Science.gov

Sample records for microwave imaging plasma

  1. Microwave imaging diagnostics for plasma fluctuation studies

    NASA Astrophysics Data System (ADS)

    Wang, Jian

    Electron Cyclotron Emission Imaging (ECEI) and Microwave Imaging Reflectometry (MIR) combined systems are being investigated by the UC Davis Plasma Diagnostic Group (PDG), in collaboration with Princeton Plasma Physics Laboratory (PPPL) researchers, Drs. E. Mazzucato, H.K. Park and T. Munsat, as well as researchers from the FOM-Instituut voor Plasmafysica Rijnhuizen,the Netherlands. The goal is to develop the plasma diagnostic systems based on the imaging technology developed in the UC Davis PDG group, for the study of plasma micro-turbulence, which is extremely important for the understanding of anomalous transport behavior of magnetically confined plasmas such as in tokamaks. This dissertation work provides the design of the optical systems, the design of the electronics, the testing of the antenna array and the data analysis of TEXTOR ECEI/MIR combined systems.

  2. Recent Advancements in Microwave Imaging Plasma Diagnostics

    SciTech Connect

    H. Park; C.C. Chang; B.H. Deng; C.W. Domier; A.J.H. Donni; K. Kawahata; C. Liang; X.P. Liang; H.J. Lu; N.C. Luhmann, Jr.; A. Mase; H. Matsuura; E. Mazzucato; A. Miura; K. Mizuno; T. Munsat; K. and Y. Nagayama; M.J. van de Pol; J. Wang; Z.G. Xia; W-K. Zhang

    2002-03-26

    Significant advances in microwave and millimeter wave technology over the past decade have enabled the development of a new generation of imaging diagnostics for current and envisioned magnetic fusion devices. Prominent among these are revolutionary microwave electron cyclotron emission imaging (ECEI), microwave phase imaging interferometers, imaging microwave scattering and microwave imaging reflectometer (MIR) systems for imaging electron temperature and electron density fluctuations (both turbulent and coherent) and profiles (including transport barriers) on toroidal devices such as tokamaks, spherical tori, and stellarators. The diagnostic technology is reviewed, and typical diagnostic systems are analyzed. Representative experimental results obtained with these novel diagnostic systems are also presented.

  3. Microwave imaging of magnetohydrodynamic instabilities in fusion plasma

    NASA Astrophysics Data System (ADS)

    Sabot, Roland; Elbèze, Didier; Lee, Woochang; Nam, Yoonbum; Park, Hyeon; Shen, Junsong; Yun, Gunsu; Choi, Minjun; Giacalone, Jean-Claude; Nicolas, Timothée; Bottereau, Christine; Clairet, Frédéric; Lotte, Philippe; Molina, Diego

    2016-11-01

    Microwave imaging diagnostics are extremely useful for observing magnetohydrodynamic (MHD) instabilities in magnetic fusion plasmas. Two imaging diagnostics will be available on the WEST tokamak. A method was developed to reconstruct electron density maps from electron density profiles measured by ultrafast reflectometry, a technique based on FM-CW radar principle. It relies on plasma rotation to perform 2D reconstruction. An Electron Cyclotron Emission Imaging (ECEI) diagnostic will image directly the temperature fluctuations. It will be equivalent to 24 stacked vertically radiometers, each probing a spot of few centimetres. These two complementary techniques will contribute to the validation of MHD models. xml:lang="fr"

  4. Using indium tin oxide material to implement the imaging of microwave plasma ignition process

    SciTech Connect

    Wang, Qiang; Hou, Lingyun; Zhang, Guixin Zhang, Boya; Liu, Cheng; Wang, Zhi; Huang, Jian

    2014-02-17

    In this paper, a method is introduced to get global observation of microwave plasma ignition process at high pressure. A microwave resonator was designed with an indium tin oxide coated glass at bottom. Microwave plasma ignition was implemented in methane and air mixture at 10 bars by a 2 ms-3 kW-2.45 GHz microwave pulse, and the high speed images of the ignition process were obtained. The images visually proved that microwave plasma ignition could lead to a multi-point ignition. The system may also be applied to obtain Schlieren images, which is commonly used to observe the development of flame kernel in an ignition process.

  5. Compact microwave imaging system to measure spatial distribution of plasma density

    SciTech Connect

    Ito, H.; Oba, R.; Yugami, N.; Nishida, Y.

    2004-10-01

    We have developed an advanced microwave interferometric system operating in the K band (18-27 GHz) with the use of a fan-shaped microwave based on a heterodyne detection system for measuring the spatial distribution of the plasma density. In order to make a simple, low-cost, and compact microwave interferometer with better spatial resolution, a microwave scattering technique by a microstrip antenna array is employed. Experimental results show that the imaging system with the microstrip antenna array can have finer spatial resolution than one with the diode antenna array and reconstruct a good spatially resolved image of the finite size dielectric phantoms placed between the horn antenna and the micro strip antenna array. The precise two-dimensional electron density distribution of the cylindrical plasma produced by an electron cyclotron resonance has been observed. As a result, the present imaging system is more suitable for a two- or three-dimensional display of the objects or stationary plasmas and it is possible to realize a compact microwave imaging system.

  6. Synthetic aperture microwave imaging with active probing for fusion plasma diagnostics

    SciTech Connect

    Shevchenko, Vladimir F.; Freethy, Simon J.; Huang, Billy K.

    2014-08-21

    A Synthetic Aperture Microwave Imaging (SAMI) system has been designed and built to obtain 2-D images at several frequencies from fusion plasmas. SAMI uses a phased array of linearly polarised antennas. The array configuration has been optimised to achieve maximum synthetic aperture beam efficiency. The signals received by antennas are down-converted to the intermediate frequency range and then recorded in a full vector form. Full vector signals allow beam focusing and image reconstruction in both real time and a post-processing mode. SAMI can scan over 16 pre-programmed frequencies in the range of 10-35GHz with a switching time of 300ns. The system operates in 2 different modes simultaneously: both a 'passive' imaging of plasma emission and also an 'active' imaging of the back-scattered signal of the radiation launched by one of the antennas from the same array. This second mode is similar to so-called Doppler backscattering (DBS) reflectometry with 2-D resolution of the propagation velocity of turbulent structures. Both modes of operation show good performance in fusion plasma experiments on Mega Amp Spherical Tokamak (MAST). We have obtained the first ever 2-D images of BXO mode conversion windows. With active probing, first ever turbulence velocity maps have been obtained. We present an overview of the diagnostic and discuss recent results. In contrast to quasi-optical microwave imaging systems SAMI requires neither big aperture viewing ports nor large 2-D detector arrays to achieve the desired imaging resolution. The number of effective 'pixels' of the synthesized image is proportional to the number of receiving antennas squared. Thus only a small number of optimised antennas is sufficient for the majority of applications. Possible implementation of SAMI on ITERand DEMO is discussed.

  7. Plasma enhanced microwave joining

    SciTech Connect

    Yiin, T.; Barmatz, M.; Sayir, A.

    1995-12-31

    A new method for plasma enhanced microwave joining of high purity (99.8%) alumina has been developed. The controlled application of a plasma between the adjoining surfaces of two rods initially heats the microwave-low-absorbing alumina rods to temperatures high enough for them to absorb microwave energy efficiently. With this technology, the adjacent surfaces of alumina rods can be melted and welded together in less than three minutes using approximately 400 watts of microwave energy. Four point bending tests measured fracture strengths of up to 130 MPa at the joined interface. Optical and SEM micrographs indicated that exaggerated grain growth prevailed for all joints studied.

  8. 2D Doppler backscattering using synthetic aperture microwave imaging of MAST edge plasmas

    NASA Astrophysics Data System (ADS)

    Thomas, D. A.; Brunner, K. J.; Freethy, S. J.; Huang, B. K.; Shevchenko, V. F.; Vann, R. G. L.

    2016-02-01

    Doppler backscattering (DBS) is already established as a powerful diagnostic; its extension to 2D enables imaging of turbulence characteristics from an extended region of the cut-off surface. The Synthetic Aperture Microwave Imaging (SAMI) diagnostic has conducted proof-of-principle 2D DBS experiments of MAST edge plasma. SAMI actively probes the plasma edge using a wide (±40° vertical and horizontal) and tuneable (10-34.5 GHz) beam. The Doppler backscattered signal is digitised in vector form using an array of eight Vivaldi PCB antennas. This allows the receiving array to be focused in any direction within the field of view simultaneously to an angular range of 6-24° FWHM at 10-34.5 GHz. This capability is unique to SAMI and is a novel way of conducting DBS experiments. In this paper the feasibility of conducting 2D DBS experiments is explored. Initial observations of phenomena previously measured by conventional DBS experiments are presented; such as momentum injection from neutral beams and an abrupt change in power and turbulence velocity coinciding with the onset of H-mode. In addition, being able to carry out 2D DBS imaging allows a measurement of magnetic pitch angle to be made; preliminary results are presented. Capabilities gained through steering a beam using a phased array and the limitations of this technique are discussed.

  9. Spatially-resolved spectral image of a microwave-induced plasma with Okamoto-cavity for nitridation of steel substrate.

    PubMed

    Sato, Shigeo; Arai, Yuuki; Wagatsuma, Kazuaki

    2014-01-01

    When a nitrogen microwave-induced plasma produced with an Okamoto-cavity was employed as a source for the nitridation of steel samples, the characteristics of the plasma were investigated by analyzing a spatially-resolved emission image of nitrogen excited species obtained with a two-dimensionally imaging spectrograph. Our previous study had reported on an excellent performance of the Okamoto-cavity microwave-induced plasma (MIP), enabling a nitrided layer having a several-micrometer-thickness to form on an iron substrate, even if the treatment is completed within 1 min, which is superior to a conventional plasma nitriding using low-pressure glow discharges requiring a prolonged treatment time. In this paper, the reason for this is discussed based on a spectrometric investigation. The emission images of band heads of nitrogen molecule and nitrogen molecule ion extended toward the axial/radial directions of the plasma at larger microwave powers supplied to the MIP, thus elevating the number density of the excited species of nitrogen, which would activate any chemical reaction on the iron substrate. However, a drastic increase in the growth rate of the nitrided layer when increasing the microwave power from 600 to 700 W, which had been observed in our previous study, could not be explained only from such a variation in the excited species of nitrogen. This result is probably because the growth process is dominantly controlled by thermal diffusion of nitrogen atom after it enters into the iron substrate, where the substrate temperature is the most important parameter concerning the mobility in the iron lattice. Therefore, the Okamoto-cavity MIP could contribute to a thermal source through radiative heating as well as a source of nitrogen excited species, especially in the growth process of the nitrided layer.

  10. Spaceborne Microwave Imagers

    NASA Technical Reports Server (NTRS)

    Stacey, J. M.

    1991-01-01

    Monograph presents comprehensive overview of science and technology of spaceborne microwave-imaging systems. Microwave images used as versatile orbiting, remote-sensing systems to investigate atmospheres and surfaces of planets. Detect surface objects through canopies of clouds, measure distributions of raindrops in clouds that their views penetrate, find meandering rivers in rain forests and underground water in arid regions, and provide information on ocean currents, wakes, ice/water boundaries, aircraft, ships, buoys, and bridges.

  11. Microwave imaging reflectometry in LHD

    NASA Astrophysics Data System (ADS)

    Yamaguchi, S.; Nagayama, Y.; Pavlichenko, R.; Inagaki, S.; Kogi, Y.; Mase, A.

    2006-10-01

    A multichannel reflectometry with an imaging optical system is under development for the measurement of the electron density fluctuations in the Large Helical Device (LHD). The right-hand cutoff layer is utilized as a reflection surface. The angle of an ellipsoidal mirror installed inside the vacuum chamber is remotely adjustable with the ultrasonic motor in order to optimize the illumination angle for the wider range of the plasma parameters. An oscillation due to density fluctuation was observed using the microwave imaging reflectometry for the first time in LHD plasma experiment.

  12. Microwave imaging reflectometry in LHD

    SciTech Connect

    Yamaguchi, S.; Nagayama, Y.; Pavlichenko, R.; Inagaki, S.; Kogi, Y.; Mase, A.

    2006-10-15

    A multichannel reflectometry with an imaging optical system is under development for the measurement of the electron density fluctuations in the Large Helical Device (LHD). The right-hand cutoff layer is utilized as a reflection surface. The angle of an ellipsoidal mirror installed inside the vacuum chamber is remotely adjustable with the ultrasonic motor in order to optimize the illumination angle for the wider range of the plasma parameters. An oscillation due to density fluctuation was observed using the microwave imaging reflectometry for the first time in LHD plasma experiment.

  13. Volumetric Near-Field Microwave Plasma Generation

    NASA Technical Reports Server (NTRS)

    Exton, R. J.; Balla, R. Jeffrey; Herring, G. C.; Popovic, S.; Vuskovic, L.

    2003-01-01

    A periodic series of microwave-induced plasmoids is generated using the outgoing wave from a microwave horn and the reflected wave from a nearby on-axis concave reflector. The plasmoids are spaced at half-wavelength separations according to a standing-wave pattern. The plasmoids are enhanced by an effective focusing in the near field of the horn (Fresnel region) as a result of a diffractive narrowing. Optical imaging, electron density, and rotational temperature measurements characterize the near field plasma region. Volumetric microwave discharges may have application to combustion ignition in scramjet engines.

  14. Microwave diagnostics of atmospheric plasmas

    NASA Astrophysics Data System (ADS)

    Scott, David

    Plasma treatment of biological tissues has tremendous potential due to the wide range of applications. Most plasmas have gas temperatures which greatly exceed room temperature. These are often utilized in electro-surgery for cutting and coagulating tissue. Another type of plasma, referred to as cold atmospheric plasma, or CAP, is characterized by heavy particle temperatures which are at or near room temperature. Due to this lack of thermal effect, CAP may provide less invasive medical procedures. Additionally, CAP have been demonstrated to be effective at targeting cancer cells while minimizing damage to the surrounding tissue. A recently fabricated Microwave Electron Density Device (MEDD) utilizes microwave scattering on small atmospheric plasmas to determine the electron plasma density. The MEDD can be utilized on plasmas which range from a fraction of a millimeter to several centimeters at atmospheric pressure when traditional methods cannot be applied. Microwave interferometry fails due to the small size of the plasma relative to the microwave wavelength which leads to diffraction and negligible phase change; electrostatic probes introduce very strong perturbation and are associated with difficulties of application in strongly-collisional atmospheric conditions; and laser Thomson scattering is not sensitive enough to measure plasma densities less than 1012 cm-3. The first part of this dissertation provides an overview of two types of small atmospheric plasma objects namely CAPs and plasmas utilized in the electro-surgery. It then goes on to describe the fabrication, testing and calibration of the MEDD facility. The second part of this dissertation is focused on the application of the MEDD and other diagnostic techniques to both plasma objects. A series of plasma images that illustrate the temporal evolution of a discharge created by an argon electrosurgical device operating in the coagulation mode and its behavior was analyzed. The discharge of the argon

  15. Plasma-assisted microwave processing of materials

    NASA Technical Reports Server (NTRS)

    Barmatz, Martin (Inventor); Ylin, Tzu-yuan (Inventor); Jackson, Henry (Inventor)

    1998-01-01

    A microwave plasma assisted method and system for heating and joining materials. The invention uses a microwave induced plasma to controllably preheat workpiece materials that are poorly microwave absorbing. The plasma preheats the workpiece to a temperature that improves the materials' ability to absorb microwave energy. The plasma is extinguished and microwave energy is able to volumetrically heat the workpiece. Localized heating of good microwave absorbing materials is done by shielding certain parts of the workpiece and igniting the plasma in the areas not shielded. Microwave induced plasma is also used to induce self-propagating high temperature synthesis (SHS) process for the joining of materials. Preferably, a microwave induced plasma preheats the material and then microwave energy ignites the center of the material, thereby causing a high temperature spherical wave front from the center outward.

  16. Microwave Excitation In ECRIS plasmas

    SciTech Connect

    Ciavola, G.; Celona, L.; Consoli, F.; Gammino, S.; Maimone, F.; Barbarino, S.; Catalano, R. S.; Mascali, D.; Tumino, L.

    2007-09-28

    A number of phenomena related to the electron cyclotron resonance ion sources (ECRIS) has been better understood recently by means of the improvement of comprehension of the coupling mechanism between microwave generators and ECR plasma. In particular, the two frequency heating and the frequency tuning effect, that permit a remarkable increase of the current for the highest charge states ions, can be explained in terms of modes excitation in the cylindrical cavity of the plasma chamber. Calculations based on this theoretical approach have been performed, and the major results will be presented. It will be shown that the electric field pattern completely changes for a few MHz frequency variations and the changes in ECRIS performances can be correlated to the efficiency of the power transfer between electromagnetic field and plasma.

  17. Cosmic microwave background images

    NASA Astrophysics Data System (ADS)

    Herranz, D.; Vielva, P.

    2010-01-01

    Cosmology concerns itself with the fundamental questions about the formation, structure, and evolution of the Universe as a whole. Cosmic microwave background (CMB) radiation is one of the foremost pillars of physical cosmology. Joint analyses of CMB and other astronomical observations are able to determine with ever increasing precision the value of the fundamental cosmological parameters and to provide us with valuable insight about the dynamics of the Universe in evolution. The CMB radiation is a relic of the hot and dense first moments of the Universe: a extraordinarily homogeneous and isotropic blackbody radiation, which shows small temperature anisotropies that are the key for understanding the conditions of the primitive Universe, testing cosmological models and probing fundamental physics at the very dawn of time. CMB observations are obtained by imaging of the sky at microwave wavelengths. However, the CMB signal is mixed with other astrophysical signals of both Galactic and extragalactic origin. To properly exploit the cosmological information contained in CMB images, they must be cleansed of these other astrophysical emissions first. Blind source separation (BSS) has been a very active field in the last few years. Conversely, the term "compact sources" is often used in the CMB literature referring to spatially bounded, small features in the images, such as galaxies and galaxy clusters. Compact sources and diffuse sources are usually treated separately in CMB image processing. We devote this tutorial to the case of compact sources. Many of the compact source-detection techniques that are widespread inmost fields of astronomy are not easily applicable to CMB images. In this tutorial, we present an overview of the fundamentals of compact object detection theory keeping in mind at every moment these particularities. Throughout the article, we briefly consider Bayesian object detection, model selection, optimal linear filtering, nonlinear filtering, and

  18. Microwave Plasma Hydrogen Recovery System

    NASA Technical Reports Server (NTRS)

    Atwater, James; Wheeler, Richard, Jr.; Dahl, Roger; Hadley, Neal

    2010-01-01

    A microwave plasma reactor was developed for the recovery of hydrogen contained within waste methane produced by Carbon Dioxide Reduction Assembly (CRA), which reclaims oxygen from CO2. Since half of the H2 reductant used by the CRA is lost as CH4, the ability to reclaim this valuable resource will simplify supply logistics for longterm manned missions. Microwave plasmas provide an extreme thermal environment within a very small and precisely controlled region of space, resulting in very high energy densities at low overall power, and thus can drive high-temperature reactions using equipment that is smaller, lighter, and less power-consuming than traditional fixed-bed and fluidized-bed catalytic reactors. The high energy density provides an economical means to conduct endothermic reactions that become thermodynamically favorable only at very high temperatures. Microwave plasma methods were developed for the effective recovery of H2 using two primary reaction schemes: (1) methane pyrolysis to H2 and solid-phase carbon, and (2) methane oligomerization to H2 and acetylene. While the carbon problem is substantially reduced using plasma methods, it is not completely eliminated. For this reason, advanced methods were developed to promote CH4 oligomerization, which recovers a maximum of 75 percent of the H2 content of methane in a single reactor pass, and virtually eliminates the carbon problem. These methods were embodied in a prototype H2 recovery system capable of sustained high-efficiency operation. NASA can incorporate the innovation into flight hardware systems for deployment in support of future long-duration exploration objectives such as a Space Station retrofit, Lunar outpost, Mars transit, or Mars base. The primary application will be for the recovery of hydrogen lost in the Sabatier process for CO2 reduction to produce water in Exploration Life Support systems. Secondarily, this process may also be used in conjunction with a Sabatier reactor employed to

  19. Microwave Plasma Excitation Using Cylindrical Cavity with Dual Injection

    NASA Astrophysics Data System (ADS)

    Hasegawa, Yuichi; Nakamura, Keiji; Park, Soonam; Kobayashi, Satoru; Sugai, Hideo; Chubu University Team; Applied Materials Team; Nagoya Industrial Science Research Institute Team

    2015-09-01

    Large high-density plasmas have been generated by injecting magnetron-based microwaves radiated from slots cut on a wall of a rectangular or coaxial waveguide. However, a standing structural microwave in the waveguide often causes non-uniformity of plasma density. To minimize such inhomogeneity excited by the conventional waveguide, we adopt a resonant cylindrical cavity combined with a solid-state microwave amplifier. Microwave is injected into the cavity from two ports azimuthally apart by 90 degrees to each other (dual injection). FDTD simulations are performed for a TE111 mode resonant cavity excited by single or dual microwave injection. In the case of the dual injection with a phase difference of π/2, the wave field azimuthally rotates in the cavity, and hence the slots cut on a cavity bottom wall launch travelling waves, thus minimizing the azimuthal inhomogeneity of the resultant plasma. 40-cm-diameter plasmas are experimentally generated in argon at 0.1 ~ 5 Torr with microwaves of 2.4-2.5GHz and 400W. Threshold powers for plasma ignition are much less in dual injection than those in single injection. Optical emission images of the cylindrical plasmas show that the plasma uniformity is considerably improved in dual injection, particularly at high-pressure and low-power.

  20. 2D microwave imaging reflectometer electronics

    SciTech Connect

    Spear, A. G.; Domier, C. W. Hu, X.; Muscatello, C. M.; Ren, X.; Luhmann, N. C.; Tobias, B. J.

    2014-11-15

    A 2D microwave imaging reflectometer system has been developed to visualize electron density fluctuations on the DIII-D tokamak. Simultaneously illuminated at four probe frequencies, large aperture optics image reflections from four density-dependent cutoff surfaces in the plasma over an extended region of the DIII-D plasma. Localized density fluctuations in the vicinity of the plasma cutoff surfaces modulate the plasma reflections, yielding a 2D image of electron density fluctuations. Details are presented of the receiver down conversion electronics that generate the in-phase (I) and quadrature (Q) reflectometer signals from which 2D density fluctuation data are obtained. Also presented are details on the control system and backplane used to manage the electronics as well as an introduction to the computer based control program.

  1. Tunable microwave pulse generation using discharge plasmas

    NASA Astrophysics Data System (ADS)

    Biggs, David R.; Cappelli, Mark A.

    2016-09-01

    The response of a microwave resonant cavity with a plasma discharge tube inside is (continuously or intermittently) filled with a plasma and studied both numerically and experimentally. The resonance frequency of the cavity-plasma system is sensitive to plasma densities from 1016 to 1020 m-3 corresponding to resonant frequencies of 12.3-18.3 GHz. The system is first characterized for its quasi-steady state response using a low frequency plasma discharge at 70 kHz and 125 V RMS. A plasma discharge is then driven with a high voltage pulse of 4 kV and a CW input microwave signal is converted to a pulsed output signal. The microwave pulse delay and pulse width are varied by selecting the input microwave frequency. The microwave input power is set to +20 dBm. The delay of the microwave pulse is also used as a diagnostic tool for measuring the variation of plasma density in time and, with numerical fitting, the discharge plasma recombination coefficient and diffusion timescales are estimated.

  2. Measuring plasma turbulence using low coherence microwave radiation

    SciTech Connect

    Smith, D. R.

    2012-02-20

    Low coherence backscattering (LCBS) is a proposed diagnostic technique for measuring plasma turbulence and fluctuations. LCBS is an adaptation of optical coherence tomography, a biomedical imaging technique. Calculations and simulations show LCBS measurements can achieve centimeter-scale spatial resolution using low coherence microwave radiation. LCBS measurements exhibit several advantages over standard plasma turbulence measurement techniques including immunity to spurious reflections and measurement access in hollow density profiles. Also, LCBS is scalable for 1-D profile measurements and 2-D turbulence imaging.

  3. Microwave Reflectometry for Magnetically Confined Plasmas

    SciTech Connect

    Mazzucato, E.

    1998-02-01

    This paper is about microwave reflectometry -- a radar technique for plasma density measurements using the reflection of electromagnetic waves by a plasma cutoff. Both the theoretical foundations of reflectometry and its practical application to the study of magnetically confined plasmas are reviewed in this paper. In particular, the role of short-scale density fluctuations is discussed at length, both as a unique diagnostic tool for turbulence studies in thermonuclear plasmas and for the deleterious effects that fluctuations may have on the measurement of the average plasma density with microwave reflectometry.

  4. Planar controlled zone microwave plasma system

    DOEpatents

    Ripley, Edward B.; Seals, Roland D.; Morrell, Jonathan S.

    2011-10-04

    An apparatus and method for initiating a process gas plasma. A conductive plate having a plurality of conductive fingers is positioned in a microwave applicator. An arc forms between the conductive fingers to initiate the formation of a plasma. A transport mechanism may convey process materials through the plasma. A spray port may be provided to expel processed materials.

  5. Continuous, real time microwave plasma element sensor

    DOEpatents

    Woskov, P.P.; Smatlak, D.L.; Cohn, D.R.; Wittle, J.K.; Titus, C.H.; Surma, J.E.

    1995-12-26

    Microwave-induced plasma is described for continuous, real time trace element monitoring under harsh and variable conditions. The sensor includes a source of high power microwave energy and a shorted waveguide made of a microwave conductive, refractory material communicating with the source of the microwave energy to generate a plasma. The high power waveguide is constructed to be robust in a hot, hostile environment. It includes an aperture for the passage of gases to be analyzed and a spectrometer is connected to receive light from the plasma. Provision is made for real time in situ calibration. The spectrometer disperses the light, which is then analyzed by a computer. The sensor is capable of making continuous, real time quantitative measurements of desired elements, such as the heavy metals lead and mercury. 3 figs.

  6. Continuous, real time microwave plasma element sensor

    DOEpatents

    Woskov, Paul P.; Smatlak, Donna L.; Cohn, Daniel R.; Wittle, J. Kenneth; Titus, Charles H.; Surma, Jeffrey E.

    1995-01-01

    Microwave-induced plasma for continuous, real time trace element monitoring under harsh and variable conditions. The sensor includes a source of high power microwave energy and a shorted waveguide made of a microwave conductive, refractory material communicating with the source of the microwave energy to generate a plasma. The high power waveguide is constructed to be robust in a hot, hostile environment. It includes an aperture for the passage of gases to be analyzed and a spectrometer is connected to receive light from the plasma. Provision is made for real time in situ calibration. The spectrometer disperses the light, which is then analyzed by a computer. The sensor is capable of making continuous, real time quantitative measurements of desired elements, such as the heavy metals lead and mercury.

  7. Advances in Plasma-Filled Microwave Sources

    NASA Astrophysics Data System (ADS)

    Goebel, Dan M.

    1998-11-01

    Significant improvements in the performance of high power microwave tubes have been achieved in recent years by the introduction of plasma into the beam- coupling structures of the devices. Plasma has been credited with increasing the maximum electron beam current, frequency bandwidth, electrical efficiency and reducing or eliminating the need for guiding magnetic fields in microwave sources. These advances are critically important for the development of high power, frequency agile microwave systems where size and weight are important. Conversely, plasma has been blamed for causing noise, instabilities, power variations and pulse-length limitations in microwave tubes for many years. Recent experimental and theoretical studies have demonstrated that introducing the right amount of plasma in a controlled manner can be beneficial in the areas described above. Enhanced beam propagation at lower magnetic fields and higher beam current levels due to the space-charge neutralization by plasma can be realized provided that the neutralization fraction is fairly stable and maintained near a value of one for the duration of the desired pulse length. The generation of hybrid waves in plasma-filled slow-wave structures (SWS) operating near cutoff has resulted in an increased electric field on axis and improved coupling to solid beams in both helix and coupled-cavity SWS, and wider coupling-aperture pass-bands and frequency bandwidth in coupled-cavity devices. In the event of excess plasma generation in these TWTs or BWOs, the device structures rapidly approach cutoff or breakdown and the beam forms instabilities, which degrades the output power level and pulse length. Recent experimental and theoretical advances in this field including plasma implementation techniques in the gun and circuit will be presented, and the benefits and limitations of plasma filling of microwave sources will be shown and discussed.

  8. Innovative Plasma Imaging Array Concept

    NASA Astrophysics Data System (ADS)

    Tobias, Benjamin; Domier, Calvin; Kong, Xiangyu; Liang, Tianran; Luhmann, Neville, Jr.; van de Pol, M. J.; Classen, I. G. J.; Boom, J.; Jaspers, R.; Donne, A. J. H.; Park, Hyeon

    2008-11-01

    A new lens/antenna array concept has been developed for millimeter-wave plasma imaging applications with dramatic increases in RF bandwidth and sensitivity. In this arrangement, an array of tightly coupled miniatured substrate lenses is fabricated such that each antenna has a dedicated substrate lens. The new arrangement exhibits low sidelobe levels over a bandwidth spanning 90 to 140 GHz for use in electron cyclotron emission imaging and microwave imaging reflectometry. An innovative ``vertical zoom'' control is also supported, which the vertical extent of the imaged plasma can be varied from 20 to 30 cm. The first plasma implementation of the new concept will take place on the TEXTOR tokamak in Fall 2008, with systems for DIII-D and ASDEX to follow in 2009. Experimental details regarding the imaging arrays and the new TEXTOR optical design will be presented.

  9. Measurements of plasma potential in high-pressure microwave plasmas

    SciTech Connect

    Tarasova, A. V.; Podder, N. K.; Clothiaux, E. J.

    2009-04-15

    Plasma potential of a high-pressure ({approx}1 Torr) microwave-generated argon plasma is measured using a Langmuir probe and a cold emissive probe. The operation of a hot emissive probe in a high-pressure plasma has been very difficult due to frequent burn-outs and significantly reduced lifetime of the probe filament, which, in turn, limits the possibility of collecting a wide range of data. The I-V characteristics from both Langmuir and emissive probes are interpreted using the collisionless probe theory since the collision correction factor is not very significant. The plasma potential determined from both Langmuir and cold emissive probe characteristics agrees well with one another and is observed to be dependent on the operating gas pressure but relatively unchanged as a function of the microwave power. An average plasma potential determined over the operating range of microwave powers varies nonlinearly with the gas pressure.

  10. Measurements of plasma potential in high-pressure microwave plasmas.

    PubMed

    Tarasova, A V; Podder, N K; Clothiaux, E J

    2009-04-01

    Plasma potential of a high-pressure ( approximately 1 Torr) microwave-generated argon plasma is measured using a Langmuir probe and a cold emissive probe. The operation of a hot emissive probe in a high-pressure plasma has been very difficult due to frequent burn-outs and significantly reduced lifetime of the probe filament, which, in turn, limits the possibility of collecting a wide range of data. The I-V characteristics from both Langmuir and emissive probes are interpreted using the collisionless probe theory since the collision correction factor is not very significant. The plasma potential determined from both Langmuir and cold emissive probe characteristics agrees well with one another and is observed to be dependent on the operating gas pressure but relatively unchanged as a function of the microwave power. An average plasma potential determined over the operating range of microwave powers varies nonlinearly with the gas pressure.

  11. A tunable microwave plasma photonic crystal filter

    SciTech Connect

    Wang, B.; Cappelli, M. A.

    2015-10-26

    The integration of gaseous plasma elements into a microwave photonic crystal band gap cavity structure allows for active tuning of the device. An alumina rod array microwave photonic crystal waveguide resonator is simulated and characterized through finite difference time domain methods. A gaseous plasma element is integrated into the cavity structure and the effect of plasma density on the transmission properties of the structure is investigated. We show, through both simulations and experiments, that the permittivity of the plasma can be adjusted to shift the peak resonance to allow for both switching and tunability of transmission. The experimentally measured peak shifts in transmission are compared to those simulated and the electron density of the gaseous plasma element is calculated and compared to values determined from the measured discharge current density.

  12. Microwave Imaging under Oblique Illumination

    PubMed Central

    Meng, Qingyang; Xu, Kuiwen; Shen, Fazhong; Zhang, Bin; Ye, Dexin; Huangfu, Jiangtao; Li, Changzhi; Ran, Lixin

    2016-01-01

    Microwave imaging based on inverse scattering problem has been attracting many interests in the microwave society. Among some major technical challenges, the ill-posed, multi-dimensional inversion algorithm and the complicated measurement setup are critical ones that prevent it from practical applications. In this paper, we experimentally investigate the performance of the subspace-based optimization method (SOM) for two-dimensional objects when it was applied to a setup designed for oblique incidence. Analytical, simulation, and experimental results show that, for 2D objects, neglecting the cross-polarization scattering will not cause a notable loss of information. Our method can be potentially used in practical imaging applications for 2D-like objects, such as human limbs. PMID:27399706

  13. Microwave Plasma Sources for Gas Processing

    SciTech Connect

    Mizeraczyk, J.; Jasinski, M.; Dors, M.; Zakrzewski, Z.

    2008-03-19

    In this paper atmospheric pressure microwave discharge methods and devices used for producing the non-thermal plasmas for processing of gases are presented. The main part of the paper concerns the microwave plasma sources (MPSs) for environmental protection applications. A few types of the MPSs, i.e. waveguide-based surface wave sustained MPS, coaxial-line-based and waveguide-based nozzle-type MPSs, waveguide-based nozzleless cylinder-type MPS and MPS for microdischarges are presented. Also, results of the laboratory experiments on the plasma processing of several highly-concentrated (up to several tens percent) volatile organic compounds (VOCs), including Freon-type refrigerants, in the moderate (200-400 W) waveguide-based nozzle-type MPS (2.45 GHz) are presented. The results showed that the microwave discharge plasma fully decomposed the VOCs at relatively low energy cost. The energy efficiency of VOCs decomposition reached 1000 g/kWh. This suggests that the microwave discharge plasma can be a useful tool for environmental protection applications. In this paper also results of the use of the waveguide-based nozzleless cylinder-type MPS to methane reforming into hydrogen are presented.

  14. Microwave cavity diagnostics of microwave breakdown plasmas. Final report

    SciTech Connect

    Eckstrom, D.J.; Williams, M.S.

    1989-08-01

    We have performed microwave cavity perturbation measurements in the LLNL AIM facility using a 329-MHz cavity that allow us to examine in detail the plasma formation and decay processes for electron densities between approximately 10{sup 5} and 10{sup 7}/cm{sup 3}. We believe these to be the lowest density plasmas ever studied in microwave breakdown experiments, and as such they allow us to determine the power and energy required to produce plasmas suitable for HF radar reflection as well as the effective lifetimes of these plasmas before re-ionization is required. Analyses of these results leads to the following conclusions. (1) For microwave breakdown pulses varying from 0.6 to 2.4 {mu}s, the threshold power required to produce measurable plasmas is 30 to 12 MW/m{sup 2} at 0.01 torr, decreasing to 3.5 to 1.8 MW/m{sup 2} at 1 to 3 torr, and then increasing to 5 to 3.5 MW/m{sup 2} at 30 torr. The threshold power in each case decreases with increasing pulse length, but the required pulse energy increases with decreasing power or increasing pulse length. (2) The effective electron density decay rates are approximately 100/s for 0.1 to 1 torr, after which they increase linearly with pressure. Thus, the useful plasma lifetimes are in the range of 20 to 40 ms at the lower pressures and decrease to about 1 ms at 30 torr. These decay rates and lifetimes are comparable to those that would exist for artificially ionized regions in the upper atmosphere. (3) The collision frequencies measured at pressures of 1 torr and above correspond to electron temperatures of 800 K or less. In fact, the inferred temperatures for p > 3 torr are below room temperature. This may be due to a contribution to the measured conductivity by negative ions.

  15. Microwave plasma conversion of volatile organic compounds.

    PubMed

    Ko, Youngsam; Yang, Gosu; Chang, Daniel P Y; Kennedy, Ian M

    2003-05-01

    A microwave-induced, steam/Ar/O2, plasma "torch" was operated at atmospheric pressure to determine the feasibility of destroying volatile organic compounds (VOCs) of concern. The plasma process can be coupled with adsorbent technology by providing steam as the fluid carrier for desorbing the VOCs from an adsorbent. Hence, N2 can be excluded by using a relatively inexpensive carrier gas, and thermal formation of oxides of nitrogen (NOx) is avoided in the plasma. The objectives of the study were to evaluate the technical feasibility of destroying VOCs from gas streams by using a commercially available microwave plasma torch and to examine whether significant byproducts were produced. Trichloroethene (TCE) and toluene (TOL) were added as representative VOCs of interest to a flow that contained Ar as a carrier gas in addition to O2 and steam. The O2 was necessary to ensure that undesirable byproducts were not formed in the process. Microwave power applied at 500-600 W was found to be sufficient to achieve the destruction of the test compounds, down to the detection limits of the gas chromatograph that was used in the analysis. Samples of the postmicrowave gases were collected on sorbent tubes for the analysis of dioxins and other byproducts. No hazardous byproducts were detected when sufficient O2 was added to the flow. The destruction efficiency at a fixed microwave power improved with the addition of steam to the flow that passed through the torch.

  16. Optimized ECR plasma apparatus with varied microwave window thickness

    DOEpatents

    Berry, Lee A.

    1995-01-01

    The present invention describes a technique to control the radial profile of microwave power in an ECR plasma discharge. In order to provide for a uniform plasma density to a specimen, uniform energy absorption by the plasma is desired. By controlling the radial profile of the microwave power transmitted through the microwave window of a reactor, the profile of the transmitted energy to the plasma can be controlled in order to have uniform energy absorption by the plasma. An advantage of controlling the profile using the window transmission characteristics is that variations to the radial profile of microwave power can be made without changing the microwave coupler or reactor design.

  17. Optimized ECR plasma apparatus with varied microwave window thickness

    DOEpatents

    Berry, L.A.

    1995-11-14

    The present invention describes a technique to control the radial profile of microwave power in an ECR plasma discharge. In order to provide for a uniform plasma density to a specimen, uniform energy absorption by the plasma is desired. By controlling the radial profile of the microwave power transmitted through the microwave window of a reactor, the profile of the transmitted energy to the plasma can be controlled in order to have uniform energy absorption by the plasma. An advantage of controlling the profile using the window transmission characteristics is that variations to the radial profile of microwave power can be made without changing the microwave coupler or reactor design. 9 figs.

  18. Polycrystal diamond growth in a microwave plasma torch

    SciTech Connect

    Sergeichev, K. F.; Lukina, N. A.; Bolshakov, A. P.; Ralchenko, V. G.; Arutyunyan, N. R.; Vlasov, I. I.

    2010-12-15

    Diamond films of different structures were deposited on quartz, WC-Co, and molybdenum substrates in a microwave plasma torch discharge in an argon-hydrogen-methane gas mixture in a sealed chamber at pressures close to atmospheric by using the chemical vapor deposition technique. Images of diamond polycrystal films and separate crystals, as well as results of Raman spectroscopy, are presented. The spectra of optical plasma radiation recorded during film deposition demonstrate the presence of intense H{sub {alpha}} hydrogen and C{sub 2} radical bands known as Swan bands.

  19. Influence of plasma turbulence on microwave propagation

    NASA Astrophysics Data System (ADS)

    Köhn, A.; Holzhauer, E.; Leddy, J.; Thomas, M. B.; Vann, R. G. L.

    2016-11-01

    It is not fully understood how electromagnetic waves propagate through plasma density fluctuations when the size of the fluctuations is comparable with the wavelength of the incident radiation. In this paper, the perturbing effect of a turbulent plasma density layer on a traversing microwave beam is simulated with full-wave simulations. The deterioration of the microwave beam is calculated as a function of the characteristic turbulence structure size, the turbulence amplitude, the depth of the interaction zone and the size of the waist of the incident beam. The maximum scattering is observed for a structure size on the order of half the vacuum wavelength. The scattering and beam broadening was found to increase linearly with the depth of the turbulence layer and quadratically with the fluctuation strength. Consequences for experiments and 3D effects are considered.

  20. Microwave Imaging Reflectometry for the Visualization of Turbulence in Tokamaks

    SciTech Connect

    E. Mazzucato

    1999-12-16

    Understanding the mechanism of anomalous transport in magnetically confined plasmas requires the use of sophisticated diagnostic tools for the measurement of short-scale turbulent fluctuations. This paper describes the conceptual design of an experimental technique for the global visualization of density fluctuations in tokamaks. The proposed method is based on microwave reflectometry and consists in using a large diameter probing beam, collecting the reflected waves with a large aperture antenna, and forming an image of the reflecting plasma layer onto a 2D array of microwave receivers. Based on results from a series of numerical simulations, the theoretical feasibility conditions of the proposed method are discussed.

  1. Fuel gas production by microwave plasma in liquid

    SciTech Connect

    Nomura, Shinfuku; Toyota, Hiromichi; Tawara, Michinaga; Yamashita, Hiroshi; Matsumoto, Kenya

    2006-06-05

    We propose to apply plasma in liquid to replace gas-phase plasma because we expect much higher reaction rates for the chemical deposition of plasma in liquid than for chemical vapor deposition. A reactor for producing microwave plasma in a liquid could produce plasma in hydrocarbon liquids and waste oils. Generated gases consist of up to 81% hydrogen by volume. We confirmed that fuel gases such as methane and ethylene can be produced by microwave plasma in liquid.

  2. A new small microwave plasma torch

    NASA Astrophysics Data System (ADS)

    Stonies, Robert; Schermer, Susanne; Voges, Edgar; Broekaert, José A. C.

    2004-11-01

    The development of a new, very small coaxial plasma source based on the microwave plasma torch (MPT) is described. It generates a plasma jet up to 4 mm long and can be operated with a argon gas flow rate less than 70 ml per min at down to 2 W microwave power (2.45 GHz) at atmospheric pressure. It also works well with helium and does not show any wear during a test period of 30 h of operation with argon. It is, in particular, thought to be a source for the atomic spectroscopy of gaseous species. The excitation temperature is found to be ~4700 K for this device operating with helium and 17 W microwave power. A detection limit for an example application in which Cl is detected from HCCl3 is found to be below 66 ppb. For the first time, to our knowledge, microstrip circuits are used to match the small MPT to the generator's 50 OHgr impedance. The design considerations for the microstrip circuits are discussed and an approximated calculation for the layout is presented. With the introduced procedure it is possible to design even smaller MPTs for special applications.

  3. Microwaves Scattering by Underdense Inhomogeneous Plasma Column

    NASA Astrophysics Data System (ADS)

    Zhang, Lin; Ouyang, Jiting

    2016-03-01

    The scattering characteristics of microwaves (MWs) by an underdense inhomogeneous plasma column have been investigated. The plasma column is generated by hollow cathode discharge (HCD) in a glass tube filled with low pressure argon. The plasma density in the column can be varied by adjusting the discharge current. The scattering power of X-band MWs by the column is measured at different discharge currents and receiving angles. The results show that the column can affect the properties of scattering wave significantly regardless of its plasma frequency much lower than the incident wave frequency. The power peak of the scattering wave shifts away from 0° to about ±15° direction. The finite-different time-domain (FDTD) method is employed to analyze the wave scattering by plasma column with different electron density distributions. The reflected MW power from a metal plate located behind the column is also measured to investigate the scattering effect on reducing MW reflectivity of a metal target. This study is expected to deepen the understanding of plasma-electromagnetic wave interaction and expand the applications concerning plasma antenna and plasma stealth.

  4. Development of microwave imaging reflectometry in large helical device.

    PubMed

    Yamaguchi, S; Nagayama, Y; Kuwahara, D; Yoshinaga, T; Shi, Z B; Kogi, Y; Mase, A

    2008-10-01

    Three key devices of the microwave imaging reflectometry (MIR) are under development in large helical device (LHD). The 2-D mixer array is developed by stacking the one-dimensional array of the planar Yagi-Uda antenna. The new type of the bandpass filter bank is modified to match the requirement of the MIR. The low-cost quadrature demodulator is also developed for the phase detection system. By using the low-price commercial wireless devices, the development cost becomes much lower than the expensive waveguide system. These devices enable the development of 2-D/3-D microwave imaging system for the plasma diagnostics and industrial applications.

  5. Downstream microwave ammonia plasma treatment of polydimethylsiloxane

    SciTech Connect

    Pruden, K.G.; Beaudoin, S.P.

    2005-01-01

    To control the interactions between surfaces and biological systems, it is common to attach polymers, proteins, and other species to the surfaces of interest. In this case, surface modification of polydimethylsiloxane (PDMS) was performed by exposing PDMS films to the effluent from a microwave ammonia plasma, with a goal of creating primary amine groups on the PDMS. These amine sites were to be used as binding sites for polymer attachment. Chemical changes to the surface of the PDMS were investigated as a function of treatment time, microwave power, and PDMS temperature during plasma treatment. Functional groups resulting from this treatment were characterized using attenuated total reflectance infrared spectroscopy. Plasma treatment resulted in the incorporation of oxygen- and nitrogen-containing groups, including primary amine groups. In general, increasing the treatment time, plasma power and substrate temperature increased the level of oxidation of the films, and led to the formation of imines and nitriles. PDMS samples treated at 100 W and 23 deg. C for 120 s were chosen for proof-of-concept dextran coating. Samples treated at this condition contained primary amine groups and few oxygen-containing groups. To test the viability of the primary amines for attachment of biopolymers, functionalized dextran was successfully attached to primary amine sites on the PDMS films.

  6. Microwave Plasma Window Theory and Experiments

    NASA Astrophysics Data System (ADS)

    McKelvey, Andrew; Zheng, Peng; Franzi, Matthew; Lau, Y. Y.; Gilgenbach, Ronald; Plasma, Pulsed Power,; Microwave Laboratory Team

    2011-10-01

    The microwave plasma window is an experiment designed to promote RF breakdown in a controlled vacuum-gas environment using a DC bias. Experimental data has shown that this DC bias will significantly reduce the RF power required to yield breakdown, a feature also shown in recent simulation. The cross-polarized conducting array is biased at (100's V) DC on the surface of a Lucite vacuum window. Microwave power is supplied to the window's surface by a single 1-kW magnetron operating at 2.45 GHz CW. The goal of this project is to establish controllable characteristics relating vacuum pressure, DC bias, RF power required for surface breakdown, as well as RF transmission after the formation of plasma. Experimental data will be compared with multipactor susceptibility curves generated using a Monte Carlo simulation which incorporates an applied DC bias and finite pressures of air and argon. Research supported by an AFOSR grant on the Basic Physics of Distributed Plasma Discharge, AFRL, L-3 Communications, and Northrop Grumman.

  7. Properties of microwave plasma torch operating at a low pressure

    SciTech Connect

    Cho, Soon C.; Uhm, Han S.; Hong, Yong C.; Kim, Jae H.

    2008-10-15

    A microwave plasma torch system is attached to a low-pressure chamber in this study. The electric field induced in a quartz discharge tube by microwave radiation breaks down the gas at a sufficiently low pressure, igniting the plasma, which is continuously sustained by the microwave radiation. The plasma profile at a very low pressure is shown to be asymmetric with higher density on the incoming side of the microwaves. The gas temperature at the bright spot of the torch plasma measured via the optical emission from hydroxide radicals is shown to increase drastically upon high-pressure operation as the microwave power increases. The electron density at the torch flame is measured by recording the Stark broadening of the hydrogen Balmer beta line. The plasma density increases as the microwave power increases. The typical argon plasma density of a plasma torch powered at 500 W under a pressure of 150 Torr is on the order of 10{sup 14}/cm{sup 3}. The electron temperature in the argon torch plasma was estimated to be 1.5 eV, thereby effectively exciting the molecules in the torch gas. Disintegration of nitrogen fluoride (NF{sub 3}) indicates that a microwave plasma torch operating at a low pressure can efficiently generate an abundant amount of chemical radicals.

  8. Characteristics of plasma sterilizer using microwave torch plasma with AC high-voltage discharge plasma

    NASA Astrophysics Data System (ADS)

    Itarashiki, Tomomasa; Hayashi, Nobuya; Yonesu, Akira

    2016-01-01

    Microwave plasma sterilization has recently been attracting attention for medical applications. However, it is difficult to perform low-temperature sterilization in short time periods. Increasing the output power shortens the time required for sterilization but causes the temperature to increase. To overcome this issue, we have developed a hybrid plasma system that combines a microwave torch plasma and a high-voltage mesh plasma, which allows radicals to be produced at low temperatures. Using this system, successful sterilization was shown to be possible in a period of 45 min at a temperature of 41 °C.

  9. Elimination of dimethyl methylphosphonate by plasma flame made of microwave plasma and burning hydrocarbon fuel

    NASA Astrophysics Data System (ADS)

    Cho, S. C.; Uhm, H. S.; Hong, Y. C.; Park, Y. G.; Park, J. S.

    2008-06-01

    Elimination of dimethyl methylphosphonate (DMMP) in liquid phase was studied by making use of a microwave plasma burner, exhibiting a safe removal capability of stockpiled chemical weapons. The microwave plasma burner consisted of a fuel injector and a plasma flame exit connected in series to a microwave plasma torch. The burner flames were sustained by injecting hydrocarbon fuels into the microwave plasma torch in air discharge. The Fourier transform infrared spectra indicated near perfect elimination of DMMP in the microwave plasma burner. This was confirmed by gas chromatography spectra as supporting data, revealing the disappearance of even intermediary compounds in the process of DMMP destruction. The experimental results and the physical configuration of the microwave plasma burner may provide an effective means of on-site removal of chemical warfare agents found on a battlefield.

  10. Elimination of dimethyl methylphosphonate by plasma flame made of microwave plasma and burning hydrocarbon fuel

    SciTech Connect

    Cho, S. C.; Uhm, H. S.; Hong, Y. C.; Park, Y. G.; Park, J. S.

    2008-06-15

    Elimination of dimethyl methylphosphonate (DMMP) in liquid phase was studied by making use of a microwave plasma burner, exhibiting a safe removal capability of stockpiled chemical weapons. The microwave plasma burner consisted of a fuel injector and a plasma flame exit connected in series to a microwave plasma torch. The burner flames were sustained by injecting hydrocarbon fuels into the microwave plasma torch in air discharge. The Fourier transform infrared spectra indicated near perfect elimination of DMMP in the microwave plasma burner. This was confirmed by gas chromatography spectra as supporting data, revealing the disappearance of even intermediary compounds in the process of DMMP destruction. The experimental results and the physical configuration of the microwave plasma burner may provide an effective means of on-site removal of chemical warfare agents found on a battlefield.

  11. Plasma actuator electron density measurement using microwave perturbation method

    NASA Astrophysics Data System (ADS)

    Mirhosseini, Farid; Colpitts, Bruce

    2014-07-01

    A cylindrical dielectric barrier discharge plasma under five different pressures is generated in an evacuated glass tube. This plasma volume is located at the center of a rectangular copper waveguide cavity, where the electric field is maximum for the first mode and the magnetic field is very close to zero. The microwave perturbation method is used to measure electron density and plasma frequency for these five pressures. Simulations by a commercial microwave simulator are comparable to the experimental results.

  12. Plasma actuator electron density measurement using microwave perturbation method

    SciTech Connect

    Mirhosseini, Farid; Colpitts, Bruce

    2014-07-21

    A cylindrical dielectric barrier discharge plasma under five different pressures is generated in an evacuated glass tube. This plasma volume is located at the center of a rectangular copper waveguide cavity, where the electric field is maximum for the first mode and the magnetic field is very close to zero. The microwave perturbation method is used to measure electron density and plasma frequency for these five pressures. Simulations by a commercial microwave simulator are comparable to the experimental results.

  13. Spectroscopic studies of microwave plasmas containing hexamethyldisiloxane

    NASA Astrophysics Data System (ADS)

    Nave, A. S. C.; Mitschker, F.; Awakowicz, P.; Röpcke, J.

    2016-10-01

    Low-pressure microwave discharges containing hexamethyldisiloxane (HMDSO) with admixtures of oxygen and nitrogen, used for the deposition of silicon containing films, have been studied spectroscopically. Optical emission spectroscopy (OES) in the visible spectral range has been combined with infrared laser absorption spectroscopy (IRLAS). The experiments were carried out in order to analyze the dependence of plasma chemical phenomena on power and gas mixture at relatively low pressures, up to 50 Pa, and power values, up to 2 kW. The evolution of the concentration of the methyl radical, CH3, and of seven stable molecules, HMDSO, CH4, C2H2, C2H4, C2H6, CO and CO2, was monitored in the plasma processes by in situ IRLAS using tunable lead salt diode lasers (TDL) and external-cavity quantum cascade lasers (EC-QCL) as radiation sources. To achieve reliable values for the gas temperature inside and outside the plasma bulk as well as for the temperature in the plasma hot and colder zones, which are of great importance for calculation of species concentrations, three different methods based on emission and absorption spectroscopy data of N2, CH3 and CO have been used. In this approach line profile analysis has been combined with spectral simulation methods. The concentrations of the various species, which were found to be in the range between 1011 to 1015 cm-3, are in the focus of interest. The influence of the discharge parameters power, pressure and gas mixture on the molecular concentrations has been studied. To achieve further insight into general plasma chemical aspects the dissociation of the HMDSO precursor gas including its fragmentation and conversion to the reaction products was analyzed in detail.

  14. Microwave plasma burner and temperature measurements in its flames

    SciTech Connect

    Hong, Yong Cheol; Cho, Soon Cheon; Bang, Chan Uk; Shin, Dong Hun; Kim, Jong Hun; Uhm, Han Sup; Yi, Won Ju

    2006-05-15

    An apparatus for generating flames and more particularly the microwave plasma burner for generating high-temperature large-volume plasma flame was presented. The plasma burner is operated by injecting liquid hydrocarbon fuels into a microwave plasma torch in air discharge and by mixing the resultant gaseous hydrogen and carbon compounds with air or oxygen gas. The microwave plasma torch can instantaneously vaporize and decompose the hydrogen and carbon containing fuels. It was observed that the flame volume of the burner was more than 50 times that of the torch plasma. While the temperature of the torch plasma flame was only 550 K at a measurement point, that of the plasma-burner flame with the addition of 0.025 lpm (liters per minute) kerosene and 20 lpm oxygen drastically increased to about 1850 K. A preliminary experiment was carried out, measuring the temperature profiles of flames along the radial and axial directions.

  15. Microwaves and nanoparticles: from synthesis to imaging

    NASA Astrophysics Data System (ADS)

    Meissner, Kenith E.; Majithiaa, Ravish; Brown, R. A.; Wang, Lihong V.; Maffeis, T. G. G.

    2011-03-01

    We investigate the use of energy delivery using microwave radiation for both synthesis of nanoparticles as well as a hybrid imaging technique known as thermoacoustic tomography (TAT). In each instance, the absorption of microwave radiation is converted into heat. In the case of nanoparticle synthesis, water is used as the solvent and heated to induce synthesis of the nanostructures. For this aqueous synthesis technique, we demonstrate the use of both pulsed and continuous wave (CW) microwave systems operating at 2.45 GHz. In this report, we concentrate on ZnO nanostructures including nanorods, nanowire arrays and nanobelts. These are compared with nanowire arrays and nanobelts grown by vapor transport through both electron microscopy and photo-excited luminescence. We also review the use of iron oxide (Fe3O4) nanoparticles as contrast agents in TAT as previously reported. Here, we measured the properties of the colloidal nanoparticles in the microwave regime and compared the absorption with the TAT signal produced by our thermoacoustic imaging system at 3 GHz. The nanoparticles directly absorb the microwave radiation and produce a thermo-acoustic signal. The results from nanoparticles are compared to the signal produced by deionized water. The results demonstrate that microwaves represent an efficient method for the delivery of energy for both synthesis and biomedical imaging.

  16. Coupled microwave ECR and radio-frequency plasma source for plasma processing

    DOEpatents

    Tsai, C.C.; Haselton, H.H.

    1994-03-08

    In a dual plasma device, the first plasma is a microwave discharge having its own means of plasma initiation and control. The microwave discharge operates at electron cyclotron resonance (ECR), and generates a uniform plasma over a large area of about 1000 cm[sup 2] at low pressures below 0.1 mtorr. The ECR microwave plasma initiates the second plasma, a radio frequency (RF) plasma maintained between parallel plates. The ECR microwave plasma acts as a source of charged particles, supplying copious amounts of a desired charged excited species in uniform manner to the RF plasma. The parallel plate portion of the apparatus includes a magnetic filter with static magnetic field structure that aids the formation of ECR zones in the two plasma regions, and also assists in the RF plasma also operating at electron cyclotron resonance. 4 figures.

  17. Coupled microwave ECR and radio-frequency plasma source for plasma processing

    DOEpatents

    Tsai, Chin-Chi; Haselton, Halsey H.

    1994-01-01

    In a dual plasma device, the first plasma is a microwave discharge having its own means of plasma initiation and control. The microwave discharge operates at electron cyclotron resonance (ECR), and generates a uniform plasma over a large area of about 1000 cm.sup.2 at low pressures below 0.1 mtorr. The ECR microwave plasma initiates the second plasma, a radio frequency (RF) plasma maintained between parallel plates. The ECR microwave plasma acts as a source of charged particles, supplying copious amounts of a desired charged excited species in uniform manner to the RF plasma. The parallel plate portion of the apparatus includes a magnetic filter with static magnetic field structure that aids the formation of ECR zones in the two plasma regions, and also assists in the RF plasma also operating at electron cyclotron resonance.

  18. Interaction of microwave radiation with an erosion plasma jet

    NASA Astrophysics Data System (ADS)

    Brovkin, V. G.; Pashchina, A. S.; Ryazanskiy, N. M.

    2016-09-01

    The interaction of high-power pulsed microwave radiation with a plasma jet formed by a discharge in an ablative capillary is studied. A significant influence of microwave radiation on the plasma jet flow is found. Depending on the intensity of the initial perturbation of the jet, different scenarios of its evolution downstream are possible: attenuation or amplification accompanied with the development of turbulence up to the disruption of the flow if a certain threshold of the energy action is exceeded. A significant influence of the plasma jet and its state on the spatial position of the microwave energy release zone is found.

  19. Reflectometric measurement of plasma imaging and applications

    NASA Astrophysics Data System (ADS)

    Mase, A.; Ito, N.; Oda, M.; Komada, Y.; Nagae, D.; Zhang, D.; Kogi, Y.; Tobimatsu, S.; Maruyama, T.; Shimazu, H.; Sakata, E.; Sakai, F.; Kuwahara, D.; Yoshinaga, T.; Tokuzawa, T.; Nagayama, Y.; Kawahata, K.; Yamaguchi, S.; Tsuji-Iio, S.; Domier, C. W.; Luhmann, N. C., Jr.; Park, H. K.; Yun, G.; Lee, W.; Padhi, S.; Kim, K. W.

    2012-01-01

    Progress in microwave and millimeter-wave technologies has made possible advanced diagnostics for application to various fields, such as, plasma diagnostics, radio astronomy, alien substance detection, airborne and spaceborne imaging radars called as synthetic aperture radars, living body measurements. Transmission, reflection, scattering, and radiation processes of electromagnetic waves are utilized as diagnostic tools. In this report we focus on the reflectometric measurements and applications to biological signals (vital signal detection and breast cancer detection) as well as plasma diagnostics, specifically by use of imaging technique and ultra-wideband radar technique.

  20. Geostationary microwave imagers detection criteria

    NASA Technical Reports Server (NTRS)

    Stacey, J. M.

    1986-01-01

    Geostationary orbit is investigated as a vantage point from which to sense remotely the surface features of the planet and its atmosphere, with microwave sensors. The geometrical relationships associated with geostationary altitude are developed to produce an efficient search pattern for the detection of emitting media and metal objects. Power transfer equations are derived from the roots of first principles and explain the expected values of the signal-to-clutter ratios for the detection of aircraft, ships, and buoys and for the detection of natural features where they are manifested as cold and warm eddies. The transport of microwave power is described for modeled detection where the direction of power flow is explained by the Zeroth and Second Laws of Thermodynamics. Mathematical expressions are derived that elucidate the detectability of natural emitting media and metal objects. Signal-to-clutter ratio comparisons are drawn among detectable objects that show relative detectability with a thermodynamic sensor and with a short-pulse radar.

  1. Development of a long-slot microwave plasma source

    NASA Astrophysics Data System (ADS)

    Kuwata, Y.; Kasuya, T.; Miyamoto, N.; Wada, M.

    2016-02-01

    A 20 cm long 10 cm wide microwave plasma source was realized by inserting two 20 cm long 1.5 mm diameter rod antennas into the plasma. Plasma luminous distributions around the antennas were changed by magnetic field arrangement created by permanent magnets attached to the source. The distributions appeared homogeneous in one direction along the antenna when the spacing between the antenna and the source wall was 7.5 mm for the input microwave frequency of 2.45 GHz. Plasma density and temperature at a plane 20 cm downstream from the microwave shield were measured by a Langmuir probe array at 150 W microwave power input. The measured electron density and temperature varied over space from 3.0 × 109 cm-3 to 5.8 × 109 cm-3, and from 1.1 eV to 2.1 eV, respectively.

  2. Development of a long-slot microwave plasma source.

    PubMed

    Kuwata, Y; Kasuya, T; Miyamoto, N; Wada, M

    2016-02-01

    A 20 cm long 10 cm wide microwave plasma source was realized by inserting two 20 cm long 1.5 mm diameter rod antennas into the plasma. Plasma luminous distributions around the antennas were changed by magnetic field arrangement created by permanent magnets attached to the source. The distributions appeared homogeneous in one direction along the antenna when the spacing between the antenna and the source wall was 7.5 mm for the input microwave frequency of 2.45 GHz. Plasma density and temperature at a plane 20 cm downstream from the microwave shield were measured by a Langmuir probe array at 150 W microwave power input. The measured electron density and temperature varied over space from 3.0 × 10(9) cm(-3) to 5.8 × 10(9) cm(-3), and from 1.1 eV to 2.1 eV, respectively. PMID:26932114

  3. Development and research of a coaxial microwave plasma thruster

    NASA Astrophysics Data System (ADS)

    Yang, Juan; Xu, Yingqiao; Tang, Jinlan; Mao, Genwang; Yang, Tielian; Tan, Xiaoquen

    2008-08-01

    An overview of the research on a coaxial microwave plasma thruster at Northwestern Polytechnic University is presented. Emphasis is put on the development and research on key components of the thruster system, a microthrust balance, plasma plume diagnostics, and a numerical simulation of the plasma flow field inside the thruster cavity. The developed thruster cavity is chosen from a coaxial resonant cavity with concentrated capacitance, which can operate well in atmosphere and vacuum conditions. The development of a microwave source shows that a magnetron powered by a switch power supply has advantages in the power level and efficiency, but a solid state microwave source synthesized from the arsenide field effect transistor is superior in weight and volume. Through elimination of the effect of large gravity and resistance force induced by a gas pipe line and a microwave transmitting line on the microthrust, 15mN and 340s in the performance of the microwave plasma thruster at 70W and with helium gas are measured. Diagnosing experiment shows that the plasma plume density is in the range of (1-7.2)×1016/m3. Numerical simulation of the plasma flow field inside the coaxial thruster cavity shows that there is a good match between the microwave power and gas flow rate.

  4. Development and research of a coaxial microwave plasma thruster

    SciTech Connect

    Yang Juan; Xu Yingqiao; Tang Jinlan; Mao Genwang; Yang Tielian; Tan Xiaoquen

    2008-08-15

    An overview of the research on a coaxial microwave plasma thruster at Northwestern Polytechnic University is presented. Emphasis is put on the development and research on key components of the thruster system, a microthrust balance, plasma plume diagnostics, and a numerical simulation of the plasma flow field inside the thruster cavity. The developed thruster cavity is chosen from a coaxial resonant cavity with concentrated capacitance, which can operate well in atmosphere and vacuum conditions. The development of a microwave source shows that a magnetron powered by a switch power supply has advantages in the power level and efficiency, but a solid state microwave source synthesized from the arsenide field effect transistor is superior in weight and volume. Through elimination of the effect of large gravity and resistance force induced by a gas pipe line and a microwave transmitting line on the microthrust, 15 mN and 340 s in the performance of the microwave plasma thruster at 70 W and with helium gas are measured. Diagnosing experiment shows that the plasma plume density is in the range of (1-7.2)x10{sup 16}/m{sup 3}. Numerical simulation of the plasma flow field inside the coaxial thruster cavity shows that there is a good match between the microwave power and gas flow rate.

  5. Microwave Imaging of Human Forearms: Pilot Study and Image Enhancement

    PubMed Central

    Gilmore, Colin; Zakaria, Amer; Pistorius, Stephen; LoVetri, Joe

    2013-01-01

    We present a pilot study using a microwave tomography system in which we image the forearms of 5 adult male and female volunteers between the ages of 30 and 48. Microwave scattering data were collected at 0.8 to 1.2 GHz with 24 transmitting and receiving antennas located in a matching fluid of deionized water and table salt. Inversion of the microwave data was performed with a balanced version of the multiplicative-regularized contrast source inversion algorithm formulated using the finite-element method (FEM-CSI). T1-weighted MRI images of each volunteer's forearm were also collected in the same plane as the microwave scattering experiment. Initial “blind” imaging results from the utilized inversion algorithm show that the image quality is dependent on the thickness of the arm's peripheral adipose tissue layer; thicker layers of adipose tissue lead to poorer overall image quality. Due to the exible nature of the FEM-CSI algorithm used, prior information can be readily incorporated into the microwave imaging inversion process. We show that by introducing prior information into the FEM-CSI algorithm the internal anatomical features of all the arms are resolved, significantly improving the images. The prior information was estimated manually from the blind inversions using an ad hoc procedure. PMID:24023539

  6. Development of 3D microwave imaging reflectometry in LHD (invited).

    PubMed

    Nagayama, Y; Kuwahara, D; Yoshinaga, T; Hamada, Y; Kogi, Y; Mase, A; Tsuchiya, H; Tsuji-Iio, S; Yamaguchi, S

    2012-10-01

    Three-dimensional (3D) microwave imaging reflectometry has been developed in the large helical device to visualize fluctuating reflection surface which is caused by the density fluctuations. The plasma is illuminated by the probe wave with four frequencies, which correspond to four radial positions. The imaging optics makes the image of cut-off surface onto the 2D (7 × 7 channels) horn antenna mixer arrays. Multi-channel receivers have been also developed using micro-strip-line technology to handle many channels at reasonable cost. This system is first applied to observe the edge harmonic oscillation (EHO), which is an MHD mode with many harmonics that appears in the edge plasma. A narrow structure along field lines is observed during EHO.

  7. Simple microwave preionization source for ohmic plasmas

    NASA Astrophysics Data System (ADS)

    Choe, W.; Kwon, Gi-Chung; Kim, Junghee; Kim, Jayhyun; Jeon, Sang-Jean; Huh, Songwhe

    2000-07-01

    A simple economical 2.45 GHz microwave system has been developed and utilized for preionization on the Korea Advanced Institute of Science and Technology (KAIST)-TOKAMAK. The magnetron microwave source was obtained from a widely used, household microwave oven. Since ac operation of the magnetron is not suitable for tokamak application, the magnetron cathode bias circuit was modified to obtain continuous and stable operation of the magnetron for several hundred milliseconds. Application of the developed microwave system to KAIST-TOKAMAK resulted in a reduction of ohmic flux consumption.

  8. Ultra-fast pulsed microwave plasma breakdown: evidence of various ignition modes

    NASA Astrophysics Data System (ADS)

    Carbone, Emile; Nijdam, Sander

    2014-02-01

    In this communication, we investigate the ignition of pulsed microwave plasmas in a narrow dielectric tube with an electrodeless configuration. The plasma is generated using a surfatron cavity. The power is modulated as a square wave with a rise-time of 30 ns at variable frequencies from 100 Hz up to 5 MHz. The ignition and plasma propagation inside the 3 mm radius quartz tube are imaged spatially and resolved with nanosecond time resolution using an iCCD camera. The plasma is found to propagate in the form of a front moving from the launcher to the end of the plasma column with the microwave power being gradually absorbed behind it. The velocity of the plasma front decreases while the plasma goes towards a steady state. The ionization front is found to be strongly non-uniform and various structures as a function of the pulse repetition frequency (i.e. power-off time) are shown in the axial and radial directions. At low frequencies, finger-like structures are found. The plasma becomes more hollow at smaller power-off times. At higher repetition frequencies (kHz regime), a critical repetition frequency is found for which the plasma light intensity sharply increases at the head of the propagation front, taking a shape resembling a plasma bullet. This critical frequency depends on the pressure and power. For even higher frequencies, the bullet shape disappears and plasma volume ignition from the launcher to the end of the plasma column is observed. These results bring a new insight into the ignition mechanisms of pulsed microwave plasmas inside dielectric tubes. A wide variety of effects are found which seem to mostly depend on the background ionization degree. Moreover, the results show that only a 3D time-dependent model can, in general, correctly describe the ignition of a pulsed microwave discharge.

  9. Measurement of energy distribution in flowing hydrogen microwave plasmas

    NASA Technical Reports Server (NTRS)

    Chapman, R.; Morin, T.; Finzel, M.; Hawley, M. C.

    1985-01-01

    An electrothermal propulsion concept utilizing a microwave plasma system as the mechanism to convert electromagnetic energy into kinetic energy of a flowing gas is investigated. A calorimetry system enclosing a microwave plasma system has been developed to accurately measure the energy inputs and outputs of the microwave plasma system. The rate of energy transferred to the gas can be determined to within + or - 1.8 W from an energy balance around the microwave plasma system. The percentage of the power absorbed by the microwave plasma system transferred to the hydrogen gas as it flows through the system is found to increase with the increasing flow rate, to decrease with the increasing pressure, and to be independent of the absorbed power. An upper bound for the hydrogen gas temperature is estimated from the energy content, heat capacity, and flow rate of the gas stream. A lower bound for an overall heat-transfer coefficient is then calculated, characterizing the energy loss from the hydrogen gas stream to the air cooling of the plasma discharge tube wall. The heat-transfer coefficient is found to increase with the increasing flow rate and pressure and to be independent of the absorbed power. This result indicates that a convective-type mechanism is responsible for the energy transfer.

  10. Microwave-assisted atmospheric pressure plasma polymerization of hexamethyldisiloxane

    NASA Astrophysics Data System (ADS)

    Matsubayashi, Toshiki; Hidaka, Hiroki; Muguruma, Hitoshi

    2016-07-01

    Microwave-assisted atmospheric pressure plasma polymerization is presented. A system with a re-entrant microwave cavity realizes simple matching, stable plasma, and free space under the orifice of plasma steam. Hexamethyldisiloxane is employed as a monomer, while argon is used as a carrier gas. The effective area of the hydrophobic coating film used corresponds to a circle of 20 mm diameter and the deposition rate considered is 5 nm/min. Matrix-assisted laser desorption/ionization time-of-flight mass spectroscopy shows that the coating film has a large molecular weight (>200 kDa), suggesting that a high-crosslinking and three-dimensional polymer matrix is formed and microwave-assisted atmospheric pressure plasma polymerization is fulfilled.

  11. Restoration of multichannel microwave radiometric images

    NASA Technical Reports Server (NTRS)

    Chin, R. T.; Yeh, C. L.; Olson, W. S.

    1983-01-01

    A constrained iterative image restoration method is applied to multichannel diffraction-limited imagery. This method is based on the Gerchberg-Papoulis algorithm utilizing incomplete information and partial constraints. The procedure is described using the orthogonal projection operators which project onto two prescribed subspaces iteratively. Some of its properties and limitations are also presented. The selection of appropriate constraints was emphasized in a practical application. Multichannel microwave images, each having different spatial resolution, were restored to a common highest resolution to demonstrate the effectiveness of the method. Both noise-free and noisy images were used in this investigation.

  12. Medical imaging with a microwave tomographic scanner.

    PubMed

    Jofre, L; Hawley, M S; Broquetas, A; de los Reyes, E; Ferrando, M; Elias-Fusté, A R

    1990-03-01

    A microwave tomographic scanner for biomedical applications is presented. The scanner consists of a 64 element circular array with a useful diameter of 20 cm. Electronically scanning the transmitting and receiving antennas allows multiview measurements with no mechanical movement. Imaging parameters are appropriate for medical use: a spatial resolution of 7 mm and a contrast resolution of 1% for a measurement time of 3 s. Measurements on tissue-simulating phantoms and volunteers, together with numerical simulations, are presented to assess the system for absolute imaging of tissue distribution and for differential imaging of physiological, pathological, and induced changes in tissues. PMID:2329003

  13. Microwave imaging of tissue blood content changes.

    PubMed

    Hawley, M S; Broquetas, A; Jofre, L; Bolomey, J C; Gaboriaud, G

    1991-05-01

    Active microwave imaging gives information on the dielectric properties of of the body, allowing the collection of data that are distinct from, but complementary to, those available from other imaging methods based on different radiations. Two types of microwave imaging systems have been developed. The first is a planar system that irradiates the object with a plane wave and collects scattered phase and amplitude data at 1024 points on a parallel plane. The data can be reconstructed using a back propagation technique to give an image of the object. The second type of system is a tomographic scanner, consisting of a multiplexed 64-element circular array of waveguides. The waveguides are electronically scanned, alternately as sources and receivers, to give a complete scan of the object with no mechanical movement. A tomographic 'slice' of the object is reconstructed using spectral domain interpolation. Both systems work at 2.45 GHz with an incident power less than 1 mW cm-2 at the object and require a coupling medium (usually water) between the object and the source/receiver. Imaging parameters are appropriate for clinical use: a spatial resolution of 1 cm, measurement time of a few seconds and contrast resolution of around 1%. The effects of changes in perfusion on images of isolated animal organs are presented. Images have also been obtained, with both systems, of the internal dielectric structure of the forearm and of variations in dielectric properties due to changes of tissue blood content effected by application and release of tourniquets to the upper arm. Results show that these changes are well demonstrated by microwave imaging, and possible clinical applications are discussed. PMID:1870328

  14. Numerical Study on Microwave Scattering by Various Plasma Objects

    NASA Astrophysics Data System (ADS)

    Wang, Guibin; Zhang, Lin; He, Feng; Ouyang, Jiting

    2016-08-01

    The scattering features of microwave (MW) by planar plasma layer, plasma column and plasma-column array under different parameters have been numerically studied by the finite-difference time-domain (FDTD) method. The effects of the plasma frequency and electron collision rate on MW's reflectance, transmittance and absorptance are examined. The results show that for the planar plasma layer, the electron collision plays an important role in MW absorption and the reduction of wave reflection. In the plasma column condition, strong scattering occurs in certain directions. The scattering pattern depends on the plasma frequency, electron collision rate and column radius. A collisional, non-planar shaped plasma object like the plasma-column array can reduce significantly the wave reflection comparing with the planar plasma layer.

  15. Effects of asymmetry and target location on microwave imaging reflectometry

    SciTech Connect

    Ignatenko, M.; Mase, A.; Bruskin, L.G.; Kogi, Y.; Hojo, H.

    2004-10-01

    In this article we perform a numerical study of microwave imaging reflectometry (MIR) and compare it with conventional reflectometry system. As an approximation to the reflections by real plasma fluctuations, a corrugated wheel is used. As far as general performance is concerned, our simulations confirm the results by Munsat et al. [Plasma Phys. Controlled Fusion 45, 469 (2003)] that the MIR system reproduces shape of corrugation far from the wheel while conventional systems fail to do so. We addressed the effects of asymmetry and defocusing of the wheel-reflectometer system as well as spectral sensitivity of the imaging reflectometer. For a particular geometry we estimated the deterioration of the MIR performance due to misalignments and existence of broadband fluctuation000.

  16. Microwave Cooling of Josephson Plasma Oscillations

    NASA Astrophysics Data System (ADS)

    Hammer, J.; Aprili, M.; Petković, I.

    2011-07-01

    An extended Josephson junction can be described as a microwave cavity coupled to a Josephson oscillator. This is formally equivalent to a Fabry-Perot cavity with a freely vibrating mirror, where it has been shown that radiation pressure from photons in the cavity can reduce (increase) the vibrations of the mirror, effectively cooling (heating) it. We demonstrate that, similarly, the superconducting phase difference across a Josephson junction—the Josephson phase—can be “cooled” or “heated” by microwave excitation of the junction and that both these effects increase with microwave power.

  17. Super-resolution analysis of microwave image using WFIPOCS

    NASA Astrophysics Data System (ADS)

    Wang, Xue; Wu, Jin

    2013-03-01

    Microwave images are always blurred and distorted. Super-resolution analysis is crucial in microwave image processing. In this paper, we propose the WFIPOCS algorithm, which represents the wavelet-based fractal interpolation incorporates the improved projection onto convex sets (IPOCS) technique. Firstly, we apply down sampling and wiener filtering to a low resolution (LR) microwave image. Then, the wavelet-based fractal interpolation is applied to preprocess the LR image. Finally, the IPOCS technique is applied to solve the problems arisen by interpolation and to approach a high resolution (HR) image. The experimental results indicate that the WFIPOCS algorithm improves spatial resolution of microwave images.

  18. Coherent microwave radiation from a laser induced plasma

    SciTech Connect

    Shneider, M. N.; Miles, R. B.

    2012-12-24

    We propose a method for generation of coherent monochromatic microwave/terahertz radiation from a laser-induced plasma. It is shown that small-scale plasma, located in the interaction region of two co-propagating plane-polarized laser beams, can be a source of the dipole radiation at a frequency equal to the difference between the frequencies of the lasers. This radiation is coherent and appears as a result of the so-called optical mixing in plasma.

  19. Dynamic metamaterial aperture for microwave imaging

    SciTech Connect

    Sleasman, Timothy; Imani, Mohammadreza F.; Gollub, Jonah N.; Smith, David R.

    2015-11-16

    We present a dynamic metamaterial aperture for use in computational imaging schemes at microwave frequencies. The aperture consists of an array of complementary, resonant metamaterial elements patterned into the upper conductor of a microstrip line. Each metamaterial element contains two diodes connected to an external control circuit such that the resonance of the metamaterial element can be damped by application of a bias voltage. Through applying different voltages to the control circuit, select subsets of the elements can be switched on to create unique radiation patterns that illuminate the scene. Spatial information of an imaging domain can thus be encoded onto this set of radiation patterns, or measurements, which can be processed to reconstruct the targets in the scene using compressive sensing algorithms. We discuss the design and operation of a metamaterial imaging system and demonstrate reconstructed images with a 10:1 compression ratio. Dynamic metamaterial apertures can potentially be of benefit in microwave or millimeter wave systems such as those used in security screening and through-wall imaging. In addition, feature-specific or adaptive imaging can be facilitated through the use of the dynamic aperture.

  20. Analysis of the tuning characteristics of microwave plasma source

    NASA Astrophysics Data System (ADS)

    Miotk, Robert; Jasiński, Mariusz; Mizeraczyk, Jerzy

    2016-04-01

    In this paper, we present an analysis of the tuning characteristics of waveguide-supplied metal-cylinder-based nozzleless microwave plasma source. This analysis has enabled to estimate the electron concentration ne and electron frequency collisions ν in the plasma generated in nitrogen and in a mixture of nitrogen and ethanol vapour. The parameters ne and ν are the basic quantities that characterize the plasma. The presented new plasma diagnostic method is particularly useful, when spectroscopic methods are useless. The presented plasma source is currently used in research of a hydrogen production from liquids.

  1. Microwave photonic bandgap devices with active plasma elements

    NASA Astrophysics Data System (ADS)

    Wang, Benjamin; Colon Quinones, Roberto; Biggs, David; Underwood, Thomas; Lucca Fabris, Andrea; Cappelli, Mark; Stanford Plasma Physics Laboratory Team

    2015-09-01

    A 3-D alumina rod based microwave photonic crystal device with integrated gaseous plasma elements is designed and characterized. Modulation of the plasma density of the active plasma elements is shown to allow for high fidelity modulation of the output signal of the photonic crystal device. Finite difference time domain (FDTD) simulations of the device are presented, and the functional effects of the plasma electron density, plasma collision frequency, and plasma dimensions are studied. Experimental characterization of the transmission of the device shows active tunability through adjustments of plasma parameters, including discharge current and plasma size. Additional photonic crystal structures with integrated plasma elements are explored. Sponsored by the AFSOR MURI and DOD NDSEG.

  2. Electric probe investigations of microwave generated, atmospheric pressure, plasma jets

    SciTech Connect

    Porteanu, H. E.; Kuehn, S.; Gesche, R.

    2010-07-15

    We examine the applicability of the Langmuir-type of characterization for atmospheric pressure plasma jets generated in a millimeter-size cavity microwave resonator at 2.45 GHz. Wide range I-V characteristics of helium, argon, nitrogen, air and oxygen are presented for different gas fluxes, distances probe-resonator, and microwave powers. A detailed analysis is performed for the fine variation in the current around the floating potential. A simplified theory specially developed for this case is presented, considering the ionic and electronic saturation currents and the floating potential. Based on this theory, we conclude that, while the charge carrier density depends on gas flow, distance to plasma source, and microwave absorbed power, the electron temperature is quite independent of these parameters. The resulting plasma parameters for helium, argon, and nitrogen are presented.

  3. Microwave plasma torch abatement of NF3 and SF6

    NASA Astrophysics Data System (ADS)

    Hong, Yong Cheol; Uhm, Han Sup; Chun, Byung Jun; Lee, Sun Ku; Hwang, Sang Kyu; Kim, Dong Su

    2006-03-01

    An atmospheric pressure microwave plasma torch as a tool for fluorinated compounds (FCs) abatement was presented. Detailed experiments were conducted on the abatement of NF3 and SF6 in terms of destruction and removal efficiency (DRE) using Fourier transform infrared (FTIR). Swirl gas, compressed air for stable plasma, was tangentially injected into the microwave plasma torch and a mixture of N2, NF3, or SF6, and C2H4 was axially injected. The DRE of 99.1% for NF3 was achieved without an additive gas at the total flow rate of 50.1 liters per minute (lpm) by applying a microwave power of 1.4kW. Also, a DRE of SF6 up to 90.1% was obtained at the total flow rate of 40.6lpm using an applied microwave power of 1.4kW. Experimental results indicate that the microwave plasma abatement device can successfully eliminate FCs in the semiconductor industry.

  4. Shallow depth subsurface imaging with microwave holography

    NASA Astrophysics Data System (ADS)

    Zhuravlev, Andrei; Ivashov, Sergey; Razevig, Vladimir; Vasiliev, Igor; Bechtel, Timothy

    2014-05-01

    In this paper, microwave holography is considered as a tool to obtain high resolution images of shallowly buried objects. Signal acquisition is performed at multiple frequencies on a grid using a two-dimensional mechanical scanner moving a single transceiver over an area of interest in close proximity to the surface. The described FFT-based reconstruction technique is used to obtain a stack of plan view images each using only one selected frequency from the operating waveband of the radar. The extent of a synthetically-formed aperture and the signal wavelength define the plan view resolution, which at sounding frequencies near 7 GHz amounts to 2 cm. The system has a short depth of focus which allows easy selection of proper focusing plane. The small distance from the buried objects to the antenna does not prevent recording of clean images due to multiple reflections (as happens with impulse radars). The description of the system hardware and signal processing technique is illustrated using experiments conducted in dry sand. The microwave images of inert anti-personnel mines are demonstrated as examples. The images allow target discrimination based on the same visually-discernible small features that a human observer would employ. The demonstrated technology shows promise for modification to meet the specific practical needs required for humanitarian demining or in multi-sensor survey systems.

  5. Plasmas generated in bubbles immersed in liquids: direct current streamers versus microwave plasma

    NASA Astrophysics Data System (ADS)

    Levko, Dmitry; Sharma, Ashish; Raja, Laxminarayan L.

    2016-07-01

    Two approaches to generate non-equilibrium atmospheric-pressure plasma in bubbles immersed in liquids are compared using high-fidelity 2D fluid simulations. In the first approach, corona/streamer like plasma is generated using high-voltage negative and positive pulses applied between two electrodes (pin-to-plane geometry) immersed in liquid. In the second, the plasma is generated using a remote microwave source (frequency 2.45 GHz). We find that the microwave approach requires less energy, while generating a denser, more chemically reactive and more uniform plasma within the bubble volume, as compared to the plasma generated using high-voltage pulsing.

  6. New method of microwave plasma treatment of HDPE powders

    NASA Astrophysics Data System (ADS)

    Hladik, J.; Spatenka, P.; Aubrecht, L.; Pichal, J.

    2006-10-01

    Plasma modification of powder has recently attracted much interest because of new prospects of the interfacial properties supervision. There was mostly used the low-pressure plasma modification in fluidized bed, but for industrial-scale application the employment of mechanical stirring also appears to be very promising at the moment. It was shown that application of plasma modification methods led to substantial process time reduction. In case of the polyethylene, parts sintered from the plasma-modified polyethylene powder were characterized with high surface tension, which allowed e.g. direct painting or adhesive bonding without any additional pre-treatment. Plasma modification also significantly enhanced the adhesion of the polymer to the substrate. Adhesion and wettability measurements were carried out to reveal surface modification of plasma treatment of HDPE powders. This paper describes results of the polyethylene powder plasma treatment in microwave low-pressure plasma and discusses possibilities of its application.

  7. Rapid Formation of Distributed Plasma Discharges using X-Band Microwaves

    NASA Astrophysics Data System (ADS)

    Xiang, Xun

    Observations of rapidly formed (<300 ns) distributed plasma discharges using high power X-band microwaves are presented. A cylindrical stainless steel chamber (15.2 cm long, 14.6 cm diameter) enclosed with polycarbonate windows (0.953 cm) was used to observe microwave breakdown in argon and neon gas mixtures from 50 to 250 torr. The chamber was illuminated by the output of a 16.2 kW, 800 ns pulse-width, 9.382 GHz magnetron with a 43 repetitive rate through an X-band waveguide pressed against the first polycarbonate window. Fast (50 ns) time-scale optical images of the plasma revealed the plasma formation and decay processes, as well as the plasma patterns for different plasma formation conditions. CST simulations were conducted to compare the electric field distribution inside the discharge chamber with the plasma patterns in the images. VUV (Vacuum Ultra-Violet) radiation was supported as the mechanism to enhance the plasma expansion and assist the formation of the plasma side lobes. Reflection Measurements showed 63% reflected power once plasma was formed, and a small amount of argon in neon shortened the breakdown time, verifying that the Penning effect lowers the breakdown threshold. Mixer measurements were taken, combined with a 1-D 6-region microwave plasma model to estimate the maximum effective plasma density as 2.2x1012 cm-3 with a corresponding maximum effective electron temperature of 2.5 eV in pure neon plasma at 100 torr under a Maxwellian distribution assumption. Optical emission spectroscopy (OES) assisted by the SPECAIR model determined the gas temperature in the microwave plasma as 350 +/- 50 K. OES line ratio measurements provided plasma parameters including time-evolved metastable and resonance densities, effective electron temperatures, electron densities for plasmas formed at 100 torr in pure neon and Ne/Ar (99:1) mixture gases. The comparison of time-evolved neon metastable and resonance densities in pure neon and Ne/Ar (99:1) mixture plasmas

  8. Atmospheric Electrodeless Microwave Plasma-torch for Gas Decomposition

    NASA Astrophysics Data System (ADS)

    Kim, J. H.; Hong, Y. C.; Uhm, H. S.

    2001-10-01

    Increasing environmental awareness and regulation have motivated research into new method to remediate toxins from atmospheric pressure gas streams. Plasma remediation was identified as a promising technology treating contaminated gas streams and air. Plasma remediation of toxic gas streams from mobile emitting sources (i. e., Nox, Sox, soot emission from diesel truck engines) and cleaning processes (i.e., global warming gases) require inexpensive, compact, and reliable systems which efficiently and selectively convert the toxic gas to benign or more treatable products. Environmental clean-up and energy efficiency enhancement utilize plasma generated from air at the atmospheric pressure. Electrodes of the arc plasma torches oxidize very quickly due to the oxygen molecules in air. That is why the conventional thermal plasma torch can not be used in environmental applications. In order to solve this difficult problem, we developed a thermal plasma source operating without electrodes. One of electrodeless torches is the microwave plasma which can produce plasmas in large quantities. We can generate plasma at the atmospheric pressure by making use of magnetrons in microwave-ovens. Most of the magnetrons are operated at the frequency of 2.45GHz. Typical magnetron power of home-microwave oven is about 1kW. Electromagnetic waves from magnetron propagate through a waveguide. Plasma is generated under resonant condition, by initiation of an auxiliary ignition system. The plasma is stabilized by vortex stabilization. The eventual application of this research is in air pollution control. Perfluorocarbon Compounds(PFCs), , , and any other global warming gases from etching and cleaning processes have very long lifetime and high global warming potential. We will conduct an experiment to eliminate global warming gases. FT-IR and QMS will be used to analyze and identify by-products after plasma treatment.

  9. Super-resolution analysis for passive microwave images using FIPOCS

    NASA Astrophysics Data System (ADS)

    Wang, Xue; Wu, Jin; Wang, Jin; Adjouadi, Malek

    2013-03-01

    improve application of passive microwave imaging for object detection. In this study, we propose the FIPOCS (Fractal interpolation with Improved Projection onto Convex Sets) technique to enhance resolution. The experimental result shows that the resolution of passive microwave image is improved when utilizing the fractal interpolation to the LR image before applying the IPOCS technique.

  10. Deposition of diamond-like films by ECR microwave plasma

    NASA Technical Reports Server (NTRS)

    Shing, Yuh-Han (Inventor); Pool, Frederick S. (Inventor)

    1995-01-01

    Hard amorphous hydrogenated carbon, diamond-like films are deposited using an electron cyclotron resonance microwave plasma with a separate radio frequency power bias applied to a substrate stage. The electron cyclotron resonance microwave plasma yields low deposition pressure and creates ion species otherwise unavailable. A magnetic mirror configuration extracts special ion species from a plasma chamber. Different levels of the radio frequency power bias accelerate the ion species of the ECR plasma impinging on a substrate to form different diamond-like films. During the deposition process, a sample stage is maintained at an ambient temperature of less than 100.degree. C. No external heating is applied to the sample stage. The deposition process enables diamond-like films to be deposited on heat-sensitive substrates.

  11. Ion gyroscale fluctuation measurement with microwave imaging reflectometer on KSTAR

    NASA Astrophysics Data System (ADS)

    Lee, W.; Leem, J.; Yun, G. S.; Park, H. K.; Ko, S. H.; Wang, W. X.; Budny, R. V.; Luhmann, N. C.; Kim, K. W.

    2016-11-01

    Ion gyroscale turbulent fluctuations with the poloidal wavenumber kθ ˜ 3 cm-1 have been measured in the core region of the neutral beam (NB) injected low confinement (L-mode) plasmas on Korea superconducting tokamak advanced research. The turbulence poloidal wavenumbers are deduced from the frequencies and poloidal rotation velocities in the laboratory frame, measured by the multichannel microwave imaging reflectometer. Linear and nonlinear gyrokinetic simulations also predict the unstable modes with the normalized wavenumber kθρs ˜ 0.4, consistent with the measurement. Comparison of the measured frequencies with the intrinsic mode frequencies from the linear simulations indicates that the measured ones are primarily due to the E × B flow velocity in the NB-injected fast rotating plasmas.

  12. Freon destruction in the decaying plasma of nanosecond microwave discharge

    SciTech Connect

    Vikharev, A.L.; Gorbachev, A.M.; Ivanov, O.A.

    1995-12-31

    The problem of freons acting destructively on the Earth ozone layer has been given much discussion recently, and various ways to purify the atmosphere have been suggested. One of such ways described is based on the use of a microwave discharge in the troposphere, which is produced with two short-pulse wave beams by ground-based antennas. Such a discharge produces in the atmosphere the plasma with electron density N{sub e} {approx} 10{sup 10} - 10{sup 12}cm{sup -3}. After the microwave pulse, at the stage of plasma decay, electrons destroy freon molecules selectively due to high rate (kd = 10{sup -7} - 10{sup -9} cm{sup 3}/s) of dissociate attachment. Efficiency of purification (the number of freon molecules destroyed) depends significantly on the velocity of decay of the discharge plasma. The processes of death of electrons, which are not associated with attachment to freons (electron-ion recombination and attachment of electrons to oxygen molecules) lead to lower efficiency of purification. It is very important to achieve slow plasma decay when freon composition is low and air pressure is high, since then the frequency of dissociate electron attachment to freon molecules, is much lower than the frequency of three-body attachment to oxygen. Earlier studies of the microsecond microwave discharge showed that slow recombination decay of plasma in air may be realized at the high level of specific energy contribution. Such decay is explained by the processes of electrons` detachment from the negative oxygen ions when they collide with active particles formed in the discharge. At the same time, in terms of energy saving, promising for the considered purification method is the nanosecond discharge with high values of the reduced electric field, E/N, when the main share of the microwave energy is spared on gas ionization. This presentation contains the results of studying decay of the nanosecond microwave discharge plasma.

  13. Noise characteristics of a plasma relativistic microwave amplifier

    NASA Astrophysics Data System (ADS)

    Strelkov, P. S.; Ivanov, I. E.; Shumeiko, D. V.

    2016-07-01

    Reasons for the occurrence of microwave noise at the output of a plasma relativistic amplifier have been analyzed. It is found that, in the absence of an input signal, the emission spectrum of the plasma relativistic microwave amplifier is similar to that of an electron beam in vacuum. It is concluded that microwave noise at the output of the amplifier appears as a result of amplification of the intrinsic noise of the electron beam. The emission characteristics of a relativistic electron beam formed in a magnetically insulated diode with an explosive emission cathode in vacuum have been studied experimentally for the first time. An important point is that, in this case, there is no virtual cathode in the drift space.

  14. Microwave plasma CVD of NANO structured tin/carbon composites

    DOEpatents

    Marcinek, Marek; Kostecki, Robert

    2012-07-17

    A method for forming a graphitic tin-carbon composite at low temperatures is described. The method involves using microwave radiation to produce a neutral gas plasma in a reactor cell. At least one organo tin precursor material in the reactor cell forms a tin-carbon film on a supporting substrate disposed in the cell under influence of the plasma. The three dimensional carbon matrix material with embedded tin nanoparticles can be used as an electrode in lithium-ion batteries.

  15. Restoration of multichannel microwave radiometric images

    NASA Technical Reports Server (NTRS)

    Chin, R. T.; Yeh, C.-L.; Olson, W. S.

    1985-01-01

    A constrained iterative image restoration method is applied to multichannel diffraction-limited imagery. This method is based on the Gerchberg-Papoulis algorithm utilizing incomplete information and partial constraints. The procedure is described using the orthogonal projection operators which project onto two prescribed subspaces iteratively. Its properties and limitations are presented. The effect of noise was investigated and a better understanding of the performance of the algorithm with noisy data has been achieved. The restoration scheme with the selection of appropriate constraints was applied to a practical problem. The 6.6, 10.7, 18, and 21 GHz satellite images obtained by the scanning multichannel microwave radiometer (SMMR), each having different spatial resolution, were restored to a common, high resolution (that of the 37 GHz channels) to demonstrate the effectiveness of the method. Both simulated data and real data were used in this study. The restored multichannel images may be utilized to retrieve rainfall distributions.

  16. Electrostatic instabilities in circularly polarized microwave produced magnetized plasmas

    SciTech Connect

    Ghorbanalilu, M.; Shokri, B.

    2009-12-15

    The growth rate of electrostatic instabilities of electron oscillation and low-frequency (LF) ion oscillation are investigated for a plasma produced by a circularly polarized microwave field during the breakdown process. The plasma is magnetized by an external homogenous static magnetic field on the direction of microwave field propagation. Numerical calculations show that the electron and ion perturbations are unstable in such an anisotropic plasma. Electron perturbations have the maximum growth rate across the magnetic field. In addition, ion perturbation growth rate is minimum on this direction. The LF ion oscillation is excited by Cherenkov emission mechanism due to the nonequilibrium form of the electron velocity distribution function. Electron oscillation growth rate decreases by increasing the external magnetic field, while the LF ion oscillation increases smoothly and reaches a maximum when the electron oscillation is stopped.

  17. Liquid fuel reforming using microwave plasma at atmospheric pressure

    NASA Astrophysics Data System (ADS)

    Miotk, Robert; Hrycak, Bartosz; Czylkowski, Dariusz; Dors, Miroslaw; Jasinski, Mariusz; Mizeraczyk, Jerzy

    2016-06-01

    Hydrogen is expected to be one of the most promising energy carriers. Due to the growing interest in hydrogen production technologies, in this paper we present the results of experimental investigations of thermal decomposition and dry reforming of two alcohols (ethanol and isopropanol) in the waveguide-supplied metal-cylinder-based nozzleless microwave (915 MHz) plasma source (MPS). The hydrogen production experiments were preceded by electrodynamics properties investigations of the used MPS and plasma spectroscopic diagnostics. All experimental tests were performed with the working gas (nitrogen or carbon dioxide) flow rate ranging from 1200 to 3900 normal litres per hour and an absorbed microwave power up to 5 kW. The alcohols were introduced into the plasma using an induction heating vaporizer. The ethanol thermal decomposition resulted in hydrogen selectivity up to 100%. The hydrogen production rate was up to 1150 NL(H2) h-1 and the energy yield was 267 NL(H2) kWh-1 of absorbed microwave energy. Due to intense soot production, the thermal decomposition process was not appropriate for isopropanol conversion. Considering the dry reforming process, using isopropanol was more efficient in hydrogen production than ethanol. The rate and energy yield of hydrogen production were up to 1116 NL(H2) h-1 and 223 NL(H2) kWh-1 of microwave energy used, respectively. However, the hydrogen selectivity was no greater than 37%. Selected results given by the experiment were compared with the results of numerical modeling.

  18. Liquid fuel reforming using microwave plasma at atmospheric pressure

    NASA Astrophysics Data System (ADS)

    Miotk, Robert; Hrycak, Bartosz; Czylkowski, Dariusz; Dors, Miroslaw; Jasinski, Mariusz; Mizeraczyk, Jerzy

    2016-06-01

    Hydrogen is expected to be one of the most promising energy carriers. Due to the growing interest in hydrogen production technologies, in this paper we present the results of experimental investigations of thermal decomposition and dry reforming of two alcohols (ethanol and isopropanol) in the waveguide-supplied metal-cylinder-based nozzleless microwave (915 MHz) plasma source (MPS). The hydrogen production experiments were preceded by electrodynamics properties investigations of the used MPS and plasma spectroscopic diagnostics. All experimental tests were performed with the working gas (nitrogen or carbon dioxide) flow rate ranging from 1200 to 3900 normal litres per hour and an absorbed microwave power up to 5 kW. The alcohols were introduced into the plasma using an induction heating vaporizer. The ethanol thermal decomposition resulted in hydrogen selectivity up to 100%. The hydrogen production rate was up to 1150 NL(H2) h‑1 and the energy yield was 267 NL(H2) kWh‑1 of absorbed microwave energy. Due to intense soot production, the thermal decomposition process was not appropriate for isopropanol conversion. Considering the dry reforming process, using isopropanol was more efficient in hydrogen production than ethanol. The rate and energy yield of hydrogen production were up to 1116 NL(H2) h‑1 and 223 NL(H2) kWh‑1 of microwave energy used, respectively. However, the hydrogen selectivity was no greater than 37%. Selected results given by the experiment were compared with the results of numerical modeling.

  19. Synthesis of ceramic oxide powders in a microwave plasma device

    SciTech Connect

    Vollath, D.; Sickafus, K.E.

    1993-05-01

    Synthesizing oxide ceramic powders by application of a microwave plasma is of great advantage. The microwave plasma can be used two ways: To act as a source of heat for the pyrolysis of solutions and to excite gas phase reactions to obtain nanosized powders. Both applications are superior to standard methods. A microwave cavity well suited for these experiments and its operating characteristics are described. Using a microwave plasma as a source of heat for pyrolytic decomposition of nitrates in aqueous solutions leads to a fine grained product with particle sizes from 100 to 1000 nm. Crystallite sizes in those particles are in most cases less than 10 nm. This is demonstrated with zirconia-based ceramics, such as ZrO{sub 2} -- 3m% Y{sub 2}O{sub 3} -- 20m% Al{sub 2}O{sub 3}, Depending on conditions during pyrolysis, it is possible to obtain a product in which alumina is either dissolved in zirconia or the onset of the phase separation is observed. Energy efficiency for this process is better than 80%. If the reactants are gaseous e.g., ZrCl{sub 4} it is possible to produce powders with mean crystallite sizes of about 4 nm. In the case of zirconia these particles are nanocrystalline with a cubic structure. This structure is not in equilibrium under the experimental conditions.

  20. Microwave radiation measurements near the electron plasma frequency of the NASA Lewis Bumpy Torus plasma

    NASA Technical Reports Server (NTRS)

    Mallavarpu, R.; Roth, J. R.

    1978-01-01

    Microwave emission near the electron plasma frequency of the NASA Lewis Bumpy Torus plasma has been observed, and its relation to the average electron density and the dc toroidal magnetic field was examined. The emission was detected using a spectrum analyzer and a 50-ohm miniature coaxial probe. The radiation appeared as a broad amplitude peak that shifted in frequency as the plasma parameters were varied. The observed radiation scanned an average plasma density ranging from 20 billion to 800 billion per cu cm. A linear relation was observed between the density calculated from the emission frequency and the average plasma density measured with a microwave interferometer. With the aid of a relative density profile measurement of the plasma, it was determined that the emissions occurred from the outer periphery of the plasma.

  1. Plasma relaxation mechanics of pulsed high power microwave surface flashover

    NASA Astrophysics Data System (ADS)

    Beeson, S.; Dickens, J.; Neuber, A.

    2013-09-01

    Microwave transmission and reflection characteristics of pulsed radio frequency field generated plasmas are elucidated for air, N2, and He environments under pressure conditions ranging from 10 to 600 torr. The pulsed, low temperature plasma is generated along the atmospheric side of the dielectric boundary between the source (under vacuum) and the radiating environment with a thickness on the order of 5 mm and a cross sectional area just smaller than that of the waveguide. Utilizing custom multi-standard waveguide couplers and a continuous low power probing source, the scattering parameters were measured before, during, and after the high power microwave pulse with emphasis on the latter. From these scattering parameters, temporal electron density estimations (specifically the longitudinal integral of the density) were calculated using a 1D plane wave-excited model for analysis of the relaxation processes associated. These relaxation characteristics ultimately determine the maximum repetition rate for many pulsed electric field applications and thus are applicable to a much larger scope in the plasma community than just those related to high power microwaves. This manuscript discusses the diagnostic setup for acquiring the power measurements along with a detailed description of the kinematic and chemical behavior of the plasma as it decays down to its undisturbed state under various gas type and pressure conditions.

  2. Plasma relaxation mechanics of pulsed high power microwave surface flashover

    SciTech Connect

    Beeson, S.; Dickens, J.; Neuber, A.

    2013-09-15

    Microwave transmission and reflection characteristics of pulsed radio frequency field generated plasmas are elucidated for air, N{sub 2}, and He environments under pressure conditions ranging from 10 to 600 torr. The pulsed, low temperature plasma is generated along the atmospheric side of the dielectric boundary between the source (under vacuum) and the radiating environment with a thickness on the order of 5 mm and a cross sectional area just smaller than that of the waveguide. Utilizing custom multi-standard waveguide couplers and a continuous low power probing source, the scattering parameters were measured before, during, and after the high power microwave pulse with emphasis on the latter. From these scattering parameters, temporal electron density estimations (specifically the longitudinal integral of the density) were calculated using a 1D plane wave-excited model for analysis of the relaxation processes associated. These relaxation characteristics ultimately determine the maximum repetition rate for many pulsed electric field applications and thus are applicable to a much larger scope in the plasma community than just those related to high power microwaves. This manuscript discusses the diagnostic setup for acquiring the power measurements along with a detailed description of the kinematic and chemical behavior of the plasma as it decays down to its undisturbed state under various gas type and pressure conditions.

  3. Microwave plasma generation of hydrogen atoms for rocket propulsion

    NASA Technical Reports Server (NTRS)

    Chapman, R.; Filpus, J.; Morin, T.; Snellenberger, R.; Asmussen, J.; Hawley, M.; Kerber, R.

    1981-01-01

    A flow microwave plasma reaction system is used to study the conversion of hydrogen to hydrogen atoms as a function of pressure, power density, cavity tuning, cavity mode, and time in the plasma zone. Hydrogen atom concentration is measured down-stream from the plasma by NOCl titration. Extensive modeling of the plasma and recombination zones is performed with the plasma zone treated as a backmix reaction system and the recombination zone treated as a plug flow. The thermodynamics and kinetics of the recombination process are examined in detail to provide an understanding of the conversion of recombination energy to gas kinetic energy. It is found that cavity tuning, discharge stability, and optimum power coupling are critically dependent on the system pressure, but nearly independent of the flow rate.

  4. Microwave radiation measurements near the electron plasma frequency of the NASA Lewis bumpy torus plasma

    NASA Technical Reports Server (NTRS)

    Mallavarpu, R.; Roth, J. R.

    1978-01-01

    Microwave emission near the electron plasma frequency was observed, and its relation to the average electron density and the dc toroidal magnetic field was examined. The emission was detected using a spectrum analyzer and a 50 omega miniature coaxial probe. The radiation appeared as a broad amplitude peak that shifted in frequency as the plasma parameters were varied. The observed radiation scanned an average plasma density ranging from 10 million/cu cm to 8 hundred million/cu cm. A linear relation was observed betweeen the density calculated from the emission frequency and the average plasma density measured with a microwave interferometer. With the aid of a relative density profile measurement of the plasma, it was determined that the emissions occurred from the outer periphery of the plasma.

  5. Advanced Microwave/Millimeter-Wave Imaging Technology

    NASA Astrophysics Data System (ADS)

    Shen, Zuowei; Yang, Lu; Luhmann, N. C., Jr.; Domier, C. W.; Ito, N.; Kogi, Y.; Liang, Y.; Mase, A.; Park, H.; Sakata, E.; Tsai, W.; Xia, Z. G.; Zhang, P.

    Millimeter wave technology advances have made possible active and passive millimeter wave imaging for a variety of applications including advanced plasma diagnostics, radio astronomy, atmospheric radiometry, concealed weapon detection, all-weather aircraft landing, contraband goods detection, harbor navigation/surveillance in fog, highway traffic monitoring in fog, helicopter and automotive collision avoidance in fog, and environmental remote sensing data associated with weather, pollution, soil moisture, oil spill detection, and monitoring of forest fires, to name but a few. The primary focus of this paper is on technology advances which have made possible advanced imaging and visualization of magnetohydrodynamic (MHD) fluctuations and microturbulence in fusion plasmas. Topics of particular emphasis include frequency selective surfaces, planar Schottky diode mixer arrays, electronically controlled beam shaping/steering arrays, and high power millimeter wave local oscillator and probe sources.

  6. Slurry sample introduction with microwave induced plasma atomic emission spectrometry

    NASA Astrophysics Data System (ADS)

    Matusiewicz, Henryk; Sturgeon, Ralph E.

    1993-04-01

    The successful direct introduction of aqueous slurry samples into a highly efficient TE 101 microwave plasma has been demonstrated. Slurry samples from a spray chamber are fed directly into the cavity with no desolvation apparatus. A V-groove, clog-free Babington-type nebulizer was evaluated for use with high solids content solutions. Slurry concentrations up to 10% m/v were used for the microwave induced plasma work with calibration by the standard additions method. Results are presented for the analysis of two NRCC Standard Reference Materials, i.e. TORT-1 (Lobster Hepatopancreas) and PACS-21 (Marine Sediment). Agreement between analytical results and certified values for the test elements Cd, Cu, Fe and Zn (in the range of 28-850 μg/g) was good. No memory effects were evident and the nebulizer system had a rapid clean-out time.

  7. A microwave imaging spectrometer for security applications

    NASA Astrophysics Data System (ADS)

    Jirousek, Matthias; Peichl, Markus; Suess, Helmut

    2010-04-01

    In recent years the security of people and critical infrastructures is of increasing interest. Passive microwave sensors in the range of 1 - 100 GHz are suitable for the detection of concealed objects and wide-area surveillance through poor weather and at day and night time. The enhanced extraction of significant information about an observed object is enabled by the use of a spectral sensitive system. For such a spectral radiometer in the microwave range also some depth information can be extracted. The usable frequency range is thereby dependent on the application. For through-wall imaging or detection of covert objects such as for example landmines, the lower microwave range is best suited. On the other hand a high spatial resolution requires higher frequencies or instruments with larger physical dimensions. The drawback of a large system is the required movement of a mirror or a deflecting plate in the case of a mechanical scanner system, or a huge amount of receivers in a fully-electronic instrument like a focal plane array. An innovative technique to overcome these problems is the application of aperture synthesis using a highly thinned array. The combination of spectral radiometric measurements within a wide frequency band, at a high resolution, and requiring a minimum of receivers and only minor moving parts led to the development of the ANSAS instrument (Abbildendes Niederfrequenz-Spektrometer mit Apertursynthese). ANSAS is a very flexible aperture synthesis technology demonstrator for the analysis of main features and interactions concerning high spatial resolution and spectral sensing within a wide frequency range. It consists of a rotated linear thinned array and thus the spatial frequency spectrum is measured on concentric circles. Hence the number of receivers and correlators is reduced considerably compared to a fully two-dimensional array, and measurements still can be done in a reasonable time. In this paper the basic idea of ANSAS and its setup

  8. Diamond synthesis at atmospheric pressure by microwave capillary plasma chemical vapor deposition

    NASA Astrophysics Data System (ADS)

    Hemawan, Kadek W.; Gou, Huiyang; Hemley, Russell J.

    2015-11-01

    Polycrystalline diamond has been synthesized on silicon substrates at atmospheric pressure, using a microwave capillary plasma chemical vapor deposition technique. The CH4/Ar plasma was generated inside of quartz capillary tubes using 2.45 GHz microwave excitation without adding H2 into the deposition gas chemistry. Electronically excited species of CN, C2, Ar, N2, CH, Hβ, and Hα were observed in the emission spectra. Raman measurements of deposited material indicate the formation of well-crystallized diamond, as evidenced by the sharp T2g phonon at 1333 cm-1 peak relative to the Raman features of graphitic carbon. Field emission scanning electron microscopy images reveal that, depending on the growth conditions, the carbon microstructures of grown films exhibit "coral" and "cauliflower-like" morphologies or well-facetted diamond crystals with grain sizes ranging from 100 nm to 10 μm.

  9. Microwave diagnostics of femtosecond laser-generated plasma filaments

    SciTech Connect

    Papeer, J.; Ehrlich, Y.; Zigler, A.; Mitchell, C.; Penano, J.; Sprangle, P.

    2011-10-03

    We present a simple non-intrusive experimental method allowing a complete single shot temporal measurement of laser produced plasma filament conductivity. The method is based on filament interaction with low intensity microwave radiation in a rectangular waveguide. The suggested diagnostics allow a complete single shot temporal analysis of filament plasma decay with resolution better than 0.3 ns and high spatial resolution along the filament. The experimental results are compared to numerical simulations, and an initial electron density of 7 x 10{sup 16 }cm{sup -3} and decay time of 3 ns are obtained.

  10. The Interaction of C-Band Microwaves with Large Plasma Sheets

    NASA Astrophysics Data System (ADS)

    Ding, Liang; Huo, Wenqing; Yang, Xinjie; Xu, Yuemin

    2012-01-01

    A large plasma sheet 60 cm×60 cm×2 cm in size was generated using a hollow cathode, and measurements were conducted for interactions including transmission, reflection and absorption. With different discharge parameters, plasma sheets can vary and influence microwave strength. Microwave reflection decreases when the discharge current rises, and the opposite occurs in transmission. The C-band microwave is absorbed when it is propagated through large plasma sheets at higher pressure. When plasma density and collision frequency are fitted with incident microwave frequency, a large amount of microwave energy is consumed. Reflection, transmission and absorption all exist simultaneously. Plasma sheets are an attractive alternative to microwave steering at low pressure, and the microwave reflection used in receiving radar can be altered by changing the discharge parameters.

  11. Properties of plasma flames sustained by microwaves and burning hydrocarbon fuels

    SciTech Connect

    Hong, Yong Cheol; Uhm, Han Sup

    2006-11-15

    Plasma flames made of atmospheric microwave plasma and a fuel-burning flame were presented and their properties were investigated experimentally. The plasma flame generator consists of a fuel injector and a plasma flame exit connected in series to a microwave plasma torch. The plasma flames are sustained by injecting hydrocarbon fuels into a microwave plasma torch in air discharge. The microwave plasma torch in the plasma flame system can burn a hydrocarbon fuel by high-temperature plasma and high atomic oxygen density, decomposing the hydrogen and carbon containing fuel. We present the visual observations of the sustained plasma flames and measure the gas temperature using a thermocouple device in terms of the gas-fuel mixture and flow rate. The plasma flame volume of the hydrocarbon fuel burners was more than approximately 30-50 times that of the torch plasma. While the temperature of the torch plasma flame was only 868 K at a measurement point, that of the diesel microwave plasma flame with the addition of 0.019 lpm diesel and 30 lpm oxygen increased drastically to about 2280 K. Preliminary experiments for methane plasma flame were also carried out, measuring the temperature profiles of flames along the radial and axial directions. Finally, we investigated the influence of the microwave plasma on combustion flame by observing and comparing OH molecular spectra for the methane plasma flame and methane flame only.

  12. A system to investigate the remediation of organic vapors using microwave-induced plasma with fluidized carbon granules.

    PubMed

    Dawson, Elizabeth A; Parkes, Gareth M B; Bond, Gary; Mao, Runjie

    2009-03-01

    This article describes a system to investigate the parameters for the remediation of organic vapors using microwave-induced plasma on fluidized carbon granules. The system is based on a single mode microwave apparatus with a variable power (2.45 GHz) generator. Carbon granules are fluidized in a silica tube situated in the sample section of a waveguide incorporating two additional ports to allow plasma intensity monitoring using a light sensor and imaging with a digital camera. A fluoroptic probe is used for in situ measurement of the carbon granule temperature, while the effluent gas temperature is measured with a thermocouple situated in the silica tube outside the cavity. Data acquisition and control software allow experiments using a variety of microwave power regimes while simultaneously recording the light intensity of any plasma generated within the carbon bed, together with its temperature. Evaluation using two different granular activated carbons and ethyl acetate, introduced as a vapor into the fluidizing air stream at a concentration of 1 ppm, yielded results which indicated that significant destruction of ethyl acetate, as monitored using a mass spectrometer, was achieved only with the carbon granules showing high plasma activity under pulsed microwave conditions. The system is therefore suitable for comparison of the relative microwave activities of various activated carbon granules and their performance in microwave remediation and regeneration.

  13. A system to investigate the remediation of organic vapors using microwave-induced plasma with fluidized carbon granules

    SciTech Connect

    Dawson, Elizabeth A.; Parkes, Gareth M. B.; Bond, Gary; Mao, Runjie

    2009-03-15

    This article describes a system to investigate the parameters for the remediation of organic vapors using microwave-induced plasma on fluidized carbon granules. The system is based on a single mode microwave apparatus with a variable power (2.45 GHz) generator. Carbon granules are fluidized in a silica tube situated in the sample section of a waveguide incorporating two additional ports to allow plasma intensity monitoring using a light sensor and imaging with a digital camera. A fluoroptic probe is used for in situ measurement of the carbon granule temperature, while the effluent gas temperature is measured with a thermocouple situated in the silica tube outside the cavity. Data acquisition and control software allow experiments using a variety of microwave power regimes while simultaneously recording the light intensity of any plasma generated within the carbon bed, together with its temperature. Evaluation using two different granular activated carbons and ethyl acetate, introduced as a vapor into the fluidizing air stream at a concentration of 1 ppm, yielded results which indicated that significant destruction of ethyl acetate, as monitored using a mass spectrometer, was achieved only with the carbon granules showing high plasma activity under pulsed microwave conditions. The system is therefore suitable for comparison of the relative microwave activities of various activated carbon granules and their performance in microwave remediation and regeneration.

  14. A system to investigate the remediation of organic vapors using microwave-induced plasma with fluidized carbon granules

    NASA Astrophysics Data System (ADS)

    Dawson, Elizabeth A.; Parkes, Gareth M. B.; Bond, Gary; Mao, Runjie

    2009-03-01

    This article describes a system to investigate the parameters for the remediation of organic vapors using microwave-induced plasma on fluidized carbon granules. The system is based on a single mode microwave apparatus with a variable power (2.45 GHz) generator. Carbon granules are fluidized in a silica tube situated in the sample section of a waveguide incorporating two additional ports to allow plasma intensity monitoring using a light sensor and imaging with a digital camera. A fluoroptic probe is used for in situ measurement of the carbon granule temperature, while the effluent gas temperature is measured with a thermocouple situated in the silica tube outside the cavity. Data acquisition and control software allow experiments using a variety of microwave power regimes while simultaneously recording the light intensity of any plasma generated within the carbon bed, together with its temperature. Evaluation using two different granular activated carbons and ethyl acetate, introduced as a vapor into the fluidizing air stream at a concentration of 1 ppm, yielded results which indicated that significant destruction of ethyl acetate, as monitored using a mass spectrometer, was achieved only with the carbon granules showing high plasma activity under pulsed microwave conditions. The system is therefore suitable for comparison of the relative microwave activities of various activated carbon granules and their performance in microwave remediation and regeneration.

  15. A system to investigate the remediation of organic vapors using microwave-induced plasma with fluidized carbon granules.

    PubMed

    Dawson, Elizabeth A; Parkes, Gareth M B; Bond, Gary; Mao, Runjie

    2009-03-01

    This article describes a system to investigate the parameters for the remediation of organic vapors using microwave-induced plasma on fluidized carbon granules. The system is based on a single mode microwave apparatus with a variable power (2.45 GHz) generator. Carbon granules are fluidized in a silica tube situated in the sample section of a waveguide incorporating two additional ports to allow plasma intensity monitoring using a light sensor and imaging with a digital camera. A fluoroptic probe is used for in situ measurement of the carbon granule temperature, while the effluent gas temperature is measured with a thermocouple situated in the silica tube outside the cavity. Data acquisition and control software allow experiments using a variety of microwave power regimes while simultaneously recording the light intensity of any plasma generated within the carbon bed, together with its temperature. Evaluation using two different granular activated carbons and ethyl acetate, introduced as a vapor into the fluidizing air stream at a concentration of 1 ppm, yielded results which indicated that significant destruction of ethyl acetate, as monitored using a mass spectrometer, was achieved only with the carbon granules showing high plasma activity under pulsed microwave conditions. The system is therefore suitable for comparison of the relative microwave activities of various activated carbon granules and their performance in microwave remediation and regeneration. PMID:19334935

  16. Atmospheric-pressure hybrid plasma with combination of ac and microwave

    SciTech Connect

    Hong, Yong Cheol; Uhm, Han Sup

    2006-12-18

    A hybrid plasma system with combination of ac and microwave at atmospheric pressure was developed. The hybrid plasma is initiated by ac capillary plasma, is stabilized by a flowing channel of working gas through common electrodes, and is expanded by the dissipation of microwave energy, revealing two distinguishable plasma columns of about 1 m in length and a transition point. The capillary in the hybrid plasma system is working as a common electrode for the microwave and ac plasmas. Optical emission spectroscopy is used to characterize and monitor the argon and nitrogen excited species produced in different plasma columns.

  17. Dielectric properties in microwave remote plasma sustained in argon: Expanding plasma conditions

    SciTech Connect

    Jauberteau, J. L.; Jauberteau, I.

    2012-11-15

    This work is devoted to the study of the relative permittivity in argon expanding plasma produced below a microwave discharge sustained in a quartz tube and working at 2.45 GHz. We discuss results and explain the microwave propagation within the reactor, outside the quartz tube. It is shown that at low pressures (133 Pa) and at powers ranging from 100 W to 400 W, the wave frequency remains lower than the plasma frequency anywhere in the expanding plasma. Under these conditions, the real part of the relative permittivity is negative and the wave is reflected. Surprisingly, in these conditions, the plasma is produced inside and outside the quartz tube, below the wave launcher. This effect can be explained considering a surface wave propagating at the surface of the quartz tube then into the reactor, on the external surface of the expanding plasma below the quartz tube.

  18. Low-pressure sustainment of surface-wave microwave plasma with modified microwave coupler

    NASA Astrophysics Data System (ADS)

    Sasai, Kensuke; Suzuki, Haruka; Toyoda, Hirotaka

    2016-01-01

    Sustainment of long-scale surface-wave plasma (SWP) at pressures below 1 Pa is investigated for the application of the SWP as an assisting plasma source for roll-to-roll sputter deposition. A modified microwave coupler (MMC) for easier surface-wave propagation is proposed, on the basis of the concept of the power direction alignment of the slot antenna and surface-wave propagation. The superiority of the MMC-SWP over conventional SWPs is shown at a sustainment pressure as low as 0.6 Pa and an electron density as high as 3 × 1017 m-3. A polymer film is treated with the MMC-SWP at a low pressure of 0.6 Pa, and surface modification at a low pressure is proved using Ar plasma. These results show the availability of the MMC-SWP as the surface treatment plasma source that is compatible with sputter deposition in the same processing chamber.

  19. New plasma concepts for enhanced microwave vacuum electronics

    SciTech Connect

    Hoffman, J.R.; Muggli, P.; Gundersen, M.A.; Mori, W.B.; Joshi, C.; Katsouleas, T.

    1999-07-01

    Recently, new concepts in the field of microwave radiation generation have led to the possibly of major advances on the frontier of microwave vacuum devices. These concepts include the emerging technology of dc to ac radiation converters, or DARC sources, ionization fronts for frequency upshifting and conversion of extremely large plasma wakes into a Cherenkov radiation source. In the DARC source, alternatively biased capacitors produce a static electric field, which upon passing through a moving relativistic, underdense ionization front, is converted into a short pulse of electromagnetic (em) radiation. The frequency of this em wave is tunable by varying either the plasma density or the spacing between capacitors. The authors discuss the technology involved in going from the proof of principle design which produced only a few tens of milliwatts of microwave power, to current devices at the 100w range, to future devices at the kilowatt and megawatt levels of output power. In the planned cherenkov source, a fraction of the energy stored in the large amplitude electrostatic wave (wake) generated in plasma based accelerators is converted into em radiation by applying a static magnetic field perpendicularly to the driving laser beam. The laser beam couples to the L branch of the XO mode of the magnetized plasma through Cherenkov radiation. This radiation is emitted predominantly in the forward direction at the plasma frequency (THz range). The output power is expected to scale with the square of the applied magnetic field strength. For applied fields of 6 to 180 kG, megawatt to gigawatt power level, are achievable.

  20. A Tutorial on Basic Principles of Microwave Reflectometry Applied to Fluctuation Measurements in Fusion Plasmas

    SciTech Connect

    Nazikian, R.; Kramer, G.J.; Valeo, E.

    2001-02-16

    Microwave reflectometry is now routinely used for probing the structure of magnetohydrodynamic and turbulent fluctuations in fusion plasmas. Conditions specific to the core of tokamak plasmas, such as small amplitude of density irregularities and the uniformity of the background plasma, have enabled progress in the quantitative interpretation of reflectometer signals. In particular, the extent of applicability of the 1-D [one-dimensional] geometric optics description of the reflected field is investigated by direct comparison to 1-D full wave analysis. Significant advances in laboratory experiments are discussed which are paving the way towards a thorough understanding of this important measurement technique. Data is presented from the Tokamak Fusion Test Reactor [R. Hawryluk, Plasma Physics and Controlled Fusion 33 (1991) 1509] identifying the validity of the geometric optics description of the scattered field and demonstrating the feasibility of imaging turbulent fluctuations in fusion scale devices.

  1. Low-pressure microwave plasma sterilization of polyethylene terephthalate bottles.

    PubMed

    Deilmann, Michael; Halfmann, Helmut; Bibinov, Nikita; Wunderlich, Joachim; Awakowicz, Peter

    2008-10-01

    A low-pressure microwave plasma reactor was developed for sterilization of polyethylene terephthalate (PET) bottles. In contrast to the established method using aseptic filling machines based on toxic sterilants, here a microwave plasma is ignited inside a bottle by using a gas mixture of nitrogen, oxygen, and hydrogen. To that effect, a reactor setup was developed based on a Plasmaline antenna allowing for plasma ignition inside three-dimensional packages. A treatment time below 5 s is provided for a reduction of 10(5) and 10(4) CFU of Bacillus atrophaeus and Aspergillus niger, respectively, verified by means of a count reduction test. The sterilization results obtained by means of this challenge test are in accordance with requirements for aseptic packaging machines as defined by the U.S. Food and Drug Administration and the German Engineering Federation. The plasma sterilization process developed here for aseptic filling of beverages is a dry process that avoids residues and the use of maximum allowable concentrations of established sterilants, e.g., hydrogen peroxide.

  2. Three-dimensional microwave imaging with incorporated prior structural information

    NASA Astrophysics Data System (ADS)

    Golnabi, Amir H.; Meaney, Paul M.; Epstein, Neil R.; Paulsen, Keith D.

    2012-03-01

    Microwave imaging for biomedical applications, especially for early detection of breast cancer and effective treatment monitoring, has attracted increasing interest in last several decades. This fact is due to the high contrast between the dielectric properties of the normal and malignant breast tissues at microwave frequencies. The available range of dielectric properties for different soft tissue can provide important functional information about tissue health. Nonetheless, one of the limiting weaknesses of microwave imaging is that unlike conventional modalities, such as X-ray CT or MRI, it inherently cannot provide high-resolution images. The conventional modalities can produce highly resolved anatomical information but often cannot provide the functional information required for diagnoses. Previously, we have developed a regularization strategy that can incorporate prior anatomical information from MR or other sources and use it in a way to refine the resolution of the microwave images, while also retaining the functional nature of the reconstructed property values. In the present work, we extend the use of prior structural information in microwave imaging from 2D to 3D. This extra dimension adds a significant layer of complexity to the entire image reconstruction procedure. In this paper, several challenges with respect to the 3D microwave imaging will be discussed and the results of a series of 3D simulation and phantom experiments with prior structural information will be studied.

  3. Imaging the cosmic microwave background: The BEAST experiment

    NASA Astrophysics Data System (ADS)

    Natoli, P.; Bersanelli, M.; Childers, J.; Figueiredo, N.; Halevi, D.; Kangas, M.; Levy, A.; Lubin, P.; Mandolesi, N.; Meinhold, P.; Parendo, S.; Staren, J.; Villela, T.; Wuensche, C.

    2001-02-01

    We describe the Santa Barbara BEAST experiment, a balloon borne telescope to image the Cosmic Microwave Background (CMB) radiation anisotropy pattern. Some aspects of the map making pipeline are also discussed. .

  4. Microwave plasmas generated in bubbles immersed in liquids for hydrocarbons reforming

    NASA Astrophysics Data System (ADS)

    Levko, Dmitry; Sharma, Ashish; Raja, Laxminarayan L.

    2016-06-01

    We present a computational modeling study of microwave plasma generated in cluster of atmospheric-pressure argon bubbles immersed in a liquid. We demonstrate that the use of microwaves allows the generation of a dense chemically active non-equilibrium plasma along the gas-liquid interface. Also, microwaves allow generation of overdense plasma in all the bubbles considered in the cluster which is possible because the collisional skin depth of the wave exceeds the bubble dimension. These features of microwave plasma generation in bubbles immersed in liquids are highly desirable for the large-scale liquid hydrocarbon reforming technologies.

  5. Experimental study on the emission spectra of microwave plasma at atmospheric pressure

    SciTech Connect

    Zhang, Boya; Wang, Qiang; Zhang, Guixin; Liao, Shanshan

    2014-01-28

    An experimental study on microwave plasma at atmospheric pressure was conducted by employing optical emission spectroscopy. Based on a microwave plasma generation device developed for nanoparticle synthesis, we studied the influence of input microwave power and gas flow rate on the optical emission behaviors and electron temperature of plasma using Ar, He, and N{sub 2} as working gas, respectively. The physics behind these behaviors was discussed. The results are useful in characterizing microwave plasma at atmospheric pressure and can be used for improving nanoparticle synthesis system for commercial use in the future.

  6. Diagnosis of femtosecond plasma filament by channeling microwaves along the filament

    SciTech Connect

    Alshershby, Mostafa; Ren, Yu; Qin, Jiang; Hao, Zuoqiang; Lin, Jingquan

    2013-05-20

    We introduce a simple, fast, and non-intrusive experimental method to obtain the basic parameters of femtosecond laser-generated plasma filament. The method is based on the channeling of microwaves along both a plasma filament and a well-defined conducting wire. By comparing the detected microwaves that propagate along the plasma filament and a copper wire with known conductivity and spatial dimension, the basic parameters of the plasma filament can be easily obtained. As a result of the possibility of channeling microwave radiation along the plasma filament, we were then able to obtain the plasma density distribution along the filament length.

  7. A microwave interferometer for small and tenuous plasma density measurements

    SciTech Connect

    Tudisco, O.; Falcetta, C.; De Angelis, R.; Florean, M.; Neri, C.; Mazzotta, C.; Pollastrone, F.; Rocchi, G.; Tuccillo, A. A.; Lucca Fabris, A.; Manente, M.; Ferri, F.; Tasinato, L.; Trezzolani, F.; Accatino, L.; Selmo, A.

    2013-03-15

    The non-intrusive density measurement of the thin plasma produced by a mini-helicon space thruster (HPH.com project) is a challenge, due to the broad density range (between 10{sup 16} m{sup -3} and 10{sup 19} m{sup -3}) and the small size of the plasma source (2 cm of diameter). A microwave interferometer has been developed for this purpose. Due to the small size of plasma, the probing beam wavelength must be small ({lambda}= 4 mm), thus a very high sensitivity interferometer is required in order to observe the lower density values. A low noise digital phase detector with a phase noise of 0.02 Degree-Sign has been used, corresponding to a density of 0.5 Multiplication-Sign 10{sup 16} m{sup -3}.

  8. A microwave interferometer for small and tenuous plasma density measurements.

    PubMed

    Tudisco, O; Lucca Fabris, A; Falcetta, C; Accatino, L; De Angelis, R; Manente, M; Ferri, F; Florean, M; Neri, C; Mazzotta, C; Pavarin, D; Pollastrone, F; Rocchi, G; Selmo, A; Tasinato, L; Trezzolani, F; Tuccillo, A A

    2013-03-01

    The non-intrusive density measurement of the thin plasma produced by a mini-helicon space thruster (HPH.com project) is a challenge, due to the broad density range (between 10(16) m(-3) and 10(19) m(-3)) and the small size of the plasma source (2 cm of diameter). A microwave interferometer has been developed for this purpose. Due to the small size of plasma, the probing beam wavelength must be small (λ = 4 mm), thus a very high sensitivity interferometer is required in order to observe the lower density values. A low noise digital phase detector with a phase noise of 0.02° has been used, corresponding to a density of 0.5 × 10(16) m(-3).

  9. Plasma heating and current drive using intense, pulsed microwaves

    SciTech Connect

    Cohen, B.I.; Cohen, R.H.; Nevins, W.M.; Rognlien, T.D.; Bonoli, P.T.; Porkolab, M.

    1988-01-01

    The use of powerful new microwave sources, e.g., free-electron lasers and relativistic gyrotrons, provide unique opportunities for novel heating and current-drive schemes in the electron-cyclotron and lower-hybrid ranges of frequencies. These high-power, pulsed sources have a number of technical advantages over conventional, low-intensity sources; and their use can lead to improved current-drive efficiencies and better penetration into a reactor-grade plasma in specific cases. The Microwave Tokamak Experiment at Lawrence Livermore National Laboratory will provide a test for some of these new heating and current-drive schemes. This paper reports theoretical progress both in modeling absorption and current drive for intense pulses and in analyzing some of the possible complications that may arise, e.g., parametric instabilities and nonlinear self-focusing. 22 refs., 9 figs., 1 tab.

  10. [Development of a high resolution simultaneous microwave plasma torch spectrometer].

    PubMed

    Jiang, Jie; Huan, Yan-Fu; Jin, Wei; Feng, Guo-Dong; Fei, Qiang; Cao, Yan-Bo; Jin, Qin-Han

    2007-11-01

    A unique high resolution simultaneous microwave plasma torch (MPT) atomic emission spectrometer was developed and studied preliminarily. Some advanced technologies were applied to the spectrometer, such as echelle grating, UV-intensified CCD array detector, adjustable microwave generator, and water cooling system for the generator, etc. The detection limits of the spectrometer for some elements were determined, the spectral resolution and pixel resolution of the spectrometer were calculated, and an analysis of a practical sample was carried out. The preliminary results demonstrate that such simultaneous spectrometer has advantages of saving sample and time, possessing high sensitivity and resolution, and low-cost for the purchase and maintenance. Taking analytical figures of merit into consideration, the high resolution simultaneous MPT spectrometer will have extended application areas and greater competition potential as compared with sequential MPT spectrometers.

  11. EFFECTS OF LASER RADIATION ON MATTER. LASER PLASMA: Microwave generation in an optical breakdown plasma created by modulated laser radiation

    NASA Astrophysics Data System (ADS)

    Antipov, A. A.; Grasyuk, Arkadii Z.; Losev, Leonid L.; Soskov, V. I.

    1990-06-01

    It was established that when laser radiation, intensity modulated at a frequency of 2.2 GHz, interacted with an optical breakdown plasma which it had created, a microwave component appeared in the thermal emf of the plasma. The amplitude of the microwave thermal emf reached 0.7 V for a laser radiation intensity of 6 GW/cm2. Laser radiation with λL = 1.06 μm was converted to the microwave range with λmω = 13 cm in the optical breakdown plasma. A microwave signal power of ~ 0.5 W was obtained from a laser power of ~ 5 MW.

  12. Microwave non-contact imaging of subcutaneous human body tissues.

    PubMed

    Kletsov, Andrey; Chernokalov, Alexander; Khripkov, Alexander; Cho, Jaegeol; Druchinin, Sergey

    2015-10-01

    A small-size microwave sensor is developed for non-contact imaging of a human body structure in 2D, enabling fitness and health monitoring using mobile devices. A method for human body tissue structure imaging is developed and experimentally validated. Subcutaneous fat tissue reconstruction depth of up to 70 mm and maximum fat thickness measurement error below 2 mm are demonstrated by measurements with a human body phantom and human subjects. Electrically small antennas are developed for integration of the microwave sensor into a mobile device. Usability of the developed microwave sensor for fitness applications, healthcare, and body weight management is demonstrated.

  13. Microwave non-contact imaging of subcutaneous human body tissues

    PubMed Central

    Chernokalov, Alexander; Khripkov, Alexander; Cho, Jaegeol; Druchinin, Sergey

    2015-01-01

    A small-size microwave sensor is developed for non-contact imaging of a human body structure in 2D, enabling fitness and health monitoring using mobile devices. A method for human body tissue structure imaging is developed and experimentally validated. Subcutaneous fat tissue reconstruction depth of up to 70 mm and maximum fat thickness measurement error below 2 mm are demonstrated by measurements with a human body phantom and human subjects. Electrically small antennas are developed for integration of the microwave sensor into a mobile device. Usability of the developed microwave sensor for fitness applications, healthcare, and body weight management is demonstrated. PMID:26609415

  14. Improved microwave shielding behavior of carbon nanotube-coated PET fabric using plasma technology

    NASA Astrophysics Data System (ADS)

    Haji, Aminoddin; Semnani Rahbar, Ruhollah; Mousavi Shoushtari, Ahmad

    2014-08-01

    Four different procedures were conducted to load amine functionalized multiwall carbon nanotube (NH2-MWCNT) onto poly (ethylene terephthalate) (PET) fabric surface to obtain a microwave shielding sample. Plasma treated fabric which was subsequently coated with NH2-MWCNT in the presence of acrylic acid was chosen as the best sample. Surface changes in the PET fabrics were investigated by X-ray photoelectron spectroscopy (XPS) and scanning electron microscopy (SEM). Wide-angle X-ray diffraction was used to study the crystalline structure of the PET fabric. The microwave shielding performance of the PET fabrics in term of reflection loss was determined using a network analyzer at X-band (8.2-12.4 GHz). The XPS results revealed that the carbon atomic percentage decreased while the oxygen atomic percentage increased when the fabric was plasma treated and coated with NH2-MWCNT. The SEM images showed that the NH2-MWCNTs were homogenously dispersed and individually separated in the surface of fabric. Moreover, the structural studies showed that the crystalline region of the fabrics was not affected by NH2-MWCNT and plasma treatment. The best microwave absorbing properties were obtained from the plasma treated fabric which was then coated with 10% NH2-MWCNT in the presence of acrylic acid. It showed a minimum reflection loss of ∼-18.2 dB about 11 GHz. Proper attachments of NH2-MWCNT on the PET fabric surface was explained in the suggested mechanism in which hydrogen bonding and amide linkage are responsible for the achievement of microwave shielding properties with high durability.

  15. High-resolution microwave images of Saturn

    NASA Technical Reports Server (NTRS)

    Grossman, A. W.; Muhleman, D. O.; Berge, G. L.

    1989-01-01

    An analysis of high-resolution microwave images of Saturn and Saturn's individual rings is presented. Radio interferometric observations of Saturn taken at the Very Large Array in New Mexico at wavelengths of 2 and 6 centimeters reveal interesting new features in both the atmosphere and rings. The resulting maps show an increase in brightness temperature of about 3 K from equator to pole at both wavelengths, while the 6-centimeter map shows a bright band at northern midlatitudes. The data are consistent with a radiative transfer model of the atmosphere that constrains the well-mixed, fully saturated, NH3 mixing ratio to be 0.00012 in a region just below the NH3 clouds, while the observed bright band indicates a 25 percent relative decrease of NH3 in northern midlatitudes. Brightness temperatures for the classical rings are presented. Ring brightness shows a variation with azimuth and is linearly polarized at an average value of about 5 percent. The variations in ring polarization suggest that at least 20 percent of the ring brightness is the result of a single scattering process.

  16. High-resolution microwave images of saturn.

    PubMed

    Grossman, A W; Muhleman, D O; Berge, G L

    1989-09-15

    An analysis of high-resolution microwave images of Saturn and Saturn's individual rings is presented. Radio interferometric observations of Saturn taken at the Very Large Array in New Mexico at wavelengths of 2 and 6 centimeters reveal interesting new features in both the atmosphere and rings. The resulting maps show an increase in brightness temperature of about 3 K from equator to pole at both wavelengths, while the 6-centimeter map shows a bright band at northern mid-latitudes. The data are consistent with a radiative transfer model of the atmosphere that constrains the well-mixed, fully saturated, NH(3) mixing ratio to be 1.2 x 10(-4) in a region just below the NH(3) clouds, while the observed bright band indicates a 25 percent relative decrease of NH(3) in northern mid-latitudes. Brightness temperatures for the classical rings are presented. Ring brightness shows a variation with azimuth and is linearly polarized at an average value of about 5 percent. The variations in ring polarization suggest that at least 20 percent of the ring brightness is the result of a single scattering process.

  17. Microwave-induced plasma reactor based on a domestic microwave oven for bulk solid state chemistry

    SciTech Connect

    Brooks, David J.; Douthwaite, Richard E.

    2004-12-01

    A microwave-induced plasma (MIP) reactor has been constructed from a domestic microwave oven (DMO) and applied to the bulk synthesis of solid state compounds. Low pressure MIP can be initiated and maintained using a range of gases including Ar, N{sub 2}, NH{sub 3}, O{sub 2}, Cl{sub 2}, and H{sub 2}S. In order to obtain reproducible synthesis conditions the apparatus is designed to allow control of gas flow rate, gas composition, and pressure. The use of the reactor is demonstrated by the synthesis of three binary metal nitrides formed in a NH{sub 3} MIP. The reactions are rapid and the products show good crystallinity and phase purity as judged by powder x-ray diffraction.

  18. Passive Microwave Spectral Imaging of Amospheric Structure

    NASA Technical Reports Server (NTRS)

    Staelin, David H.; Rosenkranz, Philip W.

    1998-01-01

    The primary objective of this research was to improve the scientific foundation necessary to full realization of the meteorological potential of the NOAA Advanced Microwave Sounding Unit (AMSU) recently first launched on the NOAA-15 satellite in May, 1998. These advances were made in four main areas: (1) improvements, based on aircraft observations, in the atmospheric transmittance expressions used for interpreting AMSU and similar data; (2) development of neural network retrieval methods for cloud top altitude estimates of approximately 1-km accuracy under cirrus shields--the altitude is that of the larger ice particles aloft, which is related to precipitation rate; (3) analysis of early AMSU flight data with respect to its precipitation sensitivity and fine-scale thermal structure; and (4) improvements to the 54-GHz and 118-GHz MTS aircraft imaging spectrometer now operating on the NASA ER-2 aircraft. More specifically, the oxygen transmittance expressions near 118 GHz were in better agreement with aircraft data when the temperature dependence exponent of the 118.75-GHz linewidth was increased from the MPM92 value (Liebe et al., 1992) of 0.8 to 0.97+/-0.03. In contrast, the observations 52.5-55.8 GHz were consistent with the MPM92 model. Neural networks trained on comparisons of 118-GHz spectral data and coincident stereoscopic video images of convective cells observed from 20-km altitude yielded agreement in their peak altitudes within as little as 1.36 km rms, much of which is stereoscopic error. Imagery using these methods produced useful characterizations for Cyclone Oliver in 1993 and other storms (Schwartz et al., 1996; Spina et al., 1998). Similar neural network techniques yielded simulated rms errors in relative humidity retrievals of 6-14 percent over ocean and 6-15 percent over land at pressure levels from 1013 to 131 mbar (Cabrera-Mercader and Staelin, 1995).

  19. Plasma generation for controlled microwave-reflecting surfaces in plasma antennas

    SciTech Connect

    Bliokh, Yury P.; Felsteiner, Joshua; Slutsker, Yakov Z.

    2014-04-28

    The idea of replacing metal antenna elements with equivalent plasma objects has long been of interest because of the possibility of switching the antenna on and off. In general, two kinds of designs have so far been reported: (a) Separate plasma “wires” which are thin glass tubes filled with gas, where plasma appears due to discharge inside. (b) Reflecting surfaces, consisting of tightly held plasma wires or specially designed large discharge devices with magnetic confinement. The main disadvantages of these antennas are either large weight and size or too irregular surfaces for proper reflection. To design a microwave plasma antenna in the most common radar wavelength range of 1–3 cm with a typical gain of 30 dB, a smooth plasma mirror having a 10–30 cm diameter and a proper curvature is required. The plasma density must be 10{sup 12}–10{sup 14} cm{sup −3} in order to exceed the critical density for the frequency of the electromagnetic wave. To achieve this we have used a ferromagnetic inductively coupled plasma (FICP) source, where a thin magnetic core of a large diameter is fully immersed in the plasma. In the present paper, we show a way to adapt the FICP source for creating a flat switchable microwave plasma mirror with an effective diameter of 30 cm. This mirror was tested as a microwave reflector and there was found no significant difference when compared with a copper plate having the same diameter.

  20. Disintegration of Carbon Dioxide Molecules in a Microwave Plasma Torch.

    PubMed

    Kwak, Hyoung S; Uhm, Han S; Hong, Yong C; Choi, Eun H

    2015-12-17

    A pure carbon dioxide torch is generated by making use of 2.45 GHz microwave. Carbon dioxide gas becomes the working gas and produces a stable carbon dioxide torch. The torch volume is almost linearly proportional to the microwave power. Temperature of the torch flame is measured by making use of optical spectroscopy and thermocouple. Two distinctive regions are exhibited, a bright, whitish region of high-temperature zone and a bluish, dimmer region of relatively low-temperature zone. Study of carbon dioxide disintegration and gas temperature effects on the molecular fraction characteristics in the carbon dioxide plasma of a microwave plasma torch under atmospheric pressure is carried out. An analytical investigation of carbon dioxide disintegration indicates that substantial fraction of carbon dioxide molecules disintegrate and form other compounds in the torch. For example, the normalized particle densities at center of plasma are given by nCO2/nN = 6.12 × 10(-3), nCO/nN = 0.13, nC/nN = 0.24, nO/nN = 0.61, nC2/nN = 8.32 × 10(-7), nO2/nN = 5.39 × 10(-5), where nCO2, nCO, nC, nO, nC2, and nO2 are carbon dioxide, carbon monoxide, carbon and oxygen atom, carbon and oxygen molecule densities, respectively. nN is the neutral particle density. Emission profiles of the oxygen and carbon atom radicals and the carbon monoxide molecules confirm the theoretical predictions of carbon dioxide disintegration in the torch.

  1. Disintegration of Carbon Dioxide Molecules in a Microwave Plasma Torch

    PubMed Central

    Kwak, Hyoung S.; Uhm, Han S.; Hong, Yong C.; Choi, Eun H.

    2015-01-01

    A pure carbon dioxide torch is generated by making use of 2.45 GHz microwave. Carbon dioxide gas becomes the working gas and produces a stable carbon dioxide torch. The torch volume is almost linearly proportional to the microwave power. Temperature of the torch flame is measured by making use of optical spectroscopy and thermocouple. Two distinctive regions are exhibited, a bright, whitish region of high-temperature zone and a bluish, dimmer region of relatively low-temperature zone. Study of carbon dioxide disintegration and gas temperature effects on the molecular fraction characteristics in the carbon dioxide plasma of a microwave plasma torch under atmospheric pressure is carried out. An analytical investigation of carbon dioxide disintegration indicates that substantial fraction of carbon dioxide molecules disintegrate and form other compounds in the torch. For example, the normalized particle densities at center of plasma are given by nCO2/nN = 6.12 × 10−3, nCO/nN = 0.13, nC/nN = 0.24, nO/nN = 0.61, nC2/nN = 8.32 × 10−7, nO2/nN = 5.39 × 10−5, where nCO2, nCO, nC, nO, nC2, and nO2 are carbon dioxide, carbon monoxide, carbon and oxygen atom, carbon and oxygen molecule densities, respectively. nN is the neutral particle density. Emission profiles of the oxygen and carbon atom radicals and the carbon monoxide molecules confirm the theoretical predictions of carbon dioxide disintegration in the torch. PMID:26674957

  2. Disintegration of Carbon Dioxide Molecules in a Microwave Plasma Torch

    NASA Astrophysics Data System (ADS)

    Kwak, Hyoung S.; Uhm, Han S.; Hong, Yong C.; Choi, Eun H.

    2015-12-01

    A pure carbon dioxide torch is generated by making use of 2.45 GHz microwave. Carbon dioxide gas becomes the working gas and produces a stable carbon dioxide torch. The torch volume is almost linearly proportional to the microwave power. Temperature of the torch flame is measured by making use of optical spectroscopy and thermocouple. Two distinctive regions are exhibited, a bright, whitish region of high-temperature zone and a bluish, dimmer region of relatively low-temperature zone. Study of carbon dioxide disintegration and gas temperature effects on the molecular fraction characteristics in the carbon dioxide plasma of a microwave plasma torch under atmospheric pressure is carried out. An analytical investigation of carbon dioxide disintegration indicates that substantial fraction of carbon dioxide molecules disintegrate and form other compounds in the torch. For example, the normalized particle densities at center of plasma are given by nCO2/nN = 6.12 × 10-3, nCO/nN = 0.13, nC/nN = 0.24, nO/nN = 0.61, nC2/nN = 8.32 × 10-7, nO2/nN = 5.39 × 10-5, where nCO2, nCO, nC, nO, nC2, and nO2 are carbon dioxide, carbon monoxide, carbon and oxygen atom, carbon and oxygen molecule densities, respectively. nN is the neutral particle density. Emission profiles of the oxygen and carbon atom radicals and the carbon monoxide molecules confirm the theoretical predictions of carbon dioxide disintegration in the torch.

  3. Disintegration of Carbon Dioxide Molecules in a Microwave Plasma Torch.

    PubMed

    Kwak, Hyoung S; Uhm, Han S; Hong, Yong C; Choi, Eun H

    2015-01-01

    A pure carbon dioxide torch is generated by making use of 2.45 GHz microwave. Carbon dioxide gas becomes the working gas and produces a stable carbon dioxide torch. The torch volume is almost linearly proportional to the microwave power. Temperature of the torch flame is measured by making use of optical spectroscopy and thermocouple. Two distinctive regions are exhibited, a bright, whitish region of high-temperature zone and a bluish, dimmer region of relatively low-temperature zone. Study of carbon dioxide disintegration and gas temperature effects on the molecular fraction characteristics in the carbon dioxide plasma of a microwave plasma torch under atmospheric pressure is carried out. An analytical investigation of carbon dioxide disintegration indicates that substantial fraction of carbon dioxide molecules disintegrate and form other compounds in the torch. For example, the normalized particle densities at center of plasma are given by nCO2/nN = 6.12 × 10(-3), nCO/nN = 0.13, nC/nN = 0.24, nO/nN = 0.61, nC2/nN = 8.32 × 10(-7), nO2/nN = 5.39 × 10(-5), where nCO2, nCO, nC, nO, nC2, and nO2 are carbon dioxide, carbon monoxide, carbon and oxygen atom, carbon and oxygen molecule densities, respectively. nN is the neutral particle density. Emission profiles of the oxygen and carbon atom radicals and the carbon monoxide molecules confirm the theoretical predictions of carbon dioxide disintegration in the torch. PMID:26674957

  4. Determining electron temperature and density in a hydrogen microwave plasma

    NASA Technical Reports Server (NTRS)

    Scott, Carl D.; Farhat, Samir; Gicquel, Alix; Hassouni, Khaled; Lefebvre, Michel

    1993-01-01

    A three-temperature thermo-chemical model is developed for analyzing the chemical composition and energy states of a hydrogen microwave plasma used for studying diamond deposition. The chemical and energy exchange rate coefficients are determined from cross section data, assuming Maxwellian velocity distributions for electrons. The model is reduced to a zero-dimensional problem to solve for the electron temperature and ion mole fraction, using measured vibrational and rotational temperatures. The calculations indicate that the electron temperature may be determined to within a few percent error even though the uncertainty in dissociation fraction is many times larger.

  5. Effects of Plasma Treatment on Carbon Nanowalls Grown by Microwave Plasma Enhanced Chemical Vapor Deposition.

    PubMed

    Jung, Yong Ho; Kang, Hyunil; Choi, Won Seok; Joung, Yeun-Ho; Choi, Young-Kwan

    2016-05-01

    In this study, the effects of post-plasma treatment on synthesized carbon nanowalls (CNWs) grown with a microwave were investigated. CNWs were synthesized by microwave plasma enhanced chemical vapor deposition (PECVD), employing a mixture of CH4 and H2 gases. The plasma treatment was done in different plasma environments (O2 and H2) but under the same condition of synthesized CNWs. Raman spectroscopy, field emission scanning electron microscopy (FE-SEM), energy dispersive X-ray spectroscopy (EDS), and fourier transform infrared spectroscopy (FT-IR) were used to analyze the effects of the post-plasma treatment on the synthesized CNWs. After the H2 post-plasma treatment, no significant changes in the appearance and characteristics of the CNWs were observed. After the O2 post-plasma treatment, on the other hand, the CNWs were etched at a rate of 18.05 nm/sec. The Raman analysis confirmed, however, that the structural changes in the CNWs caused by the O2 post-plasma treatment were insignificant. PMID:27483917

  6. Fabrication of Carbon Nanotubes by Slot-Excited Microwave Plasma-Enhanced Chemical Vapor Deposition

    NASA Astrophysics Data System (ADS)

    Shim, Gyu Il; Kojima, Yoshihiro; Kono, Satoshi; Ohno, Yutaka; Ishijima, Tatsuo

    2008-07-01

    Carbon nanotubes (CNTs) are fabricated by adopting plasma-enhanced chemical vapor deposition (PECVD) with a planar microwave plasma source. Plasma is produced by a slot antenna at 2.45-GHz microwave injection in CH4/H2 mixture. In this study, it is shown that avoiding the exposure of the substrate to the plasma drastically improves the CNT growth. Furthermore, it is found that the CNT quality can be controlled with the optimization of one of the steps in the catalyst treatment, such as the preheating procedure; the treated catalyst is considered to be unaffected by the heating in the high-density microwave plasma treatment during the CNT growth.

  7. Spectroscopic measurement of plasma gas temperature of the atmospheric-pressure microwave induced nitrogen plasma torch

    NASA Astrophysics Data System (ADS)

    Chen, Chuan-Jie; Li, Shou-Zhe

    2015-06-01

    Atmospheric-pressure microwave induced N2 plasma is diagnosed by optical emission spectroscopy with respect to the plasma gas temperature. The spectroscopic measurement of plasma gas temperature is discussed with respect to the spectral line broadening of Ar I and the various emission rotational-vibrational band systems of N2(B-A), N2(C-B) and \\text{N}2+(\\text{B-X}). It is found that the Boltzmann plot of the selective spectral lines from \\text{N}2+(\\text{B-X}) at 391.4 nm is preferable to others with an accuracy better than 5% for an atmospheric-pressure plasma of high gas temperature. On the basis of the thermal balance equation, the dependences of the plasma gas temperature on the absorbed power, the gas flow rate, and the gas composition are investigated experimentally with photographs recording the plasma morphology.

  8. Electrostatic waves in plasma: the case of an expanding microwave plasma sustained in argon

    NASA Astrophysics Data System (ADS)

    Jauberteau, J. L.; Jauberteau, I.

    2014-12-01

    This work is devoted to the study of the electrostatic wave dispersion in plasma. Investigations are focused on waves with angular frequency ranging between the ion and the electron angular resonance frequency. The dispersion equation is resolved by means of a Fourier transform spectral method in the case of theoretical Maxwell-Boltzmann electron energy distribution functions (EEDFs), and in the case of experimental EEDFs measured by means of a Langmuir probe in microwave expanding plasma sustained in argon. The results show the change of the dispersion curve with the plasma parameters and the role of electrons and ions in the shape of the dispersion curve.

  9. Decontamination of biological warfare agents by a microwave plasma torch

    SciTech Connect

    Lai, Wilson; Lai, Henry; Kuo, Spencer P.; Tarasenko, Olga; Levon, Kalle

    2005-02-01

    A portable arc-seeded microwave plasma torch running stably with airflow is described and applied for the decontamination of biological warfare agents. Emission spectroscopy of the plasma torch indicated that this torch produced an abundance of reactive atomic oxygen that could effectively oxidize biological agents. Bacillus cereus was chosen as a simulant of Bacillus anthracis spores for biological agent in the decontamination experiments. Decontamination was performed with the airflow rate of 0.393 l/s, corresponding to a maximum concentration of atomic oxygen produced by the torch. The experimental results showed that all spores were killed in less than 8 s at 3 cm distance, 12 s at 4 cm distance, and 16 s at 5 cm distance away from the nozzle of the torch.

  10. Standing waves along a microwave generated surface wave plasma

    NASA Technical Reports Server (NTRS)

    Rogers, J.; Asmussen, J.

    1982-01-01

    Two surface wave plasma columns, generated by microwave power in argon at gas pressures of 0.05 torr to 330 torr, interact in the same discharge tube to form standing surface waves. Radial electric field and azimuthal magnetic field outside the discharge tube are measured to be 90 deg out of phase with respect to axial position and to decay exponentially with radial distance from the tube axis. Maximum light emission occurs at the position of maximum azimuthal magnetic field and minimum radial electric field. Electron temperature and density are measured at low pressures with double probes inserted into the plasma at a null of radial electric field. Measured electron densities compare well with those predicted by Gould-Trivelpiece surface wave theory.

  11. Gas mixing enhanced by power modulations in atmospheric pressure microwave plasma jet

    NASA Astrophysics Data System (ADS)

    Voráč, J.; Potočňáková, L.; Synek, P.; Hnilica, J.; Kudrle, V.

    2016-04-01

    Microwave plasma jet operating in atmospheric pressure argon was power modulated by audio frequency sine envelope in the 102 W power range. Its effluent was imaged using interference filters and ICCD camera for several different phases of the modulating signal. The combination of this fast imaging with spatially resolved optical emission spectroscopy provides useful insights into the plasmachemical processes involved. Phase-resolved schlieren photography was performed to visualize the gas dynamics. The results show that for higher modulation frequencies the plasma chemistry is strongly influenced by formation of transient flow perturbation resembling a vortex during each period. The perturbation formation and speed are strongly influenced by the frequency and power variations while they depend only weakly on the working gas flow rate. From application point of view, the perturbation presence significantly broadened lateral distribution of active species, effectively increasing cross-sectional area suitable for applications.

  12. Analysis of microwave leaky modes propagating through laser plasma filaments column waveguide

    SciTech Connect

    Alshershby, Mostafa; Hao Zuoqiang; Lin Jingquan

    2012-12-15

    A plasma column waveguide formed by a bundle of closely spaced plasma filaments induced by the propagation of ultrafast laser pulses in air and revived by a longer infrared laser pulse is shown to support microwave radiation. We consider values of both the plasma electron density and microwave frequency for which the refractive index of plasma is lower than the refractive index of air; therefore, a leaky plasma waveguide can be realized in extremely high frequency band. The guiding mechanism does not require high conductance of the plasma and can be easily excited by using commercial femtosecond laser sources. A theoretical study of leaky mode characteristics of isotropic and homogeneous plasma column waveguides is investigated with several values of plasma and waveguide structure parameters. The microwave transmission loss was found to be mainly caused by the microwave leakage through the air-plasma interface and is weakly dependent on the plasma absorption. In spite of losses of microwaves caused by leakage and plasma absorption, it is shown to be much lower than both that accompanying to surface waves attaching to single conducting plasma wire and the free space propagation over distances in the order of the filament length, which opens exciting perspectives for short distance point to point wireless transmission of pulsed-modulated microwaves.

  13. Development of local oscillator integrated antenna array for microwave imaging diagnostics

    NASA Astrophysics Data System (ADS)

    Kuwahara, D.; Ito, N.; Nagayama, Y.; Tsuchiya, H.; Yoshikawa, M.; Kohagura, J.; Yoshinaga, T.; Yamaguchi, S.; Kogi, Y.; Mase, A.; Shinohara, S.

    2015-12-01

    Microwave imaging diagnostics are powerful tools that are used to obtain details of complex structures and behaviors of such systems as magnetically confined plasmas. For example, microwave imaging reflectometry and microwave imaging interferometers are suitable for observing phenomena that are involved with electron density fluctuations; moreover, electron cyclotron emission imaging diagnostics enable us to accomplish the significant task of observing MHD instabilities in large tokamaks. However, microwave imaging systems include difficulties in terms of multi-channelization and cost. Recently, we solved these problems by developing a Horn-antenna Mixer Array (HMA), a 50 - 110 GHz 1-D heterodyne- type antenna array, which can be easily stacked as a 2-D receiving array, because it uses an end-fire element. However, the HMA still evidenced problems owing to the requirement for local oscillation (LO) optics and an expensive high-power LO source. To solve this problem, we have developed an upgraded HMA, named the Local Integrated Antenna array (LIA), in which each channel has an internal LO supply using a frequency multiplier integrated circuit. Therefore, the proposed antenna array eliminates the need for both the LO optics and the high-power LO source. This paper describes the principle of the LIA, and provides details about an 8 channel prototype LIA.

  14. A biresonant plasma source based on a gapped linear microwave vibrator

    SciTech Connect

    Gritsinin, S. I.; Davydov, A. M.; Kossyi, I. A.; Arapov, K. A.; Chapkevich, A. A.

    2011-03-15

    The operating principle of a novel microwave plasma source-a linear microwave vibrator with a gap-is discussed. The source is placed on a microwave-transparent window of a chamber filled with a plasma-forming gas (argon or methane). The device operation is based on the combination of two resonances-geometric and plasma ones. The results of experimental tests of the source are presented. For a microwave frequency of 2.45 GHz, microwave power of {<=}1 kW, and plasma-forming gas pressure in the range 5 Multiplication-Sign 10{sup -2}-10{sup -1} Torr, the source is capable of filling the reactor volume with a plasma having an electron density of about 10{sup 12} cm{sup -3} and electron temperature of a few electronvolts.

  15. Imaging spectroscopy of solar microwave radiation. 1: Flaring emission

    NASA Technical Reports Server (NTRS)

    Lim, Jeremy; Gary, Dale E.; Hurford, Gordon J.; Lemen, James R.

    1994-01-01

    We present observations of an impulsive microwave burst on the Sun with both high spatial and spectral resolution, made with the Solar Array at the Owens Valley Radio Observatory (OVRO). We used the measured brightness temperature spectrum to infer the emission process responsible for each microwave source, and to derive physical conditions in the source region. We confimed our predictions using soft X-ray measurements from Geostationary Operational Environmental Satellite (GOES), soft X-ray images from Yohkoh, and H-alpha flare images together with sunspots and magnetogram images from the Big Bear Solar Observatory.

  16. CO2 dissociation in vortex-stabilised microwave plasmas

    NASA Astrophysics Data System (ADS)

    Welzel, S.; Bongers, W. A.; Graswinckel, M. F.; van de Sanden, M. C. M.

    2014-10-01

    Plasma-assisted gas conversion techniques are widely considered as efficient building blocks in a future energy infrastructure which will be based on intermittent, renewable electricity sources. CO2 dissociation in high-frequency plasmas is of particular interest in carbon capture and utilisation process chains for the production of CO2-neutral fuels. In order to achieve efficient plasma processes of high throughput specifically designed gas flow and power injection regimes are required. In this contribution vortex-stabilised microwave plasmas in undiluted CO2 were studied in a pressure range from 170 to 1000 mbar at up to 1 kW (forward) injected power, respectively. The CO2 depletion was measured downstream, e.g. by means of mass spectrometry. Although the system configuration was entirely not optimised, energy efficiencies of nearly 40%, i.e. close to the thermal dissociation limit, and conversion efficiencies of up to 23% were achieved. Additionally, spatially-resolved emission spectroscopy was applied to map the axial and radial distribution of excited atomic (C, O) and molecular (CO, C2) species along with their rotational temperatures. Eindhoven University of Technology, Postbox 513, 5600 MB Eindhoven.

  17. Plasma filamentation and shock wave enhancement in microwave rockets by combining low-frequency microwaves with external magnetic field

    NASA Astrophysics Data System (ADS)

    Takahashi, Masayuki; Ohnishi, Naofumi

    2016-08-01

    A filamentary plasma is reproduced based on a fully kinetic model of electron and ion transports coupled with electromagnetic wave propagation. The discharge plasma transits from discrete to diffusive patterns at a 110-GHz breakdown, with decrease in the ambient pressure, because of the rapid electron diffusion that occurs during an increase in the propagation speed of the ionization front. A discrete plasma is obtained at low pressures when a low-frequency microwave is irradiated because the ionization process becomes more dominant than the electron diffusion, when the electrons are effectively heated by the low-frequency microwave. The propagation speed of the plasma increases with decrease in the incident microwave frequency because of the higher ionization frequency and faster plasma diffusion resulting from the increase in the energy-absorption rate. An external magnetic field is applied to the breakdown volume, which induces plasma filamentation at lower pressures because the electron diffusion is suppressed by the magnetic field. The thrust performance of a microwave rocket is improved by the magnetic fields corresponding to the electron cyclotron resonance (ECR) and its higher-harmonic heating, because slower propagation of the ionization front and larger energy-absorption rates are obtained at lower pressures. It would be advantageous if the fundamental mode of ECR heating is coupled with a lower frequency microwave instead of combining the higher-harmonic ECR heating with the higher frequency microwave. This can improve the thrust performance with smaller magnetic fields even if the propagation speed increases because of the decrease in the incident microwave frequency.

  18. Simultaneous Microwave Imaging System for Density and Temperature Fluctuation Measurements on TEXTOR

    SciTech Connect

    H. Park; E. Mazzucato; T. Munsat; C.W. Domier; M. Johnson; N.C. Luhmann, Jr.; J. Wang; Z. Xia; I.G.J. Classen; A.J.H. Donne; M.J. van de Pol

    2004-05-07

    Diagnostic systems for fluctuation measurements in plasmas have, of necessity, evolved from simple 1-D systems to multi-dimensional systems due to the complexity of the MHD and turbulence physics of plasmas illustrated by advanced numerical simulations. Using the recent significant advancements in millimeter wave imaging technology, Microwave Imaging Reflectometry (MIR) and Electron Cyclotron Emission Imaging (ECEI), simultaneously measuring density and temperature fluctuations, are developed for TEXTOR. The MIR system was installed on TEXTOR and the first experiment was performed in September, 2003. Subsequent MIR campaigns have yielded poloidally resolved spectra and assessments of poloidal velocity. The new 2-D ECE Imaging system (with a total of 128 channels), installed on TEXTOR in December, 2003, successfully captured a true 2-D images of Te fluctuations of m=1 oscillation (''sawteeth'') near the q {approx} 1 surface for the first time.

  19. Broadband microwave characteristics of a novel coaxial gridded hollow cathode argon plasma

    NASA Astrophysics Data System (ADS)

    Gao, Ruilin; Yuan, Chengxun; Li, Hui; Jia, Jieshu; Zhou, Zhong-Xiang; Wang, Ying; Wang, Xiaoou; Wu, Jian

    2016-08-01

    The interaction between microwave and large area plasma is crucially important for space communication. Gas pressure, input power, and plasma volume are critical to both the microwave electromagnetic wave phase shift and electron density. This paper presents a novel type of large coaxial gridded hollow cathode plasma having a 50 cm diameter and a 40 cm thickness. Microwave characteristics are studied using a microwave measurement system that includes two broadband antennae in the range from 2 GHz to 18 GHz. The phase shift under varying gas pressure and input power is shown. In addition, the electron density ne, which varies from 1.2 × 1016 m-3 to 8.7 × 1016 m-3 under different discharge conditions, is diagnosed by the microwave system. The measured results accord well with those acquired by Langmuir Probe measurement and show that the microwave properties in the large volume hollow cathode discharge significantly depend on the input power and gas pressure.

  20. Microwave plasma-assisted ignition and flameholding in premixed ethylene/air mixtures

    NASA Astrophysics Data System (ADS)

    Fuh, Che A.; Wu, Wei; Wang, Chuji

    2016-07-01

    In this study, a 2.45 GHz microwave source and a surfatron were used, coupled with a T-shaped quartz combustor, to investigate the role of a nonthermal microwave argon plasma jet on the plasma-assisted ignition and flameholding of a premixed ethylene/air mixture. A modified U-shaped plot of the minimum plasma power required for ignition versus fuel equivalence ratio was obtained, whereby the plasma power required for plasma-assisted ignition decreased with increase in fuel equivalence ratios in the range 0.2-0.6, but for fuel equivalence ratios of 0.7 and above, the plasma power required for ignition remained fairly constant throughout. It was observed that leaner fuel/air mixtures were more sensitive to heat losses to the surrounding and this sensitivity decreased with increase in the fuel equivalence ratio. Comparison with results obtained from previous studies suggested that the mixing scheme between the plasma and the premixed fuel/air mixture and the energy density of the fuel used played an important role in influencing the minimum plasma power required for ignition with the effect being more pronounced for near stoichiometric to rich fuel equivalence ratios (0.7-1.4). Flame images obtained showed a dual layered flame with an inner white core and a bluish outer layer. The images also showed an increased degree of flameholding (tethering of the flame to the combustor orifice) with increase in plasma power. The concurrency of the dual peaks in the emission intensity profiles for OH(A), CH(A), C2(d), and the rotational temperature profiles obtained via optical emission spectroscopy along with the ground state OH(X) number density profiles in the flame using cavity ringdown spectroscopy led to the proposal that the mechanism of plasma-assisted flameholding in ethylene/air flames is predominantly radical dependent with the formation of an inner radical rich flame core which enhances the ignition and stabilization of the surrounding coflow.

  1. Microwave plasma-assisted ignition and flameholding in premixed ethylene/air mixtures

    NASA Astrophysics Data System (ADS)

    Fuh, Che A.; Wu, Wei; Wang, Chuji

    2016-07-01

    In this study, a 2.45 GHz microwave source and a surfatron were used, coupled with a T-shaped quartz combustor, to investigate the role of a nonthermal microwave argon plasma jet on the plasma-assisted ignition and flameholding of a premixed ethylene/air mixture. A modified U-shaped plot of the minimum plasma power required for ignition versus fuel equivalence ratio was obtained, whereby the plasma power required for plasma-assisted ignition decreased with increase in fuel equivalence ratios in the range 0.2–0.6, but for fuel equivalence ratios of 0.7 and above, the plasma power required for ignition remained fairly constant throughout. It was observed that leaner fuel/air mixtures were more sensitive to heat losses to the surrounding and this sensitivity decreased with increase in the fuel equivalence ratio. Comparison with results obtained from previous studies suggested that the mixing scheme between the plasma and the premixed fuel/air mixture and the energy density of the fuel used played an important role in influencing the minimum plasma power required for ignition with the effect being more pronounced for near stoichiometric to rich fuel equivalence ratios (0.7–1.4). Flame images obtained showed a dual layered flame with an inner white core and a bluish outer layer. The images also showed an increased degree of flameholding (tethering of the flame to the combustor orifice) with increase in plasma power. The concurrency of the dual peaks in the emission intensity profiles for OH(A), CH(A), C2(d), and the rotational temperature profiles obtained via optical emission spectroscopy along with the ground state OH(X) number density profiles in the flame using cavity ringdown spectroscopy led to the proposal that the mechanism of plasma-assisted flameholding in ethylene/air flames is predominantly radical dependent with the formation of an inner radical rich flame core which enhances the ignition and stabilization of the surrounding coflow.

  2. A microwave detection way by electromagnetic and elastic resonance: Breaking the bottleneck of spatial resolution in microwave imaging

    NASA Astrophysics Data System (ADS)

    Ji, Zhong; Lou, Cunguang; Shi, Yujiao; Ding, Wenzheng; Yang, Sihua; Xing, Da

    2015-10-01

    The spatial resolution of microwave imaging depends on the geometrical size of the detector. The existing techniques mainly focus on optimizing the antenna design to achieve high detection sensitivity. However, since the optimal antenna size is closely related to the wavelength to be measured, and the miniaturization of the geometrical size is challenging, this limits the spatial resolution of microwave imaging. In this letter, a microwave detection technique based on the electromagnetic-elastic resonance effect is proposed. The piezoelectric materials can produce mechanical responses under microwave excitation, and the amplitude of the microwave can be detected by measuring these responses. In contrast to conventional microwave detection method, the proposed method has distinct advantages in terms of high sensitivity and wide spectral response. Most importantly, it overcomes the limitation of detector size, thus, significantly improving the detection resolution. Therefore, the proposed method has potential for microwave imaging in biomedical applications.

  3. Breast cancer imaging by microwave-induced thermoacoustic tomography

    NASA Astrophysics Data System (ADS)

    Xu, Minghua; Ku, Geng; Jin, Xing; Wang, Lihong V.; Fornage, Bruno D.; Hunt, Kelly K.

    2005-04-01

    We report a preliminary study of breast cancer imaging by microwave-induced thermoacoustic tomography. In this study, we built a prototype of breast cancer imager based on a circular scan mode. A 3-GHz 0.3~0.5-μs microwave is used as the excitation energy source. A 2.25-MHz ultrasound transducer scans the thermoacoustic signals. All the measured data is transferred to a personal computer for imaging based on our proposed back-projection reconstruction algorithms. We quantified the line spread function of the imaging system. It shows the spatial resolution of our experimental system reaches 0.5 mm. After phantom experiments demonstrated the principle of this technique, we moved the imaging system to the University of Texas MD Anderson Cancer Center to image the excised breast cancer specimens. After the surgery performed by the physicians at the Cancer Center, the excised breast specimen was placed in a plastic cylindrical container with a diameter of 10 cm; and it was then imaged by three imaging modalities: radiograph, ultrasound and thermoacoustic imaging. Four excised breast specimens have been tested. The tumor regions have been clearly located. This preliminary study demonstrated the potential of microwave-induced thermoacoustic tomography for applications in breast cancer imaging.

  4. Near field 3D scene simulation for passive microwave imaging

    NASA Astrophysics Data System (ADS)

    Zhang, Cheng; Wu, Ji

    2006-10-01

    Scene simulation is a necessary work in near field passive microwave remote sensing. A 3-D scene simulation model of microwave radiometric imaging based on ray tracing method is present in this paper. The essential influencing factors and general requirements are considered in this model such as the rough surface radiation, the sky radiation witch act as the uppermost illuminator in out door circumstance, the polarization rotation of the temperature rays caused by multiple reflections, and the antenna point spread function witch determines the resolution of the model final outputs. Using this model we simulate a virtual scene and analyzed the appeared microwave radiometric phenomenology, at last two real scenes of building and airstrip were simulated for validating the model. The comparison between the simulation and field measurements indicates that this model is completely feasible in practice. Furthermore, we analyzed the signatures of model outputs, and achieved some underlying phenomenology of microwave radiation witch is deferent with that in optical and infrared bands.

  5. Near Field Imaging at Microwave and Millemeter Wave Frequencies

    SciTech Connect

    Sheen, David M.; McMakin, Douglas L.; Hall, Thomas E.

    2007-06-03

    Near field imaging at microwave and millimeter wave frequencies is useful for a wide variety of applications including concealed weapon detection, through-wall and inner-wall imaging, ground penetrating radar imaging, radar cross section analysis, and non-destructive evaluation of materials. A variety of novel imaging techniques have been developed for many of these applications at the Pacific Northwest National Laboratory (PNNL) . These techniques make use of wideband holographic wavefront reconstruction methods, and have been developed to optimize the image quality and resolution. This paper will summarize several of these techniques and show imaging results for several interesting application areas.

  6. Production of large resonant plasma volumes in microwave electron cyclotron resonance ion sources

    DOEpatents

    Alton, G.D.

    1998-11-24

    Microwave injection methods are disclosed for enhancing the performance of existing electron cyclotron resonance (ECR) ion sources. The methods are based on the use of high-power diverse frequency microwaves, including variable-frequency, multiple-discrete-frequency, and broadband microwaves. The methods effect large resonant ``volume`` ECR regions in the ion sources. The creation of these large ECR plasma volumes permits coupling of more microwave power into the plasma, resulting in the heating of a much larger electron population to higher energies, the effect of which is to produce higher charge state distributions and much higher intensities within a particular charge state than possible in present ECR ion sources. 5 figs.

  7. Production of large resonant plasma volumes in microwave electron cyclotron resonance ion sources

    DOEpatents

    Alton, Gerald D.

    1998-01-01

    Microwave injection methods for enhancing the performance of existing electron cyclotron resonance (ECR) ion sources. The methods are based on the use of high-power diverse frequency microwaves, including variable-frequency, multiple-discrete-frequency, and broadband microwaves. The methods effect large resonant "volume" ECR regions in the ion sources. The creation of these large ECR plasma volumes permits coupling of more microwave power into the plasma, resulting in the heating of a much larger electron population to higher energies, the effect of which is to produce higher charge state distributions and much higher intensities within a particular charge state than possible in present ECR ion sources.

  8. Taming microwave plasma to beat thermodynamics in CO2 dissociation.

    PubMed

    van Rooij, G J; van den Bekerom, D C M; den Harder, N; Minea, T; Berden, G; Bongers, W A; Engeln, R; Graswinckel, M F; Zoethout, E; van de Sanden, M C M

    2015-01-01

    The strong non-equilibrium conditions provided by the plasma phase offer the opportunity to beat traditional thermal process energy efficiencies via preferential excitation of molecular vibrations. Simple molecular physics considerations are presented to explain potential dissociation pathways in plasma and their effect on energy efficiency. A common microwave reactor approach is evaluated experimentally with Rayleigh scattering and Fourier transform infrared spectroscopy to assess gas temperatures (exceeding 10(4) K) and conversion degrees (up to 30%), respectively. The results are interpreted on a basis of estimates of the plasma dynamics obtained with electron energy distribution functions calculated with a Boltzmann solver. It indicates that the intrinsic electron energies are higher than is favorable for preferential vibrational excitation due to dissociative excitation, which causes thermodynamic equilibrium chemistry to dominate. The highest observed energy efficiencies of 45% indicate that non-equilibrium dynamics had been at play. A novel approach involving additives of low ionization potential to tailor the electron energies to the vibrational excitation regime is proposed.

  9. New diagnostic methods for laser plasma- and microwave-enhanced combustion.

    PubMed

    Miles, Richard B; Michael, James B; Limbach, Christopher M; McGuire, Sean D; Chng, Tat Loon; Edwards, Matthew R; DeLuca, Nicholas J; Shneider, Mikhail N; Dogariu, Arthur

    2015-08-13

    The study of pulsed laser- and microwave-induced plasma interactions with atmospheric and higher pressure combusting gases requires rapid diagnostic methods that are capable of determining the mechanisms by which these interactions are taking place. New rapid diagnostics are presented here extending the capabilities of Rayleigh and Thomson scattering and resonance-enhanced multi-photon ionization (REMPI) detection and introducing femtosecond laser-induced velocity and temperature profile imaging. Spectrally filtered Rayleigh scattering provides a method for the planar imaging of temperature fields for constant pressure interactions and line imaging of velocity, temperature and density profiles. Depolarization of Rayleigh scattering provides a measure of the dissociation fraction, and multi-wavelength line imaging enables the separation of Thomson scattering from Rayleigh scattering. Radar REMPI takes advantage of high-frequency microwave scattering from the region of laser-selected species ionization to extend REMPI to atmospheric pressures and implement it as a stand-off detection method for atomic and molecular species in combusting environments. Femtosecond laser electronic excitation tagging (FLEET) generates highly excited molecular species and dissociation through the focal zone of the laser. The prompt fluorescence from excited molecular species yields temperature profiles, and the delayed fluorescence from recombining atomic fragments yields velocity profiles. PMID:26170432

  10. New diagnostic methods for laser plasma- and microwave-enhanced combustion

    PubMed Central

    Miles, Richard B; Michael, James B; Limbach, Christopher M; McGuire, Sean D; Chng, Tat Loon; Edwards, Matthew R; DeLuca, Nicholas J; Shneider, Mikhail N; Dogariu, Arthur

    2015-01-01

    The study of pulsed laser- and microwave-induced plasma interactions with atmospheric and higher pressure combusting gases requires rapid diagnostic methods that are capable of determining the mechanisms by which these interactions are taking place. New rapid diagnostics are presented here extending the capabilities of Rayleigh and Thomson scattering and resonance-enhanced multi-photon ionization (REMPI) detection and introducing femtosecond laser-induced velocity and temperature profile imaging. Spectrally filtered Rayleigh scattering provides a method for the planar imaging of temperature fields for constant pressure interactions and line imaging of velocity, temperature and density profiles. Depolarization of Rayleigh scattering provides a measure of the dissociation fraction, and multi-wavelength line imaging enables the separation of Thomson scattering from Rayleigh scattering. Radar REMPI takes advantage of high-frequency microwave scattering from the region of laser-selected species ionization to extend REMPI to atmospheric pressures and implement it as a stand-off detection method for atomic and molecular species in combusting environments. Femtosecond laser electronic excitation tagging (FLEET) generates highly excited molecular species and dissociation through the focal zone of the laser. The prompt fluorescence from excited molecular species yields temperature profiles, and the delayed fluorescence from recombining atomic fragments yields velocity profiles. PMID:26170432

  11. Experiments of new plasma concepts for enhanced microwave vacuum electronics

    SciTech Connect

    Muggli, P.; Hoffman, J.R.; Yampolsky, J.; Cordell, J.F.; Gundersen, M.A.; Joshi, C.; Katsouleas, T.

    1999-07-01

    Recently new schemes have been proposed for plasma based microwave sources that could lead to output power increases by orders of magnitude, as well as offer new possibilities such as broad band tuning and frequency chirping, ultra-short pulse generation, pulse design, etc. In the first scheme, the static field of an alternatively biased capacitor is directly converted into short pulses of turnable electromagnetic (em) radiation upon transmission through a relativistic; under dense ionization front. The structure presently under investigation consists of pin pairs (capacitors) inserted into an X-band waveguide through its narrow sidewall and separated by 1.134 cm. The generated frequency is in the X-band frequency range (8.4--12.4 GHz) when operated with plasma densities between 10{sup 11} and 10{sup 12} cm{sup {minus}3}. The output power is in the 100 W range with an applied voltage of 6 kV and is limited by high voltage (HV) breakdown inside the structure. Much higher output power levels are expected with the new, shorter pulse, HV pulser, since the output power is proportional to the square of the applied voltage. At larger plasma densities, generation of a higher order mode traveling in the backward direction is also observed. In the second scheme, a fraction of the large amplitude electrostatic (es) wave generated in a plasma beat wave acceleration (PBWA) experiment (up to 3 GeV/m) is converted into em radiation by applying a static magnetic field perpendicularly to the driving laser beam. The two-frequency CO{sub 2} laser beam resonantly drives the es wave, and couples to the L branch of the XO mode of the magnetized plasma through Cherenkov radiation. The radiation is emitted predominantly in the forward direction (direction of the laser beam), and is at the plasma frequency (n{sub c} {approximately}10{sup 16} cm{sup {minus}3}, f{approximately}1 THz). With an applied magnetic field of 6 kG the output power is calculated to be in the megawatt range (for a

  12. Synthesis of Titanium Dioxide by Microwave Plasma Torch.

    PubMed

    Wei, Ta-Chin; Chen, Hua-Wei; Lin, Sheng-Kai

    2015-04-01

    In this study, TiO2 nanoparticles were synthesized from titanium tetraisopropanol (TTIP) using a microwave plasma torch (MPT) and characterized by scanning electron microscopy (SEM), Fourier transform infrared (FTIR) spectroscopy, X-ray diffraction (XRD) and thermogravimetry analysis (TGA). The visible light photocatalysis was studied by the decomposition of methylene blue. MB present in the aqueous solution could be almost completely (> 70%) decomposed within about 720 min of reaction time under visible light irradiation. This is due to the carbon-compounds on the surface of TiO2 (TiOC) corresponding to the results of FTIR. Furthermore, a decrease in recombination between the electron and hole was induced by the existence of TiOC. PMID:26353500

  13. Airborne Microwave Imaging of River Velocities

    NASA Technical Reports Server (NTRS)

    Plant, William J.

    2002-01-01

    The objective of this project was to determine whether airborne microwave remote sensing systems can measure river surface currents with sufficient accuracy to make them prospective instruments with which to monitor river flow from space. The approach was to fly a coherent airborne microwave Doppler radar, developed by APL/UW, on a light airplane along several rivers in western Washington state over an extended period of time. The fundamental quantity obtained by this system to measure river currents is the mean offset of the Doppler spectrum. Since this scatter can be obtained from interferometric synthetic aperture radars (INSARs), which can be flown in space, this project provided a cost effective means for determining the suitability of spaceborne INSAR for measuring river flow.

  14. Microwave discharges at low pressures and peculiarities of the processes in strongly non-uniform plasma

    NASA Astrophysics Data System (ADS)

    Lebedev, Yu A.

    2015-10-01

    Microwave discharges (MD) are widely used as a source of non-equilibrium low pressure plasma for different applications. This paper reviews the methods of microwave plasma generation at pressures from 10-2 approximately to 30 kPa with centimeter-millimeter wavelength microwaves on the basis of scientific publications since 1950 up to the present. The review consists of 16 sections. A general look at MDs and their application is given in the introduction, together with a description of a typical block-schema of the microwave plasma generator, classification of MD, and attractive features of MD. Sections 2-12 describe the different methods of microwave plasma generators on the basis of cavity and waveguide discharges, surface and slow wave discharges, discharges with distributed energy input, initiated and surface discharges, discharges in wave beams, discharges with stochastically jumping phases of microwaves, discharges in an external magnetic field and discharges with a combination of microwave field and dc and RF fields. These methods provide the possibility of producing nonequilibriun high density plasma in small and large chambers for many applications. Plasma chemical activity of nonequilibrium microwave plasma is analyzed in section 13. A short consideration of the history and status of the problem is given. The main areas of microwave plasma application are briefly described in section 14. Non-uniformity is the inherent property of the majority of electrical discharges and MDs are no exception. Peculiarities of physical-chemical processes in strongly non-uniform MDs are demonstrated placing high emphasis on the influence of small noble gas additions to the main plasma gas (section 15). The review is illustrated by 80 figures. The list of references contains 350 scientific publications.

  15. Characterization of microwave discharge plasmas for surface processing

    NASA Astrophysics Data System (ADS)

    Nikolic, Milka

    We have developed several diagnostic techniques to characterize two types of microwave (MW) discharge plasmas: a supersonic flowing argon MW discharge maintained in a cylindrical quartz cavity at frequency ƒ = 2.45 GHz and a pulse repetitive MW discharge in air at ƒ = 9.5 GHz. Low temperature MW discharges have been proven to posses attractive properties for plasma cleaning and etching of niobium surfaces of superconductive radio frequency (SRF) cavities. Plasma based surface modification technologies offer a promising alternative for etching and cleaning of SRF cavities. These technologies are low cost, environmentally friendly and easily controllable, and present a possible alternative to currently used acid based wet technologies, such as buffered chemical polishing (BCP), or electrochemical polishing (EP). In fact, weakly ionized. non-equilibrium, and low temperature gas discharges represent a powerful tool for surface processing due to the strong chemical reactivity of plasma radicals. Therefore, characterizing these discharges by applying non-perturbing, in situ measurement techniques is of vital importance. Optical emission spectroscopy has been employed to analyze the molecular structure and evaluate rotational and vibrational temperatures in these discharges. The internal plasma structure was studied by applying a tomographic numerical method based on the two-dimensional Radon formula. An automated optical measurement system has been developed for reconstruction of local plasma parameters. It was found that excited argon states are concentrated near the tube walls, thus confirming the assumption that the post discharge plasma is dominantly sustained by a travelling surface wave. Employing a laser induced fluorescence technique in combination with the time synchronization device allowed us to obtain time-resolved population densities of some excited atomic levels in argon. We have developed a technique for absolute measurements of electron density based

  16. Short pulse, high power microwave radiation source with a laser-induced sheet plasma mirror

    SciTech Connect

    Higashiguchi, Takeshi; Yugami, Noboru

    2009-05-01

    We have demonstrated the short pulse, high power microwave radiation source using an ultraviolet laser-induced sheet plasma mirror in a gas-filled x-band rectangular waveguide from the conventional microwave sources and components. A laser-induced sheet plasma with an overdense plasma acts as a plasma mirror. The long pulse propagating in the gas-filled waveguide was sliced by the sheet plasma mirror at two different points along the waveguide. We observed about twice the power of the pulse by adding the two sliced microwave pulses produced by this scheme. A maximum peak power of 200 kW with a pulse duration of 10 ns (full width at half maximum) from the long microwave pulse source with a pulse duration of 0.8 mus was observed.

  17. Data acquisition system for harmonic motion microwave Doppler imaging.

    PubMed

    Tafreshi, Azadeh Kamali; Karadaş, Mürsel; Top, Can Barış; Gençer, Nevzat Güneri

    2014-01-01

    Harmonic Motion Microwave Doppler Imaging (HMMDI) is a hybrid method proposed for breast tumor detection, which images the coupled dielectric and elastic properties of the tissue. In this paper, the performance of a data acquisition system for HMMDI method is evaluated on breast phantom materials. A breast fat phantom including fibro-glandular and tumor phantom regions is produced. The phantom is excited using a focused ultrasound probe and a microwave transmitter. The received microwave signal level is measured on three different points inside the phantom (fat, fibro-glandular, and tumor regions). The experimental results using the designed homodyne receiver proved the effectiveness of the proposed setup. In tumor phantom region, the signal level decreased about 3 dB compared to the signal level obtained from the fibro-glandular phantom area, whereas this signal was about 4 dB higher than the received signal from the fat phantom.

  18. Microwave-plasma in a Simple Magnetized Torus

    NASA Astrophysics Data System (ADS)

    Rypdal, K.; Åfredriksen; Olsen, O. M.

    1996-11-01

    In a magnetized torus with a purely toroidal field, a weakly ionized plasma is produced by microwaves in the power range 0.5 - 5 kW at 2.45 GHz in O-mode as well as X-mode. Typical plasma parameters are ne ~ 1- 5× 10^16 m-3, Te ~ 1-10 eV, Ti ~ 1 eV. The primary X-mode is almost completely reflected at the cutoff/UH-resonance layer. The O-mode penetrates the plasma and is partly converted to X-mode by wall reflection. The reflected X-mode is collisionally absorbed at the UH-resonance. This scenario yields an electron density profile with one UH-resonance at major radius R_UH such that ω_UH>ω for RR_UH. This typically corresponds to a profile that increases monotonically with R from the EC-resonance, with a maximum near the outer wall. When the EC-resonance is closer to the inner wall, the plasma cannot maintain this profile throughout the entire crossection, and one observes polarization effects due to the vertical current arising from the nabla B- and curvature drifts. The more complex density and temperature distribution observed is intimately connected to the E × B -flow pattern. Te is shown to be determined by the balance between electron production and loss by transport and depends strongly on the ionization potential. The ne level is determined by the detailed power balance.

  19. Fundamental design problems and properties of microwave plasma/ion sources

    NASA Technical Reports Server (NTRS)

    Root, J.; Rogers, J.; Asmussen, J.; Hawley, M. C.

    1981-01-01

    Design problems and procedures associated with microwave plasma sources are applied to cylindrical plasmas inside coaxial and cylindrical cavities. The experimental performance of these cavities is presented. Measurements of electron density and electron temperature for several inert gases, and different tube diameters and pressures are presented and compared with microwave and positive column discharge theories. Results show that plasmas with electron densities in excess of 10 to the 12th/cu cm are easily produced from microwave S band energy. The potential for these sources for ion engines is evaluated.

  20. Zinc Plasma Emission from Zinc Oxide Ceramics under a Microwave Electric Field

    NASA Astrophysics Data System (ADS)

    Sonobe, Taro; Mitani, Tomohiko; Hachiya, Kan; Shinohara, Naoki; Ohgaki, Hideaki

    2010-08-01

    We studied the effects of microwave irradiation on ZnO ceramics under vacuum to clarify the emission of zinc and oxygen plasmas from ZnO, while simultaneously focusing on the material's optical properties. We observed the emission of zinc and oxygen plasmas during intense absorption of microwaves as well as the deposition of zinc and zinc oxide films. Absorption coefficient and photoluminescence spectra suggest that zinc and oxygen plasmas were produced from grain surfaces of ZnO by microwave irradiation under vacuum, a phenomenon which was observed in a previous study on TiO2 [Jpn. J. Appl. Phys. 48 (2009) 116003].

  1. Model of a microwave beam coupling to CO 2 laser plasma

    NASA Astrophysics Data System (ADS)

    Caraway, E. L.; Sokol, M.; Grossman, B. G.

    2002-04-01

    We have designed a transmission line model of the microwave coupling mechanism for a microwave pumped CO 2 laser. The model is a total loss ridge waveguide transmission line having nonuniform impedance. The laser plasma is modeled as a frequency-dependent lossy dielectric and acts as a distributed resistance in the length of the microwave cavity. The coupling structure of the microwaves is designed not to be resonant at the microwave source frequency of 2.45 GHz at 1 kW and propagating the total microwave field energy to be absorbed without internal reflection. An exact solution to this general transmission line propagation constant for a shunt resistance along length of the guide is found. The measurements and predictions of the parameters of the plasma conductivity as a function of the attenuation constant agree closely.

  2. Evanescent wave fields at the plasma frequency in a microwave-generated hollow-cathode plasma

    NASA Astrophysics Data System (ADS)

    Hildebrandt, J.

    2006-08-01

    The different discharge regimes of the double-plate hollow-cathode are analysed with respect to the high plasmon levels, which are measured by the spectroscopic plasma-satellite method. The high-current glow discharge at start up creates a preplasma, which lets charging half-cycles start in an alternating order from both cathodes. They follow a cylindric boundary surrounding the central plasma cylinder, which exceeds the cut-off density, and thus constitute a self sustaining microwave oscillator. The ions from anodic space are radially attracted by the scattered Hertzian electrons and approach the central plasma, where they get neutralized upon penetrating the boundary, which is steadily displacing. Below the spiking threshold these ions of a high final radial velocity are responsible for the rapidly growing plasma core, whose expansion velocity has a strong cooling effect on the radial electron kinetic energy. Then a Lorentzian line shape indicating critical damping over a single oscillation is found for the near and the far satellites to the forbidden component of the helium I 447 nm line, corresponding to a field of up to 4 kV cm-1. The rotating wave approximation allows us to derive the exponential damping of the field envelope. The other solution of the rotating wave approximation is associated with the reflection of microwaves at the plasma boundary. Above the spiking threshold the production of wave fields around the plasma frequency in the central region is continued by the 4 ns current spikes. But the boundary conditions of high-current electron-neutral scattering require a spatially evanescent Green's function, therefore within both regions 2 mm adjacent to the cathode surfaces no plasma-satellites are then found.

  3. Microwave guiding and intense plasma generation at subcutoff dimensions for focused ion beams

    SciTech Connect

    Mathew, Jose V.; Dey, Indranuj; Bhattacharjee, Sudeep

    2007-07-23

    The mechanism of microwave guiding and plasma generation is investigated in a circular waveguide with a subcutoff dimension using pulsed microwaves of 3 GHz. During the initial phase, gaseous breakdown is induced by the exponentially decaying wave. Upon breakdown, the refractive index of the plasma medium varies radially, with the plasma density reaching close to cutoff values in the central region. At lower pressures, the waves can propagate through the peripheral plasma with a reduced wavelength, due to the collisionally broadened upper hybrid resonance region. The intense narrow cross sectional plasma bears promise for multielemental focused ion beams.

  4. Experimental study of microwave-induced thermoacoustic imaging

    NASA Astrophysics Data System (ADS)

    Jacobs, Ryan T.

    Microwave-Induced Thermoacoustic Imaging (TAI) is a noninvasive hybrid modality which improves contrast by using thermoelastic wave generation induced by microwave absorption. Ultrasonography is widely used in medical practice as a low-cost alternative and supplement to magnetic resonance imaging (MRI). Although ultrasonography has relatively high image resolution (depending on the ultrasonic wavelength at diagnostic frequencies), it suffers from low image contrast of soft tissues. In this work samples are irradiated with sub-microsecond electromagnetic pulses inducing acoustic waves in the sample that are then detected with an unfocused transducer. The advantage of this hybrid modality is the ability to take advantage of the microwave absorption coefficients which provide high contrast in tissue samples. This in combination with the superior spatial resolution of ultrasound waves is important to providing a low-cost alternative to MRI and early breast cancer detection methods. This work describes the implementation of a thermoacoustic experiment using a 5 kW peak power microwave source.

  5. Imaging of Active Microwave Devices at Cryogenic Temperatures using Scanning Near-Field Microwave Microscopy

    NASA Astrophysics Data System (ADS)

    Thanawalla, Ashfaq S.; Dutta, S. K.; Vlahacos, C. P.; Steinhauer, D. E.; Feenstra, B. J.; Anlage, Steven M.; Wellstood, F. C.

    1998-03-01

    The ability to image electric fields in operating microwave devices is interesting both from the fundamental point of view and for diagnostic purposes. To that end we have constructed a scanning near-field microwave microscope which uses an open-ended coaxial probe and operates at cryogenic temperatures.(For related publications see: C. P. Vlahacos, R. C. Black, S. M. Anlage, A. Amar and F. C. Wellstood, Appl. Phys. Lett. 69), 3274 (1996) and S. M. Anlage, C. P. Vlahacos, Sudeep Dutta and F. C. Wellstood, IEEE Trans. Appl. Supercond. 7, 3686 (1997). Using this system we have imaged electric fields generated by both normal metal and superconducting microstrip resonators at temperatures ranging from 77 K to 300 K. We will present images and discuss our results including observations of clear standing wave patterns at the fundamental resonant frequency and an increased quality factor of the resonators at low temperatures.

  6. Microwave N{sub 2}-Ar plasma torch. I. Modeling

    SciTech Connect

    Henriques, J.; Tatarova, E.; Ferreira, C. M.

    2011-01-15

    The spatial structure of a microwave plasma torch driven by an azimuthally symmetric surface wave operating in a N{sub 2}-Ar mixture at atmospheric pressure is investigated. A two-dimensional (2D) self-consistent theoretical model is developed to investigate the entire spatial structure of the source, including the discharge zone, sustained by the field of the surface TM{sub 00} mode, and the postdischarge plasma. Maxwell's equations, the rate balance equations for the most important excited species - vibrationally and electronically excited states, ions and nitrogen atoms N({sup 4}S) - and the Boltzmann equation for electrons are consistently solved. Model calculations of the 2D spatial distributions of species of interest such as charged particles (electrons and positive ions), N{sub 2}({Chi} {sup 1{Sigma}}{sub g}{sup +},v) vibrationally excited molecules, N{sub 2}(A {sup 3{Sigma}}{sub u}{sup +}) metastable molecules, and N({sup 4}S) ground state atoms are presented and discussed.

  7. System to continuously produce carbon fiber via microwave assisted plasma processing

    DOEpatents

    White, Terry L; Paulauskas, Felix L; Bigelow, Timothy S

    2014-03-25

    A method for continuously processing carbon fiber including establishing a microwave plasma in a selected atmosphere contained in an elongated chamber having a microwave power gradient along its length defined by a lower microwave power at one end and a higher microwave power at the opposite end of the elongated chamber. The elongated chamber having an opening in each of the ends of the chamber that are adapted to allow the passage of the fiber tow while limiting incidental gas flow into or out of said chamber. A continuous fiber tow is introduced into the end of the chamber having the lower microwave power. The fiber tow is withdrawn from the opposite end of the chamber having the higher microwave power. The fiber to is subjected to progressively higher microwave energy as the fiber is being traversed through the elongated chamber.

  8. Microwave Sky image from the WMAP Mission

    NASA Technical Reports Server (NTRS)

    2005-01-01

    A detailed full-sky map of the oldest light in the universe. It is a 'baby picture' of the universe. Colors indicate 'warmer' (red) and 'cooler' (blue) spots. The oval shape is a projection to display the whole sky; similar to the way the globe of the earth can be projected as an oval. The microwave light captured in this picture is from 379,000 years after the Big Bang, over 13 billion years ago. For more information, see http://map.gsfc.nasa.gov/m_mm/mr_whatsthat.html

  9. Harmonic Motion Microwave Doppler Imaging method for breast tumor detection.

    PubMed

    Top, Can Barıs; Tafreshi, Azadeh Kamali; Gençer, Nevzat G

    2014-01-01

    Harmonic Motion Microwave Doppler Imaging (HMMDI) method is recently proposed as a non-invasive hybrid breast imaging technique for tumor detection. The acquired data depend on acoustic, elastic and electromagnetic properties of the tissue. The potential of the method is analyzed with simulation studies and phantom experiments. In this paper, the results of these studies are summarized. It is shown that HMMDI method has a potential to detect malignancies inside fibro-glandular tissue.

  10. Harmonic Motion Microwave Doppler Imaging method for breast tumor detection.

    PubMed

    Top, Can Barıs; Tafreshi, Azadeh Kamali; Gençer, Nevzat G

    2014-01-01

    Harmonic Motion Microwave Doppler Imaging (HMMDI) method is recently proposed as a non-invasive hybrid breast imaging technique for tumor detection. The acquired data depend on acoustic, elastic and electromagnetic properties of the tissue. The potential of the method is analyzed with simulation studies and phantom experiments. In this paper, the results of these studies are summarized. It is shown that HMMDI method has a potential to detect malignancies inside fibro-glandular tissue. PMID:25571382

  11. Diamond synthesis at atmospheric pressure by microwave capillary plasma chemical vapor deposition

    SciTech Connect

    Hemawan, Kadek W.; Gou, Huiyang; Hemley, Russell J.

    2015-11-02

    Polycrystalline diamond has been synthesized on silicon substrates at atmospheric pressure, using a microwave capillary plasma chemical vapor deposition technique. The CH{sub 4}/Ar plasma was generated inside of quartz capillary tubes using 2.45 GHz microwave excitation without adding H{sub 2} into the deposition gas chemistry. Electronically excited species of CN, C{sub 2}, Ar, N{sub 2}, CH, H{sub β}, and H{sub α} were observed in the emission spectra. Raman measurements of deposited material indicate the formation of well-crystallized diamond, as evidenced by the sharp T{sub 2g} phonon at 1333 cm{sup −1} peak relative to the Raman features of graphitic carbon. Field emission scanning electron microscopy images reveal that, depending on the growth conditions, the carbon microstructures of grown films exhibit “coral” and “cauliflower-like” morphologies or well-facetted diamond crystals with grain sizes ranging from 100 nm to 10 μm.

  12. Reconstruction Techniques for Sparse Multistatic Linear Array Microwave Imaging

    SciTech Connect

    Sheen, David M.; Hall, Thomas E.

    2014-06-09

    Sequentially-switched linear arrays are an enabling technology for a number of near-field microwave imaging applications. Electronically sequencing along the array axis followed by mechanical scanning along an orthogonal axis allows dense sampling of a two-dimensional aperture in near real-time. In this paper, a sparse multi-static array technique will be described along with associated Fourier-Transform-based and back-projection-based image reconstruction algorithms. Simulated and measured imaging results are presented that show the effectiveness of the sparse array technique along with the merits and weaknesses of each image reconstruction approach.

  13. Towards universal ambient ionization: direct elemental analysis of solid substrates using microwave plasma ionization.

    PubMed

    Evans-Nguyen, K M; Gerling, J; Brown, H; Miranda, M; Windom, A; Speer, J

    2016-06-21

    A microwave plasma was used for direct ambient ionization mass spectrometry of solid substrates, rapidly yielding atomic spectra without sample digestion or pre-treatment. Further, molecular spectra for the organic components of the substrate were obtained simultaneously, in an ambient ionization format. Initial characterization of the microwave plasma coupling to an ion trap mass spectrometer was carried out using solution standards and a microwave plasma torch (MPT) configuration. The configuration of the microwave plasma was then optimized for ambient ionization. The atomic and organic composition for samples applicable to nuclear and conventional forensic screening, including explosive/radionuclide mixtures and inorganic/organic gunshot residue component mixtures were successfully determined. The technologies employed are readily fieldable; the feasibility of a multimode ion source that could be coupled with a portable ion trap mass spectrometer for rapid, on-site, elemental, isotopic, and molecular screening of samples is demonstrated. PMID:26979768

  14. Towards universal ambient ionization: direct elemental analysis of solid substrates using microwave plasma ionization.

    PubMed

    Evans-Nguyen, K M; Gerling, J; Brown, H; Miranda, M; Windom, A; Speer, J

    2016-06-21

    A microwave plasma was used for direct ambient ionization mass spectrometry of solid substrates, rapidly yielding atomic spectra without sample digestion or pre-treatment. Further, molecular spectra for the organic components of the substrate were obtained simultaneously, in an ambient ionization format. Initial characterization of the microwave plasma coupling to an ion trap mass spectrometer was carried out using solution standards and a microwave plasma torch (MPT) configuration. The configuration of the microwave plasma was then optimized for ambient ionization. The atomic and organic composition for samples applicable to nuclear and conventional forensic screening, including explosive/radionuclide mixtures and inorganic/organic gunshot residue component mixtures were successfully determined. The technologies employed are readily fieldable; the feasibility of a multimode ion source that could be coupled with a portable ion trap mass spectrometer for rapid, on-site, elemental, isotopic, and molecular screening of samples is demonstrated.

  15. Experimental study of microwave transmission through a decaying plasma. Final report, January 1986-February 1988

    SciTech Connect

    Hendricks, K.J.

    1989-05-01

    The physics of pulsed-microwave, or radio-frequency (r-f), transmission through a decaying plasma column, is studied experimentally. A plasma column is formed in argon or nitrogen gases, to represent the neutral-gas breakdown due to an rf pulse. Initially, the electron frequency is greater than the microwave frequency. An r-f pulse capable of plasma reionization is applied across the plasma column at varying times in the plasma's decay phase (the plasma afterglow). Variation of the transmitted rf pulse characteristics, pulse width, and amplitude was studied as a function of the time into the afterglow. The ionization frequency of argon by a microwave pulse is found experimentally to be within 20% of the theoretical value. The comparison of ionization frequency is useful in establishing the applicability of earlier cavity measurements to present-day open-geometry systems used in transmission/propagation experiments.

  16. Propagation characteristics and guiding of a high-power microwave in plasma waveguide.

    PubMed

    Ito, H; Rajyaguru, C; Yugami, N; Nishida, Y; Hosoya, T

    2004-06-01

    The propagation characteristics of a high-power microwave [electromagnetic (em) wave] in a plasma waveguide are reported. The plasma waveguide is formed by expanding plasmas via the ponderomotive force of the high-power microwave and the microwave pulse remains trapped within the plasma waveguide and is guided in it. With the increase of the incident microwave power, the width of the plasma waveguide increases and the half width of the radial electric field distribution decreases. This shows that the em wave modifies the refractive index of the plasma waveguide area. For a plasma waveguide with narrower width, the microwave propagates along the plasma waveguide at the fundamental TE mode, while as the waveguide width increases the higher mode component starts appearing. Analytical treatment to the propagation of the electromagnetic wave in a dielectric waveguide having a step-index profile and the numerical calculations for the radial distribution of the electric field show fairly good agreement with the results observed in the present experiments.

  17. Shock Formation by Plasma Filaments of Microwave Discharge under Atmospheric Pressure

    NASA Astrophysics Data System (ADS)

    Takahashi, Masayuki; Ohnishi, Naofumi

    2016-03-01

    A one-dimensional compressible fluid calculation was coupled with a finite- difference time-domain code and a particle-in-cell code with collision to reproduce propagation of electromagnetic wave, ionization process of plasma, and shock wave formation in atmospheric microwave discharge. Plasma filaments are driven toward the microwave source at 1 atm, and the distance between each filament is one-fifth of the wavelength of the incident microwave. The strong shock wave is generated due to the high plasma density at the atmospheric pressure. A simple analysis of the microwave propagation into the plasma shows that cut-off density of the microwave becomes smaller with the pressure decrease in a collisional plasma. At the lower pressure, the smaller density plasma is obtained with a diffusive pattern because of the smaller cut-off density and the larger diffusion effect. In contrast with the 1-atm case, the weak shock wave is generated at a rarefied condition, which lowers performance of microwave thruster.

  18. Measurements of energy distribution and wall temperature in flowing hydrogen microwave plasma systems

    NASA Technical Reports Server (NTRS)

    Chapman, R.; Finzel, M.; Hawley, M. C.

    1985-01-01

    An electrothermal propulsion concept utilizing a microwave plasma system as the mechanism to convert electromagnetic energy into translational energy of the flowing gas is being investigated. A calorimetric experimental system has been designed and built enclosing the microwave plasma system to accurately determine the net energy transferred to the flowing gas. For a flow rate of 8900 micromoles/sec, a pressure of 7.4 torr, and an absorbed power level of 80 W, an energy transfer efficiency of 50 percent has been measured. A heat transfer model that characterizes the energy transfer processes in the plasma is developed. A wall temperature for the plasma system is calculated.

  19. Plasma arc welding weld imaging

    NASA Technical Reports Server (NTRS)

    Rybicki, Daniel J. (Inventor); Mcgee, William F. (Inventor)

    1994-01-01

    A welding torch for plasma arc welding apparatus has a transparent shield cup disposed about the constricting nozzle, the cup including a small outwardly extending polished lip. A guide tube extends externally of the torch and has a free end adjacent to the lip. First and second optical fiber bundle assemblies are supported within the guide tube. Light from a strobe light is transmitted along one of the assemblies to the free end and through the lip onto the weld site. A lens is positioned in the guide tube adjacent to the second assembly and focuses images of the weld site onto the end of the fiber bundle of the second assembly and these images are transmitted along the second assembly to a video camera so that the weld site may be viewed continuously for monitoring the welding process.

  20. Microwave imaging of the breast with incorporated structural information

    NASA Astrophysics Data System (ADS)

    Golnabi, Amir H.; Meaney, Paul M.; Geimer, Shireen D.; Paulsen, Keith D.

    2010-03-01

    Microwave imaging for biomedical applications, especially for early detection of breast cancer and effective treatment monitoring, has attracted increasing interest in last several decades. This fact is due to the high contrast between the dielectric properties of the normal and malignant breast tissues at microwave frequencies ranging from high megahertz to low gigahertz. The available range of dielectric properties for different soft tissue can provide considerable functional information about tissue health. Nonetheless, one of the limiting weaknesses of microwave imaging is, unlike that for conventional modalities such as X-ray CT or MRI, it cannot inherently provide high-resolution images. The conventional modalities can produce highly resolved anatomical information but often cannot provide the functional information required for diagnoses. We have developed a soft prior regularization strategy that can incorporate the prior anatomical information from X-ray CT, MR or other sources, and use it in a way to exploit the resolution of these images while also retaining the functional nature of the microwave images. The anatomical information is first used to create an imaging zone mesh, which segments separate internal substructures, and an associated weighting matrix that numerically groups the values of closely related nodes within the mesh. This information is subsequently used as a regularizing term for the Gauss-Newton reconstruction algorithm. This approach exploits existing technology in a systematic way without making potentially biased assumptions about the properties of visible structures. In this paper we continue our initial investigation on this matter with a series of breast-shaped simulation and phantom experiments.

  1. Repetitively rated plasma relativistic microwave oscillator with a controllable frequency in every pulse

    SciTech Connect

    Bogdankevich, I. L.; Grishin, D. M.; Gunin, A. V.; Ivanov, I. E.; Korovin, S. D.; Loza, O. T.; Mesyats, G. A.; Pavlov, D. A.; Rostov, V. V.; Strelkov, P. S.; Ul'yanov, D. K.

    2008-10-15

    A repetitively rated microwave oscillator whose frequency can be varied electronically from pulse to pulse in a predetermined manner is created for the first time. The microwave oscillator has a power on the order of 10{sup 8} W and is based on the Cherenkov interaction of a high-current relativistic electron beam with a plasma preformed before each pulse. Electronic control over the plasma properties allows one to arbitrarily vary the microwave frequency from pulse to pulse at a pulse repetition rate of up to 50 Hz.

  2. Effects of Mass Flow Rate on the Thermal-Flow Characteristics of Microwave CO2 Plasma.

    PubMed

    Hong, Chang-Ki; Na, Young-Ho; Uhm, Han-Sup; Kim, Youn-Jea

    2015-03-01

    In this study, the thermal-flow characteristics of atmospheric pressure microwave CO2 plasma were numerically investigated by simulation. The electric and gas flow fields in the reaction chamber with a microwave axial injection torch operated at 2.45 GHz were simulated. The microwave launcher had the standard rectangular waveguide WR340 geometry. The simulation was performed by using the COMSOL Multiphysics plasma model with various mass flow rates of CO2. The electric fields, temperature profiles and the density of electrons were graphically depicted for different CO2 inlet mass flow rates. PMID:26413663

  3. Effects of Mass Flow Rate on the Thermal-Flow Characteristics of Microwave CO2 Plasma.

    PubMed

    Hong, Chang-Ki; Na, Young-Ho; Uhm, Han-Sup; Kim, Youn-Jea

    2015-03-01

    In this study, the thermal-flow characteristics of atmospheric pressure microwave CO2 plasma were numerically investigated by simulation. The electric and gas flow fields in the reaction chamber with a microwave axial injection torch operated at 2.45 GHz were simulated. The microwave launcher had the standard rectangular waveguide WR340 geometry. The simulation was performed by using the COMSOL Multiphysics plasma model with various mass flow rates of CO2. The electric fields, temperature profiles and the density of electrons were graphically depicted for different CO2 inlet mass flow rates.

  4. VUV Emission of Microwave Driven Argon Plasma Source

    NASA Astrophysics Data System (ADS)

    Henriques, Julio; Espinho, Susana; Felizardo, Edgar; Tatarova, Elena; Dias, Francisco; Ferreira, Carlos

    2013-09-01

    An experimental and kinetic modeling investigation of a low-pressure (0.1-1.2 mbar), surface wave (2.45 GHz) induced Ar plasma as a source vacuum ultraviolet (VUV) light is presented, using visible and VUV optical spectroscopy. The electron density and the relative VUV emission intensities of excited Ar atoms (at 104.8 nm and 106.6 nm) and ions (at 92.0 nm and 93.2 nm) were determined as a function of the microwave power and pressure. The experimental results were analyzed using a 2D self-consistent theoretical model based on a set of coupled equations including the electron Boltzmann equation, the rate balance equations for the most important electronic excited species and for charged particles, the gas thermal balance equation, and the wave electrodynamics. The principal collisional and radiative processes for neutral Ar(3p54s) and Ar(3p54p) and ionized Ar(3s3p6 2S1/2) levels are accounted for. Model predictions are in good agreement with the experimental measurements. This study was funded by the Foundation for Science and Technology, Portuguese Ministry of Education and Science, under the research contract PTDC/FIS/108411/2008.

  5. Buckyball microwave plasmas: Fragmentation and diamond-film growth

    SciTech Connect

    Gruen, D.M.; Liu, Shengzhong; Krauss, A.R.; Pan, Xianzheng

    1993-08-01

    Microwave discharges (2.45 GHz) have been generated in C{sub 60}-containing Ar produced by flowing Ar over fullerene-containing soot. Optical spectroscopy shows that the spectrum is dominated by the d{sup 3}{Pi}g-a{sup 3}{Pi}u Swan bands of C{sub 2} and particularly the {Delta}v = {minus}2, {minus}1, 0, +1, and +2 sequences. These results give direct evidence that C{sub 2} is one of the products of C{sub 60} fragmentation brought about, at least in part, by collisionally induced dissociation (CID). C{sub 60} has been used as a precursor in a plasma-enhanced chemical vapor deposition (PECVD) experiment to grow diamond-thin films. The films, grown in an Ar/H{sub 2} gas mixture (0.14% carbon content, 100 Torr, 20 sccm Ar, 4 sccm H{sub 2}, 1500 W, 850{degree}C substrate temperature), were characterized with SEM, XRD, and Raman spectroscopy. Growth rate was found to be {approx} 0.6 {mu}/hr. Assuming a linear dependence on carbon concentration, a growth rate at least six times higher than commonly observed using methane as a precursor, would be predicted at a carbon content of 1% based on C{sub 60}. Energetic and mechanistic arguments are advanced to rationalize this result based on C{sub 2} as the growth species.

  6. H/sup -/ production in a multicusp microwave plasma

    SciTech Connect

    Trow, J.R.

    1985-03-01

    An experiment was undertaken to examine H/sup -/ production by volume processes in a multicusp microwave discharge, part of the cusp field being enhanced to produce an ECR (electron cyclotron resonance), that would also isolate the hotter plasma formed there. This arrangement is analogous to the ''magnetic filters'' used in some other negative ion sources. This work describes the experiment set up and the results obtained, which are a survey of the behavior of this type of device. Also included is a discussion of the volume processes associated with H/sup -/ production including numerical estimates, based on the experimental measurements, which indicate H/sup -/ production is by dissociative attachment of cold electrons to vibrationally excited hydrogen molecules, and loss is by mutual neutralization with positive ions. The experimental observations are consistent with this model. These are also the same mechanisms used in the models of Bacal and Hiskes. Since magnetic fields generated by samarium cobalt permanent magnets were an important part of this experiment a set of field calculations was undertaken and is included.

  7. Simulated experiment for elimination of air contaminated with odorous chemical agents by microwave plasma burner

    SciTech Connect

    Hong, Yong Cheol; Shin, Dong Hun; Uhm, Han Sup

    2007-10-15

    An experimental study on elimination of odorous chemical agent was carried out by making use of a microwave plasma burner, which consists of a microwave plasma torch and a reaction chamber with a fuel injector. Injection of hydrocarbon fuels into a high-temperature microwave torch plasma generates a plasma flame. The plasma flame can eliminate the odorous chemical agent diluted in air or purify the interior air of a large volume in isolated spaces. The specially designed reaction chamber eliminated H{sub 2}S and NH{sub 3} diluted in airflow rate of 5000 lpm (liters per minute), showing {beta} values of 46.52 and 39.69 J/l, respectively.

  8. Influence of ponderomotive force on the microwave and plasma interaction in an elliptical waveguide

    SciTech Connect

    Abdoli-Arani, A.

    2014-02-15

    The interaction effect of a high-power microwave with the plasma in an elliptical waveguide taking into account the ponderomotive force is presented. Here, we assume the fundamental mode that propagates in an evacuated elliptical waveguide and encounters a plasma, which is filled in another elliptical waveguide of the same size. Here, we consider a balance between the effects of ponderomotive force and the electron pressure and consider the plasma effect through its dielectric permittivity because the electron density distribution of the plasma is modified. The propagation of the mode is described by two nonlinear coupled differential equations obtained using the Maxwell's equations. These equations are solved numerically using fourth order Runge-Kutta method for the field amplitude of the microwave in the waveguide considering the waveguide to be made up of a perfect conductor and filled with homogeneous plasma density distribution. The effects of the electron temperature, the microwave filed, and the frequency on the perturbed density profile are studied.

  9. Low-pressure microwave plasma nucleation and deposition of diamond films

    NASA Technical Reports Server (NTRS)

    Shing, Y. H.; Pool, F. S.; Rich, D. H.

    1992-01-01

    Low-pressure microwave plasma nucleation and deposition of diamond films were investigated in the pressure range 10-mtorr to 10 torr, at substrate temperatures 400-750 C and with CH4 and O2 concentrations in H2 plasma of 2-15 percent and 2-10 percent, respectively. The experiments were performed in a microwave plasma system consisting of a microwave plasma chamber, a downstream deposition chamber, and an RF induction heated sample stage. Scanning electron microscopy of diamond films deposited at 600 C with 5 percent CH4 and 5 percent O2 in H2 plasmas showed high-quality well faceted crystallites of 1/2 micron size. Cathodoluminescence measurements of these films showed very few nitrogen impurities and no detectable silicon impurities.

  10. Heterogeneous Breast Phantom Development for Microwave Imaging Using Regression Models

    PubMed Central

    Hahn, Camerin; Noghanian, Sima

    2012-01-01

    As new algorithms for microwave imaging emerge, it is important to have standard accurate benchmarking tests. Currently, most researchers use homogeneous phantoms for testing new algorithms. These simple structures lack the heterogeneity of the dielectric properties of human tissue and are inadequate for testing these algorithms for medical imaging. To adequately test breast microwave imaging algorithms, the phantom has to resemble different breast tissues physically and in terms of dielectric properties. We propose a systematic approach in designing phantoms that not only have dielectric properties close to breast tissues but also can be easily shaped to realistic physical models. The approach is based on regression model to match phantom's dielectric properties with the breast tissue dielectric properties found in Lazebnik et al. (2007). However, the methodology proposed here can be used to create phantoms for any tissue type as long as ex vivo, in vitro, or in vivo tissue dielectric properties are measured and available. Therefore, using this method, accurate benchmarking phantoms for testing emerging microwave imaging algorithms can be developed. PMID:22550473

  11. Microwave thermal imaging of scanned focused ultrasound heating: animal experiments

    NASA Astrophysics Data System (ADS)

    Zhou, Tian; Meaney, Paul M.; Hoopes, P. Jack; Geimer, Shireen D.; Paulsen, Keith D.

    2011-03-01

    High intensity focused ultrasound (HIFU) uses focused ultrasound beams to ablate localized tumors noninvasively. Multiple clinical trials using HIFU treatment of liver, kidney, breast, pancreas and brain tumors have been conducted, while monitoring the temperature distribution with various imaging modalities such as MRI, CT and ultrasound. HIFU has achieved only minimal acceptance partially due to insufficient guidance from the limited temperature monitoring capability and availability. MR proton resonance frequency (PRF) shift thermometry is currently the most effective monitoring method; however, it is insensitive in temperature changes in fat, susceptible to motion artifacts, and is high cost. Exploiting the relationship between dielectric properties (i.e. permittivity and conductivity) and tissue temperature, in vivo dielectric property distributions of tissue during heating were reconstructed with our microwave tomographic imaging technology. Previous phantom studies have demonstrated sub-Celsius temperature accuracy and sub-centimeter spatial resolution in microwave thermal imaging. In this paper, initial animal experiments have been conducted to further investigate its potential. In vivo conductivity changes inside the piglet's liver due to focused ultrasound heating were observed in the microwave images with good correlation between conductivity changes and temperature.

  12. [Study on the Emission Spectrum of Hydrogen Production with Microwave Discharge Plasma in Ethanol Solution].

    PubMed

    Sun, Bing; Wang, Bo; Zhu, Xiao-mei; Yan, Zhi-yu; Liu, Yong-jun; Liu, Hui

    2016-03-01

    Hydrogen is regarded as a kind of clean energy with high caloricity and non-pollution, which has been studied by many experts and scholars home and abroad. Microwave discharge plasma shows light future in the area of hydrogen production from ethanol solution, providing a new way to produce hydrogen. In order to further improve the technology and analyze the mechanism of hydrogen production with microwave discharge in liquid, emission spectrum of hydrogen production by microwave discharge plasma in ethanol solution was being studied. In this paper, plasma was generated on the top of electrode by 2.45 GHz microwave, and the spectral characteristics of hydrogen production from ethanol by microwave discharge in liquid were being studied using emission spectrometer. The results showed that a large number of H, O, OH, CH, C2 and other active particles could be produced in the process of hydrogen production from ethanol by microwave discharge in liquid. The emission spectrum intensity of OH, H, O radicals generated from ethanol is far more than that generated from pure water. Bond of O-H split by more high-energy particles from water molecule was more difficult than that from ethanol molecule, so in the process of hydrogen production by microwave discharge plasma in ethanol solution; the main source of hydrogen was the dehydrogenation and restructuring of ethanol molecules instead of water decomposition. Under the definite external pressure and temperature, the emission spectrum intensity of OH, H, O radicals increased with the increase of microwave power markedly, but the emission spectrum intensity of CH, C2 active particles had the tendency to decrease with the increase of microwave power. It indicated that the number of high energy electrons and active particles high energy electron energy increased as the increase of microwave power, so more CH, C2 active particles were split more thoroughly. PMID:27400531

  13. [Study on the Emission Spectrum of Hydrogen Production with Microwave Discharge Plasma in Ethanol Solution].

    PubMed

    Sun, Bing; Wang, Bo; Zhu, Xiao-mei; Yan, Zhi-yu; Liu, Yong-jun; Liu, Hui

    2016-03-01

    Hydrogen is regarded as a kind of clean energy with high caloricity and non-pollution, which has been studied by many experts and scholars home and abroad. Microwave discharge plasma shows light future in the area of hydrogen production from ethanol solution, providing a new way to produce hydrogen. In order to further improve the technology and analyze the mechanism of hydrogen production with microwave discharge in liquid, emission spectrum of hydrogen production by microwave discharge plasma in ethanol solution was being studied. In this paper, plasma was generated on the top of electrode by 2.45 GHz microwave, and the spectral characteristics of hydrogen production from ethanol by microwave discharge in liquid were being studied using emission spectrometer. The results showed that a large number of H, O, OH, CH, C2 and other active particles could be produced in the process of hydrogen production from ethanol by microwave discharge in liquid. The emission spectrum intensity of OH, H, O radicals generated from ethanol is far more than that generated from pure water. Bond of O-H split by more high-energy particles from water molecule was more difficult than that from ethanol molecule, so in the process of hydrogen production by microwave discharge plasma in ethanol solution; the main source of hydrogen was the dehydrogenation and restructuring of ethanol molecules instead of water decomposition. Under the definite external pressure and temperature, the emission spectrum intensity of OH, H, O radicals increased with the increase of microwave power markedly, but the emission spectrum intensity of CH, C2 active particles had the tendency to decrease with the increase of microwave power. It indicated that the number of high energy electrons and active particles high energy electron energy increased as the increase of microwave power, so more CH, C2 active particles were split more thoroughly.

  14. A novel, all-dielectric, microwave plasma generator towards development of plasma metamaterials

    NASA Astrophysics Data System (ADS)

    Cohick, Zane; Luo, Wei; Perini, Steven; Baker, Amanda; Wolfe, Douglas; Lanagan, Michael

    2016-11-01

    A proof of concept for a microwave microplasma generator that consists of a halved dielectric resonator is presented. The generator functions via leaking electric fields of the resonant modes — TE01δ and HEM12δ modes are explored. Computational results illustrate the electric fields, whereas the stability of resonance and coupling are studied experimentally. Finally, a working device is presented. This generator promises potentially wireless and low-loss operation. This device may find relevance in plasma metamaterials; each resonator may generate the plasma structures necessary to manipulate electromagnetic radiation. In particular, the all-dielectric nature of the generator will allow low-loss interaction with high-frequency (GHz–THz) waves.

  15. Solar Activity Studies using Microwave Imaging Observations

    NASA Technical Reports Server (NTRS)

    Gopalswamy, N.

    2016-01-01

    We report on the status of solar cycle 24 based on polar prominence eruptions (PEs) and microwave brightness enhancement (MBE) information obtained by the Nobeyama radioheliograph. The north polar region of the Sun had near-zero field strength for more than three years (2012-2015) and ended only in September 2015 as indicated by the presence of polar PEs and the lack of MBE. The zero-polar-field condition in the south started only around 2013, but it ended by June 2014. Thus the asymmetry in the times of polarity reversal switched between cycle 23 and 24. The polar MBE is a good proxy for the polar magnetic field strength as indicated by the high degree of correlation between the two. The cross-correlation between the high- and low-latitude MBEs is significant for a lag of approximately 5.5 to 7.3 years, suggesting that the polar field of one cycle indicates the sunspot number of the next cycle in agreement with the Babcock-Leighton mechanism of solar cycles. The extended period of near-zero field in the north-polar region should result in a weak and delayed sunspot activity in the northern hemisphere in cycle 25.

  16. Density steepening formation in the interaction of microwave field with a plasma

    SciTech Connect

    Niknam, A. R.; Shokri, B.

    2007-05-15

    A modification of the electron density distribution of an unmagnetized plasma by the ponderomotive force of high-power microwave propagating into the plasma is studied. Using the Maxwell and fluid equations, nonlinear differential and integral equations for the electric field are obtained. The solution of these nonlinear equations shows that the profiles of the electric and magnetic field depart slightly from a sinusoidal shape, the amplitude of oscillations decreases in the plasma, and these oscillations become lengthened. Also, the period of oscillations decreases by increasing the microwave energy flux and the electron density becomes highly steepened for high microwave energy flux. Furthermore, the axial density profile shows a stationary density modulation that is phase-shifted with respect to the wave amplitude. This density modulation increases with the microwave energy flux.

  17. A large-volume microwave plasma source based on parallel rectangular waveguides at low pressures

    NASA Astrophysics Data System (ADS)

    Zhang, Qing; Zhang, Guixin; Wang, Shumin; Wang, Liming

    2011-02-01

    A large-volume microwave plasma with good stability, uniformity and high density is directly generated and sustained. A microwave cavity is assembled by upper and lower metal plates and two adjacently parallel rectangular waveguides with axial slots regularly positioned on their inner wide side. Microwave energy is coupled into the plasma chamber shaped by quartz glass to enclose the space of working gas at low pressures. The geometrical properties of the source and the existing modes of the electric field are determined and optimized by a numerical simulation without a plasma. The calculated field patterns are in agreement with the observed experimental results. Argon, helium, nitrogen and air are used to produce a plasma for pressures ranging from 1000 to 2000 Pa and microwave powers above 800 W. The electron density is measured with a Mach-Zehnder interferometer to be on the order of 1014 cm-3 and the electron temperature is obtained using atomic emission spectrometry to be in the range 2222-2264 K at a pressure of 2000 Pa at different microwave powers. It can be seen from the interferograms at different microwave powers that the distribution of the plasma electron density is stable and uniform.

  18. Self-consistent evolution of plasma discharge and electromagnetic fields in a microwave pulse compressor

    SciTech Connect

    Shlapakovski, A. S.; Beilin, L.; Krasik, Ya. E.; Hadas, Y.; Schamiloglu, E.

    2015-07-15

    Nanosecond-scale evolution of plasma and RF electromagnetic fields during the release of energy from a microwave pulse compressor with a plasma interference switch was investigated numerically using the code MAGIC. The plasma was simulated in the scope of the gas conductivity model in MAGIC. The compressor embodied an S-band cavity and H-plane waveguide tee with a shorted side arm filled with pressurized gas. In a simplified approach, the gas discharge was initiated by setting an external ionization rate in a layer crossing the side arm waveguide in the location of the electric field antinode. It was found that with increasing ionization rate, the microwave energy absorbed by the plasma in the first few nanoseconds increases, but the absorption for the whole duration of energy release, on the contrary, decreases. In a hybrid approach modeling laser ignition of the discharge, seed electrons were set around the electric field antinode. In this case, the plasma extends along the field forming a filament and the plasma density increases up to the level at which the electric field within the plasma decreases due to the skin effect. Then, the avalanche rate decreases but the density still rises until the microwave energy release begins and the electric field becomes insufficient to support the avalanche process. The extraction of the microwave pulse limits its own power by terminating the rise of the plasma density and filament length. For efficient extraction, a sufficiently long filament of dense plasma must have sufficient time to be formed.

  19. Self-consistent evolution of plasma discharge and electromagnetic fields in a microwave pulse compressor

    NASA Astrophysics Data System (ADS)

    Shlapakovski, A. S.; Beilin, L.; Hadas, Y.; Schamiloglu, E.; Krasik, Ya. E.

    2015-07-01

    Nanosecond-scale evolution of plasma and RF electromagnetic fields during the release of energy from a microwave pulse compressor with a plasma interference switch was investigated numerically using the code MAGIC. The plasma was simulated in the scope of the gas conductivity model in MAGIC. The compressor embodied an S-band cavity and H-plane waveguide tee with a shorted side arm filled with pressurized gas. In a simplified approach, the gas discharge was initiated by setting an external ionization rate in a layer crossing the side arm waveguide in the location of the electric field antinode. It was found that with increasing ionization rate, the microwave energy absorbed by the plasma in the first few nanoseconds increases, but the absorption for the whole duration of energy release, on the contrary, decreases. In a hybrid approach modeling laser ignition of the discharge, seed electrons were set around the electric field antinode. In this case, the plasma extends along the field forming a filament and the plasma density increases up to the level at which the electric field within the plasma decreases due to the skin effect. Then, the avalanche rate decreases but the density still rises until the microwave energy release begins and the electric field becomes insufficient to support the avalanche process. The extraction of the microwave pulse limits its own power by terminating the rise of the plasma density and filament length. For efficient extraction, a sufficiently long filament of dense plasma must have sufficient time to be formed.

  20. A TSVD Analysis of Microwave Inverse Scattering for Breast Imaging

    PubMed Central

    Shea, Jacob D.; Van Veen, Barry D.; Hagness, Susan C.

    2013-01-01

    A variety of methods have been applied to the inverse scattering problem for breast imaging at microwave frequencies. While many techniques have been leveraged toward a microwave imaging solution, they are all fundamentally dependent on the quality of the scattering data. Evaluating and optimizing the information contained in the data are, therefore, instrumental in understanding and achieving optimal performance from any particular imaging method. In this paper, a method of analysis is employed for the evaluation of the information contained in simulated scattering data from a known dielectric profile. The method estimates optimal imaging performance by mapping the data through the inverse of the scattering system. The inverse is computed by truncated singular-value decomposition of a system of scattering equations. The equations are made linear by use of the exact total fields in the imaging volume, which are available in the computational domain. The analysis is applied to anatomically realistic numerical breast phantoms. The utility of the method is demonstrated for a given imaging system through the analysis of various considerations in system design and problem formulation. The method offers an avenue for decoupling the problem of data selection from the problem of image formation from that data. PMID:22113770

  1. Model-based microwave image reconstruction: simulations and experiments

    SciTech Connect

    Ciocan, Razvan; Jiang Huabei

    2004-12-01

    We describe an integrated microwave imaging system that can provide spatial maps of dielectric properties of heterogeneous media with tomographically collected data. The hardware system (800-1200 MHz) was built based on a lock-in amplifier with 16 fixed antennas. The reconstruction algorithm was implemented using a Newton iterative method with combined Marquardt-Tikhonov regularizations. System performance was evaluated using heterogeneous media mimicking human breast tissue. Finite element method coupled with the Bayliss and Turkel radiation boundary conditions were applied to compute the electric field distribution in the heterogeneous media of interest. The results show that inclusions embedded in a 76-diameter background medium can be quantitatively reconstructed from both simulated and experimental data. Quantitative analysis of the microwave images obtained suggests that an inclusion of 14 mm in diameter is the smallest object that can be fully characterized presently using experimental data, while objects as small as 10 mm in diameter can be quantitatively resolved with simulated data.

  2. Numerical Study of Microwave Reflectometry in Plasmas with 2D Turbulent Fluctuations

    SciTech Connect

    E. Mazzucato

    1998-02-01

    This paper describes a numerical study of the role played by 2D turbulent fluctuations in microwave reflectometry -- a radar technique for density measurements using the reflection of electromagnetic waves from a plasma cutoff. The results indicate that, if the amplitude of fluctuations is below a threshold which is set by the spectrum of poloidal wavenumbers, the measured backward field appears to originate from a virtual location behind the reflecting layer, and to arise from the phase modulation of the probing wave, with an amplitude given by 1D geometric optics. These results suggest a possible scheme for turbulence measurements in tokamaks, where the backward field is collected with a wide aperture antenna, and the virtual reflecting layer is imaged onto the plane of an array of detectors. Such a scheme should be capable of providing additional information on the nature of the short-scale turbulence observed in tokamaks, which still remains one of the unresolved issues in fusion research.

  3. AMISS - Active and passive MIcrowaves for Security and Subsurface imaging

    NASA Astrophysics Data System (ADS)

    Soldovieri, Francesco; Slob, Evert; Turk, Ahmet Serdar; Crocco, Lorenzo; Catapano, Ilaria; Di Matteo, Francesca

    2013-04-01

    The FP7-IRSES project AMISS - Active and passive MIcrowaves for Security and Subsurface imaging is based on a well-combined network among research institutions of EU, Associate and Third Countries (National Research Council of Italy - Italy, Technische Universiteit Delft - The Netherlands, Yildiz Technical University - Turkey, Bauman Moscow State Technical University - Russia, Usikov Institute for Radio-physics and Electronics and State Research Centre of Superconductive Radioelectronics "Iceberg" - Ukraine and University of Sao Paulo - Brazil) with the aims of achieving scientific advances in the framework of microwave and millimeter imaging systems and techniques for security and safety social issues. In particular, the involved partners are leaders in the scientific areas of passive and active imaging and are sharing their complementary knowledge to address two main research lines. The first one regards the design, characterization and performance evaluation of new passive and active microwave devices, sensors and measurement set-ups able to mitigate clutter and increase information content. The second line faces the requirements to make State-of-the-Art processing tools compliant with the instrumentations developed in the first line, suitable to work in electromagnetically complex scenarios and able to exploit the unexplored possibilities offered by new instrumentations. The main goals of the project are: 1) Development/improvement and characterization of new sensors and systems for active and passive microwave imaging; 2) Set up, analysis and validation of state of art/novel data processing approach for GPR in critical infrastructure and subsurface imaging; 3) Integration of state of art and novel imaging hardware and characterization approaches to tackle realistic situations in security, safety and subsurface prospecting applications; 4) Development and feasibility study of bio-radar technology (system and data processing) for vital signs detection and

  4. How to Ignite an Atmospheric Pressure Microwave Plasma Torch without Any Additional Igniters.

    PubMed

    Leins, Martina; Gaiser, Sandra; Schulz, Andreas; Walker, Matthias; Schumacher, Uwe; Hirth, Thomas

    2015-01-01

    This movie shows how an atmospheric pressure plasma torch can be ignited by microwave power with no additional igniters. After ignition of the plasma, a stable and continuous operation of the plasma is possible and the plasma torch can be used for many different applications. On one hand, the hot (3,600 K gas temperature) plasma can be used for chemical processes and on the other hand the cold afterglow (temperatures down to almost RT) can be applied for surface processes. For example chemical syntheses are interesting volume processes. Here the microwave plasma torch can be used for the decomposition of waste gases which are harmful and contribute to the global warming but are needed as etching gases in growing industry sectors like the semiconductor branch. Another application is the dissociation of CO2. Surplus electrical energy from renewable energy sources can be used to dissociate CO2 to CO and O2. The CO can be further processed to gaseous or liquid higher hydrocarbons thereby providing chemical storage of the energy, synthetic fuels or platform chemicals for the chemical industry. Applications of the afterglow of the plasma torch are the treatment of surfaces to increase the adhesion of lacquer, glue or paint, and the sterilization or decontamination of different kind of surfaces. The movie will explain how to ignite the plasma solely by microwave power without any additional igniters, e.g., electric sparks. The microwave plasma torch is based on a combination of two resonators - a coaxial one which provides the ignition of the plasma and a cylindrical one which guarantees a continuous and stable operation of the plasma after ignition. The plasma can be operated in a long microwave transparent tube for volume processes or shaped by orifices for surface treatment purposes. PMID:25938699

  5. How to Ignite an Atmospheric Pressure Microwave Plasma Torch without Any Additional Igniters.

    PubMed

    Leins, Martina; Gaiser, Sandra; Schulz, Andreas; Walker, Matthias; Schumacher, Uwe; Hirth, Thomas

    2015-01-01

    This movie shows how an atmospheric pressure plasma torch can be ignited by microwave power with no additional igniters. After ignition of the plasma, a stable and continuous operation of the plasma is possible and the plasma torch can be used for many different applications. On one hand, the hot (3,600 K gas temperature) plasma can be used for chemical processes and on the other hand the cold afterglow (temperatures down to almost RT) can be applied for surface processes. For example chemical syntheses are interesting volume processes. Here the microwave plasma torch can be used for the decomposition of waste gases which are harmful and contribute to the global warming but are needed as etching gases in growing industry sectors like the semiconductor branch. Another application is the dissociation of CO2. Surplus electrical energy from renewable energy sources can be used to dissociate CO2 to CO and O2. The CO can be further processed to gaseous or liquid higher hydrocarbons thereby providing chemical storage of the energy, synthetic fuels or platform chemicals for the chemical industry. Applications of the afterglow of the plasma torch are the treatment of surfaces to increase the adhesion of lacquer, glue or paint, and the sterilization or decontamination of different kind of surfaces. The movie will explain how to ignite the plasma solely by microwave power without any additional igniters, e.g., electric sparks. The microwave plasma torch is based on a combination of two resonators - a coaxial one which provides the ignition of the plasma and a cylindrical one which guarantees a continuous and stable operation of the plasma after ignition. The plasma can be operated in a long microwave transparent tube for volume processes or shaped by orifices for surface treatment purposes.

  6. Spatio-temporal behavior of microwave sheath-voltage combination plasma source

    NASA Astrophysics Data System (ADS)

    Kar, Satyananda; Kousaka, Hiroyuki; Raja, Laxminarayan L.

    2015-05-01

    Microwave sheath-Voltage combination Plasma (MVP) is a high density plasma source and can be used as a suitable plasma processing device (e.g., ionized physical vapor deposition). In the present report, the spatio-temporal behavior of an argon MVP sustained along a direct-current biased Ti rod is investigated. Two plasma modes are observed, one is an "oxidized state" (OS) at the early time of the microwave plasma and the other is "ionized sputter state" (ISS) at the later times. Transition of the plasma from OS to ISS results a prominent change in the visible color of the plasma, resulting from a significant increase in the plasma density, as measured by a Langmuir probe. In the OS, plasma is dominated by Ar ions, and the density is in amplitude order of 1011 cm-3. In the ISS, metal ions from the Ti rod contribute significantly to the ion composition, and higher density plasma (1012 cm-3) is produced. Nearly uniform high density plasma along the length of the Ti rod is produced at very low input microwave powers (around 30 W). Optical emission spectroscopy measurements confirm the presence of sputtered Ti ions and Ti neutrals in the ISS.

  7. Multibubble plasma production and solvent decomposition in water by slot-excited microwave discharge

    SciTech Connect

    Ishijima, T.; Hotta, H.; Sugai, H.; Sato, M.

    2007-09-17

    Intense microwaves are injected from a slot antenna into water partly filling a metal vessel. When the vessel is evacuated to saturated vapor pressure ({approx}5x10{sup 3} Pa) of water, microwave breakdown gives rise to plasmas in many bubbles in the boiling water. Gas bubbling technique enables production of multibubble plasmas in water even at atmospheric pressure. Optical emissions from the exited species are investigated to identify radical species in water. In order to demonstrate application to purification of polluted water, methylene blue and trichlorethylene solution in 8 l water were observed to rapidly decrease with multibubble plasma treatment.

  8. Nonequilibrium laser plasma of noble gases: Prospects for amplification and guiding of the microwave radiation

    NASA Astrophysics Data System (ADS)

    Bogatskaya, A. V.; Bin, Hou; Popov, A. M.; Smetanin, I. V.

    2016-09-01

    We developed the analytical model of relaxation of a low-density plasma channel produced in noble gases (Xe, Ar) by a femtosecond KrF laser pulse and investigated the temporal evolution of its dielectric permittivity. It was demonstrated that the strong nonequilibrium of the photoelectron energy spectrum and the presence of Ramsauer minimum in transport scattering cross section make such a plasma channel an optically denser medium in comparison with non-ionized gas in the microwave frequency band and consequently such a channel appears to be a waveguide. In xenon this nonequilibrium state of a plasma leads to both transportation and amplification of the microwave signal during the relaxation of the photoelectron energy spectrum. It was also shown that a circular metal waveguide partially filled with such a nonequilibrium Xe plasma provides efficient amplification of the sub-THz microwave signal.

  9. Computational studies for plasma filamentation by magnetic field in atmospheric microwave discharge

    SciTech Connect

    Takahashi, Masayuki; Ohnishi, Naofumi

    2014-12-01

    Plasma filamentation is induced by an external magnetic field in an atmospheric discharge using intense microwaves. A discrete structure is obtained at low ambient pressure if a strong magnetic field of more than 1 T is applied, due to the suppression of electron diffusion, whereas a diffusive pattern is generated with no external field. Applying a magnetic field can slow the discharge front propagation due to magnetic confinement of the electron transport. If the resonance conditions are satisfied for electron cyclotron resonance and its higher harmonics, the propagation speed increases because the heated electrons easily ionize neutral particles. The streamer velocity and the pattern of the microwave plasma are positively controlled by adjusting two parameters—the electron diffusion coefficient and the ionization frequency—through the resonance process and magnetic confinement, and hot, dense filamentary plasma can be concentrated in a compact volume to reduce energy loss in a plasma device like a microwave rocket.

  10. Microwave-heating-coupled photoacoustic radar for tissue diagnostic imaging

    NASA Astrophysics Data System (ADS)

    Wang, Wei; Mandelis, Andreas

    2016-06-01

    An investigation of microwave (MW) heating effects on biotissue for enhancing photoacoustic radar (PAR) signals was conducted. Localized tissue heating generated by MWs was used to improve PAR imaging depth and signal-to-noise ratio (SNR). Elevated temperatures were measured with thermocouples in ex vivo bovine muscle. The measured temperature rise on the heated spot surface by MWs was in agreement with theoretical predictions. The study showed localized MW heating can increase the photoacoustic imaging depth by 11%, and the SNR by 5% in ex vivo bovine muscle.

  11. Modifications to the synthetic aperture microwave imaging diagnostic

    NASA Astrophysics Data System (ADS)

    Brunner, K. J.; Chorley, J. C.; Dipper, N. A.; Naylor, G.; Sharples, R. M.; Taylor, G.; Thomas, D. A.; Vann, R. G. L.

    2016-11-01

    The synthetic aperture microwave imaging diagnostic has been operating on the MAST experiment since 2011. It has provided the first 2D images of B-X-O mode conversion windows and showed the feasibility of conducting 2D Doppler back-scattering experiments. The diagnostic heavily relies on field programmable gate arrays to conduct its work. Recent successes and newly gained experience with the diagnostic have led us to modify it. The enhancements will enable pitch angle profile measurements, O and X mode separation, and the continuous acquisition of 2D DBS data. The diagnostic has also been installed on the NSTX-U and is acquiring data since May 2016.

  12. A microwave plasma source for VUV atmospheric photochemistry

    NASA Astrophysics Data System (ADS)

    Tigrine, S.; Carrasco, N.; Vettier, L.; Cernogora, G.

    2016-10-01

    Microwave plasma discharges working at low pressure are nowadays a well-developed technique mainly used to provide radiation at different wavelengths. The aim of this work is to show that those discharges are an efficient windowless vacuum ultra-violet (VUV) photon source for planetary atmospheric photochemistry experiments. To do this, we use a surfatron-type discharge with a neon gas flow in the mbar pressure range coupled to a photochemical reactor. Working in the VUV range allows nitrogen-dominated atmospheres to be focused on (λ  <  100 nm). The experimental setup makes sure that no energy sources (electrons, metastable atoms) other than the VUV photons interact with the reactive medium. Neon has two resonance lines at 73.6 and 74.3 nm that behave differently depending on the pressure or power conditions. In parallel, the VUV photon flux emitted at 73.6 nm has been experimentally estimated in different pressure and power conditions, and varies in a large range between 2  ×  1013 ph s-1 cm-2 and 4  ×  1014 ph s-1 cm-2, which is comparable to a VUV synchrotron photon flux. Our first case study is the atmosphere of Titan and its N2-CH4 atmosphere. With this VUV source, the production of HCN and C2N2, two major Titan compounds, is detected, ensuring the suitability of the source for atmospheric photochemistry experiments.

  13. Meter-Scale Atmospheric-Pressure Microwave Plasma Using Sub-Millimeter-Gap Slot

    NASA Astrophysics Data System (ADS)

    Toyoda, Hirotaka

    2013-09-01

    Atmospheric-pressure pulsed plasmas have been given much attention because of its various possibilities for industrial applications such as surface wettability control, sterilization and so on. Among various atmospheric-pressure plasma sources, microwave plasma that is produced inside waveguide-slots is attractive because high-density plasma up to 1015 cm-3 can be easily produced along very long waveguide with light-weight and rather simple antenna configuration. So far, we have investigated plasma production inside slot of the waveguide and in this talk, elongation of the plasma up to meter-scale with newly-designed plasma source will be presented. In this study, two types of antennas are proposed to elongate the atmospheric-pressure microwave plasma. Firstly, array-structured slot design with a closed-end waveguide is adopted using X-band microwave (10 GHz). In this structure, slot antennas with a total number of more than 40 are positioned with λg/2-pitch along ~1m waveguide so as to utilize standing wave inside the waveguide and to increase the electric field inside the slot. By optimizing the antenna design, arrayed microwave plasmas are successfully produced along ~1m-length waveguide. The arrayed-slot structure, however, the plasma is not completely uniform along the waveguide and plasma density drastically decreases between two adjacent slots. To solve this, an alternative type of antenna that is free from the standing wave effect is designed. In this new-type antenna, travelling wave inside the waveguide with no reflection wave is realized by a combination of a microwave circulator and a ring-structured waveguide. By this transmission line, microwave power flows only to one direction and the average microwave power becomes spatially uniform along the waveguide. By using a single but very long slot up to several tens cm, very uniform plasma is produced along the slot. The result strongly suggests easy scale-up of the plasma source more than one meter that

  14. Energy density dependence of hydrogen combustion efficiency in atmospheric pressure microwave plasma

    SciTech Connect

    Yoshida, T.; Ezumi, N.; Sawada, K.; Tanaka, Y.; Tanaka, M.; Nishimura, K.

    2015-03-15

    The recovery of tritium in nuclear fusion plants is a key issue for safety. So far, the oxidation procedure using an atmospheric pressure plasma is expected to be part of the recovery method. In this study, in order to clarify the mechanism of hydrogen oxidation by plasma chemistry, we have investigated the dependence of hydrogen combustion efficiency on gas flow rate and input power in the atmospheric pressure microwave plasma. It has been found that the combustion efficiency depends on energy density of absorbed microwave power. Hence, the energy density is considered as a key parameter for combustion processes. Also neutral gas temperatures inside and outside the plasma were measured by an optical emission spectroscopy method and thermocouple. The result shows that the neutral gas temperature in the plasma is much higher than the outside temperature of plasma. The high neutral gas temperature may affect the combustion reaction. (authors)

  15. Monthly Oceanic Rainfall from TRMM Microwave Imager (TMI) Data

    NASA Technical Reports Server (NTRS)

    Chang, Alfred T. C.; Chiu, Long S.

    2000-01-01

    We evaluated the performance of the Tropical Rainfall Measuring Mission (TRMM) Microwave Imager (TMI) at-launch algorithm for monthly oceanic rain rate using two years (January 1998 - December 1999) of TMI data. The TMI at-launch algorithm is based on Wilheit et al.'s technique for estimating monthly oceanic rainfall that relies on histograms of multichannel microwave measurements. Comparisons with oceanic monthly rain rates derived from the Defense Meteorological Satellite Program (DMSP) F-13 and F-14 Special Sensor Microwave Imager (SSM/I) data show the average rain rates over the TRMM region (between 400S and 40N) are 3.0, 2.85 and 2.89 mm/day, respectively for F-13, F-14 and TMI. Based on the latest version of TB data (version 5), both rainrate and freezing height derived from TMI are similar to those from the F-13 and F-14 SSM/I data. However, regionally the differences are statistically significant at the 95% confidence. Three hourly monthly rainrates are also computed from 3-hourly TB histograms to examine the diurnal cycle of precipitation. Over most of the oceanic TRMM area, a distinct early morning rainfall peak is found. A harmonic analysis shows that the amplitude of the 12h harmonic is significant and comparable to that of the 24h harmonic.

  16. On the Characteristics of Coaxial-Type Microwave Excited Linear Plasma: a Simple Numerical Analysis

    NASA Astrophysics Data System (ADS)

    Chen, Longwei; Meng, Yuedong; Zuo, Xiao; Ren, Zhaoxing; Wu, Kenan; Wang, Shuai

    2015-05-01

    To unveil the characteristics and available propagation mechanism of coaxial-type microwave excited line-shape plasma, the effects of parameters including microwave power, working pressure, dielectric constant, and external magnetic field on the plasma distribution were numerically investigated by solving a coupled system of Maxwell's equations and continuity equations. Numerical results indicate that high microwave power, relatively high working pressure, low dielectric constant, and shaped magnetic field profiles will help produce a high-density and uniform plasma source. Exciting both ends by microwave contributed to the high-density and uniform plasma source as well. Possible mechanisms were analyzed by using the polarization model of low temperature plasma. The generation and propagation processes of the line-shape plasma mainly depend on the interaction of three aspects, i.e. the transmitted part, penetration part and absorptive part of the electromagnetic field. The numerical results were qualitatively consistent with available experimental results from literature. More elaborate descriptions of the three aspects and corresponding interactions among them need to be investigated further to improve the properties of the line-shape plasma. supported by National Natural Science Foundation of China (Nos. 11205201 and 61205139), and the Scientific Foundation of Ministry of Education of China (No. N130405008)

  17. Microwave and plasma interaction in a rectangular waveguide: Effect of ponderomotive force

    SciTech Connect

    Malik, Hitendra K.; Aria, Anil K.

    2010-07-15

    Studies on the propagation of high power microwave and its interaction with a plasma in a metallic waveguide are carried out. For this we consider the fundamental TE{sub 10} mode that propagates in an evacuated rectangular waveguide and encounters a plasma which is filled in another waveguide of the same size. Using Maxwell's equations we evaluate the field components of the mode in the evacuated waveguide and then obtain coupled differential equations for the field components of the mode in the plasma filled waveguide, where the plasma effect enters in terms of its dielectric constant. These equations are solved numerically using the fourth-order Runge-Kutta method for the electric field amplitude of the microwave and its wavelength under the effect of plasma density, waveguide width, and microwave frequency. All the investigations are carried out for different initial plasma density profiles, namely homogeneous density, linear density with gradient in the propagation direction and the density with Gaussian profile along the waveguide width. The structure of the perturbed density due to the ponderomotive force exerted by the mode is also investigated under the effect of microwave parameters and waveguide width. Numerical studies are conducted for the isothermal plasma in the waveguide.

  18. Microwave heating power distribution in electron-cyclotron resonance processing plasmas, experiment and theory

    SciTech Connect

    Douglass, S.R.; Eddy, C. Jr.; Lampe, M.; Joyce, G.; Slinker, S.; Weber, B.V.

    1995-12-31

    The authors are currently investigating the mechanisms of microwave power absorption in an ECR plasma. The microwave electric field is detected with an antenna at the end of a shielded co-ax cable, connected to a bolometer for power measurements. Initial measurements have been 1-D along the axis of the plasma chamber. Later, 3-D profiles will be made of the microwave heating power distribution. A comparison of the experimental results with the theoretical microwave absorption are presented. A ray tracing analysis of the propagating right hand wave are given, including both collisional and collisionless absorption. Mode conversion effects are studied to explain why most of the power is absorbed at the entry window, especially the L wave power.

  19. Quantitative Imaging of Microwave Electric Fields through Near-Field Scanning Microwave Microscopy

    NASA Astrophysics Data System (ADS)

    Dutta, S. K.; Vlahacos, C. P.; Steinhauer, D. E.; Thanawalla, A.; Feenstra, B. J.; Wellstood, F. C.; Anlage, Steven M.; Newman, H. S.

    1998-03-01

    The ability to non-destructively image electric field patterns generated by operating microwave devices (e.g. filters, antennas, circulators, etc.) would greatly aid in the design and testing of these structures. Such detailed information can be used to reconcile discrepancies between simulated behavior and experimental data (such as scattering parameters). The near-field scanning microwave microscope we present uses a coaxial probe to provide a simple, broadband method of imaging electric fields.(S. M. Anlage, et al.) IEEE Trans. Appl. Supercond. 7, 3686 (1997).^,(See http://www.csr.umd.edu/research/hifreq/micr_microscopy.html) The signal that is measured is related to the incident electric flux normal to the face of the center conductor of the probe, allowing different components of the field to be measured by orienting the probe appropriately. By using a simple model of the system, we can also convert raw data to absolute electric field. Detailed images of standing waves on copper microstrip will be shown and compared to theory.

  20. Compressive sampling for time critical microwave imaging applications

    PubMed Central

    O'Halloran, Martin; McGinley, Brian; Conceicao, Raquel C.; Kilmartin, Liam; Jones, Edward; Glavin, Martin

    2014-01-01

    Across all biomedical imaging applications, there is a growing emphasis placed on reducing data acquisition and imaging times. This research explores the use of a technique, known as compressive sampling or compressed sensing (CS), as an efficient technique to minimise the data acquisition time for time critical microwave imaging (MWI) applications. Where a signal exhibits sparsity in the time domain, the proposed CS implementation allows for sub-sampling acquisition in the frequency domain and consequently shorter imaging times, albeit at the expense of a slight degradation in reconstruction quality of the signals as the compression increases. This Letter focuses on ultra wideband (UWB) radar MWI applications where reducing acquisition is of critical importance therefore a slight degradation in reconstruction quality may be acceptable. The analysis demonstrates the effectiveness and suitability of CS with UWB applications. PMID:26609368

  1. Temporally and spatially resolved characterization of microwave induced argon plasmas: Experiment and modeling

    SciTech Connect

    Baeva, M. Andrasch, M.; Ehlbeck, J.; Loffhagen, D.; Weltmann, K.-D.

    2014-04-14

    Experiments and modeling of the plasma-microwave interaction have been performed in a coaxial microwave plasma source at a field frequency of 2.45 GHz generating argon plasmas at pressures of 20 and 40 millibars and a ratio of flow rate to pressure of 0.125 sccm/Pa. The incident microwave power between 100 W and 300 W is supplied in a regime of a pulse-width modulation with cycle duration of 110 ms and a power-on time of 23 ms. The experiments are based on heterodyne reflectometry and microwave interferometry at 45.75 GHz. They provide the temporal behaviour of the complex reflection coefficient, the microwave power in the plasma, as well as the electron density in the afterglow zone of the discharge. The self-consistent spatially two-dimensional and time-dependent modeling complements the analysis of the plasma-microwave interaction delivering the plasma and electromagnetic field parameters. The consolidating experimental observations and model predictions allow further characterizing the plasma source. The generated plasma has a core occupying the region close to the end of the inner electrode, where maximum electron densities above 10{sup 20} m{sup −3} and electron temperatures of about 1 eV are observed. Due to a longer outer electrode of the coaxial structure, the plasma region is extended and fills the volume comprised by the outer electrode. The electron density reaches values of the order of 10{sup 19} m{sup −3}. The heating of the gas occurs in its great part due to elastic collisions with the plasma electrons. However, the contribution of the convective heating is important especially in the extended plasma region, where the gas temperature reaches its maximum values up to approximately 1400 K. The temporally and spatially resolved modeling enables a thorough investigation of the plasma-microwave interaction which clearly shows that the power in-coupling occurs in the region of the highest electron density during the early stage of

  2. OH(A,X) radicals in microwave plasma-assisted combustion of methane/air

    NASA Astrophysics Data System (ADS)

    Wu, Wei; Fuh, Che; Wang, Chuji; Laser Spectroscopy and Plasma Team

    2014-10-01

    A novel microwave plasma-assisted combustion (PAC) system, which consists of a microwave plasma-assisted combustor, a gas flow control manifold, and a set of optical diagnostic systems, was developed as a new test platform to study plasma enhancement of combustion. Using this system, we studied the state-resolved OH(A,X) radicals in the plasma-assisted combustion and ignition of a methane/air mixture. Experimental results identified three reaction zones in the plasma-assisted combustor: the plasma zone, the hybrid plasma-flame zone, and the flame zone. The OH(A) radicals in the three distinct zones were characterized using optical emission spectroscopy (OES). Results showed a surge of OH(A) radicals in the hybrid zone compared to the plasma zone and the flame zone. The OH(X) radicals in the flame zone were measured using cavity ringdown spectroscopy (CRDS), and the absolute number density distribution of OH(X) was quantified in two-dimension. The effect of microwave argon plasma on combustion was studied with two different fuel/oxidizer injection patterns, namely the premixed methane/air injection and the nonpremixed (separate) methane/air injection. Parameters investigated included the flame geometry, the lean flammability limit, the emission spectra, and rotational temperature. State-resolved OH(A,X) radicals in the PAC of both injection patterns were also compared. This work is supported by the National Science Foundation through the Grant No. CBET-1066486.

  3. Development of High-Throughput Liquid Treatment System using Slot Antenna Excited Microwave Plasma

    NASA Astrophysics Data System (ADS)

    Takitou, Sho; Ito, Michiko; Takashima, Seigou; Nomura, Norio; Kitagawa, Tominori; Toyoda, Hirotaka

    2015-09-01

    Recently, much attention has been given to plasma production under liquid and its industrial applications as well as investigation of chemical reactions as a result of plasma-liquid interactions. In various kinds of plasma production techniques, we have proposed pulsed microwave excited plasma using slot antenna, where damage to the slot electrode can be minimized and plasma volume can be increased. Furthermore, we have proposed an in-line microwave plasma system where plasma is efficiently produced under reduced pressures using Venturi effect, and have demonstrated enhancement of organic decomposition efficiency. For practical use of the plasma liquid treatment, however, cost-effective and more efficient treatment system with high treatment capability is required. In this study, we propose further enhancement of the treatment speed by designing four-parallel-type liquid treatment device where four discharges for the treatment are performed using one microwave power source. Decomposition speed of newly-developed plasma system is investigated. Not only high decomposition rate but also enhanced energy efficiency is realized.

  4. Surface Wave Multipath Signals in Near-Field Microwave Imaging

    PubMed Central

    Meaney, Paul M.; Shubitidze, Fridon; Fanning, Margaret W.; Kmiec, Maciej; Epstein, Neil R.; Paulsen, Keith D.

    2012-01-01

    Microwave imaging techniques are prone to signal corruption from unwanted multipath signals. Near-field systems are especially vulnerable because signals can scatter and reflect from structural objects within or on the boundary of the imaging zone. These issues are further exacerbated when surface waves are generated with the potential of propagating along the transmitting and receiving antenna feed lines and other low-loss paths. In this paper, we analyze the contributions of multi-path signals arising from surface wave effects. Specifically, experiments were conducted with a near-field microwave imaging array positioned at variable heights from the floor of a coupling fluid tank. Antenna arrays with different feed line lengths in the fluid were also evaluated. The results show that surface waves corrupt the received signals over the longest transmission distances across the measurement array. However, the surface wave effects can be eliminated provided the feed line lengths are sufficiently long independently of the distance of the transmitting/receiving antenna tips from the imaging tank floor. Theoretical predictions confirm the experimental observations. PMID:22566992

  5. Surface wave multipath signals in near-field microwave imaging.

    PubMed

    Meaney, Paul M; Shubitidze, Fridon; Fanning, Margaret W; Kmiec, Maciej; Epstein, Neil R; Paulsen, Keith D

    2012-01-01

    Microwave imaging techniques are prone to signal corruption from unwanted multipath signals. Near-field systems are especially vulnerable because signals can scatter and reflect from structural objects within or on the boundary of the imaging zone. These issues are further exacerbated when surface waves are generated with the potential of propagating along the transmitting and receiving antenna feed lines and other low-loss paths. In this paper, we analyze the contributions of multi-path signals arising from surface wave effects. Specifically, experiments were conducted with a near-field microwave imaging array positioned at variable heights from the floor of a coupling fluid tank. Antenna arrays with different feed line lengths in the fluid were also evaluated. The results show that surface waves corrupt the received signals over the longest transmission distances across the measurement array. However, the surface wave effects can be eliminated provided the feed line lengths are sufficiently long independently of the distance of the transmitting/receiving antenna tips from the imaging tank floor. Theoretical predictions confirm the experimental observations.

  6. Fast 3-D Tomographic Microwave Imaging for Breast Cancer Detection

    PubMed Central

    Meaney, Paul M.; Kaufman, Peter A.; diFlorio-Alexander, Roberta M.; Paulsen, Keith D.

    2013-01-01

    Microwave breast imaging (using electromagnetic waves of frequencies around 1 GHz) has mostly remained at the research level for the past decade, gaining little clinical acceptance. The major hurdles limiting patient use are both at the hardware level (challenges in collecting accurate and noncorrupted data) and software level (often plagued by unrealistic reconstruction times in the tens of hours). In this paper we report improvements that address both issues. First, the hardware is able to measure signals down to levels compatible with sub-centimeter image resolution while keeping an exam time under 2 min. Second, the software overcomes the enormous time burden and produces similarly accurate images in less than 20 min. The combination of the new hardware and software allows us to produce and report here the first clinical 3-D microwave tomographic images of the breast. Two clinical examples are selected out of 400+ exams conducted at the Dartmouth Hitchcock Medical Center (Lebanon, NH). The first example demonstrates the potential usefulness of our system for breast cancer screening while the second example focuses on therapy monitoring. PMID:22562726

  7. Characterization of low-temperature microwave loss of thin aluminum oxide formed by plasma oxidation

    SciTech Connect

    Deng, Chunqing Otto, M.; Lupascu, A.

    2014-01-27

    We report on the characterization of microwave loss of thin aluminum oxide films at low temperatures using superconducting lumped resonators. The oxide films are fabricated using plasma oxidation of aluminum and have a thickness of 5 nm. We measure the dielectric loss versus microwave power for resonators with frequencies in the GHz range at temperatures from 54 to 303 mK. The power and temperature dependence of the loss are consistent with the tunneling two-level system theory. These results are relevant to understanding decoherence in superconducting quantum devices. The obtained oxide films are thin and robust, making them suitable for capacitors in compact microwave resonators.

  8. Broadband microwave characteristics of a novel coaxial gridded hollow cathode argon plasma.

    PubMed

    Gao, Ruilin; Yuan, Chengxun; Li, Hui; Jia, Jieshu; Zhou, Zhong-Xiang; Wang, Ying; Wang, Xiaoou; Wu, Jian

    2016-08-01

    The interaction between microwave and large area plasma is crucially important for space communication. Gas pressure, input power, and plasma volume are critical to both the microwave electromagnetic wave phase shift and electron density. This paper presents a novel type of large coaxial gridded hollow cathode plasma having a 50 cm diameter and a 40 cm thickness. Microwave characteristics are studied using a microwave measurement system that includes two broadband antennae in the range from 2 GHz to 18 GHz. The phase shift under varying gas pressure and input power is shown. In addition, the electron density ne, which varies from 1.2 × 10(16) m(-3) to 8.7 × 10(16) m(-3) under different discharge conditions, is diagnosed by the microwave system. The measured results accord well with those acquired by Langmuir Probe measurement and show that the microwave properties in the large volume hollow cathode discharge significantly depend on the input power and gas pressure. PMID:27587122

  9. New microwave spectrometer/imager has possible applications for pollution monitoring

    NASA Technical Reports Server (NTRS)

    Tooley, R. D.

    1970-01-01

    Microwave imager forms thermal-emissivity image of solid portion of planet Venus and provides data on the planet's atmosphere, surface, terminator, and temperature changes. These thermally produced multifrequency microwaves for image production of temperature profiles can be applied to water pollution monitoring, agriculture, and forestry survey.

  10. Plasma column and nano-powder generation from solid titanium by localized microwaves in air

    NASA Astrophysics Data System (ADS)

    Popescu, Simona; Jerby, Eli; Meir, Yehuda; Barkay, Zahava; Ashkenazi, Dana; Mitchell, J. Brian A.; Le Garrec, Jean-Luc; Narayanan, Theyencheri

    2015-07-01

    This paper studies the effect of a plasma column ejected from solid titanium by localized microwaves in an ambient air atmosphere. Nanoparticles of titanium dioxide (titania) are found to be directly synthesized in this plasma column maintained by the microwave energy in the cavity. The process is initiated by a hotspot induced by localized microwaves, which melts the titanium substrate locally. The molten hotspot emits ionized titanium vapors continuously into the stable plasma column, which may last for more than a minute duration. The characterization of the dusty plasma obtained is performed in-situ by small-angle X-ray scattering (SAXS), optical spectroscopy, and microwave reflection analyses. The deposited titania nanoparticles are structurally and morphologically analyzed by ex-situ optical and scanning-electron microscope observations, and also by X-ray diffraction. Using the Boltzmann plot method combined with the SAXS results, the electron temperature and density in the dusty plasma are estimated as ˜0.4 eV and ˜1019 m-3, respectively. The analysis of the plasma product reveals nanoparticles of titania in crystalline phases of anatase, brookite, and rutile. These are spatially arranged in various spherical, cubic, lamellar, and network forms. Several applications are considered for this process of titania nano-powder production.

  11. Plasma column and nano-powder generation from solid titanium by localized microwaves in air

    SciTech Connect

    Popescu, Simona; Jerby, Eli Meir, Yehuda; Ashkenazi, Dana; Barkay, Zahava; Mitchell, J. Brian A.; Le Garrec, Jean-Luc; Narayanan, Theyencheri

    2015-07-14

    This paper studies the effect of a plasma column ejected from solid titanium by localized microwaves in an ambient air atmosphere. Nanoparticles of titanium dioxide (titania) are found to be directly synthesized in this plasma column maintained by the microwave energy in the cavity. The process is initiated by a hotspot induced by localized microwaves, which melts the titanium substrate locally. The molten hotspot emits ionized titanium vapors continuously into the stable plasma column, which may last for more than a minute duration. The characterization of the dusty plasma obtained is performed in-situ by small-angle X-ray scattering (SAXS), optical spectroscopy, and microwave reflection analyses. The deposited titania nanoparticles are structurally and morphologically analyzed by ex-situ optical and scanning-electron microscope observations, and also by X-ray diffraction. Using the Boltzmann plot method combined with the SAXS results, the electron temperature and density in the dusty plasma are estimated as ∼0.4 eV and ∼10{sup 19 }m{sup −3}, respectively. The analysis of the plasma product reveals nanoparticles of titania in crystalline phases of anatase, brookite, and rutile. These are spatially arranged in various spherical, cubic, lamellar, and network forms. Several applications are considered for this process of titania nano-powder production.

  12. Microwave plasma torch abatement of NF{sub 3} and SF{sub 6}

    SciTech Connect

    Hong, Yong Cheol; Uhm, Han Sup; Chun, Byung Jun; Lee, Sun Ku; Hwang, Sang Kyu; Kim, Dong Su

    2006-03-15

    An atmospheric pressure microwave plasma torch as a tool for fluorinated compounds (FCs) abatement was presented. Detailed experiments were conducted on the abatement of NF{sub 3} and SF{sub 6} in terms of destruction and removal efficiency (DRE) using Fourier transform infrared (FTIR). Swirl gas, compressed air for stable plasma, was tangentially injected into the microwave plasma torch and a mixture of N{sub 2}, NF{sub 3}, or SF{sub 6}, and C{sub 2}H{sub 4} was axially injected. The DRE of 99.1% for NF{sub 3} was achieved without an additive gas at the total flow rate of 50.1 liters per minute (lpm) by applying a microwave power of 1.4 kW. Also, a DRE of SF{sub 6} up to 90.1% was obtained at the total flow rate of 40.6 lpm using an applied microwave power of 1.4 kW. Experimental results indicate that the microwave plasma abatement device can successfully eliminate FCs in the semiconductor industry.

  13. Preliminary investigation of high power microwave plasmas for electrothermal thruster use

    NASA Technical Reports Server (NTRS)

    Power, John L.; Sullivan, Daniel J.

    1993-01-01

    Results are reported from preliminary tests to evaluate the high power microwave electrothermal thruster (MET) concept, which employs a free-floating plasma discharge maintained by applied CW microwave power to heat a propellant gas flow. Stable plasmas have been created and maintained in helium (He), nitrogen (N2), and hydrogen (H2) as propellants in both the TM(sub 011) and TM(sub 012) modes at discharge pressures from 10 Pa to 69 kPa. Reproducible starting conditions of pressure and power have been documented for all the plasmas. Vortical inflow of the propellant gas was observed to cause the formation of on-axis 'spike' plasmas. The formation and unformation conditions of these plasmas were studied. Operation in the spike plasma condition enables maximum power absorption with minimum wall heating and offers maximum efficiency in heating the propellant gas. In the spike condition, plasmas of the three propellant gases were investigated in an open channel configuration to a maximum applied power level of 11.2 kW (in N2). Microwave power coupling efficiencies of over 90 percent were routinely obtained at absorbed power levels up to 2 kW. Magnetic nozzle effects were investigated with a superconducting solenoid Al magnet applying a high magnetic field to the plasmas in and exiting from the discharge tube.

  14. Microwave near-field imaging of two-dimensional semiconductors.

    PubMed

    Berweger, Samuel; Weber, Joel C; John, Jimmy; Velazquez, Jesus M; Pieterick, Adam; Sanford, Norman A; Davydov, Albert V; Brunschwig, Bruce; Lewis, Nathan S; Wallis, Thomas M; Kabos, Pavel

    2015-02-11

    Optimizing new generations of two-dimensional devices based on van der Waals materials will require techniques capable of measuring variations in electronic properties in situ and with nanometer spatial resolution. We perform scanning microwave microscopy (SMM) imaging of single layers of MoS2 and n- and p-doped WSe2. By controlling the sample charge carrier concentration through the applied tip bias, we are able to reversibly control and optimize the SMM contrast to image variations in electronic structure and the localized effects of surface contaminants. By further performing tip bias-dependent point spectroscopy together with finite element simulations, we distinguish the effects of the quantum capacitance and determine the local dominant charge carrier species and dopant concentration. These results underscore the capability of SMM for the study of 2D materials to image, identify, and study electronic defects.

  15. Microwave Frequency Ferroelectric Domain Imaging of Deuterated Triglycine Sulfate Crystals

    NASA Astrophysics Data System (ADS)

    Steinhauer, David E.; Anlage, Steven M.

    2001-03-01

    We have used a near-field scanning microwave microscope(D. E. Steinhauer, C. P. Vlahacos, F. C. Wellstood, Steven M. Anlage, C. Canedy, R. Ramesh, A. Stanishevsky, and J. Melngailis, "Quantitative Imaging of Dielectric Permittivity and Tunability with a Near-Field Scanning Microwave Microscope," Rev. Sci. Instrum. 71), 2751-2758 (2000). to image domain structure and quantitatively measure dielectric permittivity and nonlinearity in ferroelectric crystals at 8.1 GHz with a spatial resolution of 1 μm. We imaged ferroelectric domains in periodically-poled LiNbO_3, BaTiO_3, and deuterated triglycine sulfate (DTGS) with a signal-to-noise ratio of 7. Measurement of the permittivity and nonlinearity of DTGS in the temperature range 300--400 K shows a peak at the Curie temperature, TC ≈ 340 K, as well as reasonable agreement with thermodynamic theory. In addition, the domain growth relaxation time shows a minimum near T_C. We observe coarsening of ferroelectric domains in DTGS after a temperature quench from 360 K to 330 K, and evaluate the structure factor.

  16. Abatement of CF4 by atmospheric-pressure microwave plasma torch

    NASA Astrophysics Data System (ADS)

    Hong, Yong C.; Uhm, Han S.

    2003-08-01

    An atmospheric microwave plasma torch is presented for post-pump destruction of perfluorocompound gases (PFCs), which are used widely in the semiconductor industry and are emitted with nitrogen gas for vacuum pump purges. Discharges of the microwave plasma torch are well suited for abatement of PFC contaminants discharged at a typical flow rate. The abatement was carried out using oxygen or air as additive gases. Analytical results are systematically compared to quadrupole mass spectroscopy and Fourier transform infrared (FTIR) data in the laboratory. Destruction and removal efficiency of more than 99% in FTIR data was achieved for carbon tetrafluoride.

  17. Propagation of Polarized Cosmic Microwave Background Radiation in an Anisotropic Magnetized Plasma

    SciTech Connect

    Moskaliuk, S. S.

    2010-01-01

    The polarization plane of the cosmic microwave background radiation (CMBR) can be rotated either in a space-time with metric of anisotropic type and in a magnetized plasma or in the presence of a quintessential background with pseudoscalar coupling to electromagnetism. A unified treatment of these three phenomena is presented for cold anisotropic plasma at the pre-recombination epoch. It is argued that the generalized expressions derived in the present study may be relevant for direct searches of a possible rotation of the cosmic microwave background polarization.

  18. Bragg scattering of electromagnetic waves by microwave-produced plasma layers

    NASA Technical Reports Server (NTRS)

    Kuo, S. P.; Zhang, Y. S.

    1990-01-01

    A set of parallel plasma layers is generated by two intersecting microwave pulses in a chamber containing dry air at a pressure comparable to the upper atmosphere. The dependencies of breakdown conditions on the pressure and pulse length are examined. The results are shown to be consistent with the appearance of tail erosion of the microwave pulse caused by air breakdown. A Bragg scattering experiment, using the plasma layers as a Bragg reflector, is then performed. Both time domain and frequency domain measurements of wave scattering are conducted. The experimental results are found to agree very well with the theory.

  19. Measurement of the electron density in a microwave plasma torch at atmospheric pressure

    SciTech Connect

    Zhang Qing; Zhang Guixin; Wang Liming; Wang Xinxin; Wang Shumin; Chen Yan

    2009-11-16

    The electron density in a microwave plasma torch at atmospheric pressure was measured with a Mach-Zehnder interferometer. The electron density is on the order of 10{sup 17}/cm{sup 3}, one order higher than that deduced from the Stark broadening of spectral lines, and increases with the increase in the microwave power. The spatial distribution of the electron density was obtained. The highest electron density locates at the symmetrical axis of the plasma torch and decreases radially. It was found that the electron density fluctuates within a range of 0.3 with the time under the same experimental conditions.

  20. Soft Shrinkage Thresholding Algorithm for Nonlinear Microwave Imaging

    NASA Astrophysics Data System (ADS)

    Zaimaga, Hidayet; Lambert, Marc

    2016-10-01

    In this paper, we analyze a sparse nonlinear inverse scattering problem arising in microwave imaging and numerically solved it for retrieving dielectric contrast from measured fields. In sparsity reconstruction, contrast profiles are a priori assumed to be sparse with respect to a certain base. We proposed an approach which is motivated by a Tikhonov functional incorporating a sparsity promoting l 1-penalty term. The proposed iterative algorithm of soft shrinkage type enforces the sparsity constraint at each nonlinear iteration. The scheme produces sharp and good reconstruction of dielectric profiles in sparse domains by adapting Barzilai and Borwein (BB) step size selection criteria and positivity by maintaining its convergence during the reconstruction.

  1. Multifrequency Bayesian compressive sensing methods for microwave imaging.

    PubMed

    Poli, Lorenzo; Oliveri, Giacomo; Ding, Ping Ping; Moriyama, Toshifumi; Massa, Andrea

    2014-11-01

    The Bayesian retrieval of sparse scatterers under multifrequency transverse magnetic illuminations is addressed. Two innovative imaging strategies are formulated to process the spectral content of microwave scattering data according to either a frequency-hopping multistep scheme or a multifrequency one-shot scheme. To solve the associated inverse problems, customized implementations of single-task and multitask Bayesian compressive sensing are introduced. A set of representative numerical results is discussed to assess the effectiveness and the robustness against the noise of the proposed techniques also in comparison with some state-of-the-art deterministic strategies. PMID:25401353

  2. Multifrequency Bayesian compressive sensing methods for microwave imaging.

    PubMed

    Poli, Lorenzo; Oliveri, Giacomo; Ding, Ping Ping; Moriyama, Toshifumi; Massa, Andrea

    2014-11-01

    The Bayesian retrieval of sparse scatterers under multifrequency transverse magnetic illuminations is addressed. Two innovative imaging strategies are formulated to process the spectral content of microwave scattering data according to either a frequency-hopping multistep scheme or a multifrequency one-shot scheme. To solve the associated inverse problems, customized implementations of single-task and multitask Bayesian compressive sensing are introduced. A set of representative numerical results is discussed to assess the effectiveness and the robustness against the noise of the proposed techniques also in comparison with some state-of-the-art deterministic strategies.

  3. Influence of microwave driver coupling design on plasma density at Testbench for Ion sources Plasma Studies, a 2.45 GHz Electron Cyclotron Resonance Plasma Reactor

    SciTech Connect

    Megía-Macías, A.; Vizcaíno-de-Julián, A.; Cortázar, O. D.

    2014-03-15

    A comparative study of two microwave driver systems (preliminary and optimized) for a 2.45 GHz hydrogen Electron Cyclotron Resonance plasma generator has been conducted. The influence on plasma behavior and parameters of stationary electric field distribution in vacuum, i.e., just before breakdown, along all the microwave excitation system is analyzed. 3D simulations of resonant stationary electric field distributions, 2D simulations of external magnetic field mapping, experimental measurements of incoming and reflected power, and electron temperature and density along the plasma chamber axis have been carried out. By using these tools, an optimized set of plasma chamber and microwave coupler has been designed paying special attention to the optimization of stationary electric field value in the center of the plasma chamber. This system shows a strong stability on plasma behavior allowing a wider range of operational parameters and even sustaining low density plasma formation without external magnetic field. In addition, the optimized system shows the capability to produce values of plasma density four times higher than the preliminary as a consequence of a deeper penetration of the magnetic resonance surface in relative high electric field zone by keeping plasma stability. The increment of the amount of resonance surface embedded in the plasma under high electric field is suggested as a key factor.

  4. Single-shot Thomson scattering on argon plasmas created by the Microwave Plasma Torch; evidence for a new plasma class

    NASA Astrophysics Data System (ADS)

    van der Mullen, J. J. A. M.; van de Sande, M. J.; de Vries, N.; Broks, B.; Iordanova, E.; Gamero, A.; Torres, J.; Sola, A.

    2007-10-01

    To determine the fine-structure size of plasmas created by a Microwave Plasma Torch (MPT), single-shot Thomson scattering (TS) measurements were performed. The aim was to find a solution for the long-standing discrepancy between experiments and Global Plasma Models (GPMs). Since these GPMs are based on the assumption that (ambipolar) diffusion is the main loss process for charged particles, the diffusion length and thus the fine-structure size should be known with high precision before an appropriate theory-experiment comparison can be carried out. In order to avoid the effect of blurring, which is created during the accumulation of multi-shot TS signals and which obscures the fine-structures, single-shot measurements are indispensable to determine the diffusion length. The results of the present study reveal that the impression created by multi-shot TS that MPT plasmas resemble stable cones is not (always) correct; instead it is found that the plasmas we investigated are tiny filaments that rotate on the mantle of a virtual cone. However, the fine-structure, especially the thickness, of these filaments is not substantially smaller than that of the virtual cone. By applying the theory-experiment comparison to the filament we found that the disagreement is even worse than what we found for the cone. It is therefore inevitable to conclude that the main proposition of the GPM is incorrect. Apparently the plasma is not diffusive in nature; that is, the main loss process of charged particles is not provided by diffusion but by local chemistry. Swirling in a cool nitrogen-containing environment favors the production of molecular ions such as Ar 2+ and N 2+ inside the plasma filament. The destruction of these molecular ions leads to recombination frequencies that are more than a factor 100 larger than what ambipolar diffusion can provide. Thus we are dealing with another plasma class and it is useful to divide plasmas into diffusive and reactive plasmas. The well

  5. Microwave plasma monitoring system for the elemental composition analysis of high temperature process streams

    DOEpatents

    Woskov, Paul P.; Cohn, Daniel R.; Titus, Charles H.; Surma, Jeffrey E.

    1997-01-01

    Microwave-induced plasma for continuous, real time trace element monitoring under harsh and variable conditions. The sensor includes a source of high power microwave energy and a shorted waveguide made of a microwave conductive, high temperature capability refractory material communicating with the source of the microwave energy to generate a plasma. The high power waveguide is constructed to be robust in a hot, hostile environment. It includes an aperture for the passage of gases to be analyzed and a spectrometer is connected to receive light from the plasma. Provision is made for real time in situ calibration. The spectrometer disperses the light, which is then analyzed by a computer. The sensor is capable of making continuous, real time quantitative measurements of desired elements, such as the heavy metals lead and mercury. The invention may be incorporated into a high temperature process device and implemented in situ for example, such as with a DC graphite electrode plasma arc furnace. The invention further provides a system for the elemental analysis of process streams by removing particulate and/or droplet samples therefrom and entraining such samples in the gas flow which passes through the plasma flame. Introduction of and entraining samples in the gas flow may be facilitated by a suction pump, regulating gas flow, gravity or combinations thereof.

  6. A review of research and development on the microwave-plasma electrothermal rocket

    NASA Technical Reports Server (NTRS)

    Hawley, Martin C.; Asmussen, Jes; Filpus, John W.; Frasch, Lydell L.; Whitehair, Stanley; Morin, T. J.; Chapman, R.

    1987-01-01

    The microwave-plasma electrothermal rocket (MWPETR) shows promise for spacecraft propulsion and maneuvering, without some of the drawbacks of competitive electric propulsion systems. In the MWPETR, the electric power is first converted to microwave-frequency radiation. In a specially-designed microwave cavity system, the electromagnetic energy of the radiation is transferred to the electrons in a plasma sustained in the working fluid. The resulting high-energy electrons transfer their energy to the atoms and molecules of the working fluid by collisions. The working fluid, thus heated, expands through a nozzle to generate thrust. In the MWPETR, no electrodes are in contact with the working fluid, the energy is transferred into the working fluid by nonthermal mechanisms, and the main requirement for the materials of construction is that the walls of the plasma chamber be insulating and transparent to microwave radiation at operating conditions. In this survey of work on the MWPETR, several experimental configurations are described and compared. Diagnostic methods used in the study are described and compared, including titration, spectroscopy, calorimetry, electric field measurements, gas-dynamic methods, and thrust measurements. Measured and estimated performance efficiencies are reported. Results of computer modeling of the plasma and of the gas flowing from the plasma are summarized.

  7. Review of research and development on the microwave-plasma electrothermal rocket

    SciTech Connect

    Hawley, M.C.; Asmussen, J.; Filpus, J.W.; Frasch, L.L.; Whitehair, S.

    1987-01-01

    The microwave-plasma electrothermal rocket (MWPETR) shows promise for spacecraft propulsion and maneuvering, without some of the drawbacks of competitive electric propulsion systems. In the MWPETR, the electric power is first converted to microwave-frequency radiation. In a specially-designed microwave cavity system, the electromagnetic energy of the radiation is transferred to the electrons in a plasma sustained in the working fluid. The resulting high-energy electrons transfer their energy to the atoms and molecules of the working fluid by collisions. The working fluid, thus heated, expands through a nozzle to generate thrust. In the MWPETR, no electrodes are in contact with the working fluid, the energy is transferred into the working fluid by nonthermal mechanisms, and the main requirement for the materials of construction is that the walls of the plasma chamber be insulating and transparent to microwave radiation at operating conditions. In this survey of work on the MWPETR, several experimental configurations are described and compared. Diagnostic methods used in the study are described and compared, including titration, spectroscopy, calorimetry, electric field measurements, gas-dynamic methods, and thrust measurements. Measured and estimated performance efficiencies are reported. Results of computer modeling of the plasma and of the gas flowing from the plasma are summarized. 32 references.

  8. Beam-plasma generators of stochastic microwave oscillations used for plasma heating in fusion and plasma-chemistry devices and ionospheric investigations

    NASA Astrophysics Data System (ADS)

    Mitin, Leonid A.; Perevodchikov, Vladimir I.; Shapiro, A. L.; Zavjalov, M. A.; Bliokh, Yury P.; Fainberg, Ya. B.

    1996-10-01

    The results of theoretical and experimental investigations of generator of stochastic microwave power based on beam- plasma inertial feedback amplifier is discussed to use stochastic oscillation for heating of plasma. The efficiency of heating of plasma in the region of low-frequency resonance in the geometry of `Tokomak' is considered theoretically. It is shown, that the temp of heating is proportional the power multiplied by spectra width of noiselike signal.

  9. Investigation on computation of elliptical microwave plasma cavity

    NASA Astrophysics Data System (ADS)

    Liao, Xiaoli; Liu, Hua; Zhang, Kai

    2008-12-01

    In recent years, the advance of the elliptical resonant cavity and focus cavity is known by many people. There are homogeneous and multipatternal virtues in the focus dimensional microwave field of the elliptical resonant cavity. It is very suitable for applying the low power microwave biological effect equipment. However, when designing the elliptical resonant cavity may meet the problems of complex and huge computation need to be solved. This paper proposed the simple way of approximate processing the Mathieu function. It can greatly simplify the difficulty and decrease the scale of computation. This method can satisfy the requirements of research and development within project permitted precision.

  10. Microwave interferometry of laser induced air plasmas formed by short laser pulses

    SciTech Connect

    Jungwirth, P.W.

    1993-08-01

    Applications for the interaction of laser induced plasmas with electromagnetic probes requires time varying complex conductivity data for specific laser/electromagnetic probe geometries. Applications for this data include plasma switching (Q switching) and the study of ionization fronts. The plasmas were created in laboratory air by 100 ps laser pulses at a wavelength of 1 {mu}m. A long focal length lens focused the laser pulse into WR90 (X band) rectangular waveguide. Two different laser beam/electromagnetic probe geometries were investigated. For the longitudinal geometry, the laser pulse and the microwave counterpropagated inside the waveguide. For the transverse geometry, the laser created a plasma ``post`` inside the waveguide. The effects of the laser beam deliberately hitting the waveguide were also investigated. Each geometry exhibits its own characteristics. This research project focused on the longitudinal geometry. Since the laser beam intensity varies inside the waveguide, the charge distribution inside the waveguide also varies. A 10 GHz CW microwave probe traveled through the laser induced plasma. From the magnitude and phase of the microwave probe, a spatially integrated complex conductivity was calculated. No measurements of the temporal or spatial variation of the laser induced plasma were made. For the ``plasma post,`` the electron density is more uniform.

  11. Ion-beam Plasma Neutralization Interaction Images

    SciTech Connect

    Igor D. Kaganovich; Edward Startsev; S. Klasky; Ronald C. Davidson

    2002-04-09

    Neutralization of the ion beam charge and current is an important scientific issue for many practical applications. The process of ion beam charge and current neutralization is complex because the excitation of nonlinear plasma waves may occur. Computer simulation images of plasma neutralization of the ion beam pulse are presented.

  12. Optics System Design of Microwave Imaging Reflectometry for the EAST Tokamak

    NASA Astrophysics Data System (ADS)

    Zhu, Yilun; Zhao, Zhenling; Tong, Li; Chen, Dongxu; Xie, Jinlin; Liu, Wandong

    2016-04-01

    A front-end optics system has been developed for the EAST microwave imaging reflectometry for 2D density fluctuation measurement. Via the transmitter optics system, a combination of eight transmitter beams with independent frequencies is employed to illuminate wide poloidal regions on eight distinct cutoff layers. The receiver optics collect the reflected wavefront and project them onto the vertical detector array with 12 antennas. Utilizing optimized Field Curvature adjustment lenses in the receiver optics, the front-end optics system provides a flexible and perfect matching between the image plane and a specified cutoff layer in the plasma, which ensures the correct data interpretation of density fluctuation measurement. supported by the National Magnetic Confinement Fusion Energy Program of China (Nos. 2009GB107001 and 2014GB109002)

  13. Stratiform/convective rain delineation for TRMM microwave imager

    NASA Astrophysics Data System (ADS)

    Islam, Tanvir; Srivastava, Prashant K.; Dai, Qiang; Gupta, Manika; Wan Jaafar, Wan Zurina

    2015-10-01

    This article investigates the potential for using machine learning algorithms to delineate stratiform/convective (S/C) rain regimes for passive microwave imager taking calibrated brightness temperatures as only spectral parameters. The algorithms have been implemented for the Tropical Rainfall Measuring Mission (TRMM) microwave imager (TMI), and calibrated as well as validated taking the Precipitation Radar (PR) S/C information as the target class variables. Two different algorithms are particularly explored for the delineation. The first one is metaheuristic adaptive boosting algorithm that includes the real, gentle, and modest versions of the AdaBoost. The second one is the classical linear discriminant analysis that includes the Fisher's and penalized versions of the linear discriminant analysis. Furthermore, prior to the development of the delineation algorithms, a feature selection analysis has been conducted for a total of 85 features, which contains the combinations of brightness temperatures from 10 GHz to 85 GHz and some derived indexes, such as scattering index, polarization corrected temperature, and polarization difference with the help of mutual information aided minimal redundancy maximal relevance criterion (mRMR). It has been found that the polarization corrected temperature at 85 GHz and the features derived from the "addition" operator associated with the 85 GHz channels have good statistical dependency to the S/C target class variables. Further, it has been shown how the mRMR feature selection technique helps to reduce the number of features without deteriorating the results when applying through the machine learning algorithms. The proposed scheme is able to delineate the S/C rain regimes with reasonable accuracy. Based on the statistical validation experience from the validation period, the Matthews correlation coefficients are in the range of ~0.60-0.70. Since, the proposed method does not rely on any a priori information, this makes it very

  14. Application of Atmospheric-Pressure Microwave Line Plasma for Low Temperature Process

    NASA Astrophysics Data System (ADS)

    Suzuki, Haruka; Nakano, Suguru; Itoh, Hitoshi; Sekine, Makoto; Hori, Masaru; Toyoda, Hirotaka

    2015-09-01

    Atmospheric pressure (AP) plasmas have been given much attention because of its high cost benefit and a variety of possibilities for industrial applications. In various kinds of plasma production technique, pulsed-microwave discharge plasma using slot antenna is attractive due to its ability of high-density and stable plasma production. In this plasma source, however, size of the plasma has been limited up to a few cm in length due to standing wave inside a waveguide. To solve this, we have proposed a newly-developed AP microwave plasma source that utilizes not standing wave but travelling wave. By using this plasma source, spatially-uniform AP line plasma with 40 cm in length was realized by pure helium discharge in 60 cm slot and with nitrogen gas additive of 1%. Furthermore, gas temperature as low as 400 K was realized in this device. In this study, as an example of low temperature processes, hydrophilic treatment of PET films was performed. Processing speed increased with pulse frequency and a water contact angle of ~20° was easily obtained within 5 s with no thermal damage to the substrate. To evaluate treatment-uniformity of long line length, PET films were treated by 90 cm slot-antenna plasma and uniform treatment performance was confirmed.

  15. Early results of microwave transmission experiments through an overly dense rectangular plasma sheet with microparticle injection

    SciTech Connect

    Gillman, Eric D.; Amatucci, W. E.

    2014-06-15

    These experiments utilize a linear hollow cathode to create a dense, rectangular plasma sheet to simulate the plasma layer surrounding vehicles traveling at hypersonic velocities within the Earth's atmosphere. Injection of fine dielectric microparticles significantly reduces the electron density and therefore lowers the electron plasma frequency by binding a significant portion of the bulk free electrons to the relatively massive microparticles. Measurements show that microwave transmission through this previously overly dense, impenetrable plasma layer increases with the injection of alumina microparticles approximately 60 μm in diameter. This method of electron depletion is a potential means of mitigating the radio communications blackout experienced by hypersonic vehicles.

  16. Early results of microwave transmission experiments through an overly dense rectangular plasma sheet with microparticle injection

    NASA Astrophysics Data System (ADS)

    Gillman, Eric D.; Amatucci, W. E.

    2014-06-01

    These experiments utilize a linear hollow cathode to create a dense, rectangular plasma sheet to simulate the plasma layer surrounding vehicles traveling at hypersonic velocities within the Earth's atmosphere. Injection of fine dielectric microparticles significantly reduces the electron density and therefore lowers the electron plasma frequency by binding a significant portion of the bulk free electrons to the relatively massive microparticles. Measurements show that microwave transmission through this previously overly dense, impenetrable plasma layer increases with the injection of alumina microparticles approximately 60 μm in diameter. This method of electron depletion is a potential means of mitigating the radio communications blackout experienced by hypersonic vehicles.

  17. Experimental study and numerical simulations of a plasma relativistic microwave amplifier

    SciTech Connect

    Bogdankevich, I. L.; Ivanov, I. E.; Strelkov, P. S.

    2010-09-15

    The dependences of the radiation parameters of a plasma relativistic microwave amplifier on the external factors have been studied both experimentally and numerically. The calculated dependences are found to agree qualitatively with the measured ones. In contrast to experimental studies, numerical simulations make it possible to examine physical processes occurring inside the plasma waveguide. Good agreement between the measured and calculated dependences of the radiation parameters on the external factors shows that information provided by numerical simulations of the processes occurring inside the plasma waveguide can be considered quite reliable. The electromagnetic field structure and electron beam dynamics inside the plasma waveguide have been investigated.

  18. Multiple diagnostics in a high-pressure hydrogen microwave plasma torch

    SciTech Connect

    Torres, J.; Mullen, J. J. A. M. van der; Gamero, A.; Sola, A.

    2010-02-01

    We present an experimental study of a hydrogen plasma produced by a microwave axial injection torch, launching the plasma in a helium-filled chamber. Three different diagnostic methods have been used to obtain the electron density and temperature as follows: The Stark intersection method of Balmer spectral lines (already tested in argon and helium plasmas); the modified Boltzmann-plot showing that the plasma is far from the local thermodynamic equilibrium but ruled by the excitation-saturation balance; and a study by the disturbed bilateral relations theory. All of these diagnostic techniques show a good agreement.

  19. Low-temperature synthesis of carbon nitride by microwave plasma CVD

    NASA Astrophysics Data System (ADS)

    Tanaka, Ippei; Sakamoto, Yukihiro

    2016-01-01

    Investigation of the low temperature synthesis of carbon nitride was carried out by microwave plasma CVD. Carbon nitride was synthesized using an improved microwave plasma CVD apparatus. Si was used as the substrate. A mixture of CH4 and N2 gas was used as a reaction gas. Synthesis pressure was varied from 1.1 to 4.0 kPa, microwave power was varied from 400 to 800 W. Faceted particles were obtained at a microwave power of 800 W and a substrate temperature of 880 K. Faceted particles were obtained at various synthesis pressures and a substrate temperature of as low as 740 K. Also, β-Si3N4 and α-C3N4 peaks were observed in the X-ray diffraction (XRD) pattern. As a result of studies of the low-temperature synthesis of carbon nitride by microwave plasma CVD, the morphology of deposits was found to depend on substrate temperature, and faceted particles were obtained at a substrate temperature as low as 740 K.

  20. X-band microwave antenna with a switchable planar plasma reflector

    NASA Astrophysics Data System (ADS)

    Bliokh, Yury P.; Felsteiner, Joshua; Slutsker, Yakov Z.

    2016-09-01

    We present a test of a switchable X-band microwave plasma antenna having an aperture diameter of 30 cm. The dense plasma which forms a reflective surface is produced by a ferromagnetic inductively coupled plasma source. A planar-convex dielectric lens placed at the top of the vacuum chamber forms the required phase front of the reflected electromagnetic wave and simultaneously serves as a vacuum cap. The antenna gain is just a bit (about 1 dB) less than that of an ordinary microwave antenna with the same diameter. When the plasma is switched off (off-state), the antenna radar cross section was found to be at least 20 dB smaller as compared to the on-state.

  1. Microwave frequency sweep interferometer for plasma density measurements in ECR ion sources: Design and preliminary results

    NASA Astrophysics Data System (ADS)

    Torrisi, Giuseppe; Mascali, David; Neri, Lorenzo; Leonardi, Ornella; Sorbello, Gino; Celona, Luigi; Castro, Giuseppe; Agnello, Riccardo; Caruso, Antonio; Passarello, Santi; Longhitano, Alberto; Isernia, Tommaso; Gammino, Santo

    2016-02-01

    The Electron Cyclotron Resonance Ion Sources (ECRISs) development is strictly related to the availability of new diagnostic tools, as the existing ones are not adequate to such compact machines and to their plasma characteristics. Microwave interferometry is a non-invasive method for plasma diagnostics and represents the best candidate for plasma density measurement in hostile environment. Interferometry in ECRISs is a challenging task mainly due to their compact size. The typical density of ECR plasmas is in the range 1011-1013 cm-3 and it needs a probing beam wavelength of the order of few centimetres, comparable to the chamber radius. The paper describes the design of a microwave interferometer developed at the LNS-INFN laboratories based on the so-called "frequency sweep" method to filter out the multipath contribution in the detected signals. The measurement technique and the preliminary results (calibration) obtained during the experimental tests will be presented.

  2. Microwave frequency sweep interferometer for plasma density measurements in ECR ion sources: Design and preliminary results.

    PubMed

    Torrisi, Giuseppe; Mascali, David; Neri, Lorenzo; Leonardi, Ornella; Sorbello, Gino; Celona, Luigi; Castro, Giuseppe; Agnello, Riccardo; Caruso, Antonio; Passarello, Santi; Longhitano, Alberto; Isernia, Tommaso; Gammino, Santo

    2016-02-01

    The Electron Cyclotron Resonance Ion Sources (ECRISs) development is strictly related to the availability of new diagnostic tools, as the existing ones are not adequate to such compact machines and to their plasma characteristics. Microwave interferometry is a non-invasive method for plasma diagnostics and represents the best candidate for plasma density measurement in hostile environment. Interferometry in ECRISs is a challenging task mainly due to their compact size. The typical density of ECR plasmas is in the range 10(11)-10(13) cm(-3) and it needs a probing beam wavelength of the order of few centimetres, comparable to the chamber radius. The paper describes the design of a microwave interferometer developed at the LNS-INFN laboratories based on the so-called "frequency sweep" method to filter out the multipath contribution in the detected signals. The measurement technique and the preliminary results (calibration) obtained during the experimental tests will be presented.

  3. Hydrogen production from alcohol reforming in a microwave ‘tornado’-type plasma

    NASA Astrophysics Data System (ADS)

    Tatarova, E.; Bundaleska, N.; Dias, F. M.; Tsyganov, D.; Saavedra, R.; Ferreira, C. M.

    2013-12-01

    In this work, an experimental investigation of microwave plasma-assisted reforming of different alcohols is presented. A microwave (2.45 GHz) ‘tornado’-type plasma with a high-speed tangential gas injection (swirl) at atmospheric pressure is applied to decompose alcohol molecules, namely methanol, ethanol and propanol, and to produce hydrogen-rich gas. The reforming efficiency is investigated both in Ar and Ar+ water vapor plasma environments. The hydrogen yield dependence on the partial alcohol flux is analyzed. Mass spectrometry and Fourier transform infrared spectroscopy are used to detect the outlet gas products from the decomposition process. Hydrogen, carbon monoxide, carbon dioxide and solid carbon are the main decomposition by-products. A significant increase in the hydrogen production rate is observed with the addition of a small amount of water. Furthermore, optical emission spectroscopy is applied to detect the radiation emitted by the plasma and to estimate the gas temperature and electron density.

  4. Microwave digestion preparation and ICP determination of boron in human plasma

    NASA Technical Reports Server (NTRS)

    Ferrando, A. A.; Green, N. R.; Barnes, K. W.; Woodward, B.

    1993-01-01

    A microwave digestion procedure, followed by Inductively Coupled Argon Plasma Spectroscopy, is described for the determination of boron (B) in human plasma. The National Institute of Standards and Technology (NIST) currently does not certify the concentration of B in any substance. The NIST citrus leaves 1572 (CL) Standard Reference Material (SRM) and wheat flour 1567a (WF) were chosen to determine the efficacy of digestion. CL and WF values compare favorably to those obtained from an open-vessel, wet digestion followed by ICP, and by neutron activation and mass spectrometric measurements. Plasma samples were oxidized by doubled-distilled ultrapure HNO3 in 120 mL PFA Teflon vessels. An MDS-81D microwave digestion procedure allows for rapid and relatively precise determination of B in human plasma, while limiting handling hazards and sources of contamination.

  5. Microparticle injection effects on microwave transmission through an overly dense plasma layer

    SciTech Connect

    Gillman, Eric D. Amatucci, W. E.; Williams, Jeremiah; Compton, C. S.

    2015-04-15

    Microparticles injected into a plasma have been shown to deplete the free electron population as electrons are collected through the process of microparticles charging to the plasma floating potential. However, these charged microparticles can also act to scatter electromagnetic signals. These experiments investigate microwave penetration through a previously impenetrable overly dense plasma layer as microparticles are injected and the physical phenomena associated with the competing processes that occur due to electron depletion and microwave scattering. The timescales for when each of these competing processes dominates is analyzed in detail. It was found that while both processes play a significant and dominant role at different times, ultimately, transmission through this impenetrable plasma layer can be significantly increased with microparticle injection.

  6. Deposition of Hard Chrome Coating onto Heat Susceptible Substrates by Low Power Microwave Plasma Spray

    NASA Astrophysics Data System (ADS)

    Redza, Ahmad; Yasui, Toshiaki; Fukumoto, Masahiro

    2016-02-01

    Microwave plasma spray requires relatively low power, which is lower than 1 kW in comparison to other plasma spraying method. Until now, we are able to deposit Cu and Hydroxyapatite coating onto heat susceptible substrate, CFRP which are difficult for conventional plasma spray due to the excessive heat input. In this paper, a hard chromium coating was deposited onto SUS304 and CFRP by a low power microwave plasma spray technique. By controlling the working gas flow rate and spraying distance, a hard chrome coating with thickness of approximately 30 μm was successfully deposited onto CFRP substrate with hardness of 1110 Hv0.05. Furthermore, the coating produced here is higher than that produced by hard chrome plating.

  7. Evanescent Microwave Probes Using Coplanar Waveguide and Stripline for Super-Resolution Imaging of Materials

    NASA Technical Reports Server (NTRS)

    Ponchak, G. E.; Akinwande, D.; Ciocan, R.; LeClair, S. R.; Tabib-Azar, M.

    2000-01-01

    An evanescent field microwave imaging probe based on half-wavelength, microwave transmission line resonators is described. Optimization of the probe tip design, the coupling gap, and the data analysis has resulted in images of metal lines on semiconductor substrates with 2.6 microns spatial resolution and a minimum detectable line width of 0.4 microns at 1 GHz.

  8. Accurate permittivity measurements for microwave imaging via ultra-wideband removal of spurious reflectors

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The use of microwave imaging is becoming more prevalent for detection of interior hidden defects in manufactured and packaged materials. In applications for detection of hidden moisture, microwave tomography can be used to image the material and then perform an inverse calculation to derive an estim...

  9. System to continuously produce carbon fiber via microwave assisted plasma processing

    DOEpatents

    White, Terry L [Knoxville, TN; Paulauskas, Felix L [Knoxville, TN; Bigelow, Timothy S [Knoxville, TN

    2010-11-02

    A system to continuously produce fully carbonized or graphitized carbon fibers using microwave-assisted plasma (MAP) processing comprises an elongated chamber in which a microwave plasma is excited in a selected gas atmosphere. Fiber is drawn continuously through the chamber, entering and exiting through openings designed to minimize in-leakage of air. There is a gradient of microwave power within the chamber with generally higher power near where the fiber exits and lower power near where the fiber enters. Polyacrylonitrile (PAN), pitch, or any other suitable organic/polymeric precursor fibers can be used as a feedstock for the inventive system. Oxidized or partially oxidized PAN or pitch or other polymeric fiber precursors are run continuously through a MAP reactor in an inert, non-oxidizing atmosphere to heat the fibers, drive off the unwanted elements such as oxygen, nitrogen, and hydrogen, and produce carbon or graphite fibers faster than conventionally produced carbon fibers.

  10. Three-dimensional simulation of microwave-induced helium plasma under atmospheric pressure

    NASA Astrophysics Data System (ADS)

    Zhao, G. L.; Hua, W.; Guo, S. Y.; Liu, Z. L.

    2016-07-01

    A three-dimensional model is presented to investigate helium plasma generated by microwave under atmospheric pressure in this paper, which includes the physical processes of electromagnetic wave propagation, electron and heavy species transport, gas flow, and heat transfer. The model is based on the fluid approximation calculation and local thermodynamic equilibrium assumption. The simulation results demonstrate that the maxima of the electron density and gas temperature are 4.79 × 1017 m-3 and 1667 K, respectively, for the operating conditions with microwave power of 500 W, gas flow rate of 20 l/min, and initial gas temperature of 500 K. The electromagnetic field distribution in the plasma source is obtained by solving Helmholtz equation. Electric field strength of 2.97 × 104 V/m is obtained. There is a broad variation on microwave power, gas flow rate, and initial gas temperature to obtain deeper information about the changes of the electron density and gas temperature.

  11. Broadband microwave propagation in a novel large coaxial gridded hollow cathode helium plasma

    NASA Astrophysics Data System (ADS)

    Gao, Ruilin; Yuan, Chengxun; Liu, Sha; Yue, Feng; Jia, Jieshu; Zhou, Zhongxiang; Wu, Jian; Li, Hui

    2016-06-01

    The broadband microwave propagating characteristics of a novel, large volume, coaxial gridded hollow cathode helium plasma is reported in this paper. The basic plasma parameters were determined using an Impedans Ltd. Langmuir probe under a variety of conditions. The transmission attenuation was recorded by using Scattering Parameters (S-parameters) of a vector network analyzer with the frequency range from 2 GHz to 18 GHz and a propagation model was established using the Z transform finite-difference time-domain method for simulating the transmission of microwave. The effects of both the gas pressure and the input power on the electromagnetic wave propagation are analyzed. The results showed that the computational and experimental results of transmission attenuation were in good agreements. Moreover, the electron density ne and the effective collision rate ν c were found to play important roles in the propagation of microwave.

  12. Hot-electron flux observation in large-area microwave sustained plasmas

    NASA Astrophysics Data System (ADS)

    Kudela, Jozef; Terebessy, Tibor; Kando, Masashi

    2000-03-01

    Flux of hot electrons directed away from the waveguiding plasma-dielectric interface was experimentally observed in large-area microwave discharges. The energy of these electrons attains values of some 60 eV, and they are believed to be originating from the resonantly-enhanced electric field region localized near the dielectric. The phenomenon appears to play a significant role in discharge heating mechanism, which is demonstrated by plasma parameter profiles.

  13. Reconstruction techniques for sparse multistatic linear array microwave imaging

    NASA Astrophysics Data System (ADS)

    Sheen, David M.; Hall, Thomas E.

    2014-06-01

    Sequentially-switched linear arrays are an enabling technology for a number of near-field microwave imaging applications. Electronically sequencing along the array axis followed by mechanical scanning along an orthogonal axis allows dense sampling of a two-dimensional aperture in near real-time. The Pacific Northwest National Laboratory (PNNL) has developed this technology for several applications including concealed weapon detection, groundpenetrating radar, and non-destructive inspection and evaluation. These techniques form three-dimensional images by scanning a diverging beam swept frequency transceiver over a two-dimensional aperture and mathematically focusing or reconstructing the data into three-dimensional images. Recently, a sparse multi-static array technology has been developed that reduces the number of antennas required to densely sample the linear array axis of the spatial aperture. This allows a significant reduction in cost and complexity of the linear-array-based imaging system. The sparse array has been specifically designed to be compatible with Fourier-Transform-based image reconstruction techniques; however, there are limitations to the use of these techniques, especially for extreme near-field operation. In the extreme near-field of the array, back-projection techniques have been developed that account for the exact location of each transmitter and receiver in the linear array and the 3-D image location. In this paper, the sparse array technique will be described along with associated Fourier-Transform-based and back-projection-based image reconstruction algorithms. Simulated imaging results are presented that show the effectiveness of the sparse array technique along with the merits and weaknesses of each image reconstruction approach.

  14. Synchronous imaging of coherent plasma fluctuations

    NASA Astrophysics Data System (ADS)

    Haskey, S. R.; Thapar, N.; Blackwell, B. D.; Howard, J.

    2014-03-01

    A new method for imaging high frequency plasma fluctuations is described. A phase locked loop and field programmable gate array are used to generate gating triggers for an intensified CCD camera. A reference signal from another diagnostic such as a magnetic probe ensures that the triggers are synchronous with the fluctuation being imaged. The synchronous imaging technique allows effective frame rates exceeding millions per second, good signal to noise through the accumulation of multiple exposures per frame, and produces high resolution images without generating excessive quantities of data. The technique can be used to image modes in the MHz range opening up the possibility of spectrally filtered high resolution imaging of MHD instabilities that produce sufficient light fluctuations. Some examples of projection images of plasma fluctuations on the H-1NF heliac obtained using this approach are presented here.

  15. Synchronous imaging of coherent plasma fluctuations.

    PubMed

    Haskey, S R; Thapar, N; Blackwell, B D; Howard, J

    2014-03-01

    A new method for imaging high frequency plasma fluctuations is described. A phase locked loop and field programmable gate array are used to generate gating triggers for an intensified CCD camera. A reference signal from another diagnostic such as a magnetic probe ensures that the triggers are synchronous with the fluctuation being imaged. The synchronous imaging technique allows effective frame rates exceeding millions per second, good signal to noise through the accumulation of multiple exposures per frame, and produces high resolution images without generating excessive quantities of data. The technique can be used to image modes in the MHz range opening up the possibility of spectrally filtered high resolution imaging of MHD instabilities that produce sufficient light fluctuations. Some examples of projection images of plasma fluctuations on the H-1NF heliac obtained using this approach are presented here.

  16. Comparative study between atmospheric microwave and low-frequency plasmas: Production efficiency of reactive species and their effectiveness

    NASA Astrophysics Data System (ADS)

    Won, Im Hee; Kim, Myoung Soo; Kim, Ho Young; Shin, Hyun Kook; Kwon, Hyoung Cheol; Sim, Jae Yoon; Lee, Jae Koo

    2014-01-01

    The characteristics of low-frequency (LF) and microwave-powered plasmas were investigated. The optical emission of these two plasmas indicated that more chemicals were generated by microwave plasma than by LF plasma with the intensities being higher by factors of about 9, 3, 5, and 1.6 for OH (309 nm), O (777 nm), NO (247 nm), and Ca2+ (290 nm), respectively. Application experiments were also conducted. A steel plate became hydrophilic after 45 s of microwave plasma treatment. This is more than ten times faster than in the case of LF plasma treatment, an action related to the generation of reactive species (e.g., OH, O, and NO) as measured by optical emission spectroscopy (OES). Ca2+ generation was verified by blood coagulation experiment. Microwave-plasma-induced coagulation was twice faster than LF-plasma-induced coagulation. Simulation results that explain the chemical generation in microwave plasma were also included. High-energy electrons were considered a major factor for microwave plasma characteristics.

  17. Large-Volume Resonant Microwave Discharge for Plasma Cleaning of a CEBAF 5-Cell SRF Cavity

    SciTech Connect

    J. Mammosser, S. Ahmed, K. Macha, J. Upadhyay, M. Nikoli, S. Popovi, L. Vuakovi

    2012-07-01

    We report the preliminary results on plasma generation in a 5-cell CEBAF superconducting radio-frequency (SRF) cavity for the application of cavity interior surface cleaning. CEBAF currently has {approx}300 of these five cell cavities installed in the Jefferson Lab accelerator which are mostly limited by cavity surface contamination. The development of an in-situ cavity surface cleaning method utilizing a resonant microwave discharge could lead to significant CEBAF accelerator performance improvement. This microwave discharge is currently being used for the development of a set of plasma cleaning procedures targeted to the removal of various organic, metal and metal oxide impurities. These contaminants are responsible for the increase of surface resistance and the reduction of RF performance in installed cavities. The CEBAF five cell cavity volume is {approx} 0.5 m2, which places the discharge in the category of large-volume plasmas. CEBAF cavity has a cylindrical symmetry, but its elliptical shape and transversal power coupling makes it an unusual plasma application, which requires special consideration of microwave breakdown. Our preliminary study includes microwave breakdown and optical spectroscopy, which was used to define the operating pressure range and the rate of removal of organic impurities.

  18. Microwave and plasma-assisted modification of composite fiber surface topography

    DOEpatents

    Paulauskas, Felix L [Knoxville, TN; White, Terry L [Knoxville, TN; Bigelow, Timothy S [Knoxville, TN

    2003-02-04

    The present invention introduces a novel method for producing an undulated surface on composite fibers using plasma technology and microwave radiation. The undulated surface improves the mechanical interlocking of the fibers to composite resins and enhances the mechanical strength and interfacial sheer strength of the composites in which they are introduced.

  19. Production of nitric oxide using a microwave plasma torch and its application to fungal cell differentiation

    NASA Astrophysics Data System (ADS)

    Na, Young Ho; Kumar, Naresh; Kang, Min-Ho; Cho, Guang Sup; Choi, Eun Ha; Park, Gyungsoon; Uhm, Han Sup

    2015-03-01

    The generation of nitric oxide by a microwave plasma torch is proposed for its application to cell differentiation. A microwave plasma torch was developed based on basic kinetic theory. The analytical theory indicates that nitric oxide density is nearly proportional to oxygen molecular density and that the high-temperature flame is an effective means of generating nitric oxide. Experimental data pertaining to nitric oxide production are presented in terms of the oxygen input in units of cubic centimeters per minute. The apparent length of the torch flame increases as the oxygen input increases. The various levels of nitric oxide are observed depending on the flow rate of nitrogen gas, the mole fraction of oxygen gas, and the microwave power. In order to evaluate the potential of nitric oxide as an activator of cell differentiation, we applied nitric oxide generated from the microwave plasma torch to a model microbial cell (Neurospora crassa: non-pathogenic fungus). Germination and hyphal differentiation of fungal cells were not dramatically changed but there was a significant increase in spore formation after treatment with nitric oxide. In addition, the expression level of a sporulation related gene acon-3 was significantly elevated after 24 h upon nitric oxide treatment. Increase in the level of nitric oxide, nitrite and nitrate in water after nitric oxide treatment seems to be responsible for activation of fungal sporulation. Our results suggest that nitric oxide generated by plasma can be used as a possible activator of cell differentiation and development.

  20. Influence of wall plasma on microwave frequency and power in relativistic backward wave oscillator

    SciTech Connect

    Sun, Jun; Cao, Yibing; Teng, Yan; Zhang, Yuchuan; Chen, Changhua; Wu, Ping

    2015-07-15

    The RF breakdown of the slow wave structure (SWS), which will lead to the generation of the wall plasma, is an important cause for pulse shortening in relativistic backward wave oscillators. Although many researchers have performed profitable studies about this issue, the influence mechanism of this factor on the microwave generation still remains not-so-clear. This paper simplifies the wall plasma with an “effective” permittivity and researches its influence on the microwave frequency and power. The dispersion relation of the SWS demonstrates that the introduction of the wall plasma will move the dispersion curves upward to some extent, which is confirmed by particle-in-cell (PIC) simulations and experiments. The plasma density and volume mainly affect the dispersion relation at the upper and lower frequency limits of each mode, respectively. Meanwhile, PIC simulations show that even though no direct power absorption exists since the wall plasma is assumed to be static, the introduction of the wall plasma may also lead to the decrease in microwave power by changing the electrodynamic property of the SWS.

  1. Imaging inflammatory plasma leakage in vivo.

    PubMed

    Kenne, E; Lindbom, L

    2011-05-01

    Increased vascular permeability and consequent plasma leakage from postcapillary venules is a cardinal sign of inflammation. Although the movement of plasma constituents from the vasculature to the affected tissue aids in clearing the inflammatory stimulus, excessive plasma extravasation can lead to hospitalisation or death in cases such as influenza-induced pneumonia, burns or brain injury. The use of intravital imaging has significantly contributed to the understanding of the mechanisms controlling the vascular permeability alterations that occur during inflammation. Today, intravital imaging can be performed using optical and non-optical techniques. Optical techniques, which are generally used in experimental settings, include traditional intravital fluorescence microscopy and near-infrared fluorescence imaging. Magnetic resonance (MRI) and radioisotopic imaging are used mainly in the clinical setting, but are increasingly used in experimental work, and can detect plasma leakage without optics. Although these methods are all able to visualise inflammatory plasma leakage in vivo, the spatial and temporal resolution differs between the techniques. In addition, they vary with regards to invasiveness and availability. This overview discusses the use of imaging techniques in the visualisation of inflammatory plasma leakage. PMID:21437352

  2. [Comparison of thawing of plasma by microwave or water bath: preliminary longitudinal biological study of hemostatic parameters].

    PubMed

    Gris, J C; Joussemet, M; Bourin, P; Fabre, G; Schved, J F

    1988-10-01

    Exploration of haemostasis was performed on plasmas thawed in an experimental microwave oven comparatively to a 37 degrees C water bath. Factor VIII:R:Ag, procoagulant and antigenic fibrinogen, and Fg:C/Fg:Ag ratio were found to be significantly, slightly decreased with microwave thawing. Factor VIII:C and VIII:C/VIII:R:Ag ratio were found to be increased with microwaves. Antigenic fractions were decreased because of partial precipitation. In addition, Fibrinogen slightly lost its activity; on the contrary, factor VIIIC was activated by micro-waves. All this allows to select parameters for new experimental microwave ovens development.

  3. Reduction of NOx and PM in marine diesel engine exhaust gas using microwave plasma

    NASA Astrophysics Data System (ADS)

    Balachandran, W.; FInst, P.; Manivannan, N.; Beleca, R.; Abbod, M.

    2015-10-01

    Abatement of NOx and particulate matters (PM) of marine diesel exhaust gas using microwave (MW) non-thermal plasma is presented in this paper. NOx mainly consist of NO and less concentration of NO2 in a typical two stoke marine diesel engine and microwave plasma generation can completely remove NO. MW was generated using two 2kW microwave sources and a saw tooth passive electrode. Passive electrode was used to generate high electric field region within microwave environment where high energetic electrons (1-3eV) are produced for the generation of non-thermal plasma (NTP). 2kW gen-set diesel exhaust gas was used to test our pilot-scale MW plasma reactor. The experimental results show that almost 100% removal of NO is possible for the exhaust gas flow rate of 60l/s. It was also shown that MW can significantly remove soot particles (PM, 10nm to 365nm) entrained in the exhaust gas of 200kW marine diesel engine with 40% engine load and gas flow rate of 130l/s. MW without generating plasma showed reduction up to 50% reduction of PM and with the plasma up to 90% reduction. The major challenge in these experiments was that igniting the desired plasma and sustaining it with passive electrodes for longer period (10s of minutes) as it required fine tuning of electrode position, which was influenced by many factors such as gas flow rate, geometry of reactor and MW power.

  4. The AMY experiment: Microwave emission from air shower plasmas

    NASA Astrophysics Data System (ADS)

    Alvarez-Muñiz, J.; Blanco, M.; Boháčová, M.; Buonomo, B.; Cataldi, G.; Coluccia, M. R.; Creti, P.; De Mitri, I.; Di Giulio, C.; Facal San Luis, P.; Foggetta, L.; Gaïor, R.; Garcia-Fernandez, D.; Iarlori, M.; Le Coz, S.; Letessier-Selvon, A.; Louedec, K.; Maris, I. C.; Martello, D.; Mazzitelli, G.; Monasor, M.; Perrone, L.; Petrera, S.; Privitera, P.; Rizi, V.; Rodriguez Fernandez, G.; Salamida, F.; Salina, G.; Settimo, M.; Valente, P.; Vazquez, J. R.; Verzi, V.; Williams, C.

    2016-07-01

    You The Air Microwave Yield (AMY) experiment investigate the molecular bremsstrahlung radiation emitted in the GHz frequency range from an electron beam induced air-shower. The measurements have been performed at the Beam Test Facility (BTF) of Frascati INFN National Laboratories with a 510 MeV electron beam in a wide frequency range between 1 and 20 GHz. We present the apparatus and the results of the tests performed.

  5. Microwave plasmas applied for the synthesis of free standing graphene sheets

    NASA Astrophysics Data System (ADS)

    Tatarova, E.; Dias, A.; Henriques, J.; Botelho do Rego, A. M.; Ferraria, A. M.; Abrashev, M. V.; Luhrs, C. C.; Phillips, J.; Dias, F. M.; Ferreira, C. M.

    2014-09-01

    Self-standing graphene sheets were synthesized using microwave plasmas driven by surface waves at 2.45 GHz stimulating frequency and atmospheric pressure. The method is based on injecting ethanol molecules through a microwave argon plasma environment, where decomposition of ethanol molecules takes place. The evolution of the ethanol decomposition was studied in situ by plasma emission spectroscopy. Free gas-phase carbon atoms created in the plasma diffuse into colder zones, both in radial and axial directions, and aggregate into solid carbon nuclei. The main part of the solid carbon is gradually withdrawn from the hot region of the plasma in the outlet plasma stream where nanostructures assemble and grow. Externally forced heating in the assembly zone of the plasma reactor has been applied to engineer the structural qualities of the assembled nanostructures. The synthesized graphene sheets have been analysed by Raman spectroscopy, scanning electron microscopy, high-resolution transmission electron microscopy and x-ray photoelectron spectroscopy. The presence of sp3 carbons is reduced by increasing the gas temperature in the assembly zone of the plasma reactor. As a general trend, the number of mono-layers decreases when the wall temperature increases from 60 to 100 °C. The synthesized graphene sheets are stable and highly ordered.

  6. Beamforming-Enhanced Inverse Scattering for Microwave Breast Imaging

    PubMed Central

    Burfeindt, Matthew J.; Shea, Jacob D.; Van Veen, Barry D.; Hagness, Susan C.

    2015-01-01

    We present a focal-beamforming-enhanced formulation of the distorted Born iterative method (DBIM) for microwave breast imaging. Incorporating beamforming into the imaging algorithm has the potential to mitigate the effect of noise on the image reconstruction. We apply the focal-beamforming-enhanced DBIM algorithm to simulated array measurements from two MRI-derived, anatomically realistic numerical breast phantoms and compare its performance to that of the DBIM formulated with two non-focal schemes. The first scheme simply averages scattered field data from reciprocal antenna pairs while the second scheme discards reciprocal pairs. Images of the dielectric properties are reconstructed for signal-to-noise ratios (SNR) ranging from 35 dB down to 0 dB. We show that, for low SNR, the focal beamforming algorithm creates reconstructions that are of higher fidelity with respect to the exact dielectric profiles of the phantoms as compared to reconstructions created using the non-focal schemes. At high SNR, the focal and non-focal reconstructions are of comparable quality. PMID:26663930

  7. Eigenfunction Images of a Wave Chaotic Microwave Cavity

    NASA Astrophysics Data System (ADS)

    Gokirmak, Ali; Anlage, Steven

    1996-03-01

    We study the eigenfunctions of the Helmholtz equation in a two-dimensional region of space defined by the intersection of four circles forming a bow-tie. In this geometry, all typical ray-trajectory orbits are chaotic and all periodic orbits are isolated. The experiments are performed in a thin microwave resonator analog made from copper-plated brass which is excited with electric field probes entering through the top plate. (Paul So, S. M. Anlage, E. Ott, and R. N. Oerter, Phys. Rev. Lett.74), 2662 (1995). A quantity proportional to the local electric field squared is measured by dragging a small metallic perturbation about the interior of the cavity and noting the change in resonant frequency of the entire cavity. Images of the eigenmodes are constructed, and calculations of two-point correlation functions are performed on these images. We shall discuss several different imaging methods and explore how the size and the shape of the perturbation affects the resulting images. Supported by NSF NYI grant DMR-9258183.

  8. Analysis based on global model of nitrogen plasma produced by pulsed microwave at low pressure

    SciTech Connect

    Qiu, Feng; Yan, Eryan Meng, Fanbao; Ma, Hongge; Liu, Minghai

    2015-07-15

    This paper analyzes certain evolution processes in nitrogen plasmas discharged using pulsed microwaves at low pressure. Comparing the results obtained from the global model incorporating diffusion and the microwave transmission method, the temporal variation of the electron density is analyzed. With a discharge pressure of 300 Pa, the results obtained from experiments and the global model calculation show that when the discharge begins the electron density in the plasma rises quickly, to a level above the critical density corresponding to the discharge microwave frequency, but falls slowly when the discharge microwave pulse is turned off. The results from the global model also show that the electron temperature increases rapidly to a peak, then decays after the electron density reaches the critical density, and finally decreases quickly to room temperature when the discharge microwave pulse is turned off. In the global model, the electron density increases because the high electron temperature induces a high ionization rate. The decay of the electron density mainly comes from diffusion effect.

  9. Development of horn antenna mixer array with internal local oscillator module for microwave imaging diagnostics.

    PubMed

    Kuwahara, D; Ito, N; Nagayama, Y; Yoshinaga, T; Yamaguchi, S; Yoshikawa, M; Kohagura, J; Sugito, S; Kogi, Y; Mase, A

    2014-11-01

    A new antenna array is proposed in order to improve the sensitivity and complexity of microwave imaging diagnostics systems such as a microwave imaging reflectometry, a microwave imaging interferometer, and an electron cyclotron emission imaging. The antenna array consists of five elements: a horn antenna, a waveguide-to-microstrip line transition, a mixer, a local oscillation (LO) module, and an intermediate frequency amplifier. By using an LO module, the LO optics can be removed, and the supplied LO power to each element can be equalized. We report details of the antenna array and characteristics of a prototype antenna array.

  10. Development of horn antenna mixer array with internal local oscillator module for microwave imaging diagnostics

    SciTech Connect

    Kuwahara, D.; Ito, N.; Nagayama, Y.; Yoshinaga, T.; Yamaguchi, S.; Yoshikawa, M.; Kohagura, J.; Sugito, S.; Kogi, Y.; Mase, A.

    2014-11-15

    A new antenna array is proposed in order to improve the sensitivity and complexity of microwave imaging diagnostics systems such as a microwave imaging reflectometry, a microwave imaging interferometer, and an electron cyclotron emission imaging. The antenna array consists of five elements: a horn antenna, a waveguide-to-microstrip line transition, a mixer, a local oscillation (LO) module, and an intermediate frequency amplifier. By using an LO module, the LO optics can be removed, and the supplied LO power to each element can be equalized. We report details of the antenna array and characteristics of a prototype antenna array.

  11. Development of horn antenna mixer array with internal local oscillator module for microwave imaging diagnostics.

    PubMed

    Kuwahara, D; Ito, N; Nagayama, Y; Yoshinaga, T; Yamaguchi, S; Yoshikawa, M; Kohagura, J; Sugito, S; Kogi, Y; Mase, A

    2014-11-01

    A new antenna array is proposed in order to improve the sensitivity and complexity of microwave imaging diagnostics systems such as a microwave imaging reflectometry, a microwave imaging interferometer, and an electron cyclotron emission imaging. The antenna array consists of five elements: a horn antenna, a waveguide-to-microstrip line transition, a mixer, a local oscillation (LO) module, and an intermediate frequency amplifier. By using an LO module, the LO optics can be removed, and the supplied LO power to each element can be equalized. We report details of the antenna array and characteristics of a prototype antenna array. PMID:25430218

  12. Microwave interaction with plasmas. Final report, 1 May 1989-30 April 1992

    SciTech Connect

    Alexeff, I.

    1992-04-30

    During the past year, we have made progress on frequency shifting by means of plasmas. Theoretically we have demonstrated that a rising plasma density tends to slow down and trap microwaves passing through the plasma-filled region. This increases the interaction time, so that a very rapid rise in plasma density is not required to produce very high frequency shifts. A preliminary version has been submitted to the Transactions of Plasma Science, and more updated version is in progress. An attempt to provide frequency upshifts by use of multiple transverse arcs was attempted without the use of equalizing resistors. The plasma discharge was observed, and the frequency upshift was seen, as was expected but it was not as extensive as in previous systems. A more balance system is being developed.

  13. Three-dimensional analysis of microwave generated plasmas with extended planar laser-induced fluorescence.

    PubMed

    Stopper, U; Lindner, P; Schumacher, U

    2007-04-01

    We present the development and application of a diagnostic system for the analysis of microwave generated low-pressure plasmas, which might also be used for the investigation of the edge regions in magnetically confined fusion plasmas. Our method uses planar laser-induced fluorescence, which is produced by excitation of neutral metastable atoms through a short, intense, pulsed laser. The beam expansion optics consist of an uncommon setup of four lenses. By controlled shifting of an element of the optics sideways, the location of the laser sheet in the plasma is scanned perpendicular to the excitation plane. Together with a spectrometer observing different observation volumes along the beam path, we are able to map absolute three-dimensional (3D) population density distributions of the metastable ((2)P(12) (o)) 3s[12](0) (o) state of Ne I in an electron cyclotron resonance heating (ECRH) plasma. This optical tomography system was used to study the influence of the microwave power and mode on the spatial structure of the plasma. The results show that the population density of the neutral neon in this metastable state is found to be in the range of 10(16) m(-3), and that its spatial distribution is associated with the 3D structure of the magnetic field. We also report that the spatial distribution strongly varies with the mode structure, which depends on the microwave power.

  14. Three-dimensional analysis of microwave generated plasmas with extended planar laser-induced fluorescence

    NASA Astrophysics Data System (ADS)

    Stopper, U.; Lindner, P.; Schumacher, U.

    2007-04-01

    We present the development and application of a diagnostic system for the analysis of microwave generated low-pressure plasmas, which might also be used for the investigation of the edge regions in magnetically confined fusion plasmas. Our method uses planar laser-induced fluorescence, which is produced by excitation of neutral metastable atoms through a short, intense, pulsed laser. The beam expansion optics consist of an uncommon setup of four lenses. By controlled shifting of an element of the optics sideways, the location of the laser sheet in the plasma is scanned perpendicular to the excitation plane. Together with a spectrometer observing different observation volumes along the beam path, we are able to map absolute three-dimensional (3D) population density distributions of the metastable (P21/2o)3s[1/2]0o state of Ne I in an electron cyclotron resonance heating (ECRH) plasma. This optical tomography system was used to study the influence of the microwave power and mode on the spatial structure of the plasma. The results show that the population density of the neutral neon in this metastable state is found to be in the range of 1016 m-3, and that its spatial distribution is associated with the 3D structure of the magnetic field. We also report that the spatial distribution strongly varies with the mode structure, which depends on the microwave power.

  15. Spark plasma sintering and microwave electromagnetic properties of MnFe2O4 ceramics

    NASA Astrophysics Data System (ADS)

    Penchal Reddy, M.; Mohamed, A. M. A.; Venkata Ramana, M.; Zhou, X. B.; Huang, Q.

    2015-12-01

    MnFe2O4 ferrite powder was synthesized by a facile one-pot hydrothermal route and then consolidated into dense nanostructured compacts by the spark plasma sintering (SPS) technique. The effect of sintering temperature, on densification, morphology, magnetic and microwave absorption properties was examined. Spark plasma sintering resulted in uniform microstructure, as well as maximum relative density of 98%. The magnetic analysis indicated that the MnFe2O4 ferrite nanoparticles showed ferrimagnetic behavior. Moreover, the dielectric loss and magnetic loss properties of MnFe2O4 ferrite nanoparticles were both enhanced due to its better dipole polarization, interfacial polarization and shape anisotropy. It is believed that such spark plasma sintered ceramic material will be applied widely in microwave absorbing area.

  16. Impact of nonlinear absorption on propagation of microwave in a plasma filled rectangular waveguide

    NASA Astrophysics Data System (ADS)

    Sobhani, H.; Vaziri, M.; Rooholamininejad, H.; Bahrampour, A. R.

    2016-07-01

    In collisional and ponderomotive predominant regimes, the propagation of microwave in rectangular waveguide filled with collisional plasma is investigated numerically. The dominant mode is excited through an evacuated waveguide and then enters a similar and co-axis waveguide filled with plasma. In collisional predominant regime, the amplitude of electric field is oscillated along propagation path; outset of propagation path due to the electron-ion collision, the intensity oscillations are reduced. Afterward, under competition between the collisional nonlinearity and absorption, the intensity is increased, so the electron density peak is created in middle of waveguide. In ponderomotive predominant regime, the intensity is slowly decreased due to collision, so the electron density is ramped. Control parameters, like the frequency, input power, collision frequency, and background electron density are surveyed that can be used to control propagation characteristics of microwave. This method can be used to control heating of fusion plasma and accelerate charged particle.

  17. Thrust Stand Measurements of the Microwave Assisted Discharge Inductive Plasma Accelerator

    NASA Technical Reports Server (NTRS)

    Hallock, Ashley K.; Polzin, Kurt A.; Emsellem, Gregory D.

    2011-01-01

    Pulsed inductive plasma thrusters [1-3] are spacecraft propulsion devices in which electrical energy is capacitively stored and then discharged through an inductive coil. This type of pulsed thruster is electrodeless, with a time-varying current in the coil interacting with a plasma covering the face of the coil to induce a plasma current. Propellant is accelerated and expelled at a high exhaust velocity (O(10-100 km/s)) by the Lorentz body force arising from the interaction of the magnetic field and the induced plasma current. While this class of thruster mitigates the life-limiting issues associated with electrode erosion, pulsed inductive plasma thrusters require high pulse energies to inductively ionize propellant. The Microwave Assisted Dis- charge Inductive Plasma Accelerator (MAD-IPA), shown in Fig. 1, is a pulsed inductive plasma thruster that addressees this issue by partially ionizing propellant inside a conical inductive coil before the main current pulse via an electron cyclotron resonance (ECR) discharge. The ECR plasma is produced using microwaves and a static magnetic field from a set of permanent magnets arranged to create a thin resonance region along the inner surface of the coil, restricting plasma formation, and in turn current sheet formation, to a region where the magnetic coupling between the plasma and the theta-pinch coil is high. The use of a conical theta-pinch coil also serves to provide neutral propellant containment and plasma plume focusing that is improved relative to the more common planar geometry of the Pulsed Inductive Thruster (PIT) [1, 2]. In this paper, we describe thrust stand measurements performed to characterize the performance (specific impulse, thrust efficiency) of the MAD-IPA thruster. Impulse data are obtained at various pulse energies, mass flow rates and inductive coil geometries. Dependencies on these experimental parameters are discussed in the context of the current sheet formation and electromagnetic plasma

  18. A high-speed photoresist removal process using multibubble microwave plasma under a mixture of multiphase plasma environment

    SciTech Connect

    Ishijima, Tatsuo; Nosaka, Kohei; Tanaka, Yasunori; Uesugi, Yoshihiko; Goto, Yousuke; Horibe, Hideo

    2013-09-30

    This paper proposes a photoresist removal process that uses multibubble microwave plasma produced in ultrapure water. A non-implanted photoresist and various kinds of ion-implanted photoresists such as B, P, and As were treated with a high ion dose of 5 × 10{sup 15} atoms/cm{sup 2} at an acceleration energy of 70 keV; this resulted in fast removal rates of more than 1 μm/min. When the distance between multibubble microwave plasma and the photoresist film was increased by a few millimeters, the photoresist removal rates drastically decreased; this suggests that short-lived radicals such as OH affect high-speed photoresist removal.

  19. Field emission from bias-grown diamond thin films in a microwave plasma

    DOEpatents

    Gruen, Dieter M.; Krauss, Alan R.; Ding, Ming Q.; Auciello, Orlando

    2002-01-01

    A method of producing diamond or diamond like films in which a negative bias is established on a substrate with an electrically conductive surface in a microwave plasma chemical vapor deposition system. The atmosphere that is subjected to microwave energy includes a source of carbon, nitrogen and hydrogen. The negative bias is maintained on the substrate through both the nucleation and growth phase of the film until the film is continuous. Biases between -100V and -200 are preferred. Carbon sources may be one or more of CH.sub.4, C.sub.2 H.sub.2 other hydrocarbons and fullerenes.

  20. Differing morphologies of textured diamond films with electrical properties made with microwave plasma chemical vapor deposition

    NASA Astrophysics Data System (ADS)

    Lai, Wen Chi; Wu, Yu-Shiang; Chang, Hou-Cheng; Lee, Yuan-Haun

    2010-12-01

    This study investigates the orientation of textured diamond films produced through microwave plasma chemical vapor deposition (MPCVD) at 1200 W, 110 Torr, CH 4/H 2 = 1/20, with depositions times of 0.5-4.0 h. After a growth period of 2.0-4.0 h, this particular morphology revealed a rectangular structure stacked regularly on the diamond film. The orientation on {1 1 1}-textured diamond films grew a preferred orientation of {1 1 0} on the surface, as measured by XRD. The formation of the diamond epitaxial film formed textured octahedrons in ball shaped (or cauliflower-like) diamonds in the early stages (0.5 h), and the surface of the diamond film extended to pile the rectangular structure at 4.0 h. The width of the tier was approximately 200 nm at the 3.0 h point of deposition, according to TEM images. The results revealed that the textured diamond films showed two different morphological structures (typical ball shaped and rectangular diamonds), at different stages of the deposition period. The I- V characteristics of the oriented diamond films after 4.0 h of deposition time showed good conformity with the ohmic contact.

  1. Long-lived laser-induced microwave plasma guides in the atmosphere: Self-consistent plasma-dynamic analysis and numerical simulations

    SciTech Connect

    Shneider, M. N.; Miles, R. B.; Zheltikov, A. M.

    2010-08-15

    A detailed model of plasma dynamics, which self-consistently integrates plasma-kinetic, Navier-Stokes, electron heat conduction, and electron-vibration energy transfer equations, is used to quantify the limitations on the lifetime of microwave plasma waveguides induced in the atmosphere through filamentation with high-intensity ultrashort laser pulses further sustained by long laser pulses. We demonstrate that a near-infrared or midinfrared laser pulse can tailor plasma decay in the wake of a filament, efficiently suppressing, through electron temperature increase, the attachment of electrons to neutral species and dissociative recombination, thus substantially increasing the plasma-guide lifetime and facilitating long-distance transmission of microwaves.

  2. Study on hairpin-shaped argon plasma jets resonantly excited by microwave pulses at atmospheric pressure

    NASA Astrophysics Data System (ADS)

    Chen, Zhaoquan; Xia, Guangqing; Zou, Changlin; Li, Ping; Hu, Yelin; Ye, Qiubo; Eliseev, S.; Stepanova, O.; Saifutdinov, A. I.; Kudryavtsev, A. A.; Liu, Minghai

    2015-07-01

    In the present study, atmospheric pressure argon plasma jets driven by lower-power pulsed microwaves have been proposed with a type of hairpin resonator. The plasma jet plume demonstrates distinctive characteristics, like arched plasma pattern and local plasma bullets. In order to understand how the hairpin resonator works, electromagnetic simulation of the electric field distribution and self-consistent fluid simulation of the interaction between the enhanced electric field and the pulse plasma plume are studied. Simulated spatio-temporal distributions of the electric field, the electron temperature, the electron density, and the absorbed power density have been sampled, respectively. The experimental and simulated results together suggest that the driving mechanism of the hairpin resonator works in the multiple electromagnetic modes of transmission line and microwave resonator, while the local plasma bullets are resonantly generated by local enhanced electric field of surface plasmon polaritons. Moreover, it should be noticed that the radian of the arched plasma plume is mainly affected by the input power and gas flow rate, respectively.

  3. Microwave remote plasma enhanced-atomic layer deposition system with multicusp confinement chamber

    SciTech Connect

    Dechana, A.; Thamboon, P.; Boonyawan, D.

    2014-10-15

    A microwave remote Plasma Enhanced-Atomic Layer Deposition system with multicusp confinement chamber is established at the Plasma and Beam Physics research facilities, Chiang Mai, Thailand. The system produces highly-reactive plasma species in order to enhance the deposition process of thin films. The addition of the multicusp magnetic fields further improves the plasma density and uniformity in the reaction chamber. Thus, the system is more favorable to temperature-sensitive substrates when heating becomes unwanted. Furthermore, the remote-plasma feature, which is generated via microwave power source, offers tunability of the plasma properties separately from the process. As a result, the system provides high flexibility in choice of materials and design experiments, particularly for low-temperature applications. Performance evaluations of the system were carried on coating experiments of Al{sub 2}O{sub 3} layers onto a silicon wafer. The plasma characteristics in the chamber will be described. The resulted Al{sub 2}O{sub 3} films—analyzed by Rutherford Backscattering Spectrometry in channeling mode and by X-ray Photoelectron Spectroscopy techniques—will be discussed.

  4. Design of a Microwave Assisted Discharge Inductive Plasma Accelerator

    NASA Technical Reports Server (NTRS)

    Hallock, Ashley K.; Polzin, Kurt A.

    2010-01-01

    A new plasma accelerator concept that employs electrodeless plasma preionization and pulsed inductive acceleration is presented. Preionization is achieved through an electron cyclotron resonance discharge that produces a weakly-ionized plasma at the face of a conical theta pinch-shaped inductive coil. The presence of the preionized plasma allows for current sheet formation at lower discharge voltages than those found in other pulsed inductive accelerators. The location of an electron cyclotron resonance discharge can be controlled through the design of the applied magnetic field in the thruster. A finite-element model of the magnetic field was used as a design tool, allowing for the implementation of an arrangement of permanent magnets that yields a small volume of preionized propellant at the coil face. This allows for current sheet formation at the face of the inductive coil, minimizing the initial inductance of the pulse circuit and maximizing the potential efficiency of the new accelerator.

  5. A novel liquid plasma AOP device integrating microwaves and ultrasounds and its evaluation in defluorinating perfluorooctanoic acid in aqueous media.

    PubMed

    Horikoshi, Satoshi; Sato, Susumu; Abe, Masahiko; Serpone, Nick

    2011-09-01

    A simplified and energy-saving integrated device consisting of a microwave applicator and an ultrasonic homogenizer has been fabricated to generate liquid plasma in a medium possessing high dielectric factors, for example water. The microwave waveguide and the ultrasonic transducer were interconnected through a tungsten/titanium alloy stick acting both as the microwave antenna and as the horn of the ultrasonic homogenizer. Both microwaves and ultrasonic waves are simultaneously transmitted to the aqueous media through the tungsten tip of the antenna. The microwave discharge liquid plasma was easily generated in solution during ultrasonic cavitation. The simple device was evaluated by carrying out the degradation of the perfluorooctanoic acid (PFOA), a system highly recalcitrant to degradation by conventional advanced oxidation processes (AOPs). PFOA is 59% degraded in an aqueous medium after only 90 s of irradiation by the plasma. Intermediates were identified by electrospray mass spectral techniques in the negative ion mode.

  6. Diagnostic evaluations of microwave generated helium and nitrogen plasma mixtures

    NASA Technical Reports Server (NTRS)

    Haraburda, Scott S.; Hawley, Martin C.; Dinkel, Duane W.

    1990-01-01

    The goal of this work is to continue the development to fundamentally understand the plasma processes as applied to spacecraft propulsion. The diagnostic experiments used are calorimetric, dimensional, and spectroscopic measurements using the TM 011 and TM 012 modes in the resonance cavity. These experimental techniques are highly important in furthering the understanding of plasma phenomena and of designing rocket thrusters. Several experimental results are included using nitrogen and helium gas mixtures.

  7. Abatement of fluorinated compounds using a 2.45GHz microwave plasma torch with a reverse vortex plasma reactor.

    PubMed

    Kim, J H; Cho, C H; Shin, D H; Hong, Y C; Shin, Y W

    2015-08-30

    Abatement of fluorinated compounds (FCs) used in semiconductor and display industries has received an attention due to the increasingly stricter regulation on their emission. We have developed a 2.45GHz microwave plasma torch with reverse vortex reactor (RVR). In order to design a reverse vortex plasma reactor, we calculated a volume fraction and temperature distribution of discharge gas and waste gas in RVR by ANSYS CFX of computational fluid dynamics (CFD) simulation code. Abatement experiments have been performed with respect to SF6, NF3 by varying plasma power and N2 flow rates, and FCs concentration. Detailed experiments were conducted on the abatement of NF3 and SF6 in terms of destruction and removal efficiency (DRE) using Fourier transform infrared (FTIR). The DRE of 99.9% for NF3 was achieved without an additive gas at the N2 flow rate of 150 liter per minute (L/min) by applying a microwave power of 6kW with RVR. Also, a DRE of SF6 was 99.99% at the N2 flow rate of 60 L/min using an applied microwave power of 6kW. The performance of reverse vortex reactor increased about 43% of NF3 and 29% of SF6 abatements results definition by decomposition energy per liter more than conventional vortex reactor. PMID:25841085

  8. Abatement of fluorinated compounds using a 2.45GHz microwave plasma torch with a reverse vortex plasma reactor.

    PubMed

    Kim, J H; Cho, C H; Shin, D H; Hong, Y C; Shin, Y W

    2015-08-30

    Abatement of fluorinated compounds (FCs) used in semiconductor and display industries has received an attention due to the increasingly stricter regulation on their emission. We have developed a 2.45GHz microwave plasma torch with reverse vortex reactor (RVR). In order to design a reverse vortex plasma reactor, we calculated a volume fraction and temperature distribution of discharge gas and waste gas in RVR by ANSYS CFX of computational fluid dynamics (CFD) simulation code. Abatement experiments have been performed with respect to SF6, NF3 by varying plasma power and N2 flow rates, and FCs concentration. Detailed experiments were conducted on the abatement of NF3 and SF6 in terms of destruction and removal efficiency (DRE) using Fourier transform infrared (FTIR). The DRE of 99.9% for NF3 was achieved without an additive gas at the N2 flow rate of 150 liter per minute (L/min) by applying a microwave power of 6kW with RVR. Also, a DRE of SF6 was 99.99% at the N2 flow rate of 60 L/min using an applied microwave power of 6kW. The performance of reverse vortex reactor increased about 43% of NF3 and 29% of SF6 abatements results definition by decomposition energy per liter more than conventional vortex reactor.

  9. Optical emission spectroscopy for simultaneous measurement of plasma electron density and temperature in a low-pressure microwave induced plasma

    SciTech Connect

    Konjevic, N.; Jovicevic, S.; Ivkovic, M.

    2009-10-15

    The simple optical emission spectroscopy technique for diagnostics of low pressure microwave induced plasma (MIP) in hydrogen or in MIP seeded with hydrogen is described and tested. This technique uses the Boltzmann plot of relative line intensities along Balmer spectral series in conjunction with the criterion for partial local thermodynamic equilibrium for low electron density (N{sub e}) plasma diagnostics. The proposed technique is tested in a low pressure MIP discharge for simultaneous determination of electron density N{sub e} (10{sup 17}-10{sup 18} m{sup -3}) and temperature T{sub e}.

  10. Field emitter arrays for plasma and microwave source applications

    NASA Astrophysics Data System (ADS)

    Jensen, K. L.

    1999-05-01

    Field emitter arrays (FEAs) stand to strongly impact device performance when physical size, weight, power consumption, beam current, and/or high pulse repetition frequencies are an issue. FEAs are capable of instant ON/OFF performance, high brightness, high current density, large transconductance to capacitance ratio, and low voltage operation characteristics. Advanced microwave power tubes, and in particular, inductive output amplifiers, are by far the most technically challenging use to date. Other important uses include, e.g., electron sources for micropropulsion systems-Hall thrusters-and tethers for satellites, and (the most widely pursued application) field emission displays. The characteristics of field emitters that make them attractive to such applications shall be surveyed. A thorough analytical model of a field emitter array, beginning with a review of the nature of field emission and continuing with an analytical model of a single emitter and the operation of an array of emitters, shall be presented. In particular, attention shall be directed towards those features of FEAs that render them attractive as cold cathode candidates for electron beam generation. Tip characteristics, such as emission distribution, and array operation, such as space charge effects, will be analyzed in the context of the model. Finally, restricting attention to microwave applications, the performance of a tapered-helix inductive output amplifier to highlight the advantages of high frequency emission gating of the electron beam in a power tube shall be investigated.

  11. Microwave Imager Measures Sea Surface Temperature Through Clouds

    NASA Technical Reports Server (NTRS)

    2002-01-01

    This image was acquired over Tropical Atlantic and U.S. East Coast regions on Aug. 22 - Sept. 23, 1998. Cloud data were collected by the Geostationary Operational Environmental Satellite (GOES). Sea Surface Temperature (SST) data were collected aboard the NASA/NASDA Tropical Rainfall Measuring Mission (TRMM) satellite by The TRMM Microwave Imager (TMI). TMI is the first satellite microwave sensor capable of accurately measuring sea surface temperature through clouds, as shown in this scene. For years scientists have known there is a strong correlation between sea surface temperature and the intensity of hurricanes. But one of the major stumbling blocks for forecasters has been the precise measurement of those temperatures when a storm begins to form. In this scene, clouds have been made translucent to allow an unobstructed view of the surface. Notice Hurricane Bonnie approaching the Carolina Coast (upper left) and Hurricane Danielle following roughly in its path (lower right). The ocean surface has been falsely colored to show a map of water temperature--dark blues are around 75oF, light blues are about 80oF, greens are about 85oF, and yellows are roughly 90oF. A hurricane gathers energy from warm waters found at tropical latitudes. In this image we see Hurricane Bonnie cross the Atlantic, leaving a cooler trail of water in its wake. As Hurricane Danielle followed in Bonnie's path, the wind speed of the second storm dropped markedly, as available energy to fuel the storm dropped off. But when Danielle left Bonnie's wake, wind speeds increased due to temperature increases in surface water around the storm. As a hurricane churns up the ocean, it's central vortex draws surface heat and water into the storm. That suction at the surface causes an upwelling of deep water. At depth, tropical ocean waters are significantly colder than water found near the surface. As they're pulled up to meet the storm, those colder waters essentially leave a footprint in the storm's wake

  12. Electron cyclotron emission imaging in tokamak plasmas

    SciTech Connect

    Munsat, Tobin; Domier, Calvin W.; Kong, Xiangyu; Liang, Tianran; Luhmann, Jr.; Neville C.; Tobias, Benjamin J.; Lee, Woochang; Park, Hyeon K.; Yun, Gunsu; Classen, Ivo. G. J.; Donne, Anthony J. H.

    2010-07-01

    We discuss the recent history and latest developments of the electron cyclotron emission imaging diagnostic technique, wherein electron temperature is measured in magnetically confined plasmas with two-dimensional spatial resolution. The key enabling technologies for this technique are the large-aperture optical systems and the linear detector arrays sensitive to millimeter-wavelength radiation. We present the status and recent progress on existing instruments as well as new systems under development for future experiments. We also discuss data analysis techniques relevant to plasma imaging diagnostics and present recent temperature fluctuation results from the tokamak experiment for technology oriented research (TEXTOR).

  13. Disintegration of water molecules in a steam-plasma torch powered by microwaves

    SciTech Connect

    Uhm, Han S.; Kim, Jong H.; Hong, Yong C.

    2007-07-15

    A pure steam torch is generated by making use of 2.45 GHz microwave. Steam from a steam generator enters the discharge tube as a swirl gas at a temperature higher than 150 deg. C. This steam becomes a working gas and produces a stable steam torch. The torch volume is almost linearly proportional to the microwave power. The temperature of the torch flame is measured by making use of optical spectroscopy and a thermocouple device. Two distinctive regions are exhibited, a bright, whitish region of a high-temperature zone and a reddish, dimmer region of a relatively low-temperature zone. The bright, whitish region is a typical torch based on plasma species and the reddish, dimmer region is hydrogen burning in oxygen. Study of water molecule disintegration and gas temperature effects on the molecular fraction characteristics in steam-plasma of a microwave plasma torch at the atmospheric pressure is carried out. An analytical investigation of water disintegration indicates that a substantial fraction of water molecules disintegrate and form other compounds at high temperatures in the steam-plasma torch. Emission profiles of the hydroxide radical and water molecules confirm the theoretical predictions of water disintegration in the torch.

  14. Intense microwave pulse propagation through gas breakdown plasmas in a waveguide

    SciTech Connect

    Byrne, D.P.

    1986-10-08

    High-power microwave pulse-compression techniques are used to generate 2.856 GHz pulses which are propagated in a TE/sub 10/ mode through a gas filled section of waveguide, where the pulses interact with self-generated gas-breakdown plasmas. Pulse envelopes transmitted through the plasmas, with duration varying from 2 ns to greater than 1 ..mu..s, and peak powers of a few kW to nearly 100 MW, are measured as a function of incident pulse and gas pressure for air, nitrogen, and helium. In addition, the spatial and temporal development of the optical radiation emitted by the breakdown plasmas are measured. For transmitted pulse durations greater than or equal to 100 ns, good agreement is found with both theory and existing measurements. For transmitted pulse duration as short as 2 ns (less than 10 rf cycles), a two-dimensional model is used in which the electrons in the plasma are treated as a fluid whose interactions with the microwave pulse are governed by a self-consistent set of fluid equations and Maxwell's equations for the electromagnetic field. The predictions of this model for air are compared with the experimental results over a pressure range of 0.8 torr to 300 torr. Good agreement is obtained above about 1 torr pressure, demonstrating that microwave pulse propagation above the breakdown threshold can be accurately modeled on this time scale. 63 refs., 44 figs., 2 tabs.

  15. ADI-FDTD modeling of microwave plasma discharges in air towards fully three-dimensional simulations

    NASA Astrophysics Data System (ADS)

    Kourtzanidis, Konstantinos; Rogier, François; Boeuf, Jean-Pierre

    2015-10-01

    Plasma formation and propagation during microwave breakdown has been extensively studied during the last decades. Numerical modeling of the strong coupling between the high frequency electromagnetic waves and the plasma is still a challenging topic due to the different time and space scales involved. In this article, an Alternative Direction Implicit (ADI) formulation of the Finite Difference Time Domain method for solving Maxwell's equations coupled with a simplified plasma model via the electric current is being proposed, leading to a significant reduction of the computational cost as the CFL criterion for stability of the FDTD method is being removed. An energy estimate has been used to prove the unconditional stability of the ADI-FDTD leapfrog scheme as well as its coupled formulation. The computational efficiency and accuracy of this approach has been studied in a simplified case. The proposed method is applied and validated in two dimensional microwave breakdown in air while its computational efficiency allows for fully three dimensional simulations, an important step for understanding the complex nature and evolution of a microwave plasma discharge and its possible applicability as an aerodynamic flow control method.

  16. Sterilization using a microwave-induced argon plasma system at atmospheric pressure

    NASA Astrophysics Data System (ADS)

    Park, Bong Joo; Lee, D. H.; Park, J.-C.; Lee, I.-S.; Lee, K.-Y.; Hyun, S. O.; Chun, M.-S.; Chung, K.-H.

    2003-11-01

    The use of microwave plasma for sterilization is relatively new. The advantages of this method are the relatively low temperature, time-savings and its nontoxic nature, in contrast to traditional methods such as heat and gas treatment, and radiation. This study investigated the sterilization effects of microwave-induced argon plasma at atmospheric pressure on materials contaminated with various microorganisms, such as bacteria and fungi. A low-cost and reliable 2.45 GHz, waveguide-based applicator was designed to generate microwave plasma at atmospheric pressure. This system consisted of a 1 kW magnetron power supply, a WR-284 copper waveguide, an applicator including a tuning section, and a nozzle section. Six bacterial and fungal strains were used for the sterilization test. The results showed that regardless of the strain, all the bacteria used in this study were fully sterilized within 20 seconds and all the fungi were sterilized within 1 second. These results show that this sterilization method is easy to use, requires significantly less time than the other traditional methods and established plasma sterilization methods, and it is nontoxic. It can be used in the field of sterilization in medical and dental clinics as well as in laboratory settings.

  17. The use of a high-current electron beam in plasma relativistic microwave oscillators

    SciTech Connect

    Bekhovskaya, K. S. Bogdankevich, I. L.; Strelkov, P. S.; Tarakanov, V. P.; Ul'yanov, D. K.

    2011-12-15

    Relativistic microwave electronics faces the problem of using high currents of relativistic electron beams; i.e., it is possible to use beams the current of which is lower than that of actually existing high-current accelerators. We show the possibility of increasing the power of radiation generated in a plasma relativistic microwave oscillator (PRMO) due to an increase in the absolute value of current. For the beam currents close to the value of limiting vacuum current, the efficiency of microwave generation decreases; therefore, we study PRMO schemes with a high value of limiting vacuum current, i.e., schemes with a small gap between a hollow relativistic electron beam and the waveguide wall. The results of the experiment and numerical simulation are discussed.

  18. Plasma formation on a metal surface under combined action of laser and microwave radiation

    SciTech Connect

    Gavrilyuk, A P; Shaparev, N Ya

    2013-10-31

    By means of numerical modelling of the combined effect of laser (1.06 mm) and microwave (10{sup 10} – 10{sup 13} s{sup -1}) radiation on the aluminium surface in vacuum it is shown that the additional action of microwave radiation with the frequency 10{sup 12} s{sup -1} provides complete ionisation of the metal vapour (for the values of laser radiation duration and intensity used in the calculations), while in the absence of microwave radiation the vapour remains weakly ionised. The mathematical model used accounts for the processes, occurring in the condensed phase (heat conduction, melting), the evaporation and the kinetic processes in the resulting vapour. (interaction of laser radiation with matter. laser plasma)

  19. Impedance Mismatch study between the Microwave Generator and the PUPR Plasma Machine

    NASA Astrophysics Data System (ADS)

    Gaudier, Jorge R.; Castellanos, Ligeia; Encarnación, Kabir; Zavala, Natyaliz; Rivera, Ramón; Farahat, Nader; Leal, Edberto

    2006-12-01

    Impedance mismatch inside the connection from the microwave power generator to the plasma machine is studied. A magnetron power generator transmits microwaves of 2.45 GHz and variable power from 50W to 5000W, through a flexible rectangular waveguide to heat plasma inside a Mirror Cusp devise located at the Polytechnic University of Puerto Rico. Before the production of plasma, the residual gas of the devise must be extracted by a vacuum system (5Torr or better), then Argon gas is injected to the machine. The microwaves heat the Argon ions to initiate ionization and plasma is produced. A dielectric wall is used inside the rectangular waveguide to isolate the plasma machine and maintain vacuum. Even though the dielectric will not block the wave propagation, some absorption of microwaves will occur. This absorption will cause reflection, reducing the efficiency of the power transfer. Typically a thin layer of Teflon is used, but measurements using this dielectric show a significant reflection of power back to the generator. Due to the high-power nature of the generator (5KW), this mismatch is not desirable. An electromagnetic field solver based on the Finite Difference Time Domain Method(FDTD) is used to model the rectangular waveguide connection. The characteristic impedance of the simulation is compared with the analytical formula expression and a good agreement is obtain. Furthermore the Teflon-loaded guide is modeled using the above program and the input impedance is computed. The reflection coefficient is calculated based on the transmission line theory with the characteristic and input impedances. Based on the simulation results it is possible to optimize the thickness, shape and dielectric constant of the material, in order to seal the connection with a better match.

  20. Impedance Mismatch study between the Microwave Generator and the PUPR Plasma Machine

    SciTech Connect

    Gaudier, Jorge R.; Castellanos, Ligeia; Encarnacion, Kabir; Zavala, Natyaliz; Rivera, Ramon; Farahat, Nader; Leal, Edberto

    2006-12-04

    Impedance mismatch inside the connection from the microwave power generator to the plasma machine is studied. A magnetron power generator transmits microwaves of 2.45 GHz and variable power from 50W to 5000W, through a flexible rectangular waveguide to heat plasma inside a Mirror Cusp devise located at the Polytechnic University of Puerto Rico. Before the production of plasma, the residual gas of the devise must be extracted by a vacuum system (5Torr or better), then Argon gas is injected to the machine. The microwaves heat the Argon ions to initiate ionization and plasma is produced. A dielectric wall is used inside the rectangular waveguide to isolate the plasma machine and maintain vacuum. Even though the dielectric will not block the wave propagation, some absorption of microwaves will occur. This absorption will cause reflection, reducing the efficiency of the power transfer. Typically a thin layer of Teflon is used, but measurements using this dielectric show a significant reflection of power back to the generator. Due to the high-power nature of the generator (5KW), this mismatch is not desirable. An electromagnetic field solver based on the Finite Difference Time Domain Method(FDTD) is used to model the rectangular waveguide connection. The characteristic impedance of the simulation is compared with the analytical formula expression and a good agreement is obtain. Furthermore the Teflon-loaded guide is modeled using the above program and the input impedance is computed. The reflection coefficient is calculated based on the transmission line theory with the characteristic and input impedances. Based on the simulation results it is possible to optimize the thickness, shape and dielectric constant of the material, in order to seal the connection with a better match.

  1. Interaction of high-power microwave with air breakdown plasma at low pressure

    NASA Astrophysics Data System (ADS)

    Zhao, Pengcheng; Guo, Lixin; Shu, Panpan

    2016-09-01

    The high-power microwave breakdown at the low air pressure (about 0.01 atm) is simulated numerically using the one-dimensional model coupling Maxwell's equations with plasma fluid equations. The accuracy of the model is validated by comparing the breakdown prediction with the experimental data. We find that a diffuse plasma with a stationary front profile forms due to the large electron diffusion. Most of the incident wave energy is absorbed and reflected by the plasma when the plasma front achieves a stationary profile. The front propagation velocity remains almost unchanged with time and increases when the incident wave amplitude increases or the incident wave frequency decreases. With the incident wave frequency increasing, the maximum density of the stationary plasma front increases, while the ratio of the reflected wave power to the incident wave power remains almost unchanged. At a higher incident wave amplitude, the maximum density and reflectance become large.

  2. Self-consistent microwave field and plasma discharge simulations for a moderate pressure hydrogen discharge reactor

    NASA Astrophysics Data System (ADS)

    Hassouni, K.; Grotjohn, T. A.; Gicquel, A.

    1999-07-01

    A self-consistent two-dimensional model of the electromagnetic field and the plasma in a hydrogen discharge system has been developed and tested in comparison to experimental measurements. The reactor studied is a 25 cm diameter resonant cavity structure operating at 2.45 GHz with a silica belljar of 10 cm diameter and 17 cm height contained within the microwave cavity. The inside of the belljar where the discharge occurs contains a substrate holder of 5 cm diameter that is used to hold substrates for diamond deposition. The electromagnetic field model solves for the microwave fields using a finite difference time-domain solution of Maxwell's equations. The plasma model is a three energy mode (gas, molecular vibration, and electron) and nine species (H2, H, H(n=2), H(n=3), H+, H2+, H3+, H-, electron) model which accounts for non-Boltzmann electron distribution function and has 35 reactions. Simulated characteristics of the reactor in two dimensions include gas temperature, electron temperature, electron density, atomic hydrogen molar fraction, microwave power absorption, and microwave fields. Comparisons of the model are made with close agreement to several experimental measurements including coherent anti-Stokes Raman Spectroscopy measurement of H2 temperature versus position above the substrate, Doppler broadening optical emission spectroscopy (OES) measurements of H temperature versus pressure, actinometry measurements of the relative H atom concentration, Hα OES intensity measurements versus position, and microwave electric field measurements. The parameter range studied includes pressures of 2500-11 000 Pa, microwave powers of 300-2000 W, and three vertical positions of the substrate holder.

  3. Experimental investigations of the formation of a plasma mirror for high-frequency microwave beam steering

    NASA Astrophysics Data System (ADS)

    Meger, R. A.; Mathew, J.; Gregor, J. A.; Pechacek, R. E.; Fernsler, R. F.; Manheimer, W.; Robson, A. E.

    1995-06-01

    The Naval Research Laboratory (NRL) has been studying the use of a magnetically confined plasma sheet as a reflector for high-frequency (X-band) microwaves for broadband radar applications [IEEE Trans. Plasma Sci. PS-19, 1228 (1991)]. A planar sheet plasma (50 cm×60 cm×1 cm) is produced using a 2-10 kV fast rise time square wave voltage source and a linear hollow cathode. Reproducible plasma distributions with density ≥1.2×1012 cm-3 have been formed in a low-pressure (100-500 mTorr of air) chamber located inside of a 100-300 G uniform magnetic field. One to ten pulse bursts of 20-1000 μs duration plasma sheets have been produced with pulse repetition frequencies of up to 10 kHz. Turn on and off times of the plasma are less than 10 μs each. The far-field antenna pattern of microwaves reflected off the plasma sheet is similar to that from a metal plate at the same location [IEEE Trans. Plasma Sci PS-20, 1036 (1992)]. Interferometer measurements show the critical surface to remain nearly stationary during the current pulse. Plasma density measurements and optical emissions indicate that the plasma is produced by a flux of energetic electrons formed near the hollow cathode. The sheet appears to be stable to driver voltage and current fluctuations (NRL Memorandum Report No. 7461, 28 March 1994, NTIS Document No. AD-A278758).

  4. An SSM/I radiometer simulator for studies of microwave emission from soil. [Special Sensor Microwave/Imager

    NASA Technical Reports Server (NTRS)

    Galantowicz, J. F.; England, A. W.

    1992-01-01

    A ground-based simulator of the defense meterological satellite program special sensor microwave/imager (DMSP SSM/I) is described, and its integration with micrometeorological instrumentation for an investigation of microwave emission from moist and frozen soils is discussed. The simulator consists of three single polarization radiometers which are capable of both Dicke radiometer and total power radiometer modes of operation. The radiometers are designed for untended operation through a local computer and a daily telephone link to a laboratory. The functional characteristics of the radiometers are described, together with their field deployment configuration and an example of performance parameters.

  5. Hydrogen atom density in narrow-gap microwave hydrogen plasma determined by calorimetry

    NASA Astrophysics Data System (ADS)

    Yamada, Takahiro; Ohmi, Hiromasa; Kakiuchi, Hiroaki; Yasutake, Kiyoshi

    2016-02-01

    The density of hydrogen (H) atoms in the narrow-gap microwave hydrogen plasma generated under high-pressure conditions is expected to be very high because of the high input power density of the order of 104 W/cm3. For measuring the H atom density in such a high-pressure and high-density plasma, power-balance calorimetry is suited since a sufficient signal to noise ratio is expected. In this study, H atom density in the narrow-gap microwave hydrogen plasma has been determined by the power-balance calorimetry. The effective input power to the plasma is balanced with the sum of the powers related to the out-going energy per unit time from the plasma region via heat conduction, outflow of high-energy particles, and radiation. These powers can be estimated by simple temperature measurements using thermocouples and optical emission spectroscopy. From the power-balance data, the dissociation fraction of H2 molecules is determined, and the obtained maximum H atom density is (1.3 ± 0.2) × 1018 cm-3. It is found that the H atom density increases monotonically with increasing the energy invested per one H2 molecule within a constant plasma volume.

  6. Effects of water addition on OH radical generation and plasma properties in an atmospheric argon microwave plasma jet

    SciTech Connect

    Srivastava, Nimisha; Wang Chuji

    2011-09-01

    Water vapor was added to the feeding gas of a continuous atmospheric argon (Ar) microwave plasma jet to study its influence on plasma shape, plasma gas temperature, and OH radical concentrations. The plasma jet was created by a 2.45 GHz microwave plasma source operating at constant power of 104 W with H{sub 2}O-Ar mixture flow rate of 1.7 standard liter per minute (slm). With an increase in the H{sub 2}O/Ar ratio from 0.0 to 1.9%, the plasma jet column length decreased from 11 mm to 4 mm, and the plasma jet became unstable when the ratio was higher than 1.9%; elevation of plasma gas temperature up to 330 K was observed in the plasma temperature range of 420-910 K. Optical emission spectroscopy showed that the dominant plasma emissions changed from N{sub 2} in the pure Ar plasma jet to OH with the addition of water vapor, and simulations of emission spectra suggested non-Boltzmann distribution of the rotational levels in the OH A-state (v'=0). Spatially resolved absolute OH number densities along the plasma jet axis were measured using UV cavity ringdown spectroscopy of the OH (A-X) (0-0) band in the H{sub 2}O/Ar ratio range of 0.0-1.9%. The highest OH number density is consistently located in the vicinity of the plasma jet tip, regardless of the H{sub 2}O/Ar ratio. OH number density in the post-tip region follows approximately an exponential decay along the jet axis with the fastest decay constant of 3.0 mm in the H{sub 2}O/Ar ratio of 1.5%. Given the low gas temperature of 420-910 K and low electron temperature of 0.5-5 eV along the jet axis, formation of the OH radical is predominantly due to electron impact induced dissociation of H{sub 2}O and dissociative recombination of H{sub 2}O{sup +} resulting from the Penning ionization process.

  7. Development of a miniature microwave electron cyclotron resonance plasma ion thruster for exospheric micro-propulsion

    SciTech Connect

    Dey, Indranuj; Toyoda, Yuji; Yamamoto, Naoji; Nakashima, Hideki

    2015-12-15

    A miniature microwave electron cyclotron resonance plasma source [(discharge diameter)/(microwave cutoff diameter) < 0.3] has been developed at Kyushu University to be used as an ion thruster in micro-propulsion applications in the exosphere. The discharge source uses both radial and axial magnetostatic field confinement to facilitate electron cyclotron resonance and increase the electron dwell time in the volume, thereby enhancing plasma production efficiency. Performance of the ion thruster is studied at 3 microwave frequencies (1.2 GHz, 1.6 GHz, and 2.45 GHz), for low input powers (<15 W) and small xenon mass flow rates (<40 μg/s), by experimentally measuring the extracted ion beam current through a potential difference of ≅1200 V. The discharge geometry is found to operate most efficiently at an input microwave frequency of 1.6 GHz. At this frequency, for an input power of 8 W, and propellant (xenon) mass flow rate of 21 μg/s, 13.7 mA of ion beam current is obtained, equivalent to an calculated thrust of 0.74 mN.

  8. Double window configuration as a low cost microwave waveguide window for plasma applications

    SciTech Connect

    Baskaran, R.

    1997-12-01

    Waveguide windows are major components of a transmission line used in microwave plasma devices. The function of the waveguide window is to provide vacuum isolation of the source side from the plasma chamber while transmitting microwaves with minimum attenuation. Commonly a single thin dielectric plate is sandwiched between a choke type flange and a flat flange and is used as a waveguide window. To arrive at a better window configuration in terms of the low power reflection coefficient, the voltage standing wave ratio calculation is carried out for different window configurations (single window and double window) and for various window thicknesses. It is found that the power reflection is the minimum in the case of double window configuration. The minimum power reflection is as low as 0.8{percent} for a combination of alumina and a quartz plate each of 1 cm thickness in the double window configuration. Also, it is more advantageous to use radial microwave coupling than axial coupling in order to increase the life time of the microwave waveguide window. {copyright} {ital 1997 American Institute of Physics.}

  9. Investigations of UV radiation from superimposed microwave-silent discharge plasmas

    SciTech Connect

    Stalder, K.R.; Goren, Y.; Lally, P.; Pallakoff, O.E.

    1996-12-31

    The authors are examining the feasibility of improving the efficiency with which short wavelength ultraviolet (UV) radiation is generated from microwave and related discharges.The ultimate goal is to develop high-efficiency UV light sources that can be used in a variety of high-technology applications, including water purification, semiconductor fabrication, polymercuring and other industrial processes. The authors have designed, built and tested a hybrid discharge system combining aspects of two distinctly different discharges, each of which has been well-documented as reasonably efficient sources of UV radiation. The experimental prototype is based on combining a diffuse microwave discharge with a dielectric barrier (silent) discharge. Microwave discharges have been shown to be reasonably efficient generators of UV light, but their efficiency is limited by the amount of microwave power that can be deposited in the plasma. Silent discharges, which contain many high-current microarcs in high pressure gases have also been shown to be efficient sources of UV radiation when excimer-forming gases are used. The authors believe that microwave fields superimposed on a silent discharge may increase the effective radiating volume of the microarcs, thereby enhancing the efficiency.

  10. Determining the microwave coupling and operational efficiencies of a microwave plasma assisted chemical vapor deposition reactor under high pressure diamond synthesis operating conditions.

    PubMed

    Nad, Shreya; Gu, Yajun; Asmussen, Jes

    2015-07-01

    The microwave coupling efficiency of the 2.45 GHz, microwave plasma assisted diamond synthesis process is investigated by experimentally measuring the performance of a specific single mode excited, internally tuned microwave plasma reactor. Plasma reactor coupling efficiencies (η) > 90% are achieved over the entire 100-260 Torr pressure range and 1.5-2.4 kW input power diamond synthesis regime. When operating at a specific experimental operating condition, small additional internal tuning adjustments can be made to achieve η > 98%. When the plasma reactor has low empty cavity losses, i.e., the empty cavity quality factor is >1500, then overall microwave discharge coupling efficiencies (η(coup)) of >94% can be achieved. A large, safe, and efficient experimental operating regime is identified. Both substrate hot spots and the formation of microwave plasmoids are eliminated when operating within this regime. This investigation suggests that both the reactor design and the reactor process operation must be considered when attempting to lower diamond synthesis electrical energy costs while still enabling a very versatile and flexible operation performance. PMID:26233399

  11. Determining the microwave coupling and operational efficiencies of a microwave plasma assisted chemical vapor deposition reactor under high pressure diamond synthesis operating conditions

    SciTech Connect

    Nad, Shreya; Gu, Yajun; Asmussen, Jes

    2015-07-15

    The microwave coupling efficiency of the 2.45 GHz, microwave plasma assisted diamond synthesis process is investigated by experimentally measuring the performance of a specific single mode excited, internally tuned microwave plasma reactor. Plasma reactor coupling efficiencies (η) > 90% are achieved over the entire 100–260 Torr pressure range and 1.5–2.4 kW input power diamond synthesis regime. When operating at a specific experimental operating condition, small additional internal tuning adjustments can be made to achieve η > 98%. When the plasma reactor has low empty cavity losses, i.e., the empty cavity quality factor is >1500, then overall microwave discharge coupling efficiencies (η{sub coup}) of >94% can be achieved. A large, safe, and efficient experimental operating regime is identified. Both substrate hot spots and the formation of microwave plasmoids are eliminated when operating within this regime. This investigation suggests that both the reactor design and the reactor process operation must be considered when attempting to lower diamond synthesis electrical energy costs while still enabling a very versatile and flexible operation performance.

  12. Determining the microwave coupling and operational efficiencies of a microwave plasma assisted chemical vapor deposition reactor under high pressure diamond synthesis operating conditions.

    PubMed

    Nad, Shreya; Gu, Yajun; Asmussen, Jes

    2015-07-01

    The microwave coupling efficiency of the 2.45 GHz, microwave plasma assisted diamond synthesis process is investigated by experimentally measuring the performance of a specific single mode excited, internally tuned microwave plasma reactor. Plasma reactor coupling efficiencies (η) > 90% are achieved over the entire 100-260 Torr pressure range and 1.5-2.4 kW input power diamond synthesis regime. When operating at a specific experimental operating condition, small additional internal tuning adjustments can be made to achieve η > 98%. When the plasma reactor has low empty cavity losses, i.e., the empty cavity quality factor is >1500, then overall microwave discharge coupling efficiencies (η(coup)) of >94% can be achieved. A large, safe, and efficient experimental operating regime is identified. Both substrate hot spots and the formation of microwave plasmoids are eliminated when operating within this regime. This investigation suggests that both the reactor design and the reactor process operation must be considered when attempting to lower diamond synthesis electrical energy costs while still enabling a very versatile and flexible operation performance.

  13. Determining the microwave coupling and operational efficiencies of a microwave plasma assisted chemical vapor deposition reactor under high pressure diamond synthesis operating conditions

    NASA Astrophysics Data System (ADS)

    Nad, Shreya; Gu, Yajun; Asmussen, Jes

    2015-07-01

    The microwave coupling efficiency of the 2.45 GHz, microwave plasma assisted diamond synthesis process is investigated by experimentally measuring the performance of a specific single mode excited, internally tuned microwave plasma reactor. Plasma reactor coupling efficiencies (η) > 90% are achieved over the entire 100-260 Torr pressure range and 1.5-2.4 kW input power diamond synthesis regime. When operating at a specific experimental operating condition, small additional internal tuning adjustments can be made to achieve η > 98%. When the plasma reactor has low empty cavity losses, i.e., the empty cavity quality factor is >1500, then overall microwave discharge coupling efficiencies (ηcoup) of >94% can be achieved. A large, safe, and efficient experimental operating regime is identified. Both substrate hot spots and the formation of microwave plasmoids are eliminated when operating within this regime. This investigation suggests that both the reactor design and the reactor process operation must be considered when attempting to lower diamond synthesis electrical energy costs while still enabling a very versatile and flexible operation performance.

  14. Ground State and Excited State H-Atom Temperatures in a Microwave Plasma Diamond Deposition Reactor

    NASA Astrophysics Data System (ADS)

    Gicquel, A.; Chenevier, M.; Breton, Y.; Petiau, M.; Booth, J. P.; Hassouni, K.

    1996-09-01

    Ground electronic state and excited state H-atom temperatures are measured in a microwave plasma diamond deposition reactor as a function of a low percentage of methane introduced in the feed gas and the averaged input microwave power density. Ground state H-atom temperatures (T_H) and temperature of the H-atom in the n=3 excited state (T_{Hα}) are obtained from the measurements respectively of the excitation profile by Two-photon Allowed transition Laser Induced Fluorescence (TALIF) and the Hα line broadening by Optical Emission Spectroscopy (OES). They are compared to gas temperatures calculated with a 1D diffusive non equilibrium H{2} plasma flow model and to ground electronic state rotational temperatures of molecular hydrogen measured previously by Coherent Anti-Stokes Raman Spectroscopy.

  15. A nonequilibrium model for a moderate pressure hydrogen microwave discharge plasma

    NASA Technical Reports Server (NTRS)

    Scott, Carl D.

    1993-01-01

    This document describes a simple nonequilibrium energy exchange and chemical reaction model to be used in a computational fluid dynamics calculation for a hydrogen plasma excited by microwaves. The model takes into account the exchange between the electrons and excited states of molecular and atomic hydrogen. Specifically, electron-translation, electron-vibration, translation-vibration, ionization, and dissociation are included. The model assumes three temperatures, translational/rotational, vibrational, and electron, each describing a Boltzmann distribution for its respective energy mode. The energy from the microwave source is coupled to the energy equation via a source term that depends on an effective electric field which must be calculated outside the present model. This electric field must be found by coupling the results of the fluid dynamics and kinetics solution with a solution to Maxwell's equations that includes the effects of the plasma permittivity. The solution to Maxwell's equations is not within the scope of this present paper.

  16. Subsurface imaging of metal lines embedded in a dielectric with a scanning microwave microscope

    NASA Astrophysics Data System (ADS)

    You, Lin; Ahn, Jung-Joon; Obeng, Yaw S.; Kopanski, Joseph J.

    2016-02-01

    We demonstrate the ability of the scanning microwave microscope (SMM) to detect subsurface metal lines embedded in a dielectric film with sub-micrometer resolution. The SMM was used to image 1.2 μm-wide Al-Si-Cu metal lines encapsulated with either 800 nm or 2300 nm of plasma deposited silicon dioxide. Both the reflected microwave (S 11) amplitude and phase shifted near resonance frequency while the tip scanned across these buried lines. The shallower line edge could be resolved within 900 nm  ±  70 nm, while the deeper line was resolved within 1200 nm  ±  260 nm. The spatial resolution obtained in this work is substantially better that the 50 μm previously reported in the literature. Our observations agree very well with the calculated change in peak frequency and phase using a simple lumped element model for an SMM with a resonant transmission line. By conducting experiments at various eigenmodes, different contrast levels and signal-to-noise ratios have been compared. With detailed sensitivity studies, centered around 9.3 GHz, it has been revealed that the highest amplitude contrast is obtained when the probe microwave frequency matches the exact resonance frequency of the experimental setup. By RLC equivalent circuit modeling of the tip-sample system, two competing effects have been identified to account for the positive and negative S 11 amplitude and phase contrasts, which can be leveraged to further improve the contrast and resolution. Official contribution of the National Institute of Standards and Technology; not subject to copyright in the United States.

  17. Microwave tunneling in heterostructures with electromagnetically induced transparency-like metamaterials based on solid state plasma

    NASA Astrophysics Data System (ADS)

    Kong, Xiang-kun; Li, Hai-ming; Bian, Bo-rui; Xue, Feng; Ding, Guo-wen; Yu, Shao-jie; Liu, Si-yuan

    2016-06-01

    Interference induced electromagnetic induced transparency (EIT)-like effect has demonstrated the ability to realize narrow transmission resonances within the single-resonator stop band. Due to the limited plasma density in actual devices, only few reports discuss the plasma metamaterials and truncated photonic crystals which support electromagnetically induced transparency. However, solid state plasma realized by some semiconductors have the advantages of higher order plasma density and the characteristics of the reconfiguration and tunability. Here, we conduct a numerical study of the perfect microwave tunneling in heterostructures composed of solid state plasma metamaterials and truncated photonic crystal. There is particular emphasis on the tunability of tunneling frequency by changing plasma frequency in solid state plasma, as well as the electric energy density distributions in heterostructures. It was found that, compared to conventional metal photonic crystal, the reflectance of tunneling mode can be reduced from -25.8 dB to -41.7 dB with an optimized Q-factor. Further study on electric energy density distribution confirms that EM wave in-plane localization originated from the EIT-like solid state plasma, which gives rise to the three-dimensional enhancement of sub-wavelength EM wave localization, is stronger than EM wave confinement along the propagation direction. Owing to the tunability of plasma, the tunneling frequency channel can be adjusted or reconfigured in a certain range without adjusting the geometry of the heterostructure. It suggests the fabrication for highly sensitive dielectric sensing, optical switches, and so on.

  18. The role of microwaves in the enhancement of laser-induced plasma emission

    NASA Astrophysics Data System (ADS)

    Khumaeni, Ali; Akaoka, Katsuaki; Miyabe, Masabumi; Wakaida, Ikuo

    2016-08-01

    We studied experimentally the effect of microwaves (MWs) on the enhancement of plasma emission achieved by laser-induced breakdown spectroscopy (LIBS). A laser plasma was generated on a calcium oxide pellet by a Nd:YAG laser (5 mJ, 532 nm, 8 ns) in reduced-pressure argon surrounding gas. A MW radiation (400 W) was injected into the laser plasma via a loop antenna placed immediately above the laser plasma to enhance the plasma emission. The results confirmed that when the electromagnetic field was introduced into the laser plasma region by the MWs, the lifetime of the plasma was extended from 50 to 500 µs, similar to the MW duration. Furthermore, the plasma temperature and electron density increased to approximately 10900 K and 1.5×1018 cm-3, respectively and the size of the plasma emission was extended to 15 mm in diameter. As a result, the emission intensity of Ca lines obtained using LIBS with MWs was enhanced by approximately 200 times compared to the case of LIBS without MWs.

  19. Microwave discharge plasma production with resonant cavity for EUV mask inspection tool

    NASA Astrophysics Data System (ADS)

    Tashima, Saya; Ohnishi, Masami; Hugrass, Waheed; Sugimoto, Keita; Sakaguchi, Masatugu; Osawa, Hodaka; Nishimura, Hiroaki; Matsukuma, Hiraku

    2015-12-01

    A microwave-discharge-produced plasma source was developed to generate 13.5 nm extreme ultraviolet (EUV) radiation for application as a mask inspection tool. The EUV radiation of a system with a high Q-factor (>3900) resonant cavity and a solid-state oscillator was studied. The gas pressure and microwave power dependences on the EUV radiation for transverse-magnetic mode TM010 and transverse-electric mode TE111 were determined. For the solid-state oscillator, the efficiency of the EUV radiation over the input power was 5.8 times higher than that for a magnetron. EUV radiation of 10 mW/(2πsr) was observed under a gas pressure of 5 Pa and microwave power of 400 W. We expect that more EUV power and a smaller plasma is generated when a magnetic field is applied to confirm the plasma and a facility is operated with an improved system to cool an entire cavity.

  20. Control over the radiation spectrum of a microwave plasma relativistic oscillator

    SciTech Connect

    Bogdankevich, I. L.; Loza, O. T.; Pavlov, D. A.

    2009-03-15

    General features of the operation of microwave oscillators based on the Cherenkov resonance interaction of a high-current relativistic electron beam with a preformed plasma are considered. Emphasis is placed on the presence of longitudinal modes of the plasma-beam resonator that make it possible to tune the radiation frequency. Methods by which the radiation frequency can be varied severalfold continuously or in discrete controlled steps and the width of the spectrum of simultaneously generated frequencies can be changed substantially are described. The results of numerical simulations are compared with available experimental data.

  1. Experimental observation of short-pulse upshifted frequency microwaves from a laser-created overdense plasma.

    PubMed

    Yugami, Noboru; Niiyama, Toshihiko; Higashiguchi, Takeshi; Gao, Hong; Sasaki, Shigeo; Ito, Hiroaki; Nishida, Yasushi

    2002-03-01

    A short and frequency upshifted from a source microwave pulse is experimentally generated by the overdense plasma that is rapidly created by a laser. The source wave, whose frequency is 9 GHz, is propagating in the waveguide filled with tetrakis-dimethyl-amino-ethylene gas, which is to be converted to the overdense plasma by the laser. The detected frequency of the pulse is over 31.4 GHz and its duration is 10 ns. This technique has the potential for the generation of a tunable frequency source.

  2. Formation of SiC nanoparticles in an atmospheric microwave plasma

    PubMed Central

    Vennekamp, Martin; Bauer, Ingolf; Groh, Matthias; Sperling, Evgeni; Ueberlein, Susanne; Myndyk, Maksym; Mäder, Gerrit

    2011-01-01

    Summary We describe the formation of SiC nanopowder using an atmospheric argon microwave plasma with tetramethylsilane (TMS) as precursor. The impact of several process conditions on the particle size of the product is experimentally investigated. Particles with sizes ranging from 7 nm to about 20 nm according to BET and XRD measurements are produced. The dependency of the particle size on the process parameters is evaluated statistically and explained with growth-rate equations derived from the theory of Ostwald ripening. The results show that the particle size is mainly influenced by the concentration of the precursor material in the plasma. PMID:22043455

  3. Field emission from carbon nanotubes produced using microwave plasma assisted CVD

    SciTech Connect

    Zhang, Q.; Yoon, S.F.; Ahn, J.; Gan, B.; Rusli; Yu, M.B.; Cheah, L.K.; Shi, X.

    2000-01-30

    Electron field emission from carbon nanotubes prepared using microwave plasma assisted CVD has been investigated. The nanotubes, ranging from 50 to 120 nm in diameter and a few tens of microns in length, were formed under methane and hydrogen plasma at 720 C with the aid of iron-oxide particles. The morphology and growth direction of the nanotubes are found to be strongly influenced by the flow ratio of methane to hydrogen. However, the electron field emission from these massive nanotubes show similar characteristics, i.e., high emission current at low electric fields.

  4. Design of a Microwave Assisted Discharge Inductive Plasma Accelerator

    NASA Technical Reports Server (NTRS)

    Hallock, Ashley K.; Polzin, Kurt A.

    2010-01-01

    The design and construction of a thruster that employs electrodeless plasma preionization and pulsed inductive acceleration is described. Preionization is achieved through an electron cyclotron resonance discharge that produces a weakly-ionized plasma at the face of a conical theta pinch-shaped inductive coil. The presence of the preionized plasma allows for current sheet formation at lower discharge voltages than those employed in other pulsed inductive accelerators that do not employ preionization. The location of the electron cyclotron resonance discharge is controlled through the design of the applied magnetic field in the thruster. Finite element analysis shows that there is an arrangement of permanent magnets that yields a small volume of resonant magnetic field at the coil face. Preionization in the resonant zone leads to current sheet formation at the coil face, which minimizes the initial inductance of the pulse circuit and maximizes the potential electrical efficiency of the accelerator. A magnet assembly was constructed around an inductive coil to provide structural support to the selected arrangement of neodymium magnets. Measured values of the resulting magnetic field compare favorably with the finite element model.

  5. Melting and spheroidization of hexagonal boron nitride in a microwave-powered, atmospheric pressure nitrogen plasma `

    SciTech Connect

    Gleiman, S. S.; Phillips, J.

    2001-01-01

    We have developed a method for producing spherically-shaped, hexagonal phase boron nitride (hBN) particles of controlled diameter in the 10-100 micron size range. Specifically, platelet-shaped hBN particles are passed as an aerosol through a microwave-generated, atmospheric pressure, nitrogen plasma. In the plasma, agglomerates formed by collisions between input hBN particles, melt and forms spheres. We postulate that this unprecedented process takes place in the unique environment of a plasma containing a high N-atom concentration, because in such an environment the decomposition temperature can be raised above the melting temperature. Indeed, given the following relationship [1]: BN{sub (condensed)} {leftrightarrow} B{sub (gas)} + N{sub (gas)}. Standard equilibrium thermodynamics indicate that the decomposition temperature of hBN is increased in the presence of high concentrations of N atoms. We postulate that in our plasma system the N atom concentration is high enough to raise the decomposition temperature above the (undetermined) melting temperature. Keywords Microwave plasma, boron nitride, melting, spherical, thermodynamics, integrated circuit package.

  6. Microwave measurements on a well-collimated dusty plasma sheet for communications blackout applications

    NASA Astrophysics Data System (ADS)

    Gillman, Eric; Amatucci, Bill

    2013-10-01

    A linear hollow cathode produces an electron beam that is accelerated into a low pressure (50 to 150 mTorr) background of Argon, producing an electron beam discharge. A relatively constant 170 Gauss axial magnetic field is produced by two electromagnet coils arranged in a Helmholtz configuration. This results in a well-collimated electron beam, producing a 2-dimensional discharge sheet (40 cm high by 30 cm wide by 1 cm thick) with densities as high as 1012 cm-3. The plasma sheet is intended to replicate the parameters of the plasma layer produced around hypersonic and reentry vehicles. The electron beam is accelerated vertically towards a grounded beam dump electrode. This electrode is modified to include an array of six piezo buzzers modified and filled with alumina powder. When powered with a modest voltage, the piezoelectric shakers drop dust particles into the plasma sheet discharge directly below. A transmitting microwave horn is oriented normal to the dense plasma sheet while the receiving horn is mounted on a stage that can be rotated up to 180 degrees azimuthally. Microwave transmission and scattering measurements of the plasma sheet are made in the S-band and X-band for applications related to communications blackout. This research was performed while the primary author held a National Research Council Research Associateship Award at the Naval Research Laboratory.

  7. Numerical investigation of a microwave-band surface plasmon excited on an overdense plasma cylinder

    NASA Astrophysics Data System (ADS)

    Zhang, Lin; Ouyang, Ji-Ting

    2016-05-01

    The finite-difference time-domain (FDTD) method was employed to investigate the surface plasmon (SP) of the microwave band excited on an overdense plasma cylinder with various geometric scales. The extinction efficiency was calculated to determine the resonant frequency of the SP. A sequence of angular eigenmodes was observed via field distribution. The effect of plasma frequency and collision rate on the SP was also investigated. The results show that an SP on the cylinder surface can be treated as a standing wave pattern of two surface waves propagating in opposite directions. When the SP is formed around the plasma cylinder, the scatter field can be enhanced significantly. The solid plasma cylinder can be replaced by a hollow one without significant change of the SP’s features, as long as its layer width well exceeds the skin depth.

  8. Hybrid plasma slow-wave structures for linacs and microwave power sources

    SciTech Connect

    Karbushev, N.I.; Kolosov, Y.A.; Ostrensky, E.I.; Polovkov, A.I.

    1995-07-05

    Dispersion and amplitude properties of waves in hybrid plasma slow-wave structures consisting of usual slow-wave structures partially filled with plasma are investigated. It is shown that using of plasma may allow to increase sufficiently the amplitude of an axial component of an accelerating or decelerating electric field on the axis of a slow-wave structure. This fact correspondingly leads to higher acceleration rates for accelerators and more effective interaction of an electron beam with microwaves in amplifiers and oscillators. Different types of hybrid plasma slow-wave structures such as a rippled wall waveguide, helix, a set of coupled cavities, and a dielectric waveguide are considered. {copyright} {ital 1995} {ital American} {ital Institute} {ital of} {ital Physics}.

  9. Thermal inequilibrium of atmospheric helium microwave plasma produced by an axial injection torch

    SciTech Connect

    Alvarez, R.; Rodero, A.; Quintero, M.C.; Sola, A.; Gamero, A.; Ortega, D.

    2005-11-01

    The population density of several excited states has been obtained spectroscopically in a helium plasma sustained by a torch device at atmospheric pressure as a function of the radius in the plasma for different conditions of microwave power and plasma gas flow. The ground-state atom density is determined from the gas temperature, which is deduced from the rotational temperature of the molecular nitrogen ions. The population distribution is fitted to the theoretical results of a collisional-radiative model that includes particle transport. A large deviation of the measured populations is found from the theoretical populations for local thermodynamic equilibrium. The plasma at any radial position is far from local thermodynamic equilibrium; the equilibrium deviation parameter of the ground state is larger than 10 000. The equilibrium deviation parameters of the measured excited-state populations obey the theoretical p{sub k}{sup -6} exponential law.

  10. Subcutoff microwave driven plasma ion sources for multielemental focused ion beam systems.

    PubMed

    Mathew, Jose V; Chowdhury, Abhishek; Bhattacharjee, Sudeep

    2008-06-01

    A compact microwave driven plasma ion source for focused ion beam applications has been developed. Several gas species have been experimented including argon, krypton, and hydrogen. The plasma, confined by a minimum B multicusp magnetic field, has good radial and axial uniformity. The octupole multicusp configuration shows a superior performance in terms of plasma density (~1.3 x 10(11) cm(-3)) and electron temperature (7-15 eV) at a power density of 5-10 Wcm(2). Ion current densities ranging from a few hundreds to over 1000 mA/cm(2) have been obtained with different plasma electrode apertures. The ion source will be combined with electrostatic Einzel lenses and should be capable of producing multielemental focused ion beams for nanostructuring and implantations. The initial simulation results for the focused beams have been presented.

  11. Process to generate a synthetic diagnostic for microwave imaging reflectometry with the full-wave code FWR2D.

    PubMed

    Ren, X; Domier, C W; Kramer, G; Luhmann, N C; Muscatello, C M; Shi, L; Tobias, B J; Valeo, E

    2014-11-01

    A synthetic microwave imaging reflectometer (MIR) diagnostic employing the full-wave reflectometer code (FWR2D) has been developed and is currently being used to guide the design of real systems, such as the one recently installed on DIII-D. The FWR2D code utilizes real plasma profiles as input, and it is combined with optical simulation tools for synthetic diagnostic signal generation. A detailed discussion of FWR2D and the process to generate the synthetic signal are presented in this paper. The synthetic signal is also compared to a prescribed density fluctuation spectrum to quantify the imaging quality. An example is presented with H-mode-like plasma profiles derived from a DIII-D discharge, where the MIR focal is located in the pedestal region. It is shown that MIR is suitable for diagnosing fluctuations with poloidal wavenumber up to 2.0 cm(-1) and fluctuation amplitudes less than 5%.

  12. Investigations of Remote Plasma Irregularites by Radio Sounding: Applications of the Radio Plasma Imager on IMAGE

    NASA Technical Reports Server (NTRS)

    Fung, Shing F.; Benson, Robert F.; Carpenter, Donald L.; Reinsch, Bodo W.; Gallagher, Dennis L.

    1999-01-01

    The Radio Plasma Imager (RPI) on the Imager for Magnetopause-to-Aurora Global Exploration (IMAGE) mission operates like a radar by transmitting and receiving coherent electromagnetic pulses. Long-range echoes of electromagnetic sounder waves are reflected at remote plasma cutoffs. Thus, analyses of RPI observations will yield the plasma parameters and distances to the remote reflection points. These analyses assume that the reflecting plasma surfaces are cold and are sufficiently smooth that they effectively behave as plane mirrors to the incoming sounder waves, i.e., that geometric optics can be used. The RPI will employ pulse compression and spectral integration techniques, perfected in ground-based ionospheric digital sounders, in order to enhance the signal-to-noise ratio in long-range magnetospheric sounding. When plasma irregularities exist in the remote magnetospheric plasmas that are being probed by the sounder waves, echo signatures may become complicated. Ionospheric sounding experience indicates that while topside sounding echo strengths can actually be enhanced by the presence of irregularities, ground-based sounding indicates that coherent detection techniques can still be employed. In this paper we investigate the plasma conditions that will allow coherent signals to be detected by the RPI and the signatures to be expected, such as scattering and plasma resonances, in the presence of multi-scale irregularities, may possibly have on RPI signals. Sounding of irregular plasma structures in the plasmasphere, plasmapause and magnetopause are also discussed.

  13. Microwave engineering of plasma-assisted CVD reactors for diamond deposition

    NASA Astrophysics Data System (ADS)

    Silva, F.; Hassouni, K.; Bonnin, X.; Gicquel, A.

    2009-09-01

    The unique properties of CVD diamond make it a compelling choice for high power electronics. In order to achieve industrial use of CVD diamond, one must simultaneously obtain an excellent control of the film purity, very low defect content and a sufficiently rapid growth rate. Currently, only microwave plasma-assisted chemical vapour deposition (MPACVD) processes making use of resonant cavity systems provide enough atomic hydrogen to satisfy these requirements. We show in this paper that the use of high microwave power density (MWPD) plasmas is necessary to promote atomic hydrogen concentrations that are high enough to ensure the deposition of high purity diamond films at large growth rates. Moreover, the deposition of homogeneous films on large surfaces calls for the production of plasma with appropriate shapes and large volumes. The production of such plasmas needs generating a fairly high electric field over extended regions and requires a careful design of the MW coupling system, especially the cavity. As far as MW coupling efficiency is concerned, the presence of a plasma load represents a mismatching perturbation to the cavity. This perturbation is especially important at high MWPD where the reflected fraction of the input power may be quite high. This mismatch can lead to a pronounced heating of the reactor walls. It must therefore be taken into account from the very beginning of the reactor design. This requires the implementation of plasma modelling tools coupled to detailed electromagnetic simulations. This is discussed in section 3. We also briefly discuss the operating principles of the main commercial plasma reactors before introducing the reactor design methodology we have developed. Modelling results for a new generation of reactors developed at LIMHP, working at very high power density, will be presented. Lastly, we show that scaling up this type of reactor to lower frequencies (915 MHz) can result in high density plasmas allowing for fast and

  14. Development of microwave imaging reflectometry on the HL-2A tokamak.

    PubMed

    Zhongbing, Shi; Min, Jiang; Yonglong, Che; Bin, Wang; Yong, Yin; Lin, Meng; Wulu, Zhong; Wei, Chen; Peiwan, Shi; Zhetian, Liu; Binzhong, Fu; Xuantong, Ding; Yi, Liu; Qingwei, Yang; Xuru, Duan

    2014-11-01

    A microwave imaging reflectometry system has been developed to visualize the density fluctuations on the HL-2A tokamak. This system is characterized by a quasi-optical system, a four frequency microwave transmitter, and a microwave quadrature receiver system with a 3D adjustable U-shaped horn antenna array, that generate 8 (poloidal) × 4 (radial) × 2 (toroidal) = 64 channel images of density fluctuations. Simulations and laboratory tests of the optical system have been conducted. The test results are in good agreement with the simulations.

  15. The Radio Plasma Imager Investigation on the IMAGE Spacecraft

    NASA Technical Reports Server (NTRS)

    Reinisch, Bodo W.; Haines, D. M.; Bibl, K.; Cheney, G.; Galkin, I. A.; Huang, X.; Myers, S. H.; Sales, G. S.; Benson, R. F.; Fung, S. F.

    1999-01-01

    Radio plasma imaging uses total reflection of electromagnetic waves from plasmas whose plasma frequencies equal the radio sounding frequency and whose electron density gradients are parallel to the wave normals. The Radio Plasma Imager (RPI) has two orthogonal 500-m long dipole antennas in the spin plane for near omni-directional transmission. The third antenna is a 20-m dipole. Echoes from the magnetopause, plasmasphere and cusp will be received with three orthogonal antennas, allowing the determination of their angle-of-arrival. Thus it will be possible to create image fragments of the reflecting density structures. The instrument can execute a large variety of programmable measuring programs operating at frequencies between 3 kHz and 3 MHz. Tuning of the transmit antennas provides optimum power transfer from the 10 W transmitter to the antennas. The instrument can operate in three active sounding modes: (1) remote sounding to probe magnetospheric boundaries, (2) local (relaxation) sounding to probe the local plasma, and (3) whistler stimulation sounding. In addition, there is a passive mode to record natural emissions, and to determine the local electron density and temperature by using a thermal noise spectroscopy technique.

  16. Meter-Scale Microwave Plasma Production and its Application to Silicon Thin Film Deposition

    NASA Astrophysics Data System (ADS)

    Toyoda, Hirotaka; Takanishi, Yudai; Endo, Hirotaka; Ishijima, Tatsuo

    2008-10-01

    There has been a great need for meter-scale plasma sources for giant materials processing, such as thin film transistor manufacturing for meter-size liquid crystal display (LCD), deposition of silicon thin films for photovoltaic power generation and so on. Recently, we have developed a new technology for production of surface wave excitation [1]. In this paper, we demonstrate production of meter-scale large-area plasma with multiple waveguide lines. In the experiment, microwave power (<30 kW) is coupled to the plasma through power divider, multiple waveguide lines and slot antennas. Optical and Langmuir probe measurements of Ar/H2 plasma show production of very uniform plasma at a plasma density of 3.4 x 10^11 cm-3 and a variance of 2% within an area of 0.9 m x 0.9 m. With use of carefully-designed gas manifold, microcrystalline silicon films are deposited on sample substrates. Deposition rate of ˜0.3 nm/s with a variance of less than 10 % is obtained within an area of 0.6 m x 0.7 m. Uniformity of film quality such as film crystallinity is also confirmed. [1] H. Sugai, Y. Nojiri, T. Ishijima and H. Toyoda, 6^th Int. Conf. on Reactive Plasmas and 23^rd Symp. on Plasma Processing, (Matsushima, 2006), p.17.

  17. Frequency of cell treatment with cold microwave argon plasma is important for the final outcome

    NASA Astrophysics Data System (ADS)

    Sysolyatina, E.; Vasiliev, M.; Kurnaeva, M.; Kornienko, I.; Petrov, O.; Fortov, V.; Gintsburg, A.; Petersen, E.; Ermolaeva, S.

    2016-07-01

    The purpose of this work was to establish the influence of a regime of cold microwave argon plasma treatments on the physiological characteristics of human fibroblasts and keratinocytes. We used three regimes of plasma application: a single treatment, double treatment with a 48 h interval, and daily treatments for 3 d. Cell proliferation after plasma application was quantified in real time, and immunohistochemistry was used to establish the viability of the cells and determine changes in their physiology. It was established that the frequency of cell treatments is important for the outcome. In the samples treated with single plasma application and double plasma applications with a 48 h interval, a 42.6% and 32.0% increase was observed in the number of cells, respectively. In addition, there were no signs of deoxyribonucleic acid breaks immediately after plasma application. In contrast, plasma application increased the accumulation of cells in the active phases of the cell cycle. The activation of proliferation correlated with a decrease in the level of β-galactosidase, a senescence marker. This could be due to cell renovation after plasma application. Daily treatment decreased cell proliferation up to 29.1% in comparison with the control after 3 d.

  18. Self-induced gaseous plasma as high power microwave opening switch medium

    SciTech Connect

    Lin, S.; Beeson, S.; Dickens, J.; Neuber, A.; Liu, C.

    2015-04-15

    Self-induced gaseous plasma is evaluated as active opening switch medium for pulsed high power microwave radiation. The self-induced plasma switch is investigated for N{sub 2} and Ar environments under pressure conditions ranging from 25 to 700 Torr. A multi-pass TE{sub 111} resonator is used to significantly reduce the delay time inherently associated with plasma generation. The plasma forms under the pulsed excitation of a 4 MW magnetron inside the central dielectric tube of the resonator, which isolates the inner atmospheric gas from the outer vacuum environment. The path from the power source to the load is designed such that the pulse passes through the plasma twice with a 35 ns delay between these two passes. In the first pass, initial plasma density is generated, while the second affects the transition to a highly reflective state with as much as 30 dB attenuation. Experimental data revealed that virtually zero delay time may be achieved for N{sub 2} at 25 Torr. A two-dimensional fluid model was developed to study the plasma formation times for comparison with experimental data. The delay time predicted from this model agrees well with the experimental values in the lower pressure regime (error < 25%), however, due to filamentary plasma formation at higher pressures, simulated delay times may be underestimated by as much as 50%.

  19. Characteristics of an atmospheric-pressure line plasma excited by 2.45 GHz microwave travelling wave

    NASA Astrophysics Data System (ADS)

    Suzuki, Haruka; Nakano, Suguru; Itoh, Hitoshi; Sekine, Makoto; Hori, Masaru; Toyoda, Hirotaka

    2016-01-01

    An atmospheric-pressure line plasma was produced by microwave discharge using a slot antenna with travelling microwave power. Two different types of plasma mode, i.e., “pseudo” and “real” line plasma were investigated using a high-speed camera under different discharge conditions, such as slot gap width and power. Using wide slot gaps (0.5 mm) and low powers (<1.0 kW), the pseudo line plasma mode, i.e., the time-averaged line plasma mode with the fast movement of small plasmas along the slot, was observed. By reducing the slot gap width to 0.1 mm and by increasing the peak microwave power, the plasma mode changed from the pseudo to real line plasma mode, i.e., the spatiotemporally uniform plasma mode along the slot. A gas temperature was obtained from N2 second positive band spectra as low as 400 K. The movement of the plasma in the pseudo line plasma mode was well explained by a one-dimensional diffusion model including the spatial distribution of the ionization rate in a moving plasma.

  20. Self-prevention of instability in a low-power microwave Ar plasma jet for biomedical applications

    NASA Astrophysics Data System (ADS)

    Lee, H. W.; Kim, M. S.; Won, I. H.; Yun, G. S.; Lee, J. K.

    2015-04-01

    The behavior of a low-power microwave Ar plasma jet according to the target shape and distance is investigated. The plasma jet shows distinct behavior when it contacts a human finger or grounded metals. No plasma channel and no attraction of the jet to the human finger and metal plate are observed in contrast to low-frequency plasmas. Glow-to-arc transition does not occur even at a very small target distance (<1 mm) between a sharp metal tip and bare electrodes. It is a highly favorable property of the microwave plasma for biomedical applications. Reflection coefficient, current, electric field and electron density are investigated to find the mechanism. This unique phenomenon is caused by the characteristic of microwave frequency systems. A decrease of the target distance induces impedance mismatching leading to the reduction of net input power. It is found that the change in the geometry of the plasma jet is the dominant factor for impedance mismatching. This prevents changes in the discharge regime including glow-to-arc transition, similar to ballast. The mechanism is different from the instability prevention methods including the dielectric barrier in low-frequency systems. Insignificant electric field induced on the metal plate by the impedance mismatching can be the reason for the absence of the plasma channel. Emission intensities of reactive species of the plasma jet are almost uniform regardless of the target distance. Electrical safety and performance can be ensured by the low-power microwave plasma jet.

  1. Noise temperature improvement for magnetic fusion plasma millimeter wave imaging systems

    SciTech Connect

    Lai, J.; Domier, C. W.; Luhmann, N. C.

    2014-03-15

    Significant progress has been made in the imaging and visualization of magnetohydrodynamic and microturbulence phenomena in magnetic fusion plasmas [B. Tobias et al., Plasma Fusion Res. 6, 2106042 (2011)]. Of particular importance have been microwave electron cyclotron emission imaging and microwave imaging reflectometry systems for imaging T{sub e} and n{sub e} fluctuations. These instruments have employed heterodyne receiver arrays with Schottky diode mixer elements directly connected to individual antennas. Consequently, the noise temperature has been strongly determined by the conversion loss with typical noise temperatures of ∼60 000 K. However, this can be significantly improved by making use of recent advances in Monolithic Microwave Integrated Circuit chip low noise amplifiers to insert a pre-amplifier in front of the Schottky diode mixer element. In a proof-of-principle design at V-Band (50–75 GHz), significant improvement of noise temperature from the current 60 000 K to measured 4000 K has been obtained.

  2. Microwave imaging of Saturn's deep atmosphere and rings

    SciTech Connect

    Grossman, A.W.

    1990-01-01

    An analysis of microwave images of Saturn's atmosphere and rings is presented. Interferometer observations at wavelengths of 0.27, 2.01, 6.17, and 20.13 cm, and precise application of synthesis imaging techniques yielded brightness and polarization maps of unsurpassed resolution and sensitivity. Linear polarization is detected from the ring ansea, and brightness variations in the deep atmosphere and the rings are revealed. The disk-integrated spectrum of Saturn is interpreted within the context of a radiative transfer model that requires the NH{sub 3} mixing ratio to take on a value of 0.9 to 1.1 x 10{sup -} directly below the ammonia ice cloud at a pressure of 1.4 bar. The NH{sub 3} mixing ratio increases with depth to a value of 5.0 to 6.5 x 10{sup -} at a pressure of 6 bar. The variation of NH{sub 3} with depth can be entirely accounted for by the presence of 11 to 14 times solar abundance of H{sub 2}S, which reacts with NH{sub 3} to produce a substantial NH{sub 4}SH cloud. Latitudinal variations in brightness temperature indicate that the saturated vapor abundance of ammonia decreases by 50 percent from equator to pole within the cloud deck. At greater depths, the latitudinal variations of ammonia are consistent with alternating zones of concentration and depletion caused by vertical motions. An apparent depletion in northern mid-lattitudes is well-correlated with a decrease in infrared opacity and depressed cloud top levels, indicating deep-seated downwelling. The size, composition, and shape of particles comprising the rings of Saturn are constrained by modeling the emission, scattering, and extinction of radiation by the rings. Azimuthal variations in brightness and linear polarization favor a model in which the particles are irregularly shaped.

  3. Low-noise heterodyne receiver for electron cyclotron emission imaging and microwave imaging reflectometry

    NASA Astrophysics Data System (ADS)

    Tobias, B.; Domier, C. W.; Luhmann, N. C.; Luo, C.; Mamidanna, M.; Phan, T.; Pham, A.-V.; Wang, Y.

    2016-11-01

    The critical component enabling electron cyclotron emission imaging (ECEI) and microwave imaging reflectometry (MIR) to resolve 2D and 3D electron temperature and density perturbations is the heterodyne imaging array that collects and downconverts radiated emission and/or reflected signals (50-150 GHz) to an intermediate frequency (IF) band (e.g. 0.1-18 GHz) that can be transmitted by a shielded coaxial cable for further filtering and detection. New circuitry has been developed for this task, integrating gallium arsenide (GaAs) monolithic microwave integrated circuits (MMICs) mounted on a liquid crystal polymer (LCP) substrate. The improved topology significantly increases electromagnetic shielding from out-of-band interference, leads to 10× improvement in the signal-to-noise ratio, and dramatic cost savings through integration. The current design, optimized for reflectometry and edge radiometry on mid-sized tokamaks, has demonstrated >20 dB conversion gain in upper V-band (60-75 GHz). Implementation of the circuit in a multi-channel electron cyclotron emission imaging (ECEI) array will improve the diagnosis of edge-localized modes and fluctuations of the high-confinement, or H-mode, pedestal.

  4. Thrust Stand Measurements Using Alternative Propellants in the Microwave Assisted Discharge Inductive Plasma Accelerator

    NASA Technical Reports Server (NTRS)

    Hallock, Ashley K.; Polzin, Kurt A.

    2011-01-01

    Storable propellants (for example water, ammonia, and hydrazine) are attractive for deep space propulsion due to their naturally high density at ambient interplanetary conditions, which obviates the need for a cryogenic/venting system. Water in particular is attractive due to its ease of handling and availability both terrestrially and extra-terrestrially. While many storable propellants are reactive and corrosive, a propulsion scheme where the propellant is insulated from vulnerable (e.g. metallic) sections of the assembly would be well-suited to process these otherwise incompatible propellants. Pulsed inductive plasma thrusters meet this criterion because they can be operated without direct propellant-electrode interaction. During operation of these devices, electrical energy is capacitively stored and then discharged through an inductive coil creating a time-varying current in the coil that interacts with a plasma covering the face of the coil to induce a plasma current. Propellant is accelerated and expelled at a high exhaust velocity (O(10-100 km/s)) by the Lorentz body force arising from the interaction of the magnetic field and the induced plasma current. While this class of thruster mitigates the life-limiting issues associated with electrode erosion, many pulsed inductive plasma thrusters require high pulse energies to inductively ionize propellant. The Microwave Assisted Discharge Inductive Plasma Accelerator (MAD-IPA) is a pulsed inductive plasma thruster that addressees this issue by partially ionizing propellant inside a conical inductive coil before the main current pulse via an electron cyclotron resonance (ECR) discharge. The ECR plasma is produced using microwaves and a static magnetic field from a set of permanent magnets arranged to create a thin resonance region along the inner surface of the coil, restricting plasma formation, and in turn current sheet formation, to a region where the magnetic coupling between the plasma and the theta

  5. Radio plasma imager simulations and measurements

    NASA Astrophysics Data System (ADS)

    Green, J. L.; Benson, R. F.; Fung, S. F.; Taylor, W. W. L.; Boardsen, S. A.; Reinisch, B. W.; Haines, D. M.; Bibl, K.; Cheney, G.; Galkin, I. A.; Huang, X.; Myers, S. H.; Sales, G. S.; Bougeret, J.-L.; Manning, R.; Meyer-Vernet, N.; Moncuquet, M.; Carpenter, D. L.; Gallagher, D. L.; Reiff, P. H.

    2000-01-01

    The Radio Plasma Imager (RPI) will be the first-of-its kind instrument designed to use radio wave sounding techniques to perform repetitive remote sensing measurements of electron number density (N_e) structures and the dynamics of the magnetosphere and plasmasphere. RPI will fly on the Imager for Magnetopause-to-Aurora Global Exploration (IMAGE) mission to be launched early in the year 2000. The design of the RPI is based on recent advances in radio transmitter and receiver design and modern digital processing techniques perfected for ground-based ionospheric sounding over the last two decades. Free-space electromagnetic waves transmitted by the RPI located in the low-density magnetospheric cavity will be reflected at distant plasma cutoffs. The location and characteristics of the plasma at those remote reflection points can then be derived from measurements of the echo amplitude, phase, delay time, frequency, polarization, Doppler shift, and echo direction. The 500 m tip-to-tip X and Y (spin plane) antennas and 20 m Z axis antenna on RPI will be used to measures echoes coming from distances of several R_E. RPI will operate at frequencies between 3 kHz to 3 MHz and will provide quantitative N_e values from 10^-1 to 10^5 cm^-3. Ray tracing calculations, combined with specific radio imager instrument characteristics, enables simulations of RPI measurements. These simulations have been performed throughout an IMAGE orbit and under different model magnetospheric conditions. They dramatically show that radio sounding can be used quite successfully to measure a wealth of magnetospheric phenomena such as magnetopause boundary motions and plasmapause dynamics. The radio imaging technique will provide a truly exciting opportunity to study global magnetospheric dynamics in a way that was never before possible.

  6. Method And Apparatus For Launching Microwave Energy Into A Plasma Processing Chamber

    DOEpatents

    DOUGHTY, FRANK C.; [et al

    2001-05-01

    A method and apparatus for launching microwave energy to a plasma processing chamber in which the required magnetic field is generated by a permanent magnet structure and the permanent magnet material effectively comprises one or more surfaces of the waveguide structure. The waveguide structure functions as an impedance matching device and controls the field pattern of the launched microwave field to create a uniform plasma. The waveguide launcher may comprise a rectangular waveguide, a circular waveguide, or a coaxial waveguide with permanent magnet material forming the sidewalls of the guide and a magnetization pattern which produces the required microwave electron cyclotron resonance magnetic field, a uniform field absorption pattern, and a rapid decay of the fields away from the resonance zone. In addition, the incorporation of permanent magnet material as a portion of the waveguide structure places the magnetic material in close proximity to the vacuum chamber, allowing for a precisely controlled magnetic field configuration, and a reduction of the amount of permanent magnet material required.

  7. Comment on 'Microwave attenuation of hydrogen plasma in carbon nanotubes' [J. Appl. Phys. 104, 124315 (2008)

    SciTech Connect

    Moradi, Afshin

    2010-03-15

    In a recent article, Babaei and Solari [J. Appl. Phys. 104, 124315 (2008)] studied the effects of the electron temperature, and the external static magnetic field on the attenuation (ATT) of the microwave in the hydrogen plasma embedded inside the carbon nanotubes (CNTs), which were grown by iron-catalyzed high-pressure disproportionation (HiPco). They showed that the position of ATT peak shifts significantly toward high frequency with increasing thermal frequency and in the presence of an external magnetic field in the Faraday configuration, for {upsilon}{sub c}<20 GHz, the ATT coefficient increases with increasing cyclotron frequency, and for {upsilon}{sub c}>20 GHz, the ATT level variations extremely increase, where {upsilon}{sub c} is the cyclotron frequency. Here we derive the correct form of the microwave absorption coefficient of the magnetized hydrogen plasma embedded inside the CNTs and show that the absorption band moves from low to high frequencies when the magnetic field strength increases. Also, we show that the ATT of the microwave in the system is not sensitive to the thermal frequency.

  8. Pulsed microwave-driven argon plasma jet with distinctive plume patterns resonantly excited by surface plasmon polaritons

    NASA Astrophysics Data System (ADS)

    Chen, Zhao-Quan; Yin, Zhi-Xiang; Xia, Guang-Qing; Hong, Ling-Li; Hu, Ye-Lin; Liu, Ming-Hai; Hu, Xi-Wei; A. Kudryavtsev, A.

    2015-02-01

    Atmospheric lower-power pulsed microwave argon cold plasma jets are obtained by using coaxial transmission line resonators in ambient air. The plasma jet plumes are generated at the end of a metal wire placed in the middle of the dielectric tubes. The electromagnetic model analyses and simulation results suggest that the discharges are excited resonantly by the enhanced electric field of surface plasmon polaritons. Moreover, for conquering the defect of atmospheric argon filamentation discharges excited by 2.45-GHz of continued microwave, the distinctive patterns of the plasma jet plumes can be maintained by applying different gas flow rates of argon gas, frequencies of pulsed modulator, duty cycles of pulsed microwave, peak values of input microwave power, and even by using different materials of dielectric tubes. In addition, the emission spectrum, the plume temperature, and other plasma parameters are measured, which shows that the proposed pulsed microwave plasma jets can be adjusted for plasma biomedical applications. Project supported by the National Natural Science Foundation of China (Grant Nos. 11105002 and 61170172), the Natural Science Foundation of Anhui Province, China (Grant Nos. 1408085QA16 and 1408085ME101), the China Postdoctoral Science Foundation (Grant No. 2014M551788), and the Open-end Fund of State Key Laboratory of Advanced Electromagnetic Engineering and Technology (HUST), China (Grant No. GZ1301).

  9. Surface modification and stability of detonation nanodiamonds in microwave gas discharge plasma

    NASA Astrophysics Data System (ADS)

    Stanishevsky, Andrei V.; Walock, Michael J.; Catledge, Shane A.

    2015-12-01

    Detonation nanodiamonds (DND), with low hydrogen content, were exposed to microwave plasma generated in pure H2, N2, and O2 gases and their mixtures, and investigated using X-ray diffraction (XRD), Fourier Transform Infrared (FTIR), Raman, and X-ray photoelectron spectroscopies. Considerable alteration of the DND surface was observed under the plasma conditions for all used gases, but the diamond structure of the DND particle core was preserved in most cases. The stabilizing effect of H2 in H2/N2 and H2/O2 binary gas plasmas on the DND structure and the temperature-dependent formation of various CNHx surface groups in N2 and H2/N2 plasmas were observed and discussed for the first time. DND surface oxidation and etching were the main effects of O2 plasma, whereas the N2 plasma led to DND surfaces rich in amide groups below 1073 K and nitrile groups at higher temperatures. Noticeable graphitization of the DND core structure was detected only in N2 plasma when the substrate temperature was above 1103 K.

  10. Widefield microwave imaging in alkali vapor cells with sub-100 μm resolution

    NASA Astrophysics Data System (ADS)

    Horsley, Andrew; Du, Guan-Xiang; Treutlein, Philipp

    2015-11-01

    We report on widefield microwave vector field imaging with sub-100 μ {{m}} resolution using a microfabricated alkali vapor cell. The setup can additionally image dc magnetic fields, and can be configured to image microwave electric fields. Our camera-based widefield imaging system records 2D images with a 6 × 6 mm2 field of view at a rate of 10 Hz. It provides up to 50 μ {{m}} spatial resolution, and allows imaging of fields as close as 150 μ {{m}} above structures, through the use of thin external cell walls. This is crucial in allowing us to take practical advantage of the high spatial resolution, as feature sizes in near-fields are on the order of the distance from their source, and represent an order of magnitude improvement in surface-feature resolution compared to previous vapor cell experiments. We present microwave and dc magnetic field images above a selection of devices, demonstrating a microwave sensitivity of 1.4 μ {{T}} {{Hz}}-1/2 per 50× 50× 140 μ {{{m}}}3 voxel, at present limited by the speed of our camera system. Since we image 120 × 120 voxels in parallel, a single scanned sensor would require a sensitivity of at least 12 {nT} {{Hz}}-1/2 to produce images with the same sensitivity. Our technique could prove transformative in the design, characterization, and debugging of microwave devices, as there are currently no satisfactory established microwave imaging techniques. Moreover, it could find applications in medical imaging.

  11. Effect of microwave plasma treatment on silicon dioxide films grown by atomic layer deposition at low temperature

    SciTech Connect

    Tanimura, T.; Watanabe, Y.; Hirota, Y.; Sato, Y.; Kabe, Y.

    2013-02-14

    The effects of microwave plasma treatments on the physical and electrical characteristics of silicon dioxide films are discussed. Plasma treatments significantly improve the characteristics at low temperatures. Differences in the type of inert gas, O{sub 2} partial pressure, and total pressure cause differences in the plasma energy and active species concentrations, which affect reduction in the impurity concentrations, generation of dangling bonds, and effective working depth of the plasma. The changes in the electrical characteristics of the plasma-treated oxide films are consistent with those in the physical characteristics. The plasma conditions that result in the best improvements are determined.

  12. Stepped-frequency continuous-wave microwave-induced thermoacoustic imaging

    SciTech Connect

    Nan, Hao Arbabian, Amin

    2014-06-02

    Microwave-induced thermoacoustic (TA) imaging combines the dielectric contrast of microwave imaging with the resolution of ultrasound imaging. Prior studies have only focused on time-domain techniques with short but powerful microwave pulses that require a peak output power in excess of several kilowatts to achieve sufficient signal-to-noise ratio (SNR). This poses safety concerns as well as to render the imager expensive and bulky with requiring a large vacuum radio frequency source. Here, we propose and demonstrate a coherent stepped-frequency continuous-wave (SFCW) technique for TA imaging which enables substantial improvements in SNR and consequently a reduction in peak power requirements for the imager. Constructive and destructive interferences between TA signals are observed and explained. Full coherency across microwave and acoustic domains, in the thermo-elastic response, is experimentally verified and this enables demonstration of coherent SFCW microwave-induced TA imaging. Compared to the pulsed technique, an improvement of 17 dB in SNR is demonstrated.

  13. Control of nitric oxide, nitrous oxide, and ammonia emissions using microwave plasmas

    PubMed

    Wojtowicz; Miknis; Grimes; Smith; Serio

    2000-05-29

    The subject of this paper is mitigation of the undesirable side-effects of selective non-catalytic reduction (SNCR) and selective catalytic reduction (SCR): ammonia slip, residual NO(x), and N(2)O emissions. The use of microwave-plasma discharge within the flue gas was explored as a potential pollution-control method. The key issues addressed were: (1) N(2)O, NH(3), and NO removal efficiencies; and (2) sustaining a stable plasma at atmospheric, or close to atmospheric, pressure. In non-oxidizing atmospheres, removal efficiencies were always close to 100% for all species. In the presence of oxygen, however, appreciable amounts of nitric oxide and ammonia were formed. Methods leading to preventing these undesirable effects were examined. In a number of runs, stable plasma operation was attained at pressures close to atmospheric.

  14. Formation of MOS gates by rapid thermal/microwave remote plasma multiprocessing

    NASA Astrophysics Data System (ADS)

    Moslehi, Mehrdad M.; Saraswat, Krishna C.

    A novel cold wall single wafer lamp heated Rapid Thermal/Microwave Remote Plasma Multiprocessing (RTMRPM) reactor has been developed for multilayer in-situ growth and deposition of dielectrics, silicon, and metals. This equipment is the result of an attempt to enhance semiconductor processing equipment versatility, to improve process reproducibility and uniformity, to increase growth and deposition rates at reduced processing temperatures, and to achieve in situ multiprocessing in conjunction with real time process monitoring and automation. For high performance MOS VLSI applications, a variety of selective and nonselective tungsten deposition processes were investigated in this work. The tungsten gate MOS devices fabricated using the remote plasma multiprocessing techniques exhibited negligible plasma damage and near ideal electrical characteristics. The flexibility of the reactor allows optimization of each process step yet allows multiprocessing.

  15. Coherent and incoherent Thomson scattering on an argon/hydrogen microwave plasma torch with transient behaviour

    NASA Astrophysics Data System (ADS)

    Obrusník, A.; Synek, P.; Hübner, S.; van der Mullen, J. J. A. M.; Zajíčková, L.; Nijdam, S.

    2016-10-01

    A new method of processing time-integrated coherent Thomson scattering spectra is presented, which provides not only the electron density and temperature but also information about the transient behaviour of the plasma. Therefore, it is an alternative to single-shot Thomson scattering measurements as long as the scattering is coherent. The method is applied to a microwave plasma torch operating in argon or a mixture of argon with hydrogen at atmospheric pressure. Electron densities up to 8\\cdot {{10}21} m-3 (ionization degree above 10-3) were observed, which is more than two times higher than presented in earlier works on comparable discharges. Additionally, a parametric study with respect to the argon/hydrogen ratio and the input power was carried out and the results are discussed together with earlier Stark broadening measurements on the same plasma.

  16. Theoretical and experimental study of the microwave cut-off probe for electron density measurements in low-temperature plasmas

    SciTech Connect

    Li Bin; Li Hong; Wang Huihui; Xie Jinlin; Liu Wandong

    2011-10-01

    The microwave cut-off probe for the electron density measurement in low-temperature plasmas is described in this article. It is based on the wave cutoff in an unmagnetized plasma. The measurement principle is analyzed theoretically using a model of plasma slab. Because of the high-pass characteristic of plasma, the waves above the cut-off frequency can penetrate the plasma slab, whereas the lower frequency waves are reflected from the cut-off layer. Therefore, an obvious critical point can be observed in the wave transmission spectrum. The abscissa of the critical point indicates the cut-off frequency, which is directly related to the maximum electron density between transmitting/receiving antennas of the cut-off probe. The measured electron densities are in agreement with the data obtained by the Langmuir probe. Experimental results show that the microwave cut-off probe can be used to diagnose the plasmas with a wide range of parameters.

  17. Efficient simultaneous image deconvolution and upsampling algorithm for low-resolution microwave sounder data

    NASA Astrophysics Data System (ADS)

    Qin, Jing; Yanovsky, Igor; Yin, Wotao

    2015-01-01

    Microwave imaging has been widely used in the prediction and tracking of hurricanes, typhoons, and tropical storms. Due to the limitations of sensors, the acquired remote sensing data are usually blurry and have relatively low resolution, which calls for the development of fast algorithms for deblurring and enhancing the resolution. We propose an efficient algorithm for simultaneous image deconvolution and upsampling for low-resolution microwave hurricane data. Our model involves convolution, downsampling, and the total variation regularization. After reformulating the model, we are able to apply the alternating direction method of multipliers and obtain three subproblems, each of which has a closed-form solution. We also extend the framework to the multichannel case with the multichannel total variation regularization. A variety of numerical experiments on synthetic and real Advanced Microwave Sounding Unit and Microwave Humidity Sounder data were conducted. The results demonstrate the outstanding performance of the proposed method.

  18. Hydrodynamic and thermal effects of continuous microwave-sustained plasma in capillary tubes

    NASA Astrophysics Data System (ADS)

    Dap, S.; Leroy, O.; Andrieu, J.; Boisse-Laporte, C.; Leprince, P.; Stancu, G. D.; Minea, T.

    2015-12-01

    Argon micro-plasmas can be generated at low power (10-100 W) in hollow-core capillaries 100-700 μm in diameter and over a few cm in length using continuous wave (CW) microwave surfatron excitation at 2.45 GHz. Electromagnetic simulations have been performed in order to design the surfatron cavity for optimal discharge ignition and stable plasma CW operation. The plasma characterization was carried out by optical emission spectroscopy on excited species present as impurities in argon. The rotational spectra of OH molecules were used to determine the gas temperature, and Stark broadening of the H β line was used to obtain the electron density. The gas temperature turns out to be in the 500-1200 K range along the plasma column, and the maximum electron density (at the surfatron gap) in the 8  ×  1014-5  ×  1015 cm-3 range. The electron density was also obtained by a semi-empirical analysis of the power coupled to the plasma along the axial direction and was found to be in good agreement with the Stark measurements. The hydrodynamic and thermal effects of plasma were investigated by the modelling of neutral gas flow and heat transfer which is of interest for the remote control of gas flow properties along the capillary.

  19. Transmission characteristics of microwave in a glow-discharge dusty plasma

    NASA Astrophysics Data System (ADS)

    Jia, Jieshu; Yuan, Chengxun; Gao, Ruilin; Liu, Sha; Yue, Feng; Wang, Ying; Zhou, Zhong-Xiang; Wu, Jian; Li, Hui

    2016-07-01

    In this study, the propagation characteristics of electromagnetic wave in a glow discharge plasma with dust particles are experimentally investigated. A helium alternating current glow discharge plasmas have been successfully generated. Measurements of the plasma parameters using Langmuir probes, in the absence of dust particles, provide plasma densities (ne) of 1017 m-3 and electron temperatures (Te) ranging from 2 to 4 eV. Dusty plasmas are made by adding 30 nm radius aluminum oxide (Al2O3) particles into the helium plasma. The density of the dust particle (nd) in the device is about 1011-1012 m-3. The propagation characteristics of electromagnetic waves are determined by a vector network analyzer with 4-6 GHz antennas. An apparent attenuation by the dust is observed, and the measured attenuation data are approximately in accordance with the theoretical calculations. The effects of gas pressure and input power on the propagation are also investigated. Results show that the transmission attenuation increases with the gas pressure and input power, the charged dust particles play a significant role in the microwave attenuation.

  20. The electromagnetic-trait imaging computation of traveling wave method in breast tumor microwave sensor system.

    PubMed

    Tao, Zhi-Fu; Han, Zhong-Ling; Yao, Meng

    2011-01-01

    Using the difference of dielectric constant between malignant tumor tissue and normal breast tissue, breast tumor microwave sensor system (BRATUMASS) determines the detected target of imaging electromagnetic trait by analyzing the properties of target tissue back wave obtained after near-field microwave radicalization (conelrad). The key of obtained target properties relationship and reconstructed detected space is to analyze the characteristics of the whole process from microwave transmission to back wave reception. Using traveling wave method, we derive spatial transmission properties and the relationship of the relation detected points distances, and valuate the properties of each unit by statistical valuation theory. This chapter gives the experimental data analysis results.

  1. Effect of buoyancy on power deposition in microwave cavity hydrogen plasma source

    NASA Astrophysics Data System (ADS)

    Prasanna, S.; Rond, C.; Michau, A.; Hassouni, K.; Gicquel, A.

    2016-08-01

    A self-consistent model describing the coupling of resonant microwave radiation and plasma has been constructed. This model improves upon the models developed by Hassouni et al and Hagelaar et al, in 1999 and 2004, respectively with inclusion of hydrodynamic effects. The model has been used to study the effect of buoyancy on power deposition in microwave assisted hydrogen plasmas at different operating pressures over the range 25-300 mbar and power over the range 400 and 4000 W. Three cases viz. normal reactor (g  =  -9.81 m s-2, negative buoyancy), pure diffusion (g  =  0 m s-2) and the inverted case (g  =  9.81 m s-2, positive buoyancy) were considered. Buoyancy effects in the cavity become important at high power / pressure operating conditions. The formation of a secondary plasma zone is strongly increased in the presence of negative buoyancy, while positive buoyancy and diffusion cases are more stable. Also the density of atomic hydrogen close to the substrate is larger with a wider radial spread for the positive buoyancy case over normal operating conditions which augurs well for achieving good deposition of diamond.

  2. Effect of buoyancy on power deposition in microwave cavity hydrogen plasma source

    NASA Astrophysics Data System (ADS)

    Prasanna, S.; Rond, C.; Michau, A.; Hassouni, K.; Gicquel, A.

    2016-08-01

    A self-consistent model describing the coupling of resonant microwave radiation and plasma has been constructed. This model improves upon the models developed by Hassouni et al and Hagelaar et al, in 1999 and 2004, respectively with inclusion of hydrodynamic effects. The model has been used to study the effect of buoyancy on power deposition in microwave assisted hydrogen plasmas at different operating pressures over the range 25–300 mbar and power over the range 400 and 4000 W. Three cases viz. normal reactor (g  =  ‑9.81 m s‑2, negative buoyancy), pure diffusion (g  =  0 m s‑2) and the inverted case (g  =  9.81 m s‑2, positive buoyancy) were considered. Buoyancy effects in the cavity become important at high power / pressure operating conditions. The formation of a secondary plasma zone is strongly increased in the presence of negative buoyancy, while positive buoyancy and diffusion cases are more stable. Also the density of atomic hydrogen close to the substrate is larger with a wider radial spread for the positive buoyancy case over normal operating conditions which augurs well for achieving good deposition of diamond.

  3. Three-dimensional simulation of a low-power microwave-excited microstrip plasma source

    NASA Astrophysics Data System (ADS)

    Tong, Lizhu; Saito, Keiichiro

    2016-06-01

    A low-power microwave-excited argon microstrip plasma source operated at 2.45 GHz is studied by a three-dimensional fluid model. The electrodeless microwave-excited plasmas are produced in the gas channel with the gas pressures of 50 and 100 Torr at the input power of 2 W. Simulations are performed by the plasma module of COMSOL Multiphysics@. Results show that the electric field induced by the electromagnetic wave is concentrated in the neighborhood of the inner surface of gas channel under the microstrip line. The electromagnetic wave is restricted to transit from being propagating to evanescent in a very thin zone at which the electron density is equal to the critical density. The resonance zone is solved by adding an effective collision frequency to the momentum collision frequency. The governed ions are found to be atomic argon ions (Ar+) and molecular argon ions (Ar2 +) and the latter has a wider distribution. The three-body reactions to produce Ar2 + ions become important at high gas pressures.

  4. Carbon dioxide elimination and regeneration of resources in a microwave plasma torch.

    PubMed

    Uhm, Han S; Kwak, Hyoung S; Hong, Yong C

    2016-04-01

    Carbon dioxide gas as a working gas produces a stable plasma-torch by making use of 2.45 GHz microwaves. The temperature of the torch flame is measured by making use of optical spectroscopy and a thermocouple device. Two distinctive regions are exhibited, a bright, whitish region of a high-temperature zone and a bluish, dimmer region of a relatively low-temperature zone. The bright, whitish region is a typical torch based on plasma species where an analytical investigation indicates dissociation of a substantial fraction of carbon dioxide molecules, forming carbon monoxides and oxygen atoms. The emission profiles of the oxygen atoms and the carbon monoxide molecules confirm the theoretical predictions of carbon dioxide disintegration in the torch. Various hydrocarbon materials may be introduced into the carbon dioxide torch, regenerating new resources and reducing carbon dioxide concentration in the torch. As an example, coal powders in the carbon dioxide torch are converted into carbon monoxide according to the reaction of CO2 + C → 2CO, reducing a substantial amount of carbon dioxide concentration in the torch. In this regards, the microwave plasma torch may be one of the best ways of converting the carbon dioxides into useful new materials.

  5. Carbon dioxide elimination and regeneration of resources in a microwave plasma torch.

    PubMed

    Uhm, Han S; Kwak, Hyoung S; Hong, Yong C

    2016-04-01

    Carbon dioxide gas as a working gas produces a stable plasma-torch by making use of 2.45 GHz microwaves. The temperature of the torch flame is measured by making use of optical spectroscopy and a thermocouple device. Two distinctive regions are exhibited, a bright, whitish region of a high-temperature zone and a bluish, dimmer region of a relatively low-temperature zone. The bright, whitish region is a typical torch based on plasma species where an analytical investigation indicates dissociation of a substantial fraction of carbon dioxide molecules, forming carbon monoxides and oxygen atoms. The emission profiles of the oxygen atoms and the carbon monoxide molecules confirm the theoretical predictions of carbon dioxide disintegration in the torch. Various hydrocarbon materials may be introduced into the carbon dioxide torch, regenerating new resources and reducing carbon dioxide concentration in the torch. As an example, coal powders in the carbon dioxide torch are converted into carbon monoxide according to the reaction of CO2 + C → 2CO, reducing a substantial amount of carbon dioxide concentration in the torch. In this regards, the microwave plasma torch may be one of the best ways of converting the carbon dioxides into useful new materials. PMID:26774765

  6. Microwave plasma chemical synthesis of nanocrystalline carbon film structures and study their properties

    NASA Astrophysics Data System (ADS)

    Bushuev, N.; Yafarov, R.; Timoshenkov, V.; Orlov, S.; Starykh, D.

    2015-08-01

    The self-organization effect of diamond nanocrystals in polymer-graphite and carbon films is detected. The carbon materials deposition was carried from ethanol vapors out at low pressure using a highly non-equilibrium microwave plasma. Deposition processes of carbon film structures (diamond, graphite, graphene) is defined. Deposition processes of nanocrystalline structures containing diamond and graphite phases in different volume ratios is identified. The solid film was obtained under different conditions of microwave plasma chemical synthesis. We investigated the electrical properties of the nanocrystalline carbon films and identified it's from various factors. Influence of diamond-graphite film deposition mode in non-equilibrium microwave plasma at low pressure on emission characteristics was established. This effect is justified using the cluster model of the structure of amorphous carbon. It was shown that the reduction of bound hydrogen in carbon structures leads to a decrease in the threshold electric field of emission from 20-30 V/m to 5 V/m. Reducing the operating voltage field emission can improve mechanical stability of the synthesized film diamond-graphite emitters. Current density emission at least 20 A/cm2 was obtained. Nanocrystalline carbon film materials can be used to create a variety of functional elements in micro- and nanoelectronics and photonics such as cold electron source for emission in vacuum devices, photonic devices, cathodoluminescent flat display, highly efficient white light sources. The obtained graphene carbon net structure (with a net size about 6 μm) may be used for the manufacture of large-area transparent electrode for solar cells and cathodoluminescent light sources

  7. A Novel 24 Ghz One-Shot Rapid and Portable Microwave Imaging System (Camera)

    NASA Technical Reports Server (NTRS)

    Ghasr, M.T.; Abou-Khousa, M.A.; Kharkovsky, S.; Zoughi, R.; Pommerenke, D.

    2008-01-01

    A novel 2D microwave imaging system at 24 GHz based on MST techniques. Enhanced sensitivity and SNR by utilizing PIN diode-loaded resonant slots. Specific slot and array design to increase transmission and reduce cross -coupling. Real-time imaging at a rate in excess of 30 images per second. Reflection as well transmission mode capabilities. Utility and application for electric field distribution mapping related to: Nondestructive Testing (NDT), imaging applications (SAR, Holography), and antenna pattern measurements.

  8. Particle energy distributions and metastable atoms in transient low pressure interpulse microwave plasma

    NASA Astrophysics Data System (ADS)

    Pandey, Shail; Nath Patel, Dudh; Ram Baitha, Anuj; Bhattacharjee, Sudeep

    2015-12-01

    The electron energies and its distribution function are measured in non-equilibrium transient pulsed microwave plasmas in the interpulse regime using a retarding field electron energy analyzer. The plasmas are driven to different initial conditions by varying the electromagnetic (EM) wave pulse duration, peak power, or the wave frequency. Two cases of wave excitation are investigated: (i) short-pulse (pulse duration, t w ~ 1 μs), high-power (~60 kW) waves of 9.45 GHz and (ii) medium-pulse (t w ~ 20 μs), and moderate power waves of ~3 kW at 2.45 GHz. It is found that high-power, short-duration pulses lead to a significantly different electron energy probability function (EEPF) in the interpulse phase—a Maxwellian with a bump on the tail, although the average energy per pulse (~60 mJ) is maintained the same in the two modes of wave excitation. Electrons with energies  >250 eV are found to exist in the discharge in the both cases. Another subset of experiments is performed to delineate the effect of the wave frequency and the peak power on EEPF. A traveling wave tube (TWT) amplifier based microwave source for generating pulsed plasma (t w  =  230 μs) in a wide frequency range (6-18 GHz) is employed for this purpose. Further experiments on measurements of metastable density using optical emission spectroscopy and ion energy analyzer have been carried out. By tailoring the EEPF of the transient plasma and metastable densities, new applications in plasma processing, chemistry and biology can be realized in the interpulse phase of the discharge.

  9. Diagnostics of fast formation of distributed plasma discharges using X-band microwaves

    SciTech Connect

    Xiang, X. Kupczyk, B.; Booske, J.; Scharer, J.

    2014-02-14

    We present measurements of high power (25.7 kW), pulsed (800 ns), X-band (9.382 GHz) microwave breakdown plasmas, including reflected power measurements, mixer reflected amplitude and phase measurements, optical emission spectroscopy (OES) measurements, and an analysis that estimates the average electron density and electron temperature. In addition, a six-region, 1-D model was used to determine plasma parameters and compare with the experimental results. The experimental results show that using a 43 Hz repetition rate with an 800 ns pulse, fast (<300 ns) breakdown occurs in neon measured between 50 Torr and 250 Torr, producing plasma that lasts for over 7 μs. It also leads to large microwave reflections (70%) and an on-axis transmission attenuation of −15 dB. Moreover, a comparison between a 1-D model and mixer measurements shows that at 100 Torr, the neon plasma electron density peaked at 2 × 10{sup 12} cm{sup −3}, and the electron temperature peaked at 2.5 eV assuming a Maxwellian distribution. The addition of 2% Ar in Ne reduced the breakdown time and allowed OES measurements to determine the effective electron temperature. OES measurements of mixed (Ne/Ar: 98/2) argon line ratios (420.1 nm/419.8 nm) were used to determine the average effective electron temperature T{sub e(eff)} = 1.2 eV, averaged over the entire 7μs plasma lifetime. They indicate that the electron energy distribution was not Maxwellian but, instead, tended towards a Druyvesteyn character.

  10. Growth of diamond films from microwave plasma in CH 4-CO 2 mixtures

    NASA Astrophysics Data System (ADS)

    Balestrino, G.; Marinelli, M.; Milani, E.; Paoletti, A.; Paroli, P.; Pinter, I.; Tebano, A.; Luce, G.

    1993-04-01

    We have studied the growth of diamond films from microwave plasma using gas mixtures of CH 4-CO 2 (not previously reported in the literature) onto Si substrates. The diamond phase is obtained in the molar ratio range 0.7 ⩽ CO 2/ CH 4 ⩽ 1.38 ± 0.05, in close agreement with the empirical model of Bachmann et al., with relevant implications for the diamond precursor species. The film morphology varies appreciably in the above range, the best films being obtained just at the border with the no-growth region.

  11. Determination of n-butylated trialkyllead compounds by gas chromatography with microwave plasma emission detection

    SciTech Connect

    Estes, S.A.; Uden, P.C.; Barnes, R.M.

    1982-12-01

    An analytical gas chromatographic procedure is described for the determination of trialkyllead compounds in aqueous media. The analyte compounds are extracted into benzene from an aqueous solution saturated with sodium chloride. They are then quantitatively converted into n-butyltrialkyllead derivatives by reaction with an n-butyl Grignard reagent. Precolumn Tenax trap enrichment of the derived trialkylbutylleads enables determination to low parts per billion levels to be carried out. Also investigated are extraction efficiencies and injection split ratios onto a fused silica capillary column. Lead specific detection is by atmospheric pressure microwave induced plasma spectrometric emission. Data are presented for a wastewater effluent sample. 3 figures.

  12. Magnetic resonance microwave absorption imaging: Feasibility of signal detection

    PubMed Central

    Xie, Bin; Weaver, John B.; Meaney, Paul M.; Paulsen, Keith D.

    2009-01-01

    Purpose: Magnetic resonance (MR) technique was used to detect small displacements induced by localized absorption of pulsed 434 MHz microwave power as a potential method for tumor detection. Methods: Phase contrast subtraction was used to separate the phase change due to motion from thermoelastic expansion from other contributions to phase variation such as the bulk temperature rise of the medium and phase offsets from the MR scanner itself. A simple set of experiments was performed where the motion was constrained to be one dimensional which provided controls on the data acquisition and motion extraction procedures. Specifically, the MR-detected motion signal was isolated by altering the direction of the microwave-induced motion and sampling the response with motion encoding gradients in all three directions when the microwave power was turned on and turned off. Results: Successful signal detection, as evidenced by the recording of a systematic alternating (zigzag) phase pattern, occurred only when the motion encoding was in parallel with either the vertical or horizontal direction of the microwave-induced motion on both 10 and 4 mm spatial scales. Conclusions: These results demonstrate, for the first time, that motion associated with thermoelastic expansion from the absorption of pulsed microwave power can be detected with MR. PMID:19994529

  13. Plasma upflows and microwave emission in hot supra-arcade structure associated with AN M1.6 limb flare

    SciTech Connect

    Kim, S.; Shibasaki, K.; Cho, K.-S.

    2014-04-20

    We have investigated a supra-arcade structure associated with an M1.6 flare, which occurred on the south-east limb on 2010 November 4. It is observed in EUV with the Atmospheric Imaging Assembly (AIA) on board the Solar Dynamics Observatory, microwaves at 17 and 34 GHz with the Nobeyama Radioheliograph (NoRH), and soft X-rays of 8-20 keV with RHESSI. Interestingly, we found exceptional properties of the supra-arcade thermal plasma from the AIA 131 Å and the NoRH: (1) plasma upflows along large coronal loops and (2) enhancing microwave emission. RHESSI detected two soft X-ray sources, a broad one in the middle of the supra-arcade structure and a bright one just above the flare-arcade. We estimated the number density and thermal energy for these two source regions during the decay phase of the flare. In the supra-arcade source, we found that there were increases of the thermal energy and the density at the early and last stages, respectively. On the contrary, the density and thermal energy of the source on the top of the flare-arcade decreases throughout. The observed upflows imply that there is continuous energy supply into the supra-arcade structure from below during the decay phase of the flare. It is hard to explain by the standard flare model in which the energy release site is located high in the corona. Thus, we suggest that a potential candidate of the energy source for the hot supra-arcade structure is the flare-arcade, which has exhibited a predominant emission throughout.

  14. Analytical calculations of wake field generated by microwave pulses in a plasma filled waveguide for electron acceleration

    SciTech Connect

    Malik, Hitendra K.

    2008-09-01

    Analytical expressions are obtained for the longitudinal field (wake field), density perturbation, and the potential behind microwave pulse propagating in a plasma filled rectangular waveguide with the pulse duration half of the electron plasma period. A feasibility study on wake field is carried out with rectangular pulse and its combination with Gaussian and triangular pulses under the effects of microwave pulse parameters and waveguide dimensions. It is inferred that the wake field in the waveguide cannot be attained when the length of rectangular microwave pulse is exactly equal to the plasma wavelength. A 1 ns short rectangular pulse with intensity of 250 kW/cm{sup 2} at the frequency of 5.03 GHz can excite the wake field of 1.0 MV/m in a waveguide with width of 6 cm and height of 4 cm. However, enhanced field is obtained when rectangular-triangular pulse (combination of rectangular and triangular pulses) is used. The field of wake gets weakened at higher microwave frequency and larger dimensions of the waveguide for other fixed parameters. However, a larger field is achieved when the pulse length of the microwave pulses is made shorter and/or intensity of the pulses is increased. A comparative study of the pulses shows that better results can be obtained with rectangular pulse (rectangular-Gaussian pulse: combination of rectangular and Gaussian pulses) if the microwave of shorter pulse duration (higher intensity) is available.

  15. Inactivation factors of spore-forming bacteria using low-pressure microwave plasmas in an N2 and O2 gas mixture

    NASA Astrophysics Data System (ADS)

    Singh, M. K.; Ogino, A.; Nagatsu, M.

    2009-11-01

    In this study, we investigated the inactivation characteristics of Geobacillus stearothermophilus spores under different plasma exposure conditions using low-pressure microwave plasma in nitrogen, oxygen and an air-simulated (N2:O2=4:1) gas mixture. The microwave-excited surface-wave plasma discharges were produced at low pressure by a large volume device. The directly plasma-exposed spores, up to 106 populations, were successfully inactivated within 15, 10 and 5 min of surface-wave plasma treatment using nitrogen, oxygen and an air-simulated gas mixture, respectively, as working gases within the temperature of 75 °C. The contribution of different inactivation factors was evaluated by placing different filters (e.g. a LiF plate, a quartz plate and a Tyvek® sheet) as indirect exposure of spores to the plasma. It was observed that optical emissions (including vacuum UV (VUV)/UV) play an important role in the inactivation process. To further evaluate the effect of VUV/UV photons, we placed an evacuated isolated chamber, inside which spores were set, into the main plasma chamber. The experimental results show that the inactivation time by VUV/UV photons alone, without working gas in the immediate vicinity of the spores, is longer than that with working gas. This suggests that the VUV/UV emission is responsible not only for direct UV inactivation of spores but also for generation of reactive neutral species by photoexcitation. The scanning electron microscopy images revealed significant changes in the morphology of directly plasma-exposed spores but no change in the spores irradiated by VUV/UV photons only.

  16. Genesis of focused ion beams for plasma nanotechnology using a bounded microwave plasma source

    NASA Astrophysics Data System (ADS)

    Bhattacharjee, Sudeep; Paul, Samit

    2015-01-01

    Bounded plasmas exhibit many interesting properties that are not found in plasmas of “infinite” extent such as space and astrophysical plasmas. Our studies have revealed that the dispersion properties of waves in a bounded magnetoplasma deviates considerably from the predictions of the Clemmow-Mullaly-Allis (CMA) model, giving rise to new regimes of wave propagation and absorption. This article highlights some of these interesting effects observed in experiments. One of the principal outcomes of this research is the genesis of a novel multielement focused ion beam (MEFIB) system that utilizes compact bounded plasmas in a minimum-B field to provide intense focused ion beams of a variety of elements for plasma-based nanotechnology.

  17. Experimental Demonstration of Microwave Signal/Electric Thruster Plasma Interaction Effects

    NASA Technical Reports Server (NTRS)

    Zaman, Afroz J.; Lambert, Kevin M.; Curran, Frank M.

    1995-01-01

    An experiment was designed and conducted in the Electric Propulsion Laboratory of NASA Lewis Research Center to assess the impact of ion thruster exhaust plasma plume on electromagnetic signal propagation. A microwave transmission experiment was set up inside the propulsion test bed using a pair of broadband horn antennas and a 30 cm 2.3 kW ion thruster. Frequency of signal propagation covered from 6.5 to 18 GHz range. The stainless steel test bed when enclosed can be depressurized to simulate a near vacuum environment. A pulsed CW system with gating hardware was utilized to eliminate multiple chamber reflections from the test signal. Microwave signal was transmitted and received between the two hours when the thruster was operating at a given power level in such a way that the signal propagation path crossed directly through the plume volume. Signal attenuation and phase shift due to the plume was measured for the entire frequency band. Results for this worst case configuration simulation indicate that the effects of the ion thruster plume on microwave signals is a negligible attenuation (within 0.15 dB) and a small phase shift (within 8 deg.). This paper describes the detailed experiment and presents some of the results.

  18. Vacuum ultraviolet emission from hydrogen microwave plasmas driven by surface waves

    NASA Astrophysics Data System (ADS)

    Espinho, S.; Felizardo, E.; Tatarova, E.

    2016-10-01

    The vacuum ultraviolet (VUV) radiation emitted by hydrogen surface-wave-driven plasmas operating at microwave frequency (2.45 GHz) and low-pressure conditions (0.1-2 mbar) was investigated, in particular the influence of microwave power and gas pressure on the intensity of the emissions. The strong emission of Lyman H2 ≤ft(\\text{B}{}1 Σ u+-\\text{X}{}1 Σ g+\\right) and Werner H2 ≤ft(\\text{C}{}1{{ \\Pi }u}-\\text{X}{}1 Σ g+\\right) molecular bands in the 80-125 nm spectral range was detected, while the most intense atomic emissions observed correspond to Lyman-α and Lyman-β lines at 121.6 nm and 102.6 nm respectively. An increase of the atomic lines and molecular bands intensities with increasing microwave power at pressure 0.1 mbar was observed. At 2 mbar the VUV spectra are entirely dominated by molecular bands. Theoretical predictions, as obtained from a collisional-radiative model, were validated by the experimental results.

  19. Air-water ‘tornado’-type microwave plasmas applied for sugarcane biomass treatment

    NASA Astrophysics Data System (ADS)

    Bundaleska, N.; Tatarova, E.; Dias, F. M.; Lino da Silva, M.; Ferreira, C. M.; Amorim, J.

    2014-02-01

    The production of cellulosic ethanol from sugarcane biomass is an attractive alternative to the use of fossil fuels. Pretreatment is needed to separate the cellulosic material, which is packed with hemicellulose and lignin in cell wall of sugarcane biomass. A microwave ‘tornado’-type air-water plasma source operating at 2.45 GHz and atmospheric pressure has been applied for this purpose. Samples of dry and wet biomass (˜2 g) have been exposed to the late afterglow plasma stream. The experiments demonstrate that the air-water highly reactive plasma environment provides a number of long-lived active species able to destroy the cellulosic wrapping. Scanning electron microscopy has been applied to analyse the morphological changes occurring due to plasma treatment. The effluent gas streams have been analysed by Fourier-transform infrared spectroscopy (FT-IR). Optical emission spectroscopy and FT-IR have been applied to determine the gas temperature in the discharge and late afterglow plasma zones, respectively. The optimal range of the operational parameters is discussed along with the main active species involved in the treatment process. Synergistic effects can result from the action of singlet O2(a 1Δg) oxygen, NO2, nitrous acid HNO2 and OH hydroxyl radical.

  20. Methods for mitigating the effect of noise, interference, and model error on microwave breast imaging

    NASA Astrophysics Data System (ADS)

    Burfeindt, Matthew J.

    Microwave inverse scattering shows promise for meeting important clinical needs in breast imaging that arise due to drawbacks in traditional imaging technologies. The dielectric contrast between different breast tissue types, the 3-D nature of various inverse scattering algorithms, as well as microwave technology's relative safety and low cost motivate a microwave-based approach. However, challenges remain for this type of imaging technique, as it requires solving a linear system that is ill-posed and underdetermined, thus making it sensitive to noise, interference, and mismatch between the assumed and actual properties of the propagation environment. In this document, we report a series of studies performed with the goal of mitigating the effect of these types of signal errors on the imaging results. We conduct a numerical feasibility study to demonstrate the efficacy of microwave breast imaging using an enclosed array of miniaturized, multi-band patch antennas designed to account for the ill-posed nature of the imaging problem. We then conduct several experimental studies with an array prototype, wherein we characterize the sensitivity of the array to model error as well as create experimental reconstructions of both geometrically-simple objects and an MRI-derived 3-D-printed breast phantom. Lastly, we incorporate a beamforming-enhancement into the imaging algorithm with the goal of making it less sensitive to signal error.

  1. Development of a simple 2.45 GHz microwave plasma with a repulsive double hexapole configuration

    SciTech Connect

    Arciaga, Marko; Ulano, April; Lee, Henry Jr.; Lledo, Rumar; Ramos, Henry; Tumlos, Roy

    2008-09-15

    A simple and inexpensive 2.45 GHz microwave plasma source with a repulsive double hexapole configuration is described and characterized. In this work, the operation of the source is shown to be flexible in terms of electron density, electron temperature, and plasma uniformity even at low-pressures (approximately millitorr). It allows for easy control of the electron temperature (2-3.8 eV) and density ({approx}10{sup 9}-10{sup 10} cm{sup -3}) by removing either of the two hexapoles or by varying the separation distance between the two hexapoles. Characterization was done via information gathered from the usual Langmuir probe measurements for electron temperature and density. The source makes a resonant surface with its repulsive double hexapole magnetic configuration providing an additional longitudinal confinement near the walls midway between the two hexapoles. Magnetic field maps are presented for varying double hexapole distances. Power delivery for various settings is also presented.

  2. Hard boron oxide thin-film deposition using electron cyclotron resonance microwave plasmas

    NASA Astrophysics Data System (ADS)

    Gorbatkin, S. M.; Rhoades, R. L.; Tsui, T. Y.; Oliver, W. C.

    1994-11-01

    Hard boron suboxide thin films were deposited in an electron cyclotron resonance (ECR) microwave plasma system at substrate temperatures below 300 °C. A high-temperature effusion cell, operated at 2200°-2250 °C, was used for injection of boron downstream of an Ar/O2 ECR plasma. B ion bombardment is estimated to have been up to 6% of the total boron flux, and Ar ion bombardment is estimated to have contributed ˜100 eV/deposited atom. Boron suboxide films with oxygen concentrations of 11% exhibited hardnesses up to 30 GPa, equal to sapphire and near that of pure boron. The hardness/modulus ratio was 0.1, significantly better than that of sapphire (0.067) or solid boron (0.074), indicating these films may be of interest for a variety of tribological applications.

  3. Hard boron oxide thin-film deposition using electron cyclotron resonance microwave plasmas

    SciTech Connect

    Gorbatkin, S.M.; Rhoades, R.L.; Tsui, T.Y.; Oliver, W.C. )

    1994-11-21

    Hard boron suboxide thin films were deposited in an electron cyclotron resonance (ECR) microwave plasma system at substrate temperatures below 300 [degree]C. A high-temperature effusion cell, operated at 2200[degree]--2250 [degree]C, was used for injection of boron downstream of an Ar/O[sub 2] ECR plasma. B ion bombardment is estimated to have been up to 6% of the total boron flux, and Ar ion bombardment is estimated to have contributed [similar to]100 eV/deposited atom. Boron suboxide films with oxygen concentrations of 11% exhibited hardnesses up to 30 GPa, equal to sapphire and near that of pure boron. The hardness/modulus ratio was 0.1, significantly better than that of sapphire (0.067) or solid boron (0.074), indicating these films may be of interest for a variety of tribological applications.

  4. Characterization of the supersonic flowing microwave discharge using two dimensional plasma tomography

    SciTech Connect

    Nikolic, M.; Samolov, A.; Popovic, S.; Vuskovic, L.; Godunov, A.; Cuckov, F.

    2013-03-14

    A tomographic numerical method based on the two-dimensional Radon formula for a cylindrical cavity has been employed for obtaining spatial distributions of the argon excited levels. The spectroscopy measurements were taken at different positions and directions to observe populations of excited species in the plasmoid region and the corresponding excitation temperatures. Excited argon states are concentrated near the tube walls, thus, confirming the assumption that the post discharge plasma is dominantly sustained by travelling surface wave. An automated optical measurement system has been developed for reconstruction of local plasma parameters of the plasmoid structure formed in an argon supersonic flowing microwave discharge. The system carries out angle and distance measurements using a rotating, flat mirror, as well as two high precision stepper motors operated by a microcontroller-based system and several sensors for precise feedback control.

  5. Preliminary characterization of a low-powered microwave induced flame plasma for direct organic solvent nebulization

    NASA Astrophysics Data System (ADS)

    Ng, Kin C.; Bucay, Phil

    2011-12-01

    A low powered (<90 W) microwave-induced plasma has been generated at atmospheric pressure by using a Beenakker cavity, a laboratory constructed torch, and a gas mixture of argon (400 ml/min), hydrogen (100 ml/min), and air (130 ml/min). This plasma has an excitation temperature of 3300-3500 K, electron number density of 7 × 1014 cm-3, and easily accepts direct methanol and ethanol introduction with a 1 ml/min solution nebulization rate. Detection limits (3σ) obtained from the atomic emission signals of Li, Sr, and Cr in water are 15, 120, and 290 ng/ml, respectively. Similarly, detection limits for the metals in methanol are 15, 120, and 260 ng/ml, respectively, and in ethanol they are 25, 360, and 330 ng/ml, respectively. The linear dynamic range is greater than three orders of magnitude.

  6. Preliminary characterization of a low-powered microwave induced flame plasma for direct organic solvent nebulization

    SciTech Connect

    Ng, Kin C.; Bucay, Phil

    2011-12-15

    A low powered (<90 W) microwave-induced plasma has been generated at atmospheric pressure by using a Beenakker cavity, a laboratory constructed torch, and a gas mixture of argon (400 ml/min), hydrogen (100 ml/min), and air (130 ml/min). This plasma has an excitation temperature of 3300-3500 K, electron number density of 7 x 10{sup 14} cm{sup -3}, and easily accepts direct methanol and ethanol introduction with a 1 ml/min solution nebulization rate. Detection limits (3{sigma}) obtained from the atomic emission signals of Li, Sr, and Cr in water are 15, 120, and 290 ng/ml, respectively. Similarly, detection limits for the metals in methanol are 15, 120, and 260 ng/ml, respectively, and in ethanol they are 25, 360, and 330 ng/ml, respectively. The linear dynamic range is greater than three orders of magnitude.

  7. Recent Progress in Understanding the Physics of Plasma-Filled, High-Power Microwave Sources

    NASA Astrophysics Data System (ADS)

    Nusinovich, G. S.; Bliokh, Y. P.; Abu-Elfadl, T. M.; Shkvarunets, A. G.; Goebel, D. M.; Carmel, Y.; Antonsen, T. M., Jr.; Granatstein, V. L.

    2002-08-01

    The use of plasmas for generating high-power microwaves is studied for more than 50 years. During the 1990's Plasma-Assisted Slow-wave Oscillators (PASOTRONs) were invented and actively developed at Hughes Research Lab (HRL). These devices have a number of unique and attractive features. However, the experiments at HRL showed that to explore these features a better understanding of the physics is necessary. The present paper is focused on the recent studies of various physical issues, which are important for the pasotron operation. This theoretical and experimental activity resulted in more than doubling the pasotron efficiency (from about 20% to more than 50%) in the experiments carried out at the University of Maryland.

  8. Reforming of ethanol in a microwave surface-wave plasma discharge

    SciTech Connect

    Yanguas-Gil, A.; Hueso, J.L.; Cotrino, J.; Caballero, A.; Gonzalez-Elipe, A.R.

    2004-11-01

    Hydrogen production through plasma reforming of ethanol at room temperature and moderate pressure has been carried out in a microwave surface-wave reactor. Both pure ethanol and mixtures ethanol-water have been studied. The reforming yield was almost 100% in all conditions with H{sub 2}, solid carbon, CO and CO{sub 2} as the main reaction products. In the mixture ethanol-water the formation of solid C was avoided. The optical emission spectroscopy analysis has shown that the formation of the excited species CO*, CH* and C{sub 2}* depends on the plasma mixture. The temperature of the OH* species was determined by analyzing the shape profile of its emission band.

  9. Microwave N{sub 2}-Ar plasma torch. II. Experiment and comparison with theory

    SciTech Connect

    Henriques, J.; Tatarova, E.; Dias, F. M.; Ferreira, C. M.

    2011-01-15

    Spatially resolved emission spectroscopy techniques have been used to determine the gas temperature, the electron, and N{sub 2}{sup +} ion densities and the relative emission intensities of radiative species in a microwave (2.45 GHz) plasma torch driven by a surface wave. The experimental results have been analyzed in terms of a two-dimensional theoretical model based on a self-consistent treatment of particles kinetics, gas dynamics, and wave electrodynamics. The measured spatial variations in the various quantities agree well with the model predictions. The radially averaged gas temperature is around 3000 K and varies only slowly along the discharge zone of the source but it drops sharply down to about 400 K in the postdischarge. The experimental wave dispersion characteristics nearly follow the theoretical ones, thus confirming that this plasma source is driven by a surface wave.

  10. TRMM Microwave Imager soil moisture mapping and flooding during CLASIC

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Passive microwave remote sensing has the potential to contribute to flood risk and impact assessment through the direct relationship between emissivity and soil moisture/standing water. Lower frequencies have greater potential because the impacts of atmospheric and vegetation attenuation are minimiz...

  11. Microwave ECR plasma electron flood for low pressure wafer charge neutralization

    NASA Astrophysics Data System (ADS)

    Vanderberg, Bo; Nakatsugawa, Tomoya; Divergilio, William

    2012-11-01

    Modern ion implanters typically use dc arc discharge Plasma Electron Floods (PEFs) to neutralize wafer charge. The arc discharge requires using at least some refractory metal hardware, e.g. a thermionically emitting filament, which can be undesirable in applications where no metallic contamination is critical. rf discharge PEFs have been proposed to mitigate contamination risks but the gas flows required can result in high process chamber pressures. Axcelis has developed a microwave electron cyclotron resonance (ECR) PEF to provide refractory metals contamination-free wafer neutralization with low gas flow requirement. Our PEF uses a custom, reentrant cusp magnet field providing ECR and superior electron confinement. Stable PEF operation with extraction slits sized for 300 mm wafers can be attained at Xe gas flows lower than 0.2 sccm. Electron extraction currents can be as high as 20 mA at absorbed microwave powers < 70 W. On Axcelis' new medium current implanter, plasma generation has proven robust against pressure transients caused by, for example, photoresist outgassing by high power ion beams. Charge monitor and floating potential measurements along the wafer surface corroborate adequate wafer charge neutralization for low energy, high current ion beams.

  12. Microwave ECR plasma electron flood for low pressure wafer charge neutralization

    SciTech Connect

    Vanderberg, Bo; Nakatsugawa, Tomoya; Divergilio, William

    2012-11-06

    Modern ion implanters typically use dc arc discharge Plasma Electron Floods (PEFs) to neutralize wafer charge. The arc discharge requires using at least some refractory metal hardware, e.g. a thermionically emitting filament, which can be undesirable in applications where no metallic contamination is critical. rf discharge PEFs have been proposed to mitigate contamination risks but the gas flows required can result in high process chamber pressures. Axcelis has developed a microwave electron cyclotron resonance (ECR) PEF to provide refractory metals contamination-free wafer neutralization with low gas flow requirement. Our PEF uses a custom, reentrant cusp magnet field providing ECR and superior electron confinement. Stable PEF operation with extraction slits sized for 300 mm wafers can be attained at Xe gas flows lower than 0.2 sccm. Electron extraction currents can be as high as 20 mA at absorbed microwave powers < 70 W. On Axcelis' new medium current implanter, plasma generation has proven robust against pressure transients caused by, for example, photoresist outgassing by high power ion beams. Charge monitor and floating potential measurements along the wafer surface corroborate adequate wafer charge neutralization for low energy, high current ion beams.

  13. Development of anatomically and dielectrically accurate breast phantoms for microwave imaging applications

    NASA Astrophysics Data System (ADS)

    O'Halloran, M.; Lohfeld, S.; Ruvio, G.; Browne, J.; Krewer, F.; Ribeiro, C. O.; Inacio Pita, V. C.; Conceicao, R. C.; Jones, E.; Glavin, M.

    2014-05-01

    Breast cancer is one of the most common cancers in women. In the United States alone, it accounts for 31% of new cancer cases, and is second only to lung cancer as the leading cause of deaths in American women. More than 184,000 new cases of breast cancer are diagnosed each year resulting in approximately 41,000 deaths. Early detection and intervention is one of the most significant factors in improving the survival rates and quality of life experienced by breast cancer sufferers, since this is the time when treatment is most effective. One of the most promising breast imaging modalities is microwave imaging. The physical basis of active microwave imaging is the dielectric contrast between normal and malignant breast tissue that exists at microwave frequencies. The dielectric contrast is mainly due to the increased water content present in the cancerous tissue. Microwave imaging is non-ionizing, does not require breast compression, is less invasive than X-ray mammography, and is potentially low cost. While several prototype microwave breast imaging systems are currently in various stages of development, the design and fabrication of anatomically and dielectrically representative breast phantoms to evaluate these systems is often problematic. While some existing phantoms are composed of dielectrically representative materials, they rarely accurately represent the shape and size of a typical breast. Conversely, several phantoms have been developed to accurately model the shape of the human breast, but have inappropriate dielectric properties. This study will brie y review existing phantoms before describing the development of a more accurate and practical breast phantom for the evaluation of microwave breast imaging systems.

  14. Time-resolved imaging of pulse-induced magnetization reversal with a microwave assist field

    PubMed Central

    Rao, Siddharth; Rhensius, Jan; Bisig, Andre; Mawass, Mohamad-Assaad; Weigand, Markus; Kläui, Mathias; Bhatia, Charanjit S.; Yang, Hyunsoo

    2015-01-01

    The reversal of the magnetization under the influence of a field pulse has been previously predicted to be an incoherent process with several competing phenomena such as domain wall relaxation, spin wave-mediated instability regions, and vortex-core mediated reversal dynamics. However, there has been no study on the direct observation of the switching process with the aid of a microwave signal input. We report a time-resolved imaging study of magnetization reversal in patterned magnetic structures under the influence of a field pulse with microwave assistance. The microwave frequency is varied to demonstrate the effect of resonant microwave-assisted switching. We observe that the switching process is dominated by spin wave dynamics generated as a result of magnetic instabilities in the structures, and identify the frequencies that are most dominant in magnetization reversal. PMID:26023723

  15. Accurate Permittivity Measurements for Microwave Imaging via Ultra-Wideband Removal of Spurious Reflectors

    PubMed Central

    Pelletier, Mathew G.; Viera, Joseph A.; Wanjura, John; Holt, Greg

    2010-01-01

    The use of microwave imaging is becoming more prevalent for detection of interior hidden defects in manufactured and packaged materials. In applications for detection of hidden moisture, microwave tomography can be used to image the material and then perform an inverse calculation to derive an estimate of the variability of the hidden material, such internal moisture, thereby alerting personnel to damaging levels of the hidden moisture before material degradation occurs. One impediment to this type of imaging occurs with nearby objects create strong reflections that create destructive and constructive interference, at the receiver, as the material is conveyed past the imaging antenna array. In an effort to remove the influence of the reflectors, such as metal bale ties, research was conducted to develop an algorithm for removal of the influence of the local proximity reflectors from the microwave images. This research effort produced a technique, based upon the use of ultra-wideband signals, for the removal of spurious reflections created by local proximity reflectors. This improvement enables accurate microwave measurements of moisture in such products as cotton bales, as well as other physical properties such as density or material composition. The proposed algorithm was shown to reduce errors by a 4:1 ratio and is an enabling technology for imaging applications in the presence of metal bale ties. PMID:22163668

  16. 2-D Fused Image Reconstruction approach for Microwave Tomography: a theoretical assessment using FDTD Model.

    PubMed

    Bindu, G; Semenov, S

    2013-01-01

    This paper describes an efficient two-dimensional fused image reconstruction approach for Microwave Tomography (MWT). Finite Difference Time Domain (FDTD) models were created for a viable MWT experimental system having the transceivers modelled using thin wire approximation with resistive voltage sources. Born Iterative and Distorted Born Iterative methods have been employed for image reconstruction with the extremity imaging being done using a differential imaging technique. The forward solver in the imaging algorithm employs the FDTD method of solving the time domain Maxwell's equations with the regularisation parameter computed using a stochastic approach. The algorithm is tested with 10% noise inclusion and successful image reconstruction has been shown implying its robustness.

  17. Microwave tomography of extremities: 2. Functional fused imaging of flow reduction and simulated compartment syndrome

    NASA Astrophysics Data System (ADS)

    Semenov, Serguei; Kellam, James; Nair, Bindu; Williams, Thomas; Quinn, Michael; Sizov, Yuri; Nazarov, Alexei; Pavlovsky, Andrey

    2011-04-01

    Medical imaging has recently expanded into the dual- or multi-modality fusion of anatomical and functional imaging modalities. This significantly improves the diagnostic power while simultaneously increasing the cost of already expensive medical devices or investigations and decreasing their mobility. We are introducing a novel imaging concept of four-dimensional (4D) microwave tomographic (MWT) functional imaging: three dimensional (3D) in the spatial domain plus one dimensional (1D) in the time, functional dynamic domain. Instead of a fusion of images obtained by different imaging modalities, 4D MWT fuses absolute anatomical images with dynamic, differential images of the same imaging technology. The approach was successively validated in animal experiments with short-term arterial flow reduction and a simulated compartment syndrome in an initial simplified experimental setting using a dedicated MWT system. The presented fused images are not perfect as MWT is a novel imaging modality at its early stage of the development and ways of reading reconstructed MWT images need to be further studied and understood. However, the reconstructed fused images present clear evidence that microwave tomography is an emerging imaging modality with great potentials for functional imaging.

  18. Direct imaging of mechanical and chemical gradients across the thickness of graded organosilicone microwave PECVD coatings.

    PubMed

    Hall, Colin J; Murphy, Peter J; Griesser, Hans J

    2014-01-22

    The characterization of variations in the chemical composition and ensuing mechanical properties across the thickness of coatings with continuously varying compositions through their thickness (graded coatings) presents considerable challenges for current analytical techniques in materials science. We report here the direct imaging of nanomechanical and chemical gradients across cross-sections of an organosilicone coating fabricated via microwave plasma enhanced chemical vapor deposition (PECVD). Cross-sectional nanoindentation was used to determine the mechanical properties of uniform and graded organosilicone coatings. Both hardness and modulus across the coatings were directly measured. Additionally, "modulus mapping" on cross-sections was used to map the complex modulus. For the graded coating, it was found that variations in the complex modulus was predominantly due to varying storage modulus. It was observed that at the interface with the substrate there was a low storage modulus, which linearly increased to a relatively high storage modulus at the surface. It is proposed that the increase in stiffness, from the substrate interface to the outer surface, is due to the increasing content of a cross-linked O-Si-O network. This mechanical gradient has been linked to a change in the Si:O ratio via direct compositional mapping using ToF-SIMS. Direct mapping of the mechanical and compositional gradients across these protective coatings provides insight into the changes in properties with depth and supports optimization of the critical mechanical performance of PECVD graded coatings.

  19. A close-up of three microwave plasma sources in view of improved element-specific detection in liquid chromatography

    NASA Astrophysics Data System (ADS)

    Broekaert, J. A. C.; Bings, N.; Prokisch, C.; Seelig, M.

    1998-02-01

    Progress in the features of three types of microwave plasmas is discussed, in view of the development of successful methods for atomic spectrometric element-specific detection in liquid chromatography. For the low-power microwave induced plasmas the development of the toroidal plasma in a TM010 cavity according to Beenakker is mentioned as the break-through for the introduction of wet aerosols. Capacitively coupled microwave plasmas (CMP), which can be operated with helium, argon and even air as working gases, are robust and allow obtaining of detection limits for Fe, Cr, Ni and Co in aqueous solutions in the 0.02 to 0.06 μg/ml range and in light oils, as an example of organic liquids, between 0.08 and 0.13 μg/ml. Special attention should be given to the microwave plasma torch (MPT) in which aerosols from aqueous as well as from organic solutions produced by a Légère nebulizer can be introduced without desolvation. Here, detection limits for Cd, Cr, Li and Pb range from 0.02 to 0.5 μg/ml. For the case of chromium dissolved as dithiocarbamate complex in an acetonitrile/H 2O mixture (2:1), its detection limit is 0.12 μg/ml, being already below that obtained with UV spectrophotometry. The limits of detection achieved with the sources discussed in the case of atomic emission spectrometry show the prospective for further development.

  20. Design of a portable optical emission tomography system for microwave induced compact plasma for visible to near-infrared emission lines.

    PubMed

    Rathore, Kavita; Munshi, Prabhat; Bhattacharjee, Sudeep

    2016-03-01

    A new non-invasive diagnostic system is developed for Microwave Induced Plasma (MIP) to reconstruct tomographic images of a 2D emission profile. A compact MIP system has wide application in industry as well as research application such as thrusters for space propulsion, high current ion beams, and creation of negative ions for heating of fusion plasma. Emission profile depends on two crucial parameters, namely, the electron temperature and density (over the entire spatial extent) of the plasma system. Emission tomography provides basic understanding of plasmas and it is very useful to monitor internal structure of plasma phenomena without disturbing its actual processes. This paper presents development of a compact, modular, and versatile Optical Emission Tomography (OET) tool for a cylindrical, magnetically confined MIP system. It has eight slit-hole cameras and each consisting of a complementary metal-oxide-semiconductor linear image sensor for light detection. The optical noise is reduced by using aspheric lens and interference band-pass filters in each camera. The entire cylindrical plasma can be scanned with automated sliding ring mechanism arranged in fan-beam data collection geometry. The design of the camera includes a unique possibility to incorporate different filters to get the particular wavelength light from the plasma. This OET system includes selected band-pass filters for particular argon emission 750 nm, 772 nm, and 811 nm lines and hydrogen emission H(α) (656 nm) and H(β) (486 nm) lines. Convolution back projection algorithm is used to obtain the tomographic images of plasma emission line. The paper mainly focuses on (a) design of OET system in detail and (b) study of emission profile for 750 nm argon emission lines to validate the system design.

  1. Design of a portable optical emission tomography system for microwave induced compact plasma for visible to near-infrared emission lines

    NASA Astrophysics Data System (ADS)

    Rathore, Kavita; Munshi, Prabhat; Bhattacharjee, Sudeep

    2016-03-01

    A new non-invasive diagnostic system is developed for Microwave Induced Plasma (MIP) to reconstruct tomographic images of a 2D emission profile. A compact MIP system has wide application in industry as well as research application such as thrusters for space propulsion, high current ion beams, and creation of negative ions for heating of fusion plasma. Emission profile depends on two crucial parameters, namely, the electron temperature and density (over the entire spatial extent) of the plasma system. Emission tomography provides basic understanding of plasmas and it is very useful to monitor internal structure of plasma phenomena without disturbing its actual processes. This paper presents development of a compact, modular, and versatile Optical Emission Tomography (OET) tool for a cylindrical, magnetically confined MIP system. It has eight slit-hole cameras and each consisting of a complementary metal-oxide-semiconductor linear image sensor for light detection. The optical noise is reduced by using aspheric lens and interference band-pass filters in each camera. The entire cylindrical plasma can be scanned with automated sliding ring mechanism arranged in fan-beam data collection geometry. The design of the camera includes a unique possibility to incorporate different filters to get the particular wavelength light from the plasma. This OET system includes selected band-pass filters for particular argon emission 750 nm, 772 nm, and 811 nm lines and hydrogen emission Hα (656 nm) and Hβ (486 nm) lines. Convolution back projection algorithm is used to obtain the tomographic images of plasma emission line. The paper mainly focuses on (a) design of OET system in detail and (b) study of emission profile for 750 nm argon emission lines to validate the system design.

  2. Design of a portable optical emission tomography system for microwave induced compact plasma for visible to near-infrared emission lines.

    PubMed

    Rathore, Kavita; Munshi, Prabhat; Bhattacharjee, Sudeep

    2016-03-01

    A new non-invasive diagnostic system is developed for Microwave Induced Plasma (MIP) to reconstruct tomographic images of a 2D emission profile. A compact MIP system has wide application in industry as well as research application such as thrusters for space propulsion, high current ion beams, and creation of negative ions for heating of fusion plasma. Emission profile depends on two crucial parameters, namely, the electron temperature and density (over the entire spatial extent) of the plasma system. Emission tomography provides basic understanding of plasmas and it is very useful to monitor internal structure of plasma phenomena without disturbing its actual processes. This paper presents development of a compact, modular, and versatile Optical Emission Tomography (OET) tool for a cylindrical, magnetically confined MIP system. It has eight slit-hole cameras and each consisting of a complementary metal-oxide-semiconductor linear image sensor for light detection. The optical noise is reduced by using aspheric lens and interference band-pass filters in each camera. The entire cylindrical plasma can be scanned with automated sliding ring mechanism arranged in fan-beam data collection geometry. The design of the camera includes a unique possibility to incorporate different filters to get the particular wavelength light from the plasma. This OET system includes selected band-pass filters for particular argon emission 750 nm, 772 nm, and 811 nm lines and hydrogen emission H(α) (656 nm) and H(β) (486 nm) lines. Convolution back projection algorithm is used to obtain the tomographic images of plasma emission line. The paper mainly focuses on (a) design of OET system in detail and (b) study of emission profile for 750 nm argon emission lines to validate the system design. PMID:27036771

  3. Adaptive and robust statistical methods for processing near-field scanning microwave microscopy images.

    PubMed

    Coakley, K J; Imtiaz, A; Wallis, T M; Weber, J C; Berweger, S; Kabos, P

    2015-03-01

    Near-field scanning microwave microscopy offers great potential to facilitate characterization, development and modeling of materials. By acquiring microwave images at multiple frequencies and amplitudes (along with the other modalities) one can study material and device physics at different lateral and depth scales. Images are typically noisy and contaminated by artifacts that can vary from scan line to scan line and planar-like trends due to sample tilt errors. Here, we level images based on an estimate of a smooth 2-d trend determined with a robust implementation of a local regression method. In this robust approach, features and outliers which are not due to the trend are automatically downweighted. We denoise images with the Adaptive Weights Smoothing method. This method smooths out additive noise while preserving edge-like features in images. We demonstrate the feasibility of our methods on topography images and microwave |S11| images. For one challenging test case, we demonstrate that our method outperforms alternative methods from the scanning probe microscopy data analysis software package Gwyddion. Our methods should be useful for massive image data sets where manual selection of landmarks or image subsets by a user is impractical.

  4. Two-dimensional electromagnetic model of a microwave plasma reactor operated by an axial injection torch

    SciTech Connect

    Alvarez, R.; Alves, L. L.

    2007-05-15

    This paper presents a two-dimensional electromagnetic model for a microwave (2.45 GHz) plasma reactor operated by an axial injection torch. The model solves Maxwell's equations, adopting a harmonic time description and considering the collision dispersion features of the plasma. Perfect-conductor boundary conditions are satisfied at the reactor walls, and absorbing boundary conditions are used at the open end of the coaxial waveguide powering the system. Simulations yield the distribution of the electromagnetic fields and the average power absorbed by the system for a given spatial profile of the plasma density (tailored from previous experimental measurements), with maximum values in the range 10{sup 14}-10{sup 15} cm{sup -3}. Model results reveal that the system exhibits features similar to those of an air-filled, one-end-shorted circular metal waveguide, supporting evanescent or oscillatory solutions for radial dimensions below or above a critical radius, respectively. Results also show that the fractional average power absorbed by the plasma is strongly influenced by the system dimensions, which play a major role in defining the geometry pattern of the electromagnetic field distribution. Simulations are used to provide general guidelines for device optimization.

  5. Microwave plasma doping: Arsenic activation and transport in germanium and silicon

    NASA Astrophysics Data System (ADS)

    Miyoshi, Hidenori; Oka, Masahiro; Ueda, Hirokazu; Ventzek, Peter L. G.; Sugimoto, Yasuhiro; Kobayashi, Yuuki; Nakamura, Genji; Hirota, Yoshihiro; Kaitsuka, Takanobu; Kawakami, Satoru

    2016-04-01

    Microwave RLSA™ plasma doping technology has enabled conformal doping of non-planar semiconductor device structures. An important attribute of RLSA™ plasma doping is that it does not impart physical damage during processing. In this work, carrier activation measurements for AsH3 based plasma doping into silicon (Si) and germanium (Ge) using rapid thermal annealing are presented. The highest carrier concentrations are 3.6 × 1020 and 4.3 × 1018 cm-3 for Si and Ge, respectively. Secondary ion mass spectrometry depth profiles of arsenic in Ge show that intrinsic dopant diffusion for plasma doping followed by post activation anneal is much slower than for conventional ion implantation. This is indicative of an absence of defects. The comparison is based on a comparison of diffusion times at identical annealing temperatures. The absence of defects, like those generated in conventional ion implantation, in RLSA™ based doping processes makes RLSA™ doping technology useful for damage free conformal doping of topographic structures.

  6. CERA-V: Microwave plasma stream source with variable ion energy

    SciTech Connect

    Balmashnov, A.A.

    1996-01-01

    A microwave plasma stream source with variable ion energy operated under low magnetic field electron cyclotron resonance conditions has been developed. A two mode resonant cavity (TE{sub 111}, {ital E}{sub 010}) was used. It was established that overdense plasma creation (TE{sub 111}) and high energy in-phase space localized electron plasma oscillations ({ital E}{sub 010}) in a decreased magnetic field lead to the potential for ion energy variation from 10 to 300 eV (up to 1 A of ion current, and a plasma cross section of 75 cm{sup 2}, hydrogen) by varying the TE{sub 111}, {ital E}{sub 010} power, the value of the magnetic field, and pressure. The threshold level of {ital E}{sub 010}-mode power was also determined. An application of this CERA-V source to hydrogenation of semiconductor devices without deterioration of surface layers by ions and fast atoms is under investigation. {copyright} {ital 1996 American Vacuum Society}

  7. Novel Scanning Near-Field Microwave Microscopes Capable of Imaging Semiconductors and Metals

    NASA Astrophysics Data System (ADS)

    Imtiaz, Atif; Tselev, Alexander; Anlage, Steven

    2003-03-01

    To study novel physics in condensed matter and materials science, experimental techniques of probing the high frequency electrical properties of materials are limited in resolution to the wavelength of the incident electromagnetic wave. We report here a novel near-field microscope that is capable of operation at radio and microwave frequencies[1]. The spatial resolution is comparable to NSOM in the scanning capacitance mode of the microscope[2]. Our objective is to image materials contrast at microwave frequencies and improve the spatial resolution. The microscope is sensitive to losses in materials, and we will present evidence of sheet resistance contrast in a Boron-doped Silicon sample. These experiments are performed with two versions of the near-field microwave microscope: one has integrated STM-feedback for distance control and the second one maintains a constant frequency shift through Distance Following technique. We will discuss the data on these films in light of a transmission line and lumped element model of the microscope. The microscope is an attractive platform for measuring local losses and local nonlinear properties of a rich variety of semiconducting and correlated-electron materials. [1] D.E. Steinhauer, et.al, "Quantitative Imaging of Sheet Resistance with a Scanning Near-Field Microwave Microscope", Appl. Phys. Lett. 72, 861 (1998) [2] Atif Imtiaz and Steven M. Anlage, "A novel STM-assisted microwave microscope with capacitance and loss imaging capability", Ultramicroscopy (in press); cond-mat/0203540

  8. Nonintrusive microwave diagnostics of collisional plasmas in Hall thrusters and dielectric barrier discharges

    NASA Astrophysics Data System (ADS)

    Stults, Joshua

    This research presents a numerical framework for diagnosing electron properties in collisional plasmas. Microwave diagnostics achieved a significant level of development during the middle part of the last century due to work in nuclear weapons and fusion plasma research. With the growing use of plasma-based devices in fields as diverse as space propulsion, materials processing and fluid flow control, there is a need for improved, flexible diagnostic techniques suitable for use under the practical constraints imposed by plasma fields generated in a wide variety of aerospace devices. Much of the current diagnostic methodology in the engineering literature is based on analytical diagnostic, or forward, models. The Appleton-Hartree formula is an oft-used analytical relation for the refractive index of a cold, collisional plasma. Most of the assumptions underlying the model are applicable to diagnostics for plasma fields such as those found in Hall Thrusters and dielectric barrier discharge (DBD) plasma actuators. Among the assumptions is uniform material properties, this assumption is relaxed in the present research by introducing a flexible, numerical model of diagnostic wave propagation that can capture the effects of spatial gradients in the plasma state. The numerical approach is chosen for its flexibility in handling future extensions such as multiple spatial dimensions to account for scattering effects when the spatial extent of the plasma is small relative to the probing beam's width, and velocity dependent collision frequency for situations where the constant collision frequency assumption is not justified. The numerical wave propagation model (forward model) is incorporated into a general tomographic reconstruction framework that enables the combination of multiple interferometry measurements. The combined measurements provide a quantitative picture of the spatial variation in the plasma properties. The benefit of combining multiple measurements in a coherent

  9. Optimization of the imaging response of scanning microwave microscopy measurements

    SciTech Connect

    Sardi, G. M.; Lucibello, A.; Proietti, E.; Marcelli, R.; Kasper, M.; Gramse, G.; Kienberger, F.

    2015-07-20

    In this work, we present the analytical modeling and preliminary experimental results for the choice of the optimal frequencies when performing amplitude and phase measurements with a scanning microwave microscope. In particular, the analysis is related to the reflection mode operation of the instrument, i.e., the acquisition of the complex reflection coefficient data, usually referred as S{sub 11}. The studied configuration is composed of an atomic force microscope with a microwave matched nanometric cantilever probe tip, connected by a λ/2 coaxial cable resonator to a vector network analyzer. The set-up is provided by Keysight Technologies. As a peculiar result, the optimal frequencies, where the maximum sensitivity is achieved, are different for the amplitude and for the phase signals. The analysis is focused on measurements of dielectric samples, like semiconductor devices, textile pieces, and biological specimens.

  10. Microwave Radar Imaging of Heterogeneous Breast Tissue Integrating A Priori Information

    PubMed Central

    Kelly, Thomas N.; Sarafianou, Mantalena; Craddock, Ian J.

    2014-01-01

    Conventional radar-based image reconstruction techniques fail when they are applied to heterogeneous breast tissue, since the underlying in-breast relative permittivity is unknown or assumed to be constant. This results in a systematic error during the process of image formation. A recent trend in microwave biomedical imaging is to extract the relative permittivity from the object under test to improve the image reconstruction quality and thereby to enhance the diagnostic assessment. In this paper, we present a novel radar-based methodology for microwave breast cancer detection in heterogeneous breast tissue integrating a 3D map of relative permittivity as a priori information. This leads to a novel image reconstruction formulation where the delay-and-sum focusing takes place in time rather than range domain. Results are shown for a heterogeneous dense (class-4) and a scattered fibroglandular (class-2) numerical breast phantom using Bristol's 31-element array configuration. PMID:25435861

  11. Estimating the Effective Permittivity for Reconstructing Accurate Microwave-Radar Images.

    PubMed

    Lavoie, Benjamin R; Okoniewski, Michal; Fear, Elise C

    2016-01-01

    We present preliminary results from a method for estimating the optimal effective permittivity for reconstructing microwave-radar images. Using knowledge of how microwave-radar images are formed, we identify characteristics that are typical of good images, and define a fitness function to measure the relative image quality. We build a polynomial interpolant of the fitness function in order to identify the most likely permittivity values of the tissue. To make the estimation process more efficient, the polynomial interpolant is constructed using a locally and dimensionally adaptive sampling method that is a novel combination of stochastic collocation and polynomial chaos. Examples, using a series of simulated, experimental and patient data collected using the Tissue Sensing Adaptive Radar system, which is under development at the University of Calgary, are presented. These examples show how, using our method, accurate images can be reconstructed starting with only a broad estimate of the permittivity range.

  12. Estimating the Effective Permittivity for Reconstructing Accurate Microwave-Radar Images

    PubMed Central

    Lavoie, Benjamin R.; Okoniewski, Michal; Fear, Elise C.

    2016-01-01

    We present preliminary results from a method for estimating the optimal effective permittivity for reconstructing microwave-radar images. Using knowledge of how microwave-radar images are formed, we identify characteristics that are typical of good images, and define a fitness function to measure the relative image quality. We build a polynomial interpolant of the fitness function in order to identify the most likely permittivity values of the tissue. To make the estimation process more efficient, the polynomial interpolant is constructed using a locally and dimensionally adaptive sampling method that is a novel combination of stochastic collocation and polynomial chaos. Examples, using a series of simulated, experimental and patient data collected using the Tissue Sensing Adaptive Radar system, which is under development at the University of Calgary, are presented. These examples show how, using our method, accurate images can be reconstructed starting with only a broad estimate of the permittivity range. PMID:27611785

  13. Estimating the Effective Permittivity for Reconstructing Accurate Microwave-Radar Images.

    PubMed

    Lavoie, Benjamin R; Okoniewski, Michal; Fear, Elise C

    2016-01-01

    We present preliminary results from a method for estimating the optimal effective permittivity for reconstructing microwave-radar images. Using knowledge of how microwave-radar images are formed, we identify characteristics that are typical of good images, and define a fitness function to measure the relative image quality. We build a polynomial interpolant of the fitness function in order to identify the most likely permittivity values of the tissue. To make the estimation process more efficient, the polynomial interpolant is constructed using a locally and dimensionally adaptive sampling method that is a novel combination of stochastic collocation and polynomial chaos. Examples, using a series of simulated, experimental and patient data collected using the Tissue Sensing Adaptive Radar system, which is under development at the University of Calgary, are presented. These examples show how, using our method, accurate images can be reconstructed starting with only a broad estimate of the permittivity range. PMID:27611785

  14. Power detectors for integrated microwave/mm-wave imaging systems in mainstream silicon technologies

    NASA Astrophysics Data System (ADS)

    Gu, Qun Jane; Li, James C.; Tang, Adrian

    2016-04-01

    This paper analyzes and compares three different types of detectors, including CMOS power detectors, bipolar power detectors, and super-regenerative detectors, deployed in the literature for integrated microwave/mm-wave imaging systems in mainstream silicon technologies. Each detector has unique working mechanism and demonstrates different behavior with respects to bias conditions, input signal power, as well as bandwidth responses. Two Figure-of-Merits for both wideband and narrowband imaging have been defined to quantify the detector performance comparison. CMOS and Bipolar detectors are good for passive imaging, while super regenerative detectors are superior for active imaging. The analytical results have been verified by both simulation and measurement results. These analyses intend to provide design insights and guidance for integrated microwave/mm-wave imaging power detectors.

  15. Synthetic Diagnostic for the Evaluation of New Microwave Imaging Reflectometry System for Large Tokomaks - DIII-D and KSTAR

    NASA Astrophysics Data System (ADS)

    Lei, Li Juan

    Microwave Imaging Reflectometry (MIR) systems have been used as diagnostic tools for characterization of fluctuating plasma density in large tokamaks. Such a technique has been implemented on the TEXTOR device [H. Park, et al., Review of Scientific Instruments, 2004] and is being continued on DIII-D and KSTAR. To develop a new MIR system for density fluctuation measurements for DIII-D and KSTAR, one requires an understanding of how to preserve phase information. The current design for an MIR optical system makes use of design tools in free space, which is great for evaluation of port access but not provide significant information when it comes to the plasma region. This thesis describes a numerical study of MIR in the presence of turbulent fluctuations by evaluating the effectiveness in coupling the reflection layer in the full wave region and the detector array in free space with respect to fluctuation levels. A synthetic diagnostic tool making use of 2D full-wave diffractive simulation in full plasma geometry is applied to couple an optical imaging system with different optical arrangements.

  16. Multichannel microwave interferometer with an antenna switching system for electron density measurement in a laboratory plasma experiment

    SciTech Connect

    Kawamori, Eiichirou; Lin, Yu-Hsiang; Mase, Atsushi; Nishida, Yasushi; Cheng, C. Z.

    2014-02-15

    This study presents a simple and powerful technique for multichannel measurements of the density profile in laboratory plasmas by microwave interferometry. This technique uses electromechanical microwave switches to temporally switch the connection between multiple receiver antennas and one phase-detection circuit. Using this method, the phase information detected at different positions is rearranged into a time series that can be acquired from a minimum number of data acquisition channels (e.g., two channels in the case of quadrature detection). Our successfully developed multichannel microwave interferometer that uses the antenna switching method was applied to measure the radial electron density profiles in a magnetized plasma experiment. The advantage of the proposed method is its compactness and scalability to multidimensional measurement systems at low cost.

  17. Numerical simulations of output pulse extraction from a high-power microwave compressor with a plasma switch

    SciTech Connect

    Shlapakovski, Anatoli; Beilin, Leonid; Bliokh, Yuri; Donskoy, Moshe; Krasik, Yakov E.; Hadas, Yoav; Schamiloglu, Edl

    2014-05-07

    Numerical simulations of the process of electromagnetic energy release from a high-power microwave pulse compressor comprising a gas-filled cavity and interference switch were carried out. A microwave plasma discharge in a rectangular waveguide H-plane tee was modeled with the use of the fully electromagnetic particle-in-cell code MAGIC. The gas ionization, plasma evolution, and interaction with RF fields accumulated within the compressor were simulated using different approaches provided by the MAGIC code: particle-in-cell approach accounting for electron-neutral collisions, gas conductivity model based on the concept of mobility, and hybrid modeling. The dependences of the microwave output pulse peak power and waveform on parameters that can be controlled in experiments, such as an external ionization rate, RF field amplitude, and background gas pressure, were investigated.

  18. High growth rate homoepitaxial diamond film deposition at high temperatures by microwave plasma-assisted chemical vapor deposition

    NASA Technical Reports Server (NTRS)

    Vohra, Yogesh K. (Inventor); McCauley, Thomas S. (Inventor)

    1997-01-01

    The deposition of high quality diamond films at high linear growth rates and substrate temperatures for microwave-plasma chemical vapor deposition is disclosed. The linear growth rate achieved for this process is generally greater than 50 .mu.m/hr for high quality films, as compared to rates of less than 5 .mu.m/hr generally reported for MPCVD processes.

  19. Removal of volatile organic compounds from air streams by making use of a microwave plasma burner with reverse vortex flows

    NASA Astrophysics Data System (ADS)

    Kim, Ji H.; Ma, Suk H.; Cho, Chang H.; Hong, Yong C.; Ahn, Jae Y.

    2014-01-01

    We developed an atmospheric-pressure microwave plasma burner for removing volatile organic compounds (VOCs) from polluted air streams. This study focused on the destruction of the VOCs in the high flow rate polluted streams required for industrial use. Plasma flames were sustained by injecting liquefied natural gas (LNG), which is composed of CH4, into the microwave plasma torch. With its high temperature and high density of atomic oxygen, the microwave torch attained nearly complete combustion of LNG, thereby providing a large-volume, high-temperature plasma flame. The plasma flame was applied to reactors in which the polluted streams were in one of two vortex flows: a conventional vortex reactor (CVR) or a reverse vortex reactor (RVR). The RVR, using a plasma power of 2 kW and an LNG flow of 20 liters per minute achieved a destruction removal efficiency (DRE) of 98% for an air flow rate of 5 Nm3/min polluted with 550 pm of VOCs.. For the same experimental parameters, the CVR provided a DRE of 90.2%. We expect that this decontamination system will prove effective in purifying contaminated air at high flow rates.

  20. Self-consistent fluid modeling and simulation on a pulsed microwave atmospheric-pressure argon plasma jet

    SciTech Connect

    Chen, Zhaoquan; Yin, Zhixiang Chen, Minggong; Hong, Lingli; Hu, Yelin; Huang, Yourui; Xia, Guangqing; Liu, Minghai; Kudryavtsev, A. A.

    2014-10-21

    In present study, a pulsed lower-power microwave-driven atmospheric-pressure argon plasma jet has been introduced with the type of coaxial transmission line resonator. The plasma jet plume is with room air temperature, even can be directly touched by human body without any hot harm. In order to study ionization process of the proposed plasma jet, a self-consistent hybrid fluid model is constructed in which Maxwell's equations are solved numerically by finite-difference time-domain method and a fluid model is used to study the characteristics of argon plasma evolution. With a Guass type input power function, the spatio-temporal distributions of the electron density, the electron temperature, the electric field, and the absorbed power density have been simulated, respectively. The simulation results suggest that the peak values of the electron temperature and the electric field are synchronous with the input pulsed microwave power but the maximum quantities of the electron density and the absorbed power density are lagged to the microwave power excitation. In addition, the pulsed plasma jet excited by the local enhanced electric field of surface plasmon polaritons should be the discharge mechanism of the proposed plasma jet.

  1. Microwave air plasmas in capillaries at low pressure II. Experimental investigation

    NASA Astrophysics Data System (ADS)

    Stancu, G. D.; Leroy, O.; Coche, P.; Gadonna, K.; Guerra, V.; Minea, T.; Alves, L. L.

    2016-11-01

    This work presents an experimental study of microwave (2.45 GHz excitation frequency) micro-plasmas, generated in dry air (N2 80%: O2 20%) within a small radius silica capillary (345 µm inner radius) at low pressure (300 Pa) and low powers (80–130 W). Experimental diagnostics are performed using optical emission spectroscopy calibrated in absolute intensity. Axial-resolved measurements (50 µm spatial resolution) of atomic transitions N(3p4S)  →  N(3s4P) O(3p5P)  →  O(3s5S) and molecular transitions N2(C,v‧)  →  N2(B,v″) \\text{N}2+ (B,v‧)  →  \\text{N}2+ (X,v″) allow us to obtain, as a function of the coupled power, the absolute densities of N(3p4S), O(3p5P), N2(C), N2(B) and \\text{N}2+ (B), as well as the gas (rotational) temperature (700–1000 K), the vibrational temperature of N2(C,v) (7000–10 000 K) and the excitation temperatures of N2(C) and N2(B) (11 000 K). The analysis of the H β line-width gives an upper limiting value of 1013 cm‑3 for the electron density; its axial variation (4  ×  1011–6  ×  1012 cm‑3) being estimated by solving the wave electrodynamics equations for the present geometry, plasma length and electron–neutral collision frequency. The experimental results were compared with the results from a 0D model, presented in companion paper I [1], which couples the system of rate balance equations for the dominant neutral and charged plasma species to the homogeneous two-term electron Boltzmann equation, taking the measured gas temperature and the estimated electron density as input parameters. Good qualitative agreement is found between the measurements and calculations of the local species densities for various powers and axial positions. The dissociation degree of oxygen is found above 10%. Moreover, both the measurements and calculations show evidence of the non-equilibrium behavior of low-temperature plasmas, with vibrational and excitation

  2. Microwave penetration and attenuation in desert soil - A field experiment with the Shuttle Imaging Radar

    NASA Technical Reports Server (NTRS)

    Farr, T. G.; Elachi, C.; Hartl, P.; Chowdhury, K.

    1986-01-01

    Receivers buried in the Nevada desert were used with the Shuttle Imaging Radar to measure microwave attenuation as a function of soil moisture in situ. Results agree closely with laboratory measurements of attenuation and suggest that penetration of tens of centimeters in desert soils is common for L-band (1.2-GHz) radar.

  3. Mesenchymal stem cell adhesion and spreading on microwave plasma-nitrided titanium alloy

    PubMed Central

    Clem, William C.; Konovalov, Valery V.; Chowdhury, S.; Vohra, Yogesh K.; Catledge, Shane A.; Bellis, Susan L.

    2008-01-01

    Improved methods to increase surface hardness of metallic biomedical implants are being developed in an effort to minimize the formation of wear debris particles that cause local pain and inflammation. However, for many implant surface treatments, there is a risk of film delamination due to the mismatch of mechanical properties between the hard surface and the softer underlying metal. In this article, we describe the surface modification of titanium alloy (Ti-6Al-4V), using microwave plasma chemical vapor deposition to induce titanium nitride formation by nitrogen diffusion. The result is a gradual transition from a titanium nitride surface to the bulk titanium alloy, without a sharp interface that could otherwise lead to delamination. We demonstrate that vitronectin adsorption, as well as the adhesion and spreading of human mesenchymal stem cells to plasma-nitrided titanium is equivalent to that of Ti-6Al-4V, while hardness is improved 3- to 4-fold. These in vitro results suggest that the plasma nitriding technique has the potential to reduce wear, and the resulting debris particle release, of biomedical implants without compromising osseointegration; thus, minimizing the possibility of implant loosening over time. PMID:16265649

  4. Microwave-driven plasmas in Hollow-Core Photonic Crystal Fibres

    NASA Astrophysics Data System (ADS)

    Alves, L. L.; Leroy, O.; Boisse-Laporte, C.; Leprince, P.; Debord, B.; Gerome, F.; Jamier, R.; Benabid, F.

    2013-09-01

    This paper reports on a novel solution to ignite and maintain micro-plasmas in gas-filled Hollow-Core Photonic Crystal Fibres (HC-PCFs), using CW microwave excitation (2.45 GHz). The original concept is based on a surfatron, generating argon micro-plasmas of few centimetres in length within a 100 μm core-diameter Kagome HC-PCF, at ~1 mbar on-gap gas-pressure using low powers (< 50 W). Diagnostics of the coupled power evidence high ionization degrees (~10-2) , for moderate gas temperatures (~1300 K at the centre of the fibre, estimated by OES), with no damage to the host structure. This counter intuitive result is studied using a 1D-radial fluid model that describes the charged particle and the electron energy transport, the electromagnetic excitation and the gas heating. We analyze the modification of the plasma and the gas heating mechanisms with changes in the work conditions (core diameter, pressure and electron density). Work supported by ANR and DGA (ASTRID-2011-UVfactor) and by FCT (Pest-OE/SADG/LA0010/2011).

  5. Characterizations of strip-line microwave micro atmospheric plasma and its application to neutralization

    SciTech Connect

    Ogata, Ken; Terashima, Kazuo

    2009-07-15

    In this work, we estimate the plasma parameters of strip-line microwave micro atmospheric plasma (SMMAP) such as rotational temperature (T{sub r}) both from OH and N{sub 2} rotational transitions (610-770 and 770-980 K in Ar, respectively), electron density (N{sub e}) from Stark broadening (about 10{sup 13}/cm{sup 3} in mixture of Ar and H{sub 2}), and the distribution of electric field before ignition of SMMAP (5x10{sup 4} V/m at maximum, and applied voltage less than 5 V). Since the lower applied voltage of SMMAP might enable us to conduct efficient processing without electrostatic damage (ESD), we applied jet-type SMMAP to neutralization. The result of neutralization showed that it can reduce surface charge from +-1000 to +-100 V for 0.2 s at 10 W with Ar gas flow within 4 V offset voltage, which provides efficient plasma processing without ESD.

  6. Bistatic frequency-swept microwave imaging: Principle, methodology and experimental results

    SciTech Connect

    Dingbing Lin; Tahhsiung Chu . Electrical Engineering Dept.)

    1993-05-01

    The basic principle, methodology and experimental results of frequency-swept microwave imaging of continuous shape conducting and discrete line objects in a bistatic scattering arrangement are presented. Theoretical analysis is developed under the assumptions of plane wave illumination and physical optics approximation. The measurement system and calibration procedures are implemented based on the plane wave spectrum analysis. Images of three different types of scattering objects reconstructed from the experimental data measured in the frequency range 7.5-12.5 GHz are shown in good agreement with the scattering object geometries. The results demonstrate that the developed bistatic frequency-swept microwave imaging system has potential as a cost-effective tool for the application of remote sensing, imaging radar, and nondestructive evaluation.

  7. Diamond deposition from fluorinated precursors using microwave-plasma chemical vapor deposition

    SciTech Connect

    Fox, C.A.; McMaster, M.C.; Hsu, W.L.; Kelly, M.A.; Hagstrom, S.B.

    1995-10-16

    Diamond thin films were grown using fluorinated precursors by microwave plasma-assisted chemical vapor deposition. Using CH{sub 4}/H{sub 2}, CH{sub 3}F/H{sub 2}, and CF{sub 4}/H{sub 2} gas mixtures, films were grown at surface temperatures in the range 600--900 {degree}C at constant microwave power, carbon mole fraction, and pressure. Growth activation energies for the CH{sub 4}/H{sub 2}, CH{sub 3}F/H{sub 2}, and CF{sub 4}/H{sub 2} mixtures were 12.6{plus_minus}1.8, 13.7{plus_minus}1.2, and 12.4{plus_minus}1.1 kcal/mole, respectively. Argon ion etching in conjunction with x-ray photoelectron spectroscopy indicated negligible fluorine incorporation into the films. These results are consistent with the hypothesis that diamond is grown from the same intermediates, namely methyl radicals and atomic hydrogen, for all of these mixtures. {copyright} {ital 1995} {ital American} {ital Institute} {ital of} {ital Physics}.

  8. Determination of metals in marine species by microwave digestion and inductively coupled plasma mass spectrometry analysis

    NASA Astrophysics Data System (ADS)

    Yang, Karl X.; Swami, Kamal

    2007-10-01

    A microwave digestion method suitable for determination of multiple elements in marine species was developed, with the use of cold vapor atomic spectrometry for the detection of Hg, and inductively coupled plasma mass spectrometry for all of the other elements. An optimized reagent mixture composed of 2 ml of HNO 3, 2 ml of H 2O 2 and 0.3 ml of HF used in microwave digestion of about 0.15 g (dry weight) of sample was found to give the best overall recoveries of metals in two standard reference materials. In the oyster tissue standard reference material (SRM 1566b), recoveries of Na, Al, K, V, Co, Zn, Se, Sr, Ag, Cd, Ni, and Pb were between 90% and 110%; Mg, Mn, Fe, Cu, As, and Ba recoveries were between 85% and 90%; Hg recovery was 81%; and Ca recovery was 64%. In a dogfish certified reference material (DORM-2), the recoveries of Al, Cr, Mn, Se, and Hg were between 90% and 110%; Ni, Cu, Zn, and As recoveries were about 85%; and Fe recovery was 112%. Method detection limits of the elements were established. Metal concentrations in flounder, scup, and blue crab samples collected from coastal locations around Long Island and in the Hudson River estuary were determined.

  9. Short-pulse excitation of microwave plasma for efficient diamond growth

    NASA Astrophysics Data System (ADS)

    Yamada, Hideaki; Chayahara, Akiyoshi; Mokuno, Yoshiaki

    2016-08-01

    To realize a variety of potential applications of diamonds, particularly in the area of power electronics, it is indispensable to improve their growth efficiency. Most conventional approaches have tried to achieve this simply by increasing the gas temperature; however, this makes it difficult to grow large diamond crystals. To improve the growth efficiency while lowering the gas temperature, we propose that using a pulse-modulated microwave plasma with a sub-millisecond pulse width can enhance the power efficiency of the growth rate of single-crystal diamonds. We found that using a sub-millisecond pulse-mode discharge could almost double the growth rate obtained using continuous mode discharge for a fixed average microwave power and gas pressure. A comparison between experimental observations of the optical emission spectra of the discharge and a numerical simulation of the gas temperature suggests that a decrease in the gas temperature was achieved, and highlights the importance of electron-dominated reactions for obtaining the enhancement of the growth rate. This result will have a large impact in the area of diamond growth because it enables diamond growth to be more power efficient at reduced temperatures.

  10. A PC-controlled microwave tomographic scanner for breast imaging

    NASA Astrophysics Data System (ADS)

    Padhi, Shantanu; Howard, John; Fhager, A.; Bengtsson, Sebastian

    2011-01-01

    This article presents the design and development of a personal computer based controller for a microwave tomographic system for breast cancer detection. The system uses motorized, dual-polarized antennas and a custom-made GUI interface to control stepper motors, a wideband vector network analyzer (VNA) and to coordinate data acquisition and archival in a local MDSPlus database. Both copolar and cross-polar scattered field components can be measured directly. Experimental results are presented to validate the various functionalities of the scanner.

  11. Distinctive plume formation in atmospheric Ar and He plasmas in microwave frequency band and suitability for biomedical applications

    SciTech Connect

    Lee, H. Wk.; Kang, S. K.; Won, I. H.; Kim, H. Y.; Kwon, H. C.; Sim, J. Y.; Lee, J. K.

    2013-12-15

    Distinctive discharge formation in atmospheric Ar and He plasmas was observed in the microwave frequency band using coaxial transmission line resonators. Ar plasmas formed a plasma plume whereas He formed only confined plasmas. As the frequency increased from 0.9 GHz to 2.45 GHz, the Ar plasma exhibited contraction and filamentation, and the He plasmas were constricted. Various powers and gas flow rates were applied to identify the effect of the electric field and gas flow rate on plasma plume formation. The He plasmas were more strongly affected by the electric field than the Ar plasmas. The breakdown and sustain powers yielded opposite results from those for low-frequency plasmas (∼kHz). The phenomena could be explained by a change in the dominant ionization process with increasing frequency. Penning ionization and the contribution of secondary electrons in sheath region reduced as the frequency increased, leading to less efficient ionization of He because its ionization and excitation energies are higher than those of Ar. The emission spectra showed an increase in the NO and N{sub 2} second positive band in both the Ar and He plasmas with increasing frequency whereas the hydroxyl radical and atomic O peaks did not increase with increasing frequency but were highest at particular frequencies. Further, the frequency effect of properties such as the plasma impedance, electron density, and device efficiency were presented. The study is expected to be helpful for determining the optimal conditions of plasma systems for biomedical applications.

  12. Novel Diamond Films Synthesis Strategy: Methanol and Argon Atmosphere by Microwave Plasma CVD Method Without Hydrogen.

    PubMed

    Yang, Li; Jiang, Caiyi; Guo, Shenghui; Zhang, Libo; Gao, Jiyun; Peng, Jinhui; Hu, Tu; Wang, Liang

    2016-12-01

    Diamond thin films are grown on silicon substrates by only using methanol and argon mixtures in microwave plasma chemical vapor deposition (MPCVD) reactor. It is worth mentioning that the novel strategy makes the synthesis reaction works smoothly without hydrogen atmosphere, and the substrates temperature is only 500 °C. The evidence of surface morphology and thickness under different time is obtained by characterizing the samples using scanning electron microscopy (SEM). X-ray diffractometer (XRD) spectrum reveals that the preferential orientation of (111) plane sample is obtained. The Raman spectra indicate that the dominant component of all the samples is a diamond. Moreover, the diamond phase content of the targeted films was quantitatively analyzed by X-ray photoelectron spectroscopy (XPS) method, and the surface roughness of diamond films was investigated by atomic force microscope (AFM). Meanwhile, the possible synthesis mechanism of the diamond films in methanol- and argon-mixed atmosphere was discussed. PMID:27644241

  13. The facile fabrication of tunable plasmonic gold nanostructure arrays using microwave plasma

    NASA Astrophysics Data System (ADS)

    Hsu, Chuen-Yuan; Huang, Jing-Wen; Gwo, Shangjr; Lin, Kuan-Jiuh

    2010-01-01

    Fabrication of isolated noble metal nanoparticles embedded in transparent substrates is the fasting growing demand for innovative plasmonic technologies. Here we report a simple and effective methodology for the preparation of highly stable plasmonic nanoparticles embedded in a glass surface. Size-controllable (10-70 nm) Au nanoparticles were rapidly prepared when subjected to the home-microwave plasma. Accordingly, the optical extinction maximum of the localized surface plasmon resonance (LSPR) can be systematically tuned in the range 532-586 nm. We find that the plasmonic structures are exceedingly stable toward immersion in ethanol solvents and pass successfully the adhesive tape test, which makes our system highly promising for efficient transmission-LSPR nanosensors. Besides, the attractive features of substrate-bound plasmonic nanostructures include its low cost, versatility, robustness, reusability and a promising ability to make a multi-arrayed LSPR biochip.

  14. High-Power Plasma Switch for 11.4 GHz Microwave Pulse Compressor

    SciTech Connect

    Jay L. Hirshfield

    2010-03-04

    Results obtained in several experiments on active RF pulse compression at X-band using a magnicon as the high-power RF source are presented. In these experiments, microwave energy was stored in high-Q TE01 and TE02 modes of two parallel-fed resonators, and then discharged using switches activated with rapidly fired plasma discharge tubes. Designs and high-power tests of several versions of the compressor are described. In these experiments, coherent pulse superposition was demonstrated at a 5–9 MW level of incident power. The compressed pulses observed had powers of 50–70 MW and durations of 40–70 ns. Peak power gains were measured to be in the range of 7:1–11:1 with efficiency in the range of 50–63%.

  15. Vacuum ultraviolet emission from microwave Ar-H{sub 2} plasmas

    SciTech Connect

    Espinho, S.; Felizardo, E.; Tatarova, E.; Dias, F. M.; Ferreira, C. M.

    2013-03-18

    Vacuum ultraviolet emission from Ar-H{sub 2} wave driven microwave (2.45 GHz) plasmas operating at low pressures (0.1-1 mbar) has been investigated. The emitted spectra show the presence of the Ar resonance lines at 104.8 and 106.7 nm and of the Lyman-{alpha},{beta} atomic lines at 121.6 nm and 102.6 nm, respectively. The increase of the hydrogen amount in the mixture results in an abrupt increase of the Werner and Lyman molecular bands intensity. The Lyman-{beta} intensity shows little changes in the range of 5%-30% of hydrogen in the mixture while the Lyman-{alpha} intensity tends to decrease as the percentage of hydrogen increases.

  16. Novel Diamond Films Synthesis Strategy: Methanol and Argon Atmosphere by Microwave Plasma CVD Method Without Hydrogen

    NASA Astrophysics Data System (ADS)

    Yang, Li; Jiang, Caiyi; Guo, Shenghui; Zhang, Libo; Gao, Jiyun; Peng, Jinhui; Hu, Tu; Wang, Liang

    2016-09-01

    Diamond thin films are grown on silicon substrates by only using methanol and argon mixtures in microwave plasma chemical vapor deposition (MPCVD) reactor. It is worth mentioning that the novel strategy makes the synthesis reaction works smoothly without hydrogen atmosphere, and the substrates temperature is only 500 °C. The evidence of surface morphology and thickness under different time is obtained by characterizing the samples using scanning electron microscopy (SEM). X-ray diffractometer (XRD) spectrum reveals that the preferential orientation of (111) plane sample is obtained. The Raman spectra indicate that the dominant component of all the samples is a diamond. Moreover, the diamond phase content of the targeted films was quantitatively analyzed by X-ray photoelectron spectroscopy (XPS) method, and the surface roughness of diamond films was investigated by atomic force microscope (AFM). Meanwhile, the possible synthesis mechanism of the diamond films in methanol- and argon-mixed atmosphere was discussed.

  17. Production of carbon nanotubes by microwave plasma torch at atmospheric pressure

    SciTech Connect

    Hong, Yong Cheol; Uhm, Han Sup

    2005-05-15

    The key requirements of nanotube formation are an atomic carbon source and a source of nanometal particles. Carbon nanotubes (CNTs) have been synthesized by an argon/nitrogen microwave plasma torch using a mixture of acetylene and vapor-phase iron pentacarbonyl at the atmospheric pressure. The synthesized CNTs have been analyzed by scanning electron microscopy, field-emission transmission electron microscopy, and Raman spectroscopy, and are shown to be multiwalled and have a bamboo-shaped structure. The synthesized CNTs in some areas are well aligned. It is also found that the higher the content of nitrogen gas used, the higher the number of rough and wavy surfaces and the inner intersecting layers.

  18. Investigation of Microwave Surface-Wave Plasma Deposited SiOx Coatings on Polymeric Substrates

    NASA Astrophysics Data System (ADS)

    Wang, Huan; Yang, Lizhen; Chen, Qiang

    2014-01-01

    In this paper, we reported nano-scale SiOx coatings deposited on polyethylene terephthalate (PET) webs by microwave surface-wave assisted plasma enhanced chemical vapor deposition for the purpose of improving their barrier properties. Oxygen (O2) and hexamethyldisiloxane (HMDSO) were employed as oxidant gas and Si monomer during SiOx deposition, respectively. Analysis by Fourier transform infrared spectroscope (FTIR) for chemical structure and observation by atomic force microscopy (AFM) for surface morphology of SiOx coatings demonstrated that both chemical compounds and surface feature of coatings have a remarkable influence on the coating barrier properties. It is noted that the processing parameters play a critical role in the barrier properties of coatings. After optimization of the SiOx coatings deposition conditions, i.e. the discharge power of 1500 W, 2:1 of O2 : HMDSO ratio and working pressure of 20 Pa, a better barrier property was achieved in this work.

  19. Carbon nanowalls grown by microwave plasma enhanced chemical vapor deposition during the carbonization of polyacrylonitrile fibers

    NASA Astrophysics Data System (ADS)

    Li, Jiangling; Su, Shi; Zhou, Lei; Kundrát, Vojtěch; Abbot, Andrew M.; Mushtaq, Fajer; Ouyang, Defang; James, David; Roberts, Darren; Ye, Haitao

    2013-01-01

    We used microwave plasma enhanced chemical vapor deposition (MPECVD) to carbonize an electrospun polyacrylonitrile (PAN) precursor to form carbon fibers. Scanning electron microscopy, Raman spectroscopy, and Fourier transform infrared spectroscopy were used to characterize the fibers at different evolution stages. It was found that MPECVD-carbonized PAN fibers do not exhibit any significant change in the fiber diameter, whilst conventionally carbonized PAN fibers show a 33% reduction in the fiber diameter. An additional coating of carbon nanowalls (CNWs) was formed on the surface of the carbonized PAN fibers during the MPECVD process without the assistance of any metallic catalysts. The result presented here may have a potential to develop a novel, economical, and straightforward approach towards the mass production of carbon fibrous materials containing CNWs.

  20. Carbon nanowalls grown by microwave plasma enhanced chemical vapor deposition during the carbonization of polyacrylonitrile fibers

    SciTech Connect

    Li Jiangling; Su Shi; Kundrat, Vojtech; Abbot, Andrew M.; Ye, Haitao; Zhou Lei; Mushtaq, Fajer; Ouyang Defang; James, David; Roberts, Darren

    2013-01-14

    We used microwave plasma enhanced chemical vapor deposition (MPECVD) to carbonize an electrospun polyacrylonitrile (PAN) precursor to form carbon fibers. Scanning electron microscopy, Raman spectroscopy, and Fourier transform infrared spectroscopy were used to characterize the fibers at different evolution stages. It was found that MPECVD-carbonized PAN fibers do not exhibit any significant change in the fiber diameter, whilst conventionally carbonized PAN fibers show a 33% reduction in the fiber diameter. An additional coating of carbon nanowalls (CNWs) was formed on the surface of the carbonized PAN fibers during the MPECVD process without the assistance of any metallic catalysts. The result presented here may have a potential to develop a novel, economical, and straightforward approach towards the mass production of carbon fibrous materials containing CNWs.

  1. Ultra-wide-band 3D microwave imaging scanner for the detection of concealed weapons

    NASA Astrophysics Data System (ADS)

    Rezgui, Nacer-Ddine; Andrews, David A.; Bowring, Nicholas J.

    2015-10-01

    The threat of concealed weapons, explosives and contraband in footwear, bags and suitcases has led to the development of new devices, which can be deployed for security screening. To address known deficiencies of metal detectors and x-rays, an UWB 3D microwave imaging scanning apparatus using FMCW stepped frequency working in the K and Q bands and with a planar scanning geometry based on an x y stage, has been developed to screen suspicious luggage and footwear. To obtain microwave images of the concealed weapons, the targets are placed above the platform and the single transceiver horn antenna attached to the x y stage is moved mechanically to perform a raster scan to create a 2D synthetic aperture array. The S11 reflection signal of the transmitted sweep frequency from the target is acquired by a VNA in synchronism with each position step. To enhance and filter from clutter and noise the raw data and to obtain the 2D and 3D microwave images of the concealed weapons or explosives, data processing techniques are applied to the acquired signals. These techniques include background subtraction, Inverse Fast Fourier Transform (IFFT), thresholding, filtering by gating and windowing and deconvolving with the transfer function of the system using a reference target. To focus the 3D reconstructed microwave image of the target in range and across the x y aperture without using focusing elements, 3D Synthetic Aperture Radar (SAR) techniques are applied to the post-processed data. The K and Q bands, between 15 to 40 GHz, show good transmission through clothing and dielectric materials found in luggage and footwear. A description of the system, algorithms and some results with replica guns and a comparison of microwave images obtained by IFFT, 2D and 3D SAR techniques are presented.

  2. Status of VESAS: a fully-electronic microwave imaging radiometer system

    NASA Astrophysics Data System (ADS)

    Schreiber, Eric; Peichl, Markus; Suess, Helmut

    2010-04-01

    Present applications of microwave remote sensing systems cover a large variety. One utilisation of the frequency range from 1 - 300 GHz is the domain of security and reconnaissance. Examples are the observation of critical infrastructures or the performance of security checks on people in order to detect concealed weapons or explosives, both being frequent threats in our world of growing international terrorism. The imaging capability of concealed objects is one of the main advantages of microwave remote sensing, because of the penetration performance of electromagnetic waves through dielectric materials in this frequency domain. The main physical effects used in passive microwave sensing rely on the naturally generated thermal radiation and the physical properties of matter, the latter being surface characteristics, chemical and physical composition, and the temperature of the material. As a consequence it is possible to discriminate objects having different material characteristics like ceramic weapons or plastic explosives with respect to the human body. Considering the use of microwave imaging with respect to people scanning systems in airports, railway stations, or stadiums, it is advantageous that passively operating devices generate no exposure on the scanned objects like actively operating devices do. For frequently used security gateways it is additionally important to have a high through-put rate in order to minimize the queue time. Consequently fast imaging systems are necessary. In this regard the conceptual idea of a fully-electronic microwave imaging radiometer system is introduced. The two-dimensional scanning mechanism is divided into a frequency scan in one direction and the method of aperture synthesis in the other. The overall goal here is to design a low-cost, fully-electronic imaging system with a frame rate of around one second at Ka band. This frequency domain around a center frequency of 37 GHz offers a well-balanced compromise between the

  3. Plasma Physics Challenges of MM-to-THz and High Power Microwave Generation

    NASA Astrophysics Data System (ADS)

    Booske, John

    2007-11-01

    Homeland security and military defense technology considerations have stimulated intense interest in mobile, high power sources of millimeter-wave to terahertz regime electromagnetic radiation, from 0.1 to 10 THz. While sources at the low frequency end, i.e., the gyrotron, have been deployed or are being tested for diverse applications such as WARLOC radar and active denial systems, the challenges for higher frequency sources have yet to be completely met for applications including noninvasive sensing of concealed weapons and dangerous agents, high-data-rate communications, and high resolution spectroscopy and atmospheric sensing. The compact size requirements for many of these high frequency sources requires miniscule, micro-fabricated slow wave circuits with high rf ohmic losses. This necessitates electron beams with not only very small transverse dimensions but also very high current density for adequate gain. Thus, the emerging family of mm-to-THz e-beam-driven vacuum electronics devices share many of the same plasma physics challenges that currently confront ``classic'' high power microwave (HPM) generators [1] including bright electron sources, intense beam transport, energetic electron interaction with surfaces and rf air breakdown at output windows. Multidimensional theoretical and computational models are especially important for understanding and addressing these challenges. The contemporary plasma physics issues, recent achievements, as well as the opportunities and outlook on THz and HPM will be addressed. [1] R.J. Barker, J.H. Booske, N.C. Luhmann, and G.S. Nusinovich, Modern Microwave and Millimeter-Wave Power Electronics (IEEE/Wiley, 2005).

  4. A novel 2.45 GHz/200 W Microwave Plasma Jet for High Temperature Applications above 3600 K

    NASA Astrophysics Data System (ADS)

    Schopp, C.; Nachtrodt, F.; Heuermann, H.; Scherer, U. W.; Mostacci, D.; Finger, T.; Tietsch, W.

    2012-12-01

    State of the art atmosphere plasma sources are operated with frequencies in kHz/MHz regions and all high power plasma jets make use of tungsten electrodes. A microwave plasma torch has been developed at FH Aachen for the application in various fields. The advantages over other plasma jet technologies are the high efficiency combined with a maintenance-free compact design and non-tungsten electrodes. In this paper the development of a 200 W torch is described. Argon is used as the primary plasma gas and a second gas can be applied for additional purposes. For the plasma generation a microwave at 2.45 GHz is sent through the torch. The special internal topology causes a high electric field that ignites the plasma at the tip and leads to the ionization of the passing Argon atoms which are emitted as a jet. By designing the copper electrode as a cannula it is possible to gain plasma temperatures higher than the electrode's melting point. The electric field simulations are made with Ansoft HFSS. Experiments were carried out to verify the simulations. The upcoming steps in the development will be the scale-up to higher power levels of several kW with a magnetron as power source.

  5. NDE of composite structures using microwave time reversal imaging

    NASA Astrophysics Data System (ADS)

    Mukherjee, Saptarshi; Tamburrino, Antonello; Udpa, Lalita; Udpa, Satish

    2016-02-01

    Composite materials are being increasingly used to replace metals, partially or completely, in aerospace, shipping and automotive industries because of their light weight, corrosion resistance, and mechanical strength. Integrity of these materials may be compromised during manufacturing or due to impact damage during usage, resulting in defects such as porosity, delamination, cracks and disbonds. Microwave NDE techniques have the ability to propagate through composite materials, without suffering much attenuation. The scattered fields depend on the dielectric properties of the medium, and hence provide information about the structural integrity of these materials. Time Reversal focusing is based on the fact that when a wave solution is reversed in time and back propagated it refocuses back at the source. This paper presents a model based parametric study of time reversal principles with microwave data in composite materials. A two dimensional FDTD model is developed to implement the forward and time reversed electromagnetic wave propagation in a test geometry comprising metal-composite structures. Simulation results demonstrate the feasibility of this approach to detect and characterize different defects.

  6. Surface impedance based microwave imaging method for breast cancer screening: contrast-enhanced scenario.

    PubMed

    Güren, Onan; Çayören, Mehmet; Ergene, Lale Tükenmez; Akduman, Ibrahim

    2014-10-01

    A new microwave imaging method that uses microwave contrast agents is presented for the detection and localization of breast tumours. The method is based on the reconstruction of breast surface impedance through a measured scattered field. The surface impedance modelling allows for representing the electrical properties of the breasts in terms of impedance boundary conditions, which enable us to map the inner structure of the breasts into surface impedance functions. Later a simple quantitative method is proposed to screen breasts against malignant tumours where the detection procedure is based on weighted cross correlations among impedance functions. Numerical results demonstrate that the method is capable of detecting small malignancies and provides reasonable localization.

  7. Superconducting Microwave Resonator Arrays for Submillimeter/Far-Infrared Imaging

    NASA Astrophysics Data System (ADS)

    Noroozian, Omid

    Superconducting microwave resonators have the potential to revolutionize submillimeter and far-infrared astronomy, and with it our understanding of the universe. The field of low-temperature detector technology has reached a point where extremely sensitive devices like transition-edge sensors are now capable of detecting radiation limited by the background noise of the universe. However, the size of these detector arrays are limited to only a few thousand pixels. This is because of the cost and complexity of fabricating large-scale arrays of these detectors that can reach up to 10 lithographic levels on chip, and the complicated SQUID-based multiplexing circuitry and wiring for readout of each detector. In order to make substantial progress, next-generation ground-based telescopes such as CCAT or future space telescopes require focal planes with large-scale detector arrays of 104--10 6 pixels. Arrays using microwave kinetic inductance detectors (MKID) are a potential solution. These arrays can be easily made with a single layer of superconducting metal film deposited on a silicon substrate and pattered using conventional optical lithography. Furthermore, MKIDs are inherently multiplexable in the frequency domain, allowing ˜ 10 3 detectors to be read out using a single coaxial transmission line and cryogenic amplifier, drastically reducing cost and complexity. An MKID uses the change in the microwave surface impedance of a superconducting thin-film microresonator to detect photons. Absorption of photons in the superconductor breaks Cooper pairs into quasiparticles, changing the complex surface impedance, which results in a perturbation of resonator frequency and quality factor. For excitation and readout, the resonator is weakly coupled to a transmission line. The complex amplitude of a microwave probe signal tuned on-resonance and transmitted on the feedline past the resonator is perturbed as photons are absorbed in the superconductor. The perturbation can be

  8. Abatement of SF{sub 6} and CF{sub 4} using an enhanced kerosene microwave plasma burner

    SciTech Connect

    Shin, Dong Hun; Hong, Yong Cheol; Cho, Soon Cheon; Uhm, Han Sup

    2006-11-15

    A kerosene microwave plasma burner was presented as a tool for abatement of SF{sub 6} and CF{sub 4} gases, which cause global warming. The plasma burner operates by injecting kerosene as a liquid hydrocarbon fuel into a microwave plasma torch and by mixing the resultant gaseous hydrogen and carbon compounds with air or oxygen (O{sub 2}) gas. The abatement of SF{sub 6} and CF{sub 4}, by making use of the kerosene plasma burner, was conducted in terms of nitrogen (N{sub 2}) flow rates. The destruction and removal efficiency of the burner were achieved up to 99.9999% for 0.1 liters per minute (lpm) SF{sub 6} in 120 lpm N{sub 2} and 99.3% for 0.05 lpm CF{sub 4} in 60 lpm N{sub 2}, revealing that the microwave plasma burner can effectively eliminate perfluorocompounds emitted from the semiconductor industries.

  9. Optical spectroscopy of plasma in high power microwave pulse shortening experiments driven by a microsecond electron beam

    SciTech Connect

    Cohen, W.E.; Gilgenbach, R.M.; Hochman, J.M.; Jaynes, R.L.; Rintamaki, J.I.; Peters, C.W.; Vollers, D.E.; Lau, Y.Y.; Spencer, T.A.

    1998-12-31

    Spectroscopic measurements have been performed to characterize the undesired plasma in a multi-megawatt coaxial gyrotron and a rectangular-cross-section (RCS) gyrotron. These gyrotrons are driven by the Michigan Electron Long Beam Accelerator (MELBA) at parameters: V = {minus}800 kV, I{sub tube} = 0.3 kA, and pulselengths of 0.5--1 {micro}s. Pulse shortening typically limits the highest ({approximately}10 MW) microwave power pulselength to 100--200 ns. Potential explanations of pulse shortening are being investigated, particularly plasma production inside the cavity and at the e-beam collector. The source of this plasma is believed to be due to water vapor absorbed on surfaces which is ejected, dissociated, and ionized by electron beam impact. Plasma H-{alpha} line radiation has been characterized in both time-integrated and temporally-resolved measurements and correlated with microwave power and microwave cutoff. Measurements from a residual gas analyzer (RGA) will be used to support this interpretation. Experiments involving RF plasma cleaning of the coaxial cavity are planned.

  10. A Novel Scanning Near-Field Microwave Microscope Capable of High Resolution Loss Imaging

    NASA Astrophysics Data System (ADS)

    Imtiaz, Atif; Anlage, Steven

    2004-03-01

    To study novel physics in condensed matter and materials science, experimental techniques need to be pushed to the limit of better sensitivity and higher spatial resolution. Classical techniques of probing the high frequency electrical properties of materials are limited in resolution to the wavelength of the incident electromagnetic wave. We report here a novel near-field microscope that is capable of operation at radio and microwave frequencies[1]. These experiments are performed with a version of the near-field microwave microscope that has integrated STM-feedback for distance control. When used in the scanning capacitance mode this instrument has a spatial resolution of 2.5 nm. Our objective is to image materials contrast at microwave frequencies and improve the spatial resolution in local loss imaging. We will present evidence of sheet resistance contrast in a Boron-doped Silicon samples on sub-micron length scales. We will present quantitative analysis of the data in light of transmission line and lumped element models of the microscope that we have developed. The microscope is an attractive platform for measuring local losses and local nonlinear properties of a rich variety of condensed matter systems, such as correlated-electron systems. [1] Atif Imtiaz and Steven M. Anlage, "A novel STM-assisted microwave microscope with capacitance and loss imaging capability", Ultramicroscopy 94, 209-216 (2003).

  11. Experimental results of superimposing 9.9 GHz extraordinary mode microwaves on 2.45 GHz ECRIS plasma.

    PubMed

    Nishiokada, Takuya; Nagaya, Tomoki; Hagino, Shogo; Otsuka, Takuro; Muramatsu, Masayuki; Sato, Fuminobu; Kitagawa, Atsushi; Kato, Yushi

    2016-02-01

    Efficient production of multicharged ions has been investigated on the tandem-type ECRIS in Osaka University. According to the consideration of the accessibility conditions of microwaves to resonance and cutoff regions, it was suggested that the upper hybrid resonance (UHR) heating contributed to enhancement of ion beam intensity. In order to enhance multicharged ion beams efficiently, injecting higher frequency microwave with extraordinary (X-mode) toward UHR region has been tried. In this study, 2.45 GHz frequency microwaves are used for conventional ECR discharge, and 9.9 GHz frequency microwaves with X-mode are superimposed for UHR heating. The effects of additive microwave injection are investigated experimentally in terms of plasma parameters and electron energy distribution function (EEDF) measured by Langmuir probe and ion beam current. As the results show, it is confirmed that the electrons in the high energy region are affected by 9.9 GHz X-mode microwave injection from the detailed analysis of EEDF. PMID:26931932

  12. Experimental results of superimposing 9.9 GHz extraordinary mode microwaves on 2.45 GHz ECRIS plasma

    NASA Astrophysics Data System (ADS)

    Nishiokada, Takuya; Nagaya, Tomoki; Hagino, Shogo; Otsuka, Takuro; Muramatsu, Masayuki; Sato, Fuminobu; Kitagawa, Atsushi; Kato, Yushi

    2016-02-01

    Efficient production of multicharged ions has been investigated on the tandem-type ECRIS in Osaka University. According to the consideration of the accessibility conditions of microwaves to resonance and cutoff regions, it was suggested that the upper hybrid resonance (UHR) heating contributed to enhancement of ion beam intensity. In order to enhance multicharged ion beams efficiently, injecting higher frequency microwave with extraordinary (X-mode) toward UHR region has been tried. In this study, 2.45 GHz frequency microwaves are used for conventional ECR discharge, and 9.9 GHz frequency microwaves with X-mode are superimposed for UHR heating. The effects of additive microwave injection are investigated experimentally in terms of plasma parameters and electron energy distribution function (EEDF) measured by Langmuir probe and ion beam current. As the results show, it is confirmed that the electrons in the high energy region are affected by 9.9 GHz X-mode microwave injection from the detailed analysis of EEDF.

  13. Experimental results of superimposing 9.9 GHz extraordinary mode microwaves on 2.45 GHz ECRIS plasma.

    PubMed

    Nishiokada, Takuya; Nagaya, Tomoki; Hagino, Shogo; Otsuka, Takuro; Muramatsu, Masayuki; Sato, Fuminobu; Kitagawa, Atsushi; Kato, Yushi

    2016-02-01

    Efficient production of multicharged ions has been investigated on the tandem-type ECRIS in Osaka University. According to the consideration of the accessibility conditions of microwaves to resonance and cutoff regions, it was suggested that the upper hybrid resonance (UHR) heating contributed to enhancement of ion beam intensity. In order to enhance multicharged ion beams efficiently, injecting higher frequency microwave with extraordinary (X-mode) toward UHR region has been tried. In this study, 2.45 GHz frequency microwaves are used for conventional ECR discharge, and 9.9 GHz frequency microwaves with X-mode are superimposed for UHR heating. The effects of additive microwave injection are investigated experimentally in terms of plasma parameters and electron energy distribution function (EEDF) measured by Langmuir probe and ion beam current. As the results show, it is confirmed that the electrons in the high energy region are affected by 9.9 GHz X-mode microwave injection from the detailed analysis of EEDF.

  14. [Optical Spectroscopy for High-Pressure Microwave Plasma Chemical Vapor Deposition of Diamond Films].

    PubMed

    Cao, Wei; Ma, Zhi-bin

    2015-11-01

    Polycrystalline diamond growth by microwave plasma chemical vapor deposition (MPCVD) at high-pressure (34.5 kPa) was investigated. The CH₄/H₂/O₂plasma was detected online by optical emission spectroscopy (OES), and the spatial distribution of radicals in the CH₄/H₂/O₂plasma was studied. Raman spectroscopy was employed to analyze the properties of the diamond films deposited in different oxygen volume fraction. The uniformity of diamond films quality was researched. The results indicate that the spectrum intensities of C₂, CH and Hα decrease with the oxygen volume fraction increasing. While the intensity ratios of C₂, CH to Hα also reduced as a function of increasing oxygen volume fraction. It is shown that the decrease of the absolute concentration of carbon radicals is attributed to the rise volume fraction of oxygen, while the relative concentration of carbon radicals to hydrogen atom is also reducing, which depressing the growth rate but improving the quality of diamond film. Furthermore, the OH radicals, role of etching, its intensities increase with the increase of oxygen volume fraction. Indicated that the improvement of OH concentration is also beneficial to reduce the content of amorphous carbon in diamond films. The spectrum space diagnosis results show that under high deposition pressure the distribution of the radicals in the CH₄/H₂/O₂plasma is inhomogeneous, especially, that of radical C₂ gathered in the central region. And causing a rapid increase of non-diamond components in the central area, eventually enable the uneven distribution of diamond films quality.

  15. [Optical Spectroscopy for High-Pressure Microwave Plasma Chemical Vapor Deposition of Diamond Films].

    PubMed

    Cao, Wei; Ma, Zhi-bin

    2015-11-01

    Polycrystalline diamond growth by microwave plasma chemical vapor deposition (MPCVD) at high-pressure (34.5 kPa) was investigated. The CH₄/H₂/O₂plasma was detected online by optical emission spectroscopy (OES), and the spatial distribution of radicals in the CH₄/H₂/O₂plasma was studied. Raman spectroscopy was employed to analyze the properties of the diamond films deposited in different oxygen volume fraction. The uniformity of diamond films quality was researched. The results indicate that the spectrum intensities of C₂, CH and Hα decrease with the oxygen volume fraction increasing. While the intensity ratios of C₂, CH to Hα also reduced as a function of increasing oxygen volume fraction. It is shown that the decrease of the absolute concentration of carbon radicals is attributed to the rise volume fraction of oxygen, while the relative concentration of carbon radicals to hydrogen atom is also reducing, which depressing the growth rate but improving the quality of diamond film. Furthermore, the OH radicals, role of etching, its intensities increase with the increase of oxygen volume fraction. Indicated that the improvement of OH concentration is also beneficial to reduce the content of amorphous carbon in diamond films. The spectrum space diagnosis results show that under high deposition pressure the distribution of the radicals in the CH₄/H₂/O₂plasma is inhomogeneous, especially, that of radical C₂ gathered in the central region. And causing a rapid increase of non-diamond components in the central area, eventually enable the uneven distribution of diamond films quality. PMID:26978897

  16. Propagation and amplification of microwave radiation in a plasma channel created in gas by a high-power femtosecond UV laser pulse

    NASA Astrophysics Data System (ADS)

    Bogatskaya, A. V.; Volkova, E. A.; Popov, A. M.; Smetanin, I. V.

    2016-02-01

    The time evolution of a nonequilibrium plasma channel created in a noble gas by a high-power femtosecond KrF laser pulse is investigated. It is shown that such a channel possesses specific electrodynamic properties and can be used as a waveguide for efficient transportation and amplification of microwave pulses. The propagation of microwave radiation in a plasma waveguide is analyzed by self-consistently solving (i) the Boltzmann kinetic equation for the electron energy distribution function at different spatial points and (ii) the wave equation in the parabolic approximation for a microwave pulse transported along the plasma channel.

  17. An optical fiber sensor based on cladding photoluminescence for high power microwave plasma ultraviolet lamps used in water treatment

    NASA Astrophysics Data System (ADS)

    Fitzpatrick, C.; Lewis, E.; Al-Shamma'A, A.; Pandithas, I.; Cullen, J.; Lucas, J.

    2001-11-01

    Low-pressure mercury lamps are commonly used for germicidal applications such as water and wastewater sterilisation. The germicidal effect is due to the emission of light at 254 nm, which leads to the destruction of most waterborne bacteria. The Microwave plasma ultraviolet lamp (MPUVL) is a new technology for generating a high intensity ultraviolet (UV) light. A Fluorescent optical fiber based sensor is presented which is used for monitoring the output of a high power microwave UV light source and its control. This sensor is a fiber which has had its cladding removed and been coated with a phosphor doped polymer.

  18. Measurements of energy distribution and thrust for microwave plasma coupling of electrical energy to hydrogen for propulsion

    NASA Technical Reports Server (NTRS)

    Morin, T.; Chapman, R.; Filpus, J.; Hawley, M.; Kerber, R.; Asmussen, J.; Nakanishi, S.

    1982-01-01

    A microwave plasma system for transfer of electrical energy to hydrogen flowing through the system has potential application for coupling energy to a flowing gas in the electrothermal propulsion concept. Experimental systems have been designed and built for determination of the energy inputs and outputs and thrust for the microwave coupling of energy to hydrogen. Results for experiments with pressure in the range 100 microns-6 torr, hydrogen flow rate up to 1000 micronmoles/s, and total absorbed power to 700 w are presented.

  19. Multi-Band Miniaturized Patch Antennas for a Compact, Shielded Microwave Breast Imaging Array.

    PubMed

    Aguilar, Suzette M; Al-Joumayly, Mudar A; Burfeindt, Matthew J; Behdad, Nader; Hagness, Susan C

    2013-12-18

    We present a comprehensive study of a class of multi-band miniaturized patch antennas designed for use in a 3D enclosed sensor array for microwave breast imaging. Miniaturization and multi-band operation are achieved by loading the antenna with non-radiating slots at strategic locations along the patch. This results in symmetric radiation patterns and similar radiation characteristics at all frequencies of operation. Prototypes were fabricated and tested in a biocompatible immersion medium. Excellent agreement was obtained between simulations and measurements. The trade-off between miniaturization and radiation efficiency within this class of patch antennas is explored via a numerical analysis of the effects of the location and number of slots, as well as the thickness and permittivity of the dielectric substrate, on the resonant frequencies and gain. Additionally, we compare 3D quantitative microwave breast imaging performance achieved with two different enclosed arrays of slot-loaded miniaturized patch antennas. Simulated array measurements were obtained for a 3D anatomically realistic numerical breast phantom. The reconstructed breast images generated from miniaturized patch array data suggest that, for the realistic noise power levels assumed in this study, the variations in gain observed across this class of multi-band patch antennas do not significantly impact the overall image quality. We conclude that these miniaturized antennas are promising candidates as compact array elements for shielded, multi-frequency microwave breast imaging systems.

  20. Multi-Band Miniaturized Patch Antennas for a Compact, Shielded Microwave Breast Imaging Array.

    PubMed

    Aguilar, Suzette M; Al-Joumayly, Mudar A; Burfeindt, Matthew J; Behdad, Nader; Hagness, Susan C

    2013-12-18

    We present a comprehensive study of a class of multi-band miniaturized patch antennas designed for use in a 3D enclosed sensor array for microwave breast imaging. Miniaturization and multi-band operation are achieved by loading the antenna with non-radiating slots at strategic locations along the patch. This results in symmetric radiation patterns and similar radiation characteristics at all frequencies of operation. Prototypes were fabricated and tested in a biocompatible immersion medium. Excellent agreement was obtained between simulations and measurements. The trade-off between miniaturization and radiation efficiency within this class of patch antennas is explored via a numerical analysis of the effects of the location and number of slots, as well as the thickness and permittivity of the dielectric substrate, on the resonant frequencies and gain. Additionally, we compare 3D quantitative microwave breast imaging performance achieved with two different enclosed arrays of slot-loaded miniaturized patch antennas. Simulated array measurements were obtained for a 3D anatomically realistic numerical breast phantom. The reconstructed breast images generated from miniaturized patch array data suggest that, for the realistic noise power levels assumed in this study, the variations in gain observed across this class of multi-band patch antennas do not significantly impact the overall image quality. We conclude that these miniaturized antennas are promising candidates as compact array elements for shielded, multi-frequency microwave breast imaging systems. PMID:25392561