic devices with microwave dielectric heating. Water absorbs microwave power more efficiently than polymers, glass, and oils due to its permanent molecular dipole moment that has large dielectric loss at GHz frequencies. The relevant heat capacity of the system is a single thermally isolated picolitre-scale drop of water, enabling very fast thermal cycling. We demonstrate microwave dielectric heating in a microfluidic device that integrates a flow-focusing drop maker, drop splitters, and metal electrodes to locally deliver microwave power from an inexpensive, commercially available 3.0 GHz source and amplifier. The temperature change of the drops is measured by observing the temperature dependent fluorescence intensity of cadmium selenide nanocrystals suspended in the water drops. We demonstrate characteristic heating times as short as 15 ms to steady-state temperature changes as large as 30 degrees C above the base temperature of the microfluidic device. Many common biological and chemical applications require rapid and local control of temperature and can benefit from this new technique.

  7. Spatial observation and quantification of microwave heating in materials

    NASA Astrophysics Data System (ADS)

    Crane, C. A.; Pantoya, M. L.; Weeks, B. L.

    2013-08-01

    An electromagnetic exposure chamber was designed to safely deliver electromagnetic power in the range of microwaves between 0.8 and 4.2 GHz to a thin cylindrical materials. This instrumentation is unique because the diagnostics not only measure sample heating with a response time of 1.3 ms, but also energy transmitted and reflected. Energy absorption at different frequencies was quantified via electromagnetic heating using an infrared camera. This in situ IR imaging of the spatial distribution of temperature during microwave exposure coupled with sensors for determining transmitted and reflected energy enables novel new microwave energy experiments. Samples were exposed to a portion of both the electric and magnetic fields inside a waveguide and based on sample dimensions, the field strengths were assumed uniform across the sample. Three materials were examined: two were borosilicate, first coated with graphite paint and a second without the coating; and, the third was a compressed sample of flake graphite pressed to 69% of its bulk density. Results are in agreement with the theories of microwave heating and verify the functionality of this experimental design. This diagnostic will be important in future tests where a variety of different materials can be exposed to weak electromagnetic waves and their efficiency in coupling to the microwaves can be examined.

  8. Rapid Nanoparticle Synthesis by Magnetic and Microwave Heating.

    PubMed

    Chikan, Viktor; McLaurin, Emily J

    2016-05-05

    Traditional hot-injection (HI) syntheses of colloidal nanoparticles (NPs) allows good separation of the nucleation and growth stages of the reaction, a key limitation in obtaining monodisperse NPs, but with limited scalability. Here, two methods are presented for obtaining NPs via rapid heating: magnetic and microwave-assisted. Both of these techniques provide improved engineering control over the separation of nucleation and growth stages of nanomaterial synthesis when the reaction is initiated from room temperature. The advantages of these techniques with preliminary data are presented in this prospective article. It is shown here that microwave assisted heating could possibly provide some selectivity in activating the nanomaterial precursor materials, while magnetic heating can produce very tiny particles in a very short time (even on the millisecond timescale), which is important for scalability. The fast magnetic heating also allows for synthesizing larger particles with improved size distribution, therefore impacting, not only the quantity, but the quality of the nanomaterials.

  9. Rapid Nanoparticle Synthesis by Magnetic and Microwave Heating

    PubMed Central

    Chikan, Viktor; McLaurin, Emily J.

    2016-01-01

    Traditional hot-injection (HI) syntheses of colloidal nanoparticles (NPs) allows good separation of the nucleation and growth stages of the reaction, a key limitation in obtaining monodisperse NPs, but with limited scalability. Here, two methods are presented for obtaining NPs via rapid heating: magnetic and microwave-assisted. Both of these techniques provide improved engineering control over the separation of nucleation and growth stages of nanomaterial synthesis when the reaction is initiated from room temperature. The advantages of these techniques with preliminary data are presented in this prospective article. It is shown here that microwave assisted heating could possibly provide some selectivity in activating the nanomaterial precursor materials, while magnetic heating can produce very tiny particles in a very short time (even on the millisecond timescale), which is important for scalability. The fast magnetic heating also allows for synthesizing larger particles with improved size distribution, therefore impacting, not only the quantity, but the quality of the nanomaterials. PMID:28335212

  10. Apparatus with moderating material for microwave heat treatment of manufactured components

    SciTech Connect

    Ripley, Edward B

    2011-05-10

    An apparatus for heat treating manufactured components using microwave energy and microwave susceptor material. Heat treating medium such as eutectic salts may be employed. A fluidized bed introduces process gases which may include carburizing or nitriding gases The process may be operated in a batch mode or continuous process mode. A microwave heating probe may be used to restart a frozen eutectic salt bath.

  11. Effects of polarization-charge shielding in microwave heating

    SciTech Connect

    Lin, M. S.; Lin, S. M.; Chiang, W. Y.; Barnett, L. R.; Chu, K. R.

    2015-08-15

    Heating of dielectric objects by radio frequency (RF) and microwaves has long been a method widely employed in scientific research and industrial applications. However, RF and microwave heating are often susceptible to an excessive temperature spread due to uneven energy deposition. The current study elucidates an important physical reason for this difficulty and proposes an effective remedy. Non-spherical samples are placed in an anechoic chamber, where it is irradiated by a traveling microwave wave with 99% intensity uniformity. Polarization charges induced on the samples tend to partially cancel the incident electric field and hence reduce the heating rate. The polarization-charge shielded heating rate is shown to be highly dependent on the sample's shape and its orientation relative to the wave electric field. For samples with a relatively high permittivity, the resultant uneven heating can become a major cause for the excessive temperature spread. It is also demonstrated that a circularly polarized wave, with its rapidly rotating electric field, can effectively even out the heating rate and hence the temperature spread.

  12. Optimization of the accelerated curing process of concrete using a fibre Bragg grating-based control system and microwave technology

    NASA Astrophysics Data System (ADS)

    Fabian, Matthias; Jia, Yaodong; Shi, Shi; McCague, Colum; Bai, Yun; Sun, Tong; Grattan, Kenneth T. V.

    2016-05-01

    In this paper, an investigation into the suitability of using fibre Bragg gratings (FBGs) for monitoring the accelerated curing process of concrete in a microwave heating environment is presented. In this approach, the temperature data provided by the FBGs are used to regulate automatically the microwave power so that a pre-defined temperature profile is maintained to optimize the curing process, achieving early strength values comparable to those of conventional heat-curing techniques but with significantly reduced energy consumption. The immunity of the FBGs to interference from the microwave radiation used ensures stable readings in the targeted environment, unlike conventional electronic sensor probes.

  13. The influence of microwave heating on the characteristics of polyelectrolytes.

    PubMed

    Martin, D; Mateescu, E; Ighigeanu, D; Jianu, A

    2000-01-01

    Results obtained by microwave (MW) and simultaneous microwave and electron beam (MW + EB) application in the chemistry of acrylamide and acrylic acid co-polymers (PA type polyelectrolytes) are presented. Comparative results concerning the molecular weight (Mw) and Huggins' constant for the acrylamide copolymers obtained by classical heating, MW heating, EB irradiation and simultaneous MW + EB treatment are reported. MW heating produces high PA water solubility but median Mw values; EB irradiation gives high Mw values but associated with a cross-linked structure (poor water solubility) while MW energy addition to EB energy gives simultaneously high Mw values and high PA water solubility. A MW installation of 2.45 GHz and 2.5 kW, designed to provide small-scale commercial production of PA polyelectrolytes, is described.

  14. Ceramic-glass-metal seal by microwave heating

    DOEpatents

    Meek, T.T.; Blake, R.D.

    1983-10-04

    A method for producing a ceramic-glass-metal seal by microwaving, mixes a slurry of glass sealing material and coupling agent and applies same to ceramic and metal workpieces. The slurry and workpieces are then insulated and microwaved at a power, time and frequency sufficient to cause a liquid-phase reaction in the slurry. The reaction of the glass sealing material forms a chemically different seal than that which would be formed by conventional heating because it is formed by diffusion rather than by wetting of the reactants.

  15. Ceramic-glass-ceramic seal by microwave heating

    DOEpatents

    Meek, T.T.; Blake, R.D.

    1983-10-04

    A method for producing a ceramic-glass-ceramic seal by microwaving, mixes a slurry of glass sealing material and coupling agent and applies same to ceramic workpieces. The slurry and workpieces are placed together, insulated and then microwaved at a power, time and frequency sufficient to cause a liquid phase reaction in the slurry. The reaction of the glass sealing material forms a chemically different seal than that which would be formed by conventional heating because it is formed by a diffusion rather than by wetting of the reactants.

  16. Ceramic-glass-ceramic seal by microwave heating

    DOEpatents

    Meek, Thomas T.; Blake, Rodger D.

    1985-01-01

    A method for producing a ceramic-glass-ceramic seal by microwaving, mixes a slurry of glass sealing material and coupling agent and applies same to ceramic workpieces. The slurry and workpieces are placed together, insulated and then microwaved at a power, time and frequency sufficient to cause a liquid phase reaction in the slurry. The reaction of the glass sealing material forms a chemically different seal than that which would be formed by conventional heating because it is formed by a diffusion rather than by wetting of the reactants.

  17. Ceramic-glass-metal seal by microwave heating

    DOEpatents

    Meek, Thomas T.; Blake, Rodger D.

    1985-01-01

    A method for producing a ceramic-glass-metal seal by microwaving mixes a slurry of glass sealing material and coupling agent and applies same to ceramic and metal workpieces. The slurry and workpieces are then insulated and microwaved at a power, time and frequency sufficient to cause a liquid phase reaction in the slurry. The reaction of the glass sealing material forms a chemically different seal than that which would be formed by conventional heating because it is formed by diffusion rather than by wetting of the reactants.

  18. Microwave Absorption Characteristics of Conventionally Heated Nonstoichiometric Ferrous Oxide

    NASA Astrophysics Data System (ADS)

    Peng, Zhiwei; Hwang, Jiann-Yang; Mouris, Joe; Hutcheon, Ron; Sun, Xiang

    2011-08-01

    The temperature dependence of the microwave absorption of conventionally heated nonstoichiometric ferrous oxide (Fe0.925O) was characterized via the cavity perturbation technique between 294 K and 1373 K (21 °C and 1100 °C). The complex relative permittivity and permeability of the heated Fe0.925O sample slightly change with temperature from 294 K to 473 K (21 °C to 200 °C). The dramatic variations of permittivity and permeability of the sample from 473 K to 823 K (200 °C to 550 °C) are partially attributed to the formation of magnetite (Fe3O4) and metal iron (Fe) from the thermal decomposition of Fe0.925O, as confirmed by the high-temperature X-ray diffraction (HT-XRD). At higher temperatures up to 1373 K (1100 °C), it is found that Fe0.925O regenerates and remains as a stable phase with high permittivity. Since the permittivity dominates the microwave absorption of Fe0.925O above 823 K (550 °C), resulting in shallow microwave penetration depth (~0.11 and ~0.015 m at 915 and 2450 MHz, respectively), the regenerated nonstoichiometric ferrous oxide exhibits useful microwave absorption capability in the temperature range of 823 K to1373 K (550 °C to 1100 °C).

  19. Microwave thermal imaging of scanned focused ultrasound heating: Phantom results

    PubMed Central

    Meaney, Paul M.; Zhou, Tian; Fanning, Margaret W.; Geimer, Shireen D.; Paulsen, Keith D.

    2009-01-01

    We are developing a microwave tomographic imaging system capable of monitoring thermal distributions based on the temperature dependence of the recovered dielectric properties. The system has been coupled to a high intensity focused ultrasound (HIFU) therapy device which can be mechanically steered under computer control to generate arbitrarily shaped heating zones. Their integration takes advantage of the focusing capability of ultrasound for the therapy delivery and the isolation of the microwave imaging signal from the power deposition source to allow simultaneous treatment monitoring. We present several sets of phantom experiments involving different types of heating patterns that demonstrate the quality of both the spatial and temporal thermal imaging performance. This combined approach is adaptable to multiple anatomical sites and may have the potential to be developed into a viable alternative to current clinical temperature monitoring devices for HIFU, such magnetic resonance (MR) imaging. PMID:18608588

  20. Microwave dielectric heating-mediated modification of polymers

    SciTech Connect

    Yalpani, M.

    1995-12-01

    Microwave dielectric heating (MDH) has recently been explored for various inorganic and organic reactions. Reaction rate enhancements of up to three orders of magnitude and altered selectivities have been reported as potential advantages over traditional heating techniques. For synthetic polymers, MDH techniques have been applied to synthesis and processing, and for biopolymers, their uses for starch solubilization, cellulose hydrolysis and non-degradative DNA denaturation have been described. This paper will report on MDH-mediated modifications of several water soluble polymers on a multigram scale, using open reaction vessels in a commercial microwave oven. MDH modifications, such as amidations, etherifications and esterifications, were performed in different reaction media over periods of 1-10 minutes. Compared to conventional reaction techniques, the MDH-mediated modifications proceeded with high conversion efficiencies in substantially shorter reaction times. Examples of modifications of cyclodextrins, cellulose derivatives, as well as polyvinyl alcohol will be discussed.

  1. Microwave thermal imaging of scanned focused ultrasound heating: phantom results.

    PubMed

    Meaney, Paul M; Zhou, Tian; Fanning, Margaret W; Geimer, Shireen D; Paulsen, Keith D

    2008-11-01

    We are developing a microwave tomographic imaging system capable of monitoring thermal distributions based on the temperature dependence of the recovered dielectric properties. The system has been coupled to a high intensity focused ultrasound (HIFU) therapy device which can be mechanically steered under computer control to generate arbitrarily shaped heating zones. Their integration takes advantage of the focusing capability of ultrasound for the therapy delivery and the isolation of the microwave imaging signal from the power deposition source to allow simultaneous treatment monitoring. We present several sets of phantom experiments involving different types of heating patterns that demonstrate the quality of both the spatial and temporal thermal imaging performance. This combined approach is adaptable to multiple anatomical sites and may have the potential to be developed into a viable alternative to current clinical temperature monitoring devices for HIFU, such magnetic resonance (MR) imaging.

  2. Structural characteristics of pumpkin pectin extracted by microwave heating.

    PubMed

    Yoo, Sang-Ho; Lee, Byeong-Hoo; Lee, Heungsook; Lee, Suyong; Bae, In Young; Lee, Hyeon Gyu; Fishman, Marshall L; Chau, Hoa K; Savary, Brett J; Hotchkiss, Arland T

    2012-11-01

    To improve extraction yield of pumpkin pectin, microwave heating was adopted in this study. Using hot acid extraction, pumpkin pectin yield decreased from 5.7% to 1.0% as pH increased from pH 1.0 to 2.0. At pH 2.5, no pectin was recovered from pumpkin flesh powder. After a pretreatment at pH 1.0 and 25 °C for 1 h, pumpkin powder was microwave-extracted at 120 °C for 3 min resulting in 10.5% of pectin yield. However, premicrowave treatment at 60 °C for 20 min did not improve extraction yield. When microwave heating at 80 °C for 10 min was applied after premicrowave treatment, final pectin yield increased to 11.3%. When pH was adjusted to 2.0, the yield dropped to 7.7% under the same extraction conditions. Molecular shape and properties as well as chemical composition of pumpkin pectin were significantly affected depending on extraction methods. Galacturonic acid content (51% to 58%) of pumpkin pectin was lower than that detected in commercial acid-extracted citrus pectin, while higher content of neutral sugars and acetyl esters existed in pumpkin pectin structure. Molecular weight (M(w) ) and intrinsic viscosity (η(w) ) determined for microwave-extracted pumpkin pectins were substantially lower than acid-extracted pectin, whereas polydispersity was greater. However, microwave-extracted pectin at pH 2.0 had more than 5 times greater M(w) than did the pectin extracted at pH 1.0. The η(w) of microwave-extracted pectin produced at pH 2.0 was almost twice that of other microwave-extracted pectins, which were comparable to that of acid-extracted pectin. These results indicate that extraction yield of pumpkin pectin would be improved by microwave extraction and different pectin structure and properties can be obtained compared to acid extraction. Pumpkin is a promising alternative source for pectin material. Pumpkin pectin has a unique chemical structure and physical properties, presumably providing different functional properties compared to conventional commercial

  3. Structural characteristics of pumpkin pectin extracted by microwave heating

    USDA-ARS?s Scientific Manuscript database

    To improve extraction yield of pumpkin pectin, microwave heating was adopted in this study. Using traditional hot acid extraction, pumpkin pectin yield decreased from 5.7 to 1.0 % as pH increased from pH 1.0 to 2.0. At pH 2.5, no pectin was recovered from pumpkin flesh powder. After a pre-treatment ...

  4. Optimization of dual slot antenna using floating metallic sleeve for microwave ablation.

    PubMed

    Ibitoye, Z A; Nwoye, E O; Aweda, M A; Oremosu, A A; Annunobi, C C; Akanmu, O N

    2015-04-01

    Backward heating reduction is vital in power distribution optimization in microwave thermal ablation. In this study, we optimized dual slot antenna to yield reduction in backward heating pattern along the antenna shaft with the application of floating metallic sleeve. Finite element methods were used to generate the electromagnetic (EM) field and thermal distribution in liver tissue. The position of the sleeve from the tip of the probe (z = 0 mm) was varied within the range 14 ≤ z ≤ 22 mm while sleeve length was varied within 16 ≤ z ≤ 48 mm at 2 mm interval using operating frequency of 2.45 GHz. The best optimized design has reflection coefficient of -20.87 dB and axial ratio of 0.41 when the sleeve position was at 17 mm and sleeve length was 18 mm. Experimental validation shows that inclusion of a floating metallic sleeve on dual slot antenna for hepatic microwave ablation averagely increased ablation diameter and aspect ratio by 17.8% and 33.9% respectively and decreased ablation length by 11.2%. Reduction in backward heating and increase in power deposition into liver tissue could be achieved by using this antenna to provide greater efficiency and localization of specific absorption rate in delivering microwave energy for hepatic ablation. Copyright © 2015 IPEM. Published by Elsevier Ltd. All rights reserved.

  5. Modeling of well drilling heating on crude oil using microwave

    NASA Astrophysics Data System (ADS)

    Muntini, Melania Suweni; Pramono, Yono Hadi; Yustiana

    2016-03-01

    As the world's oil reserves are dwindling, some researchers have been prompted to make a breakthrough to further improve the efficiency of exploration and production. One of the technologies used is heating the crude oil. This paper presents the modeling results of heat treatment on crude oil using microwave energy. Modeling is conducted by assuming that the diameter of the well is 11,16 cm, the heat source is applied on the surface of the well, and the cut-off frequency in the air and on crude oil are 1,56 GHz. and 0.91 GHz, respectively. The energy generated by the microwave radiation is converted into heat energy which is absorbed by the crude oil. Consequently, this energy increases the temperature of crude oil through a heat transfer mechanism. The results obtained showed that the temperature of crude oil is about 200°C at a depth of 62.5cm, and at a distance of 3 cm from the center of the well. Temperature along the well follows an exponential function, which is from the center of the well in the direction radially outward from the cylinder axis. It has been observed that the temperature decreases as measured from the well surface along the cylinder.

  6. Modeling of well drilling heating on crude oil using microwave

    SciTech Connect

    Muntini, Melania Suweni Pramono, Yono Hadi; Yustiana

    2016-03-11

    As the world’s oil reserves are dwindling, some researchers have been prompted to make a breakthrough to further improve the efficiency of exploration and production. One of the technologies used is heating the crude oil. This paper presents the modeling results of heat treatment on crude oil using microwave energy. Modeling is conducted by assuming that the diameter of the well is 11,16 cm, the heat source is applied on the surface of the well, and the cut-off frequency in the air and on crude oil are 1,56 GHz. and 0.91 GHz, respectively. The energy generated by the microwave radiation is converted into heat energy which is absorbed by the crude oil. Consequently, this energy increases the temperature of crude oil through a heat transfer mechanism. The results obtained showed that the temperature of crude oil is about 200°C at a depth of 62.5cm, and at a distance of 3 cm from the center of the well. Temperature along the well follows an exponential function, which is from the center of the well in the direction radially outward from the cylinder axis. It has been observed that the temperature decreases as measured from the well surface along the cylinder.

  7. Viability and antigenicity of anisakis simplex after conventional and microwave heating at fixed temperatures.

    PubMed

    Vidaček, Sanja; De Las Heras, Cristina; Solas, Maria Teresa; García, Maria Luisa; Mendizábal, Angel; Tejada, Margarita

    2011-12-01

    Inactivation of parasites in food by microwave treatment may vary due to differences in the characteristics of microwave ovens and food properties. Microwave treatment in standard domestic ovens results in hot and cold spots, and the microwaves do not penetrate all areas of the samples depending on the thickness, which makes it difficult to compare microwave with conventional heat treatments. The viability of Anisakis simplex (isolated larvae and infected fish muscle) heated in a microwave oven with precise temperature control was compared with that of larvae heated in a water bath to investigate any additional effect of the microwaves. At a given temperature, less time was required to kill the larvae by microwaves than by heated water. Microwave treatment killed A. simplex larvae faster than did conventional cooking when the microwaves fully penetrated the samples and resulted in fewer changes in the fish muscle. However, the heat-stable allergen Ani s 4 was detected by immunohistochemistry in the fish muscle after both heat treatments, even at 70°C, suggesting that Ani s 4 allergens were released from the larvae into the surrounding tissue and that the tissues retained their allergenicity even after the larvae were killed by both heat treatments. Thus, microwave cooking will not render fish safe for individuals already sensitized to A. simplex heat-resistant allergens.

  8. Microwave heating of aqueous samples on a micro-optical-electro-mechanical system

    SciTech Connect

    Beer, Neil Reginald

    2016-04-12

    Apparatus for heating a sample includes a microchip; a microchannel flow channel in the microchip, the microchannel flow channel containing the sample; a microwave source that directs microwaves onto the sample for heating the sample; a wall section of the microchannel flow channel that receives the microwaves and enables the microwaves to pass through wall section of the microchannel flow channel, the wall section the microchannel flow channel being made of a material that is not appreciably heated by the microwaves; a carrier fluid within the microchannel flow channel for moving the sample in the microchannel flow channel, the carrier fluid being made of a material that is not appreciably heated by the microwaves; wherein the microwaves pass through wall section of the microchannel flow channel and heat the sample.

  9. Microwave heating of aqueous samples on a micro-optical-electro-mechanical system

    SciTech Connect

    Beer, Neil Reginald

    2015-03-03

    Apparatus for heating a sample includes a microchip; a microchannel flow channel in the microchip, the microchannel flow channel containing the sample; a microwave source that directs microwaves onto the sample for heating the sample; a wall section of the microchannel flow channel that receives the microwaves and enables the microwaves to pass through wall section of the microchannel flow channel, the wall section the microchannel flow channel being made of a material that is not appreciably heated by the microwaves; a carrier fluid within the microchannel flow channel for moving the sample in the microchannel flow channel, the carrier fluid being made of a material that is not appreciably heated by the microwaves; wherein the microwaves pass through wall section of the microchannel flow channel and heat the sample.

  10. Experimental Evidence of Selective Heating of Molecules Adsorbed in Nanopores under Microwave Radiation

    SciTech Connect

    Jobic, H; Santander, Julian; Conner, Jr, W C; Wittaker, G; Giriat, G.; Harrison, A; Ollivier, J; Auerbach, Scott M

    2011-04-14

    We have performed in situ quasielastic neutron scattering (QENS) measurements on zeolite-guest systems under microwave irradiation, for comparison with corresponding simulations. Both experiment and simulation reveal selective heating of methanol in silicalite, but little to no heating of benzene in silicalite. Effective translational and rotational temperatures extracted from QENS data under microwave heating were found to depend on microwave power. In agreement with simulation, QENS rotational temperatures significantly exceed translational ones at high microwave power, thus providing the first microscopic proof for athermal effects in microwave-driven nanopores.

  11. Microwave thermal imaging of scanned focused ultrasound heating: animal experiments

    NASA Astrophysics Data System (ADS)

    Zhou, Tian; Meaney, Paul M.; Hoopes, P. Jack; Geimer, Shireen D.; Paulsen, Keith D.

    2011-03-01

    High intensity focused ultrasound (HIFU) uses focused ultrasound beams to ablate localized tumors noninvasively. Multiple clinical trials using HIFU treatment of liver, kidney, breast, pancreas and brain tumors have been conducted, while monitoring the temperature distribution with various imaging modalities such as MRI, CT and ultrasound. HIFU has achieved only minimal acceptance partially due to insufficient guidance from the limited temperature monitoring capability and availability. MR proton resonance frequency (PRF) shift thermometry is currently the most effective monitoring method; however, it is insensitive in temperature changes in fat, susceptible to motion artifacts, and is high cost. Exploiting the relationship between dielectric properties (i.e. permittivity and conductivity) and tissue temperature, in vivo dielectric property distributions of tissue during heating were reconstructed with our microwave tomographic imaging technology. Previous phantom studies have demonstrated sub-Celsius temperature accuracy and sub-centimeter spatial resolution in microwave thermal imaging. In this paper, initial animal experiments have been conducted to further investigate its potential. In vivo conductivity changes inside the piglet's liver due to focused ultrasound heating were observed in the microwave images with good correlation between conductivity changes and temperature.

  12. Effect of microwave-assisted heating on chalcopyrite leaching of kinetics, interface temperature and surface energy

    NASA Astrophysics Data System (ADS)

    Wen, Tong; Zhao, Yunliang; Xiao, Qihang; Ma, Qiulin; Kang, Shichang; Li, Hongqiang; Song, Shaoxian

    The microwave-assisted leaching was a new approach to intensify the copper recovery from chalcopyrite by hydrometallurgy. In this work, the effect of microwave-assisted heating on chalcopyrite leaching of kinetics, interfacial reaction temperature and surface energy were investigated. The activation energy of chalcopyrite leaching was affected indistinctively by the microwave-assisted heating (39.1 kJ/mol) compared with the conventional heating (43.9 kJ/mol). However, the boiling point of the leaching system increased through microwave-assisted heating. Because of the improved boiling point and the selective heating of microwave, the interfacial reaction temperature increased significantly, which gave rise to the increase of the leaching recovery of copper. Moreover, the surface energy of the chalcopyrite through microwave-assisted heating was also enhanced, which was beneficial to strengthen the leaching of chalcopyrite.

  13. Conductive heating and microwave hydrolysis under identical heating profiles for advanced anaerobic digestion of municipal sludge.

    PubMed

    Mehdizadeh, Seyedeh Neda; Eskicioglu, Cigdem; Bobowski, Jake; Johnson, Thomas

    2013-09-15

    Microwave (2.45 GHz, 1200 W) and conventional heating (custom pressure vessel) pretreatments were applied to dewatered municipal waste sludge (18% total solids) using identical heating profiles that span a wide range of temperatures (80-160 °C). Fourteen lab-scale semi-continuous digesters were set up to optimize the energy (methane) output and sludge retention time (SRT) requirements of untreated (control) and thermally pretreated anaerobic digesters operated under mesophilic and thermophilic temperatures. Both pretreatment methods indicated that in the pretreatment range of 80-160 °C, temperature was a statistically significant factor (p-value < 0.05) for increasing solubilization of chemical oxygen demand and biopolymers (proteins, sugars, humic acids) of the waste sludge. However, the type of pretreatment method, i.e. microwave versus conventional heating, had no statistically significant effect (p-value >0.05) on sludge solubilization. With the exception of the control digesters at a 5-d SRT, all control and pretreated digesters achieved steady state at all three SRTs, corresponding to volumetric organic loading rates of 1.74-6.96 g chemical oxygen demand/L/d. At an SRT of 5 d, both mesophilic and thermophilic controls stopped producing biogas after 20 d of operation with total volatile fatty acids concentrations exceeding 1818 mg/L at pH <5.64 for mesophilic and 2853 mg/L at pH <7.02 for thermophilic controls, while the pretreated digesters continued producing biogas. Furthermore, relative (to control) organic removal efficiencies dramatically increased as SRT was shortened from 20 to 10 and then 5 d, indicating that the control digesters were challenged as the organic loading rate was increased. Energy analysis showed that, at an elevated temperature of 160 °C, the amount of methane recovered was not enough to compensate for the energy input. Among the digesters with positive net energy productions, control and pretreated digesters at 80 °C were more

  14. Thawing of Frozen Dressed Tuna by Microwave Heating

    NASA Astrophysics Data System (ADS)

    Tanaka, Takeo; Nagasaki, Tasuku; Takahashi, Kenji

    Large sized frozen yellowfin tuna and southern bluefin tuna in dressed form (decapitated and gutted) were thawed by microwave (915 MHz) irradiation. Temperature rise of the tuna during thawing was measured. Quality of the tuna meat before and after thawing was compared with each other using objective quality index such as degree of discoloration (met-myoglobin ratio), freshness (K1 value) and taste cornponent (K2 value). Results are as follows : (1) Both frozen tunas were thawed fairly well within as short time as 30 min without any partial over heating. (2) No changes in met-myoglobin ratio, K1 and K2 values were observed in the cases of yellow fin tuna. Slight discoloration, however, occurred in southern bluefin tuna meat during microwave thawing. This problem has been left unsolved.

  15. Microwave optimization of mucilage extraction from Opuntia ficus indica Cladodes.

    PubMed

    Felkai-Haddache, Lamia; Dahmoune, Farid; Remini, Hocine; Lefsih, Khalef; Mouni, Lotfi; Madani, Khodir

    2016-03-01

    In this study, microwave-assisted extraction (MAE) of polysaccharides from Opuntia ficus indica Cladodes were investigated using response surface methodology (RSM). The effects of three extraction factors on the yield of mucilage were examined. The results indicated that the optimum extraction conditions were determined as follows: microwave power X1, 700 W; extraction time X2, 5.15 minand ratio water/raw material X3, 4.83 mL/g at fixed pH 11. Under these optimal extraction conditions, mucilage yield was found to be Y, 25.6%. A comparison between the model results and experimental data gave a high correlation coefficient (R(2)=0.88), adjusted coefficient (Radj=0.83) and low root mean square error (RMSE=2.45) and showed that the two models were able to predict a mucilage yield by green extraction microwave process. Copyright © 2015 Elsevier B.V. All rights reserved.

  16. Mechanism for microwave heating of 1-(4'-cyanophenyl)-4-propylcyclohexane characterized by in situ microwave irradiation NMR spectroscopy.

    PubMed

    Tasei, Yugo; Yamakami, Takuya; Kawamura, Izuru; Fujito, Teruaki; Ushida, Kiminori; Sato, Motoyasu; Naito, Akira

    2015-05-01

    Microwave heating is widely used to accelerate organic reactions and enhance the activity of enzymes. However, the detailed molecular mechanism for the effect of microwave on chemical reactions is not yet fully understood. To investigate the effects of microwave heating on organic compounds, we have developed an in situ microwave irradiation NMR spectroscopy. (1)H NMR spectra of 1-(4'-cyanophenyl)-4-propylcyclohexane (PCH3) in the liquid crystalline and isotropic phases were observed under microwave irradiation. When the temperature was regulated at slightly higher than the phase transition temperature (Tc=45 °C) under a gas flow temperature control system, liquid crystalline phase mostly changed to the isotropic phase. Under microwave irradiation and with the gas flow temperature maintained at 20 °C, which is 25 °C below the Tc, the isotropic phase appeared stationary as an approximately 2% fraction in the liquid crystalline phase. The temperature of the liquid crystalline state was estimated to be 38 °C according to the line width, which is at least 7 °C lower than the Tc. The temperature of this isotropic phase should be higher than 45 °C, which is considered to be a non-equilibrium local heating state induced by microwave irradiation. Microwaves at a power of 195 W were irradiated to the isotropic phase of PCH3 at 50 °C and after 2 min, the temperature reached 220 °C. The temperature of PCH3 under microwave irradiation was estimated by measurement of the chemical shift changes of individual protons in the molecule. These results demonstrate that microwave heating generates very high temperature within a short time using an in situ microwave irradiation NMR spectrometer.

  17. Microwave heating behavior and microwave absorption properties of barium titanate at high temperatures

    NASA Astrophysics Data System (ADS)

    Kashimura, K.; Sugawara, H.; Hayashi, M.; Mitani, T.; Shinohara, N.

    2016-06-01

    The temperature dependence of the microwave absorption behavior of BaTiO3 particles was investigated over various frequencies and temperatures of 25-1000 ∘C. First, using both the coaxial transmission line method and the cavity perturbation method by a network analyzer, the real and imaginary parts of the relative permittivity of BaTiO3 ( ɛr ' and ɛr ″ , respectively) were measured, in order to improve the reliability of the data obtained at 2.45 GHz. The imaginary parts of the relative permittivity as measured by the two methods were explored by their heating behaviors. Furthermore, the temperature dependence of the microwave absorption behavior of BaTiO3 particles was investigated for frequencies of 2.0-13.5 GHz and temperatures of 25-1000 ∘C using the coaxial transmission line method.

  18. Heat Sink Design and Optimization

    DTIC Science & Technology

    2015-12-01

    obtained using equation 2, the convective heat transfer coefficient for the U-channels can be calculated by...6) Radiation The procedure for calculating the radiative heat transfer coefficient for the U-channels...public release; distribution is unlimited. UNCLASSIFIED 7 The convective heat transfer coefficient for the vertical fins is defined as

  19. Microwave sensing and heating of individual droplets in microfluidic devices.

    PubMed

    Boybay, Muhammed S; Jiao, Austin; Glawdel, Tomasz; Ren, Carolyn L

    2013-10-07

    Droplet-based microfluidics is an emerging high-throughput screening technology finding applications in a variety of areas such as life science research, drug discovery and material synthesis. In this paper we present a cost-effective, scalable microwave system that can be integrated with microfluidic devices enabling remote, simultaneous sensing and heating of individual nanoliter-sized droplets generated in microchannels. The key component of this microwave system is an electrically small resonator that is able to distinguish between materials with different electrical properties (i.e. permittivity, conductivity). The change in these properties causes a shift in the operating frequency of the resonator, which can be used for sensing purposes. Alternatively, if microwave power is delivered to the sensing region at the frequency associated with a particular material (i.e. droplet), then only this material receives the power while passing the resonator leaving the surrounding materials (i.e. carrier fluid and chip material) unaffected. Therefore this method allows sensing and heating of individual droplets to be inherently synchronized, eliminating the need for external triggers. We confirmed the performance of the sensor by applying it to differentiate between various dairy fluids, identify salt solutions and detect water droplets with different glycerol concentrations. We experimentally verified that this system can increase the droplet temperature from room temperature by 42 °C within 5.62 ms with an input power of 27 dBm. Finally we employed this system to thermally initiate the formation of hydrogel particles out of the droplets that are being heated by this system.

  20. Behavioral observations and operant procedures using microwaves as a heat source for young chicks

    SciTech Connect

    Morrison, W.D.; McMillan, I.; Bate, L.A.; Otten, L.; Pei, D.C.

    1986-08-01

    Four trials, using operant conditioning procedures, were conducted to study the response of chicks, housed at 16 C, to microwave or infrared heat. Microwave power density was 26 mW/cm2 in Trial 1, 13 mW/cm2 in Trial 2, and 10 mW/cm2 in Trials 3 and 4. Chicks voluntarily demanded between 28 and 63% as much heat (min heat/hr) from microwave source as from infrared source at all power densities. There was no correlation, however, between the ratio of heat demanded and the power density used. There were no significant differences in growth between infrared- or microwave-heated chicks. It is evident from these studies that 8-day-old broiler chicks are capable of associating the performance of a task with a thermal reward provided by the microwaves. They are also able to utilize these microwaves through operant conditioning without any visible detrimental effect to their health or behavior.

  1. Multichannel infrared fiber optic radiometer for controlled microwave heating

    NASA Astrophysics Data System (ADS)

    Drizlikh, S.; Zur, Albert; Katzir, Abraham

    1990-07-01

    An infrared fiberoptic multichannel radiometer was used for monitoring and controlling the temperature of samples in a microwave heating system. The temperature of water samples was maintained at about 40 °C, with a standard deviation of +/- 0.2°C and a maximum deviation of +/- 0.5°C. The temperature was monitored on the same time at several points on the surface and inside the sample. This novel controlled system is reliable and precise. Such system would be very useful for medical applications such as hypothermia and hyperthermi a.

  2. Microwave heating and joining of ceramic cylinders: A mathematical model

    NASA Technical Reports Server (NTRS)

    Booty, Michael R.; Kriegsmann, Gregory A.

    1994-01-01

    A thin cylindrical ceramic sample is placed in a single mode microwave applicator in such a way that the electric field strength is allowed to vary along its axis. The sample can either be a single rod or two rods butted together. We present a simple mathematical model which describes the microwave heating process. It is built on the assumption that the Biot number of the material is small, and that the electric field is known and uniform throughout the cylinder's cross-section. The model takes the form of a nonlinear parabolic equation of reaction-diffusion type, with a spatially varying reaction term that corresponds to the spatial variation of the electromagnetic field strength in the waveguide. The equation is analyzed and a solution is found which develops a hot spot near the center of the cylindrical sample and which then propagates outwards until it stabilizes. The propagation and stabilization phenomenon concentrates the microwave energy in a localized region about the center where elevated temperatures may be desirable.

  3. Optimization of the imaging response of scanning microwave microscopy measurements

    SciTech Connect

    Sardi, G. M.; Lucibello, A.; Proietti, E.; Marcelli, R.; Kasper, M.; Gramse, G.; Kienberger, F.

    2015-07-20

    In this work, we present the analytical modeling and preliminary experimental results for the choice of the optimal frequencies when performing amplitude and phase measurements with a scanning microwave microscope. In particular, the analysis is related to the reflection mode operation of the instrument, i.e., the acquisition of the complex reflection coefficient data, usually referred as S{sub 11}. The studied configuration is composed of an atomic force microscope with a microwave matched nanometric cantilever probe tip, connected by a λ/2 coaxial cable resonator to a vector network analyzer. The set-up is provided by Keysight Technologies. As a peculiar result, the optimal frequencies, where the maximum sensitivity is achieved, are different for the amplitude and for the phase signals. The analysis is focused on measurements of dielectric samples, like semiconductor devices, textile pieces, and biological specimens.

  4. Microwave heat treatment of natural ruby and its characterization

    NASA Astrophysics Data System (ADS)

    Swain, S.; Pradhan, S. K.; Jeevitha, M.; Acharya, P.; Debata, M.; Dash, T.; Nayak, B. B.; Mishra, B. K.

    2016-03-01

    Natural ruby (in the form of gemstone) collected from Odisha has been heat-treated by microwave (MW). A 3-kW industrial MW furnace with SiC susceptors was used for the heat treatment. The ruby samples showed noticeable improvements (qualitative), may be attributed to account for the improvement in clarity and lustre. Optical absorption in 200-800 nm range and photoluminescence peak at 693 nm (with 400 nm λ ex) clearly show that subtle changes do take place in the ruby after the heat treatment. Further, inorganic compound phases and valence states of elements (impurities) in the ruby were studied by X-ray diffraction, micro-Raman spectroscopy, and X-ray photoelectron spectroscopy (XPS). The valence states of the main impurities such as Cr, Fe, and Ti, in the untreated and MW heat-treated ruby, as revealed from XPS, have been discussed in depth. The overall results demonstrate for the first time the effect of fast heating like MW on the microstructural properties of the gemstone and various oxidation states of impurity elements in the natural ruby.

  5. Influence of microwave heating on biogas production from Sida hermaphrodita silage.

    PubMed

    Zieliński, Marcin; Dębowski, Marcin; Rusanowska, Paulina

    2017-09-01

    This study compared the effects on biogas production of suspended sludge versus a combination of suspended sludge and immobilized biomass, and microwave versus convection heating. Biogas production was the highest in the hybrid bioreactor heated by microwaves (385L/kg VS) and also the most stable, as shown by the FOS/TAC ratio and pH. Regardless of the type of heating, biogas production was 8% higher with immobilized biomass than without. Although the lag phase of biogas production was shorter with microwave heating than without, the log phase was longer, and biogas production in the microwave heated bioreactors took about twice as long (ca. 40days) to plateau as in the conventionally heated bioreactors. These differences in the profile of biogas production are likely due to the athermal effects of microwave irradiation. Copyright © 2017 Elsevier Ltd. All rights reserved.

  6. Method for heat treating and sintering metal oxides with microwave radiation

    DOEpatents

    Holcombe, Cressie E.; Dykes, Norman L.; Meek, Thomas T.

    1989-01-01

    A method for microwave sintering materials, primarily metal oxides, is described. Metal oxides do not normally absorb microwave radiation at temperatures ranging from about room temperature to several hundred degrees centrigrade are sintered with microwave radiation without the use of the heretofore required sintering aids. This sintering is achieved by enclosing a compact of the oxide material in a housing or capsule formed of a oxide which has microwave coupling properties at room temprature up to at least the microwave coupling temperature of the oxide material forming the compact. The heating of the housing effects the initial heating of the oxide material forming the compact by heat transference and then functions as a thermal insulator for the encased oxide material after the oxide material reaches a sufficient temperature to adequately absorb or couple with microwave radiation for heating thereof to sintering temperature.

  7. Determining the effects of microwave heating on the ordered structures of rice starch by NMR.

    PubMed

    Fan, Daming; Ma, Wenrui; Wang, Liyun; Huang, Jianlian; Zhang, Fengmin; Zhao, Jianxin; Zhang, Hao; Chen, Wei

    2013-02-15

    The effects of microwave heating on the double helices, single helix and amorphous structures and the relative crystallinity of rice starch were studied by (13)C CP/MAS NMR method, with rapid heating in an oil bath and conventional slow heating as controls. The results indicated that compared with rapid heating, microwave heating did not significantly change the ordered and disordered structures. All of the heating methods exhibited similar content changes to the double helices, V-type single helix and amorphous structures with rising temperature. The rapid heating effects caused by microwave and oil bath accelerated the destruction of the V-type single helix in the starch granules. The electromagnetic effect of microwave heating did not affect the decrease of the double helices or the amorphous content of the starch.

  8. Coupled field analysis of heat flow in the near field of a microwave applicator for tumor ablation.

    PubMed

    Hardie, Donald; Sangster, Alan J; Cronin, Nigel J

    2006-01-01

    Microwave tumor ablation (MTA) offers a new approach for the treatment of hepatic neoplastic disease. Reliable and accurate information regarding the heat distribution inside biological tissue subjected to microwave thermal ablation is important for the efficient design of microwave applicators and for optimizing experiments, which aim to assess the effects of therapeutic treatments. Currently there are a variety of computational methods based on different vascular structures in tissue, which aim to model heat distribution during ablation. This paper presents results obtained from two such computational models for temperature distributions produced by a clinical 2.45 GHz MTA applicator immersed in unperfused ex vivo bovine liver, and compares them with measured results from a corresponding ex vivo experiment. The computational methods used to model the temperature distribution in tissue caused by the insertion of a 5.6 mm diameter "wandlike" microwave applicator are the Green's function method and the finite element method (FEM), both of which provide solutions of the heat diffusion partial differential equation. The results obtained from the coupled field simulations are shown to be in good agreement with a simplified analysis based on the bio-heat equation and with ex vivo measurements of the heat distribution produced by the clinical MTA applicator.

  9. Modification of bactericidal effects of microwave heating and hyperthermia by hydrogen peroxide.

    PubMed

    Kuchma, T

    1997-01-01

    Two different approaches for studying of bactericidal effects of microwave heating and hyperthermia were introduced. Low concentration of hydrogen peroxide (0.05%) was used to modify the sensitivity of isogenous strains of Escherichia coli K-12 to microwave heating and hyperthermia with the following assessment of their combined action. This was carried out simulataneously and successively under equal conditions of temperature rise at 50 degrees C. A method of anomalous viscosity time dependencies (AVTD) was used for measurement of the changes in genome conformational state simultaneously with bacterial survival determination. Experiments were performed to study isolated effects of hyperthermia and microwave heating over a range of temperatures from 40 to 80 degrees C and hydrogen peroxide concentrations from 0.05 to 0.3% during 10-minute exposures and their combined action. No difference was found between isolated effects of microwave heating and hyperthermia when survival of E. coli AB 1157 cells was determined. It was shown by the AVTD method that microwave heating at a temperature increase of 6 degrees C per second caused greater damage to cell genome than hyperthermia. The synergistic interaction of microwave heating and low concentrations of hydrogen peroxide was found in simulataneous and successive exposures. The essential distinctions observed in recognition of the action of microwave heating and hyperthermia combined with hydrogen peroxide in various sequences on cellular and molecular levels were attributed to the different effects of microwave and conventional heating on the systems of DNA repair.

  10. 21 CFR 179.30 - Radiofrequency radiation for the heating of food, including microwave frequencies.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 3 2014-04-01 2014-04-01 false Radiofrequency radiation for the heating of food... FOOD Radiation and Radiation Sources § 179.30 Radiofrequency radiation for the heating of food, including microwave frequencies. Radiofrequency radiation, including microwave frequencies, may be safely...

  11. The Study of New Technology of Tempered Glass--Using Microwave Heating Method

    NASA Astrophysics Data System (ADS)

    Sun, Wan-Xiao; Wang, Li-Zhong; Zhong, Pei-Ze; Liu, Quan-Wei

    2016-05-01

    Effective heating method is one of the critical technologies to influence the quality of tempered glass. The three dimensional thermal-structural tempering of glass has been simulated by using ANSYS software. The temperature and stress distribution of tempered glass using microwave heating method has been compared with distribution using traditional infrared radiation heating method. Considering the efficiency and effect of heating, and the routine of increasing heat transfer coefficient to enhance strength of tempered glass in practical, a more effective heating method -microwave heating has been introduced.

  12. Comparative numerical study on the optimal vulcanization of rubber compounds through traditional curing and microwaves

    NASA Astrophysics Data System (ADS)

    Milani, Gabriele; Milani, Federico

    2012-12-01

    The main problem in the industrial production process of thick EPM/EPDM elements is constituted by the different temperatures which undergo internal (cooler) and external regions. Indeed, while internal layers remain essentially under-vulcanized, external coating is always over-vulcanized, resulting in an overall average tensile strength insufficient to permit the utilization of the items in several applications where it is required a certain level of performance. Possible ways to improve rubber output mechanical properties include a careful calibration of exposition time and curing temperature in traditional heating or a vulcanization through innovative techniques, such as microwaves. In the present paper, a comprehensive numerical model able to give predictions on the optimized final mechanical properties of vulcanized 2D and 3D thick rubber items is presented and applied to a meaningful example of engineering interest. A detailed comparative numerical study is finally presented in order to establish pros and cons of traditional vulcanization vs microwaves curing.

  13. Some aspects of optimization of an invasive microwave antenna for local hyperthermia treatment of cancer.

    PubMed

    de Sieyes, D C; Douple, E B; Strohbehn, J W; Trembly, B S

    1981-01-01

    Hyperthermia has emerged as a promising alternative or adjunct to other forms of cancer therapy. In order to utilize hyperthermia in very localized volumes immersed in regions of vital normal tissue, an invasive microwave coaxial monopole antenna has been developed. An experimental approach has been taken to characterize and optimize the electromagnetic properties and heating capabilities of bare and insulated antennas imbedded in tissue equivalent phantoms and dog brain. Four methods have been used to visualize the thermal profiles of the microwave probes: the liquid crystal technique, the gelatin technique, and the direct measurement of temperature with thermistor probes in phantom and dog brain. Among the parameters studied are: antenna impedance, insertion depth, antenna insulation (dielectric constant and thickness), shaft insulation, and frequency.

  14. 24 GHz microwave mode converter optimized for superconducting ECR ion source SECRAL

    SciTech Connect

    Guo, J. W.; Sun, L.; Zhang, X. Z.; Lu, W.; Zhang, W. H.; Feng, Y. C.; Zhao, H. W.; Niu, X. J.

    2016-02-15

    Over-sized round waveguide with a diameter about Ø33.0 mm excited in the TE{sub 01} mode has been widely adopted for microwave transmission and coupling to the ECR (Electron Cyclotron Resonance) plasma with the superconducting ECR ion sources operating at 24 or 28 GHz, such as SECRAL and VENUS. In order to study the impact of different microwave modes on ECRH (Electron Cyclotron Resonance Heating) efficiency and especially the production of highly charged ions, a set of compact and efficient TE{sub 01}-HE{sub 11} mode conversion and coupling system applicable to 24 GHz SECRAL whose overall length is 330 mm has been designed, fabricated and tested. Good agreements between off-line tests and calculation results have been achieved, which indicates the TE{sub 01}-HE{sub 11} converter meets the application design. The detailed results of the optimized coupling system will be presented in the paper.

  15. 24 GHz microwave mode converter optimized for superconducting ECR ion source SECRAL.

    PubMed

    Guo, J W; Sun, L; Niu, X J; Zhang, X Z; Lu, W; Zhang, W H; Feng, Y C; Zhao, H W

    2016-02-01

    Over-sized round waveguide with a diameter about Ø33.0 mm excited in the TE01 mode has been widely adopted for microwave transmission and coupling to the ECR (Electron Cyclotron Resonance) plasma with the superconducting ECR ion sources operating at 24 or 28 GHz, such as SECRAL and VENUS. In order to study the impact of different microwave modes on ECRH (Electron Cyclotron Resonance Heating) efficiency and especially the production of highly charged ions, a set of compact and efficient TE01-HE11 mode conversion and coupling system applicable to 24 GHz SECRAL whose overall length is 330 mm has been designed, fabricated and tested. Good agreements between off-line tests and calculation results have been achieved, which indicates the TE01-HE11 converter meets the application design. The detailed results of the optimized coupling system will be presented in the paper.

  16. Migration of DEHP from plastic to food simulants under microwave heating

    NASA Astrophysics Data System (ADS)

    Zhu, X.; Li, F.; Qiu, Z. Z.; Huang, J. W.

    2017-05-01

    The migration of plasticizer DEHP from the plastic products (4 kinds of commonly used plastic food containers under microwave heating: plastic wrap, food bags, ordinary plastic boxes, microwave special plastic boxes) through food contact materials to food simulants (isooctane, 10% ethanol-water solution (v/v), 3% acetic acid-water solution (w/w) and distilled water) was studied under microwave heating (power levels of 400 W). The results shows that the DEHP mobility increases with the increase of microwave heating time, DEHP mobility in isooctane and 3% acetic acid-water solution (w/w) is significantly greater than in 10% ethanol-water solution (v/v) and distilled water; the order of DEHP mobility in isooctane is plastic wrap>food bag>common plastic box>microwave-safe plastic box, while in 3% acetic acid (w/w), the order is food bag>common plastic box>microwave-safe plastic box>plastic wrap.

  17. Microwave design and analysis of a micromachined self-heating power sensor based on matching thermocouples

    NASA Astrophysics Data System (ADS)

    Zhang, Zhiqiang; Liao, Xiaoping

    2017-08-01

    Microwave performance is a basic index of the sensors used at microwave frequencies, but also affects the sensing output. For the purpose of low-loss microwave applications, it is important for different microwave sensors to develop microwave design. This paper presents the microwave design and analysis of a micromachined self-heating microwave power sensor in the GaAs MMIC process, where the microwave power is dissipated and converted into output thermovoltages by two matching thermocouples. A dc-blocking capacitor is connected to the thermocouples in series and used to avoid the output short-circuit. In order to characterize the microwave performance, an S-parameter model of this self-heating power sensor is established. Using the model, the effects of the capacitor and the thermocouples on the reflection loss are investigated under different microwave frequencies. To demonstrate the validity of the microwave model, the microwave performance of the self-heating sensor is simulated using an electromagnetic software. In the simulation, the relationship between the substrate membrane underneath the thermocouples and the reflection loss is analyzed. Measured reflection losses of the self-heating sensor are between  -15.5 to  -15.9 dB at 8-12 GHz. The measured results show good agreement with the microwave model and simulation, and the source of small deviations is discussed. The proposed microwave design and analysis contributes to achieving low reflection loss for the sensor, with the fact that more power is used to convert into the thermovoltages.

  18. Oil extraction from Scenedesmus obliquus using a continuous microwave system--design, optimization, and quality characterization.

    PubMed

    Balasubramanian, Sundar; Allen, James D; Kanitkar, Akanksha; Boldor, Dorin

    2011-02-01

    A 1.2 kW, 2450 MHz resonant continuous microwave processing system was designed and optimized for oil extraction from green algae (Scenedesmus obliquus). Algae-water suspension (1:1 w/w) was heated to 80 and 95°C, and subjected to extraction for up to 30 min. Maximum oil yield was achieved at 95°C and 30 min. The microwave system extracted 76-77% of total recoverable oil at 20-30 min and 95°C, compared to only 43-47% for water bath control. Extraction time and temperature had significant influence (p<0.0001) on extraction yield. Oil analysis indicated that microwaves extracted oil containing higher percentages of unsaturated and essential fatty acids (indicating higher quality). This study validates for the first time the efficiency of a continuous microwave system for extraction of lipids from algae. Higher oil yields, faster extraction rates and superior oil quality demonstrate this system's feasibility for oil extraction from a variety of feedstock.

  19. Microstructural and mechanical properties of camel longissimus dorsi muscle during roasting, braising and microwave heating.

    PubMed

    Yarmand, M S; Nikmaram, P; Djomeh, Z Emam; Homayouni, A

    2013-10-01

    This study was conducted to investigate the effects of various heating methods, including roasting, braising and microwave heating, on mechanical properties and microstructure of longissimus dorsi (LD) muscle of the camel. Shear value and compression force increased during microwave heating more than roasting and braising. Results obtained from scanning electron microscopy (SEM) showed more damage from roasting than in either braising or microwave heating. Granulation and fragmentation were clear in muscle fibers after roasting. The perimysium membrane of connective tissue was damaged during braising, while roasting left the perimysium membrane largely intact. The mechanical properties and microstructure of muscle can be affected by changes in water content during cooking.

  20. A comparison of microwave versus direct solar heating for lunar brick production

    NASA Technical Reports Server (NTRS)

    Yankee, S. J.; Strenski, D. G.; Pletka, B. J.; Patil, D. S.; Mutsuddy, B. C.

    1990-01-01

    Two processing techniques considered suitable for producing bricks from lunar regolith are examined: direct solar heating and microwave heating. An analysis was performed to compare the two processes in terms of the amount of power and time required to fabricate bricks of various sizes. Microwave heating was shown to be significantly faster than solar heating for rapid production of realistic-size bricks. However, the relative simplicity of the solar collector(s) used for the solar furnace compared to the equipment necessary for microwave generation may present an economic tradeoff.

  1. Observation of localized heating phenomena during microwave heating of mixed powders using in situ x-ray diffraction technique

    SciTech Connect

    Sabelström, N. Hayashi, M.; Watanabe, T.; Nagata, K.

    2014-10-28

    In materials processing research using microwave heating, there have been several observations of various phenomena occurring known as microwave effects. One significant example of such a phenomenon is increased reaction kinetics. It is believed that there is a possibility that this might be caused by localized heating, were some reactants would attain a higher than apparent temperature. To examine whether such thermal gradients are indeed possible, mixed powders of two microwave non-absorbers, alumina and magnesia, were mixed with graphite, a known absorber, and heated in a microwave furnace. During microwave irradiation, the local temperatures of the respective sample constituents were measured using an in situ x-ray diffraction technique. In the case of the alumina and graphite sample, a temperature difference of around 100 °C could be observed.

  2. Validation of measured microwave absorption and temperature change for development of a single-mode-type microwave heating thermogravimetry apparatus

    NASA Astrophysics Data System (ADS)

    Karisma, Achmad Dwitama; Hamaba, Taishu; Fukasawa, Tomonori; Huang, An-Ni; Segawa, Tomoomi; Fukui, Kunihiro

    2017-02-01

    The temperature distribution, microwave absorption efficiency, and dielectric properties of a copper (ii) oxide (CuO) pellet heated by microwave irradiation were investigated for use in developing a single-mode-type microwave heating thermogravimetry apparatus. The validity of the apparatus was confirmed by comparing the measured data with the results of numerical simulations. The dielectric properties and error margins of other parameters estimated using the apparatus were also examined. The temperature distribution of the CuO pellet was observed to decrease monotonously on moving from the outlet to the inlet side of the apparatus. A three-dimensional numerical simulation of the electromagnetic field accurately reproduced this temperature distribution, suggesting the one-way movement of microwaves in the single-mode-type microwave apparatus. The numerically determined dependency of the CuO absorption efficiency was also found to be in very good agreement with published data. The same was the case with the permittivity loss of the CuO at various temperatures, as estimated from the measured microwave absorption efficiency. However, a larger error was observed in the estimation of the permittivity loss of a material with a lower microwave absorption efficiency, which was apparently due to the measurement error of the absorption efficiency of such a material.

  3. Electron Heating in Microwave-Assisted Helicon Plasmas

    NASA Astrophysics Data System (ADS)

    McKee, John; Siddiqui, Umair; Jemiolo, Andrew; McIlvain, Julianne; Scime, Earl

    2016-10-01

    The use of two (or more) rf sources at different frequencies is a common technique in the plasma processing industry to control ion energy characteristics separately from plasma generation. A similar approach is presented here with the focus on modifying the electron population in argon and helium plasmas. The plasma is generated by a helicon source at a frequency f 0 = 13.56 MHz. Mcrowaves of frequency f 1 = 2.45 GHz are then injected into the helicon source chamber perpendicular to the background magnetic field. The microwaves damp on the electrons via X-mode Electron Cyclotron Heating (ECH) at the upper hybrid resonance, providing additional energy input into the electrons. The effects of this secondary-source heating on electron density, temperature, and energy distribution function are examined and compared to helicon-only single source plasmas as well as numeric models suggesting that the heating is not evenly distributed but spatially localized. Optical Emission Spectroscopy (OES) is used to examine the impact of the energetic tail of the electron distribution on ion and neutral species via collisional excitation. Large enhancements of neutral spectral lines are observed with little to no enhancement of ion lines.

  4. Microwave heating: Industrial applications. (Latest citations from the NTIS bibliographic database). Published Search

    SciTech Connect

    1995-12-01

    The bibliography contains citations concerning industrial uses and design of microwave heating equipment. Included are heating and drying of paper, industrial process heat, vulcanization, textile processing, metallurgical heat for sintering and ceramic manufacturing, food processing, and curing of polymers.(Contains 50-250 citations and includes a subject term index and title list.) (Copyright NERAC, Inc. 1995)

  5. Microwave-specific heating of crystalline species in nuclear waste glass

    DOE PAGES

    Christian, Jonathan H.; Fox, Kevin M.; Washington, Aaron L.

    2016-08-03

    Here, the microwave heating of a crystal-free and a partially trevorite-crystallized nuclear waste glass simulant was evaluated. Our results show that a 500-mg monolith of partially crystallized waste glass can be heated from room temperature to above 1600°C within 2 min using a single-mode, highly focused, 2.45 GHz microwave, operating at 300 W. Using X-ray diffraction measurements, we show that trevorite is no longer detectable after irradiation and thermal quenching. When a crystal-free analog of the same waste glass simulant composition was exposed to the same microwave radiation, it could not be heated above 450°C regardless of the heating time.more » The reduction in crystalline content achieved by selectively heating spinels in the presence of glass suggests that microwave-specific heating should be further explored as a technique for remediating crystal accumulation in a glass melt.« less

  6. Microwave-specific heating of crystalline species in nuclear waste glass

    SciTech Connect

    Christian, Jonathan H.; Fox, Kevin M.; Washington, Aaron L.

    2016-08-03

    Here, the microwave heating of a crystal-free and a partially trevorite-crystallized nuclear waste glass simulant was evaluated. Our results show that a 500-mg monolith of partially crystallized waste glass can be heated from room temperature to above 1600°C within 2 min using a single-mode, highly focused, 2.45 GHz microwave, operating at 300 W. Using X-ray diffraction measurements, we show that trevorite is no longer detectable after irradiation and thermal quenching. When a crystal-free analog of the same waste glass simulant composition was exposed to the same microwave radiation, it could not be heated above 450°C regardless of the heating time. The reduction in crystalline content achieved by selectively heating spinels in the presence of glass suggests that microwave-specific heating should be further explored as a technique for remediating crystal accumulation in a glass melt.

  7. Infrared fiber optic temperature monitoring of biological tissues heated in a microwave oven

    NASA Astrophysics Data System (ADS)

    Belotserkovsky, Edward; Ashkenasy, Y.; Shenfeld, Ofer; Drizlikh, S.; Zur, Albert; Katzir, Abraham

    1993-05-01

    The heating of tissue by microwave radiation has attained a place of importance in various medical fields such as the treatment of malignancies, urinary retention and hypothermia. Accurate temperature measurements in these treated tissues is important for treatment planning and for the control of the heating process. It is also important to be able to measure spacial temperature distribution in the tissues because they are heated in a non uniform way by the microwave radiation. Fiber optic radiometry makes possible accurate temperature measurement in the presence of microwave radiation and does not require contact with the tissue. Using a IR silver halide fiber optic radiometric temperature sensor we obtained accurate temperature measurements of tissues heated by microwave, enabling us to control the heating process in all regions of the tissue. We also performed temperature mapping of the heated tissues and demonstrated the non-uniform temperature distributions in them.

  8. Geometry for web microwave heating or drying to a desired profile in a waveguide

    DOEpatents

    Habeger, Jr., Charles C.; Patterson, Timothy F.; Ahrens, Frederick W.

    2005-11-15

    A microwave heater and/or dryer has a nonlinear or curvilinear relative slot profile geometry. In one embodiment, the microwave dryer has at least one adjustable field modifier making it possible to change the geometry of the heater or dryer when drying different webs. In another embodiment, the microwave dryer provides more uniform drying of a web when the field modifier is adjusted in response to a sensed condition of the web. Finally, a method of microwave heating and/or drying a web achieves a uniform heating and/or drying profile.

  9. Silicon heating by a microwave-drill applicator with optical thermometry

    NASA Astrophysics Data System (ADS)

    Herskowits, R.; Livshits, P.; Stepanov, S.; Aktushev, O.; Ruschin, S.; Jerby, E.

    2007-08-01

    This paper presents a method for heating silicon wafers locally by open-end coaxial microwave applicators, with optical techniques employed for measuring the temperature. Silicon samples of ~2 × 2 cm2 area were radiated in air atmosphere by a microwave drill operating at 2.45 GHz in the range of 20-450 W. The rate of temperature variation was measured by the Fabry-Pérot etalon effect in samples illuminated by InGaAs lasers. The steady-state temperatures were measured by the changes in the absorption index of an InGaAs laser beam. The experimental results indicate heating rates of ~150 K s-1 and a temperature range of 300-900 K across the silicon sample during the microwave heating process. Further operation of the microwave drill caused local melting of the silicon samples. This paper presents the experimental setup and results, as well as numerical simulations of the microwave heating process.

  10. Adjustments in metabolic heat production by squirrel monkeys exposed to microwaves

    SciTech Connect

    Adair, E.R.; Adams, B.W.

    1982-04-01

    The basic fact that microwave exposure can lower metabolic heat production has been previously demonstrated for the mouse by Ho and Edwards (1977) and for the rat by Phillips et al. (1975). The general conclusion drawn from both studies was that the metabolic reduction produced by microwave exposure was dose dependent. The present study extends the investigation into the effects of microwave exposure on metabolic heat production to a primate, the squirrel monkey. When squirrel monkeys are restrained in cool environments, body temperature is regulated by an increase in metabolic heat production. The results of the current study demonstrate that either brief or prolonged whole-body exposure to a microwave field will cause a reduction of this elevated heat production by an amount directly related to the microwave energy absorbed.

  11. Synthesis of silicon carbide nanowhiskers by microwave heating: effect of heating duration

    NASA Astrophysics Data System (ADS)

    Kahar, S. M.; Voon, C. H.; Lee, C. C.; Gopinath, S. C. B.; Arshad, M. K. Md; Lim, B. Y.; Foo, K. L.; Hashim, U.

    2017-01-01

    SiC nanowhiskers (SiCNWs), due to their unique properties such as high thermal stability, high strength, high thermal conductivity and large band gap, lead to a wide range of applications. In this article, synthesis of SiCNWs was performed by using microwave heating. Silica and graphite in the ratio of 1:3 were mixed in an ultrasonic bath, dried on a hotplate and cold pressed uniaxially into a pellet die. The pellets were heated by using a laboratory microwave furnace to 1400 °C with a heating rate of 20 °C min-1 and heated for 20, 40 and 60 min. Characterizations of the as synthesized SiCNWs were done to study the effect of heating duration on the morphology and properties of SiCNWs. A time of 40 min was found to be the most ideal heating duration for the synthesis of SiCNWs. β-SiC appeared as the only phase in the x-ray diffraction pattern for SiCNWs formed by using 40 and 60 min of heating duration with no traces of unreacted silica and graphite. Field emission scanning electron microscopy imaging confirmed that no trace of graphite or silica was present in SiCNWs synthesized by a heating duration of 40 and 60 min. Energy dispersive x-ray spectroscopy analysis revealed that only elemental C and Si were present for SiCNWs synthesized at 40 and 60 min. Meanwhile, photoluminescence spectroscopy indicated the presence of single phase β-SiC peak at 440 nm was associated with band gap of 2.8 eV. Absorption bands of Si-C bond were detected at 802.4 cm-1 in the spectra of fourier transform infrared analysis. SiCNWs produced by heating at 40 and 60 min have high thermal stability with weight loss lower than 6%. A simple process that involved two steps of ultrasonic mixing and microwave heating of graphite and SiO2 is proposed as a new route for the synthesis of SiCNWs.

  12. A comparison of direct heating during radiofrequency and microwave ablation in ex vivo liver

    PubMed Central

    Andreano, Anita; Brace, Christopher L

    2012-01-01

    Purpose To determine the magnitude and spatial distribution of temperature elevations when using 480 kHz RF and 2.45 GHz microwave energy in ex vivo liver models. Materials and Methods A total of sixty heating cycles (20 s at 90 W) were performed in normal, RF ablated and microwave ablated liver tissues (n=10 RF and n=10 microwave in each tissue type). Heating cycles were performed using a 480 kHz generator and 3 cm cooled-tip electrode (RF) or a 2.45 GHz generator and 14-gauge monopole (microwave) and designed to isolate direct heating from each energy type. Tissue temperatures were measured using fiberoptic thermosensors 5, 10 and 15 mm radially from the ablation applicator at the depth of maximal heating. Power delivered, sensor location, heating rates and maximal temperatures were compared using mixed effects regression models. Results No significant differences were noted in mean power delivered or thermosensor locations between RF and microwave heating groups (P>0.05). Microwaves produced significantly more rapid heating than RF at 5, 10 and 15mm in normal tissue (3.0 vs. 0.73, 0.85 vs. 0.21 and 0.17 vs. 0.09 °C/s; P<.05); and at 5 and 10mm in ablated tissues (2.3 ± 1.4 vs. 0.7 ± 0.3, 0.5 ± 0.3 vs. 0.2 ± 0.0 C/s, P<.05). The radial depth of heating was approximately 5mm greater for microwaves than RF. Conclusions Direct heating obtained with 2.45 GHz microwave energy using a single needle-like applicator is faster and covers a larger volume of tissue than 480 kHz RF energy. Keywords: microwave ablation, direct heating, thermal ablation PMID:22572764

  13. New instrumentation for the comprehension of chemical reactions under microwave and classical heating with the aid of a wide frequency band dielectric spectroscopy

    NASA Astrophysics Data System (ADS)

    Chevalier, S.; Meyer, O.; Weil, R.; Fourrierlamer, A.; Petit, A.; Loupy, A.; Maurel, F.

    2001-09-01

    An instrumentation system for measuring wide frequency band complex permittivity of a sample submitted to a microwave irradiation has been optimized in order to allow macroscopic temperature measurements. The reaction of saponification of aromatic esters is studied using this instrumentation. We take interest in the behavior of the ionic conductivity phenomenon occurring in the reactive medium during microwave heating, and we compare it with the results obtained under classical heating. We show that the activation energy associated with ionic conductivity is lower when the reaction is performed under microwaves than when it is performed under classical heating. We thus deduce that microwaves act on the reaction advancement as a catalyst, and thus makes the reaction easier.

  14. Studying the effect of microwave heating on the digestion process and identification of proteins.

    PubMed

    Devi, Shobha; Wu, Bo-Hung; Chu, Pei-Yu; Liu, Yue-Pei; Wu, Hsin-Lin; Ho, Yen-Peng

    2017-02-01

    The impact of microwave irradiation on the in-solution digestion processes and the detection limit of proteins are systematically studied. Kinetic processes of many peptides produced through the trypsin digestion of various proteins under microwave heating at 50°C were investigated with MALDI-MS. This study also examines the detection limits and digestion completeness of individual proteins under microwave heating at 50°C and at different time intervals (1, 5 and 30 min) using LC-MS. We conclude that if the peptides without missed cleavage dictate the detection limit, conventional digestion will lead to a better detection limit. The detection limit may not differ between the microwave and conventional heating if the peptides with missed cleavage sites and strong intensity are formed at the very early stage (i.e., less than 1 min) and are not further digested throughout the entire digestion process. The digestion of Escherichia coli lysate was compared under conventional and short time (microwave) conditions. The number of proteins identified under conventional heating exceeded that obtained from microwave heating over heating periods less than 5 min. The overall results show that the microwave-assisted digestion is not complete. Although the sequence coverage might be better, the detection limit might be worse than that under conventional heating. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  15. Optimal joule heating of the subsurface

    DOEpatents

    Berryman, J.G.; Daily, W.D.

    1994-07-05

    A method for simultaneously heating the subsurface and imaging the effects of the heating is disclosed. This method combines the use of tomographic imaging (electrical resistance tomography or ERT) to image electrical resistivity distribution underground, with joule heating by electrical currents injected in the ground. A potential distribution is established on a series of buried electrodes resulting in energy deposition underground which is a function of the resistivity and injection current density. Measurement of the voltages and currents also permits a tomographic reconstruction of the resistivity distribution. Using this tomographic information, the current injection pattern on the driving electrodes can be adjusted to change the current density distribution and thus optimize the heating. As the heating changes conditions, the applied current pattern can be repeatedly adjusted (based on updated resistivity tomographs) to affect real time control of the heating.

  16. Optimal joule heating of the subsurface

    DOEpatents

    Berryman, James G.; Daily, William D.

    1994-01-01

    A method for simultaneously heating the subsurface and imaging the effects of the heating. This method combines the use of tomographic imaging (electrical resistance tomography or ERT) to image electrical resistivity distribution underground, with joule heating by electrical currents injected in the ground. A potential distribution is established on a series of buried electrodes resulting in energy deposition underground which is a function of the resistivity and injection current density. Measurement of the voltages and currents also permits a tomographic reconstruction of the resistivity distribution. Using this tomographic information, the current injection pattern on the driving electrodes can be adjusted to change the current density distribution and thus optimize the heating. As the heating changes conditions, the applied current pattern can be repeatedly adjusted (based on updated resistivity tomographs) to affect real time control of the heating.

  17. Optimal Management of Geothermal Heat Extraction

    NASA Astrophysics Data System (ADS)

    Patel, I. H.; Bielicki, J. M.; Buscheck, T. A.

    2015-12-01

    Geothermal energy technologies use the constant heat flux from the subsurface in order to produce heat or electricity for societal use. As such, a geothermal energy system is not inherently variable, like systems based on wind and solar resources, and an operator can conceivably control the rate at which heat is extracted and used directly, or converted into a commodity that is used. Although geothermal heat is a renewable resource, this heat can be depleted over time if the rate of heat extraction exceeds the natural rate of renewal (Rybach, 2003). For heat extraction used for commodities that are sold on the market, sustainability entails balancing the rate at which the reservoir renews with the rate at which heat is extracted and converted into profit, on a net present value basis. We present a model that couples natural resource economic approaches for managing renewable resources with simulations of geothermal reservoir performance in order to develop an optimal heat mining strategy that balances economic gain with the performance and renewability of the reservoir. Similar optimal control approaches have been extensively studied for renewable natural resource management of fisheries and forests (Bonfil, 2005; Gordon, 1954; Weitzman, 2003). Those models determine an optimal path of extraction of fish or timber, by balancing the regeneration of stocks of fish or timber that are not harvested with the profit from the sale of the fish or timber that is harvested. Our model balances the regeneration of reservoir temperature with the net proceeds from extracting heat and converting it to electricity that is sold to consumers. We used the Non-isothermal Unconfined-confined Flow and Transport (NUFT) model (Hao, Sun, & Nitao, 2011) to simulate the performance of a sedimentary geothermal reservoir under a variety of geologic and operational situations. The results of NUFT are incorporated into the natural resource economics model to determine production strategies that

  18. Thermal runaway and microwave heating in thin cylindrical domains

    NASA Astrophysics Data System (ADS)

    Ward, Michael J.

    2002-04-01

    The behaviour of the solution to two nonlinear heating problems in a thin cylinder of revolution of variable cross-sectional area is analysed using asymptotic and numerical methods. The first problem is to calculate the fold point, corresponding to the onset of thermal runaway, for a steady-state nonlinear elliptic equation that arises in combustion theory. In the limit of thin cylindrical domains, it is shown that the onset of thermal runaway can be delayed when a circular cylindrical domain is perturbed into a dumbell shape. Numerical values for the fold point for different domain shapes are obtained asymptotically and numerically. The second problem that is analysed is a nonlinear parabolic equation modelling the microwave heating of a ceramic cylinder by a known electric field. The basic model in a thin circular cylindrical domain was analysed in Booty & Kriegsmann (Meth. Appl. Anal. 4 (1994) p. 403). Their analysis is extended to treat thin cylindrical domains of variable cross-section. It is shown that the steady-state and dynamic behaviours of localized regions of high temperature, called hot-spots, depend on a competition between the maxima of the electric field and the maximum deformation of the circular cylinder. For a dumbell-shaped region it is shown that two disconnected hot-spot regions can occur. Depending on the parameters in the model, these regions, ultimately, either merge as time increases or else remain as disconnected regions for all time.

  19. Comparison of microwave and conduction-convection heating autohydrolysis pretreatment for bioethanol production.

    PubMed

    Aguilar-Reynosa, Alejandra; Romaní, Aloia; Rodríguez-Jasso, Rosa M; Aguilar, Cristóbal N; Garrote, Gil; Ruiz, Héctor A

    2017-06-20

    This work describes the application of two forms of heating for autohydrolysis pretreatment on isothermal regimen: conduction-convection heating and microwave heating processing using corn stover as raw material for bioethanol production. Pretreatments were performed using different operational conditions: residence time (10-50 min) and temperature (160-200°C) for both pretreatments. Subsequently, the susceptibility of pretreated solids was studied using low enzyme loads, and high substrate loads. The highest conversion was 95.1% for microwave pretreated solids. Also solids pretreated by microwave heating processing showed better ethanol conversion in simultaneous saccharification and fermentation process (92% corresponding to 33.8g/L). Therefore, microwave heating processing is a promising technology in the pretreatment of lignocellulosic materials. Copyright © 2017 Elsevier Ltd. All rights reserved.

  20. Oro-facial thermal injury caused by food heated in a microwave oven.

    PubMed

    Wakefield, Yasha; Pemberton, Michael N

    2009-01-01

    Burns to the oral mucosa usually result from the accidental ingestion of hot food or beverages. The burns are usually of short duration and little consequence. The widespread use of microwave ovens, however, has added a new dimension to the problem. Microwave ovens heat food much quicker than a conventional oven, but they produce uneven heating within the food and extremely high temperatures can be reached. We describe two cases of patients who suffered inadvertent injury to the oral mucosa from the ingestion of microwave-heated food.

  1. Cumulative effect of microwave sterilization on the physical properties of microwave polymerized and conventional heat-polymerized acrylic resin

    PubMed Central

    Shafeeq, S. Mohammed; Karthikeyan, S.; Reddy, Subash M.; Karthigeyan, Suma; Manikandan, R.; Thangavelu, Arthiie

    2016-01-01

    Aims: To evaluate and compare the flexural strength and impact strength of conventional and microwave cured denture base resins before and after repeated sterilization using microwave energy to consider microwave curing as an alternative to the conventional method of sterilization. Materials and Methods: The conventional heat cure acrylic resin (DPI heat cure material) Group A and microwave-polymerized acrylic resin (Vipi Wave Acrylic resin) Group B were used to fabricate 100 acrylic resins samples using a standard metal die of (86 mm × 11 mm × 3 mm) dimensions. The criterion was flexural strength and impact strength testing which had Group A and Group B samples; 50 samples for flexural strength and 50 samples for impact strength measurement. For each criterion, five control samples were taken for Group A and Group B. The samples were stored in water before experimenting. The test samples were subject to four cycles of microwave sterilization; followed by flexural strength testing with a 3-point flexural test in universal testing machine (UNITEK 94100) and impact strength testing with impact testing machine (ENKAY Pr09/E1/16). Results: The physical properties had significant changes for conventionally cured denture base resins, whereas no changes found for microwave-cured resins after repeated sterilization cycles. PMID:27829757

  2. Traveling-Wave Tube Cold-Test Circuit Optimization Using CST MICROWAVE STUDIO

    NASA Technical Reports Server (NTRS)

    Chevalier, Christine T.; Kory, Carol L.; Wilson, Jeffrey D.; Wintucky, Edwin G.; Dayton, James A., Jr.

    2003-01-01

    The internal optimizer of CST MICROWAVE STUDIO (MWS) was used along with an application-specific Visual Basic for Applications (VBA) script to develop a method to optimize traveling-wave tube (TWT) cold-test circuit performance. The optimization procedure allows simultaneous optimization of circuit specifications including on-axis interaction impedance, bandwidth or geometric limitations. The application of Microwave Studio to TWT cold-test circuit optimization is described.

  3. Traveling-Wave Tube Cold-Test Circuit Optimization Using CST MICROWAVE STUDIO

    NASA Technical Reports Server (NTRS)

    Chevalier, Christine T.; Kory, Carol L.; Wilson, Jeffrey D.; Wintucky, Edwin G.; Dayton, James A., Jr.

    2003-01-01

    The internal optimizer of CST MICROWAVE STUDIO (MWS) was used along with an application-specific Visual Basic for Applications (VBA) script to develop a method to optimize traveling-wave tube (TWT) cold-test circuit performance. The optimization procedure allows simultaneous optimization of circuit specifications including on-axis interaction impedance, bandwidth or geometric limitations. The application of Microwave Studio to TWT cold-test circuit optimization is described.

  4. Frequency-temperature sensitivity reduction with optimized microwave Bragg resonators

    NASA Astrophysics Data System (ADS)

    Le Floch, J.-M.; Murphy, C.; Hartnett, J. G.; Madrangeas, V.; Krupka, J.; Cros, D.; Tobar, M. E.

    2017-01-01

    Dielectric resonators are employed to build state-of-the-art low-noise and high-stability oscillators operating at room and cryogenic temperatures. A resonator temperature coefficient of frequency is one criterion of performance. This paper reports on predictions and measurements of this temperature coefficient of frequency for three types of cylindrically symmetric Bragg resonators operated at microwave frequencies. At room temperature, microwave Bragg resonators have the best potential to reach extremely high Q-factors. Research has been conducted over the last decade on modeling, optimizing, and realizing such high Q-factor devices for applications such as filtering, sensing, and frequency metrology. We present an optimized design, which has a temperature sensitivity 2 to 4 times less than current whispering gallery mode resonators without using temperature compensating techniques and about 30% less than other existing Bragg resonators. Also, the performance of a new generation single-layered Bragg resonator, based on a hybrid-Bragg-mode, is reported with a sensitivity of about -12 ppm/K at 295 K. For a single reflector resonator, it achieves a similar level of performance as a double-Bragg-reflector resonator but with a more compact structure and performs six times better than whispering-gallery-mode resonators. The hybrid resonator promises to deliver a new generation of high-sensitivity sensors and high-stability room-temperature oscillators.

  5. Effects of microwave heating on the migration of substances from melamine formaldehyde tableware.

    PubMed

    Poovarodom, Ngamtip; Junsrisuriyawong, Kansuda; Sangmahamad, Raweeporn; Tangmongkollert, Pattaree

    2014-01-01

    Melamine formaldehyde (MF) tableware, after undergoing repeated heating in a microwave oven for 1, 2, 3 or 5 min, was tested for migration into 3% (w/v) acetic acid, a food simulant. Overall migration (OM) consistently increased with an increasing number of heating/washing cycles, while formaldehyde was found at low concentrations or was not detectable. Unexpectedly, the 1-min series caused the most rapid increase in OM; the European Union regulatory limit of 10 mg dm(-2) was exceeded after 25 cycles. The number of cycles required to reach the OM limit rose to 29 and 67 for the 2- and 3-min series, respectively. Only 37 cycles were needed in the case of the 5-min series; however, the cumulative exposure time to microwave irradiation was relatively close to that of the 3-min series. These findings indicate that microwave heating affects the migration of MF in a significantly different manner as compared with conventional heating reported in previous studies. Fourier transform infrared spectroscopy (FTIR) spectra of MF after completing the microwave heating series show that the plastic was not fully cured, as evidenced by the absence of methylene linkages. The majority of migrants obtained from OM tests consisted of low molecular weight methylol melamine derivatives. The results indicate that microwave heating allowed demethylolation, addition and condensation reactions to occur, which was not the case when using conventional heating. This study demonstrates that microwave heating for 1-2 min in a repeated manner is of high concern in terms of consumer health. It was found that the service terms of melamine ware under microwave heating were drastically reduced, by more than 10-fold, as compared with the service terms under conventional heating. Hence, it is strongly recommended that manufacturers of MF articles provide instructions for use, e.g. "Do not use in microwave", which should be clearly visible to consumers and not easily detachable.

  6. Low-power near-field microwave applicator for localized heating of soft matter

    NASA Astrophysics Data System (ADS)

    Copty, A.; Sakran, F.; Golosovsky, M.; Davidov, D.; Frenkel, A.

    2004-06-01

    We report a 9 GHz near-field microwave probe for local surface heating of microwave absorbing materials. The probe radiates microwave energy through a narrow slot microfabricated at the apex of the dielectric resonator. The microwave energy is concentrated in a small region close to the applicator, in such a way that the microwave intensity there is very high. A temperature of 60-120 °C can be achieved in a spot size as small as 0.3×0.5 mm2, using an input power of only a few watts. The applicator can be used for local heating, coagulation, and melting of various soft-matter mediums. Particularly, we emphasize results on local heating and coagulation of egg-white and albumin which may be used as a "biological solder" for tissue welding applications.

  7. Optimization of Borehole Heat Exchanger Arrays

    NASA Astrophysics Data System (ADS)

    Schulte, Daniel; Rühaak, Wolfram; Welsch, Bastian; Oladyshkin, Sergey; Sass, Ingo

    2016-04-01

    Arrays of borehole heat exchangers are an increasingly popular source for renewable energy. Furthermore, they can serve as borehole thermal energy storages for seasonally fluctuating heat sources like solar thermal energy or district heating grids. However, the uncertainty of geological parameters and the nonlinear behavior of the complex system make it difficult to simulate and predict the required design of borehole heat exchanger arrays. As a result, the arrays easily turn out to be over or undersized, which compromises the economic feasibility of these systems. Here, we present a novel optimization strategy for the design of borehole thermal energy storages. The arbitrary polynomial chaos expansion method is used to build a proxy model from a set of numerical training simulations, which allows for the consideration of parameter uncertainties. Thus, the resulting proxy model bypasses the problem of excessive computation time for the numerous function calls required for a mathematical optimization. Additionally, we iteratively refine the proxy model during the optimization procedure using additional numerical simulation runs. With the presented solution, many aspects of borehole heat exchanger arrays can be optimized under geological uncertainty.

  8. Phase Transformation of VO2 Nanoparticles Assisted by Microwave Heating

    PubMed Central

    Sikong, Lek.

    2014-01-01

    The microwave assisted synthesis nowadays attracts a great deal of attention. Monoclinic phase VO2 (M) was prepared from NH4VO3 and H2C2O4 · 2H2O by a rapid microwave assisted technique. The synthesis parameters, microwave irradiation time, microwave power, and calcinations temperature were systematically varied and their influences on the structure and morphology were evaluated. The microwave power level has been carried out in range 180–600 W. TEM analysis demonstrated nanosized samples. The structural and morphological properties were measured using XRD, TEM, and thermal analyses. The variations of vanadium phase led to thermochromic properties. PMID:24688438

  9. Improvement of heating uniformity in packaged acidified vegetables pasteurized with a 915 MHz continuous microwave system

    USDA-ARS?s Scientific Manuscript database

    Continuous microwave processing to produce shelf-stable acidified vegetables with moderate to high salt contents poses challenges in pasteurization due to reduced microwave penetration depths and non-uniform heating. Cups of sweetpotato, red bell pepper, and broccoli acidified to pH 3.8 with citric...

  10. A Comparison of Direct Heating During Radiofrequency and Microwave Ablation in Ex Vivo Liver

    SciTech Connect

    Andreano, Anita; Brace, Christopher L.

    2013-04-15

    This study was designed to determine the magnitude and spatial distribution of temperature elevations when using 480 kHz RF and 2.45 GHz microwave energy in ex vivo liver models. A total of 60 heating cycles (20 s at 90 W) were performed in normal, RF-ablated, and microwave-ablated liver tissues (n = 10 RF and n = 10 microwave in each tissue type). Heating cycles were performed using a 480-kHz generator and 3-cm cooled-tip electrode (RF) or a 2.45-GHz generator and 14-gauge monopole (microwave) and were designed to isolate direct heating from each energy type. Tissue temperatures were measured by using fiberoptic thermosensors 5, 10, and 15 mm radially from the ablation applicator at the depth of maximal heating. Power delivered, sensor location, heating rates, and maximal temperatures were compared using mixed effects regression models. No significant differences were noted in mean power delivered or thermosensor locations between RF and microwave heating groups (P > 0.05). Microwaves produced significantly more rapid heating than RF at 5, 10, and 15 mm in normal tissue (3.0 vs. 0.73, 0.85 vs. 0.21, and 0.17 vs. 0.09 Degree-Sign C/s; P < 0.05); and at 5 and 10 mm in ablated tissues (2.3 {+-} 1.4 vs. 0.7 {+-} 0.3, 0.5 {+-} 0.3 vs. 0.2 {+-} 0 Degree-Sign C/s, P < 0.05). The radial depth of heating was {approx}5 mm greater for microwaves than RF. Direct heating obtained with 2.45-GHz microwave energy using a single needle-like applicator is faster and covers a larger volume of tissue than 480-kHz RF energy.

  11. Comparative decomposition kinetics of neutral monosaccharides by microwave and induction heating treatments.

    PubMed

    Tsubaki, Shuntaro; Oono, Kiriyo; Onda, Ayumu; Yanagisawa, Kazumichi; Azuma, Jun-ichi

    2013-06-28

    The stabilities of five neutral monosaccharides (glucose, galactose, mannose, arabinose, and xylose) were kinetically compared after the molecules were submitted to microwave heating (internal heating) and induction heating (external heating) under completely identical thermal histories by employing PID (proportional, integral, and derivative) temperature controlled ovens and homogeneous mixing. By heating in water at 200°C, the rate constants for the decomposition reactions varied from 2.13×10(-4) to 3.87×10(-4)s(-1) for microwave heating; however, the values increased by 1.1- to 1.5-fold for induction heating. Similarly, in a dilute (0.8%) sulfuric acid solution, the decomposition rate constants varied from 0.61×10(-3) to 2.00×10(-3)s(-1) for microwave heating; however, the values increased by 1.5- to 2.2-fold for induction heating. The results show that microwave heating imparts greater stability to neutral monosaccharides than does induction heating. The undesirable decomposition of monosaccharides at the surface boundary of reactor walls may have increased the probability of monosaccharide decomposition during induction heating.

  12. Specific features of waveguide heating due to transmission of high-power microwave signals

    NASA Astrophysics Data System (ADS)

    Kudryavtsev, I. V.; Gotselyuk, O. B.; Novikov, E. S.; Demin, V. G.

    2017-01-01

    Waveguide heating due to transmission of microwave signals is studied. Mathematical models are developed to evaluate heat liberation, and differential equations of thermal balance are derived with allowance for different working conditions of waveguides. The results prove the necessity of the further study of the effect of heat liberation in waveguides on strength and functional characteristics.

  13. Furfural Synthesis from d-Xylose in the Presence of Sodium Chloride: Microwave versus Conventional Heating.

    PubMed

    Xiouras, Christos; Radacsi, Norbert; Sturm, Guido; Stefanidis, Georgios D

    2016-08-23

    We investigate the existence of specific/nonthermal microwave effects for the dehydration reaction of xylose to furfural in the presence of NaCl. Such effects are reported for sugars dehydration reactions in several literature reports. To this end, we adopted three approaches that compare microwave-assisted experiments with a) conventional heating experiments from the literature; b) simulated conventional heating experiments using microwave-irradiated silicon carbide (SiC) vials; and at c) different power levels but the same temperature by using forced cooling. No significant differences in the reaction kinetics are observed using any of these methods. However, microwave heating still proves advantageous as it requires 30 % less forward power compared to conventional heating (SiC vial) to achieve the same furfural yield at a laboratory scale. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  14. Dual-slot antennas for microwave tissue heating: parametric design analysis and experimental validation.

    PubMed

    Brace, Christopher L

    2011-07-01

    Design and validate an efficient dual-slot coaxial microwave ablation antenna that produces an approximately spherical heating pattern to match the shape of most abdominal and pulmonary tumor targets. A dual-slot antenna geometry was utilized for this study. Permutations of the antenna geometry using proximal and distal slot widths from 1 to 10 mm separated by 1-20 mm were analyzed using finite-element electromagnetic simulations. From this series, the most optimal antenna geometry was selected using a two-term sigmoidal objective function to minimize antenna reflection coefficient and maximize the diameter-to-length aspect ratio of heat generation. Sensitivities to variations in tissue properties and insertion depth were also evaluated in numerical models. The most optimal dual-slot geometry of the parametric analysis was then fabricated from semirigid coaxial cable. Antenna reflection coefficients at various insertion depths were recorded in ex vivo bovine livers and compared to numerical results. Ablation zones were then created by applying 50 W for 2-10 min in simulations and ex vivo livers. Mean zone diameter, length, aspect ratio, and reflection coefficients before and after heating were then compared to a conventional monopole antenna using ANOVA with post-hoc t-tests. Statistical significance was indicated for P <0.05. Antenna performance was highly sensitive to dual-slot geometry. The best-performing designs utilized a proximal slot width of 1 mm, distal slot width of 4 mm +/- 1 mm and separation of 8 mm +/- 1 mm. These designs were characterized by an active choking mechanism that focused heating to the distal tip of the antenna. A dual-band resonance was observed in the most optimal design, with a minimum reflection coefficient of -20.9 dB at 2.45 and 1.25 GHz. Total operating bandwidth was greater than 1 GHz, but the desired heating pattern was achieved only near 2.45 GHz. As a result, antenna performance was robust to changes in insertion depth and

  15. Numerical simulation of an industrial microwave assisted filter dryer: criticality assessment and optimization.

    PubMed

    Leonelli, Cristina; Veronesi, Paolo; Grisoni, Fabio

    2007-01-01

    Industrial-scale filter dryers, equipped with one or more microwave input ports, have been modelled with the aim of detecting existing criticalities, proposing possible solutions and optimizing the overall system efficiency and treatment homogeneity. Three different loading conditions have been simulated, namely the empty applicator, the applicator partially loaded by both a high-loss and low loss load whose dielectric properties correspond to the one measured on real products. Modeling results allowed for the implementation of improvements to the original design such as the insertion of a wave guide transition and a properly designed pressure window, modification of the microwave inlet's position and orientation, alteration of the nozzles' geometry and distribution, and changing of the cleaning metallic torus dimensions and position. Experimental testing on representative loads, as well as in production sites, allowed for the confirmation of the validity of the implemented improvements, thus showing how numerical simulation can assist the designer in removing critical features and improving equipment performances when moving from conventional heating to hybrid microwave-assisted processing.

  16. Microwave Ovens

    MedlinePlus

    ... Standards Industry Guidance Other Resources Description Microwave ovens heat food using microwaves, a form of electromagnetic radiation ... vibration results in friction between molecules, which produces heat that cooks the food. Risks/Benefits Microwaves are ...

  17. Preparation of Ti-coated diamond particles by microwave heating

    NASA Astrophysics Data System (ADS)

    Gu, Quanchao; Peng, Jinghui; Xu, Lei; Srinivasakannan, C.; Zhang, Libo; Xia, Yi; Wu, Qingtian; Xia, Hongying

    2016-12-01

    Depositing strong carbide-forming elements on diamond surface can dramatically improve the interfacial bonding strength between diamond grits and metal matrix. In the present work, investigation on the preparation of Ti-coated diamond particles by microwave heating has been conducted. The morphology, microstructure, and the chemical composition of Ti-coated diamond particles were characterized by scanning electron microscopy (SEM), X-ray diffraction (XRD), and energy dispersive x-ray spectrometer (EDX). The thickness of Ti coating was measured and the interfacial binding strength between Ti coating and diamond was analyzed. The results show that the surface of the diamond particles could be successfully coated with Ti, forming a uniform and continuous Ti-coated layer. The TiC was found to form between the surface of diamond particles and Ti-coated layer. The amount of TiC as well as the thickness of coating increased with increasing coating temperature, furthermore, the grain size of the coating also grew gradually. The interfacial bonding strength between coating and diamond was found to be best at the temperature of 760 °C.

  18. Optimization of energy transfer in microwave electrothermal thrusters

    NASA Technical Reports Server (NTRS)

    Sullivan, D. J.; Micci, M. M.

    1993-01-01

    Results are presented from preliminary tests conducted to evaluate the performance of a prototype microwave electrothermal thruster. The primary component of the device is a microwave resonant cavity. The device produces stable axial plasmas within a pressurized section of the cavity with the plasma positioned in the inlet region of the nozzle. Plasma stability is enhanced by axial power coupling, an optimal distribution of electric power density within the cavity, and a propellant gas flow which has a large vortical velocity component. The thruster has been operated with a number of propellant gases: helium, nitrogen, ammonia, and hydrogen. Plasmas can be formed in a reliable manner at cavity pressures of 1 kPa and incident power levels ranging from 50 W to 350 W, depending on the gas used, and can be operated at pressures up to 300 kPa at power levels up to 2200 W. Ideal performance results of vacuum Isp and thermal efficiency vs. specific power are presented for each gas. Representative results of this preliminary work are: He - Isp = 625 s, eta-thermal = 90 percent; N2 - Isp = 270 s, eta-thermal = 41 percent; NH3 - Isp = 475 s, eta-thermal= 55 percent; H2 - Isp = 1040 s, eta-thermal = 53 percent.

  19. Optimization of energy transfer in microwave electrothermal thrusters

    NASA Astrophysics Data System (ADS)

    Sullivan, D. J.; Micci, M. M.

    1993-11-01

    Results are presented from preliminary tests conducted to evaluate the performance of a prototype microwave electrothermal thruster. The primary component of the device is a microwave resonant cavity. The device produces stable axial plasmas within a pressurized section of the cavity with the plasma positioned in the inlet region of the nozzle. Plasma stability is enhanced by axial power coupling, an optimal distribution of electric power density within the cavity, and a propellant gas flow which has a large vortical velocity component. The thruster has been operated with a number of propellant gases: helium, nitrogen, ammonia, and hydrogen. Plasmas can be formed in a reliable manner at cavity pressures of 1 kPa and incident power levels ranging from 50 W to 350 W, depending on the gas used, and can be operated at pressures up to 300 kPa at power levels up to 2200 W. Ideal performance results of vacuum Isp and thermal efficiency vs. specific power are presented for each gas. Representative results of this preliminary work are: He - Isp = 625 s, eta-thermal = 90 percent; N2 - Isp = 270 s, eta-thermal = 41 percent; NH3 - Isp = 475 s, eta-thermal= 55 percent; H2 - Isp = 1040 s, eta-thermal = 53 percent.

  20. Apparatus for the joining of ceramics using microwave hybrid heating

    SciTech Connect

    Cozzi, A.D.; Ferber, M.K.; Tennery, V.J.

    1995-12-31

    An apparatus was designed and constructed to facilitate the joining of ceramics in a microwave field. The microwave unit used is a modified Goldstar MA-1172M household microwave oven. The maximum load that can be applied is 2.24 kN. Temperature can be monitored with either a shielded type R thermocouple or an optical pyrometer. Measurements of the temperature and applied load are collected remotely.

  1. Ultraviolet spectrophotometric evaluation of corn oil oxidative stability during microwave heating and oven test.

    PubMed

    Vieira, T M; Regitano-D'Arce, M A

    1999-06-01

    The effect of microwave heating on the oxidative stability of corn oil was determined by absorptivity in the UV spectrum and by peroxide and acid values. Oil samples with antioxidants BHA/BHT (1:1; 200 mg kg(-)(1)), with and without citric acid, were heated in a microwave oven (800 W, 2450 MHz) for 0-36 min. Absorptivity at 232 and 270 nm increased during microwave exposure. Control values of absorptivity at 232 nm increased from 3.568 to 12.874 after 36 min of heating. Peroxide value showed a significant difference in the initial stage of heating (0-6 min), but after this time, the peroxide value decreased due to the instability of hydroperoxides at high temperatures. Control 232 nm absorptivities after 6 days in the oven test were similar to those after 32-36 min of microwave heating. Effective antioxidants in the oven test did not show any protection during microwave heating. UV spectrophotometry is a suitable tool for microwave oxidation monitoring.

  2. Frequency Distribution in Domestic Microwave Ovens and Its Influence on Heating Pattern.

    PubMed

    Luan, Donglei; Wang, Yifen; Tang, Juming; Jain, Deepali

    2017-02-01

    In this study, snapshots of operating frequency profiles of domestic microwave ovens were collected to reveal the extent of microwave frequency variations under different operation conditions. A computer simulation model was developed based on the finite difference time domain method to analyze the influence of the shifting frequency on heating patterns of foods in a microwave oven. The results showed that the operating frequencies of empty and loaded domestic microwave ovens varied widely even among ovens of the same model purchased on the same date. Each microwave oven had its unique characteristic operating frequencies, which were also affected by the location and shape of the load. The simulated heating patterns of a gellan gel model food when heated on a rotary plate agreed well with the experimental results, which supported the reliability of the developed simulation model. Simulation indicated that the heating patterns of a stationary model food load changed with the varying operating frequency. However, the heating pattern of a rotary model food load was not sensitive to microwave frequencies due to the severe edge heating overshadowing the effects of the frequency variations. © 2016 Institute of Food Technologists®.

  3. Effect of microwave heating on the quality characteristics of canola oil in presence of palm olein.

    PubMed

    Ali, M Abbas; Nouruddeen, Zahrau Bamalli; Muhamad, Ida Idayu; Latip, Razam Abd; Othman, Noor Hidayu

    2013-01-01

    Microwave heating is one of the most attractive cooking methods for food preparation, commonly employed in households and especially in restaurants for its high speed and convenience. The chemical constituents of oils that degrade during microwave heating do so at rates that vary with heating temperature and time in a similar manner to other type of processing methods. The rate of quality characteristics of the oil depends on the fatty acid composition and the minor components during heating. Addition of oxidative-stable palm olein (PO) to heat sensitive canola oil (CO), may affect the quality characteristics of CO during microwave heating. The aim of this study was to evaluate how heat treatments by microwave oven affect the quality of CO in presence of PO. The blend was prepared in the volume ratio of 40:60 (PO:CO, PC). Microwave heating test was performed for different periods (2, 4, 8, 12, 16 and 20 min) at medium power setting for the samples of CO and PC. The changes in quality characteristics of the samples during heating were determined by analytical and instrumental methods. In this study, refractive index, free fatty acid content, peroxide value, p-anisidine value, TOTOX value, specific extinction, viscosity, polymer content, polar compounds and food oil sensor value of the oils all increased, whereas iodine value and C₁₈.₂ /C₁₆:₀ ratio decreased as microwave heating progressed. Based on the most oxidative stability criteria, PO addition led to a slower deterioration of CO at heating temperatures. The effect of microwave heating on the fatty acid composition of the samples was not remarkable. PO addition decelerated the formation of primary and secondary oxidation products in CO. However, effect of adding PO to CO on the formation of free fatty acids and polymers during microwave treatment was not significant (P < 0.05). No significant difference in food oil sensor value was detected between CO and PC throughout the heating periods. Microwave

  4. Electromagnetic simulations of microwave heating experiments using reaction vessels made out of silicon carbide.

    PubMed

    Robinson, John; Kingman, Sam; Irvine, Derek; Licence, Peter; Smith, Alastair; Dimitrakis, Georgios; Obermayer, David; Kappe, C Oliver

    2010-09-28

    There is a growing body of literature which reports the use of silicon carbide vessels to shield reaction mixtures during microwave heating. In this paper we use electromagnetic simulations and microwave experiments to show that silicon carbide vessels do not exclude the electric field, and that dielectric heating of reaction mixtures will take place in addition to heat transfer from the silicon carbide. The contribution of dielectric heating and heat transfer depends on the dielectric properties of the mixture, and the temperature at which the reaction is carried out. Solvents which remain microwave absorbent at high temperatures, such as ionic liquids, will heat under the direct influence of the electric field from 30-250 degrees C. Solvents which are less microwave absorbent at higher temperatures will be heated by heat-transfer only at temperatures in excess of 150 degrees C. The results presented in this paper suggest that the influence of the electric field cannot be neglected when interpreting microwave assisted synthesis experiments in silicon carbide vessels.

  5. Parallel microwave chemistry in silicon carbide reactor platforms: an in-depth investigation into heating characteristics.

    PubMed

    Damm, Markus; Kappe, C Oliver

    2009-11-01

    The heating behavior of silicon carbide reaction platforms under 2.45 GHz microwave irradiation was investigated with the aid of online thermoimaging cameras and multiple-channel fiber-optic probe temperature sensors placed inside the wells/vials of the silicon carbide microtiter plates. Microwave irradiation leads to a rapid and homogeneous heating of the entire plate, with minimal deviations in the temperature recorded at different positions of the plate or inside the wells. In temperature-controlled experiments using dedicated multimode reactors, solvents with different microwave absorption characteristics can be heated in parallel in individual wells/vials of the silicon carbide plate reaching the same set temperature. Due to the large heat capacity and high thermal conductivity of silicon carbide, the plates are able to moderate any field inhomogeneities inside a microwave cavity. Although the heating of the plates can be performed extremely efficiently inside a microwave reactor, heating and synthetic applications can alternatively be carried out by applying conventional conductive heating of the silicon carbide plates on a standard hotplate. Due to the slower heating of the silicon carbide material under these conditions, somewhat longer reaction times will be required.

  6. A microwave-heated infrared reaction cell for the in situ study of heterogeneous catalysts.

    PubMed

    Silverwood, Ian P; McDougall, Gordon S; Gavin Whittaker, A

    2006-12-14

    A transmission infrared microreactor cell which holds a pressed disc in a controlled atmosphere and allows microwave and conventional heating up to 423 K is demonstrated using the oxidation of carbon monoxide over the standard catalyst EUROPT-1. Optical characteristics are determined by the choice of CaF2 as the window material, allowing transmission from 77,000-1000 cm(-1). An oscillating microwave power regime with a peak height of 200 W is used and time-resolved infrared spectra and mass spectrometry show oscillations in the reaction which correspond to the microwave heating.

  7. Feasibility study of microwave electron heating on the C-2 field-reversed configuration device

    NASA Astrophysics Data System (ADS)

    Yang, Xiaokang; Koehn, Alf; Petrov, Yuri; Ceccherini, Francesco; Dettrick, Sean; Binderbauer, Michl

    2015-12-01

    Different microwave heating scenarios for the C-2 plasmas have been investigated recently with use of both the Genray ray-racing code and the IPF-FDMC full-wave code, and the study was focused on the excitation of the electron Bernstein wave (EBW) with O-mode launch. For a given antenna position on C-2 and the fixed 2D plasma density and equilibrium field profiles, simulations have been done for six selected frequencies (2.45 GHz, 5 GHz, 8 GHz, 18 GHz, 28 GHz, and 50 GHz). Launch angles have been optimized for each case in order to achieve high coupling efficiencies to the EBW by the O-X-B mode conversion process and high power deposition. Results show that among those six frequencies, the case of 8 GHz is the most promising scenario, which has both high mode conversion efficiency (90%) and the relatively deeper power deposition.

  8. [Dependence of microwave produced heating of cell suspensions on their concentration].

    PubMed

    Dergacheva, I P; Morozov, I I; Petin, B G

    1998-01-01

    The kinetics of microwave (7 GHz) heating of yeast and bacterial cell suspensions of different concentrations was investigated in the conditions of various thermoisolation of irradiated samples. It was established that independently of type of microorganisms, microwaves produced a more intensive heating of cell suspension in comparison with suspension fluid. The degree of heating was shown to increase with cell concentration. This effect was more expressed under conditions of thermoisolation. At the same irradiation doses and cell concentrations the yeast suspension was heated more vigorously than bacterial one. These differences disappeared when the rise in sample temperature was related to the total cell volume.

  9. Simple method for highlighting the temperature distribution into a liquid sample heated by microwave power field

    SciTech Connect

    Surducan, V.; Surducan, E.; Dadarlat, D.

    2013-11-13

    Microwave induced heating is widely used in medical treatments, scientific and industrial applications. The temperature field inside a microwave heated sample is often inhomogenous, therefore multiple temperature sensors are required for an accurate result. Nowadays, non-contact (Infra Red thermography or microwave radiometry) or direct contact temperature measurement methods (expensive and sophisticated fiber optic temperature sensors transparent to microwave radiation) are mainly used. IR thermography gives only the surface temperature and can not be used for measuring temperature distributions in cross sections of a sample. In this paper we present a very simple experimental method for temperature distribution highlighting inside a cross section of a liquid sample, heated by a microwave radiation through a coaxial applicator. The method proposed is able to offer qualitative information about the heating distribution, using a temperature sensitive liquid crystal sheet. Inhomogeneities as smaller as 1°-2°C produced by the symmetry irregularities of the microwave applicator can be easily detected by visual inspection or by computer assisted color to temperature conversion. Therefore, the microwave applicator is tuned and verified with described method until the temperature inhomogeneities are solved.

  10. Improved conventional and microwave-assisted silylation protocols for simultaneous gas chromatographic determination of tocopherols and sterols: Method development and multi-response optimization.

    PubMed

    Poojary, Mahesha M; Passamonti, Paolo

    2016-12-09

    This paper reports on improved conventional thermal silylation (CTS) and microwave-assisted silylation (MAS) methods for simultaneous determination of tocopherols and sterols by gas chromatography. Reaction parameters in each of the methods developed were systematically optimized using a full factorial design followed by a central composite design. Initially, experimental conditions for CTS were optimized using a block heater. Further, a rapid MAS was developed and optimized. To understand microwave heating mechanisms, MAS was optimized by two distinct modes of microwave heating: temperature-controlled MAS and power-controlled MAS, using dedicated instruments where reaction temperature and microwave power level were controlled and monitored online. Developed methods: were compared with routine overnight derivatization. On a comprehensive level, while both CTS and MAS were found to be efficient derivatization techniques, MAS significantly reduced the reaction time. The optimal derivatization temperature and time for CTS found to be 55°C and 54min, while it was 87°C and 1.2min for temperature-controlled MAS. Further, a microwave power of 300W and a derivatization time 0.5min found to be optimal for power-controlled MAS. The use of an appropriate derivatization solvent, such as pyridine, was found to be critical for the successful determination. Catalysts, like potassium acetate and 4-dimethylaminopyridine, enhanced the efficiency slightly. The developed methods showed excellent analytical performance in terms of linearity, accuracy and precision. Copyright © 2016 Elsevier B.V. All rights reserved.

  11. An optimal sliding choke antenna for hepatic microwave ablation.

    PubMed

    Prakash, Punit; Converse, Mark C; Webster, John G; Mahvi, David M

    2009-10-01

    Microwave ablation (MWA) is a minimally invasive technique increasingly used for thermal therapy of liver tumors. Effective MWA requires efficient interstitial antennas that destroy tumors and a margin of healthy tissue, in situ, while minimizing damage to the rest of the organ. Previously, we presented a method for optimizing MWA antenna designs by coupling finite element method models of antennas with a real-coded, multiobjective genetic algorithm. We utilized this procedure to optimize the design of a minimally invasive choke antenna that can be used to create near-spherical ablation zones of adjustable size (radius 1-2 cm) by adjusting treatment durations and a sliding structure of the antenna. Computational results were validated with experiments in ex vivo bovine liver. The optimization procedure yielded antennas with reflection coefficients below -30 dB, which were capable of creating spherical ablation zones up to 2 cm in radius using 100 W input power at 2.45 GHz with treatment durations under 2 min.

  12. Microwave Heating of TV-Dinner Type Products

    USDA-ARS?s Scientific Manuscript database

    Modified from an inverter-based microwave oven, a new microwave system was developed to pasteurize mechanically tenderized beef, inoculated with Escherichia coli O157:H7 and placed into a 12 oz CPET tray containing de-ionized water. The system allowed the sample surface temperature to first increas...

  13. An optical fiber sensing technique for temperature distribution measurements in microwave heating

    NASA Astrophysics Data System (ADS)

    Wada, Daichi; Sugiyama, Jun-ichi; Zushi, Hiroaki; Murayama, Hideaki

    2015-08-01

    We introduce an optical fiber sensing technique that can measure the temperature distributions along a fiber during microwave heating. We used a long-length fiber Bragg grating (FBG) as an electromagnetic-immune sensor and interrogated temperature distributions along the FBG by an optical frequency domain reflectometry. Water in a glass tube with a length of 820 mm was heated in a microwave oven, and its temperature distribution along the glass tube was measured using the sensing system. The temperature distribution was obtained in 5 mm intervals. Infrared radiometry was also used to compare the temperature measurement results. Time and spatial variations of the temperature distribution profiles were monitored for several microwave input powers. The results clearly depict inhomogeneous temperature profiles. The applicability and effectiveness of the optical fiber distributed measurement technique in microwave heating are demonstrated.

  14. The microwave heating mechanism of N-(4-methoxybenzyliden)-4-butylaniline in liquid crystalline and isotropic phases as determined using in situ microwave irradiation NMR spectroscopy.

    PubMed

    Tasei, Yugo; Tanigawa, Fumikazu; Kawamura, Izuru; Fujito, Teruaki; Sato, Motoyasu; Naito, Akira

    2015-04-14

    Microwave heating effects are widely used in the acceleration of organic, polymerization and enzymatic reactions. These effects are primarily caused by the local heating induced by microwave irradiation. However, the detailed molecular mechanisms associated with microwave heating effects on the chemical reactions are not yet well understood. This study investigated the microwave heating effect of N-(4-methoxybenzylidene)-4-butylaniline (MBBA) in liquid crystalline and isotropic phases using in situ microwave irradiation nuclear magnetic resonance (NMR) spectroscopy, by obtaining (1)H NMR spectra of MBBA under microwave irradiation. When heated simply using the temperature control unit of the NMR instrument, the liquid crystalline MBBA was converted to the isotropic phase exactly at its phase transition temperature (Tc) of 41 °C. The application of microwave irradiation at 130 W for 90 s while maintaining the instrument temperature at 20 °C generated a small amount of isotropic phase within the bulk liquid crystal. The sample temperature of the liquid crystalline state obtained during microwave irradiation was estimated to be 35 °C by assessing the linewidths of the (1)H NMR spectrum. This partial transition to the isotropic phase can be attributed to a non-equilibrium local heating state induced by the microwave irradiation. The application of microwave at 195 W for 5 min to isotropic MBBA while maintaining an instrument temperature of 50 °C raised the sample temperature to 160 °C. In this study, the MBBA temperature during microwave irradiation was estimated by measuring the temperature dependent chemical shifts of individual protons in the sample, and the different protons were found to indicate significantly different temperatures in the molecule. These results suggest that microwave heating polarizes bonds in polar functional groups, and this effect may partly explain the attendant acceleration of organic reactions.

  15. Silver halide fiber optic radiometry for temperature monitoring and control of tissues heated by microwave

    NASA Astrophysics Data System (ADS)

    Shenfeld, Ofer; Belotserkovsky, Edward; Goldwasser, Benad; Zur, Albert; Katzir, Abraham

    1993-02-01

    The heating of tissue by microwave radiation has attained a place of importance in various medical fields, such as the treatment of malignancies, urinary retention, and hypothermia. Accurate temperature measurements in these treated tissues is important for treatment planning and for the control of the heating process. It is also important to be able to measure spacial temperature distribution in the tissues because they are heated in a nonuniform way by the microwave radiation. Conventional temperature sensors used today are inaccurate in the presence of microwave radiation and require contact with the heated tissue. Fiber optic radiometry makes it possible to measure temperatures accurately in the presence of microwave radiation and does not require contact with the tissue. Accurate temperature measurements of tissues heated by microwave was obtained using a silver halide optic radiometer, enabling control of the heating process in other regions of the tissue samples. Temperature mappings of the heated tissues were performed and the nonuniform temperature distributions in these tissues was demonstrated.

  16. De-crystallization of Uric Acid Crystals in Synovial Fluid Using Gold Colloids and Microwave Heating.

    PubMed

    Kioko, Bridgit; Ogundolie, Taiwo; Adebiyi, Morenike; Ettinoffe, Yehnara; Rhodes, Caleb; Gordon, Brittney; Thompson, Nishone; Mohammed, Muzaffer; Abel, Biebele; Aslan, Kadir

    In this study, we demonstrated a unique application of our Metal-Assisted and Microwave-Accelerated Evaporative Crystallization (MA-MAEC) technique for the de-crystallization of uric acid crystals, which causes gout in humans when monosodium urate crystals accumulate in the synovial fluid found in the joints of bones. Given the shortcomings of the existing treatments for gout, we investigated whether the MA-MAEC technique can offer an alternative solution to the treatment of gout. Our technique is based on the use of metal nanoparticles (i.e., gold colloids) with low microwave heating to accelerate the de-crystallization process. In this regard, we employed a two-step process; (i) crystallization of uric acid on glass slides, which act as a solid platform to mimic a bone, (ii) de-crystallization of uric acid crystals on glass slides with the addition of gold colloids and low power microwave heating, which act as "nano-bullets" when microwave heated in a solution. We observed that the size and number of the uric acid crystals were reduced by >60% within 10 minutes of low power microwave heating. In addition, the use of gold colloids without microwave heating (i.e. control experiment) did not result in the de-crystallization of the uric acid crystals, which proves the utility of our MA-MAEC technique in the de-crystallization of uric acid.

  17. Microwave heating device for internal heating convection experiments, applied to Earth's mantle dynamics.

    PubMed

    Surducan, E; Surducan, V; Limare, A; Neamtu, C; Di Giuseppe, E

    2014-12-01

    We report the design, construction, and performances of a microwave (MW) heating device for laboratory experiments with non-contact, homogeneous internal heating. The device generates MW radiation at 2.47 GHz from a commercial magnetron supplied by a pulsed current inverter using proprietary, feedback based command and control hardware and software. Specially designed MW launchers direct the MW radiation into the sample through a MW homogenizer, devised to even the MW power distribution into the sample's volume. An adjustable MW circuit adapts the MW generator to the load (i.e., the sample) placed in the experiment chamber. Dedicated heatsinks maintain the MW circuits at constant temperature throughout the experiment. Openings for laser scanning for image acquisition with a CCD camera and for the cooling circuits are protected by special MW filters. The performances of the device are analyzed in terms of heating uniformity, long term output power stability, and load matching. The device is used for small scale experiments simulating Earth's mantle convection. The 30 × 30 × 5 cm(3) convection tank is filled with a water‑based viscous fluid. A uniform and constant temperature is maintained at the upper boundary by an aluminum heat exchanger and adiabatic conditions apply at the tank base. We characterize the geometry of the convective regime as well as its bulk thermal evolution by measuring the velocity field by Particle Image Velocimetry and the temperature field by using Thermochromic Liquid Crystals.

  18. Microwave heating device for internal heating convection experiments, applied to Earth's mantle dynamics

    SciTech Connect

    Surducan, E.; Surducan, V.; Neamtu, C.; Limare, A.; Di Giuseppe, E.

    2014-12-15

    We report the design, construction, and performances of a microwave (MW) heating device for laboratory experiments with non-contact, homogeneous internal heating. The device generates MW radiation at 2.47 GHz from a commercial magnetron supplied by a pulsed current inverter using proprietary, feedback based command and control hardware and software. Specially designed MW launchers direct the MW radiation into the sample through a MW homogenizer, devised to even the MW power distribution into the sample's volume. An adjustable MW circuit adapts the MW generator to the load (i.e., the sample) placed in the experiment chamber. Dedicated heatsinks maintain the MW circuits at constant temperature throughout the experiment. Openings for laser scanning for image acquisition with a CCD camera and for the cooling circuits are protected by special MW filters. The performances of the device are analyzed in terms of heating uniformity, long term output power stability, and load matching. The device is used for small scale experiments simulating Earth's mantle convection. The 30 × 30 × 5 cm{sup 3} convection tank is filled with a water‑based viscous fluid. A uniform and constant temperature is maintained at the upper boundary by an aluminum heat exchanger and adiabatic conditions apply at the tank base. We characterize the geometry of the convective regime as well as its bulk thermal evolution by measuring the velocity field by Particle Image Velocimetry and the temperature field by using Thermochromic Liquid Crystals.

  19. Microwave heating device for internal heating convection experiments, applied to Earth's mantle dynamics

    NASA Astrophysics Data System (ADS)

    Surducan, E.; Surducan, V.; Limare, A.; Neamtu, C.; Di Giuseppe, E.

    2014-12-01

    We report the design, construction, and performances of a microwave (MW) heating device for laboratory experiments with non-contact, homogeneous internal heating. The device generates MW radiation at 2.47 GHz from a commercial magnetron supplied by a pulsed current inverter using proprietary, feedback based command and control hardware and software. Specially designed MW launchers direct the MW radiation into the sample through a MW homogenizer, devised to even the MW power distribution into the sample's volume. An adjustable MW circuit adapts the MW generator to the load (i.e., the sample) placed in the experiment chamber. Dedicated heatsinks maintain the MW circuits at constant temperature throughout the experiment. Openings for laser scanning for image acquisition with a CCD camera and for the cooling circuits are protected by special MW filters. The performances of the device are analyzed in terms of heating uniformity, long term output power stability, and load matching. The device is used for small scale experiments simulating Earth's mantle convection. The 30 × 30 × 5 cm3 convection tank is filled with a water-based viscous fluid. A uniform and constant temperature is maintained at the upper boundary by an aluminum heat exchanger and adiabatic conditions apply at the tank base. We characterize the geometry of the convective regime as well as its bulk thermal evolution by measuring the velocity field by Particle Image Velocimetry and the temperature field by using Thermochromic Liquid Crystals.

  20. Optimized ECR plasma apparatus with varied microwave window thickness

    DOEpatents

    Berry, Lee A.

    1995-01-01

    The present invention describes a technique to control the radial profile of microwave power in an ECR plasma discharge. In order to provide for a uniform plasma density to a specimen, uniform energy absorption by the plasma is desired. By controlling the radial profile of the microwave power transmitted through the microwave window of a reactor, the profile of the transmitted energy to the plasma can be controlled in order to have uniform energy absorption by the plasma. An advantage of controlling the profile using the window transmission characteristics is that variations to the radial profile of microwave power can be made without changing the microwave coupler or reactor design.

  1. Optimized ECR plasma apparatus with varied microwave window thickness

    DOEpatents

    Berry, L.A.

    1995-11-14

    The present invention describes a technique to control the radial profile of microwave power in an ECR plasma discharge. In order to provide for a uniform plasma density to a specimen, uniform energy absorption by the plasma is desired. By controlling the radial profile of the microwave power transmitted through the microwave window of a reactor, the profile of the transmitted energy to the plasma can be controlled in order to have uniform energy absorption by the plasma. An advantage of controlling the profile using the window transmission characteristics is that variations to the radial profile of microwave power can be made without changing the microwave coupler or reactor design. 9 figs.

  2. Behavioral and autonomic thermoregulation in hamsters during microwave-induced heat exposure

    SciTech Connect

    Gordon, C.J.; Long, M.D.; Fehlner, K.S.

    1984-01-01

    Preferred ambient temperature (Ta) and ventilatory frequency were measured in free-moving hamsters exposed to 2450-MHz microwaves. A waveguide exposure system that permits continuous monitoring of the absorbed heat load accrued from microwave exposure was imposed with a longitudinal temperature gradient which allowed hamsters to select their preferred Ta. Ventilatory frequency was monitored remotely by analysing the rhythmic shifts in unabsorbed microwave energy passing down the waveguide. Without microwave exposure hamsters selected an average T2 of 30.2 C. This preferred Ta did not change until the rate of heat absorption (SAR) from microwave exposure exceeded approx. 2 W kg-1. In a separate experiment, a SAR of 2.0 W kg-1 at a Ta of 30C was shown to promote an average 0.5 C increase in colonic temperature. Hamsters maintained their ventilatory frequency at baseline levels by selecting a cooler Ta during microwave exposure. These data support previous studies suggesting that during thermal stress behavioral thermo-regulation (i.e. preferred Ta) takes prescedence over autonomic thermoregulation (i.e. ventilatory frequency). It is apparent that selecting a cooler Ta is a more efficient and/or effective than autonomic thermoregulation for dissipating a heat load accrued from microwave exposure.

  3. Microwave heating of water, ice, and saline solution: molecular dynamics study.

    PubMed

    Tanaka, Motohiko; Sato, Motoyasu

    2007-01-21

    In order to study the heating process of water by the microwaves of 2.5-20 GHz frequencies, the authors have performed molecular dynamics simulations by adopting a nonpolarizable water model that has fixed point charges on a rigid-body geometry. All runs are started from the equilibrated states derived from the I(c) ice with given density and temperature. In the presence of microwaves, the molecules of liquid water exhibit rotational motion whose average phase is delayed from the microwave electric field. Microwave energy is transferred to the kinetic and intermolecular energies of water, where one-third of the absorbed microwave energy is stored as the latter energy. The water in ice phase is scarcely heated by microwaves because of the tight hydrogen-bonded network of water molecules. Dilute salt water is significantly more heated than pure water because of the field-induced motion of salt ions, especially that of large-size ions, by the microwave electric field and energy transfer to water molecules by collisions.

  4. Batch and continuous flow preparation of Hantzsch 1,4-dihydropyridines under microwave heating and simultaneous real-time monitoring by Raman spectroscopy. An exploratory study.

    PubMed

    Christiaens, Sylvain; Vantyghem, Xavier; Radoiu, Marilena; Vanden Eynde, Jean Jacques

    2014-07-09

    Dialkyl 1,4-dihydro-2,6-dimethylpyridine-3,5-dicarboxylates have been prepared in a batch mode under conventional heating as well as under continuous flow conditions in the Miniflow 200SS, Sairem's microwave-assisted batch and continuous flow equipment. Real-time monitoring of the reactions by Raman spectroscopy enabled to compare both heating modes and to determine (optimized) reaction times.

  5. Effect of chlorine, blanching, freezing, and microwave heating on Cryptosporidium parvum viability inoculated on green peppers.

    PubMed

    Duhain, G L M C; Minnaar, A; Buys, E M

    2012-05-01

    Cryptosporidium parvum oocysts have been found on the surface of vegetables in both developed and developing countries. C. parvum can contaminate vegetables via various routes, including irrigation water. This study investigated the effect of individual treatments of chlorine, blanching, blast freezing, and microwave heating, as well as combined treatments of chlorine and freezing, and chlorine and microwave heating on the viability of C. parvum oocysts inoculated on green peppers. The viability of the oocysts after the treatments was assessed using propidium iodide and a flow cytometer. Based on the propidium iodide staining, the chlorine treatments did not affect the viability of the oocysts. Blast freezing significantly inactivated 20% of the oocysts. Microwave heating and blanching significantly inactivated 93% of oocysts. Treatment with chlorine followed by blast freezing did not affect the viability of the oocysts significantly. Treatment with chlorine and microwave heating was significantly more effective than microwave heating alone and inactivated 98% of the oocysts. The study indicates that C. parvum oocysts are sensitive to heat and, to some extent, to blast freezing, but are resistant to chlorine. Therefore, the use of chlorine during vegetable processing is not a critical control point for C. parvum oocysts, and the consumption of raw or minimally processed vegetables may constitute a health risk as C. parvum oocysts can still be found viable on ready-to-eat, minimally processed vegetables.

  6. Vesicouretal reflux in children: A phantom study of microwave heating and radiometric thermometry of pediatric bladder

    PubMed Central

    Birkelund, Yngve; Klemetsen, Øystein; Jacobsen, Svein K.; Arunachalam, Kavitha; Maccarini, Paolo; Stauffer, Paul R.

    2012-01-01

    We have investigated the use of microwave heating and radiometry to safely heat urine inside a pediatric bladder. The medical application for this research is to create a safe and reliable method to detect vesicoureteral reflux, a pediatric disorder, where urine flow is reversed and flows from the bladder back up into the kidney. Using fat and muscle tissue models, we have performed both experimental and numerical simulations of a pediatric bladder model using planar dual concentric conductor microstrip antennas at 915 MHz for microwave heating. A planar elliptical antenna connected to a 500 MHz bandwidth microwave radiometer centered at 3.5 GHz was used for non-invasive temperature measurement inside tissue. Temperatures were measured in the phantom models at points during the experiment with implanted fiberoptic sensors, and 2D distributions in cut planes at depth in the phantom with an infrared camera at the end of the experiment. Cycling between 20 second with 20 Watts power for heating, and 10 seconds without power to allow for undisturbed microwave radiometry measurements, the experimental results show that the target tissue temperature inside the phantom increases fast and that the radiometer provides useful measurements of spatially averaged temperature of the illuminated volume. The presented numerical and experimental results show excellent concordance, which confirms that the proposed system for microwave heating and radiometry is applicable for safe and reliable heating of pediatric bladder. PMID:21900069

  7. Nucleation and crystallization of tailing-based glass-ceramics by microwave heating

    NASA Astrophysics Data System (ADS)

    Li, Bao-wei; Li, Hong-xia; Zhang, Xue-feng; Jia, Xiao-lin; Sun, Zhi-chao

    2015-12-01

    The effect of microwave radiation on the nucleation and crystallization of tailing-based glass-ceramics was investigated using a 2.45 GHz multimode microwave cavity. Tailing-based glass samples were prepared from Shandong gold tailings and Guyang iron tailings utilizing a conventional glass melting technique. For comparison, the tailing-based glass samples were crystallized using two different heat-treatment methods: conventional heating and hybrid microwave heating. The nucleation and crystallization temperatures were determined by performing a differential thermal analysis of the quenched tailing-based glass. The prepared glass-ceramic samples were further characterized by Fourier transform infrared spectroscopy, X-ray diffraction, Raman spectroscopy, thermal expansion coefficient measurements, and scanning electron microscopy. The results demonstrated that hybrid microwave heating could be successfully used to crystallize the tailing-based glass, reduce the processing time, and decrease the crystallization temperature. Furthermore, the results indicated that the nucleation and crystallization mechanism of the hybrid microwave heating process slightly differs from that of the conventional heating process.

  8. Effects of microwave heating on porous structure of regenerated powdered activated carbon used in xylose.

    PubMed

    Li, Wei; Wang, Xinying; Peng, Jinhui

    2014-01-01

    The regeneration of spent powdered activated carbons used in xylose decolourization by microwave heating was investigated. Effects of microwave power and microwave heating time on the adsorption capacity of regenerated activated carbons were evaluated. The optimum conditions obtained are as follows: microwave power 800W; microwave heating time 30min. Regenerated activated carbon in this work has high adsorption capacities for the amount of methylene blue of 16 cm3/0.1 g and the iodine number of 1000.06mg/g. The specific surface areas of fresh commercial activated carbon, spent carbon and regenerated activated carbon were calculated according to the Brunauer, Emmett and Teller method, and the pore-size distributions of these carbons were characterized by non-local density functional theory (NLDFT). The results show that the specific surface area and the total pore volume of regenerated activated carbon are 1064 m2/g and 1.181 mL/g, respectively, indicating the feasibility of regeneration of spent powdered activated carbon used in xylose decolourization by microwave heating. The results of surface fractal dimensions also confirm the results of isotherms and NLDFT.

  9. Microwave heating: Industrial applications. (Latest citations from the EI Compendex*plus database). Published Search

    SciTech Connect

    1996-04-01

    The bibliography contains citations concerning industrial uses and design of microwave heating equipment. Citations discuss applications in food processing, industrial heating, vulcanization, textile finishing, metallurgical sintering, ceramic manufacturing, paper industries, and curing of polymers. (Contains 50-250 citations and includes a subject term index and title list.) (Copyright NERAC, Inc. 1995)

  10. A Half Century of Research on Agricultural Applications for RF and Microwave Dielectric Heating

    USDA-ARS?s Scientific Manuscript database

    Basic principles of radio-frequency and microwave dielectric heating are presented, and research reports and reviews published over the past 50 or 60 years are identified for various dielectric heating applications that have been explored for potential use in the field of agriculture. Included are ...

  11. 21 CFR 179.30 - Radiofrequency radiation for the heating of food, including microwave frequencies.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 3 2012-04-01 2012-04-01 false Radiofrequency radiation for the heating of food... PRODUCTION, PROCESSING AND HANDLING OF FOOD Radiation and Radiation Sources § 179.30 Radiofrequency radiation for the heating of food, including microwave frequencies. Radiofrequency radiation, including...

  12. 21 CFR 179.30 - Radiofrequency radiation for the heating of food, including microwave frequencies.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 3 2013-04-01 2013-04-01 false Radiofrequency radiation for the heating of food... PRODUCTION, PROCESSING AND HANDLING OF FOOD Radiation and Radiation Sources § 179.30 Radiofrequency radiation for the heating of food, including microwave frequencies. Radiofrequency radiation, including...

  13. 21 CFR 179.30 - Radiofrequency radiation for the heating of food, including microwave frequencies.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 3 2011-04-01 2011-04-01 false Radiofrequency radiation for the heating of food... PRODUCTION, PROCESSING AND HANDLING OF FOOD Radiation and Radiation Sources § 179.30 Radiofrequency radiation for the heating of food, including microwave frequencies. Radiofrequency radiation, including...

  14. 21 CFR 179.30 - Radiofrequency radiation for the heating of food, including microwave frequencies.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 3 2010-04-01 2009-04-01 true Radiofrequency radiation for the heating of food... PRODUCTION, PROCESSING AND HANDLING OF FOOD Radiation and Radiation Sources § 179.30 Radiofrequency radiation for the heating of food, including microwave frequencies. Radiofrequency radiation, including...

  15. Synthesis of WC powder through microwave heating of WO3-C mixture

    NASA Astrophysics Data System (ADS)

    Behnami, Amir Karimzadeh; Hoseinpur, Arman; Sakaki, Masoud; Bafghi, Mohammad Sh.; Yanagisawa, Kazumichi

    2017-02-01

    A simple, easy, and low-cost process for the fabrication of tungsten carbide (WC) powder through microwave heating of WO3-C mixtures was developed. Thermodynamic calculations and experimental investigations were carried out for WO3-C and W-C systems, and a formation mechanism was proposed. In the results, for the synthesis of WC, the use of over stoichiometric amount of C together with a specially assembled experimental setup (which effectively retains heat in the system) is necessary. The WC powder is successfully obtained by heating WO3:5C mixture for 900 s in a domestic microwave oven.

  16. Evaluation the microwave heating of spinel crystals in high-level waste glass

    SciTech Connect

    Christian, J. H.; Washington, A. L.

    2015-08-18

    In this report, the microwave heating of a crystal-free and a partially (24 wt%) trevorite-crystallized waste glass simulant were evaluated. The results show that a 500 mg piece of partially crystallized waste glass can be heated from room-temperature to above 1600 °C (as measured by infrared radiometry) within 2 minutes using a single mode, highly focused, 2.45 GHz microwave, operating at 300 W. X-ray diffraction measurements show that the partially crystallized glass experiences an 87 % reduction in trevorite following irradiation and thermal quenching. When a crystal-free analogue of the same waste glass simulant composition is exposed to the same microwave radiation it could not be heated above 450 °C regardless of the heating time.

  17. Practical evaluations on heating characteristics of thin microwave antenna for intracavitary thermal therapy.

    PubMed

    Saito, Kazuyuki; Tsubouchi, Kousuke; Takahashi, Masaharu; Ito, Koichi

    2010-01-01

    Microwave thermal therapy is one of the modalities for cancer treatment. There are several schemes of microwave heating. The authors have been studying thin coaxial antenna for intracavitary microwave heating aiming at the treatment of bile duct carcinoma. Up to now, the heating characteristics of the antenna are investigated by numerical simulation and experiment for finding a possibility of the treatment. In this study, in order to consider practical situations of the treatment, heating characteristics of the antenna inserted into a metallic stent is evaluated by numerical simulations. Moreover, the relation between coagulation size of the tissue and the radiation power from the antenna is investigated experimentally. It must be considered, when the input power of the antenna is high (around several tens of watts). From these investigations, some useful results for practical treatments were found.

  18. Method for curing polymers using variable-frequency microwave heating

    DOEpatents

    Lauf, Robert J.; Bible, Don W.; Paulauskas, Felix L.

    1998-01-01

    A method for curing polymers (11) incorporating a variable frequency microwave furnace system (10) designed to allow modulation of the frequency of the microwaves introduced into a furnace cavity (34). By varying the frequency of the microwave signal, non-uniformities within the cavity (34) are minimized, thereby achieving a more uniform cure throughout the workpiece (36). A directional coupler (24) is provided for detecting the direction of a signal and further directing the signal depending on the detected direction. A first power meter (30) is provided for measuring the power delivered to the microwave furnace (32). A second power meter (26) detects the magnitude of reflected power. The furnace cavity (34) may be adapted to be used to cure materials defining a continuous sheet or which require compressive forces during curing.

  19. Method for curing polymers using variable-frequency microwave heating

    DOEpatents

    Lauf, R.J.; Bible, D.W.; Paulauskas, F.L.

    1998-02-24

    A method for curing polymers incorporating a variable frequency microwave furnace system designed to allow modulation of the frequency of the microwaves introduced into a furnace cavity is disclosed. By varying the frequency of the microwave signal, non-uniformities within the cavity are minimized, thereby achieving a more uniform cure throughout the workpiece. A directional coupler is provided for detecting the direction of a signal and further directing the signal depending on the detected direction. A first power meter is provided for measuring the power delivered to the microwave furnace. A second power meter detects the magnitude of reflected power. The furnace cavity may be adapted to be used to cure materials defining a continuous sheet or which require compressive forces during curing. 15 figs.

  20. Efficiency of Microwave Heating of Weakly Loaded Polymeric Nanocomposites (Postprint)

    DTIC Science & Technology

    2012-05-10

    shielding and radar absorption [5]. Interaction of carbon nanotubes with microwaves is a subject of active ongoing research, 2 and the...mechanism of the microwave absorption by carbon nanotubes is still poorly understood [6-8]. Low thermal conductivity materials with controlled...and RAS design simulation. Composites Science and Technology. 70(2): p. 400‐409. 6. Vázquez, E. and M. Prato, Carbon Nanotubes and

  1. Calibration of temperature measurement by infrared pyrometry in microwave heating of powder materials: an exothermic reaction based approach.

    PubMed

    Luo, S D; Yang, Y F; Schaffer, G B; Qian, M

    2013-01-01

    Accurate temperature measurement remains a challenge for microwave heating of powder materials. We propose a temperature calibration method based on exothermic reactions and the resultant thermal runaway that occurs during microwave heating. The approach was demonstrated on microwave heating of four titanium alloys. Differential scanning calorimetry was used to determine the threshold reaction temperature for each selected titanium alloy. This served as a standard for the microwave heating of these titanium alloys. Infrared pyrometric temperature measurements were then calibrated by comparing the starting temperature of each thermal runaway event with the threshold reaction temperature.

  2. Improvement of coal water slurry property through coal physicochemical modifications by microwave irradiation and thermal heat

    SciTech Connect

    Jun Cheng; Junhu Zhou; Yanchang Li; Jianzhong Liu; Kefa Cen

    2008-07-15

    To improve the coal water slurry (CWS) property made from Chinese Shenhua coal with high inherent moisture and oxygen contents, microwave irradiation and thermal heat were employed to modify the coal physicochemical property. Microwave irradiation reduces the inherent moisture and reforms the oxygenic function groups, while it decreases the total specific surface area. Thermal heat markedly decreases the inherent moisture, volatile, and oxygen contents, while it dramatically increases the total specific surface area. Therefore, microwave irradiation gives a higher CWS concentration and a better rheological behavior than thermal heat, while it remarkably reduces the operation time and energy consumption. The maximum CWS concentration given by microwave irradiation at 420 W for 60 s is 62.14%, which is not only higher than that of 60.41% given by thermal heat at 450{sup o}C for 0.5 h but also higher than the initial 58.23%. Meanwhile, the minimum shear stress given by microwave irradiation is 36.4 Pa at the shear rate of 100 s{sup -1}, which is not only lower than that of 42.4 Pa given by thermal heat but also lower than the initial 79.8 Pa. The minimum unit energy consumption of 0.115 kWh/(kg of coal) and electricity cost of 4.6 U.S. $/(ton of coal) for CWS concentration promotion by 1% are obtained at 420 W for 20 s in the microwave oven. The unit energy consumptions for CWS concentration promotion and inherent moisture removal by thermal heat are, respectively, 214 and 22.5 times higher than those by microwave irradiation, while the energy use efficiencies are on the converse. 27 refs., 11 figs., 2 tabs.

  3. An experimental study of waveguide coupled microwave heating with conventional multicusp negative ion sources

    NASA Astrophysics Data System (ADS)

    Komppula, J.; Kalvas, T.; Koivisto, H.; Laulainen, J.; Tarvainen, O.

    2015-04-01

    Negative ion production with conventional multicusp plasma chambers utilizing 2.45 GHz microwave heating is demonstrated. The experimental results were obtained with the multicusp plasma chambers and extraction systems of the RF-driven RADIS ion source and the filament driven arc discharge ion source LIISA. A waveguide microwave coupling system, which is almost similar to the one used with the SILHI ion source, was used. The results demonstrate that at least one third of negative ion beam obtained with inductive RF-coupling (RADIS) or arc discharge (LIISA) can be achieved with 1 kW of 2.45 GHz microwave power in CW mode without any modification of the plasma chamber. The co-extracted electron to H- ratio and the optimum pressure range were observed to be similar for both heating methods. The behaviour of the plasma implies that the energy transfer from the microwaves to the plasma electrons is mainly an off-resonance process.

  4. A Phase-Shifting Method for Improving the Heating Uniformity of Microwave Processing Materials

    PubMed Central

    Liao, Yinhong; Lan, Junqing; Zhang, Chun; Hong, Tao; Yang, Yang; Huang, Kama; Zhu, Huacheng

    2016-01-01

    Microwave processing of materials has been found to deliver enormous advantages over conventional processing methods in terms of mechanical and physical properties of the materials. However, the non-uniform temperature distribution is the key problem of microwave processing, which is related to the structure of the cavity, and the placement and physical parameters of the material. In this paper, a new microwave cavity structure with a sliding short based on phase-shifting heating is creatively proposed to improve the temperature uniformity. An electronic mathematical model based on the Finite Element Method (FEM) is built to predict the temperature distribution. Meanwhile, a new computational approach based on the theory of transformation optics is first provided to solve the problem of the moving boundary in the model simulation. At first, the experiment is carried out to validate the model, and heating results from the experiment show good agreement with the model’s prediction. Based on the verified model, materials selected among a wide range of dielectric constants are treated by stationary heating and phase-shifting heating. The coefficient of variation (COV) of the temperature and temperature difference has been compared in detail between stationary heating and phase-shifting heating. A significant improvement in heating uniformity can be seen from the temperature distribution for most of the materials. Furthermore, three other materials are also treated at high temperature and the heating uniformity is also improved. Briefly, the strategy of phase-shifting heating plays a significant role in solve the problem of non-uniform heating in microwave-based material processing. A 25%–58% increase in uniformity from adapting the phase-shifting method can be observed for the microwave-processed materials. PMID:28773433

  5. Microwave heating enhances antioxidant and emulsifying activities of ovalbumin glycated with glucose in solid-state.

    PubMed

    Tu, Zong-Cai; Hu, Yue-Ming; Wang, Hui; Huang, Xiao-Qin; Xia, Shi-Qi; Niu, Pei-Pei

    2015-03-01

    The aim of this study was to characterize the properties of ovalbumin (OVA) after glycated with glucose under microwave heating. For this purpose, microwave at 480 and 640 W power levels were used for heating the OVA-glucose system in solid-state for 0, 5, 10, 15, 20 and 25 min, respectively. The results indicated that the protein molecular weight was increased after glycated with glucose under microwave treatment, the pH of the system was decreased with the increase of microwave treatment power and time, while the UV absorbance, browning intensity, antioxidant activities as well as the emulsifying activity and emulsion stability of the Maillard reaction products (MRPs) were increased in according with the raise of microwave treatment power and time. The reaction time of microwave treatment is much shorter than those using traditional methods, suggesting that microwave irradiation is a novel and efficient approach to promote Maillard reaction (MR) in dry state and improve protein antioxidant and functional properties.

  6. Optimization of Microwave Roasting for Dechlorination of CuCl Residue under Oxygen-Enriched Condition

    NASA Astrophysics Data System (ADS)

    Zhanyong, Guo; Shaohua, Ju; Jinhui, Peng; Libo, Zhang; Ting, Lei

    2016-02-01

    The clean utilization of the residue containing chloride, such as zinc oxide dust and CuCl residue, produced from zinc hydrometallurgy is very important for the recycle of valuable metals. In this paper, a new technology for dechlorination of the CuCl residue through thermal treatment with application of microwave and oxygen-enriched air roasting is brought out. And the response surface methodology (RSM) based on five-level, three-variable and central composite design (CCD) was used to optimize the operation parameters for increasing the dechlorination efficiency. The effects of temperature, roasting time and oxygen consumption on the dechlorination efficiency were studied and the optimal process conditions were identified. In addition, X-ray diffraction (XRD), scanning electron microscope (SEM) and Raman spectroscopy were used to characterize the dechlorination process under the optimum condition. The results showed that the experimental data were fitted to a second-order polynomial equation. The optimized process conditions are identified to be a roasting temperature of 451°, heating duration of 114 min and oxygen consumption of 2.4 times the theoretical oxygen demand. A dechlorination efficiency of 96.4% could be achieved at the optimal process conditions.

  7. Dielectric properties and carbothermic reduction of zinc oxide and zinc ferrite by microwave heating

    PubMed Central

    Fabritius, Timo; Heikkinen, Eetu-Pekka; Chen, Guo

    2017-01-01

    This paper aims to study the dielectric properties and carbothermic reduction of zinc oxide (zincite, ZnO) and zinc ferrite (franklinite, ZnFe2O4) by microwave heating. To achieve this aim, the dielectric properties were measured with an open-ended coaxial method to understand the behaviour of the samples under microwave irradiation. The effects of microwave power, duration time and sample mass on the heating rate, and the effects of the stoichiometric amount of graphite on the reduction of ZnO and decomposition of ZnFe2O4 were investigated. The results show that ZnFe2O4 has significantly higher dielectric properties compared to ZnO. Generally, for both samples, the dielectric values at room temperature were quite low, indicating that both ZnO and ZnFe2O4 are poor microwave absorbers. It was found that the temperatures have a more significant effect on the imaginary permittivities than on the real permittivities. The heating rate showed that the sample temperature increased with increase in microwave power and sample mass. Using 700 W of microwave power and two times the stoichiometric amount of graphite, almost complete reduction of ZnO was achieved in 12 min, while ZnFe2O4 completely decomposed to zincite and wustite in 3 min.

  8. Dielectric properties and carbothermic reduction of zinc oxide and zinc ferrite by microwave heating.

    PubMed

    Omran, Mamdouh; Fabritius, Timo; Heikkinen, Eetu-Pekka; Chen, Guo

    2017-09-01

    This paper aims to study the dielectric properties and carbothermic reduction of zinc oxide (zincite, ZnO) and zinc ferrite (franklinite, ZnFe2O4) by microwave heating. To achieve this aim, the dielectric properties were measured with an open-ended coaxial method to understand the behaviour of the samples under microwave irradiation. The effects of microwave power, duration time and sample mass on the heating rate, and the effects of the stoichiometric amount of graphite on the reduction of ZnO and decomposition of ZnFe2O4 were investigated. The results show that ZnFe2O4 has significantly higher dielectric properties compared to ZnO. Generally, for both samples, the dielectric values at room temperature were quite low, indicating that both ZnO and ZnFe2O4 are poor microwave absorbers. It was found that the temperatures have a more significant effect on the imaginary permittivities than on the real permittivities. The heating rate showed that the sample temperature increased with increase in microwave power and sample mass. Using 700 W of microwave power and two times the stoichiometric amount of graphite, almost complete reduction of ZnO was achieved in 12 min, while ZnFe2O4 completely decomposed to zincite and wustite in 3 min.

  9. Detecting breast cancer using microwave imaging and stochastic optimization.

    PubMed

    Jeremic, Aleksandar; Khoshrowshahli, Elham

    2015-01-01

    Breast cancer detection is one of the most important problems in health care as it is second most frequent cancer according to WHO. Breast cancer is among cancers which are most probably curable, only if it is diagnosed at early stages. To this purpose it has been recently proposed that microwave imaging could be used as a cheaper and safer alternative to the commonly used combination of mammography. From a physical standpoint breast cancer can be modelled as a scatterer with a significantly (tenfold) larger conductivity than a healthy tissue. In our previous work we proposed a maximum likelihood based method for detection of cancer which estimates the unknown parameters by minimizing the residual error vector assuming that the error can be modelled as a multivariate (multiple antennas) random variable. In this paper we utilize stochastic optimization technique and evaluate its applicability to the detection of cancer using numerical models. Although these models have significant limitations they are potentially useful as they provide insight in required levels of noise in order to achieve desirable detection rates.

  10. Optimization of microwave-assisted enzymatic extraction of polysaccharides from the fruit of Schisandra chinensis Baill.

    PubMed

    Cheng, Zhenyu; Song, Haiyan; Yang, Yingjie; Liu, Yan; Liu, Zhigang; Hu, Haobin; Zhang, Yang

    2015-05-01

    A microwave-assisted enzymatic extraction (MAEE) method had been developed, which was optimized by response surface methodology (RSM) and orthogonal test design, to enhance the extraction of crude polysaccharides (CPS) from the fruit of Schisandra chinensis Baill. The optimum conditions were as follows: microwave irradiation time of 10 min, extraction pH of 4.21, extraction temperature of 47.58°C, extraction time of 3h and enzyme concentration of 1.5% (wt% of S. chinensis powder) for cellulase, papain and pectinase, respectively. Under these conditions, the extraction yield of CPS was 7.38 ± 0.21%, which was well in close agreement with the value predicted by the model. The three methods including heat-refluxing extraction (HRE), ultrasonic-assisted extraction (UAE) and enzyme-assisted extraction (EAE) for extracting CPS by RSM were further compared. Results indicated MAEE method had the highest extraction yields of CPS at lower temperature. It was indicated that the proposed approach in this study was a simple and efficient technique for extraction of CPS in S. chinensis Baill.

  11. Thermoelectric properties of bulk MoSi2 synthesized by solid state microwave heating

    NASA Astrophysics Data System (ADS)

    Lan, Yu; Xie, Mianyu; Ouyang, Ting; Yue, Song

    2016-07-01

    In this research, single phase α-MoSi2 was prepared by solid state hybrid microwave heating within 90 min at relatively low temperature 1273 K. Such precursor powders were then ball milled and sintered by microwave heating at different temperatures. The thermoelectric (TE) properties of MoSi2 bulks were investigated in the temperature range of 300-673 K. When the sintering temperature increases from 973 K to 1273 K, the electrical resistivity decreases significantly and the Seebeck coefficients increase obviously, leading to the maximum TE powder factor of 6.2 × 10-6Wm-1K-2 at 673 K. These results demonstrate the feasibility of high efficient and economical synthesis of MoSi2 by microwave heating technique, with the final products having comparable TE performance in comparison to those from typical methods with long duration and energy-extensive consumption.

  12. Preparation of modified semi-coke by microwave heating and adsorption kinetics of methylene blue.

    PubMed

    Wang, Xin; Peng, Jin-Hui; Duan, Xin-Hui; Srinivasakannan, Chandrasekar

    2013-01-01

    Preparation of modified semi-coke has been achieved, using phosphoric acid as the modifying agent, by microwave heating from virgin semi-coke. Process optimization using a Central Composite Design (CCD) design of Response Surface Methodology (RSM) technique for the preparation of modifies semi-coke is presented in this paper. The optimum conditions for producing modified semi-coke were: concentration of phosphoric acid 2.04, heating time 20 minutes and temperature 587 degrees C, with the optimum iodine of 862 mg/g and yield of 47.48%. The textural characteristics of modified semi-coke were analyzed using scanning electron microscopy (SEM) and nitrogen adsorption isotherm. The BET surface area of modified semi-coke was estimated to be 989.60 m2/g, with the pore volume of 0.74 cm3/g and a pore diameter of 3.009 nm, with micro-pore volume contributing to 62.44%. The Methylene Blue monolayer adsorption capacity was found to be mg/g at K. The adsorption capacity of the modified semi-coke highlights its suitability for liquid phase adsorption application with a potential usage in waste water treatment.

  13. Gas heating effects on the formation and propagation of a microwave streamer in air

    NASA Astrophysics Data System (ADS)

    Kourtzanidis, Konstantinos; Rogier, François; Boeuf, Jean-Pierre

    2015-09-01

    The development of microwave plasma streamers at 110 GHz in atmospheric pressure air is numerically investigated taking into account the intense gas heating and its effects on the plasma formation and dynamics. The simulations are based on an implicit finite difference time domain formulation of Maxwell's equations coupled with a simple plasma fluid model and a real gas Euler equation solver. The numerical results show how the formation of a shock wave due to the large microwave power absorbed by the plasma and converted into gas heating strongly modifies the streamer elongation and dynamics. A microwave streamer filament stretches along its axis because of ionization-diffusion mechanisms in the enhanced electric field at the streamer tips. The change in the gas density distribution associated with the formation of shock wave due to gas heating strongly modifies the ionization and diffusion mechanisms and tends to limit the on-axis microwave streamer elongation by enhancing resonance effects. The simulations suggest that gas heating effects also play an important role in the observed bending or branching of microwave streamers after they have reached a critical length.

  14. Influence of microwave heating on fluoride, chloride, nitrate and sulfate concentrations in water.

    PubMed

    Figueiredo, Eduardo Costa; Dias, Jailson Cardoso; Kubota, Lauro Tatsuo; Korn, Mauro; Oliveira, Pedro Vitoriano; Arruda, Marco Aurélio Zezzi

    2011-10-15

    This paper describes a study about the influence of microwave radiation using closed vessels on fluoride, chloride, nitrate and sulfate concentrations in aqueous media. The experiments were processed by heating water using PFA vessels and a microwave cavity oven, determining the anions by ion chromatography. The influence of the exposure time, the atmospheric composition, the kind of heating (water bath or microwave radiation) and the possible formation of hydrogen peroxide were investigated. The limits of quantification for fluoride, chloride, nitrate and sulfate were respectively of 0.17, 0.15, 0.55 and 0.57 μg L(-1), and precision, expressed as RSD, was <4% for all considered anions. The hydrogen peroxide was quantified by spectrophotometry, and the limit of quantification and precision were 24 μg L(-1) and <5% (n=10), respectively. The results demonstrate a significant increase in the anion concentration levels (between 63 and 89%) when microwave heating was used in comparison with heating by water bath. In addition, these changes observed can be mainly attributed to the species transfers, either between gaseous (atmospheric gases) and liquid (water) phases for nitrate, or between vessels walls and water for fluoride, chloride and sulfate. Additionally, hydrogen peroxide concentration higher than 45 μg L(-1) was determined when water was exposed to microwave radiation.

  15. Absorption of intense microwaves and ion acoustic turbulence due to heat transport

    SciTech Connect

    De Groot, J.S.; Liu, J.M.; Matte, J.P.

    1994-02-04

    Measurements and calculations of the inverse bremsstrahlung absorption of intense microwaves are presented. The isotropic component of the electron distribution becomes flat-topped in agreement with detailed Fokker-Planck calculations. The plasma heating is reduced due to the flat-topped distributions in agreement with calculations. The calculations show that the heat flux at high microwave powers is very large, q{sub max} {approx} 0.3 n{sub e}v{sub e}T{sub e}. A new particle model to, calculate the heat transport inhibition due to ion acoustic turbulence in ICF plasmas is also presented. One-dimensional PIC calculations of ion acoustic turbulence excited due to heat transport are presented. The 2-D PIC code is presently being used to perform calculations of heat flux inhibition due to ion acoustic turbulence.

  16. Dual-mode antenna array for microwave heating and noninvasive thermometry of superficial tissue disease

    NASA Astrophysics Data System (ADS)

    Stauffer, Paul R.; Jacobsen, Svein; Rossetto, Francesca; Diederich, Chris J.; Neuman, Daniel

    1999-05-01

    Hyperthermia therapy of superficial skin disease has proven clinically useful, but current heating equipment is clumsy and technically inadequate for many patients. The present effort describes a dual purpose multielement conformal array microwave applicator that is fabricated from flexible printed circuit board (PCB) material to facilitate heating of large surface areas overlying contoured anatomy. Preliminary studies document the feasibility of combining concentric spiral microstrip antennas within multilayer PCB material in order to achieve tissue heating simultaneously with non-invasive thermometry by radiometric sensing of blackbody radiation from the target tissue under the applicator. Results demonstrate that superficial tissue regions may be heated uniformly above 50% of SARmax out to the periphery of 915 MHz conformal array applicators made from arrays of Dual Concentric Conductor apertures. Finally the data clearly demonstrate that separate complimentary antenna structures may be combined together in thin and lightweight conformal arrays to provide heating simultaneously with microwave radiometry based temperature monitoring of superficial tissue.

  17. Preliminary comparative studies of Thermus aquaticus resilience to thermal and microwave heat input

    NASA Astrophysics Data System (ADS)

    Kabza, Konrad; George, Karen; von Meer, Stella; Kargol, Armin

    2008-03-01

    Thermus aquaticus was grown using existing ATCC protocol. Bacteria were cultured in large batches and each batch partitioned into usable 250 mL aliquots. These samples were then tested using identical parallel experiments, one heated with a traditional thermal heat source, while the other was irradiated with a 2.45 GHz conventional microwave oven. Relative growth of the Thermus aquaticus was measured using UV visible spectroscopy at 400 nm. Multiple runs of the same experiments were averaged and the growth data for two modes of energization plotted. A unique low microwave exposure apparatus with a flow-through cell will be described and the entire experimental setup discussed.

  18. Size limitations for microwave cavity to simulate heating of blanket material in fusion reactor

    SciTech Connect

    Wolf, D.

    1987-01-01

    The power profile in the blanket material of a nuclear fusion reactor can be simulated by using microwaves at 200 MHz. Using these microwaves, ceramic breeder materials can be thermally tested to determine their acceptability as blanket materials without entering a nuclear fusion environment. A resonating cavity design is employed which can achieve uniform cross sectional heating in the plane transverse to the neutron flux. As the sample size increases in height and width, higher order modes, above the dominant mode, are propagated and destroy the approximation to the heating produced in a fusion reactor. The limits at which these modes develop are determined in the paper.

  19. The research of ceramic materials for applications in the glass industry including microwave heating techniques

    NASA Astrophysics Data System (ADS)

    Kogut, K.; Kasprzyk, K.; Zboromirska-Wnukiewicz, B.; Ruziewicz, T.

    2016-02-01

    The melting of a glass is a very energy-intensive process. Selection of energy sources, the heating technique and the method of heating recovery are a fundamental issue from the furnace design point of view of and economic effectiveness of the process. In these processes the problem constitutes the lack of the appropriate ceramic materials that would meet the requirements. In this work the standard ceramic materials were examined and verified. The possibilities of application of microwave techniques were evaluated. In addition the requirements regarding the parameters of new ceramic materials applied for microwave technologies were determined.

  20. Simulation and measurement of optimized microwave reflectivity for carbon nanotube absorber by controlling electromagnetic factors.

    PubMed

    Zhang, Danfeng; Hao, Zhifeng; Qian, Yannan; Huang, Yinxin; Bizeng; Yang, Zhenda; Qibai, Wu

    2017-03-28

    Heat-treatments may change the defect and surface organic groups of carbon nanotubes (CNTs), and lead to significant changes in the microwave electromagnetic parameter of CNTs. In this paper, the effect of heat-treatment time and temperature on the complex dielectric constant and permeability as well as the microwave reflectivity of CNTs was investigated. The experimental results indicated that the microwave absorption property of CNTs arises mainly from the high permittivity and consequent dielectric loss. Moreover, the heat-treatment resulted in increased dielectric constant of CNTs and significant improvement of the microwave absorption at frequency values of 2-18 GHz. The microwave reflectivity of CNT composites with a coating thickness of 3 mm was simulated by using the electromagnetic parameters. The absorption peak of CNTs treated at 700 °C had an amplitude of R = -48 dB, which occurred at 9 GHz. Below -10 dB, the composites treated at 900 °C had a bandwidth of 7 GHz. The position of the absorption peak concurred with the measured results. The results indicated that the microwave-absorption properties can be modified by adjusting heat-treatment temperature and time.

  1. Optimal Ground Source Heat Pump System Design

    SciTech Connect

    Ozbek, Metin; Yavuzturk, Cy; Pinder, George

    2015-04-01

    Despite the facts that GSHPs first gained popularity as early as the 1940’s and they can achieve 30 to 60 percent in energy savings and carbon emission reductions relative to conventional HVAC systems, the use of geothermal energy in the U.S. has been less than 1 percent of the total energy consumption. The key barriers preventing this technically-mature technology from reaching its full commercial potential have been its high installation cost and limited consumer knowledge and trust in GSHP systems to deliver the technology in a cost-effective manner in the market place. Led by ENVIRON, with support from University Hartford and University of Vermont, the team developed and tested a software-based a decision making tool (‘OptGSHP’) for the least-cost design of ground-source heat pump (‘GSHP’) systems. OptGSHP combines state of the art optimization algorithms with GSHP-specific HVAC and groundwater flow and heat transport simulation. The particular strength of OptGSHP is in integrating heat transport due to groundwater flow into the design, which most of the GSHP designs do not get credit for and therefore are overdesigned.

  2. Mechanism for microwave heating of 1-(4‧-cyanophenyl)-4-propylcyclohexane characterized by in situ microwave irradiation NMR spectroscopy

    NASA Astrophysics Data System (ADS)

    Tasei, Yugo; Yamakami, Takuya; Kawamura, Izuru; Fujito, Teruaki; Ushida, Kiminori; Sato, Motoyasu; Naito, Akira

    2015-05-01

    Microwave heating is widely used to accelerate organic reactions and enhance the activity of enzymes. However, the detailed molecular mechanism for the effect of microwave on chemical reactions is not yet fully understood. To investigate the effects of microwave heating on organic compounds, we have developed an in situ microwave irradiation NMR spectroscopy. 1H NMR spectra of 1-(4‧-cyanophenyl)-4-propylcyclohexane (PCH3) in the liquid crystalline and isotropic phases were observed under microwave irradiation. When the temperature was regulated at slightly higher than the phase transition temperature (Tc = 45 °C) under a gas flow temperature control system, liquid crystalline phase mostly changed to the isotropic phase. Under microwave irradiation and with the gas flow temperature maintained at 20 °C, which is 25 °C below the Tc, the isotropic phase appeared stationary as an approximately 2% fraction in the liquid crystalline phase. The temperature of the liquid crystalline state was estimated to be 38 °C according to the line width, which is at least 7 °C lower than the Tc. The temperature of this isotropic phase should be higher than 45 °C, which is considered to be a non-equilibrium local heating state induced by microwave irradiation. Microwaves at a power of 195 W were irradiated to the isotropic phase of PCH3 at 50 °C and after 2 min, the temperature reached 220 °C. The temperature of PCH3 under microwave irradiation was estimated by measurement of the chemical shift changes of individual protons in the molecule. These results demonstrate that microwave heating generates very high temperature within a short time using an in situ microwave irradiation NMR spectrometer.

  3. Investigation of Rapid Low-Power Microwave-Induction Heating Scheme on the Cross-Linking Process of the Poly(4-vinylphenol) for the Gate Insulator of Pentacene-Based Thin-Film Transistors.

    PubMed

    Fan, Ching-Lin; Shang, Ming-Chi; Wang, Shea-Jue; Hsia, Mao-Yuan; Lee, Win-Der; Huang, Bohr-Ran

    2017-07-03

    In this study, a proposed Microwave-Induction Heating (MIH) scheme has been systematically studied to acquire suitable MIH parameters including chamber pressure, microwave power and heating time. The proposed MIH means that the thin indium tin oxide (ITO) metal below the Poly(4-vinylphenol) (PVP) film is heated rapidly by microwave irradiation and the heated ITO metal gate can heat the PVP gate insulator, resulting in PVP cross-linking. It is found that the attenuation of the microwave energy decreases with the decreasing chamber pressure. The optimal conditions are a power of 50 W, a heating time of 5 min, and a chamber pressure of 20 mTorr. When suitable MIH parameters were used, the effect of PVP cross-linking and the device performance were similar to those obtained using traditional oven heating, even though the cross-linking time was significantly decreased from 1 h to 5 min. Besides the gate leakage current, the interface trap state density (Nit) was also calculated to describe the interface status between the gate insulator and the active layer. The lowest interface trap state density can be found in the device with the PVP gate insulator cross-linked by using the optimal MIH condition. Therefore, it is believed that the MIH scheme is a good candidate to cross-link the PVP gate insulator for organic thin-film transistor applications as a result of its features of rapid heating (5 min) and low-power microwave-irradiation (50 W).

  4. Investigation of Rapid Low-Power Microwave-Induction Heating Scheme on the Cross-Linking Process of the Poly(4-vinylphenol) for the Gate Insulator of Pentacene-Based Thin-Film Transistors

    PubMed Central

    Fan, Ching-Lin; Shang, Ming-Chi; Wang, Shea-Jue; Hsia, Mao-Yuan; Lee, Win-Der; Huang, Bohr-Ran

    2017-01-01

    In this study, a proposed Microwave-Induction Heating (MIH) scheme has been systematically studied to acquire suitable MIH parameters including chamber pressure, microwave power and heating time. The proposed MIH means that the thin indium tin oxide (ITO) metal below the Poly(4-vinylphenol) (PVP) film is heated rapidly by microwave irradiation and the heated ITO metal gate can heat the PVP gate insulator, resulting in PVP cross-linking. It is found that the attenuation of the microwave energy decreases with the decreasing chamber pressure. The optimal conditions are a power of 50 W, a heating time of 5 min, and a chamber pressure of 20 mTorr. When suitable MIH parameters were used, the effect of PVP cross-linking and the device performance were similar to those obtained using traditional oven heating, even though the cross-linking time was significantly decreased from 1 h to 5 min. Besides the gate leakage current, the interface trap state density (Nit) was also calculated to describe the interface status between the gate insulator and the active layer. The lowest interface trap state density can be found in the device with the PVP gate insulator cross-linked by using the optimal MIH condition. Therefore, it is believed that the MIH scheme is a good candidate to cross-link the PVP gate insulator for organic thin-film transistor applications as a result of its features of rapid heating (5 min) and low-power microwave-irradiation (50 W). PMID:28773101

  5. A Review of Metal Injection Molding- Process, Optimization, Defects and Microwave Sintering on WC-Co Cemented Carbide

    NASA Astrophysics Data System (ADS)

    Shahbudin, S. N. A.; Othman, M. H.; Amin, Sri Yulis M.; Ibrahim, M. H. I.

    2017-08-01

    This article is about a review of optimization of metal injection molding and microwave sintering process on tungsten cemented carbide produce by metal injection molding process. In this study, the process parameters for the metal injection molding were optimized using Taguchi method. Taguchi methods have been used widely in engineering analysis to optimize the performance characteristics through the setting of design parameters. Microwave sintering is a process generally being used in powder metallurgy over the conventional method. It has typical characteristics such as accelerated heating rate, shortened processing cycle, high energy efficiency, fine and homogeneous microstructure, and enhanced mechanical performance, which is beneficial to prepare nanostructured cemented carbides in metal injection molding. Besides that, with an advanced and promising technology, metal injection molding has proven that can produce cemented carbides. Cemented tungsten carbide hard metal has been used widely in various applications due to its desirable combination of mechanical, physical, and chemical properties. Moreover, areas of study include common defects in metal injection molding and application of microwave sintering itself has been discussed in this paper.

  6. Investigation on microwave heating for direct leaching of chalcopyrite ores and concentrates

    NASA Astrophysics Data System (ADS)

    Onol, Kubra; Saridede, Muhlis Nezihi

    2013-03-01

    The use of microwave energy in materials processing is a relatively new development presenting numerous advantages because of the rapid heating feature. Microwave technology has great potential to improve the extraction efficiency of metals in terms of both a reduction in required leaching time and an increase in the recovery of valuable metals. This method is especially pertinent in view of the increased demand for environment-friendly processes. In the present study, the influence of microwave heating on the direct leaching of chalcopyrite ores and concentrates were investigated. The results of microwave leaching experiments were compared with those obtained under conventional conditions. During these processes, parameters such as leaching media, temperature, and time have been worked to determine the optimum conditions for proper copper dissolution. Experimental results show that microwave leaching is more efficient than conventional leaching. The optimum leaching conditions for microwave leaching are the solid-to-liquid ratio of 1:100 g/mL, the temperature of 140°C, the solution of 0.5 M H2SO4 + 0.05 M Fe2(SO4)3, and the time of 1 h.

  7. Development of heating method by microwave for sterilization of bone allografts.

    PubMed

    Uchiyama, Katsufumi; Ujihira, Masanobu; Mabuchi, Kiyoshi; Takahira, Naonobu; Komiya, Koichiro; Itoman, Moritoshi

    2005-01-01

    The purpose of this study was to develop a disinfection method using a microwave apparatus to treat large bone allografts. Heating of a bone allograft is an effective method for the disinfection of bacteria or inactivation of viruses. However, the size of the bone we can treat is limited, and following the popular method of using a bathtub is a lengthy process. The experimental system described here was designed using a microwave oven, an optical-fiber thermometer, and a power regulator. Large and small specimens, a femoral head, and a metatarsal were harvested from a bovine femur. The influence of size and the electrical or thermal characteristics of the specimens were assessed regarding temperature distribution after microwave irradiation. The effects of humidity or hot-air supply were also assessed. The average temperature of the bovine femoral head became 80 degrees C throughout the 15 min of microwave irradiation, although the temperature in the metatarsal did not attain uniformity. Microwave irradiation with a hot-air supply realized a uniform distribution of temperature at 83.0 degrees +/- 0.4 degrees C in the metatarsal within 15 min. Use of microwave irradiation enables quick heating for disinfection of large allograft bones when a hot-air supply was used as well.

  8. A microwave and ohmic combination heater for uniform heating of liquid-particle food mixtures.

    PubMed

    Choi, Won; Nguyen, Loc T; Lee, Seung Hyun; Jun, Soojin

    2011-01-01

    Microwave and ohmic combination heating was proposed to improve the uniformity of thermal processing of particulate foods. Thermal patterns of a liquid-particle mixture in a small test cell were studied using both experimental and simulation approaches. Carrot cubes (10 mm × 10 mm × 10 mm) and 0.1% NaCl salt solution were used as model foods. The temperature distribution of solid and liquid phases was examined using individual and combination heating methods. Under ohmic heating, the liquid was heated faster by 18.9 °C after 250 s. The heating rate of a carrot cube was faster than liquid under microwave heating and temperature rise of carrot was approximately 11.2 °C higher than that of solution after heating of 70 s. Samples experienced different heating patterns over time during the combination heating. Carrot samples showed a thermal lead initially when heated under microwave and the trend reversed during the second stage when ohmic heating was applied. Liquid-particle temperature difference was reduced as the combination heating proceeded, and came to be less than 2 °C at the end. Results obtained from simulation showed similar patterns and all prediction data agreed well with the experimental data. The prediction errors for sample temperatures ranged from 5.7% to 11.6%. The results provided better understanding for designing a continuous flow combination heater that can produce uniform temperature of solid-liquid mixtures. If successful, this combination heating technique will find its way to effective aseptic or sterile processing of low acid multiphase foods containing large particulates (such as soups with meatballs or vegetables) that has not been a commercial reality in the United States. © 2011 Institute of Food Technologists®

  9. Experimental study of temperature distribution in rubber material during microwave heating and vulcanization process

    NASA Astrophysics Data System (ADS)

    Chen, Hai-Long; Li, Tao; Liang, Yun; Sun, Bin; Li, Qing-Ling

    2016-07-01

    Microwave technology has been employed to heat sheet rubber, the optical fiber temperature online monitor and optical fiber temperature sensor have been employed to measure the temperature in sheet rubber. The temperature of sheet rubber increased with increase of heating time during microwave heating process in which the maximum of temperature was <100 °C and microwave vulcanization process in which the maximum of temperature was <150 °C, the curves of temperature-time presented nonlinearity. The rate of temperature rising in central zone of sheet rubber was higher than the rate of temperature rising in marginal zone of sheet rubber, and the final temperature in central zone of sheet rubber was also higher than the final temperature in marginal zone of sheet rubber. In the microwave heating and vulcanization process of sheet rubber, the maximum of rate of temperature rising and the maximum of temperature belong to the central zone of sheet rubber, so the distribution of electric field was uneven in heating chamber, which led to the uneven temperature distribution of sheet rubber. The higher electric field intensity value converges on the central zone of sheet rubber.

  10. Finite Element Analysis of Three Methods for Microwave Heating of Planetary Surfaces

    NASA Technical Reports Server (NTRS)

    Ethridge, Edwin; Kaukler, William

    2012-01-01

    In-Situ Resource Utilization will be Ground Breaking technology for sustained exploration of space. Volatiles are present in planetary regolith, but water by far has the most potential for effective utilization. The presence of water at the lunar poles and Mars opens the possibility of using the hydrogen for propellant on missions beyond Earth orbit. Likewise, the oxygen could be used for in-space propulsion for lunar ascent/descent and for space tugs from low lunar orbit to low Earth orbit. Water is also an effective radiation shielding material as well as a valuable expendable (water and oxygen) required for habitation in space. Because of the strong function of water vapor pressure with temperature, heating regolith effectively liberates water vapor by sublimation. Microwave energy will penetrate soil and heat from within, much more efficiently than heating from the surface with radiant heat. This is especially true under vacuum conditions since the heat transfer rate is very low. The depth of microwave penetration is a strong function of the microwave frequency and to a lesser extent on regolith dielectric properties. New methods for delivery of microwaves into lunar and planetary surfaces is being prototyped with laboratory experiments and modeled with COMSOL MultiPhysics. Recent results are discussed.

  11. A comparative study of infrared and microwave heating for microbial decontamination of paprika powder

    PubMed Central

    Eliasson, Lovisa; Isaksson, Sven; Lövenklev, Maria; Ahrné, Lilia

    2015-01-01

    There is currently a need in developing new decontamination technologies for spices due to limitations of existing technologies, mainly regarding their effects on spices’ sensory quality. In the search of new decontamination solutions, it is of interest to compare different technologies, to provide the industry with knowledge for taking decisions concerning appropriate decontamination technologies for spices. The present study compares infrared (IR) and microwave decontamination of naturally contaminated paprika powder after adjustment of water activity to 0.88. IR respectively microwave heating was applied to quickly heat up paprika powder to 98°C, after which the paprika sample was transferred to a conventional oven set at 98°C to keep the temperature constant during a holding time up to 20 min. In the present experimental set-up microwave treatment at 98°C for 20 min resulted in a reduction of 4.8 log units of the total number of mesophilic bacteria, while the IR treatment showed a 1 log unit lower reduction for the corresponding temperature and treatment time. Microwave and IR heating created different temperature profiles and moisture distribution within the paprika sample during the heating up part of the process, which is likely to have influenced the decontamination efficiency. The results of this study are used to discuss the difficulties in comparing two thermal technologies on equal conditions due to differences in their heating mechanisms. PMID:26483783

  12. Combined chromatographic and mass spectrometric toolbox for fingerprinting migration from PET tray during microwave heating.

    PubMed

    Alin, Jonas; Hakkarainen, Minna

    2013-02-13

    A combined chromatographic and mass spectrometric toolbox was utilized to determine the interactions between poly(ethylene terephthalate) (PET) food packaging and different food simulants during microwave heating. Overall and specific migration was determined by combining weight loss measurements with gas chromatography-mass spectrometry (GC-MS) and electrospray ionization mass spectrometry (ESI-MS). This allowed mapping of low molecular weight migrants in the molecular range up to 2000 g/mol. Microwave heating caused significantly faster migration of cyclic oligomers into ethanol and isooctane as compared to migration during conventional heating at the same temperature. This effect was more significant at lower temperature at which diffusion rates are generally lower. It was also shown that transesterification took place between PET and ethanol during microwave heating, leading to formation of diethyl terephthalate. The detected migrants included cyclic oligomers from dimer to hexamer, in most cases containing extra ethylene glycol units, and oxidized Irgafos 168. ESI-MS combined with CID MS-MS was an excellent tool for structural interpretation of the nonvolatile compounds migrating to the food simulants. The overall migration was below the overall migration limit of 10 mg/dm(2) set by the European commission after 4 h of microwave heating at 100 °C in all studied food simulants.

  13. Experimental study of temperature distribution in rubber material during microwave heating and vulcanization process

    NASA Astrophysics Data System (ADS)

    Chen, Hai-Long; Li, Tao; Liang, Yun; Sun, Bin; Li, Qing-Ling

    2017-03-01

    Microwave technology has been employed to heat sheet rubber, the optical fiber temperature online monitor and optical fiber temperature sensor have been employed to measure the temperature in sheet rubber. The temperature of sheet rubber increased with increase of heating time during microwave heating process in which the maximum of temperature was <100 °C and microwave vulcanization process in which the maximum of temperature was <150 °C, the curves of temperature-time presented nonlinearity. The rate of temperature rising in central zone of sheet rubber was higher than the rate of temperature rising in marginal zone of sheet rubber, and the final temperature in central zone of sheet rubber was also higher than the final temperature in marginal zone of sheet rubber. In the microwave heating and vulcanization process of sheet rubber, the maximum of rate of temperature rising and the maximum of temperature belong to the central zone of sheet rubber, so the distribution of electric field was uneven in heating chamber, which led to the uneven temperature distribution of sheet rubber. The higher electric field intensity value converges on the central zone of sheet rubber.

  14. Microwave injection and coupling optimization in ECR and MDIS ion sources

    NASA Astrophysics Data System (ADS)

    Torrisi, Giuseppe; Caruso, Antonio; Castro, Giuseppe; Celona, Luigi; Gammino, Santo; Leonardi, Ornella; Longhitano, Alberto; Mascali, David; Naselli, Eugenia; Neri, Lorenzo; Sorbello, Gino

    2017-07-01

    The fundamental aspect of coupling between microwave and plasma of the Electron Cyclotron Resonance Ion Source (ECRIS) and Microwave Discharge Ion Source (MDIS) is hereinafter treated together with “ad hoc” microwave-based plasma diagnostics, as a key element for the next progress and variations with respect to the classical ECR heating mechanism. The future challenges for the production of higher-charge states, higher beam intensity, and high absolute ionization efficiency also demand for the exploration of new heating schemes and synergy between experiments and modeling. An overview concerning microwave transport and coupling issues in plasma-based ion sources for particle accelerator will be given in the paper, along with perspectives for the design of next generation sources.

  15. Experimental and numerical evaluations on palm microwave heating for Red Palm Weevil pest control

    NASA Astrophysics Data System (ADS)

    Massa, Rita; Panariello, Gaetano; Pinchera, Daniele; Schettino, Fulvio; Caprio, Emilio; Griffo, Raffaele; Migliore, Marco Donald

    2017-03-01

    The invasive Red Palm Weevil is the major pest of palms. Several control methods have been applied, however concern is raised regarding the treatments that can cause significant environmental pollution. In this context the use of microwaves is particularly attractive. Microwave heating applications are increasingly proposed in the management of a wide range of agricultural and wood pests, exploiting the thermal death induced in the insects that have a thermal tolerance lower than that of the host matrices. This paper describes research aiming to combat the Red Palm pest using microwave heating systems. An electromagnetic-thermal model was developed to better control the temperature profile inside the palm tissues. In this process both electromagnetic and thermal parameters are involved, the latter being particularly critical depending on plant physiology. Their evaluation was carried out by fitting experimental data and the thermal model with few free parameters. The results obtained by the simplified model well match with both that of a commercial software 3D model and measurements on treated Phoenix canariensis palms with a ring microwave applicator. This work confirms that microwave heating is a promising, eco-compatible solution to fight the spread of weevil.

  16. Experimental and numerical evaluations on palm microwave heating for Red Palm Weevil pest control

    PubMed Central

    Massa, Rita; Panariello, Gaetano; Pinchera, Daniele; Schettino, Fulvio; Caprio, Emilio; Griffo, Raffaele; Migliore, Marco Donald

    2017-01-01

    The invasive Red Palm Weevil is the major pest of palms. Several control methods have been applied, however concern is raised regarding the treatments that can cause significant environmental pollution. In this context the use of microwaves is particularly attractive. Microwave heating applications are increasingly proposed in the management of a wide range of agricultural and wood pests, exploiting the thermal death induced in the insects that have a thermal tolerance lower than that of the host matrices. This paper describes research aiming to combat the Red Palm pest using microwave heating systems. An electromagnetic-thermal model was developed to better control the temperature profile inside the palm tissues. In this process both electromagnetic and thermal parameters are involved, the latter being particularly critical depending on plant physiology. Their evaluation was carried out by fitting experimental data and the thermal model with few free parameters. The results obtained by the simplified model well match with both that of a commercial software 3D model and measurements on treated Phoenix canariensis palms with a ring microwave applicator. This work confirms that microwave heating is a promising, eco-compatible solution to fight the spread of weevil. PMID:28361964

  17. Diversity-oriented synthesis and solid-phase organic synthesis under controlled microwave heating.

    PubMed

    Dai, Wei-Min; Shi, Jianyu

    2007-12-01

    Diversity-oriented organic synthesis (DOS) and solid-phase organic synthesis (SPOS) are proven technologies for generating small molecule libraries for chemical genetics studies. Integration of controlled microwave heating with DOS and SPOS not only speeds up the library preparation process but also offers unique opportunities in tackling issues which are hardly addressed by thermal heating. Microwave-assisted synthesis is illustrated for (a) highly regioselective Wittig olefination of cycloalkanones by accurate regulation of temperature; (b) tandem Wittig-IMDA sequence toward stereochemical diversity of gamma-butyrolactones; (c) one-pot alkylation-amidation approach toward appendage diversity through use of building blocks; and (d) one-pot U-4CR-annulation strategy toward skeletal diversity via careful reaction design. Microwave-assisted solid-phase organic synthesis (MASPOS) is highlighted by incorporating with split-pool combinatorial synthesis (SPCS) of indole sulfonamides via a key on-resin Cu(II)- or Pd(II)-catalyzed heteroannulation under microwave heating. Design and fabrication of a novel diglycine-derived catlinker are described and its role in facilitating on-resin reaction is evaluated. A traceless synthesis of indole sulfonamides via microwave-assisted Cu(II)-catalyzed heteroannulation of the catlinker-tethered substrates is also given.

  18. Synthesis of Rutile TiO2 from Panzhihua Sulfate Titanium Slag by Microwave Heating

    NASA Astrophysics Data System (ADS)

    Chen, Hufei; Chen, Guo; Wu, Yunqi; Peng, Jinhui; Srinivasakannan, C.; Chen, Jin

    2017-08-01

    This study aimed to assess the utilization of microwave heating for synthesis of rutile TiO2 by employing sulfate titanium slag produced by Panzhihua Iron and Steel Research Institute. To this end, the properties of sulfate titanium slag before and after microwave treatment, i.e., its crystal structure, surface microstructure, and surface chemical functional groups, were characterized by x-ray diffraction (XRD), scanning electron microscopy (SEM), and Fourier transformation infrared (FT-IR) spectroscopy, respectively. Results of XRD analysis showed that the anosovite phase of the sulfate titanium slag transformed to the rutile TiO2 phase under microwave heating at 1100°C for duration of 120 min. Correspondingly, the SEM images revealed that the surface of the sulfate titanium slag grew as a granular substance after microwave roasting. The granular substance was observed to be rutile TiO2 with a rod-shaped structure. FT-IR spectra demonstrated the occurrence of a blue shift at 472.15 cm-1, indicating phase transformation from anosovite to rutile TiO2 because of the roasting process. From the experimental results, it is concluded that microwave heating can be an effective and efficient approach for the synthesis of synthetic rutile TiO2 from sulfate titanium slag.

  19. Determination of volatile chemicals released from microwave-heat-susceptor food packaging.

    PubMed

    McNeal, T P; Hollifield, H C

    1993-01-01

    Microwave heat susceptors that convert electromagnetic energy to heat attain high temperatures that make it possible to cook some foods to golden crispness in a microwave oven. Susceptors are typically packaged with foods intended for microwave use, e.g., waffles, pizzas, and french fries. The high temperatures > 302 degrees F used to cook some foods release trace levels of volatile chemicals from metalized polyester film, adhesive, and paper packaging materials; these volatile chemicals may be absorbed by the food. We simulated microwave susceptor cooking conditions and developed protocols by using headspace concentration capillary gas chromatography and mass spectrometry to identify volatile chemicals released from heated susceptors. We purchased a limited, cross-sectional sample of local retail microwave food products packaged with susceptors and used our protocol to analyze 10 different susceptor products. Although more than 140 unique chromatographic peaks were tabulated, only 44 volatile chemicals were identified, including 1,1,1-trichloroethane, benzene, and 2-(2-butoxyethoxy)ethanol, which were derived primarily from the paper and adhesive susceptor components. No one susceptor contained all the identified substances. The standard additions technique was the preferred method for quantitation. Trichloroethane and 2-(2-butoxyethoxy)ethanol were present in several products at 75-122 micrograms/in.2 of susceptor surface area. Benzene was found in 3 susceptors at < or = 0.22 microgram/in.2 levels. Examination indicates that adhesives used in more recent susceptor products were reformulated to remove even this trace level of benzene.

  20. Atmospheric Latent Heating Distributions in the Tropics Derived from Satellite Passive Microwave Radiometer Measurements.

    NASA Astrophysics Data System (ADS)

    Olson, William S.; Kummerow, Christian D.; Hong, Ye; Tao, Wei-Kuo

    1999-06-01

    A method for the remote sensing of three-dimensional latent heating distributions in precipitating tropical weather systems from satellite passive microwave observations is presented. In this method, cloud model simulated hydrometeor/latent heating vertical profiles that have radiative characteristics consistent with a given set of multispectral microwave radiometric observations are composited to create a best estimate of the observed profile. An estimate of the areal coverage of convective precipitation within the radiometer footprint is used as an additional constraint on the contributing model profiles. This constraint leads to more definitive retrieved profiles of precipitation and latent heating in synthetic data tests.The remote sensing method is applied to Special Sensor Microwave/Imager (SSM/I) observations of tropical systems that occurred during the TOGA COARE Intensive Observing Period, and to observations of Hurricane Andrew (1992). Although instantaneous estimates of rain rates are high-biased with respect to coincident radar rain estimates, precipitation patterns are reasonably correlated with radar patterns, and composite rain rate and latent heating profiles show respectable agreement with estimates from forecast models and heat and moisture budget calculations. Uncertainties in the remote sensing estimates of precipitation/latent heating may be partly attributed to the relatively low spatial resolution of the SSM/I and a lack of microwave sensitivity to tenuous anvil cloud, for which upper-tropospheric latent heating rates may be significant. Estimated latent heating distributions in Hurricane Andrew exhibit an upper-level heating maximum that strengthens as the storm undergoes a period of intensification.

  1. Fundamental Study on Localized Heating in Hyperthermia Using Phase Control of Long-wavelength Microwaves

    NASA Astrophysics Data System (ADS)

    Matsumoto, Hiroshi; Ishida, Hiroki; Nakamoto, Satoshi; Takeno, Hiromasa; Yasaka, Yasuyoshi; Kawai, Shigeaki; Mitani, Tomohiko; Shinohara, Naoki; Namiki, Hironori

    For the treatment of cancer using hyperthermia, high frequency electromagnetic fields are used to heat the cancer cells. These electromagnetic fields fall into two general frequency ranges, one relatively low, and the other in the microwave range. Both produce some side effects such as the heating of healthy cells or the impact on the body of invasive surgery required to expose deep-lying cells. To reduce these side reactions, the use of lower microwave frequencies with phase control was proposed. In this paper, we present a very basic study to prove the viability of the proposed scheme. This includes the selection of a suitable frequency, demonstration of localized heating using the selected frequency, and a three-dimensional numerical analysis of the electromagnetic fields involved. In the heating demonstration, a tissue-equivalent phantom made from agar was irradiated by phase-controlled electromagnetic waves from a pair of circular patch antennas operating at 430MHz. This produced localized heating. The numerical analysis produced a field distribution that corresponded closely to the results from the heating experiment. It confirmed that the phase control technique for long-wavelength microwaves was effective in producing localized heating.

  2. Microwave heated resin injector for advanced composite production.

    PubMed

    Stanculovic, Sebastijan; Feher, Lambert

    2008-01-01

    A novel microwave (MW) injector at 2.45 GHz for resin infiltration has been developed at the Institute for Pulsed Power and Microwave Technology (IHM), Research Center Karlsruhe (FZK), Germany. Resin injection is an essential step in the production of carbon fibre reinforced plastics (CFRP) for aerospace applications. A compact, low-cost and automated MW injector provides an efficient and safe energy transfer from the MW source to the resin and supports an appropriate electromagnetic field structure for homogeneous infiltration. The system provides temperature monitoring and an automatized MW power switching, which ensures a fast response of the MW system to rapid changes in the temperature for high flow rates of the resin. In low power measurements with a vector network analyzer, the geometry of the injector cavity has been adjusted to provide an efficient system. The MW injector has been tested for specific resin systems infiltrations.

  3. Quantification of carbon nanotubes in different environmental matrices by a microwave induced heating method.

    PubMed

    He, Yang; Al-Abed, Souhail R; Dionysiou, Dionysios D

    2017-02-15

    Carbon nanotubes (CNTs) have been incorporated into numerous consumer products, and have also been employed in various industrial areas because of their extraordinary properties. The large scale production and wide applications of CNTs make their release into the environment a major concern. Therefore, it is crucial to determine the degree of potential CNT contamination in the environment, which requires a sensitive and accurate technique for selectively detecting and quantifying CNTs in environmental matrices. In this study, a simple device based on utilizing heat generated/temperature increase from CNTs under microwave irradiation was built to quantify single-walled CNTs (SWCNTs), multi-walled CNTs (MWCNTs) and carboxylated CNTs (MWCNT-COOH) in three environmentally relevant matrices (sand, soil and sludge). Linear temperature vs CNT mass relationships were developed for the three environmental matrices spiked with known amounts of different types of CNTs that were then irradiated in a microwave at low energies (70-149W) for a short time (15-30s). MWCNTs had a greater microwave response in terms of heat generated/temperature increase than SWCNTs and MWCNT-COOH. An evaluation of microwave behavior of different carbonaceous materials showed that the microwave measurements of CNTs were not affected even with an excess of other organic, inorganic carbon or carbon based nanomaterials (fullerene, granular activated carbon and graphene oxide), mainly because microwave selectively heats materials such as CNTs that have a higher dielectric loss factor. Quantification limits using this technique for the sand, soil and sludge were determined as low as 18.61, 27.92, 814.4μg/g for MWCNTs at a microwave power of 133W and exposure time of 15s.

  4. Mathematical model of thermal spikes in microwave heating of ceramic oxide fibers

    SciTech Connect

    Thomas, J.R. Jr.; Unruh, W.P.; Vogt, G.J.

    1994-04-01

    Experiments on microwave sintering of ceramic fibers in a single-mode cavity have revealed the presence of thermal spikes and `hot spots` which sometimes travel along the fiber and eventually disappear. They are triggered by relatively small increases in microwave power, and thus have obvious implications for the development of practical microwave-based fiber processing systems. These hot spots are conjectured to originate at slight irregularities in the tow morphology, and propagate as the result of solid phase transitions which take place at elevated temperatures and reduce the dielectric loss coefficient {epsilon}{double_prime}. An elementary mathematical model of the heat transfer process was developed which reproduces the essential features of the observed phenomena, thus lending support to the conjecture. This model is based on the assumption of one-dimensional heat conduction along the axis of the fiber tow, and radiation losses at the surface.

  5. Microwave Heating as an Alternative Quarantine Method for Disinfestation of Stored Food Grains

    PubMed Central

    Kumar, Girish; Shah, Narendra G.

    2013-01-01

    Insects and pests constitute a major threat to food supplies all over the world. Some estimates put the loss of food grains because of infestation to about 40% of the world production. Contemporary disinfestation methods are chemical fumigation, ionizing radiation, controlled atmosphere, conventional hot air treatment, and dielectric heating, that is, radio frequency and microwave energy, and so forth. Though chemical fumigation is being used extensively in stored food grains, regulatory issues, insect resistance, and environmental concerns demand technically effective and environmentally sound quarantine methods. Recent studies have indicated that microwave treatment is a potential means of replacing other techniques because of selective heating, pollution free environment, equivalent or better quality retention, energy minimization, and so forth. The current paper reviews the recent advances in Microwave (MW) disinfestation of stored food products and its principle and experimental results from previous studies in order to establish the usefulness of this technology. PMID:26904615

  6. Rapid PCR amplification using a microfluidic device with integrated microwave heating and air impingement cooling.

    PubMed

    Shaw, Kirsty J; Docker, Peter T; Yelland, John V; Dyer, Charlotte E; Greenman, John; Greenway, Gillian M; Haswell, Stephen J

    2010-07-07

    A microwave heating system is described for performing polymerase chain reaction (PCR) in a microfluidic device. The heating system, in combination with air impingement cooling, provided rapid thermal cycling with heating and cooling rates of up to 65 degrees C s(-1) and minimal over- or under-shoot (+/-0.1 degrees C) when reaching target temperatures. In addition, once the required temperature was reached it could be maintained with an accuracy of +/-0.1 degrees C. To demonstrate the functionality of the system, PCR was successfully performed for the amplification of the Amelogenin locus using heating rates and quantities an order of magnitude faster and smaller than current commercial instruments.

  7. Optimization of H2O2 dosage in microwave-H2O2 process for sludge pretreatment with uniform design method.

    PubMed

    Xiao, Qingcong; Yan, Hong; Wei, Yuansong; Wang, Yawei; Zeng, Fangang; Zheng, Xiang

    2012-01-01

    A microwave-H2O2 process for sludge pretreatment exhibited high efficiencies of releasing organics, nitrogen, and phosphorus, but large quantities of H2O2 residues were detected. A uniform design method was thus employed in this study to further optimize H2O2 dosage by investigating effects of pH and H2O2 dosage on the amount of H2O2 residue and releases of organics, nitrogen, and phosphorus. A regression model was established with pH and H2O2 dosage as the independent variables, and H2O2 residue and releases of organics, nitrogen, and phosphorus as the dependent variables. In the optimized microwave-H2O2 process, the pH value of the sludge was firstly adjusted to 11.0, then the sludge was heated to 80 degrees C and H2O2 was dosed at a H2O2:mixed liquor suspended solids (MLSS) ratio of 0.2, and the sludge was finally heated to 100 degrees C by microwave irradiation. Compared to the microwave-H2O2 process without optimization, the H2O2 dosage and the utilization rate of H2O2 in the optimized microwave-H2O2 process were reduced by 80% and greatly improved by 3.87 times, respectively, when the H2O2:MLSS dosage ratio was decreased from 1.0 to 0.2, resulting in nearly the same release rate of soluble chemical oxygen demand in the microwave-H2O2 process without optimization at H2O2:MLSS ratio of 0.5.

  8. A comparative study of acrylamide formation induced by microwave and conventional heating methods.

    PubMed

    Yuan, Y; Chen, F; Zhao, G-H; Liu, J; Zhang, H-X; Hu, X-S

    2007-05-01

    In this study, the formation of acrylamide upon treatment with microwave and conventional heating, boiling, or frying was investigated in both Asn/Fru and Asn/Glc model systems and in potato chips. Acrylamide levels were analyzed by HPLC method, which was confirmed by HPLC-MS/MS. Present results in model systems showed that pH value had a complex influence on the formation of acrylamide in the 2 systems during both microwaving (600 W) and boiling (120 +/- 1 degrees C). At pH < 8.0, acrylamide content increased with increasing the pH value, reaching the maximum at pH 8.0 whereas acrylamide content decreased with the increase of pH. Regardless of pH and heating methods, acrylamide content generally increased with increasing treatment time. Surprisingly, all present results showed that microwave heating not only induced acrylamide formation in the 2 model systems but also facilitated more acrylamide to be formed as compared to the boiling method at identical pH and treatment time. At pH 4.0, 8.0, and 10.0, the larger the microwave power, the more the acrylamide content. Consistent with the above observation, treatment of potato chips with microwave heating for 2.5 to 3.5 min in the range 550 to 750 W similarly resulted in acrylamide formation. The highest acrylamide content was formed by 750 W microwave treatment as 0.897 +/- 0.099 mg/kg, which was significantly higher than that produced by traditional frying (180 +/- 1 degrees C), 0.645 +/- 0.035 mg/kg (P < 0.05).

  9. Synergistic effect of microwave heating and hydrogen peroxide on inactivation of microorganisms.

    PubMed

    Kuchma, T

    1998-01-01

    Escherichia coli K-12 isogenous strains and Pseudomonas aeruginosa 102 were used to study the synergistic effects of combined microwave heating at short-time processing with low concentrations of hydrogen peroxide. The effect of microwave heating to temperatures of 40, 50 and 60 degrees C, as well as the concentration of hydrogen peroxide (0.05, 0.08 and 0.1%), the sequence of the agents' use, the nature of microorganisms on the survival of cells, DNA damages and interaction factors were studied. A method of anomalous viscosity time dependencies (AVTD) was used for measurement of the changes of genome conformational state (GCS) simultaneously with bacterial survival determination. The synergistic effect of microwave heating and low concentrations of hydrogen peroxide was observed under combined application, and reached a maximum when the cells were exposed to microwave heating to 50 degrees C and 0.08% hydrogen peroxide simultaneously. Both maxima of cell destruction and DNA injuries have been achieved by successive exposure to (MW + 10 min H2O2) to 60 degrees C and 0.08% hydrogen peroxide. The mechanisms of synergistic effects, the role of a disturbance of DNA repair and the interaction of sublethal injuries caused by different agents are discussed.

  10. Sustainable synthesis of chemical entities by microwave heating with nano-catalysis in water

    EPA Science Inventory

    •Sustainable synthesis of chemical entities by microwave heating with nano-catalysis in water •CRADA’s with the private companies, CEM corporation and VeruTEK Technologies •Green Chemistry principles are accommodated via multi-faceted approach. Learning from nature- using na...

  11. Tolazoline decreases survival time during microwave-induced lethal heat stress in anesthetized rats

    SciTech Connect

    Jauchem, J.R.; Chang, K.S.; Frei, M.R.

    1996-03-01

    Effects of {alpha}-adrenergic antagonists have been studied during environmental heating but not during microwave-induced heating. Tolazoline may exert some of its effects via {alpha}-adrenergic blockade. In the present study, ketamine-anesthetized Sprague-Dawley rats were exposed to 2450-MHz microwaves at an average power density of 60 mW/cm{sup 2} (whole-body specific absorption rate of approximately 14 W/kg) until lethal temperatures were attained. The effects of tolazoline (10 mg/kg body weight) on physiological responses (including changes in body temperature, heart rate, blood pressure, and respiratory rate) were examined. Survival time was significantly shorter in the tolazoline group than in saline-treated animals. In general, heart rate and blood pressure responses were similar to those that occur during environmental heat stress. Heart rate, however, was significantly elevated in animals that received tolazoline, both before and during terminal microwave exposure. It is possible that changes associated with the elevated heart rate (e.g., less cardiac filling) in tolazoline-treated animals resulted in greater susceptibility to microwave-induced heating and the lower survival time. 47 refs., 3 figs., 2 tabs.

  12. Sustainable synthesis of chemical entities by microwave heating with nano-catalysis in water

    EPA Science Inventory

    •Sustainable synthesis of chemical entities by microwave heating with nano-catalysis in water •CRADA’s with the private companies, CEM corporation and VeruTEK Technologies •Green Chemistry principles are accommodated via multi-faceted approach. Learning from nature- using na...

  13. Finite-size effect on optimal efficiency of heat engines

    NASA Astrophysics Data System (ADS)

    Tajima, Hiroyasu; Hayashi, Masahito

    2017-07-01

    The optimal efficiency of quantum (or classical) heat engines whose heat baths are n -particle systems is given by the strong large deviation. We give the optimal work extraction process as a concrete energy-preserving unitary time evolution among the heat baths and the work storage. We show that our optimal work extraction turns the disordered energy of the heat baths to the ordered energy of the work storage, by evaluating the ratio of the entropy difference to the energy difference in the heat baths and the work storage, respectively. By comparing the statistical mechanical optimal efficiency with the macroscopic thermodynamic bound, we evaluate the accuracy of the macroscopic thermodynamics with finite-size heat baths from the statistical mechanical viewpoint. We also evaluate the quantum coherence effect on the optimal efficiency of the cycle processes without restricting their cycle time by comparing the classical and quantum optimal efficiencies.

  14. Microwave-based laboratory experiments for internally-heated mantle convection

    NASA Astrophysics Data System (ADS)

    Limare, A.; Surducan, E.; Surducan, V.; Neamtu, C.; di Giuseppe, E.; Vilella, K.; Farnetani, C. G.; Kaminski, E.; Jaupart, C.

    2013-11-01

    The thermal evolution of terrestrial planets is mainly controlled by the amount of radioactive heat sources in their mantle, and by the geometry and efficiency of solid state thermo-chemical convection within. So far, these systems have been studied using numerical methods only and cross validation by laboratory analogous experiments has not been conducted yet. To fill this gap we perform the first laboratory experiments of mantle convection driven by microwave-generated internal heating. We use a 30×30×5 cm3 experimental tank filled with 0.5 % Natrosol in water mixture (viscosity 0.6 Pa.s at 20°C). The fluid is heated from within by a microwave device that delivers a uniform volumetric heating from 10 to 70 kW/m3; the upper boundary of the fluid is kept at constant temperature, whereas the lower boundary is adiabatic. The velocity field is determined with particle image velocimetry and the temperature field is measured using thermochromic liquid crystals which enable us to charaterize the geometry of the convective regime as well as its bulk thermal evolution. Numerical simulations, conducted using Stag-3D in 3D cartesian geometry, reproduce the experimental setup (i.e., boundary conditions, box aspect ratio, temperature dependence of physical parameters, internal heating rate). The successful comparison between the experimental and numerical results validates our approach of modelling internal heating using microwaves.

  15. Microwave-based laboratory experiments for internally-heated mantle convection

    SciTech Connect

    Limare, A.; Di Giuseppe, E.; Vilella, K.; Farnetani, C. G.; Kaminski, E.; Jaupart, C.; Surducan, E.; Surducan, V.; Neamtu, C.

    2013-11-13

    The thermal evolution of terrestrial planets is mainly controlled by the amount of radioactive heat sources in their mantle, and by the geometry and efficiency of solid state thermo-chemical convection within. So far, these systems have been studied using numerical methods only and cross validation by laboratory analogous experiments has not been conducted yet. To fill this gap we perform the first laboratory experiments of mantle convection driven by microwave-generated internal heating. We use a 30×30×5 cm{sup 3} experimental tank filled with 0.5 % Natrosol in water mixture (viscosity 0.6 Pa.s at 20°C). The fluid is heated from within by a microwave device that delivers a uniform volumetric heating from 10 to 70 kW/m{sup 3}; the upper boundary of the fluid is kept at constant temperature, whereas the lower boundary is adiabatic. The velocity field is determined with particle image velocimetry and the temperature field is measured using thermochromic liquid crystals which enable us to charaterize the geometry of the convective regime as well as its bulk thermal evolution. Numerical simulations, conducted using Stag-3D in 3D cartesian geometry, reproduce the experimental setup (i.e., boundary conditions, box aspect ratio, temperature dependence of physical parameters, internal heating rate). The successful comparison between the experimental and numerical results validates our approach of modelling internal heating using microwaves.

  16. OPTIMIZING A PORTABLE MICROWAVE INTERFERENCE SCANNING SYSTEM FOR NONDESTRUCTIVE TESTING OF MULTI-LAYERED DIELECTRIC MATERIALS

    SciTech Connect

    Schmidt, K. F. Jr.; Little, J. R. Jr.; Ellingson, W. A.; Green, W.

    2010-02-22

    The projected microwave energy pattern, wave guide geometry, positioning methods and process variables have been optimized for use of a portable, non-contact, lap-top computer-controlled microwave interference scanning system on multi-layered dielectric materials. The system can be used in situ with one-sided access and has demonstrated capability of damage detection on composite ceramic armor. Specimens used for validation included specially fabricated surrogates, and ballistic impact-damaged specimens. Microwave data results were corroborated with high resolution direct-digital x-ray imaging. Microwave interference scanning detects cracks, laminar features and material properties variations. This paper presents the details of the system, the optimization steps and discusses results obtained.

  17. Optimization of a microwave-coupled enzymatic digestion process to prepare peanut peptides.

    PubMed

    Zhang, Huicui; Yu, Lina; Yang, Qingli; Sun, Jie; Bi, Jie; Liu, Shaofang; Zhang, Chushu; Tang, Lin

    2012-05-11

    The best enzyme to prepare peanut peptides, papain, coupled with microwave irradiation was selected from five common proteases according to the results of the yield of peanut peptides [nitrogen solution index (NSI) in trichloroacetic acid (TCA), TCA-NSI] and the degree of hydrolysis (DH). The main factors that influenced the microwave-coupled enzymatic digestion method were optimized by response surface analysis. The optimal conditions obtained were as follows: microwave extraction time, 9.5 min; power, 600 W; substrate concentration, 4%; enzymatic reaction temperature, 50 °C; enzyme quantity, 6,500 U/g; pH, 7.1 (phosphate buffer, 0.05 mol/L). Under these conditions, TCA-NSI was 62.00% and DH was 25.89%, which is higher than that obtained with either protease hydrolysis or microwave hydrolysis alone.

  18. Combining Satellite Microwave Radiometer and Radar Observations to Estimate Atmospheric Latent Heating Profiles

    NASA Technical Reports Server (NTRS)

    Grecu, Mircea; Olson, William S.; Shie, Chung-Lin; L'Ecuyer, Tristan S.; Tao, Wei-Kuo

    2009-01-01

    In this study, satellite passive microwave sensor observations from the TRMM Microwave Imager (TMI) are utilized to make estimates of latent + eddy sensible heating rates (Q1-QR) in regions of precipitation. The TMI heating algorithm (TRAIN) is calibrated, or "trained" using relatively accurate estimates of heating based upon spaceborne Precipitation Radar (PR) observations collocated with the TMI observations over a one-month period. The heating estimation technique is based upon a previously described Bayesian methodology, but with improvements in supporting cloud-resolving model simulations, an adjustment of precipitation echo tops to compensate for model biases, and a separate scaling of convective and stratiform heating components that leads to an approximate balance between estimated vertically-integrated condensation and surface precipitation. Estimates of Q1-QR from TMI compare favorably with the PR training estimates and show only modest sensitivity to the cloud-resolving model simulations of heating used to construct the training data. Moreover, the net condensation in the corresponding annual mean satellite latent heating profile is within a few percent of the annual mean surface precipitation rate over the tropical and subtropical oceans where the algorithm is applied. Comparisons of Q1 produced by combining TMI Q1-QR with independently derived estimates of QR show reasonable agreement with rawinsonde-based analyses of Q1 from two field campaigns, although the satellite estimates exhibit heating profile structure with sharper and more intense heating peaks than the rawinsonde estimates. 2

  19. Metabolic effects of microwave radiation and convection heating on human mononuclear leukocytes

    SciTech Connect

    Kiel, J.L.; Wong, L.S.; Erwin, D.N.

    1986-01-01

    The effects of microwave radiation (2450 MHz, continuous wave, mean specific absorption rate of 103.5 +/- 4.2 W/kg) and convection heating on the nonphosphorylating oxidative metabolism of human peripheral mononuclear leukocytes (96% lymphocytes, 4% monocytes) at 37 degrees C were investigated. Metabolic activity, determined by chemiluminescence (CL) of cells challenged with luminol (5-amino-2,3-dihydro-1,4-phthalazinedione) linked to bovine serum albumin, was detected with a brightness photometer. A significant stimulation after microwave exposure (p less than 0.005) over total CL of matched 37 degrees C incubator controls was observed. A similar degree of stimulation compared to incubator controls was also detected after sham treatment. There was no significant difference between changes in total CL or stimulation indices of the microwave and sham exposed groups. It appears that exposure to microwave radiation, under normothermic (37 +/- 0.03 degrees C) conditions, has no effect on the oxidative metabolic activity of human peripheral mononuclear leukocytes. However, the significant differences between microwave or sham exposed cells and their respective incubator controls occurred because the temperature of the incubator controls did not exceed 35.9 degrees C and this temperature required 39 minutes to reach from 22 degrees C. Slow heating of incubator controls must be accounted for in thermal and radiofrequency radiation studies in vitro.

  20. Femtosecond filament initiated, microwave heated cavity-free nitrogen laser in air

    NASA Astrophysics Data System (ADS)

    Kartashov, Daniil; Shneider, Mikhail N.

    2017-03-01

    We present the results of numerical modeling of the igniter-heater concept for initiation of standoff, cavity free lasing action in the atmosphere when a femtosecond laser filament is used for plasma generation (igniter) and a microwave heater provides electron-collision pumping of electronic states in molecular nitrogen. By solving numerically the kinetic equation for the energy distribution function of electrons, generated in a femtosecond laser filament and heated by a microwave beam, we identify the conditions enabling single-pass, standoff UV-laser from molecular nitrogen in the atmosphere. The plasma density, the minimum amplitude of the microwave field, and the small-signal gain, necessary to achieve the lasing, are determined. We demonstrate that lasing build up time can be minimized and efficiency improved by using elliptically polarized laser pulses for filamentation. It is shown that realization of the filament-igniter, microwave-heater concept of the sky laser at low altitudes would require a microwave source of hundreds of kilowatt-megawatt power. The required microwave power can be reduced by several orders of magnitude when the igniter-heater scheme is used at the 10-30 km range of altitudes.

  1. Feasibility study of microwave electron heating on the C-2 field-reversed configuration device

    SciTech Connect

    Yang, Xiaokang Ceccherini, Francesco; Dettrick, Sean; Binderbauer, Michl; Koehn, Alf; Petrov, Yuri

    2015-12-10

    Different microwave heating scenarios for the C-2 plasmas have been investigated recently with use of both the Genray ray-racing code and the IPF-FDMC full-wave code, and the study was focused on the excitation of the electron Bernstein wave (EBW) with O-mode launch. For a given antenna position on C-2 and the fixed 2D plasma density and equilibrium field profiles, simulations have been done for six selected frequencies (2.45 GHz, 5 GHz, 8 GHz, 18 GHz, 28 GHz, and 50 GHz). Launch angles have been optimized for each case in order to achieve high coupling efficiencies to the EBW by the O-X-B mode conversion process and high power deposition. Results show that among those six frequencies, the case of 8 GHz is the most promising scenario, which has both high mode conversion efficiency (90%) and the relatively deeper power deposition.

  2. Optimization of pretreatments and process parameters for sorghum popping in microwave oven using response surface methodology.

    PubMed

    Mishra, Gayatri; Joshi, Dinesh C; Mohapatra, Debabandya

    2015-12-01

    Sorghum is a popular healthy snack food. Popped sorghum was prepared in a domestic microwave oven. A 3 factor 3 level Box and Behneken design was used to optimize the pretreatment conditions. Grains were preconditioned to 12-20 % moisture content by the addition of 0-2 % salt solutions. Oil was applied (0-10 % w/w) to the preconditioned grains. Optimization of the pretreatments was based on popping yield, volume expansion ratio, and sensory score. The optimized condition was found at 16.62 % (wb), 0.55 % salt and 10 % oil with popping yield of 82.228 %, volume expansion ratio of 14.564 and overall acceptability of 8.495. Further, the microwave process parameters were optimized using a 2 factor 3 level design having microwave power density ranging from 9 to 18 W/g and residence time ranging from 100 to 180 s. For the production of superior quality pop sorghum, the optimized microwave process parameters were microwave power density of 18 Wg(-1) and residence time of 140 s.

  3. Influence of water activity on inactivation of Escherichia coli O157:H7, Salmonella Typhimurium and Listeria monocytogenes in peanut butter by microwave heating.

    PubMed

    Song, Won-Jae; Kang, Dong-Hyun

    2016-12-01

    This study evaluated the efficacy of a 915 MHz microwave with 3 different electric power levels to inactivate three pathogens in peanut butter with different aw. Peanut butter inoculated with Escherichia coli O157:H7, Salmonella enterica serovar Typhimurium and Listeria monocytogenes (0.3, 0.4, and 0.5 aw) were treated with a 915 MHz microwave with 2, 4, and 6 kW for up to 5 min. Six kW 915 MHz microwave treatment for 5 min reduced these three pathogens by 1.97 to >5.17 log CFU/g. Four kW 915 MHz microwave processing for 5 min reduced these pathogens by 0.41-1.98 log CFU/g. Two kW microwave heating did not inactivate pathogens in peanut butter. Weibull and Log-Linear + Shoulder models were used to describe the survival curves of three pathogens because they exhibited shouldering behavior. Td and T5d values were calculated based on the Weibull and Log-Linear + Shoulder models. Td values of the three pathogens were similar to D-values of Salmonella subjected to conventional heating at 90 °C but T5d values were much shorter than those of conventional heating at 90 °C. Generally, increased aw resulted in shorter T5d values of pathogens, but not shorter Td values. The results of this study can be used to optimize microwave heating pasteurization system of peanut butter.

  4. Microwave Heating of Crystals with Gold Nanoparticles and Synovial Fluid under Synthetic Skin Patches

    PubMed Central

    2017-01-01

    Gout is a disease with elusive treatment options. Reduction of the size of l-alanine crystals as a model crystal for gouty tophi with the use of a monomode solid-state microwave was examined as a possible therapeutic aid. The effect of microwave heating on l-alanine crystals in the presence of gold nanoparticles (Au NPs) in solution and synovial fluid (SF) in a plastic pouch through a synthetic skin patch was investigated. In this regard, three experimental paradigms were employed: Paradigm 1 includes the effect of variable microwave power (5–10 W) and variable heating time (5–60 s) and Au NPs in water (20 nm size, volume of 10 μL) in a plastic pouch (1 × 2 cm2 in size). Paradigm 2 includes the effect of a variable volume of 20 nm Au NPs in a variable volume of SF up to 100 μL in a plastic pouch at a constant microwave power (10 W) for 30 s. Paradigm 3 includes the effect of constant microwave power (10 W) and microwave heating time (30 s), constant volume of Au NPs (100 μL), and variable size of Au NPs (20–200 nm) placed in a plastic pouch through a synthetic skin patch. In these experiments, an average of 60–100% reduction in the size of an l-alanine crystal (initial size = 450 μm) without damage to the synthetic skin or increasing the temperature of the samples beyond the physiological range was reported. PMID:28983527

  5. Microwave Heating of Crystals with Gold Nanoparticles and Synovial Fluid under Synthetic Skin Patches.

    PubMed

    McLemore, Gabrielle L; Toker, Salih; Boone-Kukoyi, Zainab; Ajifa, Hillary; Lansiquot, Carisse; Nwawulu, Chinenye; Onyedum, Stanley; Kioko, Bridgit M; Aslan, Kadir

    2017-09-30

    Gout is a disease with elusive treatment options. Reduction of the size of l-alanine crystals as a model crystal for gouty tophi with the use of a monomode solid-state microwave was examined as a possible therapeutic aid. The effect of microwave heating on l-alanine crystals in the presence of gold nanoparticles (Au NPs) in solution and synovial fluid (SF) in a plastic pouch through a synthetic skin patch was investigated. In this regard, three experimental paradigms were employed: Paradigm 1 includes the effect of variable microwave power (5-10 W) and variable heating time (5-60 s) and Au NPs in water (20 nm size, volume of 10 μL) in a plastic pouch (1 × 2 cm(2) in size). Paradigm 2 includes the effect of a variable volume of 20 nm Au NPs in a variable volume of SF up to 100 μL in a plastic pouch at a constant microwave power (10 W) for 30 s. Paradigm 3 includes the effect of constant microwave power (10 W) and microwave heating time (30 s), constant volume of Au NPs (100 μL), and variable size of Au NPs (20-200 nm) placed in a plastic pouch through a synthetic skin patch. In these experiments, an average of 60-100% reduction in the size of an l-alanine crystal (initial size = 450 μm) without damage to the synthetic skin or increasing the temperature of the samples beyond the physiological range was reported.

  6. An investigation of phase transformation of titania slag using microwave heating

    NASA Astrophysics Data System (ADS)

    Chen, Guo; Chen, Jin; Peng, Jinhui

    2016-09-01

    The influences of microwave heating on the phase transformation of titania slag were systematically investigated. The thermal stability, surface chemical functional groups and microstructure of the titania slag before and after microwave heating, at a temperature of 950 °C for 60 min, were also analyzed using thermogravimetry and differential thermal analysis (TG-DSC), Fourier transform infrared spectroscopy (FT-IR) spectrum and scanning electron microscope (SEM), respectively. The TG-DSC analysis revealed that the phase transformation of the titania slag from anatase TiO2 to rutile TiO2 occurred between 750 and 1000 °C. The FT-IR rustles demonstrate that the banding form of Ti4+, Ti3+ and Ti2+ ions and the methyl groups on the surface of the titania slag has changed and a new chemical bond Ti-OH was formed. The results of SEM showed that a large number of regulation rutile TiO2 crystals were found on the surface of the microwave-treated samples and the synthetic rutile has been synthesized successfully using microwave heating.

  7. Preparation of high surface area activated carbon from coconut shells using microwave heating.

    PubMed

    Yang, Kunbin; Peng, Jinhui; Srinivasakannan, C; Zhang, Libo; Xia, Hongying; Duan, Xinhui

    2010-08-01

    The present study attempts to utilize coconut shell to prepare activated carbon using agents such as steam, CO(2) and a mixture of steam-CO(2) with microwave heating. Experimental results show that the BET surface area of activated carbons irrespective of the activation agent resulted in surface area in excess of 2000 m(2)/g. The activation time using microwave heating is very much shorter, while the yield of the activated carbon compares well with the conventional heating methods. The activated carbon prepared using CO(2) activation has the largest BET surface area, however the activation time is approximately 2.5 times higher than the activation using steam or mixture of steam-CO(2). The chemical structure of activated carbons examined using Fourier transformed infra-red spectra (FTIR) did not show any variation in the surface functional groups of the activated carbon prepared using different activation agents.

  8. Consequences of microwave heating and frying on the lipid fraction of chicken and beef patties.

    PubMed

    Echarte, M; Ansorena, Diana; Astiasarán, Iciar

    2003-09-24

    Two types of commercial meat patties were analyzed to evaluate the effect of two applied cooking methods on the lipid fraction and the cholesterol oxidation process during heating. Microwave heating hardly modified the fatty acid profiles of both chicken and beef patties, whereas frying in olive oil increased oleic and eicosapentaenoic acids and decreased linoleic and docosahexaenoic acids in both types of products. Frying improved the omega6/omega3 fatty acids ratio in beef patties from 10.67 (raw) to 5.37 (fried). Total cholesterol oxidation product (COP) increments were 5.3-6.1-fold with microwave heating and 1.5-2.6-fold with frying. Chicken patties, raw and cooked, had a COP content twice as high as the corresponding beef ones.

  9. Mixture for producing fracture-resistant, fiber-reinforced ceramic material by microwave heating

    DOEpatents

    Meek, Thomas T.; Blake, Rodger D.

    1987-01-01

    A fracture-resistant, fiber-reinforced ceramic substrate is produced by a method which involves preparing a ceramic precursor mixture comprising glass material, a coupling agent, and resilient fibers, and then exposing the mixture to microwave energy. The microwave field orients the fibers in the resulting ceramic material in a desired pattern wherein heat later generated in or on the substrate can be dissipated in a desired geometric pattern parallel to the fiber pattern. Additionally, the shunt capacitance of the fracture-resistant, fiber-reinforced ceramic substrate is lower which provides for a quicker transit time for electronic pulses in any conducting pathway etched into the ceramic substrate.

  10. The effect of wall losses in the numerical simulation of microwave heating problems.

    PubMed

    Ehlers, R A; Dibben, D C; Metaxas, A C

    2000-01-01

    A study is made into the numerical modeling of wall losses for a microwave heating application. It makes use of a surface integral term for both a frequency and time domain finite edge element formulation in order to model the wall impedance of the enclosed microwave cavity. The paper describes how the surface element matrix of the complex wall impedance is combined with the matrix formulation. The results are checked against analytical expressions for a single mode resonant cavity. An analysis on the effect of lossy walls is provided using four low-loss material insertions over a range of surface conductivities.

  11. Mixture for producing fracture-resistant, fiber-reinforced ceramic material by microwave heating

    DOEpatents

    Meek, T.T.; Blake, R.D.

    1987-09-22

    A fracture-resistant, fiber-reinforced ceramic substrate is produced by a method which involves preparing a ceramic precursor mixture comprising glass material, a coupling agent, and resilient fibers, and then exposing the mixture to microwave energy. The microwave field orients the fibers in the resulting ceramic material in a desired pattern wherein heat later generated in or on the substrate can be dissipated in a desired geometric pattern parallel to the fiber pattern. Additionally, the shunt capacitance of the fracture-resistant, fiber-reinforced ceramic substrate is lower which provides for a quicker transit time for electronic pulses in any conducting pathway etched into the ceramic substrate. 2 figs.

  12. Mixture for producing fracture-resistant, fiber-reinforced ceramic material by microwave heating

    DOEpatents

    Meek, T.T.; Blake, R.D.

    1985-04-03

    A fracture-resistant, fiber-reinforced ceramic substrate is produced by a method which involves preparing a ceramic precursor mixture comprising glass material, a coupling agent, and resilient fibers, and then exposing the mixture to microwave energy. The microwave field orients the fibers in the resulting ceramic material in a desired pattern wherein heat later generated in or on the substrate can be dissipated in a desired geometric pattern parallel to the fiber pattern. Additionally, the shunt capacitance of the fracture-resistant, fiber-reinforced ceramic substrate is lower which provides for a quicker transit time for electronic pulses in any conducting pathway etched into the ceramic substrate.

  13. Microwave heated reaction-bonded silicon nitride using an inverse temperature gradient

    NASA Astrophysics Data System (ADS)

    Fisher, J. G.; Bai, K.; Woo, S. K.; Han, I. S.; Lee, K. S.; Hong, K. S.; Seo, D. W.

    2003-04-01

    The nitridation behavior of Si under a microwave-heating source was studied. Si preforms were produced via an aqueous gel-casting route with 45 vol.% solids loading. Preforms up to 10 mm thick could be produced without cracking. Microwave nitridation of the Si preforms was carried out using a fiberboard insulation box without packing powders in order to cause an inverse temperature gradient. Nitridation began at the unusually low temperature of 950°C. Up to 74% nitridation was achieved by nitriding at 1120°C for 5 hr. Preforms displayed an inverse temperature gradient, with sintering and melting occurring in the center of the preforms.

  14. Heat and mass transport during microwave heating of mashed potato in domestic oven--model development, validation, and sensitivity analysis.

    PubMed

    Chen, Jiajia; Pitchai, Krishnamoorthy; Birla, Sohan; Negahban, Mehrdad; Jones, David; Subbiah, Jeyamkondan

    2014-10-01

    A 3-dimensional finite-element model coupling electromagnetics and heat and mass transfer was developed to understand the interactions between the microwaves and fresh mashed potato in a 500 mL tray. The model was validated by performing heating of mashed potato from 25 °C on a rotating turntable in a microwave oven, rated at 1200 W, for 3 min. The simulated spatial temperature profiles on the top and bottom layer of the mashed potato showed similar hot and cold spots when compared to the thermal images acquired by an infrared camera. Transient temperature profiles at 6 locations collected by fiber-optic sensors showed good agreement with predicted results, with the root mean square error ranging from 1.6 to 11.7 °C. The predicted total moisture loss matched well with the observed result. Several input parameters, such as the evaporation rate constant, the intrinsic permeability of water and gas, and the diffusion coefficient of water and gas, are not readily available for mashed potato, and they cannot be easily measured experimentally. Reported values for raw potato were used as baseline values. A sensitivity analysis of these input parameters on the temperature profiles and the total moisture loss was evaluated by changing the baseline values to their 10% and 1000%. The sensitivity analysis showed that the gas diffusion coefficient, intrinsic water permeability, and the evaporation rate constant greatly influenced the predicted temperature and total moisture loss, while the intrinsic gas permeability and the water diffusion coefficient had little influence. This model can be used by the food product developers to understand microwave heating of food products spatially and temporally. This tool will allow food product developers to design food package systems that would heat more uniformly in various microwave ovens. The sensitivity analysis of this study will help us determine the most significant parameters that need to be measured accurately for reliable

  15. Microwave Moisture Sounder Feasibility Study. Phase 2. Retrieval Optimization

    DTIC Science & Technology

    1988-03-14

    Cwater is calculated by the Debye formula which depends on the temperature and frequency ( Sadiku , 1985). % For a vegetative canopy, the four-phase...radiometry. J. ApIpl. Meteorol., 21, 1364-1370. Sadiku , M. N. 0., 1985: Refractive index of snow at microwave frequencies. &R9_. Opt., 24, 572-575

  16. Optimization of microwave roasting of almond (Prunus dulcis)

    USDA-ARS?s Scientific Manuscript database

    Microwave (MW) almond roasting was investigated as an alternative to hot air (HA) roasting. Nonpareil almonds (Prunus dulcis) were roasted at 140°C in a convection oven for different times to achieve light, medium, and dark roasting levels. Several instrumental measurements were taken, establishin...

  17. Effects of anomalous permittivity on the microwave heating of zinc oxide

    NASA Astrophysics Data System (ADS)

    Martin, L. P.; Dadon, D.; Rosen, M.; Gershon, D.; Rybakov, K. I.; Birman, A.; Calame, J. P.; Levush, B.; Carmel, Y.; Hutcheon, R.

    1998-01-01

    Highly nonuniform heating has been observed in zinc oxide (ZnO) powder compacts exposed to 2.45 GHz microwaves in oxygen deficient atmospheres such as pure nitrogen or argon. This phenomenon manifests as a localized zone of rapid heating which propagates outward from the sample core, and is documented by real-time surface and core temperature measurements performed during the microwave exposure. Measurements of the complex permittivity, ɛ″, during heating of identical ZnO samples in a conventional furnace and in a nitrogen atmosphere, demonstrated that ɛ″ experiences at least one significant maximum between 200 and 500 °C. Mass spectrometry results indicate that the peaks in ɛ″ correlate well with the rate of desorption of chemisorbed water from the surface of the ZnO powder. It was also noted that the nonuniform heating does not manifest when the microwave exposure is performed in air. Similarly, the anomalous peaks in ɛ″ are almost completely suppressed during heating in air. It is well known that oxygen adsorbs strongly to the surface of ZnO in the temperature range from room temperature to 300 °C, and that this adsorption results in a drastic decrease in the electrical conductivity and, thus, in ɛ″. It is proposed, therefore, that the effect of water desorption upon the complex permittivity may be, in effect, counterbalanced by the adsorption oxygen from the atmosphere. The effect of this behavior may be significant during microwave processing, where nonuniform power absorption can result in extremely localized heating.

  18. Thermal oxidation of rice bran oil during oven test and microwave heating.

    PubMed

    Mishra, Richa; Sharma, Harish K; Sarkar, Bhavesh C; Singh, Charanjiv

    2012-04-01

    The purpose of the present study was to evaluate the oxidative stability of physically refined rice bran oil (RBO) under oven heating at 63 °C and microwave heating conditions by absorptivity. Oil samples with tertiary-butylhydroquinone (TBHQ) (100 ppm and 200 ppm), citric acid (CA), butylhydroxyanisole/butylhydroxytoluene (BHA/BHT) and in other combination, BHA/BHT+CA were submitted to oven test for 6 days, and the linear coefficient of correlation between peroxide value and absorptivity at 232 nm was determined. The gradual increase in peroxide value and absorptivity at 232 nm was observed in all the RBO samples, control and antioxidant added. RBO samples added with tertiary-butylhydroquinone (TBHQ) had shown the least peroxide value and absorptivity as 6.10 and 5.8 respectively, when added at a concentration of 200 ppm whereas; the control RBO samples had shown the maximum values. The peroxide values obtained from the correlations during the oven test were found closely correlated with the peroxide values obtained during the microwave oven heating experimentally. The effect of microwave heating on the oryzanol content and p-anisidine value was also observed and the correlation to the oven test was established. The oryzanol content and p-anisidine values obtained after oven heating when correlated to the microwave heating data showed the oryzanol content 13,371, 13,267 and 13,188 ppm after 1 day, 4 days and 5 days respectively which were closely correlated with the experimental value.

  19. Effect of the load size on the efficiency of microwave heating under stop flow and continuous flow conditions.

    PubMed

    Patil, Narendra G; Rebrov, Evgeny V; Eränen, Kari; Benaskar, Faysal; Meuldijk, Jan; Mikkola, Jyri-Pekka; Hessel, Volker; Hulshof, Lumbertus A; Murzin, Dmitry Yu; Schouten, Jaap C

    2012-01-01

    A novel heating efficiency analysis of the microwave heated stop-flow (i.e. stagnant liquid) and continuous-flow reactors has been presented. The thermal losses to the surrounding air by natural convection have been taken into account for heating efficiency calculation of the microwave heating process. The effect of the load diameter in the range of 4-29 mm on the heating efficiency of ethylene glycol was studied in a single mode microwave cavity under continuous flow and stop-flow conditions. The variation of the microwave absorbing properties of the load with temperature was estimated. Under stop-flow conditions, the heating efficiency depends on the load diameter. The highest heating efficiency has been observed at the load diameter close to the half wavelength of the electromagnetic field in the corresponding medium. Under continuous-flow conditions, the heating efficiency increased linearly. However, microwave leakage above the propagation diameter restricted further experimentation at higher load diameters. Contrary to the stop-flow conditions, the load temperature did not raise monotonously from the inlet to outlet under continuous-flow conditions. This was due to the combined effect of lagging convective heat fluxes in comparison to volumetric heating. This severely disturbs the uniformity of the electromagnetic field in the axial direction and creates areas of high and low field intensity along the load Length decreasing the heating efficiency as compared to stop-flow conditions.

  20. A new osteonecrosis animal model of the femoral head induced by microwave heating and repaired with tissue engineered bone

    PubMed Central

    Han, Rui; Geng, Chengkui; Wang, Yongnian; Wei, Lei

    2008-01-01

    The objective of this research was to induce a new animal model of osteonecrosis of the femoral head (ONFH) by microwave heating and then repair with tissue engineered bone. The bilateral femoral heads of 84 rabbits were heated by microwave at various temperatures. Tissue engineered bone was used to repair the osteonecrosis of femoral heads induced by microwave heating. The roentgenographic and histological examinations were used to evaluate the results. The femoral heads heated at 55°C for ten minutes showed low density and cystic changes in X-ray photographs, osteonecrosis and repair occurred simultaneously in histology at four and eight weeks, and 69% femoral heads collapsed at 12 weeks. The ability of tissue engineered bone to repair the osteonecrosis was close to that of cancellous bone autograft. The new animal model of ONFH could be induced by microwave heating, and the tissue engineering technique will provide an effective treatment. PMID:18956184

  1. Influence of Microwave Heating and Thermal Auxiliary on Decomposition of Siderite

    NASA Astrophysics Data System (ADS)

    Celikdemir, Mehmet; Sarikaya, Musa; Depci, Tolga; Aydogmus, Ramazan

    2016-10-01

    In the present study, microwave radiation was used to decrease power inputs and roasting duration time for thermal decomposition of Deveci, Hekimhan siderite ore. The siderite was not enough to absorb adequate microwave radiation to start the decomposition or roasting reaction. Therefore, sucrose as a thermal auxiliary was added to the raw siderite ore before microwave irradiation. The effect of amount of sucrose (10 to 30% by weight) against the duration of heating and roasting temperature of the thermal decomposition of siderite was investigated in the present study. On the contrary of the literature, the experimental results showed that the siderite was decomposed in 3 minutes with addition of 30 wt% sucrose and transformed to Fe3O4. The temperature, the weight loss and the magnetic susceptibility of the roasted final product were recorded as 1100 °C, 32.14 wt.% and 15410.03*10-8 m3/kg., respectively.

  2. Microwave assisted synthesis and optimization of Aegle marmelos-g-poly(acrylamide): release kinetics studies.

    PubMed

    Setia, A; Kumar, R

    2014-04-01

    Microwave assisted grafting of poly(acrylamide) on to Aegle marmelos gum was carried out employing 3-factor 3-level full factorial design. Microwave power, microwave exposure time and concentration of gum were selected as independent variable and grafting efficiency was taken as dependent variable. A. marmelos-g-poly(acrylamide) was characterized by FTIR, DSC, X-ray diffraction and scanning electron microscopy. Microwave power, microwave exposure time had synergistic effect on grafting efficiency where as concentration of the gum did not contributed much to grafting efficiency. Batch having microwave power - 80%, microwave exposure time -120 s and concentration of A. marmelos gum - 2% was selected as the optimized formulation. Comparative release behaviour of diclofenac sodium from the matrix tablets of A. marmelos gum and A. marmelos-g-polyacrylamide was evaluated. The results of kinetic studies revealed that the graft copolymer matrix, marketed tablets and polymer matrix tablets of A. marmelos gum released the drug by zero order kinetics and with n value greater than 1, indicating that the mechanism for release as super case II transport i.e. dominated by the erosion and swelling of the polymer.

  3. Combined microwave heating and surface cooling of the cornea.

    PubMed

    Trembly, B S; Keates, R H

    1991-01-01

    We investigated a nonsurgical means of reshaping the cornea to correct hyperopia, keratoconus, or myopia. The object was to heat the central stroma of the cornea to the shrinkage temperature of collagen, 55-58 degrees C. The heating device was an open-ended, coaxial, near-field applicator driven at 2450 MHz; it incorporates cooling of the cornea surface by flow of saline. We investigated the system theoretically by computing the 2-D, axisymmetric temperature distribution with the finite element method. We investigated the system experimentally by heating excised steer corneas. Histology showed the system could shrink the stroma to a depth of 0.6 mm while sparing the epithelium in 75% of cases; the diameter of shrinkage was 1.3 mm. Theory predicted a significantly deeper and narrower region of shrinkage than was observed.

  4. Evaluation of microwave oven heating for prediction of drug-excipient compatibilities and accelerated stability studies.

    PubMed

    Schou-Pedersen, Anne Marie V; Østergaard, Jesper; Cornett, Claus; Hansen, Steen Honoré

    2015-05-15

    Microwave ovens have been used extensively in organic synthesis in order to accelerate reaction rates. Here, a set up comprising a microwave oven combined with silicon carbide (SiC) plates for the controlled microwave heating of model formulations has been applied in order to investigate, if a microwave oven is applicable for accelerated drug stability testing. Chemical interactions were investigated in three selected model formulations of drug and excipients regarding the formation of ester and amide reaction products. In the accelerated stability studies, a design of experiments (DoE) approach was applied in order to be able to rank excipients regarding reactivity: Study A: cetirizine with PEG 400, sorbitol, glycerol and propylene glycol. Study B: 6-aminocaproic acid with citrate, acetate, tartrate and gluconate. Study C: atenolol with citric, tartaric, malic, glutaric, and sorbic acid. The model formulations were representative for oral solutions (co-solvents), parenteral solutions (buffer species) and solid dosage forms (organic acids applicable for solubility enhancement). The DoE studies showed overall that the same impurities were generated by microwave oven heating leading to temperatures between 150°C and 180°C as compared to accelerated stability studies performed at 40°C and 80°C using a conventional oven. Ranking of the reactivity of the excipients could be made in the DoE studies performed at 150-180°C, which was representative for the ranking obtained after storage at 40°C and 80°C. It was possible to reduce the time needed for drug-excipient compatibility testing of the three model formulations from weeks to less than an hour in the three case studies. The microwave oven is therefore considered to be an interesting alternative to conventional thermal techniques for the investigation of drug-excipient interactions during preformulation. Copyright © 2015 Elsevier B.V. All rights reserved.

  5. Accelerated Amidization of Branched Poly(ethylenimine)/Poly(acrylic acid) Multilayer Films by Microwave Heating.

    PubMed

    Lin, Kehua; Gu, Yuanqing; Zhang, Huan; Qiang, Zhe; Vogt, Bryan D; Zacharia, Nicole S

    2016-09-13

    Chemical cross-linking of layer-by-layer assembled films promotes mechanical stability and robustness in a wide variety of environments, which can be a challenge for polyelectrolyte multilayers in saline environments or for multilayers made from weak polyelectrolytes in environments with extreme pHs. Heating branched poly(ethylenimine)/poly(acrylic acid) (BPEI/PAA) multilayers at sufficiently high temperatures drives amidization and dehydration to covalently cross-link the film, but this reaction is rather slow, typically requiring heating for hours for appreciable cross-linking to occur. Here, a more than one order of magnitude increase in the amidization kinetics is realized through microwave heating of BPEI/PAA multilayers on indium tin oxide (ITO)/glass substrates. The cross-linking reaction is tracked using infrared spectroscopic ellipsometry to monitor the development of the cross-linking products. For thick films (∼1500 nm), gradients in cross-link density can be readily identified by infrared ellipsometry. Such gradients in cross-link density are driven by the temperature gradient developed by the localized heating of ITO by microwaves. This significant acceleration of reactions using microwaves to generate a well-defined cross-link network as well as being a simple method for developing graded materials should open new applications for these polymer films and coatings.

  6. Optimization of microwave-assisted extraction of polysaccharide from Psidium guajava L. fruits.

    PubMed

    Amutha Gnana Arasi, Michael Antony Samy; Gopal Rao, Manchineela; Bagyalakshmi, Janardanan

    2016-10-01

    This study deals with the optimization of microwave assisted extraction of polysaccharide from Psidium guajava L. fruit using Response surface methodology. To evaluate the effect of three independent variables, Water to plant material ratio, microwave power used for extraction and Irradiation time, central composite design has been employed. The yield is considered as dependent variable. The design model estimated the optimum yield of 6.81677% at 200W microwave power level, 3:1 water to plant material ratio and 20min of irradiation time. Three factors three levels Central composite design coupled with RSM was used to model the extraction process. ANOVA was performed to find the significance of the model. The polysaccharide extracted using microwave assisted extraction process was analyzed using FTIR Spectroscopy.

  7. Microwave furnace having microwave compatible dilatometer

    DOEpatents

    Kimrey, Jr., Harold D.; Janney, Mark A.; Ferber, Mattison K.

    1992-01-01

    An apparatus for measuring and monitoring a change in the dimension of a sample being heated by microwave energy is described. The apparatus comprises a microwave heating device for heating a sample by microwave energy, a microwave compatible dilatometer for measuring and monitoring a change in the dimension of the sample being heated by microwave energy without leaking microwaves out of the microwave heating device, and a temperature determination device for measuring and monitoring the temperature of the sample being heated by microwave energy.

  8. Microwave furnace having microwave compatible dilatometer

    DOEpatents

    Kimrey, H.D. Jr.; Janney, M.A.; Ferber, M.K.

    1992-03-24

    An apparatus for measuring and monitoring a change in the dimension of a sample being heated by microwave energy is described. The apparatus comprises a microwave heating device for heating a sample by microwave energy, a microwave compatible dilatometer for measuring and monitoring a change in the dimension of the sample being heated by microwave energy without leaking microwaves out of the microwave heating device, and a temperature determination device for measuring and monitoring the temperature of the sample being heated by microwave energy. 2 figs.

  9. Processed Meat Protein and Heat-Stable Peptide Marker Identification Using Microwave-Assisted Tryptic Digestion.

    PubMed

    Montowska, Magdalena; Pospiech, Edward

    2016-12-01

    New approaches to rapid examination of proteins and peptides in complex food matrices are of great interest to the community of food scientists. The aim of the study is to examine the influence of microwave irradiation on the acceleration of enzymatic cleavage and enzymatic digestion of denatured proteins in cooked meat of five species (cattle, horse, pig, chicken and turkey) and processed meat products (coarsely minced, smoked, cooked and semi-dried sausages). Severe protein aggregation occurred not only in heated meat under harsh treatment at 190 °C but also in processed meat products. All the protein aggregates were thoroughly hydrolyzed after 1 h of trypsin treatment with short exposure times of 40 and 20 s to microwave irradiation at 138 and 303 W. There were much more missed cleavage sites observed in all microwave-assisted digestions. Despite the incompleteness of microwave-assisted digestion, six unique peptide markers were detected, which allowed unambiguous identification of processed meat derived from the examined species. Although the microwave-assisted tryptic digestion can serve as a tool for rapid and high-throughput protein identification, great caution and pre-evaluation of individual samples is recommended in protein quantitation.

  10. Processed Meat Protein and Heat-Stable Peptide Marker Identification Using Microwave-Assisted Tryptic Digestion

    PubMed Central

    Pospiech, Edward

    2016-01-01

    Summary New approaches to rapid examination of proteins and peptides in complex food matrices are of great interest to the community of food scientists. The aim of the study is to examine the influence of microwave irradiation on the acceleration of enzymatic cleavage and enzymatic digestion of denatured proteins in cooked meat of five species (cattle, horse, pig, chicken and turkey) and processed meat products (coarsely minced, smoked, cooked and semi-dried sausages). Severe protein aggregation occurred not only in heated meat under harsh treatment at 190 °C but also in processed meat products. All the protein aggregates were thoroughly hydrolyzed after 1 h of trypsin treatment with short exposure times of 40 and 20 s to microwave irradiation at 138 and 303 W. There were much more missed cleavage sites observed in all microwave-assisted digestions. Despite the incompleteness of microwave-assisted digestion, six unique peptide markers were detected, which allowed unambiguous identification of processed meat derived from the examined species. Although the microwave-assisted tryptic digestion can serve as a tool for rapid and high-throughput protein identification, great caution and pre-evaluation of individual samples is recommended in protein quantitation. PMID:28115907

  11. The optimization of Stirling refrigerator and Stirling heat engine

    NASA Astrophysics Data System (ADS)

    Zhu, Xin-Mei

    2007-03-01

    The optimization of an irreversible Stirling refrigerator or a Stirling heat engine is an important research subject for a long time. Taking into account of the influence of mixed thermal resistance and regeneration loss in the performance study, we have derived the optimal relation of both of them. For Stirling refrigerator, we have deduced the optimal relation between the thermal resistance coefficient and the efficiency. To the Stirling heat engine, we have deduced the optimal relation between the power output and the efficiency. The conclusions obtained mirror the observed performance of the Stirling refrigerator or the Stirling heat engine quite well. Thus, the results may provide a new theoretical guidance to the optimal design and the selection of optimal operating condition of the Stirling refrigerator or the Stirling heat engine.

  12. An experimental study of waveguide coupled microwave heating with conventional multicusp negative ion sources

    SciTech Connect

    Komppula, J.; Kalvas, T.; Koivisto, H.; Laulainen, J.; Tarvainen, O.

    2015-04-08

    Negative ion production with conventional multicusp plasma chambers utilizing 2.45 GHz microwave heating is demonstrated. The experimental results were obtained with the multicusp plasma chambers and extraction systems of the RF-driven RADIS ion source and the filament driven arc discharge ion source LIISA. A waveguide microwave coupling system, which is almost similar to the one used with the SILHI ion source, was used. The results demonstrate that at least one third of negative ion beam obtained with inductive RF-coupling (RADIS) or arc discharge (LIISA) can be achieved with 1 kW of 2.45 GHz microwave power in CW mode without any modification of the plasma chamber. The co-extracted electron to H{sup −} ratio and the optimum pressure range were observed to be similar for both heating methods. The behaviour of the plasma implies that the energy transfer from the microwaves to the plasma electrons is mainly an off-resonance process.

  13. Galvanic Corrosion Behavior of Microwave Welded and Post-weld Heat-Treated Inconel-718 Joints

    NASA Astrophysics Data System (ADS)

    Bansal, Amit; Sharma, Apurbba Kumar; Kumar, Pradeep

    2017-05-01

    In the present study, corrosion behavior of microwave welded Inconel-718 at various conditions was investigated. Welding of Inconel-718 in 980 °C solution-treated condition was performed using microwave hybrid heating technique. The microwave welds were subjected to post-heat treatment for improving its microstructure and mechanical properties by solubilizing the Nb-enriched Laves phase. The microstructural features of the fabricated welds at various conditions were investigated through scanning electron microscopy. The electrochemical testing results revealed that Inconel-718 welds were galvanic corroded when they were anodically polarized in 3.5 wt.% NaCl solution at 28 °C. The difference in the corrosion potentials between the base metal (BM) and fusion zone (FZ) in an Inconel-718 weld was the main factor for galvanic corrosion. The highest corrosion was occurred in the as-welded/aged weldments, followed by 980 °C solution-treated and aged weldments, as-welded specimen, and 1080 °C solution-treated and aged (1080STA) weldments. The least galvanic corrosion was occurred in the 1080STA specimens due to almost uniform microstructure developed in the weldment after the treatment. Thus, it was possible to minimize the galvanic corrosion in the microwave welded Inconel-718 by 1080STA treatment which resulted in reducing the difference in corrosion potentials between the BM and the FZ.

  14. Nitrogen-Doped Carbon Fiber Paper by Active Screen Plasma Nitriding and Its Microwave Heating Properties.

    PubMed

    Zhu, Naishu; Ma, Shining; Sun, Xiaofeng

    2016-12-28

    In this paper, active screen plasma nitriding (ASPN) treatment was performed on polyacrylonitrile carbon fiber papers. Electric resistivity and microwave loss factor of carbon fiber were described to establish the relationship between processing parameters and fiber's ability to absorb microwaves. The surface processing effect of carbon fiber could be characterized by dynamic thermal mechanical analyzer testing on composites made of carbon fiber. When the process temperature was at 175 °C, it was conducive to obtaining good performance of dynamical mechanical properties. The treatment provided a way to change microwave heating properties of carbon fiber paper by performing different treatment conditions, such as temperature and time parameters. Atomic force microscope, scanning electron microscope, and X-ray photoelectron spectroscopy analysis showed that, during the course of ASPN treatment on carbon fiber paper, nitrogen group was introduced and silicon group was removed. The treatment of nitrogen-doped carbon fiber paper represented an alternative promising candidate for microwave curing materials used in repairing and heating technology, furthermore, an efficient dielectric layer material for radar-absorbing structure composite in metamaterial technology.

  15. Using a conformal water bolus to adjust heating patterns of microwave waveguide applicators

    NASA Astrophysics Data System (ADS)

    Stauffer, Paul R.; Rodrigues, Dario B.; Sinahon, Randolf; Sbarro, Lyndsey; Beckhoff, Valeria; Hurwitz, Mark D.

    2017-02-01

    Background: Hyperthermia, i.e., raising tissue temperature to 40-45°C for 60 min, has been demonstrated to increase the effectiveness of radiation and chemotherapy for cancer. Although multi-element conformal heat applicators are under development to provide more adjustable heating of contoured anatomy, to date the most often used applicator to heat superficial disease is the simple microwave waveguide. With only a single power input, the operator must be resourceful to adjust heat treatment to accommodate variable size and shape tumors spreading across contoured anatomy. Methods: We used multiphysics simulation software that couples electromagnetic, thermal and fluid dynamics physics to simulate heating patterns in superficial tumors from commercially available microwave waveguide applicators. Temperature distributions were calculated inside homogenous muscle and layered skin-fat-muscle-tumor-bone tissue loads for a typical range of applicator coupling configurations and size of waterbolus. Variable thickness waterbolus was simulated as necessary to accommodate contoured anatomy. Physical models of several treatment configurations were constructed for comparison of simulation results with experimental specific absorption rate (SAR) measurements in homogenous muscle phantom. Results: Accuracy of the simulation model was confirmed with experimental SAR measurements of three unique applicator setups. Simulations demonstrated the ability to generate a wide range of power deposition patterns with commercially available waveguide antennas by controllably varying size and thickness of the waterbolus layer. Conclusion: Heating characteristics of 915 MHz waveguide antennas can be varied over a wide range by controlled adjustment of microwave power, coupling configuration, and waterbolus lateral size and thickness. The uniformity of thermal dose delivered to superficial tumors can be improved by cyclic switching of waterbolus thickness during treatment to proactively shift

  16. Optimization of continuous and intermittent microwave extraction of pectin from banana peels.

    PubMed

    Swamy, Gabriela John; Muthukumarappan, Kasiviswanathan

    2017-04-01

    Continuous and intermittent microwave-assisted extractions were used to extract pectin from banana peels. Extraction parameters which were employed in the continuous process were microwave power (300-900W), time (100-300s), pH (1-3) and in the intermittent process were microwave power (300-900W), pulse ratio (0.5-1), pH (1-3). The independent factors were optimized with the Box-Behnken response surface design (BBD) (three factor three level) with the desirability function methodology. Results indicate that the independent factors have substantial effect on the pectin yield. Optimized solutions for highest pectin yield (2.18%) from banana peels were obtained with microwave power of 900W, time 100s and pH 3.00 in the continuous method while the intermittent process yielded the highest pectin content (2.58%) at microwave power of 900W, pulse ratio of 0.5 and pH of 3.00. The optimized conditions were validated and close agreement was observed with the validation experiment and predicted value.

  17. Effects of shape and size of agar gels on heating uniformity during pulsed microwave treatment.

    PubMed

    Soto-Reyes, Nohemí; Temis-Pérez, Ana L; López-Malo, Aurelio; Rojas-Laguna, Roberto; Sosa-Morales, María Elena

    2015-05-01

    Model gel systems with different shape (sphere, cylinder, and slab) and size (180 and 290 g) were prepared with agar (5%) and sucrose (5%). Dielectric constant (ε'), loss factor (ε"), thermophysical properties, and temperature distribution of the model system were measured. Each agar model system was immersed and suspended in water, and then, heated in a microwave oven with intermittent heating until the core temperature reached 50 °C. The ε' and ε" of agar gels decreased when frequency increased. The density and thermal conductivity values of the agar gels were 1033 kg/m(3) and 0.55 W/m °C, respectively. The temperature distribution of sphere, cylinder, and slab was different when similar power doses were applied. The slab reached 50 °C in less time (10 min) and showed a more uniform heating than spheres and cylinders in both sizes. Agar model systems of 180 g heated faster than those of 290 g. The coldest point was the center of the model systems in all studied cases. Shape and size are critical food factors that affect the heating uniformity during microwave heating processes.

  18. Infrared Fiber Radiometer For Thermometry In Therapeutic Microwave And Radio Frequency Heating

    NASA Astrophysics Data System (ADS)

    Katzir, A.; Bowman, F.; Narciso, H.; Asfour, Y.; Zur, A.

    1987-04-01

    Hyperthermia in cancer treatment involves heating malignant tumors to 42.5-43.0°C for an extended period (e.g. 30 min) in an attempt to obtain remission. For superficial and some deep seated tumors electromagnetic (microwave or radio frequency) field induced heating is often used. One of the severe problems with this therapeutic modality is the accurate measurement of temperature in the presence of a strong electromagnetic field. We have under development an infrared fiber-radiometer system which quantifies temperatures by measuring black body emission from the surface. This radiometer is based on a non-metallic, infrared fiber probe, which can operate either in contact or in non contact modes. When the fibers are incorporated in endoscopic catheters, internal body temperatures may be measured at those sites accessible via body orifices. In preliminary investigations the radiometer worked well in a strong microwave field, with an accuracy of ±0.5°C.

  19. Deposition of Hard Chrome Coating onto Heat Susceptible Substrates by Low Power Microwave Plasma Spray

    NASA Astrophysics Data System (ADS)

    Redza, Ahmad; Yasui, Toshiaki; Fukumoto, Masahiro

    2016-02-01

    Microwave plasma spray requires relatively low power, which is lower than 1 kW in comparison to other plasma spraying method. Until now, we are able to deposit Cu and Hydroxyapatite coating onto heat susceptible substrate, CFRP which are difficult for conventional plasma spray due to the excessive heat input. In this paper, a hard chromium coating was deposited onto SUS304 and CFRP by a low power microwave plasma spray technique. By controlling the working gas flow rate and spraying distance, a hard chrome coating with thickness of approximately 30 μm was successfully deposited onto CFRP substrate with hardness of 1110 Hv0.05. Furthermore, the coating produced here is higher than that produced by hard chrome plating.

  20. Combined Microwave and Sferics Measurements as a Continuous Proxy for Latent Heating in Mesoscale Model Predictions

    NASA Technical Reports Server (NTRS)

    Chang, D. -E.; Morales, C. A.; Weinman, J. A.; Olson, W. S.

    1999-01-01

    Planar rainfall distributions were retrieved from data provided by the Tropical Rainfall Measuring Mission (TRMM) Microwave Imager (TMI) and Special Sensor Microwave Imager (SSM/I) radiometers. Lightning generates Very Low Frequency (VLF) radio noise pulses called sferics. Those pulses propagate over large distances so that they can be continuously monitored with a network of ground based radio receivers. An empirical relationship between the sferics rate and the convective rainfall permitted maps of convective latent heating profiles to be derived continuously from the sferics distributions. Those inferred latent heating rates were assimilated into the Penn State/NCAR Mesoscale Model (MM5) that depicted an intense winter cyclone that passed over Florida on 2 February 1998. When compared to a 14 hour MM5 rainfall forecast using conventional data, the use of lightning data improved the forecast.

  1. Combined Microwave and Sferics Measurements as a Continuous Proxy for Latent Heating in Mesoscale Model Predictions

    NASA Technical Reports Server (NTRS)

    Chang, D.-E.; Morales, C. A.; Weinman, J. A.; Olson, W. S.

    1999-01-01

    Planar rainfall distributions were retrieved from data provided by the Tropical Rainfall Measuring Mission (TRMM) Microwave Imager (TMI) and Special Sensor Microwave/Imager (SSM/I) radiometers. Lightning generates Very Low Frequency (VLF) radio noise pulses called sferics. Those pulses propagate over large distances so that they can be continuously monitored with a network of ground based radio receivers. An empirical relationship between the sferics rate and the convective rainfall permitted maps of convective latent heating profiles to be derived continuously from the sferics distributions. Those inferred latent heating rates were assimilated into the Penn State/NCAR Mesoscale Model (MM5) that depicted an intense winter cyclone that passed over Florida on 2 February 1998. When compared to a 14 hour MM5 rainfall forecast using conventional data, the use of lightning data improved the forecast.

  2. A simple optimized microwave digestion method for multielement monitoring in mussel samples

    NASA Astrophysics Data System (ADS)

    Saavedra, Y.; González, A.; Fernández, P.; Blanco, J.

    2004-04-01

    With the aim of obtaining a set of common decomposition conditions allowing the determination of several metals in mussel tissue (Hg by cold vapour atomic absorption spectrometry; Cu and Zn by flame atomic absorption spectrometry; and Cd, PbCr, Ni, As and Ag by electrothermal atomic absorption spectrometry), a factorial experiment was carried out using as factors the sample weight, digestion time and acid addition. It was found that the optimal conditions were 0.5 g of freeze-dried and triturated samples with 6 ml of nitric acid and subjected to microwave heating for 20 min at 180 psi. This pre-treatment, using only one step and one oxidative reagent, was suitable to determine the nine metals studied with no subsequent handling of the digest. It was possible to carry out the determination of atomic absorption using calibrations with aqueous standards and matrix modifiers for cadmium, lead, chromium, arsenic and silver. The accuracy of the procedure was checked using oyster tissue (SRM 1566b) and mussel tissue (CRM 278R) certified reference materials. The method is now used routinely to monitor these metals in wild and cultivated mussels, and found to be good.

  3. Characterization of bulk stainless steel joints developed through microwave hybrid heating

    SciTech Connect

    Bansal, Amit; Sharma, Apurbba Kumar; Kumar, Pradeep; Das, Shantanu

    2014-05-01

    Processing of metallic materials through microwave heating is a challenging area of research. In the present work, joining of stainless steel-316 to stainless steel-316 in the bulk form has been carried out by placing stainless steel-316 powder at the interface and through targeted heating using microwave hybrid heating. The trials were carried out in a multimode microwave applicator at a frequency of 2.45 GHz and power 900 W. The developed joints were characterized using X-ray diffraction, field emission scanning electron microscopy equipped with energy dispersive X-ray spectroscope and measurement of Vicker's microhardness, porosity and tensile strength. The X-ray diffraction spectrum of the developed joint shows the presence of chromium carbide, iron carbide and iron silicide phases that eventually contribute to enhancement of the microhardness of the joint. The scanning electron microscope micrographs confirm classical metallurgical bonding between the substrate and the interface (molten powder) layer; the epitaxial growth rate was observed adjacent to the fusion zone. The average observed Vicker's microhardness in the joint zone on the grain boundary was significantly higher than that inside the grains due to the presence of various hard phases at the grain boundaries. Evaluation of the tensile strength of the joints showed an average ultimate tensile strength of 425.0 MPa with an average elongation of 9.44%. - Highlights: • Joining of stainless steel (SS-316) plates using microwave hybrid heating • Epitaxial growth rate observed adjacent to the fusion zone of welded joint • The ultimate tensile strength of the order of 425.0 MPa with 9.44% elongation.

  4. Cardiorespiratory Changes During Microwave-Induced Lethal Heat Stress and Beta-adrenergic Blockade

    DTIC Science & Technology

    1994-01-01

    ceptor blockade on thermoregulatory responses to envi- THz mimfARY AND CIVILAN use of microwave radiation ronmental heat exposure (or to exercise ...labetalol, a combined a- and/t- adrenoreceptor blocking drug. Br. low breathing in guinea pigs (38). Acute administration J. Clin. Pharmacol. 3, Suppl. 3: 681...AppL PhysioL 43: 292-296, 1977. tor antagonism in exercising men. The effects of pro- 5. Cabanac, M. Temperature regulation. Annu. Rev. PhysioL 38: o

  5. Microwave Heating of Synthetic Skin Samples for Potential Treatment of Gout Using the Metal-Assisted and Microwave-Accelerated Decrystallization Technique

    PubMed Central

    2016-01-01

    Physical stability of synthetic skin samples during their exposure to microwave heating was investigated to demonstrate the use of the metal-assisted and microwave-accelerated decrystallization (MAMAD) technique for potential biomedical applications. In this regard, optical microscopy and temperature measurements were employed for the qualitative and quantitative assessment of damage to synthetic skin samples during 20 s intermittent microwave heating using a monomode microwave source (at 8 GHz, 2–20 W) up to 120 s. The extent of damage to synthetic skin samples, assessed by the change in the surface area of skin samples, was negligible for microwave power of ≤7 W and more extensive damage (>50%) to skin samples occurred when exposed to >7 W at initial temperature range of 20–39 °C. The initial temperature of synthetic skin samples significantly affected the extent of change in temperature of synthetic skin samples during their exposure to microwave heating. The proof of principle use of the MAMAD technique was demonstrated for the decrystallization of a model biological crystal (l-alanine) placed under synthetic skin samples in the presence of gold nanoparticles. Our results showed that the size (initial size ∼850 μm) of l-alanine crystals can be reduced up to 60% in 120 s without damage to synthetic skin samples using the MAMAD technique. Finite-difference time-domain-based simulations of the electric field distribution of an 8 GHz monomode microwave radiation showed that synthetic skin samples are predicted to absorb ∼92.2% of the microwave radiation. PMID:27917407

  6. Microwave Heating of Synthetic Skin Samples for Potential Treatment of Gout Using the Metal-Assisted and Microwave-Accelerated Decrystallization Technique.

    PubMed

    Toker, Salih; Boone-Kukoyi, Zainab; Thompson, Nishone; Ajifa, Hillary; Clement, Travis; Ozturk, Birol; Aslan, Kadir

    2016-11-30

    Physical stability of synthetic skin samples during their exposure to microwave heating was investigated to demonstrate the use of the metal-assisted and microwave-accelerated decrystallization (MAMAD) technique for potential biomedical applications. In this regard, optical microscopy and temperature measurements were employed for the qualitative and quantitative assessment of damage to synthetic skin samples during 20 s intermittent microwave heating using a monomode microwave source (at 8 GHz, 2-20 W) up to 120 s. The extent of damage to synthetic skin samples, assessed by the change in the surface area of skin samples, was negligible for microwave power of ≤7 W and more extensive damage (>50%) to skin samples occurred when exposed to >7 W at initial temperature range of 20-39 °C. The initial temperature of synthetic skin samples significantly affected the extent of change in temperature of synthetic skin samples during their exposure to microwave heating. The proof of principle use of the MAMAD technique was demonstrated for the decrystallization of a model biological crystal (l-alanine) placed under synthetic skin samples in the presence of gold nanoparticles. Our results showed that the size (initial size ∼850 μm) of l-alanine crystals can be reduced up to 60% in 120 s without damage to synthetic skin samples using the MAMAD technique. Finite-difference time-domain-based simulations of the electric field distribution of an 8 GHz monomode microwave radiation showed that synthetic skin samples are predicted to absorb ∼92.2% of the microwave radiation.

  7. Surface modification of plasmonic nanostructured materials with thiolated oligonucleotides in 10 seconds using selective microwave heating

    PubMed Central

    Abel, Biebele; Aslan, Kadir

    2013-01-01

    This study demonstrates the proof-of-principle of rapid surface modification of plasmonic nanostructured materials with oligonucleotides using low power microwave heating. Due to their interesting optical and electronic properties, silver nanoparticle films (SNFs, 2 nm thick) deposited onto glass slides were used as the model plasmonic nanostructured materials. Rapid surface modification of SNFs with oligonucleotides was carried out using two strategies (1) Strategy 1: for ss-oligonucleotides, surface hybridization and (2) Strategy 2: for ds-oligonucleotides, solution hybridization), where the samples were exposed to 10, 15, 30 and 60 seconds microwave heating. To assess the efficacy of our new rapid surface modification technique, identical experiments carried out without the microwave heating (i.e., conventional method), which requires 24 hours for the completion of the identical steps. It was found that SNFs can be modified with ss- and ds-oligonucleotides in 10 seconds, which typically requires several hours of incubation time for the chemisorption of thiol groups on to the planar metal surface using conventional techniques. PMID:23645933

  8. Simulations of microwave electron heating on field-reversed configuration driven by rotating magnetic field

    NASA Astrophysics Data System (ADS)

    Yang, Xiaokang; Petrov, Yuri; Koehn, Alf; Cohen, Sam; Ceccherini, Francesco; Galeotti, Laura; Dettrick, Sean; Binderbauer, Michl

    2016-10-01

    The rotating magnetic field-driven field-reversed configuration (FRC), such as Rotamak or PFRC experiment, was recently proposed as a test bench at Tri Alpha Energy to experimentally pioneer the study of microwave electron heating. In order to provide guidelines to the choice of microwave frequency and antenna position, as well as the desired target plasma profile, extensive simulations have been conducted with use of the GENRAY-C ray-tracing code for a wide range of frequencies from smaller than fundamental electron cyclotron resonant (ECR) frequency up to more than 30 harmonics of ECR. Based on the operational parameters of Rotamak plasma, simulations indicate that microwaves at a frequency around 10 GHz can heat electrons inside the separatrix layer. The physics of heating mechanism is similar for both the Rotamak and the C-2U FRC plasma, meaning that the magnitude of magnetic field goes down along the direction of ray propagation, therefore the rays, after the O-X-B mode conversion, encounter a basin of high harmonic EC resonances and mostly damp the power in the vicinity of the upper-hybrid resonance layer Detailed simulation results and plans for a future test bench will be presented.

  9. Effect of Heat Preconditioning by Microwave Hyperthermia on Human Skeletal Muscle After Eccentric Exercise

    PubMed Central

    Saga, Norio; Katamoto, Shizuo; Naito, Hisashi

    2008-01-01

    The purpose of this study was to clarify whether heat preconditioning results in less eccentric exercise-induced muscle damage and muscle soreness, and whether the repeated bout effect is enhanced by heat preconditioning prior to eccentric exercise. Nine untrained male volunteers aged 23 ± 3 years participated in this study. Heat preconditioning included treatment with a microwave hyperthermia unit (150 W, 20 min) that was randomly applied to one of the subject’s arms (MW); the other arm was used as a control (CON). One day after heat preconditioning, the subjects performed 24 maximal isokinetic eccentric contractions of the elbow flexors at 30°·s-1 (ECC1). One week after ECC1, the subjects repeated the procedure (ECC2). After each bout of exercise, maximal voluntary contraction (MVC), range of motion (ROM) of the elbow joint, upper arm circumference, blood creatine kinase (CK) activity and muscle soreness were measured. The subjects experienced both conditions at an interval of 3 weeks. MVC and ROM in the MW were significantly higher than those in the CON (p < 0.05) for ECC1; however, the heat preconditioning had no significant effect on upper arm circumference, blood CK activity, or muscle soreness following ECC1 and ECC2. Heat preconditioning may protect human skeletal muscle from eccentric exercise-induced muscle damage after a single bout of eccentric exercise but does not appear to promote the repeated bout effect after a second bout of eccentric exercise. Key pointsThere have been few studies about the effects of heat preconditioning on muscle damage caused by eccentric exercise and the repeated bout effect after a second bout of eccentric exercise.Heat preconditioning with microwave hyperthermia may attenuate eccentric exercise-induced muscle damage.Heat preconditioning does not enhance the repeated bout effect. PMID:24150151

  10. Computer Simulation and Optimization of the Process of Thawing of Grounds Using Microwave Energy

    NASA Astrophysics Data System (ADS)

    Nekrasov, S. A.; Volkov, V. S.

    2017-01-01

    In this article, consideration is given to a mathematical model and a numerical method to calculate and optimize the process of high-speed thawing of grounds using microwave energy. Relevant examples of calculations and an analysis of results are presented.

  11. Optimization for microwave-assisted direct liquefaction of bamboo residue in glycerol/methanol mixtures

    Treesearch

    Jiulong Xie; Jinqiu Qi; Chungyun Hse; Todd F. Shupe

    2015-01-01

    Bamboo residues were liquefied in a mixture of glycerol and methanol in the presence of sulfuric acid using microwave energy. We investigated the effects of liquefaction conditions, including glycerol/methanol ratio, liquefaction temperature, and reaction time on the conversion yield. The optimal liquefaction conditions were under the temperature of 120

  12. Coupled electromagnetic-thermodynamic simulations of microwave heating problems using the FDTD algorithm.

    PubMed

    Kopyt, Paweł; Celuch, Małgorzata

    2007-01-01

    A practical implementation of a hybrid simulation system capable of modeling coupled electromagnetic-thermodynamic problems typical in microwave heating is described. The paper presents two approaches to modeling such problems. Both are based on an FDTD-based commercial electromagnetic solver coupled to an external thermodynamic analysis tool required for calculations of heat diffusion. The first approach utilizes a simple FDTD-based thermal solver while in the second it is replaced by a universal commercial CFD solver. The accuracy of the two modeling systems is verified against the original experimental data as well as the measurement results available in literature.

  13. Kinetic resolution of rac-1-phenylethanol with immobilized lipases: a critical comparison of microwave and conventional heating protocols.

    PubMed

    de Souza, Rodrigo Octavio M A; Antunes, Octavio A C; Kroutil, Wolfgang; Kappe, C Oliver

    2009-08-21

    The lipase-catalyzed kinetic resolution of rac-1-phenylethanol with vinyl acetate as acyl donor and cyclohexane as solvent has been investigated applying both microwave dielectric heating and conventional thermal heating in order to probe the existence of nonthermal microwave effects. All transformations were conducted at 40 degrees C in a dedicated reactor setup that allowed accurate internal reaction temperature measurements with use of fiber-optic probes. Quartz reaction vessels that allow higher levels of microwave power to be administered to the reaction mixture were used for all experiments. For all five studied immobilized lipases, the observed reactivities and enantioselectivities in microwave and oil bath experiments were identical and thus not related to the presence of the microwave field. The effect of magnetic stirring proved critical as too rapid stirring in some instances destroyed the enzyme support structure and led to altered reactivities and selectivities.

  14. Ice melting properties of steel slag asphalt concrete with microwave heating

    NASA Astrophysics Data System (ADS)

    Li, Bin; Sun, Yihan; Liu, Quantao; Fang, Hao; Wu, Shaopeng; Tang, Jin; Ye, Qunshan

    2017-03-01

    The ice on the surface of asphalt pavement in winter significantly influences the road transportation safety. This paper aims at the improvement of the ice melting efficiency on the surface of asphalt pavement. The steel slag asphalt concrete was prepared and the high ice melting efficiency was achieved with the microwave heating. A series of experiments were conducted to evaluate the ice melting performance of steel slag asphalt concrete, including the heating test, ice melting test, thermal conductivity test and so on. The results indicated that the microwave heating of steel slag concrete can improve the efficiency of deicing, mainly because the heating rates of steel slag asphalt mixture are much better than traditional limestone asphalt mixture. According to different thickness lever of ice, the final temperatures of each sample were very close to each other at the end of melting test. It is believed the thickness of the ice has a limited impact on the ice melting efficiency. According to the heating tests results, the bonding of ice and asphalt concrete is defined failure at the moment when the surface temperature of the ice reached 3 °C.

  15. Universal Optimization Efficiency for Nonlinear Irreversible Heat Engines

    NASA Astrophysics Data System (ADS)

    Zhang, Yanchao; Guo, Juncheng; Lin, Guoxing; Chen, Jincan

    2017-06-01

    We introduce a multi-parameter combined objective function of heat engines under the strong coupling and symmetry condition and derive the universal expression of the optimization efficiency. The results obtained show that the optimization efficiency derived from the multi-parameter combined objective function include a variety of optimization efficiencies, such as the efficiency at the maximum power, efficiency at the maximum efficiency-power state, efficiency at the maximum ecological or unified trade-off function, and Carnot efficiency. It is further explained that these results are also suitable for the endoreversible cycle model of the Carnot heat engines operating between two heat reservoirs.

  16. Contribution of direct heating, thermal conduction and perfusion during radiofrequency and microwave ablation.

    PubMed

    Schramm, W; Yang, D; Haemmerich, D

    2006-01-01

    Heat based tumor ablation methods such as radiofrequency (RF) and microwave (MW) ablation are increasingly accepted treatment methods for tumors not treatable by traditional surgery. Typically, an interstitial applicator is introduced under imaging guidance into the tumor, and tissue is destroyed by heating to above approximately 50 degrees C, with maximum tissue temperatures over 100 degrees C. Since high thermal gradients occur during the procedure, thermal conduction contributes significantly towards tissue heating. We created finite element method (FEM) computer models of RF and MW applicators, and determined the thermal conduction term, the resistive (for RF) or dielectric (for MW) loss term, and perfusion term. We integrated these terms over the heating period to obtain relative contribution towards tissue temperature rise (in degrees C) as a function of distance from the applicator. We performed simulations without and with perfusion, where perfusion was assumed to stop above 50 degrees C. During the first 6 minutes, direct heating by RF and MW were dominating throughout the tissue. Over the treatment period (12 min for RF, and 6 min for MW), thermal conduction was dominating at distances between than 12 and 19 mm from the RF electrode, while for MW ablation direct heating dominated everywhere. Even though thermal conduction significantly contributes towards tissue heating during ablative therapies, direct heating by RF or MW is dominating throughout most of the tissue volume. Tissue cooling due to perfusion is more significant during RF heating, in part due to the longer treatment times.

  17. Superficial heat reduction technique for a hybrid microwave-optical device.

    PubMed

    Al-Armaghany, A; Tong, K; Leung, T S

    2013-01-01

    Microwave applicator in the form of a circularly polarized microstrip patch antenna is proposed to provide localized deep heating in biological tissue, which causes blood vessels to dilate leading to changes in tissue oxygenation. These changes are monitored by an integrated optical system for studying thermoregulation in different parts of the human body. Using computer simulations, this paper compares circularly and linearly polarized antennas in terms of the efficiency of depositing electromagnetic (EM) energy and the heating patterns. The biological model composes of the skin, fat and muscle layers with appropriate dielectric and thermal properties. The results show that for the same specific absorption rate (SAR) in the muscle, the circularly polarized antenna results in a lower SAR in the skin-fat interface than the linearly polarized antenna. The thermal distribution is also presented based on the biological heat equation. The proposed circularly polarized antenna shows heat reduction in the superficial layers in comparison to the linearly polarized antenna.

  18. EBSD characterization of the growth mechanism of SiC synthesized via direct microwave heating

    SciTech Connect

    Wang, Jigang; Huang, Shan; Liu, Song; Qing, Zhou

    2016-04-15

    Well-crystallized 3C-silicon carbide (SiC) grains/nanowires have been synthesized rapidly and conveniently via direct microwave heating, simply using silicon dioxide powders and artificial graphite as raw materials. The comprehensive characterizations have been employed to investigate the micro-structure of the obtained 3C-SiC products. Results indicated that, different from the classic screw dislocation growth mechanism, the 3C-SiC grains/nanowires synthesized via high-energy vacuum microwave irradiation were achieved through the two-dimension nucleation and laminar growth mechanism. Especially, the electron backscattered diffraction (EBSD) was employed to characterize the crystal planes of the as-grown SiC products. The calculated Euler angles suggested that the fastest-growing crystal planes (211) were overlapped gradually. Through the formation of the (421) transformation plane, (211) finally evolved to (220) which existed as the side face of SiC grains. The most stable crystal planes (111) became the regular hexagonal planes in the end, which could be explained by the Bravais rule. The characterization results of EBSD provided important experimental information for the evolution of crystal planes. - Graphical abstract: The formation of 3C-SiC prepared via direct microwave heating follows the mechanism of two-dimension nucleation and laminar growth. - Highlights: • 3C−SiC grains/nanowires were obtained via direct microwave heating. • 3C−SiC followed the mechanism of two-dimension nucleation and laminar growth. • In-situ EBSD analysis provided the experimental evidences of the growth.

  19. Mantle Convection in a Microwave Oven: New Perspectives for the Internally Heated Convection

    NASA Astrophysics Data System (ADS)

    Limare, A.; Fourel, L.; Surducan, E.; Neamtu, C.; Surducan, V.; Vilella, K.; Farnetani, C. G.; Kaminski, E. C.; Jaupart, C. P.

    2015-12-01

    The thermal evolution of silicate planets is primarily controlled by the balance between internal heating - due to radioactive decay - and heat transport by mantle convection. In the Earth, the problem is particularly complex due to the heterogeneous distribution of heat sources in the mantle and the non-linear coupling between this distribution and convective mixing. To investigate the behaviour of such systems, we have developed a new technology based on microwave absorption to study internally-heated convection in the laboratory. This prototype offers the ability to reach the high Rayleigh-Roberts and Prandtl numbers that are relevant for planetary convection. Our experimental results obtained for a uniform distribution of heat sources were compared to numerical calculations reproducing exactly experimental conditions (3D Cartesian geometry and temperature-dependent physical properties), thereby providing the first cross validation of experimental and numerical studies of convection in internally-heated systems. We find that the thermal boundary layer thickness and interior temperature scale with RaH-1/4, where RaH is the Rayleigh-Roberts number, as theoretically predicted by scaling arguments on the dissipation of kinetic energy. Our microwave-based method offers new perspectives for the study of internally-heated convection in heterogeneous systems which have been out of experimental reach until now. We are able to selectively heat specific regions in the convecting layer, through the careful control of the absorption properties of different miscible fluids. This is analogous to convection in the presence of chemical reservoirs with different concentration of long-lived radioactive isotopes. We shall show results for two different cases: the stability of continental lithosphere over a convective fluid and the evolution of a hidden enriched reservoir in the lowermost mantle.

  20. Optimal control studies of solar heating systems

    SciTech Connect

    Winn, C B

    1980-01-01

    In the past few years fuel prices have seen steady increases. Also, the supply of fuel has been on the decline. Because of these two problems there has been an increase in the number of solar heated buildings. Since conventional fuel prices are increasing and as a solar heating system represents a high capital cost it is desirable to obtain the maximum performance from a solar heating system. The control scheme that is used in a solar heated building has an effect on the performance of the solar system. The best control scheme possible would, of course, be desired. This report deals with the control problems of a solar heated building. The first of these problems is to control the inside temperature of the building and to minimize the fuel consumption. This problem applies to both solar and conventionally heated buildings. The second problem considered is to control the collector fluid flow to maximize the difference between the useful energy collected and the energy required to pump the fluid. The third problem is to control the enclosure temperature of a building which has two sources of heat, one solar and the other conventional.

  1. Development of a compact cylindrical reaction cavity for a microwave dielectric heating system.

    PubMed

    Kim, Myungsik; Kim, Kwangsoo

    2012-03-01

    This paper describes a compact reaction cavity for a microwave-assisted synthesis system. The microwave dielectric heating is a key technology to improve synthesizing yield, however, the large size of the microwave generation and reaction parts in an all-in-one system is a major obstacle when applying the technique to various systems, of which the installation space is limited. For this particular problem, a compact stand-alone cylindrical reaction cavity was developed in the current study. A microwave excited from a monopole probe, which is inserted into the side of the cavity, is transferred to a reaction mixture through the upper hole of the cavity. The cavity is miniaturized by filling it with an alumina ceramic dielectric. Fine-tuning of the resonance frequency becomes available by controlling the length of the inserted screw between the probe and the upper hole. The physical properties of the cavity were simulated using high frequency structural simulator (HFSS) and the produced cavity was tested using an Agilent E8357A network analyzer. The test results show that the developed cavity is able to send enough energy to various solvents.

  2. Optimization of negative ion current in a compact microwave driven upper hybrid resonance multicusp plasma source.

    PubMed

    Sahu, D; Bhattacharjee, S; Singh, M J; Bandyopadhyay, M; Chakraborty, A

    2012-02-01

    Performance of a microwave driven upper hybrid resonance multicusp plasma source as a volume negative ion source is reported. Microwaves are directly launched into the plasma chamber predominantly in the TE(11) mode. The source is operated at different discharge conditions to obtain the optimized negative H(-) ion current which is ∼33 μA (0.26 mA∕cm(2)). Particle balance equations are solved to estimate the negative ion density, which is compared with the experimental results. Future prospects of the source are discussed.

  3. Optimization of negative ion current in a compact microwave driven upper hybrid resonance multicusp plasma sourcea)

    NASA Astrophysics Data System (ADS)

    Sahu, D.; Bhattacharjee, S.; Singh, M. J.; Bandyopadhyay, M.; Chakraborty, A.

    2012-02-01

    Performance of a microwave driven upper hybrid resonance multicusp plasma source as a volume negative ion source is reported. Microwaves are directly launched into the plasma chamber predominantly in the TE11 mode. The source is operated at different discharge conditions to obtain the optimized negative H- ion current which is ˜33 μA (0.26 mA/cm2). Particle balance equations are solved to estimate the negative ion density, which is compared with the experimental results. Future prospects of the source are discussed.

  4. Optimized Heat Interception for Cryogen Tank Support

    NASA Technical Reports Server (NTRS)

    Canavan, Edgar R.; Miller, F. K.

    2007-01-01

    We consider means for using the cooling available in boil-off gas to intercept heat conducted through the support structure of a cryogen tank. A one-dimensional model of the structure coupled to a gas stream gives an analytical expression for heat leak in terms of flow rate for temperature independent-properties and laminar flow. A numerical model has been developed for heat transfer on a thin cylindrical tube with an attached vent line. The model is used to determine the vent path layout that will minimize heat flow into the cryogen tank. The results are useful for a number of applications, but the one of interest in this study is the minimization of the boil-off in large cryopropellant tanks in low Earth and low lunar orbit.

  5. On Optimizing an Archibald Rubber-Band Heat Engine.

    ERIC Educational Resources Information Center

    Mullen, J. G.; And Others

    1978-01-01

    Discusses the criteria and procedure for optimizing the performance of Archibald rubber-band heat engines by using the appropriate choice of dimensions, minimizing frictional torque, maximizing torque and balancing the rubber band system. (GA)

  6. On Optimizing an Archibald Rubber-Band Heat Engine.

    ERIC Educational Resources Information Center

    Mullen, J. G.; And Others

    1978-01-01

    Discusses the criteria and procedure for optimizing the performance of Archibald rubber-band heat engines by using the appropriate choice of dimensions, minimizing frictional torque, maximizing torque and balancing the rubber band system. (GA)

  7. Temperature measurements with two different IR sensors in a continuous-flow microwave heated system

    PubMed Central

    Rydfjord, Jonas; Svensson, Fredrik; Fagrell, Magnus; Sävmarker, Jonas; Thulin, Måns

    2013-01-01

    Summary In a continuous-flow system equipped with a nonresonant microwave applicator we have investigated how to best assess the actual temperature of microwave heated organic solvents with different characteristics. This is non-trivial as the electromagnetic field will influence most traditional methods of temperature measurement. Thus, we used a microwave transparent fiber optic probe, capable of measuring the temperature inside the reactor, and investigated two different IR sensors as non-contact alternatives to the internal probe. IR sensor 1 measures the temperature on the outside of the reactor whilst IR sensor 2 is designed to measure the temperature of the fluid through the borosilicate glass that constitutes the reactor wall. We have also, in addition to the characterization of the before mentioned IR sensors, developed statistical models to correlate the IR sensor reading to a correct value of the inner temperature (as determined by the internal fiber optic probe), thereby providing a non-contact, indirect, temperature assessment of the heated solvent. The accuracy achieved with these models lie well within the range desired for most synthetic chemistry applications. PMID:24204419

  8. [Comparison of the acrylamide level in microwaved popcorn with that of ordinarily heated one].

    PubMed

    Sun, Shiyu; Xia, Yongmei; Liu, Xuefeng; Hu, Xueyi

    2007-03-01

    To establish a method of examining acrylamide in cooked popcorn. Solid phase extraction/gas chromatography (SPE/GC) was established with N, N-dimethyl acrylamide as internal standard. The detection limit and the quantification limit were estimated at 3 microg/L and 10 microg/L, respectively, and the linear correlation coefficient was 0.9969. Seven commercial popcorn samples with different flavors were collected and tested in this paper. The RSD of acrylamide level of caramel sweet popcorn microwaved was 1.95 % (n = 6). When the commercial popcorns of caramel sweet and cream salted were microwaved (A and D) or conventional heated (A' and D'), the acrylamide levels reached [Am]A = 1017 microg/kg, [Am]D = 146.5 microg/kg, [Am]A, = 2206 microg/kg and [Am]D = 970.1 microg/kg, respectively. The microwaved popcorns tested are safer in general because the acrylamide level of them except that with high simple sugar content is obviously lower than that of ordinarily heated one.

  9. Temperature measurements with two different IR sensors in a continuous-flow microwave heated system.

    PubMed

    Rydfjord, Jonas; Svensson, Fredrik; Fagrell, Magnus; Sävmarker, Jonas; Thulin, Måns; Larhed, Mats

    2013-01-01

    In a continuous-flow system equipped with a nonresonant microwave applicator we have investigated how to best assess the actual temperature of microwave heated organic solvents with different characteristics. This is non-trivial as the electromagnetic field will influence most traditional methods of temperature measurement. Thus, we used a microwave transparent fiber optic probe, capable of measuring the temperature inside the reactor, and investigated two different IR sensors as non-contact alternatives to the internal probe. IR sensor 1 measures the temperature on the outside of the reactor whilst IR sensor 2 is designed to measure the temperature of the fluid through the borosilicate glass that constitutes the reactor wall. We have also, in addition to the characterization of the before mentioned IR sensors, developed statistical models to correlate the IR sensor reading to a correct value of the inner temperature (as determined by the internal fiber optic probe), thereby providing a non-contact, indirect, temperature assessment of the heated solvent. The accuracy achieved with these models lie well within the range desired for most synthetic chemistry applications.

  10. Complete FDTD analysis of microwave heating processes in frequency-dependent and temperature dependent media

    SciTech Connect

    Torres, F.; Jecko, B.

    1997-01-01

    It is well known that the temperature rise in a material modifies its physical properties and, particularly, its dielectric permittivity. The dissipated electromagnetic power involved in microwave heating processes depending on {var_epsilon}({omega}), the electrical characteristics of the heated media must vary with the temperature to achieve realistic simulations. In this paper, the authors present a fast and accurate algorithm allowing, through a combined electromagnetic and thermal procedure, to take into account the influence of the temperature on the electrical properties of materials. First, the temperature dependence of the complex permittivity ruled by a Debye relaxation equation is investigated, and a realistic model is proposed and validated. Then, a frequency-dependent finite-differences time-domain ((FD){sup 2}TD) method is used to assess the instantaneous electromagnetic power lost by dielectric hysteresis. Within the same iteration, a time-scaled form of the heat transfer equation allows one to calculate the temperature distribution in the heated medium and then to correct the dielectric properties of the material using the proposed model. These new characteristics will be taken into account by the EM solver at the next iteration. This combined algorithm allows a significant reduction of computation time. An application to a microwave oven is proposed.

  11. Potential risk of bisphenol A migration from polycarbonate containers after heating, boiling, and microwaving.

    PubMed

    Lim, Duck Soo; Kwack, Seung Jun; Kim, Kyu-Bong; Kim, Hyung Sik; Lee, Byung Mu

    2009-01-01

    The migration levels of bisphenol A (BPA) were analyzed in food samples by high-performance liquid chromatography (HPLC) from polycarbonate (PC) bottles subjected to simulated use by heating with microwave, heating in a boiling water bath, or filling them with boiling hot water (100 degrees C). Migration testing performed in PC bottles filled with steamed rice or hot cooked pork, standing at room temperature, or heated in a boiling water bath (100 degrees C) showed that BPA was not detected at the limit of detection (LOD) of 1 microg/L (ppb). In contrast, heating by microwaving to 100 degrees C for 9 min increased BPA migration levels from 6 to 18 ppb and from 5 to 15 ppb for steamed rice or for cooked pork, respectively. In addition, 3 different PC bottles were tested by filling them with boiling hot water (100 degrees C) and leaving them to stand at room temperature for up to 3 h. The mean BPA levels from the bottles increased in a time-dependent manner, with the range of not detected (ND) to 2.5 ppb after 60 min. However, none of the PC bottles released BPA at levels that exceed the recently established specific migration limits (SML) of 600 ppb established by European Union and Korea Food and Drug Administration (KFDA). Data suggest that the use of PC plastic bottles in our daily life is considered safe in Korea.

  12. Improving heating uniformity of pathological tissue specimens inside a domestic microwave oven.

    PubMed

    Hassan, Osama A; Kandil, Ahmed H; El Bialy, Ahmed M; Hassaballa, Iman A

    2013-01-01

    A 3D coupled electromagnetic thermal model was developed using COMSOL 4.0 to predict the electromagnetic field distribution and temperature profile in pathological tissue samples immersed in a reagent inside the oven cavity. The effect of the volume of reagent on the mean heating rate and heating uniformity within the tissue sample was investigated. Also, the effect of using a water load, as a method of temperature control, is emphasized. A well insulated K type thermocouple connected to a PC is used for model validation. Good agreement is found between experimental and simulated temperature profiles. Results show that as the volume of reagent increases, the mean heating rate decreases and temperature homogeneity increases. Also, it is possible to minimize overshooting temperature values inside the tissue sample and enhance tissue uniformity by about 27% using 100 ml of water load and 42.26% using 150 ml. Domestic microwave oven is a low cost economical tool that can speed up tissue processing steps. Achieving uniform heating inside the microwave oven is the key factor for improving workflow inside pathological labs and maintaining tissue quality and integrity.

  13. Removal of Pb(II) from water by the activated carbon modified by nitric acid under microwave heating.

    PubMed

    Yao, Shuheng; Zhang, Jiajun; Shen, Dekui; Xiao, Rui; Gu, Sai; Zhao, Ming; Liang, Junyu

    2016-02-01

    The rice husk based activated carbon (RH-AC) was treated by nitric acid under microwave heating, in order to improve its capability for the removal of heavy metal ions from water. The optimal conditions for the modification of RH-AC (M-RH-AC) were determined by means of orthogonal array experimental design, giving those as the concentration of nitric acid of 8mol/L, modification time of 15min, modification temperature of 130°C and microwave power of 800W. The characteristics of the M-RH-AC and RH-AC were examined by BET, XRD, Raman spectrum, pH titration, zeta potential, Boehm titration and FTIR analysis. The M-RH-AC has lower pore surface area, smaller crystallite, lower pHIEP and more oxygen-containing functional groups than the RH-AC. Removal capacity of Pb(II) ions by the M-RH-AC and RH-AC from water solution was estimated concerning the influence of contact time, pH value, and initial concentration. The equilibrium time of Pb(II) removal was found to be around 90min after modification process. Two kinetic models are adopted to describe the possible Pb(II) adsorption mechanism, finding that the adsorption rate of Pb(II) ions by the M-RH-AC is larger than that of RH-AC.

  14. Characterisation of water hyacinth with microwave-heated alkali pretreatment for enhanced enzymatic digestibility and hydrogen/methane fermentation.

    PubMed

    Lin, Richen; Cheng, Jun; Song, Wenlu; Ding, Lingkan; Xie, Binfei; Zhou, Junhu; Cen, Kefa

    2015-04-01

    Microwave-heated alkali pretreatment (MAP) was investigated to improve enzymatic digestibility and H2/CH4 production from water hyacinth. SEM revealed that MAP deconstructed the lignocellulose matrix and swelled the surfaces of water hyacinth. XRD indicated that MAP decreased the crystallinity index from 16.0 to 13.0 because of cellulose amorphisation. FTIR indicated that MAP effectively destroyed the lignin structure and disrupted the crystalline cellulose to reduce crystallinity. The reducing sugar yield of 0.296 g/gTVS was achieved at optimal hydrolysis conditions (microwave temperature = 190°C, time = 10 min, and cellulase dosage = 5 wt%). The sequentially fermentative hydrogen and methane yields from water hyacinth with MAP and enzymatic hydrolysis were increased to 63.9 and 172.5 mL/gTVS, respectively. The energy conversion efficiency (40.0%) in the two-stage hydrogen and methane cogeneration was lower than that (49.5%) in the one-stage methane production (237.4 mL/gTVS) from water hyacinth with MAP and enzymatic hydrolysis. Copyright © 2015 Elsevier Ltd. All rights reserved.

  15. Optimization for ultrasonic-microwave synergistic extraction of polysaccharides from Cornus officinalis and characterization of polysaccharides.

    PubMed

    Yin, Xiulian; You, Qinghong; Jiang, Zhonghai; Zhou, Xinghai

    2016-02-01

    Ultrasonic-microwave synergistic extraction (UMSE) of polysaccharides from Cornus officinalis was optimized by response surface methodology (RSM). The effect of four different factors on the yield of C. officinalis polysaccharides (COP) was studied. RSM results showed that the optimal conditions were extraction time of 31.49823 min, microwave power of 99.39769 W, and water-to-raw material ratio of 28.16273. The COP yield was 11.38±0.31% using the modified optimal conditions, which was consistent with the value predicted by the model. The crude COP was purified by DEAE-Cellulose 52 chromatography and Sephadex G-100 chromatography. Five fractions, namely, crude COP, COP-1, COP-2, COP-3, and COP-4, were obtained. Monosaccharide composition analysis revealed that the COP was composed of glucose, arabinose, fucose, xylose, mannose, and rhamnose. Preliminary structural characterizations of COP were conducted by scanning electron microscopy and Fourier transform infrared spectroscopy.

  16. Multiphysics Modeling of Microwave Heating of a Frozen Heterogeneous Meal Rotating on a Turntable.

    PubMed

    Pitchai, Krishnamoorthy; Chen, Jiajia; Birla, Sohan; Jones, David; Gonzalez, Ric; Subbiah, Jeyamkondan

    2015-12-01

    A 3-dimensional (3-D) multiphysics model was developed to understand the microwave heating process of a real heterogeneous food, multilayered frozen lasagna. Near-perfect 3-D geometries of food package and microwave oven were used. A multiphase porous media model combining the electromagnetic heat source with heat and mass transfer, and incorporating phase change of melting and evaporation was included in finite element model. Discrete rotation of food on the turntable was incorporated. The model simulated for 6 min of microwave cooking of a 450 g frozen lasagna kept at the center of the rotating turntable in a 1200 W domestic oven. Temperature-dependent dielectric and thermal properties of lasagna ingredients were measured and provided as inputs to the model. Simulated temperature profiles were compared with experimental temperature profiles obtained using a thermal imaging camera and fiber-optic sensors. The total moisture loss in lasagna was predicted and compared with the experimental moisture loss during cooking. The simulated spatial temperature patterns predicted at the top layer was in good agreement with the corresponding patterns observed in thermal images. Predicted point temperature profiles at 6 different locations within the meal were compared with experimental temperature profiles and root mean square error (RMSE) values ranged from 6.6 to 20.0 °C. The predicted total moisture loss matched well with an RMSE value of 0.54 g. Different layers of food components showed considerably different heating performance. Food product developers can use this model for designing food products by understanding the effect of thickness and order of each layer, and material properties of each layer, and packaging shape on cooking performance. © 2015 Institute of Food Technologists®

  17. Modulation of heat shock protein response in SH-SY5Y by mobile phone microwaves

    PubMed Central

    Calabrò, Emanuele; Condello, Salvatore; Currò, Monica; Ferlazzo, Nadia; Caccamo, Daniela; Magazù, Salvatore; Ientile, Riccardo

    2012-01-01

    AIM: To investigate putative biological damage caused by GSM mobile phone frequencies by assessing electromagnetic fields during mobile phone working. METHODS: Neuron-like cells, obtained by retinoic-acid-induced differentiation of human neuroblastoma SH-SY5Y cells, were exposed for 2 h and 4 h to microwaves at 1800 MHz frequency bands. RESULTS: Cell stress response was evaluated by MTT assay as well as changes in the heat shock protein expression (Hsp20, Hsp27 and Hsp70) and caspase-3 activity levels, as biomarkers of apoptotic pathway. Under our experimental conditions, neither cell viability nor Hsp27 expression nor caspase-3 activity was significantly changed. Interestingly, a significant decrease in Hsp20 expression was observed at both times of exposure, whereas Hsp70 levels were significantly increased only after 4 h exposure. CONCLUSION: The modulation of the expression of Hsps in neuronal cells can be an early response to radiofrequency microwaves. PMID:22371824

  18. Stability and Demulsification of Water-in-Crude Oil (w/o) Emulsions Via Microwave Heating

    NASA Astrophysics Data System (ADS)

    Nour, Abdurahman. H.; Rosli; Yunus, Mohd.

    Formation of emulsions during oil production and processing is a costly problem, both in terms of chemicals used and production losses. Experimental data are presented to show the influences of Triton X-100, Low sulphur Wax Residue (LSWR), Sorbitan monooleate (Span 83) and Sodium Dedocyl Sulphate (SDDS) on the stability and microwave demulsification of emulsions. It was found that emulsion stability was related to some parameters such as, the surfactant concentrations, water-oil phase ratio (10-90%), temperature and agitation speed. For economic and operational reasons, it is necessary to separate the water completely from the crude oils before transporting or refining them. In this regard, the present study found that microwave radiation method can enhance the demulsification of water-in-oil (w/o) emulsions in a very short time compared to the conventional heating methods.

  19. Preliminary Study of Heat Supply during Carbon Nanodots Synthesis by Microwave-assisted Method

    NASA Astrophysics Data System (ADS)

    Nakul, F.; Aimon, A. H.; Nuryadin, B. W.; Iskandar, F.

    2016-08-01

    Carbon nanodots (CNDs) are known to be good phosphor materials with wide range emission band, low cytotoxicity and excellent biocompatibility. In this work, CNDs were synthesized from a precursor consisting of citric acid [C6H8O7] as carbon source and urea [(NH2)2CO] as nitrogen source through a microwave-assisted method. The heat energy supplied during the microwave process was controlled. Further, we studied the effect of citric acid mass on the photoluminescence (PL) properties of the CNDs by varying its percentage in the precursors. The optimum luminescence intensity was obtained from the sample that was produced from 1.2 wt% citric acid mass. It had a single emission band with bright yellow luminescence.

  20. A study of some inherent causes for non-uniform microwave heating

    NASA Astrophysics Data System (ADS)

    Tsai, Y. F.; Barnett, L. R.; Teng, H. H.; Ko, C. C.; Chu, K. R.

    2017-10-01

    Radio frequency and microwave heating of dielectric objects is often susceptible to an excessive temperature spread due to uneven energy deposition. The exposure to a non-uniform field is a well-studied cause for this difficulty encountered in numerous applications. There are, however, some less-understood causes, which are inherent in nature in that they persist even in a perfectly uniform field. We present an experimental study on three main inherent causes with rice grains as samples. Experiments are conducted in an applicator, in which samples are irradiated by a 24 GHz microwave. High radiation uniformity (˜99%) and polarization control allow a quantitative examination of each cause. Their individual and collective effects are found to be highly significant. In particular, polarization-charge shielding alone can result in a temperature spread of ˜18.2% for the samples examined. Physical interpretations are given and an effective method for its mitigation is demonstrated.

  1. Rapid ZnO nanopillar array growth by microwave assisted heating

    NASA Astrophysics Data System (ADS)

    Yao, Jimmy; Chang, Yun-Ching; Mei, Hao; Cheng, Jiping; Yin, Stuart (Shizhuo); Luo, Claire

    2010-08-01

    Zinc oxide (ZnO) nano-wires have draw people's attention in recent studies. The unique structural and physical properties offer fascinating potential for future technological applications. The state-of-the-art fabrication process of ZnO nano-wires is based on vapor-liquid-solid (VLS) method. In this paper, the microwave assisted heating technique is introduced for the growth of ZnO nanopillar arrays. The microwave grown ZnO nanowires were characterized by fieldemission scanning electron microscopy, X-ray diffraction, transmission electron microscopy, and photoluminescence spectroscopy. It was demonstrated that (001) oriented single crystal ZnO nanowires can be grown vertically and uniformly on a-plane sapphire wafers.

  2. Numerical simulations of microwave heating of liquids: enhancements using Krylov subspace methods

    NASA Astrophysics Data System (ADS)

    Lollchund, M. R.; Dookhitram, K.; Sunhaloo, M. S.; Boojhawon, R.

    2013-04-01

    In this paper, we compare the performances of three iterative solvers for large sparse linear systems arising in the numerical computations of incompressible Navier-Stokes (NS) equations. These equations are employed mainly in the simulation of microwave heating of liquids. The emphasis of this work is on the application of Krylov projection techniques such as Generalized Minimal Residual (GMRES) to solve the Pressure Poisson Equations that result from discretisation of the NS equations. The performance of the GMRES method is compared with the traditional Gauss-Seidel (GS) and point successive over relaxation (PSOR) techniques through their application to simulate the dynamics of water housed inside a vertical cylindrical vessel which is subjected to microwave radiation. It is found that as the mesh size increases, GMRES gives the fastest convergence rate in terms of computational times and number of iterations.

  3. Higher Fe{sup 2+}/total Fe ratio in iron doped phosphate glass melted by microwave heating

    SciTech Connect

    Mandal, Ashis K.; Sinha, Prasanta K.; Das, Dipankar; Guha, Chandan; Sen, Ranjan

    2015-03-15

    Highlights: • Iron doped phosphate glasses prepared using microwave heating and conventional heating under air and reducing atmosphere. • Presence of iron predominantly in the ferrous oxidation state in all the glasses. • Significant concentrations of iron in the ferrous oxidation state on both octahedral and tetrahedral sites in all the glasses. • Ratio of Fe{sup 2+} with total iron is found higher in microwave prepared glasses in comparison to conventional prepared glasses. - Abstract: Iron doped phosphate glasses containing P{sub 2}O{sub 5}–MgO–ZnO–B{sub 2}O{sub 3}–Al{sub 2}O{sub 3} were melted using conventional resistance heating and microwave heating in air and under reducing atmosphere. All the glasses were characterised by UV–Vis–NIR spectroscopy, Mössbauer spectroscopy, thermogravimetric analysis and wet colorimetry analysis. Mössbauer spectroscopy revealed presence of iron predominantly in the ferrous oxidation state on two different sites in all the glasses. The intensity of the ferrous absorption peaks in UV–Vis–NIR spectrum was found to be more in glasses prepared using microwave radiation compared to the glasses prepared in a resistance heating furnace. Thermogravimetric analysis showed increasing weight gain on heating under oxygen atmosphere for glass corroborating higher ratio of FeO/(FeO + Fe{sub 2}O{sub 3}) in glass melted by direct microwave heating. Wet chemical analysis also substantiated the finding of higher ratio Fe{sup +2}/ΣFe in microwave melted glasses. It was found that iron redox ratio was highest in the glasses prepared in a microwave furnace under reducing atmosphere.

  4. Precipitation and Latent Heating Distributions from Satellite Passive Microwave Radiometry. Part 1; Method and Uncertainties

    NASA Technical Reports Server (NTRS)

    Olson, William S.; Kummerow, Christian D.; Yang, Song; Petty, Grant W.; Tao, Wei-Kuo; Bell, Thomas L.; Braun, Scott A.; Wang, Yansen; Lang, Stephen E.; Johnson, Daniel E.

    2004-01-01

    A revised Bayesian algorithm for estimating surface rain rate, convective rain proportion, and latent heating/drying profiles from satellite-borne passive microwave radiometer observations over ocean backgrounds is described. The algorithm searches a large database of cloud-radiative model simulations to find cloud profiles that are radiatively consistent with a given set of microwave radiance measurements. The properties of these radiatively consistent profiles are then composited to obtain best estimates of the observed properties. The revised algorithm is supported by an expanded and more physically consistent database of cloud-radiative model simulations. The algorithm also features a better quantification of the convective and non-convective contributions to total rainfall, a new geographic database, and an improved representation of background radiances in rain-free regions. Bias and random error estimates are derived from applications of the algorithm to synthetic radiance data, based upon a subset of cloud resolving model simulations, and from the Bayesian formulation itself. Synthetic rain rate and latent heating estimates exhibit a trend of high (low) bias for low (high) retrieved values. The Bayesian estimates of random error are propagated to represent errors at coarser time and space resolutions, based upon applications of the algorithm to TRMM Microwave Imager (TMI) data. Errors in instantaneous rain rate estimates at 0.5 deg resolution range from approximately 50% at 1 mm/h to 20% at 14 mm/h. These errors represent about 70-90% of the mean random deviation between collocated passive microwave and spaceborne radar rain rate estimates. The cumulative algorithm error in TMI estimates at monthly, 2.5 deg resolution is relatively small (less than 6% at 5 mm/day) compared to the random error due to infrequent satellite temporal sampling (8-35% at the same rain rate).

  5. Hydrothermal carbonization of sugarcane bagasse via wet torrefaction in association with microwave heating.

    PubMed

    Chen, Wei-Hsin; Ye, Song-Ching; Sheen, Herng-Kuang

    2012-08-01

    Hydrothermal carbonization of sugarcane bagasse using wet torrefaction is studied. The biomass is torrefied in water or dilute sulfuric acid solution and microwaves are employed to heat the solutions where the reaction temperature is fixed at 180 °C. The effects of acid concentration, heating time and solid-to-liquid ratio on the performance of wet torrefaction are investigated. It is found that the addition of sulfuric acid and increasing heating time are conducive to carbonizing bagasse. The calorific value of bagasse can be increased up to 20.3% from wet torrefaction. With the same improvement in calorific value, the temperature of wet torrefaction is lower than that of dry torrefaction around 100 °C, revealing that wet torrefaction is a promising method to upgrade biomass as fuel. The calorific value of torrefied biomass can be predicted well based on proximate, elemental or fiber analysis, and the last one gives the best estimation.

  6. Numerical modeling of continuous flow microwave heating: a critical comparison of COMSOL and ANSYS.

    PubMed

    Salvi, D; Boldor, Dorin; Ortego, J; Aita, G M; Sabliov, C M

    2010-01-01

    Numerical models were developed to simulate temperature profiles in Newtonian fluids during continuous flow microwave heating by one way coupling electromagnetism, fluid flow, and heat transport in ANSYS 8.0 and COMSOL Multiphysics v3.4. Comparison of the results from the COMSOL model with the results from a pre-developed and validated ANSYS model ensured accuracy of the COMSOL model. Prediction of power Loss by both models was in close agreement (5-13% variation) and the predicted temperature profiles were similar. COMSOL provided a flexible model setup whereas ANSYS required coupling incompatible elements to transfer load between electromagnetic, fluid flow, and heat transport modules. Overall, both software packages provided the ability to solve multiphysics phenomena accurately.

  7. Effects of electrical shielding and salt concentration on microwave heating in cylindrical containers.

    PubMed

    Anantheswaran, R C; Swanderski, J L

    2002-01-01

    Time-temperature distributions in water and salt solutions were collected in a cylindrical container with and without electrical top shielding during microwave heating. A cold spot was found to exist for both water and salt solutions close to the bottom of the container with and without electrical top shielding. Surface heating was observed in unshielded salt solutions and resulted in a stagnant layer close to the top of the container. Surface heating was eliminated in salt solutions with electrical shielding at the top of the container. Flow profiles within the container were monitored using a potassium permanganate dye tracer and a video camera. The flow profiles for water showed an upward flow in the central region and a descending flow along the side walls. An upward flow along the side walls and a downward flow along the central axis was observed for salt solutions.

  8. Coupled electromagnetic and thermal modeling of microwave oven heating of foods.

    PubMed

    Zhang, H; Datta, A K

    2000-01-01

    Temperature distributions from heating in a domestic microwave oven were studied by considering the coupling between the electromagnetics and heat transfer through changes in dielectric properties during heating. Maxwell's equations for electromagnetics and the thermal energy equations are solved numerically using two separate finite-element softwares. The coupling between the softwares was developed by writing special modules that interfaced these softwares at the system level. Experimentally measured temperature profiles were compared with the numerical predictions. The importance of coupling was evident when the properties changed significantly with temperature for low and high dielectric loss materials and more so for the high loss materials. For moderate loss materials, when the properties do not change as much with temperature, coupled solutions lead to results very close to the results for the uncoupled solution.

  9. Optimal Quantum Interference Thermoelectric Heat Engine with Edge States

    NASA Astrophysics Data System (ADS)

    Samuelsson, Peter; Kheradsoud, Sara; Sothmann, Björn

    2017-06-01

    We show theoretically that a thermoelectric heat engine, operating exclusively due to quantum-mechanical interference, can reach optimal linear-response performance. A chiral edge state implementation of a close-to-optimal heat engine is proposed in an electronic Mach-Zehnder interferometer with a mesoscopic capacitor coupled to one arm. We demonstrate that the maximum power and corresponding efficiency can reach 90% and 83%, respectively, of the theoretical maximum. The proposed heat engine can be realized with existing experimental techniques and has a performance robust against moderate dephasing.

  10. Optimal Quantum Interference Thermoelectric Heat Engine with Edge States.

    PubMed

    Samuelsson, Peter; Kheradsoud, Sara; Sothmann, Björn

    2017-06-23

    We show theoretically that a thermoelectric heat engine, operating exclusively due to quantum-mechanical interference, can reach optimal linear-response performance. A chiral edge state implementation of a close-to-optimal heat engine is proposed in an electronic Mach-Zehnder interferometer with a mesoscopic capacitor coupled to one arm. We demonstrate that the maximum power and corresponding efficiency can reach 90% and 83%, respectively, of the theoretical maximum. The proposed heat engine can be realized with existing experimental techniques and has a performance robust against moderate dephasing.

  11. Using microwave heating to improve the desorption efficiency of high molecular weight VOC from beaded activated carbon.

    PubMed

    Fayaz, Mohammadreza; Shariaty, Pooya; Atkinson, John D; Hashisho, Zaher; Phillips, John H; Anderson, James E; Nichols, Mark

    2015-04-07

    Incomplete regeneration of activated carbon loaded with organic compounds results in heel build-up that reduces the useful life of the adsorbent. In this study, microwave heating was tested as a regeneration method for beaded activated carbon (BAC) loaded with n-dodecane, a high molecular weight volatile organic compound. Energy consumption and desorption efficiency for microwave-heating regeneration were compared with conductive-heating regeneration. The minimum energy needed to completely regenerate the adsorbent (100% desorption efficiency) using microwave regeneration was 6% of that needed with conductive heating regeneration, owing to more rapid heating rates and lower heat loss. Analyses of adsorbent pore size distribution and surface chemistry confirmed that neither heating method altered the physical/chemical properties of the BAC. Additionally, gas chromatography (with flame ionization detector) confirmed that neither regeneration method detectably altered the adsorbate composition during desorption. By demonstrating improvements in energy consumption and desorption efficiency and showing stable adsorbate and adsorbent properties, this paper suggests that microwave heating is an attractive method for activated carbon regeneration particularly when high-affinity VOC adsorbates are present.

  12. Gas dynamic model of electrothermal thrusters of small spacecraft and possibility of applying microwave heating of a working

    NASA Astrophysics Data System (ADS)

    Blinov, V. N.; Shalay, V. V.; Vavilov, I. S.; Kositsin, V. V.; Ruban, V. I.; Lykyanchik, A. I.; Yachmenev, P. S.; Vlasov, A. S.

    2017-06-01

    This paper is devoted to development and approbation of the gas dynamic model of ammonia thruster with low power consumption and ultra small thrust for picosatellite weighing up to 5 kg and possibility of applying microwave heating of a working fluid. It is shown, that simplest electrothermal thruster consisting of propellant tank, solenoid valve, expension cavity and heating chamber can provide ultra small trust due to gas dynamic processes and small heat supply. The results of the study set tasks for further design of small spacecrafts microwave generators.

  13. Ecological optimization of an irreversible harmonic oscillators Carnot heat engine

    NASA Astrophysics Data System (ADS)

    Liu, Xiaowei; Chen, Lingen; Wu, Feng; Sun, Fengrui

    2009-12-01

    A model of an irreversible quantum Carnot heat engine with heat resistance, internal irreversibility and heat leakage and many non-interacting harmonic oscillators is established in this paper. Based on the quantum master equation and semi-group approach, equations of some important performance parameters, such as power output, efficiency, exergy loss rate and ecological function for the irreversible quantum Carnot heat engine are derived. The optimal ecological performance of the heat engine in the classical limit is analyzed with numerical examples. Effects of internal irreversibility and heat leakage on the ecological performance are discussed. A performance comparison of the quantum heat engine under maximum ecological function and maximum power conditions is also performed.

  14. Turmeric (Curcuma longa L.) drying: an optimization approach using microwave-vacuum drying.

    PubMed

    Hirun, Sathira; Utama-Ang, Niramon; Roach, Paul D

    2014-09-01

    This study investigated the effect of microwave power (2,400-4,000 W) and drying times (10-30 min) on the quality of dried turmeric in terms of colour (L, a*, b*), moisture content, water activity (aw), ash, antioxidant activity (2,2-dipheneyl-1-picrylhydrazyl; DPPH), total phenolic and curcuminoids content. In addition, Response Surface Methodology (RSM) was implemented to optimize the drying conditions for turmeric. A range of quality parameters, microwave power (W) and time (min) were fitted to quadratic models using a central composite design. The Analysis of Variance (ANOVA) statistic results suggested that the optimal qualities (i.e., aw, value, moisture content, phenolic content, curcuminoid content and EC50 and L value) of dried turmeric were achieved at high vacuum-microwave power (3,500-4,000 W) and long duration (27-30 min). The improvement in the quality of dried turmeric microwave-vacuum drying in these conditions was illustrated through the enzymatic browning reaction via inhibition of polyphenol oxidase which suppressed the formation of the brown pigments and increased the phenol substrates.

  15. Optimization of Transient Heat Exchanger Performance for Improved Energy Efficiency

    NASA Astrophysics Data System (ADS)

    Bran Anleu, Gabriela; Kavehpour, Pirouz; Lavine, Adrienne; Wirz, Richard

    2014-11-01

    Heat exchangers are used in a multitude of applications within systems for energy generation, energy conversion, or energy storage. Many of these systems (e.g. solar power plants) function under transient conditions, but the design of the heat exchangers is typically optimized assuming steady state conditions. There is a potential for significant energy savings if the transient behavior of the heat exchanger is taken into account in designing the heat exchanger by optimizing its operating conditions in relation to the transient behavior of the overall system. The physics of the transient behavior of a heat exchanger needs to be understood to provide design parameters for transient heat exchangers to deliver energy savings. A numerical model was used to determine the optimized mass flow rates thermal properties for a thermal energy storage system. The transient behavior is strongly linked to the dimensionless parameters relating fluid properties, the mass flow rates, and the temperature of the fluids at the inlet of each stream. Smart metals, or advanced heat exchanger surface geometries and methods of construction will be used to meet the three goals mentioned before: 1) energy and cost reduction, 2) size reduction, and 3) optimal performance for all modes of operation.

  16. Optimal power and efficiency of quantum Stirling heat engines

    NASA Astrophysics Data System (ADS)

    Yin, Yong; Chen, Lingen; Wu, Feng

    2017-01-01

    A quantum Stirling heat engine model is established in this paper in which imperfect regeneration and heat leakage are considered. A single particle which contained in a one-dimensional infinite potential well is studied, and the system consists of countless replicas. Each particle is confined in its own potential well, whose occupation probabilities can be expressed by the thermal equilibrium Gibbs distributions. Based on the Schrödinger equation, the expressions of power output and efficiency for the engine are obtained. Effects of imperfect regeneration and heat leakage on the optimal performance are discussed. The optimal performance region and the optimal values of important parameters of the engine cycle are obtained. The results obtained can provide some guidelines for the design of a quantum Stirling heat engine.

  17. Effect of Activating Agent on the Preparation of Bamboo-Based High Surface Area Activated Carbon by Microwave Heating

    NASA Astrophysics Data System (ADS)

    Xia, Hongying; Wu, Jian; Srinivasakannan, Chandrasekar; Peng, Jinhui; Zhang, Libo

    2016-06-01

    The present work attempts to convert bamboo into a high surface area activated carbon via microwave heating. Different chemical activating agents such as KOH, NaOH, K2CO3 and Na2CO3 were utilized to identify a most suitable activating agent. Among the activating agents tested KOH was found to generate carbon with the highest porosity and surface area. The effect of KOH/C ratio on the porous nature of the activated carbon has been assessed. An optimal KOH/C ratio of 4 was identified, beyond which the surface area as well as the pore volume were found to decrease. At the optimized KOH/C ratio the surface area and the pore volume were estimated to be 3,441 m2/g and 2.093 ml/g, respectively, with the significant proportion of which being microporous (62.3%). Activated carbon prepared under the optimum conditions was further characterized using Fourier transform infrared spectroscopy (FTIR) and scanning electron microscope (SEM). Activated carbons with so high surface area and pore volume are very rarely reported, which could be owed to the nature of the precursor and the optimal conditions of mixture ratio adopted in the present work.

  18. Enhancing oxidative stability of sunflower oil during convective and microwave heating using grape seed extract.

    PubMed

    Poiana, Mariana-Atena

    2012-01-01

    This study was performed to investigate the effectiveness of grape seed extract (GSE) compared to butylated hydroxytoluene (BHT) on retarding lipid oxidation of sunflower oil subjected to convection and microwave heating up to 240 min under simulated frying conditions. The progress of lipid oxidation was assessed in terms of peroxide value (PV), p-anisidine value (p-AV), conjugated dienes and trienes (CD, CT), inhibition of oil oxidation (IO) and TOTOX value. In addition, total phenolic content (TP) was evaluated in samples before and after heating in order to assess the changes in these compounds relative to the extent of lipid oxidation. The results of this study highlight that GSE showed a significantly inhibitory effect on lipid oxidation during both treatments, although to a different extent. This ability was dose-dependent; therefore, the extent of lipid oxidation was inversely related to GSE level. Convective heating, respective microwave exposure for 240 min of samples supplemented by GSE to a level of 1000 ppm, resulted in significant decreases of investigated indices relative to the control values as follows: PV (48%; 30%), p-AV (29%; 40%), CD (45%; 30%), CT (41%; 36%), TOTOX (35%; 37%). GSE to a level of 600-800 ppm inhibited the lipid oxidation in a similar manner to BHT. These results suggested that GSE can be used as a potential natural extract for improving oxidative stability of sunflower oil during thermal applications.

  19. Enhancing Oxidative Stability of Sunflower Oil during Convective and Microwave Heating Using Grape Seed Extract

    PubMed Central

    Poiana, Mariana-Atena

    2012-01-01

    This study was performed to investigate the effectiveness of grape seed extract (GSE) compared to butylated hydroxytoluene (BHT) on retarding lipid oxidation of sunflower oil subjected to convection and microwave heating up to 240 min under simulated frying conditions. The progress of lipid oxidation was assessed in terms of peroxide value (PV), p-anisidine value (p-AV), conjugated dienes and trienes (CD, CT), inhibition of oil oxidation (IO) and TOTOX value. In addition, total phenolic content (TP) was evaluated in samples before and after heating in order to assess the changes in these compounds relative to the extent of lipid oxidation. The results of this study highlight that GSE showed a significantly inhibitory effect on lipid oxidation during both treatments, although to a different extent. This ability was dose-dependent; therefore, the extent of lipid oxidation was inversely related to GSE level. Convective heating, respective microwave exposure for 240 min of samples supplemented by GSE to a level of 1000 ppm, resulted in significant decreases of investigated indices relative to the control values as follows: PV (48%; 30%), p-AV (29%; 40%), CD (45%; 30%), CT (41%; 36%), TOTOX (35%; 37%). GSE to a level of 600–800 ppm inhibited the lipid oxidation in a similar manner to BHT. These results suggested that GSE can be used as a potential natural extract for improving oxidative stability of sunflower oil during thermal applications. PMID:22942764

  20. Optimization-based design of a heat flux concentrator.

    PubMed

    Peralta, Ignacio; Fachinotti, Víctor D; Ciarbonetti, Ángel A

    2017-01-13

    To gain control over the diffusive heat flux in a given domain, one needs to engineer a thermal metamaterial with a specific distribution of the generally anisotropic thermal conductivity throughout the domain. Until now, the appropriate conductivity distribution was usually determined using transformation thermodynamics. By this way, only a few particular cases of heat flux control in simple domains having simple boundary conditions were studied. Thermal metamaterials based on optimization algorithm provides superior properties compared to those using the previous methods. As a more general approach, we propose to define the heat control problem as an optimization problem where we minimize the error in guiding the heat flux in a given way, taking as design variables the parameters that define the variable microstructure of the metamaterial. In the present study we numerically demonstrate the ability to manipulate heat flux by designing a device to concentrate the thermal energy to its center without disturbing the temperature profile outside it.

  1. Optimization-based design of a heat flux concentrator

    PubMed Central

    Peralta, Ignacio; Fachinotti, Víctor D.; Ciarbonetti, Ángel A.

    2017-01-01

    To gain control over the diffusive heat flux in a given domain, one needs to engineer a thermal metamaterial with a specific distribution of the generally anisotropic thermal conductivity throughout the domain. Until now, the appropriate conductivity distribution was usually determined using transformation thermodynamics. By this way, only a few particular cases of heat flux control in simple domains having simple boundary conditions were studied. Thermal metamaterials based on optimization algorithm provides superior properties compared to those using the previous methods. As a more general approach, we propose to define the heat control problem as an optimization problem where we minimize the error in guiding the heat flux in a given way, taking as design variables the parameters that define the variable microstructure of the metamaterial. In the present study we numerically demonstrate the ability to manipulate heat flux by designing a device to concentrate the thermal energy to its center without disturbing the temperature profile outside it. PMID:28084451

  2. Optimization-based design of a heat flux concentrator

    NASA Astrophysics Data System (ADS)

    Peralta, Ignacio; Fachinotti, Víctor D.; Ciarbonetti, Ángel A.

    2017-01-01

    To gain control over the diffusive heat flux in a given domain, one needs to engineer a thermal metamaterial with a specific distribution of the generally anisotropic thermal conductivity throughout the domain. Until now, the appropriate conductivity distribution was usually determined using transformation thermodynamics. By this way, only a few particular cases of heat flux control in simple domains having simple boundary conditions were studied. Thermal metamaterials based on optimization algorithm provides superior properties compared to those using the previous methods. As a more general approach, we propose to define the heat control problem as an optimization problem where we minimize the error in guiding the heat flux in a given way, taking as design variables the parameters that define the variable microstructure of the metamaterial. In the present study we numerically demonstrate the ability to manipulate heat flux by designing a device to concentrate the thermal energy to its center without disturbing the temperature profile outside it.

  3. Investigation and optimization of the depth of flue gas heat recovery in surface heat exchangers

    NASA Astrophysics Data System (ADS)

    Bespalov, V. V.; Bespalov, V. I.; Melnikov, D. V.

    2017-09-01

    Economic issues associated with designing deep flue gas heat recovery units for natural gas-fired boilers are examined. The governing parameter affecting the performance and cost of surface-type condensing heat recovery heat exchangers is the heat transfer surface area. When firing natural gas, the heat recovery depth depends on the flue gas temperature at the condenser outlet and determines the amount of condensed water vapor. The effect of the outlet flue gas temperature in a heat recovery heat exchanger on the additionally recovered heat power is studied. A correlation has been derived enabling one to determine the best heat recovery depth (or the final cooling temperature) maximizing the anticipated reduced annual profit of a power enterprise from implementation of energy-saving measures. Results of optimization are presented for a surface-type condensing gas-air plate heat recovery heat exchanger for the climatic conditions and the economic situation in Tomsk. The predictions demonstrate that it is economically feasible to design similar heat recovery heat exchangers for a flue gas outlet temperature of 10°C. In this case, the payback period for the investment in the heat recovery heat exchanger will be 1.5 years. The effect of various factors on the optimal outlet flue gas temperature was analyzed. Most climatic, economical, or technological factors have a minor effect on the best outlet temperature, which remains between 5 and 20°C when varying the affecting factors. The derived correlation enables us to preliminary estimate the outlet (final) flue gas temperature that should be used in designing the heat transfer surface of a heat recovery heat exchanger for a gas-fired boiler as applied to the specific climatic conditions.

  4. High-power microwave transmission and launching systems for fusion plasma heating systems

    SciTech Connect

    Bigelow, T.S.

    1989-01-01

    Microwave power in the 30- to 300-GHz frequency range is becoming widely used for heating of plasma in present-day fusion energy magnetic confinement experiments. Microwave power is effective in ionizing plasma and heating electrons through the electron cyclotron heating (ECH) process. Since the power is absorbed in regions of the magnetic field where resonance occurs and launching antennas with narrow beam widths are possible, power deposition location can be highly controlled. This is important for maximizing the power utilization efficiency and improving plasma parameters. Development of the gyrotron oscillator tube has advanced in recent years so that a 1-MW continuous-wave, 140-GHz power source will soon be available. Gyrotron output power is typically in a circular waveguide propagating a circular electric mode (such as TE/sub 0,2/) or a whispering-gallery mode (such as TE/sub 15,2/), depending on frequency and power level. An alternative high-power microwave source currently under development is the free-electron laser (FEL), which may be capable of generating 2-10 MW of average power at frequencies of up to 500 GHz. The FEL has a rectangular output waveguide carrying the TE/sub 0,1/ mode. Because of its higher complexity and cost, the high-average-power FEL is not yet as extensively developed as the gyrotron. In this paper, several types of operating ECH transmission systems are discussed, as well systems currently being developed. The trend in this area is toward higher power and frequency due to the improvements in plasma density and temperature possible. Every system requires a variety of components, such as mode converters, waveguide bends, launchers, and directional couplers. Some of these components are discussed here, along with ongoing work to improve their performance. 8 refs.

  5. Production of bio-fuels by high temperature pyrolysis of sewage sludge using conventional and microwave heating.

    PubMed

    Domínguez, A; Menéndez, J A; Inguanzo, M; Pís, J J

    2006-07-01

    The pyrolysis of sewage sludge was investigated using microwave and electrical ovens as the sources of heat, and graphite and char as microwave absorbers. The main objective of this work was to maximize the gas yield and to assess its quality as a fuel and as a source of hydrogen or syngas (H2 + CO). Both gases were produced in a higher proportion by microwave pyrolysis than by conventional pyrolysis, with a maximum value of 38% for H2 and 66% for H2 + CO. The oils obtained were also characterized using FTIR and GC-MS. The use of conventional electrical heating in the pyrolysis of sewage sludge produced an oil that could have a significant environmental and toxicological impact. Conversely, microwave pyrolysis still preserved some of the functional groups of the initial sludge such as aliphatic and oxygenated compounds, whereas no heavy PACs were detected.

  6. Optimized evaporation from a microchannel heat sink

    NASA Astrophysics Data System (ADS)

    Monazami, Reza; Haj-Hariri, Hossein

    2011-11-01

    Two-phase heat transfer devices, benefiting the unique thermal capacities of phase- change, are considered as the top choice for a wide range of applications involving cooling and temperature control. Evaporation and condensation in these devices usually take place on porous structures. It is widely accepted that they improve the evaporation rates and the overall performance of the device. The liquid menisci formed on the pores of a porous material can be viewed as the active sites of evaporation. Therefore, quantifying the rate of evaporation from a single pore can be used to calculate the total evaporation taking place in the evaporator given the density and the average size of the pores. A microchannel heat sink can be viewed as an structured porous material. In this work, an analytical model is developed to predict the evaporation rate from a liquid meniscus enclosed in a microchannel. The effects of the wall superheat and the width of the channel on the evaporation profile through the meniscus are studied. The results suggest that there is an optimum size for the width of the channel in order to maximize the thermal energy absorbed by the unit area of the heat sink as an array of microchannels.

  7. Optimization of microwave-enhanced methanolysis of algal biomass to biodiesel under temperature controlled conditions.

    PubMed

    Patil, Prafulla; Reddy, Harvind; Muppaneni, Tapaswy; Ponnusamy, Sundaravadivelnathan; Sun, Yingqiang; Dailey, Peter; Cooke, Peter; Patil, Ulkarani; Deng, Shuguang

    2013-06-01

    The effect of a "controlled temperature" approach was investigated in the microwave-enhanced simultaneous extraction and transesterification of dry algae. Experimental runs were designed using a response surface methodology (RSM). The process parameters such as dry algae to methanol ratio, reaction time, and catalyst concentrations were optimized to evaluate their effects on the fatty acid methyl ester (FAME) yield under the "controlled temperature" conditions. Thermal energy associated with the microwave transesterification process was calculated at various temperature levels using the optimized process parameters. Algal biomass characterization and algal biodiesel analysis were carried out using various analytical instruments such as FTIR, TEM, GC-MS and confocal laser scanning microscopy. Thermogravimetric analysis under both nitrogen and oxygen environments was performed to examine the thermal and oxidative stability of the algal fatty acid methyl esters.

  8. Microwave heating inactivates Shiga Toxin (Stx2) in reconstituted fat-free Milk and adversely affects the nutritional value of cell culture medium

    USDA-ARS?s Scientific Manuscript database

    Microwave exposure is a convenient and widely used method for defrosting, heating, and cooking numerous foods. Microwave cooking is also reported to kill pathogenic microorganisms that often contaminate food. Microwaves act by causing polar molecules in food, such as water, to rapidly rotate, thus...

  9. Microwave sintering process model.

    PubMed

    Peng, Hu; Tinga, W R; Sundararaj, U; Eadie, R L

    2003-01-01

    In order to simulate and optimize the microwave sintering of a silicon nitride and tungsten carbide/cobalt toolbits process, a microwave sintering process model has been built. A cylindrical sintering furnace was used containing a heat insulating layer, a susceptor layer, and an alumina tube containing the green toolbit parts between parallel, electrically conductive, graphite plates. Dielectric and absorption properties of the silicon nitride green parts, the tungsten carbide/cobalt green parts, and an oxidizable susceptor material were measured using perturbation and waveguide transmission methods. Microwave absorption data were measured over a temperature range from 20 degrees C to 800 degrees C. These data were then used in the microwave process model which assumed plane wave propagation along the radial direction and included the microwave reflection at each interface between the materials and the microwave absorption in the bulk materials. Heat transfer between the components inside the cylindrical sintering furnace was also included in the model. The simulated heating process data for both silicon nitride and tungsten carbide/cobalt samples closely follow the experimental data. By varying the physical parameters of the sintering furnace model, such as the thickness of the susceptor layer, the thickness of the allumina tube wall, the sample load volume and the graphite plate mass, the model data predicts their effects which are helpful in optimizing those parameters in the industrial sintering process.

  10. Dual modification of taro starch by microwave and other heat moisture treatments.

    PubMed

    Deka, Dhritiman; Sit, Nandan

    2016-11-01

    Effect of heat moisture treatment on the physicochemical properties of taro starch with 25% moisture (w/w) modified by single treatments of microwave (HMT1), autoclave (HMT2) and hot air oven (HMT3), and dual treatments of microwave followed by autoclave (HMT4) and microwave followed by hot air oven (HMT5) were investigated. Amylose contents of the modified starches increased except for HMT3. A loss of physical integrity of the starch granules were observed for dual modified starches. The swelling and solubility of all the modified starches increased. The peak viscosities of starches modified by HMT1 and HMT5 were found to be higher whereas for other modified starches it was lower than that of native starch. The holding and final viscosities of all the modified starches except HMT4 were higher than native starch. The freeze-thaw stabilities of the modified starches were also found to be better than that of native starch. Copyright © 2016 Elsevier B.V. All rights reserved.

  11. Detection of carbon nanotubes in plant roots through microwave-induced heating

    NASA Astrophysics Data System (ADS)

    Irin, Fahmida; Shrestha, Babina; Canas, Jaclyn; Saed, Mohammad; Green, Micah

    2012-02-01

    We demonstrate a novel technique for quantitative detection of CNTs in biological samples by utilizing the thermal response of CNTs under microwave irradiation. In particular, rapid heating of CNTs due to microwave absorption was employed to quantify the amount of CNTs present in alfalfa plant roots. Alfalfa roots were prepared by injecting a known amount of CNTs (single walled and multi walled) and exposed to 30-50 W microwave power to generate calibration curves (temperature rise vs. CNT mass). These calibration curves serve as a characterization tool to determine the unknown amount of CNTs absorbed by alfalfa plant roots grown in CNT-laden soil with superior accuracy and sensitivity. Moreover, the threshold for detectable CNT concentration is much lower than common analytical methods of detecting nanomaterials, such as scanning electron microscopy (SEM), transmission electron microscopy (TEM), and Raman spectroscopy. Considering the lack of effective detection methods for CNT uptake in plants, this method is not only unique but also practical, as it addresses a major problem in the field of nanotoxicology risk assessment.

  12. Theoretical analysis on pulsed microwave heating of pork meat supported on ceramic plate.

    PubMed

    Basak, Tanmay; Rao, Badri S

    2010-11-01

    Theoretical analysis has been carried out to study the role of ceramic plates (alumina and SiC) and pulsed microwave heating of pork meat (Pork Luncheon Roll (PLR) and White Pudding (WP)) samples. Spatial hot spots occur either at the center of the sample or at the outer face or at the face attached with alumina plate and application of pulsing minimizes formation of hot spots within meat samples. Pulsing of microwave is characterized by set point for temperature difference (ΔTS) and on-off constraints for temperature (T'). It is found that alumina plate with higher ΔTS and lower T' may be recommended for thick meat samples (both WP and PLR) whereas for thin meat samples, lower ΔTS with alumina plate/without plate may be preferred. It is also observed that SiC plate may be selectively used with ΔTS=20K for both the pork meats. The distributed microwave incidence is found to be effective due to lesser degree of thermal runaway in absence of pulsing for both meat samples. Copyright © 2010 The American Meat Science Association. Published by Elsevier Ltd. All rights reserved.

  13. Rapid online nonenzymatic protein digestion combining microwave heating acid hydrolysis and electrochemical oxidation.

    PubMed

    Basile, Franco; Hauser, Nicolas

    2011-01-01

    We report an online nonenzymatic method for site-specific digestion of proteins to yield peptides that are well suited for collision-induced dissociation tandem mass spectrometry. The method combines online microwave heating acid hydrolysis at aspartic acid and online electrochemical oxidation at tryptophan and tyrosine. The combined microwave/electrochemical digestion is reproducible and produces peptides with an average sequence length of 10 amino acids. This peptide length is similar to the average peptide length of 9 amino acids obtained by digestion of proteins with the enzyme trypsin. As a result, the peptides produced by this novel nonenzymatic digestion method, when analyzed by electrospray ionization mass spectrometry, produce protonated molecules with mostly +1 and +2 charge states. The combination of these two nonenzymatic methods overcomes shortcomings with each individual method in that (i) peptides generated by the microwave-hydrolysis method have an average amino acid length of 16 amino acids and (ii) the electrochemical-cleavage method is unable to reproducibly digest proteins with molecular masses above 4 kDa. Preliminary results are presented on the application and utility of this rapid online digestion (total of 6 min of digestion time) on a series of standard peptides and proteins as well as an Escherichia coli protein extract.

  14. Low-temperature synthesis of allyl dimethylamine by selective heating under microwave irradiation used for water treatment

    NASA Astrophysics Data System (ADS)

    Tian, Binghui; Luan, Zhaokun; Li, Mingming

    2005-08-01

    Low-temperature synthesis of allyl dimethylamine (ADA) by selective heating under microwave irradiation (MI) used for water treatment is investigated. The effect of MI, ultrasound irradiation (UI) and conventional heating on yield of ADA, reaction time and the flocculation efficiency of polydiallyl dimethylammunion chloride (PDADMAC) prepared form ADA were studied. The results show that by selective heating at low temperature, MI not only increases yield of ADA and reduces reaction time, but also greatly enhances the flocculation efficiency of PDADMAC.

  15. Microwave-assisted cross-coupling and hydrogenation chemistry by using heterogeneous transition-metal catalysts: an evaluation of the role of selective catalyst heating.

    PubMed

    Irfan, Muhammed; Fuchs, Michael; Glasnov, Toma N; Kappe, C Oliver

    2009-11-02

    The concept of specific microwave effects in solid/liquid catalytic processes resulting from the selective heating of a microwave-absorbing heterogeneous transition-metal catalyst by using 2.45 GHz microwave irradiation was evaluated. As model transformations Ni/C-, Cu/C-, Pd/C-, and Pd/Al2O3-catalyzed carbon-carbon/carbon-heteroatom cross-couplings and hydrogenation reactions were investigated. To probe the existence of specific microwave effects by means of selective catalyst heating in these transformations, control experiments comparing microwave dielectric heating and conventional thermal heating at the same reaction temperature were performed. Although the supported metal catalysts were experimentally found to be strongly microwave absorbing, for all chemistry examples investigated herein no differences in reaction rate or selectivity between microwave and conventional heating experiments under carefully controlled conditions were observed. This was true also for reactions that use low-absorbing or microwave transparent solvents, and was independent of the microwave absorbtivity of the catalyst support material. In the case of hydrogenation reactions, the stirring speed was found to be a critical factor on the mass transfer between gas and liquid phase, influencing the rate of the hydrogenation in both microwave and conventionally heated experiments.

  16. A new method to optimize natural convection heat sinks

    NASA Astrophysics Data System (ADS)

    Lampio, K.; Karvinen, R.

    2017-08-01

    The performance of a heat sink cooled by natural convection is strongly affected by its geometry, because buoyancy creates flow. Our model utilizes analytical results of forced flow and convection, and only conduction in a solid, i.e., the base plate and fins, is solved numerically. Sufficient accuracy for calculating maximum temperatures in practical applications is proved by comparing the results of our model with some simple analytical and computational fluid dynamics (CFD) solutions. An essential advantage of our model is that it cuts down on calculation CPU time by many orders of magnitude compared with CFD. The shorter calculation time makes our model well suited for multi-objective optimization, which is the best choice for improving heat sink geometry, because many geometrical parameters with opposite effects influence the thermal behavior. In multi-objective optimization, optimal locations of components and optimal dimensions of the fin array can be found by simultaneously minimizing the heat sink maximum temperature, size, and mass. This paper presents the principles of the particle swarm optimization (PSO) algorithm and applies it as a basis for optimizing existing heat sinks.

  17. Optimization of combined endoreversible Carnot heat engines with different objectives

    NASA Astrophysics Data System (ADS)

    Cheng, Xue-Tao; Liang, Xin-Gang

    2015-06-01

    Taking the output power, thermal efficiency, and thermo-economic performance as the optimization objectives, we optimize the operation parameters of a thermodynamic system with combined endoreversible Carnot heat engines in this paper. The applicabilities of the entropy generation minimization and entransy theory to the optimizations are discussed. For the discussed cases, only the entransy loss coefficient is always agreeable to the optimization of thermal efficiency. The applicabilities of the other discussed concepts to the optimizations are conditional. Different concepts and principles are needed for different optimization objectives, and the optimization principles have their application preconditions. When the preconditions are not satisfied, the principles may be not applicable. Project supported by the National Natural Science Foundation of China (Grant No. 51376101) and the Science Fund for Creative Research Groups, China (Grant No. 51321002).

  18. Microwave heating effects on the chemical composition and the antioxidant capacity of tataouine virgin olive oils from Tunisia.

    PubMed

    Oueslati, Imen; Taamalli, Wael; Haddada, Faouzia M; Zarrouk, Mokhtar

    2010-10-01

    Four Tunisian virgin olive oils (VOOs), derived from varieties (Chemlali Tataouine, Zarrazi Douirat, Fakhari Douirat, and Dhokar Douirat) grown in the harsh pedoclimatic conditions of the region of Tataouine, were evaluated for their responses to microwave heating. Aside from fatty acid composition, all other evaluated parameters were affected by microwave heating, and their variations depend on the genetic factor. Chemlali Tataouine VOO exhibited the slowest biophenol degradation rate and the least diminution in oxidative stability and consequently, its total fraction and both lipidic and methanolic fractions remained unchanged with an exceptional antioxidant potential. In the remaining studied VOOs, the biophenol contents, the oxidative stability, and the antioxidant potential underwent gradual decreases; nevertheless, their levels at the longer treatment time are close to some fresh VOOs. These results should be taken into consideration when Tataouine VOOs are recommended for microwave heating.

  19. In situ growth of silver nanoparticles on TEMPO-oxidized jute fibers by microwave heating.

    PubMed

    Cao, Xinwang; Ding, Bin; Yu, Jianyong; Al-Deyab, Salem S

    2013-01-30

    Cellulose fibers deposited with metallic nanoparticles as one kind of renewable, biocompatible and antimicrobial nanomaterials evoke much interest because of their versatility in various applications. Herein, for the first time, a facile, simple and rapid method was developed to fabricate TEMPO (2,2,6,6-tetramethylpiperidine-1-oxyl radical) selectively oxidized jute fibers in situ deposited with silver nanoparticles in the absence of reducing reagents. The average size of silver nanoparticles deposited on the fibers is 50.0 ± 2.0 nm by microwave heating for 5 min and 90.0 ± 4.7 nm for 10 min heating sample, respectively. The versatile jute-silver nanoparticles nanocomposites with superior thermal stability and high crystallinity would be particularly useful for applications in the public health care and biomedical fields.

  20. Enhanced microwave absorbing properties and heat resistance of carbonyl iron by electroless plating Co

    NASA Astrophysics Data System (ADS)

    Wang, Hongyu; Zhu, Dongmei; Zhou, Wancheng; Luo, Fa

    2015-11-01

    Co coated carbonyl iron particles (Co (CI)) are fabricated through electroless plating method, and the electromagnetic microwave absorbing properties are investigated in the frequencies during 8.2-12.4 GHz. The complex permittivity of CI particles after electroless plating Co is higher than that of raw CI particles due to improvment of the polarization process. Furthermore, according to the XRD and TG results, the Co layer can enhance the heat resistance of CI particles. The bandwidth below -10 dB can reach 3.9 GHz for the Co(CI) absorbent. The results indicate that the electroless plating Co not only enhances the absorbing properties but also improves the heat resistance of CI.

  1. Quasi-optical theory of microwave plasma heating in open magnetic trap

    NASA Astrophysics Data System (ADS)

    Shalashov, A. G.; Balakin, A. A.; Gospodchikov, E. D.; Khusainov, T. A.

    2016-11-01

    Microwave heating of a high-temperature plasma confined in a large-scale open magnetic trap, including all important wave effects like diffraction, absorption, dispersion, and wave beam aberrations, is described for the first time within the first-principle technique based on consistent Maxwell's equations. With this purpose, the quasi-optical approach is generalized over weakly inhomogeneous gyrotrotropic media with resonant absorption and spatial dispersion, and a new form of the integral quasi-optical equation is proposed. An effective numerical technique for this equation's solution is developed and realized in a new code QOOT, which is verified with the simulations of realistic electron cyclotron heating scenarios at the Gas Dynamic Trap at the Budker Institute of Nuclear Physics (Novosibirsk, Russia).

  2. Pulsed microwave heating method for preparation of dye-sensitized solar cells for greener, faster, cheaper production of photovoltaic materials

    NASA Astrophysics Data System (ADS)

    Murphy, Clifford B.; Cotta, Robert; Blais, Timothy; Hall, Charles B.

    2015-05-01

    Microwave heating methods are very popular for developing chemical syntheses that are achieved much more rapidly or with less solvent than via conventional heating methods. Their application to solar cell development has been primarily in developing improvements in the synthesis of dyes and curing of polymer substrates, but not in assisting the photoanode construction of dye-sensitized solar cells. Microwave heating of conducting substrates can lead to arcing of electricity in the reactor, which in turn, can lead to extensive degradation or complete destruction of the photoanode. Here we present our work in applying a pulsed microwave heating method that affords quicker dye deposition times in comparison to conventional heating (μw 40 min, conventional 60 min) with similar dye concentrations as characterized by UV-Vis absorbance, contact angle measurements, and cyclic voltammetry. Our photoanodes are constructed with anatase TiO2 cured onto FTO glass, and deposition of the N719 ruthenium dye either directly to the TiO2 layer or through amide bond formation to a silane layer that has been deposited on the TiO2 layer. Modest improvements in the solar energy conversion efficiency are shown through the microwave method in comparison to conventional heating (μw 0.78% vs. conventional 0.25% reported by K. Szpakolski, et. Al. Polyhedron, 2013, 52, 719-732.)

  3. Effect of microwave heating on BaTiO3:Nb ceramics with positive temperature coefficient of resistivity

    NASA Astrophysics Data System (ADS)

    Jida, Shin'suke; Suemasu, Takeshi; Miki, Toshikatsu

    1999-08-01

    The microwave heating technique is employed for obtaining high performance positive temperature coefficient of resistivity (PTCR) ceramics of Nb-doped BaTiO3 with a low resistivity at room temperature and a high resistivity jump above the Curie temperature. The grains of the BaTiO3:Nb ceramics prepared by microwave sintering are as large as 20-50 μm even when the Nb content exceeds 0.2 at. %, whereas such large grain size has never been obtained at this high content of Nb by ordinary sintering with an electric furnace. The large grains are also obtained by subjecting the heavily Nb-doped ceramics composed of fine grains to postheating with microwave after ordinary sintering. The room-temperature resistivity decreases down below 10 Ω cm and the PTCR character is obtained by postannealing in air. The mechanism of grain growth by microwave heating is discussed in terms of nonuniform temperature distribution of specimens during heating. The experimental data indicate that the microwave heating technique and the employment of a dopant that forms donor levels even at high doping levels will enable to develop high performance PTCR ceramics.

  4. Deep-Blue Fluorescent Particles via Microwave Heating of Polyacrylonitrile Dispersions.

    PubMed

    Go, Dennis; Jurásková, Alena; Hoffmann, Andreas; Kapiti, Gent; Kuehne, Alexander J C

    2017-03-01

    This study presents a new method to produce fluorescent particles. Established methods are based on the incorporation of conjugated dye molecules into dielectric polymer matrices or preparation of colloids, which are composed of fluorescent conjugated polymer. By contrast, this study presents a method where dielectric polyacrylonitrile is exposed to microwave radiation leading to an intramolecular cyclization reaction producing π-conjugated segments, which fluoresce blue. During this conversion, the particles shrink in diameter but as an ensemble they retain their monodispersity. This work investigates the optimal reaction conditions and characterizes the optical properties.

  5. Optimization based inversion method for the inverse heat conduction problems

    NASA Astrophysics Data System (ADS)

    Mu, Huaiping; Li, Jingtao; Wang, Xueyao; Liu, Shi

    2017-05-01

    Precise estimation of the thermal physical properties of materials, boundary conditions, heat flux distributions, heat sources and initial conditions is highly desired for real-world applications. The inverse heat conduction problem (IHCP) analysis method provides an alternative approach for acquiring such parameters. The effectiveness of the inversion algorithm plays an important role in practical applications of the IHCP method. Different from traditional inversion models, in this paper a new inversion model that simultaneously highlights the measurement errors and the inaccurate properties of the forward problem is proposed to improve the inversion accuracy and robustness. A generalized cost function is constructed to convert the original IHCP into an optimization problem. An iterative scheme that splits a complicated optimization problem into several simpler sub-problems and integrates the superiorities of the alternative optimization method and the Broyden-Fletcher-Goldfarb-Shanno (BFGS) algorithm is developed for solving the proposed cost function. Numerical experiment results validate the effectiveness of the proposed inversion method.

  6. Microwave oven heating for inactivation of Listeria monocytogenes on frankfurters before consumption.

    PubMed

    Rodríguez-Marval, Mawill; Geornaras, Ifigenia; Kendall, Patricia A; Scanga, John A; Belk, Keith E; Sofos, John N

    2009-10-01

    Microwave oven heating was evaluated for inactivation of Listeria monocytogenes on inoculated and stored frankfurters. Frankfurters formulated without/with 1.5% potassium lactate and 0.1% sodium diacetate were inoculated with L. monocytogenes (1.9 +/- 0.2 log CFU/cm(2)), vacuum-packaged, and stored (4 degrees C) to simulate conditions prior to purchase by consumers. At storage days 18, 36, and 54, packages were opened and placed at 7 degrees C, simulating aerobic storage in a household refrigerator. At 0, 3, and 7 d of aerobic storage, 2 frankfurters were placed in a bowl with water (250 mL) and treated in a household microwave oven at high (1100 W) power for 30, 45, 60, or 75 s, or medium (550 W) power for 60 or 75 s. Frankfurters and the heating water were analyzed for total microbial counts and L. monocytogenes populations. Exposure to high power for 75 s reduced pathogen levels (0.7 +/- 0.0 to 1.0 +/- 0.1 log CFU/cm(2)) to below the detection limit (<-0.4 log CFU/cm(2)) on frankfurters with lactate/diacetate, even after 54 d of vacuum-packaged storage followed by 7 d of aerobic storage. For frankfurters without lactate/diacetate, high power for 75 s caused reductions between > 1.5 and 5.9 log CFU/cm(2) from control levels of 1.5 +/- 0.1 to 7.2 +/- 0.5 log CFU/cm(2). Depending on treatment and storage time, the water used to reheat the frankfurters had viable L. monocytogenes counts of <-2.4 to 5.5 +/- 0.5 log CFU/mL. The results indicated that frankfurters should be reheated in a microwave oven at high power for 75 s to inactivate up to 3.7 log CFU/cm(2) of L. monocytogenes contamination.

  7. Application of microwave radiation to biofilm heating during wastewater treatment in trickling filters.

    PubMed

    Zieliński, Marcin; Zielińska, Magdalena; Dębowski, Marcin

    2013-01-01

    The purpose of this study was to demonstrate the potential for improving wastewater treatment by the application of microwave radiation (MW) compared to convective heating (CH) of trickling filters. Microwaves were delivered to the biofilm in a continuous and intermittent way to obtain temperatures of 20, 25, 35 and 40 °C. Although there was no effect of MW on organic removal, the observed yield coefficient was lower during the continuous MW supply compared to the periodic dosage and CH. The presence of organic compounds in the influent and continuous biofilm exposure to MW resulted in ca. 10% higher efficiency and ca. 20% higher rate of nitrification compared to intermittent MW dosage and CH. Independent of the method of reactor heating, the absence of organic carbon in the influent induced a significant increase in ammonium oxidation efficiency at 20-35 °C. Despite the aerobic conditions in trickling filters, nitrogen loss was observed. Copyright © 2012 Elsevier Ltd. All rights reserved.

  8. Effect of microwave-assisted dry heating with xanthan on normal and waxy corn starches.

    PubMed

    Sun, Qingjie; Xu, Yicai; Xiong, Liu

    2014-07-01

    Normal corn starch (CS) and waxy corn starch (WCS) were impregnated with xanthan gum (1% based on starch) and heat-treated using a microwave in a dry state for 0, 4, or 6min (CS-X0, CS-X4, CS-X6, WCS-X0, WCS-X4, WCS-X6), respectively. Effects of the microwave-assisted dry heating (MADH) on pasting, morphological, and structural properties were evaluated. The results revealed that the viscosity of both the CS and WCS with xanthan increased compared with untreated samples after MADH, and the effect on WCS was more obvious. The syneresis values showed that the water-holding ability of CS-X6 and WCS-X6 increased, and that value of CS was lower than that of WCS after MADH with xanthan. The MADH with xanthan reduced the To, Tc, Tp, and ΔH values of both the CS and WCS. After MADH, the particle morphology of the starch-xanthan connected more densely, especially WCS, and the gelatinized samples exhibited a strong and smooth laminar structure. The Fourier transform Infrared Spectroscopy (FTIR) displayed that the absorption peak width of both CS-X6 and WCS-X6 became larger. X-ray diffraction showed that the crystallinity of CS-X6 and WCS-X6 decreased slightly as a result of MADH, and the crystalline pattern remained A-type. Copyright © 2014 Elsevier B.V. All rights reserved.

  9. Simple model for predicting microchannel heat sink performance and optimization

    NASA Astrophysics Data System (ADS)

    Tsai, Tsung-Hsun; Chein, Reiyu

    2012-05-01

    A simple model was established to predict microchannel heat sink performance based on energy balance. Both hydrodynamically and thermally developed effects were included. Comparisons with the experimental data show that this model provides satisfactory thermal resistance prediction. The model is further extended to carry out geometric optimization on the microchannel heat sink. The results from the simple model are in good agreement as compared with those obtained from three-dimensional simulations.

  10. Development of optimized, graded-permeability axial groove heat pipes

    NASA Technical Reports Server (NTRS)

    Kapolnek, Michael R.; Holmes, H. Rolland

    1988-01-01

    Heat pipe performance can usually be improved by uniformly varying or grading wick permeability from end to end. A unique and cost effective method for grading the permeability of an axial groove heat pipe is described - selective chemical etching of the pipe casing. This method was developed and demonstrated on a proof-of-concept test article. The process improved the test article's performance by 50 percent. Further improvement is possible through the use of optimally etched grooves.

  11. Comparison of Microwave and Conventional Heating of a Wheat Starch-Gluten Model System

    NASA Astrophysics Data System (ADS)

    Umbach, Sharon Lynn

    The effects of conventional (CV) and microwave (MW) heating on a model wheat starch, vital wheat gluten system were studied. Three moisture contents (35%, 50%, and 65%) and up to five ratios of starch:gluten were studied. MW power was such that heating took place more quickly than during CV heating conditions. Temperature profiles during heating showed the importance of moisture content for curve shape and that all samples reached a high enough temperature for starch gelatinization and gluten denaturation to occur. Scanning electron microscopy supported temperature data in that physical changes for starch had taken place. Texture was evaluated as the force required to compress the sample. Differences were found for heating method, moisture content, and sample composition. Moisture content had the major effect and was inversely related to force. In general, CV heated samples required more force to compress than the MW heated samples. The high starch samples at 50% moisture showed the opposite affect. Self-diffusion coefficients determined by nuclear magnetic resonance (NMR) showed that there was a redistribution of water between starch and gluten after heating for the faster more mobile water in the samples. Little difference was found between the two heating methods. The attenuation factor which has based on the dielectric constant and loss showed differences in the way the sample interacted with electromagnetic energy. The gluten was fractioned with dilute HCl to give six groups of protein. Starch appeared to have an effect on how the gluten denatured. When the fractions were characterized with SDS-PAGE it was found that each fraction contained a wide range of proteins with different molecular weights. Differences were found in the band patterns between the CV- and MW -heated samples. ^{13}C NMR also was used, which provided information on the protein and carbohydrate component of the fractions showed differences between the CV and MW heated samples, especially

  12. Parametric Optimization of Thermoelectric Generators for Waste Heat Recovery

    NASA Astrophysics Data System (ADS)

    Huang, Shouyuan; Xu, Xianfan

    2016-10-01

    This paper presents a methodology for design optimization of thermoelectric-based waste heat recovery systems called thermoelectric generators (TEGs). The aim is to maximize the power output from thermoelectrics which are used as add-on modules to an existing gas-phase heat exchanger, without negative impacts, e.g., maintaining a minimum heat dissipation rate from the hot side. A numerical model is proposed for TEG coupled heat transfer and electrical power output. This finite-volume-based model simulates different types of heat exchangers, i.e., counter-flow and cross-flow, for TEGs. Multiple-filled skutterudites and bismuth-telluride-based thermoelectric modules (TEMs) are applied, respectively, in higher and lower temperature regions. The response surface methodology is implemented to determine the optimized TEG size along and across the flow direction and the height of thermoelectric couple legs, and to analyze their covariance and relative sensitivity. A genetic algorithm is employed to verify the globality of the optimum. The presented method will be generally useful for optimizing heat-exchanger-based TEG performance.

  13. Exergy optimization in a steady moving bed heat exchanger.

    PubMed

    Soria-Verdugo, A; Almendros-Ibáñez, J A; Ruiz-Rivas, U; Santana, D

    2009-04-01

    This work provides an energy and exergy optimization analysis of a moving bed heat exchanger (MBHE). The exchanger is studied as a cross-flow heat exchanger where one of the phases is a moving granular medium. The optimal MBHE dimensions and the optimal particle diameter are obtained for a range of incoming fluid flow rates. The analyses are carried out over operation data of the exchanger obtained in two ways: a numerical simulation of the steady-state problem and an analytical solution of the simplified equations, neglecting the conduction terms. The numerical simulation considers, for the solid, the convection heat transfer to the fluid and the diffusion term in both directions, and for the fluid only the convection heat transfer to the solid. The results are compared with a well-known analytical solution (neglecting conduction effects) for the temperature distribution in the exchanger. Next, the analytical solution is used to derive an expression for the exergy destruction. The optimal length of the MBHE depends mainly on the flow rate and does not depend on particle diameter unless they become very small (thus increasing sharply the pressure drop). The exergy optimal length is always smaller than the thermal one, although the difference is itself small.

  14. Numerical Modeling and Optimization of Warm-water Heat Sinks

    NASA Astrophysics Data System (ADS)

    Hadad, Yaser; Chiarot, Paul

    2015-11-01

    For cooling in large data-centers and supercomputers, water is increasingly replacing air as the working fluid in heat sinks. Utilizing water provides unique capabilities; for example: higher heat capacity, Prandtl number, and convection heat transfer coefficient. The use of warm, rather than chilled, water has the potential to provide increased energy efficiency. The geometric and operating parameters of the heat sink govern its performance. Numerical modeling is used to examine the influence of geometry and operating conditions on key metrics such as thermal and flow resistance. This model also facilitates studies on cooling of electronic chip hot spots and failure scenarios. We report on the optimal parameters for a warm-water heat sink to achieve maximum cooling performance.

  15. Optimization of microwave vacuum drying of lotus (Nelumbo nucifera Gaertn.) seeds by response surface methodology.

    PubMed

    Tian, Yuting; Zhang, Yi; Zeng, Shaoxiao; Zheng, Yafeng; Chen, Feng; Guo, Zhebin; Lin, Yufei; Zheng, Baodong

    2012-10-01

    Drying is the main process used to treat lotus seeds for storage. In this study, response surface methodology was used to optimize processing methods for microwave vacuum (MWV) drying of lotus seeds and to create a desirable product. A central composite design with three important factors: microwave output power (2.0-4.0 kW), vacuum degree (-0.070 to -0.090 MPa) and on/off ratio (68/52 s to 99/21 s) was used to study the response variables of drying time, shrinkage ratio, rehydration ratio and whiteness index. The optimum conditions for MWV drying of lotus seeds were determined to obtain a minimal drying time, minimal shrinkage ratio, maximum rehydration ratio and maximum whiteness index. The optimum drying conditions were found to be: microwave output power 3.2 kW, vacuum degree -0.083 MPa and on/off ratio 94/26 s. Under these optimal conditions, drying time, shrinkage ratio, rehydration ratio and whiteness index were found to be 10 min, 37.66%, 157.1% and 68.83, respectively.

  16. Optimization of microwave assisted extraction (MAE) and soxhlet extraction of phenolic compound from licorice root.

    PubMed

    Karami, Zohreh; Emam-Djomeh, Zahra; Mirzaee, Habib Allah; Khomeiri, Morteza; Mahoonak, Alireza Sadeghi; Aydani, Emad

    2015-06-01

    In present study, response surface methodology was used to optimize extraction condition of phenolic compounds from licorice root by microwave application. Investigated factors were solvent (ethanol 80 %, methanol 80 % and water), liquid/solid ratio (10:1-25:1) and time (2-6 min). Experiments were designed according to the central composite rotatable design. The results showed that extraction conditions had significant effect on the extraction yield of phenolic compounds and antioxidant capacities. Optimal condition in microwave assisted method were ethanol 80 % as solvent, extraction time of 5-6 min and liquid/solid ratio of 12.7/1. Results were compared with those obtained by soxhlet extraction. In soxhlet extraction, Optimum conditions were extraction time of 6 h for ethanol 80 % as solvent. Value of phenolic compounds and extraction yield of licorice root in microwave assisted (MAE), and soxhlet were 47.47 mg/g and 16.38 %, 41.709 mg/g and 14.49 %, respectively. These results implied that MAE was more efficient extracting method than soxhlet.

  17. Novel Direct Steelmaking by Combining Microwave, Electric Arc, and Exothermal Heating Technologies

    SciTech Connect

    Dr. Xiaodi Huang; Dr. J. Y. Hwang

    2005-03-28

    Steel is a basic material broadly used by perhaps every industry and individual. It is critical to our nation's economy and national security. Unfortunately, the American steel industry is losing competitiveness in the world steel production field. There is an urgent need to develop the next generation of steelmaking technology for the American steel industry. Direct steelmaking through the combination of microwave, electric arc, and exothermal heating is a revolutionary change from current steelmaking technology. This technology can produce molten steel directly from a shippable agglomerate, consisting of iron oxide fines, powdered coal, and ground limestone. This technology is projected to eliminate many current intermediate steelmaking steps including coking, pellet sintering, blast furnace (BF) ironmaking, and basic oxygen furnace (BOF) steelmaking. This technology has the potential to (a) save up to 45% of the energy consumed by conventional steelmaking; (b) dramatically reduce the emission of CO{sub 2}, SO{sub 2}, NO{sub x}, VOCs, fine particulates, and air toxics; (c) substantially reduce waste and emission control costs; (d) greatly lower capital cost; and (e) considerably reduce steel production costs. This technology is based on the unique capability of microwaves to rapidly heat steelmaking raw materials to elevated temperature, then rapidly reduce iron oxides to metal by volumetric heating. Microwave heating, augmented with electric arc and exothermal reactions, is capable of producing molten steel. This technology has the components necessary to establish the ''future'' domestic steel industry as a technology leader with a strong economically competitive position in world markets. The project goals were to assess the utilization of a new steelmaking technology for its potential to achieve better overall energy efficiency, minimize pollutants and wastes, lower capital and operating costs, and increase the competitiveness of the U.S. steel industry. The

  18. Precipitation and Latent Heating Distributions from Satellite Passive Microwave Radiometry. Part 1; Improved Method and Uncertainties

    NASA Technical Reports Server (NTRS)

    Olson, William S.; Kummerow, Christian D.; Yang, Song; Petty, Grant W.; Tao, Wei-Kuo; Bell, Thomas L.; Braun, Scott A.; Wang, Yansen; Lang, Stephen E.; Johnson, Daniel E.; hide

    2006-01-01

    A revised Bayesian algorithm for estimating surface rain rate, convective rain proportion, and latent heating profiles from satellite-borne passive microwave radiometer observations over ocean backgrounds is described. The algorithm searches a large database of cloud-radiative model simulations to find cloud profiles that are radiatively consistent with a given set of microwave radiance measurements. The properties of these radiatively consistent profiles are then composited to obtain best estimates of the observed properties. The revised algorithm is supported by an expanded and more physically consistent database of cloud-radiative model simulations. The algorithm also features a better quantification of the convective and nonconvective contributions to total rainfall, a new geographic database, and an improved representation of background radiances in rain-free regions. Bias and random error estimates are derived from applications of the algorithm to synthetic radiance data, based upon a subset of cloud-resolving model simulations, and from the Bayesian formulation itself. Synthetic rain-rate and latent heating estimates exhibit a trend of high (low) bias for low (high) retrieved values. The Bayesian estimates of random error are propagated to represent errors at coarser time and space resolutions, based upon applications of the algorithm to TRMM Microwave Imager (TMI) data. Errors in TMI instantaneous rain-rate estimates at 0.5 -resolution range from approximately 50% at 1 mm/h to 20% at 14 mm/h. Errors in collocated spaceborne radar rain-rate estimates are roughly 50%-80% of the TMI errors at this resolution. The estimated algorithm random error in TMI rain rates at monthly, 2.5deg resolution is relatively small (less than 6% at 5 mm day.1) in comparison with the random error resulting from infrequent satellite temporal sampling (8%-35% at the same rain rate). Percentage errors resulting from sampling decrease with increasing rain rate, and sampling errors in

  19. Optimal Heat Collection Element Shapes for Parabolic Trough Concentrators

    SciTech Connect

    Bennett, C

    2007-11-15

    For nearly 150 years, the cross section of the heat collection tubes used at the focus of parabolic trough solar concentrators has been circular. This type of tube is obviously simple and easily fabricated, but it is not optimal. It is shown in this article that the optimal shape, assuming a perfect parabolic figure for the concentrating mirror, is instead oblong, and is approximately given by a pair of facing parabolic segments.

  20. Optimization of resistant starch formation from high amylose corn starch by microwave irradiation treatments and characterization of starch preparations.

    PubMed

    Mutlu, Selime; Kahraman, Kevser; Öztürk, Serpil

    2017-02-01

    The effects of microwave irradiation on resistant starch (RS) formation and functional properties in high-amylose corn starch, Hylon VII, by applying microwave-storing cycles and drying processes were investigated. The Response Surface Methodology (RSM) was used to optimize the reaction conditions, microwave time (2-4min) and power (20-100%), for RS formation. The starch:water (1:10) mixtures were cooked and autoclaved and then different microwave-storing cycles and drying (oven or freeze drying) processes were applied. The RS contents of the samples increased with increasing microwave-storing cycle. The highest RS (43.4%) was obtained by oven drying after 3 cycles of microwave treatment at 20% power for 2min. The F, p (<0.05) and R(2) values indicated that the selected models were consistent. Linear equations were obtained for oven-dried samples applied by 1 and 3 cycles of microwave with regression coefficients of 0.65 and 0.62, respectively. Quadratic equation was obtained for freeze-dried samples applied by 3 cycles of microwave with a regression coefficient of 0.83. The solubility, water binding capacity (WBC) and RVA viscosity values of the microwave applied samples were higher than those of native Hylon VII. The WBC and viscosity values of the freeze-dried samples were higher than those of the oven-dried ones. Copyright © 2016 Elsevier B.V. All rights reserved.

  1. Heating applicator based on reentrant cavity with optimized local heating characteristics.

    PubMed

    Ishihara, Y; Kameyama, Y; Minegishi, Y; Wadamori, N

    2008-12-01

    A reentrant-cavity-based applicator can produce a concentrated electric field between reentrant electrodes for localized heating. However, this field is inadequate for treating early small tumors localized in the head and neck. In order to safely heat such well-localized lesions, the electric field distribution should be more localized. In order to achieve localized heating, four parameters of the reentrant cavity (applicator height, outer diameter, reentrant diameter, and reentrant gap size), which influence the distribution of the electric field produced in the reentrant gap, are optimized using the Taguchi method. The variation in the heating characteristics affected by the size of the heating object is estimated using the signal-to-noise ratio (SNR) index. In this study, the electromagnetic field distributions in a cylindrical phantom and an oblate sphere phantom are analyzed by the three-dimensional finite element method, and the full width at half height (FWHH) of the specific absorption rate (SAR) distribution in the reentrant gap is evaluated. It is shown that the optimized applicator yields both the maximum SNR and minimum mean FWHH, and the sizes of the heating region in the phantom expressed using the averaged FWHH values of the SAR distribution are 60 and 80 mm along the radial and long-axis directions of the applicator, respectively. A heating region can be robustly and optimally localized by using the Taguchi method and considering the variation in the size of the heating object.

  2. Preparation of activated carbon from coconut shell chars in pilot-scale microwave heating equipment at 60 kW.

    PubMed

    Li, Wei; Peng, Jinhui; Zhang, Libo; Yang, Kunbin; Xia, Hongying; Zhang, Shimin; Guo, Sheng-hui

    2009-02-01

    Experiments to prepare activated carbon by microwave heating indicated that microwave energy can decrease reaction temperature, save the energy and shorten processing time remarkably compared to conventional heating, owing to its internal and volumetric heating effects. The above results were based on the laboratory-scale experiments. It is desirable to develop a pilot-scale microwave heating equipment and investigate the parameters with the aim of technological industrialization. In the present study, the components and features of the self-invented equipment were introduced. The temperature rise curves of the chars were obtained. Iodine numbers of the activated carbons all exceed the state standard of China under the following conditions: 25 kg/h charging rate, 0.42 rev/min turning rate of ceramic tube, flow rate of steam at pressure of 0.01 MPa and 40 kW microwave heating power after 60 kW pre-activation for 30 min. Pore structure of the sample obtained at a time point of 46 h, which contained BET surface area, and pore size distributions of micropores and total pores, was tested by nitrogen adsorption at 77K.

  3. Preparation of activated carbon from coconut shell chars in pilot-scale microwave heating equipment at 60 kW

    SciTech Connect

    Li Wei; Peng Jinhui Zhang Libo; Yang Kunbin; Xia Hongying; Zhang Shimin; Guo Shenghui

    2009-02-15

    Experiments to prepare activated carbon by microwave heating indicated that microwave energy can decrease reaction temperature, save the energy and shorten processing time remarkably compared to conventional heating, owing to its internal and volumetric heating effects. The above results were based on the laboratory-scale experiments. It is desirable to develop a pilot-scale microwave heating equipment and investigate the parameters with the aim of technological industrialization. In the present study, the components and features of the self-invented equipment were introduced. The temperature rise curves of the chars were obtained. Iodine numbers of the activated carbons all exceed the state standard of China under the following conditions: 25 kg/h charging rate, 0.42 rev/min turning rate of ceramic tube, flow rate of steam at pressure of 0.01 MPa and 40 kW microwave heating power after 60 kW pre-activation for 30 min. Pore structure of the sample obtained at a time point of 46 h, which contained BET surface area, and pore size distributions of micropores and total pores, was tested by nitrogen adsorption at 77 K.

  4. Simulating microwave-heated open systems: tuning competitive sorption in zeolites.

    PubMed

    Santander, Julian E; Conner, W Curtis; Jobic, Hervé; Auerbach, Scott M

    2009-10-22

    We have developed a new grand canonical molecular dynamics (GCMD) algorithm to study microwave (MW) heating effects on competitive mixture sorption and have applied the method to methanol and benzene in silicalite zeolite. The new algorithm combines MW-driven molecular dynamics with grand canonical Monte Carlo (GCMC), the latter modeling adsorption/desorption processes. We established the validity of the new algorithm by benchmarking single-component isotherms for methanol and benzene in silicalite against those obtained from standard GCMC, as well as against experimental data. We simulated single-component and mixture adsorption isobars for conventional and MW-heated systems. In the case of the single-component isobars, we found that for dipolar methanol, both the MW and conventional heated isobars show similar desorption behavior, displaying comparable loadings as a function of molecular temperature. In contrast, nonpolar benzene showed no desorption upon exposure to MWs, even for relatively high field strengths. In the case of methanol/benzene mixtures, the fact that benzene is transparent to the MW field allows the selective desorption of methanol, giving rise to loading ratios not reachable through conventional heating.

  5. Effects of roasting, blanching, autoclaving, and microwave heating on antigenicity of almond (Prunus dulcis L.) proteins.

    PubMed

    Venkatachalam, M; Teuber, S S; Roux, K H; Sathe, S K

    2002-06-05

    Whole, unprocessed Nonpareil almonds were subjected to a variety of heat processing methods that included roasting (280, 300, and 320 degrees F for 20 and 30 min each; and 335 and 350 degrees F for 8, 10, and 12 min each), autoclaving (121 degrees C, 15 psi, for 5, 10, 15, 20, 25, and 30 min), blanching (100 degrees C for 1, 2, 3, 4, 5, and 10 min), and microwave heating (1, 2, and 3 min). Proteins were extracted from defatted almond flour in borate saline buffer, and immunoreactivity of the soluble proteins (normalized to 1 mg protein/mL for all samples) was determined using enzyme linked immunosorbent assay (ELISA). Antigenic stability of the almond major protein (amandin) in the heat-processed samples was determined by competitive inhibition ELISA using rabbit polyclonal antibodies raised against amandin. Processed samples were also assessed for heat stability of total antigenic proteins by sandwich ELISA using goat and rabbit polyclonal antibodies raised against unprocessed Nonpareil almond total protein extract. ELISA assays and Western blotting experiments that used both rabbit polyclonal antibodies and human IgE from pooled sera indicated antigenic stability of almond proteins when compared with that of the unprocessed counterpart.

  6. On the optimal measurement configuration for magnetic nanoparticles-enhanced breast cancer microwave imaging.

    PubMed

    Bucci, Ovidio Mario; Crocco, Lorenzo; Scapaticci, Rosa

    2015-02-01

    Magnetic nanoparticles-enhanced microwave imaging has been recently proposed as an effective and reliable means to detect breast cancer. Thanks to the nonmagnetic nature of human tissues, the imaging problem corresponds to the retrieval of a weak magnetic anomaly hosted into an unknown nonmagnetic scenario. Hence, properly targeted magnetic nanoparticles in principle allow to avoid false positives and reduce occurrence of false negatives. In this paper, we outline some guidelines for the design of the imaging device based on an optimized measurement configuration. In particular, we determine the nonredundant number of probes and their collocation needed to ensure a reliable solution of the underlying inverse scattering problem. The analysis exploits the spectral properties of the relevant mathematical operators and it is corroborated by reporting numerical results exploiting the phantoms' repository from the University of Wisconsin. It is shown that magnetic nanoparticles-enhanced microwave imaging can reliably detect cancer lesions even using low-complexity arrangements, designed according to the devised guidelines.

  7. A novel optimized parallelization strategy to accelerate microwave tomography for breast cancer screening.

    PubMed

    Shahzad, A; O'Halloran, M; Glavin, M; Jones, E

    2014-01-01

    Microwave tomography has been proven to successfully reconstruct the dielectric profile of a human breast when used in breast imaging applications, thereby providing an alternative to other imaging modalities. However, the method suffers from high computational requirements which restrict its use in practical imaging systems. This paper presents a novel parallelization strategy to accelerate microwave tomography for reconstruction of the dielectric properties of the human breast. A Time Domain algorithm using this parallelization strategy has been validated and benchmarked against an optimized sequential implementation on a conventional high-end desktop Central Processing Unit (CPU), and a comparison of throughput is presented in this paper. The gain in computational throughput is shown to be significantly higher compared with the sequential implementation, ranging from a factor of 26 to 58, on imaging grid sizes of up to 25 cm square at 1 mm resolution.

  8. Inactivation of Salmonella Senftenberg, Salmonella Typhimurium and Salmonella Tennessee in peanut butter by 915 MHz microwave heating.

    PubMed

    Song, Won-Jae; Kang, Dong-Hyun

    2016-02-01

    This study evaluated the efficacy of a 915 MHz microwave with 3 different levels to inactivate 3 serovars of Salmonella in peanut butter. Peanut butter inoculated with Salmonella enterica serovar Senftenberg, S. enterica serovar Typhimurium and S. enterica serovar Tennessee were treated with a 915 MHz microwave with 2, 4 and 6 kW and acid and peroxide values and color changes were determined after 5 min of microwave heating. Salmonella populations were reduced with increasing treatment time and treatment power. Six kW 915 MHz microwave treatment for 5 min reduced these three Salmonella serovars by 3.24-4.26 log CFU/g. Four and two kW 915 MHz microwave processing for 5 min reduced these Salmonella serovars by 1.14-1.48 and 0.15-0.42 log CFU/g, respectively. Microwave treatment did not affect acid, peroxide, or color values of peanut butter. These results demonstrate that 915 MHz microwave processing can be used as a control method for reducing Salmonella in peanut butter without producing quality deterioration.

  9. Evaluation of fluid bed heat exchanger optimization parameters. Final report

    SciTech Connect

    Not Available

    1980-03-01

    Uncertainty in the relationship of specific bed material properties to gas-side heat transfer in fluidized beds has inhibited the search for optimum bed materials and has led to over-conservative assumptions in the design of fluid bed heat exchangers. An experimental program was carried out to isolate the effects of particle density, thermal conductivity, and heat capacitance upon fluid bed heat transfer. A total of 31 tests were run with 18 different bed material loads on 12 material types; particle size variations were tested on several material types. The conceptual design of a fluidized bed evaporator unit was completed for a diesel exhaust heat recovery system. The evaporator heat transfer surface area was substantially reduced while the physical dimensions of the unit increased. Despite the overall increase in unit size, the overall cost was reduced. A study of relative economics associated with bed material selection was conducted. For the fluidized bed evaporator, it was found that zircon sand was the best choice among materials tested in this program, and that the selection of bed material substantially influences the overall system costs. The optimized fluid bed heat exchanger has an estimated cost 19% below a fin augmented tubular heat exchanger; 31% below a commercial design fluid bed heat exchanger; and 50% below a conventional plain tube heat exchanger. The comparisons being made for a 9.6 x 10/sup 6/ Btu/h waste heat boiler. The fluidized bed approach potentially has other advantages such as resistance to fouling. It is recommended that a study be conducted to develop a systematic selection of bed materials for fluidized bed heat exchanger applications, based upon findings of the study reported herein.

  10. Design and optimization of polymer ring resonator modulators for analog microwave photonic applications

    NASA Astrophysics Data System (ADS)

    Hosseinzadeh, Arash; Middlebrook, Christopher T.

    2016-02-01

    Efficient modulation of electrical signals onto an optical carrier remains the main challenge in full implementation of microwave photonic links (MPLs) for applications such as antenna remoting and wireless access networks. Current MPLs utilize Mach-Zehnder Interferometers (MZI) with sinusoidal transfer function as electro-optic modulators causing nonlinear distortions in the link. Recently ring resonator modulators (RRM) consisting of a ring resonator coupled to a base waveguide attracted interest to enhance linearity, reduce the size and power consumption in MPLs. Fabrication of a RRM is more challenging than the MZI not only in fabrication process but also in designing and optimization steps. Although RRM can be analyzed theoretically for MPLs, physical structures need to be designed and optimized utilizing simulation techniques in both optical and microwave regimes with consideration of specific material properties. Designing and optimization steps are conducted utilizing full-wave simulation software package and RRM function analyzed in both passive and active forms and confirmed through theoretical analysis. It is shown that RRM can be completely designed and analyzed utilizing full-wave simulation techniques and as a result linearity effect of the modulator on MPLs can be studied and optimized. The material nonlinearity response can be determined computationally and included in modulator design and readily adaptable for analyzing other materials such as silicon or structures where theoretical analysis is not easily achieved.

  11. Microwave thermal imaging: initial in vivo experience with a single heating zone.

    PubMed

    Meaney, P M; Fanning, M W; Paulsen, K D; Lit, D; Pendergrass, S A; Fang, Q; Moodie, K L

    2003-01-01

    The deployment of hyperthermia as a routine adjuvant to radiation or chemotherapy is limited largely by the inability to devise treatment plans which can be monitored through temperature distribution feedback during therapy. A non-invasive microwave tomographic thermal imaging system is currently being developed which has previously exhibited excellent correlation between the recovered electrical conductivity of a heated zone and its actual temperature change during phantom studies. To extend the validation of this approach in vivo, the imaging system has been re-configured for small animal experiments to operate within the bore of a CT scanner for anatomical and thermometry registration. A series of 5-7 day old pigs have been imaged during hyperthermia with a monopole antenna array submerged in a saline tank where a small plastic tube surgically inserted the length of the abdomen has been used to create a zone of heated saline at pre-selected temperatures. Tomographic microwave data over the frequency range of 300-1000 MHz of the pig abdomen in the plane perpendicular to the torso is collected at regular intervals after the tube saline temperatures have settled to the desired settings. Images are reconstructed over a range of operating frequencies. The tube location is clearly visible and the recovered saline conductivity varies linearly with the controlled temperature values. Difference images utilizing the baseline state prior to heating reinforces the linear relationship between temperature and imaged saline conductivity. Demonstration of in vivo temperature recovery and correlation with an independent monitoring device is an important milestone prior to clinical integration of this non-invasive imaging system with a thermal therapy device.

  12. Conventional heating vs. microwave sludge pretreatment comparison under identical heating/cooling profiles for thermophilic advanced anaerobic digestion.

    PubMed

    Hosseini Koupaie, E; Eskicioglu, C

    2016-07-01

    This research evaluates whether there is any advantage of selecting one of the thermal methods of sludge pretreatment, conventional heating (CH) and microwave hydrolysis (MW), over another to enhance municipal sludge disintegration and performance of thermophilic anaerobic digestion (AD). For this purpose, a custom-built CH system simulating MW hydrolysis under identical heating and cooling profiles was used. The effects of three main pretreatment parameters including pretreatment method (CH and MW), heating ramp rate (3, 6 and 11°C/min) and final temperature (80, 120 and 160°C) on sludge solubilization and performance of thermophilic batch AD were evaluated. The effects of CH and MW hydrolysis were observed to be similar for sludge disintegration and digester performance (p-value>0.05), while the effects of final temperature and heating ramp rate were proven to be different (p-value<0.05). According to the results, it is essential to apply MW and CH pretreatments under identical experimental condition for an unbiased comparison which supports the findings of the author's earlier study under mesophilic condition. Failing to address this issue explains the significant inconsistency observed among the findings of the previous CH vs. MW comparison studies that were unable to implement identical thermal profiles (between CH and MW) during sludge pretreatment. In comparison with mesophilic AD, thermophilic AD revealed lower biodegradation rate constant at the highest pretreatment temperature tested (160°C), suggesting its higher sensitivity to the inhibitory effects of thermal pretreatment at the elevated temperatures. Copyright © 2016 Elsevier Ltd. All rights reserved.

  13. Passive and Active Microwave Remote Sensing of Precipitation and Latent Heating Distributions in the Tropics from TRMM

    NASA Technical Reports Server (NTRS)

    Olson, William S.; Kummerow, Christian D.; Yang, Song; Haddad, Ziad S.; Tao, Wei-Kuo; Wang, Yansen; Lang, Stephen E.; Braun, Scott A.; Chiu, Christine; Wang, Jian-Jian

    2002-01-01

    Passive and active microwave remote sensing data are analyzed to identify signatures of precipitation and vertical motion in tropical convection. A database of cloud/radiative model simulations is used to quantify surface rain rates and latent heating profiles that are consistent with these signatures. At satellite footprint-scale (approximately 10 km), rain rate and latent heating estimates are subject to significant random errors, but by averaging the estimates in space and time, random errors are substantially reduced, Bias errors have been minimized by improving the microphysics in the supporting cloud/radiative model simulations, and by imposing a consistent definition of remotely-sensed and model-simulated convective/stratiform rain coverage. Remotely-sensed precipitation and latent heating distributions in the tropics are derived from Tropical Rainfall Measuring Mission (TRMM) and Special Sensor Microwave/ Imager (SSM/ I) sensor data. The prototype Version 6 TRMM passive microwave algorithm typically yields average heating profiles with maxima between 6 and 7 km altitude for organized mesoscale convective systems. Retrieved heating profiles for individual convective systems are compared to coincident estimates based upon a combination of dual-Doppler radar and rawinsonde data. Also, large-scale latent heating distributions are compared to estimates derived from a simpler technique that utilizes observations of surface rain rate and stratiform rain proportion to infer vertical heating structure. Results of these tests will be presented at the conference.

  14. Passive and Active Microwave Remote Sensing of Precipitation and Latent Heating Distributions in the Tropics from TRMM

    NASA Technical Reports Server (NTRS)

    Olson, William S.; Kummerow, Christian D.; Yang, Song; Haddad, Ziad S.; Tao, Wei-Kuo; Wang, Yansen; Lang, Stephen E.; Braun, Scott A.; Chiu, Christine; Wang, Jian-Jian

    2002-01-01

    Passive and active microwave remote sensing data are analyzed to identify signatures of precipitation and vertical motion in tropical convection. A database of cloud/radiative model simulations is used to quantify surface rain rates and latent heating profiles that are consistent with these signatures. At satellite footprint-scale (approximately 10 km), rain rate and latent heating estimates are subject to significant random errors, but by averaging the estimates in space and time, random errors are substantially reduced, Bias errors have been minimized by improving the microphysics in the supporting cloud/radiative model simulations, and by imposing a consistent definition of remotely-sensed and model-simulated convective/stratiform rain coverage. Remotely-sensed precipitation and latent heating distributions in the tropics are derived from Tropical Rainfall Measuring Mission (TRMM) and Special Sensor Microwave/ Imager (SSM/ I) sensor data. The prototype Version 6 TRMM passive microwave algorithm typically yields average heating profiles with maxima between 6 and 7 km altitude for organized mesoscale convective systems. Retrieved heating profiles for individual convective systems are compared to coincident estimates based upon a combination of dual-Doppler radar and rawinsonde data. Also, large-scale latent heating distributions are compared to estimates derived from a simpler technique that utilizes observations of surface rain rate and stratiform rain proportion to infer vertical heating structure. Results of these tests will be presented at the conference.

  15. Stability of Continental Lithosphere based on Analogue Experiments with Microwave Induced Internal Heating

    NASA Astrophysics Data System (ADS)

    Fourel, Loic; Limare, Angela; Surducan, Emanoil; Surducan, Vasile; Neamtu, Camelia; Vilella, Kenny; Farnetani, Cinzia; Kaminski, Edouard; Jaupart, Claude

    2015-04-01

    Continental lithosphere is usually depicted as the upper conductive layer of the Earth. Its formation is achieved through melt depletion that generates a residue that is less dense and more viscous than the underlying convecting mantle. As it is cooled from above, continental lithosphere can develop its own convective currents and may become unstable depending on its thickness and density contrast with the mantle. But chemical differentiation due to mantle magmatism also enriches continental lithosphere in heat producing elements. According to present estimates, the Earth's mantle may have lost as much as half of its radioactive elements in favour of continental crust and this stratified redistribution of heat sources has two main effects. First, mantle convection vigor decreases and becomes increasingly sensitive to heat supply from the core. Second, localized heat production at the top surface increases the continental insulating effects and competes against lithospheric instabilities. In the present study, we focus on the later and we determine which amount of internal heating is required to keep the lithosphere stable for a given rate of cooling from the top. The physics underlying instability triggering corresponds to the problem of a two differentially heated layered system cooled from above, where the top layer is less dense and more viscous than the bottom one, representative of the lithosphere-mantle system. Few studies have been devoted to the intrinsic characteristics of this layered type of convection. Here, we present a state of the art laboratory setup to generate internal heating in controlled conditions based on microwave (MW) absorption. The volumetric heat source can be localized in space and its intensity can be varied in time. Our tank prototype has horizontal dimensions of 30 cm x 30 cm and 5 cm height. A uniform and constant temperature is maintained at the upper boundary by an aluminium heat exchanger and adiabatic conditions are imposed at

  16. BASIMO - Borehole Heat Exchanger Array Simulation and Optimization Tool

    NASA Astrophysics Data System (ADS)

    Schulte, Daniel O.; Bastian, Welsch; Wolfram, Rühaak; Kristian, Bär; Ingo, Sass

    2017-04-01

    Arrays of borehole heat exchangers are an increasingly popular source for renewable energy. Furthermore, they can serve as borehole thermal energy storage (BTES) systems for seasonally fluctuating heat sources like solar thermal energy or district heating grids. The high temperature level of these heat sources prohibits the use of the shallow subsurface for environmental reasons. Therefore, deeper reservoirs have to be accessed instead. The increased depth of the systems results in high investment costs and has hindered the implementation of this technology until now. Therefore, research of medium deep BTES systems relies on numerical simulation models. Current simulation tools cannot - or only to some extent - describe key features like partly insulated boreholes unless they run fully discretized models of the borehole heat exchangers. However, fully discretized models often come at a high computational cost, especially for large arrays of borehole heat exchangers. We give an update on the development of BASIMO: a tool, which uses one dimensional thermal resistance and capacity models for the borehole heat exchangers coupled with a numerical finite element model for the subsurface heat transport in a dual-continuum approach. An unstructured tetrahedral mesh bypasses the limitations of structured grids for borehole path geometries, while the thermal resistance and capacity model is improved to account for borehole heat exchanger properties changing with depth. Thereby, partly insulated boreholes can be considered in the model. Furthermore, BASIMO can be used to improve the design of BTES systems: the tool allows for automated parameter variations and is readily coupled to other code like mathematical optimization algorithms. Optimization can be used to determine the required minimum system size or to increase the system performance.

  17. Optimization of microwave digestion for mercury determination in marine biological samples by cold vapour atomic absorption spectrometry.

    PubMed

    Cardellicchio, Nicola; Di Leo, Antonella; Giandomenico, Santina; Santoro, Stefania

    2006-01-01

    Optimization of acid digestion method for mercury determination in marine biological samples (dolphin liver, fish and mussel tissues) using a closed vessel microwave sample preparation is presented. Five digestion procedures with different acid mixtures were investigated: the best results were obtained when the microwave-assisted digestion was based on sample dissolution with HNO3-H2SO4-K2Cr2O7 mixture. A comparison between microwave digestion and conventional reflux digestion shows there are considerable losses of mercury in the open digestion system. The microwave digestion method has been tested satisfactorily using two certified reference materials. Analytical results show a good agreement with certified values. The microwave digestion proved to be a reliable and rapid method for decomposition of biological samples in mercury determination.

  18. Optimal heat pumps for solar-assisted heat-pump systems

    NASA Astrophysics Data System (ADS)

    Catan, M. A.

    Work at Brookhaven National Laboratory (BNL) investigates the design of optimal heat pumps for solar assisted heat pump (SAPH) systems. Heat pump designs suitable for two generic systems, identified in the course of recent analytical work, are being studied. These are series SAHP systems operating at evaporator temperatures in the -5 to 10 C range and those operating at evaporator temperatures in the 10 to 35 C range. A heat pump simulator has been constructed with liquid based source subsystem and two load subsystems, one for testing air cooled condensers and one for testing water cooled condensers. Heat pumps tested were composed of various components including several types of variable and fixed capacity compressors, two types of expansion devices, and heat exchangers varying in size and type.

  19. Subtle Mitsunobu couplings under super-heating: the role of high-throughput continuous flow and microwave strategies.

    PubMed

    Manvar, Atul; Shah, Anamik

    2014-11-07

    Non-conventional heating techniques, high-throughput microwave-assisted synthesis and continuous flow penetrate almost every scientific field. Mitsunobu coupling is a ubiquitous choice for the dehydrative redox condensation of primary or secondary alcohols with (pro)nucleophiles. The aim of this review is to showcase the ease of subtle Mitsunobu coupling under super-heating. Surprisingly, this strategy is rather non-trivial; considering the sensitivity of reagents, Mitsunobu chemistry is typically performed at lower temperatures or under ambient conditions. In view of the absence of any previous work focusing on this topic, the current review considers the utility of super-heating in fragile Mitsunobu reactions. Therefore, we anticipate that this review will also bridge some of the apparent gaps in the extant literature by specifically describing the advances made by non-conventional heating assisted by microwave or continuous flow in one of the most powerful stereochemical transformations.

  20. Poly(4-vinylphenol) gate insulator with cross-linking using a rapid low-power microwave induction heating scheme for organic thin-film-transistors

    NASA Astrophysics Data System (ADS)

    Fan, Ching-Lin; Shang, Ming-Chi; Hsia, Mao-Yuan; Wang, Shea-Jue; Huang, Bohr-Ran; Lee, Win-Der

    2016-03-01

    A Microwave-Induction Heating (MIH) scheme is proposed for the poly(4-vinylphenol) (PVP) gate insulator cross-linking process to replace the traditional oven heating cross-linking process. The cross-linking time is significantly decreased from 1 h to 5 min by heating the metal below the PVP layer using microwave irradiation. The necessary microwave power was substantially reduced to about 50 W by decreasing the chamber pressure. The MIH scheme is a good candidate to replace traditional thermal heating for cross-linking of PVP as the gate insulator for organic thin-film-transistors.

  1. Survival of Listeria monocytogenes and Salmonella spp. on catfish exposed to microwave heating in a continuous mode

    USDA-ARS?s Scientific Manuscript database

    Microwave (MW) heating using continuous output may provide better and consistent cooking for foods. Currently, household units with a build-in inverter device are available in which the output is continuous vs. the traditional on-off mode. With an inverter, these MW ovens may provide consistent he...

  2. Electromagnetic property of SiO2-coated carbonyl iron/polyimide composites as heat resistant microwave absorbing materials

    NASA Astrophysics Data System (ADS)

    Wang, Hongyu; Zhu, Dongmei; Zhou, Wancheng; Luo, Fa

    2015-02-01

    Heat resistant microwave absorbing materials were prepared by compression molding method, using polyimide resin as matrix and SiO2 coated carbonyl iron (CI) as filler. The SiO2 coated CI particles were prepared by Stober process. The microwave absorbing properties and the effect of heat treatment on the electromagnetic properties of SiO2 coated CI/polyimide composites were investigated. When the content of SiO2 coated CI is 60 wt%, the value of minimum reflection loss decreases from -25 dB to -33 dB with the thickness increases from 1.5 mm to 2.1 mm. According to the thermal-gravimetric analyses (TGA) curves, the polyimide matrix can be used at 300 °C for long time. The complex permittivity of the composites slightly increases while the complex permeability almost keeps constant after heat treatment at 300 °C for 10 h, which indicating that the composites can be used at elevated temperature as microwave absorbing materials at the same time have good heat resistance and microwave absorption.

  3. Effects of ZnO nanoparticles and microwave heating on the sterilization and product quality of vacuum-packaged Caixin.

    PubMed

    Liu, Qian; Zhang, Min; Fang, Zhong-xiang; Rong, Xiao-hong

    2014-09-01

    The sterilization of vacuum-packaged Caixin (Brassica chinensis L.), which is a green-leafy vegetable and also a low-acid food, remains a difficult problem. In this study, effects of ZnO nanoparticles and microwave heating on the sterilization and product quality of vacuum-packaged Caixin were investigated. Addition of ZnO nanoparticle suspension at 0.01-0.02 g kg(-1) reduced the number of bacterial colonies. The antibacterial activity was enhanced with the increased amount of ZnO nanoparticles. Microwave heating (915 and 2450 MHz) was used to sterilize Caixin samples. Samples had good product quality (better greenness, chroma and hue angle values, lower browning index and acceptable texture) and the lowest total colony number under the microwave heating condition of 400 W 150 s (2450 MHz). The best sterilization condition was observed under 2450 MHz microwave (400 W 150 s) heating combined with 0.02 g kg(-1) ZnO nanoparticle addition, which led to a total colony number of <1 log CFU g(-1) in Caixin samples within 7 days. © 2014 Society of Chemical Industry.

  4. Optimal Number of Thermoelectric Couples in a Heat Pipe Assisted Thermoelectric Generator for Waste Heat Recovery

    NASA Astrophysics Data System (ADS)

    Liu, Tongjun; Wang, Tongcai; Luan, Weiling; Cao, Qimin

    2017-01-01

    Waste heat recovery through thermoelectric generators is a promising way to improve energy conversion efficiency. This paper proposes a type of heat pipe assisted thermoelectric generator (HP-TEG) system. The expandable evaporator and condenser surface of the heat pipe facilitates the intensive assembly of thermoelectric (TE) modules to compose a compact device. Compared with a conventional layer structure thermoelectric generator, this system is feasible for the installment of more TE couples, thus increasing power output. To investigate the performance of the HP-TEG and the optimal number of TE couples, a theoretical model was presented and verified by experiment results. Further theoretical analysis results showed the performance of the HP-TEG could be further improved by optimizing the parameters, including the inlet air temperature, the thermal resistance of the heating section, and thermal resistance of the cooling structure. Moreover, applying a proper number of TE couples is important to acquire the best power output performance.

  5. Dielectric-loaded coaxial-slot antenna for interstitial microwave hyperthermia: longitudinal control of heating patterns.

    PubMed

    Hamada, L; Saito, K; Yoshimura, H; Ito, K

    2000-01-01

    In this paper, the microwave interstitial antenna with the dielectric load in part near the tip is introduced to realize the tip-heating and to improve the dependence of the heating patterns on the insertion depth. Numerical simulations using the Finite Difference Time Domain (FDTD) method have been conducted at the frequency of 915 MHz for four different configurations of the coaxial-slot antenna inserted into a catheter: the media between the antenna and the catheter are (a) no, (b) a thin air layer, (c) a thin dielectric layer, and (d) a thin air layer and a dielectric load in part near the tip. The diameter of the antenna including the catheter is sufficiently small for minimally invasive therapy. Comparison of the SARs for the four configurations makes it clear that the dielectric-loaded antenna can realize the best tip-heating and suppress the hot spot near the surface of the human body. Dependence of the SAR distributions on the insertion depth of the antenna has also been examined. It is found from the investigation that the dielectric-loaded antenna has little dependence on the insertion depth.

  6. Effects of pulse-modulated microwave radiation and conventional heating on sperm production

    SciTech Connect

    Lebovitz, R.M.; Johnson, L.; Samson, W.K.

    1987-01-01

    The effects on testicular function of pulse-modulated microwave radiation (PM MWR, 1.3 GHz) and of conventional heating were studied in the rat. Anesthetized adult males (Sprague-Dawley, 400-500 g) were treated then killed at specific intervals with respect to the 13-day cycle of the seminiferous epithelium. PM MWR at 7.7 mW/g (90 min) yielded a modest decline in daily sperm production (DSP) that derived primarily from effects on primary spermatocytes. PM MWR at 4.2 mW/g was ineffective. The mean intratesticular temperature during the former reached 40 degrees C and did not exceed 38 degrees C during the latter. MWR considerably in excess of 7.7 mW/g yielded decrements in virtually all germ cell types, with primary spermatocytes again being most markedly affected. Using conventional heating, intratesticular temperatures in excess of 39 degrees C for 60 min were required for significant decrements in DSP. Levels of circulating follicle-stimulating hormone and of leutinizing hormone were resistant to either treatment. We conclude that the damage threshold and the differential sensitivity of immature germ cells to PM MWR can be adequately explained by the consequent macroscopic heating.

  7. Influence of the dielectric property on microwave oven heating patterns: application to food materials.

    PubMed

    Peyre, F; Datta, A; Seyler, C

    1997-01-01

    Patterns of power absorption in a microwave oven for a range of dielectric properties of relevance to food processing were investigated. The governing Maxwell's equations with boundary conditions and a TE10 excitation were solved using a finite element method. Food properties were varied from values at their frozen state to values at high temperatures, as would be typical in a thawing process. For low-loss materials such as frozen foods, the high quality factor makes the heating significantly higher only when the size and shape of the load permit a dielectric cavity resonance in the load. Otherwise, the heating pattern will follow the modal electric field pattern of the oven. For moderate loss materials, the patterns will come from the modes of the dielectric cavity. The bandwidths of these modes are larger than the low-loss situation and their overlap results in a heating pattern that is somewhat more uniform. For high-loss materials, the concept of modes is no longer useful as the very large number of modes strongly overlap. The rapidly decaying field and power loss in the high-loss material can probably be characterized as an exponential decay.

  8. Stabilization of Titanium Dioxide Nanoparticles at the Surface of Carbon Nanomaterials Promoted by Microwave Heating.

    PubMed

    Zhang, Rui; Santangelo, Saveria; Fazio, Enza; Neri, Fortunato; D'Arienzo, Massimiliano; Morazzoni, Franca; Zhang, Yihe; Pinna, Nicola; Russo, Patrícia A

    2015-10-12

    TiO2 is frequently combined with carbon materials, such as reduced graphene oxide (RGO), to produce composites with improved properties, for example for photocatalytic applications. It is shown that heating conditions significantly affect the interface and photocatalytic properties of TiO2 @C, and that microwave irradiation can be advantageous for the synthesis of carbon-based materials. Composites of TiO2 with RGO or amorphous carbon were prepared from reaction of titanium isopropoxide with benzyl alcohol. During the synthesis of the TiO2 nanoparticles, the carbon is involved in reactions that lead to the covalent attachment of the oxide, the extent of which depends on the carbon characteristics, heating rate, and mechanism. TiO2 is more efficiently stabilized at the surface of RGO than amorphous carbon. Rapid heating of the reaction mixture results in a stronger coupling between the nanoparticles and carbon, more uniform coatings, and smaller particles with narrower size distributions. The more efficient attachment of the oxide leads to better photocatalytic performance. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  9. Analysis of the temperature and stress distributions in ceramic window materials subjected to microwave heating

    SciTech Connect

    Ferber, M.K.; Kimrey, H.D.; Becher, P.F.

    1983-07-01

    The temperature and stress and distributions generated in ceramic materials currently employed in microwave gyrotron tube windows were determined for a variety of operating conditions. Both edge- and face-cooled windows of either polycrystalline BeO or polycrystalline Al/sub 2/O/sub 3/ were considered. The actual analysis involved three steps. First, a computer program was used to determine the electric field distribution within the window at a given power level and frequency (TE/sub 02/ wave propagation assumed). This program was capable of describing both the radial and axial dependence of the electric field. The effects of multiple internal reflections at the various dielectric interfaces were also accounted for. Secondly, the field distribution was used to derive an expression for the heat generated per unit volume per unit time within the window due to dieletric losses. A generalized heat conduction computer code was then used to compute the temperature distribution based on the heat generation function. Third, the stresses were determined from the temperature profiles using analytical expression or a finite-element computer program. Steady-state temperature and stress profiles were computed for the face-cooled and edge-cooled windows.

  10. Microwave Heating, Isothermal Sintering, and Mechanical Properties of Powder Metallurgy Titanium and Titanium Alloys

    NASA Astrophysics Data System (ADS)

    Luo, S. D.; Guan, C. L.; Yang, Y. F.; Schaffer, G. B.; Qian, M.

    2013-04-01

    This article presents a detailed assessment of microwave (MW) heating, isothermal sintering, and the resulting tensile properties of commercially pure Ti (CP-Ti), Ti-6Al-4V, and Ti-10V-2Fe-3Al (wt pct), by comparison with those fabricated by conventional vacuum sintering. The potential of MW sintering for titanium fabrication is evaluated accordingly. Pure MW radiation is capable of heating titanium powder to ≥1573 K (1300 °C), but the heating response is erratic and difficult to reproduce. In contrast, the use of SiC MW susceptors ensures rapid, consistent, and controllable MW heating of titanium powder. MW sintering can consolidate CP-Ti and Ti alloys compacted from -100 mesh hydride-dehydride (HDH) Ti powder to ~95.0 pct theoretical density (TD) at 1573 K (1300 °C), but no accelerated isothermal sintering has been observed over conventional practice. Significant interstitial contamination occurred from the Al2O3-SiC insulation-susceptor package, despite the high vacuum used (≤4.0 × 10-3 Pa). This leads to erratic mechanical properties including poor tensile ductility. The use of Ti sponge as impurity (O, N, C, and Si) absorbers can effectively eliminate this problem and ensure good-to-excellent tensile properties for MW-sintered CP-Ti, Ti-10V-2Fe-3Al, and Ti-6Al-4V. The mechanisms behind various observations are discussed. The prime benefit of MW sintering of Ti powder is rapid heating. MW sintering of Ti powder is suitable for the fabrication of small titanium parts or titanium preforms for subsequent thermomechanical processing.

  11. Uniform staining of Cyclospora oocysts in fecal smears by a modified safranin technique with microwave heating.

    PubMed

    Visvesvara, G S; Moura, H; Kovacs-Nace, E; Wallace, S; Eberhard, M L

    1997-03-01

    Cyclospora, a coccidian protist, is increasingly being identified as an important, newly emerging parasite that causes diarrhea, flatulence, fatigue, and abdominal pain leading to weight loss in immunocompetent persons with or without a recent travel history as well as in patients with AIDS. Modified Kinyoun's acid-fast stain is the most commonly used stain to identify the oocyst of this parasite in fecal smears. Oocysts of Cyclospora stain variably by the modified acid-fast procedure, resulting in the possible misidentification of this parasite. We examined fecal smears stained by six different procedures that included Giemsa, trichrome, chromotrope, Gram-chromotrope, acid-fast, and safranin stains. We report on safranin-based stain that uniformly stains oocysts of Cyclospora a brilliant reddish orange, provided that the fecal smears are heated in a microwave oven prior to staining. This staining procedure, besides being superior to acid-fast staining, is fast, reliable, and easy to perform in most clinical laboratories.

  12. Application of carbon nanocatalysts in upgrading heavy crude oil assisted with microwave heating.

    PubMed

    Li, Kewen; Hou, Binchi; Wang, Lei; Cui, Yi

    2014-06-11

    Heavy crude oil can be upgraded to lighter oil using several techniques. However, current methods usually require high temperatures, long reaction duration, and cause serious environmental pollution. This study shows that by using carbon nanocatalysts, heavy crude oil can be efficiently upgraded to lighter oil at a relatively low temperature of about 150 °C. The temperature of crude oil was increased by microwave heating. The technique proposed in this study has the following advantages: (1) great viscosity reduction ratio over 96%, (2) short reaction time (less than 1 h), (3) low required temperature, and (4) long viscosity regression time. Because of these advantages, upgrading heavy crude oil to light oil can be cheaper and more environment-friendly.

  13. Continuous synthesis of monodispersed silver nanoparticles using a homogeneous heating microwave reactor system.

    PubMed

    Nishioka, Masateru; Miyakawa, Masato; Kataoka, Haruki; Koda, Hidekazu; Sato, Koichi; Suzuki, Toshishige M

    2011-06-01

    Continuous synthesis of silver nanoparticles based on a polyol process was conducted using a microwave-assisted flow reactor installed in a cylindrical resonance cavity. Silver nitrate (AgNO(3)) and poly(N-vinylpyrrolidone) (PVP) dissolved in ethylene glycol were used respectively as a silver metal precursor and as a capping agent of nanoparticles. Ethylene glycol worked as the solvent and simultaneously as the reductant. Silver nanoparticles of narrow size distributions were synthesized steadily for 5 h, maintaining almost constant yield (>93%) and quality. The reaction was achieved within 2.8 s of residence time, although nanoparticles were not formed under this flow rate by conventional heating. A narrower particle size distribution was realized by the increased flow rate of the reaction solution. Nanoparticles of 9.8 nm average size with a standard deviation of 0.9 nm were synthesized at the rate of 100 ml h(-l).

  14. No major differences found between the effects of microwave-based and conventional heat treatment methods on two different liquid foods.

    PubMed

    Géczi, Gábor; Horváth, Márk; Kaszab, Tímea; Alemany, Gonzalo Garnacho

    2013-01-01

    Extension of shelf life and preservation of products are both very important for the food industry. However, just as with other processes, speed and higher manufacturing performance are also beneficial. Although microwave heating is utilized in a number of industrial processes, there are many unanswered questions about its effects on foods. Here we analyze whether the effects of microwave heating with continuous flow are equivalent to those of traditional heat transfer methods. In our study, the effects of heating of liquid foods by conventional and continuous flow microwave heating were studied. Among other properties, we compared the stability of the liquid foods between the two heat treatments. Our goal was to determine whether the continuous flow microwave heating and the conventional heating methods have the same effects on the liquid foods, and, therefore, whether microwave heat treatment can effectively replace conventional heat treatments. We have compared the colour, separation phenomena of the samples treated by different methods. For milk, we also monitored the total viable cell count, for orange juice, vitamin C contents in addition to the taste of the product by sensory analysis. The majority of the results indicate that the circulating coil microwave method used here is equivalent to the conventional heating method based on thermal conduction and convection. However, some results in the analysis of the milk samples show clear differences between heat transfer methods. According to our results, the colour parameters (lightness, red-green and blue-yellow values) of the microwave treated samples differed not only from the untreated control, but also from the traditional heat treated samples. The differences are visually undetectable, however, they become evident through analytical measurement with spectrophotometer. This finding suggests that besides thermal effects, microwave-based food treatment can alter product properties in other ways as well.

  15. No Major Differences Found between the Effects of Microwave-Based and Conventional Heat Treatment Methods on Two Different Liquid Foods

    PubMed Central

    Géczi, Gábor; Horváth, Márk; Kaszab, Tímea; Alemany, Gonzalo Garnacho

    2013-01-01

    Extension of shelf life and preservation of products are both very important for the food industry. However, just as with other processes, speed and higher manufacturing performance are also beneficial. Although microwave heating is utilized in a number of industrial processes, there are many unanswered questions about its effects on foods. Here we analyze whether the effects of microwave heating with continuous flow are equivalent to those of traditional heat transfer methods. In our study, the effects of heating of liquid foods by conventional and continuous flow microwave heating were studied. Among other properties, we compared the stability of the liquid foods between the two heat treatments. Our goal was to determine whether the continuous flow microwave heating and the conventional heating methods have the same effects on the liquid foods, and, therefore, whether microwave heat treatment can effectively replace conventional heat treatments. We have compared the colour, separation phenomena of the samples treated by different methods. For milk, we also monitored the total viable cell count, for orange juice, vitamin C contents in addition to the taste of the product by sensory analysis. The majority of the results indicate that the circulating coil microwave method used here is equivalent to the conventional heating method based on thermal conduction and convection. However, some results in the analysis of the milk samples show clear differences between heat transfer methods. According to our results, the colour parameters (lightness, red-green and blue-yellow values) of the microwave treated samples differed not only from the untreated control, but also from the traditional heat treated samples. The differences are visually undetectable, however, they become evident through analytical measurement with spectrophotometer. This finding suggests that besides thermal effects, microwave-based food treatment can alter product properties in other ways as well. PMID

  16. Optimization of microwave assisted extraction of pectin from sour orange peel and its physicochemical properties.

    PubMed

    Hosseini, Seyed Saeid; Khodaiyan, Faramarz; Yarmand, Mohammad Saeid

    2016-04-20

    Microwave assisted extraction technique was used to extract pectin from sour orange peel. Box-Behnken design was used to study the effect of irradiation time, microwave power and pH on the yield and degree of esterification (DE) of pectin. The results showed that the optimum conditions for the highest yield of pectin (29.1%) were obtained at pH of 1.50, microwave power of 700W, and irradiation time of 3min. DE values of pectin ranged from 1.7% to 37.5%, indicating that the obtained pectin was low in methoxyl. Under optimal conditions, the galacturonic acid content and emulsifying activity were 71.0±0.8% and 40.7%, respectively. In addition, the emulsion stability value ranged from 72.1% to 83.4%. Viscosity measurement revealed that the solutions of pectin at low concentrations showed nearly Newtonian flow behavior, and as the concentration increased, pseudoplastic flow became dominant. Copyright © 2015 Elsevier Ltd. All rights reserved.

  17. Pectin from Opuntia ficus indica: Optimization of microwave-assisted extraction and preliminary characterization.

    PubMed

    Lefsih, Khalef; Giacomazza, Daniela; Dahmoune, Farid; Mangione, Maria Rosalia; Bulone, Donatella; San Biagio, Pier Luigi; Passantino, Rosa; Costa, Maria Assunta; Guarrasi, Valeria; Madani, Khodir

    2017-04-15

    Optimization of microwave-assisted extraction (MAE) of water-soluble pectin (WSP) from Opuntia ficus indica cladodes was performed using Response Surface Methodology. The effect of extraction time (X1), microwave power (X2), pH (X3) and solid-to-liquid ratio (X4) on the extraction yield was examined. The optimum conditions of MAE were as follows: X1=2.15min; X2=517W; X3=2.26 and X4=2g/30.6mL. The maximum obtained yield of pectin extraction was 12.57%. Total carbohydrate content of WSP is about 95.5% including 34.4% of Galacturonic acid. Pectin-related proteins represent only the 0.66% of WSP mass. HPSEC and light scattering analyses reveal that WSP is mostly constituted of high molecular pectin and FTIR measurements show that the microwave treatment does not alter the chemical structure of WSP, in which Galacturonic acid content and yield are 34.4% and 4.33%, respectively. Overall, application of MAE can give rise to high quality pectin. Copyright © 2016 Elsevier Ltd. All rights reserved.

  18. Optimization of transition edge sensor arrays for cosmic microwave background observations with the south pole telescope

    DOE PAGES

    Ding, Junjia; Ade, P. A. R.; Anderson, A. J.; ...

    2016-12-15

    In this study, we describe the optimization of transition-edge-sensor (TES) detector arrays for the thirdgeneration camera for the South PoleTelescope.The camera,which contains ~16 000 detectors, will make high-angular-resolution maps of the temperature and polarization of the cosmic microwave background. Our key results are scatter in the transition temperature of Ti/Au TESs is reduced by fabricating the TESs on a thin Ti(5 nm)/Au(5 nm) buffer layer and the thermal conductivity of the legs that support our detector islands is dominated by the SiOx dielectric in the microstrip transmission lines that run along

  19. Design and optimization of a microwave irradiated and resonant continuous biochemical reactor

    NASA Astrophysics Data System (ADS)

    Fanti, A.; Casu, S.; Desogus, F.; Djuric, N.; Mazzarella, G.

    2016-07-01

    The design of a microwave irradiated enzyme (biochemical) reactor is here presented. It consists of a suitable higher-order mode resonant cavity which contains several tubes where the solution containing reagents and products flow in the laminar flow regime. The process evolution under irradiation has then been simulated using the COMSOL multiphysics environment. As an example, the enzymatic hydrolysis reaction of sucrose has been considered. The results of the multiphysics simulation show that such a reactor can be used to effectively perform the reaction process in the optimal conditions for maximizing the reaction rate and preventing the enzyme deactivation by a precise knowledge of the temperature distribution and its strict control.

  20. Optimization of transition edge sensor arrays for cosmic microwave background observations with the south pole telescope

    DOE PAGES

    Ding, Junjia; Ade, P. A. R.; Anderson, A. J.; ...

    2016-12-15

    In this study, we describe the optimization of transition-edge-sensor (TES) detector arrays for the thirdgeneration camera for the South PoleTelescope.The camera,which contains ~16 000 detectors, will make high-angular-resolution maps of the temperature and polarization of the cosmic microwave background. Our key results are scatter in the transition temperature of Ti/Au TESs is reduced by fabricating the TESs on a thin Ti(5 nm)/Au(5 nm) buffer layer and the thermal conductivity of the legs that support our detector islands is dominated by the SiOx dielectric in the microstrip transmission lines that run along

  1. Comparison of microwaves to fluidized sand baths for heating tubular reactors for hydrothermal and dilute acid batch pretreatment of corn stover.

    PubMed

    Shi, Jian; Pu, Yunqiao; Yang, Bin; Ragauskas, Arthur; Wyman, Charles E

    2011-05-01

    Heating of batch tubular reactors with fluidized sand baths and with microwaves resulted in distinctive sugar yield profiles from pretreatment and subsequent enzymatic hydrolysis of corn stover at the same time, temperature, and dilute sulfuric acid concentration combinations and hydrothermal pretreatment conditions. Microwave heated pretreatment led to faster xylan, lignin, and acetyl removal as well as earlier xylan degradation than sand baths, but maximum sugar recoveries were similar. Solid state CP/MAS NMR revealed that microwave heating was more effective in altering cellulose structural features especially in breakdown of amorphous regions of corn stover than sand bath heating. Enzymatic hydrolysis of pretreated corn stover was improved by microwave heating compared to sand bath heating. Mechanisms were proposed to explain the differences in results for the two systems and provide new insights into pretreatment that can help advance this technology. Copyright © 2011 Elsevier Ltd. All rights reserved.

  2. Microwave ablation of the liver: a description of lesion evolution over time and an investigation of the heat sink effect.

    PubMed

    Bhardwaj, N; Dormer, J; Ahmad, F; Strickland, A D; Gravante, G; West, K; Dennison, A R; Lloyd, D M

    2011-12-01

    Microwave ablation has been successfully used to treat unresectable liver tumours for many years. However, despite its widespread use, there seems to be a relative paucity of experimental data regarding lesion evolution and the effects of any surrounding vasculature on ablation morphology. The aim of this study was to investigate the principal pathological changes in the liver following microwave ablation, in particular the heat sink effect. In addition we carefully reviewed the available literature to provide an overview of all relevant pathological studies. Microwave ablation was carried out on male rats at various distances from the hilum. Histological (H&E) and immunocytochemical (caspase 3) analyses of the lesion were performed at various time points; 0, 4, 24, 48  hours, 2 weeks and 1 month. A literature review was carried out using Medline, Embase and the Cochrane database to identify all relevant histological studies. The lesion underwent complete coagulative necrosis and was extremely regular at the ablation edge with no evidence of any influence from surrounding blood vessels at all time points. H&E and caspase 3 results were consistent and microwave caused little collateral damage outside the intended ablation zone. This study suggests that microwave ablation is extremely concise and is minimally affected by the heat sink effect. Comparative investigations with other treatment modalities are required.

  3. Microwave heating of fluid/solid layers: A study of hydrodynamic stability and melting front propagation

    NASA Astrophysics Data System (ADS)

    Gilchrist, John Joseph

    In this work we study the effects of externally induced heating on the dynamics of fluid layers, and materials composed of two phases separated by a thermally driven moving front. One novel aspect of our study, is in the nature of the external source which is provided by the action of microwaves acting on dielectric materials. The main challenge is to model and solve systems of differential equations which couple fluid dynamical motions (the Navier-Stokes equations for non-isothermal flows) and electromagnetic wave propagation (governed by Maxwell's equations). When an electromagnetic wave impinges on a material, energy is generated within the material due to dipolar and ohmic heating. In the first part of the thesis, we consider hydrodynamic instabilities of such systems with particular emphasis on conditions for onset of convection. This is achieved by solving the linear stability equations in order to identify parameter values which produce instability. The analysis and subsequent numerical solutions are carried out both for materials with constant dielectric attributes (in such cases the electric field equations decouple and they can be solved in closed form), and materials with temperature dependent conductivities, dielectric permittivities and dielectric loss factors. In the latter case we incorporate known data for water or ethanol into our numerical solutions. Our solutions provide a complete picture of onset conditions as a function of input power levels and microwave frequency (or equivalently fluid layer thickness). In addition, in the case of water, the flow is found to be more stable for constant attributes as compared with temperature dependent attributes; that is, a higher power is required to set the fluid layer into convective motions in the latter case. We have also established that onset is obtained at power levels well below those needed to cause thermal runaway and consequently boiling of the water layer, for instance. Our results also identify

  4. The effect of microwave power and heating time pretreatment on biogas production from fresh and dried water hyacinth (Eichhornia crassipes)

    NASA Astrophysics Data System (ADS)

    Sumardiono, Siswo; Budiyono, Mardiani, Dini Tri

    2015-12-01

    The objective of this research was to study the effect of microwave pretreatment of fresh and dried water hyacinth on biogas production. The variations of microwave power levels are 240; 400; 560 and 800 W. The variations of microwave heating time are 5; 7 and 9 min. The unpretreated fresh and dried water hyacinth are used as control. The result of research showed that almost all pretreated water hyacinth produced biogas were higher compare tounpretreated water hyacinth. The maximum of biogas production from fresh and dried water hyacinthwere obtained at 560 W for 7 min and 400 W for 7 min of microwave pretreatment. In this condition, pretreated fresh and dried water hyacinth resulted biogas production of 75,12 and 53,06 mL/g TS, respectively. The unpretreated fresh and dried water hyacinth produced biogas of 37,56 and 33,56 mL/g TS, respectively. The microwave pretreatment of water hyacinth improved biogas production. Microwave pretreatment had a positive impact on anaerobic biodegradability of water hyacinth.

  5. System optimization of a heat-switch-based electrocaloric heat pump

    NASA Astrophysics Data System (ADS)

    Smullin, Sylvia J.; Wang, Yunda; Schwartz, David E.

    2015-08-01

    Realization of the potential of electrocaloric heat pumps includes consideration of not only material properties but also device characteristics and cycle operation. We present detailed models and analysis that elucidate the key parameters for performance optimization. We show that the temperature lift, cooling power, and efficiency of a system driven by heat switches depend on system operating conditions and the combined thermal properties of both the heat switches and the electrocaloric capacitor. We show experimental results that validate the models and draw conclusions about building high-performance systems.

  6. Optimal efficiency of a noisy quantum heat engine.

    PubMed

    Stefanatos, Dionisis

    2014-07-01

    In this article we use optimal control to maximize the efficiency of a quantum heat engine executing the Otto cycle in the presence of external noise. We optimize the engine performance for both amplitude and phase noise. In the case of phase damping we additionally show that the ideal performance of a noiseless engine can be retrieved in the adiabatic (long time) limit. The results obtained here are useful in the quest for absolute zero, the design of quantum refrigerators that can cool a physical system to the lowest possible temperature. They can also be applied to the optimal control of a collection of classical harmonic oscillators sharing the same time-dependent frequency and subjected to similar noise mechanisms. Finally, our methodology can be used for the optimization of other interesting thermodynamic processes.

  7. Below and above boiling point comparison of microwave irradiation and conductive heating for municipal sludge digestion under identical heating/cooling profiles.

    PubMed

    Hosseini Koupaie, E; Eskicioglu, C

    2015-01-01

    This research provides a comprehensive comparison between microwave (MW) and conductive heating (CH) sludge pretreatments under identical heating/cooling profiles at below and above boiling point temperatures. Previous comparison studies were constrained to an uncontrolled or a single heating rate due to lack of a CH equipment simulating MW under identical thermal profiles. In this research, a novel custom-built pressure-sealed vessel which could simulate MW pretreatment under identical heating/cooling profiles was used for CH pretreatment. No statistically significant difference was proven between MW and CH pretreatments in terms of sludge solubilization, anaerobic biogas yield and organics biodegradation rate (p-value>0.05), while statistically significant effects of temperature and heating rate were observed (p-value<0.05). These results explain the contradictory results of previous studies in which only the final temperature (not heating/cooling rates) was controlled. Copyright © 2015 Elsevier Ltd. All rights reserved.

  8. Microwave blanching and drying characteristics of Centella asiatica (L.) urban leaves using tray and heat pump-assisted dehumidified drying.

    PubMed

    Trirattanapikul, W; Phoungchandang, S

    2014-12-01

    The appropriate stage of maturity of Centella asiatica (L.) Urban leaves was investigated. Mature leaves with large diameter contained high total phenolics and % inhibition. Microwave blanching for 30 s retained the highest total phenolics and the microwave blanching for 30 s and 45 s retained the highest % inhibition. Modified Henderson and Modified Chung-Pfost models showed the best fit to both fresh and blanched leaves for equilibrium moisture content, Xe = f(RHe, T) and equilibrium relative humidity, RHe = f(Xe, T), respectively. The Modified Page model was the most effective model in describing the leaf drying. All drying was in the falling rate period. The drying constant was related to drying air temperature using the Arrhenius model. Effective moisture diffusivities increased with increasing temperature and blanching treatments as well as dehumidification by heat pump-assisted dehumidified dryer. The heat pump-assited dehumidified drying incorporated by the microwave blanching could reduce the drying time at 40 °C by 31.2 % and increase % inhibition by 6.1 %. Quality evaluation by total phenolics, % inhibition and rehydration ratio showed the best quality for C. asiatica leaves pretreated by microwave blanching and dried at 40 °C in heat pump-assisted dehumidified dryer.

  9. Chlorophylls and carotenoids of kiwifruit puree are affected similarly or less by microwave than by conventional heat processing and storage.

    PubMed

    Benlloch-Tinoco, María; Kaulmann, Anouk; Corte-Real, Joana; Rodrigo, Dolores; Martínez-Navarrete, Nuria; Bohn, Torsten

    2015-11-15

    The impact of microwave (1000 W - 340 s) and conventional heat (97 °C - 30s) pasteurisation and storage (4, 10, 22 °C for up to 63 d) on total and individual carotenoids and chlorophylls in kiwifruit puree was evaluated. Bioaccessibility of carotenoids, before and after pasteurisation and storage, was also studied. Microwaves and conventional heating led to marked changes in the chlorophyll (42-100% losses) and carotenoid (62-91% losses) content. First- and second-order kinetics appropriately explained the degradation of total carotenoids and chlorophylls over time, respectively. Pasteurised samples showed significantly (p < 0.05) enhanced stability of these pigments, with microwaves (k = 0.007-0.031100 g mg(-1) day(-1) at 4-22 °C) promoting chlorophyll stability to a greater extent than conventional heating (k = 0.0015-0.034100 g mg(-1) day(-1) at 4-22 °C). Bioaccessibility of carotenoids remained (p < 0.05) unaffected by processing and storage. These results highlighted that the pigment composition of microwaved kiwifruit was more similar to that of the fresh fruit and better preserved during storage.

  10. Efficiency of Artemia cysts removal as a model invasive spore using a continuous microwave system with heat recovery.

    PubMed

    Balasubramanian, Sundar; Ortego, Jeffrey; Rusch, Kelly A; Boldor, Dorin

    2008-12-15

    A continuous microwave system to treat ballast water inoculated with Artemia salina cysts as a model invasive spore was tested for its efficacy in inactivating the cysts present. The system was tested at two different flow rates (1 and 2 L x min(-1)) and two different power levels (2.5 and 4.5 kW). Temperature profiles indicate that the system could deliver heating loads in excess of 100 degrees C in a uniform and near-instantaneous manner when using a heat recovery system. Except for a power and flow rate combination of 2.5 kW and 2 L x min(-1), complete inactivation of the cysts was observed at all combinations at holding times below 100 s. The microwave treatment was better or equal to the control treatment in inactivating the cysts. Use of heat exchangers increased the power conversion efficiency and the overall efficiency of the treatment system. Cost economics analysis indicates that in the present form of development microwave treatment costs are higher than the existing ballast water treatment methods. Overall, tests results indicated that microwave treatment of ballast water is a promising method that can be used in conjunction with other methods to form an efficient treatment system that can prevent introduction of potentially invasive spore forming species in non-native waters.

  11. Modeling of Heat and Moisture Transfer in Wood in Finish Drying by the Energy of a Microwave Field

    NASA Astrophysics Data System (ADS)

    Grinchik, N. N.; Adamovich, A. L.; Kizina, O. A.; Kharma, U. M.

    2015-01-01

    A physicomathematical model of heat and moisture transfer in drying materials in the region below the hygroscopicity limit, including also the heating by the energy of a microwave field, has been developed. The developed system of equations has been solved numerically for three cases of drying of a wooden plate: convective drying, drying by the microfield-field energy, and drying combining the above two methods, i.e., combined drying. Results of numerical calculations of the temperature, vapor-pressure, and moisture-content distributions in the cross section of the plate at different instants of time, and also of the change in the average moisture content and temperature in the process of drying, have been presented. The calculation results have been analyzed; conclusions on the differences and distinctive features of convective, microwave, and combined heating and drying have been drawn.

  12. Fast surrogate-assisted simulation-driven optimization of compact microwave hybrid couplers

    NASA Astrophysics Data System (ADS)

    Kurgan, Piotr; Koziel, Slawomir

    2016-07-01

    This work presents a robust methodology for expedited simulation-driven design optimization of compact microwave hybrid couplers. The technique relies on problem decomposition, and a bottom-up design strategy, starting from the level of basic building blocks of the coupler, and finishing with a tuning procedure that exploits a fast surrogate model of the entire structure. The latter is constructed by cascading local response surface approximations of coupler elementary elements. The cross-coupling effects within the structure are neglected in the first stage of the design process; however, they are accounted for in the tuning phase by means of space-mapping correction of the surrogate. The proposed approach is demonstrated through the design of a compact rat-race and two branch-line couplers. In all cases, the computational cost of the optimization process is very low and corresponds to just a few high-fidelity electromagnetic simulations of respective structures. Experimental validation is also provided.

  13. Tool Steel Heat Treatment Optimization Using Neural Network Modeling

    NASA Astrophysics Data System (ADS)

    Podgornik, Bojan; Belič, Igor; Leskovšek, Vojteh; Godec, Matjaz

    2016-11-01

    Optimization of tool steel properties and corresponding heat treatment is mainly based on trial and error approach, which requires tremendous experimental work and resources. Therefore, there is a huge need for tools allowing prediction of mechanical properties of tool steels as a function of composition and heat treatment process variables. The aim of the present work was to explore the potential and possibilities of artificial neural network-based modeling to select and optimize vacuum heat treatment conditions depending on the hot work tool steel composition and required properties. In the current case training of the feedforward neural network with error backpropagation training scheme and four layers of neurons (8-20-20-2) scheme was based on the experimentally obtained tempering diagrams for ten different hot work tool steel compositions and at least two austenitizing temperatures. Results show that this type of modeling can be successfully used for detailed and multifunctional analysis of different influential parameters as well as to optimize heat treatment process of hot work tool steels depending on the composition. In terms of composition, V was found as the most beneficial alloying element increasing hardness and fracture toughness of hot work tool steel; Si, Mn, and Cr increase hardness but lead to reduced fracture toughness, while Mo has the opposite effect. Optimum concentration providing high KIc/HRC ratios would include 0.75 pct Si, 0.4 pct Mn, 5.1 pct Cr, 1.5 pct Mo, and 0.5 pct V, with the optimum heat treatment performed at lower austenitizing and intermediate tempering temperatures.

  14. Waste heat boiler optimization by entropy minimization principle

    SciTech Connect

    Reddy, B.V.; Murali, J.; Satheesh, V.S.; Nag, P.K.

    1996-12-31

    A second law analysis has been undertaken for a waste heat boiler having an economizer, evaporator and superheater. Following the principle of minimization of entropy generation, a general equation for entropy generation number is derived, which incorporates all the operating variables. By differentiating the entropy generation number equation with respect to the operating parameters, various optimization parameters can be obtained. Few illustrations have been made to see the effect of various parameters on entropy generation number.

  15. Optimizing Structure of LED Light Bulb for Heat Transfer

    NASA Astrophysics Data System (ADS)

    Kobayashi, T.; Itami, D.; Hashimoto, R.; Takashina, T.; Kanematsu, H.; Mizuta, K.; Utsumi, Y.

    2013-04-01

    In this paper, in order to optimize the heat transfer structure of LED light bulb, the effects of various parameters on the temperature of the LED device were systematically analyzed, and a design guideline was shown. Although LED device has become popular due to its high-efficiency and long life, the design issues on the heat transfer structure of LED light bulbs has still remained. Because the original efficiency and life of the LED device can not be obtained due to the local temperature rise of LED element and the surrounding polymer molding material. Therefore, heat transfer analysis by finite element method was conducted systematically by changing parameters such as the shape, number and thickness of the radiating fin of the LED. As a result, advantage of open type structure was shown, and the proper design guidance for the structure of the fin shape was obtained.

  16. Experimental Evaluation of the Heat Sink Effect in Hepatic Microwave Ablation

    PubMed Central

    Ringe, Kristina I.; Lutat, Carolin; Rieder, Christian; Schenk, Andrea; Wacker, Frank; Raatschen, Hans-Juergen

    2015-01-01

    Purpose To demonstrate and quantify the heat sink effect in hepatic microwave ablation (MWA) in a standardized ex vivo model, and to analyze the influence of vessel distance and blood flow on lesion volume and shape. Materials and Methods 108 ex vivo MWA procedures were performed in freshly harvested pig livers. Antennas were inserted parallel to non-perfused and perfused (700,1400 ml/min) glass tubes (diameter 5mm) at different distances (10, 15, 20mm). Ablation zones (radius, area) were analyzed and compared (Kruskal-Wallis Test, Dunn’s multiple comparison Test). Temperature changes adjacent to the tubes were measured throughout the ablation cycle. Results Maximum temperature decreased significantly with increasing flow and distance (p<0.05). Compared to non-perfused tubes, ablation zones were significantly deformed by perfused tubes within 15mm distance to the antenna (p<0.05). At a flow rate of 700ml/min ablation zone radius was reduced to 37.2% and 80.1% at 10 and 15mm tube distance, respectively; ablation zone area was reduced to 50.5% and 89.7%, respectively. Conclusion Significant changes of ablation zones were demonstrated in a pig liver model. Considerable heat sink effect was observed within a diameter of 15mm around simulated vessels, dependent on flow rate. This has to be taken into account when ablating liver lesions close to vessels. PMID:26222431

  17. Experimental Evaluation of the Heat Sink Effect in Hepatic Microwave Ablation.

    PubMed

    Ringe, Kristina I; Lutat, Carolin; Rieder, Christian; Schenk, Andrea; Wacker, Frank; Raatschen, Hans-Juergen

    2015-01-01

    To demonstrate and quantify the heat sink effect in hepatic microwave ablation (MWA) in a standardized ex vivo model, and to analyze the influence of vessel distance and blood flow on lesion volume and shape. 108 ex vivo MWA procedures were performed in freshly harvested pig livers. Antennas were inserted parallel to non-perfused and perfused (700,1400 ml/min) glass tubes (diameter 5mm) at different distances (10, 15, 20mm). Ablation zones (radius, area) were analyzed and compared (Kruskal-Wallis Test, Dunn's multiple comparison Test). Temperature changes adjacent to the tubes were measured throughout the ablation cycle. Maximum temperature decreased significantly with increasing flow and distance (p<0.05). Compared to non-perfused tubes, ablation zones were significantly deformed by perfused tubes within 15 mm distance to the antenna (p<0.05). At a flow rate of 700 ml/min ablation zone radius was reduced to 37.2% and 80.1% at 10 and 15 mm tube distance, respectively; ablation zone area was reduced to 50.5% and 89.7%, respectively. Significant changes of ablation zones were demonstrated in a pig liver model. Considerable heat sink effect was observed within a diameter of 15 mm around simulated vessels, dependent on flow rate. This has to be taken into account when ablating liver lesions close to vessels.

  18. Study on formation of acrylamide in asparagine-sugar microwave heating systems using UPLC-MS/MS analytical method.

    PubMed

    Zhang, Yu; Fang, Haoran; Zhang, Ying

    2008-05-15

    Microwave heating can be regarded as a possible way to produce a considerable amount of acrylamide. The present study investigated the formation of acrylamide in asparagine-glucose, asparagine-fructose and asparagine-sucrose microwave heating systems by the response surface methodology (RSM) and the orthogonal array methodology (OAM). The acrylamide content was rapidly quantified by a validated ultra-performance liquid chromatography tandem mass spectrometry (UPLC-MS/MS) method. Results of RSM study indicated that in the asparagine-glucose system, the acrylamide content increased in the combined condition of high temperature accompanying with short heating time (>190°C, <20min) or low temperature accompanying with long heating time (<180°C, >30min). In the asparagine-fructose system, the similar conclusion was made in the combined condition of high temperature accompanying with short heating time (>175°C, <20min) or low temperature accompanying with long heating time (<170°C, >25min). In the asparagine-sucrose system, the amount of acrylamide enhanced with the increase of both heating temperature and heating time. The fitted mathematic models were successfully applied to the quantification of acrylamide formation when the heating temperature and heating time fell into the ranges of 120-240°C and 5-35min simultaneously. OAM study showed that acrylamide is readily formed via heating binary precursors 5min at 180°C in the asparagine-glucose and asparagine-fructose systems. However, acrylamide is readily generated when the binary precursors are heated 15min at 180°C in the asparagine-sucrose system. Copyright © 2007 Elsevier Ltd. All rights reserved.

  19. Fast synthesis of nanocrystalline Mg2Si by microwave heating: a new route to nano-structured thermoelectric materials.

    PubMed

    Savary, Etienne; Gascoin, Franck; Marinel, Sylvain

    2010-12-07

    The ultra fast synthesis of nanocrystalline Mg(2)Si was carried out using microwave radiation. The elemental precursors were first milled together under dry conditions to get fine particles. The resulting mixture of powders of Mg and Si was cold pressed before being heated by microwave irradiation. Precursors and products were analyzed by X-ray diffraction and scanning electron microscopy. The high energy ball milling parameters utilized to prepare the reactive powders have quite an influence on the behavior of the mixture under irradiation. Moreover, SEM imaging demonstrates that the power and time of irradiation are crucial for the grain growth of the Mg(2)Si and must be adequately controlled in order to avoid the decomposition of the phase. Our results show that we successfully managed to easily and quickly synthesize homogeneous nanocrystalline Mg(2)Si with particle size smaller than 100 nm using a microwave power of only 175 W for two minutes on powders ball milled for two hours.

  20. Effect of growth durations on the formation of ZnO nanorods prepared using continuous microwave heating technique

    NASA Astrophysics Data System (ADS)

    Jumali, Mohammad Hafizuddin Hj; Lee, Hock Beng; Abbas, Haidr Abdulzahra

    2017-05-01

    The effect of growth durations on the formation of ZnO nanorods thin film under continuous microwave irradiation was investigated. ZnO nanorods were synthesized using a microwave-assisted seed mediated growth method. ZnO nanoseed layer was prepared on Si substrate using a sol-gel technique. The microwave-assisted seed mediated growth of ZnO nanorods was conducted at different growth durations, namely 15, 20 and 30 min by fixing the irradiation power at 110 W. XRD diffractogram shows that the hexagonal wurtzite crystal structure for all the samples exhibited a preferred growth orientation along the c-axis. FESEM micrographs reveal with increasing heating duration, the average diameter of ZnO nanorods increased considerably and contrarily, the surface density of nanorods reduced. PL analysis suggests that an extended growth duration has resulted in the creation of defects in nanorods films owing to the insufficient supply of precursor ions during growth process.

  1. Optimization and characterization of bio-oil produced by microwave assisted pyrolysis of oil palm shell waste biomass with microwave absorber.

    PubMed

    Mushtaq, Faisal; Abdullah, Tuan Amran Tuan; Mat, Ramli; Ani, Farid Nasir

    2015-08-01

    In this study, solid oil palm shell (OPS) waste biomass was subjected to microwave pyrolysis conditions with uniformly distributed coconut activated carbon (CAC) microwave absorber. The effects of CAC loading (wt%), microwave power (W) and N2 flow rate (LPM) were investigated on heating profile, bio-oil yield and its composition. Response surface methodology based on central composite design was used to study the significance of process parameters on bio-oil yield. The coefficient of determination (R(2)) for the bio-oil yield is 0.89017 indicating 89.017% of data variability is accounted to the model. The largest effect on bio-oil yield is from linear and quadratic terms of N2 flow rate. The phenol content in bio-oil is 32.24-58.09% GC-MS area. The bio-oil also contain 1,1-dimethyl hydrazine of 10.54-21.20% GC-MS area. The presence of phenol and 1,1-dimethyl hydrazine implies that the microwave pyrolysis of OPS with carbon absorber has the potential to produce valuable fuel products.

  2. Dual-mode antenna design for microwave heating and noninvasive thermometry of superficial tissue disease.

    PubMed

    Jacobsen, S; Stauffer, P R; Neuman, D G

    2000-11-01

    Hyperthermia therapy of superficial skin disease has proven clinically useful, but current heating equipment is somewhat clumsy and technically inadequate for many patients. The present effort describes a dual-purpose, conformal microwave applicator that is fabricated from thin, flexible, multilayer printed circuit board (PCB) material to facilitate heating of surface areas overlaying contoured anatomy. Preliminary studies document the feasibility of combining Archimedean spiral microstrip antennas, located concentrically within the central region of square dual concentric conductor (DCC) annular slot antennas. The motivation is to achieve homogeneous tissue heating simultaneously with noninvasive thermometry by radiometric sensing of blackbody radiation from the target tissue under the applicator. Results demonstrate that the two antennas have complimentary regions of influence. The DCC ring antenna structure produces a peripherally enhanced power deposition pattern with peaks in the outer corners of the aperture and a broad minimum around 50% of maximum centrally. In contrast, the Archimedean spiral radiates (or receives) energy predominantly along the boresight axis of the spiral, thus confining the region of influence to tissue located within the central broad minimum of the DCC pattern. Analysis of the temperature-dependent radiometer signal (brightness temperature) showed linear correlation of radiometer output with test load temperature using either the spiral or DCC structure as the receive antenna. The radiometric performance of the broadband Archimedean antenna was superior compared to the DCC, providing improved temperature resolution (0.1 degree C-0.2 degree C) and signal sensitivity (0.3 degree C-0.8 degree C/degree C) at all four 500 MHz integration bandwidths tested within the frequency range from 1.2 to 3.0 GHz.

  3. Optimization and analysis of shape of coaxial electrode for microwave plasma in water

    SciTech Connect

    Hattori, Yoshiaki; Mukasa, Shinobu; Nomura, Shinfuku; Toyota, Hiromichi

    2010-03-15

    The effect of the shape of the electrode to generate 2.45 GHz microwave plasma in pure water is examined. Three variations of a common coaxial electrode are proposed, and compared according to the power required for plasma ignition and the position of plasma ignition in pure water at 6 kPa using a high-speed camera. These coaxial electrodes are calculated using three-dimensional finite-difference time-domain method calculations. The superior shape of coaxial electrode is found to be one with a flat plane on the tip of the inner electrode and dielectric substance located below the tip of the outer electrode. The position of the plasma ignition is related to the shape of the coaxial electrode. By solving the heat-conduction equation of water around the coaxial electrode taking into account the absorption of the microwave energy, the position of the plasma ignition is found to be not where electric field is the largest, but rather where temperature is maximized.

  4. Refrigeration Playbook. Heat Reclaim; Optimizing Heat Rejection and Refrigeration Heat Reclaim for Supermarket Energy Conservation

    SciTech Connect

    Reis, Chuck; Nelson, Eric; Armer, James; Johnson, Tim; Hirsch, Adam; Doebber, Ian

    2015-03-01

    The purpose of this playbook and accompanying spreadsheets is to generalize the detailed CBP analysis and to put tools in the hands of experienced refrigeration designers to evaluate multiple applications of refrigeration waste heat reclaim across the United States. Supermarkets with large portfolios of similar buildings can use these tools to assess the impact of large-scale implementation of heat reclaim systems. In addition, the playbook provides best practices for implementing heat reclaim systems to achieve the best long-term performance possible. It includes guidance on operations and maintenance as well as measurement and verification.

  5. Survival of Listeria monocytogenes, E.coli 0157:H7 and Salmonella spp. on catfish fillets exposed to microwave heating in a continuous mode

    USDA-ARS?s Scientific Manuscript database

    Microwave (MW) heating using continuous power output with feedback control and a modified ingredient formulation, may provide better and consistent cooking of foods. Currently, household units with build-in inverter power supply units are available. These new generation microwave ovens provide con...

  6. Laboratory convection experiments with internal, noncontact, microwave generated heating, applied to Earth's mantle dynamics

    NASA Astrophysics Data System (ADS)

    Limare, Angela; Surducan, Emanoil; di Giuseppe, Erika; Surducan, Vasile; Neamtu, Camelia; Vilella, Kenny; Fourel, Loic; Farnetani, Cinzia; Kaminski, Edouard; Jaupart, Claude

    2014-05-01

    The thermal evolution of terrestrial planets is controlled by secular cooling and internal heating due to the decay of radiogenic isotopes, two processes which are equivalent from the standpoint of convection dynamics. Few studies have been devoted to the intrinsic characteristics of this form of convection, which are dominated by instabilities of a single boundary layer and which involve a non-isentropic interior thermal structure. Laboratory studies of such convection have been plagued by considerable technical difficulties and have been mostly restricted to aqueous solutions with moderate values of the Prandtl number, contrary to planetary mantles. Here, we describe a new laboratory setup to generate internal heating in controlled conditions based on microwave (MW) absorption. The advantages of our technique include, but are not limited to: (1) a volumetric heat source that can be localized or distributed in space, (2) selectively heating part of the volume with time varying intensity and space distribution. Our tank prototype had horizontal dimensions of 30 cm × 30 cm and 5 cm height. A uniform and constant temperature was maintained at the upper boundary by an aluminium heat exchanger and adiabatic conditions were imposed at the tank base. Experimental fluids were hydroxyethylcellulose - water mixtures whose viscosities were varied within a wide range depending on concentration. Experimental Prandtl numbers were set at values larger than 100. Thermochromic Liquid Crystals (TLC) were used to visualize the temperature field, and the velocity field was determined using Particle Image Velocimetry (PIV). The Rayleigh-Roberts number was varied from 105 to 107. We also conducted numerical simulations in 3D cartesian geometry using Stag-3D (Tackley 1993) to reproduce the experimental conditions, including the tank aspect ratio and the temperature dependence of physical properties. We observed that convection is driven by cold descending plumes generated at the upper

  7. Optimization of microwave-assisted extraction of polyphenols from Myrtus communis L. leaves.

    PubMed

    Dahmoune, Farid; Nayak, Balunkeswar; Moussi, Kamal; Remini, Hocine; Madani, Khodir

    2015-01-01

    Phytochemicals, such as phenolic compounds, are of great interest due to their health-benefitting antioxidant properties and possible protection against inflammation, cardiovascular diseases and certain types of cancer. Maximum retention of these phytochemicals during extraction requires optimised process parameter conditions. A microwave-assisted extraction (MAE) method was investigated for extraction of total phenolics from Myrtus communis leaves. The total phenolic capacity (TPC) of leaf extracts at optimised MAE conditions was compared with ultrasound-assisted extraction (UAE) and conventional solvent extraction (CSE). The influence of extraction parameters including ethanol concentration, microwave power, irradiation time and solvent-to-solid ratio on the extraction of TPC was modeled by using a second-order regression equation. The optimal MAE conditions were 42% ethanol concentration, 500 W microwave power, 62 s irradiation time and 32 mL/g solvent to material ratio. Ethanol concentration and liquid-to-solid ratio were the significant parameters for the extraction process (p<0.01). Under the MAE optimised conditions, the recovery of TPC was 162.49 ± 16.95 mg gallic acidequivalent/gdry weight(DW), approximating the predicted content (166.13 mg GAE/g DW). When bioactive phytochemicals extracted from Myrtus leaves using MAE compared with UAE and CSE, it was also observed that tannins (32.65 ± 0.01 mg/g), total flavonoids (5.02 ± 0.05 mg QE/g) and antioxidant activities (38.20 ± 1.08 μg GAE/mL) in MAE extracts were higher than the other two extracts. These findings further illustrate that extraction of bioactive phytochemicals from plant materials using MAE method consumes less extraction solvent and saves time.

  8. Microwave radiation as heating method in the synthesis of titanium dioxide nanoparticles from hexafluorotitanate-organic salts

    SciTech Connect

    Estruga, Marc; Domingo, Concepcion; Ayllon, Jose A.

    2010-09-15

    Nanocrystalline anatase was obtained from ionic liquid-like precursors containing hexafluorotitanate-organic salts and less than 25 wt.% of water, and using boric acid as fluoride scavenger. Two alternative heating methods were explored using either a conventional oven or a domestic microwave apparatus. A significant reduction in the reaction time from 24 h to only few minutes was obtained using the microwave route. The as-prepared materials were characterized by X-ray diffraction, transmission electron microscopy, nitrogen sorption analysis, and attenuated total reflectance Fourier transformed infrared, X-ray photoelectronic and Raman spectroscopes. The convenience of using the microwave heating option was a function of the organic cation present in the precursor. Thus, organic ammonium cations containing only hydrocarbon substituents, such as diethylammonium, phenylammonium and benzyltrimethylammonium led to the precipitation of nanocrystalline anatase powder with high specific surface area (up to 120 m{sup 2} g{sup -1}) in a short processing time (1-3 min). Otherwise, alcohol and carboxylate functionalized cations decomposed under microwave treatment. Moreover, the choice of the organic cation allowed tuning several properties of the end material, such as particle size and pore morphology.

  9. Optimization of an analog intersatellite microwave photonics link with an optical preamplifier.

    PubMed

    Zhu, Zihang; Zhao, Shanghong; Li, Yongjun; Chu, Xingchun; Hou, Rui; Wang, Xiang; Zhao, Guhao

    2012-12-01

    An exact analytical expression of the signal-to-noise ratio (SNR) for an intersatellite microwave photonics link with an optical preamplifier is derived considering the signal fade caused by the pointing errors of the transceiver, and an optimized model for laser output power and direct current (DC) bias phase shift of the Mach-Zehnder modulator is established. It is shown that, given the desired SNR and the root mean square (rms) random pointing jitter, an optimal DC bias phase shift exists that minimizes laser output power. The effects of the optical preamplifier parameters on the minimum laser output power and optimal DC bias phase shift are also examined. Numerical results show that the preamplifier noise figure determines the minimum laser output power needed to achieve the desired SNR but affects the optimal DC bias phase shift little. For a SNR of 20 dB, doubling the preamplifier noise figure results in a 6.36 dB increase in minimum laser output power for rms pointing jitter of 0.4 μrad.

  10. Microwave-assisted extraction of jujube polysaccharide: Optimization, purification and functional characterization.

    PubMed

    Rostami, Hosein; Gharibzahedi, Seyed Mohammad Taghi

    2016-06-05

    The operational parameters involved in microwave-assisted extraction (MAE) of jujube polysaccharide including microwave power, water to raw material ratio and extraction temperature and time were optimized by RSM. MAE at 400W, 75°C, 60 min, using 30 g water/g powdered jujube was the best condition for maximum yield (9.02%) of polysaccharide. Two novel water-soluble polysaccharides (JCP-1 and JCP-2) with average molecular weights of 9.1×10(4)-1.5×10(5)Da in term of the symmetrical narrow peaks were identified using the analytical purification procedures. The JCP-1 and JCP-2 mainly composed of glucose, arabinose, galactose and rhamnose in molar ratios of 1.4:2.1:4.2:0.9 and 1.2:1.8:4.1:1.1, respectively. The use of 1.5% JCP-1 led to a high emulsifying stability (95.5%) in a model oil-in-water type emulsion with a reduced surface tension (44.1 mN/m) and droplet size (1.32 μm), and an increased apparent viscosity (0.13 Pas) during 21-day cold storage. The antioxidant activities were increased in dose-dependent manners (25-200 μg/mL). Copyright © 2016 Elsevier Ltd. All rights reserved.

  11. DSN 70-meter antenna microwave optics design and performance improvements. Part 1: Design optimization

    NASA Technical Reports Server (NTRS)

    Bathker, D. A.; Slobin, S. D.

    1989-01-01

    The design optimizations associated with the microwave and structural upgrade of the DSN 64-m antennas are discussed. Expected area efficiency/gain performances at S- and X-band are given for both the original 64-m systems and the upgraded 70-m systems, and error estimates are developed. The DSN 70-m Upgrade Project specifications, based on predesign estimates, were 1.4-dB gain at S-band and 1.9-dB at X-band, with no degradation to critical receiving system noise temperatures. The measurements show an S-band gain increase of 1.9 dB and an average increase of 2.1 dB at X-band. The Project also delivered small receiving system noise decreases at both frequency bands. The three DSN 70-m antennas, in the initial state of mechanical adjustment as of the end of calendar year 1988, are performing with very high peak microwave area efficiencies at very nearly the engineering design expectations of 76 percent at S-band and 71 percent at X-band.

  12. Nanocomposite of LiFePO4 and mesoporous carbon prepared by microwave heating for rechargeable lithium batteries

    NASA Astrophysics Data System (ADS)

    Roh, Kwang Chul; Lee, Ho Jun; Lee, Jae-Won

    2013-11-01

    A nanocomposite of LiFePO4 and mesoporous carbon was synthesized from MgO-templated mesoporous carbon by microwave heating for use as a cathode material in rechargeable Li batteries. Our research group reported a composition method using a porous template in the a previous paper.[1] Despite its low carbon content, the present composite shows better electrochemical performance than our previously reported version. The LiFePO4 nanoparticles were homogeneously dispersed in the template because of the suppressed growth of LiFePO4 crystals in the template pores and small thermal gradient resulting from microwave heating. The three-dimensional conducting carbon network between the LiFePO4 nanoparticles led to excellent cycling stability and rate capability. No decrease in discharge capacity was observed up to 100 cycles, and 85% of the reversible capacity at a Crate of 0.1 was retained at a C-rate of 30.

  13. Formation and inhibition of Nε-(carboxymethyl)lysine in saccharide-lysine model systems during microwave heating.

    PubMed

    Li, Lin; Han, Lipeng; Fu, Quanyi; Li, Yuting; Liang, Zhili; Su, Jianyu; Li, Bing

    2012-10-31

    N(ε)-(carboxymethyl) lysine (CML) is the most abundant advanced glycation end product (AGE), and frequently selected as an AGEs marker in laboratory studies. In this paper, the formation and inhibition of N(ε)-(carboxymethyl)lysine in saccharide-lysine model systems during microwave heating have been studied. The microwave heating treatment significantly promoted the formation of CML during Maillard reactions, which was related to the reaction temperature, time and type of saccharide. The order of CML formation for different saccharides was lactose > glucose > sucrose. Then, the inhibition effect on CML by five inhibitors was further examined. According to the results, ascorbic acid and tocopherol did not affect inhibition of CML, in contrast, thiamin, rutin and quercetin inhibited CML formation, and the inhibitory effects were concentration dependent.

  14. Optimization of combined microwave-hot air roasting of malt based on energy consumption and neo-formed contaminants content.

    PubMed

    Akkarachaneeyakorn, S; Laguerre, J C; Tattiyakul, J; Neugnot, B; Boivin, P; Morales, F J; Birlouez-Aragon, I

    2010-05-01

    To produce specialty malt, malts were roasted by combined microwave-hot air at various specific microwave powers (SP = 2.5 to 3 W/g), microwave heating times (t(mw) = 3.3 to 3.5 min), oven temperatures (T(oven) = 180 to 220 degrees C), and oven heating times (t(oven) = 60 to 150 min). The response variables, color, energy consumption by microwave (E(mw)) and oven (E(oven)), total energy consumption (E(tot)), quantity of neo-formed contaminants (NFCs), which include hydroxymethylfurfural, furfural, furan, and acrylamide were determined. Response surface methodology (RSM) was performed to analyze and predict the optimum conditions for the specialty malt. Production using combined microwave-hot air roasting process based on minimum energy consumption and level of NFCs. At 95% confident level, SP, T(oven), and t(oven) were the most influencing effects with regard to E(tot), whereas t(mw) did not affect E(tot). T(oven) and t(oven) significantly affected malt color. Only T(oven) significantly influenced the NFCs content. The optimum parameters were: SP = 2.68 W/g for 3.44 min, T(oven) = 206 degrees C for 136 min for coffee malt, SP = 2.5 W/g for 3.48 min, T(oven) = 214 degrees C for 136 min for chocolate malt, and SP = 2.5 W/g for 3.48 min, T(oven) = 211 degrees C for 150 min for black malt. Comparing with conventional process, combined microwave-hot air reduced E(tot) by approximately 40%, 26%, and 26% for coffee, chocolate, and black malts, respectively, and reduced HMF, furfural, furan, and acrylamide contents by 40%, 18%, 23%, and 95%, respectively, for black malt. An important goal for research institutions and the brewery industry is to produce colored malt by combining microwave and hot air roasting, while saving energy, getting desirable color, and avoiding the formation of carcinogenic and toxic neo-formed contaminants (NFCs). Therefore, one objective of this study was to compare energy consumption and content of NFCs during roasting of malt by hot air-only and

  15. Comparison of open microwave digestion and digestion by conventional heating for the determination of Cd, Cr, Cu and Pb in algae using transverse heated electrothermal atomic absorption spectrometry.

    PubMed

    Meeravali, N N; Kumar, S J

    2000-02-01

    A comparison between open microwave digestion and digestion by conventional heating was carried out for the determination of Cd, Cr, Cu, and Pb in two algae matrices using transverse heated electrothermal atomic absorption spectrometry (ETAAS). A SRM GBW 08504 cabbage was also analysed. These matrices were digested with HNO3, using a quartz vessel for microwave digestion and PFA vessel for digestion by conventional heating. Cd, Cu and Cr were determined without any modifier, while magnesium nitrate and ammonium phosphate mixed modifier was used for Pb. Results obtained by both the procedures were in good agreement with each other at 95% confidence level, and for SRM GBW 08504 cabbage the values agree well with the certified values. The limits of detection obtained were 0.0004, 0.060, 0.065 and 0.054 mg/kg for Cd, Cr, Cu, and Pb, respectively, using the microwave digestion process. The RSD for Cd was 10-15% and for the other elements 5-10%.

  16. Microwave heating synthesis and formation mechanism of chalcopyrite structured CuInS{sub 2} nanorods in deep eutectic solvent

    SciTech Connect

    Zhang, Jianjun Chen, Jun; Li, Qiang

    2015-03-15

    Graphical abstract: Chalcopyrite structured CuInS{sub 2} nanorods were synthesized by an environmentally friendly microwave heating method in deep eutectic solvent. Results show that microwave heating time plays an important role in the formation of CuInS{sub 2} nanostructure phase. The SEM results indicated that the obtained CuInS{sub 2} nanostructures display rod-like morphology with diameters of about 40 nm and lengths of about 400 nm. The UV–vis spectrum results indicated that the CuInS{sub 2} nanorods exhibit strong absorption from the entire visible light region to the near-infrared region beyond 1100 nm. The possible growth mechanism of CuInS{sub 2} nanorods was discussed. - Abstract: Chalcopyrite structured CuInS{sub 2} nanorods were synthesized by an environmentally friendly microwave heating method in deep eutectic solvent. The as-synthesized CuInS{sub 2} nanorods were characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM) and energy dispersive spectroscopy (EDS), respectively. The results indicated that the obtained CuInS{sub 2} nanostructures display rod-like morphology with diameters of about 40 nm and lengths of about 400 nm. The influences of microwave heating time on the formation of CuInS{sub 2} phase were discussed. Ultraviolet–visible (UV–vis) and photoluminescence (PL) spectra were utilized to investigate the optical properties of CuInS{sub 2} nanorods. The results showed that the as-synthesized CuInS{sub 2} nanorods exhibit strong absorption from the entire visible light region to the near-infrared region beyond 1100 nm. PL spectrum of the as-synthesized CuInS{sub 2} nanorods displays an emission peak centered at 580 nm under excitation wavelength of 366 nm at room temperature. The possible growth mechanism of CuInS{sub 2} nanorods was discussed.

  17. Acoustic Optimization of Automotive Exhaust Heat Thermoelectric Generator

    NASA Astrophysics Data System (ADS)

    Su, C. Q.; Ye, B. Q.; Guo, X.; Hui, P.

    2012-06-01

    The potential for thermoelectric exhaust heat recovery in vehicles has been increasing with recent advances in the efficiency of thermoelectric generators (TEGs). This study analyzes the acoustic attenuation performance of exhaust-based TEGs. The acoustic characteristics of two different thermal designs of exhaust gas heat exchanger in TEGs are discussed in terms of transmission loss and acoustic insertion loss. GT-Power simulations and bench tests on a dynamometer with a high-performance production engine are carried out. Results indicate that the acoustic attenuation of TEGs could be determined and optimized. In addition, the feasibility of integration of exhaust-based TEGs and engine mufflers into the exhaust line is tested, which can help to reduce space and improve vehicle integration.

  18. Optimization of the electrically heated catalyst for emission purification efficiency

    SciTech Connect

    Jeong, L.; Jang, J.; Yeo, G.; Kim, Y.

    1996-09-01

    It is well known that the EHC (Electrically Heated Catalyst) is very effective for the reduction of cold-start hydrocarbon emissions. To optimize EHC applications for LEV (Low Emission Vehicle) and ULEV (Ultra Low Emission Vehicle) standards, the effects of heating and secondary air injection on the emission purification efficiency in FTP (Federal Test Procedure) were evaluated with three different EHC system configurations. The exhaust manifold location EHC system in which the EHC with a light-off catalyst is installed near the exhaust manifold, yields 0.038g/mile of THC (Total Hydrocarbon emissions) when the test was performed according to the FTP with an engine-aged condition equivalent to 50,000 miles. Therefore, the ULEV standards could be achieved through the system. A new battery system for the EHC and a single battery system for vehicle application were evaluated. Evaluation of the Ni-MH battery for EHC system is included.

  19. Optimal cosmic microwave background map-making in the presence of cross-correlated noise

    NASA Astrophysics Data System (ADS)

    de Gasperis, G.; Buzzelli, A.; Cabella, P.; de Bernardis, P.; Vittorio, N.

    2016-08-01

    Aims: We present an extension of the ROMA map-making algorithm for the generation of optimal cosmic microwave background polarization maps. The new code allows for a possible cross-correlated noise component among the detectors of a CMB experiment. A promising application is the forthcoming LSPE balloon-borne experiment, which is devoted to the accurate observation of CMB polarization at large angular scales. Methods: We generalized the noise covariance matrix in time domain to account for all the off-diagonal terms due to the detector cross-talk. Hence, we performed preliminary forecasts of the LSPE-SWIPE instrument. Results: We found that considering the noise cross-correlation among the detectors results in a more realistic estimate of the angular power spectra. In particular, the extended ROMA algorithm has provided a considerable reduction of the spectra error bars. We expect that this improvement could be crucial in constraining the B-mode polarization at the largest scales.

  20. Process optimization and analysis of microwave assisted extraction of pectin from dragon fruit peel.

    PubMed

    Thirugnanasambandham, K; Sivakumar, V; Prakash Maran, J

    2014-11-04

    Microwave assisted extraction (MAE) technique was employed for the extraction of pectin from dragon fruit peel. The extracting parameters were optimized by using four-variable-three-level Box-Behnken design (BBD) coupled with response surface methodology (RSM). RSM analysis indicated good correspondence between experimental and predicted values. 3D response surface plots were used to study the interactive effects of process variables on extraction of pectin. The optimum extraction conditions for the maximum yield of pectin were power of 400 W, temperature of 45 °C, extracting time of 20 min and solid-liquid ratio of 24 g/mL. Under these conditions, 7.5% of pectin was extracted.