Sample records for microwave methods enable

  1. Microwave sensing technology issues related to a global change technology architecture trade study

    NASA Technical Reports Server (NTRS)

    Campbell, Thomas G.; Shiue, Jim; Connolly, Denis; Woo, Ken

    1991-01-01

    The objectives are to enable the development of lighter and less power consuming, high resolution microwave sensors which will operate at frequencies from 1 to 200 GHz. These systems will use large aperture antenna systems (both reflector and phased arrays) capable of wide scan angle, high polarization purity, and utilize sidelobe suppression techniques as required. Essentially, the success of this technology program will enable high resolution microwave radiometers from geostationary orbit, lightweight and more efficient radar systems from low Earth orbit, and eliminate mechanical scanning methods to the fullest extent possible; a main source of platform instability in large space systems. The Global Change Technology Initiative (GCTI) will develop technology which will enable the use of satellite systems for Earth observations on a global scale.

  2. Carbon Fiber TOW Angle Determination Using Microwave Reflectometry

    NASA Technical Reports Server (NTRS)

    Wilson, William C.; Moore, Jason P.; Juarez, Peter D.

    2016-01-01

    NASA's Advanced Composites Project is investigating technologies that increase automated remote inspection of aircraft composite structures. Therefore, microwave Frequency Domain Reflectometry (FDR) is being investigated as a method of enabling rapid remote inspection of angular orientation of the tow using microwave radiation. This work will present preliminary data demonstrating that frequency shifts in the reflection spectrum of a carbon fiber tow sample are indicative of the angle of the tow with respect to an interrogating antenna's linear polarized output.

  3. Microwave non-contact imaging of subcutaneous human body tissues.

    PubMed

    Kletsov, Andrey; Chernokalov, Alexander; Khripkov, Alexander; Cho, Jaegeol; Druchinin, Sergey

    2015-10-01

    A small-size microwave sensor is developed for non-contact imaging of a human body structure in 2D, enabling fitness and health monitoring using mobile devices. A method for human body tissue structure imaging is developed and experimentally validated. Subcutaneous fat tissue reconstruction depth of up to 70 mm and maximum fat thickness measurement error below 2 mm are demonstrated by measurements with a human body phantom and human subjects. Electrically small antennas are developed for integration of the microwave sensor into a mobile device. Usability of the developed microwave sensor for fitness applications, healthcare, and body weight management is demonstrated.

  4. Microwave-induced electrostatic etching: generation of highly reactive magnesium for application in Grignard reagent formation.

    PubMed

    van de Kruijs, Bastiaan H P; Dressen, Mark H C L; Meuldijk, Jan; Vekemans, Jef A J M; Hulshof, Lumbertus A

    2010-04-07

    A detailed study regarding the influence of microwave irradiation on the formation of a series of Grignard reagents in terms of rates and selectivities has revealed that these heterogeneous reactions may display a beneficial microwave effect. The interaction between microwaves and magnesium turnings generates violent electrostatic discharges. These discharges on magnesium lead to melting of the magnesium surface, thus generating highly active magnesium particles. As compared to conventional operation the microwave-induced discharges on the magnesium surface lead to considerably shorter initiation times for the insertion of magnesium in selected substrates (i.e. halothiophenes, halopyridines, octyl halides, and halobenzenes). Thermographic imaging and surface characterization by scanning electron microscopy showed that neither selective heating nor a "specific" microwave effect was causing the reduction in initiation times. This novel and straightforward initiation method eliminates the use of toxic and environmentally adverse initiators. Thus, this initiation method limits the formation of by-products. We clearly demonstrated that microwave irradiation enables fast Grignard reagent formation. Therefore, microwave technology is promising for process intensification of Grignard based coupling reactions.

  5. Microwave non-contact imaging of subcutaneous human body tissues

    PubMed Central

    Chernokalov, Alexander; Khripkov, Alexander; Cho, Jaegeol; Druchinin, Sergey

    2015-01-01

    A small-size microwave sensor is developed for non-contact imaging of a human body structure in 2D, enabling fitness and health monitoring using mobile devices. A method for human body tissue structure imaging is developed and experimentally validated. Subcutaneous fat tissue reconstruction depth of up to 70 mm and maximum fat thickness measurement error below 2 mm are demonstrated by measurements with a human body phantom and human subjects. Electrically small antennas are developed for integration of the microwave sensor into a mobile device. Usability of the developed microwave sensor for fitness applications, healthcare, and body weight management is demonstrated. PMID:26609415

  6. Advancing microwave technology for dehydration processing of biologics.

    PubMed

    Cellemme, Stephanie L; Van Vorst, Matthew; Paramore, Elisha; Elliott, Gloria D

    2013-10-01

    Our prior work has shown that microwave processing can be effective as a method for dehydrating cell-based suspensions in preparation for anhydrous storage, yielding homogenous samples with predictable and reproducible drying times. In the current work an optimized microwave-based drying process was developed that expands upon this previous proof-of-concept. Utilization of a commercial microwave (CEM SAM 255, Matthews, NC) enabled continuous drying at variable low power settings. A new turntable was manufactured from Ultra High Molecular Weight Polyethylene (UHMW-PE; Grainger, Lake Forest, IL) to provide for drying of up to 12 samples at a time. The new process enabled rapid and simultaneous drying of multiple samples in containment devices suitable for long-term storage and aseptic rehydration of the sample. To determine sample repeatability and consistency of drying within the microwave cavity, a concentration series of aqueous trehalose solutions were dried for specific intervals and water content assessed using Karl Fischer Titration at the end of each processing period. Samples were dried on Whatman S-14 conjugate release filters (Whatman, Maidestone, UK), a glass fiber membrane used currently in clinical laboratories. The filters were cut to size for use in a 13 mm Swinnex(®) syringe filter holder (Millipore(™), Billerica, MA). Samples of 40 μL volume could be dehydrated to the equilibrium moisture content by continuous processing at 20% with excellent sample-to-sample repeatability. The microwave-assisted procedure enabled high throughput, repeatable drying of multiple samples, in a manner easily adaptable for drying a wide array of biological samples. Depending on the tolerance for sample heating, the drying time can be altered by changing the power level of the microwave unit.

  7. Acid digestion of geological and environmental samples using open-vessel focused microwave digestion.

    PubMed

    Taylor, Vivien F; Toms, Andrew; Longerich, Henry P

    2002-01-01

    The application of open vessel focused microwave acid digestion is described for the preparation of geological and environmental samples for analysis using inductively coupled plasma-mass spectrometry (ICP-MS). The method is compared to conventional closed-vessel high pressure methods which are limited in the use of HF to break down silicates. Open-vessel acid digestion more conveniently enables the use of HF to remove Si from geological and plant samples as volatile SiF4, as well as evaporation-to-dryness and sequential acid addition during the procedure. Rock reference materials (G-2 granite, MRG-1 gabbros, SY-2 syenite, JA-1 andesite, and JB-2 and SRM-688 basalts) and plant reference materials (BCR and IAEA lichens, peach leaves, apple leaves, Durham wheat flour, and pine needles) were digested with results comparable to conventional hotplate digestion. The microwave digestion method gave poor results for granitic samples containing refractory minerals, however fusion was the preferred method of preparation for these samples. Sample preparation time was reduced from several days, using conventional hotplate digestion method, to one hour per sample using our microwave method.

  8. Electric field measurement in microwave discharge ion thruster with electro-optic probe.

    PubMed

    Ise, Toshiyuki; Tsukizaki, Ryudo; Togo, Hiroyoshi; Koizumi, Hiroyuki; Kuninaka, Hitoshi

    2012-12-01

    In order to understand the internal phenomena in a microwave discharge ion thruster, it is important to measure the distribution of the microwave electric field inside the discharge chamber, which is directly related to the plasma production. In this study, we proposed a novel method of measuring a microwave electric field with an electro-optic (EO) probe based on the Pockels effect. The probe, including a cooling system, contains no metal and can be accessed in the discharge chamber with less disruption to the microwave distribution. This method enables measurement of the electric field profile under ion beam acceleration. We first verified the measurement with the EO probe by a comparison with a finite-difference time domain numerical simulation of the microwave electric field in atmosphere. Second, we showed that the deviations of the reflected microwave power and the beam current were less than 8% due to inserting the EO probe into the ion thruster under ion beam acceleration. Finally, we successfully demonstrated the measurement of the electric-field profile in the ion thruster under ion beam acceleration. These measurements show that the electric field distribution in the thruster dramatically changes in the ion thruster under ion beam acceleration as the propellant mass flow rate increases. These results indicate that this new method using an EO probe can provide a useful guide for improving the propulsion of microwave discharge ion thrusters.

  9. [Analysis of triterpenoids in Ganoderma lucidum by microwave-assisted continuous extraction].

    PubMed

    Lu, Yan-fang; An, Jing; Jiang, Ye

    2015-04-01

    For further improving the extraction efficiency of microwave extraction, a microwave-assisted contijuous extraction (MACE) device has been designed and utilized. By contrasting with the traditional methods, the characteristics and extraction efficiency of MACE has also been studied. The method was validated by the analysis of the triterpenoids in Ganoderma lucidum. The extraction conditions of MACE were: using 95% ethanol as solvent, microwave power 200 W and radiation time 14.5 min (5 cycles). The extraction results were subsequently compared with traditional heat reflux extraction ( HRE) , soxhlet extraction (SE), ultrasonic extraction ( UE) as well as the conventional microwave extraction (ME). For triterpenoids, the two methods based on the microwaves (ME and MACE) were in general capable of finishing the extraction in 10, 14.5 min, respectively, while other methods should consume 60 min and even more than 100 min. Additionally, ME can produce comparable extraction results as the classical HRE and higher extraction yield than both SE and UE, however, notably lower extraction yield than MASE. More importantly, the purity of the crud extract by MACE is far better than the other methods. MACE can effectively combine the advantages of microwave extraction and soxhlet extraction, thus enabling a more complete extraction of the analytes of TCMs in comparison with ME. And therefore makes the analytic result more accurate. It provides a novel, high efficient, rapid and reliable pretreatment technique for the analysis of TCMs, and it could potentially be extended to ingredient preparation or extracting techniques of TCMs.

  10. In-line monitoring of granule moisture in fluidized-bed dryers using microwave resonance technology.

    PubMed

    Buschmüller, Caroline; Wiedey, Wolfgang; Döscher, Claas; Dressler, Jochen; Breitkreutz, Jörg

    2008-05-01

    This is the first report on in-line moisture measurement of pharmaceutical products by microwave resonance technology. In order to meet the FDA's PAT approach, a microwave resonance sensor appropriate for pharmaceutical use was developed and implemented into two different fluidized-bed dryers. The novel sensor enables a continuous moisture measurement independent from the product density. Hence, for the first time precise real time determination of the moisture in pharmaceutical granules becomes possible. The qualification of the newly developed sensor was performed by drying placebo granules under experimental conditions and the validation using drug loaded granules under real process conditions. The results of the investigations show good correlations between water content of the granules determined by the microwave resonance sensor and both reference methods, loss on drying by infrared light exposure and Karl Fischer titration. Furthermore, a considerable time saving in the drying process was achieved through monitoring the residual water content continuously by microwave resonance technology instead of the formerly used discontinuous methods.

  11. Microwave Sensors for Breast Cancer Detection

    PubMed Central

    2018-01-01

    Breast cancer is the leading cause of death among females, early diagnostic methods with suitable treatments improve the 5-year survival rates significantly. Microwave breast imaging has been reported as the most potential to become the alternative or additional tool to the current gold standard X-ray mammography for detecting breast cancer. The microwave breast image quality is affected by the microwave sensor, sensor array, the number of sensors in the array and the size of the sensor. In fact, microwave sensor array and sensor play an important role in the microwave breast imaging system. Numerous microwave biosensors have been developed for biomedical applications, with particular focus on breast tumor detection. Compared to the conventional medical imaging and biosensor techniques, these microwave sensors not only enable better cancer detection and improve the image resolution, but also provide attractive features such as label-free detection. This paper aims to provide an overview of recent important achievements in microwave sensors for biomedical imaging applications, with particular focus on breast cancer detection. The electric properties of biological tissues at microwave spectrum, microwave imaging approaches, microwave biosensors, current challenges and future works are also discussed in the manuscript. PMID:29473867

  12. Microwave Sensors for Breast Cancer Detection.

    PubMed

    Wang, Lulu

    2018-02-23

    Breast cancer is the leading cause of death among females, early diagnostic methods with suitable treatments improve the 5-year survival rates significantly. Microwave breast imaging has been reported as the most potential to become the alternative or additional tool to the current gold standard X-ray mammography for detecting breast cancer. The microwave breast image quality is affected by the microwave sensor, sensor array, the number of sensors in the array and the size of the sensor. In fact, microwave sensor array and sensor play an important role in the microwave breast imaging system. Numerous microwave biosensors have been developed for biomedical applications, with particular focus on breast tumor detection. Compared to the conventional medical imaging and biosensor techniques, these microwave sensors not only enable better cancer detection and improve the image resolution, but also provide attractive features such as label-free detection. This paper aims to provide an overview of recent important achievements in microwave sensors for biomedical imaging applications, with particular focus on breast cancer detection. The electric properties of biological tissues at microwave spectrum, microwave imaging approaches, microwave biosensors, current challenges and future works are also discussed in the manuscript.

  13. Quantum-enabled temporal and spectral mode conversion of microwave signals

    PubMed Central

    Andrews, R. W.; Reed, A. P.; Cicak, K.; Teufel, J. D.; Lehnert, K. W.

    2015-01-01

    Electromagnetic waves are ideal candidates for transmitting information in a quantum network as they can be routed rapidly and efficiently between locations using optical fibres or microwave cables. Yet linking quantum-enabled devices with cables has proved difficult because most cavity or circuit quantum electrodynamics systems used in quantum information processing can only absorb and emit signals with a specific frequency and temporal envelope. Here we show that the temporal and spectral content of microwave-frequency electromagnetic signals can be arbitrarily manipulated with a flexible aluminium drumhead embedded in a microwave circuit. The aluminium drumhead simultaneously forms a mechanical oscillator and a tunable capacitor. This device offers a way to build quantum microwave networks using separate and otherwise mismatched components. Furthermore, it will enable the preparation of non-classical states of motion by capturing non-classical microwave signals prepared by the most coherent circuit quantum electrodynamics systems. PMID:26617386

  14. ARC-2002-ACD02-0061-5

    NASA Image and Video Library

    2002-02-26

    Microvave effects on plant growth (alfalfa), shown here is Dr. Jay Skiles of NASA Ames Research Center, Moffett Field, Calif. NASA scientists are about to test that hypothesis by evaluating the effects of continuously beaming weak microwaves on alfalfa plants during laboratory tests. Microwaves derived from solar power and transmitted by orbiting satellites to electric power stations on Earth may someday enable U.S. energy self-sufficiency, but is this method safe for local plant life?

  15. ARC-2002-ACD02-0061-4

    NASA Image and Video Library

    2002-02-26

    Microvave effects on plant growth (alfalfa), shown here is Dr. Jay Skiles of NASA Ames Research Center, Moffett Field, Calif. NASA scientists are about to test that hypothesis by evaluating the effects of continuously beaming weak microwaves on alfalfa plants during laboratory tests. Microwaves derived from solar power and transmitted by orbiting satellites to electric power stations on Earth may someday enable U.S. energy self-sufficiency, but is this method safe for local plant life?

  16. Circuit-level simulation of transistor lasers and its application to modelling of microwave photonic links

    NASA Astrophysics Data System (ADS)

    Iezekiel, Stavros; Christou, Andreas

    2015-03-01

    Equivalent circuit models of a transistor laser are used to investigate the suitability of this relatively new device for analog microwave photonic links. The three-terminal nature of the device enables transistor-based circuit design techniques to be applied to optoelectronic transmitter design. To this end, we investigate the application of balanced microwave amplifier topologies in order to enable low-noise links to be realized with reduced intermodulation distortion and improved RF impedance matching compared to conventional microwave photonic links.

  17. Microwave or autoclave treatments destroy the infectivity of infectious bronchitis virus and avian pneumovirus but allow detection by reverse transcriptase-polymerase chain reaction.

    PubMed

    Elhafi, G; Naylor, C J; Savage, C E; Jones, R C

    2004-06-01

    A method is described for enabling safe transit of denatured virus samples for polymerase chain reaction (PCR) identification without the risk of unwanted viable viruses. Cotton swabs dipped in avian infectious bronchitis virus (IBV) or avian pneumovirus (APV) were allowed to dry. Newcastle disease virus and avian influenza viruses were used as controls. Autoclaving and microwave treatment for as little as 20 sec destroyed the infectivity of all four viruses. However, both IBV and APV could be detected by reverse transcriptase (RT)-PCR after autoclaving and as long as 5 min microwave treatment (Newcastle disease virus and avian influenza viruses were not tested). Double microwave treatment of IBV and APV with an interval of 2 to 7 days between was tested. After the second treatment, RT-PCR products were readily detected in all samples. Swabs from the tracheas and cloacas of chicks infected with IBV shown to contain infectious virus were microwaved. Swabs from both sources were positive by RT-PCR. Microwave treatment appears to be a satisfactory method of inactivating virus while preserving nucleic acid for PCR identification.

  18. Enabling technologies and green processes in cyclodextrin chemistry.

    PubMed

    Cravotto, Giancarlo; Caporaso, Marina; Jicsinszky, Laszlo; Martina, Katia

    2016-01-01

    The design of efficient synthetic green strategies for the selective modification of cyclodextrins (CDs) is still a challenging task. Outstanding results have been achieved in recent years by means of so-called enabling technologies, such as microwaves, ultrasound and ball mills, that have become irreplaceable tools in the synthesis of CD derivatives. Several examples of sonochemical selective modification of native α-, β- and γ-CDs have been reported including heterogeneous phase Pd- and Cu-catalysed hydrogenations and couplings. Microwave irradiation has emerged as the technique of choice for the production of highly substituted CD derivatives, CD grafted materials and polymers. Mechanochemical methods have successfully furnished greener, solvent-free syntheses and efficient complexation, while flow microreactors may well improve the repeatability and optimization of critical synthetic protocols.

  19. High-efficiency water-loaded microwave antenna in ultra-high-frequency band

    NASA Astrophysics Data System (ADS)

    Gong, Zilun; Bartone, Chris; Yang, Fuyi; Yao, Jie

    2018-03-01

    High-index dielectrics are widely used in microwave antennas to control the radiation characteristics. Liquid water, with a high dielectric index at microwave frequency, is an interesting material to achieving tunable functionalities. Here, we demonstrate a water-loaded microwave antenna system that has high loss-tolerance and wideband tunability enabled by fluidity. Our simulation and experimental results show that the resonance frequency can be effectively tuned by the size of loading water. Furthermore, the antenna systems with water loading can achieve high radiation efficiency (>90%) in the ultra-high-frequency (0.3-3 GHz) band. This work brings about opportunities in realistic tunable microwave antenna designs enabled by liquid.

  20. Development of a Multi-Point Microwave Interferometry (MPMI) Method

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Specht, Paul Elliott; Cooper, Marcia A.; Jilek, Brook Anton

    2015-09-01

    A multi-point microwave interferometer (MPMI) concept was developed for non-invasively tracking a shock, reaction, or detonation front in energetic media. Initially, a single-point, heterodyne microwave interferometry capability was established. The design, construction, and verification of the single-point interferometer provided a knowledge base for the creation of the MPMI concept. The MPMI concept uses an electro-optic (EO) crystal to impart a time-varying phase lag onto a laser at the microwave frequency. Polarization optics converts this phase lag into an amplitude modulation, which is analyzed in a heterodyne interfer- ometer to detect Doppler shifts in the microwave frequency. A version of themore » MPMI was constructed to experimentally measure the frequency of a microwave source through the EO modulation of a laser. The successful extraction of the microwave frequency proved the underlying physical concept of the MPMI design, and highlighted the challenges associated with the longer microwave wavelength. The frequency measurements made with the current equipment contained too much uncertainty for an accurate velocity measurement. Potential alterations to the current construction are presented to improve the quality of the measured signal and enable multiple accurate velocity measurements.« less

  1. HERMA-Heartbeat Microwave Authentication

    NASA Technical Reports Server (NTRS)

    Haque, Salman-ul Mohammed (Inventor); Chow, Edward (Inventor); McKee, Michael Ray (Inventor); Tkacenko, Andre (Inventor); Lux, James Paul (Inventor)

    2018-01-01

    Systems and methods for identifying and/or authenticating individuals utilizing microwave sensing modules are disclosed. A HEaRtbeat Microwave Authentication (HERMA) system can enable the active identification and/or authentication of a user by analyzing reflected RF signals that contain a person's unique characteristics related to their heartbeats. An illumination signal is transmitted towards a person where a reflected signal captures the motion of the skin and tissue (i.e. displacement) due to the person's heartbeats. The HERMA system can utilize existing transmitters in a mobile device (e.g. Wi-Fi, Bluetooth, Cellphone signals) as the illumination source with at least one external receive antenna. The received reflected signals can be pre-processed and analyzed to identify and/or authenticate a user.

  2. Enabling technologies and green processes in cyclodextrin chemistry

    PubMed Central

    Caporaso, Marina; Jicsinszky, Laszlo; Martina, Katia

    2016-01-01

    Summary The design of efficient synthetic green strategies for the selective modification of cyclodextrins (CDs) is still a challenging task. Outstanding results have been achieved in recent years by means of so-called enabling technologies, such as microwaves, ultrasound and ball mills, that have become irreplaceable tools in the synthesis of CD derivatives. Several examples of sonochemical selective modification of native α-, β- and γ-CDs have been reported including heterogeneous phase Pd- and Cu-catalysed hydrogenations and couplings. Microwave irradiation has emerged as the technique of choice for the production of highly substituted CD derivatives, CD grafted materials and polymers. Mechanochemical methods have successfully furnished greener, solvent-free syntheses and efficient complexation, while flow microreactors may well improve the repeatability and optimization of critical synthetic protocols. PMID:26977187

  3. Selective molecular annealing: in situ small angle X-ray scattering study of microwave-assisted annealing of block copolymers.

    PubMed

    Toolan, Daniel T W; Adlington, Kevin; Isakova, Anna; Kalamiotis, Alexis; Mokarian-Tabari, Parvaneh; Dimitrakis, Georgios; Dodds, Christopher; Arnold, Thomas; Terrill, Nick J; Bras, Wim; Hermida Merino, Daniel; Topham, Paul D; Irvine, Derek J; Howse, Jonathan R

    2017-08-09

    Microwave annealing has emerged as an alternative to traditional thermal annealing approaches for optimising block copolymer self-assembly. A novel sample environment enabling small angle X-ray scattering to be performed in situ during microwave annealing is demonstrated, which has enabled, for the first time, the direct study of the effects of microwave annealing upon the self-assembly behavior of a model, commercial triblock copolymer system [polystyrene-block-poly(ethylene-co-butylene)-block-polystyrene]. Results show that the block copolymer is a poor microwave absorber, resulting in no change in the block copolymer morphology upon application of microwave energy. The block copolymer species may only indirectly interact with the microwave energy when a small molecule microwave-interactive species [diethylene glycol dibenzoate (DEGDB)] is incorporated directly into the polymer matrix. Then significant morphological development is observed at DEGDB loadings ≥6 wt%. Through spatial localisation of the microwave-interactive species, we demonstrate targeted annealing of specific regions of a multi-component system, opening routes for the development of "smart" manufacturing methodologies.

  4. Microwave-assisted hydrolysis and extraction of tricyclic antidepressants from human hair.

    PubMed

    Wietecha-Posłuszny, Renata; Garbacik, Aneta; Woźniakiewicz, Michał; Kościelniak, Paweł

    2011-03-01

    The objective of this research was to develop, optimize, and validate a modern, rapid method of preparation of human hair samples, using microwave irradiation, for analysis of eight tricyclic antidepressants (TCADs): nordoxepin, nortriptyline, imipramine, amitriptyline, doxepin, desipramine, clomipramine, and norclomipramine. It was based on simultaneous alkaline hair microwave-assisted hydrolysis and microwave-assisted extraction (MAH-MAE). Extracts were analyzed by high-performance liquid chromatography with diode-array detection (HPLC-DAD). A mixture of n-hexane and isoamyl alcohol (99:1, v/v) was used as extraction solvent and the process was performed at 60°C. Application of 1.0 mol L(-1) NaOH and microwave irradiation for 40 min were found to be optimum for hair samples. Limits of detection ranged from 0.3 to 1.2 μg g(-1) and LOQ from 0.9 to 4.0 μg g(-1) for the different drugs. This enabled us to quantify them in hair samples within average therapeutic concentration ranges.

  5. Remote Strain Sensing of CFRP Using Microwave Frequency Domain Reflectometry

    NASA Technical Reports Server (NTRS)

    Wilson, William C.; Moore, Jason P.; Juarez, Peter D.

    2016-01-01

    NASA's Advanced Composites Project is investigating technologies that increase automated remote inspection of aircraft composite structures. Therefore, microwave Frequency Domain Reflectometry (FDR) is being investigated as a method of enabling rapid remote measurement of strain occurring at the first ply of a composite fiber reinforced polymer (CFRP) structure using Radio Frequency (RF) Electro-Magnetic (EM) radiation. While microwave reflectometry has been used to detect disbonds in CFRP structures, its use in detecting strain has been limited. This work will present data demonstrating the measurement of the reactance changes due to loading conditions that are indicative of strain in a CFRP structure. In addition, the basic EM signature will be presented along with an analysis of temperature and humidity effects.

  6. Microwave plasma enabled synthesis of free standing carbon nanostructures at atmospheric pressure conditions.

    PubMed

    Bundaleska, N; Tsyganov, D; Dias, A; Felizardo, E; Henriques, J; Dias, F M; Abrashev, M; Kissovski, J; Tatarova, E

    2018-05-23

    An experimental and theoretical study on microwave (2.45 GHz) plasma enabled assembly of carbon nanostructures, such as multilayer graphene sheets and nanoparticles, was performed. The carbon nanostructures were fabricated at different Ar-CH4 gas mixture composition and flows at atmospheric pressure conditions. The synthesis method is based on decomposition of the carbon-containing precursor (CH4) in the "hot" microwave plasma environment into carbon atoms and molecules, which are further converted into solid carbon nuclei in the "colder" plasma zones. By tailoring of the plasma environment, a controlled synthesis of graphene sheets and diamond-like nanoparticles was achieved. Selective synthesis of graphene flakes was achieved at a microwave power of 1 kW, Ar and methane flow rates of 600 sccm and 2 sccm respectively, while the predominant synthesis of diamond-like nanoparticles was obtained at the same power, but with higher flow rates, i.e. 1000 and 7.5 sccm, respectively. Optical emission spectroscopy was applied to detect the plasma emission related to carbon species from the 'hot' plasma zone and to determine the main plasma parameters. Raman spectroscopy and scanning electron microscopy have been applied to characterize the synthesized nanostructures. A previously developed theoretical model was further updated and employed to understand the mechanism of CH4 decomposition and formation of the main building units, i.e. C and C2, of the carbon nanostructures. An insight into the physical chemistry of carbon nanostructure formation in a high energy density microwave plasma environment is presented.

  7. Release of hydrogen from nanoconfined hydrides by application of microwaves

    NASA Astrophysics Data System (ADS)

    Sanz-Moral, Luis Miguel; Navarrete, Alexander; Sturm, Guido; Link, Guido; Rueda, Miriam; Stefanidis, Georgios; Martín, Ángel

    2017-06-01

    The release of hydrogen from solid hydrides by thermolysis can be improved by nanoconfinement of the hydride in a suitable micro/mesoporous support, but the slow heat transfer by conduction through the support can be a limitation. In this work, a C/SiO2 mesoporous material has been synthesized and employed as matrix for nanoconfinement of hydrides. The matrix showed high surface area and pore volume (386 m2/g and 1.41 cm3/g), which enabled the confinement of high concentrations of hydride. Furthermore, by modification of the proportion between C and SiO2, the dielectric properties of the complex could be modified, making it susceptible to microwave heating. As with this heating method the entire sample is heated simultaneously, the heat transfer resistances associated to conduction were eliminated. To demonstrate this possibility, ethane 1,2-diaminoborane (EDAB) was embedded on the C/SiO2 matrix at concentrations ranging from 11 to 31%wt using a wet impregnation method, and a device appropriate for hydrogen release from this material by application of microwaves was designed with the aid of a numerical simulation. Hydrogen liberation tests by conventional heating and microwaves were compared, showing that by microwave heating hydrogen release can be initiated and stopped in shorter times.

  8. Method and split cavity oscillator/modulator to generate pulsed particle beams and electromagnetic fields

    DOEpatents

    Clark, M. Collins; Coleman, P. Dale; Marder, Barry M.

    1993-01-01

    A compact device called the split cavity modulator whose self-generated oscillating electromagnetic field converts a steady particle beam into a modulated particle beam. The particle beam experiences both signs of the oscillating electric field during the transit through the split cavity modulator. The modulated particle beam can then be used to generate microwaves at that frequency and through the use of extractors, high efficiency extraction of microwave power is enabled. The modulated beam and the microwave frequency can be varied by the placement of resistive wires at nodes of oscillation within the cavity. The short beam travel length through the cavity permit higher currents because both space charge and pinching limitations are reduced. The need for an applied magnetic field to control the beam has been eliminated.

  9. Method and split cavity oscillator/modulator to generate pulsed particle beams and electromagnetic fields

    DOEpatents

    Clark, M.C.; Coleman, P.D.; Marder, B.M.

    1993-08-10

    A compact device called the split cavity modulator whose self-generated oscillating electromagnetic field converts a steady particle beam into a modulated particle beam. The particle beam experiences both signs of the oscillating electric field during the transit through the split cavity modulator. The modulated particle beam can then be used to generate microwaves at that frequency and through the use of extractors, high efficiency extraction of microwave power is enabled. The modulated beam and the microwave frequency can be varied by the placement of resistive wires at nodes of oscillation within the cavity. The short beam travel length through the cavity permit higher currents because both space charge and pinching limitations are reduced. The need for an applied magnetic field to control the beam has been eliminated.

  10. Rapid microwave-assisted preparation of binary and ternary transition metal sulfide compounds

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Butala, Megan M.; Perez, Minue A.; Arnon, Shiri

    Transition metal chalcogenides are of interest for energy applications, including energy generation in photoelectrochemical cells and as electrodes for next-generation electrochemical energy storage. Synthetic routes for such chalcogenides typically involve extended heating at elevated temperatures for multiple weeks. We demonstrate here the feasibility of rapidly preparing select sulfide compounds in a matter of minutes, rather than weeks, using microwave-assisted heating in domestic microwaves. We report the preparations of phase pure FeS2, CoS2, and solid solutions thereof from the elements with only 40 min of heating. Conventional furnace and rapid microwave preparations of CuTi2S4 both result in a majority of themore » targeted phase, even with the significantly shorter heating time of 40 min for microwave methods relative to 12 days using a conventional furnace. The preparations we describe for these compounds can be extended to related structures and chemistries and thus enable rapid screening of the properties and performance of various compositions of interest for electronic, optical, and electrochemical applications.« less

  11. 4He sample probe for combined microwave and dc transport measurements

    NASA Astrophysics Data System (ADS)

    Dobrovolskiy, Oleksandr V.; Franke, Jörg; Huth, Michael

    2015-03-01

    Combined microwave and dc electrical transport measurements at low temperatures represent a valuable experimental method in many research areas. In particular, when samples are conventional superconductors, a typical experiment requires a combination of helium temperatures, a wide range of magnetic fields, and the utilization of coaxial lines along with the usual dc wiring. We report on the general design features and the microwave performance of a custom-made low-temperature sample probe, with a measurement bandwidth tested from dc to 20 GHz. Equipped with six coaxial cables, a heater, Hall and temperature sensors, the probe fits into a ⊘32 mm shaft. We present our setup, analyze its microwave performance, and describe two representative experiments enabled by this system. The proposed setup will be essential for a systematic study of the dc and ac response of the vortex dynamics in nanopatterned superconductors subject to combined dc and microwave stimuli. Besides, it will be valuable for the investigation of a broad class of nonlinear stochastic systems where a combination of dc and high-frequency ac driving in a wide temperature range is necessary.

  12. Alignment Measurements of the Microwave Anisotropy Probe (MAP) Instrument in a Thermal/Vacuum Chamber Using Photogrammetry

    NASA Technical Reports Server (NTRS)

    Hill, Michael D.; Herrera, Acey A.; Crane, J. Allen; Packard, Edward A.; Aviado, Carlos; Sampler, Henry P.; Obenschain, Arthur (Technical Monitor)

    2000-01-01

    The Microwave Anisotropy Probe (MAP) Observatory, scheduled for a late 2000 launch, is designed to measure temperature fluctuations (anisotropy) and produce a high sensitivity and high spatial resolution (< 0.3 deg at 90 GHz.) map of the cosmic microwave background (CMB) radiation over the entire sky between 22 and 90 GHz. MAP utilizes back-to-back Gregorian telescopes to focus the microwave signals into 10 differential microwave receivers, via 20 feed horns. Proper alignment of the telescope reflectors and the feed horns at the operating temperature of 90 K is a critical element to ensure mission success. We describe the hardware and methods used to validate the displacement/deformation predictions of the reflectors and the microwave feed horns during thermal/vacuum testing of the reflectors and the microwave instrument. The smallest deformations to be resolved by the measurement system were on the order of +/- 0.030 inches (0.762 mm). Performance of these alignment measurements inside a thermal/vacuum chamber with conventional alignment equipment posed several limitations. A photogrammetry (PG) system was chosen to perform the measurements since it is a non-contact measurement system, the measurements can be made relatively quickly and accurately, and the photogrammetric camera can be operated remotely. The hardware and methods developed to perform the MAP alignment measurements using PG proved to be highly successful. The PG measurements met the desired requirements, enabling the desired deformations to be measured and even resolved to an order of magnitude smaller than the imposed requirements. Viable data were provided to the MAP Project for a full analysis of the on-orbit performance of the Instrument's microwave system.

  13. Alignment Measurements of the Microwave Anisotropy Probe (MAP) Instrument in a Thermal/Vacuum Chamber

    NASA Technical Reports Server (NTRS)

    Hill, Michael D.; Herrera, Acey A.; Crane, J. Allen; Packard, Edward A.; Aviado, Carlos; Sampler, Henry P.

    2000-01-01

    The Microwave Anisotropy Probe (MAP) Observatory, scheduled for a fall 2000 launch, is designed to measure temperature fluctuations (anisotropy) and produce a high sensitivity and high spatial resolution (approximately 0.2 degree) map of the cosmic microwave background (CMB) radiation over the entire sky between 22 and 90 GHz. MAP utilizes back-to-back Gregorian telescopes to focus the microwave signals into 10 differential microwave receivers, via 20 feed horns. Proper alignment of the telescope reflectors and the feed horns at the operating temperature of 90 K is a critical element to ensure mission success. We describe the hardware and methods used to validate the displacement/deformation predictions of the reflectors and the microwave feed horns during thermal/vacuum testing of the reflectors and the microwave instrument. The smallest deformation predictions to be measured were on the order of +/- 0.030 inches (+/- 0.762 mm). Performance of these alignment measurements inside a thermal/vacuum chamber with conventional alignment equipment posed several limitations. The most troublesome limitation was the inability to send personnel into the chamber to perform the measurements during the test due to vacuum and the temperature extremes. The photogrammetry (PG) system was chosen to perform the measurements since it is a non- contact measurement system, the measurements can be made relatively quickly and accurately, and the photogrammetric camera can be operated remotely. The hardware and methods developed to perform the MAP alignment measurements using PG proved to be highly successful. The measurements met the desired requirements, for the metal structures enabling the desired distortions to be measured resolving deformations an order of magnitude smaller than the imposed requirements. Viable data were provided to the MAP Project for a full analysis of the on-orbit performance of the Instrument's microwave system.

  14. Rapid and Facile Microwave-Assisted Surface Chemistry for Functionalized Microarray Slides

    PubMed Central

    Lee, Jeong Heon; Hyun, Hoon; Cross, Conor J.; Henary, Maged; Nasr, Khaled A.; Oketokoun, Rafiou; Choi, Hak Soo; Frangioni, John V.

    2011-01-01

    We describe a rapid and facile method for surface functionalization and ligand patterning of glass slides based on microwave-assisted synthesis and a microarraying robot. Our optimized reaction enables surface modification 42-times faster than conventional techniques and includes a carboxylated self-assembled monolayer, polyethylene glycol linkers of varying length, and stable amide bonds to small molecule, peptide, or protein ligands to be screened for binding to living cells. We also describe customized slide racks that permit functionalization of 100 slides at a time to produce a cost-efficient, highly reproducible batch process. Ligand spots can be positioned on the glass slides precisely using a microarraying robot, and spot size adjusted for any desired application. Using this system, we demonstrate live cell binding to a variety of ligands and optimize PEG linker length. Taken together, the technology we describe should enable high-throughput screening of disease-specific ligands that bind to living cells. PMID:23467787

  15. New diagnostic methods for laser plasma- and microwave-enhanced combustion

    PubMed Central

    Miles, Richard B; Michael, James B; Limbach, Christopher M; McGuire, Sean D; Chng, Tat Loon; Edwards, Matthew R; DeLuca, Nicholas J; Shneider, Mikhail N; Dogariu, Arthur

    2015-01-01

    The study of pulsed laser- and microwave-induced plasma interactions with atmospheric and higher pressure combusting gases requires rapid diagnostic methods that are capable of determining the mechanisms by which these interactions are taking place. New rapid diagnostics are presented here extending the capabilities of Rayleigh and Thomson scattering and resonance-enhanced multi-photon ionization (REMPI) detection and introducing femtosecond laser-induced velocity and temperature profile imaging. Spectrally filtered Rayleigh scattering provides a method for the planar imaging of temperature fields for constant pressure interactions and line imaging of velocity, temperature and density profiles. Depolarization of Rayleigh scattering provides a measure of the dissociation fraction, and multi-wavelength line imaging enables the separation of Thomson scattering from Rayleigh scattering. Radar REMPI takes advantage of high-frequency microwave scattering from the region of laser-selected species ionization to extend REMPI to atmospheric pressures and implement it as a stand-off detection method for atomic and molecular species in combusting environments. Femtosecond laser electronic excitation tagging (FLEET) generates highly excited molecular species and dissociation through the focal zone of the laser. The prompt fluorescence from excited molecular species yields temperature profiles, and the delayed fluorescence from recombining atomic fragments yields velocity profiles. PMID:26170432

  16. Frequency agile microwave photonic notch filter with anomalously high stopband rejection.

    PubMed

    Marpaung, David; Morrison, Blair; Pant, Ravi; Eggleton, Benjamin J

    2013-11-01

    We report a novel class microwave photonic (MWP) notch filter with a very narrow isolation bandwidth (10 MHz), an ultrahigh stopband rejection (>60 dB), a wide frequency tuning (1-30 GHz), and flexible bandwidth reconfigurability (10-65 MHz). This performance is enabled by a new concept of sideband amplitude and phase controls using an electro-optic modulator and an optical filter. This concept enables energy efficient operation in active MWP notch filters, and opens up a pathway toward enabling low-power nanophotonic devices as high-performance RF filters.

  17. Microwave phase shifter with controllable power response based on slow- and fast-light effects in semiconductor optical amplifiers.

    PubMed

    Xue, Weiqi; Sales, Salvador; Capmany, José; Mørk, Jesper

    2009-04-01

    We suggest and experimentally demonstrate a method for increasing the tunable rf phase shift of semiconductor waveguides while at the same time enabling control of the rf power. This method is based on the use of slow- and fast-light effects in a cascade of semiconductor optical amplifiers combined with the use of spectral filtering to enhance the role of refractive index dynamics. A continuously tunable phase shift of approximately 240 degrees at a microwave frequency of 19 GHz is demonstrated in a cascade of two semiconductor optical amplifiers, while maintaining an rf power change of less than 1.6 dB. The technique is scalable to more amplifiers and should allow realization of an rf phase shift of 360 degrees.

  18. A feasibility study of a microwave water vapor measurement from a space probe along an occultation path

    NASA Technical Reports Server (NTRS)

    Longbothum, R. L.

    1975-01-01

    Stratospheric and mesospheric water vapor measurements were taken using the microwave lines at 22 GHz (22.235 GHz) and 183 GHz (183.31 GHz). The resonant cross sections for both the 22 GHz and the 183 GHz lines were used to model the optical depth of atmospheric water vapor. The range of optical depths seen by a microwave radiometer through the earth's limb was determined from radiative transfer theory. Radiometer sensitivity, derived from signal theory, was compared with calculated optical depths to determine the maximum height to which water vapor can be measured using the following methods: passive emission, passive absorption, and active absorption. It was concluded that measurements using the 22 GHz line are limited to about 50 km whereas the 183 GHz line enables measurements up to and above 100 km for water vapor mixing ratios as low as 0.1 ppm under optimum conditions.

  19. Investigation of mechanical and thermal properties of microwave-sintered lunar simulant materials using 2.45 GHz radiation

    NASA Technical Reports Server (NTRS)

    Meek, T. T.

    1990-01-01

    The mechanical and thermal properties of lunar simulant material were investigated. An alternative method of examining thermal shock in microwave-sintered lunar samples was researched. A computer code was developed that models how the fracture toughness of a thermally shocked lunar simulant sample is related to the sample hardness as measured by a micro-hardness indentor apparatus. This technique enables much data to be gathered from a few samples. Several samples were sintered at different temperatures and for different times at the temperatures. The melting and recrystallization characteristics of a well-studied binary system were also investigated to see if the thermodynamic barrier for the nucleation of a crystalline phase may be affected by the presence of a microwave field. The system chosen was the albite (sodium alumino silicate) anorthite system (calcium alumino silicate). The results of these investigations are presented.

  20. Exact analytic solutions of Maxwell's equations describing propagating nonparaxial electromagnetic beams.

    PubMed

    Garay-Avendaño, Roger L; Zamboni-Rached, Michel

    2014-07-10

    In this paper, we propose a method that is capable of describing in exact and analytic form the propagation of nonparaxial scalar and electromagnetic beams. The main features of the method presented here are its mathematical simplicity and the fast convergence in the cases of highly nonparaxial electromagnetic beams, enabling us to obtain high-precision results without the necessity of lengthy numerical simulations or other more complex analytical calculations. The method can be used in electromagnetism (optics, microwaves) as well as in acoustics.

  1. Stroke localization and classification using microwave tomography with k-means clustering and support vector machine.

    PubMed

    Guo, Lei; Abbosh, Amin

    2018-05-01

    For any chance for stroke patients to survive, the stroke type should be classified to enable giving medication within a few hours of the onset of symptoms. In this paper, a microwave-based stroke localization and classification framework is proposed. It is based on microwave tomography, k-means clustering, and a support vector machine (SVM) method. The dielectric profile of the brain is first calculated using the Born iterative method, whereas the amplitude of the dielectric profile is then taken as the input to k-means clustering. The cluster is selected as the feature vector for constructing and testing the SVM. A database of MRI-derived realistic head phantoms at different signal-to-noise ratios is used in the classification procedure. The performance of the proposed framework is evaluated using the receiver operating characteristic (ROC) curve. The results based on a two-dimensional framework show that 88% classification accuracy, with a sensitivity of 91% and a specificity of 87%, can be achieved. Bioelectromagnetics. 39:312-324, 2018. © 2018 Wiley Periodicals, Inc. © 2018 Wiley Periodicals, Inc.

  2. New Technique for Retrieving Liquid Water Path over Land using Satellite Microwave Observations

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Deeter, M.N.; Vivekanandan, J.

    2005-03-18

    We present a new methodology for retrieving liquid water path over land using satellite microwave observations. As input, the technique exploits the Advanced Microwave Scanning Radiometer for earth observing plan (EOS) (AMSR-E) polarization-difference signals at 37 and 89 GHz. Regression analysis performed on model simulations indicates that over variable atmospheric and surface conditions the polarization-difference signals can be simply parameterized in terms of the surface emissivity polarization difference ({Delta}{var_epsilon}), surface temperature, liquid water path (LWP), and precipitable water vapor (PWV). The resulting polarization-difference parameterization (PDP) enables fast and direct (noniterative) retrievals of LWP with minimal requirements for ancillary data. Single-more » and dual-channel retrieval methods are described and demonstrated. Data gridding is used to reduce the effects of instrumental noise. The methodology is demonstrated using AMSR-E observations over the Atmospheric Radiation Measurement (ARM) Southern Great Plains (SGP) site during a six day period in November and December, 2003. Single- and dual-channel retrieval results mostly agree with ground-based microwave retrievals of LWP to within approximately 0.04 mm.« less

  3. Quantum sensing of weak radio-frequency signals by pulsed Mollow absorption spectroscopy.

    PubMed

    Joas, T; Waeber, A M; Braunbeck, G; Reinhard, F

    2017-10-17

    Quantum sensors-qubits sensitive to external fields-have become powerful detectors for various small acoustic and electromagnetic fields. A major key to their success have been dynamical decoupling protocols which enhance sensitivity to weak oscillating (AC) signals. Currently, those methods are limited to signal frequencies below a few MHz. Here we harness a quantum-optical effect, the Mollow triplet splitting of a strongly driven two-level system, to overcome this limitation. We microscopically understand this effect as a pulsed dynamical decoupling protocol and find that it enables sensitive detection of fields close to the driven transition. Employing a nitrogen-vacancy center, we detect GHz microwave fields with a signal strength (Rabi frequency) below the current detection limit, which is set by the center's spectral linewidth [Formula: see text]. Pushing detection sensitivity to the much lower 1/T 2 limit, this scheme could enable various applications, most prominently coherent coupling to single phonons and microwave photons.Dynamical decoupling protocols can enhance the sensitivity of quantum sensors but this is limited to signal frequencies below a few MHz. Here, Joas et al. use the Mollow triplet splitting in a nitrogen-vacancy centre to overcome this limitation, enabling sensitive detection of signals in the GHz range.

  4. Novel microwave device for nondestructive electrical characterization of semiconducting layers

    NASA Astrophysics Data System (ADS)

    Druon, C.; Tabourier, P.; Bourzgui, N.; Wacrenier, J. M.

    1990-11-01

    A microwave measurement technique, using a novel cell which enables the sheet resistance (R⧠), the carrier density (n), and the mobility (μ) of epitaxial layers to be measured, is proposed. The system, controlled by a microcomputer, performs this characterization by measuring galvanomagnetic effects. The sample is only lightly pressed on the cell. The electrical contacts between the sample and the cell are capacitive. This method is thus nondestructive and requires no technological process. The data treatment necessitates knowledge of factors which are determined from a calibration procedure made only once. For the GaAs samples reported here, the accuracy is better than 5% for R⧠, 15% for μ, and 20% for n.

  5. Microwave-assisted deuterium exchange: the convenient preparation of isotopically labelled analogues for stable isotope dilution analysis of volatile wine phenols.

    PubMed

    Crump, Anna M; Sefton, Mark A; Wilkinson, Kerry L

    2014-11-01

    This study reports the convenient, low cost, one-step synthesis of labelled analogues of six volatile phenols, guaiacol, 4-methylguaiacol, 4-ethylguaiacol, 4-ethylphenol, eugenol and vanillin, using microwave-assisted deuterium exchange, for use as internal standards for stable isotope dilution analysis. The current method improves on previous strategies in that it enables incorporation of deuterium atoms on the aromatic ring, thereby ensuring retention of the isotope label during mass spectrometry fragmentation. When used as standards for SIDA, these labelled volatile phenols will improve the accuracy and reproducibility of quantitative food and beverage analysis. Copyright © 2014 Elsevier Ltd. All rights reserved.

  6. Ground-Based Calibration Of A Microwave Landing System

    NASA Technical Reports Server (NTRS)

    Kiriazes, John J.; Scott, Marshall M., Jr.; Willis, Alfred D.; Erdogan, Temel; Reyes, Rolando

    1996-01-01

    System of microwave instrumentation and data-processing equipment developed to enable ground-based calibration of microwave scanning-beam landing system (MSBLS) at distances of about 500 to 1,000 ft from MSBLS transmitting antenna. Ensures accuracy of MSBLS near touchdown point, without having to resort to expense and complex logistics of aircraft-based testing. Modified versions prove useful in calibrating aircraft instrument landing systems.

  7. Microwave heating of aqueous samples on a micro-optical-electro-mechanical system

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Beer, Neil Reginald

    2016-04-12

    Apparatus for heating a sample includes a microchip; a microchannel flow channel in the microchip, the microchannel flow channel containing the sample; a microwave source that directs microwaves onto the sample for heating the sample; a wall section of the microchannel flow channel that receives the microwaves and enables the microwaves to pass through wall section of the microchannel flow channel, the wall section the microchannel flow channel being made of a material that is not appreciably heated by the microwaves; a carrier fluid within the microchannel flow channel for moving the sample in the microchannel flow channel, the carriermore » fluid being made of a material that is not appreciably heated by the microwaves; wherein the microwaves pass through wall section of the microchannel flow channel and heat the sample.« less

  8. Microwave heating of aqueous samples on a micro-optical-electro-mechanical system

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Beer, Neil Reginald

    Apparatus for heating a sample includes a microchip; a microchannel flow channel in the microchip, the microchannel flow channel containing the sample; a microwave source that directs microwaves onto the sample for heating the sample; a wall section of the microchannel flow channel that receives the microwaves and enables the microwaves to pass through wall section of the microchannel flow channel, the wall section the microchannel flow channel being made of a material that is not appreciably heated by the microwaves; a carrier fluid within the microchannel flow channel for moving the sample in the microchannel flow channel, the carriermore » fluid being made of a material that is not appreciably heated by the microwaves; wherein the microwaves pass through wall section of the microchannel flow channel and heat the sample.« less

  9. Photonic-assisted microwave signal multiplication and modulation using a silicon Mach–Zehnder modulator

    PubMed Central

    Long, Yun; Zhou, Linjie; Wang, Jian

    2016-01-01

    Photonic generation of microwave signal is obviously attractive for many prominent advantages, such as large bandwidth, low loss, and immunity to electromagnetic interference. Based on a single integrated silicon Mach–Zehnder modulator (MZM), we propose and experimentally demonstrate a simple and compact photonic scheme to enable frequency-multiplicated microwave signal. Using the fabricated integrated MZM, we also demonstrate the feasibility of microwave amplitude-shift keying (ASK) modulation based on integrated photonic approach. In proof-of-concept experiments, 2-GHz frequency-doubled microwave signal is generated using a 1-GHz driving signal. 750-MHz/1-GHz frequency-tripled/quadrupled microwave signals are obtained with a driving signal of 250 MHz. In addition, a 50-Mb/s binary amplitude coded 1-GHz microwave signal is also successfully generated. PMID:26832305

  10. Design and Analysis of a Hyperspectral Microwave Receiver Subsystem

    NASA Technical Reports Server (NTRS)

    Blackwell, W.; Galbraith, C.; Hancock, T.; Leslie, R.; Osaretin, I.; Shields, M.; Racette, P.; Hillard, L.

    2012-01-01

    Hyperspectral microwave (HM) sounding has been proposed to achieve unprecedented performance. HM operation is achieved using multiple banks of RF spectrometers with large aggregate bandwidth. A principal challenge is Size/Weight/Power scaling. Objectives of this work: 1) Demonstrate ultra-compact (100 cm3) 52-channel IF processor (enabler); 2) Demonstrate a hyperspectral microwave receiver subsystem; and 3) Deliver a flight-ready system to validate HM sounding.

  11. Antifreeze glycopeptide analogues: microwave-enhanced synthesis and functional studies.

    PubMed

    Heggemann, Carolin; Budke, Carsten; Schomburg, Benjamin; Majer, Zsuzsa; Wissbrock, Marco; Koop, Thomas; Sewald, Norbert

    2010-01-01

    Antifreeze glycoproteins enable life at temperatures below the freezing point of physiological solutions. They usually consist of the repetitive tripeptide unit (-Ala-Ala-Thr-) with the disaccharide alpha-D-galactosyl-(1-3)-beta-N-acetyl-D-galactosamine attached to each hydroxyl group of threonine. Monoglycosylated analogues have been synthesized from the corresponding monoglycosylated threonine building block by microwave-assisted solid phase peptide synthesis. This method allows the preparation of analogues containing sequence variations which are not accessible by other synthetic methods. As antifreeze glycoproteins consist of numerous isoforms they are difficult to obtain in pure form from natural sources. The synthetic peptides have been structurally analyzed by CD and NMR spectroscopy in proton exchange experiments revealing a structure as flexible as reported for the native peptides. Microphysical recrystallization tests show an ice structuring influence and ice growth inhibition depending on the concentration, chain length and sequence of the peptides.

  12. Lunar Heat Flux Measurements Enabled by a Microwave Radiometer Aboard the Deep Space Gateway

    NASA Astrophysics Data System (ADS)

    Siegler, M.; Ruf, C.; Putzig, N.; Morgan, G.; Hayne, P.; Paige, D.; Nagihara, S.; Weber, R.

    2018-02-01

    We would like to present a concept to use the Deep Space Gateway as a platform for constraining the geothermal heat production, surface, and near-surface rocks, and dielectric properties of the Moon from orbit with passive microwave radiometery.

  13. Complexity and Challenges in Noncontact High Temperature Measurements in Microwave-Assisted Catalytic Reactors

    PubMed Central

    2017-01-01

    The complexity and challenges in noncontact temperature measurements inside microwave-heated catalytic reactors are presented in this paper. A custom-designed microwave cavity has been used to focus the microwave field on the catalyst and enable monitoring of the temperature field in 2D. A methodology to study the temperature distribution in the catalytic bed by using a thermal camera in combination with a thermocouple for a heterogeneous catalytic reaction (methane dry reforming) under microwave heating has been demonstrated. The effects of various variables that affect the accuracy of temperature recordings are discussed in detail. The necessity of having at least one contact sensor, such as a thermocouple, or some other microwave transparent sensor, is recommended to keep track of the temperature changes occurring in the catalytic bed during the reaction under microwave heating. PMID:29170599

  14. Storing quantum information in spins and high-sensitivity ESR

    NASA Astrophysics Data System (ADS)

    Morton, John J. L.; Bertet, Patrice

    2018-02-01

    Quantum information, encoded within the states of quantum systems, represents a novel and rich form of information which has inspired new types of computers and communications systems. Many diverse electron spin systems have been studied with a view to storing quantum information, including molecular radicals, point defects and impurities in inorganic systems, and quantum dots in semiconductor devices. In these systems, spin coherence times can exceed seconds, single spins can be addressed through electrical and optical methods, and new spin systems with advantageous properties continue to be identified. Spin ensembles strongly coupled to microwave resonators can, in principle, be used to store the coherent states of single microwave photons, enabling so-called microwave quantum memories. We discuss key requirements in realising such memories, including considerations for superconducting resonators whose frequency can be tuned onto resonance with the spins. Finally, progress towards microwave quantum memories and other developments in the field of superconducting quantum devices are being used to push the limits of sensitivity of inductively-detected electron spin resonance. The state-of-the-art currently stands at around 65 spins per √{ Hz } , with prospects to scale down to even fewer spins.

  15. Trace detection of tetrahydrocannabinol (THC) with a SERS-based capillary platform prepared by the in situ microwave synthesis of AgNPs.

    PubMed

    Yüksel, Sezin; Schwenke, Almut M; Soliveri, Guido; Ardizzone, Silvia; Weber, Karina; Cialla-May, Dana; Hoeppener, Stephanie; Schubert, Ulrich S; Popp, Jürgen

    2016-10-05

    In the present study, an ultra-sensitive and highly reproducible novel SERS-based capillary platform was developed and utilized for the trace detection of tetrahydrocannabinol (THC). The approach combines the advantages of microwave-assisted nanoparticle synthesis, plasmonics and capillary forces. By employing a microwave-assisted preparation method, glass capillaries were reproducibly coated with silver nanoparticles in a batch fabrication process that required a processing time of 3 min without needing to use any pre-surface modifications or add surfactants. The coated capillaries exhibited an excellent SERS activity with a high reproducibility and enabled the detection of low concentrations of target molecules. At the same time, only a small amount of analyte and a short and simple incubation process was required. The developed platform was applied to the spectroscopic characterization of tetrahydrocannabinol (THC) and its identification at concentration levels down to 1 nM. Thus, a highly efficient detection system for practical applications, e.g., in drug monitoring/detection, is introduced, which can be fabricated at low cost by using microwave-assisted batch synthesis techniques. Copyright © 2016 Elsevier B.V. All rights reserved.

  16. Storing quantum information in spins and high-sensitivity ESR.

    PubMed

    Morton, John J L; Bertet, Patrice

    2018-02-01

    Quantum information, encoded within the states of quantum systems, represents a novel and rich form of information which has inspired new types of computers and communications systems. Many diverse electron spin systems have been studied with a view to storing quantum information, including molecular radicals, point defects and impurities in inorganic systems, and quantum dots in semiconductor devices. In these systems, spin coherence times can exceed seconds, single spins can be addressed through electrical and optical methods, and new spin systems with advantageous properties continue to be identified. Spin ensembles strongly coupled to microwave resonators can, in principle, be used to store the coherent states of single microwave photons, enabling so-called microwave quantum memories. We discuss key requirements in realising such memories, including considerations for superconducting resonators whose frequency can be tuned onto resonance with the spins. Finally, progress towards microwave quantum memories and other developments in the field of superconducting quantum devices are being used to push the limits of sensitivity of inductively-detected electron spin resonance. The state-of-the-art currently stands at around 65 spins per Hz, with prospects to scale down to even fewer spins. Copyright © 2017. Published by Elsevier Inc.

  17. Microwave flexible transistors on cellulose nanofibrillated fiber substrates

    Treesearch

    Jung-Hun Seo; Tzu-Hsuan Chang; Jaeseong Lee; Ronald Sabo; Weidong Zhou; Zhiyong Cai; Shaoqin Gong; Zhenqiang Ma

    2015-01-01

    In this paper, we demonstrate microwave flexible thin-film transistors (TFTs) on biodegradable substrates towards potential green portable devices. The combination of cellulose nanofibrillated fiber (CNF) substrate, which is a biobased and biodegradable platform, with transferrable single crystalline Si nanomembrane (Si NM), enables the realization of truly...

  18. Microwave-Assisted Chemistry: Synthetic Applications for Rapid Assembly of Nanomaterials and Organics

    EPA Science Inventory

    The magic of microwave (MW) heating technique, termed as the Bunsen burner of the 21th Century, has emerged as valuable alternative in synthesis of organics, polymers, inorganics, and nanomaterials. Important innovations in MW-assisted chemistry now enable chemists to prepare cat...

  19. An Evaluation of Fracture Toughness of Vinyl Ester Composites Cured under Microwave Conditions

    NASA Astrophysics Data System (ADS)

    Ku, H.; Chan, W. L.; Trada, M.; Baddeley, D.

    2007-12-01

    The shrinkage of vinyl ester particulate composites has been reduced by curing the resins under microwave conditions. The reduction in the shrinkage of the resins by microwaves will enable the manufacture of large vinyl ester composite items possible (H.S. Ku, G. Van Erp, J.A.R. Ball, and S. Ayers, Shrinkage Reduction of Thermoset Fibre Composites during Hardening using Microwaves Irradiation for Curing, Proceedings, Second World Engineering Congress, Kuching, Malaysia, 2002a, 22-25 July, p 177-182; H.S. Ku, Risks Involved in Curing Vinyl Ester Resins Using Microwaves Irradiation. J. Mater. Synth. Proces. 2002b, 10(2), p 97-106; S.H. Ku, Curing Vinyl Ester Particle Reinforced Composites Using Microwaves. J. Comp. Mater., (2003a), 37(22), p 2027-2042; S.H. Ku and E. Siores, Shrinkage Reduction of Thermoset Matrix Particle Reinforced Composites During Hardening Using Microwaves Irradiation, Trans. Hong Kong Inst. Eng., 2004, 11(3), p 29-34). In tensile tests, the yield strengths of samples cured under microwave conditions obtained are within 5% of those obtained by ambient curing; it is also found that with 180 W microwave power, the tensile strengths obtained for all duration of exposure to microwaves are also within the 5% of those obtained by ambient curing. While, with 360 W microwave power, the tensile strengths obtained for all duration of exposure to microwaves are 5% higher than those obtained by ambient curing. Whereas, with 540 W microwave power, the tensile strengths obtained for most samples are 5% below those obtained by ambient curing (H. Ku, V.C. Puttgunta, and M. Trada, Young’s Modulus of Vinyl Ester Composites Cured by Microwave Irradiation: Preliminary Results, J. Electromagnet. Waves Appl., 2007, 20(14), p. 1911-1924). This project, using 33% by weight fly ash reinforced vinyl ester composite [VE/FLYSH (33%)], is to further investigate the difference in fracture toughness between microwave cured vinyl ester particulate composites and those cured under ambient conditions. Higher power microwaves, 540 and 720 W with shorter duration of exposure are used to cure the composites. Short-bar method of fracture toughness measurement was used to perform the tests. Plastic (PVC) re-usable molds were designed and manufactured for producing the test samples. The results show that the fracture toughness of specimens cured by microwave conditions are generally higher than those cured under ambient conditions, provided the power level and duration of microwave irradiation are properly and optimally selected.

  20. Stability of standing spin wave in permalloy thin film studied by anisotropic magnetoresistance effect

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yamanoi, K.; Yokotani, Y.; Cui, X.

    2015-12-21

    We have investigated the stability for the resonant spin precession under the strong microwave magnetic field by a specially developed detection method using the anisotropic magnetoresistance effect. The electrically separated excitation and detection circuits enable us to investigate the influence of the heating effect and the nonuniform spin dynamics independently. The large detecting current is found to induce the field shift of the resonant spectra because of the Joule heating. From the microwave power dependence, we found that the linear response regime for the standing spin wave is larger than that for the ferromagnetic resonance. This robust characteristic of themore » standing spin wave is an important advantage for the high power operation of the spin-wave device.« less

  1. On-chip microwave signal generation based on a silicon microring modulator.

    PubMed

    Shao, Haifeng; Yu, Hui; Li, Xia; Li, Yan; Jiang, Jianfei; Wei, Huan; Wang, Gencheng; Dai, Tingge; Chen, Qimei; Yang, Jianyi; Jiang, Xiaoqing

    2015-07-15

    A photonic-assisted microwave signal generator based on a silicon microring modulator is demonstrated. The microring cavity incorporates an embedded PN junction that enables a microwave signal to modulate the lightwave circling inside. The DC component of the modulated light is trapped in the cavity, while the high-order sideband components are able to exit the cavity and then generate microwave signals at new frequencies in a photodetector. In our proof-of-concept experiment, a 10 GHz microwave signal is converted to a 20 GHz signal in the optical domain with an electrical harmonic suppression ratio of 22 dB. An analytic model is also established to explain the operation mechanism, which agrees well with the measured data.

  2. Systems and methods for remote long standoff biometric identification using microwave cardiac signals

    NASA Technical Reports Server (NTRS)

    McGrath, William R. (Inventor); Talukder, Ashit (Inventor)

    2012-01-01

    Systems and methods for remote, long standoff biometric identification using microwave cardiac signals are provided. In one embodiment, the invention relates to a method for remote biometric identification using microwave cardiac signals, the method including generating and directing first microwave energy in a direction of a person, receiving microwave energy reflected from the person, the reflected microwave energy indicative of cardiac characteristics of the person, segmenting a signal indicative of the reflected microwave energy into a waveform including a plurality of heart beats, identifying patterns in the microwave heart beats waveform, and identifying the person based on the identified patterns and a stored microwave heart beats waveform.

  3. An Analysis Method for Superconducting Resonator Parameter Extraction with Complex Baseline Removal

    NASA Technical Reports Server (NTRS)

    Cataldo, Giuseppe

    2014-01-01

    A new semi-empirical model is proposed for extracting the quality (Q) factors of arrays of superconducting microwave kinetic inductance detectors (MKIDs). The determination of the total internal and coupling Q factors enables the computation of the loss in the superconducting transmission lines. The method used allows the simultaneous analysis of multiple interacting discrete resonators with the presence of a complex spectral baseline arising from reflections in the system. The baseline removal allows an unbiased estimate of the device response as measured in a cryogenic instrumentation setting.

  4. Superconducting Qubit Optical Transducer (SQOT)

    DTIC Science & Technology

    2015-08-05

    2 2.2 Qubit- Photon Entanglement . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4 2.2.1 System...and a high Q will make this challenging. 3 2.2 QUBIT- PHOTON ENTANGLEMENT The parametric interaction enables interconversion between the microwave and...to observe entanglement between a qubit and optical photon and similar to experiments demonstrated solely in the microwave domain [4]: 1. Start with

  5. Accurate permittivity measurements for microwave imaging via ultra-wideband removal of spurious reflectors.

    PubMed

    Pelletier, Mathew G; Viera, Joseph A; Wanjura, John; Holt, Greg

    2010-01-01

    The use of microwave imaging is becoming more prevalent for detection of interior hidden defects in manufactured and packaged materials. In applications for detection of hidden moisture, microwave tomography can be used to image the material and then perform an inverse calculation to derive an estimate of the variability of the hidden material, such internal moisture, thereby alerting personnel to damaging levels of the hidden moisture before material degradation occurs. One impediment to this type of imaging occurs with nearby objects create strong reflections that create destructive and constructive interference, at the receiver, as the material is conveyed past the imaging antenna array. In an effort to remove the influence of the reflectors, such as metal bale ties, research was conducted to develop an algorithm for removal of the influence of the local proximity reflectors from the microwave images. This research effort produced a technique, based upon the use of ultra-wideband signals, for the removal of spurious reflections created by local proximity reflectors. This improvement enables accurate microwave measurements of moisture in such products as cotton bales, as well as other physical properties such as density or material composition. The proposed algorithm was shown to reduce errors by a 4:1 ratio and is an enabling technology for imaging applications in the presence of metal bale ties.

  6. The extraction of essential oil from patchouli leaves (Pogostemon cablin Benth) using microwave hydrodistillation and solvent-free microwave extraction methods

    NASA Astrophysics Data System (ADS)

    Putri, D. K. Y.; Kusuma, H. S.; Syahputra, M. E.; Parasandi, D.; Mahfud, M.

    2017-12-01

    Patchouli plant (Pogostemon cablin Benth) is one of the important essential oil-producing plant, contributes more than 50% of total exports of Indonesia’s essential oil. However, the extraction of patchouli oil that has been done in Indonesia is generally still used conventional methods that require enormous amount of energy, high solvent usage, and long time of extraction. Therefore, in this study, patchouli oil extraction was carried out by using microwave hydrodistillation and solvent-free microwave extraction methods. Based on this research, it is known that the extraction of patchouli oil using microwave hydrodistillation method with longer extraction time (240 min) only produced patchouli oil’s yield 1.2 times greater than solvent-free microwave extraction method which require faster extraction time (120 min). Otherwise the analysis of electric consumption and the environmental impact, the solvent-free microwave extraction method showed a smaller amount when compared with microwave hydrodistillation method. It is conclude that the use of solvent-free microwave extraction method for patchouli oil extraction is suitably method as a new green technique.

  7. Rapid detection of Ganoderma-infected oil palms by microwave ergosterol extraction with HPLC and TLC.

    PubMed

    Muniroh, M S; Sariah, M; Zainal Abidin, M A; Lima, N; Paterson, R R M

    2014-05-01

    Detection of basal stem rot (BSR) by Ganoderma of oil palms was based on foliar symptoms and production of basidiomata. Enzyme-Linked Immunosorbent Assays-Polyclonal Antibody (ELISA-PAB) and PCR have been proposed as early detection methods for the disease. These techniques are complex, time consuming and have accuracy limitations. An ergosterol method was developed which correlated well with the degree of infection in oil palms, including samples growing in plantations. However, the method was capable of being optimised. This current study was designed to develop a simpler, more rapid and efficient ergosterol method with utility in the field that involved the use of microwave extraction. The optimised procedure involved extracting a small amount of Ganoderma, or Ganoderma-infected oil palm suspended in low volumes of solvent followed by irradiation in a conventional microwave oven at 70°C and medium high power for 30s, resulting in simultaneous extraction and saponification. Ergosterol was detected by thin layer chromatography (TLC) and quantified using high performance liquid chromatography with diode array detection. The TLC method was novel and provided a simple, inexpensive method with utility in the field. The new method was particularly effective at extracting high yields of ergosterol from infected oil palm and enables rapid analysis of field samples on site, allowing infected oil palms to be treated or culled very rapidly. Some limitations of the method are discussed herein. The procedures lend themselves to controlling the disease more effectively and allowing more effective use of land currently employed to grow oil palms, thereby reducing pressure to develop new plantations. Copyright © 2014 Elsevier B.V. All rights reserved.

  8. Quantum electromechanics on silicon nitride nanomembranes.

    PubMed

    Fink, J M; Kalaee, M; Pitanti, A; Norte, R; Heinzle, L; Davanço, M; Srinivasan, K; Painter, O

    2016-08-03

    Radiation pressure has recently been used to effectively couple the quantum motion of mechanical elements to the fields of optical or microwave light. Integration of all three degrees of freedom-mechanical, optical and microwave-would enable a quantum interconnect between microwave and optical quantum systems. We present a platform based on silicon nitride nanomembranes for integrating superconducting microwave circuits with planar acoustic and optical devices such as phononic and photonic crystals. Using planar capacitors with vacuum gaps of 60 nm and spiral inductor coils of micron pitch we realize microwave resonant circuits with large electromechanical coupling to planar acoustic structures of nanoscale dimensions and femtoFarad motional capacitance. Using this enhanced coupling, we demonstrate microwave backaction cooling of the 4.48 MHz mechanical resonance of a nanobeam to an occupancy as low as 0.32. These results indicate the viability of silicon nitride nanomembranes as an all-in-one substrate for quantum electro-opto-mechanical experiments.

  9. Enhanced accuracy of the microwave field strength measurement in a CW-EPR by pulsed modulation technique

    NASA Astrophysics Data System (ADS)

    Rakvin, B.; Carić, D.; Kveder, M.

    2018-02-01

    The microwave magnetic field strength, B1, in the cavity of a conventional continuous wave electron paramagnetic resonance, CW-EPR, spectrometer was measured by employing modulation sidebands, MS, in the EPR spectrum. MS spectrum in CW-EPR is produced by applying the modulation frequency, ωrf, which exceeds the linewidth, δB, given in frequency units. An amplitude-modulated CW-EPR, AM-CW-EPR, was selected as detection method. Theoretical description of AM-CW-EPR spectrum was modified by adding Bloch-Siegert-like shift obtained by taking into account the cumulative effect of the non-resonant interactions between the driving fields and the spin system. This approach enables to enhance the precision of B1 measurement. In order to increase the sensitivity of the method when saturation effects, due to higher intensity of B1, decrease the resolution of AM-CW-EPR spectrum, detection at the second harmonic of CW-EPR has been employed.

  10. Enhanced accuracy of the microwave field strength measurement in a CW-EPR by pulsed modulation technique.

    PubMed

    Rakvin, B; Carić, D; Kveder, M

    2018-02-01

    The microwave magnetic field strength, B 1 , in the cavity of a conventional continuous wave electron paramagnetic resonance, CW-EPR, spectrometer was measured by employing modulation sidebands, MS, in the EPR spectrum. MS spectrum in CW-EPR is produced by applying the modulation frequency, ω rf , which exceeds the linewidth, δB, given in frequency units. An amplitude-modulated CW-EPR, AM-CW-EPR, was selected as detection method. Theoretical description of AM-CW-EPR spectrum was modified by adding Bloch-Siegert-like shift obtained by taking into account the cumulative effect of the non-resonant interactions between the driving fields and the spin system. This approach enables to enhance the precision of B 1 measurement. In order to increase the sensitivity of the method when saturation effects, due to higher intensity of B 1 , decrease the resolution of AM-CW-EPR spectrum, detection at the second harmonic of CW-EPR has been employed. Copyright © 2018 Elsevier Inc. All rights reserved.

  11. Adaptation of red blood cell lysis represents a fundamental breakthrough that improves the sensitivity of Salmonella detection in blood

    PubMed Central

    Boyd, MA; Tennant, SM; Melendez, JH; Toema, D; Galen, JE; Geddes, CD; Levine, MM

    2015-01-01

    Aims Isolation of Salmonella Typhi from blood culture is the standard diagnostic for confirming typhoid fever but it is unavailable in many developing countries. We previously described a Microwave Accelerated Metal Enhanced Fluorescence (MAMEF)-based assay to detect Salmonella in medium. Attempts to detect Salmonella in blood were unsuccessful, presumably due to the interference of erythrocytes. The objective of this study was to evaluate various blood treatment methods that could be used prior to PCR, real-time PCR or MAMEF to increase sensitivity of detection of Salmonella. Methods and Results We tested ammonium chloride and erythrocyte lysis buffer, water, Lymphocyte Separation Medium, BD Vacutainer® CPT™ Tubes and dextran. Erythrocyte lysis buffer was the best isolation method as it is fast, inexpensive and works with either fresh or stored blood. The sensitivity of PCR- and real-time PCR detection of Salmonella in spiked blood was improved when whole blood was first lysed using erythrocyte lysis buffer prior to DNA extraction. Removal of erythrocytes and clotting factors also enabled reproducible lysis of Salmonella and fragmentation of DNA, which are necessary for MAMEF sensing. Conclusions Use of the erythrocyte lysis procedure prior to DNA extraction has enabled improved sensitivity of Salmonella detection by PCR and real-time PCR and has allowed lysis and fragmentation of Salmonella using microwave radiation (for future detection by MAMEF). Significance and Impact of the Study Adaptation of the blood lysis method represents a fundamental breakthrough that improves the sensitivity of DNA-based detection of Salmonella in blood. PMID:25630831

  12. Third-order linearization for self-beating filtered microwave photonic systems using a dual parallel Mach-Zehnder modulator.

    PubMed

    Pérez, Daniel; Gasulla, Ivana; Capmany, José; Fandiño, Javier S; Muñoz, Pascual; Alavi, Hossein

    2016-09-05

    We develop, analyze and apply a linearization technique based on dual parallel Mach-Zehnder modulator to self-beating microwave photonics systems. The approach enables broadband low-distortion transmission and reception at expense of a moderate electrical power penalty yielding a small optical power penalty (<1 dB).

  13. Modelling the passive microwave signature from land surfaces: a review of recent results and application to the SMOS & SMAP soil moisture retrieval algorithms

    USDA-ARS?s Scientific Manuscript database

    Two passive microwave missions are currently operating at L-band to monitor surface soil moisture (SM) over continental surfaces. The SMOS sensor, based on an innovative interferometric technology enabling multi-angular signatures of surfaces to be measured, was launched in November 2009....

  14. The microwave radiometer spacecraft: A design study

    NASA Technical Reports Server (NTRS)

    Wright, R. L. (Editor)

    1981-01-01

    A large passive microwave radiometer spacecraft with near all weather capability of monitoring soil moisture for global crop forecasting was designed. The design, emphasizing large space structures technology, characterized the mission hardware at the conceptual level in sufficient detail to identify enabling and pacing technologies. Mission and spacecraft requirements, design and structural concepts, electromagnetic concepts, and control concepts are addressed.

  15. New Approach for Monitoring Seismic and Volcanic Activities Using Microwave Radiometer Data

    NASA Astrophysics Data System (ADS)

    Maeda, Takashi; Takano, Tadashi

    Interferograms formed from the data of satellite-borne synthetic aperture radar (SAR) enable us to detect slight land-surface deformations related to volcanic eruptions and earthquakes. Currently, however, we cannot determine when land-surface deformations occurred with high time resolution since the time lag between two scenes of SAR used to form interferograms is longer than the recurrent period of the satellite carrying it (several tens of days). In order to solve this problem, we are investigating new approach to monitor seismic and vol-canic activities with higher time resolution from satellite-borne sensor data, and now focusing on a satellite-borne microwave radiometer. It is less subject to clouds and rainfalls over the ground than an infrared spectrometer, so more suitable to observe an emission from land sur-faces. With this advantage, we can expect that thermal microwave energy by increasing land surface temperatures is detected before a volcanic eruption. Additionally, laboratory experi-ments recently confirmed that rocks emit microwave energy when fractured. This microwave energy may result from micro discharges in the destruction of materials, or fragment motions with charged surfaces of materials. We first extrapolated the microwave signal power gener-ated by rock failures in an earthquake from the experimental results and concluded that the microwave signals generated by rock failures near the land surface are strong enough to be detected by a satellite-borne radiometer. Accordingly, microwave energy generated by rock failures associated with a seismic activity is likely to be detected as well. However, a satellite-borne microwave radiometer has a serious problem that its spatial res-olution is too coarse compared to SAR or an infrared spectrometer. In order to raise the possibility of detection, a new methodology to compensate the coarse spatial resolution is es-sential. Therefore, we investigated and developed an analysis method to detect local and faint changes from the data of the Advanced Microwave Scanning Radiometer for Earth-Observation System (AMSR-E) aboard the Aqua satellite, and then an algorithm to evaluate microwave energy from land surfaces. Finally, using this algorithm, we have detected characteristic microwave signals emitted from land surfaces in association with some large earthquakes which occurred in Morocco (2004), Sumatra (2007) and Wenchuan (2008) and some large volcanic eruptions which occurred at Reventador in Ecuador (2002) and Chaiten in Chile (2008). In this presentation, the results of these case studies are presented.

  16. Clean carbon nanotubes coupled to superconducting impedance-matching circuits.

    PubMed

    Ranjan, V; Puebla-Hellmann, G; Jung, M; Hasler, T; Nunnenkamp, A; Muoth, M; Hierold, C; Wallraff, A; Schönenberger, C

    2015-05-15

    Coupling carbon nanotube devices to microwave circuits offers a significant increase in bandwidth (BW) and signal-to-noise ratio. These facilitate fast non-invasive readouts important for quantum information processing, shot noise and correlation measurements. However, creation of a device that unites a low-disorder nanotube with a low-loss microwave resonator has so far remained a challenge, due to fabrication incompatibility of one with the other. Employing a mechanical transfer method, we successfully couple a nanotube to a gigahertz superconducting matching circuit and thereby retain pristine transport characteristics such as the control over formation of, and coupling strengths between, the quantum dots. Resonance response to changes in conductance and susceptance further enables quantitative parameter extraction. The achieved near matching is a step forward promising high-BW noise correlation measurements on high impedance devices such as quantum dot circuits.

  17. Integrated Kerr comb-based reconfigurable transversal differentiator for microwave photonic signal processing

    NASA Astrophysics Data System (ADS)

    Xu, Xingyuan; Wu, Jiayang; Shoeiby, Mehrdad; Nguyen, Thach G.; Chu, Sai T.; Little, Brent E.; Morandotti, Roberto; Mitchell, Arnan; Moss, David J.

    2018-01-01

    An arbitrary-order intensity differentiator for high-order microwave signal differentiation is proposed and experimentally demonstrated on a versatile transversal microwave photonic signal processing platform based on integrated Kerr combs. With a CMOS-compatible nonlinear micro-ring resonator, high quality Kerr combs with broad bandwidth and large frequency spacings are generated, enabling a larger number of taps and an increased Nyquist zone. By programming and shaping individual comb lines' power, calculated tap weights are realized, thus achieving a versatile microwave photonic signal processing platform. Arbitrary-order intensity differentiation is demonstrated on the platform. The RF responses are experimentally characterized, and systems demonstrations for Gaussian input signals are also performed.

  18. Compact Microwave Fourier Spectrum Analyzer

    NASA Technical Reports Server (NTRS)

    Savchenkov, Anatoliy; Matsko, Andrey; Strekalov, Dmitry

    2009-01-01

    A compact photonic microwave Fourier spectrum analyzer [a Fourier-transform microwave spectrometer, (FTMWS)] with no moving parts has been proposed for use in remote sensing of weak, natural microwave emissions from the surfaces and atmospheres of planets to enable remote analysis and determination of chemical composition and abundances of critical molecular constituents in space. The instrument is based on a Bessel beam (light modes with non-zero angular momenta) fiber-optic elements. It features low power consumption, low mass, and high resolution, without a need for any cryogenics, beyond what is achievable by the current state-of-the-art in space instruments. The instrument can also be used in a wide-band scatterometer mode in active radar systems.

  19. Nested-cone transformer antenna

    DOEpatents

    Ekdahl, C.A.

    1991-05-28

    A plurality of conical transmission lines are concentrically nested to form an output antenna for pulsed-power, radio-frequency, and microwave sources. The diverging conical conductors enable a high power input density across a bulk dielectric to be reduced below a breakdown power density at the antenna interface with the transmitting medium. The plurality of cones maintain a spacing between conductors which minimizes the generation of high order modes between the conductors. Further, the power input feeds are isolated at the input while enabling the output electromagnetic waves to add at the transmission interface. Thus, very large power signals from a pulse rf, or microwave source can be radiated. 6 figures.

  20. Nested-cone transformer antenna

    DOEpatents

    Ekdahl, Carl A.

    1991-01-01

    A plurality of conical transmission lines are concentrically nested to form n output antenna for pulsed-power, radio-frequency, and microwave sources. The diverging conical conductors enable a high power input density across a bulk dielectric to be reduced below a breakdown power density at the antenna interface with the transmitting medium. The plurality of cones maintain a spacing between conductors which minimizes the generation of high order modes between the conductors. Further, the power input feeds are isolated at the input while enabling the output electromagnetic waves to add at the transmission interface. Thus, very large power signals from a pulse rf, or microwave source can be radiated.

  1. Accurate Permittivity Measurements for Microwave Imaging via Ultra-Wideband Removal of Spurious Reflectors

    PubMed Central

    Pelletier, Mathew G.; Viera, Joseph A.; Wanjura, John; Holt, Greg

    2010-01-01

    The use of microwave imaging is becoming more prevalent for detection of interior hidden defects in manufactured and packaged materials. In applications for detection of hidden moisture, microwave tomography can be used to image the material and then perform an inverse calculation to derive an estimate of the variability of the hidden material, such internal moisture, thereby alerting personnel to damaging levels of the hidden moisture before material degradation occurs. One impediment to this type of imaging occurs with nearby objects create strong reflections that create destructive and constructive interference, at the receiver, as the material is conveyed past the imaging antenna array. In an effort to remove the influence of the reflectors, such as metal bale ties, research was conducted to develop an algorithm for removal of the influence of the local proximity reflectors from the microwave images. This research effort produced a technique, based upon the use of ultra-wideband signals, for the removal of spurious reflections created by local proximity reflectors. This improvement enables accurate microwave measurements of moisture in such products as cotton bales, as well as other physical properties such as density or material composition. The proposed algorithm was shown to reduce errors by a 4:1 ratio and is an enabling technology for imaging applications in the presence of metal bale ties. PMID:22163668

  2. On-Chip Microwave Quantum Hall Circulator

    NASA Astrophysics Data System (ADS)

    Mahoney, A. C.; Colless, J. I.; Pauka, S. J.; Hornibrook, J. M.; Watson, J. D.; Gardner, G. C.; Manfra, M. J.; Doherty, A. C.; Reilly, D. J.

    2017-01-01

    Circulators are nonreciprocal circuit elements that are integral to technologies including radar systems, microwave communication transceivers, and the readout of quantum information devices. Their nonreciprocity arises from the interference of microwaves over the centimeter scale of the signal wavelength, in the presence of bulky magnetic media that breaks time-reversal symmetry. Here, we realize a completely passive on-chip microwave circulator with size 1 /1000 th the wavelength by exploiting the chiral, "slow-light" response of a two-dimensional electron gas in the quantum Hall regime. For an integrated GaAs device with 330 μ m diameter and about 1-GHz center frequency, a nonreciprocity of 25 dB is observed over a 50-MHz bandwidth. Furthermore, the nonreciprocity can be dynamically tuned by varying the voltage at the port, an aspect that may enable reconfigurable passive routing of microwave signals on chip.

  3. "In situ" extraction of essential oils by use of Dean-Stark glassware and a Vigreux column inside a microwave oven: a procedure for teaching green analytical chemistry.

    PubMed

    Chemat, Farid; Perino-Issartier, Sandrine; Petitcolas, Emmanuel; Fernandez, Xavier

    2012-08-01

    One of the principal objectives of sustainable and green processing development remains the dissemination and teaching of green chemistry in colleges, high schools, and academic laboratories. This paper describes simple glassware that illustrates the phenomenon of extraction in a conventional microwave oven as energy source and a process for green analytical chemistry. Simple glassware comprising a Dean-Stark apparatus (for extraction of aromatic plant material and recovery of essential oils and distilled water) and a Vigreux column (as an air-cooled condenser inside the microwave oven) was designed as an in-situ extraction vessel inside a microwave oven. The efficiency of this experiment was validated for extraction of essential oils from 30 g fresh orange peel, a by-product in the production of orange juice. Every laboratory throughout the world can use this equipment. The microwave power is 100 W and the irradiation time 15 min. The method is performed at atmospheric pressure without added solvent or water and furnishes essential oils similar to those obtained by conventional hydro or steam distillation. By use of GC-MS, 22 compounds in orange peel were separated and identified; the main compounds were limonene (72.1%), β-pinene (8.4%), and γ-terpinene (6.9%). This procedure is appropriate for the teaching laboratory, does not require any special microwave equipment, and enables the students to learn the skills of extraction, and chromatographic and spectroscopic analysis. They are also exposed to a dramatic visual example of rapid, sustainable, and green extraction of an essential oil, and are introduced to successful sustainable and green analytical chemistry.

  4. Applications of ortho-phenylisonitrile and ortho-N-Boc aniline for the two-step preparation of novel bis-heterocyclic chemotypes.

    PubMed

    Xu, Zhigang; Shaw, Arthur Y; Nichol, Gary S; Cappelli, Alexandra P; Hulme, Christopher

    2012-08-01

    Concise routes to five pharmacologically relevant bis-heterocyclic scaffolds are described. Significant molecular complexity is generated in a mere two synthetic operations enabling access to each scaffold. Routes are often improved by microwave irradiation and all utilize isocyanide-based multi-component reaction methods to incorporate the required diversity elements. Common reagents in all initial condensation reactions include 2-(N-Boc-amino)-phenyl-isocyanide 1, mono-Boc-phenylenediamine 2 and ethyl glyoxalate 3.

  5. A Review of Microwave-Assisted Reactions for Biodiesel Production

    PubMed Central

    Nomanbhay, Saifuddin; Ong, Mei Yin

    2017-01-01

    The conversion of biomass into chemicals and biofuels is an active research area as trends move to replace fossil fuels with renewable resources due to society’s increased concern towards sustainability. In this context, microwave processing has emerged as a tool in organic synthesis and plays an important role in developing a more sustainable world. Integration of processing methods with microwave irradiation has resulted in a great reduction in the time required for many processes, while the reaction efficiencies have been increased markedly. Microwave processing produces a higher yield with a cleaner profile in comparison to other methods. The microwave processing is reported to be a better heating method than the conventional methods due to its unique thermal and non-thermal effects. This paper provides an insight into the theoretical aspects of microwave irradiation practices and highlights the importance of microwave processing. The potential of the microwave technology to accomplish superior outcomes over the conventional methods in biodiesel production is presented. A green process for biodiesel production using a non-catalytic method is still new and very costly because of the supercritical condition requirement. Hence, non-catalytic biodiesel conversion under ambient pressure using microwave technology must be developed, as the energy utilization for microwave-based biodiesel synthesis is reported to be lower and cost-effective. PMID:28952536

  6. A Review of Microwave-Assisted Reactions for Biodiesel Production.

    PubMed

    Nomanbhay, Saifuddin; Ong, Mei Yin

    2017-06-15

    The conversion of biomass into chemicals and biofuels is an active research area as trends move to replace fossil fuels with renewable resources due to society's increased concern towards sustainability. In this context, microwave processing has emerged as a tool in organic synthesis and plays an important role in developing a more sustainable world. Integration of processing methods with microwave irradiation has resulted in a great reduction in the time required for many processes, while the reaction efficiencies have been increased markedly. Microwave processing produces a higher yield with a cleaner profile in comparison to other methods. The microwave processing is reported to be a better heating method than the conventional methods due to its unique thermal and non-thermal effects. This paper provides an insight into the theoretical aspects of microwave irradiation practices and highlights the importance of microwave processing. The potential of the microwave technology to accomplish superior outcomes over the conventional methods in biodiesel production is presented. A green process for biodiesel production using a non-catalytic method is still new and very costly because of the supercritical condition requirement. Hence, non-catalytic biodiesel conversion under ambient pressure using microwave technology must be developed, as the energy utilization for microwave-based biodiesel synthesis is reported to be lower and cost-effective.

  7. Fabrication and Characterization of Superconducting Resonators

    PubMed Central

    Cataldo, Giuseppe; Barrentine, Emily M.; Brown, Ari D.; Moseley, Samuel H.; U-Yen, Kongpop; Wollack, Edward J.

    2016-01-01

    Superconducting microwave resonators are of interest for a wide range of applications, including for their use as microwave kinetic inductance detectors (MKIDs) for the detection of faint astrophysical signatures, as well as for quantum computing applications and materials characterization. In this paper, procedures are presented for the fabrication and characterization of thin-film superconducting microwave resonators. The fabrication methodology allows for the realization of superconducting transmission-line resonators with features on both sides of an atomically smooth single-crystal silicon dielectric. This work describes the procedure for the installation of resonator devices into a cryogenic microwave testbed and for cool-down below the superconducting transition temperature. The set-up of the cryogenic microwave testbed allows one to do careful measurements of the complex microwave transmission of these resonator devices, enabling the extraction of the properties of the superconducting lines and dielectric substrate (e.g., internal quality factors, loss and kinetic inductance fractions), which are important for device design and performance. PMID:27284966

  8. Silver halide fiber optic radiometry for temperature monitoring and control of tissues heated by microwave

    NASA Astrophysics Data System (ADS)

    Shenfeld, Ofer; Belotserkovsky, Edward; Goldwasser, Benad; Zur, Albert; Katzir, Abraham

    1993-02-01

    The heating of tissue by microwave radiation has attained a place of importance in various medical fields, such as the treatment of malignancies, urinary retention, and hypothermia. Accurate temperature measurements in these treated tissues is important for treatment planning and for the control of the heating process. It is also important to be able to measure spacial temperature distribution in the tissues because they are heated in a nonuniform way by the microwave radiation. Conventional temperature sensors used today are inaccurate in the presence of microwave radiation and require contact with the heated tissue. Fiber optic radiometry makes it possible to measure temperatures accurately in the presence of microwave radiation and does not require contact with the tissue. Accurate temperature measurements of tissues heated by microwave was obtained using a silver halide optic radiometer, enabling control of the heating process in other regions of the tissue samples. Temperature mappings of the heated tissues were performed and the nonuniform temperature distributions in these tissues was demonstrated.

  9. I. Microwave Apparatus for Exposing Tissue and the Effect of the Radiation on Skin Respiration

    PubMed Central

    Lawrence, J. C.

    1968-01-01

    An apparatus was designed which enabled small pieces of skin to be exposed to a uniform field of microwaves at χ-band (8,730 MHz). This was used to investigate the effect of these microwaves at selected energy levels on the metabolism of skin. It was shown that skin cultured in vitro exhibited a graded response to microwave energy, and a doseresponse curve was constructed from this data. The ED50 of this curve was 4,740 mW./sq. cm. applied for 1 second. Microscopical examination of three-day cultures of skin showed that histological abnormalities occurred if the specimens were exposed to intensities of microwaves causing more than 30% respiratory damage. The energy level at the ED30 was 2,880 mW./sq. cm. applied for 1 second. Results were consistent with the hypothesis that tissue damage caused by irradiation with microwaves was due to the energy absorbed by the specimen being converted to heat. PMID:5663427

  10. RF Testing Of Microwave Integrated Circuits

    NASA Technical Reports Server (NTRS)

    Romanofsky, R. R.; Ponchak, G. E.; Shalkhauser, K. A.; Bhasin, K. B.

    1988-01-01

    Fixtures and techniques are undergoing development. Four test fixtures and two advanced techniques developed in continuing efforts to improve RF characterization of MMIC's. Finline/waveguide test fixture developed to test submodules of 30-GHz monolithic receiver. Universal commercially-manufactured coaxial test fixture modified to enable characterization of various microwave solid-state devices in frequency range of 26.5 to 40 GHz. Probe/waveguide fixture is compact, simple, and designed for non destructive testing of large number of MMIC's. Nondestructive-testing fixture includes cosine-tapered ridge, to match impedance wavequide to microstrip. Advanced technique is microwave-wafer probing. Second advanced technique is electro-optical sampling.

  11. The Application of Microwave Incineration to Regenerative Life Support

    NASA Technical Reports Server (NTRS)

    Sun, Sidney C.; Srinivasan, Venkatesh; Covington, Al (Technical Monitor)

    1995-01-01

    Future human exploration missions will require life support systems that are highly regenerative, requiring minimum resupply, enabling the crews to be largely self-sufficient. Solid wastes generated in space will be processed to recover usable material. Researchers at NASA Ames Research Center are studying a commercially-produced microwave incinerator as a solid waste processor. This paper will describe the results of testing to-date.

  12. Microwave-assisted acid and base hydrolysis of intact proteins containing disulfide bonds for protein sequence analysis by mass spectrometry.

    PubMed

    Reiz, Bela; Li, Liang

    2010-09-01

    Controlled hydrolysis of proteins to generate peptide ladders combined with mass spectrometric analysis of the resultant peptides can be used for protein sequencing. In this paper, two methods of improving the microwave-assisted protein hydrolysis process are described to enable rapid sequencing of proteins containing disulfide bonds and increase sequence coverage, respectively. It was demonstrated that proteins containing disulfide bonds could be sequenced by MS analysis by first performing hydrolysis for less than 2 min, followed by 1 h of reduction to release the peptides originally linked by disulfide bonds. It was shown that a strong base could be used as a catalyst for microwave-assisted protein hydrolysis, producing complementary sequence information to that generated by microwave-assisted acid hydrolysis. However, using either acid or base hydrolysis, amide bond breakages in small regions of the polypeptide chains of the model proteins (e.g., cytochrome c and lysozyme) were not detected. Dynamic light scattering measurement of the proteins solubilized in an acid or base indicated that protein-protein interaction or aggregation was not the cause of the failure to hydrolyze certain amide bonds. It was speculated that there were some unknown local structures that might play a role in preventing an acid or base from reacting with the peptide bonds therein. 2010 American Society for Mass Spectrometry. Published by Elsevier Inc. All rights reserved.

  13. Infrared fiber optic temperature monitoring of biological tissues heated in a microwave oven

    NASA Astrophysics Data System (ADS)

    Belotserkovsky, Edward; Ashkenasy, Y.; Shenfeld, Ofer; Drizlikh, S.; Zur, Albert; Katzir, Abraham

    1993-05-01

    The heating of tissue by microwave radiation has attained a place of importance in various medical fields such as the treatment of malignancies, urinary retention and hypothermia. Accurate temperature measurements in these treated tissues is important for treatment planning and for the control of the heating process. It is also important to be able to measure spacial temperature distribution in the tissues because they are heated in a non uniform way by the microwave radiation. Fiber optic radiometry makes possible accurate temperature measurement in the presence of microwave radiation and does not require contact with the tissue. Using a IR silver halide fiber optic radiometric temperature sensor we obtained accurate temperature measurements of tissues heated by microwave, enabling us to control the heating process in all regions of the tissue. We also performed temperature mapping of the heated tissues and demonstrated the non-uniform temperature distributions in them.

  14. Analytical scanning evanescent microwave microscope and control stage

    DOEpatents

    Xiang, Xiao-Dong; Gao, Chen; Duewer, Fred; Yang, Hai Tao; Lu, Yalin

    2013-01-22

    A scanning evanescent microwave microscope (SEMM) that uses near-field evanescent electromagnetic waves to probe sample properties is disclosed. The SEMM is capable of high resolution imaging and quantitative measurements of the electrical properties of the sample. The SEMM has the ability to map dielectric constant, loss tangent, conductivity, electrical impedance, and other electrical parameters of materials. Such properties are then used to provide distance control over a wide range, from to microns to nanometers, over dielectric and conductive samples for a scanned evanescent microwave probe, which enable quantitative non-contact and submicron spatial resolution topographic and electrical impedance profiling of dielectric, nonlinear dielectric and conductive materials. The invention also allows quantitative estimation of microwave impedance using signals obtained by the scanned evanescent microwave probe and quasistatic approximation modeling. The SEMM can be used to measure electrical properties of both dielectric and electrically conducting materials.

  15. Analytical scanning evanescent microwave microscope and control stage

    DOEpatents

    Xiang, Xiao-Dong; Gao, Chen; Duewer, Fred; Yang, Hai Tao; Lu, Yalin

    2009-06-23

    A scanning evanescent microwave microscope (SEMM) that uses near-field evanescent electromagnetic waves to probe sample properties is disclosed. The SEMM is capable of high resolution imaging and quantitative measurements of the electrical properties of the sample. The SEMM has the ability to map dielectric constant, loss tangent, conductivity, electrical impedance, and other electrical parameters of materials. Such properties are then used to provide distance control over a wide range, from to microns to nanometers, over dielectric and conductive samples for a scanned evanescent microwave probe, which enable quantitative non-contact and submicron spatial resolution topographic and electrical impedance profiling of dielectric, nonlinear dielectric and conductive materials. The invention also allows quantitative estimation of microwave impedance using signals obtained by the scanned evanescent microwave probe and quasistatic approximation modeling. The SEMM can be used to measure electrical properties of both dielectric and electrically conducting materials.

  16. Quantum electromechanics on silicon nitride nanomembranes

    PubMed Central

    Fink, J. M.; Kalaee, M.; Pitanti, A.; Norte, R.; Heinzle, L.; Davanço, M.; Srinivasan, K.; Painter, O.

    2016-01-01

    Radiation pressure has recently been used to effectively couple the quantum motion of mechanical elements to the fields of optical or microwave light. Integration of all three degrees of freedom—mechanical, optical and microwave—would enable a quantum interconnect between microwave and optical quantum systems. We present a platform based on silicon nitride nanomembranes for integrating superconducting microwave circuits with planar acoustic and optical devices such as phononic and photonic crystals. Using planar capacitors with vacuum gaps of 60 nm and spiral inductor coils of micron pitch we realize microwave resonant circuits with large electromechanical coupling to planar acoustic structures of nanoscale dimensions and femtoFarad motional capacitance. Using this enhanced coupling, we demonstrate microwave backaction cooling of the 4.48 MHz mechanical resonance of a nanobeam to an occupancy as low as 0.32. These results indicate the viability of silicon nitride nanomembranes as an all-in-one substrate for quantum electro-opto-mechanical experiments. PMID:27484751

  17. Antenna coupled photonic wire lasers

    DOE PAGES

    Kao, Tsung-Kao; Cai, Xiaowei; Lee, Alan W. M.; ...

    2015-06-22

    Slope efficiency (SE) is an important performance metric for lasers. In conventional semiconductor lasers, SE can be optimized by careful designs of the facet (or the modulation for DFB lasers) dimension and surface. However, photonic wire lasers intrinsically suffer low SE due to their deep sub-wavelength emitting facets. Inspired by microwave engineering techniques, we show a novel method to extract power from wire lasers using monolithically integrated antennas. These integrated antennas significantly increase the effective radiation area, and consequently enhance the power extraction efficiency. When applied to wire lasers at THz frequency, we achieved the highest single-side slope efficiency (~450more » mW/A) in pulsed mode for DFB lasers at 4 THz and a ~4x increase in output power at 3 THz compared with a similar structure without antennas. This work demonstrates the versatility of incorporating microwave engineering techniques into laser designs, enabling significant performance enhancements.« less

  18. Passive Microwave Remote Sensing of Colorado Watersheds Using Calibrated, Enhanced-Resolution Brightness Temperatures (CETB) from AMSR-E and SSM/I for Estimation of Snowmelt Timing

    NASA Astrophysics Data System (ADS)

    Johnson, M.; Ramage, J. M.; Troy, T. J.; Brodzik, M. J.

    2017-12-01

    Understanding the timing of snowmelt is critical for water resources management in snow-dominated watersheds. Passive microwave remote sensing has been used to estimate melt-refreeze events through brightness temperature satellite observations taken with sensors like the Special Sensor Microwave Imager (SSM/I) and the Advanced Microwave Scanning Radiometer - Earth Observing System (AMSR-E). Previous studies were limited to lower resolution ( 25 km) datasets, making it difficult to quantify the snowpack in heterogeneous, high-relief areas. This study investigates the use of newly available passive microwave calibrated, enhanced-resolution brightness temperatures (CETB) produced at the National Snow and Ice Data Center to estimate melt timing at much higher spatial resolution ( 3-6 km). CETB datasets generated from SSM/I and AMSR-E records will be used to examine three mountainous basins in Colorado. The CETB datasets retain twice-daily (day/night) observations of brightness temperatures. Therefore, we employ the diurnal amplitude variation (DAV) method to detect melt onset and melt occurrences to determine if algorithms developed for legacy data are valid with the improved CETB dataset. We compare melt variability with nearby stream discharge records to determine an optimum melt onset algorithm using the newly reprocessed data. This study investigates the effectiveness of the CETB product for several locations in Colorado (North Park, Rabbit Ears, Fraser) that were the sites of previous ground/airborne surveys during the NASA Cold Land Processes Field Experiment (CLPX 2002-2003). In summary, this work lays the foundation for the utilization of higher resolution reprocessed CETB data for snow evolution more broadly in a range of environments. Consequently, the new processing methods and improved spatial resolution will enable hydrologists to better analyze trends in snow-dominated mountainous watersheds for more effective water resources management.

  19. Non-invasive assessment of leaf water status using a dual-mode microwave resonator.

    PubMed

    Dadshani, Said; Kurakin, Andriy; Amanov, Shukhrat; Hein, Benedikt; Rongen, Heinz; Cranstone, Steve; Blievernicht, Ulrich; Menzel, Elmar; Léon, Jens; Klein, Norbert; Ballvora, Agim

    2015-01-01

    The water status in plant leaves is a good indicator for the water status in the whole plant revealing stress if the water supply is reduced. The analysis of dynamic aspects of water availability in plant tissues provides useful information for the understanding of the mechanistic basis of drought stress tolerance, which may lead to improved plant breeding and management practices. The determination of the water content in plant tissues during plant development has been a challenge and is currently feasible based on destructive analysis only. We present here the application of a non-invasive quantitative method to determine the volumetric water content of leaves and the ionic conductivity of the leaf juice from non-invasive microwave measurements at two different frequencies by one sensor device. A semi-open microwave cavity loaded with a ceramic dielectric resonator and a metallic lumped-element capacitor- and inductor structure was employed for non-invasive microwave measurements at 150 MHz and 2.4 Gigahertz on potato, maize, canola and wheat leaves. Three leaves detached from each plant were chosen, representing three developmental stages being representative for tissue of various age. Clear correlations between the leaf- induced resonance frequency shifts and changes of the inverse resonator quality factor at 2.4 GHz to the gravimetrically determined drying status of the leaves were found. Moreover, the ionic conductivity of Maize leaves, as determined from the ratio of the inverse quality factor and frequency shift at 150 MHz by use of cavity perturbation theory, was found to be in good agreement with direct measurements on plant juice. In conjunction with a compact battery- powered circuit board- microwave electronic module and a user-friendly software interface, this method enables rapid in-vivo water amount assessment of plants by a handheld device for potential use in the field.

  20. Application of Ensemble Detection and Analysis to Modeling Uncertainty in Non Stationary Process

    NASA Technical Reports Server (NTRS)

    Racette, Paul

    2010-01-01

    Characterization of non stationary and nonlinear processes is a challenge in many engineering and scientific disciplines. Climate change modeling and projection, retrieving information from Doppler measurements of hydrometeors, and modeling calibration architectures and algorithms in microwave radiometers are example applications that can benefit from improvements in the modeling and analysis of non stationary processes. Analyses of measured signals have traditionally been limited to a single measurement series. Ensemble Detection is a technique whereby mixing calibrated noise produces an ensemble measurement set. The collection of ensemble data sets enables new methods for analyzing random signals and offers powerful new approaches to studying and analyzing non stationary processes. Derived information contained in the dynamic stochastic moments of a process will enable many novel applications.

  1. Circuit-based versus full-wave modelling of active microwave circuits

    NASA Astrophysics Data System (ADS)

    Bukvić, Branko; Ilić, Andjelija Ž.; Ilić, Milan M.

    2018-03-01

    Modern full-wave computational tools enable rigorous simulations of linear parts of complex microwave circuits within minutes, taking into account all physical electromagnetic (EM) phenomena. Non-linear components and other discrete elements of the hybrid microwave circuit are then easily added within the circuit simulator. This combined full-wave and circuit-based analysis is a must in the final stages of the circuit design, although initial designs and optimisations are still faster and more comfortably done completely in the circuit-based environment, which offers real-time solutions at the expense of accuracy. However, due to insufficient information and general lack of specific case studies, practitioners still struggle when choosing an appropriate analysis method, or a component model, because different choices lead to different solutions, often with uncertain accuracy and unexplained discrepancies arising between the simulations and measurements. We here design a reconfigurable power amplifier, as a case study, using both circuit-based solver and a full-wave EM solver. We compare numerical simulations with measurements on the manufactured prototypes, discussing the obtained differences, pointing out the importance of measured parameters de-embedding, appropriate modelling of discrete components and giving specific recipes for good modelling practices.

  2. Rapid Size- Controlled Synthesis of Dextran-Coated, Copper-Doped Iron Oxide Nanoparticles

    NASA Astrophysics Data System (ADS)

    Wong, Ray M.

    2011-12-01

    Development of dual modality probes enabled for magnetic resonance imaging (MRI) and positron emission tomography (PET) has been on the rise in recent years due to the potential for these probes to facilitate combining the complementary high resolution of MRI and the high sensitivity of PET. The efficient synthesis of multimodal probes that include the radiolabels for PET can be hindered due to prolonged reaction times during radioisotope incorporation, and the resulting decay of the radiolabel. Along with a time-efficient synthesis, one also needs an optimal synthesis that yields products in a desirable size range (between 20-100 nm) to increase blood retention time. In this work, we describe a novel, rapid, microwave-based synthesis of dextran-coated iron oxide nanoparticles doped with copper (DIO/Cu). Traditional methods for synthesizing dextran-coated iron oxide particles require refluxing for 2 hours and result in approximately 50 nm particles. We demonstrate that microwave synthesis can produce 50 nm nanoparticles in 5 minutes of heating. We discuss the various parameters used in the microwave synthesis protocol to vary the size distribution of DIO/Cu, and demonstrate the successful incorporation of copper into these particles with the aim of future use for rapid 64Cu incorporation.

  3. The Autonomous Cryocooled Sapphire Oscillator: A Reference for Frequency Stability and Phase Noise Measurements

    NASA Astrophysics Data System (ADS)

    Giordano, V.; Grop, S.; Fluhr, C.; Dubois, B.; Kersalé, Y.; Rubiola, E.

    2016-06-01

    The Cryogenic Sapphire Oscillator (CSO) is the microwave oscillator which feature the highest short-term stability. Our best units exhibit Allan deviation σy (τ) of 4.5x10-16 at 1s, ≈ 1.5x10-16 at 100 s ≤ t ≤ 5,000 s (floor), and ≤ 5x10-15 at one day. The use of a Pulse-Tube cryocooler enables full two year operation with virtually no maintenance. Starting with a short history of the CSO in our lab, we go through the architecture and we provide more details about the resonator, the cryostat, the oscillator loop, and the servo electronics. We implemented three similar oscillators, which enable the evaluation of each with the three- cornered hat method, and provide the potential for Allan deviation measurements at parts of 10-17 level. One of our CSOs (ULISS) is transportable, and goes with a small customized truck. The unique feature of ULISS is that its σy (τ) can be validated at destination by measuring before and after the roundtrip. To this extent, ULISS can be regarded as a traveling standard of frequency stability. The CSOs are a part of the Oscillator IMP project, a platform dedicated to the measurement of noise and short-term stability of oscillators and devices in the whole radio spectrum (from MHz to THz), including microwave photonics. The scope spans from routine measurements to the research on new oscillators, components, and measurement methods.

  4. Synthesis of graphene by cobalt-catalyzed decomposition of methane in plasma-enhanced CVD: Optimization of experimental parameters with Taguchi method

    NASA Astrophysics Data System (ADS)

    Mehedi, H.-A.; Baudrillart, B.; Alloyeau, D.; Mouhoub, O.; Ricolleau, C.; Pham, V. D.; Chacon, C.; Gicquel, A.; Lagoute, J.; Farhat, S.

    2016-08-01

    This article describes the significant roles of process parameters in the deposition of graphene films via cobalt-catalyzed decomposition of methane diluted in hydrogen using plasma-enhanced chemical vapor deposition (PECVD). The influence of growth temperature (700-850 °C), molar concentration of methane (2%-20%), growth time (30-90 s), and microwave power (300-400 W) on graphene thickness and defect density is investigated using Taguchi method which enables reaching the optimal parameter settings by performing reduced number of experiments. Growth temperature is found to be the most influential parameter in minimizing the number of graphene layers, whereas microwave power has the second largest effect on crystalline quality and minor role on thickness of graphene films. The structural properties of PECVD graphene obtained with optimized synthesis conditions are investigated with Raman spectroscopy and corroborated with atomic-scale characterization performed by high-resolution transmission electron microscopy and scanning tunneling microscopy, which reveals formation of continuous film consisting of 2-7 high quality graphene layers.

  5. Synthesis of graphene by cobalt-catalyzed decomposition of methane in plasma-enhanced CVD: Optimization of experimental parameters with Taguchi method

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mehedi, H.-A.; Baudrillart, B.; Gicquel, A.

    2016-08-14

    This article describes the significant roles of process parameters in the deposition of graphene films via cobalt-catalyzed decomposition of methane diluted in hydrogen using plasma-enhanced chemical vapor deposition (PECVD). The influence of growth temperature (700–850 °C), molar concentration of methane (2%–20%), growth time (30–90 s), and microwave power (300–400 W) on graphene thickness and defect density is investigated using Taguchi method which enables reaching the optimal parameter settings by performing reduced number of experiments. Growth temperature is found to be the most influential parameter in minimizing the number of graphene layers, whereas microwave power has the second largest effect on crystalline qualitymore » and minor role on thickness of graphene films. The structural properties of PECVD graphene obtained with optimized synthesis conditions are investigated with Raman spectroscopy and corroborated with atomic-scale characterization performed by high-resolution transmission electron microscopy and scanning tunneling microscopy, which reveals formation of continuous film consisting of 2–7 high quality graphene layers.« less

  6. Chemo-selective high yield microwave assisted reaction turns cellulose to green chemicals.

    PubMed

    Hassanzadeh, Salman; Aminlashgari, Nina; Hakkarainen, Minna

    2014-11-04

    Exceptionally high cellulose liquefaction yields, up to 87% as calculated from the amount of solid residue, were obtained under mild conditions by utilizing the synergistic effect of microwave radiation and acid catalysis. The effect of processing conditions on degradation products was fingerprinted by rapid laser desorption ionization-mass spectrometry (LDI-MS) method. The reaction was chemo-tunable, enabling production of glucose (Glc) or levulinic acid (LeA) at significantly high selectivity and yields, the relative molar yields being up to 50 and 69%, respectively. A turning point from pure depolymerization to glucose to further degradation to levulinic acid and formic acid was observed at approximately 50% liquefaction or above 140 °C. This was accompanied by the formation of small amounts of solid spherical carbonized residues. The reaction was monitored by multiple analytical techniques. The high yields were connected to the ability of the process to break the strong secondary interactions in cellulose. The developed method has great potential for future production of green platform chemicals. Copyright © 2014 Elsevier Ltd. All rights reserved.

  7. Parity-time–symmetric optoelectronic oscillator

    PubMed Central

    2018-01-01

    An optoelectronic oscillator (OEO) is a hybrid microwave and photonic system incorporating an amplified positive feedback loop to enable microwave oscillation to generate a high-frequency and low–phase noise microwave signal. The low phase noise is ensured by the high Q factor of the feedback loop enabled by the use of a long and low-loss optical fiber. However, an OEO with a long fiber loop would have a small free spectral range, leading to a large number of closely spaced oscillation modes. To ensure single-mode oscillation, an ultranarrowband optical filter must be used, but such an optical filter is hard to implement and the stability is poor. Here, we use a novel concept to achieve single-mode oscillation without using an ultranarrowband optical filter. The single-mode operation is achieved based on parity-time (PT) symmetry by using two identical feedback loops, with one having a gain and the other having a loss of the same magnitude. The operation is analyzed theoretically and verified by an experiment. Stable single-mode oscillation at an ultralow phase noise is achieved without the use of an ultranarrowband optical filter. The use of PT symmetry in an OEO overcomes the long-existing mode-selection challenge that would greatly simplify the implementation of OEOs for ultralow–phase noise microwave generation. PMID:29888325

  8. Simple Microwave-Assisted Synthesis of Amphiphilic Carbon Quantum Dots from A3/B2 Polyamidation Monomer Set.

    PubMed

    Choi, Yujin; Jo, Seongho; Chae, Ari; Kim, Young Kwang; Park, Jeong Eun; Lim, Donggun; Park, Sung Young; In, Insik

    2017-08-23

    Highly fluorescent and amphiphilic carbon quantum dots (CQDs) were prepared by microwave-assisted pyrolysis of citric acid and 4,7,10-trioxa-1,13-tridecanediamine (TTDDA), which functioned as an A 3 and B 2 polyamidation type monomer set. Gram quantities of fluorescent CQDs were easily obtained within 5 min of microwave heating using a household microwave oven. Because of the dual role of TTDDA, both as a constituting monomer and as a surface passivation agent, TTDDA-based CQDs showed a high fluorescence quantum yield of 29% and amphiphilic solubility in various polar and nonpolar solvents. These properties enable the wide application of TTDDA-based CQDs as nontoxic bioimaging agents, nanofillers for polymer composites, and down-converting layers for enhancing the efficiency of Si solar cells.

  9. A time domain based method for the accurate measurement of Q-factor and resonance frequency of microwave resonators

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gyüre, B.; Márkus, B. G.; Bernáth, B.

    2015-09-15

    We present a novel method to determine the resonant frequency and quality factor of microwave resonators which is faster, more stable, and conceptually simpler than the yet existing techniques. The microwave resonator is pumped with the microwave radiation at a frequency away from its resonance. It then emits an exponentially decaying radiation at its eigen-frequency when the excitation is rapidly switched off. The emitted microwave signal is down-converted with a microwave mixer, digitized, and its Fourier transformation (FT) directly yields the resonance curve in a single shot. Being a FT based method, this technique possesses the Fellgett (multiplex) and Connesmore » (accuracy) advantages and it conceptually mimics that of pulsed nuclear magnetic resonance. We also establish a novel benchmark to compare accuracy of the different approaches of microwave resonator measurements. This shows that the present method has similar accuracy to the existing ones, which are based on sweeping or modulating the frequency of the microwave radiation.« less

  10. Universal dynamics and deterministic switching of dissipative Kerr solitons in optical microresonators

    NASA Astrophysics Data System (ADS)

    Guo, H.; Karpov, M.; Lucas, E.; Kordts, A.; Pfeiffer, M. H. P.; Brasch, V.; Lihachev, G.; Lobanov, V. E.; Gorodetsky, M. L.; Kippenberg, T. J.

    2017-01-01

    Temporal dissipative Kerr solitons in optical microresonators enable the generation of ultrashort pulses and low-noise frequency combs at microwave repetition rates. They have been demonstrated in a growing number of microresonator platforms, enabling chip-scale frequency combs, optical synthesis of low-noise microwaves and multichannel coherent communications. In all these applications, accessing and maintaining a single-soliton state is a key requirement--one that remains an outstanding challenge. Here, we study the dynamics of multiple-soliton states and report the discovery of a simple mechanism that deterministically switches the soliton state by reducing the number of solitons one by one. We demonstrate this control in Si3N4 and MgF2 resonators and, moreover, we observe a secondary peak to emerge in the response of the system to a pump modulation, an effect uniquely associated with the soliton regime. Exploiting this feature, we map the multi-stability diagram of a microresonator experimentally. Our measurements show the physical mechanism of the soliton switching and provide insight into soliton dynamics in microresonators. The technique provides a method to sequentially reduce, monitor and stabilize an arbitrary state with solitons, in particular allowing for feedback stabilization of single-soliton states, which is necessary for practical applications.

  11. Demonstration of nonreciprocity in a microwave cavity optomechanical circuit

    NASA Astrophysics Data System (ADS)

    Peterson, Gabriel; Lecocq, Florent; Kotler, Shlomi; Cicak, Katarina; Simmonds, Raymond; Aumentado, Jose; Teufel, John

    The ability to engineer nonreciprocal interactions is essential for many applications including quantum signal processing and quantum transduction. While attributes such as high efficiency and low added noise are always beneficial, for quantum applications these metrics are crucial. Here we present recent experimental results on a parametric, nonreciprocal microwave circuit based on the optomechanical interaction between a superconducting microwave resonator and a mechanically compliant vacuum gap capacitor. Unlike standard Faraday-based circulators, this parametric interaction does not require magnetic fields, and the direction of circulation can be controlled dynamically in situ. Looking forward, such devices could enable programmable, high-efficiency connections between disparate nodes of a quantum network.

  12. Microwave-to-Optical Conversion in WGM Resonators

    NASA Technical Reports Server (NTRS)

    Savchenkov, Anatoliy; Strekalov, Dmitry; Yu, Nan; Matsko, Andrey; Maleki, Lute

    2008-01-01

    Microwave-to-optical frequency converters based on whispering-gallery-mode (WGM) resonators have been proposed as mixers for the input ends of microwave receivers in which, downstream of the input ends, signals would be processed photonically. A frequency converter as proposed (see figure) would exploit the nonlinearity of the electromagnetic response of a WGM resonator made of LiNbO3 or another suitable ferroelectric material. Up-conversion would take place by three-wave mixing in the resonator. The WGM resonator would be de - signed and fabricated to obtain (1) resonance at both the microwave and the optical operating frequencies and (2) phase matching among the input and output microwave and optical signals as described in the immediately preceding article. Because the resonator would be all dielectric there would be no metal electrodes signal losses would be very low and, consequently, the resonance quality factors (Q values) of the microwave and optical fields would be very large. The long lifetimes associated with the large Q values would enable attainment of high efficiency of nonlinear interaction with low saturation power. It is anticipated that efficiency would be especially well enhanced by the combination of optical and microwave resonances in operation at input signal frequencies between 90 and 300 GHz.

  13. Determining the microwave coupling and operational efficiencies of a microwave plasma assisted chemical vapor deposition reactor under high pressure diamond synthesis operating conditions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nad, Shreya; Department of Physics and Astronomy, Michigan State University, East Lansing, Michigan 48824; Gu, Yajun

    2015-07-15

    The microwave coupling efficiency of the 2.45 GHz, microwave plasma assisted diamond synthesis process is investigated by experimentally measuring the performance of a specific single mode excited, internally tuned microwave plasma reactor. Plasma reactor coupling efficiencies (η) > 90% are achieved over the entire 100–260 Torr pressure range and 1.5–2.4 kW input power diamond synthesis regime. When operating at a specific experimental operating condition, small additional internal tuning adjustments can be made to achieve η > 98%. When the plasma reactor has low empty cavity losses, i.e., the empty cavity quality factor is >1500, then overall microwave discharge coupling efficienciesmore » (η{sub coup}) of >94% can be achieved. A large, safe, and efficient experimental operating regime is identified. Both substrate hot spots and the formation of microwave plasmoids are eliminated when operating within this regime. This investigation suggests that both the reactor design and the reactor process operation must be considered when attempting to lower diamond synthesis electrical energy costs while still enabling a very versatile and flexible operation performance.« less

  14. 78 FR 7939 - Energy Conservation Program: Test Procedures for Microwave Ovens (Active Mode)

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-02-04

    ...The U.S. Department of Energy (DOE) proposes to revise its test procedures for microwave ovens established under the Energy Policy and Conservation Act. The proposed amendments would add provisions for measuring the active mode energy use for microwave ovens, including both microwave-only ovens and convection microwave ovens. Specifically, DOE is proposing provisions for measuring the energy use of the microwave-only cooking mode for both microwave-only ovens and convection microwave ovens based on the testing methods in the latest draft version of the International Electrotechnical Commission Standard 60705, ``Household microwave ovens--Methods for measuring performance.'' DOE is proposing provisions for measuring the energy use of the convection-only cooking mode for convection microwave ovens based on the DOE test procedure for conventional ovens in our regulations. DOE is also proposing to calculate the energy use of the convection-microwave cooking mode for convection microwave ovens by apportioning the microwave-only mode and convection-only mode energy consumption measurements based on typical consumer use.

  15. Microwave-emitting rotor, separator apparatus including same, methods of operation and design thereof

    DOEpatents

    Meikrantz, David H.

    2006-12-19

    An apparatus for use in separating, at least in part, a mixture, including at least one chamber and at least one microwave generation device configured for communicating microwave energy into the at least one chamber is disclosed. The rotor assembly may comprise an electric generator for generating electricity for operating the microwave generation device. At least one microwave generation device may be positioned within a tubular interior shaft extending within the rotor assembly. At least a portion of the tubular interior shaft may be substantially transparent to microwave energy. Microwave energy may be emitted in an outward radial direction or toward an anticipated boundary surface defined between a mixture and a separated constituent thereof. A method including flowing a mixture through at least one chamber and communicating microwave energy into the at least one chamber while rotating same is disclosed. Methods of operating a centrifugal separator and design thereof are disclosed.

  16. Comparative evaluation of surface porosities in conventional heat polymerized acrylic resin cured by water bath and microwave energy with microwavable acrylic resin cured by microwave energy

    PubMed Central

    Singh, Sunint; Palaskar, Jayant N.; Mittal, Sanjeev

    2013-01-01

    Background: Conventional heat cure poly methyl methacrylate (PMMA) is the most commonly used denture base resin despite having some short comings. Lengthy polymerization time being one of them and in order to overcome this fact microwave curing method was recommended. Unavailability of specially designed microwavable acrylic resin made it unpopular. Therefore, in this study, conventional heat cure PMMA was polymerized by microwave energy. Aim and Objectives: This study was designed to evaluate the surface porosities in PMMA cured by conventional water bath and microwave energy and compare it with microwavable acrylic resin cured by microwave energy. Materials and Methods: Wax samples were obtained by pouring molten wax into a metal mold of 25 mm × 12 mm × 3 mm dimensions. These samples were divided into three groups namely C, CM, and M. Group C denotes conventional heat cure PMMA cured by water bath method, CM denotes conventional heat cure PMMA cured by microwave energy, M denotes specially designed microwavable acrylic denture base resin cured by microwave energy. After polymerization, each sample was scanned in three pre-marked areas for surface porosities using the optical microscope. As per the literature available, this instrument is being used for the first time to measure the porosity in acrylic resin. It is a reliable method of measuring area of surface pores. Portion of the sample being scanned is displayed on the computer and with the help of software area of each pore was measured and data were analyzed. Results: Conventional heat cure PMMA samples cured by microwave energy showed maximum porosities than the samples cured by conventional water bath method and microwavable acrylic resin cured by microwave energy. Higher percentage of porosities was statistically significant, but well within the range to be clinically acceptable. Conclusion: Within the limitations of this in-vitro study, conventional heat cure PMMA can be cured by microwave energy without compromising on its property such as surface porosity. PMID:24015000

  17. Interaction of microwaves with carbon nanotubes to facilitate modification

    NASA Technical Reports Server (NTRS)

    Tour, James M. (Inventor); Dyke, Christopher A. (Inventor); Stephenson, Jason J. (Inventor); Yakobson, Boris I. (Inventor)

    2011-01-01

    The present invention is directed toward methods of crosslinking carbon nanotubes to each other using microwave radiation, articles of manufacture produced by such methods, compositions produced by such methods, and applications for such compositions and articles of manufacture. The present invention is also directed toward methods of radiatively modifying composites and/or blends comprising carbon nanotubes with microwaves, and to the compositions produced by such methods. In some embodiments, the modification comprises a crosslinking process, wherein the carbon nanotubes serve as a conduit for thermally and photolytically crosslinking the host matrix with microwave radiation.

  18. Method and apparatus for selectively annealing heterostructures using microwave

    NASA Technical Reports Server (NTRS)

    Atwater, Harry A. (Inventor); Brain, Ruth A. (Inventor); Barmatz, Martin B. (Inventor)

    1998-01-01

    The present invention discloses a process for selectively annealing heterostructures using microwaves. A heterostructure, comprised of a material having higher microwave absorption and a material having lower microwave absorption, is exposed to microwaves in the cavity. The higher microwave absorbing material absorbs the microwaves and selectively heats while the lower microwave absorbing material absorbs small amounts of microwaves and minimally heats. The higher microwave absorbing material is thereby annealed onto the less absorbing material which is thermally isolated.

  19. Method and apparatus for selectively annealing heterostructures using microwaves

    NASA Technical Reports Server (NTRS)

    Atwater, Harry A. (Inventor); Brain, Ruth A. (Inventor); Barmatz, Martin B. (Inventor)

    1998-01-01

    The present invention discloses a process for selectively annealing heterostructures using microwaves. A heterostructure, comprised of a material having higher microwave absorption and a material having lower microwave absorption, is exposed to microwaves in the cavity. The higher microwave absorbing material absorbs the microwaves and selectively heats while the lower microwave absorbing material absorbs small amounts of microwaves and minimally heats. The higher microwave absorbing material is thereby annealed onto the less absorbing material which is thermally isolated.

  20. Approaching soft X-ray wavelengths in nanomagnet-based microwave technology

    PubMed Central

    Yu, Haiming; d' Allivy Kelly, O.; Cros, V.; Bernard, R.; Bortolotti, P.; Anane, A.; Brandl, F.; Heimbach, F.; Grundler, D.

    2016-01-01

    Seven decades after the discovery of collective spin excitations in microwave-irradiated ferromagnets, there has been a rebirth of magnonics. However, magnetic nanodevices will enable smart GHz-to-THz devices at low power consumption only, if such spin waves (magnons) are generated and manipulated on the sub-100 nm scale. Here we show how magnons with a wavelength of a few 10 nm are exploited by combining the functionality of insulating yttrium iron garnet and nanodisks from different ferromagnets. We demonstrate magnonic devices at wavelengths of 88 nm written/read by conventional coplanar waveguides. Our microwave-to-magnon transducers are reconfigurable and thereby provide additional functionalities. The results pave the way for a multi-functional GHz technology with unprecedented miniaturization exploiting nanoscale wavelengths that are otherwise relevant for soft X-rays. Nanomagnonics integrated with broadband microwave circuitry offer applications that are wide ranging, from nanoscale microwave components to nonlinear data processing, image reconstruction and wave-based logic. PMID:27063401

  1. Modifying Operating Cycles to Increase Stability in a LITS

    NASA Technical Reports Server (NTRS)

    Burt, Eric; Tjoelker, Robert

    2009-01-01

    The short-term instability in the frequency of a linear-ion-trap frequency standard (LITS) can be reduced by modifying two cycles involved in its operation: (1) the bimodal (bright/dim) cycle of a plasma discharge lamp used for state preparation and detection and (2) a microwave-interrogation cycle. The purpose and effect of the modifications is to enable an increase in the microwave- interrogation cycle time, motivated by the general principle that the short-term uncertainty or instability decreases with increasing microwave-interrogation time. Stated from a slightly different perspective, the effect of modifications is to enable the averaged LITS readings to settle to their longterm stability over a shorter total observation time. The basic principles of a LITS were discussed in several NASA Tech Briefs articles. Here are recapitulated only those items of background information necessary to place the present modifications in context. A LITS includes a microwave local oscillator, the frequency of which is stabilized by comparison with the frequency of a ground-state hyperfine transition of Hg-199(+) ions. In a LITS of the type to which the modifications apply, the comparison involves a combination of optical and micro wave excitation and interrogation of the ions in two collinear ion traps: a quadrupole trap wherein the optical excitation used for state preparation and detection takes place, and a multipole (e.g., 12-pole) trap wherein the microwave interrogation of the clock transition takes place. The ions are initially loaded into the quadrupole trap and are thereafter shuttled between the two traps. This concludes the background information.

  2. Integrated waveguide Bragg gratings for microwave photonics signal processing.

    PubMed

    Burla, Maurizio; Cortés, Luis Romero; Li, Ming; Wang, Xu; Chrostowski, Lukas; Azaña, José

    2013-10-21

    Integrated Microwave photonics (IMWP) signal processing using Photonic Integrated Circuits (PICs) has attracted a great deal of attention in recent years as an enabling technology for a number of functionalities not attainable by purely microwave solutions. In this context, integrated waveguide Bragg grating (WBG) devices constitute a particularly attractive approach thanks to their compactness and flexibility in producing arbitrarily defined amplitude and phase responses, by directly acting on coupling coefficient and perturbations of the grating profile. In this article, we review recent advances in the field of integrated WBGs applied to MWP, analyzing the advantages leveraged by an integrated realization. We provide a perspective on the exciting possibilities offered by the silicon photonics platform in the field of MWP, potentially enabling integration of highly-complex active and passive functionalities with high yield on a single chip, with a particular focus on the use of WBGs as basic building blocks for linear filtering operations. We demonstrate the versatility of WBG-based devices by proposing and experimentally demonstrating a novel, continuously-tunable, integrated true-time-delay (TTD) line based on a very simple dual phase-shifted WBG (DPS-WBG).

  3. Coupled microwave/photoassisted methods for environmental remediation.

    PubMed

    Horikoshi, Satoshi; Serpone, Nick

    2014-11-05

    The microwave-induced acceleration of photocatalytic reactions was discovered serendipitously in the late 1990s. The activity of photocatalysts is enhanced significantly by both microwave radiation and UV light. Particularly relevant, other than as a heat source, was the enigmatic phenomenon of the non-thermal effect(s) of the microwave radiation that facilitated photocatalyzed reactions, as evidenced when examining various model contaminants in aqueous media. Results led to an examination of the possible mechanism(s) of the microwave effect(s). In the present article we contend that the microwaves' non-thermal effect(s) is an important factor in the enhancement of TiO2-photoassisted reactions involving the decomposition of organic pollutants in model wastewaters by an integrated (coupled) microwave-/UV-illumination method (UV/MW). Moreover, such coupling of no less than two irradiation methods led to the fabrication and ultimate investigation of microwave discharged electrodeless lamps (MDELs) as optimal light sources; their use is also described. The review focuses on the enhanced activity of photocatalytic reactions when subjected to microwave radiation and concentrates on the authors' research of the past few years.

  4. Digital communications: Microwave applications

    NASA Astrophysics Data System (ADS)

    Feher, K.

    Transmission concepts and techniques of digital systems are presented; and practical state-of-the-art implementation of digital communications systems by line-of-sight microwaves is described. Particular consideration is given to statistical methods in digital transmission systems analysis, digital modulation methods, microwave amplifiers, system gain, m-ary and QAM microwave systems, correlative techniques and applications to digital radio systems, hybrid systems, digital microwave systems design, diversity and protection switching techniques, measurement techniques, and research and development trends and unsolved problems.

  5. Apparatus and method for microwave processing of materials

    DOEpatents

    Johnson, A.C.; Lauf, R.J.; Bible, D.W.; Markunas, R.J.

    1996-05-28

    Disclosed is a variable frequency microwave heating apparatus designed to allow modulation of the frequency of the microwaves introduced into a furnace cavity for testing or other selected applications. The variable frequency heating apparatus is used in the method of the present invention to monitor the resonant processing frequency within the furnace cavity depending upon the material, including the state thereof, from which the workpiece is fabricated. The variable frequency microwave heating apparatus includes a microwave signal generator and a high-power microwave amplifier or a microwave voltage-controlled oscillator. A power supply is provided for operation of the high-power microwave oscillator or microwave amplifier. A directional coupler is provided for detecting the direction and amplitude of signals incident upon and reflected from the microwave cavity. A first power meter is provided for measuring the power delivered to the microwave furnace. A second power meter detects the magnitude of reflected power. Reflected power is dissipated in the reflected power load. 10 figs.

  6. Adhesive bonding using variable frequency microwave energy

    DOEpatents

    Lauf, Robert J.; McMillan, April D.; Paulauskas, Felix L.; Fathi, Zakaryae; Wei, Jianghua

    1998-01-01

    Methods of facilitating the adhesive bonding of various components with variable frequency microwave energy are disclosed. The time required to cure a polymeric adhesive is decreased by placing components to be bonded via the adhesive in a microwave heating apparatus having a multimode cavity and irradiated with microwaves of varying frequencies. Methods of uniformly heating various articles having conductive fibers disposed therein are provided. Microwave energy may be selectively oriented to enter an edge portion of an article having conductive fibers therein. An edge portion of an article having conductive fibers therein may be selectively shielded from microwave energy.

  7. Adhesive bonding using variable frequency microwave energy

    DOEpatents

    Lauf, R.J.; McMillan, A.D.; Paulauskas, F.L.; Fathi, Z.; Wei, J.

    1998-08-25

    Methods of facilitating the adhesive bonding of various components with variable frequency microwave energy are disclosed. The time required to cure a polymeric adhesive is decreased by placing components to be bonded via the adhesive in a microwave heating apparatus having a multimode cavity and irradiated with microwaves of varying frequencies. Methods of uniformly heating various articles having conductive fibers disposed therein are provided. Microwave energy may be selectively oriented to enter an edge portion of an article having conductive fibers therein. An edge portion of an article having conductive fibers therein may be selectively shielded from microwave energy. 26 figs.

  8. Adhesive bonding using variable frequency microwave energy

    DOEpatents

    Lauf, R.J.; McMillan, A.D.; Paulauskas, F.L.; Fathi, Z.; Wei, J.

    1998-09-08

    Methods of facilitating the adhesive bonding of various components with variable frequency microwave energy are disclosed. The time required to cure a polymeric adhesive is decreased by placing components to be bonded via the adhesive in a microwave heating apparatus having a multimode cavity and irradiated with microwaves of varying frequencies. Methods of uniformly heating various articles having conductive fibers disposed therein are provided. Microwave energy may be selectively oriented to enter an edge portion of an article having conductive fibers therein. An edge portion of an article having conductive fibers therein may be selectively shielded from microwave energy. 26 figs.

  9. Comparison of microwave hydrodistillation and solvent-free microwave extraction of essential oil from Melaleuca leucadendra Linn

    NASA Astrophysics Data System (ADS)

    Ismanto, A. W.; Kusuma, H. S.; Mahfud, M.

    2017-12-01

    The comparison of solvent-free microwave extraction (SFME) and microwave hydrodistillation (MHD) in the extraction of essential oil from Melaleuca leucadendra Linn. was examined. Dry cajuput leaves were used in this study. The purpose of this study is also to determine optimal condition (microwave power). The relative electric consumption of SFME and MHD methods are both showing 0,1627 kWh/g and 0,3279 kWh/g. The results showed that solvent-free microwave extraction methods able to reduce energy consumption and can be regarded as a green technique for extraction of cajuput oil.

  10. Kinetic and Mechanism Study of Vanadium Acid Leaching from Black Shale Using Microwave Heating Method

    NASA Astrophysics Data System (ADS)

    Wang, Jing-peng; Zhang, Yi-min; Huang, Jing; Liu, Tao

    2018-04-01

    The leaching kinetics of the vanadium leaching process were investigated by the comparison of microwave heating and conventional heating methods. Microwave heating with CaF2 had a synergistic effect and improved the vanadium leaching efficiency. In contrast to conventional heating leaching, microwave heating accelerated the vanadium leaching rate by approximately 1-3% and by approximately 15% when CaF2 was also used. The kinetics analysis showed that the calculated activation energy decreased in the microwave heating method in the presence and absence of CaF2. The control procedure of leaching also changed from a chemical reaction control step to a mixed chemical diffusion control step upon the addition of CaF2. Microwave heating was shown to be suitable for leaching systems with diffusion or mixed chemical diffusion control steps when the target mineral does not have a microwave absorbing ability.

  11. Kinetic and Mechanism Study of Vanadium Acid Leaching from Black Shale Using Microwave Heating Method

    NASA Astrophysics Data System (ADS)

    Wang, Jing-peng; Zhang, Yi-min; Huang, Jing; Liu, Tao

    2018-06-01

    The leaching kinetics of the vanadium leaching process were investigated by the comparison of microwave heating and conventional heating methods. Microwave heating with CaF2 had a synergistic effect and improved the vanadium leaching efficiency. In contrast to conventional heating leaching, microwave heating accelerated the vanadium leaching rate by approximately 1-3% and by approximately 15% when CaF2 was also used. The kinetics analysis showed that the calculated activation energy decreased in the microwave heating method in the presence and absence of CaF2. The control procedure of leaching also changed from a chemical reaction control step to a mixed chemical diffusion control step upon the addition of CaF2. Microwave heating was shown to be suitable for leaching systems with diffusion or mixed chemical diffusion control steps when the target mineral does not have a microwave absorbing ability.

  12. Chromospheric Signatures of the Subdued Cycle 23/24 Solar Minimum in Microwaves

    NASA Technical Reports Server (NTRS)

    Yashiro, S.; Makela, P.; Shibasaki, K.; Hathaway, D.

    2011-01-01

    Coronal holes appear brighter than the quiet Sun in microwave images, with a brightness enhancement of 500 to 2000 K. The brightness enhancement corresponds to the upper chromosphere, where the plasma temperature is about 10000 K. We constructed a microwave butterfly diagram using the synoptic images obtained by the Nobeyama radio-heliograph (NoRH) showing the evolution of the polar and low latitude brightness temperature. While the polar brightness reveals the chromospheric conditions, the low latitude brightness is attributed to active regions in the corona. When we compared the microwave butterfly diagram with the magnetic butterfly diagram, we found a good correlation between the microwave brightness enhancement and the polar field strength. The microwave butterfly diagram covers part of solar cycle 22, whole of cycle 23, and part of cycle 24, thus enabling comparison between the cycle 23/24 and cycle 22/23 minima. The microwave brightness during the cycle 23/24 minimum was found to be lower than that during the cycle 22/23 minimum by approx.250 K. The reduced brightness temperature is consistent with the reduced polar field strength during the cycle 23/24 minimum seen in the magnetic butterfly diagram. We suggest that the microwave brightness at the solar poles is a good indicator of the speed of the solar wind sampled by Ulysses at high latitudes.

  13. Microwave assisted esterification of acidified oil from waste cooking oil by CERP/PES catalytic membrane for biodiesel production.

    PubMed

    Zhang, Honglei; Ding, Jincheng; Zhao, Zengdian

    2012-11-01

    The traditional heating and microwave assisted method for biodiesel production using cation ion-exchange resin particles (CERP)/PES catalytic membrane were comparatively studied to achieve economic and effective method for utilization of free fatty acids (FFAs) from waste cooking oil (WCO). The optimal esterification conditions of the two methods were investigated and the experimental results showed that microwave irradiation exhibited a remarkable enhanced effect for esterification compared with that of traditional heating method. The FFAs conversion of microwave assisted esterification reached 97.4% under the optimal conditions of reaction temperature 60°C, methanol/acidified oil mass ratio 2.0:1, catalytic membrane (annealed at 120°C) loading 3g, microwave power 360W and reaction time 90min. The study results showed that it is a fast, easy and green way to produce biodiesel applying microwave irradiation. Copyright © 2012 Elsevier Ltd. All rights reserved.

  14. Polar Chromospheric Signatures of the Subdued Cycle 23/24 Solar Minimum

    NASA Technical Reports Server (NTRS)

    Gopalswamy, N.; Yashiro, S.; Makela, P.; Shibasaki, K.; Hathaway, D.

    2010-01-01

    Coronal holes appear brighter than the quiet Sun in microwave images, with a brightness enhancement of 500 to 2000 K. The brightness enhancement corresponds to the upper chromosphere, where the plasma temperature is about 10000 K. We constructed a microwave butterfly diagram using the synoptic images obtained by the Nobeyama radioheliograph (NoRH) showing the evolution of the polar and low latitude brightness temperature. While the polar brightness reveals the chromospheric conditions, the low latitude brightness is attributed to active regions in the corona. When we compared the microwave butterfly diagram with the magnetic butterfly diagram, we found a good correlation between the microwave brightness enhancement and the polar field strength. The microwave butterfly diagram covers part of solar cycle 22, whole of cycle 23, and part of cycle 24, thus enabling comparison between the cycle 23/24 and cycle 22/23 minima. The microwave brightness during the cycle 23/24 minimum was found to be lower than that during the cycle 22/23 minimum by approximately 250 K. The reduced brightness temperature is consistent with the reduced polar field strength during the cycle 23/24 minimum seen in the magnetic butterfly diagram. We suggest that the microwave brightness at the solar poles is a good indicator of the speed of the solar wind sampled by Ulysses at high latitudes.

  15. Method and apparatus for thickness measurement using microwaves

    DOEpatents

    Woskov, Paul [Bedford, MA; Lamar, David A [West Richland, WA

    2001-01-01

    The method for measuring the thickness of a material which transmits a detectable amount of microwave radiation includes irradiating the material with coherent microwave radiation tuned over a frequency range. Reflected microwave radiation is detected, the reflected radiation having maxima and minima over the frequency range as a result of coherent interference of microwaves reflected from reflecting surfaces of the material. The thickness of the material is determined from the period of the maxima and minima along with knowledge of the index of refraction of the material.

  16. Impact of High Power Interference Sources in Planning and Deployment of Wireless Sensor Networks and Devices in the 2.4 GHz Frequency Band in Heterogeneous Environments

    PubMed Central

    Iturri, Peio López; Nazábal, Juan Antonio; Azpilicueta, Leire; Rodriguez, Pablo; Beruete, Miguel; Fernández-Valdivielso, Carlos; Falcone, Francisco

    2012-01-01

    In this work, the impact of radiofrequency radiation leakage from microwave ovens and its effect on 802.15.4 ZigBee-compliant wireless sensor networks operating in the 2.4 GHz Industrial Scientific Medical (ISM) band is analyzed. By means of a novel radioplanning approach, based on electromagnetic field simulation of a microwave oven and determination of equivalent radiation sources applied to an in-house developed 3D ray launching algorithm, estimation of the microwave oven's power leakage is obtained for the complete volume of an indoor scenario. The magnitude and the variable nature of the interference is analyzed and the impact in the radio link quality in operating wireless sensors is estimated and compared with radio channel measurements as well as packet measurements. The measurement results reveal the importance of selecting an adequate 802.15.4 channel, as well as the Wireless Sensor Network deployment strategy within this type of environment, in order to optimize energy consumption and increase the overall network performance. The proposed method enables one to estimate potential interference effects in devices operating within the 2.4 GHz band in the complete scenario, prior to wireless sensor network deployment, which can aid in achieving the most optimal network topology. PMID:23202228

  17. Production of large resonant plasma volumes in microwave electron cyclotron resonance ion sources

    DOEpatents

    Alton, Gerald D.

    1998-01-01

    Microwave injection methods for enhancing the performance of existing electron cyclotron resonance (ECR) ion sources. The methods are based on the use of high-power diverse frequency microwaves, including variable-frequency, multiple-discrete-frequency, and broadband microwaves. The methods effect large resonant "volume" ECR regions in the ion sources. The creation of these large ECR plasma volumes permits coupling of more microwave power into the plasma, resulting in the heating of a much larger electron population to higher energies, the effect of which is to produce higher charge state distributions and much higher intensities within a particular charge state than possible in present ECR ion sources.

  18. Selection of biological indicator for validating microwave heating sterilization.

    PubMed

    Sasaki, K; Mori, Y; Honda, W; Miyake, Y

    1998-01-01

    For the purpose of selecting an appropriate biological indicator for evaluation of the effects of microwave heating sterilization, we examined aerobic bacterial spores to determine whether microwaves have non-thermal sterilization effects. After microwave irradiation on dry bacterial spores (three species), none of the bacterial spores were killed. The survival rate of the spores after microwave irradiation of spore suspensions (twelve species) was compared with that after heating by a conventional method. The order of heat resistance in the bacterial species was similar between the two heating methods. Bacillus stearothermophilus spores were the most heat-resistant. These results suggest that microwaves have no non-thermal sterilization effects on bacterial spores, the specific resistant spores to microwave heating, and microwave heating sterilization can be evaluated in the same way as for conventional heating sterilization. As a biological indicator for evaluation of overkill sterilization, B. stearothermophilus spores may be appropriate for microwave heating sterilization as well as steam sterilization.

  19. Ultra-thin metasurface microwave flat lens for broadband applications

    DOE PAGES

    Azad, Abul K.; Efimov, Anatoly V.; Ghosh, Shuprio; ...

    2017-05-31

    In this paper, we demonstrate a metasurface-based ultrathin flat lens operating at microwave frequencies. A series of subwavelength metallic split-ring resonators, which are sandwiched between two cross-polarized metallic gratings, are defined to obtain a radially symmetric parabolic phase distribution, covering relative phase differences ranging from 0 to 2.5π radians to create a lens. The tri-layer lens exhibits focusing/collimating of broadband microwaves from 7.0 to 10.0 GHz, with a gain enhancement of 17 dBi at a central wavelength 9.0 GHz while fed by a rectangular horn antenna. The measured focal length agrees reasonably well with design, achieving a 3 dB directionalitymore » <4.5° and confirming high-quality beam collimation along the propagation direction. Finally, the demonstrated metasurface flat lens enables light-weight, low-cost, and easily deployable flat transceivers for microwave communication, detection, and imaging applications.« less

  20. Ultra-thin metasurface microwave flat lens for broadband applications

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Azad, Abul K.; Efimov, Anatoly V.; Ghosh, Shuprio

    In this paper, we demonstrate a metasurface-based ultrathin flat lens operating at microwave frequencies. A series of subwavelength metallic split-ring resonators, which are sandwiched between two cross-polarized metallic gratings, are defined to obtain a radially symmetric parabolic phase distribution, covering relative phase differences ranging from 0 to 2.5π radians to create a lens. The tri-layer lens exhibits focusing/collimating of broadband microwaves from 7.0 to 10.0 GHz, with a gain enhancement of 17 dBi at a central wavelength 9.0 GHz while fed by a rectangular horn antenna. The measured focal length agrees reasonably well with design, achieving a 3 dB directionalitymore » <4.5° and confirming high-quality beam collimation along the propagation direction. Finally, the demonstrated metasurface flat lens enables light-weight, low-cost, and easily deployable flat transceivers for microwave communication, detection, and imaging applications.« less

  1. Ultra-thin metasurface microwave flat lens for broadband applications

    PubMed Central

    Azad, Abul K.; Efimov, Anatoly V.; Ghosh, Shuprio; Singleton, John; Taylor, Antoinette J.

    2017-01-01

    We demonstrate a metasurface-based ultrathin flat lens operating at microwave frequencies. A series of subwavelength metallic split-ring resonators, which are sandwiched between two cross-polarized metallic gratings, are defined to obtain a radially symmetric parabolic phase distribution, covering relative phase differences ranging from 0 to 2.5π radians to create a lens. The tri-layer lens exhibits focusing/collimating of broadband microwaves from 7.0 to 10.0 GHz, with a gain enhancement of 17 dBi at a central wavelength 9.0 GHz while fed by a rectangular horn antenna. The measured focal length agrees reasonably well with design, achieving a 3 dB directionality <4.5° and confirming high-quality beam collimation along the propagation direction. The demonstrated metasurface flat lens enables light-weight, low-cost, and easily deployable flat transceivers for microwave communication, detection, and imaging applications. PMID:29104299

  2. Ultra-thin metasurface microwave flat lens for broadband applications.

    PubMed

    Azad, Abul K; Efimov, Anatoly V; Ghosh, Shuprio; Singleton, John; Taylor, Antoinette J; Chen, Hou-Tong

    2017-05-29

    We demonstrate a metasurface-based ultrathin flat lens operating at microwave frequencies. A series of subwavelength metallic split-ring resonators, which are sandwiched between two cross-polarized metallic gratings, are defined to obtain a radially symmetric parabolic phase distribution, covering relative phase differences ranging from 0 to 2.5π radians to create a lens. The tri-layer lens exhibits focusing/collimating of broadband microwaves from 7.0 to 10.0 GHz, with a gain enhancement of 17 dBi at a central wavelength 9.0 GHz while fed by a rectangular horn antenna. The measured focal length agrees reasonably well with design, achieving a 3 dB directionality <4.5° and confirming high-quality beam collimation along the propagation direction. The demonstrated metasurface flat lens enables light-weight, low-cost, and easily deployable flat transceivers for microwave communication, detection, and imaging applications.

  3. Giant spin-torque diode sensitivity in the absence of bias magnetic field.

    PubMed

    Fang, Bin; Carpentieri, Mario; Hao, Xiaojie; Jiang, Hongwen; Katine, Jordan A; Krivorotov, Ilya N; Ocker, Berthold; Langer, Juergen; Wang, Kang L; Zhang, Baoshun; Azzerboni, Bruno; Amiri, Pedram Khalili; Finocchio, Giovanni; Zeng, Zhongming

    2016-04-07

    Microwave detectors based on the spin-torque diode effect are among the key emerging spintronic devices. By utilizing the spin of electrons in addition to charge, they have the potential to overcome the theoretical performance limits of their semiconductor (Schottky) counterparts. However, so far, practical implementations of spin-diode microwave detectors have been limited by the necessity to apply a magnetic field. Here, we demonstrate nanoscale magnetic tunnel junction microwave detectors, exhibiting high-detection sensitivity of 75,400 mV mW(-1) at room temperature without any external bias fields, and for low-input power (micro-Watts or lower). This sensitivity is significantly larger than both state-of-the-art Schottky diode detectors and existing spintronic diodes. Micromagnetic simulations and measurements reveal the essential role of injection locking to achieve this sensitivity performance. This mechanism may provide a pathway to enable further performance improvement of spin-torque diode microwave detectors.

  4. Giant spin-torque diode sensitivity in the absence of bias magnetic field

    PubMed Central

    Fang, Bin; Carpentieri, Mario; Hao, Xiaojie; Jiang, Hongwen; Katine, Jordan A.; Krivorotov, Ilya N.; Ocker, Berthold; Langer, Juergen; Wang, Kang L.; Zhang, Baoshun; Azzerboni, Bruno; Amiri, Pedram Khalili; Finocchio, Giovanni; Zeng, Zhongming

    2016-01-01

    Microwave detectors based on the spin-torque diode effect are among the key emerging spintronic devices. By utilizing the spin of electrons in addition to charge, they have the potential to overcome the theoretical performance limits of their semiconductor (Schottky) counterparts. However, so far, practical implementations of spin-diode microwave detectors have been limited by the necessity to apply a magnetic field. Here, we demonstrate nanoscale magnetic tunnel junction microwave detectors, exhibiting high-detection sensitivity of 75,400 mV mW−1 at room temperature without any external bias fields, and for low-input power (micro-Watts or lower). This sensitivity is significantly larger than both state-of-the-art Schottky diode detectors and existing spintronic diodes. Micromagnetic simulations and measurements reveal the essential role of injection locking to achieve this sensitivity performance. This mechanism may provide a pathway to enable further performance improvement of spin-torque diode microwave detectors. PMID:27052973

  5. Accurate Analysis and Evaluation of Acidic Plant Growth Regulators in Transgenic and Nontransgenic Edible Oils with Facile Microwave-Assisted Extraction-Derivatization.

    PubMed

    Liu, Mengge; Chen, Guang; Guo, Hailong; Fan, Baolei; Liu, Jianjun; Fu, Qiang; Li, Xiu; Lu, Xiaomin; Zhao, Xianen; Li, Guoliang; Sun, Zhiwei; Xia, Lian; Zhu, Shuyun; Yang, Daoshan; Cao, Ziping; Wang, Hua; Suo, Yourui; You, Jinmao

    2015-09-16

    Determination of plant growth regulators (PGRs) in a signal transduction system (STS) is significant for transgenic food safety, but may be challenged by poor accuracy and analyte instability. In this work, a microwave-assisted extraction-derivatization (MAED) method is developed for six acidic PGRs in oil samples, allowing an efficient (<1.5 h) and facile (one step) pretreatment. Accuracies are greatly improved, particularly for gibberellin A3 (-2.72 to -0.65%) as compared with those reported (-22 to -2%). Excellent selectivity and quite low detection limits (0.37-1.36 ng mL(-1)) are enabled by fluorescence detection-mass spectrum monitoring. Results show the significant differences in acidic PGRs between transgenic and nontransgenic oils, particularly 1-naphthaleneacetic acid (1-NAA), implying the PGRs induced variations of components and genes. This study provides, for the first time, an accurate and efficient determination for labile PGRs involved in STS and a promising concept for objectively evaluating the safety of transgenic foods.

  6. Method and apparatus for stabilizing pulsed microwave amplifiers

    DOEpatents

    Hopkins, Donald B.

    1993-01-01

    Phase and amplitude variations at the output of a high power pulsed microwave amplifier arising from instabilities of the driving electron beam are suppressed with a feed-forward system that can stabilize pulses which are too brief for regulation by conventional feedback techniques. Such variations tend to be similar during successive pulses. The variations are detected during each pulse by comparing the amplifier output with the low power input signal to obtain phase and amplitude error signals. This enables storage of phase and amplitude correction signals which are used to make compensating changes in the low power input signal during the following amplifier output pulse which suppress the variations. In the preferred form of the invention, successive increments of the correction signals for each pulse are stored in separate channels of a multi-channel storage. Sequential readout of the increments during the next pulse provides variable control voltages to a voltage controlled phase shifter and voltage controlled amplitude modulator in the amplifier input signal path.

  7. Method and apparatus for stabilizing pulsed microwave amplifiers

    DOEpatents

    Hopkins, D.B.

    1993-01-26

    Phase and amplitude variations at the output of a high power pulsed microwave amplifier arising from instabilities of the driving electron beam are suppressed with a feed-forward system that can stabilize pulses which are too brief for regulation by conventional feedback techniques. Such variations tend to be similar during successive pulses. The variations are detected during each pulse by comparing the amplifier output with the low power input signal to obtain phase and amplitude error signals. This enables storage of phase and amplitude correction signals which are used to make compensating changes in the low power input signal during the following amplifier output pulse which suppress the variations. In the preferred form of the invention, successive increments of the correction signals for each pulse are stored in separate channels of a multi-channel storage. Sequential readout of the increments during the next pulse provides variable control voltages to a voltage controlled phase shifter and voltage controlled amplitude modulator in the amplifier input signal path.

  8. Incentive and Architecture of Multi-Band Enabled Small Cell and UE for Up-/Down-Link and Control-/User-Plane Splitting for 5G Mobile Networks

    NASA Astrophysics Data System (ADS)

    Saha, Rony Kumer; Aswakul, Chaodit

    2017-01-01

    In this paper, a multi-band enabled femtocell base station (FCBS) and user equipment (UE) architecture is proposed in a multi-tier network that consists of small cells, including femtocells and picocells deployed over the coverage of a macrocell for splitting uplink and downlink (UL/DL) as well as control-plane and user-plane (C-/U-plane) for 5G mobile networks. Since splitting is performed at the same FCBS, we define this architecture as the same base station based split architecture (SBSA). For multiple bands, we consider co-channel (CC) microwave and different frequency (DF) 60 GHz millimeter wave (mmWave) bands for FCBSs and UEs with respect to the microwave band used by their over-laid macrocell base station. All femtocells are assumed to be deployed in a 3-dimensional multi-storage building. For CC microwave band, cross-tier CC interference of femtocells with macrocell is avoided using almost blank subframe based enhanced inter-cell interference coordination techniques. The co-existence of CC microwave and DF mmWave bands for SBSA on the same FCBS and UE is first studied to show their performance disparities in terms of system capacity and spectral efficiency in order to provide incentives for employing multiple bands at the same FCBS and UE and identify a suitable band for routing decoupled UL/DL or C-/U-plane traffic. We then present a number of disruptive architectural design alternatives of multi-band enabled SBSA for 5G mobile networks for UL/DL and C-/U-plane splitting, including a disruptive and complete splitting of UL/DL and C-/U-plane as well as a combined UL/DL and C-/U-plane splitting, by exploiting dual connectivity on CC microwave and DF mmWave bands. The outperformances of SBSA in terms of system level capacity, average spectral efficiency, energy efficiency, and control-plane overhead traffic capacity in comparison with different base stations based split architecture (DBSA) are shown. Finally, a number of technical and business perspectives as well as key research issues of SBSA are discussed.

  9. Method of nitriding, carburizing, or oxidizing refractory metal articles using microwaves

    DOEpatents

    Holcombe, Cressie E.; Dykes, Norman L.; Tiegs, Terry N.

    1992-01-01

    A method of nitriding an article of refractory-nitride-forming metal or metalloids. A consolidated metal or metalloid article is placed inside a microwave oven and nitrogen containing gas is introduced into the microwave oven. The metal or metalloid article is heated to a temperature sufficient to react the metal or metalloid with the nitrogen by applying a microwave energy within the microwave oven. The metal or metalloid article is maintained at that temperature for a period of time sufficient to convert the article of metal or metalloid to an article of refractory nitride. in addition, a method of applying a coating, such as a coating of an oxide, a carbide, or a carbo-nitride, to an article of metal or metalloid by microwave heating.

  10. Method of nitriding, carburizing, or oxidizing refractory metal articles using microwaves

    DOEpatents

    Holcombe, C.E.; Dykes, N.L.; Tiegs, T.N.

    1992-10-13

    A method of nitriding an article of refractory-nitride-forming metal or metalloids. A consolidated metal or metalloid article is placed inside a microwave oven and nitrogen containing gas is introduced into the microwave oven. The metal or metalloid article is heated to a temperature sufficient to react the metal or metalloid with the nitrogen by applying a microwave energy within the microwave oven. The metal or metalloid article is maintained at that temperature for a period of time sufficient to convert the article of metal or metalloid to an article of refractory nitride. in addition, a method of applying a coating, such as a coating of an oxide, a carbide, or a carbo-nitride, to an article of metal or metalloid by microwave heating.

  11. Microwave-assisted green synthesis of silver nanostructures.

    PubMed

    Nadagouda, Mallikarjuna N; Speth, Thomas F; Varma, Rajender S

    2011-07-19

    Over the past 25 years, microwave (MW) chemistry has moved from a laboratory curiosity to a well-established synthetic technique used in many academic and industrial laboratories around the world. Although the overwhelming number of MW-assisted applications today are still performed on a laboratory (mL) scale, we expect that this enabling technology may be used on a larger, perhaps even production, scale in conjunction with radio frequency or conventional heating. Microwave chemistry is based on two main principles, the dipolar mechanism and the electrical conductor mechanism. The dipolar mechanism occurs when, under a very high frequency electric field, a polar molecule attempts to follow the field in the same alignment. When this happens, the molecules release enough heat to drive the reaction forward. In the second mechanism, the irradiated sample is an electrical conductor and the charge carriers, ions and electrons, move through the material under the influence of the electric field and lead to polarization within the sample. These induced currents and any electrical resistance will heat the sample. This Account summarizes a microwave (MW)-assisted synthetic approach for producing silver nanostructures. MW heating has received considerable attention as a promising new method for the one-pot synthesis of metallic nanostructures in solutions. Researchers have successfully demonstrated the application of this method in the preparation of silver (Ag), gold (Au), platinum (Pt), and gold-palladium (Au-Pd) nanostructures. MW heating conditions allow not only for the preparation of spherical nanoparticles within a few minutes but also for the formation of single crystalline polygonal plates, sheets, rods, wires, tubes, and dendrites. The morphologies and sizes of the nanostructures can be controlled by changing various experimental parameters, such as the concentration of metallic salt precursors, the surfactant polymers, the chain length of the surfactant polymers, the solvents, and the operation reaction temperature. In general, nanostructures with smaller sizes, narrower size distributions, and a higher degree of crystallization have been obtained more consistently via MW heating than by heating with a conventional oil-bath. The use of microwaves to heat samples is a viable avenue for the greener synthesis of nanomaterials and provides several desirable features such as shorter reaction times, reduced energy consumption, and better product yields.

  12. Trace determination of Hg together with As, Sb, Se by miniaturized optical emission spectrometry integrated with chemical vapor generation and capacitively coupled argon microwave miniplasma discharge

    NASA Astrophysics Data System (ADS)

    Matusiewicz, Henryk; Ślachciński, Mariusz

    2017-07-01

    A miniaturized optical emission spectrometer (OES) with capacitively coupled argon microwave microplasma (μCMP) as and excitation source and chemical vapor generation (CVG) for sample introduction was constructed for the determination of trace Hg, As, Sb and Se. The applied method enabled simultaneous determination of hydride-forming elements (As, Sb, Se) and volatile Hg. Mercury cold vapor and the hydride volatile species of As, Sb and Se were generated when standard or sample solutions were separated from the liquid phase for transport to the capacitively coupled microwave microplasma and detection of their atomic emission. A univariate approach and the simplex optimization procedure were used to achieve optimized conditions and derive analytical figures of merit. The experimental concentration detection limits (LODs) for simultaneous determination, calculated as the concentration giving a signal equal to three times of the standard deviation of the blank (LOD, 3σblank criterion, peak height) were 3.0, 1.4, 1.5 and 3.8 ng mL- 1 for Hg, As, Sb and Se, respectively. The method was validated by the analysis of three Certified Reference Materials (NIST 2711, NRCC DOLT-2, NIST 1643e) of different matrix composition and by the standard addition technique. The method offers relatively good precision (RSD ranged from 5% to 8%) for microsampling (200 μL) analysis. The measured of contents of elements in certified reference materials were in good agreement with the certified values (Hg 1.99-6.25 μg g- 1, As 16.6-105 μg g- 1, Sb 19.4-56.88 μg g- 1, Se 1.52-11.68 μg g- 1), according to the Student t-test, for a confidence level of 95%.

  13. Reversed rainbow with a nonlocal metamaterial

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Morgado, Tiago A., E-mail: tiago.morgado@co.it.pt; Marcos, João S.; Silveirinha, Mário G., E-mail: mario.silveirinha@co.it.pt

    2014-12-29

    One of the intriguing potentials of metamaterials is the possibility to realize a nonlocal electromagnetic reaction, such that the effective medium response at a given point is fundamentally entangled with the macroscopic field distribution at long distances. Here, it is experimentally and numerically verified that a microwave nonlocal metamaterial formed by crossed metallic wires enables a low-loss broadband anomalous material response such that the refractive index decreases with frequency. Notably, it is shown that an electromagnetic beam refracted by our metamaterial prism creates a reversed microwave rainbow.

  14. NASA's Mobile and Telecom Antenna Development at JPL

    NASA Technical Reports Server (NTRS)

    Huang, John

    1997-01-01

    Chartered by NASA to develop and demonstrate enabling technologies for mobile and satellite telecommuniation systems, JPL has developed various antenna technologies throughout the microwave spectrum in the past two decades.

  15. Deconvoluting the mechanism of microwave annealing of block copolymer thin films.

    PubMed

    Jin, Cong; Murphy, Jeffrey N; Harris, Kenneth D; Buriak, Jillian M

    2014-04-22

    The self-assembly of block copolymer (BCP) thin films is a versatile method for producing periodic nanoscale patterns with a variety of shapes. The key to attaining a desired pattern or structure is the annealing step undertaken to facilitate the reorganization of nanoscale phase-segregated domains of the BCP on a surface. Annealing BCPs on silicon substrates using a microwave oven has been shown to be very fast (seconds to minutes), both with and without contributions from solvent vapor. The mechanism of the microwave annealing process remains, however, unclear. This work endeavors to uncover the key steps that take place during microwave annealing, which enable the self-assembly process to proceed. Through the use of in situ temperature monitoring with a fiber optic temperature probe in direct contact with the sample, we have demonstrated that the silicon substrate on which the BCP film is cast is the dominant source of heating if the doping of the silicon wafer is sufficiently low. Surface temperatures as high as 240 °C are reached in under 1 min for lightly doped, high resistivity silicon wafers (n- or p-type). The influence of doping, sample size, and BCP composition was analyzed to rule out other possible mechanisms. In situ temperature monitoring of various polymer samples (PS, P2VP, PMMA, and the BCPs used here) showed that the polymers do not heat to any significant extent on their own with microwave irradiation of this frequency (2.45 GHz) and power (∼600 W). It was demonstrated that BCP annealing can be effectively carried out in 60 s on non-microwave-responsive substrates, such as highly doped silicon, indium tin oxide (ITO)-coated glass, glass, and Kapton, by placing a piece of high resistivity silicon wafer in contact with the sample-in this configuration, the silicon wafer is termed the heating element. Annealing and self-assembly of polystyrene-block-poly(2-vinylpyridine) (PS-b-P2VP) and polystyrene-block-poly(methyl methacrylate) (PS-b-PMMA) BCPs into horizontal cylinder structures were shown to take place in under 1 min, using a silicon wafer heating element, in a household microwave oven. Defect densities were calculated and were shown to decrease with higher maximum obtained temperatures. Conflicting results in the literature regarding BCP annealing with microwave are explained in light of the results obtained in this study.

  16. 237Np analytical method using 239Np tracers and application to a contaminated nuclear disposal facility

    DOE PAGES

    Snow, Mathew S.; Morrison, Samuel S.; Clark, Sue B.; ...

    2017-03-21

    In this study, environmental 237Np analyses are challenged by low 237Np concentrations and lack of an available yield tracer; we report a rapid, inexpensive 237Np analytical approach employing the short lived 239Np (t1/2 = 2.3 days) as a chemical yield tracer followed by 237Np quantification using inductively coupled plasma-mass spectrometry. 239Np tracer is obtained via separation from a 243Am stock solution and standardized using gamma spectrometry immediately prior to sample processing. Rapid digestions using a commercial, 900 W "Walmart" microwave and Parr microwave vessels result in 99.8 ± 0.1% digestion yields, while chromatographic separations enable Np/U separation factors on themore » order of 10 6 and total Np yields of 95 ± 4% (2σ). Application of this method to legacy soil samples surrounding a radioactive disposal facility (the Subsurface Disposal Area at Idaho National Laboratory) reveal the presence of low level 237Np contamination within 600 m of this site, with maximum 237Np concentrations on the order of 10 3 times greater than nuclear weapons testing fallout levels.« less

  17. 237 Np analytical method using 239 Np tracers and application to a contaminated nuclear disposal facility

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Snow, Mathew S.; Morrison, Samuel S.; Clark, Sue B.

    2017-06-01

    Environmental 237Np analyses are challenged by low 237Np concentrations and lack of an available yield tracer; we report a rapid, inexpensive 237Np analytical approach employing the short lived 239Np (t1/2 = 2.3 days) as a chemical yield tracer followed by 237Np quantification using inductively coupled plasma-mass spectrometry. 239Np tracer is obtained via separation from a 243Am stock solution and standardized using gamma spectrometry immediately prior to sample processing. Rapid digestions using a commercial, 900 watt “Walmart” microwave and Parr microwave vessels result in 99.8 ± 0.1% digestion yields, while chromatographic separations enable Np/U separation factors on the order of 106more » and total Np yields of 95 ± 4% (2σ). Application of this method to legacy soil samples surrounding a radioactive disposal facility (the Subsurface Disposal Area at Idaho National Laboratory) reveal the presence of low level 237Np contamination within 600 meters of this site, with maximum 237Np concentrations on the order of 103 times greater than nuclear weapons testing fallout levels.« less

  18. 237Np analytical method using 239Np tracers and application to a contaminated nuclear disposal facility.

    PubMed

    Snow, Mathew S; Morrison, Samuel S; Clark, Sue B; Olson, John E; Watrous, Matthew G

    2017-06-01

    Environmental 237 Np analyses are challenged by low 237 Np concentrations and lack of an available yield tracer; we report a rapid, inexpensive 237 Np analytical approach employing the short lived 239 Np (t 1/2  = 2.3 days) as a chemical yield tracer followed by 237 Np quantification using inductively coupled plasma-mass spectrometry. 239 Np tracer is obtained via separation from a 243 Am stock solution and standardized using gamma spectrometry immediately prior to sample processing. Rapid digestions using a commercial, 900 W "Walmart" microwave and Parr microwave vessels result in 99.8 ± 0.1% digestion yields, while chromatographic separations enable Np/U separation factors on the order of 10 6 and total Np yields of 95 ± 4% (2σ). Application of this method to legacy soil samples surrounding a radioactive disposal facility (the Subsurface Disposal Area at Idaho National Laboratory) reveal the presence of low level 237 Np contamination within 600 m of this site, with maximum 237 Np concentrations on the order of 10 3 times greater than nuclear weapons testing fallout levels. Copyright © 2017 Elsevier Ltd. All rights reserved.

  19. All-fibre photonic signal generator for attosecond timing and ultralow-noise microwave

    PubMed Central

    Jung, Kwangyun; Kim, Jungwon

    2015-01-01

    High-impact frequency comb applications that are critically dependent on precise pulse timing (i.e., repetition rate) have recently emerged and include the synchronization of X-ray free-electron lasers, photonic analogue-to-digital conversion and photonic radar systems. These applications have used attosecond-level timing jitter of free-running mode-locked lasers on a fast time scale within ~100 μs. Maintaining attosecond-level absolute jitter over a significantly longer time scale can dramatically improve many high-precision comb applications. To date, ultrahigh quality-factor (Q) optical resonators have been used to achieve the highest-level repetition-rate stabilization of mode-locked lasers. However, ultrahigh-Q optical-resonator-based methods are often fragile, alignment sensitive and complex, which limits their widespread use. Here we demonstrate a fibre-delay line-based repetition-rate stabilization method that enables the all-fibre photonic generation of optical pulse trains with 980-as (20-fs) absolute r.m.s. timing jitter accumulated over 0.01 s (1 s). This simple approach is based on standard off-the-shelf fibre components and can therefore be readily used in various comb applications that require ultra-stable microwave frequency and attosecond optical timing. PMID:26531777

  20. Apparatus and method for microwave processing of materials

    DOEpatents

    Johnson, Arvid C.; Lauf, Robert J.; Bible, Don W.; Markunas, Robert J.

    1996-01-01

    A variable frequency microwave heating apparatus (10) designed to allow modulation of the frequency of the microwaves introduced into a furnace cavity (34) for testing or other selected applications. The variable frequency heating apparatus (10) is used in the method of the present invention to monitor the resonant processing frequency within the furnace cavity (34) depending upon the material, including the state thereof, from which the workpiece (36) is fabricated. The variable frequency microwave heating apparatus (10) includes a microwave signal generator (12) and a high-power microwave amplifier (20) or a microwave voltage-controlled oscillator (14). A power supply (22) is provided for operation of the high-power microwave oscillator (14) or microwave amplifier (20). A directional coupler (24) is provided for detecting the direction and amplitude of signals incident upon and reflected from the microwave cavity (34). A first power meter (30) is provided for measuring the power delivered to the microwave furnace (32). A second power meter (26) detects the magnitude of reflected power. Reflected power is dissipated in the reflected power load (28).

  1. Quantitative Characterisation of Sky Conditions on Paranal with the Microwave Radiometer LHATPRO - Five Years and Learning

    NASA Astrophysics Data System (ADS)

    Kerber, Florian; Querel, R.; Neureiter, B.; Hanuschik, R.

    2017-09-01

    "A Low Humidity and Temperature Profiling (LHATPRO) microwave radiometer, optimized for measuring small amounts of atmospheric precipitable water vapour (PWV), has now been in use for more than five years to monitor sky conditions over ESO's Paranal observatory (median PWV 2.5 mm). We'll summarise the performance characteristics of the unit and the current applications of its data in scheduling observations in Service Mode to take advantage of favourable conditions for infrared observations. We'll elaborate on our improved understanding of PWV over Paranal, including an analysis of PWV homogeneity addressing an important calibration issue. In addition we'll describe how the capabilities of the LHATPRO can be used in the future to further strengthen science operations and calibration by also offering line-of-sight support for individual VLT observations. Using its IR data we developed a method for an automated classification of photometric observing conditions in a quantitative way, supporting high precision photometry. Its highly precise PWV measurements enable new low PWV science during episodes of extremely low water vapour that result in a strongly increased transmission also outside the standard atmospheric windows. A goal for the future is to combine various diagnostics measurements (altitude resolved profiles) by LHATPRO and other instruments and sophisticated atmospheric modeling to better characterize relevant properties of the atmosphere and to thus enable more precise, local short-term forecasting for optimised science operations."

  2. Alternative to conventional extraction of vetiver oil: Microwave hydrodistillation of essential oil from vetiver roots (Vetiveria zizanioides)

    NASA Astrophysics Data System (ADS)

    Kusuma, H. S.; Altway, A.; Mahfud, M.

    2017-12-01

    In this study the extraction of essential oil from vetiver roots (Vetiveria zizanioides) has been carried out by using microwave hydrodistillation. In the extraction of vetiver oil using microwave hydrodistillation method is studied the effect of microwave power, feed to solvent (F/S) ratio and extraction time on the yield of vetiver oil. Besides, in this study can be seen that microwave hydrodistillation method offers important advantages over hydrodistillation, such as shorter extraction time (3 h vs. 24 h for hydrodistillation); better yields (0.49% vs. 0.46% for hydrodistillation); and environmental impact (energy cost is appreciably higher for performing hydrodistillation than that required for extraction using microwave hydrodistillation). Based on the analysis using GC-MS can be seen 19 components on vetiver oil that has been extracted using microwave hydrodistillation. In addition, GC-MS analysis showed that the main components of vetiver oil that has been extracted using microwave hydrodistillation method were β-Gurjunene (30.12%), α-Vetivone (20.12%), 4-(1-cyclohexenyl)-2-trimethylsilymethyl-1-buten-3-yne (13.52%) and δ-Selinene (7.27%).

  3. Apparatus and method for microwave processing of materials using field-perturbing tool

    DOEpatents

    Tucker, Denise A.; Fathi, Zakaryae; Lauf, Robert J.

    2001-01-01

    A variable frequency microwave heating apparatus designed to allow modulation of the frequency of the microwaves introduced into a multi-mode microwave cavity for heating or other selected applications. A field-perturbing tool is disposed within the cavity to perturb the microwave power distribution in order to apply a desired level of microwave power to the workpiece.

  4. Microwave thawing apparatus and method

    DOEpatents

    Fathi, Zakaryae; Lauf, Robert J.; McMillan, April D.

    2004-06-01

    An apparatus for thawing a frozen material includes: a microwave energy source; a microwave applicator which defines a cavity for applying microwave energy from the microwave source to a material to be thawed; and a shielded region which is shielded from the microwave source, the shielded region in fluid communication with the cavity so that thawed material may flow from the cavity into the shielded region.

  5. Production of large resonant plasma volumes in microwave electron cyclotron resonance ion sources

    DOEpatents

    Alton, G.D.

    1998-11-24

    Microwave injection methods are disclosed for enhancing the performance of existing electron cyclotron resonance (ECR) ion sources. The methods are based on the use of high-power diverse frequency microwaves, including variable-frequency, multiple-discrete-frequency, and broadband microwaves. The methods effect large resonant ``volume`` ECR regions in the ion sources. The creation of these large ECR plasma volumes permits coupling of more microwave power into the plasma, resulting in the heating of a much larger electron population to higher energies, the effect of which is to produce higher charge state distributions and much higher intensities within a particular charge state than possible in present ECR ion sources. 5 figs.

  6. Microwaving of normally opaque and semi-opaque substances

    DOEpatents

    Sheinberg, Haskell; Meek, Thomas T.; Blake, Rodger D.

    1990-01-01

    Method of heating small particles using microwave radiation which are not normally capable of being heated by microwaves. The surfaces of the particles are coated with a material which is transparent to microwave radiation in order to cause microwave coupling to the particles and thus accomplish heating of the particles.

  7. Optimization of microwave digestion for mercury determination in marine biological samples by cold vapour atomic absorption spectrometry.

    PubMed

    Cardellicchio, Nicola; Di Leo, Antonella; Giandomenico, Santina; Santoro, Stefania

    2006-01-01

    Optimization of acid digestion method for mercury determination in marine biological samples (dolphin liver, fish and mussel tissues) using a closed vessel microwave sample preparation is presented. Five digestion procedures with different acid mixtures were investigated: the best results were obtained when the microwave-assisted digestion was based on sample dissolution with HNO3-H2SO4-K2Cr2O7 mixture. A comparison between microwave digestion and conventional reflux digestion shows there are considerable losses of mercury in the open digestion system. The microwave digestion method has been tested satisfactorily using two certified reference materials. Analytical results show a good agreement with certified values. The microwave digestion proved to be a reliable and rapid method for decomposition of biological samples in mercury determination.

  8. Radiation Interaction with Therapeutic Drugs and Cell Membranes

    NASA Astrophysics Data System (ADS)

    Martin, Diana I.; Manaila, Elena N.; Moisescu, Mihaela I.; Savopol, Tudor D.; Kovacs, Eugenia A.; Cinca, Sabin A.; Matei, Constantin I.; Margaritescu, Irina D.; Iacob, Nicusor I.; Ighigeanu, Daniel I.; Craciun, Gabriela D.

    2007-04-01

    This transient permeabilized state of the cell membrane, named the ``cell electroporation'' (CE) can be used to increase cells uptake of drugs that do not readily pass cell membrane, thus enabling their cytotoxicity. The anticancer drugs, such as bleomycin (BL) and cisplatin, are the most candidates for the combined use with ionizing and non-ionizing radiation fields. The methods and installations for the cell electroporation by electron beam (EB) and microwave (MW) irradiation are presented. The viability tests of the human leukocytes under EB and MW exposure with/without the BL in the cell cultures are discussed.

  9. Microwave evaluation of electromigration susceptibility in advanced interconnects

    NASA Astrophysics Data System (ADS)

    Sunday, Christopher E.; Veksler, Dmitry; Cheung, Kin C.; Obeng, Yaw S.

    2017-11-01

    Traditional metrology has been unable to adequately address the needs of the emerging integrated circuits (ICs) at the nano scale; thus, new metrology and techniques are needed. For example, the reliability challenges in fabrication need to be well understood and controlled to facilitate mass production of through-substrate-via (TSV) enabled three-dimensional integrated circuits (3D-ICs). This requires new approaches to the metrology. In this paper, we use the microwave propagation characteristics to study the reliability issues that precede the physical damage caused by electromigration in the Cu-filled TSVs. The pre-failure microwave insertion losses and group delay are dependent on both the device temperature and the amount of current forced through the devices-under-test. The microwave insertion losses increase with the increase in the test temperature, while the group delay increases with the increase in the forced direct current magnitude. The microwave insertion losses are attributed to the defect mobility at the Cu-TiN interface, and the group delay changes are due to resistive heating in the interconnects, which perturbs the dielectric properties of the cladding dielectrics of the copper fill in the TSVs.

  10. Microwave Dielectric Heating of Drops in Microfluidic Devices†

    PubMed Central

    Issadore, David; Humphry, Katherine J.; Brown, Keith A.; Sandberg, Lori; Weitz, David; Westervelt, Robert M.

    2010-01-01

    We present a technique to locally and rapidly heat water drops in microfluidic devices with microwave dielectric heating. Water absorbs microwave power more efficiently than polymers, glass, and oils due to its permanent molecular dipole moment that has a large dielectric loss at GHz frequencies. The relevant heat capacity of the system is a single thermally isolated picoliter drop of water and this enables very fast thermal cycling. We demonstrate microwave dielectric heating in a microfluidic device that integrates a flow-focusing drop maker, drop splitters, and metal electrodes to locally deliver microwave power from an inexpensive, commercially available 3.0 GHz source and amplifier. The temperature of the drops is measured by observing the temperature dependent fluorescence intensity of cadmium selenide nanocrystals suspended in the water drops. We demonstrate characteristic heating times as short as 15 ms to steady-state temperatures as large as 30°C above the base temperature of the microfluidic device. Many common biological and chemical applications require rapid and local control of temperature, such as PCR amplification of DNA, and can benefit from this new technique. PMID:19495453

  11. A comparison of essential oils obtained from lavandin via different extraction processes: Ultrasound, microwave, turbohydrodistillation, steam and hydrodistillation.

    PubMed

    Périno-Issartier, Sandrine; Ginies, Christian; Cravotto, Giancarlo; Chemat, Farid

    2013-08-30

    A total of eight extraction techniques ranging from conventional methods (hydrodistillation (HD), steam distillation (SD), turbohydrodistillation (THD)), through innovative techniques (ultrasound assisted extraction (US-SD) and finishing with microwave assisted extraction techniques such as In situ microwave-generated hydrodistillation (ISMH), microwave steam distillation (MSD), microwave hydrodiffusion and gravity (MHG), and microwave steam diffusion (MSDf)) were used to extract essential oil from lavandin flowers and their results were compared. Extraction time, yield, essential oil composition and sensorial analysis were considered as the principal terms of comparison. The essential oils extracted using the more innovative processes were quantitatively (yield) and qualitatively (aromatic profile) similar to those obtained from the conventional techniques. The method which gave the best results was the microwave hydrodiffusion and gravity (MHG) method which gave reduced extraction time (30min against 220min for SD) and gave no differences in essential oil yield and sensorial perception. Copyright © 2013 Elsevier B.V. All rights reserved.

  12. Design and Functional Validation of a Mechanism for Dual-Spinning CubeSats

    NASA Technical Reports Server (NTRS)

    Peters, Eric; Dave, Pratik; Kingsbury, Ryan; Marinan, Anne; Wise, Evan; Pong, Chris; Prinkey, Meghan; Cahoy, Kerri; Miller, David W.; Sklair, Devon

    2014-01-01

    The mission of the Micro-sized Microwave Atmospheric Satellite (MicroMAS) is to collect useful atmospheric images using a miniature passive microwave radiometer payload hosted on a low-cost CubeSat platform. In order to collect this data, the microwave radiometer payload must rotate to scan the ground-track perpendicular to the satellite's direction of travel. A custom motor assembly was developed to facilitate the rotation of the payload while allowing the spacecraft bus to remained fixed in the local-vertical, local-horizontal (LVLH) frame for increased pointing accuracy. This paper describes the mechanism used to enable this dual-spinning operation for CubeSats, and the lessons learned during the design, fabrication, integration, and testing phases of the mechanism's development lifecycle.

  13. Mass sensing based on a circuit cavity electromechanical system

    NASA Astrophysics Data System (ADS)

    Jiang, Cheng; Chen, Bin; Li, Jin-Jin; Zhu, Ka-Di

    2011-10-01

    We present a scheme for mass sensing based on a circuit cavity electromechanical system where a free-standing, flexible aluminium membrane is capacitively coupled to a superconducting microwave cavity. Integration with the microwave cavity enables capacitive readout of the mechanical resonance directly on the chip. A microwave pump field and a second probe field are simultaneously applied to the cavity. The accreted mass landing on the membrane can be measured conveniently by tracking the mechanical resonance frequency shifts due to mass changes in the probe transmission spectrum. The mass responsivity for the membrane is 0.72 Hz/ag and we demonstrate that frequency shifts induced by adsorption of one hundred 1587 bp DNA molecules can be well resolved in the probe transmission spectrum.

  14. Deposition of diamond-like films by ECR microwave plasma

    NASA Technical Reports Server (NTRS)

    Shing, Yuh-Han (Inventor); Pool, Frederick S. (Inventor)

    1995-01-01

    Hard amorphous hydrogenated carbon, diamond-like films are deposited using an electron cyclotron resonance microwave plasma with a separate radio frequency power bias applied to a substrate stage. The electron cyclotron resonance microwave plasma yields low deposition pressure and creates ion species otherwise unavailable. A magnetic mirror configuration extracts special ion species from a plasma chamber. Different levels of the radio frequency power bias accelerate the ion species of the ECR plasma impinging on a substrate to form different diamond-like films. During the deposition process, a sample stage is maintained at an ambient temperature of less than 100.degree. C. No external heating is applied to the sample stage. The deposition process enables diamond-like films to be deposited on heat-sensitive substrates.

  15. Computer-Aided Design of Low-Noise Microwave Circuits

    NASA Astrophysics Data System (ADS)

    Wedge, Scott William

    1991-02-01

    Devoid of most natural and manmade noise, microwave frequencies have detection sensitivities limited by internally generated receiver noise. Low-noise amplifiers are therefore critical components in radio astronomical antennas, communications links, radar systems, and even home satellite dishes. A general technique to accurately predict the noise performance of microwave circuits has been lacking. Current noise analysis methods have been limited to specific circuit topologies or neglect correlation, a strong effect in microwave devices. Presented here are generalized methods, developed for computer-aided design implementation, for the analysis of linear noisy microwave circuits comprised of arbitrarily interconnected components. Included are descriptions of efficient algorithms for the simultaneous analysis of noisy and deterministic circuit parameters based on a wave variable approach. The methods are therefore particularly suited to microwave and millimeter-wave circuits. Noise contributions from lossy passive components and active components with electronic noise are considered. Also presented is a new technique for the measurement of device noise characteristics that offers several advantages over current measurement methods.

  16. Underwater microwave ignition of hydrophobic thermite powder enabled by the bubble-marble effect

    NASA Astrophysics Data System (ADS)

    Meir, Yehuda; Jerby, Eli

    2015-08-01

    Highly energetic thermite reactions could be useful for a variety of combustion and material-processing applications, but their usability is yet limited by their hard ignition conditions. Furthermore, in virtue of their zero-oxygen balance, exothermic thermite reactions may also occur underwater. However, this feature is also hard to utilize because of the hydrophobic properties of the thermite powder, and its tendency to agglomerate on the water surface rather than to sink into the water. The recently discovered bubble-marble (BM) effect enables the insertion and confinement of a thermite-powder batch into water by a magnetic field. Here, we present a phenomenon of underwater ignition of a thermite-BM by localized microwaves. The thermite combustion underwater is observed in-situ, and its microwave absorption and optical spectral emission are detected. The vapour pressure generated by the thermite reaction is measured and compared to theory. The combustion products are examined ex-situ by X-ray photo-electron spectroscopy which verifies the thermite reaction. Potential applications of this underwater combustion effect are considered, e.g., for detonation, wet welding, thermal drilling, material processing, thrust generation, and composite-material production, also for other oxygen-free environments.

  17. Underwater microwave ignition of hydrophobic thermite powder enabled by the bubble-marble effect

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Meir, Yehuda; Jerby, Eli, E-mail: jerby@eng.tau.ac.il

    Highly energetic thermite reactions could be useful for a variety of combustion and material-processing applications, but their usability is yet limited by their hard ignition conditions. Furthermore, in virtue of their zero-oxygen balance, exothermic thermite reactions may also occur underwater. However, this feature is also hard to utilize because of the hydrophobic properties of the thermite powder, and its tendency to agglomerate on the water surface rather than to sink into the water. The recently discovered bubble-marble (BM) effect enables the insertion and confinement of a thermite-powder batch into water by a magnetic field. Here, we present a phenomenon ofmore » underwater ignition of a thermite-BM by localized microwaves. The thermite combustion underwater is observed in-situ, and its microwave absorption and optical spectral emission are detected. The vapour pressure generated by the thermite reaction is measured and compared to theory. The combustion products are examined ex-situ by X-ray photo-electron spectroscopy which verifies the thermite reaction. Potential applications of this underwater combustion effect are considered, e.g., for detonation, wet welding, thermal drilling, material processing, thrust generation, and composite-material production, also for other oxygen-free environments.« less

  18. Fiber-optic control and thermometry of single-cell thermosensation logic.

    PubMed

    Fedotov, I V; Safronov, N A; Ermakova, Yu G; Matlashov, M E; Sidorov-Biryukov, D A; Fedotov, A B; Belousov, V V; Zheltikov, A M

    2015-11-13

    Thermal activation of transient receptor potential (TRP) cation channels is one of the most striking examples of temperature-controlled processes in cell biology. As the evidence indicating the fundamental role of such processes in thermosensation builds at a fast pace, adequately accurate tools that would allow heat receptor logic behind thermosensation to be examined on a single-cell level are in great demand. Here, we demonstrate a specifically designed fiber-optic probe that enables thermal activation with simultaneous online thermometry of individual cells expressing genetically encoded TRP channels. This probe integrates a fiber-optic tract for the delivery of laser light with a two-wire microwave transmission line. A diamond microcrystal fixed on the fiber tip is heated by laser radiation transmitted through the fiber, providing a local heating of a cell culture, enabling a well-controlled TRP-assisted thermal activation of cells. Online local temperature measurements are performed by using the temperature-dependent frequency shift of optically detected magnetic resonance, induced by coupling the microwave field, delivered by the microwave transmission line, to nitrogen--vacancy centers in the diamond microcrystal. Activation of TRP channels is verified by using genetically encoded fluorescence indicators, visualizing an increase in the calcium flow through activated TRP channels.

  19. Extinction-ratio-independent electrical method for measuring chirp parameters of Mach-Zehnder modulators using frequency-shifted heterodyne.

    PubMed

    Zhang, Shangjian; Wang, Heng; Zou, Xinhai; Zhang, Yali; Lu, Rongguo; Liu, Yong

    2015-06-15

    An extinction-ratio-independent electrical method is proposed for measuring chirp parameters of Mach-Zehnder electric-optic intensity modulators based on frequency-shifted optical heterodyne. The method utilizes the electrical spectrum analysis of the heterodyne products between the intensity modulated optical signal and the frequency-shifted optical carrier, and achieves the intrinsic chirp parameters measurement at microwave region with high-frequency resolution and wide-frequency range for the Mach-Zehnder modulator with a finite extinction ratio. Moreover, the proposed method avoids calibrating the responsivity fluctuation of the photodiode in spite of the involved photodetection. Chirp parameters as a function of modulation frequency are experimentally measured and compared to those with the conventional optical spectrum analysis method. Our method enables an extinction-ratio-independent and calibration-free electrical measurement of Mach-Zehnder intensity modulators by using the high-resolution frequency-shifted heterodyne technique.

  20. Optimization of enzymes-microwave-ultrasound assisted extraction of Lentinus edodes polysaccharides and determination of its antioxidant activity.

    PubMed

    Yin, Chaomin; Fan, Xiuzhi; Fan, Zhe; Shi, Defang; Gao, Hong

    2018-05-01

    Enzymes-microwave-ultrasound assisted extraction (EMUE) method had been used to extract Lentinus edodes polysaccharides (LEPs). The enzymatic temperature, enzymatic pH, microwave power and microwave time were optimized by response surface methodology. The yields, properties and antioxidant activities of LEPs from EMUE and other extraction methods including hot-water extraction, enzymes-assisted extraction, microwave-assisted extraction and ultrasound-assisted extraction were evaluated. The results showed that the highest LEPs yield of 9.38% was achieved with enzymatic temperature of 48°C, enzymatic pH of 5.0, microwave power of 440W and microwave time of 10min, which correlated well with the predicted value of 9.79%. Additionally, LEPs from different extraction methods possessed typical absorption peak of polysaccharides, which meant different extraction methods had no significant effects on type of glycosidic bonds and sugar ring of LEPs. However, SEM images of LEPs from different extraction methods were significantly different. Moreover, the different LEPs all showed antioxidant activities, but LEPs from EMUE showed the highest reducing power when compared to other LEPs. The results indicated LEPs from EMUE can be used as natural antioxidant component in the pharmaceutical and functional food industries. Copyright © 2018 Elsevier B.V. All rights reserved.

  1. Method of sintering materials with microwave radiation

    DOEpatents

    Kimrey, Jr., Harold D.; Holcombe, Jr., Cressie E.; Dykes, Norman L.

    1994-01-01

    A method of sintering ceramic materials following: A compacted article comprising inorganic particles coated with carbon is provided, the carbon providing improved microwave coupling. The compacted article is then heated by microwave radiation to a temperature and for a period of time sufficient to sinter the compacted article.

  2. Microwave-Assisted Drying for the Conservation of Honeybee Pollen.

    PubMed

    Canale, Angelo; Benelli, Giovanni; Castagna, Antonella; Sgherri, Cristina; Poli, Piera; Serra, Andrea; Mele, Marcello; Ranieri, Annamaria; Signorini, Francesca; Bientinesi, Matteo; Nicolella, Cristiano

    2016-05-12

    Bee pollen is becoming an important product thanks to its nutritional properties, including a high content of bioactive compounds such as essential amino acids, antioxidants, and vitamins. Fresh bee pollen has a high water content (15%-30% wt %), thus it is a good substrate for microorganisms. Traditional conservation methods include drying in a hot air chamber and/or freezing. These techniques may significantly affect the pollen organoleptic properties and its content of bioactive compounds. Here, a new conservation method, microwave drying, is introduced and investigated. The method implies irradiating the fresh pollen with microwaves under vacuum, in order to reduce the water content without reaching temperatures capable of thermally deteriorating important bioactive compounds. The method was evaluated by taking into account the nutritional properties after the treatment. The analyzed parameters were phenols, flavonoids, with special reference to rutin content, and amino acids. Results showed that microwave drying offers important advantages for the conservation of bee pollen. Irrespective of microwave power and treatment time, phenol and flavonoid content did not vary over untreated fresh pollen. Similarly, rutin content was unaffected by the microwave drying, suggesting that the microwave-assisted drying could be a powerful technology to preserve bioprotective compounds in fresh pollen.

  3. Optimizing measurements of cluster velocities and temperatures for CCAT-prime and future surveys

    NASA Astrophysics Data System (ADS)

    Mittal, Avirukt; de Bernardis, Francesco; Niemack, Michael D.

    2018-02-01

    Galaxy cluster velocity correlations and mass distributions are sensitive probes of cosmology and the growth of structure. Upcoming microwave surveys will enable extraction of velocities and temperatures from many individual clusters for the first time. We forecast constraints on peculiar velocities, electron temperatures, and optical depths of galaxy clusters obtainable with upcoming multi-frequency measurements of the kinematic, thermal, and relativistic Sunyaev-Zeldovich effects. The forecasted constraints are compared for different measurement configurations with frequency bands between 90 GHz and 1 THz, and for different survey strategies for the 6-meter CCAT-prime telescope. We study methods for improving cluster constraints by removing emission from dusty star forming galaxies, and by using X-ray temperature priors from eROSITA. Cluster constraints are forecast for several model cluster masses. A sensitivity optimization for seven frequency bands is presented for a CCAT-prime first light instrument and a next generation instrument that takes advantage of the large optical throughput of CCAT-prime. We find that CCAT-prime observations are expected to enable measurement and separation of the SZ effects to characterize the velocity, temperature, and optical depth of individual massive clusters (~1015 Msolar). Submillimeter measurements are shown to play an important role in separating these components from dusty galaxy contamination. Using a modular instrument configuration with similar optical throughput for each detector array, we develop a rule of thumb for the number of detector arrays desired at each frequency to optimize extraction of these signals. Our results are relevant for a future "Stage IV" cosmic microwave background survey, which could enable galaxy cluster measurements over a larger range of masses and redshifts than will be accessible by other experiments.

  4. [Condition optimization experiment of microwave extaction of flavonoids in rhizome of Drynaria fortunei].

    PubMed

    Yang, Bin; Hu, Fu-chao; Chen, Gong-xi; Jiang, Dao-song

    2009-12-01

    The experiment extracted flavonoids in rhizome of Drynaria fortunei by microwave extraction, and determined the extraction rate through colorimetry. Through the single factor experiment and orthogonal method, the optimum extraction conditions were as follows: ethanol concentration was 40%, solid-liquid ratio was 1:20 (g/mL), microwave power was 325 W, extraction time was 40 s. Under these conditions, the extraction rate reached 1.73%. In all condtions, microwave power has the most significant effect on extraction rate. Microwave extraction has obvious advantages in comparison with traditional sovent refluxing method.

  5. No major differences found between the effects of microwave-based and conventional heat treatment methods on two different liquid foods.

    PubMed

    Géczi, Gábor; Horváth, Márk; Kaszab, Tímea; Alemany, Gonzalo Garnacho

    2013-01-01

    Extension of shelf life and preservation of products are both very important for the food industry. However, just as with other processes, speed and higher manufacturing performance are also beneficial. Although microwave heating is utilized in a number of industrial processes, there are many unanswered questions about its effects on foods. Here we analyze whether the effects of microwave heating with continuous flow are equivalent to those of traditional heat transfer methods. In our study, the effects of heating of liquid foods by conventional and continuous flow microwave heating were studied. Among other properties, we compared the stability of the liquid foods between the two heat treatments. Our goal was to determine whether the continuous flow microwave heating and the conventional heating methods have the same effects on the liquid foods, and, therefore, whether microwave heat treatment can effectively replace conventional heat treatments. We have compared the colour, separation phenomena of the samples treated by different methods. For milk, we also monitored the total viable cell count, for orange juice, vitamin C contents in addition to the taste of the product by sensory analysis. The majority of the results indicate that the circulating coil microwave method used here is equivalent to the conventional heating method based on thermal conduction and convection. However, some results in the analysis of the milk samples show clear differences between heat transfer methods. According to our results, the colour parameters (lightness, red-green and blue-yellow values) of the microwave treated samples differed not only from the untreated control, but also from the traditional heat treated samples. The differences are visually undetectable, however, they become evident through analytical measurement with spectrophotometer. This finding suggests that besides thermal effects, microwave-based food treatment can alter product properties in other ways as well.

  6. No Major Differences Found between the Effects of Microwave-Based and Conventional Heat Treatment Methods on Two Different Liquid Foods

    PubMed Central

    Géczi, Gábor; Horváth, Márk; Kaszab, Tímea; Alemany, Gonzalo Garnacho

    2013-01-01

    Extension of shelf life and preservation of products are both very important for the food industry. However, just as with other processes, speed and higher manufacturing performance are also beneficial. Although microwave heating is utilized in a number of industrial processes, there are many unanswered questions about its effects on foods. Here we analyze whether the effects of microwave heating with continuous flow are equivalent to those of traditional heat transfer methods. In our study, the effects of heating of liquid foods by conventional and continuous flow microwave heating were studied. Among other properties, we compared the stability of the liquid foods between the two heat treatments. Our goal was to determine whether the continuous flow microwave heating and the conventional heating methods have the same effects on the liquid foods, and, therefore, whether microwave heat treatment can effectively replace conventional heat treatments. We have compared the colour, separation phenomena of the samples treated by different methods. For milk, we also monitored the total viable cell count, for orange juice, vitamin C contents in addition to the taste of the product by sensory analysis. The majority of the results indicate that the circulating coil microwave method used here is equivalent to the conventional heating method based on thermal conduction and convection. However, some results in the analysis of the milk samples show clear differences between heat transfer methods. According to our results, the colour parameters (lightness, red-green and blue-yellow values) of the microwave treated samples differed not only from the untreated control, but also from the traditional heat treated samples. The differences are visually undetectable, however, they become evident through analytical measurement with spectrophotometer. This finding suggests that besides thermal effects, microwave-based food treatment can alter product properties in other ways as well. PMID:23341982

  7. Method of sintering materials with microwave radiation

    DOEpatents

    Kimrey, H.D. Jr.; Holcombe, C.E. Jr.; Dykes, N.L.

    1994-06-14

    Disclosed is a method of sintering ceramic materials. A compacted article comprising inorganic particles coated with carbon is provided, the carbon providing improved microwave coupling. The compacted article is then heated by microwave radiation to a temperature and for a period of time sufficient to sinter the compacted article. No Drawings

  8. Anisotropic Dielectric Properties of Carbon Fiber Reinforced Polymer Composites during Microwave Curing

    NASA Astrophysics Data System (ADS)

    Zhang, Linglin; Li, Yingguang; Zhou, Jing

    2018-01-01

    Microwave cuing technology is a promising alternative to conventional autoclave curing technology in high efficient and energy saving processing of polymer composites. Dielectric properties of composites are key parameters related to the energy conversion efficiency during the microwave curing process. However, existing methods of dielectric measurement cannot be applied to the microwave curing process. This paper presented an offline test method to solve this problem. Firstly, a kinetics model of the polymer composites under microwave curing was established based on differential scanning calorimetry to describe the whole curing process. Then several specially designed samples of different feature cure degrees were prepared and used to reflect the dielectric properties of the composite during microwave curing. It was demonstrated to be a feasible plan for both test accuracy and efficiency through extensive experimental research. Based on this method, the anisotropic complex permittivity of a carbon fiber/epoxy composite during microwave curing was accurately determined. Statistical results indicated that both the dielectric constant and dielectric loss of the composite increased at the initial curing stage, peaked at the maximum reaction rate point and decreased finally during the microwave curing process. Corresponding mechanism has also been systematically investigated in this work.

  9. Wideband Agile Digital Microwave Radiometer

    NASA Technical Reports Server (NTRS)

    Gaier, Todd C.; Brown, Shannon T.; Ruf, Christopher; Gross, Steven

    2012-01-01

    The objectives of this work were to take the initial steps needed to develop a field programmable gate array (FPGA)- based wideband digital radiometer backend (>500 MHz bandwidth) that will enable passive microwave observations with minimal performance degradation in a radiofrequency-interference (RFI)-rich environment. As manmade RF emissions increase over time and fill more of the microwave spectrum, microwave radiometer science applications will be increasingly impacted in a negative way, and the current generation of spaceborne microwave radiometers that use broadband analog back ends will become severely compromised or unusable over an increasing fraction of time on orbit. There is a need to develop a digital radiometer back end that, for each observation period, uses digital signal processing (DSP) algorithms to identify the maximum amount of RFI-free spectrum across the radiometer band to preserve bandwidth to minimize radiometer noise (which is inversely related to the bandwidth). Ultimately, the objective is to incorporate all processing necessary in the back end to take contaminated input spectra and produce a single output value free of manmade signals to minimize data rates for spaceborne radiometer missions. But, to meet these objectives, several intermediate processing algorithms had to be developed, and their performance characterized relative to typical brightness temperature accuracy re quirements for current and future microwave radiometer missions, including those for measuring salinity, soil moisture, and snow pack.

  10. Wavelength locking of CW and Q-switched Er(3+) microchip lasers to acetylene absorption lines using pump-power modulation.

    PubMed

    Brunel, Marc; Vallet, Marc

    2007-02-19

    We show that modulating the diode-pump power of a microchip solid-state laser enables to lock its wavelength to a reference molecular line. The method is applied to two different types of Er,Yb:glass monolithic microchip lasers operating at 1.53 microm. First, wavelength locking of a continuous-wave dual-polarization microchip laser to acetylene absorption lines is demonstrated, without using any additional modulator, internal or external. We then show that, remarkably, this simple method is also suitable for stabilizing a passively Q-switched microchip laser. A pulsed wavelength stability of 10(-8) over 1 hour is readily observed. Applications to lidars and to microwave photonics are discussed.

  11. Microwave processing heats up

    USDA-ARS?s Scientific Manuscript database

    Microwaves are a common appliance in many households. In the United States microwave heating is the third most popular domestic heating method food foods. Microwave heating is also a commercial food processing technology that has been applied for cooking, drying, and tempering foods. It's use in ...

  12. Microwave Measurement of Refractory Materials at High-Temperature

    NASA Astrophysics Data System (ADS)

    Kharkovsky, S.; Zoughi, R.; Smith, J.; Davis, B.; Limmer, R.

    2009-03-01

    Knowledge of the electrical behavior of refractory materials may enable the development and optimization of microwave nondestructive techniques to detect and evaluate changes in their physical properties while the materials are in service. This paper presents the results of a limited and preliminary investigation in which two refractory materials (dense chrome and dense zircon) were subjected to increasing temperature in a furnace and in which a frequency-modulated continuous-wave radar operating in the frequency range of 8-18 GHz radar was used to evaluate their attenuation properties.

  13. Airborne radar radiometer measurements of tropical storms

    NASA Technical Reports Server (NTRS)

    Kumagai, H.; Meneghini, R.; Kozu, T.; Okamoto, K.

    1992-01-01

    The results from an airborne radar radiometer experiment of rainfall measurement in tropical storms are presented. The experiment was conducted in the Western Pacific in September 1990 with the NASA/DC-8 aircraft which was equipped with a nadir-loking dual-frequency rain radar operating at X band and Ka band, and several channels of microwave radiometers. The X-band radar has a capability of dual-polarization reception which enables the measurements of Linear Depolarization Ratio (LDR). The data of the microwave radiometers are compared with the radar data.

  14. Microwave systems applications in deep space telecommunications and navigation - Space Exploration Initiative architectures

    NASA Technical Reports Server (NTRS)

    Hall, Justin R.; Hastrup, Rolf C.; Bell, David J.

    1992-01-01

    The general support requirements of a typical SEI mission set, along with the mission operations objectives and related telecommunications, navigation, and information management (TNIM) support infrastructure options are described. Responsive system architectures and designs are proposed, including a Mars orbiting communications relay satellite system and a Mars-centered navigation capability for servicing all Mars missions. With the TNIM architecture as a basis, key elements of the microwave link design are proposed. The needed new technologies which enable these designs are identified, and current maturity is assessed.

  15. Microwave systems applications in deep space telecommunications and navigation - Space Exploration Initiative architectures

    NASA Astrophysics Data System (ADS)

    Hall, Justin R.; Hastrup, Rolf C.; Bell, David J.

    1992-06-01

    The general support requirements of a typical SEI mission set, along with the mission operations objectives and related telecommunications, navigation, and information management (TNIM) support infrastructure options are described. Responsive system architectures and designs are proposed, including a Mars orbiting communications relay satellite system and a Mars-centered navigation capability for servicing all Mars missions. With the TNIM architecture as a basis, key elements of the microwave link design are proposed. The needed new technologies which enable these designs are identified, and current maturity is assessed.

  16. Technical Note: Novel method for water vapour monitoring using wireless communication networks measurements

    NASA Astrophysics Data System (ADS)

    David, N.; Alpert, P.; Messer, H.

    2009-04-01

    We propose a new technique that overcomes the obstacles of the existing methods for monitoring near-surface water vapour, by estimating humidity from data collected through existing wireless communication networks. Weather conditions and atmospheric phenomena affect the electromagnetic channel, causing attenuations to the radio signals. Thus, wireless communication networks are in effect built-in environmental monitoring facilities. The wireless microwave links, used in these networks, are widely deployed by cellular providers for backhaul communication between base stations, a few tens of meters above ground level. As a result, if all available measurements are used, the proposed method can provide moisture observations with high spatial resolution and potentially high temporal resolution. Further, the implementation cost is minimal, since the data used are already collected and saved by the cellular operators. In addition - many of these links are installed in areas where access is difficult such as orographic terrain and complex topography. As such, our method enables measurements in places that have been hard to measure in the past, or have never been measured before. The technique is restricted to weather conditions which exclude rain, fog or clouds along the propagation path. Strong winds that may cause movement of the link transmitter or receiver (or both) may also interfere with the ability to conduct accurate measurements. We present results from real-data measurements taken from two microwave links used in a backhaul cellular network that show convincing correlation to surface station humidity measurements. The measurements were taken daily in two sites, one in northern Israel (28 measurements), the other in central Israel (29 measurements). The correlation between the microwave link measurements and the humidity gauges were 0.9 and 0.82 for the north and central sites, respectively. The Root Mean Square Differences (RMSD) were 1.8 g/m3 and 3.4 g/m3 for the northern and central site measurements, respectively.

  17. Effects of Microwave Radiation on Oil Recovery

    NASA Astrophysics Data System (ADS)

    Esmaeili, Abdollah

    2011-12-01

    A variety of oil recovery methods have been developed and applied to mature and depleted reservoirs in order to improve the efficiency. Microwave radiation oil recovery method is a relatively new method and has been of great interest in the recent years. Crude oil is typically co-mingled with suspended solids and water. To increase oil recovery, it is necessary to remove these components. The separation of oil from water and solids using gravitational settling methods is typically incomplete. Oil-in-water and oil-water-solid emulsions can be demulsified and separated into their individual layers by microwave radiation. The data also show that microwave separation is faster than gravity separation and can be faster than conventional heating at many conditions. After separation of emulsion into water and oil layers, water can be discharged and oil is collected. High-frequency microwave recycling process can recover oil and gases from oil shale, residual oil, drill cuttings, tar sands oil, contaminated dredge/sediments, tires and plastics with significantly greater yields and lower costs than are available utilizing existing known technologies. This process is environmentally friendly, fuel-generating recycler to reduce waste, cut emissions, and save energy. This paper presents a critical review of Microwave radiation method for oil recovery.

  18. Method of nitriding refractory metal articles

    DOEpatents

    Tiegs, Terry N.; Holcombe, Cressie E.; Dykes, Norman L.; Omatete, Ogbemi O.; Young, Albert C.

    1994-01-01

    A method of nitriding a refractory-nitride forming metal or metalloid articles and composite articles. A consolidated metal or metalloid article or composite is placed inside a microwave oven and nitrogen containing gas is introduced into the microwave oven. The metal or metalloid article or composite is heated to a temperature sufficient to react the metal or metalloid with the nitrogen by applying a microwave energy within the microwave oven. The metal or metalloid article or composite is maintained at that temperature for a period of time sufficient to convert the article of metal or metalloid or composite to an article or composite of refractory nitride. In addition, a method of applying a coating, such as a coating of an oxide, a carbide, or a carbo-nitride, to an article of metal or metalloid by microwave heating.

  19. Method of nitriding refractory metal articles

    DOEpatents

    Tiegs, T.N.; Holcombe, C.E.; Dykes, N.L.; Omatete, O.O.; Young, A.C.

    1994-03-15

    A method of nitriding a refractory-nitride forming metal or metalloid articles and composite articles. A consolidated metal or metalloid article or composite is placed inside a microwave oven and nitrogen containing gas is introduced into the microwave oven. The metal or metalloid article or composite is heated to a temperature sufficient to react the metal or metalloid with the nitrogen by applying a microwave energy within the microwave oven. The metal or metalloid article or composite is maintained at that temperature for a period of time sufficient to convert the article of metal or metalloid or composite to an article or composite of refractory nitride. In addition, a method of applying a coating, such as a coating of an oxide, a carbide, or a carbo-nitride, to an article of metal or metalloid by microwave heating.

  20. Frequency stabilization of an optically pumped far-infrared laser to the harmonic of a microwave synthesizer.

    PubMed

    Danylov, A A; Light, A R; Waldman, J; Erickson, N

    2015-12-10

    Measurements of the frequency stability of a far-infrared molecular laser have been made by mixing the harmonic of an ultrastable microwave source with a portion of the laser output signal in a terahertz (THz) Schottky diode balanced mixer. A 3 GHz difference-frequency signal was used in a frequency discriminator circuit to lock the laser to the microwave source. Comparisons of the short- and long-term laser frequency stability under free-running and locked conditions show a significant improvement with locking. Short-term frequency jitter was reduced by an order of magnitude, from approximately 40 to 4 kHz, and long-term drift was reduced by more than three orders of magnitude, from approximately 250 kHz to 80 Hz. The results, enabled by the efficient Schottky diode balanced mixer downconverter, demonstrate that ultrastable microwave-based frequency stabilization of THz optically pumped lasers (OPLs) will now be possible at frequencies extending well above 4.0 THz.

  1. Vibrations used to talk to quantum circuits

    NASA Astrophysics Data System (ADS)

    Cho, Adrian

    2018-03-01

    The budding discipline of quantum acoustics could shake up embryonic quantum computers. Such machines run by flipping quantum bits, or qubits, that can be set not only to zero or one, but, bizarrely, to zero and one at the same time. The most advanced qubits are circuits made of superconducting metal, and to control or read out a qubit, researchers make it interact with a microwave resonator—typically a strip of metal on the qubit chip or a finger-size cavity surrounding it—which rings with microwave photons like an organ pipe rings with sound. But some physicists see advantages to replacing the microwave resonator with a mechanical one that rings with quantized vibrations, or phonons. A well-designed acoustic resonator could ring longer than a microwave one does and could be far smaller, enabling researchers to produce more compact technologies. But first scientists must gain quantum control over vibrations. And several groups are on the cusp of doing that, as they reported at a recent meeting.

  2. Free-space microwave-to-optical conversion via six-wave mixing in Rydberg atoms

    NASA Astrophysics Data System (ADS)

    Han, Jingshan; Vogt, Thibault; Gross, Christian; Jaksch, Dieter; Kiffner, Martin; Li, Wenhui

    2017-04-01

    The interconversion of millimeter waves and optical fields is an important and highly topical subject for classical and quantum technologies. In this talk, we report an experimental demonstration of coherent and efficient microwave-to-optical conversion in free space via six-wave mixing in Rydberg atoms. Our scheme utilizes the strong coupling of millimeter waves to Rydberg atoms as well as the frequency mixing based on electromagnetically induced transparency (EIT) that greatly enhances the nonlinearity for the conversion process. We achieve a free-space conversion efficiency of 0.25% with a bandwidth of about 4 MHz in our experiment. Optimized geometry and energy level configurations should enable the broadband interconversion of microwave and optical fields with near-unity efficiency. These results indicate the tremendous potential of Rydberg atoms for the efficient conversion between microwave and optical fields, and thus paves the way to many applications. This work is supported by Singapore Ministry of Education Academic Research Fund Tier 2 (Grant No. MOE2015-T2-1-085).

  3. Preparation of Silica Nanoparticles Through Microwave-assisted Acid-catalysis

    PubMed Central

    Lovingood, Derek D.; Owens, Jeffrey R.; Seeber, Michael; Kornev, Konstantin G.; Luzinov, Igor

    2013-01-01

    Microwave-assisted synthetic techniques were used to quickly and reproducibly produce silica nanoparticle sols using an acid catalyst with nanoparticle diameters ranging from 30-250 nm by varying the reaction conditions. Through the selection of a microwave compatible solvent, silicic acid precursor, catalyst, and microwave irradiation time, these microwave-assisted methods were capable of overcoming the previously reported shortcomings associated with synthesis of silica nanoparticles using microwave reactors. The siloxane precursor was hydrolyzed using the acid catalyst, HCl. Acetone, a low-tan δ solvent, mediates the condensation reactions and has minimal interaction with the electromagnetic field. Condensation reactions begin when the silicic acid precursor couples with the microwave radiation, leading to silica nanoparticle sol formation. The silica nanoparticles were characterized by dynamic light scattering data and scanning electron microscopy, which show the materials' morphology and size to be dependent on the reaction conditions. Microwave-assisted reactions produce silica nanoparticles with roughened textured surfaces that are atypical for silica sols produced by Stöber's methods, which have smooth surfaces. PMID:24379052

  4. Effects of different drying methods on the product quality and volatile compounds of whole shiitake mushrooms.

    PubMed

    Tian, Yuting; Zhao, Yingting; Huang, Jijun; Zeng, Hongliang; Zheng, Baodong

    2016-04-15

    Various drying methods play important roles in the preservation of foods. However, how the different drying methods affect the quality of some foods is not clear. This paper evaluates the effects of hot air, vacuum, microwave, and microwave vacuum drying techniques on important qualities and volatile compounds of whole shiitake (Lentinus edodes) mushrooms. These four drying methods resulted in a significantly (p<0.05) increase in the content of total free amino acids and the relative content of sulfur compounds of dried products. Microwave vacuum drying helped to maintain larger amounts of taste-active amino acids, and improved nutrient retention and color attributes. Furthermore, the uniform honeycomb network created by microwave vacuum drying along with a less collapsed structure of dried samples can be used to explain the observed high rehydration ratio. Therefore, microwave vacuum drying should be a potential method for obtaining high-quality dried mushrooms. Copyright © 2015 Elsevier Ltd. All rights reserved.

  5. Study of the optimisation of puffing characteristics of potato cubes by spouted bed drying enhanced with microwave.

    PubMed

    Yan, Wei-qiang; Zhang, Min; Huang, Lue-lue; Tang, Juming; Mujumdar, Arun S; Sun, Jin-cai

    2010-06-01

    In commercial deep-fat frying of potato chips, the oil content of the final products ranges from 35 to 45 g 100 g(-1) (wet basis). High-temperature frying may cause the formation of acrylamide, making the products unhealthy to the consumer. The aim of this research was to explore a new method, spouted bed microwave drying, to produce healthier puffed snack potato cubes as possible alternatives to oil-fried potato chips. The influence of drying conditions of the spouted bed microwave drying on puffing characteristics of potato cubes were studied and compared with the direct microwave and hot air drying method. Tandem combination drying of microwave-enhanced spouted bed drying (MWSB) could achieve a good expansion ratio, breaking force and rehydration ratio. The puffing characteristics of potato cubes were significantly affected (P < 0.05) by moisture content before starting microwave power in spouted bed microwave drying, by microwave (MW) power, and by the original size of potato cubes. The optimum processing parameters were the moisture content at the start of microwave power (60%), the size of potato cubes (10-12 mm), and microwave power (2-2.5 W g(-1)) Copyright (c) 2010 Society of Chemical Industry.

  6. Technique for Performing Dielectric Property Measurements at Microwave Frequencies

    NASA Technical Reports Server (NTRS)

    Barmatz, Martin B.; Jackson, Henry W.

    2010-01-01

    A paper discusses the need to perform accurate dielectric property measurements on larger sized samples, particularly liquids at microwave frequencies. These types of measurements cannot be obtained using conventional cavity perturbation methods, particularly for liquids or powdered or granulated solids that require a surrounding container. To solve this problem, a model has been developed for the resonant frequency and quality factor of a cylindrical microwave cavity containing concentric cylindrical samples. This model can then be inverted to obtain the real and imaginary dielectric constants of the material of interest. This approach is based on using exact solutions to Maxwell s equations for the resonant properties of a cylindrical microwave cavity and also using the effective electrical conductivity of the cavity walls that is estimated from the measured empty cavity quality factor. This new approach calculates the complex resonant frequency and associated electromagnetic fields for a cylindrical microwave cavity with lossy walls that is loaded with concentric, axially aligned, lossy dielectric cylindrical samples. In this approach, the calculated complex resonant frequency, consisting of real and imaginary parts, is related to the experimentally measured quantities. Because this approach uses Maxwell's equations to determine the perturbed electromagnetic fields in the cavity with the material(s) inserted, one can calculate the expected wall losses using the fields for the loaded cavity rather than just depending on the value of the fields obtained from the empty cavity quality factor. These additional calculations provide a more accurate determination of the complex dielectric constant of the material being studied. The improved approach will be particularly important when working with larger samples or samples with larger dielectric constants that will further perturb the cavity electromagnetic fields. Also, this approach enables the ability to have a larger sample of interest, such as a liquid or powdered or granulated solid, inside a cylindrical container.

  7. Microwave mediated synthesis of ZnS spherical nanoparticles for IR optical ceramics

    NASA Astrophysics Data System (ADS)

    Ravichandran, D.; Wharton, T.; Devan, B.; Korenstein, R.; Tustison, R.; Komarneni, S.

    2011-06-01

    The existing material choice for long-wave infrared (LWIR) and semi-active laser domes is multispectral zinc sulfide (ZnS), made by chemical vapor deposition. An alternative route to make more erosion-resistant ZnS could be through hot pressing ZnS nanoparticles into small-grain material. We have attempted to produce ZnS nanoparticles both by microwave and microwave-hydrothermal methods. Microwave route produced ultrahigh purity, homogeneous, well dispersed, and uniformly spherical ZnS nanoparticles. Microwave-hydrothermal route produced equiaxed cubic-faceted nanoparticles. The powder X-ray diffraction patterns of ZnS shows the presence of broad reflections corresponding to the (1 1 1), (2 2 0), and (3 1 1) planes of the cubic crystalline ZnS material. The domain size of the particles estimated from the Debye-Scherrer formula for the main reflection (111) gives a value of 2.9 and 2.5 for the microwave and microwave-hydrothermal methods respectively.

  8. Method for heat treating and sintering metal oxides with microwave radiation

    DOEpatents

    Holcombe, Cressie E.; Dykes, Norman L.; Meek, Thomas T.

    1989-01-01

    A method for microwave sintering materials, primarily metal oxides, is described. Metal oxides do not normally absorb microwave radiation at temperatures ranging from about room temperature to several hundred degrees centrigrade are sintered with microwave radiation without the use of the heretofore required sintering aids. This sintering is achieved by enclosing a compact of the oxide material in a housing or capsule formed of a oxide which has microwave coupling properties at room temprature up to at least the microwave coupling temperature of the oxide material forming the compact. The heating of the housing effects the initial heating of the oxide material forming the compact by heat transference and then functions as a thermal insulator for the encased oxide material after the oxide material reaches a sufficient temperature to adequately absorb or couple with microwave radiation for heating thereof to sintering temperature.

  9. Wave-optics modeling of the optical-transport line for passive optical stochastic cooling

    NASA Astrophysics Data System (ADS)

    Andorf, M. B.; Lebedev, V. A.; Piot, P.; Ruan, J.

    2018-03-01

    Optical stochastic cooling (OSC) is expected to enable fast cooling of dense particle beams. Transition from microwave to optical frequencies enables an achievement of stochastic cooling rates which are orders of magnitude higher than ones achievable with the classical microwave based stochastic cooling systems. A subsystemcritical to the OSC scheme is the focusing optics used to image radiation from the upstream "pickup" undulator to the downstream "kicker" undulator. In this paper, we present simulation results using wave-optics calculation carried out with the SYNCHROTRON RADIATION WORKSHOP (SRW). Our simulations are performed in support to a proof-of-principle experiment planned at the Integrable Optics Test Accelerator (IOTA) at Fermilab. The calculations provide an estimate of the energy kick received by a 100-MeV electron as it propagates in the kicker undulator and interacts with the electromagnetic pulse it radiated at an earlier time while traveling through the pickup undulator.

  10. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Andorf, M. B.; Lebedev, V. A.; Piot, P.

    Optical stochastic cooling (OSC) is expected to enable fast cooling of dense particle beams. Transition from microwave to optical frequencies enables an achievement of stochastic cooling rates which are orders of magnitude higher than ones achievable with the classical microwave based stochastic cooling systems. A subsystemcritical to the OSC scheme is the focusing optics used to image radiation from the upstream “pickup” undulator to the downstream “kicker” undulator. In this paper, we present simulation results using wave-optics calculation carried out with the Synchrotron Radiation Workshop (SRW). Our simulations are performed in support to a proof-of-principle experiment planned at the Integrablemore » Optics Test Accelerator (IOTA) at Fermilab. The calculations provide an estimate of the energy kick received by a 100-MeV electron as it propagates in the kicker undulator and interacts with the electromagnetic pulse it radiated at an earlier time while traveling through the pickup undulator.« less

  11. A Detector for Cosmic Microwave Background Polarimetry

    NASA Technical Reports Server (NTRS)

    Wollack, E.; Cao, N.; Chuss, D.; Hsieh, W.-T.; Moseley, S. Harvey; Stevenson, T.; U-yen, K.

    2008-01-01

    We present preliminary design and development work on polarized detectors intended to enable Cosmic Microwave Background polarization measurements that will probe the first moments of the universe. The ultimate measurement will be challenging, requiring background-limited detectors and good control of systematic errors. Toward this end, we are integrating the beam control of HE-11 feedhorns with the sensitivity of transition-edge sensors. The coupling between these two devices is achieved via waveguide probe antennas and superconducting microstrip lines. This implementation allows band-pass filters to be incorporated on the detector chip. We believe that a large collection of single-mode polarized detectors will eventually be required for the reliable detection of the weak polarized signature that is expected to result from gravitational waves produced by cosmic inflation. This focal plane prototype is an important step along the path to this detection, resulting in a capability that will enable various future high performance instrument concepts.

  12. Detection of contraband using microwave radiation

    DOEpatents

    Toth, Richard P.; Loubriel, Guillermo M.; Bacon, Larry D.; Watson, Robert D.

    2002-01-01

    The present invention relates to a method and system for using microwave radiation to detect contraband hidden inside of a non-metallic container, such as a pneumatic vehicle tire. The method relies on the attenuation, retardation, time delay, or phase shift of microwave radiation as it passes through the container plus the contraband. The method is non-invasive, non-destructive, low power, and does not require physical contact with the container.

  13. A comparison of techniques for preparing fish fillet for ICP-AES multielemental analysis and the microwave digestion of whole fish.

    PubMed

    Moeller, A; Ambrose, R F; Que Hee, S S

    2001-01-01

    Four catfish fillet homogenate treatments before multielemental metal analysis by simultaneous inductively coupled plasma/atomic emission spectroscopy were compared in triplicate. These treatments were: nitric acid wet-ashing by Parr bomb digestion; nitric acid wet-ashing by microwave digestion; tetramethylammonium hydroxide/nitric acid wet digestion; and dry-ashing. The tetramethylammonium hydroxide/nitric acid method was imprecise (coefficients of variation > 20%). The dry-ashing method was fast and sensitive but had low recoveries of 50% for spiked Pb and Al and was not as precise as the Parr bomb or microwave treatments. The Parr bomb method was the most precise method but was less sensitive than the microwave method which had nearly the same precision. The microwave method was then adapted to homogenates of small whole fish < or = 3 cm in length. The whole fish homogenate required more vigorous digestion conditions, and addition of more acid after the evaporative step because of the presence of less oxidizable and acid-soluble components than fillet. The whole fish homogenate was also more heterogeneous than catfish fillet. A quality assurance protocol to demonstrate homogenate uniformity is essential. The use of a non-specialized microwave oven system allowed precise results for fillet and whole fish homogenates.

  14. The Peculiar Solar Minimum 23/24 Revealed by the Microwave Butterfly Diagram

    NASA Technical Reports Server (NTRS)

    Gopalswamy, Natchimuthuk; Yashiro, Seiji; Makela, Pertti; Shibasaki, Kiyoto; Hathaway, David

    2010-01-01

    The diminished polar magnetic field strength during the minimum between cycles 23 and 24 is also reflected in the thermal radio emission originating from the polar chromosphere. During solar minima, the polar corona has extended coronal holes containing intense unipolar flux. In microwave images, the coronal holes appear bright, with a brightness enhancement of 500 to 2000 K with respect to the quiet Sun. The brightness enhancement corresponds to the upper chromosphere, where the plasma temperature is approx.10000 K. We constructed a microwave butterfly diagram using the synoptic images obtained by the Nobeyama radioheliograph (NoRH) showing the evolution of the polar and low latitude brightness temperature. While the polar brightness reveals the chromospheric conditions, the low latitude brightness is attributed to active regions in the corona. When we compared the microwave butterfly diagram with the magnetic butterfly diagram, we found a good correlation between the microwave brightness enhancement and the polar field strength. The microwave butterfly diagram covers part of solar cycle 22, whole of cycle 23, and part of cycle 24, thus enabling comparison between the cycle 23/24 and cycle 22/23 minima. The microwave brightness during the cycle 23/24 minimum was found to be lower than that during the cycle 22/23 minimum by approx.250 K. The reduced brightness temperature is consistent with the reduced polar field strength during the cycle 23/24 minimum seen in the magnetic butterfly diagram. We suggest that the microwave brightness at the solar poles is a good indicator of the speed of the solar wind sampled by Ulysses at high latitudes..

  15. On the existence of and mechanism for microwave-specific reaction rate enhancement† †Electronic supplementary information (ESI) available. See DOI: 10.1039/c4sc03372h Click here for additional data file.

    PubMed Central

    Dudley, Gregory B.; Richert, Ranko

    2015-01-01

    The use of microwave radiation to drive chemical reactions has become ubiquitous in almost all fields of chemistry. In all of these areas it is principally due to rapid and convenient heating resulting in significantly higher rates of reaction, with other advantages including enhanced product selectivity and control of materials properties. Although microwave heating continues to grow as an enabling technology, fundamental research into the nature of microwave heating has not grown at the same rate. In the case of chemical reactions run in homogeneous solution, particularly synthetic organic reactions, there is considerable controversy over the origins of rate enhancement, with a fundamental question being whether there exist microwave-specific effects, distinct from what can be attained under conventional convective heating, that can accelerate a reaction rate. In this Perspective, we discuss unique aspects of microwave heating of molecules in solution and discuss the origin and nature of microwave-specific effects arising from the process of “selective heating” of reactants in solution. Integral to this discussion is work from the field of dielectric relaxation spectroscopy, which provides a model for selective heating by Debye relaxation processes. The Perspective also includes a critical discussion of hypotheses of non-thermal effects (alternatively classified here as resonant processes) and an outline of specific reaction parameters for chemical systems in which microwave-specific Debye relaxation processes can result in observable reaction rate enhancement. PMID:29308138

  16. Microwave assisted centrifuge and related methods

    DOEpatents

    Meikrantz, David H [Idaho Falls, ID

    2010-08-17

    Centrifuge samples may be exposed to microwave energy to heat the samples during centrifugation and to promote separation of the different components or constituents of the samples using a centrifuge device configured for generating microwave energy and directing the microwave energy at a sample located in the centrifuge.

  17. Method and apparatus for component separation using microwave energy

    DOEpatents

    Morrow, Marvin S.; Schechter, Donald E.; Calhoun, Jr., Clyde L.

    2001-04-03

    A method for separating and recovering components includes the steps of providing at least a first component bonded to a second component by a microwave absorbent adhesive bonding material at a bonding area to form an assembly, the bonding material disposed between the components. Microwave energy is directly and selectively applied to the assembly so that substantially only the bonding material absorbs the microwave energy until the bonding material is at a debonding state. A separation force is applied while the bonding material is at the debonding state to permit disengaging and recovering the components. In addition, an apparatus for practicing the method includes holders for the components.

  18. Rapid microwave-assisted synthesis of sub-30nm lipid nanoparticles.

    PubMed

    Dunn, Stuart S; Beckford Vera, Denis R; Benhabbour, S Rahima; Parrott, Matthew C

    2017-02-15

    Accessing the phase inversion temperature by microwave heating may enable the rapid synthesis of small lipid nanoparticles. Nanoparticle formulations consisted of surfactants Brij 78 and Vitamin E TPGS, and trilaurin, trimyristin, or miglyol 812 as nanoparticle lipid cores. Each formulation was placed in water and heated by microwave irradiation at temperatures ranging from 65°C to 245°C. We observed a phase inversion temperature (PIT) for these formulations based on a dramatic decrease in particle Z-average diameters. Subsequently, nanoparticles were manufactured above and below the PIT and studied for (a) stability toward dilution, (b) stability over time, (c) fabrication as a function of reaction time, and (d) transmittance of lipid nanoparticle dispersions. Lipid-based nanoparticles with distinct sizes down to 20-30nm and low polydispersity could be attained by a simple, one-pot microwave synthesis. This was carried out by accessing the phase inversion temperature using microwave heating. Nanoparticles could be synthesized in just one minute and select compositions demonstrated high stability. The notable stability of these particles may be explained by the combination of van der Waals interactions and steric repulsion. 20-30nm nanoparticles were found to be optically transparent. Published by Elsevier Inc.

  19. Microwave SQUID Multiplexer Demonstration for Cosmic Microwave Background Imagers.

    PubMed

    Dober, B; Becker, D T; Bennett, D A; Bryan, S A; Duff, S M; Gard, J D; Hays-Wehle, J P; Hilton, G C; Hubmayr, J; Mates, J A B; Reintsema, C D; Vale, L R; Ullom, J N

    2017-12-01

    Key performance characteristics are demonstrated for the microwave SQUID multiplexer (µmux) coupled to transition edge sensor (TES) bolometers that have been optimized for cosmic microwave background (CMB) observations. In a 64-channel demonstration, we show that the µmux produces a white, input referred current noise level of [Formula: see text] at -77 dB microwave probe tone power, which is well below expected fundamental detector and photon noise sources for a ground-based CMB-optimized bolometer. Operated with negligible photon loading, we measure [Formula: see text] in the TES-coupled channels biased at 65% of the sensor normal resistance. This noise level is consistent with that predicted from bolometer thermal fluctuation (i.e. phonon) noise. Furthermore, the power spectral density is white over a range of frequencies down to ~ 100 mHz, which enables CMB mapping on large angular scales that constrain the physics of inflation. Additionally, we report cross-talk measurements that indicate a level below 0.3%, which is less than the level of cross-talk from multiplexed readout systems in deployed CMB imagers. These measurements demonstrate the µmux as a viable readout technique for future CMB imaging instruments.

  20. Microwave evaluation of electromigration susceptibility in advanced interconnects.

    PubMed

    Sunday, Christopher E; Veksler, Dmitry; Cheung, Kin C; Obeng, Yaw S

    2017-11-07

    Traditional metrology has been unable to adequately address the needs of the emerging integrated circuits (ICs) at the nano scale; thus, new metrology and techniques are needed. For example, the reliability challenges in fabrication need to be well understood and controlled to facilitate mass production of through-substrate-via (TSV) enabled three-dimensional integrated circuits (3D-ICs). This requires new approaches to the metrology. In this paper, we use the microwave propagation characteristics to study the reliability issues that precede the physical damage caused by electromigration in the Cu-filled TSVs. The pre-failure microwave insertion losses and group delay are dependent on both the device temperature and the amount of current forced through the devices-under-test. The microwave insertion losses increase with the increase in the test temperature, while the group delay increases with the increase in the forced direct current magnitude. The microwave insertion losses are attributed to the defect mobility at the Cu-TiN interface, and the group delay changes are due to resistive heating in the interconnects, which perturbs the dielectric properties of the cladding dielectrics of the copper fill in the TSVs. https://doi.org/10.1063/1.4992135.

  1. Uniform batch processing using microwaves

    NASA Technical Reports Server (NTRS)

    Barmatz, Martin B. (Inventor); Jackson, Henry W. (Inventor)

    2000-01-01

    A microwave oven and microwave heating method generates microwaves within a cavity in a predetermined mode such that there is a known region of uniform microwave field. Samples placed in the region will then be heated in a relatively identical manner. Where perturbations induced by the samples are significant, samples are arranged in a symmetrical distribution so that the cumulative perturbation at each sample location is the same.

  2. Methods for forming particles

    DOEpatents

    Fox, Robert V.; Zhang, Fengyan; Rodriguez, Rene G.; Pak, Joshua J.; Sun, Chivin

    2016-06-21

    Single source precursors or pre-copolymers of single source precursors are subjected to microwave radiation to form particles of a I-III-VI.sub.2 material. Such particles may be formed in a wurtzite phase and may be converted to a chalcopyrite phase by, for example, exposure to heat. The particles in the wurtzite phase may have a substantially hexagonal shape that enables stacking into ordered layers. The particles in the wurtzite phase may be mixed with particles in the chalcopyrite phase (i.e., chalcopyrite nanoparticles) that may fill voids within the ordered layers of the particles in the wurtzite phase thus produce films with good coverage. In some embodiments, the methods are used to form layers of semiconductor materials comprising a I-III-VI.sub.2 material. Devices such as, for example, thin-film solar cells may be fabricated using such methods.

  3. Active Microwave Remote Sensing Observations of Weddell Sea Ice

    NASA Technical Reports Server (NTRS)

    Drinkwater, Mark R.

    1997-01-01

    Since July 1991, the European Space Agency's ERS-1 and ERS-2 satellites have acquired radar data of the Weddell Sea, Antarctica. The Active Microwave Instrument on board ERS has two modes; SAR and Scatterometer. Two receiving stations enable direct downlink and recording of high bit-rate, high resolution SAR image data of this region. When not in an imaging mode, when direct SAR downlink is not possible, or when a receiving station is inoperable, the latter mode allows normalized radar cross-section data to be acquired. These low bit-rate ERS scatterometer data are tape recorded, downlinked and processed off-line. Recent advances in image generation from Scatterometer backscatter measurements enable complementary medium-scale resolution images to be made during periods when SAR images cannot be acquired. Together, these combined C-band microwave image data have for the first time enabled uninterrupted night and day coverage of the Weddell Sea region at both high (25 m) and medium-scale (-20 km) resolutions. C-band ERS-1 radar data are analyzed in conjunction with field data from two simultaneous field experiments in 1992. Satellite radar signature data are compared with shipborne radar data to extract a regional and seasonal signature database for recognition of ice types in the images. Performance of automated sea-ice tracking algorithms is tested on Antarctic data to evaluate their success. Examples demonstrate that both winter and summer ice can be effectively tracked. The kinematics of the main ice zones within the Weddell Sea are illustrated, together with the complementary time-dependencies in their radar signatures. Time-series of satellite images are used to illustrate the development of the Weddell Sea ice cover from its austral summer minimum (February) to its winter maximum (September). The combination of time-dependent microwave signatures and ice dynamics tracking enable various drift regimes to be defined which relate closely to the circulation of the sea ice in response to current and wind forcing and iceberg barriers. These are closely related to continental-shelf or central basin regimes, in which tidal forcing or barotropic circulation patterns appear to influence the sea-ice motion, respectively. These regimes provide valuable information about the regions of most prolific ice growth and influence of ice conditions upon air-sea-ice exchange processes in the Weddell Sea.

  4. Microwave-assisted chemistry: synthetic applications for rapid assembly of nanomaterials and organics.

    PubMed

    Gawande, Manoj B; Shelke, Sharad N; Zboril, Radek; Varma, Rajender S

    2014-04-15

    The magic of microwave (MW) heating technique, termed the Bunsen burner of the 21st century, has emerged as a valuable alternative in the synthesis of organic compounds, polymers, inorganic materials, and nanomaterials. Important innovations in MW-assisted chemistry now enable chemists to prepare catalytic materials or nanomaterials and desired organic molecules, selectively, in almost quantitative yields and with greater precision than using conventional heating. By controlling the specific MW parameters (temperature, pressure, and ramping of temperature) and choice of solvents, researchers can now move into the next generation of advanced nanomaterial design and development. Microwave-assisted chemical reactions are now well-established practices in the laboratory setting although some controversy lingers as to how MW irradiation is able to enhance or influence the outcome of chemical reactions. Much of the discussion has focused on whether the observed effects can, in all instances, be rationalized by purely thermal Arrhenius-based phenomena (thermal microwave effects), that is, the importance of the rapid heating and high bulk reaction temperatures that are achievable using MW dielectric heating in sealed reaction vessels, or whether these observations can be explained by so-called "nonthermal" or "specific microwave" effects. In recent years, innovative and significant advances have occurred in MW hardware development to help delineate MW effects, especially the use of silicon carbide (SiC) reaction vessels and the accurate measurement of temperature using fiber optic (FO) temperature probes. SiC reactors appear to be good alternatives to MW transparent borosilicate glass, because of their high microwave absorptivity, and as such they serve as valuable tools to demystify the claimed magical MW effects. This enables one to evaluate the influence of the electromagnetic field on the specific chemical reactions, under truly identical conventional heating conditions, wherein temperature is measured accurately by fiber optic (FO) probe. This Account describes the current status of MW-assisted synthesis highlighting the introduction of various prototypes of equipment, classes of organic reactions pursued using nanomaterials, and the synthesis of unique and multifunctional nanomaterials; the ensuing nanomaterials possess zero-dimensional to three-dimensional shapes, such as spherical, hexagonal, nanoprisms, star shapes, and nanorods. The synthesis of well-defined nanomaterials and nanocatalysts is an integral part of nanotechnology and catalysis science, because it is imperative to control their size, shape, and compositional engineering for unique deployment in the field of nanocatalysis and organic synthesis. MW-assisted methods have been employed for the convenient and reproducible synthesis of well-defined noble and transition core-shell metallic nanoparticles with tunable shell thicknesses. Some of the distinctive attributes of MW-selective heating in the synthesis and applications of magnetic nanocatalysts in organic synthesis under benign reaction conditions are highlighted. Sustainable nanomaterials and their applications in benign media are an ideal blend for the development of greener methodologies in organic synthesis; MW heating provides superb value to the overall sustainable process development via process intensification including the flow systems.

  5. Biomechanical properties of wheat grains: the implications on milling.

    PubMed

    Hourston, James E; Ignatz, Michael; Reith, Martin; Leubner-Metzger, Gerhard; Steinbrecher, Tina

    2017-01-01

    Millennia of continuous innovation have driven ever increasing efficiency in the milling process. Mechanically characterizing wheat grains and discerning the structure and function of the wheat bran layers can contribute to continuing innovation. We present novel shear force and puncture force testing regimes to characterize different wheat grain cultivars. The forces endured by wheat grains during the milling process can be quantified, enabling us to measure the impact of commonly applied grain pretreatments, such as microwave heating, extended tempering, enzyme and hormone treatments on grains of different 'hardness'. Using these methods, we demonstrate the importance of short tempering phases prior to milling and identify ways in which our methods can detect differences in the maximum force, energy and breaking behaviours of hard and soft grain types. We also demonstrate for the first time, endosperm weakening in wheat, through hormone stratification on single bran layers. The modern milling process is highly refined, meaning that small, cultivar specific, adjustments can result in large increases in downstream profits. We believe that methods such as these, which enable rapid testing of milling pretreatments and material properties can help to drive an innovation process that has been core to our industrial efforts since prehistory. © 2017 The Authors.

  6. Biomechanical properties of wheat grains: the implications on milling

    PubMed Central

    Reith, Martin

    2017-01-01

    Millennia of continuous innovation have driven ever increasing efficiency in the milling process. Mechanically characterizing wheat grains and discerning the structure and function of the wheat bran layers can contribute to continuing innovation. We present novel shear force and puncture force testing regimes to characterize different wheat grain cultivars. The forces endured by wheat grains during the milling process can be quantified, enabling us to measure the impact of commonly applied grain pretreatments, such as microwave heating, extended tempering, enzyme and hormone treatments on grains of different ‘hardness’. Using these methods, we demonstrate the importance of short tempering phases prior to milling and identify ways in which our methods can detect differences in the maximum force, energy and breaking behaviours of hard and soft grain types. We also demonstrate for the first time, endosperm weakening in wheat, through hormone stratification on single bran layers. The modern milling process is highly refined, meaning that small, cultivar specific, adjustments can result in large increases in downstream profits. We believe that methods such as these, which enable rapid testing of milling pretreatments and material properties can help to drive an innovation process that has been core to our industrial efforts since prehistory. PMID:28100826

  7. Novel Electrically Tunable Microwave Solenoid Inductor and Compact Phase Shifter Utilizing Permaloy and PZT Thin Films

    DOE PAGES

    Wang, Tengxing; Jiang, Wei; Divan, Ralu; ...

    2017-08-03

    A Permalloy (Py) thin film enabled tunable 3-D solenoid inductor is designed and fabricated. The special configuration of magnetic core is discussed and by selectively patterning Py thin film, the proposed tunable inductor can work at frequency up to several GHz range. The inductance of the solenoid inductor can be electrically tuned by dc current and the tunability is above 10%. Utilizing the implemented Py enabled tunable solenoid inductor and Lead Zirconate Titanate (PZT) thin film enabled metal-insulator-metal (MIM) capacitor, a compact fully electrically tunable lumped elements phase shifter is achieved. The tunable phase shifter has both inductive and capacitivemore » tunability and the dual tunability significantly improves the tuning range and design flexibility. Moreover, the dual tunability is able to retain the equivalent characteristic impedance of the device in the process of the phase being tuned. Here, the phase of the device can be tuned by fully electrical methods and when dc current and dc voltage are provided, the length normalized phase tunability is up to 210°/cm« less

  8. Headspace single drop microextraction coupled with microwave extraction of essential oil from plant materials.

    PubMed

    Zhai, Yujuan; Sun, Shuo; Wang, Ziming; Zhang, Yupu; Liu, He; Sun, Ye; Zhang, Hanqi; Yu, Aimin

    2011-05-01

    Headspace single drop microextraction (HS-SDME) coupled with microwave extraction (ME) was developed and applied to the extraction of the essential oil from dried Syzygium aromaticum (L.) Merr. et Perry and Cuminum cyminum L. The operational parameters, such as microdrop volume, microwave absorption medium (MAM), extraction time, and microwave power were optimized. Ten microliters of decane was used as the microextraction solvent. Ionic liquid and carbonyl iron powder were used as MAM. The extraction time was less than 7 min at the microwave power of 440 W. The proposed method was compared with hydrodistillation (HD). There were no obvious differences in the constituents of essential oils obtained by the two methods.

  9. Plasma-assisted microwave processing of materials

    NASA Technical Reports Server (NTRS)

    Barmatz, Martin (Inventor); Jackson, Henry (Inventor); Ylin, Tzu-yuan (Inventor)

    1998-01-01

    A microwave plasma assisted method and system for heating and joining materials. The invention uses a microwave induced plasma to controllably preheat workpiece materials that are poorly microwave absorbing. The plasma preheats the workpiece to a temperature that improves the materials' ability to absorb microwave energy. The plasma is extinguished and microwave energy is able to volumetrically heat the workpiece. Localized heating of good microwave absorbing materials is done by shielding certain parts of the workpiece and igniting the plasma in the areas not shielded. Microwave induced plasma is also used to induce self-propagating high temperature synthesis (SHS) process for the joining of materials. Preferably, a microwave induced plasma preheats the material and then microwave energy ignites the center of the material, thereby causing a high temperature spherical wave front from the center outward.

  10. [Physical and mechanical properties of the thermosetting resin for crown and bridge cured by micro-wave heating].

    PubMed

    Kaneko, K

    1989-09-01

    A heating method using micro-waves was utilized to obtain strong thermosetting resin for crown and bridge. The physical and mechanical properties of the thermosetting resin were examined. The resin was cured in a shorter time by the micro-waves heating method than by the conventional heat curing method and the working time was reduced markedly. The base resins of the thermosetting resin for crown and bridge for the micro-waves heating method were 2 PA and diluent 3 G. A compounding volume of 30 wt% for diluent 3 G was considered good the results of compressive strength, bending strength and diametral tensile strength. Grams of 200-230 of the filler compounded to the base resins of 2 PA-3 G system provided optimal compressive strength, bending strength and diametral tensile strength. A filler gram of 230 provided optimal hardness and curing shrinkage rate, the coefficient of thermal expansion became smaller with the increase of the compounding volume of the filler. The trial thermosetting resin for crown and bridge formed by the micro-waves heating method was not inferior to the conventional resin by the heat curing method or the light curing method.

  11. Fast Microwave-assisted Pretreatment for Bioconversion of Sawdust Lignocellulose to Glucose

    NASA Astrophysics Data System (ADS)

    Nyoman Sudiana, I.; Mitsudo, Seitaro; Endang Susilowati, Prima; Ketut Sutiari, Desak; Widana Arsana, Made; Zamrun Firihu, Muhammad; Ode Ngkoimani, La; Aba, La; Sahaluddin Hasan, Erzam; Cahyono, Edi; Sabchevski, Svilen; Aripin, Haji; Gde Suastika, Komang

    2017-05-01

    A preliminary study of application microwave energy for bioconversion of cellulosic sawdust to glucose was performed. The effects of the microwave were compared to those of the conventional method for each solvent. It was expected that a broader mechanism responsible for the microwave effects on the chemical processes, especially the pretreatment on the hydrolysis of cellulose can be explained. Reagents used were an acid (HCl), an alkali (NaOH), and distilled water (H2O). The experimental results showed that the microwave-assisted pretreatment on the lignocellulosic sawdust faster than by using conventional heating (hotplate). Moreover by using microwave a higher glucose content compared to the conventional method was found. With microwave during hydrolisis, high temperatures and high reagent concentrations were not required. Pretreatment with a microwave at 800 Watt and solvent NaOH 22,50 mg/mL at a temperature of 120°c appeared to be most efficient found in this experiment. These results indicate that microwave effective for bioconversion of cellulosic sawdust to glucose. The microstructure evaluation by using SEM and XRD should be performed to understand more detail the effect especially on their cellulosic structural evolution.

  12. Effect of Zn doping on the microwave absorption of BFO multiferroic materials

    NASA Astrophysics Data System (ADS)

    Bi, S.; Li, J.; Mei, B.; Su, X. J.; Ying, C. Z.; Li, P. H.

    2018-01-01

    The microwave absorbing materials were firstly used in the Second World War. And the BiFeO3 (BFO) based microwave absorbers have been widely applied into the microwave absorbing area due to its possession of excellent electromagnetic properties. Various methods have been conducted to improve the microwave absorption performance of the BFO based materials. In the work, the sol-gel method were used to prepare the BFO, and the Zn were doped into the BFO to prepare the Bi1-xZnxFeO3 nanoparticles. The X-ray diffraction, scanning electron microscope, and vector network analysis (VNA) were conducted to characterize the microstructure and electromagnetic properties of the as-prepared samples. The results indicate that the Bi1-xZnxFeO3 nanoparticles were successfully gained and the as-prepared samples possess excellent microwave absorption properties.

  13. Alternate Methods for Disposal of Nitrocellulose Fines

    DTIC Science & Technology

    1985-07-22

    13 Microwave ..................................... 14 Plasma ........................................ 14V Laser pyrolysis...would either be backflushed (not expected to be too successful) or replaced. Microwave Thermal Degradation The use of microwave heating has been...with microwave heating, new designs would be needed if a practical, cost effective system is to be developed. Considerable additional research would be

  14. Microwave reflection, transmission, and absorption by human brain tissue

    NASA Astrophysics Data System (ADS)

    Ansari, M. A.; Akhlaghipour, N.; Zarei, M.; Niknam, A. R.

    2018-04-01

    These days, the biological effects of electromagnetic (EM) radiations on the brain, especially in the frequency range of mobile communications, have caught the attention of many scientists. Therefore, in this paper, the propagation of mobile phone electromagnetic waves in the brain tissues is investigated analytically and numerically. The brain is modeled by three layers consisting of skull, grey and white matter. First, we have analytically calculated the microwave reflection, transmission, and absorption coefficients using signal flow graph technique. The effect of microwave frequency and variations in the thickness of layers on the propagation of microwave through brain are studied. Then, the penetration of microwave in the layers is numerically investigated by Monte Carlo method. It is shown that the analytical results are in good agreement with those obtained by Monte Carlo method. Our results indicate the absorbed microwave energy depends on microwave frequency and thickness of brain layers, and the absorption coefficient is optimized at a number of frequencies. These findings can be used for comparing the microwave absorbed energy in a child's and adult's brain.

  15. [Determination of benzo(alpha)pyrene in food with microwave-assisted extraction].

    PubMed

    Zhou, Na; Luo, He-Dong; Li, Na; Li, Yao-Qun

    2014-03-01

    Coupling derivative technique and constant-energy synchronous fluorescence scanning technique, a method of determining benzo[alpha] pyrene in foods by second derivative constant-energy synchronous spectrofluorimetry after microwave-assisted treatment of samples was established using domestic microwave oven. The main factors of influencing the efficiency of microwave extraction were discussed, including the extraction solvent types and amounts, the microwave extraction time, microwave radiation power and cooling time. And the comparison with ultrasonic extraction was made. Low-fat food samples, which were just microwave-extracted with mixed-solvents, could be analyzed immediately by the spectrofluorimetric technique. For high-fat food samples, microwave-assisted saponification and extraction were made at the same time, thus simplifying operation steps and reducing sample analysis time. So the whole sample analysis process could be completed within one hour. This method was simple, rapid and inexpensive. In consequence, it was applied to determine benzo(a)pyrene in food with good reproducibility and the recoveries of benzo(alpha) pyrene ranged from 90.0% to 105.0% for the low fat samples and 83.3% to 94.6% for high-fat samples.

  16. Effective moisture diffusivity and activation energy of rambutan seed under different drying methods to promote storage stability

    NASA Astrophysics Data System (ADS)

    Ahmad, So'bah; Shamsul Anuar, Mohd; Saleena Taip, Farah; Shamsudin, Rosnah; M, Siti Roha A.

    2017-05-01

    The effects of two drying methods, oven and microwave drying on the effective moisture diffusivity and activation energy of rambutan seed were studied. Effective moisture diffusivity and activation energy are the main indicators used for moisture movement within the material. Hence, it is beneficial to determine an appropriate drying method to attain a final moisture content of rambutan seed that potentially could be used as secondary sources in the industry. An appropriate final moisture content will provide better storage stability that can extend the lifespan of the rambutan seed. The rambutan seeds were dried with two drying methods (oven and microwave) at two level of the process variables (oven temperature; 40°C and 60°C and microwave power; 250W and 1000W) at constant initial moisture contents. The result showed that a higher value of effective moisture diffusivity and less activation energy were observed in microwave drying compared to oven drying. This finding portrays microwave drying expedites the moisture removal to achieve the required final moisture content and the most appropriate drying method for longer storage stability for rambutan seed. With respect to the process variables; higher oven temperatures and lower microwave powers also exhibit similar trends. Hopefully, this study would provide a baseline data to determine an appropriate drying method for longer storage period for turning waste to by-products.

  17. Simultaneous readout of 128 X-ray and gamma-ray transition-edge microcalorimeters using microwave SQUID multiplexing

    NASA Astrophysics Data System (ADS)

    Mates, J. A. B.; Becker, D. T.; Bennett, D. A.; Dober, B. J.; Gard, J. D.; Hays-Wehle, J. P.; Fowler, J. W.; Hilton, G. C.; Reintsema, C. D.; Schmidt, D. R.; Swetz, D. S.; Vale, L. R.; Ullom, J. N.

    2017-08-01

    The number of elements in most cryogenic sensor arrays is limited by the technology available to multiplex signals from the arrays into a smaller number of wires and readout amplifiers. The largest demonstrated arrays of transition-edge sensor (TES) microcalorimeters contain roughly 250 detectors and use time-division multiplexing with Superconducting Quantum Interference Devices (SQUIDs). The bandwidth limits of this technology constrain the number of sensors per amplifier chain, a quantity known as the multiplexing factor, to several 10s. With microwave SQUID multiplexing, we can expand the readout bandwidth and enable much larger multiplexing factors. While microwave SQUID multiplexing of TES microcalorimeters has been previously demonstrated with small numbers of detectors, we now present a fully scalable demonstration in which 128 TES detectors are read out on a single pair of coaxial cables.

  18. Synthesis of hexagonal wurtzite Cu{sub 2}ZnSnS{sub 4} prisms by an ultrasound-assisted microwave solvothermal method

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Long, Fei, E-mail: long.drf@gmail.com; Chi, Shangsen; Institute of Advanced Materials and Technology, University of Science and Technology Beijing, Beijing 100083

    Wurtzite Cu{sub 2}ZnSnS{sub 4} (CZTS) hexagonal prisms were synthesized by a simple ultrasound-microwave solvothermal method. The product was characterized by XRD, FESEM, EDS, TEM, Raman and UV–vis spectrometer. The hexagonal prisms were 0.5–2 μm wide and 5–12 μm long. The PVP played an important role in the formation of the CZTS hexagonal prisms. In addition, the ultrasound-assisted microwave process was helpful for synthesis of wurtzite rather than kesterite phase CZTS. A nucleation–dissolution–recrystallization mechanism was also proposed to explain the growth of the CZTS hexagonal prisms. - Graphical abstract: Wurtzite Cu{sub 2}ZnSnS{sub 4} hexagonal prisms were synthesized by ultrasound-microwave solvothermal method.more » The ultrasound-assisted microwave process and PVP were useful to the growth of CZTS. A nucleation–dissolution–recrystallization growth mechanism was also proposed. - Highlights: • Wurtzite Cu{sub 2}ZnSnS{sub 4} was prepared by ultrasound-assisted microwave solvothermal method. • The wurtzite CZTS hexagonal prisms are demonstrated a band gap of 1.49 eV. • Synergistic effect of ultrasound and microwave is helpful to prepare Wurtzite CZTS. • PVP plays an important role in the formation of the CZTS hexagonal prisms. • Nucleation–dissolution–recrystallization growth mechanism of the CZTS was proposed.« less

  19. Microwave absorption properties of gold nanoparticle doped polymers

    NASA Astrophysics Data System (ADS)

    Jiang, C.; Ouattara, L.; Ingrosso, C.; Curri, M. L.; Krozer, V.; Boisen, A.; Jakobsen, M. H.; Johansen, T. K.

    2011-03-01

    This paper presents a method for characterizing microwave absorption properties of gold nanoparticle doped polymers. The method is based on on-wafer measurements at the frequencies from 0.5 GHz to 20 GHz. The on-wafer measurement method makes it possible to characterize electromagnetic (EM) property of small volume samples. The epoxy based SU8 polymer and SU8 doped with gold nanoparticles are chosen as the samples under test. Two types of microwave test devices are designed for exciting the samples through electrical coupling and magnetic coupling, respectively. Measurement results demonstrate that the nanocomposites absorb a certain amount of microwave energy due to gold nanoparticles. Higher nanoparticle concentration results in more significant absorption effect.

  20. Improved Navigational Technology and Air Traffic Control: A Description of Controller Coordination and Workload

    DOT National Transportation Integrated Search

    1995-04-01

    Improved navigational technology, such as microwave landing systems (MLS) or : global positioning systems (GPS), installed in today's commercial aircraft : enable the air traffic control (ATC) system to better utilize its airspace. : This increased e...

  1. Microwave-Assisted Hydro-Distillation of Essential Oil from Rosemary: Comparison with Traditional Distillation

    PubMed Central

    Moradi, Sara; Fazlali, Alireza; Hamedi, Hamid

    Background: Hydro-distillation (HD) method is a traditional technique which is used in most industrial companies. Microwave-assisted Hydro-distillation (MAHD) is an advanced HD technique utilizing a microwave oven in the extraction process. Methods: In this research, MAHD of essential oils from the aerial parts (leaves) of rosemary (Rosmarinus officinalis L.) was studied and the results were compared with those of the conventional HD in terms of extraction time, extraction efficiency, chemical composition, quality of the essential oils and cost of the operation. Results: Microwave hydro-distillation was superior in terms of saving energy and extraction time (30 min, compared to 90 min in HD). Chromatography was used for quantity analysis of the essential oils composition. Quality of essential oil improved in MAHD method due to an increase of 17% in oxygenated compounds. Conclusion: Consequently, microwave hydro-distillation can be used as a substitute of traditional hydro-distillation. PMID:29296263

  2. Bioresonance information laser therapy of diabetes miellitus

    NASA Astrophysics Data System (ADS)

    Ramdawon, Pretidev

    2002-10-01

    Following the ethio-pathogenetic approach in the therapeutic management of any pathological process, and being armed with the latest information and practical experience in the newly-developing and very promising field of bioresonance information laser medicine, thereby arose the obvious aim to elaborate a highly effective method of treatment for insulin-dependent diabetes (IDD) or Type I diabetes and non-insulin-dependent diabetes (NIDD) or Type II diabetes with the application of bioresonance information laser method of treatment, which involves the complex integrative use of low-level laser irradiation (LLLI), microwave resonance puncture (MRP) and light-emitting diode chromatotherapy (LEDCT) that would free diabetic patients from life-long insulin injections or hypoglycemic tables and enable them to lead a normal life with a normal or not severely restrained diet.

  3. Feedhorn-Coupled Transition-Edge Superconducting Bolometer Arrays for Cosmic Microwave Background Polarimetry

    NASA Technical Reports Server (NTRS)

    Hubmayr, J.; Austermann, J.; Beall, J.; Becker, D.; Cho, H.-M.; Datta, R.; Duff, S. M.; Grace, E.; Halverson, N.; Henderson, S. W.; hide

    2015-01-01

    NIST produces large-format, dual-polarization-sensitive detector arrays for a broad range of frequencies (30-1400 GHz). Such arrays enable a host of astrophysical measurements. Detectors optimized for cosmic microwave background observations are monolithic, polarization-sensitive arrays based on feedhorn and planar Nb antenna-coupled transition-edge superconducting (TES) bolometers. Recent designs achieve multiband, polarimetric sensing within each spatial pixel. In this proceeding, we describe our multichroic, feedhorn-coupled design; demonstrate performance at 70-380 GHz; and comment on current developments for implementation of these detector arrays in the advanced Atacama Cosmology Telescope receiver

  4. Electrically protected resonant exchange qubits in triple quantum dots.

    PubMed

    Taylor, J M; Srinivasa, V; Medford, J

    2013-08-02

    We present a modulated microwave approach for quantum computing with qubits comprising three spins in a triple quantum dot. This approach includes single- and two-qubit gates that are protected against low-frequency electrical noise, due to an operating point with a narrowband response to high frequency electric fields. Furthermore, existing double quantum dot advances, including robust preparation and measurement via spin-to-charge conversion, are immediately applicable to the new qubit. Finally, the electric dipole terms implicit in the high frequency coupling enable strong coupling with superconducting microwave resonators, leading to more robust two-qubit gates.

  5. Fractal-based wideband invisibility cloak

    NASA Astrophysics Data System (ADS)

    Cohen, Nathan; Okoro, Obinna; Earle, Dan; Salkind, Phil; Unger, Barry; Yen, Sean; McHugh, Daniel; Polterzycki, Stefan; Shelman-Cohen, A. J.

    2015-03-01

    A wideband invisibility cloak (IC) at microwave frequencies is described. Using fractal resonators in closely spaced (sub wavelength) arrays as a minimal number of cylindrical layers (rings), the IC demonstrates that it is physically possible to attain a `see through' cloaking device with: (a) wideband coverage; (b) simple and attainable fabrication; (c) high fidelity emulation of the free path; (d) minimal side scattering; (d) a near absence of shadowing in the scattering. Although not a practical device, this fractal-enabled technology demonstrator opens up new opportunities for diverted-image (DI) technology and use of fractals in wideband optical, infrared, and microwave applications.

  6. Research progress on the effect of microwave sterilization on agricultural products quality

    NASA Astrophysics Data System (ADS)

    Zhu, Xiang-hao; Yang, Yu-xia; Duan, Zhen-hua

    2018-02-01

    Different sterilization methods have different effects on the quality of agricultural products, microwave sterilization inhibited or eliminated microorganism by the use of microwave thermal effects and non-thermal. In this paper, the effects of microwave sterilization on the quality of fruits and vegetables, dairy, meat, grain, aquatic products and other agricultural products were introduced, and the possible development trends of microwave sterilization in agricultural products processing application were put forward.

  7. A Blade Tip Timing Method Based on a Microwave Sensor

    PubMed Central

    Zhang, Jilong; Duan, Fajie; Niu, Guangyue; Jiang, Jiajia; Li, Jie

    2017-01-01

    Blade tip timing is an effective method for blade vibration measurements in turbomachinery. This method is increasing in popularity because it is non-intrusive and has several advantages over the conventional strain gauge method. Different kinds of sensors have been developed for blade tip timing, including optical, eddy current and capacitance sensors. However, these sensors are unsuitable in environments with contaminants or high temperatures. Microwave sensors offer a promising potential solution to overcome these limitations. In this article, a microwave sensor-based blade tip timing measurement system is proposed. A patch antenna probe is used to transmit and receive the microwave signals. The signal model and process method is analyzed. Zero intermediate frequency structure is employed to maintain timing accuracy and dynamic performance, and the received signal can also be used to measure tip clearance. The timing method uses the rising and falling edges of the signal and an auto-gain control circuit to reduce the effect of tip clearance change. To validate the accuracy of the system, it is compared experimentally with a fiber optic tip timing system. The results show that the microwave tip timing system achieves good accuracy. PMID:28492469

  8. A Blade Tip Timing Method Based on a Microwave Sensor.

    PubMed

    Zhang, Jilong; Duan, Fajie; Niu, Guangyue; Jiang, Jiajia; Li, Jie

    2017-05-11

    Blade tip timing is an effective method for blade vibration measurements in turbomachinery. This method is increasing in popularity because it is non-intrusive and has several advantages over the conventional strain gauge method. Different kinds of sensors have been developed for blade tip timing, including optical, eddy current and capacitance sensors. However, these sensors are unsuitable in environments with contaminants or high temperatures. Microwave sensors offer a promising potential solution to overcome these limitations. In this article, a microwave sensor-based blade tip timing measurement system is proposed. A patch antenna probe is used to transmit and receive the microwave signals. The signal model and process method is analyzed. Zero intermediate frequency structure is employed to maintain timing accuracy and dynamic performance, and the received signal can also be used to measure tip clearance. The timing method uses the rising and falling edges of the signal and an auto-gain control circuit to reduce the effect of tip clearance change. To validate the accuracy of the system, it is compared experimentally with a fiber optic tip timing system. The results show that the microwave tip timing system achieves good accuracy.

  9. Microwave-assisted routes for rapid and efficient modification of layered perovskites.

    PubMed

    Akbarian-Tefaghi, S; Wiley, J B

    2018-02-27

    Recent advances in exploiting microwave radiation in the topochemical modification of layered oxide perovskites are presented. Such methods work well for rapid bulk synthetic steps used in the production of novel inorganic-organic hybrids (protonation, grafting, intercalation, and in situ click reactions), exfoliation to produce dispersed nanosheets, and post-exfoliation processing to rapidly vary nanosheet surface groups. Compared to traditional methods that often take days, microwave methods can produce quality products in as little as 1-2 h.

  10. Advanced Method of Boundary-Layer Control Based on Localized Plasma Generation

    DTIC Science & Technology

    2009-05-01

    measurements, validation of experiments, wind-tunnel testing of the microwave / plasma generation system , preliminary assessment of energy required...and design of a microwave generator , electrodynamic and multivibrator systems for experiments in the IHM-NAU wind tunnel: MW generator and its high...equipped with the microwave - generation and protection systems to study advanced methods of flow control (Kiev) Fig. 2.1,a. The blade

  11. Microwave heating inactivates Shiga Toxin (Stx2) in reconstituted fat-free Milk and adversely affects the nutritional value of cell culture medium

    USDA-ARS?s Scientific Manuscript database

    Microwave exposure is a convenient and widely used method for defrosting, heating, and cooking numerous foods. Microwave cooking is also reported to kill pathogenic microorganisms that often contaminate food. Microwaves act by causing polar molecules in food, such as water, to rapidly rotate, thus...

  12. Method for curing polymers using variable-frequency microwave heating

    DOEpatents

    Lauf, R.J.; Bible, D.W.; Paulauskas, F.L.

    1998-02-24

    A method for curing polymers incorporating a variable frequency microwave furnace system designed to allow modulation of the frequency of the microwaves introduced into a furnace cavity is disclosed. By varying the frequency of the microwave signal, non-uniformities within the cavity are minimized, thereby achieving a more uniform cure throughout the workpiece. A directional coupler is provided for detecting the direction of a signal and further directing the signal depending on the detected direction. A first power meter is provided for measuring the power delivered to the microwave furnace. A second power meter detects the magnitude of reflected power. The furnace cavity may be adapted to be used to cure materials defining a continuous sheet or which require compressive forces during curing. 15 figs.

  13. Detection Performance of Upgraded "Polished Panel" Optical Receiver Concept on the Deep-Space Network's 34 Meter Research Antenna

    NASA Technical Reports Server (NTRS)

    Vilnrotter, Victor A.

    2012-01-01

    The development and demonstration of a "polished panel" optical receiver concept on the 34 meter research antenna of the Deep Space Network (DSN) has been the subject of recent papers. This concept would enable simultaneous reception of optical and microwave signals by retaining the original shape of the main reflector for microwave reception, but with the aluminum panels polished to high reflectivity to enable focusing of optical signal energy as well. A test setup has been installed on the DSN's 34 meter research antenna at Deep Space Station 13 (DSS-13) of NASA's Goldstone Communications Complex in California, and preliminary experimental results have been obtained. This paper describes the results of our latest efforts to improve the point-spread function (PSF) generated by a custom polished panel, in an attempt to reduce the dimensions of the PSF, thus enabling more precise tracking and improved detection performance. The design of the new mechanical support structure and its operation are described, and the results quantified in terms of improvements in collected signal energy and optical communications performance, based on data obtained while tracking the planet Jupiter with the 34 meter research antenna at DSS-13.

  14. Microwave-assisted extraction of pectin from cocoa peel

    NASA Astrophysics Data System (ADS)

    Sarah, M.; Hanum, F.; Rizky, M.; Hisham, M. F.

    2018-02-01

    Pectin is a polymer of d-galacturonate acids linked by β-1,4 glycosidic bond. This study isolates pectin from cocoa peel (Theobroma cacao) using citric acid as solvent by microwave-assisted extraction method. Cocoa peels (moisture content of 10%) with citric acid solution (pH of 1.5) irradiated by microwave energy at various microwave power (180, 300, 450 and 600 W) for 10, 15, 20, 25 and 30 minutes respectively. Pectin obtained from this study was collected and filtrated by adding 96% ethanol to precipitate the pectin. The best results obtained from extraction process using microwave power of 180 Watt for 30 minutes. This combination of power and time yielded 42.3% pectin with moisture content, ash content, weight equivalent, methoxyl content and galacturonate levels were 8.08%, 5%, 833.33 mg, 6.51% and 58,08%, respectively. The result finding suggested that microwave-assisted extraction method has a great potency on the commercial pectin production.

  15. Green procedure with a green solvent for fats and oils' determination. Microwave-integrated Soxhlet using limonene followed by microwave Clevenger distillation.

    PubMed

    Virot, Matthieu; Tomao, Valérie; Ginies, Christian; Visinoni, Franco; Chemat, Farid

    2008-07-04

    Here is described a green and original alternative procedure for fats and oils' determination in oleaginous seeds. Extractions were carried out using a by-product of the citrus industry as extraction solvent, namely d-limonene, instead of hazardous petroleum solvents such as n-hexane. The described method is achieved in two steps using microwave energy: at first, extractions are attained using microwave-integrated Soxhlet, followed by the elimination of the solvent from the medium using a microwave Clevenger distillation in the second step. Oils extracted from olive seeds were compared with both conventional Soxhlet and microwave-integrated Soxhlet extraction procedures performed with n-hexane in terms of qualitative and quantitative determination. No significant difference was obtained between each extract allowing us to conclude that the proposed method is effective and valuable.

  16. Performance analysis of FET microwave devices by use of extended spectral-element time-domain method

    NASA Astrophysics Data System (ADS)

    Sheng, Yijun; Xu, Kan; Wang, Daoxiang; Chen, Rushan

    2013-05-01

    The extended spectral-element time-domain (SETD) method is employed to analyse field effect transistor (FET) microwave devices. In order to impose the contribution of the FET microwave devices into the electromagnetic simulation, the SETD method is extended by introducing a lumped current term into the vector Helmholtz equation. The change of currents on each lumped component can be expressed by the change of voltage via corresponding models of equivalent circuit. The electric fields around the lumped component must be influenced by the change of voltage on each lumped component, and vice versa. So a global coupling about the EM-circuit can be built directly. The fully explicit solving scheme is maintained in this extended SETD method and the CPU time can be saved spontaneously. Three practical FET microwave devices are analysed in this article. The numerical results demonstrate the ability and accuracy of this method.

  17. Microwave-assisted Derivatization of Fatty Acids for Its Measurement in Milk Using High-Performance Liquid Chromatography.

    PubMed

    Shrestha, Rojeet; Miura, Yusuke; Hirano, Ken-Ichi; Chen, Zhen; Okabe, Hiroaki; Chiba, Hitoshi; Hui, Shu-Ping

    2018-01-01

    Fatty acid (FA) profiling of milk has important applications in human health and nutrition. Conventional methods for the saponification and derivatization of FA are time-consuming and laborious. We aimed to develop a simple, rapid, and economical method for the determination of FA in milk. We applied a beneficial approach of microwave-assisted saponification (MAS) of milk fats and microwave-assisted derivatization (MAD) of FA to its hydrazides, integrated with HPLC-based analysis. The optimal conditions for MAS and MAD were determined. Microwave irradiation significantly reduced the sample preparation time from 80 min in the conventional method to less than 3 min. We used three internal standards for the measurement of short-, medium- and long-chain FA. The proposed method showed satisfactory analytical sensitivity, recovery and reproducibility. There was a significant correlation in the milk FA concentrations between the proposed and conventional methods. Being quick, economic, and convenient, the proposed method for the milk FA measurement can be substitute for the convention method.

  18. Rapid determination of the volatile components in tobacco by ultrasound-microwave synergistic extraction coupled to headspace solid-phase microextraction with gas chromatography-mass spectrometry.

    PubMed

    Yang, Yanqin; Chu, Guohai; Zhou, Guojun; Jiang, Jian; Yuan, Kailong; Pan, Yuanjiang; Song, Zhiyu; Li, Zuguang; Xia, Qian; Lu, Xinbo; Xiao, Weiqiang

    2016-03-01

    An ultrasound-microwave synergistic extraction coupled to headspace solid-phase microextraction was first employed to determine the volatile components in tobacco samples. The method combined the advantages of ultrasound, microwave, and headspace solid-phase microextraction. The extraction, separation, and enrichment were performed in a single step, which could greatly simplify the operation and reduce the whole pretreatment time. In the developed method, several experimental parameters, such as fiber type, ultrasound power, and irradiation time, were optimized to improve sampling efficiency. Under the optimal conditions, there were 37, 36, 34, and 36 components identified in tobacco from Guizhou, Hunan, Yunnan, and Zimbabwe, respectively, including esters, heterocycles, alkanes, ketones, terpenoids, acids, phenols, and alcohols. The compound types were roughly the same while the contents were varied from different origins due to the disparity of their growing conditions, such as soil, water, and climate. In addition, the ultrasound-microwave synergistic extraction coupled to headspace solid-phase microextraction method was compared with the microwave-assisted extraction coupled to headspace solid-phase microextraction and headspace solid-phase microextraction methods. More types of volatile components were obtained by using the ultrasound-microwave synergistic extraction coupled to headspace solid-phase microextraction method, moreover, the contents were high. The results indicated that the ultrasound-microwave synergistic extraction coupled to headspace solid-phase microextraction technique was a simple, time-saving and highly efficient approach, which was especially suitable for analysis of the volatile components in tobacco. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  19. Microwave-assisted solid phase conversion study of Meldrum's acid to ethylenetetracarboxylic dianhydride (C 6O 6)

    NASA Astrophysics Data System (ADS)

    Taherpour, Avat (Arman)

    2010-01-01

    Utilization of microwave irradiation provides an effective method for fast synthesizing of some important compounds. Microwave-assisted solid phase is an especial class in chemical synthesis. By the use of MW-irradiation on chemicals, sometimes interesting results can be seen. The synthesis of the interesting molecule ethylenetetracarboxylic dianhydride (C 6O 6) was attempted with a few different methods. In this study, the microwave-assisted solid phase conversion of Meldrum's acid to ethylenetetracarboxylic dianhydride was reported. This conversion was characterized by FT-IR, GC/MS and NMR spectroscopy results.

  20. Optimization of microwave assisted extraction of essential oils from Iranian Rosmarinus officinalis L. using RSM.

    PubMed

    Akhbari, Maryam; Masoum, Saeed; Aghababaei, Fahimeh; Hamedi, Sepideh

    2018-06-01

    In this study, the efficiencies of conventional hydro-distillation and novel microwave hydro-distillation methods in extraction of essential oil from Rosemary officinalis leaves have been compared. In order to attain the best yield and also highest quality of the essential oil in the microwave assisted method, the optimal values of operating parameters such as extraction time, microwave irradiation power and water volume to plant mass ratio were investigated using central composite design under response surface methodology. Optimal conditions for obtaining the maximum extraction yield in the microwave assisted method were predicted as follows: extraction time of 85 min, microwave power of 888 W, and water volume to plant mass ratio of 0.5 ml/g. The extraction yield at these predicted conditions was computed as 0.7756%. The qualities of the obtained essential oils under designed experiments were optimized based on total contents of four major compounds (α-pinene, 1,8-cineole, camphor and verbenone) which determined by gas chromatography equipped with mass spectroscopy (GC-MS). The highest essential oil quality (55.87%) was obtained at extraction time of 68 min; microwave irradiation power of 700 W; and water volume to plant mass ratio of zero.

  1. Room temperature microwave oscillations in GaN/AlN resonant tunneling diodes with peak current densities up to 220 kA/cm2

    NASA Astrophysics Data System (ADS)

    Encomendero, Jimy; Yan, Rusen; Verma, Amit; Islam, S. M.; Protasenko, Vladimir; Rouvimov, Sergei; Fay, Patrick; Jena, Debdeep; Xing, Huili Grace

    2018-03-01

    We report the generation of room temperature microwave oscillations from GaN/AlN resonant tunneling diodes, which exhibit record-high peak current densities. The tunneling heterostructure grown by molecular beam epitaxy on freestanding GaN substrates comprises a thin GaN quantum well embedded between two AlN tunneling barriers. The room temperature current-voltage characteristics exhibit a record-high maximum peak current density of ˜220 kA/cm2. When biased within the negative differential conductance region, microwave oscillations are measured with a fundamental frequency of ˜0.94 GHz, generating an output power of ˜3.0 μW. Both the fundamental frequency and the output power of the oscillator are limited by the external biasing circuit. Using a small-signal equivalent circuit model, the maximum intrinsic frequency of oscillation for these diodes is predicted to be ˜200 GHz. This work represents a significant step towards microwave power generation enabled by resonant tunneling transport, an ultra-fast process that goes beyond the limitations of current III-Nitride high electron mobility transistors.

  2. Method and apparatus for measuring butterfat and protein content using microwave absorption techniques

    DOEpatents

    Fryer, Michael O.; Hills, Andrea J.; Morrison, John L.

    2000-01-01

    A self calibrating method and apparatus for measuring butterfat and protein content based on measuring the microwave absorption of a sample of milk at several microwave frequencies. A microwave energy source injects microwave energy into the resonant cavity for absorption and reflection by the sample undergoing evaluation. A sample tube is centrally located in the resonant cavity passing therethrough and exposing the sample to the microwave energy. A portion of the energy is absorbed by the sample while another portion of the microwave energy is reflected back to an evaluation device such as a network analyzer. The frequency at which the reflected radiation is at a minimum within the cavity is combined with the scatter coefficient S.sub.11 as well as a phase change to calculate the butterfat content in the sample. The protein located within the sample may also be calculated in a likewise manner using the frequency, S.sub.11 and phase variables. A differential technique using a second resonant cavity containing a reference standard as a sample will normalize the measurements from the unknown sample and thus be self-calibrating. A shuttered mechanism will switch the microwave excitation between the unknown and the reference cavities. An integrated apparatus for measuring the butterfat content in milk using microwave absorption techniques is also presented.

  3. Microwave Sterilization in School Microbiology.

    ERIC Educational Resources Information Center

    Wynn, Brian; Dixon, Angela

    1988-01-01

    Described are two investigations carried out in a high school biology department using a domestic microwave oven to compare the relative attributes of the autoclave and microwave oven in school use. Discussed are equipment, methods, and results of each investigation. (Author/CW)

  4. Joseph F. Keithley Award For Advances in Measurement Science Talk: Precision Noise Measurements at Microwave and Optical Frequencies

    NASA Astrophysics Data System (ADS)

    Ivanov, Eugene

    2010-03-01

    The quest to detect Gravitational Waves resulted in a number of important developments in the fields of oscillator frequency stabilization and precision noise measurements. This was due to the realization of similarities between the principles of high sensitivity measurements of weak mechanical forces and phase/amplitude fluctuations of microwave signals. In both cases interferometric carrier suppression and low-noise amplification of the residual noise sidebands were the main factors behind significant improvements in the resolution of spectral measurements. In particular, microwave frequency discriminators with almost thermal noise limited sensitivity were constructed leading to microwave oscillators with more than 25dB lower phase noise than the previous state-of-the-art. High power solid-state microwave amplifiers offered further opportunity of oscillator phase noise reduction due to the increased energy stored in the high-Q resonator of the frequency discriminator. High power microwave oscillators with the phase noise spectral density close to -160dBc/Hz at 1kHz Fourier frequency have been recently demonstrated. The principles of interferometric signal processing have been applied to the study of noise phenomena in microwave components which were considered to be ``noise free''. This resulted in the first experimental evidence of phase fluctuations in microwave circulators. More efficient use of signal power enabled construction of the ``power recycled'' interferometers with spectral resolution of -200dBc/Hz at 1kHz Fourier frequency. This has been lately superseded by an order of magnitude with a waveguide interferometer due to its higher power recycling factor. A number of opto-electronic measurement systems were developed to characterize the fidelity of frequency transfer from the optical to the microwave domain. This included a new type of a phase detector capable of measuring phase fluctuations of the weak microwave signals extracted from the demodulated femtosecond light pulses with almost thermal noise limited precision. The experiments which followed showed that microwave signals of exceptional spectral purity could be generated from the frequency stabilized lasers

  5. Development of microwave assisted spectrophotometric method for the determination of glucose

    NASA Astrophysics Data System (ADS)

    Ali, Asif; Hussain, Zahid; Arain, Muhammad Balal; Shah, Nasrullah; Khan, Khalid Mohammad; Gulab, Hussain; Zada, Amir

    2016-01-01

    A spectrophotometric method was developed based on the microwave assisted synthesis of Maillard product. Various conditions of the reaction were optimized by varying the relative concentration of the reagents, operating temperature and volume of solutions used in the reaction in the microwave synthesizer. The absorbance of the microwave synthesized Maillard product was measured in the range of 360-740 nm using UV-Visible spectrophotometer. Based on the maximum absorbance, 370 nm was selected as the optimum wave length for further studies. The LOD and LOQ of glucose was found 3.08 μg mL- 1 and 9.33 μg mL- 1 with standard deviation of ± 0.05. The developed method was also applicable to urine sample.

  6. Environmentally friendly chemical recycling of poly(bisphenol-A carbonate) through phase transfer-catalysed alkaline hydrolysis under microwave irradiation.

    PubMed

    Tsintzou, Georgia P; Antonakou, Eleni V; Achilias, Dimitris S

    2012-11-30

    The various and widespread uses of polycarbonate (PC) polymers require a meaningful and environmentally friendly disposal method. In this study, depolymerisation of polycarbonate with water in a microwave reactor is suggested as a recycling method. Hydrolysis was investigated in an alkaline (NaOH) solution using a phase-transfer catalyst. All of the experiments were carried out in a sealed microwave reactor, in which the reaction pressure, temperature and microwave power were continuously controlled and recorded. In the hydrolysis products, bisphenol-A monomer was obtained and identified by FTIR measurements. PC degradation higher than 80% can be obtained at 160°C after a microwave irradiation time of either 40 min or 10 min using either a 5 or 10% (w/v) NaOH solution, respectively. GPC, TGA and DSC measurements of the PC residues revealed that surface erosion is the degradation mechanism. First-order reaction kinetics were estimated by implementing a simple kinetic model. Finally, greater than 85% degradation was achieved when waste CDs were treated with the same method. The results confirm the importance of the microwave power technique as a promising recycling method for PC-based waste plastics, resulting in monomer recovery in addition to substantial energy savings. Copyright © 2012 Elsevier B.V. All rights reserved.

  7. 1997 Technology Applications Report,

    DTIC Science & Technology

    1997-01-01

    handle high -power loads at microwave radio frequencies , microwave vacuum tubes remain the chosen technology to amplify high power. Aria Microwave...structure called the active RF cavity amplifier (ARFCA). With this design , the amplifier handles high -power loads at radio and microwave frequencies ...developed this technology using BMDO-funded modeling methods designed to simulate the dynamics of large space-based structures. Because it increases

  8. Microwave SQUID multiplexer demonstration for cosmic microwave background imagers

    NASA Astrophysics Data System (ADS)

    Dober, B.; Becker, D. T.; Bennett, D. A.; Bryan, S. A.; Duff, S. M.; Gard, J. D.; Hays-Wehle, J. P.; Hilton, G. C.; Hubmayr, J.; Mates, J. A. B.; Reintsema, C. D.; Vale, L. R.; Ullom, J. N.

    2017-12-01

    Key performance characteristics are demonstrated for the microwave superconducting quantum interference device (SQUID) multiplexer (μmux) coupled to transition edge sensor (TES) bolometers that have been optimized for cosmic microwave background (CMB) observations. In a 64-channel demonstration, we show that the μmux produces a white, input referred current noise level of 29 pA/ √{H z } at a microwave probe tone power of -77 dB, which is well below the expected fundamental detector and photon noise sources for a ground-based CMB-optimized bolometer. Operated with negligible photon loading, we measure 98 pA/ √{H z } in the TES-coupled channels biased at 65% of the sensor normal resistance. This noise level is consistent with that predicted from bolometer thermal fluctuation (i.e., phonon) noise. Furthermore, the power spectral density is white over a range of frequencies down to ˜100 mHz, which enables CMB mapping on large angular scales that constrain the physics of inflation. Additionally, we report cross-talk measurements that indicate a level below 0.3%, which is less than the level of cross-talk from multiplexed readout systems in deployed CMB imagers. These measurements demonstrate the μmux as a viable readout technique for future CMB imaging instruments.

  9. Effects of Low-Dose Microwave on Healing of Fractures with Titanium Alloy Internal Fixation: An Experimental Study in a Rabbit Model

    PubMed Central

    Zhang, Han; Fu, Tengfei; Jiang, Lan; Bai, Yuehong

    2013-01-01

    Background Microwave is a method for improving fracture repair. However, one of the contraindications for microwave treatment listed in the literature is surgically implanted metal plates in the treatment field. The reason is that the reflection of electromagnetic waves and the eddy current stimulated by microwave would increase the temperature of magnetic implants and cause heat damage in tissues. Comparing with traditional medical stainless steel, titanium alloy is a kind of medical implants with low magnetic permeability and electric conductivity. But the effects of microwave treatment on fracture with titanium alloy internal fixation in vivo were not reported. The aim of this article was to evaluate the security and effects of microwave on healing of a fracture with titanium alloy internal fixation. Methods Titanium alloy internal fixation systems were implanted in New Zealand rabbits with a 3.0 mm bone defect in the middle of femur. We applied a 30-day microwave treatment (2,450MHz, 25W, 10 min per day) to the fracture 3 days after operation. Temperature changes of muscle tissues around implants were measured during the irradiation. Normalized radiographic density of the fracture gap was measured on the 10th day and 30th day of the microwave treatment. All of the animals were killed after 10 and 30 days microwave treatment with histologic and histomorphometric examinations performed on the harvested tissues. Findings The temperatures did not increase significantly in animals with titanium alloy implants. The security of microwave treatment was also supported by histology of muscles, nerve and bone around the implants. Radiographic assessment, histologic and histomorphometric examinations revealed significant improvement in the healing bone. Conclusion Our results suggest that, in the healing of fracture with titanium alloy internal fixation, a low dose of microwave treatment may be a promising method. PMID:24086626

  10. Quality factors in beef, pork, and lamb cooked by microwaves.

    PubMed

    Korschgen, B M; Baldwin, R E; Snider, S

    1976-12-01

    Three cooking treatments were applied to the longissimus muscle of beef and of pork and to deboned leg of lamb. Cooking treatments included: Intermittent energy application (3-min. cycle) with a microwave range operated at 220V and intermittent energy application (6-min. cycle) with a microwave range operated at 115V. Control roasts were cooked in a conventional gas oven (163+/-3 degrees C.). Cooking was adjusted so that roasts achieved an internal temperature of 70 degrees C. when cut for analyses. Cooking losses were significantly greater for microwave than for conventionally cooked beef. However, microwave cooking resulted in beef, pork, and lamb roasts with flavor of interior portions similar to those prepared conventionally. Flavor differences in samples from the edge of the slices of lamb and of pork and tenderness of lamb appeared to be related to cooking method. For these attributes, meat cooked conventionally was superior. In contrast, patterns in significant differences in tenderness and juiciness of beef and of pork were not consistent and were not related solely to method of cookery. Neither creatine nor creatinine was a good index of flavor of meat cooked by these methods. Aside from the time-saving aspect of microwave heating, there was no major advantage of one method of cooking over another. Thus, either high- or low- powered microwave equipment, operated at 2450 MHz, can be used satisfactorily for cooking tender cuts of beef, pork, and lamb.

  11. Electron-nuclear spin dynamics of Ga centers in GaAsN dilute nitride semiconductors probed by pump-probe spectroscopy

    NASA Astrophysics Data System (ADS)

    Sandoval-Santana, J. C.; Ibarra-Sierra, V. G.; Azaizia, S.; Carrère, H.; Bakaleinikov, L. A.; Kalevich, V. K.; Ivchenko, E. L.; Marie, X.; Amand, T.; Balocchi, A.; Kunold, A.

    2018-03-01

    We propose an experimental procedure to track the evolution of electronic and nuclear spins in Ga2+ centers in GaAsN dilute semiconductors. The method is based on a pump-probe scheme that enables to monitor the time evolution of the three components of the electronic and nuclear spin variables. In contrast to other characterization methods, as nuclear magnetic resonance, this one only needs moderate magnetic fields (B≈ 10 mT), and does not require microwave irradiation. Specifically, we carry out a series of tests for different experimental conditions in order to optimize the procedure for maximum sensitivity in the measurement of the circular degree of polarization. Based on previous experimental results and the theoretical calculations presented here, we estimate that the method could yield a time resolution of about 10ps.

  12. Using microwave heating to improve the desorption efficiency of high molecular weight VOC from beaded activated carbon.

    PubMed

    Fayaz, Mohammadreza; Shariaty, Pooya; Atkinson, John D; Hashisho, Zaher; Phillips, John H; Anderson, James E; Nichols, Mark

    2015-04-07

    Incomplete regeneration of activated carbon loaded with organic compounds results in heel build-up that reduces the useful life of the adsorbent. In this study, microwave heating was tested as a regeneration method for beaded activated carbon (BAC) loaded with n-dodecane, a high molecular weight volatile organic compound. Energy consumption and desorption efficiency for microwave-heating regeneration were compared with conductive-heating regeneration. The minimum energy needed to completely regenerate the adsorbent (100% desorption efficiency) using microwave regeneration was 6% of that needed with conductive heating regeneration, owing to more rapid heating rates and lower heat loss. Analyses of adsorbent pore size distribution and surface chemistry confirmed that neither heating method altered the physical/chemical properties of the BAC. Additionally, gas chromatography (with flame ionization detector) confirmed that neither regeneration method detectably altered the adsorbate composition during desorption. By demonstrating improvements in energy consumption and desorption efficiency and showing stable adsorbate and adsorbent properties, this paper suggests that microwave heating is an attractive method for activated carbon regeneration particularly when high-affinity VOC adsorbates are present.

  13. Electrical circuit modeling and analysis of microwave acoustic interaction with biological tissues.

    PubMed

    Gao, Fei; Zheng, Qian; Zheng, Yuanjin

    2014-05-01

    Numerical study of microwave imaging and microwave-induced thermoacoustic imaging utilizes finite difference time domain (FDTD) analysis for simulation of microwave and acoustic interaction with biological tissues, which is time consuming due to complex grid-segmentation and numerous calculations, not straightforward due to no analytical solution and physical explanation, and incompatible with hardware development requiring circuit simulator such as SPICE. In this paper, instead of conventional FDTD numerical simulation, an equivalent electrical circuit model is proposed to model the microwave acoustic interaction with biological tissues for fast simulation and quantitative analysis in both one and two dimensions (2D). The equivalent circuit of ideal point-like tissue for microwave-acoustic interaction is proposed including transmission line, voltage-controlled current source, envelop detector, and resistor-inductor-capacitor (RLC) network, to model the microwave scattering, thermal expansion, and acoustic generation. Based on which, two-port network of the point-like tissue is built and characterized using pseudo S-parameters and transducer gain. Two dimensional circuit network including acoustic scatterer and acoustic channel is also constructed to model the 2D spatial information and acoustic scattering effect in heterogeneous medium. Both FDTD simulation, circuit simulation, and experimental measurement are performed to compare the results in terms of time domain, frequency domain, and pseudo S-parameters characterization. 2D circuit network simulation is also performed under different scenarios including different sizes of tumors and the effect of acoustic scatterer. The proposed circuit model of microwave acoustic interaction with biological tissue could give good agreement with FDTD simulated and experimental measured results. The pseudo S-parameters and characteristic gain could globally evaluate the performance of tumor detection. The 2D circuit network enables the potential to combine the quasi-numerical simulation and circuit simulation in a uniform simulator for codesign and simulation of a microwave acoustic imaging system, bridging bioeffect study and hardware development seamlessly.

  14. Ignition methods and apparatus using microwave energy

    DOEpatents

    DeFreitas, Dennis Michael; Migliori, Albert

    1997-01-01

    An ignition apparatus for a combustor includes a microwave energy source that emits microwave energy into the combustor at a frequency within a resonant response of the combustor, the combustor functioning as a resonant cavity for the microwave energy so that a plasma is produced that ignites a combustible mixture therein. The plasma preferably is a non-contact plasma produced in free space within the resonant cavity spaced away from with the cavity wall structure and spaced from the microwave emitter.

  15. Tight real-time synchronization of a microwave clock to an optical clock across a turbulent air path

    PubMed Central

    Bergeron, Hugo; Sinclair, Laura C.; Swann, William C.; Nelson, Craig W.; Deschênes, Jean-Daniel; Baumann, Esther; Giorgetta, Fabrizio R.; Coddington, Ian; Newbury, Nathan R.

    2018-01-01

    The ability to distribute the precise time and frequency from an optical clock to remote platforms could enable future precise navigation and sensing systems. Here we demonstrate tight, real-time synchronization of a remote microwave clock to a master optical clock over a turbulent 4-km open air path via optical two-way time-frequency transfer. Once synchronized, the 10-GHz frequency signals generated at each site agree to 10−14 at one second and below 10−17 at 1000 seconds. In addition, the two clock times are synchronized to ±13 fs over an 8-hour period. The ability to phase-synchronize 10-GHz signals across platforms supports future distributed coherent sensing, while the ability to time-synchronize multiple microwave-based clocks to a high-performance master optical clock supports future precision navigation/timing systems. PMID:29607352

  16. Microwave excitation of spin wave beams in thin ferromagnetic films

    PubMed Central

    Gruszecki, P.; Kasprzak, M.; Serebryannikov, A. E.; Krawczyk, M.; Śmigaj, W.

    2016-01-01

    An inherent element of research and applications in photonics is a beam of light. In magnonics, which is the magnetic counterpart of photonics, where spin waves are used instead of electromagnetic waves to transmit and process information, the lack of a beam source limits exploration. Here, we present an approach enabling generation of narrow spin wave beams in thin homogeneous nanosized ferromagnetic films by microwave current. We show that the desired beam-type behavior can be achieved with the aid of a properly designed coplanar waveguide transducer generating a nonuniform microwave magnetic field. We test this idea using micromagnetic simulations, confirming numerically that the resulting spin wave beams propagate over distances of several micrometers. The proposed approach requires neither inhomogeneity of the ferromagnetic film nor nonuniformity of the biasing magnetic field. It can be generalized to different magnetization configurations and yield multiple spin wave beams of different width at the same frequency. PMID:26971711

  17. Tight real-time synchronization of a microwave clock to an optical clock across a turbulent air path.

    PubMed

    Bergeron, Hugo; Sinclair, Laura C; Swann, William C; Nelson, Craig W; Deschênes, Jean-Daniel; Baumann, Esther; Giorgetta, Fabrizio R; Coddington, Ian; Newbury, Nathan R

    2016-04-01

    The ability to distribute the precise time and frequency from an optical clock to remote platforms could enable future precise navigation and sensing systems. Here we demonstrate tight, real-time synchronization of a remote microwave clock to a master optical clock over a turbulent 4-km open air path via optical two-way time-frequency transfer. Once synchronized, the 10-GHz frequency signals generated at each site agree to 10 -14 at one second and below 10 -17 at 1000 seconds. In addition, the two clock times are synchronized to ±13 fs over an 8-hour period. The ability to phase-synchronize 10-GHz signals across platforms supports future distributed coherent sensing, while the ability to time-synchronize multiple microwave-based clocks to a high-performance master optical clock supports future precision navigation/timing systems.

  18. Novel Multistatic Adaptive Microwave Imaging Methods for Early Breast Cancer Detection

    NASA Astrophysics Data System (ADS)

    Xie, Yao; Guo, Bin; Li, Jian; Stoica, Petre

    2006-12-01

    Multistatic adaptive microwave imaging (MAMI) methods are presented and compared for early breast cancer detection. Due to the significant contrast between the dielectric properties of normal and malignant breast tissues, developing microwave imaging techniques for early breast cancer detection has attracted much interest lately. MAMI is one of the microwave imaging modalities and employs multiple antennas that take turns to transmit ultra-wideband (UWB) pulses while all antennas are used to receive the reflected signals. MAMI can be considered as a special case of the multi-input multi-output (MIMO) radar with the multiple transmitted waveforms being either UWB pulses or zeros. Since the UWB pulses transmitted by different antennas are displaced in time, the multiple transmitted waveforms are orthogonal to each other. The challenge to microwave imaging is to improve resolution and suppress strong interferences caused by the breast skin, nipple, and so forth. The MAMI methods we investigate herein utilize the data-adaptive robust Capon beamformer (RCB) to achieve high resolution and interference suppression. We will demonstrate the effectiveness of our proposed methods for breast cancer detection via numerical examples with data simulated using the finite-difference time-domain method based on a 3D realistic breast model.

  19. A new microwave acid digestion bomb method for the determination of total fluorine.

    PubMed

    Grobler, S R; Louw, A J

    1998-01-01

    A new microwave acid digestion method for total fluorine analysis was compared to the reliable reverse-extraction technique. The commercially available Parr bombs which are compatible with microwave heating were modified for this purpose. The Mann-Whitney statistical test did not show any significant differences (p > 0.05) in the determinations of total fluorine in various samples between the two above-mentioned methods. The microwave method also gave high fluorine recoveries (> 97%) when fluoride was added to different samples. The great advantage of the microwave acid digestion bomb method is that the digestion under pressure is so aggressive that only a few minutes is needed for complete digestion (also of covalently bonded fluorine), which reduces the time for fluorine analysis dramatically, while no loss of fluorine or contamination from extraneous sources could take place during the ashing procedure. The digestion solution was made up of 300 microliter of concentrated nitric acid plus 537 microliter of water. After digestion 675 microliter of approximately 8.5 M sodium hydroxide plus 643 microliter of citrate/TISAB buffer was added resulting in an alkaline solution (pH approximately 12) which was finally adjusted to a pH of approximately 5.3 for fluoride determination.

  20. Preparation and microwave absorption properties of honeycomb core structures coated with composite absorber

    NASA Astrophysics Data System (ADS)

    Luo, Hui; Chen, Fu; Wang, Fang; Wang, Xian; Dai, Weiyong; Hu, Sheng; Gong, Rongzhou

    2018-05-01

    Honeycomb structure coated with paraffin filled with composite of graphene and flaky carbonyl iron powder (FCIP) as lossy filler have been studied. The composite of graphene/FCIP with different weight ratio were synthesized via mechanical milling, the electromagnetic properties of the samples were measured by transmission/reflection method in the frequency range of 8-12 GHz. The microwave absorbing properties of the microwave absorbing honeycomb structure (MAHS) and microwave absorbing honeycomb sandwich structure (MAHSS) were studied based on the Finite Element Method with periodical boundary conditions. The matching layer on the top of the honeycomb sandwich structure can enhanced the microwave absorption properties. It was shown that a light weight and broadband MAHSS could be implemented with the use of the magnetic material and dielectric material.

  1. Method for curing polymers using variable-frequency microwave heating

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lauf, R.J.; Bible, D.W.; Paulauskas, F.L.

    1998-02-24

    A method for curing polymers incorporating a variable frequency microwave furnace system designed to allow modulation of the frequency of the microwaves introduced into a furnace cavity is disclosed. By varying the frequency of the microwave signal, non-uniformities within the cavity are minimized, thereby achieving a more uniform cure throughout the workpiece. A directional coupler is provided for detecting the direction of a signal and further directing the signal depending on the detected direction. A first power meter is provided for measuring the power delivered to the microwave furnace. A second power meter detects the magnitude of reflected power. Themore » furnace cavity may be adapted to be used to cure materials defining a continuous sheet or which require compressive forces during curing. 15 figs.« less

  2. Method for curing polymers using variable-frequency microwave heating

    DOEpatents

    Lauf, Robert J.; Bible, Don W.; Paulauskas, Felix L.

    1998-01-01

    A method for curing polymers (11) incorporating a variable frequency microwave furnace system (10) designed to allow modulation of the frequency of the microwaves introduced into a furnace cavity (34). By varying the frequency of the microwave signal, non-uniformities within the cavity (34) are minimized, thereby achieving a more uniform cure throughout the workpiece (36). A directional coupler (24) is provided for detecting the direction of a signal and further directing the signal depending on the detected direction. A first power meter (30) is provided for measuring the power delivered to the microwave furnace (32). A second power meter (26) detects the magnitude of reflected power. The furnace cavity (34) may be adapted to be used to cure materials defining a continuous sheet or which require compressive forces during curing.

  3. The microwave Hall effect measured using a waveguide tee

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Coppock, J. E.; Anderson, J. R.; Johnson, W. B.

    2016-03-14

    This paper describes a simple microwave apparatus to measure the Hall effect in semiconductor wafers. The advantage of this technique is that it does not require contacts on the sample or the use of a resonant cavity. Our method consists of placing the semiconductor wafer into a slot cut in an X-band (8–12 GHz) waveguide series tee, injecting microwave power into the two opposite arms of the tee, and measuring the microwave output at the third arm. A magnetic field applied perpendicular to the wafer gives a microwave Hall signal that is linear in the magnetic field and which reverses phasemore » when the magnetic field is reversed. The microwave Hall signal is proportional to the semiconductor mobility, which we compare for calibration purposes with d.c. mobility measurements obtained using the van der Pauw method. We obtain the resistivity by measuring the microwave reflection coefficient of the sample. This paper presents data for silicon and germanium samples doped with boron or phosphorus. The measured mobilities ranged from 270 to 3000 cm{sup 2}/(V s).« less

  4. Wave-Optics Modeling of the Optical-Transport Line for Passive Optical Stochastic Cooling

    DOE PAGES

    Andorf, M. B.; Lebedev, V. A.; Piot, P.; ...

    2018-03-01

    Optical stochastic cooling (OSC) is expected to enable fast cooling of dense particle beams. Transition from microwave to optical frequencies enables an achievement of stochastic cooling rates which are orders of magnitude higher than ones achievable with the classical microwave based stochastic cooling systems. A subsystemcritical to the OSC scheme is the focusing optics used to image radiation from the upstream “pickup” undulator to the downstream “kicker” undulator. In this paper, we present simulation results using wave-optics calculation carried out with the Synchrotron Radiation Workshop (SRW). Our simulations are performed in support to a proof-of-principle experiment planned at the Integrablemore » Optics Test Accelerator (IOTA) at Fermilab. The calculations provide an estimate of the energy kick received by a 100-MeV electron as it propagates in the kicker undulator and interacts with the electromagnetic pulse it radiated at an earlier time while traveling through the pickup undulator.« less

  5. Tracking Performance of Upgraded "Polished Panel" Optical Receiver on NASA's 34 Meter Research Antenna

    NASA Technical Reports Server (NTRS)

    Vilnrotter, Victor

    2013-01-01

    There has been considerable interest in developing and demonstrating a hybrid "polished panel" optical receiver concept that would replace the microwave panels on the Deep Space Network's (DSN) 34 meter antennas with highly polished aluminum panels, thus enabling simultaneous opticaland microwave reception. A test setup has been installed on the 34 meter research antenna at DSS-13 (Deep Space Station 13) at NASA's Goldstone Deep Space Communications Complex in California in order to assess the feasibility of this concept. Here we describe the results of a recent effort todramatically reduce the dimensions of the point-spread function (PSF) generated by a custom polished panel, thus enabling improved optical communications performance. The latest results are compared to the previous configuration in terms of quantifiable PSF improvement. In addition, the performance of acquisition and tracking algorithms designed specifically for the polished panel PSF are evaluated and compared, based on data obtained from real-time tracking of planets and bright stars with the 34 meter research antenna at DSS-13.

  6. Electromagnetic Design of Feedhorn-Coupled Transition-Edge Sensors for Cosmic Microwave Background Polarimetery

    NASA Technical Reports Server (NTRS)

    Chuss, David T.

    2011-01-01

    Observations of the cosmic microwave background (CMB) provide a powerful tool for probing the evolution of the early universe. Specifically, precision measurement of the polarization of the CMB enables a direct test for cosmic inflation. A key technological element on the path to the measurement of this faint signal is the capability to produce large format arrays of background-limited detectors. We describe the electromagnetic design of feedhorn-coupled, TES-based sensors. Each linear orthogonal polarization from the feed horn is coupled to a superconducting microstrip line via a symmetric planar orthomode transducer (OMT). The symmetric OMT design allows for highly-symmetric beams with low cross-polarization over a wide bandwidth. In addition, this architecture enables a single microstrip filter to define the passband for each polarization. Care has been taken in the design to eliminate stray coupling paths to the absorbers. These detectors will be fielded in the Cosmology Large Angular Scale Surveyor (CLASS).

  7. The healing process of intracorporeally and in situ devitalized distal femur by microwave in a dog model and its mechanical properties in vitro.

    PubMed

    Ji, Zhenwei; Ma, Yunlei; Li, Wei; Li, Xiaoxiang; Zhao, Guangyi; Yun, Zhe; Qian, Jixian; Fan, Qingyu

    2012-01-01

    Limb-salvage surgery has been well recognized as a standard treatment and alternative to amputation for patients with malignant bone tumors. Various limb-sparing techniques have been developed including tumor prosthesis, allograft, autograft and graft-prosthesis composite. However, each of these methods has short- and long-term disadvantages such as nonunion, mechanical failures and poor limb function. The technique of intracorporeal devitalization of tumor-bearing bone segment in situ by microwave-induced hyperthermia after separating it from surrounding normal tissues with a safe margin is a promising limb-salvage method, which may avoid some shortcomings encountered by the above-mentioned conventional techniques. The purpose of this study is to assess the healing process and revitalization potential of the devitalized bone segment by this method in a dog model. In addition, the immediate effect of microwave on the biomechanical properties of bone tissue was also explored in an in vitro experiment. We applied the microwave-induced hyperthermia to devitalize the distal femurs of dogs in situ. Using a monopole microwave antenna, we could produce a necrotic bone of nearly 20 mm in length in distal femur. Radiography, bone scintigraphy, microangiography, histology and functional evaluation were performed at 2 weeks and 1, 2, 3, 6, 9 and 12 months postoperatively to assess the healing process. In a biomechanical study, two kinds of bone specimens, 3 and 6 cm in length, were used for compression and three-point bending test respectively immediately after extracorporeally devitalized by microwave. An in vivo study showed that intracorporeally and in situ devitalized bone segment by microwave had great revitalization potential. An in vitro study revealed that the initial mechanical strength of the extracorporeally devitalized bone specimen may not be affected by microwave. Our results suggest that the intracorporeal microwave devitalization of tumor-bearing bone segment in situ may be a promising limb-salvage method.

  8. Reflection measurement of waveguide-injected high-power microwave antennas.

    PubMed

    Yuan, Chengwei; Peng, Shengren; Shu, Ting; Zhang, Qiang; Zhao, Xuelong

    2015-12-01

    A method for reflection measurements of High-power Microwave (HPM) antennas excited with overmoded waveguides is proposed and studied systemically. In theory, principle of the method is proposed and the data processing formulas are developed. In simulations, a horn antenna excited by a TE11 mode exciter is examined and its reflection is calculated by CST Microwave Studio and by the method proposed in this article, respectively. In experiments, reflection measurements of two HPM antennas are conducted, and the measured results are well consistent with the theoretical expectations.

  9. Radio-frequency response of single pores and artificial ion channels

    NASA Astrophysics Data System (ADS)

    Kim, H. S.; Ramachandran, S.; Stava, E.; van der Weide, D. W.; Blick, R. H.

    2011-09-01

    Intercellular communication relies on ion channels and pores in cell membranes. These protein-formed channels enable the exchange of ions and small molecules to electrically and/or chemically interact with the cells. Traditionally, recordings on single-ion channels and pores are performed in the dc regime, due to the extremely high impedance of these molecular junctions. This paper is intended as an introduction to radio-frequency (RF) recordings of single-molecule junctions in bilipid membranes. First, we demonstrate how early approaches to using microwave circuitry as readout devices for ion channel formation were realized. The second step will then focus on how to engineer microwave coupling into the high-impedance channel by making use of bio-compatible micro-coaxial lines. We then demonstrate integration of an ultra-broadband microwave circuit for the direct sampling of single α-hemolysin pores in a suspended bilipid membrane. Simultaneous direct current recordings reveal that we can monitor and correlate the RF transmission signal. This enables us to relate the open-close states of the direct current to the RF signal. Altogether, our experiments lay the ground for an RF-readout technique to perform real-time in vitro recordings of pores. The technique thus holds great promise for research and drug screening applications. The possible enhancement of sampling rates of single channels and pores by the large recording bandwidth will allow us to track the passage of single ions.

  10. Microwave sintering of sol-gel derived abrasive grain

    DOEpatents

    Plovnick, Ross; Celikkaya, Ahmet; Blake, Rodger D.

    1997-01-01

    A method is provided for making microwave-sintered, free flowing alpha alumina-based ceramic abrasive grain, under conditions effective to couple microwaves with calcined alpha alumina-based abrasive gain precursor and sinter it at a temperature of at least about 1150.degree. C.

  11. GPS=A Good Candidate for Data Assimilation?

    NASA Technical Reports Server (NTRS)

    Poli, P.; Joiner, J.; Kursinski, R.; Einaudi, Franco (Technical Monitor)

    2000-01-01

    The Global Positioning System (GPS) enables positioning anywhere about our planet. The microwave signals sent by the 24 transmitters are sensitive to the atmosphere. Using the radio occultation technique, it is possible to perform soundings, with a Low Earth Orbiter (700 km) GPS receiver. The insensitiveness to clouds and aerosols, the relatively high vertical resolution (1.5 km), the self-calibration and stability of the GPS make it a priori a potentially good observing system candidate for data assimilation. A low-computing cost simple method to retrieve both temperature and humidity will be presented. Comparisons with radiosonde show the capability of the GPS to resolve the tropopause. Options for using GPS for data assimilation and remaining issues will be discussed.

  12. A Microwave Method for Measuring Moisture Content, Density, and Grain Angle of Wood.

    DTIC Science & Technology

    1985-03-01

    Livermore, CA 94550. James, William L; Yen , You - Hsin ; King, Ray J. A microwave method for measuring moisture content,density, and grain angle of wood...Note S FPL-0250 March 1985 Density, and Grain 8 Angle of Wood William L. James, Physicist Forest Products Laboratory, Madison, WI You -Hain Yen ... Yen . You -1tsin. Microwave electromagnetic nondestructive testing of wood in real- time. Madison. WI: Department of Electronic and Computer

  13. Methods for microwave heat treatment of manufactured components

    DOEpatents

    Ripley, Edward B.

    2010-08-03

    An apparatus for heat treating manufactured components using microwave energy and microwave susceptor material. Heat treating medium such as eutectic salts may be employed. A fluidized bed introduces process gases which may include carburizing or nitriding gases. The process may be operated in a batch mode or continuous process mode. A microwave heating probe may be used to restart a frozen eutectic salt bath.

  14. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sudiana, I. Nyoman, E-mail: sudiana75@yahoo.com; Ngkoimani, La Ode; Usman, Ida

    Microwave sintering of materials has attracted much research interest because of its significant advantages (e.g. reduced sintering temperatures and soaking times) over the conventional heating. Most researchers compared processes that occurred during the microwave and conventional heating at the same temperature and time. The enhancements found in the former method are indicated as a 'non-thermal effect' which is usually used for explaining the phenomena in microwave processing. Numerous recent studies have been focused on the effect to elucidate the microwave interaction mechanism with materials. Moreover, recent progress on microwave sources such as gyrotrons has opened the possibility for processing materialsmore » by using a higher microwave frequency. Therefore, the technology is expected to exhibit a stronger non-thermal effect. This paper presents results from a series of experiments to study the non-thermal effect on microwave sintered alumina. Sintering by using a wide rage of microwave frequencies up to 300 GHz as well as a conventional furnace was carried out. The linear shrinkages of samples for each sintering method were measured. Pores and grains taken from scanning electron microstructure (SEM) images of cut surfaces were also examined. The results of a comparative study of the shrinkages and microstructure evolutions of the sintered samples under annealing in microwave heating systems and in an electric furnace were analyzed. A notably different behavior of the shrinkages and microstructures of alumina after being annealed was found. The results suggested that microwave radiations provided an additional force for mass transports. The results also indicated that the sintering process depended on microwave frequencies.« less

  15. Method and apparatus for melting metals

    DOEpatents

    Moore, Alan F.; Schechter, Donald E.; Morrow, Marvin Stanley

    2006-03-14

    A method and apparatus for melting metals uses microwave energy as the primary source of heat. The metal or mixture of metals are placed in a ceramic crucible which couples, at least partially, with the microwaves to be used. The crucible is encased in a ceramic casket for insulation and placed within a microwave chamber. The chamber may be evacuated and refilled to exclude oxygen. After melting, the crucible may be removed for pouring or poured within the chamber by dripping or running into a heated mold within the chamber. Apparent coupling of the microwaves with softened or molten metal produces high temperatures with great energy savings.

  16. Diagnosis of femtosecond plasma filament by channeling microwaves along the filament

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Alshershby, Mostafa; Ren, Yu; Qin, Jiang

    2013-05-20

    We introduce a simple, fast, and non-intrusive experimental method to obtain the basic parameters of femtosecond laser-generated plasma filament. The method is based on the channeling of microwaves along both a plasma filament and a well-defined conducting wire. By comparing the detected microwaves that propagate along the plasma filament and a copper wire with known conductivity and spatial dimension, the basic parameters of the plasma filament can be easily obtained. As a result of the possibility of channeling microwave radiation along the plasma filament, we were then able to obtain the plasma density distribution along the filament length.

  17. Exploring microwave resonant multi-point ignition using high-speed schlieren imaging

    NASA Astrophysics Data System (ADS)

    Liu, Cheng; Zhang, Guixin; Xie, Hong; Deng, Lei; Wang, Zhi

    2018-03-01

    Microwave plasma offers a potential method to achieve rapid combustion in a high-speed combustor. In this paper, microwave resonant multi-point ignition and its control method have been studied via high-speed schlieren imaging. The experiment was conducted with the microwave resonant ignition system and the schlieren optical system. The microwave pulse in 2.45 GHz with 2 ms width and 3 kW peak power was employed as an ignition energy source to produce initial flame kernels in the combustion chamber. A reflective schlieren method was designed to illustrate the flame development process with a high-speed camera. The bottom of the combustion chamber was made of a quartz glass coated with indium tin oxide, which ensures sufficient microwave reflection and light penetration. Ignition experiments were conducted at 2 bars of stoichiometric methane-air mixtures. Schlieren images show that flame kernels were generated at more than one location simultaneously and flame propagated with different speeds in different flame kernels. Ignition kernels were discussed in three types according to their appearances. Pressure curves and combustion duration also show that multi-point ignition plays a significant role in accelerating combustion.

  18. Exploring microwave resonant multi-point ignition using high-speed schlieren imaging.

    PubMed

    Liu, Cheng; Zhang, Guixin; Xie, Hong; Deng, Lei; Wang, Zhi

    2018-03-01

    Microwave plasma offers a potential method to achieve rapid combustion in a high-speed combustor. In this paper, microwave resonant multi-point ignition and its control method have been studied via high-speed schlieren imaging. The experiment was conducted with the microwave resonant ignition system and the schlieren optical system. The microwave pulse in 2.45 GHz with 2 ms width and 3 kW peak power was employed as an ignition energy source to produce initial flame kernels in the combustion chamber. A reflective schlieren method was designed to illustrate the flame development process with a high-speed camera. The bottom of the combustion chamber was made of a quartz glass coated with indium tin oxide, which ensures sufficient microwave reflection and light penetration. Ignition experiments were conducted at 2 bars of stoichiometric methane-air mixtures. Schlieren images show that flame kernels were generated at more than one location simultaneously and flame propagated with different speeds in different flame kernels. Ignition kernels were discussed in three types according to their appearances. Pressure curves and combustion duration also show that multi-point ignition plays a significant role in accelerating combustion.

  19. Effect of blanching treatments on antioxidant activity of frozen green capsicum (Capsicum annuum L. var bell pepper) using radical scavenging activity (DPPH) assay

    NASA Astrophysics Data System (ADS)

    Azizzuddin, Norafida; Abdullah, Aminah

    2016-11-01

    Blanching treatments are needed to deactivate enzymes in frozen vegetables. Antioxidant activity using DPPH radical scavenging activity assay were evaluated in steaming, boiling water, and microwave blanching at different temperature, time and microwave power level on frozen green capsicum. Green capsicum was chosen for frozen treatment compared to other capsicum with different maturity index because of the firm texture. The objective of this study was to compare the antioxidant activity of frozen green capsicum between conventional and Oxi Count Kit® assay for DPPH radical scavenging activity. Results showed frozen green capsicum blanched using microwave at high level/90 seconds (sample J) contained higher level of DPPH in both conventional method and Oxi Count Kit® compared to other treatments. However, there were no significant differences between sample J and fresh sample (sample A). Overall, the sequences from highest to lowest in blanching treatments for both DPPH conventional method, and DPPH Oxi Count Kit® were J (microwave high level/90 seconds) > A (Fresh) > H (Microwave Medium Level/120 seconds) > D (Boiling Water 80°C/150 seconds) > K (Microwave High Level/120 seconds) > I (Microwave Medium Level/150 seconds) > F (Microwave Low Level/150 seconds)> B (Steam 100°C/150 seconds) > E (Boiling Water 100°C /120 seconds) > G (Microwave Low Level /180 seconds)> C (Steam 100°C/180 seconds). Almost all frozen green capsicum samples showed no significant differences for comparison between test using DPPH conventional method and Oxi Count Kit®. Frozen storage for 0, and 3rd months showed no significant differences which indicate no changes on antioxidant activity during frozen storage at -18°C.

  20. Calibrated, Enhanced-Resolution Brightness Temperature Earth System Data Record: A New Era for Gridded Passive Microwave Data

    NASA Astrophysics Data System (ADS)

    Hardman, M.; Brodzik, M. J.; Long, D. G.

    2017-12-01

    Since 1978, the satellite passive microwave data record has been a mainstay of remote sensing of the cryosphere, providing twice-daily, near-global spatial coverage for monitoring changes in hydrologic and cryospheric parameters that include precipitation, soil moisture, surface water, vegetation, snow water equivalent, sea ice concentration and sea ice motion. Up until recently, the available global gridded passive microwave data sets have not been produced consistently. Various projections (equal-area, polar stereographic), a number of different gridding techniques were used, along with various temporal sampling as well as a mix of Level 2 source data versions. In addition, not all data from all sensors have been processed completely and they have not been processed in any one consistent way. Furthermore, the original gridding techniques were relatively primitive and were produced on 25 km grids using the original EASE-Grid definition that is not easily accommodated in modern software packages. As part of NASA MEaSUREs, we have re-processed all data from SMMR, all SSM/I-SSMIS and AMSR-E instruments, using the most mature Level 2 data. The Calibrated, Enhanced-Resolution Brightness Temperature (CETB) Earth System Data Record (ESDR) gridded data are now available from the NSIDC DAAC. The data are distributed as netCDF files that comply with CF-1.6 and ACDD-1.3 conventions. The data have been produced on EASE 2.0 projections at smoothed, 25 kilometer resolution and spatially-enhanced resolutions, up to 3.125 km depending on channel frequency, using the radiometer version of the Scatterometer Image Reconstruction (rSIR) method. We expect this newly produced data set to enable scientists to better analyze trends in coastal regions, marginal ice zones and in mountainous terrain that were not possible with the previous gridded passive microwave data. The use of the EASE-Grid 2.0 definition and netCDF-CF formatting allows users to extract compliant geotiff images and provides for easy importing and correct reprojection interoperability in many standard packages. As a consistently-processed, high-quality satellite passive microwave ESDR, we expect this data set to replace earlier gridded passive microwave data sets, and to pave the way for new insights from higher-resolution derived geophysical products.

  1. Microwave Nondestructive Evaluation of Dielectric Materials with a Metamaterial Lens

    NASA Technical Reports Server (NTRS)

    Shreiber, Daniel; Gupta, Mool; Cravey, Robin L.

    2008-01-01

    A novel microwave Nondestructive Evaluation (NDE) sensor was developed in an attempt to increase the sensitivity of the microwave NDE method for detection of defects small relative to a wavelength. The sensor was designed on the basis of a negative index material (NIM) lens. Characterization of the lens was performed to determine its resonant frequency, index of refraction, focus spot size, and optimal focusing length (for proper sample location). A sub-wavelength spot size (3 dB) of 0.48 lambda was obtained. The proof of concept for the sensor was achieved when a fiberglass sample with a 3 mm diameter through hole (perpendicular to the propagation direction of the wave) was tested. The hole was successfully detected with an 8.2 cm wavelength electromagnetic wave. This method is able to detect a defect that is 0.037 lambda. This method has certain advantages over other far field and near field microwave NDE methods currently in use.

  2. A novel method to augment extraction of mangiferin by application of microwave on three phase partitioning.

    PubMed

    Kulkarni, Vrushali M; Rathod, Virendra K

    2015-06-01

    This work reports a novel approach where three phase partitioning (TPP) was combined with microwave for extraction of mangiferin from leaves of Mangifera indica . Soxhlet extraction was used as reference method, which yielded 57 mg/g in 5 h. Under optimal conditions such as microwave irradiation time 5 min, ammonium sulphate concentration 40% w/v, power 272 W, solute to solvent ratio 1:20, slurry to t -butanol ratio 1:1, soaking time 5 min and duty cycle 50%, the mangiferin yield obtained was 54 mg/g by microwave assisted three phase partitioning extraction (MTPP). Thus extraction method developed resulted into higher extraction yield in a shorter span, thereby making it an interesting alternative prior to down-stream processing.

  3. Remote steering of laser beams by radar- and laser-induced refractive-index gradients in the atmosphere Remote steering of laser beams

    NASA Astrophysics Data System (ADS)

    Zheltikov, A. M.; Shneider, M. N.; Voronin, A. A.; Sokolov, A. V.; Scully, M. O.

    2012-01-01

    Refractive-index gradients induced in the atmospheric air by properly tailored laser and microwave fields are shown to enable a remote steering of laser beams. Heating-assisted modulation of the refractive index of the air by microwave radiation is shown to support small-angle laser-beam bending with bending angles on the order of 10-2. Ionization of the atmospheric air by dyads of femto- and nanosecond laser pulses, on the other hand, can provide beam deflection angles in excess of π/5, offering an attractive strategy for radiation transfer, free-space communications, and laser-based standoff detection.

  4. Broadband, large-area microwave antenna for optically detected magnetic resonance of nitrogen-vacancy centers in diamond

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sasaki, Kento; Monnai, Yasuaki; Saijo, Soya

    2016-05-15

    We report on a microwave planar ring antenna specifically designed for optically detected magnetic resonance (ODMR) of nitrogen-vacancy (NV) centers in diamond. It has the resonance frequency at around 2.87 GHz with the bandwidth of 400 MHz, ensuring that ODMR can be observed under external magnetic fields up to 100 G without the need of adjustment of the resonance frequency. It is also spatially uniform within the 1-mm-diameter center hole, enabling the magnetic-field imaging in the wide spatial range. These features facilitate the experiments on quantum sensing and imaging using NV centers at room temperature.

  5. Ultra-wideband microwave photonic phase shifter with configurable amplitude response.

    PubMed

    Pagani, M; Marpaung, D; Eggleton, B J

    2014-10-15

    We introduce a new principle that enables separate control of the amplitude and phase of an optical carrier, simply by controlling the power of two stimulated Brillouin scattering (SBS) pumps. This technique is used to implement a microwave photonic phase shifter with record performance, which solves the bandwidth limitation of previous gain-transparent SBS-based phase shifters, while achieving unprecedented minimum power fluctuations, as a function of phase shift. We demonstrate 360° continuously tunable phase shift, with less than 0.25 dB output power fluctuations, over a frequency band from 1.5 to 31 GHz, limited only by the measurement equipment.

  6. Gigahertz dual-comb modelocked diode-pumped semiconductor and solid-state lasers

    NASA Astrophysics Data System (ADS)

    Link, S. M.; Mangold, M.; Golling, M.; Klenner, A.; Keller, U.

    2016-03-01

    We present a simple approach to generate simultaneously two gigahertz mode-locked pulse trains from a single gain element. A bi-refringent crystal in the laser cavity splits the one cavity beam into two cross-polarized and spatially separated beams. This polarization-duplexing is successfully demonstrated for both a semiconductor disk laser (i.e. MIXSEL) and a diode-pumped solid-state Nd:YAG laser. The beat between the two beams results in a microwave frequency comb, which represents a direct link between the terahertz optical frequencies and the electronically accessible microwave regime. This dual-output technique enables compact and cost-efficient dual-comb lasers for spectroscopy applications.

  7. Modifications to the synthetic aperture microwave imaging diagnostic.

    PubMed

    Brunner, K J; Chorley, J C; Dipper, N A; Naylor, G; Sharples, R M; Taylor, G; Thomas, D A; Vann, R G L

    2016-11-01

    The synthetic aperture microwave imaging diagnostic has been operating on the MAST experiment since 2011. It has provided the first 2D images of B-X-O mode conversion windows and showed the feasibility of conducting 2D Doppler back-scattering experiments. The diagnostic heavily relies on field programmable gate arrays to conduct its work. Recent successes and newly gained experience with the diagnostic have led us to modify it. The enhancements will enable pitch angle profile measurements, O and X mode separation, and the continuous acquisition of 2D DBS data. The diagnostic has also been installed on the NSTX-U and is acquiring data since May 2016.

  8. Microwave-assisted synthesis of sensitive silver substrate for surface-enhanced Raman scattering spectroscopy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Xia Lixin; Wang Haibo; Wang Jian

    A sensitive silver substrate for surface-enhanced Raman scattering (SERS) spectroscopy is synthesized under multimode microwave irradiation. The microwave-assisted synthesis of the SERS-active substrate was carried out in a modified domestic microwave oven of 2450 MHz, and the reductive reaction was conducted in a polypropylene container under microwave irradiation with a power of 100 W for 5 min. Formaldehyde was employed as both the reductant and microwave absorber in the reductive process. The effects of different heating methods (microwave dielectric and conventional) on the properties of the SERS-active substrates were investigated. Samples obtained with 5 min of microwave irradiation at amore » power of 100 W have more well-defined edges, corners, and sharper surface features, while the samples synthesized with 1 h of conventional heating at 40 deg. C consist primarily of spheroidal nanoparticles. The SERS peak intensity of the {approx}1593 cm{sup -1} band of 4-mercaptobenzoic acid adsorbed on silver nanoparticles synthesized with 5 min of microwave irradiation at a power of 100 W is about 30 times greater than when it is adsorbed on samples synthesized with 1 h of conventional heating at 40 deg. C. The results of quantum chemical calculations are in good agreement with our experimental data. This method is expected to be utilized for the synthesis of other metal nanostructural materials.« less

  9. Calibration and standardization of microwave ovens for fixation of brain and peripheral nerve tissue.

    PubMed

    Login, G R; Leonard, J B; Dvorak, A M

    1998-06-01

    Rapid and reproducible fixation of brain and peripheral nerve tissue for light and electron microscopy studies can be done in a microwave oven. In this review we report a standardized nomenclature for diverse fixation techniques that use microwave heating: (1) microwave stabilization, (2) fast and ultrafast primary microwave-chemical fixation, (3) microwave irradiation followed by chemical fixation, (4) primary chemical fixation followed by microwave irradiation, and (5) microwave fixation used in various combinations with freeze fixation. All of these methods are well suited to fix brain tissue for light microscopy. Fast primary microwave-chemical fixation is best for immunoelectron microscopy studies. We also review how the physical characteristics of the microwave frequency and the dimensions of microwave oven cavities can compromise microwave fixation results. A microwave oven can be calibrated for fixation when the following parameters are standardized: irradiation time; water load volume, initial temperature, and placement within the oven; fixative composition, volume, and initial temperature; and specimen container shape and placement within the oven. Using two recently developed calibration tools, the neon bulb array and the agar-saline-Giemsa tissue phantom, we report a simple calibration protocol that identifies regions within a microwave oven for uniform microwave fixation. Copyright 1998 Academic Press.

  10. Photocatalytic degradation of RhB with microwave prepared PbMoO4.

    PubMed

    Hernández-Uresti, Diana B; Aguilar-Garib, Juan A; Martínez-de la Cruz, Azael

    2012-01-01

    Synthesized PbMoO4 from H2MoO4 and Pb(NO3)2 with microwaves was compared, in terms of its photocatalytic activity as catalyzer for decomposing rhodamine B (RhB), against samples prepared by hydrothermal and sonochemical methods from the same precursors. Microwave synthesis lasted 20 minutes; hydrothermal, 10 minutes and sonochemical method, 1 hour. Xrays diffraction patterns show that PbMoO4 prepared by these three routes is compounded by the same phase. It is found that microwave synthesized PbMoO4 particles are rounder, in an intermediate size (250 nm), compared to sonochemical (100 nm) and hydrothermal (500 nm) routes; microwave particles also exhibit higher photocatalytic activity for degradation of RhB under a xenon lamp. This difference is not explicable in terms of surface area measurements, but could be explained by UV Light scattering by the rounder particles produced by means of the microwave processing, which are about one half size compared to the wavelength.

  11. Large-scale synthesis and microwave absorption enhancement of actinomorphic tubular ZnO/CoFe2O4 nanocomposites.

    PubMed

    Cao, Jing; Fu, Wuyou; Yang, Haibin; Yu, Qingjiang; Zhang, Yanyan; Liu, Shikai; Sun, Peng; Zhou, Xiaoming; Leng, Yan; Wang, Shuangming; Liu, Bingbing; Zou, Guangtian

    2009-04-09

    Actinomorphic tubular ZnO/CoFe(2)O(4) nanocomposites were fabricated in large scale via a simple solution method at low temperature. The phase structures, morphologies, particle size, shell thickness, chemical compositions of the composites have been characterized by X-ray diffraction (XRD), field emission scanning electron microscope (FESEM), energy dispersive X-ray spectroscopy (EDS), and transmission electron microscopy (TEM). The as-synthesized nanocomposites were uniformly dispersed into the phenolic resin then the mixture was pasted on metal plate with the area of 200 mm x 200 mm as the microwave absorption test plate. The test of microwave absorption was carried out by the radar-absorbing materials (RAM) reflectivity far field radar cross-section (RCS) method. The range of microwave absorption is from 2 to 18 Hz and the best microwave absorption reach to 28.2 dB at 8.5 Hz. The results indicate that the composites are of excellence with respect to microwave absorption.

  12. Improved conventional and microwave-assisted silylation protocols for simultaneous gas chromatographic determination of tocopherols and sterols: Method development and multi-response optimization.

    PubMed

    Poojary, Mahesha M; Passamonti, Paolo

    2016-12-09

    This paper reports on improved conventional thermal silylation (CTS) and microwave-assisted silylation (MAS) methods for simultaneous determination of tocopherols and sterols by gas chromatography. Reaction parameters in each of the methods developed were systematically optimized using a full factorial design followed by a central composite design. Initially, experimental conditions for CTS were optimized using a block heater. Further, a rapid MAS was developed and optimized. To understand microwave heating mechanisms, MAS was optimized by two distinct modes of microwave heating: temperature-controlled MAS and power-controlled MAS, using dedicated instruments where reaction temperature and microwave power level were controlled and monitored online. Developed methods: were compared with routine overnight derivatization. On a comprehensive level, while both CTS and MAS were found to be efficient derivatization techniques, MAS significantly reduced the reaction time. The optimal derivatization temperature and time for CTS found to be 55°C and 54min, while it was 87°C and 1.2min for temperature-controlled MAS. Further, a microwave power of 300W and a derivatization time 0.5min found to be optimal for power-controlled MAS. The use of an appropriate derivatization solvent, such as pyridine, was found to be critical for the successful determination. Catalysts, like potassium acetate and 4-dimethylaminopyridine, enhanced the efficiency slightly. The developed methods showed excellent analytical performance in terms of linearity, accuracy and precision. Copyright © 2016 Elsevier B.V. All rights reserved.

  13. Microwave-assisted Facile and Ultrafast Growth of ZnO Nanostructures and Proposition of Alternative Microwave-assisted Methods to Address Growth Stoppage

    NASA Astrophysics Data System (ADS)

    Rana, Abu Ul Hassan Sarwar; Kang, Mingi; Kim, Hyun-Seok

    2016-04-01

    The time constraint in the growth of ZnO nanostructures when using a hydrothermal method is of paramount importance in contemporary research, where a long fabrication time rots the very essence of the research on ZnO nanostructures. In this study, we present the facile and ultrafast growth of ZnO nanostructures in a domestic microwave oven within a pressurized environment in just a few minutes. This method is preferred for the conventional solution-based method because of the ultrafast supersaturation of zinc salts and the fabrication of high-quality nanostructures. The study of the effect of seed layer density, growth time, and the solution’s molar concentration on the morphology, alignment, density, and aspect ratio of ZnO nanorods (ZNRs) is explored. It is found in a microwave-assisted direct growth method that ~5 mins is the optimum time beyond which homogeneous nucleation supersedes heterogeneous nucleation, which results in the growth stoppage of ZNRs. To deal with this issue, we propound different methods such as microwave-assisted solution-replacement, preheating, and PEI-based growth methods, where growth stoppage is addressed and ZNRs with a high aspect ratio can be grown. Furthermore, high-quality ZnO nanoflowers and ZnO nanowalls are fabricated via ammonium hydroxide treatment in a very short time.

  14. Development of new UV-vis spectroscopic microwave-assisted method for determination of glucose in pharmaceutical samples

    NASA Astrophysics Data System (ADS)

    Mabood, Fazal; Hussain, Z.; Haq, H.; Arian, M. B.; Boqué, R.; Khan, K. M.; Hussain, K.; Jabeen, F.; Hussain, J.; Ahmed, M.; Alharasi, A.; Naureen, Z.; Hussain, H.; Khan, A.; Perveen, S.

    2016-01-01

    A new UV-Visible spectroscopic method assisted with microwave for the determination of glucose in pharmaceutical formulations was developed. In this study glucose solutions were oxidized by ammonium molybdate in the presence of microwave energy and reacted with aniline to produce a colored solution. Optimum conditions of the reaction including wavelength, temperature, and pH of the medium and relative concentration ratio of the reactants were investigated. It was found that the optimal wavelength for the reaction is 610 nm, the optimal reaction time is 80 s, the optimal reaction temperature is 160 °C, the optimal reaction pH is 4, and the optimal concentration ratio aniline/ammonium molybdate solution was found to be 1:1. The limits of detection and quantification of the method are 0.82 and 2.75 ppm for glucose solution, respectively. The use of microwaves improved the speed of the method while the use of aniline improved the sensitivity of the method by shifting the wavelength.

  15. Microwave and millimeter wave dielectric permittivity and magnetic permeability of epsilon-gallium-iron-oxide nano-powders

    NASA Astrophysics Data System (ADS)

    Chao, Liu; Afsar, Mohammed N.; Ohkoshi, Shin-ichi

    2015-05-01

    In millimeter wave frequency range, hexagonal ferrites with high uniaxial anisotropic magnetic fields are used as absorbers. These ferrites include M-type barium ferrite (BaFe12O19) and strontium ferrite (SrFe12O19), which have natural ferromagnetic resonant frequency range from 40 GHz to 60 GHz. However, the higher frequency range lacks suitable materials that support the higher frequency ferromagnetic resonance. A series of gallium-substituted ɛ-iron oxides (ɛ-GaxFe2-xO3) are synthesized, which have ferromagnetic resonant frequencies appearing over the frequency range of 30 GHz to 150 GHz. The ɛ-GaxFe2-xO3 is synthesized by the sol-gel method. The particle sizes are observed to be smaller than 100 nm. In this paper, in-waveguide transmission and reflection method and the free space magneto-optical approach have been employed to study these newly developed ɛ-GaxFe2-xO3 particles in millimeter waves. These techniques enable to obtain precise transmission spectra to determine the dielectric and magnetic properties of both isotropic and anisotropic ferrites in the microwave and millimeter wave frequency range from single set of direct measurements. The complex dielectric permittivity and magnetic permeability spectra of ɛ-GaxFe2-xO3 are shown in this paper. Strong ferromagnetic resonances at different frequencies determined by the x parameter are found.

  16. E and B families of the Stokes parameters in the polarized synchrotron and thermal dust foregrounds

    NASA Astrophysics Data System (ADS)

    Liu, Hao; Creswell, James; Naselsky, Pavel

    2018-05-01

    Better understanding of Galactic foregrounds is one of the main obstacles to detection of primordial gravitational waves through measurement of the B mode in the polarized microwave sky. We generalize the method proposed in [1] and decompose the polarization signals into the E and B families directly in the domain of the Stokes Q, U parameters as (Q,U)≡(QE, UE)+(QB,UB). This also enables an investigation of the morphology and the frequency dependence of these two families, which has been done in the WMAP K, Ka (tracing synchrotron emission) and Planck 2015 HFI maps (tracing thermal dust). The results reveal significant differences in spectra between the E and B families. The spectral index of the E family fluctuates less across the sky than that of the B family, and the same tendency occurs for the polarization angles of the dust and synchrotron channels. The new insight from WMAP and Planck data on the North Polar Spur and BICEP2 zones through our method clearly indicates that these zones are characterized by very low polarization intensity of the B family compared to the E family. We have detected global structure of the B family polarization angles at high Galactic latitudes which cannot be attributed to the cosmic microwave background or instrumental noise. However, we cannot exclude instrumental systematics as a partial contributor to these anomalies.

  17. Microwave-assisted extraction of rutin and quercetin from the stalks of Euonymus alatus (Thunb.) Sieb.

    PubMed

    Zhang, Fan; Yang, Yi; Su, Ping; Guo, Zhenku

    2009-01-01

    Euonymus alatus (Thunb.) has been used as one of traditional Chinese medicines for several thousand years. Conventional methods for the extraction of rutin and quercetin from E. alatus, including solvent extraction, Soxhlet extraction and heat reflux extraction are characterised by long extraction times and consumption of large amounts of solvents. To develop a simple and rapid method for the extraction of rutin and quercetin from the stalks of Euonymus alatus (Thunb.) Sieb using microwave-assisted extraction (MAE) technique. MAE experiments were performed with a multimode microwave extraction system. The experimental variables that affect the MAE process, such as the concentration of ethanol solution, extractant volume, microwave power and extraction time were optimised. Yields were determined by HPLC. The results were compared with that obtained by classical Soxhlet and ultrasonic-assisted extraction (UAE). From the optimised conditions for MAE of rutin and quercetin it can be concluded that the solvent is 50% ethanol (v/v) solution, the extractant volume is 40 mL, microwave power is 170 W and irradiation time is 6 min. Compared with Soxhlet extraction and ultrasonic extraction, microwave extraction is a rapid method with a higher yield and lower solvent consumption. The results showed that MAE can be used as an efficient and rapid method for the extraction of the active components from plants.

  18. Process for microwave sintering boron carbide

    DOEpatents

    Holcombe, C.E.; Morrow, M.S.

    1993-10-12

    A method of microwave sintering boron carbide comprises leaching boron carbide powder with an aqueous solution of nitric acid to form a leached boron carbide powder. The leached boron carbide powder is coated with a glassy carbon precursor to form a coated boron carbide powder. The coated boron carbide powder is consolidated in an enclosure of boron nitride particles coated with a layer of glassy carbon within a container for microwave heating to form an enclosed coated boron carbide powder. The enclosed coated boron carbide powder is sintered within the container for microwave heating with microwave energy.

  19. Process for microwave sintering boron carbide

    DOEpatents

    Holcombe, Cressie E.; Morrow, Marvin S.

    1993-01-01

    A method of microwave sintering boron carbide comprises leaching boron carbide powder with an aqueous solution of nitric acid to form a leached boron carbide powder. The leached boron carbide powder is coated with a glassy carbon precursor to form a coated boron carbide powder. The coated boron carbide powder is consolidated in an enclosure of boron nitride particles coated with a layer of glassy carbon within a container for microwave heating to form an enclosed coated boron carbide powder. The enclosed coated boron carbide powder is sintered within the container for microwave heating with microwave energy.

  20. Microwave Energy Increases Fatty Acid Methyl Ester Yield in Human Whole Blood Due to Increased Sphingomyelin Transesterification.

    PubMed

    Metherel, Adam H; Aristizabal Henao, Juan J; Ciobanu, Flaviu; Taha, Ameer Y; Stark, Ken D

    2015-09-01

    Dried blood spots (DBS) by fingertip prick collection for fatty acid profiling are becoming increasingly popular due to ease of collection, minimal invasiveness and its amenability to high-throughput analyses. Herein, we assess a microwave-assisted direct transesterification method for the production of fatty acid methyl esters (FAME) from DBS. Technical replicates of human whole blood were collected and 25-μL aliquots were applied to chromatography strips prior to analysis by a standard 3-h transesterification method or microwave-assisted direct transesterification method under various power (variable vs constant), time (1-5 min) and reagent (1-10% H2SO4 in methanol) conditions. In addition, a standard method was compared to a 5-min, 30-W power microwave in 1% H2SO4 method for FAME yield from whole blood sphingomyelin, and sphingomyelin standards alone and spiked in whole blood. Microwave-assisted direct transesterification yielded no significant differences in both quantitative (nmol/100 µL) and qualitative (mol%) fatty acid assessments after as little as 1.5- and 1-min reaction times, respectively, using the variable power method and 5% H2SO4 in methanol. However, 30-W power for 5 min increased total FAME yield of the technical replicates by 14%. This increase appears largely due to higher sphingomyelin-derived FAME yield of up to 109 and 399% compared to the standard method when determined from whole blood or pure standards, respectively. In conclusion, microwave-assisted direct transesterification of DBS achieved in as little as 1-min, and 5-min reaction times increase total fatty acids primarily by significantly improving sphingomyelin-derived fatty acid yield.

  1. Evaluation of decadal predictions using a satellite simulator for the Special Sensor Microwave Imager (SSM/I)

    NASA Astrophysics Data System (ADS)

    Spangehl, Thomas; Schröder, Marc; Bodas-Salcedo, Alejandro; Glowienka-Hense, Rita; Hense, Andreas; Hollmann, Rainer; Dietzsch, Felix

    2017-04-01

    Decadal climate predictions are commonly evaluated focusing on geophysical parameters such as temperature, precipitation or wind speed using observational datasets and reanalysis. Alternatively, satellite based radiance measurements combined with satellite simulator techniques to deduce virtual satellite observations from the numerical model simulations can be used. The latter approach enables an evaluation in the instrument's parameter space and has the potential to reduce uncertainties on the reference side. Here we present evaluation methods focusing on forward operator techniques for the Special Sensor Microwave Imager (SSM/I). The simulator is developed as an integrated part of the CFMIP Observation Simulator Package (COSP). On the observational side the SSM/I and SSMIS Fundamental Climate Data Record (FCDR) released by CM SAF (http://dx.doi.org/10.5676/EUM_SAF_CM/FCDR_MWI/V002) is used, which provides brightness temperatures for different channels and covers the period from 1987 to 2013. The simulator is applied to hindcast simulations performed within the MiKlip project (http://fona-miklip.de) which is funded by the BMBF (Federal Ministry of Education and Research in Germany). Probabilistic evaluation results are shown based on a subset of the hindcast simulations covering the observational period.

  2. Examining Dense Data Usage near the Regions with Severe Storms in All-Sky Microwave Radiance Data Assimilation and Impacts on GEOS Hurricane Analyses

    NASA Technical Reports Server (NTRS)

    Kim, Min-Jeong; Jin, Jianjun; McCarty, Will; El Akkraoui, Amal; Todling, Ricardo; Gelaro, Ron

    2018-01-01

    Many numerical weather prediction (NWP) centers assimilate radiances affected by clouds and precipitation from microwave sensors, with the expectation that these data can provide critical constraints on meteorological parameters in dynamically sensitive regions to make significant impacts on forecast accuracy for precipitation. The Global Modeling and Assimilation Office (GMAO) at NASA Goddard Space Flight Center assimilates all-sky microwave radiance data from various microwave sensors such as all-sky GPM Microwave Imager (GMI) radiance in the Goddard Earth Observing System (GEOS) atmospheric data assimilation system (ADAS), which includes the GEOS atmospheric model, the Gridpoint Statistical Interpolation (GSI) atmospheric analysis system, and the Goddard Aerosol Assimilation System (GAAS). So far, most of NWP centers apply same large data thinning distances, that are used in clear-sky radiance data to avoid correlated observation errors, to all-sky microwave radiance data. For example, NASA GMAO is applying 145 km thinning distances for most of satellite radiance data including microwave radiance data in which all-sky approach is implemented. Even with these coarse observation data usage in all-sky assimilation approach, noticeable positive impacts from all-sky microwave data on hurricane track forecasts were identified in GEOS-5 system. The motivation of this study is based on the dynamic thinning distance method developed in our all-sky framework to use of denser data in cloudy and precipitating regions due to relatively small spatial correlations of observation errors. To investigate the benefits of all-sky microwave radiance on hurricane forecasts, several hurricane cases selected between 2016-2017 are examined. The dynamic thinning distance method is utilized in our all-sky approach to understand the sources and mechanisms to explain the benefits of all-sky microwave radiance data from various microwave radiance sensors like Advanced Microwave Sounder Unit (AMSU-A), Microwave Humidity Sounder (MHS), and GMI on GEOS-5 analyses and forecasts of various hurricanes.

  3. Real Time Monitoring of Flooding from Microwave Satellite Observations

    NASA Technical Reports Server (NTRS)

    Galantowicz, John F.; Frey, Herb (Technical Monitor)

    2002-01-01

    We have developed a new method for making high-resolution flood extent maps (e.g., at the 30-100 m scale of digital elevation models) in real-time from low-resolution (20-70 km) passive microwave observations. The method builds a "flood-potential" database from elevations and historic flood imagery and uses it to create a flood-extent map consistent with the observed open water fraction. Microwave radiometric measurements are useful for flood monitoring because they sense surface water in clear-or-cloudy conditions and can provide more timely data (e.g., compared to radars) from relatively wide swath widths and an increasing number of available platforms (DMSP, ADEOS-II, Terra, NPOESS, GPM). The chief disadvantages for flood mapping are the radiometers' low resolution and the need for local calibration of the relationship between radiances and open-water fraction. We present our method for transforming microwave sensor-scale open water fraction estimates into high-resolution flood extent maps and describe 30-day flood map sequences generated during a retrospective study of the 1993 Great Midwest Flood. We discuss the method's potential improvement through as yet unimplemented algorithm enhancements and expected advancements in microwave radiometry (e.g., improved resolution and atmospheric correction).

  4. Sub-second carbon-nanotube-mediated microwave sintering for high-conductivity silver patterns on plastic substrates

    NASA Astrophysics Data System (ADS)

    Jung, Sunshin; Chun, Su Jin; Han, Joong Tark; Woo, Jong Seok; Shon, Cha-Hwa; Lee, Geon-Woong

    2016-02-01

    A method of microwave sintering that is mediated by carbon nanotubes (CNTs) has been developed to obtain high-conductivity Ag patterns on the top of heat-sensitive plastic substrates within a short time. The Ag patterns are printed on CNTs formed on plastic substrates and rapidly heated to a great extent by the heat transferred from the microwave-heated CNTs. The conductivity of the microwave-sintered Ag patterns reaches ~39% that of bulk Ag within 1 s without substrate deformation. Furthermore, microwave sintering enhances the adhesion of Ag patterns to the thermoplastic substrates because the sintering causes interfacial fusion between the Ag patterns and the substrates, and CNTs physically connect the patterns with the substrates.A method of microwave sintering that is mediated by carbon nanotubes (CNTs) has been developed to obtain high-conductivity Ag patterns on the top of heat-sensitive plastic substrates within a short time. The Ag patterns are printed on CNTs formed on plastic substrates and rapidly heated to a great extent by the heat transferred from the microwave-heated CNTs. The conductivity of the microwave-sintered Ag patterns reaches ~39% that of bulk Ag within 1 s without substrate deformation. Furthermore, microwave sintering enhances the adhesion of Ag patterns to the thermoplastic substrates because the sintering causes interfacial fusion between the Ag patterns and the substrates, and CNTs physically connect the patterns with the substrates. Electronic supplementary information (ESI) available: Temperature difference in Ag/CNT/PC samples; the carbon content and electrical performance after microwave sintering; microwave sintering of Ag/CNT patterns; physical connection between the substrate and sintered Ag lines; touch-piano (figure and movie). See DOI: 10.1039/c5nr08082g

  5. Radiometric Thermometry for Wearable Deep Tissue Monitoring

    NASA Astrophysics Data System (ADS)

    Momenroodaki, Parisa

    Microwave thermometry is an attractive non-invasive method for measuring internal body temperature. This approach has the potential of enabling a wearable device that can continuously monitor core body temperature. There are a number of health-related applications in both diagnostics and therapy, which can benefit from the knowledge of core body temperature. However,there are a limited number of device solutions, which are usually not wearable or cannot continuously monitor internal body temperature non-invasively. In this thesis, a possible path toward implementing such a thermometer is presented. The device operates in the "quiet" frequency band of 1.4 GHz which is chosen as a compromise between sensing depth and radio frequency interference (RFI). A major challenge in microwave thermometry is detecting small temperature variations of deep tissue layers from surface (skin) measurements. The type and thickness of tissue materials significantly affect the design of the probe, which has the function of receiving black-body radiation from tissues beneath it and coupling the power to a sensitive radiometric receiver. High dielectric constant contrast between skin, fat (/bone), and muscle layers suggests structures with dominant tangential component of the electric field, such as a patch or slot. Adding a layer of low-loss,low-dielectric constant superstrate can further reduce the contribution of superficial tissue layers in the received thermal noise. Several probe types are designed using a full-wave electromagnetic simulator, with a goal of maximizing the power reception from deep tissue layers. The designs are validated with a second software tool and various measurements. A stable, narrow-band, and highly sensitive radiometer is developed, enabling the device to operate in a non-shielded RF environment.To use the microwave thermometer in a RF congested environment, not only narrow-band probe and radiometers are used but an additional probe is introduced for observing the environmental interference. By applying an adaptive filter, the effect of RFI is mitigated in long-term measurements. Several solid and liquid tissue phantoms, required for accurate modeling of the probe and human body interaction, are also developed. The concept of human body microwave thermometry is validated through several measurements on the single-layer and multiple-layer tissue phantoms as well as on the surface of the human body, specifically on the cheek where the internal temperature can easily be changed and independently measured with a thermocouple. Measurement results prove the capability of the device in tracking the temperature of buried tissue layer phantoms to within 0.2K, as well as monitoring internal human body temperature.

  6. A Method of Treatment of Purulent-Inflammatory Diseases of the Hand in Outpatient Clinic with Using Electromagnetic Microwave Field

    NASA Astrophysics Data System (ADS)

    Rabenok, L.; Grimalsky, V.; De La Hidalga-W., J.

    2006-09-01

    The report is devoted to applications of the microwave therapy. 50 patients with acute purulent-inflammatory diseases of the hand were examined with using our method of treatment with electromagnetic (EM) microwave field in an outpatient clinic. We used a portable apparatus that operates in the millimeter (mm) wave range in 4 regimes. The intensity of EM radiation was 2-10 mW/cm2. A peculiarity of the method was an absence of any antibacterial medicine during the treatment. We conclude that using EM microwave fields seems very efficient in a complex treatment of acute purulent-inflammatory diseases of the hand in an outpatient clinic. An interpretation of the obtained results is given due to the resonant character of the interaction of EM radiation with molecular and cellular structures.

  7. The electromagnetic-trait imaging computation of traveling wave method in breast tumor microwave sensor system.

    PubMed

    Tao, Zhi-Fu; Han, Zhong-Ling; Yao, Meng

    2011-01-01

    Using the difference of dielectric constant between malignant tumor tissue and normal breast tissue, breast tumor microwave sensor system (BRATUMASS) determines the detected target of imaging electromagnetic trait by analyzing the properties of target tissue back wave obtained after near-field microwave radicalization (conelrad). The key of obtained target properties relationship and reconstructed detected space is to analyze the characteristics of the whole process from microwave transmission to back wave reception. Using traveling wave method, we derive spatial transmission properties and the relationship of the relation detected points distances, and valuate the properties of each unit by statistical valuation theory. This chapter gives the experimental data analysis results.

  8. A Novel Method of Preparation of Inorganic Glasses by Microwave Irradiation

    NASA Astrophysics Data System (ADS)

    Vaidhyanathan, B.; Ganguli, Munia; Rao, K. J.

    1994-12-01

    Microwave heating is shown to provide an extremely facile and automatically temperature-controlled route to the synthesis of glasses. Glass-forming compositions of several traditional and novel glasses were melted in a kitchen microwave oven, typically within 5 min and quenched into glasses. This is only a fraction of the time required in normal glass preparation methods. The rapidity of melting minimizes undesirable features such as loss of components of the glass, variation of oxidation states of metal ions, and oxygen loss leading to reduced products in the glass such as metal particles. This novel procedure of preparation is applicable when at least one of the components of the glass-forming mixture absorbs microwaves.

  9. On the importance of simultaneous infrared/fiber-optic temperature monitoring in the microwave-assisted synthesis of ionic liquids.

    PubMed

    Obermayer, David; Kappe, C Oliver

    2010-01-07

    The temperature profiles obtained from both an external infrared and internal fiber-optic sensor were compared for heating and synthesizing the ionic liquid 1-butyl-3-methylimidazolium bromide (bmimBr) under microwave conditions. Utilizing a single-mode microwave reactor that allows simultaneous infrared/fiber-optic temperature measurements, significant differences between the two methods of temperature monitoring were revealed. Due to the strong microwave absorptivity of ionic liquids and the delay experienced in monitoring temperature on the outer surface of a heavy-walled glass vial, external infrared temperature sensors can not be used to accurately control the temperature in the heating of ionic liquids under microwave conditions. The use of internal fiber-optic probes allows the monitoring and control of the heating behavior in a much better way. In order to prevent the strong exotherm in the synthesis of bmimBr under microwave conditions the use of a reaction vessel made out of silicon carbide is the method of choice. Because of the high thermal conductivity and effusivity of silicon carbide, the heat generated during the ionic liquid formation is efficiently exchanged with the comparatively cool air in the microwave cavity via the silicon carbide ceramic.

  10. Nano-organocatalyst: Magnetically retrievable ferrite-anchored glutathione for microwave-assisted Paal-Knorr reaction, Aza-Michael addition and pyrazole synthesis

    EPA Science Inventory

    Postsynthetic surface modification of magnetic nanoparticles by glutathione imparts desirable chemical functionality and enables the generation of catalytic sites on the surfaces of ensuing organocatalysts. In this article, we discuss the developments, unique activity and high s...

  11. Microwave sintering of multiple articles

    DOEpatents

    Blake, Rodger D.; Katz, Joel D.

    1993-01-01

    Apparatus and method for producing articles of alumina and of alumina and silicon carbide in which the articles are sintered at high temperatures using microwave radiation. The articles are placed in a sintering container which is placed in a microwave cavity for heating. The rates at which heating and cooling take place is controlled.

  12. Nuke 'Em! Library Pest Control Using a Microwave.

    ERIC Educational Resources Information Center

    Brezner, Jerome; Luner, Philip

    1989-01-01

    Discusses the threats to books and periodicals posed by such insects as book lice, termites, cockroaches, silverfish, firebrats, and beetles; reviews past methods of pest control; and describes a technique for insect control using microwaves. The results of tests of microwave effects on publications are reported, necessary precautions are…

  13. Ex situ themo-catalytic upgrading of biomass pyrolysis vapors using a traveling wave microwave reactor

    USDA-ARS?s Scientific Manuscript database

    Microwave heating offers a number of advantages over conventional heating methods, such as, rapid and volumetric heating, precise temperature control, energy efficiency and lower temperature gradient. In this article we demonstrate the use of 2450 MHz microwave traveling wave reactor to heat the cat...

  14. Computer-Generated Microwave Holograms.

    ERIC Educational Resources Information Center

    Leming, Charles W.; Hastings, Orestes Patterson, III

    1980-01-01

    Described is the phasor method of superposition of waves. The intensity pattern from a system of microwave sources is calculated point by point on a plane corresponding to a film emulsion, and then printed and directly converted to a hologram for 3-cm microwaves. Calculations, construction, and viewing of holograms are included. (Author/DS)

  15. Microwave-Assisted Synthesis of Phenothiazine and Quinoline Derivatives

    PubMed Central

    Găină, Luiza; Cristea, Castelia; Moldovan, Claudia; Porumb, Dan; Surducan, Emanoil; Deleanu, Călin; Mahamoud, Abdalah; Barbe, Jacques; Silberg, Ioan A.

    2007-01-01

    Application of a dynamic microwave power system in the chemical synthesis of some phenothiazine and quinoline derivatives is described. Heterocyclic ring formation, aromatic nucleophilic substitution and heterocyclic aldehydes/ketones condensation reactions were performed on solid support, or under solvent free reaction conditions. The microwave-assisted Duff formylation of phenothiazine was achieved. Comparison of microwave-assisted synthesis with the conventional synthetic methods demonstrates advantages related to shorter reaction times and in some cases better reaction yields.

  16. Photocatalytic oxidation of ammonia by cadmium sulfide/titanate nanotubes synthesised by microwave hydrothermal method.

    PubMed

    Chen, Y-C; Lo, S-L; Ou, H-H; Chen, C-H

    2011-01-01

    CdS/Titanate nanotubes (TNTs) were successfully synthesised by a simple, rapid, and reliable microwave hydrothermal method. The CdS nanoparticles synthesised using a 140-W microwave irradiation power at 423 K photodegraded 26% ammonia in water, while the photocatalytic efficiency increased to 52.3% using the synthesised CdS/TNTs composites. The results indicated that the CdS/TNTs photocatalysts possess improved photocatalytic activity than that of CdS or TNTs materials alone.

  17. Synthesis of ultrafine powders by microwave heating

    DOEpatents

    Meek, T.T.; Sheinberg, H.; Blake, R.D.

    1987-04-24

    A method of synthesizing ultrafine powders using microwaves is described. A water soluble material is dissolved in water and the resulting aqueous solution is exposed to microwaves until the water has dissolved. The resulting material is an ultrafine powder. This method can be used to make Al/sub 2/O/sub 3/, NiO /plus/ Al/sub 2/O/sub 3/ and NiO as well as a number of other materials including GaBa/sub 2/Cu/sub 3/O/sub x/. 1 tab.

  18. Synthesis of ultrafine powders by microwave heating

    DOEpatents

    Meek, Thomas T.; Sheinberg, Haskell; Blake, Rodger D.

    1988-01-01

    A method of synthesizing ultrafine powders using microwaves is described. A water soluble material is dissolved in water and the resulting aqueous solution is exposed to microwaves until the water has been removed. The resulting material is an ultrafine powder. This method can be used to make Al.sub.2 O.sub.3, NiO+Al.sub.2 O.sub.3 and NiO as well as a number of other materials including GaBa.sub.2 Cu.sub.3 O.sub.x.

  19. Cd–cysteine precursor nanowire templated microwave-assisted transformation route to CdS nanotubes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Liu, Xiao-Lin, E-mail: liu_x_l@sina.cn; Zhu, Ying-Jie; Zhang, Qian

    2012-12-15

    Graphical abstract: Cadmium sulfide polycrystalline nanotubes have been successfully synthesized by microwave-assisted transformation method using Cd–cysteine precursor nanowires as the source material and template in ethylene glycol at 160 °C or ethanol at 60 °C. Display Omitted Highlights: ► Cd–cysteine precursor nanowires were successfully synthesized in alkaline solution. ► CdS nanotubes were prepared by templated microwave-assisted transformation method. ► CdS nanotubes can well duplicate the size and morphology of precursor nanowires. ► This method has the advantages of the simplicity and low cost. -- Abstract: We report the Cd–cysteine precursor nanowire templated microwave-assisted transformation route to CdS nanotubes. In thismore » method, the Cd–cysteine precursor nanowires are synthesized using CdCl{sub 2}·2.5H{sub 2}O, L-cysteine and ethanolamine in water at room temperature. The Cd–cysteine precursor nanowires are used as the source material and template for the subsequent preparation of CdS nanotubes by a microwave-assisted transformation method using ethylene glycol or ethanol as the solvent. This method has the advantages of the simplicity and low cost, and may be extended to the synthesis of nanotubes of other compounds. The products are characterized by X-ray powder diffraction (XRD), scanning electron microscopy (SEM) and transmission electron microscopy (TEM).« less

  20. Rapid analysis of the essential oil components of dried Zanthoxylum bungeanum Maxim by Fe2O3-magnetic-microsphere-assisted microwave distillation and simultaneous headspace single-drop microextraction followed by GC-MS.

    PubMed

    Ye, Qing

    2013-06-01

    In this work, microwave distillation assisted by Fe2 O3 magnetic microspheres (FMMS) and headspace single-drop microextraction were combined, and developed for determination of essential oil compounds in dried Zanthoxylum bungeanum Maxim (ZBM). The FMMS were used as microwave absorption solid medium for dry distillation of dried ZBM. Using the proposed method, isolation, extraction, and concentration of essential oil compounds can be carried out in a single step. The experimental parameters including extraction solvent, solvent volume, microwave power, irradiation time, and the amount of added FMMS, were studied. The optimal analytical conditions were: 2.0 μL decane as the extraction solvent, microwave power of 300 W, irradiation time of 2 min, and the addition of 0.1 g FMMS to ZBM. The method precision was from 4 to 10%. A total of 52 compounds were identified by the proposed method. The conventional steam distillation method was also used for the analysis of essential oil in dried ZBM and only 31 compounds were identified by steam distillation method. It was found that the proposed method is a simple, rapid, reliable, and solvent-free technique for the determination of volatile compounds in Chinese herbs. © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  1. The Use of Mouse Models of Breast Cancer and Quantitative Image Analysis to Evaluate Hormone Receptor Antigenicity after Microwave-assisted Formalin Fixation

    PubMed Central

    Engelberg, Jesse A.; Giberson, Richard T.; Young, Lawrence J.T.; Hubbard, Neil E.

    2014-01-01

    Microwave methods of fixation can dramatically shorten fixation times while preserving tissue structure; however, it remains unclear if adequate tissue antigenicity is preserved. To assess and validate antigenicity, robust quantitative methods and animal disease models are needed. We used two mouse mammary models of human breast cancer to evaluate microwave-assisted and standard 24-hr formalin fixation. The mouse models expressed four antigens prognostic for breast cancer outcome: estrogen receptor, progesterone receptor, Ki67, and human epidermal growth factor receptor 2. Using pathologist evaluation and novel methods of quantitative image analysis, we measured and compared the quality of antigen preservation, percentage of positive cells, and line plots of cell intensity. Visual evaluations by pathologists established that the amounts and patterns of staining were similar in tissues fixed by the different methods. The results of the quantitative image analysis provided a fine-grained evaluation, demonstrating that tissue antigenicity is preserved in tissues fixed using microwave methods. Evaluation of the results demonstrated that a 1-hr, 150-W fixation is better than a 45-min, 150-W fixation followed by a 15-min, 650-W fixation. The results demonstrated that microwave-assisted formalin fixation can standardize fixation times to 1 hr and produce immunohistochemistry that is in every way commensurate with longer conventional fixation methods. PMID:24682322

  2. TEMPEST-D MM-Wave Radiometer

    NASA Astrophysics Data System (ADS)

    Padmanabhan, S.; Gaier, T.; Reising, S. C.; Lim, B.; Stachnik, R. A.; Jarnot, R.; Berg, W. K.; Kummerow, C. D.; Chandrasekar, V.

    2016-12-01

    The TEMPEST-D radiometer is a five-frequency millimeter-wave radiometer at 89, 165, 176, 180, and 182 GHz. The direct-detection architecture of the radiometer reduces its power consumption and eliminates the need for a local oscillator, reducing complexity. The Instrument includes a blackbody calibrator and a scanning reflector, which enable precision calibration and cross-track scanning. The MMIC-based millimeter-wave radiometers take advantage of the technology developed under extensive investment by the NASA Earth Science Technology Office (ESTO). The five-frequency millimeter-wave radiometer is built by Jet Propulsion Laboratory (JPL), which has produced a number of state-of-the-art spaceborne microwave radiometers, such as the Microwave Limb Sounder (MLS), Advanced Microwave Radiometer (AMR) for Jason-2/OSTM, Jason-3, and the Juno Microwave Radiometer (MWR). The TEMPEST-D Instrument design is based on a 165 to 182 GHz radiometer design inherited from RACE and an 89 GHz receiver developed under the ESTO ACT-08 and IIP-10 programs at Colorado State University (CSU) and JPL. The TEMPEST reflector scan and calibration methodology is adapted from the Advanced Technology Microwave Sounder (ATMS) and has been validated on the Global Hawk unmanned aerial vehicle (UAV) using the High Altitude MMIC Sounding radiometer (HAMSR) instrument. This presentation will focus on the design, development and performance of the TEMPEST-D radiometer instrument. The flow-down of the TEMPEST-D mission objectives to instrument level requirements will also be discussed.

  3. High-Power Microwave Transmission and Mode Conversion Program

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Vernon, Ronald J.

    2015-08-14

    This is a final technical report for a long term project to develop improved designs and design tools for the microwave hardware and components associated with the DOE Plasma Fusion Program. We have developed basic theory, software, fabrication techniques, and low-power measurement techniques for the design of microwave hardware associated gyrotrons, microwave mode converters and high-power microwave transmission lines. Specifically, in this report we discuss our work on designing quasi-optical mode converters for single and multiple frequencies, a new method for the analysis of perturbed-wall waveguide mode converters, perturbed-wall launcher design for TE0n mode gyrotrons, quasi-optical traveling-wave resonator design formore » high-power testing of microwave components, and possible improvements to the HSX microwave transmission line.« less

  4. The microwave-assisted ionic-liquid method: a promising methodology in nanomaterials.

    PubMed

    Ma, Ming-Guo; Zhu, Jie-Fang; Zhu, Ying-Jie; Sun, Run-Cang

    2014-09-01

    In recent years, the microwave-assisted ionic-liquid method has been accepted as a promising methodology for the preparation of nanomaterials and cellulose-based nanocomposites. Applications of this method in the preparation of cellulose-based nanocomposites comply with the major principles of green chemistry, that is, they use an environmentally friendly method in environmentally preferable solvents to make use of renewable materials. This minireview focuses on the recent development of the synthesis of nanomaterials and cellulose-based nanocomposites by means of the microwave-assisted ionic-liquid method. We first discuss the preparation of nanomaterials including noble metals, metal oxides, complex metal oxides, metal sulfides, and other nanomaterials by means of this method. Then we provide an overview of the synthesis of cellulose-based nanocomposites by using this method. The emphasis is on the synthesis, microstructure, and properties of nanostructured materials obtained through this methodology. Our recent research on nanomaterials and cellulose-based nanocomposites by this rapid method is summarized. In addition, the formation mechanisms involved in the microwave-assisted ionic-liquid synthesis of nanostructured materials are discussed briefly. Finally, the future perspectives of this methodology in the synthesis of nanostructured materials are proposed. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  5. Adaptive and robust statistical methods for processing near-field scanning microwave microscopy images.

    PubMed

    Coakley, K J; Imtiaz, A; Wallis, T M; Weber, J C; Berweger, S; Kabos, P

    2015-03-01

    Near-field scanning microwave microscopy offers great potential to facilitate characterization, development and modeling of materials. By acquiring microwave images at multiple frequencies and amplitudes (along with the other modalities) one can study material and device physics at different lateral and depth scales. Images are typically noisy and contaminated by artifacts that can vary from scan line to scan line and planar-like trends due to sample tilt errors. Here, we level images based on an estimate of a smooth 2-d trend determined with a robust implementation of a local regression method. In this robust approach, features and outliers which are not due to the trend are automatically downweighted. We denoise images with the Adaptive Weights Smoothing method. This method smooths out additive noise while preserving edge-like features in images. We demonstrate the feasibility of our methods on topography images and microwave |S11| images. For one challenging test case, we demonstrate that our method outperforms alternative methods from the scanning probe microscopy data analysis software package Gwyddion. Our methods should be useful for massive image data sets where manual selection of landmarks or image subsets by a user is impractical. Published by Elsevier B.V.

  6. Fast microwave-assisted extraction of rotenone for its quantification in seeds of yam bean (Pachyrhizus sp.).

    PubMed

    Lautié, Emmanuelle; Rasse, Catherine; Rozet, Eric; Mourgues, Claire; Vanhelleputte, Jean-Paul; Quetin-Leclercq, Joëlle

    2013-02-01

    The aim of this study was to find if fast microwave-assisted extraction could be an alternative to the conventional Soxhlet extraction for the quantification of rotenone in yam bean seeds by SPE and HPLC-UV. For this purpose, an experimental design was used to determine the optimal conditions of the microwave extraction. Then the values of the quantification on three accessions from two different species of yam bean seeds were compared using the two different kinds of extraction. A microwave extraction of 11 min at 55°C using methanol/dichloromethane (50:50) allowed rotenone extraction either equivalently or more efficiently than the 8-h-Soxhlet extraction method and was less sensitive to moisture content. The selectivity, precision, trueness, accuracy, and limit of quantification of the method with microwave extraction were also demonstrated. © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  7. Smelting Magnesium Metal using a Microwave Pidgeon Method

    PubMed Central

    Wada, Yuji; Fujii, Satoshi; Suzuki, Eiichi; Maitani, Masato M.; Tsubaki, Shuntaro; Chonan, Satoshi; Fukui, Miho; Inazu, Naomi

    2017-01-01

    Magnesium (Mg) is a lightweight metal with applications in transportation and sustainable battery technologies, but its current production through ore reduction using the conventional Pidgeon process emits large amounts of CO2 and particulate matter (PM2.5). In this work, a novel Pidgeon process driven by microwaves has been developed to produce Mg metal with less energy consumption and no direct CO2 emission. An antenna structure consisting of dolomite as the Mg source and a ferrosilicon antenna as the reducing material was used to confine microwave energy emitted from a magnetron installed in a microwave oven to produce a practical amount of pure Mg metal. This microwave Pidgeon process with an antenna configuration made it possible to produce Mg with an energy consumption of 58.6 GJ/t, corresponding to a 68.6% reduction when compared to the conventional method. PMID:28401910

  8. Microwave modification of surface hydroxyl density for g-C3N4 with enhanced photocatalytic activity

    NASA Astrophysics Data System (ADS)

    An, Na; Zhao, Yang; Mao, Zhiyong; Agrawal, Dinesh Kumar; Wang, Dajian

    2018-03-01

    Microwave modification was performed on graphitic carbon nitride (g-C3N4) photocatalysts to tail the surface hydroxyl content for enhanced photocatalytic activity in this work. The influence of microwave heating on the surface hydroxyl density was investigated by a suite of characterization methods. The microwave treated g-C3N4 (MT-g-C3N4) delivered a higher photocatalytic activity in degradation of Rhodamine B (RhB) under visible light irradiation than pristine g-C3N4 due to its improved separation efficiency of photogenerated charge carries and promoted absorption capacity of RhB reactants on surface, which resulted from the increased surface hydroxyl density induced by microwave treatment. This study provides a simple and convenient method to modify g-C3N4 materials with enhanced photocatalytic activity for the potential application in photocatalytic elimination of environmental pollutants.

  9. Microwave-Assisted Hydro-Distillation of Essential Oil from Rosemary: Comparison with Traditional Distillation.

    PubMed

    Moradi, Sara; Fazlali, Alireza; Hamedi, Hamid

    2018-01-01

    Hydro-distillation (HD) method is a traditional technique which is used in most industrial companies. Microwave-assisted Hydro-distillation (MAHD) is an advanced HD technique utilizing a microwave oven in the extraction process. In this research, MAHD of essential oils from the aerial parts (leaves) of rosemary ( Rosmarinus officinalis L. ) was studied and the results were compared with those of the conventional HD in terms of extraction time, extraction efficiency, chemical composition, quality of the essential oils and cost of the operation. Microwave hydro-distillation was superior in terms of saving energy and extraction time (30 min , compared to 90 min in HD). Chromatography was used for quantity analysis of the essential oils composition. Quality of essential oil improved in MAHD method due to an increase of 17% in oxygenated compounds. Consequently, microwave hydro-distillation can be used as a substitute of traditional hydro-distillation.

  10. Microwave Frequency Comb from a Semiconductor in a Scanning Tunneling Microscope.

    PubMed

    Hagmann, Mark J; Yarotski, Dmitry A; Mousa, Marwan S

    2017-04-01

    Quasi-periodic excitation of the tunneling junction in a scanning tunneling microscope, by a mode-locked ultrafast laser, superimposes a regular sequence of 15 fs pulses on the DC tunneling current. In the frequency domain, this is a frequency comb with harmonics at integer multiples of the laser pulse repetition frequency. With a gold sample the 200th harmonic at 14.85 GHz has a signal-to-noise ratio of 25 dB, and the power at each harmonic varies inversely with the square of the frequency. Now we report the first measurements with a semiconductor where the laser photon energy must be less than the bandgap energy of the semiconductor; the microwave frequency comb must be measured within 200 μm of the tunneling junction; and the microwave power is 25 dB below that with a metal sample and falls off more rapidly at the higher harmonics. Our results suggest that the measured attenuation of the microwave harmonics is sensitive to the semiconductor spreading resistance within 1 nm of the tunneling junction. This approach may enable sub-nanometer carrier profiling of semiconductors without requiring the diamond nanoprobes in scanning spreading resistance microscopy.

  11. Microwave amplification with nanomechanical resonators.

    PubMed

    Massel, F; Heikkilä, T T; Pirkkalainen, J-M; Cho, S U; Saloniemi, H; Hakonen, P J; Sillanpää, M A

    2011-12-14

    The sensitive measurement of electrical signals is at the heart of modern technology. According to the principles of quantum mechanics, any detector or amplifier necessarily adds a certain amount of noise to the signal, equal to at least the noise added by quantum fluctuations. This quantum limit of added noise has nearly been reached in superconducting devices that take advantage of nonlinearities in Josephson junctions. Here we introduce the concept of the amplification of microwave signals using mechanical oscillation, which seems likely to enable quantum-limited operation. We drive a nanomechanical resonator with a radiation pressure force, and provide an experimental demonstration and an analytical description of how a signal input to a microwave cavity induces coherent stimulated emission and, consequently, signal amplification. This generic scheme, which is based on two linear oscillators, has the advantage of being conceptually and practically simpler than the Josephson junction devices. In our device, we achieve signal amplification of 25 decibels with the addition of 20 quanta of noise, which is consistent with the expected amount of added noise. The generality of the model allows for realization in other physical systems as well, and we anticipate that near-quantum-limited mechanical microwave amplification will soon be feasible in various applications involving integrated electrical circuits.

  12. Microwave hemorrhagic stroke detector

    DOEpatents

    Haddad, Waleed S.; Trebes, James E.

    2002-01-01

    The microwave hemorrhagic stroke detector includes a low power pulsed microwave transmitter with a broad-band antenna for producing a directional beam of microwaves, an index of refraction matching cap placed over the patients head, and an array of broad-band microwave receivers with collection antennae. The system of microwave transmitter and receivers are scanned around, and can also be positioned up and down the axis of the patients head. The microwave hemorrhagic stroke detector is a completely non-invasive device designed to detect and localize blood pooling and clots or to measure blood flow within the head or body. The device is based on low power pulsed microwave technology combined with specialized antennas and tomographic methods. The system can be used for rapid, non-invasive detection of blood pooling such as occurs with hemorrhagic stroke in human or animal patients as well as for the detection of hemorrhage within a patient's body.

  13. Microwave hemorrhagic stroke detector

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Haddad, Waleed S; Trebes, James E

    The microwave hemorrhagic stroke detector includes a low power pulsed microwave transmitter with a broad-band antenna for producing a directional beam of microwaves, an index of refraction matching cap placed over the patients head, and an array of broad-band microwave receivers with collection antennae. The system of microwave transmitter and receivers are scanned around, and can also be positioned up and down the axis of the patients head. The microwave hemorrhagic stroke detector is a completely non-invasive device designed to detect and localize blood pooling and clots or to measure blood flow within the head or body. The device ismore » based on low power pulsed microwave technology combined with specialized antennas and tomographic methods. The system can be used for rapid, non-invasive detection of blood pooling such as occurs with hemorrhagic stoke in human or animal patients as well as for the detection of hemorrhage within a patient's body.« less

  14. Microwave fixation versus formalin fixation of surgical and autopsy tissue.

    PubMed

    Login, G R

    1978-05-01

    Microwave irradiation of surgical and autopsy tissue penetrates, fixes, and hardens the tissue almost immediately (the fluid media used in the microwave consisted of saline, ten percent phosphate buffered formalin, and distilled water). Tissue sections from a representative sample of organs were tested. Comparable sections were simultaneously fixed in a phosphate buffered ten percent formalin bath in a vaccum oven as a control. Hematoxylin and eosin were used to stain the sections. Results equal to and superior to the control method were obtained. Saline microwave fixation was superior to formalin microwave fixation. Tissues placed in Zenker's solution and fixed in standard microwave oven (for approximately one minute) yielded results at least equal to conventional Zenker fixation (approximately two hours). No tissue hardening resulted from Zenker microwave fixation. A unique time versus temperature graph (microwave heating curve) reduces individual variation with this technique.

  15. Remote measurement of microwave distribution based on optical detection

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ji, Zhong; Ding, Wenzheng; Yang, Sihua

    2016-01-04

    In this letter, we present the development of a remote microwave measurement system. This method employs an arc discharge lamp that serves as an energy converter from microwave to visible light, which can propagate without transmission medium. Observed with a charge coupled device, quantitative microwave power distribution can be achieved when the operators and electronic instruments are in a distance from the high power region in order to reduce the potential risk. We perform the experiments using pulsed microwaves, and the results show that the system response is dependent on the microwave intensity over a certain range. Most importantly, themore » microwave distribution can be monitored in real time by optical observation of the response of a one-dimensional lamp array. The characteristics of low cost, a wide detection bandwidth, remote measurement, and room temperature operation make the system a preferred detector for microwave applications.« less

  16. System to continuously produce carbon fiber via microwave assisted plasma processing

    DOEpatents

    White, Terry L; Paulauskas, Felix L; Bigelow, Timothy S

    2014-03-25

    A method for continuously processing carbon fiber including establishing a microwave plasma in a selected atmosphere contained in an elongated chamber having a microwave power gradient along its length defined by a lower microwave power at one end and a higher microwave power at the opposite end of the elongated chamber. The elongated chamber having an opening in each of the ends of the chamber that are adapted to allow the passage of the fiber tow while limiting incidental gas flow into or out of said chamber. A continuous fiber tow is introduced into the end of the chamber having the lower microwave power. The fiber tow is withdrawn from the opposite end of the chamber having the higher microwave power. The fiber to is subjected to progressively higher microwave energy as the fiber is being traversed through the elongated chamber.

  17. An efficient microwave-assisted synthesis method for the production of water soluble amine-terminated Si nanoparticles.

    PubMed

    Atkins, Tonya M; Louie, Angelique Y; Kauzlarich, Susan M

    2012-07-27

    Silicon nanoparticles can be considered a green material, especially when prepared via a microwave-assisted method without the use of highly reactive reducing agents or hydrofluoric acid. A simple solution synthesis of hydrogen-terminated Si- and Mn-doped Si nanoparticles via microwave-assisted synthesis is demonstrated. The reaction of the Zintl salt, Na(4)Si(4), or Mn-doped Na(4)Si(4), Na(4)Si(4(Mn)), with ammonium bromide, NH(4)Br, produces small dispersible nanoparticles along with larger particles that precipitate. Allylamine and 1-amino-10-undecene were reacted with the hydrogen-terminated Si nanoparticles to provide water solubility and stability. A one-pot, single-reaction process and a one-pot, two-step reaction process were investigated. Details of the microwave-assisted process are provided, with the optimal synthesis being the one-pot, two-step reaction procedure and a total time of about 15 min. The nanoparticles were characterized by transmission electron microscopy (TEM), x-ray diffraction, and fluorescence spectroscopies. The microwave-assisted method reliably produces a narrow size distribution of Si nanoparticles in solution.

  18. Computational fluid dynamics and frequency-dependent finite-difference time-domain method coupling for the interaction between microwaves and plasma in rocket plumes

    NASA Astrophysics Data System (ADS)

    Kinefuchi, K.; Funaki, I.; Shimada, T.; Abe, T.

    2012-10-01

    Under certain conditions during rocket flights, ionized exhaust plumes from solid rocket motors may interfere with radio frequency transmissions. To understand the relevant physical processes involved in this phenomenon and establish a prediction process for in-flight attenuation levels, we attempted to measure microwave attenuation caused by rocket exhaust plumes in a sea-level static firing test for a full-scale solid propellant rocket motor. The microwave attenuation level was calculated by a coupling simulation of the inviscid-frozen-flow computational fluid dynamics of an exhaust plume and detailed analysis of microwave transmissions by applying a frequency-dependent finite-difference time-domain method with the Drude dispersion model. The calculated microwave attenuation level agreed well with the experimental results, except in the case of interference downstream the Mach disk in the exhaust plume. It was concluded that the coupling estimation method based on the physics of the frozen plasma flow with Drude dispersion would be suitable for actual flight conditions, although the mixing and afterburning in the plume should be considered depending on the flow condition.

  19. Numerical Analysis of Microwave Heating on Saponification Reaction

    NASA Astrophysics Data System (ADS)

    Huang, Kama; Jia, Kun

    2005-01-01

    Currently, microwave is widely used in chemical industry to accelerate chemical reactions. Saponification reaction has important applications in industry; some research results have shown that microwave heating can significantly accelerate the reaction [1]. But so far, no efficient method has been reported for the analysis of the heating process and design of an efficient reactor powered by microwave. In this paper, we present a method to study the microwave heating process on saponification reaction, where the reactant in a test tube is considered as a mixture of dilute solution. According to the preliminary measurement results, the effective permittivity of the mixture is approximately the permittivity of water, but the conductivity, which could change with the reaction, is derived from the reaction equation (RE). The electromagnetic field equation and reaction equation are coupled by the conductivity. Following that, the whole heating processes, which is described by Maxwell's equations, the reaction equation and heat transport equation (HTE), is analyzed by finite difference time domain (FDTD) method. The temperature rising in the test tube are measured and compared with the computational results. Good agreement can be seen between the measured and calculated results.

  20. Microwave-Assisted Synthesis of High Dielectric Constant CaCu3Ti4O12 from Sol-Gel Precursor

    NASA Astrophysics Data System (ADS)

    Ouyang, Xin; Cao, Peng; Huang, Saifang; Zhang, Weijun; Huang, Zhaohui; Gao, Wei

    2015-07-01

    CaCu3Ti4O12 (CCTO) powders derived from sol-gel precursors were calcined and sintered via microwave radiation. The obtained CCTO powders were compared with that obtained via a conventional heating method. For microwave heating, 89.1 wt.% CCTO was achieved from the sol-gel precursor, after only 17 min at 950°C. In contrast, the conventional calcination method required 3 h to generate 87.6 wt.% CCTO content at 1100°C. In addition, the CCTO powders prepared through 17 min of microwave calcination exhibited a small particle size distribution of D50 = 3.826 μm. It was found that a lengthy hold time of 1 h by microwave sintering is required to obtain a high dielectric constant (3.14 × 103 at 102 Hz) and a reasonably low dielectric loss (0.161) in the sintered CCTO ceramic. Based upon the distinct microstructures, the dielectric responses of the CCTO samples sintered by different methods are attributed to space charge polarization and internal barrier layer capacitor mechanism.

  1. [Study on friction and wear properties of dental zirconia ceramics processed by microwave and conventional sintering methods].

    PubMed

    Guoxin, Hu; Ying, Yang; Yuemei, Jiang; Wenjing, Xia

    2017-04-01

    This study evaluated the wear of an antagonist and friction and wear properties of dental zirconia ceramic that was subjected to microwave and conventional sintering methods. Ten specimens were fabricated from Lava brand zirconia and randomly assigned to microwave and conventional sintering groups. A profile tester for surface roughness was used to measure roughness of the specimens. Wear test was performed, and steatite ceramic was used as antagonist. Friction coefficient curves were recorded, and wear volume were calculated. Finally, optical microscope was used to observe the surface morphology of zirconia and steatite ceramics. Field emission scanning electron microscopy was used to observe the microstructure of zirconia. Wear volumes of microwave and conventionally sintered zirconia were (6.940±1.382)×10⁻², (7.952±1.815) ×10⁻² mm³, respectively. Moreover, wear volumes of antagonist after sintering by the considered methods were (14.189±4.745)×10⁻², (15.813±3.481)×10⁻² mm³, correspondingly. Statistically significant difference was not observed in the wear resistance of zirconia and wear volume of steatite ceramic upon exposure to two kinds of sintering methods. Optical microscopy showed that ploughed surfaces were apparent in zirconia. The wear surface of steatite ceramic against had craze, accompanied by plough. Scanning electron microscopy showed that zirconia was sintered compactly when subjected to both conventional sintering and microwave methods, whereas grains of zirconia sintered by microwave alone were smaller and more uniform. Two kinds of sintering methods are successfully used to produce dental zirconia ceramics with similar friction and wear properties.
.

  2. Antigen recovery and preservation using the microwave irradiation of biological samples for transmission electron microscopy analysis.

    PubMed

    Aïoun, Josiane; Chat, Sophie; Bordat, Christian; Péchoux, Christine

    2013-01-01

    Most studies using microwave irradiation (MWI) for the preparation of tissue samples have reported an improvement in structural integrity. However, there have been few studies on the effect of microwave (MW) on antigen preservation during sample preparation prior to immunolocalization. This report documents our experience of specimen preparation using an automatic microwave apparatus to obtain antigen preservation and retrieval. We tested the effects of MW processing vs. conventional procedures on the morphology and antigenicity of two different tissues: the brain and mammary gland, whose chemical composition and anatomical organization are quite different. We chose to locate the transcription factor PPARβ/δ using immunocytochemistry on brain tissue sections from hamsters. Antigen retrieval protocols involving MWI were used to restore immunoreactivity. We also studied the efficiency of the ultrastructural immunolocalization of both PPARγ and caveolin-1 following MWI vs. conventional treatment, on mammary gland tissue from mice at 10 days of lactation. Our findings showed that the treatment of tissue samples with MWI, in the context of a process lasting just a few hours from fixation to immunolocalization, enabled similar, or even better, results than conventional protocols. The quantification of immunolabeling for cav-1 indicated an increase in density of up to three-fold in tissues processed in the microwave oven. Furthermore, MW treatment permitted the localization of PPARβ/δ in glutaraldehyde-fixed specimens, which was impossible in the absence of MWI. This study thus showed that techniques involving the use of microwaves could largely improve both ultrastructure and immunodetection. Copyright © 2013 Elsevier Ltd. All rights reserved.

  3. Geometry for web microwave heating or drying to a desired profile in a waveguide

    DOEpatents

    Habeger, Jr., Charles C.; Patterson, Timothy F.; Ahrens, Frederick W.

    2005-11-15

    A microwave heater and/or dryer has a nonlinear or curvilinear relative slot profile geometry. In one embodiment, the microwave dryer has at least one adjustable field modifier making it possible to change the geometry of the heater or dryer when drying different webs. In another embodiment, the microwave dryer provides more uniform drying of a web when the field modifier is adjusted in response to a sensed condition of the web. Finally, a method of microwave heating and/or drying a web achieves a uniform heating and/or drying profile.

  4. Microwave-assisted Maillard reactions for the preparation of advanced glycation end products (AGEs).

    PubMed

    Visentin, Sonja; Medana, Claudio; Barge, Alessandro; Giancotti, Valeria; Cravotto, Giancarlo

    2010-05-21

    The application of microwaves as an efficient form of volumetric heating to promote organic reactions was recognized in the mid-1980 s. It has a much longer history in the food research and industry where microwave irradiation was studied in depth to optimize food browning and the development of desirable flavours from Maillard reactions. The microwave-promoted Maillard reaction is a challenging synthetic method to generate molecular diversity in a straightforward way. In this paper we present a new rapid and efficient one-pot procedure for the preparation of pentosidine and other AGEs under microwave irradiation.

  5. Microwave Atmospheric Sounder on CubeSat

    NASA Astrophysics Data System (ADS)

    Padmanabhan, S.; Brown, S. E.; Kangaslahti, P.; Cofield, R.; Russell, D.; Stachnik, R. A.; Su, H.; Wu, L.; Tanelli, S.; Niamsuwan, N.

    2014-12-01

    To accurately predict how the distribution of extreme events may change in the future we need to understand the mechanisms that influence such events in our current climate. Our current observing system is not well-suited for observing extreme events globally due to the sparse sampling and in-homogeneity of ground-based in-situ observations and the infrequent revisit time of satellite observations. Observations of weather extremes, such as extreme precipitation events, temperature extremes, tropical and extra-tropical cyclones among others, with temporal resolution on the order of minutes and spatial resolution on the order of few kms (<10 kms), are required for improved forecasting of extreme weather events. We envision a suite of low-cost passive microwave sounding and imaging sensors on CubeSats that would work in concert with traditional flagship observational systems, such as those manifested on large environmental satellites (i.e. JPSS,WSF,GCOM-W), to monitor weather extremes. A 118/183 GHz sensor would enable observations of temperature and precipitation extremes over land and ocean as well as tropical and extra-tropical cyclones. This proposed project would enable low cost, compact radiometer instrumentation at 118 and 183 GHz that would fit in a 6U Cubesat with the objective of mass-producing this design to enable a suite of small satellites to image the key geophysical parameters needed to improve prediction of extreme weather events. We take advantage of past and current technology developments at JPL viz. HAMSR (High Altitude Microwave Scanning Radiometer), Advanced Component Technology (ACT'08) to enable low-mass, low-power high frequency airborne radiometers. In this paper, we will describe the design and implementation of the 118 GHz temperature sounder and 183 GHz humidity sounder on the 6U CubeSat. In addition, a summary of radiometer calibration and retrieval techniques of temperature and humidity will be discussed. The successful demonstration of this instrument on the 6U CubeSat would pave the way for the development of a constellation which could sample tropospheric temperature and humidity with fine temporal and spatial resolution.

  6. Airborne Deployment and Calibration of Microwave Atmospheric Sounder on 6U CubeSat

    NASA Astrophysics Data System (ADS)

    Padmanabhan, S.; Brown, S. T.; Lim, B.; Kangaslahti, P.; Russell, D.; Stachnik, R. A.

    2015-12-01

    To accurately predict how the distribution of extreme events may change in the future we need to understand the mechanisms that influence such events in our current climate. Our current observing system is not well-suited for observing extreme events globally due to the sparse sampling and in-homogeneity of ground-based in-situ observations and the infrequent revisit time of satellite observations. Observations of weather extremes, such as extreme precipitation events, temperature extremes, tropical and extra-tropical cyclones among others, with temporal resolution on the order of minutes and spatial resolution on the order of few kms (<10 kms), are required for improved forecasting of extreme weather events. We envision a suite of low-cost passive microwave sounding and imaging sensors on CubeSats that would work in concert with traditional flagship observational systems, such as those manifested on large environmental satellites (i.e. JPSS,WSF,GCOM-W), to monitor weather extremes. A 118/183 GHz sensor would enable observations of temperature and precipitation extremes over land and ocean as well as tropical and extra-tropical cyclones. This proposed project would enable low cost, compact radiometer instrumentation at 118 and 183 GHz that would fit in a 6U Cubesat with the objective of mass-producing this design to enable a suite of small satellites to image the key geophysical parameters needed to improve prediction of extreme weather events. We take advantage of past and current technology developments at JPL viz. HAMSR (High Altitude Microwave Scanning Radiometer), Advanced Component Technology (ACT'08) to enable low-mass, low-power high frequency airborne radiometers. In this paper, we will describe the design and implementation of the 118 GHz temperature sounder and 183 GHz humidity sounder on the 6U CubeSat. In addition, we will discuss the maiden airborne deployment of the instrument during the Plain Elevated Convection at Night (PECAN) experiment. The successful demonstration of this instrument on the 6U CubeSat would pave the way for the development of a constellation which could sample tropospheric temperature and humidity with fine temporal and spatial resolution.

  7. Broadband Rotational Spectroscopy

    NASA Astrophysics Data System (ADS)

    Pate, Brooks

    2014-06-01

    The past decade has seen several major technology advances in electronics operating at microwave frequencies making it possible to develop a new generation of spectrometers for molecular rotational spectroscopy. High-speed digital electronics, both arbitrary waveform generators and digitizers, continue on a Moore's Law-like development cycle that started around 1993 with device bandwidth doubling about every 36 months. These enabling technologies were the key to designing chirped-pulse Fourier transform microwave (CP-FTMW) spectrometers which offer significant sensitivity enhancements for broadband spectrum acquisition in molecular rotational spectroscopy. A special feature of the chirped-pulse spectrometer design is that it is easily implemented at low frequency (below 8 GHz) where Balle-Flygare type spectrometers with Fabry-Perot cavity designs become technologically challenging due to the mirror size requirements. The capabilities of CP-FTMW spectrometers for studies of molecular structure will be illustrated by the collaborative research effort we have been a part of to determine the structures of water clusters - a project which has identified clusters up to the pentadecamer. A second technology trend that impacts molecular rotational spectroscopy is the development of high power, solid state sources in the mm-wave/THz regions. Results from the field of mm-wave chirped-pulse Fourier transform spectroscopy will be described with an emphasis on new problems in chemical dynamics and analytical chemistry that these methods can tackle. The third (and potentially most important) technological trend is the reduction of microwave components to chip level using monolithic microwave integrated circuits (MMIC) - a technology driven by an enormous mass market in communications. Some recent advances in rotational spectrometer designs that incorporate low-cost components will be highlighted. The challenge to the high-resolution spectroscopy community - as posed by Frank De Lucia last year at the final meeting in Columbus - is what problems can we solve when real, fully capable spectrometers become essentially free to build?

  8. Observations of cloud liquid water path over oceans: Optical and microwave remote sensing methods

    NASA Technical Reports Server (NTRS)

    Lin, Bing; Rossow, William B.

    1994-01-01

    Published estimates of cloud liquid water path (LWP) from satellite-measured microwave radiation show little agreement, even about the relative magnitudes of LWP in the tropics and midlatitudes. To understand these differences and to obtain more reliable estimate, optical and microwave LWP retrieval methods are compared using the International Satellite Cloud Climatology Project (ISCCP) and special sensor microwave/imager (SSM/I) data. Errors in microwave LWP retrieval associated with uncertainties in surface, atmosphere, and cloud properties are assessed. Sea surface temperature may not produce great LWP errors, if accurate contemporaneous measurements are used in the retrieval. An uncertainty of estimated near-surface wind speed as high as 2 m/s produces uncertainty in LWP of about 5 mg/sq cm. Cloud liquid water temperature has only a small effect on LWP retrievals (rms errors less than 2 mg/sq cm), if errors in the temperature are less than 5 C; however, such errors can produce spurious variations of LWP with latitude and season. Errors in atmospheric column water vapor (CWV) are strongly coupled with errors in LWP (for some retrieval methods) causing errors as large as 30 mg/sq cm. Because microwave radiation is much less sensitive to clouds with small LWP (less than 7 mg/sq cm) than visible wavelength radiation, the microwave results are very sensitive to the process used to separate clear and cloudy conditions. Different cloud detection sensitivities in different microwave retrieval methods bias estimated LWP values. Comparing ISCCP and SSM/I LWPs, we find that the two estimated values are consistent in global, zonal, and regional means for warm, nonprecipitating clouds, which have average LWP values of about 5 mg/sq cm and occur much more frequently than precipitating clouds. Ice water path (IWP) can be roughly estimated from the differences between ISCCP total water path and SSM/I LWP for cold, nonprecipitating clouds. IWP in the winter hemisphere is about 3 times the LWP but only half the LWP in the summer hemisphere. Precipitating clouds contribute significantly to monthly, zonal mean LWP values determined from microwave, especially in the intertropical convergence zone (ITCZ), because they have almost 10 times the liquid water (cloud plus precipitation) of nonprecipitating clouds on average. There are significant differences among microwave LWP estimates associated with the treatment of precipitating clouds.

  9. Comparative study on conventional, ultrasonication and microwave assisted extraction of γ-oryzanol from rice bran.

    PubMed

    Kumar, Pramod; Yadav, Devbrat; Kumar, Pradyuman; Panesar, Paramjeet Singh; Bunkar, Durga Shankar; Mishra, Diwaker; Chopra, H K

    2016-04-01

    In present study, conventional, ultrasonic and microwave assisted extraction methods were compared with the aim of optimizing best fitting solvent and method, solvent concentration and digestion time for high yield of γ-oryzanol from rice bran. Petroleum ether, hexane and methanol were used to prepare extracts. Extraction yield were evaluated for giving high crude oil yield, total phenolic content (TPC) and γ-oryzanol content. Gas chromatography-mass spectrophotometry was used for the determination of γ-oryzanol concentration. The highest concentration of γ-oryzanol was detected in methanolic extracts of microwave treatment (85.0 ppm) followed by ultrasonication (82.0 ppm) and conventional extraction method (73.5 ppm). Concentration of γ-oryzanol present in the extracts was found to be directly proportional to the total phenolic content. A combination of 80 % methanolic concentration and 55 minutes digestion time of microwave treatment yielded the best extraction method for TPC and thus γ-oryzanol (105 ppm).

  10. Integrated microwave processing system for the extraction of organophosphorus pesticides in fresh vegetables.

    PubMed

    Wu, Lijie; Song, Ying; Hu, Mingzhu; Xu, Xu; Zhang, Hanqi; Yu, Aimin; Ma, Qiang; Wang, Ziming

    2015-03-01

    A simple and efficient integrated microwave processing system (IMPS) was firstly assembled and validated for the extraction of organophosphorus pesticides in fresh vegetables. Two processes under microwave irradiation, dynamic microwave-assisted extraction (DMAE) and microwave-accelerated solvent elution (MASE), were integrated for simplifying the pretreatment of the sample. Extraction, separation, enrichment and elution were finished in a simple step. The organophosphorus pesticides were extracted from the fresh vegetables into hexane with DMAE, and then the extract was directly introduced into the enrichment column packed with active carbon fiber (ACF). Subsequently, the organophosphorus pesticides trapped on the ACF were eluted with ethyl acetate under microwave irradiation. No further filtration or cleanup was required before analysis of the eluate by gas chromatography-mass spectrometry. Some experimental parameters affecting extraction efficiency were investigated and optimized, such as microwave output power, kind and volume of extraction solvent, extraction time, amount of sorbent, elution microwave power, kind and volume of elution solvent, elution solvent flow rate. Under the optimized conditions, the recoveries were in the range of 71.5-105.2%, and the relative standard deviations were lower than 11.6%. The experiment results prove that the present method is a simple and effective sample preparation method for the determination of pesticides in solid samples. Copyright © 2014 Elsevier B.V. All rights reserved.

  11. Magnetic graphene enabled tunable microwave absorber via thermal control.

    PubMed

    Quan, L; Qin, F X; Li, Y H; Estevez, D; Fu, G J; Wang, H; Peng, H-X

    2018-06-15

    By synthesizing nitrogen-doped graphene (NG) via a facile thermal annealing method, a fine control of the amount and location of doped nitrogen as well as the oxygen-containing functional groups is achieved with varying annealing temperature. The favorable magnetic properties have been achieved for N-doped rGO samples obtained at two temperatures of all NG samples, i.e., 500 °C and 900 °C with saturation magnetization of 0.63 emu g -1 and 0.67 emu g -1 at 2 K, respectively. This is attributed to the optimized competition of the N-doping and reduction process at 500 °C and the dominated reduction process at 900 °C. NG obtained at 300 °C affords the best overall absorbing performance: when the absorber thickness is 3.0 mm, the maximum absorption was -24.6 dB at 8.51 GHz, and the absorption bandwidth was 4.89 GHz (7.55-12.44 GHz) below -10 dB. It owes its large absorbing intensity to the good impedance match and significant dielectric loss. The broad absorption bandwidth benefits from local fluctuations of dielectric responses contributed by competing mechanisms. Despite the significant contribution from materials loss to the absorption, the one quarter-wavelength model is found to be responsible for the reflection loss peak positions. Of particular significance is that an appropriate set of electromagnetic parameters associated with reasonable reduction is readily accessible by convenient control of annealing temperature to modulate the microwave absorbing features of graphene. Thus, NG prepared by thermal annealing promises to be a highly efficient microwave absorbent.

  12. Magnetic graphene enabled tunable microwave absorber via thermal control

    NASA Astrophysics Data System (ADS)

    Quan, L.; Qin, F. X.; Li, Y. H.; Estevez, D.; Fu, G. J.; Wang, H.; Peng, H.-X.

    2018-06-01

    By synthesizing nitrogen-doped graphene (NG) via a facile thermal annealing method, a fine control of the amount and location of doped nitrogen as well as the oxygen-containing functional groups is achieved with varying annealing temperature. The favorable magnetic properties have been achieved for N-doped rGO samples obtained at two temperatures of all NG samples, i.e., 500 °C and 900 °C with saturation magnetization of 0.63 emu g‑1 and 0.67 emu g‑1 at 2 K, respectively. This is attributed to the optimized competition of the N-doping and reduction process at 500 °C and the dominated reduction process at 900 °C. NG obtained at 300 °C affords the best overall absorbing performance: when the absorber thickness is 3.0 mm, the maximum absorption was ‑24.6 dB at 8.51 GHz, and the absorption bandwidth was 4.89 GHz (7.55–12.44 GHz) below ‑10 dB. It owes its large absorbing intensity to the good impedance match and significant dielectric loss. The broad absorption bandwidth benefits from local fluctuations of dielectric responses contributed by competing mechanisms. Despite the significant contribution from materials loss to the absorption, the one quarter-wavelength model is found to be responsible for the reflection loss peak positions. Of particular significance is that an appropriate set of electromagnetic parameters associated with reasonable reduction is readily accessible by convenient control of annealing temperature to modulate the microwave absorbing features of graphene. Thus, NG prepared by thermal annealing promises to be a highly efficient microwave absorbent.

  13. Active microwave water equivalence

    NASA Technical Reports Server (NTRS)

    Boyne, H. S.; Ellerbruch, D. A.

    1980-01-01

    Measurements of water equivalence using an active FM-CW microwave system were conducted over the past three years at various sites in Colorado, Wyoming, and California. The measurement method is described. Measurements of water equivalence and stratigraphy are compared with ground truth. A comparison of microwave, federal sampler, and snow pillow measurements at three sites in Colorado is described.

  14. Microwave sintering of single plate-shaped articles

    DOEpatents

    Katz, Joel D.; Blake, Rodger D.

    1995-01-01

    Apparatus and method for high temperature sintering of plate-shaped articles of alumina, magnesia, silica, yttria, zirconia, and mixtures thereof using microwave radiation. An article is placed within a sintering structure located within a sintering container which is placed in a microwave cavity for heating. The rates at which heating and cooling take place is controlled.

  15. An Evanescent Microwave Probe for Super-Resolution Nondestructive Imaging of Metals, Semiconductors, Dielectrics, Composites and Biological Specimens

    NASA Technical Reports Server (NTRS)

    Pathak, P. S.; Tabib-Azar, M.; Ponchak, G.

    1998-01-01

    Using evanescent microwaves with decay lengths determined by a combination of microwave wavelength (lambda) and waveguide termination geometry, we have imaged and mapped material non-uniformities and defects with a resolving capability of lambda/3800=79 microns at 1 GHz. In our method a microstrip quarter wavelength resonator was used to generate evanescent microwaves. We imaged materials with a wide range of conductivities. Carbon composites, dielectrics (Duroid, polymers), semiconductors (3C-SiC, polysilicon, natural diamond), metals (tungsten alloys, copper, zinc, steel), high-temperature superconductors, and botanical samples were scanned for defects, residual stresses, integrity of brazed junctions, subsurface features, areas of different film thickness and moisture content. The evanescent microwave probe is a versatile tool and it can be used to perform very fast, large scale mapping of a wide range of materials. This method of characterization compares favorably with ultrasound testing, which has a resolution of about 0.1 mm and suffers from high absorption in composite materials and poor transmission across boundaries. Eddy current methods which can have a resolution on the order of 50 microns are restricted to evaluating conducting materials. Evanescent microwave imaging, with careful choice of operating frequency and probe geometry, can have a resolution of up to 1 micron. In this method we can scan hot and moving objects, sample preparation is not required, testing is non-destructive, non-invasive and non-contact, and can be done in air, in liquid or in vacuum.

  16. Optimization of dynamic-microwave assisted enzymatic hydrolysis extraction of total ginsenosides from stems and leaves of panax ginseng by response surface methodology.

    PubMed

    Wang, Xiao-Yan; Ren, Hui

    2018-03-21

    Ginseng stems and leaves (GSAL) are abundant in ginsenosides compounds. For efficient utilization of GSAL and the enhancement of total ginsenosides (TG) compound yields in GSAL, TG from GSAL were extracted, using dynamic-microwave assisted extraction coupled with enzymatic hydrolysis (DMAE-EH) method. The extraction process has been simulated and its main influencing factors such as ethanol concentration, microwave temperature, microwave time and pump flow rate have been optimized by response surface methodology coupled with a Box-Behnken design(BBD). The experimental results indicated that optimal extraction conditions of TG from GSAL were as follows: ethanol concentration of 75%, microwave temperature of 60°C, microwave time of 20 min and pump flow rate of 38 r/min. After experimental verification, the experimental yields of TG was 60.62 ± 0.85 mg g -1 , which were well agreement with the predicted by the model. In general, the present results demonstrated that DMAE-EH method was successfully used to extract total ginsenosides in GSAL.

  17. High-frequency microwave ablation method for enhanced cancer treatment with minimized collateral damage.

    PubMed

    Yoon, Jeonghoon; Cho, Jeiwon; Kim, Namgon; Kim, Dae-Duk; Lee, Eunsook; Cheon, Changyul; Kwon, Youngwoo

    2011-10-15

    To overcome the limits of conventional microwave ablation, a new frequency spectrum above 6 GHz has been explored for low-power and low collateral damage ablation procedure. A planar coaxial probe-based applicator, suitable for easy insertion into the human body, was developed for our study to cover a wideband frequency up to 30 GHz. Thermal ablations with small input power (1-3 W) at various microwave frequencies were performed on nude mice xenografted with human breast cancer. Comparative study of ablation efficiencies revealed that 18-GHz microwave results in the largest difference in the temperature rise between cancer and normal tissues as well as the highest ablation efficiency, reaching 20 times that of 2 GHz. Thermal profile study on the composite region of cancer and fat also showed significantly reduced collateral damage using 18 GHz. Application of low-power (1 W) 18-GHz microwave on the nude mice xenografted with human breast cancer cells resulted in recurrence-free treatment. The proposed microwave ablation method can be a very effective process to treat small-sized tumor with minimized invasiveness and collateral damages. Copyright © 2010 UICC.

  18. Effects of (monomer - crosslinker – initiator) composition during non imprinted polymers synthesis for catechin retention

    NASA Astrophysics Data System (ADS)

    Triadhi, U.; Zulfikar, M. A.; Setiyanto, H.; Amran, M. B.

    2018-05-01

    MISPE (molecularly imprinted Solid Phase Extraction) is a separation technique using a solid adsorbent as a principle of MI (molecularly imprinted). Methacrylic acid (MAA) was used as a monomer, ethylene glycol dimethacrylate (EGDMA) as a crosslinker, benzoyl peroxide (BPO) as an initiator and acetonitrile (ACN) as a porogen. Catechin will be used as the template. Thermal and microwave methods were employed in the synthesis method. When analyzed using FTIR spectra, it was found that there were no significant differences between NIP (non-imprinted polymer) resulting from thermal method and that resulting from microwave method. Preparation of polymers by microwave method required 4 mins at 60-65 °C, significantly less than thermal method, that took 60 minutes at the same temperature. The variations of mole ratios of the monomer, the crosslinker, and the initiator were also performed. Based on the FTIR spectra, intensity of some peaks were changed due to the decreases of concentration. The optimum composition for NIP synthesis was MAA: EGDMA: BPO ratio of 5:30:0.5 (in mmole). The TGA curve showed that the NIP sythesized using microwave method experienced mass loss of around 98.50% at 604.8 °C.

  19. Simultaneous Microwave Extraction and Separation of Volatile and Non-Volatile Organic Compounds of Boldo Leaves. From Lab to Industrial Scale

    PubMed Central

    Petigny, Loïc; Périno, Sandrine; Minuti, Matteo; Visinoni, Francesco; Wajsman, Joël; Chemat, Farid

    2014-01-01

    Microwave extraction and separation has been used to increase the concentration of the extract compared to the conventional method with the same solid/liquid ratio, reducing extraction time and separate at the same time Volatile Organic Compounds (VOC) from non-Volatile Organic Compounds (NVOC) of boldo leaves. As preliminary study, a response surface method has been used to optimize the extraction of soluble material and the separation of VOC from the plant in laboratory scale. The results from the statistical analysis revealed that the optimized conditions were: microwave power 200 W, extraction time 56 min and solid liquid ratio of 7.5% of plants in water. Lab scale optimized microwave method is compared to conventional distillation, and requires a power/mass ratio of 0.4 W/g of water engaged. This power/mass ratio is kept in order to upscale from lab to pilot plant. PMID:24776762

  20. Reducing microwave absorption with fast frequency modulation.

    PubMed

    Qin, Juehang; Hubler, A

    2017-05-01

    We study the response of a two-level quantum system to a chirp signal, using both numerical and analytical methods. The numerical method is based on numerical solutions of the Schrödinger solution of the two-level system, while the analytical method is based on an approximate solution of the same equations. We find that when two-level systems are perturbed by a chirp signal, the peak population of the initially unpopulated state exhibits a high sensitivity to frequency modulation rate. We also find that the aforementioned sensitivity depends on the strength of the forcing, and weaker forcings result in a higher sensitivity, where the frequency modulation rate required to produce the same reduction in peak population would be lower. We discuss potential applications of this result in the field of microwave power transmission, as it shows applying fast frequency modulation to transmitted microwaves used for power transmission could decrease unintended absorption of microwaves by organic tissue.

  1. Microwave Heating as an Alternative Quarantine Method for Disinfestation of Stored Food Grains

    PubMed Central

    Kumar, Girish; Shah, Narendra G.

    2013-01-01

    Insects and pests constitute a major threat to food supplies all over the world. Some estimates put the loss of food grains because of infestation to about 40% of the world production. Contemporary disinfestation methods are chemical fumigation, ionizing radiation, controlled atmosphere, conventional hot air treatment, and dielectric heating, that is, radio frequency and microwave energy, and so forth. Though chemical fumigation is being used extensively in stored food grains, regulatory issues, insect resistance, and environmental concerns demand technically effective and environmentally sound quarantine methods. Recent studies have indicated that microwave treatment is a potential means of replacing other techniques because of selective heating, pollution free environment, equivalent or better quality retention, energy minimization, and so forth. The current paper reviews the recent advances in Microwave (MW) disinfestation of stored food products and its principle and experimental results from previous studies in order to establish the usefulness of this technology. PMID:26904615

  2. Microwave-Assisted Syntheses in Recyclable Ionic Liquids: Photoresists Based on Renewable Resources

    PubMed Central

    Petit, Charlotte; Luef, Klaus P; Edler, Matthias; Griesser, Thomas; Kremsner, Jennifer M; Stadler, Alexander; Grassl, Bruno; Reynaud, Stéphanie; Wiesbrock, Frank

    2015-01-01

    The copoly(2-oxazoline) pNonOx80-stat-pDc=Ox20 can be synthesized from the cationic ring-opening copolymerization of 2-nonyl-2-oxazoline NonOx and 2-dec-9′-enyl-2-oxazoline Dc=Ox in the ionic liquid n-hexyl methylimidazolium tetrafluoroborate under microwave irradiation in 250 g/batch quantities. The polymer precipitates upon cooling, enabling easy recovery of the polymer and the ionic liquid. Both monomers can be obtained from fatty acids from renewable resources. pNonOx80-stat-pDc=Ox20 can be used as polymer in a photoresist (resolution of 1 μm) based on UV-induced thiol–ene reactions. PMID:26354027

  3. DARKNESS: A Microwave Kinetic Inductance Detector Integral Field Spectrograph for High-contrast Astronomy

    NASA Astrophysics Data System (ADS)

    Meeker, Seth R.; Mazin, Benjamin A.; Walter, Alex B.; Strader, Paschal; Fruitwala, Neelay; Bockstiegel, Clint; Szypryt, Paul; Ulbricht, Gerhard; Coiffard, Grégoire; Bumble, Bruce; Cancelo, Gustavo; Zmuda, Ted; Treptow, Ken; Wilcer, Neal; Collura, Giulia; Dodkins, Rupert; Lipartito, Isabel; Zobrist, Nicholas; Bottom, Michael; Shelton, J. Chris; Mawet, Dimitri; van Eyken, Julian C.; Vasisht, Gautam; Serabyn, Eugene

    2018-06-01

    We present DARKNESS (the DARK-speckle Near-infrared Energy-resolving Superconducting Spectrophotometer), the first of several planned integral field spectrographs to use optical/near-infrared Microwave Kinetic Inductance Detectors (MKIDs) for high-contrast imaging. The photon counting and simultaneous low-resolution spectroscopy provided by MKIDs will enable real-time speckle control techniques and post-processing speckle suppression at frame rates capable of resolving the atmospheric speckles that currently limit high-contrast imaging from the ground. DARKNESS is now operational behind the PALM-3000 extreme adaptive optics system and the Stellar Double Coronagraph at Palomar Observatory. Here, we describe the motivation, design, and characterization of the instrument, early on-sky results, and future prospects.

  4. Modifications to the synthetic aperture microwave imaging diagnostic

    DOE PAGES

    Brunner, K. J.; Chorley, J. C.; Dipper, N. A.; ...

    2016-09-02

    The synthetic aperture microwave imaging diagnostic has been operating on the MAST experiment since 2011. It has provided the first 2D images of B-X-O mode conversion windows and showed the feasibility of conducting 2D Doppler back-scattering experiments. The diagnostic heavily relies on field programmable gate arrays to conduct its work. Recent successes and newly gained experience with the diagnostic have led us to modify it. The enhancements will enable pitch angle profile measurements, O and X mode separation, and the continuous acquisition of 2D DBS data. Finally, the diagnostic has also been installed on the NSTX-U and is acquiring datamore » since May 2016.« less

  5. A Spread-Spectrum SQUID Multiplexer

    NASA Astrophysics Data System (ADS)

    Irwin, K. D.; Chaudhuri, S.; Cho, H.-M.; Dawson, C.; Kuenstner, S.; Li, D.; Titus, C. J.; Young, B. A.

    2018-06-01

    The transition-edge sensor (TES) is a mature, high-resolution x-ray spectrometer technology that provides a much higher efficiency than dispersive spectrometers such as gratings and crystal spectrometers. As larger arrays are developed, time-division multiplexing schemes operating at MHz frequencies are being replaced by microwave SQUID multiplexers using frequency-division multiplexing at GHz frequencies. However, the multiplexing factor achievable with microwave SQUIDs is limited by the high slew rate on the leading edge of x-ray pulses. In this paper, we propose a new multiplexing scheme for high-slew-rate TES x-ray calorimeters: the spread-spectrum SQUID multiplexer, which has the potential to enable higher multiplexing factors, especially in applications with lower photon-arrival rates.

  6. Single qubit operations using microwave hyperbolic secant pulses

    NASA Astrophysics Data System (ADS)

    Ku, H. S.; Long, J. L.; Wu, X.; Bal, M.; Lake, R. E.; Barnes, Edwin; Economou, Sophia E.; Pappas, D. P.

    2017-10-01

    It has been known since the early days of quantum mechanics that hyperbolic secant pulses possess the unique property that they can perform full-cycle Rabi oscillations on two-level quantum systems independently of the pulse detuning. More recently, it was realized that they induce detuning-controlled phases without changing state populations. Here, we experimentally demonstrate the properties of hyperbolic secant pulses on superconducting transmon qubits and contrast them with the more commonly used Gaussian and square waves. We further show that these properties can be exploited to implement phase gates, nominally without exiting the computational subspace. This enables us to demonstrate a microwave-driven Z rotation with a single control parameter, the detuning.

  7. Wide-band analog frequency modulation of optic signals using indirect techniques

    NASA Technical Reports Server (NTRS)

    Fitzmartin, D. J.; Balboni, E. J.; Gels, R. G.

    1991-01-01

    The wideband frequency modulation (FM) of an optical carrier by a radio frequency (RF) or microwave signal can be accomplished independent of laser type when indirect modulation is employed. Indirect modulators exploit the integral relation of phase to frequency so that phase modulators can be used to impress frequency modulation on an optical carrier. The use of integrated optics phase modulators, which are highly linear, enables the generation of optical wideband FM signals with very low intermodulation distortion. This modulator can be used as part of an optical wideband FM link for RF and microwave signals. Experimental results from the test of an indirect frequency modulator for an optical carrier are discussed.

  8. Development of a Nondestructive Evaluation Technique for Degraded Thermal Barrier Coatings Using Microwave

    NASA Astrophysics Data System (ADS)

    Sayar, M.; Ogawa, K.; Shoji, T.

    2008-02-01

    Thermal barrier coatings have been widely used in gas turbine engines in order to protect substrate metal alloy against high temperature and to enhance turbine efficiency. Currently, there are no reliable nondestructive techniques available to monitor TBC integrity over lifetime of the coating. Hence, to detect top coating (TC) and TGO thicknesses, a microwave nondestructive technique that utilizes a rectangular waveguide was developed. The phase of the reflection coefficient at the interface of TC and waveguide varies for different TGO and TC thicknesses. Therefore, measuring the phase of the reflection coefficient enables us to accurately calculate these thicknesses. Finally, a theoretical analysis was used to evaluate the reliability of the experimental results.

  9. Circuit quantum electrodynamics architecture for gate-defined quantum dots in silicon

    NASA Astrophysics Data System (ADS)

    Mi, X.; Cady, J. V.; Zajac, D. M.; Stehlik, J.; Edge, L. F.; Petta, J. R.

    2017-01-01

    We demonstrate a hybrid device architecture where the charge states in a double quantum dot (DQD) formed in a Si/SiGe heterostructure are read out using an on-chip superconducting microwave cavity. A quality factor Q = 5400 is achieved by selectively etching away regions of the quantum well and by reducing photon losses through low-pass filtering of the gate bias lines. Homodyne measurements of the cavity transmission reveal DQD charge stability diagrams and a charge-cavity coupling rate g c / 2 π = 23 MHz. These measurements indicate that electrons trapped in a Si DQD can be effectively coupled to microwave photons, potentially enabling coherent electron-photon interactions in silicon.

  10. Strong coupling of a single electron in silicon to a microwave photon

    NASA Astrophysics Data System (ADS)

    Mi, X.; Cady, J. V.; Zajac, D. M.; Deelman, P. W.; Petta, J. R.

    2017-01-01

    Silicon is vital to the computing industry because of the high quality of its native oxide and well-established doping technologies. Isotopic purification has enabled quantum coherence times on the order of seconds, thereby placing silicon at the forefront of efforts to create a solid-state quantum processor. We demonstrate strong coupling of a single electron in a silicon double quantum dot to the photonic field of a microwave cavity, as shown by the observation of vacuum Rabi splitting. Strong coupling of a quantum dot electron to a cavity photon would allow for long-range qubit coupling and the long-range entanglement of electrons in semiconductor quantum dots.

  11. Detecting Patchy Reionization in the Cosmic Microwave Background.

    PubMed

    Smith, Kendrick M; Ferraro, Simone

    2017-07-14

    Upcoming cosmic microwave background (CMB) experiments will measure temperature fluctuations on small angular scales with unprecedented precision. Small-scale CMB fluctuations are a mixture of late-time effects: gravitational lensing, Doppler shifting of CMB photons by moving electrons [the kinematic Sunyaev-Zel'dovich (KSZ) effect], and residual foregrounds. We propose a new statistic which separates the KSZ signal from the others, and also allows the KSZ signal to be decomposed in redshift bins. The decomposition extends to high redshift and does not require external data sets such as galaxy surveys. In particular, the high-redshift signal from patchy reionization can be cleanly isolated, enabling future CMB experiments to make high-significance and qualitatively new measurements of the reionization era.

  12. Reconfigurable optomechanical circulator and directional amplifier.

    PubMed

    Shen, Zhen; Zhang, Yan-Lei; Chen, Yuan; Sun, Fang-Wen; Zou, Xu-Bo; Guo, Guang-Can; Zou, Chang-Ling; Dong, Chun-Hua

    2018-05-04

    Non-reciprocal devices, which allow non-reciprocal signal routing, serve as fundamental elements in photonic and microwave circuits and are crucial in both classical and quantum information processing. The radiation-pressure-induced coupling between light and mechanical motion in travelling-wave resonators has been exploited to break the Lorentz reciprocity, enabling non-reciprocal devices without magnetic materials. Here, we experimentally demonstrate a reconfigurable non-reciprocal device with alternative functions as either a circulator or a directional amplifier via optomechanically induced coherent photon-phonon conversion or gain. The demonstrated device exhibits considerable flexibility and offers exciting opportunities for combining reconfigurability, non-reciprocity and active properties in single photonic devices, which can also be generalized to microwave and acoustic circuits.

  13. Applications of Microwave Photonics in Radio Astronomy and Space Communication

    NASA Technical Reports Server (NTRS)

    D'Addario, Larry R.; Shillue, William P.

    2006-01-01

    An overview of narrow band vs wide band signals is given. Topics discussed included signal transmission, reference distribution and photonic antenna metrology. Examples of VLA, ALMA, ATA and DSN arrays are given. . Arrays of small antennas have become more cost-effective than large antennas for achieving large total aperture or gain, both for astronomy and for communication. It is concluded that emerging applications involving arrays of many antennas require low-cost optical communication of both wide bandwidth and narrow bandwidth; development of round-trip correction schemes enables timing precision; and free-space laser beams with microwave modulation allow structural metrology with approx 100 micrometer precision over distances of 200 meters.

  14. Application of microwave digestion to the analysis of peat

    USGS Publications Warehouse

    Papp, C.S.E.; Fischer, L.B.

    1987-01-01

    A microwave digestion technique for the dissolution of peat is described and compared with a dry ashing method and a nitric - perchloric - hydrofluoric acid wet digestion. Peat samples with different organic matter contents were used and Ca, Mg, Fe, AI, Na, K, Mn, Zn, Cu and Li were determined by atomic absoprtion spectrometry. The results obtained using the three dissolution techniques were in good agreement. The microwave method has the advantage of digesting the samples in less than 2 h and uses less acid than the conventional wet digestion method. Keeping the volume of the acid mixture as small as possible minimises contamination and leads to lower blank values.

  15. Evaluation and Application of Satellite-Based Latent Heating Profile Estimation Methods

    NASA Technical Reports Server (NTRS)

    Olson, William S.; Grecu, Mircea; Yang, Song; Tao, Wei-Kuo

    2004-01-01

    In recent years, methods for estimating atmospheric latent heating vertical structure from both passive and active microwave remote sensing have matured to the point where quantitative evaluation of these methods is the next logical step. Two approaches for heating algorithm evaluation are proposed: First, application of heating algorithms to synthetic data, based upon cloud-resolving model simulations, can be used to test the internal consistency of heating estimates in the absence of systematic errors in physical assumptions. Second, comparisons of satellite-retrieved vertical heating structures to independent ground-based estimates, such as rawinsonde-derived analyses of heating, provide an additional test. The two approaches are complementary, since systematic errors in heating indicated by the second approach may be confirmed by the first. A passive microwave and combined passive/active microwave heating retrieval algorithm are evaluated using the described approaches. In general, the passive microwave algorithm heating profile estimates are subject to biases due to the limited vertical heating structure information contained in the passive microwave observations. These biases may be partly overcome by including more environment-specific a priori information into the algorithm s database of candidate solution profiles. The combined passive/active microwave algorithm utilizes the much higher-resolution vertical structure information provided by spaceborne radar data to produce less biased estimates; however, the global spatio-temporal sampling by spaceborne radar is limited. In the present study, the passive/active microwave algorithm is used to construct a more physically-consistent and environment-specific set of candidate solution profiles for the passive microwave algorithm and to help evaluate errors in the passive algorithm s heating estimates. Although satellite estimates of latent heating are based upon instantaneous, footprint- scale data, suppression of random errors requires averaging to at least half-degree resolution. Analysis of mesoscale and larger space-time scale phenomena based upon passive and passive/active microwave heating estimates from TRMM, SSMI, and AMSR data will be presented at the conference.

  16. Comparison of sensory, microbiological, and biochemical parameters of microwave versus indirect UHT fluid skim milk during storage.

    PubMed

    Clare, D A; Bang, W S; Cartwright, G; Drake, M A; Coronel, P; Simunovic, J

    2005-12-01

    Shelf-stable milk could benefit from sensory quality improvement. Current methods of heating cause flavor and nutrient degradation through exposure to overheated thermal exchange surfaces. Rapid heating with microwaves followed by sudden cooling could reduce or eliminate this problem. The objectives for this study were focused on designing and implementing continuous microwave thermal processing of skim fluid milks (white and chocolate) to compare sensory, microbiological, and biochemical parameters with conventionally prepared, indirect UHT milks. All test products were aseptically packaged and stored at ambient temperature for 12 mo. Every 3 mo, samples were taken for microbiological testing, reactive sulfhydryl determinations, active enzyme analysis, instrumental viscosity readings, color measurements, and descriptive sensory evaluation. Microbiological plate counts were negative on all milks at each time point. Enzymatic assays showed that plasmin was inactivated by both heat treatments. 5,5'-dithio-bis(2-nitrobenzoic acid) analysis, a measure of reactive sulfhydryl (-SH-) groups, showed that the initial thiol content was not significantly different between the microwave-processed and UHT-treated milks. However, both heating methods resulted in an increased thiol level compared with conventionally pasteurized milk samples due to the higher temperatures attained. Sulfhydryl oxidase, a milk enzyme that catalyzes disulfide bond formation using a variety of protein substrates, retained activity following microwave processing, and decreased during storage. Viscosity values were essentially equivalent in microwave- and UHT-heated white skim milks. Sensory analyses established that UHT-treated milks were visibly darker, and exhibited higher caramelized and stale/fatty flavors with increased astringency compared with the microwave samples. Sweet aromatic flavor and sweet taste decreased during storage in both UHT and microwave milk products, whereas stale/fatty flavors increased over time. Sensory effects were more apparent in white milks than in chocolate varieties. These studies suggest that microwave technology may provide a useful alternative processing method for delivery of aseptic milk products that retain a long shelf life.

  17. Effect of Dietary Fiber Enrichment and Different Cooking Methods on Quality of Chicken Nuggets.

    PubMed

    Pathera, Ashok K; Riar, C S; Yadav, Sanjay; Sharma, D P

    2017-01-01

    The effect of dietary fiber enrichment (wheat bran) and cooking methods (oven, steam and microwave) on functional and physico-chemical properties of raw nuggets formulation as well as nutritional, color and textural properties of chicken nuggets were analyzed in this study. Among different cooking methods used for nuggets preparation, steam cooked nuggets had significantly ( p <0.05) higher water holding capacity (56.65%), cooking yield (97.16%) and total dietary fiber content (4.32%) in comparison to oven and microwave cooked nuggets. The effect of cooking methods and wheat bran incorporation was also noticed on textural properties of the nuggets. Hardness, firmness and toughness values of oven and steam cooked nuggets were significantly ( p <0.05) higher than microwave cooked nuggets. Among nuggets prepared by different cooking methods, cohesiveness of microwave cooked nuggets was found to be significantly ( p <0.05) highest, whereas, oven cooked nuggets had significantly ( p <0.05) highest gumminess and chewiness values. Steam cooked nuggets were found to be better among all nuggets due to their higher cooking yield and dietary fiber content.

  18. Effect of Dietary Fiber Enrichment and Different Cooking Methods on Quality of Chicken Nuggets

    PubMed Central

    Yadav, Sanjay; Sharma, D. P.

    2017-01-01

    The effect of dietary fiber enrichment (wheat bran) and cooking methods (oven, steam and microwave) on functional and physico-chemical properties of raw nuggets formulation as well as nutritional, color and textural properties of chicken nuggets were analyzed in this study. Among different cooking methods used for nuggets preparation, steam cooked nuggets had significantly (p<0.05) higher water holding capacity (56.65%), cooking yield (97.16%) and total dietary fiber content (4.32%) in comparison to oven and microwave cooked nuggets. The effect of cooking methods and wheat bran incorporation was also noticed on textural properties of the nuggets. Hardness, firmness and toughness values of oven and steam cooked nuggets were significantly (p<0.05) higher than microwave cooked nuggets. Among nuggets prepared by different cooking methods, cohesiveness of microwave cooked nuggets was found to be significantly (p<0.05) highest, whereas, oven cooked nuggets had significantly (p<0.05) highest gumminess and chewiness values. Steam cooked nuggets were found to be better among all nuggets due to their higher cooking yield and dietary fiber content. PMID:28747827

  19. DOE Office of Scientific and Technical Information (OSTI.GOV)

    White, Terry L.; Paulauskas, Felix L.; Bigelow, Timothy S.

    A method for continuously processing carbon fiber including establishing a microwave plasma in a selected atmosphere contained in an elongated chamber having a microwave power gradient along its length defined by a lower microwave power at one end and a higher microwave power at the opposite end of the elongated chamber. The elongated chamber having an opening in each of the ends of the chamber that are adapted to allow the passage of the fiber tow while limiting incidental gas flow into or out of said chamber. A continuous fiber tow is introduced into the end of the chamber havingmore » the lower microwave power. The fiber tow is withdrawn from the opposite end of the chamber having the higher microwave power. The fiber to is subjected to progressively higher microwave energy as the fiber is being traversed through the elongated chamber.« less

  20. Cation ordering/disordering kinetics in Ba3CoNb2O9: An in situ study using synchrotron x-ray powder diffraction

    NASA Astrophysics Data System (ADS)

    Mallinson, P. M.; Claridge, J. B.; Rosseinsky, M. J.; Ibberson, R. M.; Wright, J. P.; Fitch, A. N.; Price, T.; Iddles, D. M.

    2007-11-01

    In situ synchrotron x-ray powder diffraction has been used to study the kinetics of cation ordering and disordering in the microwave dielectric electroceramic Ba3CoNb2O9 with a time resolution of 15s. The method enables the order/disorder temperature (To /d) in this material of 1430°C to be directly observed. The changes in the rate and degree of cation ordering and in the growth of ordered domains between samples ordered from standard precursor material and then subsequently reordered following an annealing period above To /d show that small changes in precursor order state and phase assemblage strongly influence the final domain size.

  1. Mobile system for microwave removal of concrete surfaces

    DOEpatents

    White, Terry L.; Bigelow, Timothy S.; Schaich, Charles R.; Foster, Jr., Don

    1997-01-01

    A method and apparatus for the microwave removal of contaminated concrete surfaces. The apparatus comprises a housing adapted to pass over a support surface. The housing includes a waveguide for directing microwave energy to the surface at an angle maximizing absorption of microwave energy by the surface. The apparatus is further provided with a source of microwave energy operably associated with the waveguide, wherein the microwave energy has a frequency of between about 10.6 GHz and about 24 GHz and acts to remove the uppermost layer from the surface. The apparatus further includes a debris containment assembly comprising a vacuum assembly operably associated with the housing. The vacuum assembly is adapted to remove debris from the area adjacent the surface.

  2. Mobile system for microwave removal of concrete surfaces

    DOEpatents

    White, T.L.; Bigelow, T.S.; Schaich, C.R.; Foster, D. Jr.

    1997-06-03

    A method and apparatus are disclosed for the microwave removal of contaminated concrete surfaces. The apparatus comprises a housing adapted to pass over a support surface. The housing includes a waveguide for directing microwave energy to the surface at an angle maximizing absorption of microwave energy by the surface. The apparatus is further provided with a source of microwave energy operably associated with the waveguide, wherein the microwave energy has a frequency of between about 10.6 GHz and about 24 GHz and acts to remove the uppermost layer from the surface. The apparatus further includes a debris containment assembly comprising a vacuum assembly operably associated with the housing. The vacuum assembly is adapted to remove debris from the area adjacent the surface. 7 figs.

  3. Deep Eutectic Solvent-Based Microwave-Assisted Method for Extraction of Hydrophilic and Hydrophobic Components from Radix Salviae miltiorrhizae.

    PubMed

    Chen, Jue; Liu, Mengjun; Wang, Qi; Du, Huizhi; Zhang, Liwei

    2016-10-17

    Deep eutectic solvents (DESs) have attracted significant attention as a promising green media. In this work, twenty-five kinds of benign choline chloride-based DESs with microwave-assisted methods were applied to quickly extract active components from Radix Salviae miltiorrhizae . The extraction factors, including temperature, time, power of microwave, and solid/liquid ratio, were investigated systematically by response surface methodology. The hydrophilic and hydrophobic ingredients were extracted simultaneously under the optimized conditions: 20 vol% of water in choline chloride/1,2-propanediol (1:1, molar ratio) as solvent, microwave power of 800 W, temperature at 70 °C, time at 11.11 min, and solid/liquid ratio of 0.007 g·mL -1 . The extraction yield was comparable to, or even better than, conventional methods with organic solvents. The microstructure alteration of samples before and after extraction was also investigated. The method validation was tested as the linearity of analytes ( r ² > 0.9997 over two orders of magnitude), precision (intra-day relative standard deviation (RSD) < 2.49 and inter-day RSD < 2.96), and accuracy (recoveries ranging from 95.04% to 99.93%). The proposed DESs combined with the microwave-assisted method provided a prominent advantage for fast and efficient extraction of active components, and DESs could be extended as solvents to extract and analyze complex environmental and pharmaceutical samples.

  4. Quality Evaluation of Pork with Various Freezing and Thawing Methods

    PubMed Central

    2014-01-01

    In this study, the physicochemical and sensory quality characteristics due to the influence of various thawing methods on electro-magnetic and air blast frozen pork were examined. The packaged pork samples, which were frozen by air blast freezing at −45℃ or electro-magnetic freezing at −55℃, were thawed using 4 different methods: refrigeration (4±1℃), room temperature (RT, 25℃), cold water (15℃), and microwave (2450 MHz). Analyses were carried out to determine the drip and cooking loss, water holding capacity (WHC), moisture content and sensory evaluation. Frozen pork thawed in a microwave indicated relatively less thawing loss (0.63-1.24%) than the other thawing methods (0.68-1.38%). The cooking loss after electro-magnetic freezing indicated 37.4% by microwave thawing, compared with 32.9% by refrigeration, 36.5% by RT, and 37.2% by cold water in ham. The thawing of samples frozen by electro-magnetic freezing showed no significant differences between the methods used, while the moisture content was higher in belly thawed by microwave (62.0%) after electro-magnetic freezing than refrigeration (54.8%), RT (61.3%), and cold water (61.1%). The highest overall acceptability was shown for microwave thawing after electro-magnetic freezing but there were no significant differences compared to that of the other samples. PMID:26761493

  5. Optical Stabilization of a Microwave Oscillator for Fountain Clock Interrogation.

    PubMed

    Lipphardt, Burghard; Gerginov, Vladislav; Weyers, Stefan

    2017-04-01

    We describe an optical frequency stabilization scheme of a microwave oscillator that is used for the interrogation of primary cesium fountain clocks. Because of its superior phase noise properties, this scheme, which is based on an ultrastable laser and a femtosecond laser frequency comb, overcomes the frequency instability limitations of fountain clocks given by the previously utilized quartz-oscillator-based frequency synthesis. The presented scheme combines the transfer of the short-term frequency instability of an optical cavity and the long-term frequency instability of a hydrogen maser to the microwave oscillator and is designed to provide continuous long-term operation for extended measurement periods of several weeks. The utilization of the twofold stabilization scheme on the one hand ensures the referencing of the fountain frequency to the hydrogen maser frequency and on the other hand results in a phase noise level of the fountain interrogation signal, which enables fountain frequency instabilities at the 2.5 ×10 -14 (τ/s) -1/2 level that are quantum projection noise limited.

  6. Microwave spectroscopy of biomolecular building blocks.

    PubMed

    Alonso, José L; López, Juan C

    2015-01-01

    Microwave spectroscopy, considered as the most definitive gas phase structural probe, is able to distinguish between different conformational structures of a molecule, because they have unique spectroscopic constants and give rise to distinct individual rotational spectra.Previously, application of this technique was limited to molecular specimens possessing appreciable vapor pressures, thus discarding the possibility of studying many other molecules of biological importance, in particular those with high melting points, which had a tendency to undergo thermal reactions, and ultimately degradation, upon heating.Nowadays, the combination of laser ablation with Fourier transform microwave spectroscopy techniques, in supersonic jets, has enabled the gas-phase study of such systems. In this chapter, these techniques, including broadband spectroscopy, as well as results of their application into the study of the conformational panorama and structure of biomolecular building blocks, such as amino acids, nucleic bases, and monosaccharides, are briefly discussed, and with them, the tools for conformational assignation - rotational constants, nuclear quadrupole coupling interaction, and dipole moment.

  7. Geostationary Microwave Sounders: Science, Applications and the Geostar Instrument Concept

    NASA Technical Reports Server (NTRS)

    Lambrigtsen, Bjorn; Gaier, Todd; Kangaslahti, Pekka; Lim, Boon; Tanner, Alan

    2011-01-01

    Microwave atmospheric sounders have long provided some of the most imporant data for use in numerical weather prediction (NWP) and have played an important role in atmospheric weather and climate research. With 7 US satellites now carrying such sensors, we are in a 'golden age' of microwave remote sensing of the atmosphere. However, as this fleet ages and is replaced by a smaller number of new sensors in the coming yars, the main shortcoming of sensors in low Earth orbit -i.e. poor spacial and temporal converage and sampling - will become more apparent. Placing such sensors on geostationary satellites, enabling time-continuous views of large portions of the Earth disc, would solve this problem. but the GEO orbit is approximately 40 times higher than a typical LEO orbit, which requires antenna apertures also about 40 times larger than for LEO systems to maintain spatial resolution, and it has not been feasible to develop such systems. Recently, a solution to this problem has appeared in the form of aperture synthesis.

  8. Microwave Therapy for Bone Tumors

    NASA Astrophysics Data System (ADS)

    Takakuda, Kazuo; Inaoka, Shuken; Saito, Hirokazu; Hassan, Moinuddin; Koyama, Yoshikazu; Kuroda, Hiroshi; Kanaya, Tomohiro; Kosaka, Toshifumi; Tanaka, Shigeo; Miyairi, Hiroo; Shinomiya, Kenichi

    In vivo microwave treatments for bone tumor are designed, which enable us to conserve the activity and functionality of the matrix of living tissues. This treatment is composed of two steps. In the first step, the tumor was coagulated by the application of microwaves emitted from the antenna inserted into the tumor tissue, and then removed. In the second step, the surrounding tissue suspected to be invaded with transformed cells was covered with hydro gels and heated similarly. The tissue itself was heated by the conduction from the gels. The tissue temperature should be kept at 60°C for 30 minutes. This treatment should kill the whole cells within the tissues, but the mechanical strength and the biochemical activity of the matrix should be left intact. The matrix preserves the mechanical functions and ensures the maximum regeneration ability of the tissue. In this study, various hydro gels were examined and the most promising one was selected. Animal experiments were carried out and successful heating verified the applicability of the treatment.

  9. Effects of microwave power and irradiation time on pectin extraction from watermelon rinds (Citrullus lanatus) with acetic acid using microwave assisted extraction method

    NASA Astrophysics Data System (ADS)

    Sari, A. M.; Ishartani, D.; Dewanty, P. S.

    2018-01-01

    The aims of this research are to study the effect of microwave power (119.7 W, 199.5 W and 279.3 W) and irradiation time (6, 9 and 12 min) on pectin extraction by using Microwave Assisted Extraction (MAE) with acetic acid and to do a preliminary characterization of pectin from watermelon rinds. A randomized factorial design with two factors was used to determine the effect of microwave power and processing time on the yield, equivalent weight, degree of methoxylation (DM), galacturonic acid content (GA) and the degree of esterification (DE) of extracted pectin. The results showed that extracted pectin from watermelon rinds using MAE method have yield ranged from 3.925% to 5.766%, with equivalent weight ranged from 1249.702 to 2007.756. Extracted pectin have a DM value ranged from 3.89% to 10.81%. Galacturonic acid content that meets with IPPA standard resulted from extraction condition of 279.3-watt microwave power for 9 min and 12 min. The degree of esterification (DE) value ranged from 56.86% to 85.76%, and this value exhibited a relatively high methoxyl pectin (>50%). The best pectin properties was obtained at a microwave power of 279.3 watts for 12 min.

  10. Microwave Hydrothermal Synthesis of Reduced Graphene Oxide: Effects of Microwave Power and Irradiation Time

    NASA Astrophysics Data System (ADS)

    Agusu, La; Ode Ahmad, La; Anggara, Desna; Alimin; Mitsudo, Seitaro; Fujii, Yutaka; Kikuchi, Hiromitsu

    2018-04-01

    Reduced graphene oxide has been synthesihzed by one-pot microwave assisted hydrothermal method. Effects of microwave power and irradiation time to its crystal structure and electrical conductivity were investigated. Here, graphene oxide, firstly, were synthesized by modified hummers method and subsequently mixed with Zn as a reducing agent. Then it was transferred to modified domestic microwave oven (800 watts) with glass distiller equipment for completely reduction process. Three different power levels (240, 400, 630 watts) and two cases of irradiation times (20 and 40 minutes) were treated. XRD study shows that irradiation time variation is more effective than the variation of power level. Power level of 270 watts and for 40 minutes microwave irradiation are enough for producing estimated bilayer rGO with graphene interlayer of ~0.4 nm. Bilayer graphene and water molecule (~0.3 nm) may vibrate the same manner and perhaps they are accepting the same temperature. Graphene seems to be re-arranged in unspecified way among the thermal pressure, temperature gradient and/or water surface tension between graphene and water induced by microwave, in order to achieve thermal equilibrium through out the system The electrical conductivity rGO/PVA (60/40 %w) paper are ranging from 15.6 to 43.4 mS/cm.

  11. Microwave-Accelerated Method for Ultra-Rapid Extraction of Neisseria gonorrhoeae DNA for Downstream Detection

    PubMed Central

    Melendez, Johan H.; Santaus, Tonya M.; Brinsley, Gregory; Kiang, Daniel; Mali, Buddha; Hardick, Justin; Gaydos, Charlotte A.; Geddes, Chris D.

    2016-01-01

    Nucleic acid-based detection of gonorrhea infections typically require a two-step process involving isolation of the nucleic acid, followed by the detection of the genomic target often involving PCR-based approaches. In an effort to improve on current detection approaches, we have developed a unique two-step microwave-accelerated approach for rapid extraction and detection of Neisseria gonorrhoeae (GC) DNA. Our approach is based on the use of highly-focused microwave radiation to rapidly lyse bacterial cells, release, and subsequently fragment microbial DNA. The DNA target is then detected by a process known as microwave-accelerated metal-enhanced fluorescence (MAMEF), an ultra-sensitive direct DNA detection analytical technique. In the present study, we show that highly focused microwaves at 2.45 GHz, using 12.3 mm gold film equilateral triangles, are able to rapidly lyse both bacteria cells and fragment DNA in a time- and microwave power-dependent manner. Detection of the extracted DNA can be performed by MAMEF, without the need for DNA amplification in less than 10 minutes total time or by other PCR-based approaches. Collectively, the use of a microwave-accelerated method for the release and detection of DNA represents a significant step forward towards the development of a point-of-care (POC) platform for detection of gonorrhea infections. PMID:27325503

  12. Novel method for water vapour monitoring using wireless communication networks measurements

    NASA Astrophysics Data System (ADS)

    David, N.; Alpert, P.; Messer, H.

    2010-09-01

    We propose a new technique for monitoring near-surface water vapour, by estimating humidity from data collected through existing wireless communication networks. Weather conditions and atmospheric phenomena affect the electromagnetic channel, causing attenuations to the radio signals. Thus, wireless communication networks are in effect built-in environmental monitoring facilities. The wireless microwave links, used in these networks, are widely deployed by cellular providers for backhaul communication between base stations, a few tens of meters above ground level. As a result, if all available measurements are used, the proposed method can provide moisture observations with high spatial resolution and potentially high temporal resolution. Further, the implementation cost is minimal, since the data used are already collected and saved by the cellular operators. In addition - many of these links are installed in areas where access is difficult such as orographic terrain and complex topography. As such, our method enables measurements in places that have been hard to measure in the past, or have never been measured before. The technique is restricted to weather conditions which exclude rain, fog or clouds along the propagation path. Strong winds that may cause movement of the link transmitter or receiver (or both) may also interfere with the ability to conduct accurate measurements. We present results from real-data measurements taken from microwave links used in a backhaul cellular network that show very good correlation with surface station humidity measurements (comparisons were performed for several links, found at different locations, during different time periods, showing correlations in the range of 0.5-0.9).

  13. Optical beamforming based on microwave photonic signal processing

    NASA Astrophysics Data System (ADS)

    Anzalchi, J.; Perrott, R.; Latunde-Dada, K.; Oldenbeuving, R. M.; Roeloffzen, C. G. H.; Van Dijk, P. W. L.; Hoekman, M.; Leeuwis, H.; Leinse, A.

    2017-09-01

    Over the past few years considerable attention has been focussed on the inclusion of flexibility in communication satellite payloads. The purpose of this flexibility is to enable a given satellite on command to support different frequency plans, re-configure coverage in response to changing traffic demands and re-configure interconnectivity between coverages.

  14. Multiple Volume Scattering in Random Media and Periodic Structures with Applications in Microwave Remote Sensing and Wave Functional Materials

    NASA Astrophysics Data System (ADS)

    Tan, Shurun

    The objective of my research is two-fold: to study wave scattering phenomena in dense volumetric random media and in periodic wave functional materials. For the first part, the goal is to use the microwave remote sensing technique to monitor water resources and global climate change. Towards this goal, I study the microwave scattering behavior of snow and ice sheet. For snowpack scattering, I have extended the traditional dense media radiative transfer (DMRT) approach to include cyclical corrections that give rise to backscattering enhancements, enabling the theory to model combined active and passive observations of snowpack using the same set of physical parameters. Besides DMRT, a fully coherent approach is also developed by solving Maxwell's equations directly over the entire snowpack including a bottom half space. This revolutionary new approach produces consistent scattering and emission results, and demonstrates backscattering enhancements and coherent layer effects. The birefringence in anisotropic snow layers is also analyzed by numerically solving Maxwell's equation directly. The effects of rapid density fluctuations in polar ice sheet emission in the 0.5˜2.0 GHz spectrum are examined using both fully coherent and partially coherent layered media emission theories that agree with each other and distinct from incoherent approaches. For the second part, the goal is to develop integral equation based methods to solve wave scattering in periodic structures such as photonic crystals and metamaterials that can be used for broadband simulations. Set upon the concept of modal expansion of the periodic Green's function, we have developed the method of broadband Green's function with low wavenumber extraction (BBGFL), where a low wavenumber component is extracted and results a non-singular and fast-converging remaining part with simple wavenumber dependence. We've applied the technique to simulate band diagrams and modal solutions of periodic structures, and to construct broadband Green's functions including periodic scatterers.

  15. Effect of microwave heating on the quality characteristics of canola oil in presence of palm olein.

    PubMed

    Ali, M Abbas; Nouruddeen, Zahrau Bamalli; Muhamad, Ida Idayu; Latip, Razam Abd; Othman, Noor Hidayu

    2013-01-01

    Microwave heating is one of the most attractive cooking methods for food preparation, commonly employed in households and especially in restaurants for its high speed and convenience. The chemical constituents of oils that degrade during microwave heating do so at rates that vary with heating temperature and time in a similar manner to other type of processing methods. The rate of quality characteristics of the oil depends on the fatty acid composition and the minor components during heating. Addition of oxidative-stable palm olein (PO) to heat sensitive canola oil (CO), may affect the quality characteristics of CO during microwave heating. The aim of this study was to evaluate how heat treatments by microwave oven affect the quality of CO in presence of PO. The blend was prepared in the volume ratio of 40:60 (PO:CO, PC). Microwave heating test was performed for different periods (2, 4, 8, 12, 16 and 20 min) at medium power setting for the samples of CO and PC. The changes in quality characteristics of the samples during heating were determined by analytical and instrumental methods. In this study, refractive index, free fatty acid content, peroxide value, p-anisidine value, TOTOX value, specific extinction, viscosity, polymer content, polar compounds and food oil sensor value of the oils all increased, whereas iodine value and C₁₈.₂ /C₁₆:₀ ratio decreased as microwave heating progressed. Based on the most oxidative stability criteria, PO addition led to a slower deterioration of CO at heating temperatures. The effect of microwave heating on the fatty acid composition of the samples was not remarkable. PO addition decelerated the formation of primary and secondary oxidation products in CO. However, effect of adding PO to CO on the formation of free fatty acids and polymers during microwave treatment was not significant (P < 0.05). No significant difference in food oil sensor value was detected between CO and PC throughout the heating periods. Microwave heating caused formation of comparatively lower amounts of some degradative products in PC compared to CO indicating a lower extent of oxidative degradation of PC.

  16. Near-Field Resonance Microwave Tomography and Holography

    NASA Astrophysics Data System (ADS)

    Gaikovich, K. P.; Smirnov, A. I.; Yanin, D. V.

    2018-02-01

    We develop the methods of electromagnetic computer near-field microwave tomography of distributed subsurface inhomogeneities of complex dielectric permittivity and of holography (shape retrieval) of internally homogeneous subsurface objects. The methods are based on the solution of the near-field inverse scattering problem from measurements of the resonance-parameter variations of microwave probes above the medium surface. The capabilities of the proposed diagnostic technique are demonstrated in the numerical simulation for sensors with a cylindrical capacitor as a probe element, the edge capacitance of which is sensitive to subsurface inhomogeneities.

  17. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Alekseev, I. S.; Ivanov, I. E.; Strelkov, P. S., E-mail: strelkov@fpl.gpi.ru

    A method based on the detection of emission of a dielectric screen with metal microinclusions in open air is applied to visualize the transverse structure of a high-power microwave beam. In contrast to other visualization techniques, the results obtained in this work provide qualitative information not only on the electric field strength, but also on the structure of electric field lines in the microwave beam cross section. The interpretation of the results obtained with this method is confirmed by numerical simulations of the structure of electric field lines in the microwave beam cross section by means of the CARAT code.

  18. On-chip dual-comb source for spectroscopy.

    PubMed

    Dutt, Avik; Joshi, Chaitanya; Ji, Xingchen; Cardenas, Jaime; Okawachi, Yoshitomo; Luke, Kevin; Gaeta, Alexander L; Lipson, Michal

    2018-03-01

    Dual-comb spectroscopy is a powerful technique for real-time, broadband optical sampling of molecular spectra, which requires no moving components. Recent developments with microresonator-based platforms have enabled frequency combs at the chip scale. However, the need to precisely match the resonance wavelengths of distinct high quality-factor microcavities has hindered the development of on-chip dual combs. We report the simultaneous generation of two microresonator combs on the same chip from a single laser, drastically reducing experimental complexity. We demonstrate broadband optical spectra spanning 51 THz and low-noise operation of both combs by deterministically tuning into soliton mode-locked states using integrated microheaters, resulting in narrow (<10 kHz) microwave beat notes. We further use one comb as a reference to probe the formation dynamics of the other comb, thus introducing a technique to investigate comb evolution without auxiliary lasers or microwave oscillators. We demonstrate high signal-to-noise ratio absorption spectroscopy spanning 170 nm using the dual-comb source over a 20-μs acquisition time. Our device paves the way for compact and robust spectrometers at nanosecond time scales enabled by large beat-note spacings (>1 GHz).

  19. Noncontact conductivity and dielectric measurement for high throughput roll-to-roll nanomanufacturing

    NASA Astrophysics Data System (ADS)

    Orloff, Nathan D.; Long, Christian J.; Obrzut, Jan; Maillaud, Laurent; Mirri, Francesca; Kole, Thomas P.; McMichael, Robert D.; Pasquali, Matteo; Stranick, Stephan J.; Alexander Liddle, J.

    2015-11-01

    Advances in roll-to-roll processing of graphene and carbon nanotubes have at last led to the continuous production of high-quality coatings and filaments, ushering in a wave of applications for flexible and wearable electronics, woven fabrics, and wires. These applications often require specific electrical properties, and hence precise control over material micro- and nanostructure. While such control can be achieved, in principle, by closed-loop processing methods, there are relatively few noncontact and nondestructive options for quantifying the electrical properties of materials on a moving web at the speed required in modern nanomanufacturing. Here, we demonstrate a noncontact microwave method for measuring the dielectric constant and conductivity (or geometry for samples of known dielectric properties) of materials in a millisecond. Such measurement times are compatible with current and future industrial needs, enabling real-time materials characterization and in-line control of processing variables without disrupting production.

  20. Size validity of plasma-metamaterial cloaking monitored by scattering wave in finite-difference time-domain method

    NASA Astrophysics Data System (ADS)

    Bambina, Alexandre; Yamaguchi, Shuhei; Iwai, Akinori; Miyagi, Shigeyuki; Sakai, Osamu

    2018-01-01

    Limitation of the cloak-size reduction is investigated numerically by a finite-difference time-domain (FDTD) method. A metallic pole that imitates an antenna is cloaked with an anisotropic and parameter-gradient medium against electromagnetic-wave propagation in microwave range. The cloaking structure is a metamaterial submerged in a plasma confined in a vacuum chamber made of glass. The smooth-permittivity plasma can be compressed in the radial direction, which enables us to decrease the size of the cloak. Theoretical analysis is performed numerically by comparing scattering waves in various cases; there exists a high reduction of the scattering wave when the radius of the cloak is larger than a quarter of one wavelength. This result indicates that the required size of the cloaking layer is more than an object scale in the Rayleigh scattering regime.

  1. Noncontact conductivity and dielectric measurement for high throughput roll-to-roll nanomanufacturing

    PubMed Central

    Orloff, Nathan D.; Long, Christian J.; Obrzut, Jan; Maillaud, Laurent; Mirri, Francesca; Kole, Thomas P.; McMichael, Robert D.; Pasquali, Matteo; Stranick, Stephan J.; Alexander Liddle, J.

    2015-01-01

    Advances in roll-to-roll processing of graphene and carbon nanotubes have at last led to the continuous production of high-quality coatings and filaments, ushering in a wave of applications for flexible and wearable electronics, woven fabrics, and wires. These applications often require specific electrical properties, and hence precise control over material micro- and nanostructure. While such control can be achieved, in principle, by closed-loop processing methods, there are relatively few noncontact and nondestructive options for quantifying the electrical properties of materials on a moving web at the speed required in modern nanomanufacturing. Here, we demonstrate a noncontact microwave method for measuring the dielectric constant and conductivity (or geometry for samples of known dielectric properties) of materials in a millisecond. Such measurement times are compatible with current and future industrial needs, enabling real-time materials characterization and in-line control of processing variables without disrupting production. PMID:26592441

  2. Advances in Molecular Rotational Spectroscopy for Applied Science

    NASA Astrophysics Data System (ADS)

    Harris, Brent; Fields, Shelby S.; Pulliam, Robin; Muckle, Matt; Neill, Justin L.

    2017-06-01

    Advances in chemical sensitivity and robust, solid-state designs for microwave/millimeter-wave instrumentation compel the expansion of molecular rotational spectroscopy as research tool into applied science. It is familiar to consider molecular rotational spectroscopy for air analysis. Those techniques for molecular rotational spectroscopy are included in our presentation of a more broad application space for materials analysis using Fourier Transform Molecular Rotational Resonance (FT-MRR) spectrometers. There are potentially transformative advantages for direct gas analysis of complex mixtures, determination of unknown evolved gases with parts per trillion detection limits in solid materials, and unambiguous chiral determination. The introduction of FT-MRR as an alternative detection principle for analytical chemistry has created a ripe research space for the development of new analytical methods and sampling equipment to fully enable FT-MRR. We present the current state of purpose-built FT-MRR instrumentation and the latest application measurements that make use of new sampling methods.

  3. Investigation of direct solar-to-microwave energy conversion techniques

    NASA Technical Reports Server (NTRS)

    Chatterton, N. E.; Mookherji, T. K.; Wunsch, P. K.

    1978-01-01

    Identification of alternative methods of producing microwave energy from solar radiation for purposes of directing power to the Earth from space is investigated. Specifically, methods of conversion of optical radiation into microwave radiation by the most direct means are investigated. Approaches based on demonstrated device functioning and basic phenomenologies are developed. There is no system concept developed, that is competitive with current baseline concepts. The most direct methods of conversion appear to require an initial step of production of coherent laser radiation. Other methods generally require production of electron streams for use in solid-state or cavity-oscillator systems. Further development is suggested to be worthwhile for suggested devices and on concepts utilizing a free-electron stream for the intraspace station power transport mechanism.

  4. Microwave sintering of single plate-shaped articles

    DOEpatents

    Katz, J.D.; Blake, R.D.

    1995-07-11

    Apparatus and method are disclosed for high temperature sintering of plate-shaped articles of alumina, magnesia, silica, yttria, zirconia, and mixtures thereof using microwave radiation. An article is placed within a sintering structure located within a sintering container which is placed in a microwave cavity for heating. The rates at which heating and cooling take place is controlled. 2 figs.

  5. Extraction and analysis of antioxidant capacity in eight edible beans

    USDA-ARS?s Scientific Manuscript database

    In this work we explored the use of microwave as a fast method for the extraction of antioxidants from beans. Antioxidant capacity of the extracts from meat and the hull of eight common beans was determined, using the ß-carotene bleaching method. Microwave-assisted extraction was achieved using two ...

  6. Method for producing ceramic-glass-ceramic seals by microwave heating

    DOEpatents

    Blake, Rodger D.; Meek, Thomas T.

    1986-01-01

    Method for producing a ceramic-glass-ceramic seal by the use of microwave energy, and a sealing mixture which comprises a glass sealing material, a coupling agent, and an oxidizer. The seal produced exhibits greater strength due to its different microstructure. Sodium nitrate is the most preferred oxidizer.

  7. Novel method for water vapour monitoring using wireless communication networks measurements

    NASA Astrophysics Data System (ADS)

    David, N.; Alpert, P.; Messer, H.

    2009-04-01

    We propose a new technique for monitoring near-surface water vapour, by estimating humidity from data collected through existing wireless communication networks. Water vapour plays a crucial part in a variety of atmospheric processes. As the most influential of greenhouse gases, it absorbs long-wave terrestrial radiation. The water vapour cycle of evaporation and recondensation is a major energy redistributing mechanism transferring heat energy from the Earth's surface to the atmosphere. Additionally, humidity has an important role in weather forecasting as a key variable required for initialization of atmospheric models and hazard warning techniques. However, current methods of monitoring humidity suffer from low spatial resolution, high cost or a lack of precision when measuring near ground levels. Weather conditions and atmospheric phenomena affect the electromagnetic channel, causing attenuations to the radio signals. Thus, wireless communication networks are in effect built-in environmental monitoring facilities. The wireless microwave links, used in these networks, are widely deployed by cellular providers for backhaul communication between base stations, a few tens of meters above ground level. As a result, the proposed method can provide moisture observations at high temporal and spatial resolution. Further, the implementation cost is minimal, since the data used is already collected and saved by the cellular operators. In addition - many of these links are installed in areas where access is difficult such as orographic terrain and complex topography. As such, our method enables measurements in places that have been hard to measure in the past, or have never been measured before. The technique is restricted to weather conditions which include absence of rain, fog or clouds along the propagation path. We present results from real-data measurements taken from microwave links used in a backhaul cellular network that show very good agreement with surface station humidity measurements.

  8. Effects of hot-air and hybrid hot air-microwave drying on drying kinetics and textural quality of nectarine slices

    NASA Astrophysics Data System (ADS)

    Miraei Ashtiani, Seyed-Hassan; Sturm, Barbara; Nasirahmadi, Abozar

    2018-04-01

    Drying and physicochemical characteristics of nectarine slices were investigated using hot-air and hybrid hot air-microwave drying methods under fixed air temperature and air speed (50 °C and 0.5 m/s, respectively). Microwave power levels for the combined hot air-microwave method were 80, 160, 240, and 320 W. Drying kinetics were analyzed and compared using six mathematical models. For both drying methods the model with the best fitness in explaining the drying behavior was the Midilli-Kucuk model. The coefficient of determination ( R 2), root mean square error (RMSE) and reduced chi square ( χ 2) for this model have been obtained greater than 0.999 and less than 0.006 and 0.0001 for hybrid hot air-microwave drying while those values for hot-air drying were more than 0.999 and less than 0.003 and 0.0001, respectively. Results showed that the hybrid method reduced the drying time considerably and produced products with higher quality. The range of effective moisture diffusivity ( D eff ) of hybrid and hot-air drying was between 8.15 × 10-8 and 2.83 × 10-7 m2/s and 1.27 × 10-8 m2/s, respectively. The total color difference (ΔE) has also been obtained from 36.68 to 44.27 for hybrid method; however this value for hot-air drying was found 49.64. Although reduced microwave power output led to a lower drying rate, it reduced changes in product parameters i.e. total color change, surface roughness, shrinkage and microstructural change and increased hardness and water uptake.

  9. Effect of different alcohols, gelatinizing times, calcination and microwave on characteristics of TiO2 nanoparticles synthesized by sol-gel method

    NASA Astrophysics Data System (ADS)

    Bahar, Mahmoud; Mozaffari, Masoud; Esmaeili, Sahar

    2017-03-01

    In this work, nanoparticles of titanium dioxide (TiO2) were synthesized by means of TiCl4 as precursor. Effects of alcohol type, calcination, gelatinizing time and microwave exposure on the particle size, morphology, crystallinity and particle phase are studied using XRD patterns and SEM images. Results showed that alcohols such as ethanol increased the particle size; calcination increased the particle size and improved the crystallinity of particles. Microwave exposure of particles resulted in smaller particles; adding water increased the impact of microwave. Effect of microwave exposure in rutile phase formation is also observed during this study.

  10. A multistage selective weighting method for improved microwave breast tomography.

    PubMed

    Shahzad, Atif; O'Halloran, Martin; Jones, Edward; Glavin, Martin

    2016-12-01

    Microwave tomography has shown potential to successfully reconstruct the dielectric properties of the human breast, thereby providing an alternative to other imaging modalities used in breast imaging applications. Considering the costly forward solution and complex iterative algorithms, computational complexity becomes a major bottleneck in practical applications of microwave tomography. In addition, the natural tendency of microwave inversion algorithms to reward high contrast breast tissue boundaries, such as the skin-adipose interface, usually leads to a very slow reconstruction of the internal tissue structure of human breast. This paper presents a multistage selective weighting method to improve the reconstruction quality of breast dielectric properties and minimize the computational cost of microwave breast tomography. In the proposed two stage approach, the skin layer is approximated using scaled microwave measurements in the first pass of the inversion algorithm; a numerical skin model is then constructed based on the estimated skin layer and the assumed dielectric properties of the skin tissue. In the second stage of the algorithm, the skin model is used as a priori information to reconstruct the internal tissue structure of the breast using a set of temporal scaling functions. The proposed method is evaluated on anatomically accurate MRI-derived breast phantoms and a comparison with the standard single-stage technique is presented. Copyright © 2016 The Author(s). Published by Elsevier Ltd.. All rights reserved.

  11. Overview of Microwave and Millimeter Wave Testing Activities for the Inspection of the Space Shuttle SOH and Heat Tiles

    NASA Technical Reports Server (NTRS)

    Zoughi, R.

    2005-01-01

    Microwave and millimeter wave nondestructive testing and evaluation methods, have shown great potential for inspecting the Space Shuttle s external tank spray on foam insulation (SOFI) and acreage heat tiles. These methods are capable of producing high-resolution images of et interior of these structures. To this end, several different microwave and millimeter wave nondestructive testing methods have been investigated for this purpose. These methods have included near-field as well as focused approaches ranging in frequency from 10 GHz to beyond 100 GHz. Additionally, synthetic aperture focusing methods have also been developed in this regime for obtaining high-resolution images of the interior of these critical structures. These methods possess the potential for producing 3D images of these structures in a relatively short amount of time. This paper presents a summary of these activities in addition to providing examples of images produced using these diverse methods.

  12. Design and fabrication of planar structures with graded electromagnetic properties

    NASA Astrophysics Data System (ADS)

    Good, Brandon Lowell

    Successfully integrating electromagnetic properties in planar structures offers numerous benefits to the microwave and optical communities. This work aims at formulating new analytic and optimized design methods, creating new fabrication techniques for achieving those methods, and matching appropriate implementation of methods to fabrication techniques. The analytic method consists of modifying an approach that realizes perfect antireflective properties from graded profiles. This method is shown for all-dielectric and magneto-dielectric grading profiles. The optimized design methods are applied to transformer (discrete) or taper (continuous) designs. From these methods, a subtractive and an additive manufacturing technique were established and are described. The additive method, dry powder dot deposition, enables three dimensional varying electromagnetic properties in a structural composite. Combining the methods and fabrication is shown in two applied methodologies. The first uses dry powder dot deposition to design one dimensionally graded electromagnetic profiles in a planar fiberglass composite. The second method simultaneously applies antireflective properties and adjusts directivity through a slab through the use of subwavelength structures to achieve a flat antireflective lens. The end result of this work is a complete set of methods, formulations, and fabrication techniques to achieve integrated electromagnetic properties in planar structures.

  13. Asymmetrical penetration of microwave in a conducting media and determination of microwave conductivity for very thin samples using electron spin resonance

    NASA Astrophysics Data System (ADS)

    Seridonio, A. C.; Walmsley, L.

    2001-04-01

    Dyson's theory of conduction electron spin resonance (CESR) has been used in the limit d≤δ (d being the thickness of the sample and δ the skin depth of the microwave field) to obtain the microwave conductivity from the (A/B) ratio of the CESR absorbed power derivative. In this work we calculate the CESR absorbed power derivative using Kaplan's approach and show that the (A/B) ratio can be enhanced if asymmetrical penetration of microwave is used, which means that the microwave field enters into the sample from one of the faces. Therefore, the determination of the microwave conductivity from the (A/B) ratio of the CESR line can be performed for thinner samples. Experimentally, asymmetrical penetration can be obtained if one of the sample's faces is covered with a thin gold layer. The determination of microwave conductivity in conducting polymers films is among the possible applications of this method.

  14. Method and apparatus utilizing ionizing and microwave radiation for saturation determination of water, oil and a gas in a core sample

    DOEpatents

    Maerefat, Nicida L.; Parmeswar, Ravi; Brinkmeyer, Alan D.; Honarpour, Mehdi

    1994-01-01

    A system for determining the relative permeabilities of gas, water and oil in a core sample has a microwave emitter/detector subsystem and an X-ray emitter/detector subsystem. A core holder positions the core sample between microwave absorbers which prevent diffracted microwaves from reaching a microwave detector where they would reduce the signal-to-noise ratio of the microwave measurements. The microwave emitter/detector subsystem and the X-ray emitter/detector subsystem each have linear calibration characteristics, allowing one subsystem to be calibrated with respect to the other subsystem. The dynamic range of microwave measurements is extended through the use of adjustable attenuators. This also facilitates the use of core samples with wide diameters. The stratification characteristics of the fluids may be observed with a windowed cell separator at the outlet of the core sample. The condensation of heavy hydrocarbon gas and the dynamic characteristics of the fluids are observed with a sight glass at the outlet of the core sample.

  15. Dynamic Self-Locking of an OEO Containing a VCSEL

    NASA Technical Reports Server (NTRS)

    Strekalov, Dmitry; Matsko, Andrey; Yu, Nan; Savchenkov, Anatoliy; Maleki, Lute

    2009-01-01

    A method of dynamic self-locking has been demonstrated to be effective as a means of stabilizing the wavelength of light emitted by a vertical-cavity surface-emitting laser (VCSEL) that is an active element in the frequency-control loop of an optoelectronic oscillator (OEO) designed to implement an atomic clock based on an electromagnetically- induced-transparency (EIT) resonance. This scheme can be considered an alternative to the one described in Optical Injection Locking of a VCSEL in an OEO (NPO-43454), NASA Tech Briefs, Vol. 33, No. 7 (July 2009), page 33. Both schemes are expected to enable the development of small, low-power, high-stability atomic clocks that would be suitable for use in applications involving precise navigation and/or communication. To recapitulate from the cited prior article: In one essential aspect of operation of an OEO of the type described above, a microwave modulation signal is coupled into the VCSEL. Heretofore, it has been well known that the wavelength of light emitted by a VCSEL depends on its temperature and drive current, necessitating thorough stabilization of these operational parameters. Recently, it was discovered that the wavelength also depends on the microwave power coupled into the VCSEL. This concludes the background information. From the perspective that led to the conception of the optical injection-locking scheme described in the cited prior article, the variation of the VCSEL wavelength with the microwave power circulating in the frequency-control loop is regarded as a disadvantage and optical injection locking is a solution of the problem of stabilizing the wavelength in the presence of uncontrolled fluctuations in the microwave power. The present scheme for dynamic self-locking emerges from a different perspective, in which the dependence of VCSEL wavelength on microwave power is regarded as an advantageous phenomenon that can be exploited as a means of controlling the wavelength. The figure schematically depicts an atomic-clock OEO of the type in question, wherein (1) the light from the VCSEL is used to excite an EIT resonance in selected atoms in a gas cell (e.g., 87Rb atoms in a low-pressure mixture of Ar and Ne) and (2) the power supplied to the VCSEL is modulated by a microwave signal that includes components at beat frequencies among the VCSEL wavelength and modulation sidebands. As the VCSEL wavelength changes, it moves closer to or farther from a nearby absorption spectral line, and the optical power transmitted through the cell (and thus the loop gain) changes accordingly. A change in the loop gain causes a change in the microwave power and, thus, in the VCSEL wavelength. It is possible to choose a set of design and operational parameters (most importantly, the electronic part of the loop gain) such that the OEO stabilizes itself in the sense that an increase in circulating microwave power causes the VCSEL wavelength to change in a direction that results in an increase in optical absorption and thus a decrease in circulating microwave power. Typically, such an appropriate choice of operational parameters involves setting the nominal VCSEL wavelength to a point on the shorter-wavelength wing of an absorption spectral line.

  16. 2.45 GHz Microwave Processing and Its Influence on Glass Fiber Reinforced Plastics.

    PubMed

    Teufl, Daniel; Zaremba, Swen

    2018-05-18

    During the production of fiber-reinforced composite materials, liquid resin is introduced into the fiber material and cured, i.e., hardened. An elevated temperature is needed for this curing. Microwave curing of composites has been investigated for some time, but it has mostly been done using small domestic or laboratory equipment. However, no investigation has been carried out using an industrial-sized chamber-microwave for glass fiber-reinforced plastic (GFRP). Here, we show that microwave curing produces laminates of the same quality as oven-cured ones. The study shows that, if the process is done right, GFRP samples can be produced with an industrial scale microwave. Even if not fully cured, microwave samples show a glass transition temperature measured with DMA ( T g-DMA ) that is comparable to the T g-DMA according to the proposed cure cycle on the data sheet. Specific microwave-cured configurations show better inter-laminar shear strength than oven specimens. The results show that microwave-based heat introduction can be a beneficial curing method for GFRP laminates. A microwave-optimized process is faster and leads to better mechanical properties.

  17. Experimental and numerical modeling research of rubber material during microwave heating process

    NASA Astrophysics Data System (ADS)

    Chen, Hailong; Li, Tao; Li, Kunling; Li, Qingling

    2018-05-01

    This paper aims to investigate the heating behaviors of block rubber by experimental and simulated method. The COMSOL Multiphysics 5.0 software was utilized in numerical simulation work. The effects of microwave frequency, power and sample size on temperature distribution are examined. The effect of frequency on temperature distribution is obvious. The maximum and minimum temperatures of block rubber increase first and then decrease with frequency increasing. The microwave heating efficiency is maximum in the microwave frequency of 2450 MHz. However, more uniform temperature distribution is presented in other microwave frequencies. The influence of microwave power on temperature distribution is also remarkable. The smaller the power, the more uniform the temperature distribution on the block rubber. The effect of power on microwave heating efficiency is not obvious. The effect of sample size on temperature distribution is evidently found. The smaller the sample size, the more uniform the temperature distribution on the block rubber. However, the smaller the sample size, the lower the microwave heating efficiency. The results can serve as references for the research on heating rubber material by microwave technology.

  18. 2.45 GHz Microwave Processing and Its Influence on Glass Fiber Reinforced Plastics

    PubMed Central

    Zaremba, Swen

    2018-01-01

    During the production of fiber-reinforced composite materials, liquid resin is introduced into the fiber material and cured, i.e., hardened. An elevated temperature is needed for this curing. Microwave curing of composites has been investigated for some time, but it has mostly been done using small domestic or laboratory equipment. However, no investigation has been carried out using an industrial-sized chamber-microwave for glass fiber-reinforced plastic (GFRP). Here, we show that microwave curing produces laminates of the same quality as oven-cured ones. The study shows that, if the process is done right, GFRP samples can be produced with an industrial scale microwave. Even if not fully cured, microwave samples show a glass transition temperature measured with DMA (Tg-DMA) that is comparable to the Tg-DMA according to the proposed cure cycle on the data sheet. Specific microwave-cured configurations show better inter-laminar shear strength than oven specimens. The results show that microwave-based heat introduction can be a beneficial curing method for GFRP laminates. A microwave-optimized process is faster and leads to better mechanical properties. PMID:29783684

  19. Ultrafast synthesis and characterization of carbonated hydroxyapatite nanopowders via sonochemistry-assisted microwave process.

    PubMed

    Zou, Zhaoyong; Lin, Kaili; Chen, Lei; Chang, Jiang

    2012-11-01

    Herein, carbonated hydroxyapatite (CHAp) nanopowders were synthesized via sonochemistry-assisted microwave process. The influences of microwave and ultrasonic irradiation on the crystallinity, morphology, yield, Ca/P molar ratio, specific surface area and dispersibility were investigated and compared with the conventional precipitation method. The results showed that sonochemistry-assisted microwave process significantly increased the synthetic efficiency. The well-crystallized nanopowders could be obtained at high yield of 98.8% in ultra-short-period of 5min. In addition, the crystallization process was promoted with the increase of ultrasonic and microwave power and the reaction time during the sonochemistry-assisted microwave process. The sonochemistry assistance also remarkably increased the specific surface area and dispersibility of the as-obtained products. These results suggest that the sonochemistry-assisted microwave process is an effective approach to synthesize CHAp with high efficiency. Copyright © 2012 Elsevier B.V. All rights reserved.

  20. Time-of-Flight Microwave Camera.

    PubMed

    Charvat, Gregory; Temme, Andrew; Feigin, Micha; Raskar, Ramesh

    2015-10-05

    Microwaves can penetrate many obstructions that are opaque at visible wavelengths, however microwave imaging is challenging due to resolution limits associated with relatively small apertures and unrecoverable "stealth" regions due to the specularity of most objects at microwave frequencies. We demonstrate a multispectral time-of-flight microwave imaging system which overcomes these challenges with a large passive aperture to improve lateral resolution, multiple illumination points with a data fusion method to reduce stealth regions, and a frequency modulated continuous wave (FMCW) receiver to achieve depth resolution. The camera captures images with a resolution of 1.5 degrees, multispectral images across the X frequency band (8 GHz-12 GHz), and a time resolution of 200 ps (6 cm optical path in free space). Images are taken of objects in free space as well as behind drywall and plywood. This architecture allows "camera-like" behavior from a microwave imaging system and is practical for imaging everyday objects in the microwave spectrum.

  1. Effects of low-dose microwave on healing of fractures with titanium alloy internal fixation: an experimental study in a rabbit model.

    PubMed

    Ye, Dongmei; Xu, Yiming; Zhang, Han; Fu, Tengfei; Jiang, Lan; Bai, Yuehong

    2013-01-01

    Microwave is a method for improving fracture repair. However, one of the contraindications for microwave treatment listed in the literature is surgically implanted metal plates in the treatment field. The reason is that the reflection of electromagnetic waves and the eddy current stimulated by microwave would increase the temperature of magnetic implants and cause heat damage in tissues. Comparing with traditional medical stainless steel, titanium alloy is a kind of medical implants with low magnetic permeability and electric conductivity. But the effects of microwave treatment on fracture with titanium alloy internal fixation in vivo were not reported. The aim of this article was to evaluate the security and effects of microwave on healing of a fracture with titanium alloy internal fixation. Titanium alloy internal fixation systems were implanted in New Zealand rabbits with a 3.0 mm bone defect in the middle of femur. We applied a 30-day microwave treatment (2,450MHz, 25W, 10 min per day) to the fracture 3 days after operation. Temperature changes of muscle tissues around implants were measured during the irradiation. Normalized radiographic density of the fracture gap was measured on the 10th day and 30th day of the microwave treatment. All of the animals were killed after 10 and 30 days microwave treatment with histologic and histomorphometric examinations performed on the harvested tissues. The temperatures did not increase significantly in animals with titanium alloy implants. The security of microwave treatment was also supported by histology of muscles, nerve and bone around the implants. Radiographic assessment, histologic and histomorphometric examinations revealed significant improvement in the healing bone. Our results suggest that, in the healing of fracture with titanium alloy internal fixation, a low dose of microwave treatment may be a promising method.

  2. Rapid syntheses of a metal-organic framework material Cu3(BTC)2(H2O)3 under microwave: a quantitative analysis of accelerated syntheses.

    PubMed

    Khan, Nazmul Abedin; Haque, Enamul; Jhung, Sung Hwa

    2010-03-20

    A typical MOF material, Cu-BTC has been synthesized with microwave and conventional electric heating in various conditions to elucidate, for the first time, the quantitative acceleration in the synthesis of a MOF by microwaves. The acceleration by microwaves is mainly due to rapid nucleation rather than rapid crystal growth, even though both stages are accelerated. The acceleration in the nucleation stage by microwaves is due to the very large pre-exponential factor (about 1.4 x 10(10) times that of conventional synthesis) in the Arrhenius plot. However, the activation energy for the nucleation in the case of microwave synthesis is higher than the activation energy of conventional synthesis. The large acceleration in the nucleation, compared with that in the crystal growth, is observed once again by the syntheses in two-steps (changing heating methods from microwave into conventional heating or from conventional heating into microwave heating just after the nucleation is completed). The crystal size of Cu-BTC obtained by microwave-nucleation is generally smaller than the Cu-BTC made by conventional-nucleation, probably due to rapid nucleation and the small size of nuclei with microwave-nucleation.

  3. Ultra-fast microwave-assisted hydrothermal synthesis of long vertically aligned ZnO nanowires for dye-sensitized solar cell application.

    PubMed

    Mahpeykar, S M; Koohsorkhi, J; Ghafoori-Fard, H

    2012-04-27

    Long vertically aligned ZnO nanowire arrays were synthesized using an ultra-fast microwave-assisted hydrothermal process. Using this method, we were able to grow ZnO nanowire arrays at an average growth rate as high as 200 nm min(-1) for maximum microwave power level. This method does not suffer from the growth stoppage problem at long growth times that, according to our investigations, a normal microwave-assisted hydrothermal method suffers from. Longitudinal growth of the nanowire arrays was investigated as a function of microwave power level and growth time using cross-sectional FESEM images of the grown arrays. Effect of seed layer on the alignment of nanowires was also studied. X-ray diffraction analysis confirmed c-axis orientation and single-phase wurtzite structure of the nanowires. J-V curves of the fabricated ZnO nanowire-based mercurochrome-sensitized solar cells indicated that the short-circuit current density is increased with increasing the length of the nanowire array. According to the UV-vis spectra of the dyes detached from the cells, these increments were mainly attributed to the enlarged internal surface area and therefore dye loading enhancement in the lengthened nanowire arrays.

  4. Computational fluid dynamics and frequency-dependent finite-difference time-domain method coupling for the interaction between microwaves and plasma in rocket plumes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kinefuchi, K.; Funaki, I.; Shimada, T.

    Under certain conditions during rocket flights, ionized exhaust plumes from solid rocket motors may interfere with radio frequency transmissions. To understand the relevant physical processes involved in this phenomenon and establish a prediction process for in-flight attenuation levels, we attempted to measure microwave attenuation caused by rocket exhaust plumes in a sea-level static firing test for a full-scale solid propellant rocket motor. The microwave attenuation level was calculated by a coupling simulation of the inviscid-frozen-flow computational fluid dynamics of an exhaust plume and detailed analysis of microwave transmissions by applying a frequency-dependent finite-difference time-domain method with the Drude dispersion model.more » The calculated microwave attenuation level agreed well with the experimental results, except in the case of interference downstream the Mach disk in the exhaust plume. It was concluded that the coupling estimation method based on the physics of the frozen plasma flow with Drude dispersion would be suitable for actual flight conditions, although the mixing and afterburning in the plume should be considered depending on the flow condition.« less

  5. Layered double hydroxide/polyethylene terephthalate nanocomposites. Influence of the intercalated LDH anion and the type of polymerization heating method

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Herrero, M.; Martinez-Gallegos, S.; Labajos, F.M.

    2011-11-15

    Conventional and microwave heating routes have been used to prepare PET-LDH (polyethylene terephthalate-layered double hydroxide) composites with 1-10 wt% LDH by in situ polymerization. To enhance the compatibility between PET and the LDH, terephthalate or dodecyl sulphate had been previously intercalated in the LDH. PXRD and TEM were used to detect the degree of dispersion of the filler and the type of the polymeric composites obtained, and FTIR spectroscopy confirmed that the polymerization process had taken place. The thermal stability of these composites, as studied by thermogravimetric analysis, was enhanced when the microwave heating method was applied. Dodecyl sulphate wasmore » more effective than terephthalate to exfoliate the samples, which only occurred for the terephthalate ones under microwave irradiation. - Graphical abstract: Conventional and microwave heating routes were used to prepare PET-LDH (polyethylene terephthalate-layered double hydroxide) composites with 1-10 wt% LDH by in situ polymerization. To enhance the compatibility between PET and the LDH, terephthalate or dodecyl sulphate was previously intercalated into the LDH. The microwave process improves the dispersion and the thermal stability of nanocomposites due to the interaction of the microwave radiation and the dipolar properties of EG and the homogeneous heating. Highlights: > LDH-PET compatibility is enhanced by preintercalation of organic anions. > Dodecylsulphate performance is much better than that of terephthalate. > Microwave heating improves the thermal stability of the composites. > Microwave heating improves as well the dispersion of the inorganic phase.« less

  6. Microwave-Induced Interfacial Nanobubbles.

    PubMed

    Wang, Lei; Miao, Xiaojun; Pan, Gang

    2016-11-01

    A new method for generating nanobubbles via microwave irradiation was verified and quantified. AFM measurement showed that nanobubbles with diameters ranging from 200 to 600 nm were generated at a water-HOPG surface by applying microwave radiation to aqueous solutions with 9.0-30.0 mg/L dissolved oxygen. Graphite displays strong microwave absorption and transmits high thermal energy to the surface. Because of the high dielectric constant (20 °C, 80 F/m) and dielectric loss factor, water molecules have a strong ability to absorb microwave radiation. The thermal and nonthermal effects of microwave radiation made contributions to decreasing the gas solubility, thus facilitating nanobubble nucleation. The yield of nanobubbles increased about 10-fold when the irradiation time increased from 60 to 120 s at 200 W of microwave radiation. The nanobubble density increased from 0.8 to 15 μm -2 by improving the working power from 200 to 600 W. An apparent improvement in nanobubbles yield was obtained between 300 and 400 W, and the resulting temperature was 34-52 °C. When the initial dissolved oxygen increased from 11.3 to 30.0 mg/L, the density of nanobubbles increased from 1.2 to 13 μm -2 . The generation of nanobubbles could be well controlled by adjusting the gas concentration, microwave power, or irradiation time. The method may be valuable in preparing surface nanobubbles quickly and conveniently for various applications, such as catalysis, hypoxia/anoxia remediation, and templates for preparing nanoscale materials.

  7. Comparison of microwave-assisted and conventional extraction of mangiferin from mango (Mangifera indica L.) leaves.

    PubMed

    Zou, Tangbin; Wu, Hongfu; Li, Huawen; Jia, Qing; Song, Gang

    2013-10-01

    Mangiferin is the main bioactive component in mango leaves, which possesses anti-inflammatory, antioxidative, antidiabetic, immunomodulatory, and antitumor activities. In the present study, a microwave-assisted extraction method was developed for the extraction of mangiferin from mango leaves. Some parameters such as ethanol concentration, liquid-to-solid ratio, microwave power, and extraction time were optimized by single-factor experiments and response surface methodology. The optimal extraction conditions were 45% ethanol, liquid-to-solid ratio of 30:1 (mL/g), and extraction time of 123 s under microwave irradiation of 474 W. Under optimal conditions, the yield of mangiferin was 36.10 ± 0.72 mg/g, significantly higher than that of conventional extraction. The results obtained are beneficial for the full utilization of mango leaves and also indicate that microwave-assisted extraction is a very useful method for extracting mangiferin from plant materials. © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  8. Absorber for wakefield interference management at the entrance of the wiggler of a free electron laser

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Marchlik, Matthew; Biallas, George Herman

    A method for managing the broad band microwave and TeraHertz (THz) radiation in a free electron laser (FEL) having a wiggler producing power in the electromagnetic spectrum. The method includes placement of broadband microwave and TeraHertz (THz) radiation absorbers on the upstream end of the wiggler. The absorbers dampen the bounced back, broad band microwave and THz radiation returning from the surfaces outside the nose of the cookie-cutter and thus preventing broadening of the electron beam pulse's narrow longitudinal energy distribution. Broadening diminishes the ultimate laser power from the wiggler. The broadband microwave and THz radiation absorbers are placed onmore » either side of the slot in the cookie-cutter that shapes the wake field wave of the electron pulse to the slot shape of the wiggler chamber aperture. The broad band microwave and THz radiation absorber is preferably a non-porous pyrolytic grade of graphite with small grain size.« less

  9. Microwave-induced biomimetic approach for hydroxyapatite coatings of chitosan scaffolds.

    PubMed

    Kaynak Bayrak, Gökçe; Demirtaş, T Tolga; Gümüşderelioğlu, Menemşe

    2017-02-10

    Simulated body fluid (SBF) can form calcium phosphates on osteoinductive materials, so it is widely used for coating of bone scaffolds to mimic natural extracellular matrix (ECM). However, difficulties of bulk coating in 3D scaffolds and the necessity of long process times are the common problems for coating with SBF. In the present study, a microwave-assisted process was developed for rapid and internal coating of chitosan scaffolds. The scaffolds were fabricated as superporous hydrogel (SPH) by combining microwave irradiation and gas foaming methods. Then, they were immersed into 10x  SBF-like solution and homogenous bone-like hydroxyapatite (HA) coating was achieved by microwave treatment at 600W without the need of any nucleating agent. Cell culture studies with MC3T3-E1 preosteoblasts showed that microwave-assisted biomimetic HA coating process could be evaluated as an efficient and rapid method to obtain composite scaffolds for bone tissue engineering. Copyright © 2016 Elsevier Ltd. All rights reserved.

  10. Coupling the snow thermodynamic model SNOWPACK with the microwave emission model of layered snowpacks for subarctic and arctic snow water equivalent retrievals

    NASA Astrophysics Data System (ADS)

    Langlois, A.; Royer, A.; Derksen, C.; Montpetit, B.; Dupont, F.; GoïTa, K.

    2012-12-01

    Satellite-passive microwave remote sensing has been extensively used to estimate snow water equivalent (SWE) in northern regions. Although passive microwave sensors operate independent of solar illumination and the lower frequencies are independent of atmospheric conditions, the coarse spatial resolution introduces uncertainties to SWE retrievals due to the surface heterogeneity within individual pixels. In this article, we investigate the coupling of a thermodynamic multilayered snow model with a passive microwave emission model. Results show that the snow model itself provides poor SWE simulations when compared to field measurements from two major field campaigns. Coupling the snow and microwave emission models with successive iterations to correct the influence of snow grain size and density significantly improves SWE simulations. This method was further validated using an additional independent data set, which also showed significant improvement using the two-step iteration method compared to standalone simulations with the snow model.

  11. Rapid microwave fixation of rat mast cells. I. Localization of granule chymase with an ultrastructural postembedding immunogold technique.

    PubMed

    Login, G R; Galli, S J; Morgan, E; Arizono, N; Schwartz, L B; Dvorak, A M

    1987-11-01

    We defined the ultrastructural localization of chymase in rat peritoneal mast cells using standard aldehyde fixation and a newly described microwave fixation method (Login GR, Dvorak AM: Microwave energy fixation for electron microscopy. Am J Pathol 120: 230, 1985; Login GR, Stavinoha WB, Dvorak AM: Ultrafast microwave energy fixation for electron microscopy. J Histochem Cytochem 34:381, 1986) and postembedding immunogold labeling. Thin sections were exposed first to goat IgG anti-rat chymase and second to gold-conjugated rabbit Ig directed against goat IgG. By transmission electron microscopy, gold particles were localized to the matrix of cytoplasmic granules. Control sections treated with nonimmune sera did not exhibit labeling of mast cells. Thin sections treated simultaneously with purified rat mast cell chymase and anti-chymase antibody in competition studies, showed a marked reduction in granule staining. These findings demonstrate that a microwave fixation method can be used to rapidly fix cell suspensions for postembedding immunocytochemical studies.

  12. Comparison of heat and mass transfer of different microwave-assisted extraction methods of essential oil from Citrus limon (Lisbon variety) peel.

    PubMed

    Golmakani, Mohammad-Taghi; Moayyedi, Mahsa

    2015-11-01

    Dried and fresh peels of Citrus limon were subjected to microwave-assisted hydrodistillation (MAHD) and solvent-free microwave extraction (SFME), respectively. A comparison was made between MAHD and SFME with the conventional hydrodistillation (HD) method in terms of extraction kinetic, chemical composition, and antioxidant activity. Higher yield results from higher extraction rates by microwaves and could be due to a synergy of two transfer phenomena: mass and heat acting in the same way. Gas chromatography/mass spectrometry (GC/MS) analysis did not indicate any noticeable differences between the constituents of essential oils obtained by MAHD and SFME, in comparison with HD. Antioxidant analysis of the extracted essential oils indicated that microwave irradiation did not have adverse effects on the radical scavenging activity of the extracted essential oils. The results of this study suggest that MAHD and SFME can be termed as green technologies because of their less energy requirements per ml of essential oil extraction.

  13. Introduction and analysis of several FY3C-MWHTS cloud/rain screening methods

    NASA Astrophysics Data System (ADS)

    Li, Xiaoqing

    2017-04-01

    Data assimilation of satellite microwave sounders are very important for numerical weather prediction. Fengyun-3C (FY-3C),launched in September, 2013, has two such sounders: MWTS (MicroWave Temperature Sounder) and MWHTS (MicroWave Humidity and Temperature Sounder). These data should be quality-controlled before assimilation and cloud/rain detection is one of the crucial steps. This paper introduced different cloud/rain detection methods based on MWHTS, VIRR (Visible and InfraRed Radiometer) and MWRI (Microwave Radiation Imager) observations. We designed 6 cloud/rain detection combinations and then analyzed the application effect of these schemes. The difference between observations and model simulations for FY-3C MWHTS channels were calculated as a parameter for analysis. Both RTTOV and CRTM were used to fast simulate radiances of MWHTS channels.

  14. Ionic-liquid-based ultrasound/microwave-assisted extraction of 2,4-dihydroxy-7-methoxy-1,4-benzoxazin-3-one and 6-methoxy-benzoxazolin-2-one from maize (Zea mays L.) seedlings.

    PubMed

    Li, Chunying; Lu, Zhicheng; Zhao, Chunjian; Yang, Lei; Fu, Yujie; Shi, Kunming; He, Xin; Li, Zhao; Zu, Yuangang

    2015-01-01

    We evaluated an ionic-liquid-based ultrasound/microwave-assisted extraction method for the extraction of 2,4-dihydroxy-7-methoxy-1,4-benzoxazin-3-one and 6-methoxy-benzoxazolin-2-one from etiolated maize seedlings. We performed single-factor and central composite rotatable design experiments to optimize the most important parameters influencing this technique. The best results were obtained using 1.00 M 1-octyl-3-methylimidazolium bromide as the extraction solvent, a 50°C extraction temperature, a 20:1 liquid/solid ratio (mL/g), a 21 min treatment time, 590 W microwave power, and 50 W fixed ultrasonic power. We performed a comparison between ionic-liquid-based ultrasound/microwave-assisted extraction and conventional homogenized extraction. Extraction yields of 2,4-dihydroxy-7-methoxy-1,4-benzoxazin-3-one and 6-methoxy-benzoxazolin-2-one by the ionic-liquid-based ultrasound/microwave-assisted extraction method were 1.392 ± 0.051 and 0.205 ± 0.008 mg/g, respectively, which were correspondingly 1.46- and 1.32-fold higher than those obtained by conventional homogenized extraction. All the results show that the ionic-liquid-based ultrasound/microwave-assisted extraction method is therefore an efficient and credible method for the extraction of 2,4-dihydroxy-7-methoxy-1,4-benzoxazin-3-one and 6-methoxy-benzoxazolin-2-one from maize seedlings. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  15. Classification methods for monitoring Arctic sea ice using OKEAN passive/active two-channel microwave data

    USGS Publications Warehouse

    Belchansky, Gennady I.; Douglas, David C.

    2000-01-01

    This paper presents methods for classifying Arctic sea ice using both passive and active (2-channel) microwave imagery acquired by the Russian OKEAN 01 polar-orbiting satellite series. Methods and results are compared to sea ice classifications derived from nearly coincident Special Sensor Microwave Imager (SSM/I) and Advanced Very High Resolution Radiometer (AVHRR) image data of the Barents, Kara, and Laptev Seas. The Russian OKEAN 01 satellite data were collected over weekly intervals during October 1995 through December 1997. Methods are presented for calibrating, georeferencing and classifying the raw active radar and passive microwave OKEAN 01 data, and for correcting the OKEAN 01 microwave radiometer calibration wedge based on concurrent 37 GHz horizontal polarization SSM/I brightness temperature data. Sea ice type and ice concentration algorithms utilized OKEAN's two-channel radar and passive microwave data in a linear mixture model based on the measured values of brightness temperature and radar backscatter, together with a priori knowledge about the scattering parameters and natural emissivities of basic sea ice types. OKEAN 01 data and algorithms tended to classify lower concentrations of young or first-year sea ice when concentrations were less than 60%, and to produce higher concentrations of multi-year sea ice when concentrations were greater than 40%, when compared to estimates produced from SSM/I data. Overall, total sea ice concentration maps derived independently from OKEAN 01, SSM/I, and AVHRR satellite imagery were all highly correlated, with uniform biases, and mean differences in total ice concentration of less than four percent (sd<15%).

  16. Ionization-Induced Self-Channeling of an Ultrahigh-Power Subnanosecond Microwave Beam in a Neutral Gas

    NASA Astrophysics Data System (ADS)

    Shafir, G.; Krasik, Ya. E.; Bliokh, Y. P.; Levko, D.; Cao, Y.; Leopold, J. G.; Gad, R.; Bernshtam, V.; Fisher, A.

    2018-03-01

    Ionization-induced self-channeling of a ≤500 MW , 9.6 GHz, <1 ns microwave beam injected into air at ˜4.5 ×103 Pa or He at ˜103 Pa is experimentally demonstrated for the first time. The plasma, generated by the impact ionization of the gas driven by the microwave beam, has a radial density distribution reducing towards the beam axis, where the microwave field is highest, because the ionization rate is a decreasing function of the microwave amplitude. This forms a plasma channel which prevents the divergence of the microwave beam. The experimental data obtained using various diagnostic methods are in good agreement with the results of analytical calculations, as well as particle in cell Monte Carlo collisional modeling.

  17. An equivalent method of mixed dielectric constant in passive microwave/millimeter radiometric measurement

    NASA Astrophysics Data System (ADS)

    Su, Jinlong; Tian, Yan; Hu, Fei; Gui, Liangqi; Cheng, Yayun; Peng, Xiaohui

    2017-10-01

    Dielectric constant is an important role to describe the properties of matter. This paper proposes This paper proposes the concept of mixed dielectric constant(MDC) in passive microwave radiometric measurement. In addition, a MDC inversion method is come up, Ratio of Angle-Polarization Difference(RAPD) is utilized in this method. The MDC of several materials are investigated using RAPD. Brightness temperatures(TBs) which calculated by MDC and original dielectric constant are compared. Random errors are added to the simulation to test the robustness of the algorithm. Keywords: Passive detection, microwave/millimeter, radiometric measurement, ratio of angle-polarization difference (RAPD), mixed dielectric constant (MDC), brightness temperatures, remote sensing, target recognition.

  18. Snow Microwave Radiative Transfer (SMRT): A new model framework to simulate snow-microwave interactions for active and passive remote sensing applications

    NASA Astrophysics Data System (ADS)

    Loewe, H.; Picard, G.; Sandells, M. J.; Mätzler, C.; Kontu, A.; Dumont, M.; Maslanka, W.; Morin, S.; Essery, R.; Lemmetyinen, J.; Wiesmann, A.; Floury, N.; Kern, M.

    2016-12-01

    Forward modeling of snow-microwave interactions is widely used to interpret microwave remote sensing data from active and passive sensors. Though different models are yet available for that purpose, a joint effort has been undertaken in the past two years within the ESA Project "Microstructural origin of electromagnetic signatures in microwave remote sensing of snow". The new Snow Microwave Radiative Transfer (SMRT) model primarily facilitates a flexible treatment of snow microstructure as seen by X-ray tomography and seeks to unite respective advantages of existing models. In its main setting, SMRT considers radiation transfer in a plane-parallel snowpack consisting of homogeneous layers with a layer microstructure represented by an autocorrelation function. The electromagnetic model, which underlies permittivity, absorption and scattering calculations within a layer, is based on the improved Born approximation. The resulting vector-radiative transfer equation in the snowpack is solved using spectral decomposition of the discrete ordinates discretization. SMRT is implemented in Python and employs an object-oriented, modular design which intends to i) provide an intuitive and fail-safe API for basic users ii) enable efficient community developments for extensions (e.g. for improvements of sub-models for microstructure, permittivity, soil or interface reflectivity) from advanced users and iii) encapsulate the numerical core which is maintained by the developers. For cross-validation and inter-model comparison, SMRT implements various ingredients of existing models as selectable options (e.g. Rayleigh or DMRT-QCA phase functions) and shallow wrappers to invoke legacy model code directly (MEMLS, DMRT-QMS, HUT). In this paper we give an overview of the model components and show examples and results from different validation schemes.

  19. Generating single microwave photons in a circuit.

    PubMed

    Houck, A A; Schuster, D I; Gambetta, J M; Schreier, J A; Johnson, B R; Chow, J M; Frunzio, L; Majer, J; Devoret, M H; Girvin, S M; Schoelkopf, R J

    2007-09-20

    Microwaves have widespread use in classical communication technologies, from long-distance broadcasts to short-distance signals within a computer chip. Like all forms of light, microwaves, even those guided by the wires of an integrated circuit, consist of discrete photons. To enable quantum communication between distant parts of a quantum computer, the signals must also be quantum, consisting of single photons, for example. However, conventional sources can generate only classical light, not single photons. One way to realize a single-photon source is to collect the fluorescence of a single atom. Early experiments measured the quantum nature of continuous radiation, and further advances allowed triggered sources of photons on demand. To allow efficient photon collection, emitters are typically placed inside optical or microwave cavities, but these sources are difficult to employ for quantum communication on wires within an integrated circuit. Here we demonstrate an on-chip, on-demand single-photon source, where the microwave photons are injected into a wire with high efficiency and spectral purity. This is accomplished in a circuit quantum electrodynamics architecture, with a microwave transmission line cavity that enhances the spontaneous emission of a single superconducting qubit. When the qubit spontaneously emits, the generated photon acts as a flying qubit, transmitting the quantum information across a chip. We perform tomography of both the qubit and the emitted photons, clearly showing that both the quantum phase and amplitude are transferred during the emission. Both the average power and voltage of the photon source are characterized to verify performance of the system. This single-photon source is an important addition to a rapidly growing toolbox for quantum optics on a chip.

  20. Novel tannin-based Si, P co-doped carbon for supercapacitor applications

    NASA Astrophysics Data System (ADS)

    Ramasahayam, Sunil Kumar; Nasini, Udaya B.; Shaikh, Ali U.; Viswanathan, Tito

    2015-02-01

    Increasing environmental pollution and population compounded by a decrease in the availability of non-renewable resources and fossil fuels has propelled the need for sustainable alternate energy storage technologies particularly in the last two decades. An attempt to meet this crisis was carried out by a unique, microwave-assisted method which has enabled the generation of a novel Si, P co-doped carbon (SiPDC) for supercapacitor applications. The microwave-assisted method is useful in developing SiPDC at a rapid and economical fashion that does not employ any inert or reducing gases, but is high yielding. Varying proportions of precursor materials were utilized to generate four SiPDCs (SiPDC-1, SiPDC-2, SiPDC-3 and SiPDC-4) with varying contents of dopants as evidenced by X-ray photoelectron spectroscopic (XPS) results. Surface area and pore size analysis revealed that SiPDC-2 has a surface area of 641.51 m2 g-1, abundant micropores, mesopores and macropores which are critical for electrical double layer capacitance (EDLC). Of all the SiPDCs, SiPDC-2 exhibited highest capacitance of 276 F g-1 in 1 M H2SO4 and 244 F g-1 in 6 M KOH at a scan rate of 5 mV s-1. Galvanostatic charge-discharge studies performed in 6 M KOH establish the high capacitance of SiPDC-2. SiPDC-2 also exhibited excellent electrochemical stability in 1 M H2SO4 and 6 M KOH.

  1. Metasurface with Reconfigurable Reflection Phase for High-Power Microwave Applications (Briefing Charts)

    DTIC Science & Technology

    2014-06-25

    Metasurfaces with Reconfigurable Reflection Phase for High-Power Microwave Applications Kenneth L. Morgan, Clinton P. Scarborough, Micah D...TITLE AND SUBTITLE Metasurface with Reconfigurable Reflection Phase for High- Power Microwave Applications 5a. CONTRACT NUMBER 5b...Examples that demonstrate theoretical methods for extending the operating power levels of metasurface reflectarrays have been given •The proposed

  2. Stabilizing an optoelectronic microwave oscillator with photonic filters

    NASA Technical Reports Server (NTRS)

    Strekalov, D.; Aveline, D.; Yu, N.; Thompson, R.; Matsko, A. B.; Maleki, L.

    2003-01-01

    This paper compares methods of active stabilization of an optoelectronic microwave oscillator (OEO) based on insertion of a source of optical group delay into an OEO loop. The performance of an OEO stabilized with either a high- optical cavity or an atomic cell is analyzed. We show that the elements play a role of narrow-band microwave filters improving an OEO stability.

  3. Microwave Induced Welding of Carbon Nanotube-Thermoplastic Interfaces for Enhanced Mechanical Strength of 3D Printed Parts

    NASA Astrophysics Data System (ADS)

    Sweeney, Charles; Lackey, Blake; Saed, Mohammad; Green, Micah

    Three-dimensional (3D) printed parts produced by fused-filament fabrication of a thermoplastic polymer have become increasingly popular at both the commercial and consumer level. The mechanical integrity of these rapid-prototyped parts however, is severely limited by the interfillament bond strength between adjacent extruded layers. In this report we propose for the first time a method for welding thermoplastic interfaces of 3D printed parts using the extreme heating response of carbon nanotubes (CNTs) to microwave energy. To achieve this, we developed a coaxial printer filament with a pure polylactide (PLA) core and a CNT composite sheath. This produces parts with a thin electrically percolating network of CNTs at the interfaces between adjacent extruded layers. These interfaces are then welded together upon microwave irradiation at 2.45GHz. Our patent-pending method has been shown to increase the tensile toughness by 1000% and tensile strength by 35%. We investigated the dielectric properties of the PLA/CNT composites at microwave frequencies and performed in-situ microwave thermometry using a forward-looking infrared (FLIR) camera to characterize the heating response of the PLA/CNT composites upon microwave irradiation.

  4. Determination of trace nickel in hydrogenated cottonseed oil by electrothermal atomic absorption spectrometry after microwave-assisted digestion.

    PubMed

    Zhang, Gai

    2012-01-01

    Microwave digestion of hydrogenated cottonseed oil prior to trace nickel determination by electrothermal atomic absorption spectrometry (ETAAS) is proposed here for the first time. Currently, the methods outlined in U.S. Pharmacopeia 28 (USP28) or British Pharmacopeia (BP2003) are recommended as the official methods for analyzing nickel in hydrogenated cottonseed oil. With these methods the samples may be pre-treated by a silica or a platinum crucible. However, the samples were easily tarnished during sample pretreatment when using a silica crucible. In contrast, when using a platinum crucible, hydrogenated cottonseed oil acting as a reducing material may react with the platinum and destroy the crucible. The proposed microwave-assisted digestion avoided tarnishing of sample in the process of sample pretreatment and also reduced the cycle of analysis. The programs of microwave digestion and the parameters of ETAAS were optimized. The accuracy of the proposed method was investigated by analyzing real samples. The results were compared with the ones by pressurized-PTFE-bomb acid digestion and ones obtained by the U.S. Pharmacopeia 28 (USP28) method. The new method involves a relatively rapid matrix destruction technique compared with other present methods for the quantification of metals in oil. © 2011 Institute of Food Technologists®

  5. Bio-diesel production directly from the microalgae biomass of Nannochloropsis by microwave and ultrasound radiation.

    PubMed

    Koberg, Miri; Cohen, Moshe; Ben-Amotz, Ami; Gedanken, Aharon

    2011-03-01

    This work offers an optimized method for the direct conversion of harvested Nannochloropsis algae into bio-diesel using two novel techniques. The first is a unique bio-technology-based environmental system utilizing flue gas from coal burning power stations for microalgae cultivation. This method reduces considerably the cost of algae production. The second technique is the direct transesterification (a one-stage method) of the Nannochloropsis biomass to bio-diesel production using microwave and ultrasound radiation with the aid of a SrO catalyst. These two techniques were tested and compared to identify the most effective bio-diesel production method. Based on our results, it is concluded that the microwave oven method appears to be the most simple and efficient method for the one-stage direct transesterification of the as-harvested Nannochloropsis algae. Copyright © 2010 Elsevier Ltd. All rights reserved.

  6. Microwave-assisted synthesis of transition metal phosphide

    DOEpatents

    Viswanathan, Tito

    2014-12-30

    A method of synthesizing transition metal phosphide. In one embodiment, the method has the steps of preparing a transition metal lignosulfonate, mixing the transition metal lignosulfonate with phosphoric acid to form a mixture, and subjecting the mixture to a microwave radiation for a duration of time effective to obtain a transition metal phosphide.

  7. Microwave assisted synthesis of bridgehead alkenes.

    PubMed

    Cleary, Leah; Yoo, Hoseong; Shea, Kenneth J

    2011-04-01

    A new, concise method to synthesize triene precursors for the type 2 intramolecular Diels-Alder reaction has been developed. Microwave irradiation of the trienes provides a convenient method for the synthesis of bridgehead alkenes. Higher yields, shorter reaction times, and lower reaction temperatures provide a general and efficient route to this interesting class of molecules.

  8. Microwave Assisted Synthesis of Bridgehead Alkenes

    PubMed Central

    Cleary, Leah; Yoo, Hoseong; Shea, Kenneth J.

    2011-01-01

    A new, concise method to synthesize triene precursors for the type 2 intramolecular Diels–Alder reaction has been developed. Microwave irradiation of the trienes provides a convenient method for the synthesis of bridgehead alkenes. Higher yields, shorter reaction times and lower reaction temperatures provide a general and efficient route to this interesting class of molecules. PMID:21384818

  9. A NOVEL HIGH-SPEED METHOD FOR THE GENERATION OF 4-ARYLDIHYDROPYRIMIDINE COMPOUND LIBRARIES USING A MICROWAVE-ASSISTED BIGINELLI CONDENSATION PROTOCOL -

    EPA Science Inventory

    In this presentation we report the application of microwave assisted chemistry to the parallel synthesis of 4-aryl-3,4-dihydropyrimidin-2(1H)-ones employing a solventless Biginelli multicomponent condensation protocol. The novel method employs neat mixtures of B-ketoesters, aryl ...

  10. Apparatus and method for investigation of energy consumption of microwave assisted drying systems.

    PubMed

    Göllei, Attila; Vass, András; Magyar, Attila; Pallai, Elisabeth

    2009-10-01

    Convective, hot air drying by itself is relatively efficient for removing water from the surface environment of agricultural seed products. However, moving internal moisture to the surface needs rather a long time, as a rule. The major research aim of the authors was to decrease the processing time and processing costs, to improve the quality of the dried product, and to increase drying efficiency. For this reason their research activities focused on the development of a special drying apparatus and a method suitable for measuring of energy conditions in a hybrid (microwave and convective) dryer. Experimental investigations were made with moistened wheat as model material. Experiments were carried out in microwave, convective and hybrid drying systems. The microwave drying alone was more efficient than the convective method. The lowest energy consumption and shortest drying time were obtained by the use of a hybrid method in which the waste energy of magnetron was utilized and the temperature was controlled. In this way, it was possible to keep the temperature of the dried product at a constant and safe value and to considerably decrease the energy consumption.

  11. A Brief Review on Metamaterial-Based Vacuum Electronics for Terahertz and Microwave Science and Technology

    NASA Astrophysics Data System (ADS)

    Matsui, Tatsunosuke

    2017-09-01

    Metamaterials, which enable us to realize novel physical effects that cannot be achieved using natural materials, have been extensively studied in recent years and significant progress has been made, especially in the field of optics. This game-changing concept has also initiated a rich variety of research activity in vacuum electronics. Here we review the recent development of metamaterial-based vacuum electronics for terahertz (THz) and microwave science and technology. The reversed Cherenkov radiation (RCR) in double-negative (DNG) metamaterials predicted by Veselago back in the 1960s has been experimentally verified in the microwave frequency range by utilizing specially designed DNG metamaterials. The interaction of an electron beam (e-beam) with DNG metamaterials may lead to the realization of novel applications such as microwave and THz radiation sources, accelerators, and even the visualization of invisibility cloaks. Smith-Purcell radiation (SPR) has recently received renewed interest owing to the development of metamaterials and the concept of spoof surface plasmon polaritons, as discussed in this review, and recent results on e-beam-induced directional and wide-band THz radiation with sharp multiple peaks from a graded grating, as well as directional and monochromatic special SPR and their possible application to THz orotron devices, are also reviewed.

  12. Fabrication, characterization, and thermal property evaluation of silver nanofluids

    PubMed Central

    2014-01-01

    Silver nanoparticles were successfully prepared in two different solvents using a microwave heating technique, with various irradiation times. The silver nanoparticles were dispersed in polar liquids (distilled water and ethylene glycol) without any other reducing agent, in the presence of the stabilizer polyvinylpyrrolidone (PVP). The optical properties, thermal properties, and morphology of the synthesized silver particles were characterized using ultraviolet-visible spectroscopy, photopyroelectric technique, and transmission electron microscopy. It was found that for the both solvents, the effect of microwave irradiation was mainly on the particles distribution, rather than the size, which enabled to make stable and homogeneous silver nanofluids. The individual spherical nanostructure of self-assembled nanoparticles has been formed during microwave irradiation. Ethylene glycol solution, due to its special properties, such as high dielectric loss, high molecular weight, and high boiling point, can serve as a good solvent for microwave heating and is found to be a more suitable medium than the distilled water. A photopyroelectric technique was carried out to measure thermal diffusivity of the samples. The precision and accuracy of this technique was established by comparing the measured thermal diffusivity of the distilled water and ethylene glycol with values reported in the literature. The thermal diffusivity ratio of the silver nanofluids increased up to 1.15 and 1.25 for distilled water and ethylene glycol, respectively. PMID:25489293

  13. Proposal and performance analysis on the PDM microwave photonic link for the mm-wave signal with hybrid QAM-MPPM-RZ modulation

    NASA Astrophysics Data System (ADS)

    Tian, Bo; Zhang, Qi; Ma, Jianxin; Tao, Ying; Shen, Yufei; Wang, Yang; Zhang, Geng; Zhou, Wenmao; Zhao, Yi; Pan, Xiaolong

    2018-07-01

    A polarization division multiplexed (PDM) microwave photonic link for the millimeter (MM)-wave signal with hybrid modulation scheme is proposed in this paper, which is based on the combination of quadrature amplitude modulation, multi-pulse pulse-position modulation and return to zero modulation (QAM-MPPM-RZ). In this scheme, the two orthogonal polarization states enable simultaneous transmission of four data flows, which can provide different services for users according to the data rate requirement. To generate hybrid QAM-MPPM-RZ mm-wave signal, the QAM mm-wave signal is directly modulated by MPPM-RZ signal without using digital signal processing (DSP) devices, which reduces the overhead of the encoding process. Then, the generated QAM-MPPM-RZ mm-wave signal is transmitted in PDM microwave photonic link based on SSB modulation. The sparsity characteristic of QAM-MPPM-RZ not only improves the power efficiency, but also decreases the degradation caused by the fiber chromatic dispersion. The simulation results show that, under the constraint of the same transmitted data rate, the PDM microwave photonic link with 50 GHz QAM-MPPM-RZ mm-wave signal achieves much lower levels of bit-error rate than ordinary 32-QAM. In addition, the increase of laser linewidth brings no additional impact to the proposed scheme.

  14. Preliminary investigation of high power microwave plasmas for electrothermal thruster use

    NASA Technical Reports Server (NTRS)

    Power, John L.; Sullivan, Daniel J.

    1993-01-01

    Results are reported from preliminary tests to evaluate the high power microwave electrothermal thruster (MET) concept, which employs a free-floating plasma discharge maintained by applied CW microwave power to heat a propellant gas flow. Stable plasmas have been created and maintained in helium (He), nitrogen (N2), and hydrogen (H2) as propellants in both the TM(sub 011) and TM(sub 012) modes at discharge pressures from 10 Pa to 69 kPa. Reproducible starting conditions of pressure and power have been documented for all the plasmas. Vortical inflow of the propellant gas was observed to cause the formation of on-axis 'spike' plasmas. The formation and unformation conditions of these plasmas were studied. Operation in the spike plasma condition enables maximum power absorption with minimum wall heating and offers maximum efficiency in heating the propellant gas. In the spike condition, plasmas of the three propellant gases were investigated in an open channel configuration to a maximum applied power level of 11.2 kW (in N2). Microwave power coupling efficiencies of over 90 percent were routinely obtained at absorbed power levels up to 2 kW. Magnetic nozzle effects were investigated with a superconducting solenoid Al magnet applying a high magnetic field to the plasmas in and exiting from the discharge tube.

  15. Hyperspectral Microwave Atmospheric Sounder (HyMas) - New Capability in the CoSMIR-CoSSIR Scanhead

    NASA Technical Reports Server (NTRS)

    Hilliard, L. M.; Racette, P. E.; Blackwell, W.; Galbraith, C.; Thompson, E.

    2015-01-01

    Lincoln Laboratory and NASA's Goddard Space Flight Center have teamed to re-use an existing instrument platform, the CoSMIRCoSSIR system for atmospheric sounding, to develop a new capability in hyperspectral filtering, data collection, and display. The volume of the scanhead accomodated an intermediate frequency processor(IFP), that provides the filtering and digitization of the raw data and the interoperable remote component (IRC) adapted to CoSMIR, CoSSIR, and HyMAS that stores and archives the data with time tagged calibration and navigation data.The first element of the work is the demonstration of a hyperspectral microwave receiver subsystem that was recently shown using a comprehensive simulation study to yield performance that substantially exceeds current state-of-the-art. Hyperspectral microwave sounders with 100 channels offer temperature and humidity sounding improvements similar to those obtained when infrared sensors became hyperspectral, but with the relative insensitivity to clouds that characterizes microwave sensors. Hyperspectral microwave operation is achieved using independent RF antennareceiver arrays that sample the same areavolume of the Earths surfaceatmosphere at slightly different frequencies and therefore synthesize a set of dense, finely spaced vertical weighting functions. The second, enabling element of the proposal is the development of a compact 52-channel Intermediate Frequency processor module. A principal challenge in the development of a hyperspectral microwave system is the size of the IF filter bank required for channelization. Large bandwidths are simultaneously processed, thus complicating the use of digital back-ends with associated high complexities, costs, and power requirements. Our approach involves passive filters implemented using low-temperature co-fired ceramic (LTCC) technology to achieve an ultra-compact module that can be easily integrated with existing RF front-end technology. This IF processor is universally applicable to other microwave sensing missions requiring compact IF spectrometry.The data include 52 operational channels with low IF module volume (100cm3) and mass (300g) and linearity better than 0.3 over a 330K dynamic range.

  16. Microwave Radiometer Technology Acceleration Mission (MiRaTA): Advancing Weather Remote Sensing with Nanosatellites

    NASA Astrophysics Data System (ADS)

    Cahoy, K.; Blackwell, W. J.; Bishop, R. L.; Erickson, N.; Fish, C. S.; Neilsen, T. L.; Stromberg, E. M.; Bardeen, J.; Dave, P.; Marinan, A.; Marlow, W.; Kingsbury, R.; Kennedy, A.; Byrne, J. M.; Peters, E.; Allen, G.; Burianek, D.; Busse, F.; Elliott, D.; Galbraith, C.; Leslie, V. V.; Osaretin, I.; Shields, M.; Thompson, E.; Toher, D.; DiLiberto, M.

    2014-12-01

    The Microwave Radiometer Technology Acceleration (MiRaTA) is a 3U CubeSat mission sponsored by the NASA Earth Science Technology Office (ESTO). Microwave radiometer measurements and GPS radio occultation (GPSRO) measurements of all-weather temperature and humidity provide key contributions toward improved weather forecasting. The MiRaTA mission will validate new technologies in both passive microwave radiometry and GPS radio occultation: (1) new ultra-compact and low-power technology for multi-channel and multi-band passive microwave radiometers, and (2) new GPS receiver and patch antenna array technology for GPS radio occultation retrieval of both temperature-pressure profiles in the atmosphere and electron density profiles in the ionosphere. In addition, MiRaTA will test (3) a new approach to spaceborne microwave radiometer calibration using adjacent GPSRO measurements. The radiometer measurement quality can be substantially improved relative to present systems through the use of proximal GPSRO measurements as a calibration standard for radiometric observations, reducing and perhaps eliminating the need for costly and complex internal calibration targets. MiRaTA will execute occasional pitch-up maneuvers so that the radiometer and GPSRO observations sound overlapping volumes of atmosphere through the Earth's limb. To validate system performance, observations from both microwave radiometer (MWR) and GPSRO instruments will be compared to radiosondes, global high-resolution analysis fields, other satellite observations, and to each other using radiative transfer models. Both the radiometer and GPSRO payloads, currently at TRL5 but to be advanced to TRL7 at mission conclusion, can be accommodated in a single 3U CubeSat. The current plan is to launch from an International Space Station (ISS) orbit at ~400 km altitude and 52° inclination for low-cost validation over a ~90-day mission to fly in 2016. MiRaTA will demonstrate high fidelity, well-calibrated radiometric sensing from a nanosatellite platform, thereby enabling new architectural approaches for mission implementation at lower cost and risk with more flexible access to space.

  17. Space Technology for Crop Drying

    NASA Technical Reports Server (NTRS)

    1980-01-01

    McDonnell Douglas came up with a new method of drying agricultural crops derived from vacuum chamber technology called MIVAC, a compression of microwave vacuum drying system. A distant cousin of the home microwave oven, MIVAC dries by means of electrically- generated microwaves introduced to a crop-containing vacuum chamber. Microwaves remove moisture quickly and the very low pressure atmosphere in the chamber permits effective drying at much lower than customary temperatures. Thus energy demand is doubly reduced by lower heat requirement and by the shorter time electric power is needed.

  18. Microwave and Millimeter Wave Imaging Using Synthetic Aperture Focusing and Holographical Techniques

    NASA Technical Reports Server (NTRS)

    Case, Joseph Tobias

    2005-01-01

    Microwave and millimeter wave nondestructive testing and evaluation (NDT&E) methods have shown great potential for determining material composition in composite structures, determining material thickness or debond thickness between two layers, and determining the location and size of flaws, defects, and anomalies. The same testing methods have also shown great potential to produce relatively high-resolution images of voids inside Spray On Foam Insulation (SOFI) test panels using real focused methods employing lens antennas. An alternative to real focusing methods are synthetic focusing methods. The essence of synthetic focusing is to match the phase of the scattered signal to measured points spaced regularly on a plane. Many variations of synthetic focusing methods have already been developed for radars, ultrasonic testing applications, and microwave concealed weapon detection. Two synthetic focusing methods were investigated; namely, a) frequency-domain synthetic aperture focusing technique (FDSAFT), and b) wide-band microwave holography. These methods were applied towards materials whose defects were of low dielectric contrast like air void in SOFI. It is important to note that this investigation used relatively low frequencies from 8.2 GHz to 26.5 GHz that are not conducive for direct imaging of the SOFI. The ultimate goal of this work has been to demonstrate the capability of these methods before they are applied to much higher frequencies such as the millimeter wave frequency spectrum (e.g., 30-300 GHz).

  19. In Vitro Effects of Cooking Methods on Digestibility of Lipids and Formation of Cholesterol Oxidation Products in Pork

    PubMed Central

    Moon, Sung Sil

    2014-01-01

    This study investigated the effects of cooking methods on the digestibility of lipids and formation of cholesterol oxidation products (COPs) in pork, during in vitro human digestion. Pork patties were cooked using four different methods (oven cooking, pan frying, boiling, and microwaving), to an internal temperature of approximately 85℃. The digestibility of pork patties were then evaluated, using the in vitro human digestion model that simulated the composition (pH, minerals, surfaceactive components, and enzymes) of digestive juices in the human mouth, stomach, and small intestine. The total lipid digestibility was higher after microwave cooking, whereas pan-frying resulted in lower in vitro digestibility, compared to the other cooking methods. The microwaving method followed by in vitro digestion also showed significantly higher content of free fatty acids and thiobarbituric acid reactive substances (TBARS), compared to the other cooking methods; whereas, the pan frying and boiling methods showed the lowest. Cholesterol content was not significantly different among the cooked samples before, and after in vitro human digestion. The formation of COPs was significantly higher in the microwave-treated pork samples, compared to those cooked by the other methods, which was consistent with the trend for lipid peroxidation (TBARS). We propose that from the point of view of COPs formation and lipid oxidation, the pan-frying or boiling methods would be useful. PMID:26761168

  20. Surface roughness of polyvinyl siloxane impression materials following chemical disinfection, autoclave and microwave sterilization.

    PubMed

    Al Kheraif, Abdulaziz Abdullah

    2013-05-01

    Autoclave sterilization and microwave sterilization has been suggested as the effective methods for the disinfection of elastomeric impressions, but subjecting elastomeric impressions to extreme temperature may have adverse effects on critical properties of the elastomers. To evaluate the effect of chemical disinfection as well as autoclave and microwave sterilization on the surface roughness of elastomeric impression materials. The surface roughness of five commercially available polyvinyl siloxane impression materials (Coltene President, Affinis Perfect impression, Aquasil, 3M ESPE Express and GC Exafast) were evaluated after subjecting them to chemical disinfection, autoclaving and microwave sterilization using a Talysurf Intra 50 instrument. Twenty specimens from each material were fabricated and divided into four equal groups, three experimental and one control (n=25). The differences in the mean surface roughness between the treatment groups were recorded and statistically analyzed. No statistically significant increase in the surface roughness was observed when the specimens were subjected to chemical disinfection and autoclave sterilization, increase in roughness and discoloration was observed in all the materials when specimens were subjected to microwave sterilization. Chemical disinfection did not have a significant effect but, since it is less effective, autoclave sterilization can be considered effective and autoclaving did not show any specimen discoloration as in microwave sterilization. Microwave sterilization may be considered when impressions are used to make diagnostic casts. A significant increase in surface roughness may produce rougher casts, resulting in rougher tissue surfaces for denture and cast restorations. Autoclave sterilization of vinyl polysiloxane elastomeric impressions for 5 minutes at 134°C at 20 psi may be considered an effective method over chemical disinfection and microwave sterilization, because chemical disinfection does not eliminate all disease-causing microorganisms and microwave sterilization leads to a rougher impression surface.

  1. Three-Dimensional Microwave Imaging for Indoor Environments

    NASA Astrophysics Data System (ADS)

    Scott, Simon

    Microwave imaging involves the use of antenna arrays, operating at microwave and millimeter-wave frequencies, for capturing images of real-world objects. Typically, one or more antennas in the array illuminate the scene with a radio-frequency (RF) signal. Part of this signal reflects back to the other antennas, which record both the amplitude and phase of the reflected signal. These reflected RF signals are then processed to form an image of the scene. This work focuses on using planar antenna arrays, operating between 17 and 26 GHz, to capture three-dimensional images of people and other objects inside a room. Such an imaging system enables applications such as indoor positioning and tracking, health monitoring and hand gesture recognition. Microwave imaging techniques based on beamforming cannot be used for indoor imaging, as most objects lie within the array near-field. Therefore, the range-migration algorithm (RMA) is used instead, as it compensates for the curvature of the reflected wavefronts, hence enabling near-field imaging. It is also based on fast-Fourier transforms and is therefore computationally efficient. A number of novel RMA variants were developed to support a wider variety of antenna array configurations, as well as to generate 3-D velocity maps of objects moving around a room. The choice of antenna array configuration, microwave transceiver components and transmit power has a significant effect on both the energy consumed by the imaging system and the quality of the resulting images. A generic microwave imaging testbed was therefore built to characterize the effect of these antenna array parameters on image quality in the 20 GHz band. All variants of the RMA were compared and found to produce good quality three-dimensional images with transmit power levels as low as 1 muW. With an array size of 80x80 antennas, most of the imaging algorithms were able to image objects at 0.5 m range with 12.5 mm resolution, although some were only able to achieve 20 mm resolution. Increasing the size of the antenna array further results in a proportional improvement in image resolution and image SNR, until the resolution reaches the half-wavelength limit. While microwave imaging is not a new technology, it has seen little commercial success due to the cost and power consumption of the large number of antennas and radio transceivers required to build such a system. The cost and power consumption can be reduced by using low-power and low-cost components in both the transmit and receive RF chains, even if these components have poor noise figures. Alternatively, the cost and power consumption can be reduced by decreasing the number of antennas in the array, while keeping the aperture constant. This reduction in antenna count is achieved by randomly depopulating the array, resulting in a sparse antenna array. A novel compressive sensing algorithm, coupled with the wavelet transform, is used to process the samples collected by the sparse array and form a 3-D image of the scene. This algorithm works well for antenna arrays that are up to 96% sparse, equating to a 25 times reduction in the number of required antennas. For microwave imaging to be useful, it needs to capture images of the scene in real time. The architecture of a system capable of capturing real-time 3-D microwave images is therefore designed. The system consists of a modular antenna array, constructed by plugging RF daughtercards into a carrier board. Each daughtercard is a self-contained radio system, containing an antenna, RF transceiver baseband signal chain, and analog-to-digital converters. A small number of daughtercards have been built, and proven to be suitable for real-time microwave imaging. By arranging these daughtercards in different ways, any antenna array pattern can be built. This architecture allows real-time microwave imaging systems to be rapidly prototyped, while still being able to generate images at video frame rates.

  2. Model-independent test for scale-dependent non-Gaussianities in the cosmic microwave background.

    PubMed

    Räth, C; Morfill, G E; Rossmanith, G; Banday, A J; Górski, K M

    2009-04-03

    We present a model-independent method to test for scale-dependent non-Gaussianities in combination with scaling indices as test statistics. Therefore, surrogate data sets are generated, in which the power spectrum of the original data is preserved, while the higher order correlations are partly randomized by applying a scale-dependent shuffling procedure to the Fourier phases. We apply this method to the Wilkinson Microwave Anisotropy Probe data of the cosmic microwave background and find signatures for non-Gaussianities on large scales. Further tests are required to elucidate the origin of the detected anomalies.

  3. Influence of various cooking methods on the concentrations of volatile N-nitrosamines and biogenic amines in dry-cured sausages.

    PubMed

    Li, Ling; Wang, Peng; Xu, Xinglian; Zhou, Guanghong

    2012-05-01

    N-nitrosamines, biogenic amines, and residual nitrites are harmful substances and are often present in cured meats. The effects of different cooking methods (boiling, pan-frying, deep-frying, and microwave) were investigated on their contents in dry-cured sausage. The various N-nitrosamines were isolated by a steam distillation method and analyzed by gas chromatography mass spectrometry (GC-MS). The biogenic amines were determined after extraction with perchloric acid as dansyl derivatives by high-performance liquid chromatography (HPLC) method. The results showed that initial dry-cured raw sausage contained 5.31 μg/kg of total N-nitrosamines. Cooking by deep-frying or pan-frying resulted in products having the highest (P < 0.05) contents, compared with boiling or microwave treatments, which were not different from the raw. Although frying increased the content of N-nitrosodimethylamine (NDMA), N-nitrosodiethylamine (NDEA), and N-nitrosopyrrolidine (NPYR), it decreased the contents of histamine and cadaverine. Boiling and microwave treatments decreased the total biogenic amines significantly (P < 0.05). Residual nitrite was significantly reduced by cooking treatments. The results suggest that boiling and microwave treatments were more suitable methods for cured meat. © 2012 Institute of Food Technologists®

  4. Influence of microwave sterilization on the cutting capacity of carbide burs.

    PubMed

    Fais, Laiza Maria Grassi; Pinelli, Lígia Antunes Pereira; Adabo, Gelson Luis; Silva, Regina Helena Barbosa Tavares da; Marcelo, Caroline Canhizares; Guaglianoni, Dalton Geraldo

    2009-01-01

    This study compared the cutting capacity of carbide burs sterilized with microwaves and traditional sterilization methods. Sixty burs were divided into 5 groups according to the sterilization methods: dry heat (G1), autoclave (G2), microwave irradiation (G3), glutaraldehyde (G4) or control - no sterilization (G5). The burs were used to cut glass plates in a cutting machine set for twelve 2.5-min periods and, after each period, they were sterilized (except G5) following the protocol established for each group. The cutting capacity of the burs was determined by a weight-loss method. Data were analyzed statistically by Kruskal-Wallis and Dunn's test. The means of the cutting amount performed by each group after the 12 periods were G1 = 0.2167 +/- 0.0627 g; G2 = 0.2077 +/- 0.0231 g; G3 = 0.1980 +/- 0.0326 g; G4 = 0.1203 +/- 0.0459 g; G5 = 0.2642 +/- 0.0359 g. There were statistically significant differences among the groups (p<0.05); only dry heat sterilization was similar to the control. Sterilization by dry heat was the method that least affected the cutting capacity of the carbide burs and microwave sterilization was not better than traditional sterilization methods.

  5. Synthesis and characterization of pyrite (FeS{sub 2}) using microwave irradiation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kim, Eun Jung, E-mail: ekim229@uwo.ca; Batchelor, Bill

    2009-07-01

    A procedure using microwave irradiation was studied to develop a fast and reliable method for synthesizing pyrite. Pyrite was successfully synthesized within a few minutes via reaction of ferric iron and hydrogen sulfide under the influence of irradiation by a conventional microwave oven. The SEM-EDX study revealed that the nucleation and growth of pyrite occurred on the surface of elemental sulfur, where polysulfides are available. Compared to conventional heating, using microwave energy results in rapid (<1 min) formation of smaller particulates of pyrite. Higher levels of microwave power can form pyrite even faster, but faster reaction can lead to themore » formation of pyrite with defects.« less

  6. Microwave Medical Treatment Apparatus and Method

    NASA Technical Reports Server (NTRS)

    Arndt, G. Dickey (Inventor); Ngo, Phong H. (Inventor); Carl, James R. (Inventor); George, W. Rflfoul (Inventor)

    2005-01-01

    Methods, simulations, and apparatus are provided that may be utilized for medical treatments which are especially suitable for treatment of benign prostatic hyperplasia (BPH). In a preferred embodiment, a plurality of separate microwave antennas are utilized to heat prostatic tissue to promote necrosing of the prostatic tissue that relieves the pressure of the prostatic tissue against the urethra as the body reabsorbs the necrosed or dead tissue. By utilizing constructive and destructive interference of the microwave transmission, the energy can be deposited on the tissues to be necrosed while protecting other tissues such as the urethra. Saline injections to alter the conductivity of the tissues may also be used to further focus the energy deposits. A computer simulation is Provided that can be used to Predict the resulting temperature profile produced in the prostatic tissue. By changing the various control features of one or more catheters and the methods of applying microwave energy, a temperature profile can be predicted and produced that is similar to the temperature profile desired for the particular patient.

  7. Measurement of optical-beat frequency in a photoconductive terahertz-wave generator using microwave higher harmonics.

    PubMed

    Murasawa, Kengo; Sato, Koki; Hidaka, Takehiko

    2011-05-01

    A new method for measuring optical-beat frequencies in the terahertz (THz) region using microwave higher harmonics is presented. A microwave signal was applied to the antenna gap of a photoconductive (PC) device emitting a continuous electromagnetic wave at about 1 THz by the photomixing technique. The microwave higher harmonics with THz frequencies are generated in the PC device owing to the nonlinearity of the biased photoconductance, which is briefly described in this article. Thirteen nearly periodic peaks in the photocurrent were observed when the microwave was swept from 16 to 20 GHz at a power of -48 dBm. The nearly periodic peaks are generated by the homodyne detection of the optical beat with the microwave higher harmonics when the frequency of the harmonics coincides with the optical-beat frequency. Each peak frequency and its peak width were determined by fitting a Gaussian function, and the order of microwave harmonics was determined using a coarse (i.e., lower resolution) measurement of the optical-beat frequency. By applying the Kalman algorithm to the peak frequencies of the higher harmonics and their standard deviations, the optical-beat frequency near 1 THz was estimated to be 1029.81 GHz with the standard deviation of 0.82 GHz. The proposed method is applicable to a conventional THz-wave generator with a photomixer.

  8. Method and device for microwave sintering large ceramic articles

    DOEpatents

    Kimrey, Jr., Harold D.

    1990-01-01

    A microwave sintering system and method are provided for extremely uniform sintering of large and/or irregular shaped ceramic articles at microwave frequencies of at least 28 GHz in the hundreds of kilowatts power range in an untuned cavity. A 28 GHz, 200 kw gyrotron with variable power output is used as the microwave source connected to an untuned microwave cavity formed of an electrically conductive housing through an overmoded waveguide arrangement which acts in conjunction with a mode promoter within the cavity to achieve unexpected field uniformity. The part to be sintered is placed in the cavity and supported on a removable high temperature table in a central location within the cavity. The part is surrounded by a microwave transparent bulk insulating material to reduce thermal heat loss at the part surfaces and maintain more uniform temperature. The cavity may be operated at a high vacuum to aid in preventing arcing. The system allows controlled increased heating rates of greater than 200.degree. C./min to provide rapid heating of a ceramic part to a selected sintering temperature where it is maintained by regulating the microwave power applied to the part. As a result of rapid heating, the extent of non-isothermal processes such as segregation of impurities to the grain boundaries are minimized and exaggerated grain growth is reduced, thereby strengthening the mechanical properties of the ceramic part being sintered.

  9. Microwave-driven asbestos treatment and its scale-up for use after natural disasters.

    PubMed

    Horikoshi, Satoshi; Sumi, Takuya; Ito, Shigeyuki; Dillert, Ralf; Kashimura, Keiichiro; Yoshikawa, Noboru; Sato, Motoyasu; Shinohara, Naoki

    2014-06-17

    Asbestos-containing debris generated by the tsunami after the Great East Japan Earthquake of March 11, 2011, was processed by microwave heating. The analysis of the treated samples employing thermo gravimetry, differential thermal analysis, X-ray diffractometry, scanning electron microscopy, and phase-contrast microscopy revealed the rapid detoxification of the waste by conversion of the asbestos fibers to a nonfibrous glassy material. The detoxification by the microwave method occurred at a significantly lower processing temperature than the thermal methods actually established for the treatment of asbestos-containing waste. The lower treatment temperature is considered to be a consequence of the microwave penetration depth into the waste material and the increased intensity of the microwave electric field in the gaps between the asbestos fibers resulting in a rapid heating of the fibers inside the debris. A continuous treatment plant having a capacity of 2000 kg day(-1) of asbestos-containing waste was built in the area affected by the earthquake disaster. This treatment plant consists of a rotary kiln to burn the combustible waste (wood) and a microwave rotary kiln to treat asbestos-containing inorganic materials. The hot flue gas produced by the combustion of wood is introduced into the connected microwave rotary kiln to increase the energy efficiency of the combined process. Successful operation of this combined device with regard to asbestos decomposition is demonstrated.

  10. In situ temperature measurements of reaction spaces under microwave irradiation using photoluminescent probes.

    PubMed

    Ano, Taishi; Kishimoto, Fuminao; Sasaki, Ryo; Tsubaki, Shuntaro; Maitani, Masato M; Suzuki, Eiichi; Wada, Yuji

    2016-05-11

    We demonstrate two novel methods for the measurement of the temperatures of reaction spaces locally heated by microwaves, which have been applied here to two example systems, i.e., BaTiO3 particles covered with a SiO2 shell (BaTiO3-SiO2) and layered tungstate particles. Photoluminescent (PL) probes showing the temperature-sensitivity in their PL lifetimes are located in the nanospaces of the above systems. In the case of BaTiO3-SiO2 core-shell particles, rhodamine B is loaded into the mesopores of the SiO2 shell covering the BaTiO3 core, which generates the heat through the dielectric loss of microwaves. The inner nanospace temperature of the SiO2 shell is determined to be 28 °C higher than the bulk temperature under microwave irradiation at 24 W. On the other hand, Eu(3+) is immobilized in the interlayer space of layered tungstate as the PL probe, showing that the nanospace temperature of the interlayer is only 4 °C higher than the bulk temperature. This method for temperature-measurement is powerful for controlling microwave heating and elucidates the ambiguous mechanisms of microwave special effects often observed in chemical reactions, contributing greatly to the practical application of microwaves in chemistry and materials sciences.

  11. Microwave-accelerated method for ultra-rapid extraction of Neisseria gonorrhoeae DNA for downstream detection.

    PubMed

    Melendez, Johan H; Santaus, Tonya M; Brinsley, Gregory; Kiang, Daniel; Mali, Buddha; Hardick, Justin; Gaydos, Charlotte A; Geddes, Chris D

    2016-10-01

    Nucleic acid-based detection of gonorrhea infections typically require a two-step process involving isolation of the nucleic acid, followed by detection of the genomic target often involving polymerase chain reaction (PCR)-based approaches. In an effort to improve on current detection approaches, we have developed a unique two-step microwave-accelerated approach for rapid extraction and detection of Neisseria gonorrhoeae (gonorrhea, GC) DNA. Our approach is based on the use of highly focused microwave radiation to rapidly lyse bacterial cells, release, and subsequently fragment microbial DNA. The DNA target is then detected by a process known as microwave-accelerated metal-enhanced fluorescence (MAMEF), an ultra-sensitive direct DNA detection analytical technique. In the current study, we show that highly focused microwaves at 2.45 GHz, using 12.3-mm gold film equilateral triangles, are able to rapidly lyse both bacteria cells and fragment DNA in a time- and microwave power-dependent manner. Detection of the extracted DNA can be performed by MAMEF, without the need for DNA amplification, in less than 10 min total time or by other PCR-based approaches. Collectively, the use of a microwave-accelerated method for the release and detection of DNA represents a significant step forward toward the development of a point-of-care (POC) platform for detection of gonorrhea infections. Copyright © 2016 Elsevier Inc. All rights reserved.

  12. System-Level Integrated Circuit (SLIC) development for phased array antenna applications

    NASA Technical Reports Server (NTRS)

    Shalkhauser, K. A.; Raquet, C. A.

    1991-01-01

    A microwave/millimeter wave system-level integrated circuit (SLIC) being developed for use in phased array antenna applications is described. The program goal is to design, fabricate, test, and deliver an advanced integrated circuit that merges radio frequency (RF) monolithic microwave integrated circuit (MMIC) technologies with digital, photonic, and analog circuitry that provide control, support, and interface functions. As a whole, the SLIC will offer improvements in RF device performance, uniformity, and stability while enabling accurate, rapid, repeatable control of the RF signal. Furthermore, the SLIC program addresses issues relating to insertion of solid state devices into antenna systems, such as the reduction in number of bias, control, and signal lines. Program goals, approach, and status are discussed.

  13. Optically detected magnetic resonance of nitrogen vacancies in a diamond anvil cell using designer diamond anvils

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Steele, L. G.; Lawson, M.; Onyszczak, M.

    Optically detected magnetic resonance of nitrogen vacancy centers in diamond offers a route to both DC and AC magnetometry in diamond anvil cells under high pressures (>3 GPa). However, a serious challenge to realizing experiments has been the insertion of microwave radiation into the sample space without screening by the gasket material. We utilize designer anvils with lithographically deposited metallic microchannels on the diamond culet as a microwave antenna. We detected the spin resonance of an ensemble of microdiamonds under pressure and measured the pressure dependence of the zero field splitting parameters. Furthermore, these experiments enable the possibility for all-opticalmore » magnetic resonance experiments on nanoliter sample volumes at high pressures.« less

  14. Carbon dioxide dissociation in non-thermal radiofrequency and microwave plasma

    NASA Astrophysics Data System (ADS)

    Huang, Qiang; Zhang, Diyu; Wang, Dongping; Liu, Kezhao; Kleyn, Aart W.

    2017-07-01

    We have studied carbon dioxide dissociation in inductively coupled radiofrequency plasma and microwave plasma at low gas pressure. Both systems exhibit features of non-thermal plasma. The highest energy efficiency observed is 59.3% (2.13 mmol kJ-1), exceeding the maximum value of about 45% in case of thermodynamic equilibrium, and a maximum conversion of 80.6% is achieved. Different discharge conditions, such as the source frequency, discharge gas pressure and the addition of argon, will affect the plasma parameters, especially the electron energy distribution. This plays a great role in the energy transfer from non-thermal plasma to the molecular dissociation reaction channel by enabling the ladder climbing of the carbon dioxide molecular vibration. The results indicate the importance of ladder climbing.

  15. Broadband gradient index microwave quasi-optical elements based on non-resonant metamaterials.

    PubMed

    Liu, Ruopeng; Cheng, Qiang; Chin, Jessie Y; Mock, Jack J; Cui, Tie Jun; Smith, David R

    2009-11-09

    Utilizing non-resonant metamaterial elements, we demonstrate that complex gradient index optics can be constructed exhibiting low material losses and large frequency bandwidth. Although the range of structures is limited to those having only electric response, with an electric permittivity always equal to or greater than unity, there are still numerous metamaterial design possibilities enabled by leveraging the non-resonant elements. For example, a gradient, impedance matching layer can be added that drastically reduces the return loss of the optical elements due to reflection. In microwave experiments, we demonstrate the broadband design concepts with a gradient index lens and a beam-steering element, both of which are confirmed to operate over the entire X-band (roughly 8-12 GHz) frequency spectrum.

  16. System-level integrated circuit (SLIC) development for phased array antenna applications

    NASA Technical Reports Server (NTRS)

    Shalkhauser, K. A.; Raquet, C. A.

    1991-01-01

    A microwave/millimeter wave system-level integrated circuit (SLIC) being developed for use in phased array antenna applications is described. The program goal is to design, fabricate, test, and deliver an advanced integrated circuit that merges radio frequency (RF) monolithic microwave integrated circuit (MMIC) technologies with digital, photonic, and analog circuitry that provide control, support, and interface functions. As a whole, the SLIC will offer improvements in RF device performance, uniformity, and stability while enabling accurate, rapid, repeatable control of the RF signal. Furthermore, the SLIC program addresses issues relating to insertion of solid state devices into antenna systems, such as the reduction in number of bias, control, and signal lines. Program goals, approach, and status are discussed.

  17. Evanescent Microwave Probes on High-Resistivity Silicon and its Application in Characterization of Semiconductors

    NASA Technical Reports Server (NTRS)

    Tabib-Azar, M.; Akinwande, D.; Ponchak, George E.; LeClair, S. R.

    1999-01-01

    In this article we report the design, fabrication, and characterization of very high quality factor 10 GHz microstrip resonators on high-resistivity (high-rho) silicon substrates. Our experiments show that an external quality factor of over 13 000 can be achieved on microstripline resonators on high-rho silicon substrates. Such a high Q factor enables integration of arrays of previously reported evanescent microwave probe (EMP) on silicon cantilever beams. We also demonstrate that electron-hole pair recombination and generation lifetimes of silicon can be conveniently measured by illuminating the resonator using a pulsed light. Alternatively, the EMP was also used to nondestructively monitor excess carrier generation and recombination process in a semiconductor placed near the two-dimensional resonator.

  18. Strong coupling of a single electron in silicon to a microwave photon.

    PubMed

    Mi, X; Cady, J V; Zajac, D M; Deelman, P W; Petta, J R

    2017-01-13

    Silicon is vital to the computing industry because of the high quality of its native oxide and well-established doping technologies. Isotopic purification has enabled quantum coherence times on the order of seconds, thereby placing silicon at the forefront of efforts to create a solid-state quantum processor. We demonstrate strong coupling of a single electron in a silicon double quantum dot to the photonic field of a microwave cavity, as shown by the observation of vacuum Rabi splitting. Strong coupling of a quantum dot electron to a cavity photon would allow for long-range qubit coupling and the long-range entanglement of electrons in semiconductor quantum dots. Copyright © 2017, American Association for the Advancement of Science.

  19. Optically detected magnetic resonance of nitrogen vacancies in a diamond anvil cell using designer diamond anvils

    DOE PAGES

    Steele, L. G.; Lawson, M.; Onyszczak, M.; ...

    2017-11-28

    Optically detected magnetic resonance of nitrogen vacancy centers in diamond offers a route to both DC and AC magnetometry in diamond anvil cells under high pressures (>3 GPa). However, a serious challenge to realizing experiments has been the insertion of microwave radiation into the sample space without screening by the gasket material. We utilize designer anvils with lithographically deposited metallic microchannels on the diamond culet as a microwave antenna. We detected the spin resonance of an ensemble of microdiamonds under pressure and measured the pressure dependence of the zero field splitting parameters. Furthermore, these experiments enable the possibility for all-opticalmore » magnetic resonance experiments on nanoliter sample volumes at high pressures.« less

  20. Formation of space-charge bunches in a multivelocity-electron-beam-based microwave oscillator with a cathode unshielded from the magnetic field

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kalinin, Yu. A.; Starodubov, A. V.; Fokin, A. S., E-mail: alexander1989fokin@mail.ru

    The influence of the magnitude and configuration of the magnetic field on the parameters of electron bunches formed in a multivelocity electron beam is analyzed. It is shown that the use of a cathode unshielded from the magnetic field and a nonuniform magnetic field increasing along the drift space enables the formation of compact electron bunches. The ratio between the current density in such bunches and the beam current density at the entrance to the drift space reaches 10{sup 6}, which results in a substantial broadening of the output microwave spectrum due to an increase in the amplitudes of themore » higher harmonics of the fundamental frequency.« less

Top