Science.gov

Sample records for microwave plasma-enhanced chemical

  1. Plasma enhanced microwave joining

    SciTech Connect

    Yiin, T.; Barmatz, M.; Sayir, A.

    1995-12-31

    A new method for plasma enhanced microwave joining of high purity (99.8%) alumina has been developed. The controlled application of a plasma between the adjoining surfaces of two rods initially heats the microwave-low-absorbing alumina rods to temperatures high enough for them to absorb microwave energy efficiently. With this technology, the adjacent surfaces of alumina rods can be melted and welded together in less than three minutes using approximately 400 watts of microwave energy. Four point bending tests measured fracture strengths of up to 130 MPa at the joined interface. Optical and SEM micrographs indicated that exaggerated grain growth prevailed for all joints studied.

  2. Fabrication of Carbon Nanotubes by Slot-Excited Microwave Plasma-Enhanced Chemical Vapor Deposition

    NASA Astrophysics Data System (ADS)

    Shim, Gyu Il; Kojima, Yoshihiro; Kono, Satoshi; Ohno, Yutaka; Ishijima, Tatsuo

    2008-07-01

    Carbon nanotubes (CNTs) are fabricated by adopting plasma-enhanced chemical vapor deposition (PECVD) with a planar microwave plasma source. Plasma is produced by a slot antenna at 2.45-GHz microwave injection in CH4/H2 mixture. In this study, it is shown that avoiding the exposure of the substrate to the plasma drastically improves the CNT growth. Furthermore, it is found that the CNT quality can be controlled with the optimization of one of the steps in the catalyst treatment, such as the preheating procedure; the treated catalyst is considered to be unaffected by the heating in the high-density microwave plasma treatment during the CNT growth.

  3. Carbon nanowalls grown by microwave plasma enhanced chemical vapor deposition during the carbonization of polyacrylonitrile fibers

    NASA Astrophysics Data System (ADS)

    Li, Jiangling; Su, Shi; Zhou, Lei; Kundrát, Vojtěch; Abbot, Andrew M.; Mushtaq, Fajer; Ouyang, Defang; James, David; Roberts, Darren; Ye, Haitao

    2013-01-01

    We used microwave plasma enhanced chemical vapor deposition (MPECVD) to carbonize an electrospun polyacrylonitrile (PAN) precursor to form carbon fibers. Scanning electron microscopy, Raman spectroscopy, and Fourier transform infrared spectroscopy were used to characterize the fibers at different evolution stages. It was found that MPECVD-carbonized PAN fibers do not exhibit any significant change in the fiber diameter, whilst conventionally carbonized PAN fibers show a 33% reduction in the fiber diameter. An additional coating of carbon nanowalls (CNWs) was formed on the surface of the carbonized PAN fibers during the MPECVD process without the assistance of any metallic catalysts. The result presented here may have a potential to develop a novel, economical, and straightforward approach towards the mass production of carbon fibrous materials containing CNWs.

  4. Carbon nanowalls grown by microwave plasma enhanced chemical vapor deposition during the carbonization of polyacrylonitrile fibers

    SciTech Connect

    Li Jiangling; Su Shi; Kundrat, Vojtech; Abbot, Andrew M.; Ye, Haitao; Zhou Lei; Mushtaq, Fajer; Ouyang Defang; James, David; Roberts, Darren

    2013-01-14

    We used microwave plasma enhanced chemical vapor deposition (MPECVD) to carbonize an electrospun polyacrylonitrile (PAN) precursor to form carbon fibers. Scanning electron microscopy, Raman spectroscopy, and Fourier transform infrared spectroscopy were used to characterize the fibers at different evolution stages. It was found that MPECVD-carbonized PAN fibers do not exhibit any significant change in the fiber diameter, whilst conventionally carbonized PAN fibers show a 33% reduction in the fiber diameter. An additional coating of carbon nanowalls (CNWs) was formed on the surface of the carbonized PAN fibers during the MPECVD process without the assistance of any metallic catalysts. The result presented here may have a potential to develop a novel, economical, and straightforward approach towards the mass production of carbon fibrous materials containing CNWs.

  5. Effects of Plasma Treatment on Carbon Nanowalls Grown by Microwave Plasma Enhanced Chemical Vapor Deposition.

    PubMed

    Jung, Yong Ho; Kang, Hyunil; Choi, Won Seok; Joung, Yeun-Ho; Choi, Young-Kwan

    2016-05-01

    In this study, the effects of post-plasma treatment on synthesized carbon nanowalls (CNWs) grown with a microwave were investigated. CNWs were synthesized by microwave plasma enhanced chemical vapor deposition (PECVD), employing a mixture of CH4 and H2 gases. The plasma treatment was done in different plasma environments (O2 and H2) but under the same condition of synthesized CNWs. Raman spectroscopy, field emission scanning electron microscopy (FE-SEM), energy dispersive X-ray spectroscopy (EDS), and fourier transform infrared spectroscopy (FT-IR) were used to analyze the effects of the post-plasma treatment on the synthesized CNWs. After the H2 post-plasma treatment, no significant changes in the appearance and characteristics of the CNWs were observed. After the O2 post-plasma treatment, on the other hand, the CNWs were etched at a rate of 18.05 nm/sec. The Raman analysis confirmed, however, that the structural changes in the CNWs caused by the O2 post-plasma treatment were insignificant. PMID:27483917

  6. Reaction Gas Ratio Effect on the Growth of a Diamond Film Using Microwave Plasma-Enhanced Chemical Vapor Deposition.

    PubMed

    Joung, Y H; Kang, F S; Lee, S; Kang, H; Choi, W S; Choi, Y K; Song, B S; Lee, J; Hong, B

    2016-05-01

    In this study, diamond films were prepared using the microwave plasma-enhanced chemical vapor deposition (PECVD) system, which included a DC bias system to enhance the nucleation of the films. The films were synthesized on Si wafers with different ratios of methane (CH4) and hydrogen (H2) gases. We have studied the effects of the CH4-to-H2 ratio on the structural and optical properties of diamond films. The thickness and surface profile of the films were characterized via field emission scanning electron microscopy (FE-SEM). Raman was used to investigate the structural properties of the diamond films. The refractive indexes as functions of the CH4-to-H2 ratio were measured using an ellipsometer. The FE-SEM analysis showed that the 3 and 5 sccm CH4 created diamond films. The Raman analysis indicated that a nanocrystalline diamond film was formed at 3 sccm; a general diamond film, at 5 sccm; and films similar to the a-C:H film, at 7 sccm. The ellipsometer measurement showed that the refractive index of the synthesized diamond film was around 2.42 at 3 sccm. This value decreased as the CH4 volume increased. PMID:27483918

  7. Plasma-chemical processes in microwave plasma-enhanced chemical vapor deposition reactors operating with C/H/Ar gas mixtures

    SciTech Connect

    Mankelevich, Yuri A.; Ashfold, Michael N. R.; Ma Jie

    2008-12-01

    Microwave (MW) plasma-enhanced chemical vapor deposition (PECVD) reactors are widely used for growing diamond films with grain sizes spanning the range from nanometers through microns to millimeters. This paper presents a detailed description of a two-dimensional model of the plasma-chemical activation, transport, and deposition processes occurring in MW activated H/C/Ar mixtures, focusing particularly on the following base conditions: 4.4%CH{sub 4}/7%Ar/balance H{sub 2}, pressure p=150 Torr, and input power P=1.5 kW. The model results are verified and compared with a range of complementary experimental data in the companion papers. These comparators include measured (by cavity ring down spectroscopy) C{sub 2}(a), CH(X), and H(n=2) column densities and C{sub 2}(a) rotational temperatures, and infrared (quantum cascade laser) measurements of C{sub 2}H{sub 2} and CH{sub 4} column densities under a wide range of process conditions. The model allows identification of spatially distinct regions within the reactor that support net CH{sub 4}{yields}C{sub 2}H{sub 2} and C{sub 2}H{sub 2}{yields}CH{sub 4} conversions, and provide a detailed mechanistic picture of the plasma-chemical transformations occurring both in the hot plasma and in the outer regions. Semianalytical expressions for estimating relative concentrations of the various C{sub 1}H{sub x} species under typical MW PECVD conditions are presented, which support the consensus view regarding the dominant role of CH{sub 3} radicals in diamond growth under such conditions.

  8. Study of the catalyst evolution during annealing preceding the growth of carbon nanotubes by microwave plasma-enhanced chemical vapour deposition

    NASA Astrophysics Data System (ADS)

    Malesevic, Alexander; Chen, Hong; Hauffman, Tom; Vanhulsel, Annick; Terryn, Herman; Van Haesendonck, Chris

    2007-11-01

    A two-step catalyst annealing process is developed in order to control the diameter of nickel catalyst particles for the growth of carbon nanotubes (CNTs) by microwave plasma-enhanced chemical vapour deposition (MW PECVD). Thermal annealing of a continuous nickel film in a hydrogen (H2) environment in a first step is found to be insufficient for the formation of nanometre-size, high-density catalyst particles. In a second step, a H2 MW plasma treatment decreases the catalyst diameter by a factor of two and increases the particle density by a factor of five. An x-ray photoelectron spectroscopy study of the catalyst after each step in the annealing process is presented. It is found that the catalyst particles interact with the substrate during thermal annealing, thereby forming a silicate, even if a buffer layer in between the catalyst and the substrate is intended to prevent silicate formation. The silicate formation and reduction is shown to be directly related to the CNT growth mechanism, determining whether the catalyst particles reside at the base or the tip of the growing CNTs. The catalyst particles are used for the growth of a high-density CNT coating by MW PECVD. CNTs are analysed with electron microscopy and Raman spectroscopy.

  9. A solid-state nuclear magnetic resonance study of post-plasma reactions in organosilicone microwave plasma-enhanced chemical vapor deposition (PECVD) coatings.

    PubMed

    Hall, Colin J; Ponnusamy, Thirunavukkarasu; Murphy, Peter J; Lindberg, Mats; Antzutkin, Oleg N; Griesser, Hans J

    2014-06-11

    Plasma-polymerized organosilicone coatings can be used to impart abrasion resistance and barrier properties to plastic substrates such as polycarbonate. Coating rates suitable for industrial-scale deposition, up to 100 nm/s, can be achieved through the use of microwave plasma-enhanced chemical vapor deposition (PECVD), with optimal process vapors such as tetramethyldisiloxane (TMDSO) and oxygen. However, it has been found that under certain deposition conditions, such coatings are subject to post-plasma changes; crazing or cracking can occur anytime from days to months after deposition. To understand the cause of the crazing and its dependence on processing plasma parameters, the effects of post-plasma reactions on the chemical bonding structure of coatings deposited with varying TMDSO-to-O2 ratios was studied with (29)Si and (13)C solid-state magic angle spinning nuclear magnetic resonance (MAS NMR) using both single-pulse and cross-polarization techniques. The coatings showed complex chemical compositions significantly altered from the parent monomer. (29)Si MAS NMR spectra revealed four main groups of resonance lines, which correspond to four siloxane moieties (i.e., mono (M), di (D), tri (T), and quaternary (Q)) and how they are bound to oxygen. Quantitative measurements showed that the ratio of TMDSO to oxygen could shift the chemical structure of the coating from 39% to 55% in Q-type bonds and from 28% to 16% for D-type bonds. Post-plasma reactions were found to produce changes in relative intensities of (29)Si resonance lines. The NMR data were complemented by Fourier transform infrared (FTIR) spectroscopy. Together, these techniques have shown that the bonding environment of Si is drastically altered by varying the TMDSO-to-O2 ratio during PECVD, and that post-plasma reactions increase the cross-link density of the silicon-oxygen network. It appears that Si-H and Si-OH chemical groups are the most susceptible to post-plasma reactions. Coatings produced at a

  10. Carbon Nanotubes/Nanofibers by Plasma Enhanced Chemical Vapour Deposition

    NASA Technical Reports Server (NTRS)

    Teo, K. B. K.; Hash, D. B.; Bell, M. S.; Chhowalla, M.; Cruden, B. A.; Amaratunga, G. A. J.; Meyyappan, M.; Milne, W. I.

    2005-01-01

    Plasma enhanced chemical vapour deposition (PECVD) has been recently used for the production of vertically aligned carbon nanotubedfibers (CN) directly on substrates. These structures are potentially important technologically as electron field emitters (e.g. microguns, microwave amplifiers, displays), nanoelectrodes for sensors, filter media, superhydrophobic surfaces and thermal interface materials for microelectronics. A parametric study on the growth of CN grown by glow discharge dc-PECVD is presented. In this technique, a substrate containing thin film Ni catalyst is exposed to C2H2 and NH3 gases at 700 C. Without plasma, this process is essentially thermal CVD which produces curly spaghetti-like CN as seen in Fig. 1 (a). With the plasma generated by biasing the substrate at -6OOV, we observed that the CN align vertically during growth as shown in Fig. l(b), and that the magnitude of the applied substrate bias affects the degree of alignment. The thickness of the thin film Ni catalyst was found to determine the average diameter and inversely the length of the CN. The yield and density of the CN were controlled by the use of different diffusion barrier materials under the Ni catalyst. Patterned CN growth [Fig. l(c)], with la variation in CN diameter of 4.1% and 6.3% respectively, is achieved by lithographically defining the Ni thin film prior to growth. The shape of the structures could be varied from very straight nanotube-like to conical tip-like nanofibers by increasing the ratio of C2H2 in the gas flow. Due to the plasma decomposition of C2H2, amorphous carbon (a-C) is an undesirable byproduct which could coat the substrate during CN growth. Using a combination of depth profiled Auger electron spectroscopy to study the substrate and in-situ mass spectroscopy to examine gas phase neutrals and ions, the optimal conditions for a-C free growth of CN is determined.

  11. Plasma-enhanced chemical vapor deposition of multiwalled carbon nanofibers

    NASA Technical Reports Server (NTRS)

    Matthews, Kristopher; Cruden, Brett A.; Chen, Bin; Meyyappan, M.; Delzeit, Lance

    2002-01-01

    Plasma-enhanced chemical vapor deposition is used to grow vertically aligned multiwalled carbon nanofibers (MWNFs). The graphite basal planes in these nanofibers are not parallel as in nanotubes; instead they exhibit a small angle resembling a stacked cone arrangement. A parametric study with varying process parameters such as growth temperature, feedstock composition, and substrate power has been conducted, and these parameters are found to influence the growth rate, diameter, and morphology. The well-aligned MWNFs are suitable for fabricating electrode systems in sensor and device development.

  12. Quantum cascade laser investigations of CH{sub 4} and C{sub 2}H{sub 2} interconversion in hydrocarbon/H{sub 2} gas mixtures during microwave plasma enhanced chemical vapor deposition of diamond

    SciTech Connect

    Ma Jie; Cheesman, Andrew; Ashfold, Michael N. R.; Hay, Kenneth G.; Wright, Stephen; Langford, Nigel; Duxbury, Geoffrey; Mankelevich, Yuri A.

    2009-08-01

    CH{sub 4} and C{sub 2}H{sub 2} molecules (and their interconversion) in hydrocarbon/rare gas/H{sub 2} gas mixtures in a microwave reactor used for plasma enhanced diamond chemical vapor deposition (CVD) have been investigated by line-of-sight infrared absorption spectroscopy in the wavenumber range of 1276.5-1273.1 cm{sup -1} using a quantum cascade laser spectrometer. Parameters explored include process conditions [pressure, input power, source hydrocarbon, rare gas (Ar or Ne), input gas mixing ratio], height (z) above the substrate, and time (t) after addition of hydrocarbon to a pre-existing Ar/H{sub 2} plasma. The line integrated absorptions so obtained have been converted to species number densities by reference to the companion two-dimensional (r,z) modeling of the CVD reactor described in Mankelevich et al. [J. Appl. Phys. 104, 113304 (2008)]. The gas temperature distribution within the reactor ensures that the measured absorptions are dominated by CH{sub 4} and C{sub 2}H{sub 2} molecules in the cool periphery of the reactor. Nonetheless, the measurements prove to be of enormous value in testing, tensioning, and confirming the model predictions. Under standard process conditions, the study confirms that all hydrocarbon source gases investigated (methane, acetylene, ethane, propyne, propane, and butane) are converted into a mixture dominated by CH{sub 4} and C{sub 2}H{sub 2}. The interconversion between these two species is highly dependent on the local gas temperature and the H atom number density, and thus on position within the reactor. CH{sub 4}->C{sub 2}H{sub 2} conversion occurs most efficiently in an annular shell around the central plasma (characterized by 1400CH{sub 4} is favored in the more distant regions where T{sub gas}<1400 K. Analysis of the multistep interconversion mechanism reveals substantial net consumption of H atoms accompanying the CH{sub 4}->C{sub 2}H{sub 2

  13. Modeling and Simulation of Plasma Enhanced Chemical Vapor Deposition

    NASA Astrophysics Data System (ADS)

    Smith, Aaron; Bett, Dominic; Cunningham, Monisha; Sen, Sudip

    2015-04-01

    Plasma Enhanced Chemical Vapor Deposition (PECVD) is a process used to deposit thin films from a gas state (vapor) to a solid state on a substrate. Recent study from the X-ray diffraction spectra of SnO2 films deposited as a function of RF power apparently indicates that RF power is playing a stabilizing role and hence in the better deposition. The results show that the RF power results in smoother morphology, improved crystallinity, and lower sheet resistance value in the PECVD process. The PECVD processing allows deposition at lower temperatures, which is often critical in the manufacture of semiconductors. In this talk we will address two aspects of the problem, first to develop a model to study the mechanism of how the PECVD is effected by the RF power, and second to actually simulate the effect of RF power on PECVD. As the PECVD is a very important component of the plasma processing technology with many applications in the semiconductor technology and surface science, the research proposed here has the prospect to revolutionize the plasma processing technology through the stabilizing role of the RF power.

  14. Synthesis of Diamond by Plasma-Enhanced Chemical Vapor Deposition.

    NASA Astrophysics Data System (ADS)

    Chang, Jan-Jue

    Diamond possesses many desirable properties, e.g. high thermal conductivity, high electrical resistivity, high breakdown voltage, high resistance to chemical and radiation damage, high transparency over a wide range of optical spectrum, and extreme hardness. Thus diamond have high potential applicability in the fields of semiconductors, optical emitting materials, optical coating materials, abrasion, and high power and high frequency devices. To extend the range of applications, large-area uniformity and low temperature growth of diamond thin films has to be achieved. Low pressure deposition is one solution to the small area and nonuniformity problems of current diamond deposition methods. By decreasing the pressure, the mean free path of electrons becomes larger and the plasma covers a larger area. Low temperature deposition gives a smaller crystalline size of diamond, and hence improves the surface morphology of deposited films. To satisfy the supersaturation condition of diamond crystallization, low temperature growth should be performed at low pressure. This study experimentally investigates optimization of diamond growth at low pressure and low temperature by comparing three deposition systems (i.e. hot filament assisted, microwave induced plasma, and electron cyclotron resonance plasma chemical vapor deposition). The deposition system is designed to clearly show the effects of each experimental parameter on grown films. Thin diamond films were deposited on silicon substrates over a wide range of deposition parameters (e.g. CH _4 concentration 0-10%, substrate temperature 490-850^circC, total pressure 2-50 Torr, microwave power 0-1200 W). In addition, the effects of oxygen addition and substrate bias were studied. The diamond films were characterized by Raman spectroscopy and scanning electron microscopy, and the plasma was characterized by optical emission spectroscopy. Crystalline diamond was successfully deposited on silicon wafers at pressures as low as 2

  15. Diagnostic for Plasma Enhanced Chemical Vapor Deposition and Etch Systems

    NASA Technical Reports Server (NTRS)

    Cappelli, Mark A.

    1999-01-01

    In order to meet NASA's requirements for the rapid development and validation of future generation electronic devices as well as associated materials and processes, enabling technologies ion the processing of semiconductor materials arising from understanding etch chemistries are being developed through a research collaboration between Stanford University and NASA-Ames Research Center, Although a great deal of laboratory-scale research has been performed on many of materials processing plasmas, little is known about the gas-phase and surface chemical reactions that are critical in many etch and deposition processes, and how these reactions are influenced by the variation in operating conditions. In addition, many plasma-based processes suffer from stability and reliability problems leading to a compromise in performance and a potentially increased cost for the semiconductor manufacturing industry. Such a lack of understanding has hindered the development of process models that can aid in the scaling and improvement of plasma etch and deposition systems. The research described involves the study of plasmas used in semiconductor processes. An inductively coupled plasma (ICP) source in place of the standard upper electrode assembly of the Gaseous Electronics Conference (GEC) radio-frequency (RF) Reference Cell is used to investigate the discharge characteristics and chemistries. This ICP source generates plasmas with higher electron densities (approximately 10(exp 12)/cu cm) and lower operating pressures (approximately 7 mTorr) than obtainable with the original parallel-plate version of the GEC Cell. This expanded operating regime is more relevant to new generations of industrial plasma systems being used by the microelectronics industry. The motivation for this study is to develop an understanding of the physical phenomena involved in plasma processing and to measure much needed fundamental parameters, such as gas-phase and surface reaction rates. species

  16. Microwave remote plasma enhanced-atomic layer deposition system with multicusp confinement chamber

    SciTech Connect

    Dechana, A.; Thamboon, P.; Boonyawan, D.

    2014-10-15

    A microwave remote Plasma Enhanced-Atomic Layer Deposition system with multicusp confinement chamber is established at the Plasma and Beam Physics research facilities, Chiang Mai, Thailand. The system produces highly-reactive plasma species in order to enhance the deposition process of thin films. The addition of the multicusp magnetic fields further improves the plasma density and uniformity in the reaction chamber. Thus, the system is more favorable to temperature-sensitive substrates when heating becomes unwanted. Furthermore, the remote-plasma feature, which is generated via microwave power source, offers tunability of the plasma properties separately from the process. As a result, the system provides high flexibility in choice of materials and design experiments, particularly for low-temperature applications. Performance evaluations of the system were carried on coating experiments of Al{sub 2}O{sub 3} layers onto a silicon wafer. The plasma characteristics in the chamber will be described. The resulted Al{sub 2}O{sub 3} films—analyzed by Rutherford Backscattering Spectrometry in channeling mode and by X-ray Photoelectron Spectroscopy techniques—will be discussed.

  17. Application of a quantum cascade laser for time-resolved, in situ probing of CH4/H2 and C2H2/H2 gas mixtures during microwave plasma enhanced chemical vapor deposition of diamond.

    PubMed

    Cheesman, A; Smith, J A; Ashfold, M N R; Langford, N; Wright, S; Duxbury, G

    2006-03-01

    First illustrations of the utility of pulsed quantum cascade lasers for in situ probing of the chemistry prevailing in microwave plasma activated hydrocarbon/Ar/H2 gas mixtures used for diamond thin film growth are reported. CH4 and C2H2 molecules, and their interconversion, have been monitored by line-of-sight single pass absorption methods, as a function of process conditions (e.g., choice of input hydrocarbon (CH4 or C2H2), hydrocarbon mole fraction, total gas pressure, and applied microwave power). The observed trends can be rationalized, qualitatively, within the framework of the previously reported modeling of the gas-phase chemistry prevailing in hot filament activated hydrocarbon/H2 gas mixtures (Ashfold et al. Phys. Chem. Chem. Phys. 2001, 3, 3471). Column densities of vibrationally excited C2H2(v5=1) molecules at low input carbon fractions are shown to be far higher than expected on the basis of local thermodynamic equilibrium. The presence of vibrationally excited C2H2 molecules (C2H2(double dagger)) can be attributed to the exothermicity of the C2H3 + H <==> C2H2 + H2 elementary reaction within the overall multistep CH4 --> C2H2 conversion. Diagnostic methods that sample just C2H2(v=0) molecules thus run the risk of underestimating total C2H2 column densities in hydrocarbon/H2 mixtures operated under conditions where the production rate of C2H2(double dagger) molecules exceeds their vibrational relaxation (and thermal equilibration) rates.

  18. The Role of Plasma in Plasma Enhanced Chemical Vapour Deposition of Nanostructure Growth

    NASA Technical Reports Server (NTRS)

    Hash, David B.; Meyyappan, M.; Teo, Kenneth B. K.; Lacerda, Rodrigo G.; Rupesinghe, Nalin L.

    2004-01-01

    Chemical vapour deposition (CVD) has become the preferred process for high yield growth of carbon nanotubes and nanofibres because of its ability to pattern growth through lithographic positioning of transition metal catalysts on substrates. Many potential applications of nanotubes such as field emitters [1] require not only patterned growth but also vertical alignment. Some degree of ali,ment in thermal CVD processes can be obtained when carbon nanotubes are grown closely together as a result of van der Waals interactions. The ali,onment however is marginal, and the van der Waals prerequisite makes growth of freestanding nanofibres with thermal CVD unrealizable. The application of electric fields as a means of ali,onment has been shown to overcome this limitation [2-5], and highly aligned nanostructures can be grown if electric fields on the order of 0.5 V/microns are employed. Plasma enhanced CVD in various configurations including dc, rf, microwave, inductive and electron cyclotron resonance has been pursued as a means of enabling alignment in the CVD process. However, the sheath fields for the non-dc sources are in general not sufficient for a high degree of ali,pment and an additional dc bias is usually applied to the growth substrate. This begs the question as to the actual role of the plasma. It is clear that the plasma itself is not required for aligned growth as references [3] and [4] employed fields through small applied voltages (3-20 V) across very small electrode spacings (10-100 microns) and thus avoided striking a discharge.

  19. Templated growth of diamond optical resonators via plasma-enhanced chemical vapor deposition

    NASA Astrophysics Data System (ADS)

    Zhang, X.; Hu, E. L.

    2016-08-01

    We utilize plasma-enhanced chemical vapor deposition through a patterned silica mask for templated diamond growth to create optical resonators. The pyramid-shaped structures have quality factors Q up to 600, measured using confocal photoluminescence spectroscopy, and mode volumes V as small as 2.5 (λ/n) 3 for resonances at wavelengths λ between 550 and 650 nm, and refractive index n, obtained using finite-difference time-domain simulations. Bright luminescence from nitrogen-vacancy and silicon-vacancy centers in the grown diamond is observed. The resonator design and fabrication technique obviates any etching of diamond, which preserves emitter properties in a pristine host lattice.

  20. Studies on non-oxide coating on carbon fibers using plasma enhanced chemical vapor deposition technique

    NASA Astrophysics Data System (ADS)

    Patel, R. H.; Sharma, S.; Prajapati, K. K.; Vyas, M. M.; Batra, N. M.

    2016-05-01

    A new way of improving the oxidative behavior of carbon fibers coated with SiC through Plasma Enhanced Chemical Vapor Deposition technique. The complete study includes coating of SiC on glass slab and Stainless steel specimen as a starting test subjects but the major focus was to increase the oxidation temperature of carbon fibers by PECVD technique. This method uses relatively lower substrate temperature and guarantees better stoichiometry than other coating methods and hence the substrate shows higher resistance towards mechanical and thermal stresses along with increase in oxidation temperature.

  1. Microstructural modification of nc-Si/SiOx films during plasma-enhanced chemical vapor deposition

    NASA Astrophysics Data System (ADS)

    Zhang, X. W.

    2005-07-01

    Nanocrystalline-silicon embedded silicon oxide films are prepared by plasma-enhanced chemical vapor deposition (PECVD) at 300 °C without post-heat treatment. Measurements of XPS, IR, XRD, and HREM are performed. Microstructural modifications are found occurring throughout the film deposition. The silica network with a high oxide state is suggested to be formed directly under the abduction of the former deposited layer, rather than processing repeatedly from the original low-oxide state of silica. Nanocrystalline silicon particles with a size of 6-10 nm are embedded in the SiOx film matrix, indicating the potential application in Si-based optoelectronic integrity.

  2. Fabrication of Carbon Nanotube Field Effect Transistors Using Plasma-Enhanced Chemical Vapor Deposition Grown Nanotubes

    NASA Astrophysics Data System (ADS)

    Ohnaka, Hirofumi; Kojima, Yoshihiro; Kishimoto, Shigeru; Ohno, Yutaka; Mizutani, Takashi

    2006-06-01

    Single-walled carbon nanotubes are grown using grid-inserted plasma-enhanced chemical vapor deposition (PECVD). The field effect transistor operation was confirmed using the PECVD grown carbon nanotubes (CNTs). The preferential growth of the semiconducting nanotubes was confirmed in the grid-inserted PECVD by measuring current-voltage (I-V) characteristics of the devices. Based on the measurement of the electrical breakdown of the metallic CNTs, the probability of growing the semiconducting nanotubes has been estimated to be more than 90%.

  3. TOPICAL REVIEW: A review of plasma enhanced chemical vapour deposition of carbon nanotubes

    NASA Astrophysics Data System (ADS)

    Meyyappan, M.

    2009-11-01

    Plasma enhanced chemical vapour deposition (PECVD) has been widely discussed in the literature for the growth of carbon nanotubes (CNTs) and carbon nanofibres (CNFs) in recent years. Advantages claimed include lower growth temperatures relative to thermal CVD and the ability to grow individual, free-standing, vertical CNFs instead of tower-like structures or ensembles. This paper reviews the current status of the technology including equipment, plasma chemistry, diagnostics and modelling, and mechanisms. Recent accomplishments include PECVD of single-walled CNTs and growth at low temperatures for handling delicate substrates such as glass.

  4. Synthesis of carbon nanowall by plasma-enhanced chemical vapor deposition method.

    PubMed

    Liu, Rulin; Chi, Yaqing; Fang, Liang; Tang, Zhensen; Yi, Xun

    2014-02-01

    Plasma-enhanced chemical vapor deposition (PECVD) is widely used for the synthesis of carbon materials, such as diamond-like carbons (DLCs), carbon nanotubes (CNTs) and carbon nanowalls (CNWs). Advantages of PECVD are low synthesis temperature compared with thermal CVD and the ability to grow vertically, free-standing structures. Due to its self-supported property and high specific surface area, CNWs are a promising material for field emission devices and other chemical applications. This article reviews the recent process on the synthesis of CNW by the PECVD method. We briefly introduce the structure and properties of CNW with characterization techniques. Growth mechanism is also discussed to analyze the influence of plasma conditions, substrates, temperature, and other parameters to the final film, which will give a suggestion on parameter modulation for desired film. PMID:24749447

  5. A mathematical model and simulation results of plasma enhanced chemical vapor deposition of silicon nitride films

    NASA Astrophysics Data System (ADS)

    Konakov, S. A.; Krzhizhanovskaya, V. V.

    2015-01-01

    We developed a mathematical model of Plasma Enhanced Chemical Vapor Deposition (PECVD) of silicon nitride thin films from SiH4-NH3-N2-Ar mixture, an important application in modern materials science. Our multiphysics model describes gas dynamics, chemical physics, plasma physics and electrodynamics. The PECVD technology is inherently multiscale, from macroscale processes in the chemical reactor to atomic-scale surface chemistry. Our macroscale model is based on Navier-Stokes equations for a transient laminar flow of a compressible chemically reacting gas mixture, together with the mass transfer and energy balance equations, Poisson equation for electric potential, electrons and ions balance equations. The chemical kinetics model includes 24 species and 58 reactions: 37 in the gas phase and 21 on the surface. A deposition model consists of three stages: adsorption to the surface, diffusion along the surface and embedding of products into the substrate. A new model has been validated on experimental results obtained with the "Plasmalab System 100" reactor. We present the mathematical model and simulation results investigating the influence of flow rate and source gas proportion on silicon nitride film growth rate and chemical composition.

  6. Relatively low temperature synthesis of graphene by radio frequency plasma enhanced chemical vapor deposition

    NASA Astrophysics Data System (ADS)

    Qi, J. L.; Zheng, W. T.; Zheng, X. H.; Wang, X.; Tian, H. W.

    2011-05-01

    We present a simple, low-cost and high-effective method for synthesizing high-quality, large-area graphene using radio frequency plasma enhanced chemical vapor deposition (RF-PECVD) on SiO 2/Si substrate covered with Ni thin film at relatively low temperatures (650 °C). During deposition, the trace amount of carbon (CH 4 gas flow rate of 2 sccm) is introduced into PECVD chamber and the deposition time is only 30 s, in which the carbon atoms diffuse into the Ni film and then segregate on its surface, forming single-layer or few-layer graphene. After deposition, Ni is removed by wet etching, and the obtained single continuous graphene film can easily be transferred to other substrates. This investigation provides a large-area, low temperature and low-cost synthesis method for graphene as a practical electronic material.

  7. Ultralow-k dielectrics prepared by plasma-enhanced chemical vapor deposition

    NASA Astrophysics Data System (ADS)

    Grill, A.; Patel, V.

    2001-08-01

    Carbon-doped oxide materials (SiCOH films) with ultralow dielectric constants have been prepared by plasma-enhanced chemical vapor deposition (PECVD) from mixtures of SiCOH precursors with organic materials. The films have been characterized by Rutherford backscattering and forward recoil elastic scattering analysis, Fourier transform infrared spectroscopy and index of refraction measurements, and measurement of step heights in the films. The electrical properties of the films have been measured on metal-insulator-silicon structures. By proper choice of the precursor and deposition conditions, the dielectric constants of the SiCOH films can be reduced to values below 2.1, demonstrating the extendibility of PECVD-prepared carbon-doped oxides as the interconnect dielectrics for future generation of very large scale integrated chips.

  8. One-step synthesis of chlorinated graphene by plasma enhanced chemical vapor deposition

    NASA Astrophysics Data System (ADS)

    Fan, Liwei; Zhang, Hui; Zhang, Pingping; Sun, Xuhui

    2015-08-01

    We developed an approach to synthesize the chlorinated single layer graphene (Cl-G) by one-step plasma enhanced chemical vapor deposition. Copper foil was simply treated with hydrochloric acid and then CuCl2 formed on the surface was used as Cl source under the assistance of plasma treatment. Compared with other two-step methods by post plasma/photochemical treatment of CVD-grown single layer graphene (SLG), one-step Cl-G synthesis approach is quite straightforward and effective. X-ray photoelectron spectroscopy (XPS) revealed that ∼2.45 atom% Cl remained in SLG. Compared with the pristine SLG, the obvious blue shifts of G band and 2D band along with the appearance of D' band and D + G band in the Raman spectra indicate p-type doping of Cl-G.

  9. Photoluminescent Si/SiOx nanoparticle network by near atmospheric plasma-enhanced chemical vapour deposition

    NASA Astrophysics Data System (ADS)

    Yang, Q. Y.; Wang, D. X.; Guo, Y.; Ding, K.; Xu, J. Z.; Shi, J. J.; Zhang, J.

    2011-11-01

    A very fast and simple near atmospheric plasma-enhanced chemical vapour deposition method modulated by a pulsed negative bias voltage is newly developed to yield a Si/SiOx nanoparticle-linked network structure, which emitted enhanced 410 nm photoluminescence (PL) at room temperature. Hydrogen dissociation, oxidation and polarization of the silane plasma-generated active particles could be tuned by the magnitude of bias voltage. The porosity and oxidation of this network structure and the intensity of its PL spectrum at 410 nm were observed to increase with the bias voltage. The large surface area of the Si/SiOx nanoparticle-linked network intensified the radiative recombination centre effect and caused the PL emission enhancement.

  10. High Current Emission from Patterned Aligned Carbon Nanotubes Fabricated by Plasma-Enhanced Chemical Vapor Deposition

    NASA Astrophysics Data System (ADS)

    Cui, Linfan; Chen, Jiangtao; Yang, Bingjun; Jiao, Tifeng

    2015-12-01

    Vertically, carbon nanotube (CNT) arrays were successfully fabricated on hexagon patterned Si substrates through radio frequency plasma-enhanced chemical vapor deposition using gas mixtures of acetylene (C2H2) and hydrogen (H2) with Fe/Al2O3 catalysts. The CNTs were found to be graphitized with multi-walled structures. Different H2/C2H2 gas flow rate ratio was used to investigate the effect on CNT growth, and the field emission properties were optimized. The CNT emitters exhibited excellent field emission performance (the turn-on and threshold fields were 2.1 and 2.4 V/μm, respectively). The largest emission current could reach 70 mA/cm2. The emission current was stable, and no obvious deterioration was observed during the long-term stability test of 50 h. The results were relevant for practical applications based on CNTs.

  11. High Current Emission from Patterned Aligned Carbon Nanotubes Fabricated by Plasma-Enhanced Chemical Vapor Deposition.

    PubMed

    Cui, Linfan; Chen, Jiangtao; Yang, Bingjun; Jiao, Tifeng

    2015-12-01

    Vertically, carbon nanotube (CNT) arrays were successfully fabricated on hexagon patterned Si substrates through radio frequency plasma-enhanced chemical vapor deposition using gas mixtures of acetylene (C2H2) and hydrogen (H2) with Fe/Al2O3 catalysts. The CNTs were found to be graphitized with multi-walled structures. Different H2/C2H2 gas flow rate ratio was used to investigate the effect on CNT growth, and the field emission properties were optimized. The CNT emitters exhibited excellent field emission performance (the turn-on and threshold fields were 2.1 and 2.4 V/μm, respectively). The largest emission current could reach 70 mA/cm(2). The emission current was stable, and no obvious deterioration was observed during the long-term stability test of 50 h. The results were relevant for practical applications based on CNTs. PMID:26666912

  12. Plasma-enhanced chemical vapor deposition of amorphous Si on graphene

    NASA Astrophysics Data System (ADS)

    Lupina, G.; Strobel, C.; Dabrowski, J.; Lippert, G.; Kitzmann, J.; Krause, H. M.; Wenger, Ch.; Lukosius, M.; Wolff, A.; Albert, M.; Bartha, J. W.

    2016-05-01

    Plasma-enhanced chemical vapor deposition of thin a-Si:H layers on transferred large area graphene is investigated. Radio frequency (RF, 13.56 MHz) and very high frequency (VHF, 140 MHz) plasma processes are compared. Both methods provide conformal coating of graphene with Si layers as thin as 20 nm without any additional seed layer. The RF plasma process results in amorphization of the graphene layer. In contrast, the VHF process keeps the high crystalline quality of the graphene layer almost intact. Correlation analysis of Raman 2D and G band positions indicates that Si deposition induces reduction of the initial doping in graphene and an increase of compressive strain. Upon rapid thermal annealing, the amorphous Si layer undergoes dehydrogenation and transformation into a polycrystalline film, whereby a high crystalline quality of graphene is preserved.

  13. MICROWAVE TECHNOLOGY CHEMICAL SYNTHESIS APPLICATIONS

    EPA Science Inventory

    Microwave-accelerated chemical syntheses in various solvents as well as under solvent-free conditions have witnessed an explosive growth. The technique has found widespread application predominantly exploiting the inexpensive unmodified household microwave (MW) ovens although th...

  14. Deposition of SiOx layer by plasma-enhanced chemical vapor deposition for the protection of silver (Ag) surfaces

    NASA Astrophysics Data System (ADS)

    Tarazi, Saad Al; Volpe, Luca; Antonelli, Luca; Jafer, Rashida; Batani, Dimitri; d'Esposito, Antonio; Vitobello, Marialuisa

    2014-03-01

    Silver surfaces have been treated with plasma-enhanced chemical vapor deposition to produce SiO2-like coatings for possible applications in the jewelry industry. Different experimental conditions have been tested in order to optimize the protective effectiveness of the deposited layers. Samples were analyzed with optical and scanning electron microscopy and energy-dispersive spectrometry.

  15. Control of interface nanoscale structure created by plasma-enhanced chemical vapor deposition.

    PubMed

    Peri, Someswara R; Akgun, Bulent; Satija, Sushil K; Jiang, Hao; Enlow, Jesse; Bunning, Timothy J; Foster, Mark D

    2011-09-01

    Tailoring the structure of films deposited by plasma-enhanced chemical vapor deposition (PECVD) to specific applications requires a depth-resolved understanding of how the interface structures in such films are impacted by variations in deposition parameters such as feed position and plasma power. Analysis of complementary X-ray and neutron reflectivity (XR, NR) data provide a rich picture of changes in structure with feed position and plasma power, with those changes resolved on the nanoscale. For plasma-polymerized octafluorocyclobutane (PP-OFCB) films, a region of distinct chemical composition and lower cross-link density is found at the substrate interface for the range of processing conditions studied and a surface layer of lower cross-link density also appears when plasma power exceeds 40 W. Varying the distance of the feed from the plasma impacts the degree of cross-linking in the film center, thickness of the surface layer, and thickness of the transition region at the substrate. Deposition at the highest power, 65 W, both enhances cross-linking and creates loose fragments with fluorine content higher than the average. The thickness of the low cross-link density region at the air interface plays an important role in determining the width of the interface built with a layer subsequently deposited atop the first. PMID:21875044

  16. Control of interface nanoscale structure created by plasma-enhanced chemical vapor deposition.

    PubMed

    Peri, Someswara R; Akgun, Bulent; Satija, Sushil K; Jiang, Hao; Enlow, Jesse; Bunning, Timothy J; Foster, Mark D

    2011-09-01

    Tailoring the structure of films deposited by plasma-enhanced chemical vapor deposition (PECVD) to specific applications requires a depth-resolved understanding of how the interface structures in such films are impacted by variations in deposition parameters such as feed position and plasma power. Analysis of complementary X-ray and neutron reflectivity (XR, NR) data provide a rich picture of changes in structure with feed position and plasma power, with those changes resolved on the nanoscale. For plasma-polymerized octafluorocyclobutane (PP-OFCB) films, a region of distinct chemical composition and lower cross-link density is found at the substrate interface for the range of processing conditions studied and a surface layer of lower cross-link density also appears when plasma power exceeds 40 W. Varying the distance of the feed from the plasma impacts the degree of cross-linking in the film center, thickness of the surface layer, and thickness of the transition region at the substrate. Deposition at the highest power, 65 W, both enhances cross-linking and creates loose fragments with fluorine content higher than the average. The thickness of the low cross-link density region at the air interface plays an important role in determining the width of the interface built with a layer subsequently deposited atop the first.

  17. Optimization of silicon oxynitrides by plasma-enhanced chemical vapor deposition for an interferometric biosensor

    NASA Astrophysics Data System (ADS)

    Choo, Sung Joong; Lee, Byung-Chul; Lee, Sang-Myung; Park, Jung Ho; Shin, Hyun-Joon

    2009-09-01

    In this paper, silicon oxynitride layers deposited with different plasma-enhanced chemical vapor deposition (PECVD) conditions were fabricated and optimized, in order to make an interferometric sensor for detecting biochemical reactions. For the optimization of PECVD silicon oxynitride layers, the influence of the N2O/SiH4 gas flow ratio was investigated. RF power in the PEVCD process was also adjusted under the optimized N2O/SiH4 gas flow ratio. The optimized silicon oxynitride layer was deposited with 15 W in chamber under 25/150 sccm of N2O/SiH4 gas flow rates. The clad layer was deposited with 20 W in chamber under 400/150 sccm of N2O/SiH4 gas flow condition. An integrated Mach-Zehnder interferometric biosensor based on optical waveguide technology was fabricated under the optimized PECVD conditions. The adsorption reaction between bovine serum albumin (BSA) and the silicon oxynitride surface was performed and verified with this device.

  18. The evolution of carbon nanotubes during their growth by plasma enhanced chemical vapor deposition

    NASA Astrophysics Data System (ADS)

    Wang, Hengzhi; Ren, Z. F.

    2011-10-01

    During the growth of carbon nanotubes (CNTs) by plasma enhanced chemical vapor deposition (PECVD), plasma etching is the crucial factor that determines the growth mode and alignment of the CNTs. Focusing on a thin catalyst coating (Ni = 5 nm), this study finds that the CNT growth by PECVD goes through three stages from randomly entangled (I-CNTs) to partially aligned (II-CNTs) to fully aligned (III-CNTs). The I-CNTs and II-CNTs are mostly etched away by the plasma as time goes by ending up with III-CNTs as the only product when growth time is long enough. However, with a thickness of the catalyst coating of 10 nm or more, neither I-CNTs nor II-CNTs are produced, but III-CNTs are the only type of CNTs grown during the whole growth process. During the growth of III-CNTs, the catalyst particles (Ni) stay on the tips of each of the aligned CNTs and act as a 'safety helmet' to protect the CNTs from plasma ion bombardment. On the other hand, it is also the plasma that limits the growth of III-CNTs, since the plasma eventually etches all the catalytic particles out and stops the growth.

  19. Deposition of nanocrystalline SiC films using helicon wave plasma enhanced chemical vapor deposition

    NASA Astrophysics Data System (ADS)

    Lu, Wanbing; Yu, Wei; Ma, Luo; Wu, Liping; Fu, Guangsheng

    2008-11-01

    Hydrogenated nanocrystalline SiC films have been deposited by using helicon wave plasma enhanced chemical vapor deposition (HW-PECVD) in H2, SiH4 and CH4 gas mixtures at different RF powers. Their structural and optical properties have been investigated by Fourier transform infrared absorption (FTIR), atomic force microscopy (AFM) and ultraviolet-visible (UV-VIS) transmission spectra. The results indicate that RF power has an important influence on properties of the deposited films. It is found that in a 300 °C low substrate temperature, only amorphous SiC can be deposited at the radio frequency (RF) power of lower than 400 W, while nanocrystalline SiC can be grown at the RF power of equal to or higher than 400 W. The analyses show that the high plasma density of helicon wave plasma source and the high hydrogen dilution condition are two key factors for depositing nanocrystalline SiC films at a low temperature.

  20. Synthesis of vertically aligned carbon nanofibers-carbon nanowalls by plasma-enhanced chemical vapor deposition.

    PubMed

    Okamoto, Atsuto; Tanaka, Kei; Yoshimura, Masamichi; Ueda, Kazuyuki; Ghosh, Pradip; Tanemura, Masaki

    2013-03-01

    Vertically aligned carbon nanofibers (VA-CNFs)-carbon nanowalls (CNWs) have been prepared on a silicon (Si) substrate by plasma-enhanced chemical vapor deposition. The VA-CNFs-CNWs were formed at bias voltage of - 185 V, whereas conventional VA-CNFs were synthesized under conditions of high bias voltages. Degenerated CNWs with turbostratic graphite structure were created on amorphous carbon layer around CNFs like a flag attached to a pole, which is evidenced by scanning electron microscopy, transmission electron microscopy, electron diffraction, and micro-Raman spectroscopy. Electron field emission characteristics of VA-CNFs-CNWs with unique microstructure, fabricated on the Si substrate, were primarily investigated. As a result, the VA-CNFs-CNWs showed the turn-on and the threshold fields of 1.7 V x microm(-1) and 3.35 V x microm(-1) with current densities of 10 nA x cm(-2) and 1 microA x cm(-2), respectively. The field enhancement factor beta was estimated to be 1059 by using Fowler-Nordheim theory. PMID:23755628

  1. Preparation and structure of porous dielectrics by plasma enhanced chemical vapor deposition

    NASA Astrophysics Data System (ADS)

    Gates, S. M.; Neumayer, D. A.; Sherwood, M. H.; Grill, A.; Wang, X.; Sankarapandian, M.

    2007-05-01

    The preparation of ultralow dielectric constant porous silicon, carbon, oxygen, hydrogen alloy dielectrics, called "pSiCOH," using a production 200mm plasma enhanced chemical vapor deposition tool and a thermal treatment is reported here. The effect of deposition temperature on the pSiCOH film is examined using Fourier transform infrared (FTIR) spectroscopy, dielectric constant (k), and film shrinkage measurements. For all deposition temperatures, carbon in the final porous film is shown to be predominantly Si -CH3 species, and lower k is shown to correlate with increased concentration of Si -CH3. NMR and FTIR spectroscopies clearly detect the loss of a removable, unstable, hydrocarbon (CHx) phase during the thermal treatment. Also detected are increased cross-linking of the Si-O skeleton, and concentration changes for three distinct structures of carbon. In the as deposited films, deposition temperature also affects the hydrocarbon (CHx) content and the presence of C O and C C functional groups.

  2. Stress control of silicon nitride films deposited by plasma enhanced chemical vapor deposition

    NASA Astrophysics Data System (ADS)

    Li, Dong-ling; Feng, Xiao-fei; Wen, Zhi-yu; Shang, Zheng-guo; She, Yin

    2016-07-01

    Stress controllable silicon nitride (SiNx) films deposited by plasma enhanced chemical vapor deposition (PECVD) are reported. Low stress SiNx films were deposited in both high frequency (HF) mode and dual frequency (HF/LF) mode. By optimizing process parameters, stress free (-0.27 MPa) SiNx films were obtained with the deposition rate of 45.5 nm/min and the refractive index of 2.06. Furthermore, at HF/LF mode, the stress is significantly influenced by LF ratio and LF power, and can be controlled to be 10 MPa with the LF ratio of 17% and LF power of 150 W. However, LF power has a little effect on the deposition rate due to the interaction between HF power and LF power. The deposited SiNx films have good mechanical and optical properties, low deposition temperature and controllable stress, and can be widely used in integrated circuit (IC), micro-electro-mechanical systems (MEMS) and bio-MEMS.

  3. Chain Assemblies from Nanoparticles Synthesized by Atmospheric Pressure Plasma Enhanced Chemical Vapor Deposition: The Computational View.

    PubMed

    Mishin, Maxim V; Zamotin, Kirill Y; Protopopova, Vera S; Alexandrov, Sergey E

    2015-12-01

    This article refers to the computational study of nanoparticle self-organization on the solid-state substrate surface with consideration of the experimental results, when nanoparticles were synthesised during atmospheric pressure plasma enhanced chemical vapor deposition (AP-PECVD). The experimental study of silicon dioxide nanoparticle synthesis by AP-PECVD demonstrated that all deposit volume consists of tangled chains of nanoparticles. In certain cases, micron-sized fractals are formed from tangled chains due to deposit rearrangement. This work is focused on the study of tangled chain formation only. In order to reveal their formation mechanism, a physico-mathematical model was developed. The suggested model was based on the motion equation solution for charged and neutral nanoparticles in the potential fields with the use of the empirical interaction potentials. In addition, the computational simulation was carried out based on the suggested model. As a result, the influence of such experimental parameters as deposition duration, particle charge, gas flow velocity, and angle of gas flow was found. It was demonstrated that electrical charges carried by nanoparticles from the discharge area are not responsible for the formation of tangled chains from nanoparticles, whereas nanoparticle kinetic energy plays a crucial role in deposit morphology and density. The computational results were consistent with experimental results. PMID:26682441

  4. Characterization of diamond-like nanocomposite thin films grown by plasma enhanced chemical vapor deposition

    SciTech Connect

    Santra, T. S.; Liu, C. H.; Bhattacharyya, T. K.; Patel, P.; Barik, T. K.

    2010-06-15

    Diamond-like nanocomposite (DLN) thin films, comprising the networks of a-C:H and a-Si:O were deposited on pyrex glass or silicon substrate using gas precursors (e.g., hexamethyldisilane, hexamethyldisiloxane, hexamethyldisilazane, or their different combinations) mixed with argon gas, by plasma enhanced chemical vapor deposition technique. Surface morphology of DLN films was analyzed by atomic force microscopy. High-resolution transmission electron microscopic result shows that the films contain nanoparticles within the amorphous structure. Fourier transform infrared spectroscopy (FTIR), Raman spectroscopy, and x-ray photoelectron spectroscopy (XPS) were used to determine the structural change within the DLN films. The hardness and friction coefficient of the films were measured by nanoindentation and scratch test techniques, respectively. FTIR and XPS studies show the presence of C-C, C-H, Si-C, and Si-H bonds in the a-C:H and a-Si:O networks. Using Raman spectroscopy, we also found that the hardness of the DLN films varies with the intensity ratio I{sub D}/I{sub G}. Finally, we observed that the DLN films has a better performance compared to DLC, when it comes to properties like high hardness, high modulus of elasticity, low surface roughness and low friction coefficient. These characteristics are the critical components in microelectromechanical systems (MEMS) and emerging nanoelectromechanical systems (NEMS).

  5. Modeling of Sheath Ion-Molecule Reactions in Plasma Enhanced Chemical Vapor Deposition of Carbon Nanotubes

    NASA Technical Reports Server (NTRS)

    Hash, David B.; Govindan, T. R.; Meyyappan, M.

    2004-01-01

    In many plasma simulations, ion-molecule reactions are modeled using ion energy independent reaction rate coefficients that are taken from low temperature selected-ion flow tube experiments. Only exothermic or nearly thermoneutral reactions are considered. This is appropriate for plasma applications such as high-density plasma sources in which sheaths are collisionless and ion temperatures 111 the bulk p!asma do not deviate significantly from the gas temperature. However, for applications at high pressure and large sheath voltages, this assumption does not hold as the sheaths are collisional and ions gain significant energy in the sheaths from Joule heating. Ion temperatures and thus reaction rates vary significantly across the discharge, and endothermic reactions become important in the sheaths. One such application is plasma enhanced chemical vapor deposition of carbon nanotubes in which dc discharges are struck at pressures between 1-20 Torr with applied voltages in the range of 500-700 V. The present work investigates The importance of the inclusion of ion energy dependent ion-molecule reaction rates and the role of collision induced dissociation in generating radicals from the feedstock used in carbon nanotube growth.

  6. The augmented saddle field discharge characteristics and its applications for plasma enhanced chemical vapour deposition

    SciTech Connect

    Wong, Johnson; Yeghikyan, Davit; Kherani, Nazir P.

    2013-04-07

    A high ion flux parallel electrode plasma is proposed and studied in its DC configuration. By cascading a diode source region which supplies electrons and a saddle field region where these seed electrons are energized and amplified, the energy of ion bombardment on the substrate can be decoupled from the plasma density. The sufficiently large density of electrons and holes in the vicinity of the substrate raises the possibility to perform plasma enhanced chemical vapour deposition on insulating materials, at low sheath voltages (around 40 V in the configuration studied), at low temperatures in which the surface mobility of film growth species may be provided by the bombardment of moderate energy ions. As a benchmarking exercise, experiments are carried out on silane discharge characteristics and deposition of hydrogenated amorphous silicon (a-Si:H) on both silicon wafer and glass. The films grown at low anode voltages have excellent microstructures with predominantly monohydride bonds, sharp band tails, but relatively high integrated defect density in the mid 10{sup 16}/cm{sup 3} range for the particular substrate temperature of 180 Degree-Sign C, indicating that further optimizations are necessary if the electrode configuration is to be used to create a-Si:H devices.

  7. Growth of ultrananocrystalline diamond film by DC Arcjet plasma enhanced chemical vapor deposition

    NASA Astrophysics Data System (ADS)

    Chen, G. C.; Li, B.; Yan, Z. Q.; Liu, J.; Lu, F. X.; Ye, H.

    2012-06-01

    Self-standing diamond films were grown by DC Arcjet plasma enhanced chemical vapor deposition (CVD). The feed gasses were Ar/H2/CH4, in which the flow ratio of CH4 to H2 (F/F) was varied from 5% to 20%. Two distinct morphologies were observed by scanning electron microscope (SEM), i.e. the "pineapple-like" morphology and the "cauliflower-like" morphology. It was found that the morphologies of the as-grown films are strongly dependent on the flow ratio of CH4 to H2 in the feed gasses. High resolution transmission electron microscope (HRTEM) survey results revealed that there were nanocrystalline grains within the "pineapple-like" films whilst there were ultrananocrystalline grains within "cauliflower-like" films. X-ray diffraction (XRD) results suggested that (110) crystalline plane was the dominant surface in the "cauliflower-like" films whilst (100) crystalline plane was the dominant surface in the "pineapple-like" films. Raman spectroscopy revealed that nanostructured carbon features could be observed in both types of films. Plasma diagnosis was carried out in order to understand the morphology dependent growth mechanism. It could be concluded that the film morphology was strongly influenced by the density of gas phases. The gradient of C2 radical was found to be different along the growth direction under the different growth conditions.

  8. Plasma enhanced chemical vapor deposition of silicon oxide films with divinyldimethylsilane and tetravinylsilane

    SciTech Connect

    Park, Sung-Gyu; Rhee, Shi-Woo

    2006-03-15

    Carbon-doped silicon oxide (SiCOH) low-k films were deposited with plasma enhanced chemical vapor deposition (PECVD) using divinyldimethylsilane (DVDMS) with two vinyl groups and tetravinylsilane (TVS) with four vinyl groups compared with vinyltrimethylsilane (VTMS) with one vinyl group. With more vinyl groups in the precursor, due to the crosslinking of the vinyl groups, the film contains more of an organic phase and organic phase became less volatile. It was confirmed that the deposition rate, refractive index, and k value increase with more vinyl groups in the precursor molecule. After annealing, the SiCOH films deposited with DVDMS and TVS showed a low dielectric constant of 2.2 and 2.4 at optimum conditions, respectively. In both cases, the annealed film had low leakage current density (J=6.7x10{sup -7} A/cm{sup 2} for SiCOH film of DVDMS and J=1.18x10{sup -8} A/cm{sup 2} for SiCOH film of TVS at 1 MV/cm) and relatively high breakdown field strength (E>4.0 MV/cm at 1 mA/cm{sup 2}), which is comparable to those of PECVD SiO{sub 2}.

  9. The evolution of carbon nanotubes during their growth by plasma enhanced chemical vapor deposition.

    PubMed

    Wang, Hengzhi; Ren, Z F

    2011-10-01

    During the growth of carbon nanotubes (CNTs) by plasma enhanced chemical vapor deposition (PECVD), plasma etching is the crucial factor that determines the growth mode and alignment of the CNTs. Focusing on a thin catalyst coating (Ni = 5 nm), this study finds that the CNT growth by PECVD goes through three stages from randomly entangled (I-CNTs) to partially aligned (II-CNTs) to fully aligned (III-CNTs). The I-CNTs and II-CNTs are mostly etched away by the plasma as time goes by ending up with III-CNTs as the only product when growth time is long enough. However, with a thickness of the catalyst coating of 10 nm or more, neither I-CNTs nor II-CNTs are produced, but III-CNTs are the only type of CNTs grown during the whole growth process. During the growth of III-CNTs, the catalyst particles (Ni) stay on the tips of each of the aligned CNTs and act as a 'safety helmet' to protect the CNTs from plasma ion bombardment. On the other hand, it is also the plasma that limits the growth of III-CNTs, since the plasma eventually etches all the catalytic particles out and stops the growth. PMID:21911923

  10. Plasma-enhanced chemical vapor deposition synthesis of vertically oriented graphene nanosheets.

    PubMed

    Bo, Zheng; Yang, Yong; Chen, Junhong; Yu, Kehan; Yan, Jianhua; Cen, Kefa

    2013-06-21

    Vertically oriented graphene (VG) nanosheets have attracted growing interest for a wide range of applications, from energy storage, catalysis and field emission to gas sensing, due to their unique orientation, exposed sharp edges, non-stacking morphology, and huge surface-to-volume ratio. Plasma-enhanced chemical vapor deposition (PECVD) has emerged as a key method for VG synthesis; however, controllable growth of VG with desirable characteristics for specific applications remains a challenge. This paper attempts to summarize the state-of-the-art research on PECVD growth of VG nanosheets to provide guidelines on the design of plasma sources and operation parameters, and to offer a perspective on outstanding challenges that need to be overcome to enable commercial applications of VG. The review starts with an overview of various types of existing PECVD processes for VG growth, and then moves on to research on the influences of feedstock gas, temperature, and pressure on VG growth, substrate pretreatment, the growth of VG patterns on planar substrates, and VG growth on cylindrical and carbon nanotube (CNT) substrates. The review ends with a discussion on challenges and future directions for PECVD growth of VG. PMID:23670071

  11. Porosity in plasma enhanced chemical vapor deposited SiCOH dielectrics: A comparative study

    NASA Astrophysics Data System (ADS)

    Grill, A.; Patel, V.; Rodbell, K. P.; Huang, E.; Baklanov, M. R.; Mogilnikov, K. P.; Toney, M.; Kim, H.-C.

    2003-09-01

    The low dielectric constant (k) of plasma enhanced chemical vapor deposited SiCOH films has been attributed to porosity in the films. We have shown previously that the dielectric constant of such materials can be extended from the typical k values of 2.7-2.9 to ultralow-k values of k=2.0. The reduction in the dielectric constants has been achieved by enhancing the porosity in the films through the addition of an organic material to the SiCOH precursor and annealing the films to remove the thermally less-stable organic fractions. In order to confirm the relation between dielectric constant and film porosity the latter has been evaluated for SiCOH films with k values from 2.8 to 2.05 using positron annihilation spectroscopy, positron annihilation lifetime spectroscopy, small angle x-ray scattering, specular x-ray reflectivity, and ellipsometric porosimetry measurements. It has been found that the SiCOH films with k=2.8 had no detectable porosity, however the porosity increased with decreasing dielectric constant reaching values of 28%-39% for k values of 2.05. The degree of porosity and the pore size determined by the dissimilar techniques agreed within reasonable limits, especially when one takes into account the small pore size in these films and the different assumptions used by the different techniques. The pore size increases with decreasing k, however the diameter remains below 5 nm for k=2.05, most of the pores being smaller than 2.5 nm.

  12. Practical silicon deposition rules derived from silane monitoring during plasma-enhanced chemical vapor deposition

    SciTech Connect

    Bartlome, Richard De Wolf, Stefaan; Demaurex, Bénédicte; Ballif, Christophe; Amanatides, Eleftherios; Mataras, Dimitrios

    2015-05-28

    We clarify the difference between the SiH{sub 4} consumption efficiency η and the SiH{sub 4} depletion fraction D, as measured in the pumping line and the actual reactor of an industrial plasma-enhanced chemical vapor deposition system. In the absence of significant polysilane and powder formation, η is proportional to the film growth rate. Above a certain powder formation threshold, any additional amount of SiH{sub 4} consumed translates into increased powder formation rather than into a faster growing Si film. In order to discuss a zero-dimensional analytical model and a two-dimensional numerical model, we measure η as a function of the radio frequency (RF) power density coupled into the plasma, the total gas flow rate, the input SiH{sub 4} concentration, and the reactor pressure. The adjunction of a small trimethylboron flow rate increases η and reduces the formation of powder, while the adjunction of a small disilane flow rate decreases η and favors the formation of powder. Unlike η, D is a location-dependent quantity. It is related to the SiH{sub 4} concentration in the plasma c{sub p}, and to the phase of the growing Si film, whether the substrate is glass or a c-Si wafer. In order to investigate transient effects due to the RF matching, the precoating of reactor walls, or the introduction of a purifier in the gas line, we measure the gas residence time and acquire time-resolved SiH{sub 4} density measurements throughout the ignition and the termination of a plasma.

  13. CHEMICAL SYNTHESIS & TRANSFORMATIONS USING MICROWAVES

    EPA Science Inventory

    A historical account of the utility of microwaves in a variety of chemical synthesis applications will be presented, including a solvent-free strategy that involves microwave (MW) exposure of neat reactants (undiluted) catalyzed by the surfaces of recyclable mineral supports such...

  14. In situ nitrogen-doped graphene grown from polydimethylsiloxane by plasma enhanced chemical vapor deposition

    SciTech Connect

    Wang, Chundong; Zhou, Yungang; He, Lifang; Ng, Tsz-Wai; Hong, Guo; Wu, Qi-Hui; Gao, Fei; Lee, Chun-Sing; Zhang, Wenjun

    2013-01-21

    Due to its unique electronic properties and wide spectrum of promising applications, graphene has attracted much attention from scientists in various fields. Control and engineering of graphene’s semiconducting properties is considered to be the key of its applications in electronic devices. Here, we report a novel method to prepare in situ nitrogen-doped graphene by microwave plasma assisted chemical vapor deposition (CVD) using PDMS (Polydimethylsiloxane) as a solid carbon source. Based on this approach, the concentration of nitrogen-doping can be easily controlled via the flow rate of nitrogen during the CVD process. X-ray photoelectron spectroscopy results indicated that the nitrogen atoms doped into graphene lattice were mainly in the forms of pyridinic and pyrrolic structures. Moreover, first-principles calculations show that the incorporated nitrogen atoms can lead to p-type doping of graphene. This in situ approach provides a promising strategy to prepare graphene with controlled electronic properties.

  15. Deposition of Silicon-Based Dielectrics by Remote Plasma-Enhanced Chemical Vapor Deposition.

    NASA Astrophysics Data System (ADS)

    Tsu, David Vincent

    1989-03-01

    This thesis discusses the deposition of amorphous silicon-based thin-film dielectrics, including silicon dioxide (SiO_2), silicon nitride (Si_3N_4) and silicon oxynitride (SiO_{rm x}N_{rm y} ), by the remote plasma-enhanced chemical vapor -deposition (Remote PECVD) technique. It is possible to deposit these films at low substrate temperatures (100 ^circC-500^ circC) without exposing the film and substrate to energetic plasma species. The oxides produced in this way have been shown to be of "gate" quality. Two issues are addressed, the atomic structure and composition of the deposited films, and the deposition mechanism. The thin films were analyzed by infrared and Auger electron spectroscopies, and the gas phase species during deposition were analyzed in a Deposition/Analysis System which includes mass spectrometry (MS) and optical emission spectroscopy (OES). A description of the deposition system is given as well as how this technique differs from the widely used Direct PECVD process. In the Direct process, all of the reactant gases are plasma excited and the substrate is exposed to the plasma. In the Remote process, the gases are selectively excited and the substrate is remote from the plasma region. We show that these differences in the Remote process, as compared to the Direct process, results in a significant increase in the ability to control both the film stoichiometry and the level of incorporated impurities, in particular bonded hydrogen. The Remote process is a four step process: (1) plasma excitation of a mixture of one of the reactant gases (e.g., either NH_3 or O _2, respectively, for nitrides and oxides) with He or Ar; (2) extraction of the activated species out of the plasma region into the deposition chamber; (3) mixing, or interacting, with the other reactant gas (SiH _4), which is injected into the chamber below the plasma region; and (4) deposition on a heated substrate. It had initially been proposed that in the mixing step, precursors were

  16. The application of pulse modulated plasma to the plasma enhanced chemical vapor deposition of dielectric materials

    NASA Astrophysics Data System (ADS)

    Qi, Yu

    This dissertation work applied the pulse modulated plasma to the plasma enhanced chemical vapor deposition (PECVD) of two types of dielectric materials: SiO2-like coatings and Teflon-like coatings. SiO2-like coatings were firstly implemented with continuous plasma. It was proven that three different precursors: hexamethyldisiloxane (HMDSO), 1, 3, 5, 7-tetramethylcyclotetrasiloxane (TMCTS) and octamethylcyclotetrasiloxane (OMCTS) can be used to generate hard, clear and high density SiO2 deposition with coupled high growth rate and low processing temperature via PECVD. Under similar conditions, HMDSO has the lowest growth rate, lowest hardness and highest carbon content; TMCTS has the highest growth rate and hardness, and lowest carbon content; and OMCTS has moderate rates of these deposition qualities, but the best corrosion resistance. Substrate bias seems to have no effect on any deposition quality. High chamber pressure can significantly lower the carbon content in the thin films but does not affect any other qualities; the O2/precursor ratio is the most influential factor among all variables considered in this experiment. The deposition hardness and O:Si ratio always increase with this ratio while the carbon content always decreases. However, different precursors require different optimal ratios to achieve the highest growth rate. Pulse modulation was introduced into PECVD of SiO2-like coatings and OMCTS was selected as the precursor. It was demonstrated that pulse frequency, duty ratio and peak power have significant effects on deposition qualities. The proper combination of the pulse parameters and other traditional plasma parameters can significantly lower the processing temperature while retaining or even improving other deposition qualities, such as growth rate, corrosion resistance and elemental composition. Hardness is the only sacrifice of the lower time-average power caused by pulsing. Therefore, pulse modulation can effectively expand the possible

  17. Electrochromic Devices Deposited on Low-Temperature Plastics by Plasma-Enhanced Chemical Vapor Deposition

    SciTech Connect

    Robbins, Joshua; Seman, Michael

    2005-09-20

    Electrochromic windows have been identified by the Basic energy Sciences Advisory committee as an important technology for the reduction of energy spent on heating and cooling in residential and commercial buildings. Electrochromic devices have the ability to reversibly alter their optical properties in response to a small electric field. By blocking ultraviolet and infrared radiation, while modulating the incoming visible radiation, electrochromics could reduce energy consumption by several Quads per year. This amounts to several percent of the total annual national energy expenditures. The purpose of this project was to demonstrate proof of concept for using plasma-enhanced chemical vapor deposition (PECVD) for depositing all five layers necessary for full electrochromic devices, as an alternative to sputtering techniques. The overall goal is to produce electrochromic devices on flexible polymer substrates using PECVD to significantly reduce the cost of the final product. We have successfully deposited all of the films necessary for a complete electrochromic devices using PECVD. The electrochromic layer, WO3, displayed excellent change in visible transmission with good switching times. The storage layer, V2O5, exhibited a high storage capacity and good clear state transmission. The electrolyte, Ta2O5, was shown to functional with good electrical resistivity to go along with the ability to transfer Li ions. There were issues with leakage over larger areas, which can be address with further process development. We developed a process to deposit ZnO:Ga with a sheet resistance of < 50 W/sq. with > 90% transmission. Although we were not able to deposit on polymers due to the temperatures required in combination with the inverted position of our substrates. Two types of full devices were produced. Devices with Ta2O5 were shown to be functional using small aluminum dots as the top contact. The polymer electrolyte devices were shown to have a clear state transmission of

  18. Green light emission from terbium doped silicon rich silicon oxide films obtained by plasma enhanced chemical vapor deposition

    NASA Astrophysics Data System (ADS)

    Podhorodecki, A.; Zatryb, G.; Misiewicz, J.; Wojcik, J.; Wilson, P. R. J.; Mascher, P.

    2012-11-01

    The effect of silicon concentration and annealing temperature on terbium luminescence was investigated for thin silicon rich silicon oxide films. The structures were deposited by means of plasma enhanced chemical vapor deposition. The structural properties of these films were investigated by Rutherford backscattering spectrometry, transmission electron microscopy and Raman scattering. The optical properties were investigated by means of photoluminescence and photoluminescence decay spectroscopy. It was found that both the silicon concentration in the film and the annealing temperature have a strong impact on the terbium emission intensity. In this paper, we present a detailed discussion of these issues and determine the optimal silicon concentration and annealing temperature.

  19. On the low-temperature growth mechanism of single walled carbon nanotubes in plasma enhanced chemical vapor deposition

    NASA Astrophysics Data System (ADS)

    Shariat, M.; Shokri, B.; Neyts, E. C.

    2013-12-01

    Despite significant progress in single walled carbon nanotube (SWCNT) production by plasma enhanced chemical vapor deposition (PECVD), the growth mechanism in this method is not clearly understood. We employ reactive molecular dynamics simulations to investigate how plasma-based deposition allows growth at low temperature. We first investigate the SWCNT growth mechanism at low and high temperatures under conditions similar to thermal CVD and PECVD. We then show how ion bombardment during the nucleation stage increases the carbon solubility in the catalyst at low temperature. Finally, we demonstrate how moderate energy ions sputter amorphous carbon allowing for SWCNT growth at 500 K.

  20. Low-Temperature Growth of Carbon Nanotubes by Grid-Inserted Plasma-Enhanced Chemical Vapor Deposition

    NASA Astrophysics Data System (ADS)

    Kojima, Yoshihiro; Kishimoto, Shigeru; Mizutani, Takashi

    2007-12-01

    Carbon nanotubes (CNTs) have been successfully grown at a temperature as low as 400 °C by grid-inserted plasma-enhanced chemical vapor deposition (PECVD). The grid and a thin double-layer catalyst of Fe (1 nm)/Ti (1 nm) were effective in growing the CNTs. The growth rates were 10 nm/min at 400 °C and 10 μm/min at 600 °C. The intensity ratios between G-peak and D-peak (G/D ratio) of the Raman scattering spectroscopy were almost the same for the CNTs grown at temperatures between 400 and 600 °C.

  1. Lattice Matched Iii-V IV Semiconductor Heterostructures: Metalorganic Chemical Vapor Deposition and Remote Plasma Enhanced Chemical Vapor Deposition.

    NASA Astrophysics Data System (ADS)

    Choi, Sungwoo

    1992-01-01

    This thesis describes the growth and characterization of wide gap III-V compound semiconductors such as aluminum gallium arsenide (Al_{rm x} Ga_{rm 1-x}As), gallium nitride (GaN), and gallium phosphide (GaP), deposited by the metalorganic chemical vapor deposition (MOCVD) and remote plasma enhanced chemical vapor deposition (Remote PECVD). In the first part of the thesis, the optimization of GaAs and Al_{rm x}Ga _{rm 1-x}As hetero -epitaxial layers on Ge substrates is described in the context of the application in the construction of cascade solar cells. The emphasis on this study is on the trade-offs in the choice of the temperature related to increasing interdiffusion/autodoping and increasing perfection of the epilayer with increasing temperature. The structural, chemical, optical, and electrical properties of the heterostructures are characterized by x-ray rocking curve measurement, scanning electron microscopy (SEM), electron beam induced current (EBIC), cross-sectional transmission electron microscopy (X-TEM), Raman spectroscopy, secondary ion mass spectrometry (SIMS), and steady-state and time-resolved photoluminescence (PL). Based on the results of this work the optimum growth temperature is 720^circC. The second part of the thesis describes the growth of GaN and GaP layers on silicon and sapphire substrates and the homoepitaxy of GaP by remote PECVD. I have designed and built an ultra high vacuum (UHV) deposition system which includes: the gas supply system, the pumping system, the deposition chamber, the load-lock chamber, and the waste disposal system. The work on the deposition of GaN on Si and sapphire focuses onto the understanding of the growth kinetics. In addition, Auger electron spectroscopy (AES) for surface analysis, x-ray diffraction methods and microscopic analyses using SEM and TEM for structural characterization, infrared (IR) and ultraviolet (UV) absorption measurements for optical characterization, and electrical characterization results

  2. Transition from single to multi-walled carbon nanotubes grown by inductively coupled plasma enhanced chemical vapor deposition

    NASA Astrophysics Data System (ADS)

    Bissett, Mark A.; Barlow, Anders J.; Shapter, Joe G.; Quinton, Jamie S.

    2011-08-01

    In this work a simple and up-scalable technique for creating arrays of high purity carbon nanotubes via plasma enhanced chemical vapor deposition is demonstrated. Inductively coupled plasma enhanced chemical vapor deposition was used with methane and argon mixtures to grow arrays in a repeatable and controllable way. Changing the growth conditions such as temperature and growth time led to a transition between single and multi-walled carbon nanotubes and was investigated. This transition from single to multi-walled carbon nanotubes is attributed to a decrease in catalytic activity with time due to amorphous carbon deposition combined with a higher susceptibility of single-walled nanotubes to plasma etching. Patterning of these arrays was achieved by physical masking during the iron catalyst deposition process. The low growth pressure of 100 mTorr and lack of reducing gas such as ammonia or hydrogen or alumina supporting layer further show this to be a simple yet versatile procedure. These arrays were then characterized using scanning electron microscopy, Raman spectroscopy and x-ray photoelectron spectroscopy. It was also observed that at high temperature (550 °C) single-walled nanotube growth was preferential while lower temperatures (450 °C) produced mainly multi-walled arrays.

  3. Synthesis of carbon nanotubes on diamond-like carbon by the hot filament plasma-enhanced chemical vapor deposition method.

    PubMed

    Choi, Eun Chang; Park, Yong Seob; Hong, Byungyou

    2009-01-01

    Carbon nanotubes (CNTs) have attracted considerable attention as possible routes to device miniaturization due to their excellent mechanical, thermal, and electronic properties. These properties show great potential for devices such as field emission displays, transistors, and sensors. The growth of CNTs can be explained by interaction between small carbon patches and the metal catalyst. The metals such as nickel, cobalt, gold, iron, platinum, and palladium are used as the catalysts for the CNT growth. In this study, diamond-like carbon (DLC) was used for CNT growth as a nonmetallic catalyst layer. DLC films were deposited by a radio frequency (RF) plasma-enhanced chemical vapor deposition (RF-PECVD) method with a mixture of methane and hydrogen gases. CNTs were synthesized by a hot filament plasma-enhanced chemical vapor deposition (HF-PECVD) method with ammonia (NH3) as a pretreatment gas and acetylene (C2H2) as a carbon source gas. The grown CNTs and the pretreated DLC films were observed using field emission scanning electron microscopy (FE-SEM) measurement, and the structure of the grown CNTs was analyzed by high resolution transmission scanning electron microscopy (HR-TEM). Also, using energy dispersive spectroscopy (EDS) measurement, we confirmed that only the carbon component remained on the substrate. PMID:19318258

  4. Plasma-enhanced chemical vapor deposition of n-heptane and methyl methacrylate for potential cell alignment applications.

    PubMed

    Steinbach, Annina; Tautzenberger, Andrea; Schaller, Andreas; Kalytta-Mewes, Andreas; Tränkle, Sebastian; Ignatius, Anita; Volkmer, Dirk

    2012-10-24

    Plasma-enhanced chemical vapor deposited polymers (plasma polymers) are promising candidates for biomaterials applications. In the present study, plasma deposition as a fast and easily scalable method was adapted to deposit coatings from n-heptane and methyl methacrylate monomers onto glass substrates. Linear patterns with line and groove widths between 1.25 and 160 μm were introduced by degrative UV-lithography for cell alignment. Differential interference contrast optical microscopy, profilometry and atomic force microscopy revealed that the patterned surfaces had a smooth, homogeneous appearance and a pattern height of 8 and 45 nm for plasma deposited n-heptane and methyl methacrylate, respectively. UV-lithography increased the oxygen content on the surface drastically as shown by X-ray photoelectron spectroscopy. After immersion in simulated body fluid for 21 days, the pattern was still intact, and the ester groups were also maintained for the most part as shown by infrared spectroscopy. To test the coatings' potential applicability for biomaterial surfaces in a preliminary experiment, we cultured murine preosteoblastic MC3T3-E1 cells on these coatings. Light and electron microscopically, a normal spindle-shaped and aligned cell morphology was observed. At the mRNA level, cells showed no signs of diminished proliferation or elevated expression of apoptosis markers. In conclusion, plasma-enhanced chemical vapor deposited polymers can be patterned with a fast and feasible method and might be suitable materials to guide cell alignment. PMID:22992135

  5. Plasma-enhanced chemical vapor deposition of graphene on copper substrates

    SciTech Connect

    Woehrl, Nicolas Schulz, Stephan; Ochedowski, Oliver; Gottlieb, Steven; Shibasaki, Kosuke

    2014-04-15

    A plasma enhanced vapor deposition process is used to synthesize graphene from a hydrogen/methane gas mixture on copper samples. The graphene samples were transferred onto SiO{sub 2} substrates and characterized by Raman spectroscopic mapping and atomic force microscope topographical mapping. Analysis of the Raman bands shows that the deposited graphene is clearly SLG and that the sheets are deposited on large areas of several mm{sup 2}. The defect density in the graphene sheets is calculated using Raman measurements and the influence of the process pressure on the defect density is measured. Furthermore the origin of these defects is discussed with respect to the process parameters and hence the plasma environment.

  6. Optical emission study of a doped diamond deposition process by plasma enhanced chemical vapor deposition

    NASA Astrophysics Data System (ADS)

    Rayar, M.; Supiot, P.; Veis, P.; Gicquel, A.

    2008-08-01

    Standard H2/CH4/B2H6 plasmas (99% of H2 and 1% of CH4, with 0-100ppm of B2H6 added) used for doped diamond film growth are studied by optical emission spectroscopy in order to gain a better understanding of the influence of boron species on the gas phase chemistry. Only two boron species are detected under our experimental conditions (9/15/23Wcm-3 average microwave power density values), and the emission spectra used for studies reported here are B(S1/22-P1/2,3/202) and BH [AΠ1-XΣ+1(0,0)]. Variations of their respective emission intensities as a function of the ratio B /C, the boron to carbon ratio in the gas mixture, are reported. We confirmed that the plasma parameters (Tg, Te, and ne) are not affected by the introduction of diborane, and the number densities of B atoms and BH radical species were estimated from experimental measurements. The results are compared to those obtained from a zero-dimensional chemical kinetic model where two groups of reactions are considered: (1) BHx+H ↔BHx -1+H2 (x=1-3) by analogy with the well-known equilibrium CHx+H set of reactions, which occurs, in particular, in diamond deposition reactors; and (2) from conventional organic chemistry, the set of reactions involving boron species: BHx+C2H2 (x =0-1). The results clearly show that the model based on hydrogen and boron hydrides reactions alone is not consistent with the experimental results, while it is so when taking into account both sets of reactions. Once an upper limit for the boron species number densities has been estimated, axial profiles are calculated on the basis of the plasma model results obtained previously in Laboratoire d'Ingénierie des Matériaux et des Hautes Pressions, and significant differences in trends for different boron species are found. At the plasma-to-substrate boundary, [BH] and [B] drop off in contrast to [BH2], which shows little decrease, and [BH3], which shows little increase, in this region.

  7. Resolving the nanostructure of plasma-enhanced chemical vapor deposited nanocrystalline SiOx layers for application in solar cells

    NASA Astrophysics Data System (ADS)

    Klingsporn, M.; Kirner, S.; Villringer, C.; Abou-Ras, D.; Costina, I.; Lehmann, M.; Stannowski, B.

    2016-06-01

    Nanocrystalline silicon suboxides (nc-SiOx) have attracted attention during the past years for the use in thin-film silicon solar cells. We investigated the relationships between the nanostructure as well as the chemical, electrical, and optical properties of phosphorous, doped, nc-SiO0.8:H fabricated by plasma-enhanced chemical vapor deposition. The nanostructure was varied through the sample series by changing the deposition pressure from 533 to 1067 Pa. The samples were then characterized by X-ray photoelectron spectroscopy, spectroscopic ellipsometry, Raman spectroscopy, aberration-corrected high-resolution transmission electron microscopy, selected-area electron diffraction, and a specialized plasmon imaging method. We found that the material changed with increasing pressure from predominantly amorphous silicon monoxide to silicon dioxide containing nanocrystalline silicon. The nanostructure changed from amorphous silicon filaments to nanocrystalline silicon filaments, which were found to cause anisotropic electron transport.

  8. Plasma enhanced chemical vapor deposition (PECVD) method of forming vanadium oxide films and vanadium oxide thin-films prepared thereby

    DOEpatents

    Zhang, Ji-Guang; Tracy, C. Edwin; Benson, David K.; Turner, John A.; Liu, Ping

    2000-01-01

    A method is disclosed of forming a vanadium oxide film on a substrate utilizing plasma enhanced chemical vapor deposition. The method includes positioning a substrate within a plasma reaction chamber and then forming a precursor gas comprised of a vanadium-containing chloride gas in an inert carrier gas. This precursor gas is then mixed with selected amounts of hydrogen and oxygen and directed into the reaction chamber. The amounts of precursor gas, oxygen and hydrogen are selected to optimize the final properties of the vanadium oxide film An rf plasma is generated within the reaction chamber to chemically react the precursor gas with the hydrogen and the oxygen to cause deposition of a vanadium oxide film on the substrate while the chamber deposition pressure is maintained at about one torr or less. Finally, the byproduct gases are removed from the plasma reaction chamber.

  9. Microwave assisted chemical vapor infiltration

    SciTech Connect

    Devlin, D.J.; Currier, R.P.; Barbero, R.S.; Espinoza, B.F.; Elliott, N.

    1991-12-31

    A microwave assisted process for production of continuous fiber reinforced ceramic matrix composites is described. A simple apparatus combining a chemical vapor infiltration reactor with a conventional 700 W multimode oven is described. Microwave induced inverted thermal gradients are exploited with the ultimate goal of reducing processing times on complex shapes. Thermal gradients in stacks of SiC (Nicalon) cloths have been measured using optical thermometry. Initial results on the ``inside out`` deposition of SiC via decomposition of methyltrichlorosilane in hydrogen are presented. Several key processing issues are identified and discussed. 5 refs.

  10. Preparation of wide range refractive index diamond-like carbon films by means of plasma-enhanced chemical vapor deposition.

    PubMed

    Gharibyan, A; Hayrapetyan, D; Panosyan, Zh; Yengibaryan, Ye

    2011-11-01

    Plasma-enhanced chemical vapor deposition technology has been elaborated for obtaining diamond-like carbon (DLC) coatings of a wide range of properties. Alternative and direct bias voltages have been applied on the substrate, and refractive index dependencies upon various deposition technological parameters have been investigated. The frequency of the bias voltage has been varied in the region of 150-450 kHz. The maximum refractive index range that has been achieved is 1.46-3.2. Thin DLC films have been prepared on crystalline silicon substrates. Because of the wide range of physical, optical, and mechanical properties of the obtained films, they can successfully be applied in different fields of nano-optics. PMID:22086050

  11. Surface roughening during plasma-enhanced chemical-vapor deposition of hydrogenated amorphous silicon on crystal silicon substrates

    NASA Astrophysics Data System (ADS)

    Tanenbaum, D. M.; Laracuente, A. L.; Gallagher, Alan

    1997-08-01

    The morphology of a series of thin films of hydrogenated amorphous silicon (a-Si:H) grown by plasma-enhanced chemical-vapor deposition (PECVD) is studied using scanning tunneling microscopy. The substrates were atomically flat, oxide-free, single-crystal silicon. Films were grown in a PECVD chamber directly connected to a surface analysis chamber with no air exposure between growth and measurement. The homogeneous roughness of the films increases with film thickness. The quantification of this roughening is achieved by calculation of both rms roughness and lateral correlation lengths of the a-Si:H film surface from the height difference correlation functions of the measured topographs. Homogeneous roughening occurs over the film surface due to the collective behavior of the flux of depositing radical species and their interactions with the growth surface.

  12. Surface roughening during plasma-enhanced chemical-vapor deposition of hydrogenated amorphous silicon on crystal silicon substrates

    SciTech Connect

    Tanenbaum, D.M.; Laracuente, A.L.; Gallagher, A.

    1997-08-01

    The morphology of a series of thin films of hydrogenated amorphous silicon (a-Si:H) grown by plasma-enhanced chemical-vapor deposition (PECVD) is studied using scanning tunneling microscopy. The substrates were atomically flat, oxide-free, single-crystal silicon. Films were grown in a PECVD chamber directly connected to a surface analysis chamber with no air exposure between growth and measurement. The homogeneous roughness of the films increases with film thickness. The quantification of this roughening is achieved by calculation of both rms roughness and lateral correlation lengths of the a-Si:H film surface from the height difference correlation functions of the measured topographs. Homogeneous roughening occurs over the film surface due to the collective behavior of the flux of depositing radical species and their interactions with the growth surface. {copyright} {ital 1997} {ital The American Physical Society}

  13. Highly efficient shrinkage of inverted-pyramid silicon nanopores by plasma-enhanced chemical vapor deposition technology.

    PubMed

    Wang, Yifan; Deng, Tao; Chen, Qi; Liang, Feng; Liu, Zewen

    2016-06-24

    Solid-state nanopore-based analysis systems are currently one of the most attractive and promising platforms in sensing fields. This work presents a highly efficient method to shrink inverted-pyramid silicon nanopores using plasma-enhanced chemical vapor deposition (PECVD) technology by the deposition of SiN x onto the surface of the nanopore. The contraction of the inverted-pyramid silicon nanopores when subjected to the PECVD process has been modeled and carefully analyzed, and the modeling data are in good agreement with the experimental results within a specific PECVD shrinkage period (∼0-600 s). Silicon nanopores within a 50-400 nm size range contract to sub-10 nm dimensions. Additionally, the inner structure of the nanopores after the PECVD process has been analyzed by focused ion beam cutting process. The results show an inner structure morphology change from inverted-pyramid to hourglass, which may enhance the spatial resolution of sensing devices.

  14. Highly efficient shrinkage of inverted-pyramid silicon nanopores by plasma-enhanced chemical vapor deposition technology

    NASA Astrophysics Data System (ADS)

    Wang, Yifan; Deng, Tao; Chen, Qi; Liang, Feng; Liu, Zewen

    2016-06-01

    Solid-state nanopore-based analysis systems are currently one of the most attractive and promising platforms in sensing fields. This work presents a highly efficient method to shrink inverted-pyramid silicon nanopores using plasma-enhanced chemical vapor deposition (PECVD) technology by the deposition of SiN x onto the surface of the nanopore. The contraction of the inverted-pyramid silicon nanopores when subjected to the PECVD process has been modeled and carefully analyzed, and the modeling data are in good agreement with the experimental results within a specific PECVD shrinkage period (˜0-600 s). Silicon nanopores within a 50-400 nm size range contract to sub-10 nm dimensions. Additionally, the inner structure of the nanopores after the PECVD process has been analyzed by focused ion beam cutting process. The results show an inner structure morphology change from inverted-pyramid to hourglass, which may enhance the spatial resolution of sensing devices.

  15. Low temperature critical growth of high quality nitrogen doped graphene on dielectrics by plasma-enhanced chemical vapor deposition.

    PubMed

    Wei, Dacheng; Peng, Lan; Li, Menglin; Mao, Hongying; Niu, Tianchao; Han, Cheng; Chen, Wei; Wee, Andrew Thye Shen

    2015-01-27

    Nitrogen doping is one of the most promising routes to modulate the electronic characteristic of graphene. Plasma-enhanced chemical vapor deposition (PECVD) enables low-temperature graphene growth. However, PECVD growth of nitrogen doped graphene (NG) usually requires metal-catalysts, and to the best of our knowledge, only amorphous carbon-nitrogen films have been produced on dielectric surfaces by metal-free PECVD. Here, a critical factor for metal-free PECVD growth of NG is reported, which allows high quality NG crystals to be grown directly on dielectrics like SiO2/Si, Al2O3, h-BN, mica at 435 °C without a catalyst. Thus, the processes needed for loading the samples on dielectrics and n-type doping are realized in a simple PECVD, which would be of significance for future graphene electronics due to its compatibility with the current microelectronic processes.

  16. Improved environmental stability for plasma enhanced chemical vapor deposition SiO2 waveguides using buried channel designs

    NASA Astrophysics Data System (ADS)

    Wall, Thomas A.; Chu, Roger P.; Parks, Joshua W.; Ozcelik, Damla; Schmidt, Holger; Hawkins, Aaron R.

    2016-04-01

    Ridge and buried channel waveguides (BCWs) made using plasma-enhanced chemical vapor deposition SiO2 were fabricated and tested after being subjected to long 85°C water baths. The water bath was used to investigate the effects of any water absorption in the ridge and BCWs. Optical mode spreading and power throughput were measured over a period of three weeks. The ridge waveguides quickly absorbed water within the critical guiding portion of the waveguide. This caused a nonuniformity in the refractive index profile, leading to poor modal confinement after only seven days. The BCWs possessed a low index top cladding layer of SiO2, which caused an increase in the longevity of the waveguides, and after 21 days, the BCW samples still maintained ˜20% throughput, much higher than the ridge waveguides, which had a throughput under 5%.

  17. Polymorphous silicon thin films obtained by plasma-enhanced chemical vapor deposition using dichlorosilane as silicon precursor.

    PubMed

    Remolina, A; Monroy, B M; García-Sánchez, M F; Ponce, A; Bizarro, M; Alonso, J C; Ortiz, A; Santana, G

    2009-06-17

    Polymorphous silicon thin films (pm-Si) have been deposited from mixtures of dichlorosilane and hydrogen, using argon as the diluting gas by plasma-enhanced chemical vapor deposition. The deposition conditions were chosen to simultaneously obtain both Si nanocrystallites and an amorphous silicon matrix in the as-grown samples. High resolution transmission electron microscopy studies show the crystallinity of Si domains whose dimensions are in the interval of 2-14 nm. The surface passivation state of the silicon nanocrystals was inferred from Fourier transform infrared spectroscopy analysis. Two optical absorption edges, corresponding to the amorphous matrix and the Si nanocrystals, were observed for all the pm-Si thin films. Intense visible photoluminescence was observed for the as-grown samples. The possibility of using these thin films for the down-conversion effect in silicon solar cells is discussed. PMID:19471076

  18. Plasma enhanced chemical vapor deposited SiCOH dielectrics: from low-k to extreme low-k interconnect materials

    NASA Astrophysics Data System (ADS)

    Grill, Alfred

    2003-02-01

    Carbon doped oxide dielectrics comprised of Si, C, O, and H (SiCOH) have been prepared by plasma enhanced chemical vapor deposition. Low-k films with a dielectric constant (k) of about 2.8 have been deposited from tetramethylcyclotetrasiloxane (TMCTS). The dielectric constant has been further reduced to extreme low-k values of k<2.1 by admixing an organic precursor to TMCTS and annealing the films to remove the organic fragments and create porosity in the films. The entire range of SiCOH films is characterized by relatively low coefficients of thermal expansion of about 12×10-6 K and mechanical properties that make them suitable for integration as the interconnect dielectric in ultralarge scale integration (ULSI) devices. The range of dielectric constants makes the films potentially useful for several generations of ULSI chips.

  19. Highly efficient shrinkage of inverted-pyramid silicon nanopores by plasma-enhanced chemical vapor deposition technology

    NASA Astrophysics Data System (ADS)

    Wang, Yifan; Deng, Tao; Chen, Qi; Liang, Feng; Liu, Zewen

    2016-06-01

    Solid-state nanopore-based analysis systems are currently one of the most attractive and promising platforms in sensing fields. This work presents a highly efficient method to shrink inverted-pyramid silicon nanopores using plasma-enhanced chemical vapor deposition (PECVD) technology by the deposition of SiN x onto the surface of the nanopore. The contraction of the inverted-pyramid silicon nanopores when subjected to the PECVD process has been modeled and carefully analyzed, and the modeling data are in good agreement with the experimental results within a specific PECVD shrinkage period (∼0–600 s). Silicon nanopores within a 50–400 nm size range contract to sub-10 nm dimensions. Additionally, the inner structure of the nanopores after the PECVD process has been analyzed by focused ion beam cutting process. The results show an inner structure morphology change from inverted-pyramid to hourglass, which may enhance the spatial resolution of sensing devices.

  20. Room-temperature photoluminescence from nitrogenated carbon nanotips grown by plasma-enhanced hot filament chemical vapor deposition

    NASA Astrophysics Data System (ADS)

    Wang, B. B.; Cheng, Q. J.; Chen, Y. A.; Ostrikov, K.

    2011-09-01

    Nitrogenated carbon nanotips with a low atomic concentration of nitrogen have been synthesized by using a custom-designed plasma-enhanced hot-filament plasma chemical vapor deposition system. The properties (including morphology, structure, composition, photoluminescence, etc.) of the synthesized nitrogenated carbon nanotips are investigated using advanced characterization tools. The room-temperature photoluminescence measurements show that the nitrogenated carbon nanotips can generate two distinct broad emissions located at ˜405 and ˜507 nm, respectively. Through the detailed analysis, it is shown that these two emission bands are attributed to the transition between the lone pair valence and σ* bands, which are related to the sp3 and sp2 C-N bonds, respectively. These results are highly relevant to advanced applications of nitrogenated carbon nanotips in light emitting optoelectronic devices.

  1. Highly efficient shrinkage of inverted-pyramid silicon nanopores by plasma-enhanced chemical vapor deposition technology.

    PubMed

    Wang, Yifan; Deng, Tao; Chen, Qi; Liang, Feng; Liu, Zewen

    2016-06-24

    Solid-state nanopore-based analysis systems are currently one of the most attractive and promising platforms in sensing fields. This work presents a highly efficient method to shrink inverted-pyramid silicon nanopores using plasma-enhanced chemical vapor deposition (PECVD) technology by the deposition of SiN x onto the surface of the nanopore. The contraction of the inverted-pyramid silicon nanopores when subjected to the PECVD process has been modeled and carefully analyzed, and the modeling data are in good agreement with the experimental results within a specific PECVD shrinkage period (∼0-600 s). Silicon nanopores within a 50-400 nm size range contract to sub-10 nm dimensions. Additionally, the inner structure of the nanopores after the PECVD process has been analyzed by focused ion beam cutting process. The results show an inner structure morphology change from inverted-pyramid to hourglass, which may enhance the spatial resolution of sensing devices. PMID:27181294

  2. Monitoring and analyses of substrate surface in first stages of graphene growth in plasma-enhanced chemical vapor deposition

    NASA Astrophysics Data System (ADS)

    Kawano, Masahiro; Yamada, Shunya; Hayashi, Yasuaki

    2016-06-01

    In situ ellipsometry was carried out as well as ex situ measurements by scanning electron microscopy and Raman spectroscopy for the analyses of substrate surface in the first stage of graphene growth in plasma-enhanced chemical vapor deposition. Evolutions of the ellipsometric parameters Ψ and Δ were precisely measured during the growth of graphene with the sensitivity far less than 1 nm in film thickness. By the fitting of the experimentally obtained trajectory of ellipsometric parameters on the Ψ-Δ coordinate plane to that of the calculated ones, we confirmed that the graphite volume fraction decreased with growth after a dense graphite material initially formed. This suggests that carbon nanowalls grew on a thin graphitic layer.

  3. Growth kinetics of low temperature single-wall and few walled carbon nanotubes grown by plasma enhanced chemical vapor deposition

    NASA Astrophysics Data System (ADS)

    Gohier, A.; Minea, T. M.; Djouadi, M. A.; Jiménez, J.; Granier, A.

    2007-03-01

    Single-wall, double walled or few walled nanotubes (FWNT) are grown by electron cyclotron resonance plasma enhanced chemical vapor deposition (ECR-PECVD) at temperature as low as 600 °C. Most of these structures are isolated and self-oriented perpendicular to the substrate. The growth mechanism observed for single-wall and few walled (less than seven walls) nanotubes is the “base-growth” mode. Their grow kinetics is investigated regarding two parameters namely the growth time and the synthesis temperature. It is shown that nucleation and growth rate is correlated with the number of walls into FWNT. It also provides an evidence of a critical temperature for FWNT synthesis.

  4. Synthesis and growth mechanism of Fe-catalyzed carbon nanotubes by plasma-enhanced chemical vapor deposition

    NASA Astrophysics Data System (ADS)

    Jiang, Jun; Feng, Tao; Cheng, Xinhong; Dai, Lijuan; Cao, Gongbai; Jiang, Bingyao; Wang, Xi; Liu, Xianghuai; Zou, Shichang

    2006-03-01

    Plasma-enhanced chemical vapor deposition (PECVD) was used to grow Fe-catalyzed carbon nanotubes (CNTs). The nanotubes had a uniform diameter in the range of about 10-20 nm. A base growth mode was responsible for the CNTs growth using a mixture of H 2 (60 sccm) and C 2H 2 (15 sccm). For a mixture of H 2 (100 sccm) and C 2H 2 (25 sccm), a complicated growth mechanism took place involving both the base growth and the tip growth. X-ray photoelectron spectroscopy measurements revealed that the grown CNTs contained C-H covalent bonds and Fe-C bonds located at the interface between them and the substrates. The factors determining the growth mechanism of CNTs are discussed and their growth mechanisms with the different gas ratios are suggested.

  5. In situ growth rate measurements during plasma-enhanced chemical vapour deposition of vertically aligned multiwall carbon nanotube films

    NASA Astrophysics Data System (ADS)

    Jönsson, M.; Nerushev, O. A.; Campbell, E. E. B.

    2007-08-01

    In situ laser reflectivity measurements are used to monitor the growth of multiwalled carbon nanotube (MWCNT) films grown by DC plasma-enhanced chemical vapour deposition (PECVD) from an iron catalyst film deposited on a silicon wafer. In contrast to thermal CVD growth, there is no initial increase in the growth rate; instead, the initial growth rate is high (as much as 10 µm min-1) and then drops off rapidly to reach a steady level (2 µm min-1) for times beyond 1 min. We show that a limiting factor for growing thick films of multiwalled nanotubes (MWNTs) using PECVD can be the formation of an amorphous carbon layer at the top of the growing nanotubes. In situ reflectivity measurements provide a convenient technique for detecting the onset of the growth of this layer.

  6. Effects of plasma-enhanced chemical vapor deposition (PECVD) on the carrier lifetime of Al2O3 passivation stack

    NASA Astrophysics Data System (ADS)

    Cho, Kuk-Hyun; Cho, Young Joon; Chang, Hyo Sik; Kim, Kyung-Joong; Song, Hee Eun

    2015-09-01

    We investigated the effect on the minority carrier lifetime of atomic layer deposition (ALD) Al2O3 passivation by a plasma-enhanced chemical vapor deposition (PECVD) SiON layer in Si/Al2O3/SiON-passivated structure. The lifetime variation of the Al2O3/SiON stack layer was found to depend on both the plasma power and the deposition temperature during the PECVD SiON process and to show better thermal stability than the Al2O3/SiNx:H stack under the same deposition conditions. The lifetime after a high-temperature firing process was improved dramatically at the PECVD deposition temperature of 200 °C. Our results provide a significant clue to reason for the improvement of the passivation performance for passivated emitter and rear contact (PERC) silicon solar cells.

  7. Method of plasma enhanced chemical vapor deposition of diamond using methanol-based solutions

    NASA Technical Reports Server (NTRS)

    Tzeng, Yonhua (Inventor)

    2009-01-01

    Briefly described, methods of forming diamond are described. A representative method, among others, includes: providing a substrate in a reaction chamber in a non-magnetic-field microwave plasma system; introducing, in the absence of a gas stream, a liquid precursor substantially free of water and containing methanol and at least one carbon and oxygen containing compound having a carbon to oxygen ratio greater than one, into an inlet of the reaction chamber; vaporizing the liquid precursor; and subjecting the vaporized precursor, in the absence of a carrier gas and in the absence in a reactive gas, to a plasma under conditions effective to disassociate the vaporized precursor and promote diamond growth on the substrate in a pressure range from about 70 to 130 Torr.

  8. Diverse Amorphous Carbonaceous Thin Films Obtained by Plasma Enhanced Chemical Vapor Deposition and Plasma Immersion Ion Implantation and Deposition

    NASA Astrophysics Data System (ADS)

    Santos, R. M.; Turri, R.; Rangel, E. C.; da Cruz, N. C.; Schreiner, W.; Davanzo, C. U.; Durrant, S. F.

    Diverse amorphous hydrogenated carbon and similar films containing additional elements were produced by Plasma Enhanced Chemical Vapor Deposition (PECVD) and by Plasma Immersion Ion Implantation and Deposition (PIIID). Thus a-C:H, a-C:H:F, a-C:H:N, a-C:H:Cl and a-C:H:O:Si were obtained, starting from the same feed gases, using both techniques. The same deposition system supplied with radiofrequency (RF) power was used to produce all the films. A cylindrical stainless steel chamber equipped with circular electrodes mounted horizontally was employed. RF power was fed to the upper electrode; substrates were placed on the lower electrode. For PIIID negative high tension pulses were also applied to the lower electrode. Raman spectroscopy confirmed that all the films are amorphous. Chemical characterization of each pair of films was undertaken using Infrared Reflection Absorption Spectroscopy and X-ray Photoelectron Spectroscopy. The former revealed the presence of specific structures, such as C-H, C-O, O-H. The latter allowed calculation of the ratio of hetero-atoms to carbon atoms in the films, e.g. F:C, N:C, and Si:C. Only relatively small differences in elemental composition were detected between films produced by the two methods. The deposition rate in PIIID is generally reduced in relation to that of PECVD; for a-C:H:Cl films the reduction factor is almost four.

  9. Deposition kinetics and characterization of stable ionomers from hexamethyldisiloxane and methacrylic acid by plasma enhanced chemical vapor deposition

    NASA Astrophysics Data System (ADS)

    Urstöger, Georg; Resel, Roland; Koller, Georg; Coclite, Anna Maria

    2016-04-01

    A novel ionomer of hexamethyldisiloxane and methacrylic acid was synthesized by plasma enhanced chemical vapor deposition (PECVD). The PECVD process, being solventless, allows mixing of monomers with very different solubilities, and for polymers formed at high deposition rates and with high structural stability (due to the high number of cross-links and covalent bonding to the substrate) to be obtained. A kinetic study over a large set of parameters was run with the aim of determining the optimal conditions for high stability and proton conductivity of the polymer layer. Copolymers with good stability over 6 months' time in air and water were obtained, as demonstrated by ellipsometry, X-Ray reflectivity, and FT-IR spectroscopy. Stable coatings showed also proton conductivity as high as 1.1 ± 0.1 mS cm-1. Chemical analysis showed that due to the high molecular weight of the chosen precursors, it was possible to keep the plasma energy-input-per-mass low. This allowed limited precursor fragmentation and the functional groups of both monomers to be retained during the plasma polymerization.

  10. Plasma-enhanced chemical vapor deposition of ortho-carborane: structural insights and interaction with Cu overlayers

    NASA Astrophysics Data System (ADS)

    James, Robinson; Pasquale, Frank L.; Kelber, Jeffry A.

    2013-09-01

    X-ray and ultraviolet photoelectron spectroscopy (XPS, UPS) are used to investigate the chemical and electronic structure of boron carbide films deposited from ortho-carborane precursors using plasma-enhanced chemical vapor deposition (PECVD), and the reactivity of PECVD films toward sputter-deposited Cu overlayers. The XPS data provide clear evidence of enhanced ortho-carborane reactivity with the substrate, and of extra-icosahedral boron and carbon species; these results differ from results for films formed by condensation and electron beam induced cross-linking of ortho-carborane (EBIC films). The UPS data show that the valence band maximum for PECVD films is ∼1.5 eV closer to the Fermi level than for EBIC films. The XPS data also indicate that PECVD films are resistant to thermally-stimulated diffusion of Cu at temperatures up to 1000 K in UHV, in direct contrast to recently reported results, but important for applications in neutron detection and in microelectronics.

  11. Direct fabrication of 3D graphene on nanoporous anodic alumina by plasma-enhanced chemical vapor deposition

    PubMed Central

    Zhan, Hualin; Garrett, David J.; Apollo, Nicholas V.; Ganesan, Kumaravelu; Lau, Desmond; Prawer, Steven; Cervenka, Jiri

    2016-01-01

    High surface area electrode materials are of interest for a wide range of potential applications such as super-capacitors and electrochemical cells. This paper describes a fabrication method of three-dimensional (3D) graphene conformally coated on nanoporous insulating substrate with uniform nanopore size. 3D graphene films were formed by controlled graphitization of diamond-like amorphous carbon precursor films, deposited by plasma-enhanced chemical vapour deposition (PECVD). Plasma-assisted graphitization was found to produce better quality graphene than a simple thermal graphitization process. The resulting 3D graphene/amorphous carbon/alumina structure has a very high surface area, good electrical conductivity and exhibits excellent chemically stability, providing a good material platform for electrochemical applications. Consequently very large electrochemical capacitance values, as high as 2.1 mF for a sample of 10 mm3, were achieved. The electrochemical capacitance of the material exhibits a dependence on bias voltage, a phenomenon observed by other groups when studying graphene quantum capacitance. The plasma-assisted graphitization, which dominates the graphitization process, is analyzed and discussed in detail. PMID:26805546

  12. Direct fabrication of 3D graphene on nanoporous anodic alumina by plasma-enhanced chemical vapor deposition

    NASA Astrophysics Data System (ADS)

    Zhan, Hualin; Garrett, David J.; Apollo, Nicholas V.; Ganesan, Kumaravelu; Lau, Desmond; Prawer, Steven; Cervenka, Jiri

    2016-01-01

    High surface area electrode materials are of interest for a wide range of potential applications such as super-capacitors and electrochemical cells. This paper describes a fabrication method of three-dimensional (3D) graphene conformally coated on nanoporous insulating substrate with uniform nanopore size. 3D graphene films were formed by controlled graphitization of diamond-like amorphous carbon precursor films, deposited by plasma-enhanced chemical vapour deposition (PECVD). Plasma-assisted graphitization was found to produce better quality graphene than a simple thermal graphitization process. The resulting 3D graphene/amorphous carbon/alumina structure has a very high surface area, good electrical conductivity and exhibits excellent chemically stability, providing a good material platform for electrochemical applications. Consequently very large electrochemical capacitance values, as high as 2.1 mF for a sample of 10 mm3, were achieved. The electrochemical capacitance of the material exhibits a dependence on bias voltage, a phenomenon observed by other groups when studying graphene quantum capacitance. The plasma-assisted graphitization, which dominates the graphitization process, is analyzed and discussed in detail.

  13. Determination of photocatalytic activity in amorphous and crystalline titanium oxide films prepared using plasma-enhanced chemical vapor deposition

    NASA Astrophysics Data System (ADS)

    Wu, Cheng-Yang; Chiang, Bo-Sheng; Chang, Springfield; Liu, Day-Shan

    2011-01-01

    Hydro-oxygenated amorphous titanium oxide (a-TiO x:OH) films were prepared by plasma-enhanced chemical vapor deposition (PECVD) using precursors of titanium tetraisopropoxide (TTIP) and oxygen. The influences of chemical states and crystal quality on the photocatalytic activity were systematically investigated in the as-deposited and post-annealed films. The degree of the photocatalytic activity was deeply correlated with the porosity related to the hydroxyl (OH) groups in the as-deposited amorphous film. The crystallized anatase structures was observed from the 200 °C-deposited a-TiO x:OH film after a post-annealing treatment at 400 °C. The photocatalytic activity related to the film with anatase structure was markedly superior to that of an amorphous film with porous structures. The larger the crystal size of the anatase structure, the higher the photocatalytic activity obtained. At elevated annealed temperatures, the inferior anatase structure due to the crystalline transformation led to a low photocatalytic activity. It was concluded that the photocatalytic activity of an amorphous TiO x film prepared using PECVD was determined by the porosity originating from the functional OH groups in the film, whereas the crystalline quality of anatase phase in the annealed poly-TiO x film was crucial to the photocatalytic activity.

  14. Plasma-enhanced chemical vapor deposition of ortho-carborane: structural insights and interaction with Cu overlayers.

    PubMed

    James, Robinson; Pasquale, Frank L; Kelber, Jeffry A

    2013-09-01

    X-ray and ultraviolet photoelectron spectroscopy (XPS, UPS) are used to investigate the chemical and electronic structure of boron carbide films deposited from ortho-carborane precursors using plasma-enhanced chemical vapor deposition (PECVD), and the reactivity of PECVD films toward sputter-deposited Cu overlayers. The XPS data provide clear evidence of enhanced ortho-carborane reactivity with the substrate, and of extra-icosahedral boron and carbon species; these results differ from results for films formed by condensation and electron beam induced cross-linking of ortho-carborane (EBIC films). The UPS data show that the valence band maximum for PECVD films is ∼1.5 eV closer to the Fermi level than for EBIC films. The XPS data also indicate that PECVD films are resistant to thermally-stimulated diffusion of Cu at temperatures up to 1000 K in UHV, in direct contrast to recently reported results, but important for applications in neutron detection and in microelectronics. PMID:23883590

  15. Plasma-enhanced chemical vapor deposition of ortho-carborane: structural insights and interaction with Cu overlayers.

    PubMed

    James, Robinson; Pasquale, Frank L; Kelber, Jeffry A

    2013-09-01

    X-ray and ultraviolet photoelectron spectroscopy (XPS, UPS) are used to investigate the chemical and electronic structure of boron carbide films deposited from ortho-carborane precursors using plasma-enhanced chemical vapor deposition (PECVD), and the reactivity of PECVD films toward sputter-deposited Cu overlayers. The XPS data provide clear evidence of enhanced ortho-carborane reactivity with the substrate, and of extra-icosahedral boron and carbon species; these results differ from results for films formed by condensation and electron beam induced cross-linking of ortho-carborane (EBIC films). The UPS data show that the valence band maximum for PECVD films is ∼1.5 eV closer to the Fermi level than for EBIC films. The XPS data also indicate that PECVD films are resistant to thermally-stimulated diffusion of Cu at temperatures up to 1000 K in UHV, in direct contrast to recently reported results, but important for applications in neutron detection and in microelectronics.

  16. Free standing carbon nanotubes growth on large-area by nanoimprint and plasma-enhanced chemical vapor deposition.

    NASA Astrophysics Data System (ADS)

    Chang, Won Seok; Choi, Dae-Geon; Chung, Jun-Ho; Huh, Kab-Soo

    2008-03-01

    Among various synthesis methods for carbon nanotube growth, chemical vapor deposition (CVD) method has been widely used for various advantages such as high quality, vertical alignment, controlled diameter and length of nanotubes and so on. Especially, vertically aligned multi-wall carbon nanotube could be grown using plasma-enhanced chemical vapor deposition (PECVD). In this paper, we presented growth of free standing carbon nanotubes by PECVD for the fabrication of nano-electrode. For the growth of nanotubes on the large area 50 mm x 50 mm, catalyst dots were formed by nanoimprint and lift-off process. The synthesis of carbon nanotube requires a metal catalyst layer, etchant gas, and a carbon source. Ammonia (NH3) and acetylene (C2H2) were used as the etchant gas and carbon source, respectively. And iron (Fe) of catalyst metal was deposited on silicon wafer substrates. To form Fe nano dots with diameter of 150 nm and thickness of 50 nm, nano holes patterned imprint resin was used for lift-off process. Carbon nanotubes were grown on pretreated substrates at approximately 30% C2H2:NH3 flow ratios for 40 min.

  17. Effects of feed gas composition and catalyst thickness on carbon nanotube and nanofiber synthesis by plasma enhanced chemical vapor deposition.

    PubMed

    Garg, R K; Kim, S S; Hash, D B; Gore, J P; Fisher, T S

    2008-06-01

    Many engineering applications require carbon nanotubes with specific characteristics such as wall structure, chirality and alignment. However, precise control of nanotube properties grown to application specifications remains a significant challenge. Plasma-enhanced chemical vapor deposition (PECVD) offers a variety of advantages in the synthesis of carbon nanotubes in that several important synthesis parameters can be controlled independently. This paper reports an experimental study of the effects of reacting gas composition (percentage methane in hydrogen) and catalyst film thickness on carbon nanotube (CNT) growth and a computational study of gas-phase composition for the inlet conditions of experimentally observed carbon nanotube growth using different chemical reaction mechanisms. The simulations seek to explain the observed effects of reacting gas composition and to identify the precursors for CNT formation. The experimental results indicate that gas-phase composition significantly affects the synthesized material, which is shown to be randomly aligned nanotube and nanofiber mats for relatively methane-rich inlet gas mixtures and non-tubular carbon for methane-lean incoming mixtures. The simulation results suggest that inlet methane-hydrogen mixture coverts to an acetylene-methane-hydrogen mixture with minor amounts of ethylene, hydrogen atom, and methyl radical. Acetylene appears to be the indicator species for solid carbon formation. The simulations also show that inlet methane-hydrogen mixture does not produce enough gas-phase precursors needed to form quality CNTs below 5% CH4 concentrations in the inlet stream. PMID:18681048

  18. Growth of aligned carbon nanotubes on carbon microfibers by dc plasma-enhanced chemical vapor deposition

    SciTech Connect

    Chen, L H.; AuBuchon, J F.; Chen, I C.; Daraio, C; Ye, X R.; Gapin, A; Jin, Sungho; Wang, Chong M.

    2006-01-16

    It is shown that unidirectionally aligned carbon nanotubes can be grown on electrically conductive network of carbon microfibers via control of buffer layer material and applied electric field during dc plasma chemical vapor deposition growth. Ni catalyst deposition on carbon microfiber produces relatively poorly aligned nanotubes with significantly varying diameters and lengths obtained. The insertion of Ti 5 nm thick underlayer between Ni catalyst layer and C microfiber substrate significantly alters the morphology of nanotubes, resulting in much better aligned, finer diameter, and longer array of nanotubes. This beneficial effect is attributed to the reduced reaction between Ni and carbon paper, as well as prevention of plasma etching of carbon paper by inserting a Ti buffer layer. Such a unidirectionally aligned nanotube structure on an open-pore conductive substrate structure may conveniently be utilized as a high-surface-area base electrodes for fuel cells, batteries, and other electrochemical and catalytic reactions.

  19. Film Characteristics of Low-Temperature Plasma-Enhanced Chemical Vapor Deposition Silicon Dioxide Using Tetraisocyanatesilane and Oxygen

    NASA Astrophysics Data System (ADS)

    Idris, Irman; Sugiura, Osamu

    1998-12-01

    Silicon dioxide films were deposited in a parallel-plate electrode RF plasma-enhanced chemical vapor deposition (PECVD) system using hydrogen-free tetraisocyanatesilane (TICS) and oxygen. The deposition parameters were varied systematically, and the films were characterized by measuring infrared spectra, density, etch rate, refractive index, and current-voltage (I V) and capacitance-voltage (C V) characteristics, as well as by examining their annealing behavior. At 300°C and a TICS partial pressure ratio of 20%, a water-free and hydroxyl-group-free SiO2 film was obtained. The film density, BHF etch rate, refractive index, resistivity, and dielectric constant were 2.3 g/cm3, 330 nm/min, 1.46, 7×1015 Ω·cm, and 3.6, respectively. The film quality degraded and, simultaneously, the film absorbed moisture from the atmosphere with decreasing deposition temperature; however, the quality can be improved by reducing TICS partial pressure. SiO2 films could be deposited even at 15°C, and had a resistivity of about 1013Ω·cm. Infrared measurements showed that SiO2 films deposited from TICS/O2 contained less absorbed water than those deposited from hydrogen-containing source materials at the same deposition temperature.

  20. Preparation of hydrophobic metal-organic frameworks via plasma enhanced chemical vapor deposition of perfluoroalkanes for the removal of ammonia.

    PubMed

    DeCoste, Jared B; Peterson, Gregory W

    2013-01-01

    Plasma enhanced chemical vapor deposition (PECVD) of perfluoroalkanes has long been studied for tuning the wetting properties of surfaces. For high surface area microporous materials, such as metal-organic frameworks (MOFs), unique challenges present themselves for PECVD treatments. Herein the protocol for development of a MOF that was previously unstable to humid conditions is presented. The protocol describes the synthesis of Cu-BTC (also known as HKUST-1), the treatment of Cu-BTC with PECVD of perfluoroalkanes, the aging of materials under humid conditions, and the subsequent ammonia microbreakthrough experiments on milligram quantities of microporous materials. Cu-BTC has an extremely high surface area (~1,800 m(2)/g) when compared to most materials or surfaces that have been previously treated by PECVD methods. Parameters such as chamber pressure and treatment time are extremely important to ensure the perfluoroalkane plasma penetrates to and reacts with the inner MOF surfaces. Furthermore, the protocol for ammonia microbreakthrough experiments set forth here can be utilized for a variety of test gases and microporous materials. PMID:24145623

  1. Growth of high-quality thin-film Ge single crystals by plasma-enhanced chemical vapor deposition

    NASA Technical Reports Server (NTRS)

    Outlaw, R. A.; Hopson, P., Jr.

    1986-01-01

    Thin-film Ge single crystals (approx. 10 microns) have been epitaxially grown on polished NaCl(100) substrates at 450C by using plasma-enhanced chemical vapor deposition. Films on approximately 1 sq cm and larger were separated from the NaCl by either melting the salt or by differential shear stress upon cooling to room temperature. The ordered growth of the Ge was found to be most sensitive to the initial plasma power and to the continuum flow dynamics within the carbon susceptor. The films were visually specular and exhibited a high degree of crysalline order when examined by X-ray diffraction. The films were found to be p-type with a carrier concentration of approximately 3 x 10 to the 16th power/cu cm, a resistivity of 0.11 ohm-cm, and a Hall hole mobility of 1820 sq cm/v/s at room temperature. Vacuum firing minimized the primary contaminant, Na, and corresponding lowered the carrier concentration to 4 x 10 to the 14th power/cu cm.

  2. Large-area SiC membrane produced by plasma enhanced chemical vapor deposition at relatively high temperature

    SciTech Connect

    Liu, Yu; Xie, Changqing

    2015-09-15

    Advances in the growth of silicon carbide (SiC) thin films with outstanding thermal and mechanical properties have received considerable attention. However, the fabrication of large-area free-standing SiC membrane still remains a challenge. Here, the authors report a plasma enhanced chemical vapor deposition process at a relatively high temperature to improve the free-standing SiC membrane area. A systematic study on the microstructural, mechanical, and optical properties of hydrogenated polycrystalline silicon carbide (poly-SiC{sub x}:H) thin films deposited at 600 °C with different annealing temperatures has been performed. In the as-deposited state, SiC{sub x}:H thin films show a polycrystalline structure. The crystallinity degree can be further improved with the increase of the postdeposition annealing temperature. The resulting process produced free-standing 2-μm-thick SiC membranes up to 70 mm in diameter with root mean square roughness of 3.384 nm and optical transparency of about 70% at 632.8 nm wavelength. The large-area SiC membranes made out of poly-SiC{sub x}:H thin films deposited at a relatively high temperature can be beneficial for a wide variety of applications, such as x-ray diffractive optical elements, optical and mechanical filtering, lithography mask, lightweight space telescopes, etc.

  3. Plasma enhanced chemical vapour deposition of silica onto Ti: Analysis of surface chemistry, morphology and functional hydroxyl groups

    PubMed Central

    Szili, Endre J.; Kumar, Sunil; Smart, Roger St. C.; Lowe, Rachel; Saiz, Eduardo; Voelcker, Nicolas H.

    2009-01-01

    Previously, we have developed and characterised a procedure for the deposition of thin silica films by a plasma enhanced chemical vapour deposition (PECVD) procedure using tetraethoxysilane (TEOS) as the main precursor. We have used the silica coatings for improving the corrosion resistance of metals and for enhancing the bioactivity of biomedical metallic implants. Recently, we have been fine-tuning the PECVD method for producing high quality and reproducible PECVD-silica (PECVD-Si) coatings on metals, primarily for biomaterial applications. In order to understand the interaction of the PECVD-Si coatings with biological species (such as proteins and cells), it is important to first analyse the properties of the silica films deposited using the optimised parameters. Therefore, this current investigation was carried out to analyse the characteristic features of PECVD-Si deposited on Ti substrates (PECVD-Si-Ti). We determined that the PECVD-Si coatings on Ti were conformal to the substrate surface, strongly adhered to the underlying substrate and were resistant to delamination. The PECVD-Si surface was composed of stoichiometric SiO2, showed a low carbon content (below 10 at.%) and was very hydrophilic (contact angle <10°). Finally, we also showed that the PECVD-Si coatings contain functional hydroxyl groups. PMID:19809536

  4. Synthesis of large scale graphene oxide using plasma enhanced chemical vapor deposition method and its application in humidity sensing

    NASA Astrophysics Data System (ADS)

    Liu, Yang; Chen, Yuming

    2016-03-01

    Large scale graphene oxide (GO) is directly synthesized on copper (Cu) foil by plasma enhanced chemical vapor deposition method under 500 °C and even lower temperature. Compared to the modified Hummer's method, the obtained GO sheet in this article is large, and it is scalable according to the Cu foil size. The oxygen-contained groups in the GO are introduced through the residual gas of methane (99.9% purity). To prevent the Cu surface from the bombardment of the ions in the plasma, we use low intensity discharge. Our experiment reveals that growth temperature has important influence on the carbon to oxygen ratio (C/O ratio) in the GO; and it also affects the amount of π-π* bonds between carbon atoms. Preliminary experiments on a 6 mm × 12 mm GO based humidity sensor prove that the synthesized GO reacts well to the humidity change. Our GO synthesis method may provide another channel for obtaining large scale GO in gas sensing or other applications.

  5. Characterization and versatile applications of low hydrogen content SiOCN grown by plasma-enhanced chemical vapor deposition

    NASA Astrophysics Data System (ADS)

    Hamm, Steven C.; Waidmann, Jacob; Mathai, Joseph C.; Gangopadhyay, Keshab; Currano, Luke; Gangopadhyay, Shubhra

    2014-09-01

    Low hydrogen content silicon oxycarbonitride (SiOCN) thin films were grown by plasma-enhanced chemical vapor deposition exploiting hydrogen dilution with silane/methane/nitrous oxide or tetramethylsilane/nitrous oxide precursors. The effects of deposition temperature were compared by investigating the compositional, optical, mechanical, and electrical properties of films grown at 100 °C, 250 °C, and 400 °C at thicknesses ranging from 50 nm to 10 μm. The dielectric constant and high breakdown strength of the films remain relatively constant at between 4-5 and 6.8 ± 0.2 MV cm-1 to 9.1 ± 0.3 MV cm-1, respectively, despite the differences in deposition temperature. Other properties of the films include excellent transparency in the visible regime, high nanoindentation hardness (4 to 12 GPa), and relatively low measured stress on Si (-20 to -300 MPa). Overall, the results of this work show that these SiOCN films can be used in a wide variety of applications, including as a dielectric within high voltage capacitors, transparent abrasion-resistant coatings for plastic windows, coatings on flexible substrates, a metal diffusion barrier for low-k dielectrics and polymer films, or within various microelectronic fabrication steps or systems.

  6. Osteoconductive Potential of Barrier NanoSiO2 PLGA Membranes Functionalized by Plasma Enhanced Chemical Vapour Deposition

    PubMed Central

    Terriza, Antonia; Vilches-Pérez, Jose I.; de la Orden, Emilio; Yubero, Francisco; Gonzalez-Caballero, Juan L.; González-Elipe, Agustin R.; Vilches, José; Salido, Mercedes

    2014-01-01

    The possibility of tailoring membrane surfaces with osteoconductive potential, in particular in biodegradable devices, to create modified biomaterials that stimulate osteoblast response should make them more suitable for clinical use, hopefully enhancing bone regeneration. Bioactive inorganic materials, such as silica, have been suggested to improve the bioactivity of synthetic biopolymers. An in vitro study on HOB human osteoblasts was performed to assess biocompatibility and bioactivity of SiO2 functionalized poly(lactide-co-glycolide) (PLGA) membranes, prior to clinical use. A 15 nm SiO2 layer was deposited by plasma enhanced chemical vapour deposition (PECVD), onto a resorbable PLGA membrane. Samples were characterized by X-ray photoelectron spectroscopy, atomic force microscopy, scanning electron microscopy, and infrared spectroscopy (FT-IR). HOB cells were seeded on sterilized test surfaces where cell morphology, spreading, actin cytoskeletal organization, and focal adhesion expression were assessed. As proved by the FT-IR analysis of samples, the deposition by PECVD of the SiO2 onto the PLGA membrane did not alter the composition and other characteristics of the organic membrane. A temporal and spatial reorganization of cytoskeleton and focal adhesions and morphological changes in response to SiO2 nanolayer were identified in our model. The novedous SiO2 deposition method is compatible with the standard sterilization protocols and reveals as a valuable tool to increase bioactivity of resorbable PLGA membranes. PMID:24883304

  7. Structure and characteristics of C3N4 thin films prepared by rf plasma-enhanced chemical vapor deposition

    NASA Astrophysics Data System (ADS)

    Dawei, Wu; Dejun, Fu; Huaixi, Guo; Zhihong, Zhang; Xianquan, Meng; Xiangjun, Fan

    1997-08-01

    C3N4 films were prepared on Si(111) by rf plasma-enhanced chemical vapor deposition using Si3N4/TiN and Si3N4/ZrN as transition layers. X-ray diffraction and transmission electron diffraction revealed that the films deposited have a polycrystalline structure. X-ray photoelectron spectroscopy (XPS) and Fourier transform infrared spectroscopy confirmed the presence of sp3 and sp2 hybridized C atoms tetrahedrally and hexagonally bonded with N atoms, respectively. The nitrogen concentration was calculated from the XPS spectra. Graphite-free C3N4 films were obtained under optimal conditions. The Vickers hardness of the C3N4 films falls in the range of 2950-5100 kgf/mm2. The C3N4 films exhibit high resistance against acid and electrochemical etching. Thermal gravimetric and differential thermal analysis showed that the films are thermally stable at temperatures ranging from room temperature to 1200 °C.

  8. Influence of krypton atoms on the structure of hydrogenated amorphous carbon deposited by plasma enhanced chemical vapor deposition

    NASA Astrophysics Data System (ADS)

    Oliveira, M. H.; Viana, G. A.; de Lima, M. M.; Cros, A.; Cantarero, A.; Marques, F. C.

    2010-12-01

    Hydrogenated amorphous carbon (a-C:H) films were prepared by plasma enhanced chemical vapor deposition using methane (CH4) plus krypton (Kr) mixed atmosphere. The depositions were performed as function of the bias voltage and krypton partial pressure. The goal of this work was to study the influence of krypton gas on the physical properties of a-C:H films deposited on the cathode electrode. Krypton concentration up to 1.6 at. %, determined by Rutherford Back-Scattering, was obtained at high Kr partial pressure and bias of -120 V. The structure of the films was analyzed by means of optical transmission spectroscopy, multi-wavelength Raman scattering and Fourier Transform Infrared spectroscopy. It was verified that the structure of the films remains unchanged up to a concentration of Kr of about 1.0 at. %. A slight graphitization of the films occurs for higher concentration. The observed variation in the film structure, optical band gap, stress, and hydrogen concentration were associated mainly with the subplantation process of hydrocarbons radicals, rather than the krypton ion energy.

  9. Parametric Study for Selective Growth of Single-Walled Carbon Nanotubes in Plasma Enhanced Chemical Vapor Deposition

    NASA Astrophysics Data System (ADS)

    Nozaki, Tomohiro; Karatsu, Takuya; Yoshida, Shinpei; Okazaki, Ken

    2011-01-01

    Carbon nanotube (CNT) growth mechanism in plasma enhanced chemical vapor deposition (PECVD) is presented. Previously developed atmospheric pressure glow discharge reactor was modified and used for this purpose. First, pressure-dependent transition (20-100 kPa) of CNT morphology was investigated with fixed input power (60 W) and different catalyst loading (Fe/Al2Ox: 20 nm). High-purity, vertically-aligned single-walled CNTs (SWCNTs) were synthesized when capacitively coupled non-thermal plasma was generated at atmospheric pressure. On the other hand, fraction of double-walled and multi-walled CNTs increased as total pressure decreased. Although CNT growth rate was decelerated at reduced input power (5-20 W), SWCNTs were also synthesized in the root growth regime at 20 kPa. Plasma-generated reactive species are the important driving force of CNT growth; however, generation and transportation of those species must be properly suppressed for selective growth of single-, double-, and multi-walled CNTs.

  10. A study of preferential growth of carbon nanotubes with semiconducting behavior grown by plasma-enhanced chemical vapor deposition

    NASA Astrophysics Data System (ADS)

    Mizutani, Takashi; Ohnaka, Hirofumi; Okigawa, Yuki; Kishimoto, Shigeru; Ohno, Yutaka

    2009-10-01

    The electrical properties of carbon nanotubes (CNTs) grown by plasma-enhanced chemical vapor deposition (PECVD) have been studied by measuring the I-V characteristics of many CNT-field effect transistors. The ratio of modulation current to total current was as high as 97%, with a small nondepletable OFF current component. This suggests that CNTs with semiconducting behavior were preferentially grown in the PECVD process. Raman scattering spectroscopy of the PECVD-grown CNTs, however, revealed several peaks of the radial breezing mode, which correspond to the presence of metallic CNTs. Scanning gate microscopy measurement of the CNT-FET with an ON/OFF ratio of 100 revealed the existence of a potential barrier in the metallic CNTs. These results suggest that observation of the preferential growth of CNTs with semiconducting behavior in the CNT-FETs fabricated via the present PECVD process results from the opening of the band gap due to defects caused by irradiation damage during the PECVD growth.

  11. Investigation on growth behavior of CNTs synthesized by atmospheric pressure plasma enhanced chemical vapor deposition system on Fe catalyzed substrate.

    PubMed

    Choi, Bum Ho; Kim, Won Jae; Kim, Young Baek; Lee, Jong Ho; Park, Jong Woon; Kim, Woo Sam; Shin, Dong Chan

    2008-10-01

    We have studied growth behavior of carbon nanotubes (CNTs) on iron (Fe) catalyzed substrate using newly developed atmospheric pressure plasma enhanced chemical vapor deposition (AP-PECVD) system. To investigate the improved growth performance with simple equipment and process on large scale, a new AP-PECVD system containing different concept on downstream gas was designed and manufactured. As a catalyst, either sputtered or evaporated Fe thin film on SiO2/Si substrate was used and acetylene gas was used as a carbon source. We observed growth behavior of CNTs such as height, rate and density were strongly affected by plasma power. The maximum height of 427 microm and 267 microm was synthesized under RF plasma power of 30 W for 30 min and 40 W for 3 min, respectively. The growth rate dramatically increased to 6.27 times as plasma power increased from 30 to 40 W which opens the possibility the mass production of CNTs. By SEM and TEM observation, it was verified the grown CNTs was consists of mixture of single-wall and multi-wall CNTs. The graphitization ratio was measured to be 0.93, indicating that the graphitized CNTs forest was formed and relatively high purity of CNTs was synthesized, being useful for nano-composite materials to reinforce the strength. From our experiments, we can observe that the height and growth rate of CNTs is strong function of plasma power. PMID:19198378

  12. Effects of plasma power on the growth of carbon nanotubes in the plasma enhanced chemical vapor deposition method

    NASA Astrophysics Data System (ADS)

    Abdi, Y.; Arzi, E.; Mohajerzadeh, S.

    2008-11-01

    Effects of plasma power on the growth of the multi-wall carbon nanotubes (CNTs) are reported. CNTs were grown on the silicon wafers by plasma enhanced chemical vapor deposition (PECVD) method using a mixture of acetylene and hydrogen at the temperature of 650°C. Plasma powers ranging from zero to 35W were applied on the samples and the effects of different magnitudes of the plasma power on the growth direction of the CNTs were investigated. Regular vertically aligned nanotubes were obtained at plasma power of 25W. In order to set on the plasma during the growth, electrical force was applied on the carbon ions. Nickel layer was used as a catalyst, and prior to the nanotubes growth step, it was treated by hydrogen plasma bombardment in order to obtain the Ni nano-islands. In this step, as the plasma power on the Ni layer was increased, the grain size of nickel nano-particles decreased, and hence, nanotubes of smaller diameter were obtained later on. At the last step some anomalous structures of agglomerated CNTs were obtained by controlling the plasma power. Samples were analyzed by scanning tunneling microscopy (STM) and scanning electron microscopy (SEM).

  13. Influence of krypton atoms on the structure of hydrogenated amorphous carbon deposited by plasma enhanced chemical vapor deposition

    SciTech Connect

    Oliveira, M. H. Jr.; Viana, G. A.; Marques, F. C.; Lima, M. M. Jr. de; Cros, A.; Cantarero, A.

    2010-12-15

    Hydrogenated amorphous carbon (a-C:H) films were prepared by plasma enhanced chemical vapor deposition using methane (CH{sub 4}) plus krypton (Kr) mixed atmosphere. The depositions were performed as function of the bias voltage and krypton partial pressure. The goal of this work was to study the influence of krypton gas on the physical properties of a-C:H films deposited on the cathode electrode. Krypton concentration up to 1.6 at. %, determined by Rutherford Back-Scattering, was obtained at high Kr partial pressure and bias of -120 V. The structure of the films was analyzed by means of optical transmission spectroscopy, multi-wavelength Raman scattering and Fourier Transform Infrared spectroscopy. It was verified that the structure of the films remains unchanged up to a concentration of Kr of about 1.0 at. %. A slight graphitization of the films occurs for higher concentration. The observed variation in the film structure, optical band gap, stress, and hydrogen concentration were associated mainly with the subplantation process of hydrocarbons radicals, rather than the krypton ion energy.

  14. An investigation of plasma chemistry for dc plasma enhanced chemical vapour deposition of carbon nanotubes and nanofibres

    NASA Astrophysics Data System (ADS)

    Hash, David B.; Bell, Martin S.; Teo, Kenneth B. K.; Cruden, Brett A.; Milne, William I.; Meyyappan, M.

    2005-06-01

    The role of plasma in plasma enhanced chemical vapour deposition of carbon nanotubes and nanofibres is investigated with both experimental and computational diagnostic techniques. A residual gas analysis (RGA) of a 12 mbar dc discharge with a C2H2/NH3 gas mixture is conducted near the Ni catalyst surface employed for carbon nanofibre growth. The results are corroborated with a 1D dc discharge model that solves for species densities, ion momentum, and ion, electron and neutral gas thermal energies. The effect of varying the plasma power from 0 to 200 W on the gas composition is studied. The dissociation efficiency of the plasma is demonstrated where over 50% of the feedstock is converted to a mixture of hydrogen, nitrogen and hydrogen cyanide at 200 W. Finally, the important role that endothermic ion-molecule reactions play in this conversion is, for the first time, established. Of these reactions, dissociative proton abstraction and collision-induced dissociation are of the greatest significance.

  15. Compositional study of silicon oxynitride thin films deposited using electron cyclotron resonance plasma-enhanced chemical vapor deposition technique

    SciTech Connect

    Baumann, H.; Sah, R.E.

    2005-05-01

    We have used backscattering spectrometry and {sup 15}N({sup 1}H,{alpha},{gamma}){sup 12}C nuclear reaction analysis techniques to study in detail the variation in the composition of silicon oxynitride films with deposition parameters. The films were deposited using 2.45 GHz electron cyclotron resonance plasma-enhanced chemical vapor deposition (PECVD) technique from mixtures of precursors argon, nitrous oxide, and silane at deposition temperature 90 deg. C. The deposition pressure and nitrous oxide-to-silane gas flow rates ratio have been found to have a pronounced influence on the composition of the films. When the deposition pressure was varied for a given nitrous oxide-to-silane gas flow ratio, the amount of silicon and nitrogen increased with the deposition pressure, while the amount of oxygen decreased. For a given deposition pressure, the amount of incorporated nitrogen and hydrogen decreased while that of oxygen increased with increasing nitrous oxide-to-silane gas flow rates ratio. For nitrous oxide-to-silane gas flow ratio of 5, we obtained films which contained neither chemically bonded nor nonbonded nitrogen atoms as revealed by the results of infrared spectroscopy, backscattering spectrometry, and nuclear reaction analysis. Our results demonstrate the nitrogen-free nearly stoichiometric silicon dioxide films can be prepared from a mixture of precursors argon, nitrous oxide, and silane at low substrate temperature using high-density PECVD technique. This avoids the use of a hazardous and an often forbidden pair of silane and oxygen gases in a plasma reactor.

  16. Microwave-assisted Chemical Transformations

    EPA Science Inventory

    In recent years, there has been a considerable interest in developing sustainable chemistries utilizing green chemistry principles. Since the first published report in 1986 by Gedye and Giguere on microwave assisted synthesis in household microwave ovens, the use of microwaves as...

  17. Characteristics of ultra low-k nanoporous and fluorinated silica based films prepared by plasma enhanced chemical vapor deposition

    SciTech Connect

    Abbasi-Firouzjah, M.; Shokri, B.

    2013-12-07

    Low dielectric constant (low-k) silica based films were deposited on p-type silicon and polycarbonate substrates by radio frequency (RF) plasma enhanced chemical vapor deposition method at low temperature. A mixture of tetraethoxysilane vapor, oxygen, and tetrafluoromethane (CF{sub 4}) was used for the deposition of the films in forms of two structures called as SiO{sub x}C{sub y} and SiO{sub x}C{sub y}F{sub z}. Properties of the films were controlled by amount of porosity and fluorine content in the film matrix. The influence of RF power and CF{sub 4} flow on the elemental composition, deposition rate, surface roughness, leakage current, refractive index, and dielectric constant of the films were characterized. Moreover, optical emission spectroscopy was applied to monitor the plasma process at the different parameters. Electrical characteristics of SiO{sub x}C{sub y} and SiO{sub x}C{sub y}F{sub z} films with metal-oxide-semiconductor structure were investigated using current-voltage analysis to measure the leakage current and breakdown field, as well as capacitance-voltage analysis to obtain the film's dielectric constant. The results revealed that SiO{sub x}C{sub y} films, which are deposited at lower RF power produce more leakage current, meanwhile the dielectric constant and refractive index of these films decreased mainly due to the more porosity in the film structure. By adding CF{sub 4} in the deposition process, fluorine, the most electronegative and the least polarized atom, doped into the silica film and led to decrease in the refractive index and the dielectric constant. In addition, no breakdown field was observed in the electrical characteristics of SiO{sub x}C{sub y}F{sub z} films and the leakage current of these films reduced by increment of the CF{sub 4} flow.

  18. Reduced chemical warfare agent sorption in polyurethane-painted surfaces via plasma-enhanced chemical vapor deposition of perfluoroalkanes.

    PubMed

    Gordon, Wesley O; Peterson, Gregory W; Durke, Erin M

    2015-04-01

    Perfluoralkalation via plasma chemical vapor deposition has been used to improve hydrophobicity of surfaces. We have investigated this technique to improve the resistance of commercial polyurethane coatings to chemicals, such as chemical warfare agents. The reported results indicate the surface treatment minimizes the spread of agent droplets and the sorption of agent into the coating. The improvement in resistance is likely due to reduction of the coating's surface free energy via fluorine incorporation, but may also have contributing effects from surface morphology changes. The data indicates that plasma-based surface modifications may have utility in improving chemical resistance of commercial coatings.

  19. Low-temperature synthesis of diamond films by photoemission-assisted plasma-enhanced chemical vapor deposition

    SciTech Connect

    Kawata, Mayuri Ojiro, Yoshihiro; Ogawa, Shuichi; Takakuwa, Yuji; Masuzawa, Tomoaki; Okano, Ken

    2014-03-15

    Photoemission-assisted plasma-enhanced chemical vapor deposition (PA-PECVD), a process in which photoelectrons emitted from a substrate irradiated with ultraviolet light are utilized as a trigger for DC discharge, was investigated in this study; specifically, the DC discharge characteristics of PA-PECVD were examined for an Si substrate deposited in advance through hot-filament chemical vapor deposition with a nitrogen-doped diamond layer of thickness ∼1 μm. Using a commercially available Xe excimer lamp (hν = 7.2 eV) to illuminate the diamond surface with and without hydrogen termination, the photocurrents were found to be 3.17 × 10{sup 12} and 2.11 × 10{sup 11} electrons/cm{sup 2}/s, respectively. The 15-fold increase in photocurrent was ascribed to negative electron affinity (NEA) caused by hydrogen termination on the diamond surfaces. The DC discharge characteristics revealed that a transition bias voltage from a Townsend-to-glow discharge was considerably decreased because of NEA (from 490 to 373 V for H{sub 2} gas and from 330 to 200 V for Ar gas), enabling a reduction in electric power consumption needed to synthesize diamond films through PA-PECVD. In fact, the authors have succeeded in growing high-quality diamond films of area 2.0 cm{sup 2} at 540 °C with a discharge power of only 1.8 W, plasma voltage of 156.4 V, and discharge current of 11.7 mA under the glow discharge of CH{sub 4}/H{sub 2}/Ar mixed gases. In addition to having only negligible amounts of graphite and amorphous carbon, the diamond films exhibit a relatively high diamond growth rate of 0.5 μm/h at temperatures as low as 540 °C, which is attributed to Ar{sup +} ions impinging on the diamond surface, and causing the removal of hydrogen atoms from the surface through sputtering. This process leads to enhanced CH{sub x} radical adsorption, because the sample was applied with a negative potential to accelerate photoelectrons in PA-PECVD.

  20. Characteristic Study of Boron Doped Carbon Nanowalls Films Deposited by Microwave Plasma Enhanced Chemical Vapor Deposition.

    PubMed

    Lu, Chunyuan; Dong, Qi; Tulugan, Kelimu; Park, Yeong Min; More, Mahendra A; Kim, Jaeho; Kim, Tae Gyu

    2016-02-01

    In this research, catalyst-free vertically aligned boron doped carbon nanowalls films were fabricated on silicon (100) substrates by MPECVD using feeding gases CH4, H2 and B2H6 (diluted with H2 to 5% vol) as precursors. The substrates were pre-seeded with nanodiamond colloid. The fabricated CNWs films were characterized by Scanning Electron Microscopy (SEM) and Raman Spectroscopy. The data obtained from SEM confirms that the CNWs films have different density and wall thickness. From Raman spectrum, a G peak around 1588 cm(-1) and a D band peak at 1362 cm(-1) were observed, which indicates a successful fabrication of CNWs films. The EDX spectrum of boron doped CNWs film shows the existence of boron and carbon. Furthermore, field emission properties of boron doped carbon nanowalls films were measured and field enhancement factor was calculated using Fowler-Nordheim plot. The result indicates that boron doped CNWs films could be potential electron emitting materials. PMID:27433646

  1. Characteristic Study of Boron Doped Carbon Nanowalls Films Deposited by Microwave Plasma Enhanced Chemical Vapor Deposition.

    PubMed

    Lu, Chunyuan; Dong, Qi; Tulugan, Kelimu; Park, Yeong Min; More, Mahendra A; Kim, Jaeho; Kim, Tae Gyu

    2016-02-01

    In this research, catalyst-free vertically aligned boron doped carbon nanowalls films were fabricated on silicon (100) substrates by MPECVD using feeding gases CH4, H2 and B2H6 (diluted with H2 to 5% vol) as precursors. The substrates were pre-seeded with nanodiamond colloid. The fabricated CNWs films were characterized by Scanning Electron Microscopy (SEM) and Raman Spectroscopy. The data obtained from SEM confirms that the CNWs films have different density and wall thickness. From Raman spectrum, a G peak around 1588 cm(-1) and a D band peak at 1362 cm(-1) were observed, which indicates a successful fabrication of CNWs films. The EDX spectrum of boron doped CNWs film shows the existence of boron and carbon. Furthermore, field emission properties of boron doped carbon nanowalls films were measured and field enhancement factor was calculated using Fowler-Nordheim plot. The result indicates that boron doped CNWs films could be potential electron emitting materials.

  2. Microwave assisted chemical vapor infiltration

    SciTech Connect

    Devlin, D.J.

    1993-12-31

    The purpose of this program is to develop a new process for the fabrication of ceramic matrix composites by chemical vapor infiltration. This period has been devoted in part to the exploration of material systems suitable for MACVI processing. A number of potential processing schemes are possible using combinations of absorbing and transparent material as composite components. This includes the use of an absorbing preform (nicalon fiber) combined with a transparent matrix (silicon nitride). Composites 5 cm in diameter by 1 cm. thick have been fabricated to densities of 65% theoretical. Processing times for these materials are under 20 hours. Higher densities will require additional microwave power now possible with the new reactor. The most effective MACVI scheme will involve the use of a transparent fiber with an absorbing matrix. The hot spot will be initiated by appropriate treatment of the central region of the preform. To this end alumna fibers with pretreatments to control thermal gradients has been explored. Nextel 610 fibers have been effectively pretreated carbon coating resulting in preferential heating in the interior of the preform. Possible matrix materials include siliconized silicon carbide, doped silicon carbide, alumna and zirconia. A patent for MACVI has been issued 10/19/93.

  3. Chemical vapor infiltration using microwave energy

    DOEpatents

    Devlin, David J.; Currier, Robert P.; Laia, Jr., Joseph R.; Barbero, Robert S.

    1993-01-01

    A method for producing reinforced ceramic composite articles by means of chemical vapor infiltration and deposition in which an inverted temperature gradient is utilized. Microwave energy is the source of heat for the process.

  4. Modeling and experimental study on the growth of silicon germanium film by plasma enhanced chemical vapor deposition

    NASA Astrophysics Data System (ADS)

    Zhao, Lai

    Hydrogenated microcrystalline silicon germanium µc-SiGe:H deposited by plasma enhanced chemical vapor deposition (PECVD) is of great interest to photovoltaic (PV) applications due to its low process temperature and good uniformity over large area. The nature of high optical absorption and low optical bandgap makes it promising as the bottom cell absorbing layer for tandem junction solar cells. However, the addition of germane (GeH4) gas changes deposited film properties and makes it rather complicated for the established silane (SiH4) based discharge process with hydrogen (H2) dilution. Despite existing experimental studies for SiH 4/GeH4/H2 3-gas mixture discharge and comprehensive numerical simulations for SiH4/H2 or SiH4/Ar plasma, to the author's best knowledge, a numerical model for both SiH 4 and GeH4 in a high pressure regime is yet to be developed. The plasma discharge, the film growth and their effects on film properties and the solar device performance need deep understanding. In this dissertation, the growth of the µc-SiGe:H film by radio frequency (RF) PECVD is studied through modeling simulation as well as experiments. The first numerical model for the glow discharge of SiH4/GeH 4/H2 3-gas mixture in a high pressure regime is developed based on one dimensional fluid model. Transports of electrons, molecules, radicals and ions in the RF excitation are described by diffusion equations that are coupled with the Poisson's equation. The deposition is integrated as the boundary conditions for discharge equations through the sticking coefficient model. Neutral ionizations, radical dissociations and chemical reactions in the gas phase and surface kinetics such as the diffusive motion, chemical reactions and the hydrogen etching are included with interaction rate constants. Solved with an explicit central-difference discretization scheme, the model simulates mathematical features that reflect the plasma physics such as the plasma sheath and gas species

  5. EFFICIENT CHEMICAL SYNTHESIS USING MICROWAVES

    EPA Science Inventory

    Synthetic organic transformations performed under non-traditional conditions are becoming popular primarily to circumvent the growing environmental concerns. A solvent-free approach that involves microwave (MW) exposure of neat reactants catalyzed by the surfaces of less-expensiv...

  6. Hydrogen-Free Plasma-Enhanced Chemical Vapor Deposition of Silicon Dioxide Using Tetra-isocyanate-silane (Si(NCO) 4)

    NASA Astrophysics Data System (ADS)

    Idris, Irman; Sugiura, Osamu

    1995-06-01

    Deposition of silicon dioxide by plasma-enhanced chemical vapor deposition (PECVD) technique using tetra-isocyanate-silane (Si(NCO)4 : TICS) and oxygen for interlayer dielectric film application is proposed. Film properties strongly depend on the gas composition. The film which was deposited under an oxygen-rich condition was water-free after deposition. The film density, refractive index, resistivity, and dielectric constant were 2.3 g/cm3, 1.46, 5×1014 Ω·cm, and 3.6, respectively. The etch rate by buffered HF was 330 nm/min.

  7. Low temperature growth of multi-wall carbon nanotubes assisted by mesh potential using a modified plasma enhanced chemical vapor deposition system

    NASA Astrophysics Data System (ADS)

    Kang, H. S.; Yoon, H. J.; Kim, C. O.; Hong, J. P.; Han, I. T.; Cha, S. N.; Song, B. K.; Jung, J. E.; Lee, N. S.; Kim, J. M.

    2001-11-01

    Well-aligned carbon nanotubes have been synthesized on Corning and silicon substrates at extremely low temperatures of 450 °C using a slightly modified conventional plasma enhanced chemical vapor deposition (PECVD). The deposition system was intentionally designed to impose mesh potential on the substrates through an external electrode that was a critical parameter for low temperature growth. Mixture gases of C 2H 2 and NH 3 with the imposed mesh potential of about 50 V effectively aligned multi-wall carbon nanotubes at 450 °C on Ni-coated substrates.

  8. Influence of density on N-H bond stretch vibration in plasma enhanced chemical vapor deposited SiN{sub x}:H

    SciTech Connect

    Dekkers, H. F. W.; Pourtois, G.; Srinivasan, Nagendra Babu

    2010-01-04

    The infrared absorption of hydrogenated silicon nitride (SiN{sub x}:H) films provides information about the average configuration of covalent bonds in the film. In plasma enhanced chemical vapor deposited SiN{sub x}:H, the absorption spectrum of the N-H bonds shows both a systematic shift and a tailing toward lower frequency with the increase in the film density. First-principles computations of N-H vibrations show an increased degree of anharmonicity when the H site is weakly interacting with a second neighboring N atom. This interaction becomes more pronounced in films with higher density, which consequently shifts the vibrational spectrum down.

  9. Development of open air silicon deposition technology by silane-free atmospheric pressure plasma enhanced chemical transport under local ambient gas control

    NASA Astrophysics Data System (ADS)

    Naito, Teruki; Konno, Nobuaki; Yoshida, Yukihisa

    2016-07-01

    Open air silicon deposition was performed by combining silane-free atmospheric pressure plasma-enhanced chemical transport and a newly developed local ambient gas control technology. The effect of air contamination on silicon deposition was investigated using a vacuum chamber, and the allowable air contamination level was confirmed to be 3 ppm. The capability of the local ambient gas control head was investigated numerically and experimentally. A safe and clean process environment with air contamination less than 1 ppm was achieved. Combining these technologies, a microcrystalline silicon film was deposited in open air, the properties of which were comparable to those of silicon films deposited in a vacuum chamber.

  10. GREENER CHEMICAL SYNTHESIS USING MICROWAVES

    EPA Science Inventory

    A solvent-free approach that involves microwave (MW) exposure of neat reactants (undiluted) catalyzed by the surfaces of recyclable mineral supports such as alumina, silica, clay, or "doped" surfaces is presented which is applicable to a wide range of cleavage, condensation, cyc...

  11. Microwave-enhanced chemical processes

    DOEpatents

    Varma, Ravi

    1990-01-01

    A process for disposal of toxic wastes including chlorinated hydrocarbons, comprising, establishing a bed of non-metallic particulates having a high dielectric loss factor. Effecting intimate contact of the particulates and the toxic wastes at a temperature in excess of about 400.degree. C. in the presence of microwave radiation for a time sufficient to break the hydrocarbon chlorine bonds and provide detoxification values in excess of 80 and further detoxifying the bed followed by additional disposal of toxic wastes.

  12. Physical/chemical properties of tin oxide thin film transistors prepared using plasma-enhanced atomic layer deposition

    SciTech Connect

    Lee, Byung Kook; Jung, Eunae; Kim, Seok Hwan; Moon, Dae Chul; Lee, Sun Sook; Park, Bo Keun; Hwang, Jin Ha; Chung, Taek-Mo; Kim, Chang Gyoun; An, Ki-Seok

    2012-10-15

    Thin film transistors (TFTs) with tin oxide films as the channel layer were fabricated by means of plasma enhanced atomic layer deposition (PE-ALD). The as-deposited tin oxide films show n-type conductivity and a nano-crystalline structure of SnO{sub 2}. Notwithstanding the relatively low deposition temperatures of 70, 100, and 130 °C, the bottom gate tin oxide TFTs show an on/off drain current ratio of 10{sup 6} while the device mobility values were increased from 2.31 cm{sup 2}/V s to 6.24 cm{sup 2}/V s upon increasing the deposition temperature of the tin oxide films.

  13. Residual compressive stress and intensity of infrared absorption of cubic BN films prepared by plasma enhanced chemical vapor deposition

    NASA Astrophysics Data System (ADS)

    Yang, Hang-Sheng; Jin, Pan-Pan; Xu, Ya-Bo; Li, Hai-Yang

    2014-03-01

    Theoretical and experimental investigations on the dependence of the intensity of infrared (IR) absorption of polycrystalline cubic boron nitride thin films under the residual compressive stress conditions have been performed. Our results indicate that the intensity of the IR absorption is proportional to the total degree of freedom of all the ions in the ordered regions. The reduction of interstitial Ar atom concentration, which causes the increase in the ordered regions of cubic boron nitride (cBN) crystallites, could be one cause for the increase in the intensity of IR absorption after residual compressive stress relaxation. Theoretical derivation is in good agreement with the experimental results concerning the IR absorption intensity and the Ar interstitial atom concentration in cubic boron nitride films measured by energy dispersion X-ray spectroscopy. Our results also suggest that the interstitial Ar is the origin of residual compressive stress accumulation in plasma enhanced cBN film deposition.

  14. Microwave-enhanced chemical processes

    DOEpatents

    Varma, R.

    1990-06-19

    A process is disclosed for the disposal of toxic wastes including chlorinated hydrocarbons, comprising, establishing a bed of non-metallic particulates having a high dielectric loss factor. Intimate contact of the particulates and the toxic wastes at a temperature in excess of about 400 C in the presence of microwave radiation for a time sufficient breaks the hydrocarbon chlorine bonds. Detoxification values in excess of 80 are provided and further detoxification of the bed is followed by additional disposal of toxic wastes. 1 figure.

  15. CHEMICAL SYNTHESES IN AQUEOUS MEDIA USING MICROWAVES

    EPA Science Inventory

    The development of efficient, selective and eco-friendly synthetic methods has remained a major focus of our research group. Microwave (MW) irradiation as alternative energy source in conjunction with water as reaction media has proven to be a successful 'greener' chemical appro...

  16. Microwave Technology--Applications in Chemical Synthesis

    EPA Science Inventory

    Microwave heating, being specific and instantaneous, is unique and has found a place for expeditious chemical syntheses. Specifically, the solvent-free reactions are convenient to perform and have advantages over the conventional heating protocols as summarized in the previous se...

  17. ‘GREENER’ CHEMICAL SYNTHESES USING MICROWAVES

    EPA Science Inventory

    The diverse nature of chemical entities requires various green strategic pathways in our quest towards attaining sustainability. A solvent-free approach that involves microwave (MW) exposure of neat reactants (undiluted) catalyzed by the surfaces of less-expensive and recyclable ...

  18. Improving mechanical robustness of ultralow-k SiOCH plasma enhanced chemical vapor deposition glasses by controlled porogen decomposition prior to UV-hardening

    NASA Astrophysics Data System (ADS)

    Urbanowicz, A. M.; Vanstreels, K.; Verdonck, P.; Shamiryan, D.; De Gendt, S.; Baklanov, M. R.

    2010-05-01

    We report a new curing procedure of a plasma enhanced chemical vapor deposited SiCOH glasses for interlayer dielectric applications in microelectronic. It is demonstrated that SiOCH glasses with improved mechanical properties and ultralow dielectric constant can be obtained by controlled decomposition of the porogen molecules used to create nanoscale pores, prior to the UV-hardening step. The Young's modulus (YM) of conventional SiOCH-based glasses with 32% open porosity hardened with porogen is 4.6 GPa, this value is shown to increase up to 5.2 GPa with even 46% open porosity, when the glasses are hardened after porogen removal. This increase in porosity is accompanied by significant reduction in the dielectric constant from 2.3 to 1.8. The increased YM is related to an enhanced molecular-bridging mechanism when film is hardened without porogen that was explained on the base of percolation of rigidity theory and random network concepts.

  19. Effect of low-frequency radio frequency on plasma-enhanced chemical vapor deposited ultra low-κ dielectric films for very large-scale integrated interconnects

    NASA Astrophysics Data System (ADS)

    Todd Ryan, E.; Gates, Stephen M.; Cohen, Stephan A.; Ostrovski, Yuri; Adams, Ed; Virwani, Kumar; Grill, Alfred

    2014-04-01

    The addition of a low frequency RF (LFRF) component during plasma-enhanced chemical vapor deposition of porous SiCOH ultra low-κ films allowed for the incorporation of higher carbon content without lowering the Young's modulus or increasing the dielectric constant. The porous SiCOH films typically contain carbon bonded into the silica matrix primarily as Si(CH3)x species. The low frequency RF increased the total carbon content by adding CH2 and -CH = CH- species with some reduction of Si(CH3)x species. It also altered the SiOx bonding structure by increasing network SiOx bonding at the expense of the suboxide, indicating an increase in SiOx crosslink density. Although higher carbon content usually lowers the modulus of porous SiCOH films, the modulus of the higher carbon films generated by LFRF did not decrease because of their increased network SiOx bonding.

  20. Characterization of TiO x film prepared by plasma enhanced chemical vapor deposition using a multi-jet hollow cathode plasma source

    NASA Astrophysics Data System (ADS)

    Nakamura, Masatoshi; Korzec, Dariusz; Aoki, Toru; Engemann, Jurgen; Hatanaka, Yoshinori

    2001-05-01

    The high rate deposition of TiO x film at low temperature was achieved by plasma enhanced chemical vapor deposition (PECVD) using titanium tetraisopropoxide (TTIP) as a source material. The multi-jet hollow cathode plasma source was used to generate the high-density plasma, which was showered toward the substrate. The emission spectra suggest that oxygen radicals play an important role for dissociation of the source material and for yielding the precursors. The high deposition rate up to 50 nm/min was achieved by this process. The as-deposited films are completely amorphous. They consist of structures with complex bondings including both tetrahedral and octahedral components. Though they have such complex bondings, the hydrophilicity of the PECVD film is excellent comparing to that of the annealed crystalline anatase structure. It seems that the PECVD using the multi-jet plasma source is promising for fabrication of hydrophilic TiO x films in low-temperature process.

  1. Ellipsometric and Rutherford Back scattering Spectrometry studies of SiO(X)N(Y) films elaborated by plasma-enhanced chemical vapour deposition technique.

    PubMed

    Mahamdi, R; Boulesbaa, M; Saci, L; Mansour, F; Molliet, C; Collet, M; Temple-Boyer, P

    2011-10-01

    Silicon oxynitride (SiO(X)N(Y)) thin films were deposited by plasma-enhanced chemical vapour deposition technique (PECVD) from silane (SiH4), nitrous oxide (N2O), ammonia (NH3) and nitrogen (N2) mixture. Spectroscopic ellipsometry (SE), in the range of wavelengths 450-900 nm, was used to define the film thickness and therefore the deposition rate, as well as the refractive index as a function of the N2O gaseous flow. While considering the (Si3N4, SiO2, H2 or void) heterogeneous mixture, Maxwell Garnett (MG) theory allows to fit the SE measurements and to define the volume fraction of the different phases. Finally, Rutherford Backscattering Spectrometry (RBS) results showed that x = O/Si ratio increases gradually with increasing the N2O flow, allowing the correlation of the SiO(X)N(Y) films main parameters. PMID:22400311

  2. Methane as an effective hydrogen source for single-layer graphene synthesis on Cu foil by plasma enhanced chemical vapor deposition.

    PubMed

    Kim, Yong Seung; Lee, Jae Hong; Kim, Young Duck; Jerng, Sahng-Kyoon; Joo, Kisu; Kim, Eunho; Jung, Jongwan; Yoon, Euijoon; Park, Yun Daniel; Seo, Sunae; Chun, Seung-Hyun

    2013-02-01

    A single-layer graphene is synthesized on Cu foil in the absence of H(2) flow by plasma enhanced chemical vapor deposition (PECVD). In lieu of an explicit H(2) flow, hydrogen species are produced during the methane decomposition process into their active species (CH(x<4)), assisted with the plasma. Notably, the early stage of growth depends strongly on the plasma power. The resulting grain size (the nucleation density) has a maximum (minimum) at 50 W and saturates when the plasma power is higher than 120 W because hydrogen partial pressures are effectively tuned by a simple control of the plasma power. Raman spectroscopy and transport measurements show that decomposed methane alone can provide a sufficient amount of hydrogen species for high-quality graphene synthesis by PECVD. PMID:23299508

  3. Methane as an effective hydrogen source for single-layer graphene synthesis on Cu foil by plasma enhanced chemical vapor deposition.

    PubMed

    Kim, Yong Seung; Lee, Jae Hong; Kim, Young Duck; Jerng, Sahng-Kyoon; Joo, Kisu; Kim, Eunho; Jung, Jongwan; Yoon, Euijoon; Park, Yun Daniel; Seo, Sunae; Chun, Seung-Hyun

    2013-02-01

    A single-layer graphene is synthesized on Cu foil in the absence of H(2) flow by plasma enhanced chemical vapor deposition (PECVD). In lieu of an explicit H(2) flow, hydrogen species are produced during the methane decomposition process into their active species (CH(x<4)), assisted with the plasma. Notably, the early stage of growth depends strongly on the plasma power. The resulting grain size (the nucleation density) has a maximum (minimum) at 50 W and saturates when the plasma power is higher than 120 W because hydrogen partial pressures are effectively tuned by a simple control of the plasma power. Raman spectroscopy and transport measurements show that decomposed methane alone can provide a sufficient amount of hydrogen species for high-quality graphene synthesis by PECVD.

  4. Impact of the etching gas on vertically oriented single wall and few walled carbon nanotubes by plasma enhanced chemical vapor deposition

    NASA Astrophysics Data System (ADS)

    Gohier, A.; Minea, T. M.; Djouadi, M. A.; Granier, A.

    2007-03-01

    Vertically oriented single wall nanotubes (SWNTs) and few walled nanotubes (FWNTs) have been grown by electronic cyclotron resonance plasma enhanced chemical vapor deposition (PECVD) on silica flat substrates. The impact of the plasma parameters on SWNT and FWNT growth has been investigated using two different etching gas mixtures, namely, C2H2/NH3 and C2H2/H2 with various ratios and applied bias voltages. Kinetic studies are also proposed in order to describe the FWNT growth mechanism by plasma techniques. A key role played by the reactive gas (NH3 and H2) is observed in the PECVD process, contrary to multiwalled nanotube growth. It is demonstrated that the balance between FWNT growth versus FWNT etching can be widely modulated by varying the gas mixture and bias voltage. It is shown that the use of hydrogen for hydrocarbon gas dilution restricts the destruction of SWNT and FWNT by the plasma species (ions and radicals).

  5. Thin film transistors using preferentially grown semiconducting single-walled carbon nanotube networks by water-assisted plasma-enhanced chemical vapor deposition

    NASA Astrophysics Data System (ADS)

    Kim, Un Jeong; Lee, Eun Hong; Kim, Jong Min; Min, Yo-Sep; Kim, Eunseong; Park, Wanjun

    2009-07-01

    Nearly perfect semiconducting single-walled carbon nanotube random network thin film transistors were fabricated and their reproducible transport properties were investigated. The networked single-walled carbon nanotubes were directly grown by water-assisted plasma-enhanced chemical vapor deposition. Optical analysis confirmed that the nanotubes were mostly semiconductors without clear metallic resonances in both the Raman and the UV-vis-IR spectroscopy. The transistors made by the nanotube networks whose density was much larger than the percolation threshold also showed no metallic paths. Estimation based on the conductance change of semiconducting nanotubes in the SWNT network due to applied gate voltage difference (conductance difference for on and off state) indicated a preferential growth of semiconducting nanotubes with an advantage of water-assisted PECVD. The nanotube transistors showed 10-5 of on/off ratio and ~8 cm2 V-1 s-1 of field effect mobility.

  6. Thin film transistors using preferentially grown semiconducting single-walled carbon nanotube networks by water-assisted plasma-enhanced chemical vapor deposition.

    PubMed

    Kim, Un Jeong; Lee, Eun Hong; Kim, Jong Min; Min, Yo-Sep; Kim, Eunseong; Park, Wanjun

    2009-07-22

    Nearly perfect semiconducting single-walled carbon nanotube random network thin film transistors were fabricated and their reproducible transport properties were investigated. The networked single-walled carbon nanotubes were directly grown by water-assisted plasma-enhanced chemical vapor deposition. Optical analysis confirmed that the nanotubes were mostly semiconductors without clear metallic resonances in both the Raman and the UV-vis-IR spectroscopy. The transistors made by the nanotube networks whose density was much larger than the percolation threshold also showed no metallic paths. Estimation based on the conductance change of semiconducting nanotubes in the SWNT network due to applied gate voltage difference (conductance difference for on and off state) indicated a preferential growth of semiconducting nanotubes with an advantage of water-assisted PECVD. The nanotube transistors showed 10(-5) of on/off ratio and approximately 8 cm2 V(-1) s(-1) of field effect mobility. PMID:19567966

  7. Copper-Assisted Direct Growth of Vertical Graphene Nanosheets on Glass Substrates by Low-Temperature Plasma-Enhanced Chemical Vapour Deposition Process

    NASA Astrophysics Data System (ADS)

    Ma, Yifei; Jang, Haegyu; Kim, Sun Jung; Pang, Changhyun; Chae, Heeyeop

    2015-08-01

    Vertical graphene (VG) nanosheets are directly grown below 500 °C on glass substrates by a one-step copper-assisted plasma-enhanced chemical vapour deposition (PECVD) process. A piece of copper foil is located around a glass substrate as a catalyst in the process. The effect of the copper catalyst on the vertical graphene is evaluated in terms of film morphology, growth rate, carbon density in the plasma and film resistance. The growth rate of the vertical graphene is enhanced by a factor of 5.6 with the copper catalyst with denser vertical graphene. The analysis of optical emission spectra suggests that the carbon radical density is increased with the copper catalyst. Highly conductive VG films having 800 Ω/□ are grown on glass substrates with Cu catalyst at a relatively low temperature.

  8. Methane as an effective hydrogen source for single-layer graphene synthesis on Cu foil by plasma enhanced chemical vapor deposition

    NASA Astrophysics Data System (ADS)

    Kim, Yong Seung; Lee, Jae Hong; Kim, Young Duck; Jerng, Sahng-Kyoon; Joo, Kisu; Kim, Eunho; Jung, Jongwan; Yoon, Euijoon; Park, Yun Daniel; Seo, Sunae; Chun, Seung-Hyun

    2013-01-01

    A single-layer graphene is synthesized on Cu foil in the absence of H2 flow by plasma enhanced chemical vapor deposition (PECVD). In lieu of an explicit H2 flow, hydrogen species are produced during the methane decomposition process into their active species (CHx<4), assisted with the plasma. Notably, the early stage of growth depends strongly on the plasma power. The resulting grain size (the nucleation density) has a maximum (minimum) at 50 W and saturates when the plasma power is higher than 120 W because hydrogen partial pressures are effectively tuned by a simple control of the plasma power. Raman spectroscopy and transport measurements show that decomposed methane alone can provide a sufficient amount of hydrogen species for high-quality graphene synthesis by PECVD.A single-layer graphene is synthesized on Cu foil in the absence of H2 flow by plasma enhanced chemical vapor deposition (PECVD). In lieu of an explicit H2 flow, hydrogen species are produced during the methane decomposition process into their active species (CHx<4), assisted with the plasma. Notably, the early stage of growth depends strongly on the plasma power. The resulting grain size (the nucleation density) has a maximum (minimum) at 50 W and saturates when the plasma power is higher than 120 W because hydrogen partial pressures are effectively tuned by a simple control of the plasma power. Raman spectroscopy and transport measurements show that decomposed methane alone can provide a sufficient amount of hydrogen species for high-quality graphene synthesis by PECVD. Electronic supplementary information (ESI) available: Schematic diagram of the ICP-CVD system, substrate heating by plasma, differential-pumping technique for mass spectra measurement, and transport properties of a single-domain graphene device. See DOI. 10.1039/c2nr33034b

  9. The Surface Interface Characteristics of Vertically Aligned Carbon Nanotube and Graphitic Carbon Fiber Arrays Grown by Thermal and Plasma Enhanced Chemical Vapor Deposition

    NASA Technical Reports Server (NTRS)

    Delzeit, Lance; Nguyen, Cattien; Li, Jun; Han, Jie; Meyyappan, M.

    2002-01-01

    The development of nano-arrays for sensors and devices requires the growth of arrays with the proper characteristics. One such application is the growth of vertically aligned carbon nanotubes (CNTs) and graphitic carbon fibers (GCFs) for the chemical attachment of probe molecules. The effectiveness of such an array is dependent not only upon the effectiveness of the probe and the interface between that probe and the array, but also the array and the underlaying substrate. If that array is a growth of vertically aligned CNTs or GCFs then the attachment of that array to the surface is of the utmost importance. This attachment provides the mechanical stability and durability of the array, as well as, the electrical properties of that array. If the detection is to be acquired through an electrical measurement, then the appropriate resistance between the array and the surface need to be fabricated into the device. I will present data on CNTs and GCFs grown from both thermal and plasma enhanced chemical vapor deposition. The focus will be on the characteristics of the metal film from which the CNTs and GCFs are grown and the changes that occur due to changes within the growth process.

  10. Simultaneous synthesis of nanodiamonds and graphene via plasma enhanced chemical vapor deposition (MW PE-CVD) on copper.

    PubMed

    Gottlieb, Steven; Wöhrl, Nicolas; Schulz, Stephan; Buck, Volker

    2016-01-01

    The simultaneous growth of both nanodiamonds and graphene on copper samples is described for the first time. A PE-CVD process is used to synthesize graphene layers and nanodiamond clusters from a hydrogen/methane gas mixture as it is typically done successfully in thermal CVD processes for graphene synthesis. However, the standard thermal CVD process is not without problems since the deposition of graphene is affected by the evaporation of a notable amount of copper caused by the slow temperature increase typical for thermal CVD resulting in a long process time. In sharp contrast, the synthesis of graphene by PE-CVD can circumvent this problem by substantially shortening the process time at holding out the prospect of a lower substrate temperature. The reduced thermal load and the possibility to industrially scale-up the PE-CVD process makes it a very attractive alternative to the thermal CVD process with respect to the graphene production in the future. Nanodiamonds are synthesized in PE-CVD reactors for a long time because these processes offer a high degree of control over the film's nanostructure and simultaneously providing a significant high deposition rate. To model the co-deposition process, the three relevant macroscopic parameters (pressure, gas mixture and microwave power) are correlated with three relevant process properties (plasma ball size, substrate temperature and C2/Hα-ratio) and the influence on the quality of the deposited carbon allotropes is investigated. For the evaluation of the graphene as well as the nanodiamond quality, Raman spectroscopy used whereas the plasma properties are measured by optical methods. It is found that the diamond nucleation can be influenced by the C2/Hα-ratio in the plasma, while the graphene quality remains mostly unchanged by this parameter. Moreover it is derived from the experimental data that the direct plasma contact with the copper surface is beneficial for the nucleation of the diamond while the growth and

  11. Simultaneous synthesis of nanodiamonds and graphene via plasma enhanced chemical vapor deposition (MW PE-CVD) on copper.

    PubMed

    Gottlieb, Steven; Wöhrl, Nicolas; Schulz, Stephan; Buck, Volker

    2016-01-01

    The simultaneous growth of both nanodiamonds and graphene on copper samples is described for the first time. A PE-CVD process is used to synthesize graphene layers and nanodiamond clusters from a hydrogen/methane gas mixture as it is typically done successfully in thermal CVD processes for graphene synthesis. However, the standard thermal CVD process is not without problems since the deposition of graphene is affected by the evaporation of a notable amount of copper caused by the slow temperature increase typical for thermal CVD resulting in a long process time. In sharp contrast, the synthesis of graphene by PE-CVD can circumvent this problem by substantially shortening the process time at holding out the prospect of a lower substrate temperature. The reduced thermal load and the possibility to industrially scale-up the PE-CVD process makes it a very attractive alternative to the thermal CVD process with respect to the graphene production in the future. Nanodiamonds are synthesized in PE-CVD reactors for a long time because these processes offer a high degree of control over the film's nanostructure and simultaneously providing a significant high deposition rate. To model the co-deposition process, the three relevant macroscopic parameters (pressure, gas mixture and microwave power) are correlated with three relevant process properties (plasma ball size, substrate temperature and C2/Hα-ratio) and the influence on the quality of the deposited carbon allotropes is investigated. For the evaluation of the graphene as well as the nanodiamond quality, Raman spectroscopy used whereas the plasma properties are measured by optical methods. It is found that the diamond nucleation can be influenced by the C2/Hα-ratio in the plasma, while the graphene quality remains mostly unchanged by this parameter. Moreover it is derived from the experimental data that the direct plasma contact with the copper surface is beneficial for the nucleation of the diamond while the growth and

  12. Graphene sheets via microwave chemical vapor deposition

    NASA Astrophysics Data System (ADS)

    Yuan, G. D.; Zhang, W. J.; Yang, Y.; Tang, Y. B.; Li, Y. Q.; Wang, J. X.; Meng, X. M.; He, Z. B.; Wu, C. M. L.; Bello, I.; Lee, C. S.; Lee, S. T.

    2009-01-01

    High-quality graphene sheets (GS) were synthesized on stainless steel substrates at ˜500 °C by microwave plasma chemical vapor deposition (CVD) in an atmosphere of methane/hydrogen mixture. The GS product was characterized to contain mostly 1- or 2-3-layers using scanning electron microscopy, transmission electron microscopy/selective area electron diffraction, atomic force microscopy, and Raman spectroscopy. The present CVD approach is capable of producing graphenes with high yield and high purity with no carbon impurities such as carbon nanotubes.

  13. C4F8O/O2/N-based Additive Gases for Silicon Nitride Plasma Enhanced Chemical Vapor Deposition Chamber Cleaning with Low Global Warming Potentials

    NASA Astrophysics Data System (ADS)

    Kim, Ji Hwang; Bae, Jeong Woon; Oh, Chang Hyun; Kim, Ki Joon; Lee, Nae Eung; Yeom, Geun Young

    2002-11-01

    In this study, N2O and NO were added as additive gases to C4F8O/O2 for plasma enhanced chemical vapor deposition (PECVD) silicon nitride chamber cleaning and their effects on the emission properties of perfluorocarbon compounds (PFCs) were investigated. The cleaning rate, destruction and removal efficiencies (DREs), and million metric tons of carbon equivalent (MMTCE) were studied as a function of flow rates of PFCs and additive gases. The use of C4F8O/O2 alone showed the highest cleaning rate and the lowest emission properties at the cleaning condition of 20%C4F8O/80%O2, working pressure of 500 mTorr, and 13.56 MHz rf power of 350 W. By the addition of about 20% NO or 20% N2O to the optimized C4F8O/O2, the additional reduction of MMTCE higher than 50% could be obtained. The addition of NO resulted in lower MMTCE compared to that in the case of the addition of N2O mostly due to the higher silicon nitride cleaning rate in the latter case.

  14. Characteristics of silicon nitride deposited by VHF (162 MHz)-plasma enhanced chemical vapor deposition using a multi-tile push-pull plasma source

    NASA Astrophysics Data System (ADS)

    Kim, Ki Seok; Sirse, Nishant; Kim, Ki Hyun; Rogers Ellingboe, Albert; Kim, Kyong Nam; Yeom, Geun Young

    2016-10-01

    To prevent moisture and oxygen permeation into flexible organic electronic devices formed on substrates, the deposition of an inorganic diffusion barrier material such as SiN x is important for thin film encapsulation. In this study, by a very high frequency (162 MHz) plasma-enhanced chemical vapor deposition (VHF-PECVD) using a multi-tile push-pull plasma source, SiN x layers were deposited with a gas mixture of NH3/SiH4 with/without N2 and the characteristics of the plasma and the deposited SiN x film as the thin film barrier were investigated. Compared to a lower frequency (60 MHz) plasma, the VHF (162 MHz) multi-tile push-pull plasma showed a lower electron temperature, a higher vibrational temperature, and higher N2 dissociation for an N2 plasma. When a SiN x layer was deposited with a mixture of NH3/SiH4 with N2 at a low temperature of 100 °C, a stoichiometric amorphous Si3N4 layer with very low Si-H bonding could be deposited. The 300 nm thick SiN x film exhibited a low water vapor transmission rate of 1.18  ×  10-4 g (m2 · d)-1, in addition to an optical transmittance of higher than 90%.

  15. Investigation of a High Quality and Ultraviolet-Light Transparent Plasma-Enhanced Chemical Vapor Deposition Silicon Nitride Film for Non-Volatile Memory Application

    NASA Astrophysics Data System (ADS)

    Wang, Chin-Kun; Ying, Tser-Liang; Wei, Chih-Shih; Liu, Lu-Min; Cheng, Huang-Chung; Lin, Mou-Shiung

    1995-09-01

    A high quality and ultraviolet-light transparent (UV-transparent) plasma enhanced chemical vapor deposition (PECVD) silicon nitride ( SiN x) film is developed to form passivation layer for non-volatile memory devices. Comparing to the conventional PECVD SiN x film known to have tensile stress and opacity to ultraviolet-light (UV-light), the proposed SiN x film with very low compressive stress ( <1×109 dyn/cm2) and excellent UV-transmittance (>70% for 1.6 µ m-thick film) can be achieved. The film stress is strongly related to RF input power during deposition process. The UV-transmittance is influenced by pressure and SiH4/NH3 flow ratio. It is also shown that the UV-transmittance is closely correlated to refractive index (RI), film density as well as N/Si ratio inside the film. This SiN x film has been successfully applied to erasable programming read-only memory (EPROM's) devices, and very good UV-erasability and reliability performances are demonstrated.

  16. Effect of oxygen plasma on field emission characteristics of single-wall carbon nanotubes grown by plasma enhanced chemical vapour deposition system

    NASA Astrophysics Data System (ADS)

    Kumar, Avshish; Parveen, Shama; Husain, Samina; Ali, Javid; Zulfequar, Mohammad; Harsh; Husain, Mushahid

    2014-02-01

    Field emission properties of single wall carbon nanotubes (SWCNTs) grown on iron catalyst film by plasma enhanced chemical vapour deposition system were studied in diode configuration. The results were analysed in the framework of Fowler-Nordheim theory. The grown SWCNTs were found to be excellent field emitters, having emission current density higher than 20 mA/cm2 at a turn-on field of 1.3 V/μm. The as grown SWCNTs were further treated with Oxygen (O2) plasma for 5 min and again field emission characteristics were measured. The O2 plasma treated SWCNTs have shown dramatic improvement in their field emission properties with emission current density of 111 mA/cm2 at a much lower turn on field of 0.8 V/μm. The as grown as well as plasma treated SWCNTs were also characterized by various techniques, such as scanning electron microscopy, high resolution transmission electron microscopy, Raman spectroscopy, and Fourier transform infrared spectroscopy before and after O2 plasma treatment and the findings are being reported in this paper.

  17. Single liquid source plasma-enhanced metalorganic chemical vapor deposition of high-quality YBa2Cu3O(7-x) thin films

    NASA Technical Reports Server (NTRS)

    Zhang, Jiming; Gardiner, Robin A.; Kirlin, Peter S.; Boerstler, Robert W.; Steinbeck, John

    1992-01-01

    High quality YBa2Cu3O(7-x) films were grown in-situ on LaAlO3 (100) by a novel single liquid source plasma-enhanced metalorganic chemical vapor deposition process. The metalorganic complexes M(thd) (sub n), (thd = 2,2,6,6-tetramethyl-3,5-heptanedionate; M = Y, Ba, Cu) were dissolved in an organic solution and injected into a vaporizer immediately upstream of the reactor inlet. The single liquid source technique dramatically simplifies current CVD processing and can significantly improve the process reproducibility. X-ray diffraction measurements indicated that single phase, highly c-axis oriented YBa2Cu3O(7-x) was formed in-situ at substrate temperature 680 C. The as-deposited films exhibited a mirror-like surface, had transition temperature T(sub cO) approximately equal to 89 K, Delta T(sub c) less than 1 K, and Jc (77 K) = 10(exp 6) A/sq cm.

  18. Electrical and Optical Properties of Si-Incorporated a-C:H Films via the Radio Frequency Plasma-Enhanced Chemical Vapor Deposition Method.

    PubMed

    Kim, In Jun; Choi, Won Seok; Hong, Byungyou

    2016-05-01

    The optical and electrical properties of silicon-incorporated hydrogenated amorphous carbon (a-C:H:Si) films deposited via the radio frequency (RF) plasma-enhanced chemical vapor deposition (PECVD) method using a mixture of CH4, H2, and SiH4 were observed. The silane gas whose ranged from 0 to 25 vol.% [SiH4/(SiH4 + CH4) was fed into the reactor while the other deposition parameters were kept constant. The basic properties of these films were investigated via Raman spectroscopy, UV-visible spectrometry, I-V measurement, and surface profiling. The experiment results showed that the film thickness increased from 300 nm to 800 nm for the same deposition time as the silane gas increased. The Raman spectrum obtained from the silicon-incorporated a-C:H films suggested that the film property changed from graphitic-like to more diamond-like. As the silane gas increased, the optical gap, E04, slightly increased from 1.98 eV to 2.62 eV. It was shown that the Si atoms incorporated into the a-C:H films reduced the size of the sp2 clusters. As for the I-V characteristics, the Si-incorporated a-C:H films had a lower leakage current than the a-C:H films without Si. PMID:27483937

  19. Thermal expansion coefficient and thermomechanical properties of SiN(x) thin films prepared by plasma-enhanced chemical vapor deposition.

    PubMed

    Tien, Chuen-Lin; Lin, Tsai-Wei

    2012-10-20

    We present a new method based on fast Fourier transform (FFT) for evaluating the thermal expansion coefficient and thermomechanical properties of thin films. The silicon nitride thin films deposited on Corning glass and Si wafers were prepared by plasma-enhanced chemical vapor deposition in this study. The anisotropic residual stress and thermomechanical properties of silicon nitride thin films were studied. Residual stresses in thin films were measured by a modified Michelson interferometer associated with the FFT method under different heating temperatures. We found that the average residual-stress value increases when the temperature increases from room temperature to 100°C. Increased substrate temperature causes the residual stress in SiN(x) film deposited on Si wafers to be more compressive, but the residual stress in SiN(x) film on Corning glass becomes more tensile. The residual-stress versus substrate-temperature relation is a linear correlation after heating. A double substrate technique is used to determine the thermal expansion coefficients of the thin films. The experimental results show that the thermal expansion coefficient of the silicon nitride thin films is 3.27×10(-6)°C(-1). The biaxial modulus is 1125 GPa for SiN(x) film. PMID:23089776

  20. Impact of the etching gas on vertically oriented single wall and few walled carbon nanotubes by plasma enhanced chemical vapor deposition

    SciTech Connect

    Gohier, A.; Minea, T. M.; Djouadi, M. A.; Granier, A.

    2007-03-01

    Vertically oriented single wall nanotubes (SWNTs) and few walled nanotubes (FWNTs) have been grown by electronic cyclotron resonance plasma enhanced chemical vapor deposition (PECVD) on silica flat substrates. The impact of the plasma parameters on SWNT and FWNT growth has been investigated using two different etching gas mixtures, namely, C{sub 2}H{sub 2}/NH{sub 3} and C{sub 2}H{sub 2}/H{sub 2} with various ratios and applied bias voltages. Kinetic studies are also proposed in order to describe the FWNT growth mechanism by plasma techniques. A key role played by the reactive gas (NH{sub 3} and H{sub 2}) is observed in the PECVD process, contrary to multiwalled nanotube growth. It is demonstrated that the balance between FWNT growth versus FWNT etching can be widely modulated by varying the gas mixture and bias voltage. It is shown that the use of hydrogen for hydrocarbon gas dilution restricts the destruction of SWNT and FWNT by the plasma species (ions and radicals)

  1. Fine-tuning of catalytic tin nanoparticles by the reverse micelle method for direct deposition of silicon nanowires by a plasma-enhanced chemical vapour technique.

    PubMed

    Poinern, Gérrard E J; Ng, Yan-Jing; Fawcett, Derek

    2010-12-15

    The reverse micelle method was used for the reduction of a tin (Sn) salt solution to produce metallic Sn nanoparticles ranging from 85 nm to 140 nm in diameter. The reverse micellar system used in this process was hexane-butanol-cetyl trimethylammonium bromide (CTAB). The diameters of the Sn nanoparticles were proportional to the concentration of the aqueous Sn salt solution. Thus, the size of the Sn nanoparticles can easily be controlled, enabling a simple, reproducible mechanism for the growth of silicon nanowires (SiNWs) using plasma-enhanced chemical vapour deposition (PECVD). Both the Sn nanoparticles and silicon nanowires were characterised using field-emission scanning electron microscopy (FE-SEM). Further characterisations of the SiNW's were made using transmission electron microscopy (TEM), atomic force microscopy (AFM) and Raman spectroscopy. In addition, dynamic light scattering (DLS) was used to investigate particle size distributions. This procedure demonstrates an economical route for manufacturing reproducible silicon nanowires using fine-tuned Sn nanoparticles for possible solar cell applications.

  2. Effect of oxygen plasma on field emission characteristics of single-wall carbon nanotubes grown by plasma enhanced chemical vapour deposition system

    SciTech Connect

    Kumar, Avshish; Parveen, Shama; Husain, Samina; Ali, Javid; Zulfequar, Mohammad; Harsh; Husain, Mushahid

    2014-02-28

    Field emission properties of single wall carbon nanotubes (SWCNTs) grown on iron catalyst film by plasma enhanced chemical vapour deposition system were studied in diode configuration. The results were analysed in the framework of Fowler-Nordheim theory. The grown SWCNTs were found to be excellent field emitters, having emission current density higher than 20 mA/cm{sup 2} at a turn-on field of 1.3 V/μm. The as grown SWCNTs were further treated with Oxygen (O{sub 2}) plasma for 5 min and again field emission characteristics were measured. The O{sub 2} plasma treated SWCNTs have shown dramatic improvement in their field emission properties with emission current density of 111 mA/cm{sup 2} at a much lower turn on field of 0.8 V/μm. The as grown as well as plasma treated SWCNTs were also characterized by various techniques, such as scanning electron microscopy, high resolution transmission electron microscopy, Raman spectroscopy, and Fourier transform infrared spectroscopy before and after O{sub 2} plasma treatment and the findings are being reported in this paper.

  3. Si nanowires grown by Al-catalyzed plasma-enhanced chemical vapor deposition: synthesis conditions, electrical properties and application to lithium battery anodes

    NASA Astrophysics Data System (ADS)

    Toan, Le Duc; Moyen, Eric; Zamfir, Mihai Robert; Joe, Jemee; Kim, Young Woo; Pribat, Didier

    2016-01-01

    Silicon nanowires have been synhesized using Al as a catalyst. Silane (SiH4) diluted in H2 carrier gas was employed as Si precursor in a plasma enhanced chemical vapor deposition system operated at various temperatures (450 °C and 550 °C). Those growth temperatures, which are lower than the eutectic temperature in the Al-Si system (577 °C) suggests a vapor-solid-solid growth mechanism. Four point resistance measurements and back-gated current-voltage measurements indicated that silicon nanowires were heavily doped (p type), with a doping concentration of a few 1019 cm-3. We have measured hole mobility values of ˜16 cm2 V-1 s-1 at 450 °C and ˜30 cm2 V-1 s-1 at 550 °C. Transmission electron microscope analyses showed that the silicon nanowires were highly twinned even when they grow epitaxially on (111) Si substrates. We have also evaluated the use of those highly doped Si nanowires for lithium-ion battery anodes. We have observed a good cycling behavior during the first 65 charge-discharge cycles, followed by a slow capacity decay. After 150 cycles at a charge-discharge rate of 0.1 C, the electrode capacity was still 1400 mAh g-1. The ageing mechanism seems to be related to the delamination of the SiNWs from the stainless steel substrate on which they were grown.

  4. Effects of total CH 4/Ar gas pressure on the structures and field electron emission properties of carbon nanomaterials grown by plasma-enhanced chemical vapor deposition

    NASA Astrophysics Data System (ADS)

    Qi, J. L.; Wang, X.; Zheng, W. T.; Tian, H. W.; Liu, C.; Lu, Y. L.; Peng, Y. S.; Cheng, G.

    2009-12-01

    The effects of total CH 4/Ar gas pressure on the growth of carbon nanomaterials on Si (1 0 0) substrate covered with CoO nanoparticles, using plasma-enhanced chemical vapor deposition (PECVD), were investigated. The structures of obtained products were correlated with the total gas pressure and changed from pure carbon nanotubes (CNTs) through hybrid CNTs/graphene sheets (GSs), to pure GSs as the total gas pressure changed from 20 to 4 Torr. The total gas pressure influenced the density of hydrogen radicals and Ar ions in chamber, which in turn determined the degree of how CoO nanoparticles were deoxidized and ion bombardment energy that governed the final carbon nanomaterials. Moreover, the obtained hybrid CNTs/GSs exhibited a lower turn-on field (1.4 V/μm) emission, compared to either 2.7 V/μm for pure CNTs or 2.2 V/μm for pure GSs, at current density of 10 μA/cm 2.

  5. Crystalline silicon surface passivation with amorphous SiC{sub x}:H films deposited by plasma-enhanced chemical-vapor deposition

    SciTech Connect

    Martin, I.; Vetter, M.; Garin, M.; Orpella, A.; Voz, C.; Puigdollers, J.; Alcubilla, R.

    2005-12-01

    Surface-passivating properties of hydrogenated amorphous silicon carbide films (a-SiC{sub x}:H) deposited by plasma-enhanced chemical-vapor deposition on both p- and n-type crystalline silicon (c-Si) have been extensively studied by our research group in previous publications. We characterized surface recombination by measuring the dependence of the effective lifetime ({tau}{sub eff}) on excess carrier density ({delta}n) through quasi-steady-state photoconductance technique. Additionally, we fitted the measured {tau}{sub eff}({delta}n) curves applying an insulator/semiconductor model which allows us to determine the surface recombination parameters. In this paper, this model is analyzed in detail focusing on the accuracy in the determination of the fitting parameters and revealing uncertainties not detected up to now. Taking advantage of this analysis, the dependence of surface passivation on film deposition conditions is revised including intrinsic a-SiC{sub x}:H films on both p- and n-type c-Si and phosphorus-doped a-SiC{sub x}:H films on p-type c-Si. As a consequence, a broad view of this passivation scheme is obtained.

  6. Effect of ion bombardment on the synthesis of vertically aligned single-walled carbon nanotubes by plasma-enhanced chemical vapor deposition.

    PubMed

    Luo, Zhiqiang; Lim, Sanhua; You, Yumeng; Miao, Jianmin; Gong, Hao; Zhang, Jixuan; Wang, Shanzhong; Lin, Jianyi; Shen, Zexiang

    2008-06-25

    The synthesis of vertically aligned single-walled carbon nanotubes (VA-SWNTs) by plasma-enhanced chemical vapor deposition (PECVD) was achieved at 500-600 °C, using ethylene as the carbon source and 1 nm Fe film as the catalyst. For growth of high-quality VA-SWNTs in a plasma sheath, it is crucial to alleviate the undesirable ion bombardment etching effects by the optimization of plasma input power and gas pressure. The resistibility of synthesized VA-SWNTs against ion bombardment etching was found to be closely related to the growth temperature. At relatively low temperature (500 °C), the VA-SWNTs were very susceptible to ion bombardments, which could induce structural defects, and even resulted in a structural transition to few-walled nanotubes. For capacitively coupled radio frequency (rf) PECVD operating at moderate gas pressure (0.3-10 Torr), the ion bombardment etching effect is mainly dependent on the ion flux, which is related to the plasma input power and gas pressure. PMID:21828659

  7. Effect of ion bombardment on the synthesis of vertically aligned single-walled carbon nanotubes by plasma-enhanced chemical vapor deposition

    NASA Astrophysics Data System (ADS)

    Luo, Zhiqiang; Lim, Sanhua; You, Yumeng; Miao, Jianmin; Gong, Hao; Zhang, Jixuan; Wang, Shanzhong; Lin, Jianyi; Shen, Zexiang

    2008-06-01

    The synthesis of vertically aligned single-walled carbon nanotubes (VA-SWNTs) by plasma-enhanced chemical vapor deposition (PECVD) was achieved at 500-600 °C, using ethylene as the carbon source and 1 nm Fe film as the catalyst. For growth of high-quality VA-SWNTs in a plasma sheath, it is crucial to alleviate the undesirable ion bombardment etching effects by the optimization of plasma input power and gas pressure. The resistibility of synthesized VA-SWNTs against ion bombardment etching was found to be closely related to the growth temperature. At relatively low temperature (500 °C), the VA-SWNTs were very susceptible to ion bombardments, which could induce structural defects, and even resulted in a structural transition to few-walled nanotubes. For capacitively coupled radio frequency (rf) PECVD operating at moderate gas pressure (0.3-10 Torr), the ion bombardment etching effect is mainly dependent on the ion flux, which is related to the plasma input power and gas pressure.

  8. Effect of plasma parameters on characteristics of silicon nitride film deposited by single and dual frequency plasma enhanced chemical vapor deposition

    NASA Astrophysics Data System (ADS)

    Sahu, B. B.; Yin, Yongyi; Han, Jeon G.

    2016-03-01

    This work investigates the deposition of hydrogenated amorphous silicon nitride films using various low-temperature plasmas. Utilizing radio-frequency (RF, 13.56 MHz) and ultra-high frequency (UHF, 320 MHz) powers, different plasma enhanced chemical vapor deposition processes are conducted in the mixture of reactive N2/NH3/SiH4 gases. The processes are extensively characterized using different plasma diagnostic tools to study their plasma and radical generation capabilities. A typical transition of the electron energy distribution function from single- to bi-Maxwellian type is achieved by combining RF and ultra-high powers. Data analysis revealed that the RF/UHF dual frequency power enhances the plasma surface heating and produces hot electron population with relatively low electron temperature and high plasma density. Using various film analysis methods, we have investigated the role of plasma parameters on the compositional, structural, and optical properties of the deposited films to optimize the process conditions. The presented results show that the dual frequency power is effective for enhancing dissociation and ionization of neutrals, which in turn helps in enabling high deposition rate and improving film properties.

  9. Structure, mechanical, and frictional properties of hydrogenated fullerene-like amorphous carbon film prepared by direct current plasma enhanced chemical vapor deposition

    NASA Astrophysics Data System (ADS)

    Wang, Yongfu; Gao, Kaixiong; Zhang, Junyan

    2016-07-01

    In this study, fullerene like carbon (FL-C) is introduced in hydrogenated amorphous carbon (a-C:H) film by employing a direct current plasma enhanced chemical vapor deposition. The film has a low friction and wear, such as 0.011 and 2.3 × 10-9mm3/N m in the N2, and 0.014 and 8.4 × 10-8mm3/N m in the humid air, and high hardness and elasticity (25.8 GPa and 83.1%), to make further engineering applications in practice. It has several nanometers ordered domains consisting of less frequently cross-linked graphitic sheet stacks. We provide new evidences for understanding the reported Raman fit model involving four vibrational frequencies from five, six, and seven C-atom rings of FL-C structures, and discuss the structure evolution before or after friction according to the change in the 1200 cm-1 Raman band intensity caused by five- and seven-carbon rings. Friction inevitably facilitates the transformation of carbon into FL-C nanostructures, namely, the ultra low friction comes from both such structures within the carbon film and the sliding induced at friction interface.

  10. Surface recombination velocity of phosphorus-diffused silicon solar cell emitters passivated with plasma enhanced chemical vapor deposited silicon nitride and thermal silicon oxide

    NASA Astrophysics Data System (ADS)

    Kerr, M. J.; Schmidt, J.; Cuevas, A.; Bultman, J. H.

    2001-04-01

    The emitter saturation current density (JOe) and surface recombination velocity (Sp) of various high quality passivation schemes on phosphorus-diffused solar cell emitters have been determined and compared. The passivation schemes investigated were (i) stoichiometric plasma enhanced chemical vapor deposited (PECVD) silicon nitride (SiN), (ii) forming gas annealed thermally grown silicon oxide, and (iii) aluminum annealed (alnealed) thermal silicon oxide. Emitters with sheet resistances ranging from 30 to 430 and 50 to 380 Ω/□ were investigated for planar and random-pyramid textured silicon surfaces, which covers both industrial and laboratory emitters. The electronic surface passivation quality provided by PECVD SiN films was found to be good, with Sp values ranging from 1400 to 25 000 cm/s for planar emitters. Thin thermal silicon oxides were found to provide superior passivation to PECVD SiN, with the best passivation provided by an alnealed thin oxide (Sp values between 250 and 21 000 cm/s). The optimized PECVD SiN films are, nevertheless, sufficiently good for most silicon solar cell applications.

  11. Hydrogenation of defects in edge-defined film-fed grown aluminum-enhanced plasma enhanced chemical vapor deposited silicon nitride multicrystalline silicon

    NASA Astrophysics Data System (ADS)

    Jeong, Ji-Weon; Rosenblum, Mark D.; Kalejs, Juris P.; Rohatgi, Ajeet

    2000-05-01

    Gettering of impurities and hydrogen passivation of defects in edge-defined film-fed grown (EFG) multicrystalline silicon were studied by low-cost manufacturable technologies such as emitter diffusion by a spin-on phosphorus dopant source, back surface field formation by screen-printed aluminum, and a post-deposition anneal of plasma enhanced chemical vapor deposited (PECVD) silicon nitride antireflection coating. These processes were carried out in a high-throughput lamp-heated conveyor belt furnace. PECVD silicon nitride-induced hydrogenation of defects in EFG silicon was studied in conjunction with screen-printed aluminum back surface field formation to investigate the synergistic effect of aluminum gettering and silicon nitride hydrogenation of bulk defects. It was found that post-deposition anneal of PECVD silicon nitride at temperatures ranging from 450 to 850 °C, without the coformation of aluminum back surface field on the back, does not provide appreciable passivation or hydrogenation of bulk defects in EFG material. However, simultaneous anneal of PECVD silicon nitride and formation of aluminum back surface field at 850 °C significantly enhanced the hydrogenation ability of the PECVD silicon nitride film. PECVD silicon nitride deposition and a subsequent anneal, after the aluminum back surface field formation, was found to be less effective in passivating bulk defects. It is proposed that aluminum-enhanced hydrogenation from a PECVD silicon nitride film is the result of vacancy generation at the aluminum-silicon interface due to the alloying process. The affinity of hydrogen to react with vacancies provides a chemical potential gradient that increases the flux of atomic hydrogen from the silicon nitride film into the bulk silicon. In addition, vacancies can dissociate hydrogen molecules, increasing the atomic hydrogen content of the bulk silicon. This enhances defect passivation and improves the minority carrier lifetime.

  12. Moisture barrier and chemical corrosion protection of silver-based telescope mirrors using aluminum oxide films by plasma-enhanced atomic layer deposition

    NASA Astrophysics Data System (ADS)

    Fryauf, David M.; Phillips, Andrew C.; Kobayashi, Nobuhiko P.

    2013-09-01

    An urgent demand remains in astronomy for high-reflectivity silver mirrors that can withstand years of exposure in observatory environments. The University of California Observatories Astronomical Coatings Lab has undertaken development of protected silver coatings suitable for telescope mirrors that maintain high reflectivity at wavelengths from 340 nm through the mid-infrared spectrum. We present initial results of an investigation into whether plasma-enhanced atomic layer deposition (PEALD) can produce superior protective layers of transparent dielectrics. Several novel coating recipes have been developed with ion-assisted electron beam deposition (IAEBD) of materials including yttrium fluoride, and oxides of yttrium, hafnium, and titanium. Samples of these mirror coatings were covered with conformal layers of aluminum oxide (AlOx) deposited by PEALD using trimethylaluminum as a metal precursor and oxygen as an oxidant gas activated by remote plasma. Samples of coating recipes with and without PEALD oxide undergo aggressive environmental testing, including high temperature/high humidity (HTHH), in which samples were exposed to an environment of 80% humidity at 80°C for ten days in a simple test set-up. HTHH testing show visible results suggesting that the PEALD oxide offers enhanced robust protection against chemical corrosion and moisture from an accelerated aging environment. Mirror samples are further characterized by reflectivity/absorption and atomic force microscopy before and after deposition of oxide coatings. AlOx is suitable for many applications and has been the initial material choice for this study, although we also tried TiOx and HfOx. Further experimentation based on these initial results is on-going.

  13. Microcrystalline silicon thin films deposited by matrix-distributed electron cyclotron resonance plasma enhanced chemical vapor deposition using an SiF4 /H2 chemistry

    NASA Astrophysics Data System (ADS)

    Wang, Junkang; Bulkin, Pavel; Florea, Ileana; Maurice, Jean-Luc; Johnson, Erik

    2016-07-01

    For the growth of hydrogenated microcrystalline silicon (μc-Si:H) thin films by low temperature plasma-enhanced chemical vapor deposition (PECVD), silicon tetrafluoride (SiF4) has recently attracted interest as a precursor due to the resilient optoelectronic performance of the resulting material and devices. In this work, μc-Si:H films are deposited at high rates (7 Å s‑1) from a SiF4 and hydrogen (H2) gas mixture by matrix-distributed electron cyclotron resonance PECVD (MDECR-PECVD). Increased substrate temperature and moderate ion bombardment energy (IBE) are demonstrated to be of vital importance to achieve high quality μc-Si:H films under such low process pressure and high plasma density conditions, presumably due to thermally-induced and ion-induced enhancement of surface species migration. Two well-defined IBE thresholds at 12 eV and 43 eV, corresponding respectively to SiF+ ion-induced surface and bulk atomic displacement, are found to be determinant to the final film properties, namely the surface roughness, feature size and crystalline content. Moreover, a study of the growth dynamics shows that the primary challenge to producing highly crystallized μc-Si:H films by MDECR-PECVD appears to be the nucleation step. By employing a two-step method to first prepare a highly crystallized seed layer, μc-Si:H films lacking any amorphous incubation layer have been obtained. A crystalline volume fraction of 68% is achieved with a substrate temperature as low as 120 °C, which is of great interest to broaden the process window for solar cell applications.

  14. Characterization of amorphous hydrogenated carbon formed by low-pressure inductively coupled plasma enhanced chemical vapor deposition using multiple low-inductance antenna units.

    PubMed

    Tsuda, Osamu; Ishihara, Masatou; Koga, Yoshinori; Fujiwara, Shuzo; Setsuhara, Yuichi; Sato, Naoyuki

    2005-03-24

    Three-dimensional plasma enhanced chemical vapor deposition (CVD) of hydrogenated amorphous carbon (a-C:H) has been demonstrated using a new type high-density volumetric plasma source with multiple low-inductance antenna system. The plasma density in the volume of phi 200 mm x 100 mm is 5.1 x 10(10) cm(-3) within +/-5% in the lateral directions and 5.2 x 10(10)cm(-3) within +/-10% in the axial direction for argon plasma under the pressure of 0.1 Pa and the total power as low as 400 W. The uniformity of the thickness and refractive index is within +/-3.5% and +/-1%, respectively, for the a-C:H films deposited on the substrates placed on the six side walls, the top of the phi 60 mm x 80 mm hexagonal substrate holder in the pure toluene plasma under the pressure is as low as 0.04 Pa, and the total power is as low as 300 W. It is also found that precisely controlled ion bombardment by pulse biasing led to the explicit observation in Raman and IR spectra of the transition from polymer-like structure to diamond-like structure accompanied by dehydrogenation due to ion bombardment. Moreover, it is also concluded that the pulse biasing technique is effective for stress reduction without a significant degradation of hardness. The stress of 0.6 GPa and the hardness of 15 GPa have been obtained for 2.0 microm thick films deposited with the optimized deposition conditions. The films are durable for the tribology test with a high load of 20 N up to more than 20,000 cycles, showing the specific wear rate and the friction coefficient were 1.2 x 10(-7) mm3/Nm and 0.04, respectively.

  15. Characterization of low dielectric constant plasma polymer films deposited by plasma-enhanced chemical vapor deposition using decamethyl-cyclopentasiloxane and cyclohexane as the precursors

    SciTech Connect

    Yang, Jaeyoung; Lee, Sungwoo; Park, Hyoungsun; Jung, Donggeun; Chae, Heeyeop

    2006-01-15

    We investigated the properties of plasma polymer films deposited by plasma-enhanced chemical vapor deposition using a mixture of decamethyl-cyclopentasiloxane (C{sub 10}H{sub 30}O{sub 5}Si{sub 5}) and cyclohexane (C{sub 6}H{sub 12}) as the precursors, which we refer to as plasma polymerized decamethyl-cyclopentasiloxane: cyclohexane (PPDMCPSO:CHex) films. The relative dielectric constants, k, of the plasma polymer films were correlated with the Fourier transform infrared absorption peaks of the C-Hx, Si-CH{sub 3}, and Si-O related groups. As the amount of the CHx species in the as-deposited plasma polymer films increased, the k value and the leakage current density of the thin films decreased. The subsequent annealing of the PPDMCPSO:CHex film at 400 deg. C for 1 h further reduced the k value to as low as k=2.05. This annealed PPDMCPSO:CHex thin film showed a leakage current density of the order of 4x10{sup -7} A/cm{sup 2} at 1 MV/cm and a breakdown field of 6.5 MV/cm. Through the bias-temperature stress test, it was estimated that the PPDMCPSO:CHex film with a k value of 2.05 would retain its insulating properties for ten years at 167 deg. C under an electrical field of 1 MV/cm, when it is presented as a layer adjacent to Cu/TaN(10 nm)

  16. A comparative study of nitrogen plasma effect on field emission characteristics of single wall carbon nanotubes synthesized by plasma enhanced chemical vapor deposition

    NASA Astrophysics Data System (ADS)

    Kumar, Avshish; Parveen, Shama; Husain, Samina; Ali, Javid; Zulfequar, Mohammad; Harsh; Husain, Mushahid

    2014-12-01

    Vertically aligned single wall carbon nanotubes (SWCNTs) with large scale control of diameter, length and alignment have successfully been grown by plasma enhanced chemical vapor deposition (PECVD) system. The nickel (Ni) as catalyst deposited on silicon (Si) substrate was used to grow the SWCNTs. Field emission (FE) characteristics of the as grown SWCNTs were measured using indigenously designed setup in which a diode is configured in such a way that by applying negative voltage on the copper plate (cathode) with respect to stainless steel anode plate, current density can be recorded. To measure the FE characteristics, SWCNTs film pasted on the copper plate with silver epoxy was used as electron emitter source. The effective area of anode was ∼78.5 mm2 for field emission measurements. The emission measurements were carried out under high vacuum pressure of the order of 10-6 Torr to minimize the electron scattering and degradation of the emitters. The distance between anode and cathode was kept 500 μm (constant) during entire field emission studies. The grown SWCNTs are excellent field emitters, having emission current density higher than 25 mA/cm2 at turn-on field 1.3 V/μm. In order to enhance the field emission characteristics, the as grown SWCNTs have been treated under nitrogen (N2) plasma for 5 min and again field emission characteristics have been measured. The N2 plasma treated SWCNTs show a good enhancement in the field emission properties with emission current density 81.5 mA/cm2 at turn on field 1.2 V/μm. The as-grown and N2 plasma treated SWCNTs were also characterized by field emission scanning electron microscope (FESEM), high resolution transmission electron microscope (HRTEM), Raman spectrometer, Fourier transform infrared spectrometer (FTIR) and X-ray photoelectron spectroscopy (XPS).

  17. Synthesis and Characterization of High c-axis ZnO Thin Film by Plasma Enhanced Chemical Vapor Deposition System and its UV Photodetector Application.

    PubMed

    Chao, Chung-Hua; Wei, Da-Hua

    2015-10-03

    In this study, zinc oxide (ZnO) thin films with high c-axis (0002) preferential orientation have been successfully and effectively synthesized onto silicon (Si) substrates via different synthesized temperatures by using plasma enhanced chemical vapor deposition (PECVD) system. The effects of different synthesized temperatures on the crystal structure, surface morphologies and optical properties have been investigated. The X-ray diffraction (XRD) patterns indicated that the intensity of (0002) diffraction peak became stronger with increasing synthesized temperature until 400 (o)C. The diffraction intensity of (0002) peak gradually became weaker accompanying with appearance of (10-10) diffraction peak as the synthesized temperature up to excess of 400 (o)C. The RT photoluminescence (PL) spectra exhibited a strong near-band-edge (NBE) emission observed at around 375 nm and a negligible deep-level (DL) emission located at around 575 nm under high c-axis ZnO thin films. Field emission scanning electron microscopy (FE-SEM) images revealed the homogeneous surface and with small grain size distribution. The ZnO thin films have also been synthesized onto glass substrates under the same parameters for measuring the transmittance. For the purpose of ultraviolet (UV) photodetector application, the interdigitated platinum (Pt) thin film (thickness ~100 nm) fabricated via conventional optical lithography process and radio frequency (RF) magnetron sputtering. In order to reach Ohmic contact, the device was annealed in argon circumstances at 450 (o)C by rapid thermal annealing (RTA) system for 10 min. After the systematic measurements, the current-voltage (I-V) curve of photo and dark current and time-dependent photocurrent response results exhibited a good responsivity and reliability, indicating that the high c-axis ZnO thin film is a suitable sensing layer for UV photodetector application.

  18. Microcrystalline silicon thin films deposited by matrix-distributed electron cyclotron resonance plasma enhanced chemical vapor deposition using an SiF4 /H2 chemistry

    NASA Astrophysics Data System (ADS)

    Wang, Junkang; Bulkin, Pavel; Florea, Ileana; Maurice, Jean-Luc; Johnson, Erik

    2016-07-01

    For the growth of hydrogenated microcrystalline silicon (μc-Si:H) thin films by low temperature plasma-enhanced chemical vapor deposition (PECVD), silicon tetrafluoride (SiF4) has recently attracted interest as a precursor due to the resilient optoelectronic performance of the resulting material and devices. In this work, μc-Si:H films are deposited at high rates (7 Å s-1) from a SiF4 and hydrogen (H2) gas mixture by matrix-distributed electron cyclotron resonance PECVD (MDECR-PECVD). Increased substrate temperature and moderate ion bombardment energy (IBE) are demonstrated to be of vital importance to achieve high quality μc-Si:H films under such low process pressure and high plasma density conditions, presumably due to thermally-induced and ion-induced enhancement of surface species migration. Two well-defined IBE thresholds at 12 eV and 43 eV, corresponding respectively to SiF+ ion-induced surface and bulk atomic displacement, are found to be determinant to the final film properties, namely the surface roughness, feature size and crystalline content. Moreover, a study of the growth dynamics shows that the primary challenge to producing highly crystallized μc-Si:H films by MDECR-PECVD appears to be the nucleation step. By employing a two-step method to first prepare a highly crystallized seed layer, μc-Si:H films lacking any amorphous incubation layer have been obtained. A crystalline volume fraction of 68% is achieved with a substrate temperature as low as 120 °C, which is of great interest to broaden the process window for solar cell applications.

  19. Deposition of Amorphous Silicon and Silicon-Based Dielectrics by Remote Plasma-Enhanced Chemical Vapor Deposition: Application to the Fabrication of Tft's and Mosfet's.

    NASA Astrophysics Data System (ADS)

    Kim, Sang Soo

    1990-01-01

    This thesis discusses the deposition of device quality silicon dioxide (SiO_2), silicon nitride (Si_3N_4 ), and hydrogenated amorphous silicon (a-Si:H) by the remote plasma enhanced chemical vapor deposition (Remote PECVD) technique at low substrate temperature (100 ^circC < T _{rm s} < 450^ circC). An ultra-high-vacuum (UHV) compatible, multi-chamber integrated processing system has been built and used for this study. This system provides: (1) in -situ substrate processing; (2) surface analysis by Auger electron spectroscopy (AES) and reflected high energy electron diffraction (RHEED); and (3) thin film deposition by Remote PECVD. Six issues are addressed: (1) in-situ semiconductor surface cleaning for Si, Ge, GaAs, and CdTe; (2) substrate surface characterization by using RHEED and AES; (3) process gas-substrate interactions (subcutaneous oxidation) occurring during the thin film deposition; (4) the thin film deposition process for silicon-based dielectrics and for doped and intrinsic amorphous silicon; (5) physical properties of the thin films deposited by Remote PECVD using in-situ AES, and ex-situ infrared (ir) spectroscopy and ellipsometry; and (6) electrical performance of thin films in device structures including metal-oxide/or insulator-semiconductor (MOS or MIS) capacitors formed on silicon, and hydrogenated -amorphous silicon thin film transistors (a-Si:H TFT's). Atomically clean semiconductor surfaces are obtained by a remote hydrogen plasma treatment prior to thin film deposition. In the remote PECVD process the process gases are selectively excited, the silane reactant, the source of silicon atoms in the films is never directly plasma excited, and the substrate is also remote from the plasma discharge region. These differences between the remote PECVD process and the conventional direct PECVD process, result in improved control of the insulator stoichiometry, and a reduction in level of chemical impurities such as hydrogen. We find that the

  20. Effect of Annealing Temperature on Dielectric Constant and Bonding Structure of Low-k SiCOH Thin Films Deposited by Plasma Enhanced Chemical Vapor Deposition

    NASA Astrophysics Data System (ADS)

    Lee, Sungwoo; Yang, Jaeyoung; Yeo, Sanghak; Lee, Jaewon; Jung, Donggeun; Boo, Jin-hyo; Kim, Hyoungsub; Chae, Heeyeop

    2007-02-01

    We investigated the effect of annealing temperature on the properties of SiCOH films deposited by plasma-enhanced chemical vapor deposition using or a mixture of Si-O containing and hydrocarbon precursors, decamethyl-cyclopentasiloxane (DMCPSO-C10H30O5Si5) and cyclohexane (CHex-C6H12). These SiCOH films were deposited at pressures of 0.6 and 1.5 Torr and the as-deposited SiCOH films were subjected to annealing temperatures from 25 to 500 °C in a furnace for 1 h in N2 ambient at a pressure of 1 atm. The relative dielectric constants, k, of the SiCOH films deposited at 0.6 and 1.5 Torr were 2.76 and 2.26, respectively, before the annealing process. The subsequent annealing of the SiCOH film at 500 °C further reduced the k values to as low as 2.31 and 1.85, respectively. Decreases in the refractive index, hardness, and modulus were observed as the annealing temperature increased to 450 °C. However, further increasing annealing temperature to 500 °C caused the refractive index, hardness, and modulus to increase again. Trends of decreases in both the hardness and modulus with increasing annealing temperature were found. The refractive index and the film thickness retention also decreased with increasing annealing temperature. The change in the k value as a function of the annealing temperature was correlated with the change in the Fourier transform infrared absorption peaks of C-Hx, Si-CH3, and Si-O related groups. As the annealing temperature increased, the intensity of both the CHx and Si-CH3 peaks decreased, respectively. In particular, the C-H2 (asymmetric and symmetric) peaks provide direct evidence of the presence of ethylene groups in the SiCOH films. Thus the decrease in intensity of the peaks corresponding to the CHx groups and Si-O cage structure in the SiCOH films was considered to be responsible for lowering they dielectric constant, refractive index, hardness and modulus of the films. The leakage current density of the SiCOH films at 1 MV/cm is obtained

  1. High-Quality Amorphous-Crystalline Silicon Heterostructures Using the Grid-Based Triode Radio-Frequency Plasma Enhanced Chemical Vapour Deposition Method

    NASA Astrophysics Data System (ADS)

    Mahtani, Pratish

    The amorphous-crystalline silicon heterojunction (SHJ) represents a new paradigm in crystalline silicon (c-Si) photovoltaics (PV). To achieve the 27% efficiency target for SHJ PV, defects in the silicon heterointerface must be minimized by growing high-quality hydrogenated amorphous silicon (a-Si:H) onto the c-Si surfaces without deposition-related damage. Typically, a-Si:H is deposited using radio-frequency (RF) plasma enhanced chemical vapour deposition (PECVD), which in its conventional configuration directly exposes the c-Si growth surface to the ignited plasma. In this thesis, silicon heterostructures prepared by the grid-based triode RF PECVD method is investigated for the first time. The triode method allows for high-quality a-Si:H growth with the c-Si surfaces shielded from any potential plasma damage. Using a custom-built configurable PECVD facility, a systematic study was conducted and it was demonstrated that the triode method affords the preparation of a-Si:H with excellent bulk film quality and state-of-the-art passivation for c-Si surfaces. Using the triode method, an effective minority carrier lifetime (taueff) of 8.1 ms and an Auger-corrected surface recombination velocity (S) of 2.4 cm/s at an excess carrier density of 1015 cm-3 have been achieved for 1-2 ohm-cm n-type c-Si passivated with intrinsic a-Si:H. Further, using the triode method to deposit thin-layers of intrinsic and doped a-Si:H, a conventional SHJ solar cell structure was prepared and was found to exhibit an excellent implied Voc of 710 mV. Under all conditions scanned, samples prepared in the triode configuration showed improved passivation compared with samples prepared in the conventional diode configuration with the best triode prepared sample showing a nearly threefold increase in taueff and a twofold decrease in S compared with the best diode prepared sample. Furthermore, a-Si:H deposited using the triode method showed significantly improved bulk properties compared to diode

  2. SOLVENT FREE CHEMICAL TRANSFORMATION USING MICROWAVE IRRADIATION

    EPA Science Inventory

    Microwave-expedited solvent-free synthetic processes will be described that involve the exposure of neat reactants to microwave (MW) irradiation in the presence of supported reagents or catalysts on mineral oxides. Recent developments will be presented on the synthetic utility o...

  3. Direct imaging of mechanical and chemical gradients across the thickness of graded organosilicone microwave PECVD coatings.

    PubMed

    Hall, Colin J; Murphy, Peter J; Griesser, Hans J

    2014-01-22

    The characterization of variations in the chemical composition and ensuing mechanical properties across the thickness of coatings with continuously varying compositions through their thickness (graded coatings) presents considerable challenges for current analytical techniques in materials science. We report here the direct imaging of nanomechanical and chemical gradients across cross-sections of an organosilicone coating fabricated via microwave plasma enhanced chemical vapor deposition (PECVD). Cross-sectional nanoindentation was used to determine the mechanical properties of uniform and graded organosilicone coatings. Both hardness and modulus across the coatings were directly measured. Additionally, "modulus mapping" on cross-sections was used to map the complex modulus. For the graded coating, it was found that variations in the complex modulus was predominantly due to varying storage modulus. It was observed that at the interface with the substrate there was a low storage modulus, which linearly increased to a relatively high storage modulus at the surface. It is proposed that the increase in stiffness, from the substrate interface to the outer surface, is due to the increasing content of a cross-linked O-Si-O network. This mechanical gradient has been linked to a change in the Si:O ratio via direct compositional mapping using ToF-SIMS. Direct mapping of the mechanical and compositional gradients across these protective coatings provides insight into the changes in properties with depth and supports optimization of the critical mechanical performance of PECVD graded coatings.

  4. Microwave-assisted synthesis of chromenes: biological and chemical importance.

    PubMed

    Patil, Shivaputra A; Patil, Siddappa A; Patil, Renukadevi

    2015-01-01

    Chromenes constitute chemically important class of heterocyclic compounds having diverse biological and chemical importance. Development of environmentally benign, efficient and economical methods for the synthesis of chromenes remains a significant challenge in synthetic chemistry. The synthesis of chromenes, therefore, has attracted enormous attention from medicinal and organic chemists. Researchers have embraced the concepts of microwave (high speed) synthesis to produce biologically and chemically important chromenes in a time sensitive manner. This review will summarize the recent biological applications such as anticancer, antimicrobial, neurodegenerative and insecticidal activity of new chromenes prepared via microwave irradiation. The development of new methodologies for the synthesis of chromenes including green chemistry processes has also been discussed.

  5. Metal-boride phase formation on tungsten carbide (WC-Co) during microwave plasma chemical vapor deposition

    NASA Astrophysics Data System (ADS)

    Johnston, Jamin M.; Catledge, Shane A.

    2016-02-01

    Strengthening of cemented tungsten carbide by boriding is used to improve the wear resistance and lifetime of carbide tools; however, many conventional boriding techniques render the bulk carbide too brittle for extreme conditions, such as hard rock drilling. This research explored the variation in metal-boride phase formation during the microwave plasma enhanced chemical vapor deposition process at surface temperatures from 700 to 1100 °C. We showed several well-adhered metal-boride surface layers consisting of WCoB, CoB and/or W2CoB2 with average hardness from 23 to 27 GPa and average elastic modulus of 600-730 GPa. The metal-boride interlayer was shown to be an effective diffusion barrier against elemental cobalt; migration of elemental cobalt to the surface of the interlayer was significantly reduced. A combination of glancing angle X-ray diffraction, electron dispersive spectroscopy, nanoindentation and scratch testing was used to evaluate the surface composition and material properties. An evaluation of the material properties shows that plasma enhanced chemical vapor deposited borides formed at substrate temperatures of 800 °C, 850 °C, 900 °C and 1000 °C strengthen the material by increasing the hardness and elastic modulus of cemented tungsten carbide. Additionally, these boride surface layers may offer potential for adhesion of ultra-hard carbon coatings.

  6. Amorphous fluorocarbon polymer (a-C:F) films obtained by plasma enhanced chemical vapor deposition from perfluoro-octane (C8F18) vapor I: Deposition, morphology, structural and chemical properties

    NASA Astrophysics Data System (ADS)

    Biloiu, Costel; Biloiu, Ioana Arabela; Sakai, Yosuke; Suda, Yoshiyuki; Ohta, Akitsugu

    2004-01-01

    The method of obtaining amorphous fluorocarbon polymer (a-C:F) films by plasma enhanced chemical vapor deposition in a capacitively coupled, 13.56 MHz reactor, from a new monomer, namely perfluoro-octane (C8F18) vapor, is presented. For monomer pressure ranging from 0.2 to 1 Torr and input power density from 0.15 to 0.85 W/cm3, the maximum deposition rate reached 300 nm/min, while 10% monomer dilution with argon led to a deposition rate of 200 nm/min. The film surface and bulk morphologies, chemical and structural compositions were investigated using scanning electron microscopy, x-ray photoelectron spectroscopy, and Fourier transform infrared spectroscopy. It was revealed that the films have a dense and compact structure. The fluorine to carbon ratio (F/C) of the films was between 1.57 and 1.75, and the degree of cross-linking was between 55% and 58%. The relative amount of perfluoroalkyl (CF2) groups in the films was 29%. The FTIR spectra showed absorption bands corresponding to the different vibrational modes of CF, CF2, and CF3 moieties. .

  7. 'GREENER' CHEMICAL SYNTHESIS USING MICROWAVE IRRADIATION

    EPA Science Inventory

    A solvent-free approach that involves microwave (MW) exposure of neat reactants (undiluted) catalyzed by the surfaces of recyclable mineral supports such as alumina, silica, clay, or 'doped' surfaces is presented which is applicable to a wide range of cleavage, condensation, cycl...

  8. ADVANCES IN GREEN CHEMISTRY: CHEMICAL SYNTHESES USING MICROWAVE IRRADIATION, ISBN 81-901238-5-8

    EPA Science Inventory

    16. Abstract Advances in Green Chemistry: Chemical Syntheses Using Microwave Irradiation
    Microwave-accelerated chemical syntheses in solvents as well as under solvent-free conditions have witnessed an explosive growth. The technique has found widespread application predomi...

  9. EFFICIENT AND GREENER CHEMICAL SYNTHESES USING MICROWAVE IRRADIATION

    EPA Science Inventory

    The diverse nature of chemical entities requires various ‘green’ strategic pathways in our quest towards attaining sustainability. A solvent-free approach involving microwave (MW) exposure of neat reactants (undiluted) catalyzed by the surfaces of less-expensive and rec...

  10. Chemical reactions during plasma-enhanced atomic layer deposition of SiO2 films employing aminosilane and O2/Ar plasma at 50 °C

    NASA Astrophysics Data System (ADS)

    Lu, Yi; Kobayashi, Akiko; Kondo, Hiroki; Ishikawa, Kenji; Sekine, Makoto; Hori, Masaru

    2014-01-01

    We report the temporal evolution of surface species observed in situ using attenuated total reflection Fourier transform infrared absorption spectroscopy (ATR-FTIR) during plasma-enhanced atomic layer deposition (PE-ALD) of SiO2 films employing aminosilane and an O2/Ar plasma at a temperature of 50 °C. Reversals in the appearance of IR absorbance features associated with SiO-H, C-Hx, and Si-H proved to coincide with the self-limiting reaction property in ALD. Our IR results indicate that an O2/Ar plasma can both removed CHx groups and transform SiH surface species to SiOH. In addition, SiO2 deposition was confirmed by a continuous increase in Si-O absorbance with each PE-ALD step, which becomes stable after several cycles. On the basis of our results, the mechanism of low temperature SiO2 PE-ALD was discussed.

  11. Effect of N2O to C4F8/O2 on Global Warming during Silicon Nitride Plasma Enhanced Chemical Vapor Deposition (PECVD) Chamber Cleaning Using a Remote Inductively Coupled Plasma Source

    NASA Astrophysics Data System (ADS)

    Kim, Ji Hwang; Oh, Chang Hyun; Lee, Nae Eung; Yeom, Geun Young

    2002-12-01

    For the silicon nitride plasma enhanced chemical vapor deposition (PECVD) chamber cleaning, a remote inductively coupled plasma (ICP) source was used with C4F8/O2/N2O and the effects of N2O on the silicon nitride cleaning rates and global warming were investigated. By adding 5% of N2O to C4F8/O2, the cleaning rate comparable to that of optimized Ar/NF3 could be obtained. At the exhaust line, CF4, C4F8, NF3, etc. were detected and the significant decrease of million metric tons of carbon equivalent (MMTCE) observed by the addition of N2O to C4F8/O2 was due to the decrease of emitted CF4. The MMTCE for the optimized C4F8/O2/N2O was also similar to that for Ar/NF3 at the highest cleaning condition.

  12. Excitation mechanism and thermal emission quenching of Tb ions in silicon rich silicon oxide thin films grown by plasma-enhanced chemical vapour deposition—Do we need silicon nanoclusters?

    SciTech Connect

    Podhorodecki, A. Golacki, L. W.; Zatryb, G.; Misiewicz, J.; Wang, J.; Jadwisienczak, W.; Fedus, K.

    2014-04-14

    In this work, we will discuss the excitation and emission properties of Tb ions in a Silicon Rich Silicon Oxide (SRSO) matrix obtained at different technological conditions. By means of electron cyclotron resonance plasma-enhanced chemical vapour deposition, undoped and doped SRSO films have been obtained with different Si content (33, 35, 39, 50 at. %) and were annealed at different temperatures (600, 900, 1100 °C). The samples were characterized optically and structurally using photoluminescence (PL), PL excitation, time resolved PL, absorption, cathodoluminescence, temperature dependent PL, Rutherford backscattering spectrometry, Fourier transform infrared spectroscopy and positron annihilation lifetime spectroscopy. Based on the obtained results, we discuss how the matrix modifications influence excitation and emission properties of Tb ions.

  13. The Performance Improvement of N2 Plasma Treatment on ZrO2 Gate Dielectric Thin-Film Transistors with Atmospheric Pressure Plasma-Enhanced Chemical Vapor Deposition IGZO Channel.

    PubMed

    Wu, Chien-Hung; Huang, Bo-Wen; Chang, Kow-Ming; Wang, Shui-Jinn; Lin, Jian-Hong; Hsu, Jui-Mei

    2016-06-01

    The aim of this paper is to illustrate the N2 plasma treatment for high-κ ZrO2 gate dielectric stack (30 nm) with indium-gallium-zinc-oxide (IGZO) thin-film transistors (TFTs). Experimental results reveal that a suitable incorporation of nitrogen atoms could enhance the device performance by eliminating the oxygen vacancies and provide an amorphous surface with better surface roughness. With N2 plasma treated ZrO2 gate, IGZO channel is fabricated by atmospheric pressure plasma-enhanced chemical vapor deposition (AP-PECVD) technique. The best performance of the AP-PECVD IGZO TFTs are obtained with 20 W-90 sec N2 plasma treatment with field-effect mobility (μ(FET)) of 22.5 cm2/V-s, subthreshold swing (SS) of 155 mV/dec, and on/off current ratio (I(on)/I(off)) of 1.49 x 10(7). PMID:27427669

  14. Plasma enhanced chemical vapor deposition of wear resistant gradual a-Si{sub 1-x}:C{sub x}:H coatings on nickel-titanium for biomedical applications

    SciTech Connect

    Niermann, Benedikt; Boeke, Marc; Schauer, Janine-Christina; Winter, Joerg

    2010-03-15

    Plasma enhanced chemical vapor deposition has been used to deposit thin films with gradual transitions from silicon to carbon on Cu, Ni, stainless steel, and NiTi. Thus show low stress, elasticity, and wear resistance with excellent adhesion on all metals under investigation. Already at low Si concentrations of 10 at. % the intrinsic stress is considerably reduced compared to pure diamondlike carbon (DLC) films. The deposition process is controlled by optical emission spectroscopy. This technique has been applied to monitor the growth precursors and to correlate them with the film composition. The compositions of the films were determined by Rutherford backscattering spectroscopy and XPS measurements. Due to the elastic properties of the gradual transition and the excellent biocompatibility of DLC, the described film systems present a useful coating for biomedical applications.

  15. Sub-micro a-C:H patterning of silicon surfaces assisted by atmospheric-pressure plasma-enhanced chemical vapor deposition

    NASA Astrophysics Data System (ADS)

    Boileau, Alexis; Gries, Thomas; Noël, Cédric; Perito Cardoso, Rodrigo; Belmonte, Thierry

    2016-11-01

    Micro and nano-patterning of surfaces is an increasingly popular challenge in the field of the miniaturization of devices assembled via top-down approaches. This study demonstrates the possibility of depositing sub-micrometric localized coatings—spots, lines or even more complex shapes—made of amorphous hydrogenated carbon (a-C:H) thanks to a moving XY stage. Deposition was performed on silicon substrates using chemical vapor deposition assisted by an argon atmospheric-pressure plasma jet. Acetylene was injected into the post-discharge region as a precursor by means of a glass capillary with a sub-micrometric diameter. A parametric study was carried out to study the influence of the geometric configurations (capillary diameter and capillary-plasma distance) on the deposited coating. Thus, the patterns formed were investigated by scanning electron microscopy and atomic force microscopy. Furthermore, the chemical composition of large coated areas was investigated by Fourier transform infrared spectroscopy according to the chosen atmospheric environment. The observed chemical bonds show that reactions of the gaseous precursor in the discharge region and both chemical and morphological stability of the patterns after treatment are strongly dependent on the surrounding gas. Various sub-micrometric a-C:H shapes were successfully deposited under controlled atmospheric conditions using argon as inerting gas. Overall, this new process of micro-scale additive manufacturing by atmospheric plasma offers unusually high-resolution at low cost.

  16. Diamond growth on Fe-Cr-Al alloy by H2-plasma enhanced graphite etching

    NASA Astrophysics Data System (ADS)

    Li, Y. S.; Hirose, A.

    2007-04-01

    Without intermediate layer and surface pretreatment, adherent diamond films with high initial nucleation density have been deposited on Fe-15Cr-5Al (wt. %) alloy substrate. The deposition was performed using microwave hydrogen plasma enhanced graphite etching in a wide temperature range from 370to740°C. The high nucleation density and growth rate of diamond are primarily attributed to the unique precursors used (hydrogen plasma etched graphite) and the chemical nature of the substrate. The improvement in diamond adhesion to steel alloys is ascribed to the important role played by Al, mitigation of the catalytic function of iron by suppressing the preferential formation of loose graphite intermediate phase on steel surface.

  17. Microwave transmission properties of chemical vapor deposition graphene

    NASA Astrophysics Data System (ADS)

    Wu, Yunqiu; Xu, Yuehang; Wang, Zegao; Xu, Cao; Tang, Zongxi; Chen, Yuanfu; Xu, Ruimin

    2012-07-01

    In this letter, the microwave transmission properties of graphene grown by the chemical vapor deposition are studied by using a multiple-layer coplanar-waveguide transmission-line based measurement method. Remarkable energy loss and phase shift have been observed in graphene from the measured scattering parameters through vector network analyzer. The effective permittivity is deduced by partial-capacitance technique, and the complex permittivity of graphene are extracted in the frequency range of 500 MHz to 6 GHz. Different from conventional dielectric material, the permittivity of graphene shows frequency-dependent below 4 GHz and has an magnitude larger than 104 for both real and imaginary parts.

  18. Control of carbon content in amorphous GeTe films deposited by plasma enhanced chemical vapor deposition (PE-MOCVD) for phase-change random access memory applications

    NASA Astrophysics Data System (ADS)

    Aoukar, M.; Szkutnik, P. D.; Jourde, D.; Pelissier, B.; Michallon, P.; Noé, P.; Vallée, C.

    2015-07-01

    Amorphous and smooth GeTe thin films are deposited on 200 mm silicon substrates by plasma enhanced—metal organic chemical vapor deposition (PE-MOCVD) using the commercial organometallic precursors TDMAGe and DIPTe as Ge and Te precursors, respectively. X-ray photoelectron spectroscopy (XPS) measurements show a stoichiometric composition of the deposited GeTe films but with high carbon contamination. Using information collected by Optical Emission Spectroscopy (OES) and XPS, the origin of carbon contamination is determined and the dissociation mechanisms of Ge and Te precursors in H2 + Ar plasma are proposed. As a result, carbon level is properly controlled by varying operating parameters such as plasma radio frequency power, pressure and H2 rate. Finally, GeTe films with carbon level as low as 5 at. % are obtained.

  19. Fundamental studies of defect generation in amorphous silicon alloys grown by remote plasma-enhanced chemical-vapor deposition. Final subcontract report, 1 July 1989--31 December 1992

    SciTech Connect

    Lucovsky, G.

    1993-08-01

    This report describes research to reduce the intrinsic bonding defects in amorphous and microcrystalline Si alloys by controlling the bonding chemistry and the microstructure via the deposition process reactions. The specific approach was to use remote plasma-enhanced, chemical-vapor deposition (PECVD) and reactive magnetron sputtering to limit the multiplicity of deposition inaction pathways, and thereby gain increased control over the thin-film chemistry and microstrucre. The research included (1) the deposition of amorphous and microcrystalline Si alloy materials by the PECVD process and by reactive magnetron sputtering, and (2) the evaluation of the material properties of these films for potential applications in PV devices. The focus of the research was on pining a fundamental understanding of the relationships between deposition reaction pathways, the bonding of dopant and alloy atoms, and the electrical provides of importance for PV applications. This involved studying the factors that contribute to defect generation and to defect removal and/or neutralization. In addition to the experimental studies, the research also included theoretical and modeling studies aimed at understanding the relationships between local atomic arrangements of Si and alloy atoms, and the electrical, optical, vibrational, and defect properties.

  20. Organo-Chlorinated Thin Films Deposited by Atmospheric Pressure Plasma-Enhanced Chemical Vapor Deposition for Adhesion Enhancement between Rubber and Zinc-Plated Steel Monofilaments.

    PubMed

    Vandenabeele, Cédric; Bulou, Simon; Maurau, Rémy; Siffer, Frederic; Belmonte, Thierry; Choquet, Patrick

    2015-07-01

    A continuous-flow plasma process working at atmospheric pressure is developed to enhance the adhesion between a rubber compound and a zinc-plated steel monofilament, with the long-term objective to find a potential alternative to the electrolytic brass plating process, which is currently used in tire industry. For this purpose, a highly efficient tubular dielectric barrier discharge reactor is built to allow the continuous treatment of "endless" cylindrical substrates. The best treatment conditions found regarding adhesion are Ar/O2 plasma pretreatment, followed by the deposition from dichloromethane of a 75 nm-thick organo-chlorinated plasma polymerized thin film. Ar/O2 pretreatment allows the removal of organic residues, coming from drawing lubricants, and induces external growth of zinc oxide. The plasma layer has to be preferably deposited at low power to conserve sufficient hydrocarbon moieties. Surface analyses reveal the complex chemical mechanism behind the establishment of strong adhesion levels, more than five times higher after the plasma treatment. During the vulcanization step, superficial ZnO reacts with the chlorinated species of the thin film and is converted into porous and granular bump-shaped ZnwOxHyClz nanostructures. Together, rubber additives diffuse through the plasma layer and lead to the formation of zinc sulfide on the substrate surface. Hence, two distinct interfaces, rubber/thin film and thin film/substrate, are established. On the basis of these observations, hypotheses explaining the high bonding strength results are formulated. PMID:26069994

  1. Organo-Chlorinated Thin Films Deposited by Atmospheric Pressure Plasma-Enhanced Chemical Vapor Deposition for Adhesion Enhancement between Rubber and Zinc-Plated Steel Monofilaments.

    PubMed

    Vandenabeele, Cédric; Bulou, Simon; Maurau, Rémy; Siffer, Frederic; Belmonte, Thierry; Choquet, Patrick

    2015-07-01

    A continuous-flow plasma process working at atmospheric pressure is developed to enhance the adhesion between a rubber compound and a zinc-plated steel monofilament, with the long-term objective to find a potential alternative to the electrolytic brass plating process, which is currently used in tire industry. For this purpose, a highly efficient tubular dielectric barrier discharge reactor is built to allow the continuous treatment of "endless" cylindrical substrates. The best treatment conditions found regarding adhesion are Ar/O2 plasma pretreatment, followed by the deposition from dichloromethane of a 75 nm-thick organo-chlorinated plasma polymerized thin film. Ar/O2 pretreatment allows the removal of organic residues, coming from drawing lubricants, and induces external growth of zinc oxide. The plasma layer has to be preferably deposited at low power to conserve sufficient hydrocarbon moieties. Surface analyses reveal the complex chemical mechanism behind the establishment of strong adhesion levels, more than five times higher after the plasma treatment. During the vulcanization step, superficial ZnO reacts with the chlorinated species of the thin film and is converted into porous and granular bump-shaped ZnwOxHyClz nanostructures. Together, rubber additives diffuse through the plasma layer and lead to the formation of zinc sulfide on the substrate surface. Hence, two distinct interfaces, rubber/thin film and thin film/substrate, are established. On the basis of these observations, hypotheses explaining the high bonding strength results are formulated.

  2. A nucleation and growth model of vertically-oriented carbon nanofibers or nanotubes by plasma-enhanced catalytic chemical vapor deposition.

    PubMed

    Cojocaru, C S; Senger, A; Le Normand, F

    2006-05-01

    Carbon nanofibers are grown by direct current and hot filaments-activated catalytic chemical vapor deposition while varying the power of the hot filaments. Observations of these carbon nanofibers vertically oriented on a SiO2 (8 nm thick)/Si(100) substrate covered with Co nanoparticles (10-15 nm particle size) by Scanning Electron and Transmission Electron Microscopies show the presence of a graphitic "nest" either on the surface of the substrate or at the end of the specific nanofiber that does not encapsulate the catalytic particle. Strictly in our conditions, the activation by hot filaments is required to grow nanofibers with a C2H2 - H2 gas mixture, as large amounts of amorphous carbon cover the surface of the substrate without using hot filaments. From these observations as well as data of the literature, it is proposed that the nucleation of carbon nanofibers occurs through a complex process involving several steps: carbon concentration gradient starting from the catalytic carbon decomposition and diffusion from the surface of the catalytic nanoparticles exposed to the activated gas and promoted by energetic ionic species of the gas phase; subsequent graphitic condensation of a "nest" at the interface of the Co particle and substrate. The large concentration of highly reactive hydrogen radicals mainly provided by activation with hot filaments precludes further spreading out of this interfacial carbon nest over the entire surface of the substrate and thus selectively orientates the growth towards the condensation of graphene over facets that are perpendicular to the surface. Carbon nanofibers can then be grown within the well-known Vapor-Liquid-Solid process. Thus the effect of energetic ions and highly reactive neutrals like atomic hydrogen in the preferential etching of carbon on the edge of graphene shells and on the broadening of the carbon nanofiber is underlined.

  3. Role of hydrogen on the deposition and properties of fluorinated silicon-nitride films prepared by inductively coupled plasma enhanced chemical vapor deposition using SiF{sub 4}/N{sub 2}/H{sub 2} mixtures

    SciTech Connect

    Fandino, J.; Santana, G.; Rodriguez-Fernandez, L.; Cheang-Wong, J.C.; Ortiz, A.; Alonso, J.C.

    2005-03-01

    Fluorinated silicon-nitride films have been prepared at low temperature (250 deg. C) by remote plasma enhanced chemical vapor deposition using mixtures of SiF{sub 4}, N{sub 2}, Ar, and various H{sub 2} flow rates. The deposited films were characterized by means of single wavelength ellipsometry, infrared transmission, resonant nuclear reactions, Rutherford backscattering analysis, and current-voltage measurements. It was found that films deposited without hydrogen grow with the highest deposition rate, however, they result with the highest fluorine content ({approx}27 at. %) and excess of silicon (Si/N ratio{approx_equal}1.75). These films also have the lowest refractive index and the highest etch rate, and exhibit very poor dielectric properties. As a consequence of the high fluorine content, these films hydrolize rapidly upon exposure to the ambient moisture, forming Si-H and N-H bonds, however, they do not oxidize completely. The addition of hydrogen to the deposition process reduces the deposition rate but improves systematically the stability and insulating properties of the films by reducing the amount of both silicon and fluorine incorporated during growth. All the fluorinated silicon-nitride films deposited at hydrogen flow rates higher than 3.5 sccm resulted free of Si-H bonds. In spite of the fact that films obtained at the highest hydrogen flow rate used in this work are still silicon rich (Si/N ratio{approx_equal}1.0) and contain a considerable amount of fluorine ({approx}16 at. %), they are chemically stable and show acceptable dielectric properties.

  4. Plasma-Enhanced Chemical Vapor Deposition (PE-CVD) yields better Hydrolytical Stability of Biocompatible SiOx Thin Films on Implant Alumina Ceramics compared to Rapid Thermal Evaporation Physical Vapor Deposition (PVD).

    PubMed

    Böke, Frederik; Giner, Ignacio; Keller, Adrian; Grundmeier, Guido; Fischer, Horst

    2016-07-20

    Densely sintered aluminum oxide (α-Al2O3) is chemically and biologically inert. To improve the interaction with biomolecules and cells, its surface has to be modified prior to use in biomedical applications. In this study, we compared two deposition techniques for adhesion promoting SiOx films to facilitate the coupling of stable organosilane monolayers on monolithic α-alumina; physical vapor deposition (PVD) by thermal evaporation and plasma enhanced chemical vapor deposition (PE-CVD). We also investigated the influence of etching on the formation of silanol surface groups using hydrogen peroxide and sulfuric acid solutions. The film characteristics, that is, surface morphology and surface chemistry, as well as the film stability and its adhesion properties under accelerated aging conditions were characterized by means of X-ray photoelectron spectroscopy (XPS), energy dispersive X-ray spectroscopy (EDX), scanning electron microscopy (SEM), inductively coupled plasma-optical emission spectroscopy (ICP-OES), and tensile strength tests. Differences in surface functionalization were investigated via two model organosilanes as well as the cell-cytotoxicity and viability on murine fibroblasts and human mesenchymal stromal cells (hMSC). We found that both SiOx interfaces did not affect the cell viability of both cell types. No significant differences between both films with regard to their interfacial tensile strength were detected, although failure mode analyses revealed a higher interfacial stability of the PE-CVD films compared to the PVD films. Twenty-eight day exposure to simulated body fluid (SBF) at 37 °C revealed a partial delamination of the thermally deposited PVD films whereas the PE-CVD films stayed largely intact. SiOx layers deposited by both PVD and PE-CVD may thus serve as viable adhesion-promoters for subsequent organosilane coupling agent binding to α-alumina. However, PE-CVD appears to be favorable for long-term direct film exposure to aqueous

  5. Plasma-Enhanced Chemical Vapor Deposition (PE-CVD) yields better Hydrolytical Stability of Biocompatible SiOx Thin Films on Implant Alumina Ceramics compared to Rapid Thermal Evaporation Physical Vapor Deposition (PVD).

    PubMed

    Böke, Frederik; Giner, Ignacio; Keller, Adrian; Grundmeier, Guido; Fischer, Horst

    2016-07-20

    Densely sintered aluminum oxide (α-Al2O3) is chemically and biologically inert. To improve the interaction with biomolecules and cells, its surface has to be modified prior to use in biomedical applications. In this study, we compared two deposition techniques for adhesion promoting SiOx films to facilitate the coupling of stable organosilane monolayers on monolithic α-alumina; physical vapor deposition (PVD) by thermal evaporation and plasma enhanced chemical vapor deposition (PE-CVD). We also investigated the influence of etching on the formation of silanol surface groups using hydrogen peroxide and sulfuric acid solutions. The film characteristics, that is, surface morphology and surface chemistry, as well as the film stability and its adhesion properties under accelerated aging conditions were characterized by means of X-ray photoelectron spectroscopy (XPS), energy dispersive X-ray spectroscopy (EDX), scanning electron microscopy (SEM), inductively coupled plasma-optical emission spectroscopy (ICP-OES), and tensile strength tests. Differences in surface functionalization were investigated via two model organosilanes as well as the cell-cytotoxicity and viability on murine fibroblasts and human mesenchymal stromal cells (hMSC). We found that both SiOx interfaces did not affect the cell viability of both cell types. No significant differences between both films with regard to their interfacial tensile strength were detected, although failure mode analyses revealed a higher interfacial stability of the PE-CVD films compared to the PVD films. Twenty-eight day exposure to simulated body fluid (SBF) at 37 °C revealed a partial delamination of the thermally deposited PVD films whereas the PE-CVD films stayed largely intact. SiOx layers deposited by both PVD and PE-CVD may thus serve as viable adhesion-promoters for subsequent organosilane coupling agent binding to α-alumina. However, PE-CVD appears to be favorable for long-term direct film exposure to aqueous

  6. Experimental and theoretical rationalization of the growth mechanism of silicon quantum dots in non-stoichiometric SiN x : role of chlorine in plasma enhanced chemical vapour deposition

    NASA Astrophysics Data System (ADS)

    Mon-Pérez, E.; Salazar, J.; Ramos, E.; Santoyo Salazar, J.; López Suárez, A.; Dutt, A.; Santana, G.; Marel Monroy, B.

    2016-11-01

    Silicon quantum dots (Si-QDs) embedded in an insulator matrix are important from a technological and application point of view. Thus, being able to synthesize them in situ during the matrix growth process is technologically advantageous. The use of SiH2Cl2 as the silicon precursor in the plasma enhanced chemical vapour deposition (PECVD) process allows us to obtain Si-QDs without post-thermal annealing. Foremost in this work, is a theoretical rationalization of the mechanism responsible for Si-QD generation in a film including an analysis of the energy released by the extraction of HCl and the insertion of silylene species into the terminal surface bonds. From the results obtained using density functional theory (DFT), we propose an explanation of the mechanism responsible for the formation of Si-QDs in non-stoichiometric SiN x starting from chlorinated precursors in a PECVD system. Micrograph images obtained through transmission electron microscopy confirmed the presence of Si-QDs, even in nitrogen-rich (N-rich) samples. The film stoichiometry was controlled by varying the growth parameters, in particular the NH3/SiH2Cl2 ratio and hydrogen dilution. Experimental and theoretical results together show that using a PECVD system, along with chlorinated precursors it is possible to obtain Si-QDs at a low substrate temperature without annealing treatment. The optical property studies carried out in the present work highlight the prospects of these thin films for down shifting and as an antireflection coating in silicon solar cells.

  7. Ellipsometric investigation of nitrogen doped diamond thin films grown in microwave CH4/H2/N2 plasma enhanced chemical vapor deposition

    NASA Astrophysics Data System (ADS)

    Ficek, Mateusz; Sankaran, Kamatchi J.; Ryl, Jacek; Bogdanowicz, Robert; Lin, I.-Nan; Haenen, Ken; Darowicki, Kazimierz

    2016-06-01

    The influence of N2 concentration (1%-8%) in CH4/H2/N2 plasma on structure and optical properties of nitrogen doped diamond (NDD) films was investigated. Thickness, roughness, and optical properties of the NDD films in the VIS-NIR range were investigated on the silicon substrates using spectroscopic ellipsometry. The samples exhibited relatively high refractive index (2.6 ± 0.25 at 550 nm) and extinction coefficient (0.05 ± 0.02 at 550 nm) with a transmittance of 60%. The optical investigation was supported by the molecular and atomic data delivered by Raman studies, bright field transmission electron microscopy imaging, and X-ray photoelectron spectroscopy diagnostics. Those results revealed that while the films grown in CH4/H2 plasma contained micron-sized diamond grains, the films grown using CH4/H2/(4%)N2 plasma exhibited ultranano-sized diamond grains along with n-diamond and i-carbon clusters, which were surrounded by amorphous carbon grain boundaries.

  8. SOLVENT-FREE CHEMICAL TRANSFORMATIONS USING MICROWAVE IRRADIATION

    EPA Science Inventory

    Microwave-expedited solvent-free synthetic processes will be described that involve the exposure of neat reactants to microwave (MW) irradiation in the presence of supported reagents or catalysts on mineral oxides. Recent developments will be presented on the synthetic utility o...

  9. Effect of etchant concentration on microwave induced chemical etching (MICE) of CR-39 detector

    NASA Astrophysics Data System (ADS)

    Sahoo, G. S.; Tripathy, S. P.; Sharma, S. D.; Bandyopadhyay, T.

    2015-11-01

    The recently introduced microwave induced chemical etching (MICE) has been found to be a fast and effective etching technique for CR-39 detector. In the present work, the MICE technique was used to develop the neutron induced recoil tracks in CR-39 detectors. Special attention was paid in carrying out a systematic investigation to study the effect of etchant concentration and microwave power on the development of tracks and various track parameters. NaOH solution of different concentrations, viz. 3-8 N was tested at 300, 450, 600 and 900 W of microwave power. Temperature profiles for 200 ml solution of each concentration were generated to maintain a fixed operating condition for all concentrations at each microwave power. The bulk etch rate was found to increase with the microwave power as well as with the etchant concentration. Empirical relations were established to relate the variation of bulk etch rate with microwave power and etchant concentration.

  10. Physico-chemical characteristics of microwave-dried wheat distillers grain with solubles.

    PubMed

    Mosqueda, Maria Rosario P; Tabil, Lope G; Meda, Venkatesh

    2013-01-01

    Laboratory-prepared samples of wheat distillers grain with solubles with varying condensed distillers solubles (CDS) content were dried under varying microwave power, and microwave convection settings using a domestic microwave oven to examine their effect on the chemical, structural, color, flow, compression, thermal, and frictional properties of the product, which is dried distillers grain with solubles (DDGS). As CDS level increased, protein and ash content increased, while fat and fiber content decreased in wheat-based DDGS. Fat content was also markedly effected by the microwave oven drying conditions. While CDS level, microwave power or microwave convection setting, and/or their interactions significantly effected a number of physical properties; results indicated that CDS level had a stronger influence compared to the other factors. DDGS samples with high CDS levels were significantly denser, finer but more differentiated in size, less flowable, and less dispersible. These also produced denser and stronger pellets.

  11. [Effect of microwave on migration in the model environment of chemicals from materials that come into contact with foodstuffs].

    PubMed

    Aĭdinov, G V; Istomin, A V; Simileĭskaia, B S; Klimenko, O V; Berezina, T A; Efimushkina, L I

    2011-01-01

    Under the influence of microwaves is migration of chemical and metals used in manufacture for these furnaces. This confirms the need for research to develop modes of training materials used in the manufacture of utensils used in microwave ovens.

  12. A chemical/microwave technique for the measurement of bulk minority carrier lifetime in silicon wafers

    NASA Technical Reports Server (NTRS)

    Luke, Keung L.; Cheng, Li-Jen

    1988-01-01

    A chemical/microwave technique for the measurement of bulk minority carrier lifetime in silicon wafers is described. This method consists of a wet chemical treatment (surface cleaning, oxidation in solution, and measurement in HF solution) to passivate the silicon surfaces, a laser diode array for carrier excitation, and a microwave bridge measuring system which is more sensitive than the microwave systems used previously for lifetime measurement. Representative experimental data are presented to demonstrate this technique. The result reveals that this method is useful for the determination of bulk lifetime of commercial silicon wafers.

  13. Diamond growth on Fe-Cr-Al alloy by H{sub 2}-plasma enhanced graphite etching

    SciTech Connect

    Li, Y. S.; Hirose, A.

    2007-04-01

    Without intermediate layer and surface pretreatment, adherent diamond films with high initial nucleation density have been deposited on Fe-15Cr-5Al (wt. %) alloy substrate. The deposition was performed using microwave hydrogen plasma enhanced graphite etching in a wide temperature range from 370 to 740 degree sign C. The high nucleation density and growth rate of diamond are primarily attributed to the unique precursors used (hydrogen plasma etched graphite) and the chemical nature of the substrate. The improvement in diamond adhesion to steel alloys is ascribed to the important role played by Al, mitigation of the catalytic function of iron by suppressing the preferential formation of loose graphite intermediate phase on steel surface.

  14. ‘GREENER’ CHEMICAL SYNTHESES USING MICROWAVE IRRADIATION (PRAGUE)

    EPA Science Inventory

    'Greener' solvent-free protocols involve microwave (MW) exposure of neat reactants catalyzed by the surfaces of recyclable mineral supports such as alumina, silica and clay which are applicable to a wide range of cleavage, condensation, cyclization, oxidation and reduction reacti...

  15. 'GREENER' SOLVENT-FREE CHEMICAL SYNTHESIS USING MICROWAVE IRRADIATION

    EPA Science Inventory

    Solvent-free approach that involves microwave (MW) irradiation of neat reactants (undiluted) catalyzed by the surfaces of less-expensive and recyclable mineral supports such as alumina, silica, clay, or 'doped' surfaces is presented which is applicable to a wide range of cleavage...

  16. Chemical activation by mechanochemical mixing, microwave, and ultrasonic irradiation

    EPA Science Inventory

    The use of emerging MW-assisted chemistry techniques in conjunction with benign reaction media is dramatically reducing chemical waste ad reaction times in several organic syntheses and chemical transformations. This editorial comments on the recent developments in mechanochemica...

  17. Organo- and nano-catalyst in greener reaction medium: Microwave-assisted expedient synthesis of fine chemicals

    EPA Science Inventory

    The use of emerging microwave (MW) -assisted chemistry techniques is dramatically reducing chemical waste and reaction times in several organic syntheses and chemical transformations. A brief account of our experiences in developing MW-assisted organic transformations, which invo...

  18. Simulated experiment for elimination of air contaminated with odorous chemical agents by microwave plasma burner

    SciTech Connect

    Hong, Yong Cheol; Shin, Dong Hun; Uhm, Han Sup

    2007-10-15

    An experimental study on elimination of odorous chemical agent was carried out by making use of a microwave plasma burner, which consists of a microwave plasma torch and a reaction chamber with a fuel injector. Injection of hydrocarbon fuels into a high-temperature microwave torch plasma generates a plasma flame. The plasma flame can eliminate the odorous chemical agent diluted in air or purify the interior air of a large volume in isolated spaces. The specially designed reaction chamber eliminated H{sub 2}S and NH{sub 3} diluted in airflow rate of 5000 lpm (liters per minute), showing {beta} values of 46.52 and 39.69 J/l, respectively.

  19. Sustainable synthesis of chemical entities by microwave heating with nano-catalysis in water

    EPA Science Inventory

    •Sustainable synthesis of chemical entities by microwave heating with nano-catalysis in water •CRADA’s with the private companies, CEM corporation and VeruTEK Technologies •Green Chemistry principles are accommodated via multi-faceted approach. Learning from nature- using na...

  20. MICROWAVE-INDUCED RAPID CHEMICAL FUNCTIONALIZATION OF SINGLE-WALLED CARBON NANOTUBES (R830901)

    EPA Science Inventory


    Abstract

    The microwave-induced chemical functionalization of single-walled carbon nanotubes (SWNTs) is reported. The major advantage of this high-energy procedure is that it reduced the reaction time to the order of minutes and the number of steps in the reac...

  1. Microwave assisted total synthesis of a benzothiophene-based new chemical entity (NCE)

    EPA Science Inventory

    Pharmaceutical scientists are required to generate diverse arrays of complex targets in short span of time, which can now be achieved by microwave-assisted organic synthesis. New chemical entities (NCE) can be built in a fraction of the time using this technique. However, there a...

  2. Microwave-assisted chemical process for treatment of hazardous waste: Annual report

    SciTech Connect

    Varma, R.; Nandi, S.P.; Cleaveland, D.C.

    1987-10-01

    Microwave energy provides rapid in situ uniform heating and can be used to initiate chemical processes at moderate temperatures. We investigate the technical feasibility of microwave-assisted chemical processes for detoxification of liquid hazardous waste. Trichloroethylene, a major constituent of waste streams, was selected for this detoxification study. Experiments were performed to investigate the oxidative degradation of trichloroethylene over active carbons (with and without catalysts) in air streams with microwave in situ heating, and to examine the feasibility of regenerating the used carbons. This study established that trichloroethylene in a vapor stream can be adsorbed at room temperature on active carbon beds that are loaded with Cu and Cr catalysts. When the bed is heated by a microwave radiation to moderate temperatures (<400/sup 0/C) while a moist air stream is passed through it, the trichloroethylene is readily converted into less-noxious products such as HCl, CO, CO/sub 2/ and C/sub 2/H/sub 2/Cl/sub 2/. Conversion higher than 80% was observed. Furthermore, the used carbon bed can be conveniently regenerated by microwave heating while a moist-N/sub 2/ or moist-air stream is passed through the bed. 4 refs., 5 figs., 10 tabs.

  3. Toroidal plasma enhanced CVD of diamond films

    SciTech Connect

    Zvanya, John Cullen, Christopher Morris, Thomas Krchnavek, Robert R.; Holber, William Basnett, Andrew Basnett, Robert; Hettinger, Jeffrey

    2014-09-01

    An inductively coupled toroidal plasma source is used as an alternative to microwave plasmas for chemical vapor deposition of diamond films. The source, operating at a frequency of 400 kHz, synthesizes diamond films from a mixture of argon, methane, and hydrogen. The toroidal design has been adapted to create a highly efficient environment for diamond film deposition: high gas temperature and a short distance from the sample to the plasma core. Using a toroidal plasma geometry operating in the medium frequency band allows for efficient (≈90%) coupling of AC line power to the plasma and a scalable path to high-power and large-area operation. In test runs, the source generates a high flux of atomic hydrogen over a large area, which is favorable for diamond film growth. Using a deposition temperature of 900–1050 °C and a source to sample distance of 0.1–2.0 cm, diamond films are deposited onto silicon substrates. The results showed that the deposition rate of the diamond films could be controlled using the sample temperature and source to sample spacing. The results also show the films exhibit good-quality polycrystalline diamond as verified by Raman spectroscopy, x-ray diffraction, and scanning electron microscopy. The scanning electron microscopy and x-ray diffraction results show that the samples exhibit diamond (111) and diamond (022) crystallites. The Raman results show that the sp{sup 3} peak has a narrow spectral width (FWHM 12 ± 0.5 cm{sup −1}) and that negligible amounts of the sp{sup 2} band are present, indicating good-quality diamond films.

  4. Rapid, facile microwave-assisted synthesis of xanthan gum grafted polyaniline for chemical sensor.

    PubMed

    Pandey, Sadanand; Ramontja, James

    2016-08-01

    Grafting method, through microwave radiation procedure is extremely productive in terms of time consumption, cost effectiveness and environmental friendliness. In this study, conductive and thermally stable composite (mwXG-g-PANi) was synthesized by grafting of aniline (ANi) on to xanthan gum (XG) using catalytic weight of initiator, ammonium peroxydisulfate in the process of microwave irradiation in an aqueous medium. The synthesis of mwXG-g-PANi were confirm by FTIR, XRD, TGA, and SEM. The influence of altering the microwave power, exposure time of microwave, concentration of monomer and the amount of initiator of graft polymerization were studied over the grafting parameters, for example, grafting percentage (%G) and grafting efficiency (%E). The maximum %G and %E achieved was 172 and 74.13 respectively. The outcome demonstrates that the microwave irradiation strategy can increase the reaction rate by 72 times over the conventional method. Electrical conductivity of XG and mwXG-g-PANi composite film was performed. The fabricated grafted sample film were then examined for the chemical sensor. The mwXG-g-PANi, effectively integrated and handled, are NH3 sensitive and exhibit a rapid sensing in presence of NH3 vapor. Chemiresistive NH3 sensors with superior room temperature sensing performance were produced with sensor response of 905 at 1ppb and 90% recovery within few second. PMID:27118045

  5. Microwave enhanced chemical reduction process for nitrite-containing wastewater treatment using sulfaminic acid.

    PubMed

    Li, Nan; Wang, Peng; Liu, Qingsong; Cao, Hailei

    2010-01-01

    High-concentration nitrite-containing wastewater that presents extreme toxicity to human health and organisms is difficult to be treated using traditional biological process. In this study, a novel microwave-enhanced chemical reduction process (MECRP) using sulfaminic acid (SA) was proposed as a new manner to treat such type of wastewater. Based on lab-scale experiments, it was shown that 75%-80% nitrite (NO2-) could be removed within time as short as 4 min under 50 W microwave irradiation in pH range 5-10 when molar ratio of SA to nitrite (SA/NO2-) was 0.8. Pilot-scale investigations demonstrated that MECRP was able to achieve nitrite and chemical oxygen demand (COD) removal with efficiency up to 80% and 20%, respectively under operating conditions of SA concentration 80 kg/m3, SA/NO2- ratio 0.8, microwave power 3.4 kW, and stirring time 3 min. Five-day biological oxygen demand (BOD5)/COD value of treated effluent after MECRP was increased from 0.05 to 0.36 (by 620%), which clearly suggested a considerable improvement of biodegradability for subsequent biological treatment. This study provided a demonstration of using microwave irradiation to enhance reaction between SA and nitrite in a short time, in which nitrite in wastewater was completely converted into nitrogen gas without leaving any sludge and secondary pollutants. PMID:20397387

  6. Microwave-irradiation-assisted hybrid chemical approach for titanium dioxide nanoparticle synthesis: microbial and cytotoxicological evaluation.

    PubMed

    Ranjan, Shivendu; Dasgupta, Nandita; Rajendran, Bhavapriya; Avadhani, Ganesh S; Ramalingam, Chidambaram; Kumar, Ashutosh

    2016-06-01

    Titanium dioxide nanoparticles (TNPs) are widely used in the pharmaceutical and cosmetics industries. It is used for protection against UV exposure due to its light-scattering properties and high refractive index. Though TNPs are increasingly used, the synthesis of TNPs is tedious and time consuming; therefore, in the present study, microwave-assisted hybrid chemical approach was used for TNP synthesis. In the present study, we demonstrated that TNPs can be synthesized only in 2.5 h; however, the commonly used chemical approach using muffle furnace takes 5 h. The activity of TNP depends on the synthetic protocol; therefore, the present study also determined the effect of microwave-assisted hybrid chemical approach synthetic protocol on microbial and cytotoxicity. The results showed that TNP has the best antibacterial activity in decreasing order from Escherichia coli, Bacillus subtilis, and Staphylococcus aureus. The IC50 values of TNP for HCT116 and A549 were found to be 6.43 and 6.04 ppm, respectively. Cell death was also confirmed from trypan blue exclusion assay and membrane integrity loss was observed. Therefore, the study determines that the microwave-assisted hybrid chemical approach is time-saving; hence, this technique can be upgraded from lab scale to industrial scale via pilot plant scale. Moreover, it is necessary to find the mechanism of action at the molecular level to establish the reason for greater bacterial and cytotoxicological toxicity. Graphical abstract A graphical representation of TNP synthesis.

  7. Microwave-irradiation-assisted hybrid chemical approach for titanium dioxide nanoparticle synthesis: microbial and cytotoxicological evaluation.

    PubMed

    Ranjan, Shivendu; Dasgupta, Nandita; Rajendran, Bhavapriya; Avadhani, Ganesh S; Ramalingam, Chidambaram; Kumar, Ashutosh

    2016-06-01

    Titanium dioxide nanoparticles (TNPs) are widely used in the pharmaceutical and cosmetics industries. It is used for protection against UV exposure due to its light-scattering properties and high refractive index. Though TNPs are increasingly used, the synthesis of TNPs is tedious and time consuming; therefore, in the present study, microwave-assisted hybrid chemical approach was used for TNP synthesis. In the present study, we demonstrated that TNPs can be synthesized only in 2.5 h; however, the commonly used chemical approach using muffle furnace takes 5 h. The activity of TNP depends on the synthetic protocol; therefore, the present study also determined the effect of microwave-assisted hybrid chemical approach synthetic protocol on microbial and cytotoxicity. The results showed that TNP has the best antibacterial activity in decreasing order from Escherichia coli, Bacillus subtilis, and Staphylococcus aureus. The IC50 values of TNP for HCT116 and A549 were found to be 6.43 and 6.04 ppm, respectively. Cell death was also confirmed from trypan blue exclusion assay and membrane integrity loss was observed. Therefore, the study determines that the microwave-assisted hybrid chemical approach is time-saving; hence, this technique can be upgraded from lab scale to industrial scale via pilot plant scale. Moreover, it is necessary to find the mechanism of action at the molecular level to establish the reason for greater bacterial and cytotoxicological toxicity. Graphical abstract A graphical representation of TNP synthesis. PMID:26976013

  8. Microwave spectra of some sulfur and nitrogen compounds. [for chemical analysis

    NASA Technical Reports Server (NTRS)

    White, W. F.

    1974-01-01

    A computer-controlled microwave spectrometer was used to catalog reference spectra for chemical analysis. The apparatus, software, and experimental procedures are described. Tables of absorption frequencies, peak absorption coefficients, and integrated intensities are included for 13 sulfur compounds, 14 nitrogen compounds, and 1 compound containing both sulfur and nitrogen. The frequency range covered was 26,500 to 40,000 MHz for most compounds and 18,000 to 40,000 MHz for some.

  9. Optimization of microwave-induced chemical etching for rapid development of neutron-induced recoil tracks in CR-39 detectors

    NASA Astrophysics Data System (ADS)

    Sahoo, G. S.; Tripathy, S. P.; Bandyopadhyay, T.

    2014-03-01

    A systematic investigation is carried out to optimize the recently established microwave-induced chemical etching (MICE) parameters for rapid development of neutron-induced recoil tracks in CR-39 detectors. Several combinations of all available microwave powers with different etching durations were analysed to determine the most suitable etching condition. The etching duration was found to reduce with increasing microwave power and the tracks were observed at about 18, 15, 12, and 6 min for 300, 450, 600 and 900 W of microwave powers respectively compared to a few hours in chemical etching (CE) method. However, for complete development of tracks the etching duration of 30, 40, 50 and 60 min were found to be suitable for the microwave powers of 900, 600, 450 and 300 W, respectively. Temperature profiles of the etchant for all the available microwave powers at different etching durations were generated to regulate the etching process in a controlled manner. The bulk etch rates at different microwave powers were determined by 2 methods, viz., gravimetric and removed thickness methods. A logarithmic expression was used to fit the variation of bulk etch rate with microwave power. Neutron detection efficiencies were obtained for all the cases and the results on track parameters obtained with MICE technique were compared with those obtained from another detector processed with chemical etching.

  10. Killing and preserving nematodes in soil samples with chemicals and microwave energy.

    PubMed

    Barker, K R; Gooding, G V; Elder, A S; Eplee, R E

    1972-04-01

    Three basic procedures for treating nematode-bearing soil samples for international shipment or from areas under quarantine were tested for their killing effect and recovery of nematodes by sugar flotation for diagnostic and advisory purposes. These were: fumigation with methyl bromide followed by storage at -15 C; microwave treatment (2450 MHz, 630 w, 2-5 min) followed by addition of FAA + picric acid or 5% Formalin; and adding chemical preservatives (FAA + picric acid, 5% Formalin, NAN, and 2-phenoxyethanol) directly to the soil. Larvae of Heterodera glycines in eggs within cysts were stimulated to hatch by 2-rain exposure to microwaves, and an exposure of 5 rain was required to kill them. Soil type and moisture significantly affected microwave effectiveness. Direct saturation of soil samples with preservative chemical solutions (FAA + picric acid or 5% Formalin) was most effective, and often increased the number of nematodes recovered. The high concentration (2%) of NaN a required for soil sterilization is too hazardous for routine work. NaN, therefore, is not recommended for this purpose.

  11. Diamond synthesis at atmospheric pressure by microwave capillary plasma chemical vapor deposition

    NASA Astrophysics Data System (ADS)

    Hemawan, Kadek W.; Gou, Huiyang; Hemley, Russell J.

    2015-11-01

    Polycrystalline diamond has been synthesized on silicon substrates at atmospheric pressure, using a microwave capillary plasma chemical vapor deposition technique. The CH4/Ar plasma was generated inside of quartz capillary tubes using 2.45 GHz microwave excitation without adding H2 into the deposition gas chemistry. Electronically excited species of CN, C2, Ar, N2, CH, Hβ, and Hα were observed in the emission spectra. Raman measurements of deposited material indicate the formation of well-crystallized diamond, as evidenced by the sharp T2g phonon at 1333 cm-1 peak relative to the Raman features of graphitic carbon. Field emission scanning electron microscopy images reveal that, depending on the growth conditions, the carbon microstructures of grown films exhibit "coral" and "cauliflower-like" morphologies or well-facetted diamond crystals with grain sizes ranging from 100 nm to 10 μm.

  12. Structural studies on ethyl isovalerate by microwave spectroscopy and quantum chemical calculations.

    PubMed

    Mouhib, Halima; Jelisavac, Dragan; Sutikdja, Lilian W; Isaak, Elisabeth; Stahl, Wolfgang

    2011-01-20

    We observed the microwave spectrum of ethyl isovalerate by molecular beam Fourier transform microwave spectroscopy. The rotational and centrifugal distortion constants of the most abundant conformer were determined. Its structure was investigated by comparison of the experimental rotational constants with those obtained by ab initio methods. In a first step, the rotational constants of various conformers were calculated at the MP2/6-311++G** level of theory. Surprisingly, no agreement with the experimental results was found. Therefore, we concluded that in the case of ethyl isovalerate more advanced quantum chemical methods are required to obtain a reliable molecular geometry. Ab initio calculations carried out at MP3/6-311++G**, MP4/6-311++G**, and CCSD/6-311++G** levels and also density functional theory calculations using the B3LYP/6-311++G** method gave similar results for the rotational constants, but they were clearly distinct from those obtained at the MP2/6-311++G** level. With use of these more advanced methods, the rotational constants of the lowest energy conformer were in good agreement with those obtained from the microwave spectrum.

  13. Isolation and characterization of cellulose nanofibers from bamboo using microwave liquefaction combined with chemical treatment and ultrasonication.

    PubMed

    Xie, Jiulong; Hse, Chung-Yun; De Hoop, Cornelis F; Hu, Tingxing; Qi, Jinqiu; Shupe, Todd F

    2016-10-20

    Cellulose nanofibers were successfully isolated from bamboo using microwave liquefaction combined with chemical treatment and ultrasonic nanofibrillation processes. The microwave liquefaction could eliminate almost all the lignin in bamboo, resulting in high cellulose content residues within 7min, and the cellulose enriched residues could be readily purified by subsequent chemical treatments with lower chemical charging and quickly. The results of wet chemistry analyses, SEM images, and FTIR and X-ray spectra indicated the combination of microwave liquefaction and chemical treatment was significantly efficient in removing non-cellulosic compounds. Ultrasonication was used to separate the nanofibrils from the purified residues to extract nanofibers. The TEM images confirmed the presence of elementary fibrils, nano-sized fibril bundles, and aggregated fibril bundles. As evidenced by the TGA analysis, cellulose nanofibers isolated by this novel technique had high thermal stability indicating that the isolated nanofibers could possibly be applied as reinforcing elements in biomaterials. PMID:27474619

  14. Isolation and characterization of cellulose nanofibers from bamboo using microwave liquefaction combined with chemical treatment and ultrasonication.

    PubMed

    Xie, Jiulong; Hse, Chung-Yun; De Hoop, Cornelis F; Hu, Tingxing; Qi, Jinqiu; Shupe, Todd F

    2016-10-20

    Cellulose nanofibers were successfully isolated from bamboo using microwave liquefaction combined with chemical treatment and ultrasonic nanofibrillation processes. The microwave liquefaction could eliminate almost all the lignin in bamboo, resulting in high cellulose content residues within 7min, and the cellulose enriched residues could be readily purified by subsequent chemical treatments with lower chemical charging and quickly. The results of wet chemistry analyses, SEM images, and FTIR and X-ray spectra indicated the combination of microwave liquefaction and chemical treatment was significantly efficient in removing non-cellulosic compounds. Ultrasonication was used to separate the nanofibrils from the purified residues to extract nanofibers. The TEM images confirmed the presence of elementary fibrils, nano-sized fibril bundles, and aggregated fibril bundles. As evidenced by the TGA analysis, cellulose nanofibers isolated by this novel technique had high thermal stability indicating that the isolated nanofibers could possibly be applied as reinforcing elements in biomaterials.

  15. Synthesis of graphene by cobalt-catalyzed decomposition of methane in plasma-enhanced CVD: Optimization of experimental parameters with Taguchi method

    NASA Astrophysics Data System (ADS)

    Mehedi, H.-A.; Baudrillart, B.; Alloyeau, D.; Mouhoub, O.; Ricolleau, C.; Pham, V. D.; Chacon, C.; Gicquel, A.; Lagoute, J.; Farhat, S.

    2016-08-01

    This article describes the significant roles of process parameters in the deposition of graphene films via cobalt-catalyzed decomposition of methane diluted in hydrogen using plasma-enhanced chemical vapor deposition (PECVD). The influence of growth temperature (700-850 °C), molar concentration of methane (2%-20%), growth time (30-90 s), and microwave power (300-400 W) on graphene thickness and defect density is investigated using Taguchi method which enables reaching the optimal parameter settings by performing reduced number of experiments. Growth temperature is found to be the most influential parameter in minimizing the number of graphene layers, whereas microwave power has the second largest effect on crystalline quality and minor role on thickness of graphene films. The structural properties of PECVD graphene obtained with optimized synthesis conditions are investigated with Raman spectroscopy and corroborated with atomic-scale characterization performed by high-resolution transmission electron microscopy and scanning tunneling microscopy, which reveals formation of continuous film consisting of 2-7 high quality graphene layers.

  16. A new modular multichamber plasma enhanced chemical vapor deposition system

    NASA Astrophysics Data System (ADS)

    Madan, A.; Rava, P.; Schropp, R. E. I.; von Roedern, B.

    1993-06-01

    The present work reports on a new modular UHV multichamber PECVD system with characteristics which prevent both the incorporation of residual impurities and cross contamination between different layers. A wide range of intrinsic and doped hydrogenated amorphous silicon (a-Si:H) materials have been produced and single junction pin solar cells with an efficiency greater than 10% have been readily obtained with little optimization. The system contains three UHV modular process zones (MPZ's); the MPZ's and a load lock chamber are located around a central isolation and transfer zone which contains the transport mechanism consisting of an arm with radial and linear movement. This configuration allows for introduction of the substrate into the MPZ's in any sequence so that any type of multilayer device can be produced. The interelectrode distance in the MPZ's can be adjusted between 1 and 5 cm. This has been found to be an important parameter in the optimisation of the deposition rate and of the uniformity. The multichamber concept also allows individually optimized deposition temperatures and interelectrode distances for the various layers. The system installed in Utrecht will be employed for further optimization of single junction solar cells and for research and development of stable a-Si:H tandem cells.

  17. Microwave plasma chemical synthesis of nanocrystalline carbon film structures and study their properties

    NASA Astrophysics Data System (ADS)

    Bushuev, N.; Yafarov, R.; Timoshenkov, V.; Orlov, S.; Starykh, D.

    2015-08-01

    The self-organization effect of diamond nanocrystals in polymer-graphite and carbon films is detected. The carbon materials deposition was carried from ethanol vapors out at low pressure using a highly non-equilibrium microwave plasma. Deposition processes of carbon film structures (diamond, graphite, graphene) is defined. Deposition processes of nanocrystalline structures containing diamond and graphite phases in different volume ratios is identified. The solid film was obtained under different conditions of microwave plasma chemical synthesis. We investigated the electrical properties of the nanocrystalline carbon films and identified it's from various factors. Influence of diamond-graphite film deposition mode in non-equilibrium microwave plasma at low pressure on emission characteristics was established. This effect is justified using the cluster model of the structure of amorphous carbon. It was shown that the reduction of bound hydrogen in carbon structures leads to a decrease in the threshold electric field of emission from 20-30 V/m to 5 V/m. Reducing the operating voltage field emission can improve mechanical stability of the synthesized film diamond-graphite emitters. Current density emission at least 20 A/cm2 was obtained. Nanocrystalline carbon film materials can be used to create a variety of functional elements in micro- and nanoelectronics and photonics such as cold electron source for emission in vacuum devices, photonic devices, cathodoluminescent flat display, highly efficient white light sources. The obtained graphene carbon net structure (with a net size about 6 μm) may be used for the manufacture of large-area transparent electrode for solar cells and cathodoluminescent light sources

  18. Microwave chemical sensing using overmoded T-line designs and impact of real-time digitizer in the system

    NASA Astrophysics Data System (ADS)

    Huang, Yu-Ting

    Microwave spectrometers have unique advantages in the ability to determine high resolution features that are specific to a given chemical. Very sharp lines which correspond to quantum states of the chemical allow for unique identification of the chemical. Recent advances have shown the possibility of room temperature microwave spectroscopy analysis in which the data is collected in a short amount of time using broadband chirp pulse Fourier transform microwave (CP-FTMW) spectroscopy. In this report, we explore the design of reduced size spectrometers focusing on the reduction as well as expansion of operation frequency of the microwave analysis cell, where the chemical is analyzed at room temperature. In addition, a new real-time digitizer is used in our system to replace the digital storage oscilloscope and can achieve 1 million coherent averages in 20 seconds. Signal-to-noise ratio can be greatly improved, and we take the advantage of the increased SNR and explore chemical signal strength with low input power, and we also demonstrated simultaneous transmit and receive by implementing an absorptive bandstop filter to the system. This report demonstrates the possibility of a non-laboratory based implementation of a high resolution sensor.

  19. Diamond deposition from fluorinated precursors using microwave-plasma chemical vapor deposition

    SciTech Connect

    Fox, C.A.; McMaster, M.C.; Hsu, W.L.; Kelly, M.A.; Hagstrom, S.B.

    1995-10-16

    Diamond thin films were grown using fluorinated precursors by microwave plasma-assisted chemical vapor deposition. Using CH{sub 4}/H{sub 2}, CH{sub 3}F/H{sub 2}, and CF{sub 4}/H{sub 2} gas mixtures, films were grown at surface temperatures in the range 600--900 {degree}C at constant microwave power, carbon mole fraction, and pressure. Growth activation energies for the CH{sub 4}/H{sub 2}, CH{sub 3}F/H{sub 2}, and CF{sub 4}/H{sub 2} mixtures were 12.6{plus_minus}1.8, 13.7{plus_minus}1.2, and 12.4{plus_minus}1.1 kcal/mole, respectively. Argon ion etching in conjunction with x-ray photoelectron spectroscopy indicated negligible fluorine incorporation into the films. These results are consistent with the hypothesis that diamond is grown from the same intermediates, namely methyl radicals and atomic hydrogen, for all of these mixtures. {copyright} {ital 1995} {ital American} {ital Institute} {ital of} {ital Physics}.

  20. Diamond synthesis at atmospheric pressure by microwave capillary plasma chemical vapor deposition

    SciTech Connect

    Hemawan, Kadek W.; Gou, Huiyang; Hemley, Russell J.

    2015-11-02

    Polycrystalline diamond has been synthesized on silicon substrates at atmospheric pressure, using a microwave capillary plasma chemical vapor deposition technique. The CH{sub 4}/Ar plasma was generated inside of quartz capillary tubes using 2.45 GHz microwave excitation without adding H{sub 2} into the deposition gas chemistry. Electronically excited species of CN, C{sub 2}, Ar, N{sub 2}, CH, H{sub β}, and H{sub α} were observed in the emission spectra. Raman measurements of deposited material indicate the formation of well-crystallized diamond, as evidenced by the sharp T{sub 2g} phonon at 1333 cm{sup −1} peak relative to the Raman features of graphitic carbon. Field emission scanning electron microscopy images reveal that, depending on the growth conditions, the carbon microstructures of grown films exhibit “coral” and “cauliflower-like” morphologies or well-facetted diamond crystals with grain sizes ranging from 100 nm to 10 μm.

  1. Structural studies on banana oil, isoamyl acetate, by means of microwave spectroscopy and quantum chemical calculations

    NASA Astrophysics Data System (ADS)

    Sutikdja, L. W.; Jelisavac, D.; Stahl, W.; Kleiner, I.

    2012-12-01

    The rotational spectrum of isoamyl acetate, H3C-COO-(CH2)2-CH(CH3)2, has been recorded and assigned using a molecular beam Fourier transform microwave (MB-FTMW) spectrometer in the frequency range of 3-26.5 GHz. One conformer has been observed. By comparing the spectroscopic data with the quantum chemical data, it was found that the conformer observed does not have Cs symmetry. The rotational and centrifugal distortion constants were determined. The barrier to internal rotation of the acetate methyl group was found to be 93.98 cm-1. Due to the high number of the conformers, a systematic nomenclature will be presented.

  2. High growth rate homoepitaxial diamond film deposition at high temperatures by microwave plasma-assisted chemical vapor deposition

    NASA Technical Reports Server (NTRS)

    Vohra, Yogesh K. (Inventor); McCauley, Thomas S. (Inventor)

    1997-01-01

    The deposition of high quality diamond films at high linear growth rates and substrate temperatures for microwave-plasma chemical vapor deposition is disclosed. The linear growth rate achieved for this process is generally greater than 50 .mu.m/hr for high quality films, as compared to rates of less than 5 .mu.m/hr generally reported for MPCVD processes.

  3. Cytotoxicity of Boron-Doped Nanocrystalline Diamond Films Prepared by Microwave Plasma Chemical Vapor Deposition

    NASA Astrophysics Data System (ADS)

    Liu, Dan; Gou, Li; Ran, Junguo; Zhu, Hong; Zhang, Xiang

    2015-07-01

    Boron-doped nanocrystalline diamond (NCD) exhibits extraordinary mechanical properties and chemical stability, making it highly suitable for biomedical applications. For implant materials, the impact of boron-doped NCD films on the character of cell growth (i.e., adhesion, proliferation) is very important. Boron-doped NCD films with resistivity of 10-2 Ω·cm were grown on Si substrates by the microwave plasma chemical vapor deposition (MPCVD) process with H2 bubbled B2O3. The crystal structure, diamond character, surface morphology, and surface roughness of the boron-doped NCD films were analyzed using different characterization methods, such as X-ray diffraction (XRD), Raman spectroscopy, scanning electron microscopy (SEM) and atomic force microscopy (AFM). The contact potential difference and possible boron distribution within the film were studied with a scanning kelvin force microscope (SKFM). The cytotoxicity of films was studied by in vitro tests, including fluorescence microscopy, SEM and MTT assay. Results indicated that the surface roughness value of NCD films was 56.6 nm and boron was probably accumulated at the boundaries between diamond agglomerates. MG-63 cells adhered well and exhibited a significant growth on the surface of films, suggesting that the boron-doped NCD films were non-toxic to cells. supported by the Open Foundation of State Key Laboratory of Electronic Thin Films and Integrated Devices (University of Electronic Science and Technology of China) (No. KFJJ201313)

  4. Role of the conducting layer substrate on TiO2 nucleation when using microwave activated chemical bath deposition

    NASA Astrophysics Data System (ADS)

    Zumeta, I.; Espinosa, R.; Ayllón, J. A.; Vigil, E.

    2002-12-01

    Nanostructured TiO2 is used in novel dye sensitized solar cells. Because of their interaction with light, thin TiO2 films are also used as coatings for self-cleaning glasses and tiles. Microwave activated chemical bath deposition represents a simple and cost-effective way to obtain nanostructured TiO2 films. It is important to study, in this technique, the role of the conducting layer used as the substrate. The influence of microwave-substrate interactions on TiO2 deposition is analysed using different substrate positions, employing substrates with different conductivities, and also using different microwave radiation powers for film deposition. We prove that a common domestic microwave oven with a large cavity and inhomogeneous radiation field can be used with equally satisfactory results. The transmittance spectra of the obtained films were studied and used to analyse film thickness and to obtain gap energy values. The results, regarding different indium-tin oxide resistivities and different substrate positions in the oven cavity, show that the interaction of the microwave field with the conducting layer is determinant in layer deposition. It has also been found that film thickness increases with the power of the applied radiation while the gap energies of the TiO2 films decrease approaching the 3.2 eV value reported for bulk anatase. This indicates that these films are not crystalline and it agrees with x-ray spectra that do not reveal any peak.

  5. Physical and Chemical Properties of Bio-Oils From Microwave Pyrolysis of Corn Stover

    NASA Astrophysics Data System (ADS)

    Yu, Fei; Deng, Shaobo; Chen, Paul; Liu, Yuhuan; Wan, Yiqin; Olson, Andrew; Kittelson, David; Ruan, Roger

    This study was aimed to understand the physical and chemical properties of pyrolytic bio-oils produced from microwave pyrolysis of corn stover regarding their potential use as gas turbine and home heating fuels. The ash content, solids content, pH, heating value, minerals, elemental ratio, moisture content, and viscosity of the bio-oils were determined. The water content was approx 15.2 wt%, solids content 0.22 wt%, alkali metal content 12 parts per million, dynamic viscosity 185 mPa·s at 40°C, and gross high heating value 17.5 MJ/kg for a typical bio-oil produced. Our aging tests showed that the viscosity and water content increased and phase separation occurred during the storage at different temperatures. Adding methanol and/or ethanol to the bio-oils reduced the viscosity and slowed down the increase in viscosity and water content during the storage. Blending of methanol or ethanol with the bio-oils may be a simple and cost-effective approach to making the pyrolytic bio-oils into a stable gas turbine or home heating fuels.

  6. Differing morphologies of textured diamond films with electrical properties made with microwave plasma chemical vapor deposition

    NASA Astrophysics Data System (ADS)

    Lai, Wen Chi; Wu, Yu-Shiang; Chang, Hou-Cheng; Lee, Yuan-Haun

    2010-12-01

    This study investigates the orientation of textured diamond films produced through microwave plasma chemical vapor deposition (MPCVD) at 1200 W, 110 Torr, CH 4/H 2 = 1/20, with depositions times of 0.5-4.0 h. After a growth period of 2.0-4.0 h, this particular morphology revealed a rectangular structure stacked regularly on the diamond film. The orientation on {1 1 1}-textured diamond films grew a preferred orientation of {1 1 0} on the surface, as measured by XRD. The formation of the diamond epitaxial film formed textured octahedrons in ball shaped (or cauliflower-like) diamonds in the early stages (0.5 h), and the surface of the diamond film extended to pile the rectangular structure at 4.0 h. The width of the tier was approximately 200 nm at the 3.0 h point of deposition, according to TEM images. The results revealed that the textured diamond films showed two different morphological structures (typical ball shaped and rectangular diamonds), at different stages of the deposition period. The I- V characteristics of the oriented diamond films after 4.0 h of deposition time showed good conformity with the ohmic contact.

  7. Synthesis and characterization of nano ZnO rods via microwave assisted chemical precipitation method

    SciTech Connect

    Uma Sangari, N.; Chitra Devi, S.

    2013-01-15

    A microwave assisted chemical precipitation method has been employed for the synthesis of nano zinc oxide rods by reacting zinc nitrate and potassium hydroxide. The amount of potassium hydroxide was adjusted for three different pHs to achieve ZnO nano rods with varying aspect ratio. The mechanism of growth of nano rods is explained briefly. The average crystallite size of the as synthesized samples was analyzed by means of powder XRD pattern and estimated to vary from 25.6 nm to 43.1 nm. The existence of rods was confirmed using scanning electron microscopy (SEM). The samples were also analyzed using FT-IR. The optical properties of the samples were also studied by means of UV-visible spectra and Room Temperature Photo Luminescence studies. The band gap of the samples was determined from the DRS spectrum. A strong near band emission peaks due to surface defects are observed in the PL spectrum. - Graphical abstract: At the solution pH of 11 and 9, tetrapod-like and flower-like ZnO nano rods were formed along with separated rods respectively due to the formation of activated nuclei of different sizes. Highlights: Black-Right-Pointing-Pointer Increase in alkalinity of the precursor solution results in longer rods. Black-Right-Pointing-Pointer Beyond a saturation limit, the excess of added OH{sup -} ions inhibited the growth of rods. Black-Right-Pointing-Pointer Keeping all parameters the same, the alkalinity can only modify the aspect ratio of the rods and not their morphology.

  8. [Optical Spectroscopy for High-Pressure Microwave Plasma Chemical Vapor Deposition of Diamond Films].

    PubMed

    Cao, Wei; Ma, Zhi-bin

    2015-11-01

    Polycrystalline diamond growth by microwave plasma chemical vapor deposition (MPCVD) at high-pressure (34.5 kPa) was investigated. The CH₄/H₂/O₂plasma was detected online by optical emission spectroscopy (OES), and the spatial distribution of radicals in the CH₄/H₂/O₂plasma was studied. Raman spectroscopy was employed to analyze the properties of the diamond films deposited in different oxygen volume fraction. The uniformity of diamond films quality was researched. The results indicate that the spectrum intensities of C₂, CH and Hα decrease with the oxygen volume fraction increasing. While the intensity ratios of C₂, CH to Hα also reduced as a function of increasing oxygen volume fraction. It is shown that the decrease of the absolute concentration of carbon radicals is attributed to the rise volume fraction of oxygen, while the relative concentration of carbon radicals to hydrogen atom is also reducing, which depressing the growth rate but improving the quality of diamond film. Furthermore, the OH radicals, role of etching, its intensities increase with the increase of oxygen volume fraction. Indicated that the improvement of OH concentration is also beneficial to reduce the content of amorphous carbon in diamond films. The spectrum space diagnosis results show that under high deposition pressure the distribution of the radicals in the CH₄/H₂/O₂plasma is inhomogeneous, especially, that of radical C₂ gathered in the central region. And causing a rapid increase of non-diamond components in the central area, eventually enable the uneven distribution of diamond films quality.

  9. The Molecular Structure of Phenetole Studied by Microwave Spectroscopy and Quantum Chemical Calculations

    NASA Astrophysics Data System (ADS)

    Ferres, Lynn; Stahl, Wolfgang; Nguyen, Ha Vinh Lam

    2016-06-01

    A pulsed molecular beam Fourier transform microwave spectrometer operating in the frequency range 2 - 26.5 GHz was used to measure the spectrum of phenetole (ethyl phenyl ether or ethoxybenzene, C6H5OC2H5). The conformational landscape is completely determined by the orientations of the phenyl ring and the ethyl group. A two-dimensional potential energy surface was calculated at the MP2/6-311++G(d,p) level of theory. Two conformers were found: The trans conformer has a Cs symmetry, and the gauche conformer has the ethyl group tilted out of the phenyl plane by about 70°. Totally 186 rotational transitions were assigned to the more stable planar trans conformer, and fitted using a semi-rigid rotor model to measurement accuracy of 2 kHz. Highly accurate rotational and centrifugal distortion constants were determined. Several method and basis set combinations were applied to check for convergence and to compare with the experimentally deduced molecular parameters. The inertial defect of the observed conformer Δc = (Ic - Ia - Ib) = -6.718 uÅ2 confirms that the heavy atom skeleton is planar with two pairs of hydrogen atoms out of plane. All lines in the spectrum could be assigned to the trans conformer, which confirms that the gauche conformer cannot be observed under our measurement conditions. In agreement with the rather high torsional barrier of the methyl group (V3 = 1168 wn) calculated by quantum chemical methods, all assigned lines appeared sharp and no signs of splittings were observed for the methyl internal rotation.

  10. [Optical Spectroscopy for High-Pressure Microwave Plasma Chemical Vapor Deposition of Diamond Films].

    PubMed

    Cao, Wei; Ma, Zhi-bin

    2015-11-01

    Polycrystalline diamond growth by microwave plasma chemical vapor deposition (MPCVD) at high-pressure (34.5 kPa) was investigated. The CH₄/H₂/O₂plasma was detected online by optical emission spectroscopy (OES), and the spatial distribution of radicals in the CH₄/H₂/O₂plasma was studied. Raman spectroscopy was employed to analyze the properties of the diamond films deposited in different oxygen volume fraction. The uniformity of diamond films quality was researched. The results indicate that the spectrum intensities of C₂, CH and Hα decrease with the oxygen volume fraction increasing. While the intensity ratios of C₂, CH to Hα also reduced as a function of increasing oxygen volume fraction. It is shown that the decrease of the absolute concentration of carbon radicals is attributed to the rise volume fraction of oxygen, while the relative concentration of carbon radicals to hydrogen atom is also reducing, which depressing the growth rate but improving the quality of diamond film. Furthermore, the OH radicals, role of etching, its intensities increase with the increase of oxygen volume fraction. Indicated that the improvement of OH concentration is also beneficial to reduce the content of amorphous carbon in diamond films. The spectrum space diagnosis results show that under high deposition pressure the distribution of the radicals in the CH₄/H₂/O₂plasma is inhomogeneous, especially, that of radical C₂ gathered in the central region. And causing a rapid increase of non-diamond components in the central area, eventually enable the uneven distribution of diamond films quality. PMID:26978897

  11. Effects of microwave, ultrasonic and enzymatic treatment on chemical and physical properties of waste-activated sludge.

    PubMed

    Yi, Wei G; Lo, Kwang V; Mavinic, Donald S

    2014-01-01

    The effects of microwave irradiation, microwave enhanced advanced oxidation process (MW/H2O2-AOP), ultrasonic and/or protease enzymatic treatments on chemical and physical properties of waste-activated sludge were studied. The different treatment mechanisms resulted in various degrees of biomass cell destruction and nutrient release, as evidenced by transformation of chemical constituents, particle size distribution, and scanning electron microscopic imaging. The microwave irradiation and the MW/H2O2-AOP resulted in higher soluble protein concentrations, but lower amino acids. High concentrations of soluble polysaccharide and deoxyribonucleic acid were also obtained in solution. The particle size distribution profile, after treatments, remained similar to that of waste-activated sludge; however, the distribution shifted toward smaller particle sizes. Ultrasonic treatment resulted in a high concentration of amino acids and overall protein disintegration/hydrolysis. Protease enzymatic treatment, after ultrasonic disintegration, further enhanced protein degradation. The particle size distribution profile for ultrasonic treatment was altered to a further nonuniform distribution. The ultrasonic plus protease treatment yielded the best results, in terms of cell wall destruction.

  12. A new type of power energy for accelerating chemical reactions: the nature of a microwave-driving force for accelerating chemical reactions

    PubMed Central

    Zhou, Jicheng; Xu, Wentao; You, Zhimin; Wang, Zhe; Luo, Yushang; Gao, Lingfei; Yin, Cheng; Peng, Renjie; Lan, Lixin

    2016-01-01

    The use of microwave (MW) irradiation to increase the rate of chemical reactions has attracted much attention recently in nearly all fields of chemistry due to substantial enhancements in reaction rates. However, the intrinsic nature of the effects of MW irradiation on chemical reactions remains unclear. Herein, the highly effective conversion of NO and decomposition of H2S via MW catalysis were investigated. The temperature was decreased by several hundred degrees centigrade. Moreover, the apparent activation energy (Ea’) decreased substantially under MW irradiation. Importantly, for the first time, a model of the interactions between microwave electromagnetic waves and molecules is proposed to elucidate the intrinsic reason for the reduction in the Ea’ under MW irradiation, and a formula for the quantitative estimation of the decrease in the Ea’ was determined. MW irradiation energy was partially transformed to reduce the Ea’, and MW irradiation is a new type of power energy for speeding up chemical reactions. The effect of MW irradiation on chemical reactions was determined. Our findings challenge both the classical view of MW irradiation as only a heating method and the controversial MW non-thermal effect and open a promising avenue for the development of novel MW catalytic reaction technology. PMID:27118640

  13. A new type of power energy for accelerating chemical reactions: the nature of a microwave-driving force for accelerating chemical reactions

    NASA Astrophysics Data System (ADS)

    Zhou, Jicheng; Xu, Wentao; You, Zhimin; Wang, Zhe; Luo, Yushang; Gao, Lingfei; Yin, Cheng; Peng, Renjie; Lan, Lixin

    2016-04-01

    The use of microwave (MW) irradiation to increase the rate of chemical reactions has attracted much attention recently in nearly all fields of chemistry due to substantial enhancements in reaction rates. However, the intrinsic nature of the effects of MW irradiation on chemical reactions remains unclear. Herein, the highly effective conversion of NO and decomposition of H2S via MW catalysis were investigated. The temperature was decreased by several hundred degrees centigrade. Moreover, the apparent activation energy (Ea’) decreased substantially under MW irradiation. Importantly, for the first time, a model of the interactions between microwave electromagnetic waves and molecules is proposed to elucidate the intrinsic reason for the reduction in the Ea’ under MW irradiation, and a formula for the quantitative estimation of the decrease in the Ea’ was determined. MW irradiation energy was partially transformed to reduce the Ea’, and MW irradiation is a new type of power energy for speeding up chemical reactions. The effect of MW irradiation on chemical reactions was determined. Our findings challenge both the classical view of MW irradiation as only a heating method and the controversial MW non-thermal effect and open a promising avenue for the development of novel MW catalytic reaction technology.

  14. A new type of power energy for accelerating chemical reactions: the nature of a microwave-driving force for accelerating chemical reactions.

    PubMed

    Zhou, Jicheng; Xu, Wentao; You, Zhimin; Wang, Zhe; Luo, Yushang; Gao, Lingfei; Yin, Cheng; Peng, Renjie; Lan, Lixin

    2016-04-27

    The use of microwave (MW) irradiation to increase the rate of chemical reactions has attracted much attention recently in nearly all fields of chemistry due to substantial enhancements in reaction rates. However, the intrinsic nature of the effects of MW irradiation on chemical reactions remains unclear. Herein, the highly effective conversion of NO and decomposition of H2S via MW catalysis were investigated. The temperature was decreased by several hundred degrees centigrade. Moreover, the apparent activation energy (Ea') decreased substantially under MW irradiation. Importantly, for the first time, a model of the interactions between microwave electromagnetic waves and molecules is proposed to elucidate the intrinsic reason for the reduction in the Ea' under MW irradiation, and a formula for the quantitative estimation of the decrease in the Ea' was determined. MW irradiation energy was partially transformed to reduce the Ea', and MW irradiation is a new type of power energy for speeding up chemical reactions. The effect of MW irradiation on chemical reactions was determined. Our findings challenge both the classical view of MW irradiation as only a heating method and the controversial MW non-thermal effect and open a promising avenue for the development of novel MW catalytic reaction technology.

  15. A new type of power energy for accelerating chemical reactions: the nature of a microwave-driving force for accelerating chemical reactions.

    PubMed

    Zhou, Jicheng; Xu, Wentao; You, Zhimin; Wang, Zhe; Luo, Yushang; Gao, Lingfei; Yin, Cheng; Peng, Renjie; Lan, Lixin

    2016-01-01

    The use of microwave (MW) irradiation to increase the rate of chemical reactions has attracted much attention recently in nearly all fields of chemistry due to substantial enhancements in reaction rates. However, the intrinsic nature of the effects of MW irradiation on chemical reactions remains unclear. Herein, the highly effective conversion of NO and decomposition of H2S via MW catalysis were investigated. The temperature was decreased by several hundred degrees centigrade. Moreover, the apparent activation energy (Ea') decreased substantially under MW irradiation. Importantly, for the first time, a model of the interactions between microwave electromagnetic waves and molecules is proposed to elucidate the intrinsic reason for the reduction in the Ea' under MW irradiation, and a formula for the quantitative estimation of the decrease in the Ea' was determined. MW irradiation energy was partially transformed to reduce the Ea', and MW irradiation is a new type of power energy for speeding up chemical reactions. The effect of MW irradiation on chemical reactions was determined. Our findings challenge both the classical view of MW irradiation as only a heating method and the controversial MW non-thermal effect and open a promising avenue for the development of novel MW catalytic reaction technology. PMID:27118640

  16. Diamond thin films grown by microwave plasma assisted chemical vapor deposition

    SciTech Connect

    Leksono, M.

    1991-09-05

    Undoped and boron doped diamond thin films have been successfully grown by microwave plasma chemical vapor deposition from CH{sub 4}, H{sub 2}, and B{sub 2}H{sub 6}. The films were characterized using x- ray diffraction techniques, Raman and infrared spectroscopies, scanning electron microscopy, secondary ion mass spectrometry, and various electrical measurements. The deposition rates of the diamond films were found to increase with the CH{sub 4} concentration, substrate temperature, and/or pressure, and at 1.0% methane, 900{degrees}C, and 35 Torr, the value was measured to be 0.87 {mu}m/hour. The deposition rate for boron doped diamond films, decreases as the diborane concentration increases. The morphologies of the undoped diamond films are strongly related to the deposition parameters. As the temperature increases from 840 to 925 C, the film morphology changes from cubo-octahedron to cubic structures, while as the CH{sub 4} concentration increases from 0.5 to 1.0%, the morphology changes from triangular (111) faces with a weak preferred orientation to square (100) faces. At 2.0% Ch{sub 4} or higher the films become microcrystalline with cauliflower structures. Scanning electron microscopy analyses also demonstrate that selective deposition of undoped diamond films has been successfully achieved using a lift-off process with a resolution of at least 2 {mu}m. The x-ray diffraction and Raman spectra demonstrate that high quality diamond films have been achieved. The concentration of the nondiamond phases in the films grown at 1.0% CH{sub 4} can be estimated from the Raman spectra to be at less than 0.2% and increases with the CH{sub 4} concentration. The Raman spectra of the boron doped diamond films also indicate that the presence of boron tends to suppress the nondiamond phases in the films. Infrared spectra of the undoped diamond films show very weak CH stretch peaks which suggest that the hydrogen concentration is very low.

  17. Effects of catalyst film thickness on plasma-enhanced carbon nanotube growth

    SciTech Connect

    Hofmann, S.; Cantoro, M.; Kleinsorge, B.; Casiraghi, C.; Parvez, A.; Robertson, J.; Ducati, C.

    2005-08-01

    A systematic study is presented of the influence of catalyst film thickness on carbon nanostructures grown by plasma-enhanced chemical-vapor deposition from acetylene and ammonia mixtures. We show that reducing the Fe/Co catalyst film thickness below 3 nm causes a transition from larger diameter (>40 nm), bamboolike carbon nanofibers to small diameter ({approx}5 nm) multiwalled nanotubes with two to five walls. This is accompanied by a more than 50 times faster growth rate and a faster catalyst poisoning. Thin Ni catalyst films only trigger such a growth transition when pretreated with an ammonia plasma. We observe a limited correlation between this growth transition and the coarsening of the catalyst film before deposition. For a growth temperature of {<=}550 deg. C, all catalysts showed mainly a tip growth regime and a similar activity on untreated silicon, oxidized silicon, and silicon nitride support.

  18. Plasma-Enhanced Pulsed Laser Deposition of Wide Bandgap Nitrides for Space Power Applications

    NASA Technical Reports Server (NTRS)

    Triplett, G. E., Jr.; Durbin, S. M.

    2004-01-01

    The need for a reliable, inexpensive technology for small-scale space power applications where photovoltaic or chemical battery approaches are not feasible has prompted renewed interest in radioisotope-based energy conversion devices. Although a number of devices have been developed using a variety of semiconductors, the single most limiting factor remains the overall lifetime of the radioisotope battery. Recent advances in growth techniques for ultra-wide bandgap III-nitride semiconductors provide the means to explore a new group of materials with the promise of significant radiation resistance. Additional benefits resulting from the use of ultra-wide bandgap materials include a reduction in leakage current and higher operating voltage without a loss of energy transfer efficiency. This paper describes the development of a novel plasma-enhanced pulsed laser deposition system for the growth of cubic boron nitride semiconducting thin films, which will be used to construct pn junction devices for alphavoltaic applications.

  19. "GREENER" CHEMICAL SYNTHETIC PROCESSES USING ENZYMATIC, MECHANOCHEMICAL MIXING, OR MICROWAVE AND ULTRASOUND IRRADIATION

    EPA Science Inventory

    Several newer strategies, such as solvent-free (dry media), solid-supported with and without microwave (MW) irradiation, and mechanochemical mixing (grinding); and the use of room temperature ionic liquids, supercritical carbon dioxide, and water as reaction media that can be com...

  20. ‘Greener’ Chemical Syntheses Using Mechanochemical Mixing or Microwave and Ultrasound Irradiation

    EPA Science Inventory

    Various emerging ‘greener’ strategic pathways researched primarily in the author’s own laboratory are summarized. They include solvent-free mechanochemical methods and microwave (MW) exposure of neat reactants (undiluted) catalyzed by the surfaces of less-expensive and recyclabl...

  1. 'GREENER' CHEMICAL SYNTHESES USING MICROWAVES UNDER SOLVENT-FREE CONDITIONS OR AQUEOUS MEDIA

    EPA Science Inventory

    A solvent-free approach that involves microwave (MW) exposure of neat reactants (undiluted) catalyzed by the surfaces of recyclable mineral supports such as alumina, silica, clay, or 'doped' surfaces is presented which is applicable to a wide range of cleavage, condensation, cycl...

  2. Moisture barrier properties of thin organic-inorganic multilayers prepared by plasma-enhanced ALD and CVD in one reactor

    NASA Astrophysics Data System (ADS)

    Bülow, Tim; Gargouri, Hassan; Siebert, Mirko; Rudolph, Rolf; Johannes, Hans-Hermann; Kowalsky, Wolfgang

    2014-05-01

    A widely used application of the atomic layer deposition (ALD) and chemical vapour deposition (CVD) methods is the preparation of permeation barrier layers against water vapour. Especially in the field of organic electronics, these films are highly demanded as such devices are very sensitive to moisture and oxygen. In this work, multilayers of aluminium oxide (AlO x ) and plasma polymer (PP) were coated on polyethylene naphthalate substrates by plasma-enhanced ALD and plasma-enhanced CVD at 80℃ in the same reactor, respectively. As precursor, trimethylaluminium was used together with oxygen radicals in order to prepare AlO x , and benzene served as precursor to deposit the PP. This hybrid structure allows the decoupling of defects between the single AlO x layers and extends the permeation path for water molecules towards the entire barrier film. Furthermore, the combination of two plasma techniques in a single reactor system enables short process times without vacuum breaks. Single aluminium oxide films by plasma-enhanced ALD were compared to thermally grown layers and showed a significantly better barrier performance. The water vapour transmission rate (WVTR) was determined by means of electrical calcium tests. For a multilayer with 3.5 dyads of 25-nm AlO x and 125-nm PP, a WVTR of 1.2 × 10 -3 g m -2 d -1 at 60℃ and 90% relative humidity could be observed.

  3. Moisture barrier properties of thin organic-inorganic multilayers prepared by plasma-enhanced ALD and CVD in one reactor.

    PubMed

    Bülow, Tim; Gargouri, Hassan; Siebert, Mirko; Rudolph, Rolf; Johannes, Hans-Hermann; Kowalsky, Wolfgang

    2014-01-01

    A widely used application of the atomic layer deposition (ALD) and chemical vapour deposition (CVD) methods is the preparation of permeation barrier layers against water vapour. Especially in the field of organic electronics, these films are highly demanded as such devices are very sensitive to moisture and oxygen. In this work, multilayers of aluminium oxide (AlO x ) and plasma polymer (PP) were coated on polyethylene naphthalate substrates by plasma-enhanced ALD and plasma-enhanced CVD at 80â"ƒ in the same reactor, respectively. As precursor, trimethylaluminium was used together with oxygen radicals in order to prepare AlO x , and benzene served as precursor to deposit the PP. This hybrid structure allows the decoupling of defects between the single AlO x layers and extends the permeation path for water molecules towards the entire barrier film. Furthermore, the combination of two plasma techniques in a single reactor system enables short process times without vacuum breaks. Single aluminium oxide films by plasma-enhanced ALD were compared to thermally grown layers and showed a significantly better barrier performance. The water vapour transmission rate (WVTR) was determined by means of electrical calcium tests. For a multilayer with 3.5 dyads of 25-nm AlO x and 125-nm PP, a WVTR of 1.2 × 10 (-3) gm (-2) d (-1) at 60â"ƒ and 90% relative humidity could be observed.

  4. Moisture barrier properties of thin organic-inorganic multilayers prepared by plasma-enhanced ALD and CVD in one reactor

    PubMed Central

    2014-01-01

    A widely used application of the atomic layer deposition (ALD) and chemical vapour deposition (CVD) methods is the preparation of permeation barrier layers against water vapour. Especially in the field of organic electronics, these films are highly demanded as such devices are very sensitive to moisture and oxygen. In this work, multilayers of aluminium oxide (AlO x ) and plasma polymer (PP) were coated on polyethylene naphthalate substrates by plasma-enhanced ALD and plasma-enhanced CVD at 80℃ in the same reactor, respectively. As precursor, trimethylaluminium was used together with oxygen radicals in order to prepare AlO x , and benzene served as precursor to deposit the PP. This hybrid structure allows the decoupling of defects between the single AlO x layers and extends the permeation path for water molecules towards the entire barrier film. Furthermore, the combination of two plasma techniques in a single reactor system enables short process times without vacuum breaks. Single aluminium oxide films by plasma-enhanced ALD were compared to thermally grown layers and showed a significantly better barrier performance. The water vapour transmission rate (WVTR) was determined by means of electrical calcium tests. For a multilayer with 3.5 dyads of 25-nm AlO x and 125-nm PP, a WVTR of 1.2 × 10 −3 gm−2d−1 at 60℃ and 90% relative humidity could be observed. PMID:24936155

  5. Moisture barrier properties of thin organic-inorganic multilayers prepared by plasma-enhanced ALD and CVD in one reactor.

    PubMed

    Bülow, Tim; Gargouri, Hassan; Siebert, Mirko; Rudolph, Rolf; Johannes, Hans-Hermann; Kowalsky, Wolfgang

    2014-01-01

    A widely used application of the atomic layer deposition (ALD) and chemical vapour deposition (CVD) methods is the preparation of permeation barrier layers against water vapour. Especially in the field of organic electronics, these films are highly demanded as such devices are very sensitive to moisture and oxygen. In this work, multilayers of aluminium oxide (AlO x ) and plasma polymer (PP) were coated on polyethylene naphthalate substrates by plasma-enhanced ALD and plasma-enhanced CVD at 80â"ƒ in the same reactor, respectively. As precursor, trimethylaluminium was used together with oxygen radicals in order to prepare AlO x , and benzene served as precursor to deposit the PP. This hybrid structure allows the decoupling of defects between the single AlO x layers and extends the permeation path for water molecules towards the entire barrier film. Furthermore, the combination of two plasma techniques in a single reactor system enables short process times without vacuum breaks. Single aluminium oxide films by plasma-enhanced ALD were compared to thermally grown layers and showed a significantly better barrier performance. The water vapour transmission rate (WVTR) was determined by means of electrical calcium tests. For a multilayer with 3.5 dyads of 25-nm AlO x and 125-nm PP, a WVTR of 1.2 × 10 (-3) gm (-2) d (-1) at 60â"ƒ and 90% relative humidity could be observed. PMID:24936155

  6. Iron silicide root formation in carbon nanotubes grown by microwave PECVD.

    PubMed

    AuBuchon, Joseph F; Daraio, Chiara; Chen, Li-Han; Gapin, Andrew I; Jin, Sungho

    2005-12-29

    Aligned carbon nanotubes have been grown using microwave plasma enhanced chemical vapor deposition (PECVD). The carbon nanotubes are nucleated from iron catalyst particles which, during growth, remain adherent to the silicon substrates. By analysis with high-resolution electron microscopy, we observe iron silicide roots penetrating into the silicon substrate at the interface of the catalyst particles and the substrate, thus providing strong adhesion of the carbon nanotubes onto the substrate. The iron silicide roots assist in the attachment of the catalyst particles to the substrate and play a role in the evolution of the catalyst particle morphology and resulting base growth mode. Carbon nanotubes grown by microwave PECVD could exhibit superior electrical and thermal transport properties over other PECVD processes, so an understanding of the growth mechanism is important for utilization in device applications. PMID:16375415

  7. Synthesis, microwave spectrum, quantum chemical calculations, and conformational composition of the novel compound cyclopropylethylidynephosphine (C₃H₅CH₂C≡P).

    PubMed

    Samdal, Svein; Møllendal, Harald; Guillemin, Jean-Claude

    2014-10-30

    The synthesis of the novel compound cyclopropylethylidynephosphine (C3H5CH2C≡P) and its microwave spectrum are reported together with quantum chemical calculations. The spectrum, which reveals the existence of two conformers, has been recorded in the 38-109 GHz spectral range at room temperature. The H-C-CH2-C chain of atoms is synclinal in one rotamer denoted sc, and antiperiplanar in the second conformer called ap. The spectra of the ground vibrational state and two vibrationally excited states were assigned for each rotamer. The vibrational frequencies of these excited states were determined by relative intensity measurements. Relative intensity measurements were also conducted to determine the energy difference between ap and sc. The latter conformer was found to be the lower-energy form and E(ap) - E(sc) was determined to be 0.9(4) kJ/mol. The microwave study has been augmented by quantum chemical calculations at the CCSD/cc-pVQZ and MP2/cc-pVTZ levels of theory. The CCSD predictions were generally in good agreement with experiment, while somewhat mixed results were obtained in the MP2 calculations.

  8. Fabrication and morphology control of BaWO{sub 4} thin films by microwave assisted chemical bath deposition

    SciTech Connect

    Wang Rui; Liu Chen; Zeng Jia; Li KunWei; Wang Hao

    2009-04-15

    Highly crystallized barium tungstate (BaWO{sub 4}) thin films with dumbbell-like, kernel-like, bowknot-like and cauliflower-like microstructure were synthesized from an aqueous solution containing barium nitrate, ethylenediamine tetraacetate acid disodium and sodium tungstate, via mild microwave assisted chemical bath deposition process. The resulting BaWO{sub 4} films with different morphologies were characterized by X-ray diffraction spectrum, scanning electron microscope, Raman and photoluminescence spectra. The results indicate that the morphologies of final products significantly depend on the reaction conditions including the reaction time, the initial concentration of precursor reagent and the physicochemical characteristics of the substrates. Furthermore, the oriented aggregation mechanism is proposed as a possible formation mechanism of the films with specific morphologies. - Graphical abstract: Highly crystallized BaWO{sub 4} thin films with controllable morphologies have been synthesized via mild microwave assisted chemical bath deposition. The oriented aggregation mechanism has been proposed as the possible formation mechanism of specific films.

  9. Comparative Evaluation of Dimensional Accuracy of Elastomeric Impression Materials when Treated with Autoclave, Microwave, and Chemical Disinfection

    PubMed Central

    Kamble, Suresh S; Khandeparker, Rakshit Vijay; Somasundaram, P; Raghav, Shweta; Babaji, Rashmi P; Varghese, T Joju

    2015-01-01

    Background: Impression materials during impression procedure often get infected with various infectious diseases. Hence, disinfection of impression materials with various disinfectants is advised to protect the dental team. Disinfection can alter the dimensional accuracy of impression materials. The present study was aimed to evaluate the dimensional accuracy of elastomeric impression materials when treated with different disinfectants; autoclave, chemical, and microwave method. Materials and Methods: The impression materials used for the study were, dentsply aquasil (addition silicone polyvinylsiloxane syringe and putty), zetaplus (condensation silicone putty and light body), and impregum penta soft (polyether). All impressions were made according to manufacturer’s instructions. Dimensional changes were measured before and after different disinfection procedures. Result: Dentsply aquasil showed smallest dimensional change (−0.0046%) and impregum penta soft highest linear dimensional changes (−0.026%). All the tested elastomeric impression materials showed some degree of dimensional changes. Conclusion: The present study showed that all the disinfection procedures produce minor dimensional changes of impression material. However, it was within American Dental Association specification. Hence, steam autoclaving and microwave method can be used as an alternative method to chemical sterilization as an effective method. PMID:26435611

  10. Extraction and separation of nickel and cobalt from saprolite laterite ore by microwave-assisted hydrothermal leaching and chemical deposition

    NASA Astrophysics Data System (ADS)

    Zhao, Yan; Gao, Jian-ming; Yue, Yi; Peng, Ben; Que, Zai-qing; Guo, Min; Zhang, Mei

    2013-07-01

    Extraction and separation of nickel and cobalt from saprolite laterite ore were studied by using a method of microwave-assisted hydrothermal leaching and chemical deposition. The effects of leaching temperature and time on the extraction efficiencies of Ni2+ and Co2+ were investigated in detail under microwave conditions. It is shown that the extraction efficiencies of Ni2+ and Co2+ from the ore pre-roasted at 300°C for 5 h were 89.19% and 61.89% when the leaching temperature and time were about 70°C and 60 min, respectively. For the separation process of Ni and Co, the separation of main chemical components was performed by adjusting the pH values of sulfuric leaching solutions using a NaOH solution based on the different pH values of precipitation for metal hydroxides. The final separation efficiencies of Ni and Co were 77.29% and 65.87%, respectively. Furthermore, the separation efficiencies of Fe of 95.36% and Mg of 92.2% were also achieved at the same time.

  11. Synthesis of nanostructured and microstructured ZnO and Zn(OH)2 on activated carbon cloth by hydrothermal and microwave-assisted chemical bath deposition methods

    NASA Astrophysics Data System (ADS)

    Mosayebi, Elham; Azizian, Saeid; Hajian, Ali

    2015-05-01

    Nanostructured and microstructured ZnO and Zn(OH)2 loaded on activated carbon cloth were synthesized by microwave-assisted chemical bath deposition and hydrothermal methods. By hydrothermal method the deposited sample on carbon fiber is pure ZnO with dandelion-like nanostructures. By microwave-assisted chemical bath method the structure and composition of deposited sample depends on solution pH. At pH = 9.8 the deposited sample on carbon fiber is pure ZnO with flower-like microstructure; but at pH = 10.8 the sample is a mixture of ZnO and Zn(OH)2 with flower-like and rhombic microstructures, respectively. The mechanism of crystal grow by microwave-assisted chemical bath method was investigated by SEM method at both pH.

  12. Automated microwave double resonance spectroscopy: A tool to identify and characterize chemical compounds.

    PubMed

    Martin-Drumel, Marie-Aline; McCarthy, Michael C; Patterson, David; McGuire, Brett A; Crabtree, Kyle N

    2016-03-28

    Owing to its unparalleled structural specificity, rotational spectroscopy is a powerful technique to unambiguously identify and characterize volatile, polar molecules. We present here a new experimental approach, automated microwave double resonance (AMDOR) spectroscopy, to rapidly determine the rotational constants of these compounds without a priori knowledge of elemental composition or molecular structure. This task is achieved by rapidly acquiring the classical (frequency vs. intensity) broadband spectrum of a molecule using chirped-pulse Fourier transform microwave (FTMW) spectroscopy and subsequently analyzing it in near real-time using complementary cavity FTMW detection and double resonance. AMDOR measurements provide a unique "barcode" for each compound from which rotational constants can be extracted. To illustrate the power of this approach, AMDOR spectra of three aroma compounds - trans-cinnamaldehyde, α-, and β-ionone - have been recorded and analyzed. The prospects to extend this approach to mixture characterization and purity assessment are described.

  13. Investigation of Microwave Surface-Wave Plasma Deposited SiOx Coatings on Polymeric Substrates

    NASA Astrophysics Data System (ADS)

    Wang, Huan; Yang, Lizhen; Chen, Qiang

    2014-01-01

    In this paper, we reported nano-scale SiOx coatings deposited on polyethylene terephthalate (PET) webs by microwave surface-wave assisted plasma enhanced chemical vapor deposition for the purpose of improving their barrier properties. Oxygen (O2) and hexamethyldisiloxane (HMDSO) were employed as oxidant gas and Si monomer during SiOx deposition, respectively. Analysis by Fourier transform infrared spectroscope (FTIR) for chemical structure and observation by atomic force microscopy (AFM) for surface morphology of SiOx coatings demonstrated that both chemical compounds and surface feature of coatings have a remarkable influence on the coating barrier properties. It is noted that the processing parameters play a critical role in the barrier properties of coatings. After optimization of the SiOx coatings deposition conditions, i.e. the discharge power of 1500 W, 2:1 of O2 : HMDSO ratio and working pressure of 20 Pa, a better barrier property was achieved in this work.

  14. Conformational landscape of diisopropyl ketone: quantum chemical calculations validated by microwave spectroscopy.

    PubMed

    Zhao, Yueyue; Mouhib, Halima; Stahl, Wolfgang

    2013-01-17

    We report on the gas-phase structure of the most abundant conformer of diisopropyl ketone, (CH(3))(2)HC-CO-CH(CH(3))(2), as observed by molecular beam Fourier transform microwave spectroscopy. The gas-phase structures of five conformers of diisopropyl ketone were optimized using ab initio calculations at the MP2/6-311++G(d,p) level of theory. The natures of the stationary points were verified using harmonic frequency calculations. The only conformer observed in the supersonic jet possesses C(2) symmetry and appears as an enantiomeric pair. From the microwave spectrum, a set of three highly accurate rotational constants, five centrifugal distortion constants, and three sextic centrifugal distortion constants were determined. The structure of the observed conformer was optimized again at different levels of theory using the HF, MP2, and B3LYP methods. The theoretical constants of the C(2) conformer were subsequently validated using the experimental constants. To understand the transitions of one conformer to the others, the isopropyl groups were rotated against each other. The resulting two-dimensional potential energy surface shows nicely the symmetry of the conformational landscape and also indicates the enantiomeric pairs of the conformers. The barriers to internal rotation of the methyl groups were determined to be 1052 and 905 cm(-1) at the MP2/6-311++G(d,p) and the B3LYP/6-311++G(d,p) levels, respectively. In agreement with the theoretical predictions, no internal rotation patterns could be observed in the microwave spectrum.

  15. Microwave-assisted chemical oxidation of biological waste sludge: simultaneous micropollutant degradation and sludge solubilization.

    PubMed

    Bilgin Oncu, Nalan; Akmehmet Balcioglu, Isil

    2013-10-01

    Microwave-assisted hydrogen peroxide (MW/H2O2) treatment and microwave-assisted persulfate (MW/S2O8(2-)) treatment of biological waste sludge were compared in terms of simultaneous antibiotic degradation and sludge solubilization. A 2(3) full factorial design was utilized to evaluate the influences of temperature, oxidant dose, and holding time on the efficiency of these processes. Although both MW/H2O2 and MW/S2O8(2-) yielded ≥97% antibiotic degradation with 1.2g H2O2 and 0.87 g S2O8(2-) per gram total solids, respectively, at 160 °C in 15 min, MW/S2O8(2-) was found to be more promising for efficient sludge treatment at a lower temperature and a lower oxidant dosage, as it allows more effective activation of persulfate to produce the SO4(-) radical. Relative to MW/H2O2, MW/S2O8(2-) gives 48% more overall metal solubilization, twofold higher improvement in dewaterability, and the oxidation of solubilized ammonia to nitrate in a shorter treatment period. PMID:23928124

  16. Electron field emission characteristics of nano-catkin carbon films deposited by electron cyclotron resonance microwave plasma chemical vapour deposition

    NASA Astrophysics Data System (ADS)

    Gu, Guang-Rui; Wu, Bao-Jia; Jin, Zhe; Ito, Toshimichi

    2008-02-01

    This paper reported that the nano-catkin carbon films were prepared on Si substrates by means of electron cyclotron resonance microwave plasma chemical vapour deposition in a hydrogen and methane mixture. The surface morphology and the structure of the fabricated films were characterized by using scanning electron microscopes and Raman spectroscopy, respectively. The stable field emission properties with a low threshold field of 5V/μm corresponding to a current density of about 1μA/cm2 and a current density of 3.2mA/cm2 at an electric field of 10V/μm were obtained from the carbon film deposited at CH4 concentration of 8%. The mechanism that the threshold field decreased with the increase of the CH4 concentration and the high emission current appeared at the high CH4 concentration was explained by using the Fowler-Nordheim theory.

  17. Photovoltaic characteristics of postdeposition iodine-doped amorphous carbon films by microwave surface wave plasma chemical vapor deposition

    SciTech Connect

    Omer, Ashraf M.M.; Adhikari, Sudip; Adhikary, Sunil; Uchida, Hideo; Umeno, Masayoshi

    2005-10-17

    The amorphous carbon thin films have been deposited on silicon and quartz substrates by microwave surface wave plasma chemical vapor deposition at low temperature (<100 deg. C) in Ar/CH{sub 4} phase gas. Doping of iodine has been done in the postdeposited films by exposing them in iodine vapor. The photovoltaic measurements of the films were carried out before and after iodine doping. The results show dramatic decrease of optical gap from 3.4 to 0.9 eV corresponding to nondoping to iodine doping conditions, respectively. The preliminary photovoltaic characteristics of the film deposited on n-type silicon substrate under light illumination (AM1.5, 100 mW/cm{sup 2}) reveal a short-circuit current density of 1.15 {mu}A/cm{sup 2}, open-circuit voltage of 177 mV and fill factor of 21.7%.

  18. Increasing the output power of single 808-nm laser diodes using diamond submounts produced by microwave plasma chemical vapour deposition

    SciTech Connect

    Ashkinazi, E E; Bezotosnyi, V V; Bondarev, Vadim Yu; Kovalenko, V I; Konov, Vitalii I; Krokhin, Oleg N; Oleshchenko, V A; Pevtsov, Valerii F; Popov, Yurii M; Popovich, A F; Ral'chenko, Viktor G; Cheshev, E A

    2012-11-30

    We have designed and fabricated submounts from synthetic diamond grown by microwave plasma chemical vapour deposition and developed an economical process for metallising such submounts. Laser diode chips having an 808-nm emission wavelength, 3-mm-long cavity and 130-mm-wide stripe contact were mounted on copper heat sinks with the use of diamond submounts differing in quality. The devices were tested for more than 150 h in continuous mode at an output power of 8 W on diamond with a thermal conductivity of 700 W m{sup -1} K{sup -1}, and no changes in their output power were detected. On diamond with a thermal conductivity of 1600 W m{sup -1} K{sup -1}, stable cw operation for 24 h at an output power of 12 W was demonstrated. (letters)

  19. Microwave-Assisted Extraction, Chemical Structures, and Chain Conformation of Polysaccharides from a Novel Cordyceps Sinensis Fungus UM01.

    PubMed

    Cheong, Kit-Leong; Wang, Lan-Ying; Wu, Ding-Tao; Hu, De-Jun; Zhao, Jing; Li, Shao-Ping

    2016-09-01

    Cordyceps sinensis is a well-known tonic food with broad medicinal properties. The aim of the present study was to investigate the optimization of microwave-assisted extraction (MAE) and characterize chemical structures and chain conformation of polysaccharides from a novel C. sinensis fungus UM01. Ion-exchange and gel filtration chromatography were used to purify the polysaccharides. The chemical structure of purified polysaccharide was determined through gas chromatography-mass spectrometry. Moreover, high performance size exclusion chromatography combined with refractive index detector and multiangle laser light scattering were conducted to analyze the molecular weight (Mw ) and chain conformation of purified polysaccharide. Based on the orthogonal design L9 , optimal MAE conditions could be obtained through 1300 W of microwave power, with a 5-min irradiation time at a solid to water ratio of 1:60, generating the highest extraction yield of 6.20%. Subsequently, the polysaccharide UM01-S1 was purified. The UM01-S1 is a glucan-type polysaccharide with a (1→4)-β-d-glucosyl backbone and branching points located at O-3 of Glcp with a terminal-d-Glcp. The Mw , radius of gyration (Rg ) and hydrodynamic radius (Rh ) of UM01-S1 were determined as 5.442 × 10(6)  Da, 21.8 and 20.2 nm, respectively. Using the polymer solution theory, the exponent (ν) value of the power law function was calculated as 0.38, and the shape factor (ρ = Rg /Rh ) was 1.079, indicating that UM01-S1 has a sphere-like conformation with a branched structure in an aqueous solution. These results provide fundamental information for the future application of polysaccharides from cultured C. sinensis in health and functional food area. PMID:27514485

  20. [Study on the microwave extraction and chemical constituents of the essential oil from Amomum tsao-ko in Jinping, Yunnan province].

    PubMed

    Yang, Lijuan; Zhang, Zheng; Li, Junfeng; Kong, Weiling; Lin, Jun

    2004-11-01

    Essential oil from Amomum tsao-ko collected in Jinping, Yunnan province was obtained by microwave extraction, common solvent extraction and vapor distillation, respectively. Chemical constituents were analyzed by GC-MS and their relative contents were determined by area-normalized method. PMID:15810587

  1. CHEMICAL TRANSFORMATIONS USING NON-TRADITIONAL APPROACHES: MICROWAVE-ASSISTED GREENER SYNTHESES IN AQUEOUS MEDIA OR UNDER SOLVENT-FREE CONDITIONS

    EPA Science Inventory

    Microwave (MW) irradiation in conjunction with water as reaction media has proven to be a 'greener' chemical approach for expeditious N-alkylation reactions of amines and hydrazines wherein the reactions under mildly basic conditions afford tertiary amines and double N<...

  2. Plasma-enhanced synthesis of bactericidal quaternary ammonium thin layers on stainless steel and cellulose surfaces.

    PubMed

    Jampala, Soujanya N; Sarmadi, M; Somers, E B; Wong, A C L; Denes, F S

    2008-08-19

    We have investigated bottom-up chemical synthesis of quaternary ammonium (QA) groups exhibiting antibacterial properties on stainless steel (SS) and filter paper surfaces via nonequilibrium, low-pressure plasma-enhanced functionalization. Ethylenediamine (ED) plasma under suitable conditions generated films rich in secondary and tertiary amines. These functional structures were covalently attached to the SS surface by treating SS with O 2 and hexamethyldisiloxane plasma prior to ED plasma treatment. QA structures were formed by reaction of the plasma-deposited amines with hexyl bromide and subsequently with methyl iodide. Structural compositions were examined by electron spectroscopy for chemical analysis and Fourier transform infrared spectroscopy, and surface topography was investigated with atomic force microscopy and water contact angle measurements. Modified SS surfaces exhibited greater than a 99.9% decrease in Staphylococcus aureus counts and 98% in the case of Klebsiella pneumoniae. The porous filter paper surfaces with immobilized QA groups inactivated 98.7% and 96.8% of S. aureus and K. pneumoniae, respectively. This technique will open up a novel way for the synthesis of stable and very efficient bactericidal surfaces with potential applications in development of advanced medical devices and implants with antimicrobial surfaces.

  3. Mass spectrometric studies of SiO2 deposition in an indirect plasma enhanced LPCVD system

    NASA Technical Reports Server (NTRS)

    Iyer, R.; Lile, D. L.; Mcconica, C. M.

    1993-01-01

    Reaction pathways for the low temperature deposition of SiO2 from silane and indirect plasma-excited oxygen-nitrogen mixtures are proposed based on experimental evidence gained from mass spectrometry in an indirect plasma enhanced chemical vapor deposition chamber. It was observed that about 80-85 percent of the silane was oxidized to byproduct hydrogen and only about 15-20 percent to water. Such conversion levels have led us to interpret that silanol (SiH3OH) could be the precursor for SiO2 film deposition, rather than siloxane /(SiH3)2O/ which has generally been cited in the literature. From mass spectrometry, we have also shown the effects of the plasma, and of mixing small amounts of N2 with the oxygen flow, in increasing the deposition rate of SiO2. Free radical reaction of nitric oxide, synthesized from the reaction of oxygen and nitrogen in the plasma chamber, and an *ncrease in atomic oxygen concentration, are believed to be the reasons for these SiO2 deposition rate increases. Through mass spectrometry we have, in addition, been able to identify products, presumably originating from terminating reactions, among a sequence of chemical reactions proposed for the deposition of SiO2.

  4. Determining the microwave coupling and operational efficiencies of a microwave plasma assisted chemical vapor deposition reactor under high pressure diamond synthesis operating conditions.

    PubMed

    Nad, Shreya; Gu, Yajun; Asmussen, Jes

    2015-07-01

    The microwave coupling efficiency of the 2.45 GHz, microwave plasma assisted diamond synthesis process is investigated by experimentally measuring the performance of a specific single mode excited, internally tuned microwave plasma reactor. Plasma reactor coupling efficiencies (η) > 90% are achieved over the entire 100-260 Torr pressure range and 1.5-2.4 kW input power diamond synthesis regime. When operating at a specific experimental operating condition, small additional internal tuning adjustments can be made to achieve η > 98%. When the plasma reactor has low empty cavity losses, i.e., the empty cavity quality factor is >1500, then overall microwave discharge coupling efficiencies (η(coup)) of >94% can be achieved. A large, safe, and efficient experimental operating regime is identified. Both substrate hot spots and the formation of microwave plasmoids are eliminated when operating within this regime. This investigation suggests that both the reactor design and the reactor process operation must be considered when attempting to lower diamond synthesis electrical energy costs while still enabling a very versatile and flexible operation performance. PMID:26233399

  5. Determining the microwave coupling and operational efficiencies of a microwave plasma assisted chemical vapor deposition reactor under high pressure diamond synthesis operating conditions

    SciTech Connect

    Nad, Shreya; Gu, Yajun; Asmussen, Jes

    2015-07-15

    The microwave coupling efficiency of the 2.45 GHz, microwave plasma assisted diamond synthesis process is investigated by experimentally measuring the performance of a specific single mode excited, internally tuned microwave plasma reactor. Plasma reactor coupling efficiencies (η) > 90% are achieved over the entire 100–260 Torr pressure range and 1.5–2.4 kW input power diamond synthesis regime. When operating at a specific experimental operating condition, small additional internal tuning adjustments can be made to achieve η > 98%. When the plasma reactor has low empty cavity losses, i.e., the empty cavity quality factor is >1500, then overall microwave discharge coupling efficiencies (η{sub coup}) of >94% can be achieved. A large, safe, and efficient experimental operating regime is identified. Both substrate hot spots and the formation of microwave plasmoids are eliminated when operating within this regime. This investigation suggests that both the reactor design and the reactor process operation must be considered when attempting to lower diamond synthesis electrical energy costs while still enabling a very versatile and flexible operation performance.

  6. Determining the microwave coupling and operational efficiencies of a microwave plasma assisted chemical vapor deposition reactor under high pressure diamond synthesis operating conditions.

    PubMed

    Nad, Shreya; Gu, Yajun; Asmussen, Jes

    2015-07-01

    The microwave coupling efficiency of the 2.45 GHz, microwave plasma assisted diamond synthesis process is investigated by experimentally measuring the performance of a specific single mode excited, internally tuned microwave plasma reactor. Plasma reactor coupling efficiencies (η) > 90% are achieved over the entire 100-260 Torr pressure range and 1.5-2.4 kW input power diamond synthesis regime. When operating at a specific experimental operating condition, small additional internal tuning adjustments can be made to achieve η > 98%. When the plasma reactor has low empty cavity losses, i.e., the empty cavity quality factor is >1500, then overall microwave discharge coupling efficiencies (η(coup)) of >94% can be achieved. A large, safe, and efficient experimental operating regime is identified. Both substrate hot spots and the formation of microwave plasmoids are eliminated when operating within this regime. This investigation suggests that both the reactor design and the reactor process operation must be considered when attempting to lower diamond synthesis electrical energy costs while still enabling a very versatile and flexible operation performance.

  7. Determining the microwave coupling and operational efficiencies of a microwave plasma assisted chemical vapor deposition reactor under high pressure diamond synthesis operating conditions

    NASA Astrophysics Data System (ADS)

    Nad, Shreya; Gu, Yajun; Asmussen, Jes

    2015-07-01

    The microwave coupling efficiency of the 2.45 GHz, microwave plasma assisted diamond synthesis process is investigated by experimentally measuring the performance of a specific single mode excited, internally tuned microwave plasma reactor. Plasma reactor coupling efficiencies (η) > 90% are achieved over the entire 100-260 Torr pressure range and 1.5-2.4 kW input power diamond synthesis regime. When operating at a specific experimental operating condition, small additional internal tuning adjustments can be made to achieve η > 98%. When the plasma reactor has low empty cavity losses, i.e., the empty cavity quality factor is >1500, then overall microwave discharge coupling efficiencies (ηcoup) of >94% can be achieved. A large, safe, and efficient experimental operating regime is identified. Both substrate hot spots and the formation of microwave plasmoids are eliminated when operating within this regime. This investigation suggests that both the reactor design and the reactor process operation must be considered when attempting to lower diamond synthesis electrical energy costs while still enabling a very versatile and flexible operation performance.

  8. Sense toxins/sewage gases by chemically and biologically functionalized single-walled carbon nanotube sensor based microwave resonator

    NASA Astrophysics Data System (ADS)

    Tooski, S. B.

    2010-01-01

    In this work the complex permittivity and microwave absorption of toxins/sewage gases and functionalized single-walled carbon nanotube sensors in a perturbed microwave resonant cavity are studied with the aid of a kinetic model. The results show that the real permittivity decreases and the imaginary permittivity increases with increasing the electron density; however, the real permittivity increases and the imaginary permittivity decreases with the collision frequency increasing. The results furthermore show that low electron density and high collision frequency can greatly reduce the microwave absorption, while high electron density and low collision frequency can increase the microwave absorption. The microwave absorption shifts to high frequency with increasing the electron density. The microwave absorption, in contrast, shifts to low frequency with the collision frequency increasing. The kinetic model may be used to study the effects of gas pressure on the complex permittivity and microwave absorption.

  9. Growth and characterization of large, high quality single crystal diamond substrates via microwave plasma assisted chemical vapor deposition

    NASA Astrophysics Data System (ADS)

    Nad, Shreya

    Single crystal diamond (SCD) substrates can be utilized in a wide range of applications. Important issues in the chemical vapor deposition (CVD) of such substrates include: shrinking of the SCD substrate area, stress and cracking, high defect density and hence low electronic quality and low optical quality due to high nitrogen impurities. The primary objective of this thesis is to begin to address these issues and to find possible solutions for enhancing the substrate dimensions and simultaneously improving the quality of the grown substrates. The deposition of SCD substrates is carried out in a microwave cavity plasma reactor via the microwave plasma assisted chemical vapor deposition technique. The operation of the reactor was first optimized to determine the safe and efficient operating regime. By adjusting the matching of the reactor cavity with the help of four internal tuning length variables, the system was further matched to operate at a maximum overall microwave coupling efficiency of ˜ 98%. Even with adjustments in the substrate holder position, the reactor remains well matched with a coupling efficiency of ˜ 95% indicating good experimental performance over a wide range of operating conditions. SCD substrates were synthesized at a high pressure of 240 Torr and with a high absorbed power density of 500 W/cm3. To counter the issue of shrinking substrate size during growth, the effect of different substrate holder designs was studied. An increase in the substrate dimensions (1.23 -- 2.5 times) after growth was achieved when the sides of the seeds were shielded from the intense microwave electromagnetic fields in a pocket holder design. Using such pocket holders, high growth rates of 16 -- 32 mum/hr were obtained for growth times of 8 -- 72 hours. The polycrystalline diamond rim deposition was minimized/eliminated from these growth runs, hence successfully enlarging the substrate size. Several synthesized CVD SCD substrates were laser cut and separated

  10. Flexural strength of acrylic resin repairs processed by different methods: water bath, microwave energy and chemical polymerization

    PubMed Central

    ARIOLI FILHO, João Neudenir; BUTIGNON, Luís Eduardo; PEREIRA, Rodrigo de Paula; LUCAS, Matheus Guilherme; MOLLO JUNIOR, Francisco de Assis

    2011-01-01

    Denture fractures are common in daily practice, causing inconvenience to the patient and to the dentists. Denture repairs should have adequate strength, dimensional stability and color match, and should be easily and quickly performed as well as relatively inexpensive. Objective The aim of this study was to evaluate the flexural strength of acrylic resin repairs processed by different methods: warm water-bath, microwave energy, and chemical polymerization. Material and methods Sixty rectangular specimens (31x10x2.5 mm) were made with warm water-bath acrylic resin (Lucitone 550) and grouped (15 specimens per group) according to the resin type used to make repair procedure: 1) specimens of warm water-bath resin (Lucitone 550) without repair (control group); 2) specimens of warm water-bath resin repaired with warm water-bath; 3) specimens of warm water-bath resin repaired with microwave resin (Acron MC); 4) specimens of warm water-bath resin repaired with autopolymerized acrylic resin (Simplex). Flexural strength was measured with the three-point bending in a universal testing machine (MTS 810 Material Test System) with load cell of 100 kgf under constant speed of 5 mm/min. Data were analyzed statistically by Kruskal-Wallis test (p<0.05). Results The control group showed the best result (156.04±1.82 MPa). Significant differences were found among repaired specimens and the results were decreasing as follows: group 3 (43.02±2.25 MPa), group 2 (36.21±1.20 MPa) and group 4 (6.74±0.85 MPa). Conclusion All repaired specimens demonstrated lower flexural strength than the control group. Repairs with autopolymerized acrylic resin showed the lowest flexural strength. PMID:21625742

  11. Studies on the Conformational Landscape of Tert-Butyl Acetate Using Microwave Spectroscopy and Quantum Chemical Calculations

    NASA Astrophysics Data System (ADS)

    Zhao, YueYue; Mouhib, Halima; Li, Guohua; Stahl, Wolfgang; Kleiner, Isabelle

    2014-06-01

    The tert-Butyl acetate molecule was studied using a combination of quantum chemical calculations and molecular beam Fourier transform microwave spectroscopy in the 9 to 14 GHz range. Due to its rather rigid frame, the molecule possesses only two different conformers: one of Cs and one of C1 symmetry. According to ab initio calculations, the Cs conformer is 46 kJ/mol lower in energy and is the one observed in the supersonic jet. We report on the structure and dynamics of the most abundant conformer of tert-butyl acetate, with accurate rotational and centrifugal distortion constants. Additionally, the barrier to internal rotation of the acetyl methyl group was determined. Splittings due to the internal rotation of the methyl group of up to 1.3 GHz were observed in the spectrum. Using the programs XIAM and BELGI-Cs, we determine the barrier height to be about 113 cm-1 and compare the molecular parameters obtained from these two codes. Additionally, the experimental rotational constants were used to validate numerous quantum chemical calculations. This study is part of a larger project which aims at determining the lowest energy conformers of organic esters and ketones which are of interest for flavor or perfume synthetic applications Project partly supported by the PHC PROCOPE 25059YB.

  12. Occupational Lung Disease Risk and Exposure to Butter-Flavoring Chemicals After Implementation of Controls at a Microwave Popcorn Plant

    PubMed Central

    Kanwal, Richard; Kullman, Greg; Fedan, Kathleen B.; Kreiss, Kathleen

    2011-01-01

    Objectives After an outbreak of severe lung disease among workers exposed to butter-flavoring chemicals at a microwave popcorn plant, we determined whether or not lung disease risk declined after implementation of exposure controls. Methods National Institute for Occupational Safety and Health staff performed eight serial cross-sectional medical and industrial hygiene surveys at the plant from November 2000 through August 2003. Medical surveys included standardized questionnaires and spirometry testing. Industrial hygiene surveys measured levels of production-related air contaminants, including butter-flavoring chemicals such as diacetyl. All diacetyl concentrations above detectable limits were corrected for the effects of absolute humidity and days to sample extraction. Results Ventilation and isolation of the production process resulted in one to three orders of magnitude reductions in diacetyl air concentrations in different areas of the plant. Workers with past high exposures had stable chest symptoms over time; nasal, eye, and skin irritation symptoms declined. New workers had lower symptom prevalences and higher lung function than workers with past high exposures, and they did not worsen over time. In workers who had at least three spirometry tests, those with past high exposures were more likely to experience rapid declines in lung function than new workers. Conclusions Implemented controls lowered exposures to butter-flavoring chemicals and decreased lung disease risk for much of the plant workforce. Some workers with continuing potential for intermittent, short-term peak and measurable time-weighted exposures remain at risk and should use respiratory protection and have regularly scheduled spirometry to detect rapid lung function declines that may be work-related. Close follow-up of such workers is likely to yield additional information on risks due to peak and time-weighted exposure levels. PMID:21800743

  13. MICROWAVE ACCELERATED SOLVENT-FREE CHEMICAL REACTIONS, PUBLISHED IN AMPERE NEWSLETTER, ISSUE 29, JUNE 2001

    EPA Science Inventory

    The worldwide annual usage of volatile organic solvents is generally of the order of ~4 billion pounds. In the environmentally conscieous era, the focus in to design chemical processes and products that eliminate or minimize the waste generation and the ideal approach may compris...

  14. Plasma-enhanced atomic layer deposition zinc oixde flexible thin film electronics

    NASA Astrophysics Data System (ADS)

    Zhao, Dalong

    This thesis demonstrates high performance flexible thin film electronics fabricated by low temperature process. A novel process for forming high quality stable oxide films using weak oxidant plasma-enhanced atomic layer deposition (PEALD) has been used to achieve fastest flexible oxide integrated circuits reported to date. In addition, a unique approach based on plasma-enhanced chemical vapor deposition (PECVD) silicon nitride for organic light emitting diodes (OLEDs) encapsulation at low temperature (<70 °C) is also reported. Among several low temperature deposition approaches PEALD process provides highly crystalline and dense ZnO thin films which are uniform and conformal at 200 ºC. Crossover measurement results also demonstrate the advantage of PEALD process in thin film deposition on flexible substrates. PEALD ZnO flexible TFTs have high field-effect mobility (˜ 20 cm2/V˙s) and excellent bias stress stability with ALD Al2O3 passivation. 15-stage ring oscillators with propagation delay of <20 nsec/stage have been successfully fabricated on flexible substrates. To the best of our knowledge, these are the fastest oxide-semiconductor circuits on flexible substrates reported to date, and they are about 20 times faster than the best previous report. This thesis also presents the investigation of ZnO device physics by modeling. Non-ideal ZnO device characteristics, including passivation, contacts, and output conductance, have been well modeled and verified with experimental results. Two different approaches were also proposed to extract device parameters for compact models and form the foundation for later circuit design and simulations. A TCAD ZnO model is established and can well describe the operation physics from single transistor to simple circuits. This model is verified by reasonable agreement with experimental data. Building on the results of ZnO TFTs and circuits, several ZnO based applications have been demonstrated. Microsensors with ZnO pyroFETs have

  15. Facile plasma-enhanced deposition of ultrathin crosslinked amino acid films for conformal biometallization.

    PubMed

    Anderson, Kyle D; Slocik, Joseph M; McConney, Michael E; Enlow, Jesse O; Jakubiak, Rachel; Bunning, Timothy J; Naik, Rajesh R; Tsukruk, Vladimir V

    2009-03-01

    A novel method for the facile fabrication of conformal, ultrathin, and uniform synthetic amino acid coatings on a variety of practical surfaces by plasma-enhanced chemical vapor deposition is introduced. Tyrosine, which is utilized as an agent to reduce gold nanoparticles from solution, is sublimed into the plasma field and directly deposited on a variety of substrates to form a homogeneous, conformal, and robust polyamino acid coating in a one-step, solvent-free process. This approach is applicable to many practical surfaces and allows surface-induced biometallization while avoiding multiple wet-chemistry treatments that can damage many soft materials. Moreover, by placing a mask over the substrate during deposition, the tyrosine coating can be micropatterned. Upon its exposure to a solution of gold chloride, a network of gold nanoparticles forms on the surface, replicating the initial micropattern. This method of templated biometallization is adaptable to a variety of practical inorganic and organic substrates, such as silicon, glass, nitrocellulose, polystyrene, polydimethylsiloxane, polytetrafluoroethylene, polyethylene, and woven silk fibers. No special pretreatment is necessary, and the technique results in a rapid, conformal amino acid coating that can be utilized for further biometallization.

  16. Plasma-enhanced synthesis of surfaces that kill bacteria on contact

    NASA Astrophysics Data System (ADS)

    Jampala, Soujanya Naga

    High incidences of microbial contamination and infections are a major concern in all existing and evolving technologies of medicine and biology. The propensity towards infections is directly related to bacterial colonization and biofilms on surfaces. This dissertation presents the development of surfaces that can kill bacteria on contact by using cold plasma technology. Quaternary ammonium (QA) groups are known to exhibit antibacterial characteristics in water-based environments. To overcome the limitations of residual toxicity, alternative strategies involving covalent attachment of QA groups to metallic and cellulosic surfaces have been developed. Low pressure, non-equilibrium plasma-enhanced functionalization and subsequent ex situ chemical reactions were designed for step-by-step "bottom-up" chemical synthesis of QA groups covalently anchored to surfaces. The plasma processes under selected discharge parameters generated structure- and functionality-controlled crosslinked networks of macromolecular layers with high concentrations of reactive amine groups. Subsequent derivatization of the plasma-deposited films with alkyl halides yielded surface-bound QA groups rendering surfaces with high bactericidal efficacy against Gram-positive Staphylococcus aureus and Gram-negative Klebsiella pneumoniae. Stainless steel and cotton surfaces sequentially treated with ethylene diamine plasma, n-hexyl bromide and methyl iodide exhibited at least 99.9% and 98% kill of S. aureus and K. pneumoniae respectively. The influence of chemical architecture of QA groups with different alkyl substituents on the efficacy of bactericidal surfaces was quantified. Results from this work will permit the development of novel plasma-aided technologies for the synthesis of antibacterial surfaces with potential biomedical applications. The cold plasma approach can be used on any solid material surfaces including polymers, metals, ceramics and semiconductors.

  17. Plasma enhanced vortex fluidic device manipulation of graphene oxide.

    PubMed

    Jones, Darryl B; Chen, Xianjue; Sibley, Alexander; Quinton, Jamie S; Shearer, Cameron J; Gibson, Christopher T; Raston, Colin L

    2016-08-25

    A vortex fluid device (VFD) with non-thermal plasma liquid processing within dynamic thin films has been developed. This plasma-liquid microfluidic platform facilitates chemical processing which is demonstrated through the manipulation of the morphology and chemical character of colloidal graphene oxide in water. PMID:27506139

  18. Plasma enhanced atomic layer deposition of SiN{sub x}:H and SiO{sub 2}

    SciTech Connect

    King, Sean W.

    2011-07-15

    As the nanoelectronics industry looks to transition to both three dimensional transistor and interconnect technologies at the <22 nm node, highly conformal dielectric coatings with precise thickness control are increasingly being demanded. Plasma enhanced chemical vapor deposition (PECVD) currently fills this role for most applications requiring low temperature processing but does not always meet step coverage and thickness precision requirements. The authors present results for a hybrid technique, plasma enhanced atomic layer deposition (PEALD), which utilizes typical PECVD process gases and tooling while delivering improved topography coverage and thickness control. Specifically, the authors show that alternating SiH{sub 4} gas/N{sub 2} plasma exposures applied in an atomic layer deposition sequence can be used to deposit SiN{sub x}:H films in a self-limiting fashion with improved conformality and superior performance as a moisture barrier. PEALD of SiO{sub 2} using alternating SiH{sub 4} and CO{sub 2} plasma exposures is further demonstrated.

  19. Microwave enhanced alcoholysis of non-edible (algal, jatropha and pongamia) oils using chemically activated egg shell derived CaO as heterogeneous catalyst.

    PubMed

    Joshi, Girdhar; Rawat, Devendra S; Sharma, Amit Kumar; Pandey, Jitendra K

    2016-11-01

    Microwave enhanced fast and efficient alcoholysis (methanolysis and ethanolysis) of non-edible oils (algal, jatropha and pongamia) is achieved using chemically activated waste egg shell derived CaO (i.e. CaO(cesp)) as heterogeneous catalyst. CaO(cesp) was extracted from waste chicken egg shell and further activated chemically by supporting transition metal oxide. The maximum conversion was achieved using 3wt% catalysts under 700W microwave irradiation and 10:1 alcohol/oil ratio in 6min. Alcoholysis using ZnO activated CaO(cesp) catalyst has shown higher reaction yields in comparison to other modified catalysts. Methanolysis has shown better biodiesel conversion in comparison to ethanolysis. The catalyst has shown longer lifetime and sustained activity after being used for four cycles. Due to more saturated fatty acid content; algal biodiesel has shown improved fuel properties in comparison to other biodiesels. PMID:27521785

  20. Microwave enhanced alcoholysis of non-edible (algal, jatropha and pongamia) oils using chemically activated egg shell derived CaO as heterogeneous catalyst.

    PubMed

    Joshi, Girdhar; Rawat, Devendra S; Sharma, Amit Kumar; Pandey, Jitendra K

    2016-11-01

    Microwave enhanced fast and efficient alcoholysis (methanolysis and ethanolysis) of non-edible oils (algal, jatropha and pongamia) is achieved using chemically activated waste egg shell derived CaO (i.e. CaO(cesp)) as heterogeneous catalyst. CaO(cesp) was extracted from waste chicken egg shell and further activated chemically by supporting transition metal oxide. The maximum conversion was achieved using 3wt% catalysts under 700W microwave irradiation and 10:1 alcohol/oil ratio in 6min. Alcoholysis using ZnO activated CaO(cesp) catalyst has shown higher reaction yields in comparison to other modified catalysts. Methanolysis has shown better biodiesel conversion in comparison to ethanolysis. The catalyst has shown longer lifetime and sustained activity after being used for four cycles. Due to more saturated fatty acid content; algal biodiesel has shown improved fuel properties in comparison to other biodiesels.

  1. Enhanced field emission characteristics of boron doped diamond films grown by microwave plasma assisted chemical vapor deposition

    NASA Astrophysics Data System (ADS)

    Koinkar, Pankaj M.; Patil, Sandip S.; Kim, Tae-Gyu; Yonekura, Daisuke; More, Mahendra A.; Joag, Dilip S.; Murakami, Ri-ichi

    2011-01-01

    Boron doped diamond films were synthesized on silicon substrates by microwave plasma chemical vapor deposition (MPCVD) technique. The effect of B 2O 3 concentration varied from 1000 to 5000 ppm on the field emission characteristics was examined. The surface morphology and quality of films were characterized by scanning electron microscope (SEM) and Raman spectroscopy. The surface morphology obtained by SEM showed variation from facetted microcrystal covered with nanometric grains to cauliflower of nanocrystalline diamond (NCD) particles with increasing B 2O 3 concentration. The Raman spectra confirm the formation of NCD films. The field emission properties of NCD films were observed to improve upon increasing boron concentration. The values of the onset field and threshold field are observed to be as low as 0.36 and 0.08 V/μm, respectively. The field emission current stability investigated at the preset value of ˜1 μA is observed to be good, in each case. The enhanced field emission properties are attributed to the better electrical conductivity coupled with the nanometric features of the diamond films.

  2. Mass densification and defect restoration in chemical vapor deposition silicon dioxide film using Ar plasma excited by microwave

    SciTech Connect

    Kawase, Kazumasa Motoya, Tsukasa; Uehara, Yasushi; Teramoto, Akinobu; Suwa, Tomoyuki; Ohmi, Tadahiro

    2014-09-01

    Silicon dioxide (SiO{sub 2}) films formed by chemical vapor deposition (CVD) have been treated with Ar plasma excited by microwave. The changes of the mass densities, carrier trap densities, and thicknesses of the CVD-SiO{sub 2} films with the Ar plasma treatments were investigated. The mass density depth profiles were estimated with X-Ray Reflectivity (XRR) analysis using synchrotron radiation. The densities of carrier trap centers due to defects of Si-O bond network were estimated with X-ray Photoelectron Spectroscopy (XPS) time-dependent measurement. The changes of the thicknesses due to the oxidation of Si substrates were estimated with the XRR and XPS. The mass densities of the CVD-SiO{sub 2} films are increased by the Ar plasma treatments. The carrier trap densities of the films are decreased by the treatments. The thicknesses of the films are not changed by the treatments. It has been clarified that the mass densification and defect restoration in the CVD-SiO{sub 2} films are caused by the Ar plasma treatments without the oxidation of the Si substrates.

  3. Orthogonal array optimization of microwave-assisted derivatization for determination of trace amphetamine and methamphetamine using negative chemical ionization gas chromatography-mass spectrometry.

    PubMed

    Chung, Li-Wen; Lin, Keh-Liang; Yang, Thomas Ching-Cherng; Lee, Maw-Rong

    2009-05-01

    An orthogonal array design (OAD) was applied to optimize microwave-assisted derivatization (MAD) for analysis of trace amphetamine (AM) and methamphetamine (MA) by negative chemical ionization gas chromatography-mass spectrometry (NCI GC-MS). The 2,3,4,5,6-pentafluorobenzoyl chloride (PFBC) was used as a derivatization reagent. Experimental factors including solvent, microwave power, and irradiation time at four-levels were studied in 16 trials by OAD(16) (4(4)). The significance of these factors was investigated using analysis of variance (ANOVA) and percent contribution (PC). Solvent is statistically demonstrated a chief factor; microwave power and irradiation time are secondary factors. Under the optimum condition, calibration curve of AM is linear over a range from 0.01 to 100 ng mL(-1) with correlation coefficient 0.9988, and MA from 0.1 to 1000 ng mL(-1) with correlation coefficient 0.9951. The limit of detection (LOD) is 1.20 pg mL(-1) for AM and 13.04 pg mL(-1) for MA. An applicability of the method was tested by analyzing urine samples from amphetamine-type stimulants (ATS)-abusing suspects. Consequently, the OAD method not only optimizes the MAD condition for determination of trace AM and MA, but identifies the effects of factor solvent, microwave power and irradiation time on the MAD performance.

  4. Effect of pre-cooking methods on the chemical and sensory deterioration of ready-to-eat chicken patties during chilled storage and microwave reheating.

    PubMed

    Ferreira, Valquíria C S; Morcuende, David; Madruga, Marta S; Hernández-López, Silvia H; Silva, Fábio A P; Ventanas, Sonia; Estévez, Mario

    2016-06-01

    The effects of pre-cooking methods, namely, boiling (BL), roasting (RT) and grilling (GR), refrigerated storage (14 days/+4 °C) and microwave reheating on chicken patties were studied. Physical, chemical and sensory parameters were evaluated in order to correlate the chemical deterioration of ready-to-eat chicken patties with the acceptance of the odor. Chemical deterioration was evaluated through the chemical composition, Maillard compounds, Thiobarbituric acid-reactive substances (TBARS) and volatiles. Sensory deterioration (odor liking) was performed by an acceptance test with hedonic scale. According to the TBARS values and volatile compounds generated in the head space during the examined stages, the pre-cooking method and the storage time had a significant effect on lipid oxidation, whereas reheating in a microwave had a negligible impact. At each succeeding processing stage, panelists gave lower odor scores to all samples and no significant differences were found between treatments at any stage. RT and GR patties showed less intense chemical changes and presented higher acceptation scores by the sensory panel than BL patties. Thus, the choice of pre-cooking method and control of storage conditions plays a key role in the inhibition of oxidative changes in ready-to-eat chicken patties. PMID:27478232

  5. Effect of pre-cooking methods on the chemical and sensory deterioration of ready-to-eat chicken patties during chilled storage and microwave reheating.

    PubMed

    Ferreira, Valquíria C S; Morcuende, David; Madruga, Marta S; Hernández-López, Silvia H; Silva, Fábio A P; Ventanas, Sonia; Estévez, Mario

    2016-06-01

    The effects of pre-cooking methods, namely, boiling (BL), roasting (RT) and grilling (GR), refrigerated storage (14 days/+4 °C) and microwave reheating on chicken patties were studied. Physical, chemical and sensory parameters were evaluated in order to correlate the chemical deterioration of ready-to-eat chicken patties with the acceptance of the odor. Chemical deterioration was evaluated through the chemical composition, Maillard compounds, Thiobarbituric acid-reactive substances (TBARS) and volatiles. Sensory deterioration (odor liking) was performed by an acceptance test with hedonic scale. According to the TBARS values and volatile compounds generated in the head space during the examined stages, the pre-cooking method and the storage time had a significant effect on lipid oxidation, whereas reheating in a microwave had a negligible impact. At each succeeding processing stage, panelists gave lower odor scores to all samples and no significant differences were found between treatments at any stage. RT and GR patties showed less intense chemical changes and presented higher acceptation scores by the sensory panel than BL patties. Thus, the choice of pre-cooking method and control of storage conditions plays a key role in the inhibition of oxidative changes in ready-to-eat chicken patties.

  6. Low-temperature-deposited insulating films of silicon nitride by reactive sputtering and plasma-enhanced CVD: Comparison of characteristics

    NASA Astrophysics Data System (ADS)

    Sato, Masaru; Takeyama, Mayumi B.; Nakata, Yoshihiro; Kobayashi, Yasushi; Nakamura, Tomoji; Noya, Atsushi

    2016-04-01

    The characteristics of SiN x films deposited by reactive sputtering and plasma-enhanced chemical vapor deposition (PECVD) are examined to obtain high-density films at low deposition temperatures. PECVD SiN x films deposited at 200 °C show low densities of 2.14-2.20 g/cm3 regardless of their composition, while their refractive index varies depending on their composition. PECVD requires the substrate temperature to obtain high-density films, because a possible cause of low-density films is the amount of Si-H bond, rather than that of N-H bond, in the films originating from hydrogen incorporated by the insufficient decomposition of SiH4 molecules at low temperatures. The sputtered SiN x films with high density are obtained at a temperature lower than 200 °C and considered a promising candidate for insulating films at low process temperatures.

  7. Understanding the structure and dynamic of odorants in the gas phase using a combination of microwave spectroscopy and quantum chemical calculations

    NASA Astrophysics Data System (ADS)

    Mouhib, Halima

    2014-07-01

    This tutorial is an introduction for PhD students and researchers who intend to start their future work in the field of microwave spectroscopy to investigate structural and dynamical aspects of isolated molecular systems in the gas phase. Although the presented case studies are related to odorants, i.e., volatile molecules that possess a noticeable scent, the background and applications of the method can be transferred to any other resembling molecular system. In the early days, microwave spectroscopy was mainly related to the structure determination of very small systems such as OCS or ammonia, where the bond lengths could be determined with high accuracy by measuring the different isotopic species of the molecules. Nowadays, the method is far more advanced and is also used to tackle various fundamental molecular problems in different fields such as physical chemistry and molecular physics. Interesting questions that can be investigated concern, e.g., the molecular structure, i.e., the different conformations, not only of the isolated molecule but also of van der Waals complexes with water, noble gases or other molecules. The dynamical and intra- or intermolecular effects can be straightforwardly observed without the influence of the environment as in the condensed phase. This evolution was only achieved by using quantum chemical methods as a complementary tool to elude the necessity of isotopologues for structure determination, which cannot be realized for large systems (>5 atoms). The combination of microwave spectroscopy and quantum chemical calculations is the method of choice when it comes to sampling the conformational space of molecules. This is particularly the case when small energy differences make it difficult to determine the conformers of the lowest energy using computational methods alone. Although quantum chemical calculations are important for the validation of microwave spectra, the focus of the tutorial is set on the experimental part of the

  8. Plasma enhanced C1 chemistry for green technology

    NASA Astrophysics Data System (ADS)

    Nozaki, Tomohiro

    2013-09-01

    Plasma catalysis is one of the innovative next generation green technologies that meet the needs for energy and materials conservation as well as environmental protection. Non-thermal plasma uniquely generates reactive species independently of reaction temperature, and these species are used to initiate chemical reactions at unexpectedly lower temperatures than normal thermochemical reactions. Non-thermal plasma thus broadens the operation window of existing chemical conversion processes, and ultimately allows modification of the process parameters to minimize energy and material consumption. We have been specifically focusing on dielectric barrier discharge (DBD) as one of the viable non-thermal plasma sources for practical fuel reforming. In the presentation, room temperature one-step conversion of methane to methanol and hydrogen using a miniaturized DBD reactor (microplasma reactor) is highlighted. The practical impact of plasma technology on existing C1-chemistry is introduced, and then unique characteristics of plasma fuel reforming such as non-equilibrium product distribution is discussed.

  9. Dendrimer-templated Fe nanoparticles for the growth of single-wall carbon nanotubes by plasma-enhanced CVD.

    PubMed

    Amama, Placidus B; Maschmann, Matthew R; Fisher, Timothy S; Sands, Timothy D

    2006-06-01

    A fourth-generation (G4) poly(amidoamine) (PAMAM) dendrimer (G4-NH2) has been used as a template to deliver nearly monodispersed catalyst nanoparticles to SiO2/Si, Ti/Si, sapphire, and porous anodic alumina (PAA) substrates. Fe2O3 nanoparticles obtained after calcination of the immobilized Fe3+/G4-NH2 composite served as catalytic "seeds" for the growth of single-wall carbon nanotubes (SWNTs) by microwave plasma-enhanced CVD (PECVD). To surmount the difficulty associated with SWNT growth via PECVD, reaction conditions that promote the stabilization of Fe nanoparticles, resulting in enhanced SWNT selectivity and quality, have been identified. In particular, in situ annealing of Fe catalyst in an N2 atmosphere was found to improve SWNT selectivity and quality. H2 prereduction at 900 degrees C for 5 min was also found to enhance SWNT selectivity and quality for SiO2/Si supported catalyst, albeit of lower quality for sapphire supported catalyst. The application of positive dc bias voltage (+200 V) during SWNT growth was shown to be very effective in removing amorphous carbon impurities while enhancing graphitization, SWNT selectivity, and vertical alignment. The results of this study should promote the use of exposed Fe nanoparticles supported on different substrates for the growth of high-quality SWNTs by PECVD. PMID:16771309

  10. Environmentally friendly chemical recycling of poly(bisphenol-A carbonate) through phase transfer-catalysed alkaline hydrolysis under microwave irradiation.

    PubMed

    Tsintzou, Georgia P; Antonakou, Eleni V; Achilias, Dimitris S

    2012-11-30

    The various and widespread uses of polycarbonate (PC) polymers require a meaningful and environmentally friendly disposal method. In this study, depolymerisation of polycarbonate with water in a microwave reactor is suggested as a recycling method. Hydrolysis was investigated in an alkaline (NaOH) solution using a phase-transfer catalyst. All of the experiments were carried out in a sealed microwave reactor, in which the reaction pressure, temperature and microwave power were continuously controlled and recorded. In the hydrolysis products, bisphenol-A monomer was obtained and identified by FTIR measurements. PC degradation higher than 80% can be obtained at 160°C after a microwave irradiation time of either 40 min or 10 min using either a 5 or 10% (w/v) NaOH solution, respectively. GPC, TGA and DSC measurements of the PC residues revealed that surface erosion is the degradation mechanism. First-order reaction kinetics were estimated by implementing a simple kinetic model. Finally, greater than 85% degradation was achieved when waste CDs were treated with the same method. The results confirm the importance of the microwave power technique as a promising recycling method for PC-based waste plastics, resulting in monomer recovery in addition to substantial energy savings.

  11. Conformational properties of cis- and trans-N-Cyclopropylformamide studied by microwave spectroscopy and quantum chemical calculations.

    PubMed

    Samdal, Svein; Møllendal, Harald; Guillemin, Jean-Claude

    2015-04-01

    The microwave spectra of cis- and trans-N-cyclopropylformamide, C3H5NHC(═O)H, have been investigated in the 31-123 GHz spectral region at room temperature. Rotational isomerism about the Cring-N bond is possible for both cis and trans. MP2/cc-pVTZ and CCSD/cc-pVTZ calculations indicate that there are two conformers in the case of cis, called Cis I and Cis II, while only one rotamer, denoted Trans, exists for trans-N-cyclopropylformamide. The quantum chemical methods predict that Cis I has an electronic energy that is 8-9 kJ/mol higher than the energy of Cis II. The CCSD H-Cring-N-H dihedral angle is 0.0° in Cis I, 93.0° in Cis II and 79.9° in Trans. The CCSD and MP2 calculations predict a slightly nonplanar structure for the amide moiety in both Trans and Cis II, whereas Cis I is computed to have a planar amide group bisecting the cyclopropyl ring. Surprisingly, the MP2 and CCSD methods predict practically the same energy for Trans and Cis II. The spectra of Cis II in the ground state and in two vibrationally excited states were assigned, while the spectrum of Cis I was not found presumably because of a low Boltzmann population due to a relatively large energy difference (8-9 kJ/mol). The spectra of the ground vibrational state and seven vibrationally excited states of Trans, were assigned. Vibrational frequencies of several of the excited state of both Cis II and Trans were determined by relative intensity measurements. The experimental and CCSD rotational constants are in satisfactory agreement. The MP2 values of the quartic centrifugal distortion constants of both species are in relatively poor agreement with their experimental counterparts. The MP2 vibration-rotation constants and sextic centrifugal distortion constants have little resemblance with the corresponding experimental values.

  12. Preparation of highly photocatalytic active CdS/TiO2 nanocomposites by combining chemical bath deposition and microwave-assisted hydrothermal synthesis

    NASA Astrophysics Data System (ADS)

    Li, Li; Wang, Lili; Hu, Tianyu; Zhang, Wenzhi; Zhang, Xiuli; Chen, Xi

    2014-10-01

    CdS/TiO2 nanocomposites were prepared from Cd and Ti (1:1 M ratio) using cetyltrimethylammonium bromide by a two-step chemical bath deposition (CBD) and microwave-assisted hydrothermal synthesis (MAHS) method. A series of nanocomposites with different morphologies and activities were prepared by varying the reaction time in the MAHS (2, 4, and 6 h). The crystal structure, morphology, and surface physicochemical properties of the nanocomposites were characterized by X-ray diffraction, UV-visible diffuse reflectance spectroscopy, X-ray photoelectron spectroscopy, scanning electron microscopy, and N2 adsorption-desorption measurements. The results show that the CdS/TiO2 nanocomposites were composed of anatase TiO2 and hexagonal CdS phases with strong absorption in the visible region. The surface morphologies changed slightly with increasing microwave irradiation time, while the Brunauer-Emmett-Teller surface area increased remarkably. The photocatalytic degradation of methyl orange (MO) was investigated under UV light and simulated sunlight irradiation. The photocatalytic activity of the CdS/TiO2 (6 h) composites prepared by the MAHS method was higher than those of CdS, P25, and other CdS/TiO2 nanocomposites. The CdS/TiO2 (6 h) nanocomposites significantly affected the UV and microwave-assisted photocatalytic degradation of different dyes. To elucidate the photocatalytic reaction mechanism for the CdS/TiO2 nanocomposites, controlled experiments were performed by adding different radical scavengers.

  13. Performance of a novel microwave-based treatment technology for atrazine removal and destruction: Sorbent reusability and chemical stability, and effect of water matrices.

    PubMed

    Hu, Erdan; Hu, Yuanan; Cheng, Hefa

    2015-12-15

    Transition metal-exchanged dealuminated Y zeolites were used to adsorb atrazine from aqueous solutions, followed by regeneration of the sorbents and destruction of the sorbed atrazine with microwave irradiation. Exchange of copper and iron into the zeolite's micropores significantly enhanced its sorption capacity and selectivity toward atrazine, and increased the microwave-induced degradation rate of the sorbed atrazine by 3-4-folds. Both the copper- and iron-exchanged zeolites could be regenerated and reused multiple times, while the catalytic activity of the latter was more robust due to the much greater chemical stability of Fe(3+) species in the micropores. The presence of humic acid, and common cations and anions had little impact on the sorption of atrazine on the transition metal-exchanged zeolites. In the treatment of atrazine spiked in natural surface water and groundwater samples, sorptive removal of atrazine was found to be impacted by the level of dissolved organic carbon, probably through competition for the micropore spaces and pore blocking, while the water matrices exhibited no strong effect on the microwave-induced degradation of sorbed atrazine. Overall, iron-exchanged dealuminated Y zeolites show great potential for removal and destruction of atrazine from contaminated surface water and groundwater in practical implementation of the novel treatment technology.

  14. Novel ultra-low temperature co-fired microwave dielectric ceramic at 400 degrees and its chemical compatibility with base metal

    PubMed Central

    Di, Zhou; Li-Xia, Pang; Ze-Ming, Qi; Biao-Bing, Jin; Xi, Yao

    2014-01-01

    A novel NaAgMoO4 material with spinel-like structure was synthesized by using the solid state reaction method and the ceramic sample was well densified at an extreme low sintering temperature about 400°C. Rietveld refinement of the crystal structure was performed using FULLPROF program and the cell parameters are a = b = c = 9.22039 Å with a space group F D −3 M (227). High performance microwave dielectric properties, with a permittivity ~7.9, a Qf value ~33,000 GHz and a temperature coefficient of resonant frequency ~−120 ppm/°C, were obtained. From X-ray diffraction (XRD) and Energy Dispersive Spectrometer (EDS) analysis of the co-fired sample, it was found that the NaAgMoO4 ceramic is chemically compatible with both silver and aluminum at the sintering temperature and this makes it a promising candidate for the ultra-low temperature co-fired ceramics technology. Analysis of infrared and THz spectra indicated that dielectric polarizability at microwave region of the NaAgMoO4 ceramic was equally contributed by ionic displasive and electronic polarizations. Its small microwave dielectric permittivity can also be explained well by the Shannon's additive rule. PMID:25099530

  15. Novel ultra-low temperature co-fired microwave dielectric ceramic at 400 degrees and its chemical compatibility with base metal.

    PubMed

    Di, Zhou; Li-Xia, Pang; Ze-Ming, Qi; Biao-Bing, Jin; Xi, Yao

    2014-01-01

    A novel NaAgMoO4 material with spinel-like structure was synthesized by using the solid state reaction method and the ceramic sample was well densified at an extreme low sintering temperature about 400°C. Rietveld refinement of the crystal structure was performed using FULLPROF program and the cell parameters are a = b = c = 9.22039 Å with a space group F D -3 M (227). High performance microwave dielectric properties, with a permittivity ~7.9, a Qf value ~33,000 GHz and a temperature coefficient of resonant frequency ~-120 ppm/°C, were obtained. From X-ray diffraction (XRD) and Energy Dispersive Spectrometer (EDS) analysis of the co-fired sample, it was found that the NaAgMoO4 ceramic is chemically compatible with both silver and aluminum at the sintering temperature and this makes it a promising candidate for the ultra-low temperature co-fired ceramics technology. Analysis of infrared and THz spectra indicated that dielectric polarizability at microwave region of the NaAgMoO4 ceramic was equally contributed by ionic displasive and electronic polarizations. Its small microwave dielectric permittivity can also be explained well by the Shannon's additive rule. PMID:25099530

  16. Novel ultra-low temperature co-fired microwave dielectric ceramic at 400 degrees and its chemical compatibility with base metal

    NASA Astrophysics Data System (ADS)

    di, Zhou; Li-Xia, Pang; Ze-Ming, Qi; Biao-Bing, Jin; Xi, Yao

    2014-08-01

    A novel NaAgMoO4 material with spinel-like structure was synthesized by using the solid state reaction method and the ceramic sample was well densified at an extreme low sintering temperature about 400°C. Rietveld refinement of the crystal structure was performed using FULLPROF program and the cell parameters are a = b = c = 9.22039 Å with a space group F D -3 M (227). High performance microwave dielectric properties, with a permittivity ~7.9, a Qf value ~33,000 GHz and a temperature coefficient of resonant frequency ~-120 ppm/°C, were obtained. From X-ray diffraction (XRD) and Energy Dispersive Spectrometer (EDS) analysis of the co-fired sample, it was found that the NaAgMoO4 ceramic is chemically compatible with both silver and aluminum at the sintering temperature and this makes it a promising candidate for the ultra-low temperature co-fired ceramics technology. Analysis of infrared and THz spectra indicated that dielectric polarizability at microwave region of the NaAgMoO4 ceramic was equally contributed by ionic displasive and electronic polarizations. Its small microwave dielectric permittivity can also be explained well by the Shannon's additive rule.

  17. [EVALUATION OF CHANGES OF GEOMETRICAL PARAMETERS OF ALGINATE DENTAL IMPRESSIONS DUE TO THE INFLUENCE OF CHEMICAL AND MICROWAVE DISINFECTION METHOD USING 3D TECHNOLOGIES].

    PubMed

    Nespraydko, V P; Shevchuk, V A; Michaylov, A A; Lyseyko, N V

    2015-01-01

    This clinical and laboratory study evaluated the effect of two methods of disinfection in different modes at the volume changes of alginate dental impressions and plaster models poured from them, as compared to the same parameters of plastic master models (PMM), using three-dimensional non-contact laser scanner and software. Immersion chemical disinfection for 15 min, microwave disinfection at 354 W for 10 minutes and combined disinfection with the power of 319 W for 4 minutes did not significantly affect the volumetric dimensional accuracy of the alginate impressions (P > 0.05). PMID:27491163

  18. Preparation of highly photocatalytic active CdS/TiO{sub 2} nanocomposites by combining chemical bath deposition and microwave-assisted hydrothermal synthesis

    SciTech Connect

    Li, Li; Wang, Lili; Hu, Tianyu; Zhang, Wenzhi; Zhang, Xiuli; Chen, Xi

    2014-10-15

    CdS/TiO{sub 2} nanocomposites were prepared from Cd and Ti (1:1 M ratio) using cetyltrimethylammonium bromide by a two-step chemical bath deposition (CBD) and microwave-assisted hydrothermal synthesis (MAHS) method. A series of nanocomposites with different morphologies and activities were prepared by varying the reaction time in the MAHS (2, 4, and 6 h). The crystal structure, morphology, and surface physicochemical properties of the nanocomposites were characterized by X-ray diffraction, UV–visible diffuse reflectance spectroscopy, X-ray photoelectron spectroscopy, scanning electron microscopy, and N{sub 2} adsorption–desorption measurements. The results show that the CdS/TiO{sub 2} nanocomposites were composed of anatase TiO{sub 2} and hexagonal CdS phases with strong absorption in the visible region. The surface morphologies changed slightly with increasing microwave irradiation time, while the Brunauer–Emmett–Teller surface area increased remarkably. The photocatalytic degradation of methyl orange (MO) was investigated under UV light and simulated sunlight irradiation. The photocatalytic activity of the CdS/TiO{sub 2} (6 h) composites prepared by the MAHS method was higher than those of CdS, P25, and other CdS/TiO{sub 2} nanocomposites. The CdS/TiO{sub 2} (6 h) nanocomposites significantly affected the UV and microwave-assisted photocatalytic degradation of different dyes. To elucidate the photocatalytic reaction mechanism for the CdS/TiO{sub 2} nanocomposites, controlled experiments were performed by adding different radical scavengers. - Graphical abstract: CdS/TiO{sub 2} nanocomposites were prepared using CTAB by CBD combined with MAHS method. In addition, with increasing microwave irradiation time, the morphology of CdS/TiO{sub 2} changed from popcorn-like to wedge-like structure. - Highlights: • The CdS/TiO{sub 2} was prepared by CBD combined with MAHS two-step method under CTAB. • The morphologies of as-samples were different with the time of

  19. ORGANIC SYNTHESES USING MICROWAVES AND SUPPORTED REAGENTS

    EPA Science Inventory

    Microwave-accelerated chemical syntheses under solvent-free conditions have witnessed an explosive growth. The technique has found widespread application predominantly exploiting the inexpensive unmodified household microwave (MW) ovens although the use of dedicated MW equipment...

  20. Glutamate biosensor based on carbon nanowalls grown using plasma enhanced chemical vapor deposition

    NASA Astrophysics Data System (ADS)

    Tomatsu, Masakazu; Hiramatsu, Mineo; Kondo, Hiroki; Hori, Masaru

    2015-09-01

    Carbon nanowalls (CNWs) are composed of few-layer graphene standing almost vertically on the substrate. Due to the large surface area of vertical nanographene network, CNWs draw attention as platform for electrochemical sensing, biosensing and energy conversion applications. In this work, CNWs were grown on nickel substrate using inductively coupled plasma with methane/Ar mixture. After the CNW growth, the surface of CNWs was oxidized using Ar atmospheric pressure plasma to obtain super-hydrophilic surface. For the biosensing application, the surface of CNWs was decorated with platinum (Pt) nanoparticles by the reduction of hydrogen hexachloroplatinate (IV) solution. The resultant Pt particle size was estimated to be 3-4 nm. From the XPS analysis, pure Pt existed without being oxidized on the CNW surface. Electrochemical surface area of the Pt catalyst was evaluated by cyclic voltammetry. Pt-decorated CNWs will be used as an electrode for electrochemical glutamate biosensing. L-glutamate is one of the most important in the mammalian central nervous system, playing a vital role in many physiological processes. Nanoplatform based on vertical nanographene offers great promise for providing a new class of nanostructured electrodes for electrochemical sensing.

  1. Plasma enhanced chemical vapor deposition of ZrO{sub 2} thin films

    SciTech Connect

    Saravanan, K.

    1993-12-09

    Amorphous ZrO{sub 2} thin films were deposited in an inductively coupled PECVD system using a Zr {beta}-diketonate, Zr(C{sub 11}H{sub 19}O{sub 2}){sub 4}, as the precursor. The deposits were air annealed at 900C for 5 min to get pure, single phase, oriented, polycrystalline {alpha}-ZrO{sub 2}. Feasibility of using 2 different types of reactors was investigated. The inductively heated horizontal reactor depositions at 600C had a lower deposition rate and the films were non-uniform in thickness with a columnar structure. The resistively heated vertical reactor depositions at 350C had a higher deposition rate and the films were more uniform in thickness with a fine grained microstructure. The statistical design was demonstrated as an effective technique to analyze the effect of process conditions on the rate of deposition and relative (h00) orientation. The factorial design was used to quantify the two responses in terms of the process variables and their mutual interactions. The statistical design for rate of deposition was found to correlate with the trends observed in classical design.

  2. Low-temperature ({<=}200 Degree-Sign C) plasma enhanced atomic layer deposition of dense titanium nitride thin films

    SciTech Connect

    Samal, Nigamananda; Du Hui; Luberoff, Russell; Chetry, Krishna; Bubber, Randhir; Hayes, Alan; Devasahayam, Adrian

    2013-01-15

    Titanium nitride (TiN) has been widely used in the semiconductor industry for its diffusion barrier and seed layer properties. However, it has seen limited adoption in other industries in which low temperature (<200 Degree-Sign C) deposition is a requirement. Examples of applications which require low temperature deposition are seed layers for magnetic materials in the data storage (DS) industry and seed and diffusion barrier layers for through-silicon-vias (TSV) in the MEMS industry. This paper describes a low temperature TiN process with appropriate electrical, chemical, and structural properties based on plasma enhanced atomic layer deposition method that is suitable for the DS and MEMS industries. It uses tetrakis-(dimethylamino)-titanium as an organometallic precursor and hydrogen (H{sub 2}) as co-reactant. This process was developed in a Veeco NEXUS Trade-Mark-Sign chemical vapor deposition tool. The tool uses a substrate rf-biased configuration with a grounded gas shower head. In this paper, the complimentary and self-limiting character of this process is demonstrated. The effects of key processing parameters including temperature, pulse time, and plasma power are investigated in terms of growth rate, stress, crystal morphology, chemical, electrical, and optical properties. Stoichiometric thin films with growth rates of 0.4-0.5 A/cycle were achieved. Low electrical resistivity (<300 {mu}{Omega} cm), high mass density (>4 g/cm{sup 3}), low stress (<250 MPa), and >85% step coverage for aspect ratio of 10:1 were realized. Wet chemical etch data show robust chemical stability of the film. The properties of the film have been optimized to satisfy industrial viability as a Ruthenium (Ru) preseed liner in potential data storage and TSV applications.

  3. Rapid adsorption of toxic Pb(II) ions from aqueous solution using multiwall carbon nanotubes synthesized by microwave chemical vapor deposition technique.

    PubMed

    Mubarak, Nabisab Mujawar; Sahu, Jaya Narayan; Abdullah, Ezzat Chan; Jayakumar, Natesan Subramanian

    2016-07-01

    Multiwall carbon nanotubes (MWCNTs) were synthesized using a tubular microwave chemical vapor deposition technique, using acetylene and hydrogen as the precursor gases and ferrocene as catalyst. The novel MWCNT samples were tested for their performance in terms of Pb(II) binding. The synthesized MWCNT samples were characterized using Fourier Transform Infrared (FT-IR), Brunauer, Emmett and Teller (BET), Field Emission Scanning Electron Microscopy (FESEM) analysis, and the adsorption of Pb(II) was studied as a function of pH, initial Pb(II) concentration, MWCNT dosage, agitation speed, and adsorption time, and process parameters were optimized. The adsorption data followed both Freundlich and Langmuir isotherms. On the basis of the Langmuir model, Qmax was calculated to be 104.2mg/g for the microwave-synthesized MWCNTs. In order to investigate the dynamic behavior of MWCNTs as an adsorbent, the kinetic data were modeled using pseudo first-order and pseudo second-order equations. Different thermodynamic parameters, viz., ∆H(0), ∆S(0) and ∆G(0) were evaluated and it was found that the adsorption was feasible, spontaneous and endothermic in nature. The statistical analysis revealed that the optimum conditions for the highest removal (99.9%) of Pb(II) are at pH5, MWCNT dosage 0.1g, agitation speed 160r/min and time of 22.5min with the initial concentration of 10mg/L. Our results proved that microwave-synthesized MWCNTs can be used as an effective Pb(II) adsorbent due to their high adsorption capacity as well as the short adsorption time needed to achieve equilibrium. PMID:27372128

  4. Microwave-Assisted Olefin Metathesis

    NASA Astrophysics Data System (ADS)

    Nicks, François; Borguet, Yannick; Sauvage, Xavier; Bicchielli, Dario; Delfosse, Sébastien; Delaude, Lionel; Demonceau, Albert

    Since the first reports on the use of microwave irradiation to accelerate organic chemical transformations, a plethora of papers have been published in this field. In most examples, microwave heating has been shown to dramatically reduce reaction times, increase product yields, and enhance product purity by reducing unwanted side reactions compared to conventional heating methods. The present contribution aims at illustrating the advantages of this technology in olefin metathesis and, when data are available, at comparing microwave-heated and conventionally heated experiments

  5. Optimization of biodiesel production process from soybean oil using the sodium potassium tartrate doped zirconia catalyst under Microwave Chemical Reactor.

    PubMed

    Li, Yihuai; Ye, Bin; Shen, Jiaowen; Tian, Zhen; Wang, Lijun; Zhu, Luping; Ma, Teng; Yang, Dongya; Qiu, Fengxian

    2013-06-01

    A solid base catalyst was prepared by the sodium potassium tartrate doped zirconia and microwave assisted transesterification of soybean oil was carried out for the production of biodiesel. It was found that the catalyst of 2.0(n(Na)/n(Zr)) and calcined at 600°C showed the optimum activity. The base strength of the catalysts was tested by the Hammett indicator method, and the results showed that the fatty acid methyl ester (FAME) yield was related to their total basicity. The catalyst was also characterized by FTIR, TGA, XRD and TEM. The experimental results showed that a 2.0:1 volume ratio of methanol to oil, 65°C reaction temperature, 30 min reaction time and 10 wt.% catalyst amount gave the highest the yield of biodiesel. Compared to conventional method, the reaction time of the way of microwave assisted transesterification was shorter. The catalyst had longer lifetime and maintained sustained activity after being used for four cycles.

  6. Annealing effects on the structural and optical properties of β-Ga2O3 nanobelts synthesized by microwave plasma chemical vapor deposition

    NASA Astrophysics Data System (ADS)

    Zhu, Feng; Yang, ZhongXue; Zhou, WeiMin; Zhang, YaFei

    2006-06-01

    We have synthesized β-Ga2O3 nanobelts on the silicon substrates by microwave plasma chemical vapor deposition (MPCVD). The morphology and structure of β-Ga2O3 nanobelts characterized by scanning electron microscopy (SEM) were not influenced through the thermal annealing. The photoluminescence properties of β-Ga2O3 nanobelts measured under different excitation wavelength, annealing temperature and annealing time indicated that as-prepared and annealed nanobelts had a blue and an ultraviolet emission (under excitation wavelength of 250 nm at 316 and 432 nm, under excitation wavelength of 325 at 428 nm), but the relative peak intensities of ultraviolet and blue emission, respectively, increase and decrease by the thermal annealing.

  7. Microwave Plasma Chemical Vapor Deposition of Nano-Structured Sn/C Composite Thin-Film Anodes for Li-ion Batteries

    SciTech Connect

    Stevenson, Cynthia; Marcinek, M.; Hardwick, L.J.; Richardson, T.J.; Song, X.; Kostecki, R.

    2008-02-01

    In this paper we report results of a novel synthesis method of thin-film composite Sn/C anodes for lithium batteries. Thin layers of graphitic carbon decorated with uniformly distributed Sn nanoparticles were synthesized from a solid organic precursor Sn(IV) tert-butoxide by a one step microwave plasma chemical vapor deposition (MPCVD). The thin-film Sn/C electrodes were electrochemically tested in lithium half cells and produced a reversible capacity of 440 and 297 mAhg{sup -1} at C/25 and 5C discharge rates, respectively. A long term cycling of the Sn/C nanocomposite anodes showed 40% capacity loss after 500 cycles at 1C rate.

  8. Use of zirconium oxychloride to neutralize HF in the microwave-assisted acid dissolution of ceramic glazes for their chemical analysis by ICP-OES.

    PubMed

    Dondi, M; Fabbri, B; Mingazzini, C

    1998-04-01

    The use of a zirconium compound (ZrOCl(2)) to neutralize HF in the microwave-assisted acid dissolution of ceramic glazes for their chemical analysis was tested. Zr is a strong complexing agent for the fluorine ion and permits the determination of those elements which would form insoluble fluorides. The use of Zr implies strong spectral interferences and a high salt content; however, we found that at least 27 elements can be measured with low detection limits, and satisfactory precision and accuracy. In addition, the use of ZrOCl(2) would permit the complete analysis of a ceramic glaze with a single attack when acid-resistant mineral phases are not present. For potassium determinations in acid matrix, the addition of an ionization buffer was studied in order to increase sensitivity, avoiding ionization interferences and non-linear calibration curves. PMID:18967112

  9. Microwave Ovens

    MedlinePlus

    ... Required Reports for the Microwave Oven Manufacturers or Industry Exemption from Certain Reporting and Recordkeeping Requirements for ... Microwave Ovens (PDF) (PDF - 2.5MB) FDA eSubmitter Industry Guidance - Documents of Interest Notifications to Industry (PDF ...

  10. Buckyball microwave plasmas: Fragmentation and diamond-film growth

    SciTech Connect

    Gruen, D.M.; Liu, Shengzhong; Krauss, A.R.; Pan, Xianzheng

    1993-08-01

    Microwave discharges (2.45 GHz) have been generated in C{sub 60}-containing Ar produced by flowing Ar over fullerene-containing soot. Optical spectroscopy shows that the spectrum is dominated by the d{sup 3}{Pi}g-a{sup 3}{Pi}u Swan bands of C{sub 2} and particularly the {Delta}v = {minus}2, {minus}1, 0, +1, and +2 sequences. These results give direct evidence that C{sub 2} is one of the products of C{sub 60} fragmentation brought about, at least in part, by collisionally induced dissociation (CID). C{sub 60} has been used as a precursor in a plasma-enhanced chemical vapor deposition (PECVD) experiment to grow diamond-thin films. The films, grown in an Ar/H{sub 2} gas mixture (0.14% carbon content, 100 Torr, 20 sccm Ar, 4 sccm H{sub 2}, 1500 W, 850{degree}C substrate temperature), were characterized with SEM, XRD, and Raman spectroscopy. Growth rate was found to be {approx} 0.6 {mu}/hr. Assuming a linear dependence on carbon concentration, a growth rate at least six times higher than commonly observed using methane as a precursor, would be predicted at a carbon content of 1% based on C{sub 60}. Energetic and mechanistic arguments are advanced to rationalize this result based on C{sub 2} as the growth species.

  11. GREENER SYNTHETIC TRANSFORMATIONS USING MICROWAVES

    EPA Science Inventory

    Microwave irradiation has been used for a variety of organic transformations wherein chemical reactions are expedited because of selective adsorption of microwave (MW) energy by polar molecules, non-polar molecules being inert to the MW dielectric loss. The MW application under s...

  12. Improved film quality of plasma enhanced atomic layer deposition SiO{sub 2} using plasma treatment cycle

    SciTech Connect

    Kim, Haiwon; Chung, Ilsub; Kim, Seokyun; Shin, Seungwoo; Jung, Wooduck; Hwang, Ryong; Jeong, Choonsik; Hwang, Hanna

    2015-01-15

    Chemical, physical, and electrical characteristics of high quality silicon dioxide (SiO{sub 2}) films grown using low temperature plasma enhanced atomic layer deposition (PE-ALD) have been investigated as a buffer layer for three dimensional vertical NAND flash memory devices. The comparative angle resolved x-ray photoelectron spectroscopy studies show the plasma treatment cycle causes to shift the core level binding energy (chemical shifts) in the SiO{sub 2} film. The wet etch rates with respect to plasma treatment cycle times were varied due to curing of the SiO{sub 2} network defects by Ar{sup +} ions and oxygen radicals. It is assumed that the angle between the bonds linking SiO{sub 4} tetrahedra is a critical point understanding the variation in wet etch rate of SiO{sub 2}. The features of wet etch rate of low temperature high quality SiO{sub 2} demonstrated lower than high temperature low-pressure chemical vapor deposition (LP-CVD) SiO{sub 2} values. In addition, the better step-coverage compared to that of the LP-CVD SiO{sub 2} film was achieved from the deep trench structure having the 20:1 aspect ratio. PE-ALD SiO{sub 2} with plasma treatment cycle showed excellent I–V properties with higher breakdown voltage compared to LP-CVD SiO{sub 2} and similar to the thermal SiO{sub 2} carrier transport plot.

  13. The structure and molecular parameters of camphene determined by Fourier transform microwave spectroscopy and quantum chemical calculations

    NASA Astrophysics Data System (ADS)

    Neeman, Elias M.; Dréan, Pascal; Huet, Thérèse R.

    2016-04-01

    Camphene (C10H16) is a bicyclic monoterpene of atmospheric interest. The structure of the unique stable conformer was optimized using density functional theory and ab initio calculations. The rotational spectrum of camphene was recorded in a supersonic jet expansion with a Fourier transform microwave spectrometer over the range 2-20 GHz. Signals from the parent species and from the ten 13C isotopomers were observed in natural abundance. The rotational and centrifugal distortion parameters were fitted to a Watson's Hamiltonian in the A-reduction. Complex line-shapes resulting from a magnetic interaction associated with the pairs of hydrogen nuclei in the methylene groups was observed and modeled. The rotational constants were used together with equilibrium structure to determine the r0 and the rm(1) gas-phase geometries of the carbon skeleton. The present work provides the first spectroscopic characterization of camphene in the gas phase.

  14. Comparative Study of Solid-Phase Crystallization of Amorphous Silicon Deposited by Hot-Wire CVD, Plasma-Enhanced CVD, and Electron-Beam Evaporation

    SciTech Connect

    Stradins, P.; Kunz, O.; Young, D. L.; Yan, Y.; Jones, K. M.; Xu, Y.; Reedy, R. C.; Branz, H. M.; Aberle, A. G.; Wang, Q.

    2007-01-01

    Solid-phase crystallization (SPC) rates are compared in amorphous silicon films prepared by three different methods: hot-wire chemical vapor deposition (HWCVD), plasma-enhanced chemical vapor deposition (PECVD), and electron-beam physical vapor deposition (e-beam). Random SPC proceeds approximately 5 and 13 times slower in PECVD and e-beam films, respectively, as compared to HWCVD films. Doping accelerates random SPC in e-beam films but has little effect on the SPC rate of HWCVD films. In contrast, the crystalline growth front in solid-phase epitaxy experiments propagates at similar speed in HWCVD, PECVD, and e-beam amorphous Si films. This strongly suggests that the observed large differences in random SPC rates originate from different nucleation rates in these materials while the grain growth rates are relatively similar. The larger grain sizes observed for films that exhibit slower random SPC support this suggestion.

  15. Photoinduced Charge Transfer at Metal Oxide/Oxide Interfaces Prepared with Plasma Enhanced Atomic Layer Deposition

    NASA Astrophysics Data System (ADS)

    Kaur, Manpuneet

    LiNbO3 and ZnO have shown great potential for photochemical surface reactions and specific photocatalytic processes. However, the efficiency of LiNbO3 is limited due to recombination or back reactions and ZnO exhibits a chemical instability in a liquid cell. In this dissertation, both materials were coated with precise thickness of metal oxide layers to passivate the surfaces and to enhance their photocatalytic efficiency. LiNbO 3 was coated with plasma enhanced atomic layer deposited (PEALD) ZnO and Al2O3, and molecular beam deposited TiO2 and VO2. On the other hand, PEALD ZnO and single crystal ZnO were passivated with PEALD SiO2 and Al2O3. Metal oxide/LiNbO3 heterostructures were immersed in aqueous AgNO3 solutions and illuminated with ultraviolet (UV) light to form Ag nanoparticle patterns. Alternatively, Al2O3 and SiO2/ZnO heterostructures were immersed in K3PO 4 buffer solutions and studied for photoelectrochemical reactions. A fundamental aspect of the heterostructures is the band alignment and band bending, which was deduced from in situ photoemission measurements. This research has provided insight to three aspects of the heterostructures. First, the band alignment at the interface of metal oxides/LiNbO 3, and Al2O3 or SiO2/ZnO were used to explain the possible charge transfer processes and the direction of carrier flow in the heterostructures. Second, the effect of metal oxide coatings on the LiNbO3 with different internal carrier concentrations was related to the surface photochemical reactions. Third is the surface passivation and degradation mechanism of Al2O 3 and SiO2 on ZnO was established. The heterostructures were characterized after stability tests using atomic force microscopy (AFM), scanning electron microscopy (SEM), and cross-section transmission electron microscopy (TEM). The results indicate that limited thicknesses of ZnO or TiO2 on polarity patterned LiNbO3 (PPLN) enhances the Ag+ photoinduced reduction process. ZnO seems more efficient

  16. Role of plasma enhanced atomic layer deposition reactor wall conditions on radical and ion substrate fluxes

    SciTech Connect

    Sowa, Mark J.

    2014-01-15

    Chamber wall conditions, such as wall temperature and film deposits, have long been known to influence plasma source performance on thin film processing equipment. Plasma physical characteristics depend on conductive/insulating properties of chamber walls. Radical fluxes depend on plasma characteristics as well as wall recombination rates, which can be wall material and temperature dependent. Variations in substrate delivery of plasma generated species (radicals, ions, etc.) impact the resulting etch or deposition process resulting in process drift. Plasma enhanced atomic layer deposition is known to depend strongly on substrate radical flux, but film properties can be influenced by other plasma generated phenomena, such as ion bombardment. In this paper, the chamber wall conditions on a plasma enhanced atomic layer deposition process are investigated. The downstream oxygen radical and ion fluxes from an inductively coupled plasma source are indirectly monitored in temperature controlled (25–190 °C) stainless steel and quartz reactors over a range of oxygen flow rates. Etch rates of a photoresist coated quartz crystal microbalance are used to study the oxygen radical flux dependence on reactor characteristics. Plasma density estimates from Langmuir probe ion saturation current measurements are used to study the ion flux dependence on reactor characteristics. Reactor temperature was not found to impact radical and ion fluxes substantially. Radical and ion fluxes were higher for quartz walls compared to stainless steel walls over all oxygen flow rates considered. The radical flux to ion flux ratio is likely to be a critical parameter for the deposition of consistent film properties. Reactor wall material, gas flow rate/pressure, and distance from the plasma source all impact the radical to ion flux ratio. These results indicate maintaining chamber wall conditions will be important for delivering consistent results from plasma enhanced atomic layer deposition

  17. Spoof-like plasmonic behavior of plasma enhanced atomic layer deposition grown Ag thin films

    SciTech Connect

    Prokes, S. M.; Glembocki, O. J.; Cleveland, Erin; Caldwell, Josh D.; Foos, Edward; Niinistoe, Jaakko; Ritala, Mikko

    2012-01-30

    The plasmonic behavior of Ag thin films produced by plasma enhanced atomic layer deposition (PEALD) has been investigated. We show that as-deposited flat PEALD Ag films exhibit unexpected plasmonic properties, and the plasmonic enhancement can differ markedly, depending on the microstructure of the Ag film. Electromagnetic field simulations indicate that this plasmonic behavior is due to air gaps that are an inherent property of the mosaic-like microstructure of the PEALD-grown Ag film, suggesting that this is a metamaterial with behavior very similar to what would be expected in spoof plasmonics where gaps are fabricated in films to create plasmonic-like resonances.

  18. Chemically coupled microwave and ultrasonic pre-hydrolysis of pulp and paper mill waste-activated sludge: effect on sludge solubilisation and anaerobic digestion.

    PubMed

    Tyagi, Vinay Kumar; Lo, Shang-Lien; Rajpal, Ankur

    2014-05-01

    The effects of alkali-enhanced microwave (MW; 50-175 °C) and ultrasonic (US) (0.75 W/mL, 15-60 min) pretreatments, on solubilisation and subsequent anaerobic digestion efficiency of pulp and paper mill waste-activated sludge, were investigated. Improvements in total chemical oxygen demand and volatile suspended solids (VSS) solubilisation were limited to 33 and 39 % in MW pretreatment only (175 °C). It reached 78 and 66 % in combined MW-alkali pretreatment (pH 12 + 175 °C), respectively. Similarly, chemical oxygen demand and VSS solubilisation were 58 and 37 % in US pretreatment alone (60 min) and it improved by 66 and 49 % after US-alkali pretreatment (pH 12 + 60 min), respectively. The biogas yield for US 60 min-alkali (pH 12)-pretreated sludge was significantly improved by 47 and 20 % over the control and US 60 reactors, respectively. The biogas generation for MW (150 °C)-alkali (pH 12)-pretreated sludge was only 6.3 % higher than control; however, it was 8.3 % lower than the MW (150 °C) reactor, which was due to the inhibition of anaerobic activity under harsh thermal-alkali treatment condition. PMID:24488518

  19. Microwave-assisted catalytic fast pyrolysis of biomass for bio-oil production using chemical vapor deposition modified HZSM-5 catalyst.

    PubMed

    Zhang, Bo; Zhong, Zhaoping; Chen, Paul; Ruan, Roger

    2015-12-01

    Chemical vapor deposition with tetra-ethyl-orthosilicate as the modifier was applied to deposit the external acid sites of HZSM-5, and the modified HZSM-5 samples were used for the microwave-assisted catalytic fast pyrolysis (MACFP) of biomass for bio-oil production. The experimental results showed that the external acid sites of HZSM-5 decreased significantly when SiO2 deposited amount increased from 0% to 5.9%. For product distribution, the coke yield decreased, the oil fraction yield decreased at first and then increased, and the yields of water and gas first increased and then decreased over the range of SiO2 deposited amount studied. For chemical compositions in oil fraction, the relative contents of aliphatic hydrocarbons, aromatic hydrocarbons and oxygen-containing aromatic compounds first increased to maximum values and then decreased, while the relative content of oxygen-containing aliphatic compounds first decreased and then increased with increasing SiO2 deposited amount. PMID:26318925

  20. Probing Chemical Dynamics with High Resolution Spectroscopy: Chirped-Pulse Fourier-Transform Microwave Spectroscopy Coupled with a Hyperthermal Source

    NASA Astrophysics Data System (ADS)

    Kidwell, Nathanael M.; Vara, Vanesa Vaquero; Mehta-Hurt, Deepali N.; Korn, Joseph A.; Dian, Brian C.; Zwier, Timothy S.

    2013-06-01

    Chirped-pulse Fourier-transform microwave (CP-FTMW) spectroscopy has proven to be a well-suited technique for the rapid study and spectral identification of molecular species due to its ultra-broadband capability and excellent specificity to molecular structure from high-resolution rotational transitions. This talk will describe initial results from combining CP-FTMW detection with a hyperthermal nozzle source. This source has the advantage of producing traditionally high thermal product densities in a pulsed supersonic expansion with a short contact time compared to conventional pyrolysis. Used in tandem, CP-FTMW spectroscopy and the hyperthermal nozzle in a supersonic expansion is a powerful method that can produce and detect changes in conformation and isomer populations, and characterize important intermediates on the reaction surface of a precursor. In particular, we show its utility to provide insight into the unimolecular decomposition pathways of model lignin compounds and alternative biofuels. Preliminary results will be discussed including spectroscopic evidence for formation of cyclopentadienone in the pyrolysis of a lignin derivative guaiacol (o-methoxyphenol).

  1. The Structure and Molecular Parameters of Camphene Determined by Fourier Transform Microwave Spectroscopy and Quantum Chemical Calculations

    NASA Astrophysics Data System (ADS)

    Neeman, Elias M.; Dréan, Pascal; Huet, T. R.

    2016-06-01

    The emission of volatile organic compounds, from plants has strong revelance for plant physiology, plant ecology and atmospheric chemistry. Camphene (C10H16) is a bicyclic monoterpene which is emitted in the atmosphere by biogenic sources. The structure of the unique stable conformer was optimized using density functional theory and ab initio calculations. The rotational spectrum of camphene was recorded in a supersonic jet expansion with a Fourier transform microwave spectrometer over the range 2-20 GHz. Signals from the parent species and from the ten 13C isotopomers were observed in natural abundance. The rotational and centrifugal distortion parameters were fitted to a Watson's Hamiltonian in the A-reduction. A magnetic hyperfine structure associated with the pairs of hydrogen nuclei in the methylene groups was observed and modeled.The rotational constants coupled to the equilibrium structure calculations were used to determine the r_0 and the r_m(1) gas-phase geometries of the carbon skeleton. The present work provides the first spectroscopic characterization of camphene in the gas phase and these results are also relevant for ozonolysis kinetics study through Criegee intermediates. R. Baraldi, F. Rapparini, O. Facini, D. Spano and P. Duce, Journal of Mediterranean Ecology, Vol.6, No.1, (2005). A. Bracho-Nunez, N. M. Knothe, S. Welter, M. Staudt, W. R. Costa, M. A. R. Liberato, M. T. F. Piedade, and J. Kesselmeier Biogeosciences, 10, 5855-5873, (2013). Minna Kivimäenpää, Narantsetseg Magsarjav, Rajendra Ghimire, Juha-Matti Markkanen, Juha Heijari, Martti Vuorinen and Jarmo K. Holopainen, Atmospheric Environment, 60, 477-485, (2012). R.C. de M. Oliveira and G. F. Bauerfeldt, J. Phys. Chem. A, 119 2802-2812 (2015)

  2. Microwave detector

    DOEpatents

    Meldner, Heiner W.; Cusson, Ronald Y.; Johnson, Ray M.

    1986-01-01

    A microwave detector (10) is provided for measuring the envelope shape of a microwave pulse comprised of high-frequency oscillations. A biased ferrite (26, 28) produces a magnetization field flux that links a B-dot loop (16, 20). The magnetic field of the microwave pulse participates in the formation of the magnetization field flux. High-frequency insensitive means (18, 22) are provided for measuring electric voltage or current induced in the B-dot loop. The recorded output of the detector is proportional to the time derivative of the square of the envelope shape of the microwave pulse.

  3. Microwave detector

    DOEpatents

    Meldner, H.W.; Cusson, R.Y.; Johnson, R.M.

    1985-02-08

    A microwave detector is provided for measuring the envelope shape of a microwave pulse comprised of high-frequency oscillations. A biased ferrite produces a magnetization field flux that links a B-dot loop. The magnetic field of the microwave pulse participates in the formation of the magnetization field flux. High-frequency insensitive means are provided for measuring electric voltage or current induced in the B-dot loop. The recorded output of the detector is proportional to the time derivative of the square of the envelope shape of the microwave pulse.

  4. Fabrication of metallic single electron transistors featuring plasma enhanced atomic layer deposition of tunnel barriers

    NASA Astrophysics Data System (ADS)

    Karbasian, Golnaz

    The continuing increase of the device density in integrated circuits (ICs) gives rise to the high level of power that is dissipated per unit area and consequently a high temperature in the circuits. Since temperature affects the performance and reliability of the circuits, minimization of the energy consumption in logic devices is now the center of attention. According to the International Technology Roadmaps for Semiconductors (ITRS), single electron transistors (SETs) hold the promise of achieving the lowest power of any known logic device, as low as 1x10-18 J per switching event. Moreover, SETs are the most sensitive electrometers to date, and are capable of detecting a fraction of an electron charge. Despite their low power consumption and high sensitivity for charge detection, room temperature operation of these devices is quite challenging mainly due to lithographical constraints in fabricating structures with the required dimensions of less than 10 nm. Silicon based SETs have been reported to operate at room temperature. However, they all suffer from significant variation in batch-to-batch performance, low fabrication yield, and temperature-dependent tunnel barrier height. In this project, we explored the fabrication of SETs featuring metal-insulator-metal (MIM) tunnel junctions. While Si-based SETs suffer from undesirable effect of dopants that result in irregularities in the device behavior, in metal-based SETs the device components (tunnel barrier, island, and the leads) are well-defined. Therefore, metal SETs are potentially more predictable in behavior, making them easier to incorporate into circuits, and easier to check against theoretical models. Here, the proposed fabrication method takes advantage of unique properties of chemical mechanical polishing (CMP) and plasma enhanced atomic layer deposition (PEALD). Chemical mechanical polishing provides a path for tuning the dimensions of the tunnel junctions, surpassing the limits imposed by electron beam

  5. Microwave and Quantum Chemical Study of Intramolecular Hydrogen Bonding in 2-Propynylhydrazine (HC≡CCH2NHNH2).

    PubMed

    Møllendal, Harald; Samdal, Svein; Guillemin, Jean-Claude

    2016-06-16

    The microwave spectrum of 2-propynylhydrazine (HC≡CCH2NHNH2) was investigated in the 23-124 GHz spectral interval. The spectra of two conformers denoted I and II were assigned. I is the lower-energy form, and relative intensity measurements yielded an internal energy difference of 3.0(4) kJ/mol between I and II. The spectra of the ground and five vibrationally excited states were assigned for I, whereas only the spectrum of the ground vibrational state was assigned for II. Both I and II are each stabilized simultaneously by two intramolecular hydrogen bonds. The first of these hydrogen bonds is formed between the hydrogen atom of the -NH- part of the hydrazino group, and the second internal hydrogen bond is formed between one of the hydrogen atoms of the -NH2 part. The π-electrons of the triple bond is thus shared by these two hydrogen atoms. The shortest contact between a hydrogen atom of the hydrazino group and the π-electrons of the ethynyl group is found in lower-energy conformer I. The conformational properties of 2-propynylhydrazine were explored by MP2/cc-pVTZ and CCSD/cc-pVQZ calculations. The CCSD method predicts that seven rotameric forms exist for this compound. Five of these rotamers are stabilized by internal hydrogen bonding. The simultaneous sharing of the π-electrons of the triple bond by two hydrogen atoms occurs only in Conformers I and II, which are predicted to be the two forms with the lowest energies, with I 2.52 kJ/mol lower in energy than II. The effective rotational constants of the ground vibrational states of I and II were predicted by a combination of MP2 and CCSD calculations, whereas centrifugal distortion constants and vibration-rotation constants were calculated by the MP2 method. The theoretical spectroscopic constants are compared with the experimental counterparts. It is concluded that more refined calculations are necessary to obtain complete agreement. PMID:27196111

  6. Formation of Ru nanocrystals by plasma enhanced atomic layer deposition for nonvolatile memory applications

    SciTech Connect

    Yim, Sung-Soo; Lee, Moon-Sang; Kim, Ki-Su; Kim, Ki-Bum

    2006-08-28

    The formation of Ru nanocrystals is demonstrated on a SiO{sub 2} substrate by plasma enhanced atomic layer deposition using diethylcyclopentadienyl ruthenium and NH{sub 3} plasma. The island growth of Ru was observed at the initial stages of the film formation up to a nominal thickness of 11.1 nm. A maximum Ru nanocrystal spatial density of 9.7x10{sup 11} /cm{sup 2} was achieved with an average size of 3.5 nm and standard deviation of the size of 20%. Electron charging/discharging effect in the Ru nanocrystals is demonstrated by measuring the flatband voltage shift in the capacitance-voltage measurement of metal-oxide-semiconductor memory capacitor structure.

  7. RF plasma enhanced MOCVD of yttria stabilized zirconia thin films using octanedionate precursors and their characterization

    NASA Astrophysics Data System (ADS)

    Chopade, S. S.; Nayak, C.; Bhattacharyya, D.; Jha, S. N.; Tokas, R. B.; Sahoo, N. K.; Deo, M. N.; Biswas, A.; Rai, Sanjay; Thulasi Raman, K. H.; Rao, G. M.; Kumar, Niranjan; Patil, D. S.

    2015-11-01

    Yttria stabilized zirconia thin films have been deposited by RF plasma enhanced MOCVD technique on silicon substrates at substrate temperature of 400 °C. Plasma of precursor vapors of (2,7,7-trimethyl-3,5-octanedionate) yttrium (known as Y(tod)3), (2,7,7-trimethyl-3,5-octanedionate) zirconium (known as Zr(tod)4), oxygen and argon gases is used for deposition. To the best of our knowledge, plasma assisted MOCVD of YSZ films using octanediaonate precursors have not been reported in the literature so far. The deposited films have been characterized by GIXRD, FTIR, XPS, FESEM, AFM, XANES, EXAFS, EDAX and spectroscopic ellipsometry. Thickness of the films has been measured by stylus profilometer while tribological property measurement has been done to study mechanical behavior of the coatings. Characterization by different techniques indicates that properties of the films are dependent on the yttria content as well as on the structure of the films.

  8. Chemical characteristics of different parts of Coreopsis tinctoria in China using microwave-assisted extraction and high-performance liquid chromatography followed by chemometric analysis.

    PubMed

    Lam, Shing-Chung; Liu, Xin; Chen, Xian-Qiang; Hu, De-Jun; Zhao, Jing; Long, Ze-Rong; Fan, Bing; Li, Shao-Ping

    2016-08-01

    Coreopsis tinctoria, also called "snow chrysanthemum" in China, is a flower tea material that has been reported to possess excellent pharmacological properties such as antioxidant and antidiabetic activities. The chemical characteristics of different parts (flowers, buds, seeds, stems, and leaves) of C. tinctoria were investigated based on microwave-assisted extraction and the simultaneous determination of 13 major active compounds by high-performance liquid chromatography, including taxifolin-7-O-glucoside, chlorogenic acid, (R/S)-flavanomarein, isocoreopsin, quercetagetin-7-O-glucoside, isookanin, 5,7,3',5'-tetrahydroxyflavanone-7-O-glucoside, marein, 3,5-dicaffeoylquinic acid, coreopsin, okanin, 5,7,3',5'-tetrahydroxyflavanone, and N(1) ,N(5) ,N(10) ,N(14) -tetra-p-coumaroylspermine. Chemometric analysis based on the contents of investigated compounds from 13 samples showed that C. tinctoria and the related flower tea materials, Chrysanthemum morifolium cv "Hangju" and "Gongju," were in different clusters, and different parts (flowers, buds, seeds, stems, and leaves) of C. tinctoria were obviously different. This study is helpful for the quality control and pharmacological evaluation of different parts from C. tinctoria and its related products. PMID:27291468

  9. Automated radioanalytical system incorporating microwave-assisted sample preparation, chemical separation, and online radiometric detection for the monitoring of total 99Tc in nuclear waste processing streams.

    PubMed

    Egorov, Oleg B; O'Hara, Matthew J; Grate, Jay W

    2012-04-01

    An automated fluidic instrument is described that rapidly determines the total (99)Tc content of aged nuclear waste samples, where the matrix is chemically and radiologically complex and the existing speciation of the (99)Tc is variable. The monitor links microwave-assisted sample preparation with an automated anion exchange column separation and detection using a flow-through solid scintillator detector. The sample preparation steps acidify the sample, decompose organics, and convert all Tc species to the pertechnetate anion. The column-based anion exchange procedure separates the pertechnetate from the complex sample matrix, so that radiometric detection can provide accurate measurement of (99)Tc. We developed a preprogrammed spike addition procedure to automatically determine matrix-matched calibration. The overall measurement efficiency that is determined simultaneously provides a self-diagnostic parameter for the radiochemical separation and overall instrument function. Continuous, automated operation was demonstrated over the course of 54 h, which resulted in the analysis of 215 samples plus 54 hly spike-addition samples, with consistent overall measurement efficiency for the operation of the monitor. A sample can be processed and measured automatically in just 12.5 min with a detection limit of 23.5 Bq/mL of (99)Tc in low activity waste (0.495 mL sample volume), with better than 10% RSD precision at concentrations above the quantification limit. This rapid automated analysis method was developed to support nuclear waste processing operations planned for the Hanford nuclear site.

  10. Growth of graphene on Cu foils by microwave plasma chemical vapor deposition: The effect of in-situ hydrogen plasma post-treatment

    NASA Astrophysics Data System (ADS)

    Fang, Liping; Yuan, Wen; Wang, Bing; Xiong, Ying

    2016-10-01

    Microwave plasma chemical vapor deposition (MPCVD) is a promising method for the large-scale production of high-quality graphene. The aim of this work is to investigate the effect of in-situ hydrogen plasma post-treatment on the MPCVD-grown graphene films. By simply varying the duration time of in-situ hydrogen plasma, surface morphology, number of layers and defect density of as-grown graphene films can be manipulated. The role of hydrogen plasma can be proposed from our observations, promoting to further grow graphene films in the early stage and consequently acting as an etching agent to thin graphene films in the later stage. On the basis of above mechanism, monolayer graphene films with low defect density and smooth surface can be grown by adjusting the times of the growing step and the plasma post-treatment step. This additional in-situ hydrogen plasma post-treatment may be significant for growing well-defined graphene films with controllable defects and number of layers.

  11. Technical and Engineering Feasibility Study of the Vitrification of Plutonium-Bearing Sludges at the Krasnoyarsk Mining and Chemical Combine by Means of Microwave Heating

    SciTech Connect

    Revenko, Y.A.; Kudinov, K.G.; Tretyakov, A.A.; Vassilyev, A.V.; Borisov, G.B.; Nazarov, A.V.; Aloy, A.S.; Shvedov, A.A.; Gusakov, B.V.; Jardine, L.J.

    2000-03-03

    This engineering feasibility study compared three possible technical options and their economic viability of processing plutonium-bearing sludges containing 0.6 MT of weapons-grade Pu accumulated at the Mining and Chemical Combine (MCC) at Krasnoyarsk. In Option 1, the baseline, the sludges are processed by extraction and purification of plutonium for storage using existing technologies, and the non-soluble radioactive residues generated in these processes undergo subsequent solidification by cementation. Options 2 and 3 involve the direct immobilization of plutonium-bearing sludges into a solid matrix (without any Pu extraction) using a microwave solidification process in a metal crucible to produce a glass, which is boron-silicate in Option 2 and phosphate glass in Option 3. In all three options, the solid radioactive waste end products will be placed in storage for eventual geologic disposal. Immobilization of residual plutonium into glass-like matrices provides both safer storage over the lifetime of the radionuclides and greater security against unauthorized access to stored materials than does the extraction and concentration of PuO{sub 2}, supporting our efforts toward non-proliferation of fissile materials. Although immobilization in boron-silicate glass appears now to be marginally preferable compared to the phosphate glass option, a number of technical issues remain to be assessed by further study to determine the preferable immobilization option.

  12. Chemical Synthesis and High Resolution Spectroscopic Characterization of 1-AZA-ADAMANTANE-4-ONE C_9H13NO from the Microwave to the Infrared

    NASA Astrophysics Data System (ADS)

    Pirali, Olivier; Goubet, Manuel; Boudon, Vincent; D'accolti, Lucia; Annese, Cosimo; Fusco, Caterina

    2016-06-01

    We have synthesized 1-aza-adamantane-4-one (C_9H13NO) starting from commercial 1,4-cyclohexanedionemonoethylene acetal and tosylmethylisocianide and following a procedure described in details in the literature. The high degree of sample purity was demonstrated by gas chromatography and mass spectrometric measurements, and its structure evidenced by 1H and 13C NMR spectroscopy. We present a thorough spectroscopic characterization of this molecule by gas phase vibrational and rotational spectroscopy. Accurate vibrational frequencies have been determined by infrared and far-infrared spectra. The pure rotational spectrum of the molecule has been recorded both by cavity-based Fourier-transform microwave spectroscopy in the 2-20 GHz region, by supersonically expanding the vapor pressure of the warm sample, and by room-temperature absorption spectroscopy in the 140-220 GHz range. Quantum-chemical calculations have enabled a fast analysis of the spectra. Accurate sets of rotational and centrifugal distorsion parameters of 1-aza-adamantane-4-one in its ground state and five vibrationally excited states have been derived from these measurements. Black, R. M. Synthesis, 1981, 829

  13. Automated Radioanalytical System Incorporating Microwave-Assisted Sample Preparation, Chemical Separation, and Online Radiometric Detection for the Monitoring of Total 99Tc in Nuclear Waste Processing Streams

    SciTech Connect

    Egorov, Oleg; O'Hara, Matthew J.; Grate, Jay W.

    2012-04-03

    An automated fluidic instrument is described that rapidly determines the total 99Tc content of aged nuclear waste samples, where the matrix is chemically and radiologically complex and the existing speciation of the 99Tc is variable. The monitor links microwave-assisted sample preparation with an automated anion exchange column separation and detection using a flow-through solid scintillator detector. The sample preparation steps acidify the sample, decompose organics, and convert all Tc species to the pertechnetate anion. The column-based anion exchange procedure separates the pertechnetate from the complex sample matrix, so that radiometric detection can provide accurate measurement of 99Tc. We developed a preprogrammed spike addition procedure to automatically determine matrix-matched calibration. The overall measurement efficiency that is determined simultaneously provides a self-diagnostic parameter for the radiochemical separation and overall instrument function. Continuous, automated operation was demonstrated over the course of 54 h, which resulted in the analysis of 215 samples plus 54 hly spike-addition samples, with consistent overall measurement efficiency for the operation of the monitor. A sample can be processed and measured automatically in just 12.5 min with a detection limit of 23.5 Bq/mL of 99Tc in low activity waste (0.495 mL sample volume), with better than 10% RSD precision at concentrations above the quantification limit. This rapid automated analysis method was developed to support nuclear waste processing operations planned for the Hanford nuclear site.

  14. Microwave-assisted chemical-vapor-induced in situ polymerization of polyaniline nanofibers on graphite electrode for high-performance supercapacitor.

    PubMed

    Li, Xiaoqin; Yang, Li; Lei, Ying; Gu, Li; Xiao, Dan

    2014-11-26

    Polyaniline (PANI) nanofibers-coated graphite electrode is fabricated by microwave-assisted chemical vapor induced in situ polymerization in the presence of ammonium persulfate. The microstructure and electrochemical performance of the as-prepared nanofibers are investigated in detail. The obtained PANI nanofibers at the optimum volume ratio of 4% aniline, with some protuberances on the surface and the diameter from 50 to 100 nm, are coated onto the surface of graphite electrode. The PANI-coated graphite electrodes display the best electrochemical performance in 6 M H2SO4 electrolyte, including a large reversible capacity of 2136 F g(-1) at the current density of 1 A g(-1) and excellent rate capability. In particular, The PANI-coated graphite electrode exhibits a long cycle life by retaining 91% of the initial specific capacitance after 1000 cycles. More importantly, a symmetric supercapacitor was fabricated using PANI-coated graphite electrode, showing maximum energy density and power density of 24 Wh kg(-1) and 6000 W kg(-1), respectively. PMID:25361469

  15. Microwave Plasma-Activated Chemical Vapor Deposition of Nitrogen-Doped Diamond. I. N2/H2 and NH3/H2 Plasmas.

    PubMed

    Truscott, Benjamin S; Kelly, Mark W; Potter, Katie J; Johnson, Mack; Ashfold, Michael N R; Mankelevich, Yuri A

    2015-12-31

    We report a combined experimental/modeling study of microwave activated dilute N2/H2 and NH3/H2 plasmas as a precursor to diagnosis of the CH4/N2/H2 plasmas used for the chemical vapor deposition (CVD) of N-doped diamond. Absolute column densities of H(n = 2) atoms and NH(X(3)Σ(-), v = 0) radicals have been determined by cavity ring down spectroscopy, as a function of height (z) above a molybdenum substrate and of the plasma process conditions, i.e., total gas pressure p, input power P, and the nitrogen/hydrogen atom ratio in the source gas. Optical emission spectroscopy has been used to investigate variations in the relative number densities of H(n = 3) atoms, NH(A(3)Π) radicals, and N2(C(3)Πu) molecules as functions of the same process conditions. These experimental data are complemented by 2-D (r, z) coupled kinetic and transport modeling for the same process conditions, which consider variations in both the overall chemistry and plasma parameters, including the electron (Te) and gas (T) temperatures, the electron density (ne), and the plasma power density (Q). Comparisons between experiment and theory allow refinement of prior understanding of N/H plasma-chemical reactivity, and its variation with process conditions and with location within the CVD reactor, and serve to highlight the essential role of metastable N2(A(3)Σ(+)u) molecules (formed by electron impact excitation) and their hitherto underappreciated reactivity with H atoms, in converting N2 process gas into reactive NHx (x = 0-3) radical species. PMID:26593853

  16. A microwave and quantum chemical study of (trifluoromethyl)thiolacetic acid, CF3COSH, a compound with an unusual double-minimum potential.

    PubMed

    Møllendal, Harald

    2007-03-15

    The microwave spectra of CF3COSH and one deuterated species, CF3COSD, have been investigated by Stark spectroscopy in the 40-80 GHz spectral range at -78 degrees C and by quantum chemical calculations using the HF, MP2, and B3LYP procedures with the aug-cc-pVTZ basis set. The microwave spectrum of one conformer was assigned. The conformations of the COSH and CF3 groups determine the overall conformation of this rotamer. It was not possible experimentally to find precise values for the associated dihedral angles, but it appears that the COSH group is distorted somewhat from an exact synperiplanar arrangement, while the CF3 group is rotated several degrees from a position where one of the C-F bonds eclipses the C-S bond. This rotamer tunnels through a transition state that has an exact Cs symmetry, where one C-F bond eclipses the C-S bond and the COSH group is synperiplanar. Relative intensity measurements yielded 28(15) cm-1 for the tunneling frequency. Two additional vibrationally excited states were assigned and their frequencies determined to be 94(30) and 184(40) cm-1, respectively. The theoretical calculations predict conflicting conformational properties for the identified rotamer. The B3LYP calculations find an exact synperiplanar arrangement for the COSH group, whereas the MP2 and HF calculations predict that this group is distorted slightly form this conformation. One of the C-F bonds is found to eclipse the C-S bond in the B3LYP calculations, while the MP2 calculations predict a slight deviation and the HF calculations a large deviation from the eclipsed position, as the corresponding F-C-C-S dihedral angle is calculated to be 0.9 degrees (MP2) and 27.6 degrees (HF). All three methods of calculations predict that a second rotamer coexists with the identified form but is several kJ/mol less stable. The spectrum of this form, which has overall Cs symmetry and is predicted to have an antiperiplanar conformation for the COSH group with one of the C-F bonds

  17. A microwave and quantum chemical study of (trifluoromethyl)thiolacetic acid, CF3COSH, a compound with an unusual double-minimum potential.

    PubMed

    Møllendal, Harald

    2007-03-15

    The microwave spectra of CF3COSH and one deuterated species, CF3COSD, have been investigated by Stark spectroscopy in the 40-80 GHz spectral range at -78 degrees C and by quantum chemical calculations using the HF, MP2, and B3LYP procedures with the aug-cc-pVTZ basis set. The microwave spectrum of one conformer was assigned. The conformations of the COSH and CF3 groups determine the overall conformation of this rotamer. It was not possible experimentally to find precise values for the associated dihedral angles, but it appears that the COSH group is distorted somewhat from an exact synperiplanar arrangement, while the CF3 group is rotated several degrees from a position where one of the C-F bonds eclipses the C-S bond. This rotamer tunnels through a transition state that has an exact Cs symmetry, where one C-F bond eclipses the C-S bond and the COSH group is synperiplanar. Relative intensity measurements yielded 28(15) cm-1 for the tunneling frequency. Two additional vibrationally excited states were assigned and their frequencies determined to be 94(30) and 184(40) cm-1, respectively. The theoretical calculations predict conflicting conformational properties for the identified rotamer. The B3LYP calculations find an exact synperiplanar arrangement for the COSH group, whereas the MP2 and HF calculations predict that this group is distorted slightly form this conformation. One of the C-F bonds is found to eclipse the C-S bond in the B3LYP calculations, while the MP2 calculations predict a slight deviation and the HF calculations a large deviation from the eclipsed position, as the corresponding F-C-C-S dihedral angle is calculated to be 0.9 degrees (MP2) and 27.6 degrees (HF). All three methods of calculations predict that a second rotamer coexists with the identified form but is several kJ/mol less stable. The spectrum of this form, which has overall Cs symmetry and is predicted to have an antiperiplanar conformation for the COSH group with one of the C-F bonds

  18. Microwave detector

    SciTech Connect

    Meldner, H.W.; Cusson, R.Y.; Johnson, R.M.

    1986-12-02

    A detector is described for measuring the envelope shape of a microwave pulse comprised of high-frequency oscillations, the detector comprising: a B-dot loop linking the magnetic field of the microwave pulse; a biased ferrite, that produces a magnetization field flux that links the B-dot loop. The ferrite is positioned within the B-dot loop so that the magnetic field of the microwave pulse interacts with the ferrite and thereby participates in the formation of the magnetization field flux; and high-frequency insensitive means for measuring electric voltage or current induced in the B-dot loop.

  19. Rotational Spectroscopy and Quantum Chemical Calculations of a Fruit Ester: the Microwave Spectrum of n-BUTYL Acetate

    NASA Astrophysics Data System (ADS)

    Attig, T.; Sutikdja, L. W.; Kannengiesser, R.; Stahl, W.; Kleiner, I.

    2013-06-01

    In the course of our studies on a number of aliphatic ester molecules and natural substances, the rotational spectrum of n-butyl acetate (CH_{3}-COO-C_4H_9) has been recorded for the first time in the 10-13.5 GHz frequency range, using the MB-FTMW spectrometer in Aachen, with an instrumental uncertainty of a few kHz for unblended lines. Three conformers were observed. The main conformer with C_{1} symmetry has a strong spectrum. The other two conformers have C_{s} and C_{1} symmetries. Their intensities are considerably weaker. The quantum chemical calculations of specific conformers were carried out at the MP2/6-311++G(d,p) level, and for the main conformer different levels of theory were calculated. To analyze the internal rotation of the acetyl methyl groups the codes XIAM (based on the Combined Axis Method) and BELGI (based on the Rho-Axis-Method) were used to model the large amplitude motion. The molecular structures of the three conformers were determined and the values of the experimental rotational constants were compared with those obtained by ab initio methods. For all conformers torsional barriers of approximately 100 cm^{-1} were found. This study is part of a larger project which aims at determining the lowest energy conformers and their structures of organic esters and ketones which are of interest for flavour or perfume synthetic applications. Project partly supported by the PHC PROCOPE 25059YB

  20. Microwave Supported Treatment of Sewage Sludge

    NASA Astrophysics Data System (ADS)

    Janíček, František; Perný, Milan; Šály, Vladimír; Giemza, Markus; Hofmann, Peter

    2016-07-01

    This work is focused on microwave treatment of sewage sludge. The aim of our experiments was to investigate the impact of microwave radiation upon different sewage sludge parameters such as concentration of nitrates and nitrites, phosphates, COD (Chemical Oxygen Demand), SVI (Sludge Volume Index) and the microscopic structure of sludge. The experiments with microwave irradiation of sewage sludge indicate that moderate microwave power causes visible effects on the chemical, physical and biological properties of the sludge. The calculation of profitability and energy efficiency is also presented.

  1. Electrical properties of DLC- (n, p)-Si heterojunctions fabricated by ion-assisted plasma-enhanced deposition and pulsed laser deposition methods

    NASA Astrophysics Data System (ADS)

    Panosyan, Zhosef R.; Voskanyan, Serjik S.; Yengibaryan, Yerem V.; Avjyan, Karapet E.; Khachatryan, Ashot M.; Matevosyan, Lenrik A.

    2010-10-01

    Electrical characteristics of DLC- (n, p)-Si heterojunctions fabricated by ion-assisted plasma-enhanced deposition and pulsed laser deposition methods were investigated. The mechanisms of carrier flow across the fabricated junctions were analyzed. Keywords: ion-assisted plasma-enhanced deposition, pulsed laser deposition, DLC- (n, p)-Si heterojunctions, currentvoltage & capacitance- voltage characteristics.

  2. Microwave generator

    DOEpatents

    Kwan, T.J.T.; Snell, C.M.

    1987-03-31

    A microwave generator is provided for generating microwaves substantially from virtual cathode oscillation. Electrons are emitted from a cathode and accelerated to an anode which is spaced apart from the cathode. The anode has an annular slit there through effective to form the virtual cathode. The anode is at least one range thickness relative to electrons reflecting from the virtual cathode. A magnet is provided to produce an optimum magnetic field having the field strength effective to form an annular beam from the emitted electrons in substantial alignment with the annular anode slit. The magnetic field, however, does permit the reflected electrons to axially diverge from the annular beam. The reflected electrons are absorbed by the anode in returning to the real cathode, such that substantially no reflexing electrons occur. The resulting microwaves are produced with a single dominant mode and are substantially monochromatic relative to conventional virtual cathode microwave generators. 6 figs.

  3. Gas-Phase Molecular Structure of Nopinone and its Water Complexes Studied by Microwave Fourier Transform Spectroscopy and Quantum Chemical Calculations

    NASA Astrophysics Data System (ADS)

    Neeman, Elias M.; Aviles Moreno, Juan-Ramon; Huet, T. R.

    2016-06-01

    Several monoterpenes and terpenoids are biogenic volatile organic compounds which are emitted in the atmosphere, where they react with OH, O_3 and NO_x etc. to give rise to several oxidation and degradation products. Their decomposition products are a major source of secondray organic aerosol (SOA). Spectroscopic information on these atmospheric species is still very scarce. The rotational spectrum of nopinone (C_9H14O) one of the major oxidation products of β-pinene, and of its water complexes were recorded in a supersonic jet expansion with a Fourier transform microwave spectrometer over the range 2-20 GHz. The structure of the unique stable conformer of the nopinone was optimized using density functional theory and ab initio calculations. Signals from the parent species and from the 13C and 18O isotopomers were observed in natural abundance. A magnetic hyperfine structure associated with the pairs of hydrogen nuclei in the methylene groups was observed and modeled. The structures of several conformers of the nopinone-water complexes with up to three molecules of water were optimized using density functional theory and ab initio calculations. The energetically most stable of calculated conformers were observed and anlyzed. The rotational and centrifugal distortion parameters were fitted to a Watson's Hamiltonian in the A-reduction. The present work provides the first spectroscopic characterization of nopinone and its water complexes in the gas phase. A. Calogirou, B.R. Larsen, and D. Kotzias, Atmospheric Environment, 33, 1423-1439, (1999) P. Paasonen et al., Nat. Geosci., 6, 438-442 (2013) D. Zhang and R. Zhang The Journal of Chemical Physics, 122, 114308, (2005) R. Winterhalter et al. Journal of Atmospheric Chemistry, 35, 165-197, (2000)

  4. Microwave annealing

    NASA Astrophysics Data System (ADS)

    Lee, Yao-Jen; Cho, T.-C.; Chuang, S.-S.; Hsueh, F.-K.; Lu, Y.-L.; Sung, P.-J.; Chen, S.-J.; Lo, C.-H.; Lai, C.-H.; Current, Michael I.; Tseng, T.-Y.; Chao, T.-S.; Yang, F.-L.

    2012-11-01

    Microwave annealing of dopants in Si has been reported to produce highly activated junctions at temperatures far below those needed for comparable results using conventional thermal processes. However the details of the kinetics and mechanisms for microwave annealing are far from well understood. Comparisons between MWA and RTA of dopants in implanted Si has been investigated to produce highly activated junctions. First, As, 31P, and BF 2 implants in Si substrate were annealed by MWA at temperatures below 550 °C.

  5. New instrumentation for the comprehension of chemical reactions under microwave and classical heating with the aid of a wide frequency band dielectric spectroscopy

    NASA Astrophysics Data System (ADS)

    Chevalier, S.; Meyer, O.; Weil, R.; Fourrierlamer, A.; Petit, A.; Loupy, A.; Maurel, F.

    2001-09-01

    An instrumentation system for measuring wide frequency band complex permittivity of a sample submitted to a microwave irradiation has been optimized in order to allow macroscopic temperature measurements. The reaction of saponification of aromatic esters is studied using this instrumentation. We take interest in the behavior of the ionic conductivity phenomenon occurring in the reactive medium during microwave heating, and we compare it with the results obtained under classical heating. We show that the activation energy associated with ionic conductivity is lower when the reaction is performed under microwaves than when it is performed under classical heating. We thus deduce that microwaves act on the reaction advancement as a catalyst, and thus makes the reaction easier.

  6. SOLVENT-FREE CHEMICAL TRANSFORMATIONS USING MICROWAVE IRRADIATION. 32ND ACS CENTRAL REGIONAL MEETING, MAY 16-19, 2000, ABSTRACTS & PROGRAM, NORTHERN KENTUCKY CONVENTION CENTER, COVINGTON, KY. AMERICAN CHEMICAL SOCIETY, 1999, P. 121.

    EPA Science Inventory

    Microwave-expedited solvent-free synthetic processes will be described that involve the exposure of neat reactants to microwave (MW) irradiation in the presence of supported reagents or catalysts on minineral oxides. Recent developments will be presented on the synthetic utility...

  7. Characteristics of Hf-silicate thin films synthesized by plasma enhanced atomic layer deposition

    SciTech Connect

    Liu Jiurong; Martin, Ryan M.; Chang, Jane P.

    2008-09-15

    Hafnium silicate films were grown by alternating the deposition cycles of hafnium oxide and silicon oxide using a plasma enhanced atomic layer deposition process. The as-deposited and 900 deg. C annealed hafnium silicate films were determined to be amorphous using grazing incidence x-ray diffraction. This suggested that the formation of hafnium silicate suppressed the crystallization of HfO{sub 2} at high temperatures. The dielectric constants increased from {approx}5 to {approx}17 as the hafnium content increased from 9 to 17 at. % in the hafnium silicate films. The leakage currents through the Hf-rich Hf-silicate films were two to three orders of magnitude lower than that of SiO{sub 2} with the same equivalent oxide thickness in the range of 1.6-2.3 nm. The estimated band gap of Hf-silicate films from the O 1s plasma loss spectra increased with the increasing Si content due to the higher band gap of SiO{sub 2} than that of HfO{sub 2}.

  8. Plasma-Enhanced Atomic Layer Deposition of Silicon Nitride Using a Novel Silylamine Precursor.

    PubMed

    Park, Jae-Min; Jang, Se Jin; Yusup, Luchana L; Lee, Won-Jun; Lee, Sang-Ick

    2016-08-17

    We report the plasma-enhanced atomic layer deposition (PEALD) of silicon nitride thin film using a silylamine compound as the silicon precursor. A series of silylamine compounds were designed by replacing SiH3 groups in trisilylamine by dimethylaminomethylsilyl or trimethylsilyl groups to obtain sufficient thermal stability. The silylamine compounds were synthesized through redistribution, amino-substitution, lithiation, and silylation reactions. Among them, bis(dimethylaminomethylsilyl)trimethylsilyl amine (C9H29N3Si3, DTDN2-H2) was selected as the silicon precursor because of the lowest bond dissociation energy and sufficient vapor pressures. The energies for adsorption and reaction of DTDN2-H2 with the silicon nitride surface were also calculated by density functional theory. PEALD silicon nitride thin films were prepared using DTDN2-H2 and N2 plasma. The PEALD process window was between 250 and 400 °C with a growth rate of 0.36 Å/cycle. The best film quality was obtained at 400 °C with a RF power of 100 W. The PEALD film prepared showed good bottom and sidewall coverages of ∼80% and ∼73%, respectively, on a trench-patterned wafer with an aspect ratio of 5.5. PMID:27447839

  9. Plasma-Enhanced Atomic Layer Deposition of Silicon Nitride Using a Novel Silylamine Precursor.

    PubMed

    Park, Jae-Min; Jang, Se Jin; Yusup, Luchana L; Lee, Won-Jun; Lee, Sang-Ick

    2016-08-17

    We report the plasma-enhanced atomic layer deposition (PEALD) of silicon nitride thin film using a silylamine compound as the silicon precursor. A series of silylamine compounds were designed by replacing SiH3 groups in trisilylamine by dimethylaminomethylsilyl or trimethylsilyl groups to obtain sufficient thermal stability. The silylamine compounds were synthesized through redistribution, amino-substitution, lithiation, and silylation reactions. Among them, bis(dimethylaminomethylsilyl)trimethylsilyl amine (C9H29N3Si3, DTDN2-H2) was selected as the silicon precursor because of the lowest bond dissociation energy and sufficient vapor pressures. The energies for adsorption and reaction of DTDN2-H2 with the silicon nitride surface were also calculated by density functional theory. PEALD silicon nitride thin films were prepared using DTDN2-H2 and N2 plasma. The PEALD process window was between 250 and 400 °C with a growth rate of 0.36 Å/cycle. The best film quality was obtained at 400 °C with a RF power of 100 W. The PEALD film prepared showed good bottom and sidewall coverages of ∼80% and ∼73%, respectively, on a trench-patterned wafer with an aspect ratio of 5.5.

  10. Current transport mechanisms in plasma-enhanced atomic layer deposited AlN thin films

    SciTech Connect

    Altuntas, Halit E-mail: biyikli@unam.bilkent.edu.tr; Ozgit-Akgun, Cagla; Donmez, Inci; Biyikli, Necmi E-mail: biyikli@unam.bilkent.edu.tr

    2015-04-21

    Here, we report on the current transport mechanisms in AlN thin films deposited at a low temperature (i.e., 200 °C) on p-type Si substrates by plasma-enhanced atomic layer deposition. Structural characterization of the deposited AlN was carried out using grazing-incidence X-ray diffraction, revealing polycrystalline films with a wurtzite (hexagonal) structure. Al/AlN/ p-Si metal-insulator-semiconductor (MIS) capacitor structures were fabricated and investigated under negative bias by performing current-voltage measurements. As a function of the applied electric field, different types of current transport mechanisms were observed; i.e., ohmic conduction (15.2–21.5 MV/m), Schottky emission (23.6–39.5 MV/m), Frenkel-Poole emission (63.8–211.8 MV/m), trap-assisted tunneling (226–280 MV/m), and Fowler-Nordheim tunneling (290–447 MV/m). Electrical properties of the insulating AlN layer and the fabricated Al/AlN/p-Si MIS capacitor structure such as dielectric constant, flat-band voltage, effective charge density, and threshold voltage were also determined from the capacitance-voltage measurements.

  11. Plasma Enhanced Atomic Layer Deposition of Cooper Seed Layers at Low Process Temperatures

    NASA Astrophysics Data System (ADS)

    Mao, Jiajun

    In conventional Cu interconnect fabrication, a sputtered copper seed layer is deposited before the electrochemically deposited (ECD) copper plating step. However, as interconnect dimensions scale down, non-conformal seed layer growth and subsequent voiding of metallized structures is becoming a critical issue. With its established excellent thickness controllability and film conformality, atomic layer deposition (ALD) is becoming an attractive deposition approach for the sub-24nm fabrication regime. However, in order to achieve a smooth and continuous seed layer deposition, a low process temperature (below 100°C) is needed, given the tendency of Cu agglomeration at elevated temperature. In this research, plasma enhanced ALD (PEALD) Cu processes at low process temperature are developed using two novel precursors: Cuprum and AbaCus. The volatility and thermal stability of these two precursors are presented. Self-limiting nature of the PEALD processes are demonstrated. Key film properties including purity, resistivity, conformality, adhesion and platability are evaluated using multiple characterization techniques. In addition, film nucleation and growth of PEALD Cu at room temperature on different liner materials are studied. Via structures are employed for the investigation of film continuity on side walls. It is also shown that film conformality and platability can be improved by over saturating the plasma reactions.

  12. ZnO nanorod growth by plasma-enhanced vapor phase transport with different growth durations

    SciTech Connect

    Kim, Chang-Yong; Oh, Hee-bong; Ryu, Hyukhyun; Yun, Jondo; Lee, Won-Jae

    2014-09-01

    In this study, the structural properties of ZnO nanostructures grown by plasma-enhanced vapor phase transport (PEVPT) were investigated. Plasma-treated oxygen gas was used as the oxygen source for the ZnO growth. The structural properties of ZnO nanostructures grown for different durations were measured by scanning electron microscopy, x-ray diffraction, and transmission electron microscopy. The authors comprehensively analyzed the growth of the ZnO nanostructures with different growth durations both with and without the use of plasma-treated oxygen gas. It was found that PEVPT has a significant influence on the growth of the ZnO nanorods. PEVPT with plasma-treated oxygen gas facilitated the generation of nucleation sites, and the resulting ZnO nanorod structures were more vertical than those prepared by conventional VPT without plasma-treated oxygen gas. As a result, the ZnO nanostructures grown using PEVPT showed improved structural properties compared to those prepared by the conventional VPT method.

  13. Comparative band alignment of plasma-enhanced atomic layer deposited high-k dielectrics on gallium nitride

    SciTech Connect

    Yang Jialing; Eller, Brianna S.; Zhu Chiyu; England, Chris; Nemanich, Robert J.

    2012-09-01

    Al{sub 2}O{sub 3} films, HfO{sub 2} films, and HfO{sub 2}/Al{sub 2}O{sub 3} stacked structures were deposited on n-type, Ga-face, GaN wafers using plasma-enhanced atomic layer deposition (PEALD). The wafers were first treated with a wet-chemical clean to remove organics and an in-situ combined H{sub 2}/N{sub 2} plasma at 650 Degree-Sign C to remove residual carbon contamination, resulting in a clean, oxygen-terminated surface. This cleaning process produced slightly upward band bending of 0.1 eV. Additional 650 Degree-Sign C annealing after plasma cleaning increased the upward band bending by 0.2 eV. After the initial clean, high-k oxide films were deposited using oxygen PEALD at 140 Degree-Sign C. The valence band and conduction band offsets (VBOs and CBOs) of the Al{sub 2}O{sub 3}/GaN and HfO{sub 2}/GaN structures were deduced from in-situ x-ray and ultraviolet photoemission spectroscopy (XPS and UPS). The valence band offsets were determined to be 1.8 and 1.4 eV, while the deduced conduction band offsets were 1.3 and 1.0 eV, respectively. These values are compared with the theoretical calculations based on the electron affinity model and charge neutrality level model. Moreover, subsequent annealing had little effect on these offsets; however, the GaN band bending did change depending on the annealing and processing. An Al{sub 2}O{sub 3} layer was investigated as an interfacial passivation layer (IPL), which, as results suggest, may lead to improved stability, performance, and reliability of HfO{sub 2}/IPL/GaN structures. The VBOs were {approx}0.1 and 1.3 eV, while the deduced CBOs were 0.6 and 1.1 eV for HfO{sub 2} with respect to Al{sub 2}O{sub 3} and GaN, respectively.

  14. Microwave furnace having microwave compatible dilatometer

    DOEpatents

    Kimrey, Jr., Harold D.; Janney, Mark A.; Ferber, Mattison K.

    1992-01-01

    An apparatus for measuring and monitoring a change in the dimension of a sample being heated by microwave energy is described. The apparatus comprises a microwave heating device for heating a sample by microwave energy, a microwave compatible dilatometer for measuring and monitoring a change in the dimension of the sample being heated by microwave energy without leaking microwaves out of the microwave heating device, and a temperature determination device for measuring and monitoring the temperature of the sample being heated by microwave energy.

  15. Microwave furnace having microwave compatible dilatometer

    DOEpatents

    Kimrey, H.D. Jr.; Janney, M.A.; Ferber, M.K.

    1992-03-24

    An apparatus for measuring and monitoring a change in the dimension of a sample being heated by microwave energy is described. The apparatus comprises a microwave heating device for heating a sample by microwave energy, a microwave compatible dilatometer for measuring and monitoring a change in the dimension of the sample being heated by microwave energy without leaking microwaves out of the microwave heating device, and a temperature determination device for measuring and monitoring the temperature of the sample being heated by microwave energy. 2 figs.

  16. Microwave plasma CVD-grown graphene-CNT hybrids for enhanced electron field emission applications

    NASA Astrophysics Data System (ADS)

    Kaushik, Vishakha; Shukla, A. K.; Vankar, V. D.

    2014-12-01

    The growth and electron emission characteristics were investigated from a hybrid structure of multiwalled carbon nanotubes (MWCNTs) and multilayer layer graphene (MLG) deposited on silicon substrate coated with iron catalyst and an interlayer of aluminium. The hybrid structures were synthesized in a two-step process by microwave plasma-enhanced chemical vapour deposition technique. The formation of MWCNTs takes place by absorption and precipitation of carbon radicals into the catalyst particles. Thereafter, ample carbon forms MLG on tip of the MWCNTs resulting in a MLG-MWCNTs hybrid nanostructure. MLG was observed to grow branching out of the tips and sidewalls of the MWCNTs and is expected to attach by Van der Walls bonds. Transmission electron microscopy and micro-Raman spectroscopy confirmed the crystalline nature of the hybrid structures. Electron emission studies were carried out using a diode-type field emission setup. The enhancement factor was found to be ~3,500 for bare MWCNTs, ~4,070 to ~5,000 for hybrid structures and ~6,500 for N-doped MLG-MWCNTs hybrid structures. Modification in the defects structure and enhancement of emission sites are suggested to be responsible for the increase of the field emission characteristics.

  17. Plasma-enhanced gasification of low-grade coals for compact power plants

    NASA Astrophysics Data System (ADS)

    Uhm, Han S.; Hong, Yong C.; Shin, Dong H.; Lee, Bong J.

    2011-10-01

    A high temperature of a steam torch ensures an efficient gasification of low-grade coals, which is comparable to that of high-grade coals. Therefore, the coal gasification system energized by microwaves can serve as a moderately sized power plant due to its compact and lightweight design. This plasma power plant of low-grade coals would be useful in rural or sparsely populated areas without access to a national power grid.

  18. Plasma-enhanced gasification of low-grade coals for compact power plants

    SciTech Connect

    Uhm, Han S.; Hong, Yong C.; Shin, Dong H.; Lee, Bong J.

    2011-10-15

    A high temperature of a steam torch ensures an efficient gasification of low-grade coals, which is comparable to that of high-grade coals. Therefore, the coal gasification system energized by microwaves can serve as a moderately sized power plant due to its compact and lightweight design. This plasma power plant of low-grade coals would be useful in rural or sparsely populated areas without access to a national power grid.

  19. Work function tuning of plasma-enhanced atomic layer deposited WC{sub x}N{sub y} electrodes for metal/oxide/semiconductor devices

    SciTech Connect

    Zonensain, Oren; Fadida, Sivan; Eizenberg, Moshe; Fisher, Ilanit; Gao, Juwen; Chattopadhyay, Kaushik; Harm, Greg; Mountsier, Tom; Danek, Michal

    2015-02-23

    One of the main challenges facing the integration of metals as gate electrodes in advanced MOS devices is control over the Fermi level position at the metal/dielectric interface. In this study, we demonstrate the ability to tune the effective work function (EWF) of W-based electrodes by process modifications of the atomic layer deposited (ALD) films. Tungsten carbo-nitrides (WC{sub x}N{sub y}) films were deposited via plasma-enhanced and/or thermal ALD processes using organometallic precursors. The process modifications enabled us to control the stoichiometry of the WC{sub x}N{sub y} films. Deposition in hydrogen plasma (without nitrogen based reactant) resulted in a stoichiometry of WC{sub 0.4} with primarily W-C chemical bonding, as determined by x-ray photoelectron spectroscopy. These films yielded a relatively low EWF of 4.2 ± 0.1 eV. The introduction of nitrogen based reactant to the plasma or the thermal ALD deposition resulted in a stoichiometry of WC{sub 0.1}N{sub 0.6–0.8} with predominantly W-N chemical bonding. These films produced a high EWF of 4.7 ± 0.1 eV.

  20. Double-plasma enhanced carbon shield for spatial/interfacial controlled electrodes in lithium ion batteries via micro-sized silicon from wafer waste

    NASA Astrophysics Data System (ADS)

    Chen, Bing-Hong; Chuang, Shang-I.; Duh, Jenq-Gong

    2016-11-01

    Using spatial and interfacial control, the micro-sized silicon waste from wafer slurry could greatly increase its retention potential as a green resource for silicon-based anode in lithium ion batteries. Through step by step spatial and interfacial control for electrode, the cyclability of recycled waste gains potential performance from its original poor retention property. In the stages of spatial control, the electrode stabilizers of active, inactive and conductive additives were mixed into slurries for maintaining architecture and conductivity of electrode. In addition, a fusion electrode modification of interfacial control combines electrolyte additive, technique of double-plasma enhanced carbon shield (D-PECS) to convert the chemical bond states and to alter the formation of solid electrolyte interphases (SEIs) in the first cycle. The depth profiles of chemical composition from external into internal electrode illustrate that the fusion electrode modification not only forms a boundary to balance the interface between internal and external electrodes but also stabilizes the SEIs formation and soothe the expansion of micro-sized electrode. Through these effect approaches, the performance of micro-sized Si waste electrode can be boosted from its serious capacity degradation to potential retention (200 cycles, 1100 mAh/g) and better meet the requirements for facile and cost-effective in industrial production.

  1. Active microwaves

    NASA Technical Reports Server (NTRS)

    Evans, D.; Vidal-Madjar, D.

    1994-01-01

    Research on the use of active microwaves in remote sensing, presented during plenary and poster sessions, is summarized. The main highlights are: calibration techniques are well understood; innovative modeling approaches have been developed which increase active microwave applications (segmentation prior to model inversion, use of ERS-1 scatterometer, simulations); polarization angle and frequency diversity improves characterization of ice sheets, vegetation, and determination of soil moisture (X band sensor study); SAR (Synthetic Aperture Radar) interferometry potential is emerging; use of multiple sensors/extended spectral signatures is important (increase emphasis).

  2. Microwave and Quantum Chemical Study of the Hydrazino Group as Proton Donor in Intramolecular Hydrogen Bonding of (2-Fluoroethyl)hydrazine (FCH2CH2NHNH2).

    PubMed

    Møllendal, Harald; Samdal, Svein; Guillemin, Jean-Claude

    2015-09-01

    The microwave spectrum of (2-fluoroethyl)hydrazine (FCH2CH2NHNH2) was studied in the 11-123 GHz spectral region to investigate the ability of the hydrazino group to form intramolecular hydrogen bonds acting as a proton donor. This group can participate both in five-member and in six-member internal hydrogen bonds with the fluorine atom. The spectra of four conformers were assigned, and the rotational and centrifugal distortion constants of these rotameric forms were determined. Two of these conformers have five-member intramolecular hydrogen bonds, while the two other forms are without this interaction. The internal hydrogen bonds in the two hydrogen-bonded forms are assumed to be mainly electrostatic in origin because the N-H and C-F bonds are nearly parallel and the associated bond moments are antiparallel. This is the first example of a gas-phase study of a hydrazine where the hydrazino functional group acts as a proton donor in weak intramolecular hydrogen bonds. Extensive quantum chemical calculations at the B3LYP/cc-pVTZ, MP2/cc-pVTZ, and CCSD/cc-pVQZ levels of theory accompanied and guided the experimental work. These calculations predict the existence of no less than 18 conformers, spanning a CCSD internal energy range of 15.4 kJ/mol. Intramolecular hydrogen bonds are predicted to be present in seven of these conformers. Three of these forms have six-member hydrogen bonds, while four have five-member hydrogen bonds. The three lowest-energy conformers have five-member internal hydrogen bonds. The spectrum of the conformer with the lowest energy was not assigned because it has a very small dipole moment. The CCSD relative energies of the two hydrogen-bonded rotamers whose spectra were assigned are 1.04 and 1.62 kJ/mol, respectively, whereas the relative energies of the two conformers with assigned spectra and no hydrogen bonds have relative energies of 6.46 and 4.89 kJ/mol.

  3. Nanocrystalline diamond thin films on titanium-6 aluminum-4 vanadium alloy temporomandibular joint prosthesis simulants by microwave plasma chemical vapor deposition

    NASA Astrophysics Data System (ADS)

    Fries, Marc Douglas

    A course of research has been performed to assess the suitability of nanocrystal-line diamond (NCD) films on Ti-6Al-4V alloy as wear-resistant coatings in biomedical implant use. A series of temporomandibular (TMJ) joint condyle simulants were polished and acid-passivated as per ASTM F86 standard for surface preparation of implants. A 3-mum-thick coating of NCD film was deposited by microwave plasma chemical vapor deposition (MPCVD) over the hemispherical articulation surfaces of the simulants. Plasma chemistry conditions were measured and monitored by optical emission spectroscopy (OES), using hydrogen as a relative standard. The films consist of diamond grains around 20 nm in diameter embedded in an amorphous carbon matrix, free of any detectable film stress gradient. Hardness averages 65 GPa and modulus measures 600 GPa at a depth of 250 nm into the film surface. A diffuse film/substrate boundary produces a minimal film adhesion toughness (GammaC) of 158 J/m2. The mean RMS roughness is 14.6 +/- 4.2 nm, with an average peak roughness of 82.6 +/- 65.9 nm. Examination of the surface morphology reveals a porous, dendritic surface. Wear testing resulted in two failed condylar coatings out of three tests. No macroscopic delamination was found on any sample, but micron-scale film pieces broke away, exposing the substrate. Electrochemical corrosion testing shows a seven-fold reduction in corrosion rate with the application of an NCD coating as opposed to polished, passivated Ti-6Al-4V, producing a corrosion rate comparable to wrought Co-Cr-Mo. In vivo biocompatibility testing indicates that implanted NCD films did not elicit an immune response in the rabbit model, and osteointegration was apparent for both compact and trabecular bone on both NCD film and bare Ti-6Al-4V. Overall, NCD thin film material is reasonably smooth, biocompatible, and very well adhered. Wear testing indicates that this material is unacceptable for use in demanding TMJ applications without

  4. Influence of low intensity 2,450 MHz microwave radiation upon the growth of various micro-organisms and their sensitivity towards chemical inactivation.

    PubMed

    Saeed, M A; Gilbert, P

    1981-01-01

    The non-lethal effects of 2,450 MHz radiation upon vegetative cell of P. aeruginosa and S. aureus have been assessed at low power intensities (1 joule min-1 ml-1) over a prolonged time period (16 h). Results indicated that the cell envelope was a primary target for such radiation. Growth of micro-organisms in the presence of microwaves produced minor structural changes in their cell envelopes which resulted in an alteration of preservative sensitivity. Such changes were not sufficiently great as to result in any alteration of specific growth rates during continuous microwave exposure, neither was motility nor cellular morphology affected.

  5. Influence of low intensity 2,450 MHz microwave radiation upon the growth of various micro-organisms and their sensitivity towards chemical inactivation.

    PubMed

    Saeed, M A; Gilbert, P

    1981-01-01

    The non-lethal effects of 2,450 MHz radiation upon vegetative cell of P. aeruginosa and S. aureus have been assessed at low power intensities (1 joule min-1 ml-1) over a prolonged time period (16 h). Results indicated that the cell envelope was a primary target for such radiation. Growth of micro-organisms in the presence of microwaves produced minor structural changes in their cell envelopes which resulted in an alteration of preservative sensitivity. Such changes were not sufficiently great as to result in any alteration of specific growth rates during continuous microwave exposure, neither was motility nor cellular morphology affected. PMID:6815426

  6. Microwave spectra of some volatile organic compounds

    NASA Technical Reports Server (NTRS)

    White, W. F.

    1975-01-01

    A computer-controlled microwave (MRR) spectrometer was used to catalog reference spectra for chemical analysis. Tables of absorption frequency, peak absorption intensity, and integrated intensity are included for 26 volatile organic compounds, all but one of which contain oxygen.

  7. Plasma-enhanced atomic layer deposition and etching of high-k gadolinium oxide

    SciTech Connect

    Vitale, Steven A.; Wyatt, Peter W.; Hodson, Chris J.

    2012-01-15

    Atomic layer deposition (ALD) of high-quality gadolinium oxide thin films is achieved using Gd(iPrCp){sub 3} and O{sub 2} plasma. Gd{sub 2}O{sub 3} growth is observed from 150 to 350 deg. C, though the optical properties of the film improve at higher temperature. True layer-by-layer ALD growth of Gd{sub 2}O{sub 3} occurred in a relatively narrow window of temperature and precursor dose. A saturated growth rate of 1.4 A/cycle was observed at 250 deg. C. As the temperature increases, high-quality films are deposited, but the growth mechanism appears to become CVD-like, indicating the onset of precursor decomposition. At 250 deg. C, the refractive index of the film is stable at {approx}1.80 regardless of other deposition conditions, and the measured dispersion characteristics are comparable to those of bulk Gd{sub 2}O{sub 3}. XPS data show that the O/Gd ratio is oxygen deficient at 1.3, and that it is also very hygroscopic. The plasma etching rate of the ALD Gd{sub 2}O{sub 3} film in a high-density helicon reactor is very low. Little difference is observed in etching rate between Cl{sub 2} and pure Ar plasmas, suggesting that physical sputtering dominates the etching. A threshold bias power exists below which etching does not occur; thus it may be possible to etch a metal gate material and stop easily on the Gd{sub 2}O{sub 3} gate dielectric. The Gd{sub 2}O{sub 3} film has a dielectric constant of about 16, exhibits low C-V hysteresis, and allows a 50 x reduction in gate leakage compared to SiO{sub 2}. However, the plasma enhanced atomic layer deposition (PE-ALD) process causes formation of an {approx}1.8 nm SiO{sub 2} interfacial layer, and generates a fixed charge of -1.21 x 10{sup 12} cm{sup -2}, both of which may limit use of PE-ALD Gd{sub 2}O{sub 3} as a gate dielectric.

  8. Characterization of plasma-enhanced chemical vapor deposited nitride films used in very large scale integrated applications

    SciTech Connect

    Stamper, A.K.; Pennington, S.L. )

    1993-06-01

    Several PECVD SiN[sub x]H[sub y] processes used in VLSI applications are discussed. Films have been deposited in a 200-mm wafer single-chamber PecVD reactor. The processes are characterized in terms of deposition rates, uniformity across 200-mm silicon waters, conformality over metal lines, density, etch rates, polish rates, stress, index of refraction, and stoichiometry. PECVD nitride processes with high deposition rates and good conformality are presented along with processes with etch rates comparable to LPCVD nitride films.

  9. Barrier properties to surrogates of hydrogenated carbon nano-films deposited on PET by plasma-enhanced chemical vapour deposition.

    PubMed

    Oliveira, Éder C; Echegoyen, Yolanda; Nerin, Cristina; Cruz, Sandra A

    2014-01-01

    Poly(ethylene terephthalate) resin was contaminated with a series of surrogates using a US Food and Drug Administration protocol. The contaminated samples were coated with two different kinds of hydrogenated amorphous carbon thin films (a-C:H): one with diamond-like hydrogenated amorphous carbon and another with polymer-like hydrogenated carbon (PLCH) phases. To evaluate the barrier properties of the a-C:H films, migration assays were performed using food simulants. After the tests, analysis by gas chromatography with different detectors was carried out. The appearance of the films before and after the migration experiments was studied by field emission scanning electron microscopy. The results showed that a-C:H films have good barrier properties for most of the evaluated compounds, mainly when they are deposited as PLCH phase. PMID:25254307

  10. I. Plasma Enhanced Chemical Vapor Deposition of Main Group Nitride Thin Films, and II. Synthesis of Niobium Amido Complexes.

    NASA Astrophysics Data System (ADS)

    Rangarajan, Sri Prakash

    I. Main group nitride films were deposited at low substrate temperatures (<400 ^circC) by using plasma activated ammonia and the amido complexes, M(NMe_2)_4 (M = Si, Ge and Sn) and rm M_2(NMe _2)_6(M = Al, Ga) as precursors. In addition, tin, aluminum and gallium nitride films were thermally deposited from the amides and ammonia for comparison with the plasma deposited materials. The films were nearly stoichiometric with low carbon and oxygen contamination as determined by backscattering spectrometry. The growth rates of the group 14 nitrides increased going down the column, consistent with an associative mechanism involving the plasma-activated NH_3 and the amido complex. Elastic recoil detection measurements indicated that the films had hydrogen contents comparable to those reported for films deposited by other deposition techniques. Transmittance measurements indicated that all the films are highly transparent in the visible and near infrared regions. The silicon, germanium and aluminum nitride films displayed promising barrier properties in Au/MN_{x}/Si metallization schemes. II. The syntheses and characterization of several niobium(IV) amido complexes and their derivatives are reported. Reactions of rm NbX_4(thf)_2(X = Cl, Br) with LiN(SiMe_3)_2 gave Nb(N(SiMe_3)_2)_2Cl _2 and Nb(N(SiMe_3) _2)_2Br_2 in moderate yields. Nb(NPh _2)_4 was synthesized in 63% yield by the reaction of NbCl_4(thf) _2 with four equiv of LiNPh_2. . The reaction of one equivalent of ZnPh _2 with Nb(N(SiMe_3) _2)_2Cl_2 gave Nb(N(SiMe _3)_2)_2PhCl and in one case a mixture of Nb(N(SiMe_3)_2)_2 PhCl and Nb(N(SiMe_3)_2) _2Ph_2. Cp_2NbN(SiMe_3)SiMe _2CH_2, a metallacycle with a four membered planar ring, was prepared by reacting Nb(N(SiMe _3)_2)_2Cl_2 with two equiv of ZnCp_2.. X-ray crystallographic studies were carried out for Nb(NPh_2)_4, Nb(N(SiMe _3)_2)_2Br_2, Nb(N(SiMe _3)_2)_2PhCl and Nb(N(SiMe _3)_2)_2Ph_2. All have highly distorted tetrahedral geometries. The distortions usually are due to steric congestion.

  11. Hydrogen diffusion in silicon from plasma-enhanced chemical vapor deposited silicon nitride film at high temperature

    NASA Astrophysics Data System (ADS)

    Sheoran, Manav; Kim, Dong Seop; Rohatgi, Ajeet; Dekkers, H. F. W.; Beaucarne, G.; Young, Matthew; Asher, Sally

    2008-04-01

    The stable hydrogen isotope deuterium (D), which is released during the annealing of deuterated silicon nitride films, diffuses through the crystalline silicon and is captured by a thin, amorphous layer of silicon sputtered on the rear surface. We report on the measurement of the concentration of "penetrated" D by secondary ion mass spectrometry to monitor the flux of D diffusing through single-crystalline silicon wafers. The penetrated D content in the trapping layer increases with the annealing time. However, the flux of D injected into the silicon from the silicon nitride layer decreases as annealing time increases.

  12. Formation of size controlled silicon nanocrystals in nitrogen free silicon dioxide matrix prepared by plasma enhanced chemical vapor deposition

    SciTech Connect

    Laube, J. Gutsch, S.; Hiller, D.; Zacharias, M.; Bruns, M.; Kübel, C.; Weiss, C.

    2014-12-14

    This paper reports the growth of silicon nanocrystals (SiNCs) from SiH4–O{sub 2} plasma chemistry. The formation of an oxynitride was avoided by using O{sub 2} instead of the widely used N{sub 2}O as precursor. X-ray photoelectron spectroscopy is used to prove the absence of nitrogen in the layers and determine the film stoichiometry. It is shown that the Si rich film growth is achieved via non-equilibrium deposition that resembles a interphase clusters mixture model. Photoluminescence and Fourier transformed infrared spectroscopy are used to monitor the formation process of the SiNCs, to reveal that the phase separation is completed at lower temperatures as for SiNCs based on oxynitrides. Additionally, transmission electron microscopy proves that the SiNC sizes are well controllable by superlattice configuration, and as a result, the optical emission band of the Si nanocrystal can be tuned over a wide range.

  13. Low temperature plasma enhanced CVD epitaxial growth of silicon on GaAs: a new paradigm for III-V/Si integration

    PubMed Central

    Cariou, Romain; Chen, Wanghua; Maurice, Jean-Luc; Yu, Jingwen; Patriarche, Gilles; Mauguin, Olivia; Largeau, Ludovic; Decobert, Jean; Roca i Cabarrocas, Pere

    2016-01-01

    The integration of III-V semiconductors with silicon is a key issue for photonics, microelectronics and photovoltaics. With the standard approach, namely the epitaxial growth of III-V on silicon, thick and complex buffer layers are required to limit the crystalline defects caused by the interface polarity issues, the thermal expansion, and lattice mismatches. To overcome these problems, we have developed a reverse and innovative approach to combine III-V and silicon: the straightforward epitaxial growth of silicon on GaAs at low temperature by plasma enhanced CVD (PECVD). Indeed we show that both GaAs surface cleaning by SiF4 plasma and subsequent epitaxial growth from SiH4/H2 precursors can be achieved at 175 °C. The GaAs native oxide etching is monitored with in-situ spectroscopic ellipsometry and Raman spectroscopy is used to assess the epitaxial silicon quality. We found that SiH4 dilution in hydrogen during deposition controls the layer structure: the epitaxial growth happens for deposition conditions at the transition between the microcrystalline and amorphous growth regimes. SIMS and STEM-HAADF bring evidences for the interface chemical sharpness. Together, TEM and XRD analysis demonstrate that PECVD enables the growth of high quality relaxed single crystal silicon on GaAs. PMID:27166163

  14. Low temperature plasma enhanced CVD epitaxial growth of silicon on GaAs: a new paradigm for III-V/Si integration

    NASA Astrophysics Data System (ADS)

    Cariou, Romain; Chen, Wanghua; Maurice, Jean-Luc; Yu, Jingwen; Patriarche, Gilles; Mauguin, Olivia; Largeau, Ludovic; Decobert, Jean; Roca I Cabarrocas, Pere

    2016-05-01

    The integration of III-V semiconductors with silicon is a key issue for photonics, microelectronics and photovoltaics. With the standard approach, namely the epitaxial growth of III-V on silicon, thick and complex buffer layers are required to limit the crystalline defects caused by the interface polarity issues, the thermal expansion, and lattice mismatches. To overcome these problems, we have developed a reverse and innovative approach to combine III-V and silicon: the straightforward epitaxial growth of silicon on GaAs at low temperature by plasma enhanced CVD (PECVD). Indeed we show that both GaAs surface cleaning by SiF4 plasma and subsequent epitaxial growth from SiH4/H2 precursors can be achieved at 175 °C. The GaAs native oxide etching is monitored with in-situ spectroscopic ellipsometry and Raman spectroscopy is used to assess the epitaxial silicon quality. We found that SiH4 dilution in hydrogen during deposition controls the layer structure: the epitaxial growth happens for deposition conditions at the transition between the microcrystalline and amorphous growth regimes. SIMS and STEM-HAADF bring evidences for the interface chemical sharpness. Together, TEM and XRD analysis demonstrate that PECVD enables the growth of high quality relaxed single crystal silicon on GaAs.

  15. Low temperature plasma enhanced CVD epitaxial growth of silicon on GaAs: a new paradigm for III-V/Si integration.

    PubMed

    Cariou, Romain; Chen, Wanghua; Maurice, Jean-Luc; Yu, Jingwen; Patriarche, Gilles; Mauguin, Olivia; Largeau, Ludovic; Decobert, Jean; Roca I Cabarrocas, Pere

    2016-01-01

    The integration of III-V semiconductors with silicon is a key issue for photonics, microelectronics and photovoltaics. With the standard approach, namely the epitaxial growth of III-V on silicon, thick and complex buffer layers are required to limit the crystalline defects caused by the interface polarity issues, the thermal expansion, and lattice mismatches. To overcome these problems, we have developed a reverse and innovative approach to combine III-V and silicon: the straightforward epitaxial growth of silicon on GaAs at low temperature by plasma enhanced CVD (PECVD). Indeed we show that both GaAs surface cleaning by SiF4 plasma and subsequent epitaxial growth from SiH4/H2 precursors can be achieved at 175 °C. The GaAs native oxide etching is monitored with in-situ spectroscopic ellipsometry and Raman spectroscopy is used to assess the epitaxial silicon quality. We found that SiH4 dilution in hydrogen during deposition controls the layer structure: the epitaxial growth happens for deposition conditions at the transition between the microcrystalline and amorphous growth regimes. SIMS and STEM-HAADF bring evidences for the interface chemical sharpness. Together, TEM and XRD analysis demonstrate that PECVD enables the growth of high quality relaxed single crystal silicon on GaAs. PMID:27166163

  16. Growth characteristics and properties of Ga-doped ZnO (GZO) thin films grown by thermal and plasma-enhanced atomic layer deposition

    NASA Astrophysics Data System (ADS)

    Nam, Taewook; Lee, Chang Wan; Kim, Hyun Jae; Kim, Hyungjun

    2014-03-01

    The growth characteristics and electrical and optical properties of gallium-doped ZnO (GZO) grown by thermal atomic layer deposition (Th-ALD) and plasma-enhanced atomic layer deposition (PE-ALD) were investigated as a function of key growth parameters including the growth temperature. While GZO films are generally deposited at high growth temperatures above 300 °C, room temperature deposition is possible using PE-ALD. The chemical properties of the films were analyzed by X-ray photoelectron spectroscopy and their electrical properties including the carrier concentration, mobility, and resistivity were investigated by Hall measurements. The lowest resistivity of 1.49 × 10-3 Ω cm was obtained for the Th-ALD GZO film grown at 300 °C. The transmittance was enhanced to over 85% in the visible light range when Ga was doped on a ZnO film. In addition, a GZO bottom-gated thin film transistor (TFT) was fabricated and exhibited good electrical properties.

  17. Microwave spectrum, structure, and quantum chemical studies of a compound of potential astrochemical and astrobiological interest: Z-3-amino-2-propenenitrile.

    PubMed

    Askeland, Eva; Møllendal, Harald; Uggerud, Einar; Guillemin, Jean-Claude; Aviles Moreno, Juan-Ramon; Demaison, Jean; Huet, Thérèse R

    2006-11-23

    Z-3-Amino-2-propenenitrile, H2NCH=CHCN, a compound of astrochemical and astrobiological interest, has been studied by Stark and Fourier transform microwave spectroscopy along with eight of its isotopologues; the synthesis of five of these are reported. The spectra of the ground vibrational state and of three vibrationally excited states belonging to the two lowest normal modes were assigned for the parent species, whereas the ground states were assigned for the isotopologues. The frequency of the lowest in-plane bending fundamental vibration was determined to be 152(20) cm(-1) and the frequency of the lowest out-of-plane fundamental mode was found to be 176(20) cm(-1) by relative intensity measurements. A delicate problem is whether this compound is planar or slightly nonplanar. It was found that the rotational constants of the nine species cannot be used to conclude definitely whether the molecule is planar or not. The experimental dipole moment is mu(a) = 16.45(12), mu(b) = 2.86(6), mu(c) = 0 (assumed), and mu(tot.) = 16.70(12) x 10(-30) C m [5.01(4) D]. The quadrupole coupling constants of the two nitrogen nuclei are chi(aa) = -1.4917(21) and chi(cc) = 1.5644(24) MHz for the nitrogen atom of the cyano group and chi(aa) = 1.7262(18) and chi(cc) = -4.0591(17) MHz for the nitrogen atom of the amino group. Extensive quantum-chemical calculations have been performed, and the results obtained from these calculations have been compared with the experimental values. The equilibrium structures of vinylamine, vinyl cyanide, and Z-3-amino-2-propenenitrile have been calculated. These calculations have established that the equilibrium structure of the title compound is definitely nonplanar. However, the MP2/VQZ energy difference between the planar and nonplanar forms is small, only -423 J/mol. Z-Amino-2-propenenitrile and E-3-amino-2-propenenitrile are formed simply by mixing ammonia and cyanoacetylene at room temperature. A plausible reaction path has been modeled. G3

  18. Plasma enhancement of femtosecond laser-induced electromagnetic pulses at metal and dielectric surfaces

    NASA Astrophysics Data System (ADS)

    Varma, Sanjay; Spicer, Jane; Brawley, Benjamin; Miragliotta, Joseph

    2014-05-01

    In a previous report, we have shown that the long wavelength, electromagnetic-pulsed (EMP) energy generated by ultrashort (38 fs) laser pulse ablation of a metal target is enhanced by an order of magnitude due to a preplasma generated by a different, 14-ns-long laser pulse. Here, we further investigate this EMP enhancement effect in a 2- to 16-GHz microwave region with different target materials and laser parameters. Specifically, we show a greater than two orders of magnitude enhancement to the EMP energy when the nanosecond and ultrashort laser pulses are coincident on a glass target, and greater than one order of magnitude enhancement when the pulses are coincident on a copper target.

  19. Long period gratings coated with hafnium oxide by plasma-enhanced atomic layer deposition for refractive index measurements.

    PubMed

    Melo, Luis; Burton, Geoff; Kubik, Philip; Wild, Peter

    2016-04-01

    Long period gratings (LPGs) are coated with hafnium oxide using plasma-enhanced atomic layer deposition (PEALD) to increase the sensitivity of these devices to the refractive index of the surrounding medium. PEALD allows deposition at low temperatures which reduces thermal degradation of UV-written LPGs. Depositions targeting three different coating thicknesses are investigated: 30 nm, 50 nm and 70 nm. Coating thickness measurements taken by scanning electron microscopy of the optical fibers confirm deposition of uniform coatings. The performance of the coated LPGs shows that deposition of hafnium oxide on LPGs induces two-step transition behavior of the cladding modes.

  20. Microwave reactions under continuous flow conditions.

    PubMed

    Baxendale, Ian R; Hayward, John J; Ley, Steven V

    2007-12-01

    Microwave chemistry has already impacted significantly on the everyday synthesis of organic molecules. The adoption and integration of this liberating technology has permitted a resurrection of many synthetic transformations that were previously considered too extreme in their conditions (temperatures, pressures, reaction times) to be synthetically useful. Furthermore, whole arrays of additional chemical transformations have been devised under microwave heating that allow access to more diverse chemical architectures via more expedient routes. Continuous flow processing of chemical intermediates taking advantage of the unique heating mechanism and characteristics of microwave irradiation will certainly be the next evolutionary step forward in this area. The synergistic combination afforded by the simultaneous application of these two core processing tools will enhance still further the synthetic capabilities of tomorrow's chemists. This short review aims to highlight the current developments and future potential offered by continuous flow microwave mediated synthesis.

  1. Microwave treatment of vulcanized rubber

    DOEpatents

    Wicks, George G.; Schulz, Rebecca L.; Clark, David E.; Folz, Diane C.

    2002-07-16

    A process and resulting product is provided in which a vulcanized solid particulate, such as vulcanized crumb rubber, has select chemical bonds broken by microwave radiation. The direct application of microwaves in combination with uniform heating of the crumb rubber renders the treated crumb rubber more suitable for use in new rubber formulations. As a result, larger particle sizes and/or loading levels of the treated crumb rubber can be used in new rubber mixtures to produce recycled composite products with good properties.

  2. Structural and electrical properties of ternary Ru-AlN thin films prepared by plasma-enhanced atomic layer deposition

    SciTech Connect

    Shin, Yu-Ri; Kwack, Won-Sub; Park, Yun Chang; Kim, Jin-Hyock; Shin, Seung-Yong; Moon, Kyoung Il; Lee, Hyung-Woo; Kwon, Se-Hun

    2012-03-15

    Highlights: Black-Right-Pointing-Pointer Ru-AlN thin films were grown by plasma-enhanced atomic layer deposition (PEALD). Black-Right-Pointing-Pointer Structural properties were systematically investigated by XRD, BF-STEM and EDX. Black-Right-Pointing-Pointer A drastic decrease in resistivity was due to the microstructural change of the films. -- Abstract: Ruthenium-aluminum-nitride (Ru-AlN) thin films were grown by plasma-enhanced atomic layer deposition (PEALD) at 300 Degree-Sign C. The Ru intermixing ratio of Ru-AlN thin films was controlled by the number of Ru unit cycles, while the number of AlN unit cycles was fixed to one cycle. The electrical resistivity of Ru-AlN thin film decreased with increasing the Ru intermixing ratio, but a drastic decrease in electrical resistivity was observed when the Ru intermixing ratio was around 0.58-0.78. Bright-field scanning transmission electron microscope (BF-STEM) and energy-dispersive X-ray spectroscopy (EDX) element mapping analysis revealed that the electrical resistivity of Ru-AlN thin film was strongly dependent on the microstructures as well as on the Ru intermixing ratio. Although the electrical resistivity of Ru-AlN thin films decreased with increasing the Ru intermixing ratio, a drastic decrease in electrical resistivity occurred where the electrical paths formed as a result of the coalescence of Ru nanocrystals.

  3. Initial growth, refractive index, and crystallinity of thermal and plasma-enhanced atomic layer deposition AlN films

    SciTech Connect

    Van Bui, Hao Wiggers, Frank B.; Gupta, Anubha; Nguyen, Minh D.; Aarnink, Antonius A. I.; Jong, Michel P. de; Kovalgin, Alexey Y.

    2015-01-01

    The authors have studied and compared the initial growth and properties of AlN films deposited on Si(111) by thermal and plasma-enhanced atomic layer deposition (ALD) using trimethylaluminum and either ammonia or a N{sub 2}-H{sub 2} mixture as precursors. In-situ spectroscopic ellipsometry was employed to monitor the growth and measure the refractive index of the films during the deposition. The authors found that an incubation stage only occurred for thermal ALD. The linear growth for plasma-enhanced ALD (PEALD) started instantly from the beginning due to the higher nuclei density provided by the presence of plasma. The authors observed the evolution of the refractive index of AlN during the growth, which showed a rapid increase up to a thickness of about 30 nm followed by a saturation. Below this thickness, higher refractive index values were obtained for AlN films grown by PEALD, whereas above that the refractive index was slightly higher for thermal ALD films. X-ray diffraction characterization showed a wurtzite crystalline structure with a (101{sup ¯}0) preferential orientation obtained for all the layers with a slightly better crystallinity for films grown by PEALD.

  4. Compact Microwave Fourier Spectrum Analyzer

    NASA Technical Reports Server (NTRS)

    Savchenkov, Anatoliy; Matsko, Andrey; Strekalov, Dmitry

    2009-01-01

    A compact photonic microwave Fourier spectrum analyzer [a Fourier-transform microwave spectrometer, (FTMWS)] with no moving parts has been proposed for use in remote sensing of weak, natural microwave emissions from the surfaces and atmospheres of planets to enable remote analysis and determination of chemical composition and abundances of critical molecular constituents in space. The instrument is based on a Bessel beam (light modes with non-zero angular momenta) fiber-optic elements. It features low power consumption, low mass, and high resolution, without a need for any cryogenics, beyond what is achievable by the current state-of-the-art in space instruments. The instrument can also be used in a wide-band scatterometer mode in active radar systems.

  5. Emissions from cooking microwave popcorn.

    PubMed

    Rosati, Jacky A; Krebs, Kenneth A; Liu, Xiaoyu

    2007-01-01

    This study characterized chemicals released into a chamber in the process of cooking microwave popcorn. Seventeen types of microwave popcorn from eight different brands were studied. The work proceeded in two phases: phase one investigated chemicals emitted during popping and opening, phase two investigated chemicals emitted at discrete intervals from 0-40 minutes post-pop opening. The research was performed using a microwave oven enclosed in a chamber with ports for air sampling of particulate matter (PM) and volatile organic compounds (VOCs). VOCs in the air samples were identified and quantified using gas chromatography/mass spectrometry (GC/MS). PM was characterized using both an aerodynamic particle sizer (APS) and a scanning mobility particle sizer (SMPS) to cover a full range of emitted sizes. The compounds measured during popping and opening included butter flavoring components such as diacetyl, butyric acid, acetoin, propylene glycol, 2-nonanone, and triacetin and bag components such as p-xylene and perfluorinated alcohol 8:2 telomer. The greatest chemical quantity is emitted when the bag is opened post-popping; more than 80% of the total chemical emissions occur at this time. PMID:17987444

  6. A Microwave Thruster for Spacecraft Propulsion

    SciTech Connect

    Chiravalle, Vincent P

    2012-07-23

    This presentation describes how a microwave thruster can be used for spacecraft propulsion. A microwave thruster is part of a larger class of electric propulsion devices that have higher specific impulse and lower thrust than conventional chemical rocket engines. Examples of electric propulsion devices are given in this presentation and it is shown how these devices have been used to accomplish two recent space missions. The microwave thruster is then described and it is explained how the thrust and specific impulse of the thruster can be measured. Calculations of the gas temperature and plasma properties in the microwave thruster are discussed. In addition a potential mission for the microwave thruster involving the orbit raising of a space station is explored.

  7. Microwave irradiation induced changes in protein molecular structures of barley grains: relationship to changes in protein chemical profile, protein subfractions, and digestion in dairy cows.

    PubMed

    Yan, Xiaogang; Khan, Nazir A; Zhang, Fangyu; Yang, Ling; Yu, Peiqiang

    2014-07-16

    The objectives of this study were to evaluate microwave irradiation (MIR) induced changes in crude protein (CP) subfraction profiles, ruminal CP degradation characteristics and intestinal digestibility of rumen undegraded protein (RUP), and protein molecular structures in barley (Hordeum vulgare) grains. Samples from hulled (n = 1) and hulless cultivars (n = 2) of barley, harvested from four replicate plots in two consecutive years, were evaluated. The samples were either kept as raw or irradiated in a microwave for 3 min (MIR3) or 5 min (MIR5). Compared to raw grains, MIR5 decreased the contents of rapidly degradable CP subfraction (from 45.22 to 6.36% CP) and the ruminal degradation rate (from 8.16 to 3.53%/h) of potentially degradable subfraction. As a consequence, the effective ruminal degradability of CP decreased (from 55.70 to 34.08% CP) and RUP supply (from 43.31 to 65.92% CP) to the postruminal tract increased. The MIR decreased the spectral intensities of amide 1, amide II, α-helix, and β-sheet and increased their ratios. The changes in protein spectral intensities were strongly correlated with the changes in CP subfractions and digestive kinetics. These results show that MIR for a short period (5 min) with a lower energy input can improve the nutritive value and utilization of CP in barely grains.

  8. Phase Transition and Microwave Dielectric Properties of Low-Temperature Sintered BiCu2VO6 Ceramic and its Chemical Compatibility with Silver

    NASA Astrophysics Data System (ADS)

    Li, Chunchun; Xiang, Huaicheng; Fang, Liang

    2016-01-01

    In this work, a low-firing microwave dielectric ceramic BiCu2VO6 with monoclinic structure was prepared through a solid state reaction method. Dense ceramic could be obtained when sintered at 740°C with a relative density about 96.7%. A diffusive phase transition was observed from the temperature dependence of the relative permittivity and loss tangent. The best sintered sample at 740°C exhibited the optimum microwave dielectric properties with a relative permittivity ~22.7, a quality factor ~11,960 GHz (at 11.0 GHz), and a temperature coefficient of resonant frequency of -17.2 ppm/°C. From the x-ray diffraction, backscattered electron imaging results of the cofired sample with 20 wt.% silver, the BiCu2VO6 ceramic was found not to react with Ag at 740°C. It might be promising for the low-temperature cofired ceramics and dielectric resonator applications.

  9. Microwave alcohol fuel sensor

    SciTech Connect

    Kimura, K.; Endo, A.; Morozumi, H.; Shibata, T.

    1984-06-05

    A microwave alcohol fuel sensor comprises a microwave oscillator, a microwave receiver, and a microwave transmission circuit connected to the oscillator and the receiver. The microwave transmission circuit comprises a dielectric substrate and, a strip line mounted on the substrate so that microwaves leak from the substrate to an alcohol gasoline fuel, and the microwaves attenuate by alcohol dielectric loss, whereby output voltage from the receiver corresponds to alcohol content rate. The dielectric substrate is formed tubular so that a constant amount of the fuel is fed the sensor.

  10. Plasma-Enhanced Combustion of Hydrocarbon Fuels and Fuel Blends Using Nanosecond Pulsed Discharges

    SciTech Connect

    Cappelli, Mark; Mungal, M Godfrey

    2014-10-28

    This project had as its goals the study of fundamental physical and chemical processes relevant to the sustained premixed and non-premixed jet ignition/combustion of low grade fuels or fuels under adverse flow conditions using non-equilibrium pulsed nanosecond discharges.

  11. Microwave combustion and sintering without isostatic pressure

    SciTech Connect

    Ebadian, M.A.

    1998-01-01

    In recent years interest has grown rapidly in the application of microwave energy to the processing of ceramics, composites, polymers, and other materials. Advances in the understanding of microwave/materials interactions will facilitate the production of new ceramic materials with superior mechanical properties. One application of particular interest is the use of microwave energy for the mobilization of uranium for subsequent redeposition. Phase III (FY98) will focus on the microwave assisted chemical vapor infiltration tests for mobilization and redeposition of radioactive species in the mixed sludge waste. Uranium hexachloride and uranium (IV) borohydride are volatile compounds for which the chemical vapor infiltration procedure might be developed for the separation of uranium. Microwave heating characterized by an inverse temperature profile within a preformed ceramic matrix will be utilized for CVI using a carrier gas. Matrix deposition is expected to commence from the inside of the sample where the highest temperature is present. The preform matrix materials, which include aluminosilicate based ceramics and silicon carbide based ceramics, are all amenable to extreme volume reduction, densification, and vitrification. Important parameters of microwave sintering such as frequency, power requirement, soaking temperature, and holding time will be investigated to optimize process conditions for the volatilization of uranyl species using a reactive carrier gas in a microwave chamber.

  12. Plasma enhanced atomic layer deposition of silver thin films for applications in plasmonics and surface enhanced Raman scattering

    NASA Astrophysics Data System (ADS)

    Cleveland, Erin R.; Glembocki, Orest; Prokes, S. M.

    2012-10-01

    We have employed plasma-enhanced atomic layer deposition (PEALD) as a means to create multi-layered nanocomposite structures in order to enhance the plasmonic behavior and SERS response in the detection of benzenethiol (BZT). Ag PEALD films were deposited within nanoporous anodic aluminum oxide (AAO) templates of various pore depths, using Ag(fod)(PEt3)(fod=2,2-dimethyl-6,6,7,7,8,8,8-heptafluorooctane-3,5-dionato) as the precursor. We have examined the polycrystalline microstructure and conformality of the Ag films across the surface of an AAO template as well as into the pores, which varies significantly as thicknesses decrease. Furthermore, we investigated the plasmonic behavior of these films by performing SERS as a function of the Ag microstructure and conformality within the nanopores, using a 785 nm laser excitation and BZT as a test molecule, which forms a self-assembled monolayer on the Ag surface.

  13. Diffuse Microwave Emission Survey

    NASA Astrophysics Data System (ADS)

    Shafer, R. A.; Mather, J.; Kogut, A.; Fixsen, D. J.; Seiffert, M.; Lubin, P. M.; Levin, S. M.

    1996-12-01

    The Diffuse Microwave Emission Survey (DIMES) is a mission concept selected by NASA in 1995 to answer fundamental questions about the content and history of the universe. DIMES will use a set of absolutely calibrated cryogenic radiometers from a space platform to measure the frequency spectrum of the cosmic microwave background (CMB) at wavelengths 15--0.3 cm (frequency 2--100 GHz) to precision 0.1 mK or better. Measurements at centimeter wavelengths probe different physical processes than the COBE-FIRAS spectra at shorter wavelengths, and complement the anisotropy measurements from DMR, balloon and ground-based instruments, and the planned MAP and COBRAS/SAMBA satellites. DIMES will observe the free-free signal from early photoionization to establish the precise epoch of structure formation, and will measure or limit energy release at redshift 10(4) < z < 10(7) by measuring the chemical potential distortion of the CMB spectrum. Both are likely under current cosmological theory and allowed by current measurement limits; even an upper limit at the expected sensitivity 10(-5) MJy/sr will place important constraints on the matter content, structure, and evolution of the universe. Detecting these distortions or showing that they do not exist constitutes the last frontier of CMB observations.

  14. Plasma-enhanced CVD preparation of isotopes of group IV and VI elements

    NASA Astrophysics Data System (ADS)

    Sennikov, P. G.; Kornev, R. A.

    2016-03-01

    The plasma-chemical reduction was studied experimentally of molybdenum, sulfur and germanium fluorides with different isotopic composition by hydrogen in plasmas sustained by inductively coupled (IC) and capacitively-coupled (CC) RF discharges. The emission spectra of plasmas recorded under different experimental conditions are discussed. Reaction mechanisms are proposed. In the case of 98MoF6 reduction in CCP, the combined radical-atomic mechanism including intermediate MoF3 resulting in bulk and powder 98Mo formation was established. In the emission spectrum of the 32SF6 + H2 system in ICP at 0.2 Torr, only lines assigned to SiF2, SiF and F2 * originating from the decomposition of 32SF6 and a fast reaction of its products with the reactor's quartz walls were observed. Due to this etching process, the yield of 32S was moderate. Increasing the pressure in the reactor above 1 Torr resulted in an increase of the 32S yield. The mechanism of 72GeF4 reduction depends on the pressure and plasma type. At 0.25 Torr in ICP, a 72Ge deposit was formed via the 72GeF radical; however, at 3.5 Torr in CCP, the mechanism changed to a molecular one. Results of the study of the structure and the isotopic and chemical purity of isotope samples obtained are briefly presented.

  15. Spectroscopic investigation of fluoroiodomethane, CH2FI: Fourier-transform microwave and millimeter-/submillimeter-wave spectroscopy and quantum-chemical calculations.

    PubMed

    Puzzarini, Cristina; Cazzoli, Gabriele; López, Juan Carlos; Alonso, José Luis; Baldacci, Agostino; Baldan, Alessandro; Stopkowicz, Stella; Cheng, Lan; Gauss, Jürgen

    2011-05-01

    Guided by theoretical predictions, the rotational spectrum of fluoroiodomethane, CH(2)FI, has been recorded and assigned. Accurate values are reported for the ground-state rotational constants, all quartic, sextic, and two octic centrifugal-distortion constants. The hyperfine structure of the rotational spectrum was thoroughly investigated using a Fourier-transform microwave spectrometer and the Lamb-dip technique in the millimeter-/submillimeter-wave region, thus allowing the accurate determination of the complete iodine quadrupole-coupling tensor and of the diagonal elements of the iodine spin-rotation tensor. Relativistic effects turned out to be essential for the accurate theoretical prediction of the dipole moment and quadrupole-coupling constants and were accounted for by direct perturbation theory and a spin-free four-component treatment based on the Dirac-Coulomb Hamiltonian. The relativistic corrections to the dipole moment amount to up to 34% and to the iodine quadrupole-coupling tensor to about 15-16% of the total values.

  16. Controlled, defect-guided, metal-nanoparticle incorporation onto MoS2 via chemical and microwave routes: electrical, thermal, and structural properties.

    PubMed

    Sreeprasad, T S; Nguyen, Phong; Kim, Namhoon; Berry, Vikas

    2013-09-11

    Ultrathin (0.3-3 nm) metal dichalcogenides exhibit confinement of carriers, evolution of band-structure and photophysical properties with thickness, high on/off rectification (in MoS2, WS2, and so forth) and high thermal absorption. Here, we leverage the stable sulfur/nobel-metal binding to incorporate highly capacitive gold nanoparticles (Au NPs) onto MoS2 to raise the effective gate-voltage by an order of magnitude. Functionalization is achieved via both diffusion limited aggregation and instantaneous reaction arresting (using microwaves) with selective deposition on crystallographic edges (with 60° displacement). The electrical, thermal, and Raman studies show a highly capacitive interaction between Au NP and MoS2 flakes (CAu-MoS2 = 2.17 μF/cm(2)), a low Schottky barrier (14.52 meV), a reduced carrier-transport thermal-barrier (253 to 44.18 meV after Au NP functionalization), and increased thermal conductivity (from 15 to 23 W/mK post NP deposition). The process could be employed to attach electrodes to heterostructures of graphene and MoS2, where a gold film could be grown to act as an electron-tunneling gate-electrode connected to MoS2. PMID:23927716

  17. Large improvement of phosphorus incorporation efficiency in n-type chemical vapor deposition of diamond

    SciTech Connect

    Ohtani, Ryota; Yamamoto, Takashi; Janssens, Stoffel D.; Yamasaki, Satoshi

    2014-12-08

    Microwave plasma enhanced chemical vapor deposition is a promising way to generate n-type, e.g., phosphorus-doped, diamond layers for the fabrication of electronic components, which can operate at extreme conditions. However, a deeper understanding of the doping process is lacking and low phosphorus incorporation efficiencies are generally observed. In this work, it is shown that systematically changing the internal design of a non-commercial chemical vapor deposition chamber, used to grow diamond layers, leads to a large increase of the phosphorus doping efficiency in diamond, produced in this device, without compromising its electronic properties. Compared to the initial reactor design, the doping efficiency is about 100 times higher, reaching 10%, and for a very broad doping range, the doping efficiency remains highly constant. It is hypothesized that redesigning the deposition chamber generates a higher flow of active phosphorus species towards the substrate, thereby increasing phosphorus incorporation in diamond and reducing deposition of phosphorus species at reactor walls, which additionally reduces undesirable memory effects.

  18. Multilayered Graphene in Microwaves

    NASA Astrophysics Data System (ADS)

    Kuzhir, P.; Volynets, N.; Maksimenko, S.; Kaplas, T.; Svirko, Yu.

    2013-05-01

    We report on the experimental study of electromagnetic (EM) properties of multilayered graphene in Ka-band synthesized by catalytic chemical vapor deposition (CVD) process in between nanometrically thin Cu catalyst film and dielectric (SiO2) substrate. The quality of the produced multilayered graphene samples were monitored by Raman spectroscopy. The thickness of graphene films was controlled by atomic force microscopy (AFM) and was found to be a few nanometers (up to 5 nm). We discovered, that the fabricated graphene provided remarkably high EM shielding efficiency caused by absorption losses at the level of 35-43% of incident power. Being highly conductive at room temperature, multi-layer graphene emerges as a promising material for manufacturing ultrathin microwave coatings to be used in aerospace applications.

  19. Plasma - enhanced dispersion of metal and ceramic nanoparticles in polymer nanocomposite films

    NASA Astrophysics Data System (ADS)

    Maguire, Paul; Liu, Yazi; Askari, Sadegh; Patel, Jenish; Macia-Montero, Manuel; Mitra, Somak; Zhang, Richao; Sun, Dan; Mariotti, Davide

    2015-09-01

    In this work we demonstrate a facile method to synthesize a nanoparticle/PEDOT:PSS hybrid nanocomposite material in aqueous solution through atmospheric pressure direct current (DC) plasma processing at room temperature. Both metal (Au) and ceramic (TiO2) nanoparticle composite films have been fabricated. Nanoparticle dispersion is enhanced considerable and remains stable. TiO2/polymer hybrid nanoparticles with a distinct core shell structure have been obtained. Increased nanoparticle/PEDOT:PSS nanocomposite electrical conductivity has been observed. The improvement in nanocomposite properties is due to the enhanced dispersion and stability in liquid polymer of microplasma processed Au or TiO2 nanoparticles. Both plasma induced surface charge and nanoparticle surface termination with specific plasma chemical species are thought to provide an enhanced barrier to nanoparticle agglomeration and promote nanoparticle-polymer bonding. This is expected to have a significant benefit in materials processing with inorganic nanoparticles for applications in energy storage, photocatalysis and biomedical sensors. Engineering and Physical Sciences Research Council (EPSRC: EP/K006088/1, EP/K006142, Nos. EP/K022237/1).

  20. Microwave Radiometer (MWR) Handbook

    SciTech Connect

    Morris, VR

    2006-08-01

    The Microwave Radiometer (MWR) provides time-series measurements of column-integrated amounts of water vapor and liquid water. The instrument itself is essentially a sensitive microwave receiver. That is, it is tuned to measure the microwave emissions of the vapor and liquid water molecules in the atmosphere at specific frequencies.

  1. Microwave Workshop for Windows.

    ERIC Educational Resources Information Center

    White, Colin

    1998-01-01

    "Microwave Workshop for Windows" consists of three programs that act as teaching aid and provide a circuit design utility within the field of microwave engineering. The first program is a computer representation of a graphical design tool; the second is an accurate visual and analytical representation of a microwave test bench; the third is a more…

  2. CONTINUOUS FLOW MICROWAVE REACTORS FOR ORGANIC SYNTHESIS: HYDRODECHLORINATION, HETROCYCLIZATION, ISOMERIZATION

    EPA Science Inventory

    Microwave heating has been sought as a convenient way of enhancing chemical processes. The advantages of microwave heating, such as selective direct heating of materials of a catalytic site, minimized fouling on hot surfaces, process simplicity, rapid startup, as well as the pos...

  3. ENVIRONMENTALLY FRIENDLIER ALTERNATIVES TO ORGANIC SYNTHESIS USING MICROWAVES

    EPA Science Inventory

    Microwave irradiation has been used for a variety of organic transformations wherein chemical reactions are expedited because of selective adsorption of microwave (MW) energy by polar molecules, non-polar molecules being inert to the MW dielectric loss. The MW application under s...

  4. SOLVENT-FREE ALTERNATIVES TO ORGANIC SYNTHESES USING MICROWAVES

    EPA Science Inventory

    Microwave irradiation has been used for a variety of synthetic transformations wherein chemical reactions are accelerated because of selective adsorption of microwave (MW) energy by polar molecules, non-polar molecules being inert to the MW dielectric loss. The application of mic...

  5. GREENER APPROACH TO EFFICIENT ORGANIC SYNTHESES USING MICROWAVES

    EPA Science Inventory

    Microwave irradiation has been used for a variety of organic transformations wherein chemical reactions are expedited because of selective adsorption of microwave (MW) energy by polar molecules, non-polar molecules being inert to the MW dielectric loss. The MW application under s...

  6. CONTINUOUS MICROWAVE REACTORS FOR ORGANIC SYNTHESIS: HYDRODECHLORINATION AND HYDROLYSIS

    EPA Science Inventory

    Microwave heating has been sought as a convenient way of enhancing chemical processes. The advantages of microwave heating, such as selective direct heating of materials of a catalytic site, minimized fouling on hot surfaces, process simplicity, rapid startup, as well as the poss...

  7. Microwave sintering of ceramics

    SciTech Connect

    Snyder, W.B.

    1989-01-01

    Successful adaptation of microwave heating to the densification of ceramic materials require a marriage of microwave and materials technologies. Using an interdisciplinary team of microwave and materials engineers, we have successfully demonstrated the ability to density ceramic materials over a wide range of temperatures. Microstructural evolution during microwave sintering has been found to be significantly different from that observed in conventional sintering. Our results and those of others indicate that microwave sintering has the potential to fabricate components to near net shape with mechanical properties equivalent to hot pressed or hot isostatically pressed material. 6 refs., 11 figs.

  8. Optically Transparent Microwave Polarizer Based On Quasi-Metallic Graphene

    PubMed Central

    Grande, Marco; Bianco, Giuseppe Valerio; Vincenti, Maria Antonietta; de Ceglia, Domenico; Capezzuto, Pio; Scalora, Michael; D’Orazio, Antonella; Bruno, Giovanni

    2015-01-01

    In this paper, we report on the engineering and the realization of optically transparent graphene-based microwave devices using Chemical Vapour Deposition (CVD) graphene whose sheet resistance may be tailored down to values below 30 Ω/sq. In particular, we show that the process was successfully used to realize and characterize a simple, optically transparent graphene-based wire-grid polarizer at microwave frequencies (X band). The availability of graphene operating in a quasi-metallic region may allow the integration of graphene layers in several microwave components, thus leading to the realization of fully transparent (and flexible) microwave devices. PMID:26603112

  9. Optically Transparent Microwave Polarizer Based On Quasi-Metallic Graphene.

    PubMed

    Grande, Marco; Bianco, Giuseppe Valerio; Vincenti, Maria Antonietta; de Ceglia, Domenico; Capezzuto, Pio; Scalora, Michael; D'Orazio, Antonella; Bruno, Giovanni

    2015-01-01

    In this paper, we report on the engineering and the realization of optically transparent graphene-based microwave devices using Chemical Vapour Deposition (CVD) graphene whose sheet resistance may be tailored down to values below 30 Ω/sq. In particular, we show that the process was successfully used to realize and characterize a simple, optically transparent graphene-based wire-grid polarizer at microwave frequencies (X band). The availability of graphene operating in a quasi-metallic region may allow the integration of graphene layers in several microwave components, thus leading to the realization of fully transparent (and flexible) microwave devices. PMID:26603112

  10. Microwave Brightness Of Land Surfaces From Outer Space

    NASA Technical Reports Server (NTRS)

    Kerr, Yann H.; Njoku, Eni G.

    1991-01-01

    Mathematical model approximates microwave radiation emitted by land surfaces traveling to microwave radiometer in outer space. Applied to measurements made by Scanning Multichannel Microwave Radiometer (SMMR). Developed for interpretation of microwave imagery of Earth to obtain distributions of various chemical, physical, and biological characteristics across its surface. Intended primarily for use in mapping moisture content of soil and fraction of Earth covered by vegetation. Advanced Very-High-Resolution Radiometer (AVHRR), provides additional information on vegetative cover, thereby making possible retrieval of soil-moisture values from SMMR measurements. Possible to monitor changes of land surface during intervals of 5 to 10 years, providing significant data for mathematical models of evolution of climate.

  11. High brightness microwave lamp

    DOEpatents

    Kirkpatrick, Douglas A.; Dolan, James T.; MacLennan, Donald A.; Turner, Brian P.; Simpson, James E.

    2003-09-09

    An electrodeless microwave discharge lamp includes a source of microwave energy, a microwave cavity, a structure configured to transmit the microwave energy from the source to the microwave cavity, a bulb disposed within the microwave cavity, the bulb including a discharge forming fill which emits light when excited by the microwave energy, and a reflector disposed within the microwave cavity, wherein the reflector defines a reflective cavity which encompasses the bulb within its volume and has an inside surface area which is sufficiently less than an inside surface area of the microwave cavity. A portion of the reflector may define a light emitting aperture which extends from a position closely spaced to the bulb to a light transmissive end of the microwave cavity. Preferably, at least a portion of the reflector is spaced from a wall of the microwave cavity. The lamp may be substantially sealed from environmental contamination. The cavity may include a dielectric material is a sufficient amount to require a reduction in the size of the cavity to support the desired resonant mode.

  12. Improved oxygen diffusion barrier properties of ruthenium-titanium nitride thin films prepared by plasma-enhanced atomic layer deposition.

    PubMed

    Jeong, Seong-Jun; Kim, Doo-In; Kim, Sang Ouk; Han, Tae Hee; Kwon, Jung-Dae; Park, Jin-Seong; Kwon, Se-Hun

    2011-01-01

    Ru-TiN thin films were prepared from bis(ethylcyclopentadienyl)ruthenium and tetrakis(dimethylamino)titanium using plasma-enhanced atomic layer deposition (PEALD). The Ru and TiN were deposited sequentially to intermix TiN with Ru. The composition of Ru-TiN films was controlled precisely by changing the number of deposition cycles allocated to Ru, while fixing the number of deposition cycles allocated to TiN. Although both Ru and TiN thin films have a polycrystalline structure, the microstructure of the Ru-TiN films changed from a TiN-like polycrystalline structure to a nanocrystalline on increasing the Ru intermixing ratio. Moreover, the electrical resistivity of the Ru0.67-TiN0.33 thin films is sufficiently low at 190 microomega x cm and was maintained even after O2 annealing at 750 degrees C. Therefore, Ru-TiN thin films can be utilized as a oxygen diffusion barrier material for future dynamic (DRAM) and ferroelectric (FeRAM) random access memory capacitors.

  13. Influence of atomic layer deposition valve temperature on ZrN plasma enhanced atomic layer deposition growth

    SciTech Connect

    Muneshwar, Triratna Cadien, Ken

    2015-11-15

    Atomic layer deposition (ALD) relies on a sequence of self-limiting surface reactions for thin film growth. The effect of non-ALD side reactions, from insufficient purging between pulses and from precursor self-decomposition, on film growth is well known. In this article, precursor condensation within an ALD valve is described, and the effect of the continuous precursor source from condensate evaporation on ALD growth is discussed. The influence of the ALD valve temperature on growth and electrical resistivity of ZrN plasma enhanced ALD (PEALD) films is reported. Increasing ALD valve temperature from 75 to 95 °C, with other process parameters being identical, decreased both the growth per cycle and electrical resistivity (ρ) of ZrN PEALD films from 0.10 to 0.07 nm/cycle and from 560 to 350 μΩ cm, respectively. Our results show that the non-ALD growth resulting from condensate accumulation is eliminated at valve temperatures close to the pressure corrected boiling point of precursor.

  14. Addition of Hetero-Atoms to the Polymer Film by Plasma Enhanced Polymerization and its Optical Properties

    NASA Astrophysics Data System (ADS)

    Moriki, Kazunori; Yumoto, Motoshige

    Plasma enhanced polymerization is an attractive technology to fabricate an optical polymer waveguide, because it has capability to provide an uniform thickness film on a substrate with various surface geometry, and to provide change of refractive index by controlling a proportion of source monomer mixing. In the present paper we discuss optical constants and molecule structures of the films added hetero-atoms, O, N and F in the CHx network of polymer. Refractive index of those films changes from 1.52 to 1.63 at 1.0 μm wavelength, depending on the variety of hetero-atoms. Fluorine atoms added into a film decreases refractive index of the film. Oxygen atoms added into a film, which form ester structure (- COO-), decrease refractive index of the film, and some O atoms token into a film as OH base will increase optical absorption in inferred region for optical communication. Nitrogen atoms added increase optical absorption due to forming NH2 base. Finally, sp3/sp2 fraction controlling in the film will be a suitable to control refractive index of the film for an optical waveguide, for example by using mixed monomer of C6H6 and C6H10.

  15. Ellipsometry and XPS comparative studies of thermal and plasma enhanced atomic layer deposited Al2O3-films

    PubMed Central

    Haeberle, Jörg; Gargouri, Hassan; Naumann, Franziska; Gruska, Bernd; Arens, Michael; Tallarida, Massimo; Schmeißer, Dieter

    2013-01-01

    Summary We report on results on the preparation of thin (<100 nm) aluminum oxide (Al2O3) films on silicon substrates using thermal atomic layer deposition (T-ALD) and plasma enhanced atomic layer deposition (PE-ALD) in the SENTECH SI ALD LL system. The T-ALD Al2O3 layers were deposited at 200 °C, for the PE-ALD films we varied the substrate temperature range between room temperature (rt) and 200 °C. We show data from spectroscopic ellipsometry (thickness, refractive index, growth rate) over 4” wafers and correlate them to X-ray photoelectron spectroscopy (XPS) results. The 200 °C T-ALD and PE-ALD processes yield films with similar refractive indices and with oxygen to aluminum elemental ratios very close to the stoichiometric value of 1.5. However, in both also fragments of the precursor are integrated into the film. The PE-ALD films show an increased growth rate and lower carbon contaminations. Reducing the deposition temperature down to rt leads to a higher content of carbon and CH-species. We also find a decrease of the refractive index and of the oxygen to aluminum elemental ratio as well as an increase of the growth rate whereas the homogeneity of the film growth is not influenced significantly. Initial state energy shifts in all PE-ALD samples are observed which we attribute to a net negative charge within the films. PMID:24367741

  16. Plasma-enhanced atomic layer deposition of silicon dioxide films using plasma-activated triisopropylsilane as a precursor

    SciTech Connect

    Jeon, Ki-Moon; Shin, Jae-Su; Yun, Ju-Young; Jun Lee, Sang; Kang, Sang-Woo

    2014-05-15

    The plasma-enhanced atomic layer deposition (PEALD) process was developed as a growth technique of SiO{sub 2} thin films using a plasma-activated triisopropylsilane [TIPS, ((iPr){sub 3}SiH)] precursor. TIPS was activated by an argon plasma at the precursor injection stage of the process. Using the activated TIPS, it was possible to control the growth rate per cycle of the deposited films by adjusting the plasma ignition time. The PEALD technique allowed deposition of SiO{sub 2} films at temperatures as low as 50 °C without carbon impurities. In addition, films obtained with plasma ignition times of 3 s and 10 s had similar values of root-mean-square surface roughness. In order to evaluate the suitability of TIPS as a precursor for low-temperature deposition of SiO{sub 2} films, the vapor pressure of TIPS was measured. The thermal stability and the reactivity of the gas-phase TIPS with respect to water vapor were also investigated by analyzing the intensity changes of the C–H and Si–H peaks in the Fourier-transform infrared spectrum of TIPS.

  17. Thermal and plasma enhanced atomic layer deposition of TiO{sub 2}: Comparison of spectroscopic and electric properties

    SciTech Connect

    Das, Chittaranjan Henkel, Karsten; Tallarida, Massimo; Schmeißer, Dieter; Gargouri, Hassan; Kärkkänen, Irina; Schneidewind, Jessica; Gruska, Bernd; Arens, Michael

    2015-01-15

    Titanium oxide (TiO{sub 2}) deposited by atomic layer deposition (ALD) is used as a protective layer in photocatalytic water splitting system as well as a dielectric in resistive memory switching. The way ALD is performed (thermally or plasma-assisted) may change the growth rate as well as the electronic properties of the deposited films. In the present work, the authors verify the influence of the ALD mode on functional parameters, by comparing the growth rate and electronic properties of TiO{sub 2} films deposited by thermal (T-) and plasma-enhanced (PE-) ALD. The authors complete the study with the electrical characterization of selected samples by means of capacitance–voltage and current–voltage measurements. In all samples, the authors found a significant presence of Ti{sup 3+} states, with the lowest content in the PE-ALD grown TiO{sub 2} films. The observation of Ti{sup 3+} states was accompanied by the presence of in-gap states above the valence band maximum. For films thinner than 10 nm, the authors found also a strong leakage current. Also in this case, the PE-ALD films showed the weakest leakage currents, showing a correlation between the presence of Ti{sup 3+} states and leakage current density.

  18. Ferroelectric properties of full plasma-enhanced ALD TiN/La:HfO2/TiN stacks

    NASA Astrophysics Data System (ADS)

    Chernikova, A. G.; Kuzmichev, D. S.; Negrov, D. V.; Kozodaev, M. G.; Polyakov, S. N.; Markeev, A. M.

    2016-06-01

    We report the possibility of employment of low temperature (≤330 °C) plasma-enhanced atomic layer deposition for the formation of both electrodes and hafnium-oxide based ferroelectric in the metal-insulator-metal structures. The structural and ferroelectric properties of La doped HfO2-based layers and its evolution with the change of both La content (2.1, 3.7 and 5.8 at. %) and the temperature of the rapid thermal processing (550-750 °C) were investigated in detail. Ferroelectric properties emerged only for 2.1 and 3.7 at. % of La due to the structural changes caused by the given doping levels. Ferroelectric properties were also found to depend strongly on annealing temperature, with the most robust ferroelectric response for lowest La concentration and intermediate 650 °C annealing temperature. The long term wake-up effect and such promising endurance characteristics as 3 × 108 switches by bipolar voltage cycles with 30 μs duration and ± 3 MV/cm amplitude without any decrease of remnant polarization value were demonstrated.

  19. Correlation of film density and wet etch rate in hydrofluoric acid of plasma enhanced atomic layer deposited silicon nitride

    NASA Astrophysics Data System (ADS)

    Provine, J.; Schindler, Peter; Kim, Yongmin; Walch, Steve P.; Kim, Hyo Jin; Kim, Ki-Hyun; Prinz, Fritz B.

    2016-06-01

    The continued scaling in transistors and memory elements has necessitated the development of atomic layer deposition (ALD) of silicon nitride (SiNx), particularly for use a low k dielectric spacer. One of the key material properties needed for SiNx films is a low wet etch rate (WER) in hydrofluoric (HF) acid. In this work, we report on the evaluation of multiple precursors for plasma enhanced atomic layer deposition (PEALD) of SiNx and evaluate the film's WER in 100:1 dilutions of HF in H2O. The remote plasma capability available in PEALD, enabled controlling the density of the SiNx film. Namely, prolonged plasma exposure made films denser which corresponded to lower WER in a systematic fashion. We determined that there is a strong correlation between WER and the density of the film that extends across multiple precursors, PEALD reactors, and a variety of process conditions. Limiting all steps in the deposition to a maximum temperature of 350 °C, it was shown to be possible to achieve a WER in PEALD SiNx of 6.1 Å/min, which is similar to WER of SiNx from LPCVD reactions at 850 °C.

  20. Fabrication of TiO2-modified polytetrafluoroethylene ultrafiltration membranes via plasma-enhanced surface graft pretreatment

    NASA Astrophysics Data System (ADS)

    Qian, Yingjia; Chi, Lina; Zhou, Weili; Yu, Zhenjiang; Zhang, Zhongzhi; Zhang, Zhenjia; Jiang, Zheng

    2016-01-01

    Surface hydrophilic modification of polymer ultrafiltration membrane using metal oxide represents an effective yet highly challenging solution to improve water flux and antifouling performance. Via plasma-enhanced graft of poly acryl acid (PAA) prior to coating TiO2, we successfully fixed TiO2 functional thin layer on super hydrophobic polytetrafluoroethylene (PTFE) ultrafiltration (UF) membranes. The characterization results evidenced TiO2 attached on the PTFE-based UF membranes through the chelating bidentate coordination between surface-grafted carboxyl group and Ti4+. The TiO2 surface modification may greatly reduce the water contact angle from 115.8° of the PTFE membrane to 35.0° without degradation in 30-day continuous filtration operations. The novel TiO2/PAA/PTFE membranes also exhibited excellent antifouling and self-cleaning performance due to the intrinsic hydrophilicity and photocatalysis properties of TiO2, which was further confirmed by the photo-degradation of MB under Xe lamp irradiation.

  1. Microwave hemorrhagic stroke detector

    DOEpatents

    Haddad, Waleed S.; Trebes, James E.

    2007-06-05

    The microwave hemorrhagic stroke detector includes a low power pulsed microwave transmitter with a broad-band antenna for producing a directional beam of microwaves, an index of refraction matching cap placed over the patients head, and an array of broad-band microwave receivers with collection antennae. The system of microwave transmitter and receivers are scanned around, and can also be positioned up and down the axis of the patients head. The microwave hemorrhagic stroke detector is a completely non-invasive device designed to detect and localize blood pooling and clots or to measure blood flow within the head or body. The device is based on low power pulsed microwave technology combined with specialized antennas and tomographic methods. The system can be used for rapid, non-invasive detection of blood pooling such as occurs with hemorrhagic stoke in human or animal patients as well as for the detection of hemorrhage within a patient's body.

  2. Microwave hemorrhagic stroke detector

    DOEpatents

    Haddad, Waleed S.; Trebes, James E.

    2002-01-01

    The microwave hemorrhagic stroke detector includes a low power pulsed microwave transmitter with a broad-band antenna for producing a directional beam of microwaves, an index of refraction matching cap placed over the patients head, and an array of broad-band microwave receivers with collection antennae. The system of microwave transmitter and receivers are scanned around, and can also be positioned up and down the axis of the patients head. The microwave hemorrhagic stroke detector is a completely non-invasive device designed to detect and localize blood pooling and clots or to measure blood flow within the head or body. The device is based on low power pulsed microwave technology combined with specialized antennas and tomographic methods. The system can be used for rapid, non-invasive detection of blood pooling such as occurs with hemorrhagic stroke in human or animal patients as well as for the detection of hemorrhage within a patient's body.

  3. Microwave waste processing technology overview

    SciTech Connect

    Petersen, R.D.

    1993-02-01

    Applications using microwave energy in the chemical processing industry have increased within the last ten years. Recently, interest in waste treatment applications process development, especially solidification, has grown. Microwave waste processing offers many advantages over conventional waste treatment technologies. These advantages include a high density, leach resistant, robust waste form, volume and toxicity reduction, favorable economics, in-container treatment, good public acceptance, isolated equipment, and instantaneous energy control. The results from the {open_quotes}cold{close_quotes} demonstration scale testing at the Rocky Flats nuclear weapons facility are described. Preliminary results for a transuranic (TRU) precipitation sludge indicate that volume reductions of over 80% are achievable over the current immobilization process. An economic evaluation performed demonstrated cost savings of $11.68 per pound compared to the immobilization process currently in use on wet sludge.

  4. Determination of 13 endocrine disrupting chemicals in environmental solid samples using microwave-assisted solvent extraction and continuous solid-phase extraction followed by gas chromatography-mass spectrometry.

    PubMed

    Azzouz, Abdelmonaim; Ballesteros, Evaristo

    2016-01-01

    Soil can contain large numbers of endocrine disrupting chemicals (EDCs). The varied physicochemical properties of EDCs constitute a great challenge to their determination in this type of environmental matrix. In this work, an analytical method was developed for the simultaneous determination of various classes of EDCs, including parabens, alkylphenols, phenylphenols, bisphenol A, and triclosan, in soils, sediments, and sewage sludge. The method uses microwave-assisted extraction (MAE) in combination with continuous solid-phase extraction for determination by gas chromatography-mass spectrometry. A systematic comparison of the MAE results with those of ultrasound-assisted and Soxhlet extraction showed MAE to provide the highest extraction efficiency (close to 100%) in the shortest extraction time (3 min). The proposed method provides a linear response over the range 2.0 - 5000 ng kg(-1) and features limits of detection from 0.5 to 4.5 ng kg(-1) depending on the properties of the EDC. The method was successfully applied to the determination of target compounds in agricultural soils, pond and river sediments, and sewage sludge. The sewage sludge samples were found to contain all target compounds except benzylparaben at concentration levels from 36 to 164 ng kg(-1). By contrast, the other types of samples contained fewer EDCs and at lower concentrations (5.6 - 84 ng kg(-1)).

  5. Microwave Plasma Chemical Vapor Deposition of Carbon Coatings on LiNi1/3Co1/3Mn1/3O2 for Li-Ion Battery Composite Cathodes

    SciTech Connect

    Doeff, M.M.; Kostecki, R.; Marcinek, M.; Wilcoc, J.D.

    2008-12-10

    In this paper, we report results of a novel synthesis method of thin film conductive carbon coatings on LiNi{sub 1/3}Co{sub 1/3}Mn{sub 1/3}O{sub 2} cathode active material powders for lithium-ion batteries. Thin layers of graphitic carbon were produced from a solid organic precursor, anthracene, by a one-step microwave plasma chemical vapor deposition (MPCVD) method. The structure and morphology of the carbon coatings were examined using SEM, TEM, and Raman spectroscopy. The composite LiNi{sub 1/3}Co{sub 1/3}Mn{sub 1/3}O{sub 2} electrodes were electrochemically tested in lithium half coin cells. The composite cathodes made of the carbon-coated LiNi{sub 1/3}Co{sub 1/3}Mn{sub 1/3}O{sub 2} powder showed superior electrochemical performance and increased capacity compared to standard composite LiNi{sub 1/3}Co{sub 1/3}Mn{sub 1/3}O{sub 2} electrodes.

  6. Carbon nanotubes and microwaves: interactions, responses, and applications.

    PubMed

    Vázquez, Ester; Prato, Maurizio

    2009-12-22

    The interaction of microwaves with carbon nanotubes (CNTs) is an interesting topic for a variety of potential applications. Microwaves have been used for the purification of CNTs and for their chemical functionalization, providing a technique for simple, green, and large-scale protocols. In addition, the selective destruction of metallic CNTs under microwave irradiation could potentially result in a batch of semiconducting-only nanotubes. As an innovative application, the combination of microwaves with well-aligned CNTs could produce a new illumination technology. Moreover, the microwave absorbing properties of CNTs and their different behavior from typical organic compounds may open the door to the preparation of a wide range of new materials useful in many fields. A few examples of practical applications include electromagnetic interference for protecting the environment from radiation and microwave hyperthermia for cancer treatment as well as other medical therapies requiring precise heating of biological tissues. PMID:20025299

  7. Surface band bending and band alignment of plasma enhanced atomic layer deposited dielectrics on Ga- and N-face gallium nitride

    NASA Astrophysics Data System (ADS)

    Yang, Jialing; Eller, Brianna S.; Nemanich, Robert J.

    2014-09-01

    The effects of surface pretreatment, dielectric growth, and post deposition annealing on interface electronic structure and polarization charge compensation of Ga- and N-face bulk GaN were investigated. The cleaning process consisted of an ex-situ wet chemical NH4OH treatment and an in-situ elevated temperature NH3 plasma process to remove carbon contamination, reduce oxygen coverage, and potentially passivate N-vacancy related defects. After the cleaning process, carbon contamination decreased below the x-ray photoemission spectroscopy detection limit, and the oxygen coverage stabilized at ˜1 monolayer on both Ga- and N-face GaN. In addition, Ga- and N-face GaN had an upward band bending of 0.8 ± 0.1 eV and 0.6 ± 0.1 eV, respectively, which suggested the net charge of the surface states and polarization bound charge was similar on Ga- and N-face GaN. Furthermore, three dielectrics (HfO2, Al2O3, and SiO2) were prepared by plasma-enhanced atomic layer deposition on Ga- or N-face GaN and annealed in N2 ambient to investigate the effect of the polarization charge on the interface electronic structure and band offsets. The respective valence band offsets of HfO2, Al2O3, and SiO2 with respect to Ga- and N-face GaN were 1.4 ± 0.1, 2.0 ± 0.1, and 3.2 ± 0.1 eV, regardless of dielectric thickness. The corresponding conduction band offsets were 1.0 ± 0.1, 1.3 ± 0.1, and 2.3 ± 0.1 eV, respectively. Experimental band offset results were consistent with theoretical calculations based on the charge neutrality level model. The trend of band offsets for dielectric/GaN interfaces was related to the band gap and/or the electronic part of the dielectric constant. The effect of polarization charge on band offset was apparently screened by the dielectric-GaN interface states.

  8. Microwave spectra of some chlorine and fluorine compounds. [spectroscopic analysis

    NASA Technical Reports Server (NTRS)

    White, W. F.

    1975-01-01

    A computer-controlled microwave spectrometer was used to catalog reference spectra for chemical analysis. Tables of absorption frequencies, peak absorption intensities, and integrated intensities are shown for 21 organic compounds which contain chlorine, fluorine, or both.

  9. Microwave-assisted 'greener' synthesis of organics and nanomaterials

    EPA Science Inventory

    Microwave selective heating techniques in conjunction with greener reaction media are dramatically reducing chemical waste and reaction times in several organic transformations and material synthesis. This presentation summarizes author’s own experience in developing MW-assisted ...

  10. Fuel gas production by microwave plasma in liquid

    SciTech Connect

    Nomura, Shinfuku; Toyota, Hiromichi; Tawara, Michinaga; Yamashita, Hiroshi; Matsumoto, Kenya

    2006-06-05

    We propose to apply plasma in liquid to replace gas-phase plasma because we expect much higher reaction rates for the chemical deposition of plasma in liquid than for chemical vapor deposition. A reactor for producing microwave plasma in a liquid could produce plasma in hydrocarbon liquids and waste oils. Generated gases consist of up to 81% hydrogen by volume. We confirmed that fuel gases such as methane and ethylene can be produced by microwave plasma in liquid.

  11. Microwave joining of SiC

    SciTech Connect

    Silberglitt, R.; Ahmad, I.; Black, W.M.

    1995-05-01

    The purpose of this work is to optimize the properties of SiC-SiC joints made using microwave energy. The current focus is on optimization of time-temperature profiles, production of SiC from chemical precursors, and design of new applicators for joining of long tubes.

  12. Development of plasma cleaning and plasma enhanced close space sublimation hardware for improving CdS/CdTe solar cells

    NASA Astrophysics Data System (ADS)

    Swanson, Drew

    A scalable photovoltaic manufacturing process that employs a heated pocket deposition technique has been developed at Colorado State University. It allows for the economical manufacturing of single-junction thin-film CdTe solar cells with efficiencies over 13%. New techniques that further increase cell efficiency and reduce production expenses are required to make solar energy more affordable. To address this need a hollow-cathode plasma source was added to the load-lock region of the CSU single-vacuum in-line CdTe-cell fabrication system. This plasma source is used to clean the transparent-conductive-oxide layer of the cell prior to the deposition of the CdS and CdTe layers. Plasma cleaning enables a reduction in CdS thickness by approximately 20 nm, while maintaining an improved cell voltage. Cell current was improved and cell efficiency was increased by 1.5%. Maps generated by scanning white-light interferometry, electroluminescence, and light-beam-induced current all show uniformity improvement with plasma cleaning treatment. To further increase cell efficiency a hollow-cathode plasma-enhanced close space sublimation (PECSS) source was utilized to modify the CdS window layer material as it was being deposited. This was done by integrating PECSS into the CSU inline CdS/CdTe-cell fabricating system and by sublimating the CdS semiconductor material through a plasma discharge. To date oxygenated CdS (CdS:O) cells have been grown by sublimating CdS through a PECSS source operated on oxygen. Data are presented showing that PECSS CdS:O films have increased the band gap of the window layer therefore reducing absorption loss, increasing cell current, and improving efficiency by 1.2%.

  13. The Effects of UV Treatment on Thermal and Plasma-Enhanced Atomic Layer Deposition of ZnO Thin Film Transistor

    SciTech Connect

    Kim, Jae-Min; Kim, Doyoung; Kim, Hyungjun; Lim, S. J.

    2011-12-23

    We investigated the ultraviolet (UV) light photostability of plasma-enhanced and thermal atomic layer deposition of ZnO thin film transistor (TFT). The negative shift of threshold voltage was similarly observed in both cases by UV exposure due to the increment of carrier concentration. Additionally, the transfer curves of TFT using thermal ALD ZnO:N active layer were exhibited recovery characteristics.

  14. Rutile-structured TiO{sub 2} deposited by plasma enhanced atomic layer deposition using tetrakis(dimethylamino)titanium precursor on in-situ oxidized Ru electrode

    SciTech Connect

    Pointet, John; Gonon, Patrice; Latu-Romain, Lawrence; Bsiesy, Ahmad Vallée, Christophe

    2014-01-15

    In this work, tetrakis(dimethylamino)titanium precursor as well as in-situ oxidized ruthenium bottom electrode were used to grow rutile-structured titanium dioxide thin layers by plasma enhanced atomic layer deposition. Metal–insulator–metal capacitors have been elaborated in order to study the electrical properties of the device. It is shown that this process leads to devices exhibiting excellent results in terms of dielectric constant and leakage current.

  15. Epithelial cell morphology and adhesion on diamond films deposited and chemically modified by plasma processes.

    PubMed

    Rezek, Bohuslav; Ukraintsev, Egor; Krátká, Marie; Taylor, Andrew; Fendrych, Frantisek; Mandys, Vaclav

    2014-09-01

    The authors show that nanocrystalline diamond (NCD) thin films prepared by microwave plasma enhanced chemical vapor deposition apparatus with a linear antenna delivery system are well compatible with epithelial cells (5637 human bladder carcinoma) and significantly improve the cell adhesion compared to reference glass substrates. This is attributed to better adhesion of adsorbed layers to diamond as observed by atomic force microscopy (AFM) beneath the cells. Moreover, the cell morphology can be adjusted by appropriate surface treatment of diamond by using hydrogen and oxygen plasma. Cell bodies, cytoplasmic rims, and filopodia were characterized by Peakforce AFM. Oxidized NCD films perform better than other substrates under all conditions (96% of cells adhered well). A thin adsorbed layer formed from culture medium and supplemented with fetal bovine serum (FBS) covered the diamond surface and played an important role in the cell adhesion. Nevertheless, 50-100 nm large aggregates formed from the RPMI medium without FBS facilitated cell adhesion also on hydrophobic hydrogenated NCD (increase from 23% to 61%). The authors discuss applicability for biomedical uses.

  16. Microwave Lightcraft concept

    NASA Technical Reports Server (NTRS)

    2004-01-01

    Looking like an alien space ship or a flying saucer the Microwave Lightcraft is an unconventional launch vehicle approach for delivering payload to orbit using power transmitted via microwaves. Microwaves re beamed from either a ground station or an orbiting solar power satellite to the lightcraft. The energy received breaks air molecules into a plasma and a magnetohydrodynamic fanjet provides the lifting force. Only a small amount of propellant is required for circulation, attitude control and deorbit.

  17. Advanced microwave processing concepts

    SciTech Connect

    Lauf, R.J.; McMillan, A.D.; Paulauskas, F.L.

    1997-04-01

    The purpose of this work is to explore the feasibility of several advanced microwave processing concepts to develop new energy-efficient materials and processes. The project includes two tasks: (1) commercialization of the variable-frequency microwave furnace; and (2) microwave curing of polymeric materials. The variable frequency microwave furnace, whose initial conception and design was funded by the AIM Materials Program, allows the authors, for the first time, to conduct microwave processing studies over a wide frequency range. This novel design uses a high-power traveling wave tube (TWT) originally developed for electronic warfare. By using this microwave source, one can not only select individual microwave frequencies for particular experiments, but also achieve uniform power densities over a large area by the superposition of many different frequencies. Microwave curing of various thermoset resins will be studied because it holds the potential of in-situ curing of continuous-fiber composites for strong, lightweight components or in-situ curing of adhesives, including metal-to-metal. Microwave heating can shorten curing times, provided issues of scaleup, uniformity, and thermal management can be adequately addressed.

  18. Advanced microwave processing concepts

    SciTech Connect

    Lauf, R.J.; McMillan, A.D.; Paulauskas, F.L.

    1995-05-01

    The purpose of this work is to explore the feasibility of several advanced microwave processing concepts to develop new energy-efficient materials and processes. The project includes two tasks: (1) commercialization of the variable-frequency microwave furnace; and (2) microwave curing of polymer composites. The variable frequency microwave furnace, whose initial conception and design was funded by the AIC Materials Program, will allow us, for the first time, to conduct microwave processing studies over a wide frequency range. This novel design uses a high-power traveling wave tube (TWT) originally developed for electronic warfare. By using this microwave source, one can not only select individual microwave frequencies for particular experiments, but also achieve uniform power densities over a large area by the superposition of many different frequencies. Microwave curing of thermoset resins will be studied because it hold the potential of in-situ curing of continuous-fiber composites for strong, lightweight components. Microwave heating can shorten curing times, provided issues of scaleup, uniformity, and thermal management can be adequately addressed.

  19. New prospects in pretreatment of cotton fabrics using microwave heating.

    PubMed

    Hashem, M; Taleb, M Abou; El-Shall, F N; Haggag, K

    2014-03-15

    As microwaves are known to give fast and rapid volume heating, the present study is undertaken to investigate the use of microwave heating for pretreatment cotton fabrics to reduce the pretreatment time, chemicals and water. The onset of the microwave heating technique on the physicochemical and performance properties of desized, scoured and bleached cotton fabric is elucidated and compared with those obtained on using conventional thermal heating. Combined one-step process for desizing, scouring and bleaching of cotton fabric under microwave heating was also investigated. The dual effect of adding urea, (as microwave absorber and hydrogen peroxide activator) has been exploiting to accelerate the pretreatment reaction of cotton fabric. DSC, FT-IR and SEM have been used to investigate the onset of microwave on the morphological and chemical change of cotton cellulose after pretreatment and bleaching under microwave heating. Results obtained show that, a complete fabric preparation was obtained in just 5 min on using microwave in pretreatments process and the fabric properties were comparable to those obtained in traditional pretreatment process which requires 2.5-3h for completion.

  20. New prospects in pretreatment of cotton fabrics using microwave heating.

    PubMed

    Hashem, M; Taleb, M Abou; El-Shall, F N; Haggag, K

    2014-03-15

    As microwaves are known to give fast and rapid volume heating, the present study is undertaken to investigate the use of microwave heating for pretreatment cotton fabrics to reduce the pretreatment time, chemicals and water. The onset of the microwave heating technique on the physicochemical and performance properties of desized, scoured and bleached cotton fabric is elucidated and compared with those obtained on using conventional thermal heating. Combined one-step process for desizing, scouring and bleaching of cotton fabric under microwave heating was also investigated. The dual effect of adding urea, (as microwave absorber and hydrogen peroxide activator) has been exploiting to accelerate the pretreatment reaction of cotton fabric. DSC, FT-IR and SEM have been used to investigate the onset of microwave on the morphological and chemical change of cotton cellulose after pretreatment and bleaching under microwave heating. Results obtained show that, a complete fabric preparation was obtained in just 5 min on using microwave in pretreatments process and the fabric properties were comparable to those obtained in traditional pretreatment process which requires 2.5-3h for completion. PMID:24528744

  1. Microwave technology for disinfestation of cereals and pulses: An overview.

    PubMed

    Yadav, Deep N; Anand, Tanupriya; Sharma, Monika; Gupta, R K

    2014-12-01

    Contamination of stored grain with insects, insect fragments, fungi, and mycotoxins is a major concern of the grain industry. The stored-grain insects affect the grains not only quantitatively but also qualitatively. Disinfestation of grains can be achieved by physical, chemical and thermal methods. Microwaves may be an alternate to chemical methods of killing insects in grain as their application do not leave any undesirable residues and thus might be very effective for controlling insect infestation compared to other available methods. Microwave disinfestation can provide a continuous process to allow large quantities of products to pass in a shorter period of time. Microwave disinfestation is considered safe and competitive alternative method to fumigation as it avoids environmental pollution. The aim of this review is to examine how the use of microwave treatment benefits grain producers, handlers, and processors seeking to use non-chemical methods for preventing and controlling insect infestation and fungal growth during storage.

  2. Synthesis and Mechanical Wear Studies of Ultra Smooth Nanostructured Diamond (USND) Coatings Deposited by Microwave Plasma Chemical Vapor Deposition with He/H2/CH4/N2 Mixtures

    PubMed Central

    Chowdhury, S.; Borham, J.; Catledge, S. A.; Eberhardt, A. W.; Johnson, P. S.; Vohra, Y. K.

    2008-01-01

    Ultra smooth nanostructured diamond (USND) coatings were deposited by microwave plasma chemical vapor deposition (MPCVD) technique using He/H2/CH4/N2 gas mixture. The RMS surface roughness as low as 4 nm (2 micron square area) and grain size of 5–6 nm diamond coatings were achieved on medical grade titanium alloy. Previously it was demonstrated that the C2 species in the plasma is responsible for the production of nanocrystalline diamond coatings in the Ar/H2/CH4 gas mixture. In this work we have found that CN species is responsible for the production of USND coatings in He/H2/CH4/N2 plasma. It was found that diamond coatings deposited with higher CN species concentration (normalized by Balmer Hα line) in the plasma produced smoother and highly nanostructured diamond coatings. The correlation between CN/Hα ratios with the coating roughness and grain size were also confirmed with different set of gas flows/plasma parameters. It is suggested that the presence of CN species could be responsible for producing nanocrystallinity in the growth of USND coatings using He/H2/CH4/N2 gas mixture. The RMS roughness of 4 nm and grain size of 5–6 nm were calculated from the deposited diamond coatings using the gas mixture which produced the highest CN/Hα species in the plasma. Wear tests were performed on the OrthoPOD®, a six station pin-on-disk apparatus with ultra-high molecular weight polyethylene (UHMWPE) pins articulating on USND disks and CoCrMo alloy disk. Wear of the UHMWPE was found to be lower for the polyethylene on USND than that of polyethylene on CoCrMo alloy. PMID:19112519

  3. Microwave-enhanced reaction rates for nanoparticle synthesis.

    PubMed

    Gerbec, Jeffrey A; Magana, Donny; Washington, Aaron; Strouse, Geoffrey F

    2005-11-16

    Microwave reactor methodologies are unique in their ability to be scaled-up without suffering thermal gradient effects, providing a potentially industrially important improvement in nanocrystal synthetic methodology over convective methods. Synthesis of high-quality, near monodispersity nanoscale InGaP, InP, and CdSe have been prepared via direct microwave heating of the molecular precursors rather than convective heating of the solvent. Microwave dielectric heating not only enhances the rate of formation, it also enhances the material quality and size distributions. The reaction rates are influenced by the microwave field and by additives. The final quality of the microwave-generated materials depends on the reactant choice, the applied power, the reaction time, and temperature. CdSe nanocrystals prepared in the presence of a strong microwave absorber exhibit sharp excitonic features and a QY of 68% for microwave-grown materials. InGaP and InP are rapidly formed at 280 degrees C in minutes, yielding clean reactions and monodisperse size distributions that require no size-selective precipitation and result in the highest out of batch quantum efficiency reported to date of 15% prior to chemical etching. The use of microwave (MW) methodology is readily scalable to larger reaction volumes, allows faster reaction times, removes the need for high-temperature injection, and suggests a specific microwave effect may be present in these reactions.

  4. Microwave joining of SiC

    SciTech Connect

    Silberglitt, R.; Ahmad, I.; Tian, Y.L.

    1997-04-01

    The purpose of this work is to optimize the properties of SiC-SiC joints made using microwave energy. The current focus is on identification of the most effective joining methods for scale-up to large tube assemblies, including joining using SiC produced in situ from chemical precursors. During FY 1996, a new microwave applicator was designed, fabricated and tested that provides the capability for vacuum baking of the specimens and insulation and for processing under inert environment. This applicator was used to join continuous fiber-reinforced (CFCC) SiC/SiC composites using a polymer precursor to form a SiC interlayer in situ.

  5. Applications of microwave radiation environmental remediation technologies

    SciTech Connect

    Krause, T.R.; Helt, J.E.

    1993-05-01

    A growing number of environmental remediation technologies (e.g., drying, melting, or sintering) utilize microwave radiation as an integral part of the process. An increasing number of novel applications, such as sustaining low-temperature plasmas or enhancing chemical reactivity, are also being developed. An overview of such technologies being developed by the Department of Energy is presented. A specific example being developed at Argonne National Laboratory, microwave-induced plasma reactors for the destruction of volatile organic compounds, is discussed in more detail.

  6. Applications of microwave radiation environmental remediation technologies

    SciTech Connect

    Krause, T.R.; Helt, J.E.

    1993-01-01

    A growing number of environmental remediation technologies (e.g., drying, melting, or sintering) utilize microwave radiation as an integral part of the process. An increasing number of novel applications, such as sustaining low-temperature plasmas or enhancing chemical reactivity, are also being developed. An overview of such technologies being developed by the Department of Energy is presented. A specific example being developed at Argonne National Laboratory, microwave-induced plasma reactors for the destruction of volatile organic compounds, is discussed in more detail.

  7. Mechanism for microwave heating of 1-(4'-cyanophenyl)-4-propylcyclohexane characterized by in situ microwave irradiation NMR spectroscopy.

    PubMed

    Tasei, Yugo; Yamakami, Takuya; Kawamura, Izuru; Fujito, Teruaki; Ushida, Kiminori; Sato, Motoyasu; Naito, Akira

    2015-05-01

    Microwave heating is widely used to accelerate organic reactions and enhance the activity of enzymes. However, the detailed molecular mechanism for the effect of microwave on chemical reactions is not yet fully understood. To investigate the effects of microwave heating on organic compounds, we have developed an in situ microwave irradiation NMR spectroscopy. (1)H NMR spectra of 1-(4'-cyanophenyl)-4-propylcyclohexane (PCH3) in the liquid crystalline and isotropic phases were observed under microwave irradiation. When the temperature was regulated at slightly higher than the phase transition temperature (Tc=45 °C) under a gas flow temperature control system, liquid crystalline phase mostly changed to the isotropic phase. Under microwave irradiation and with the gas flow temperature maintained at 20 °C, which is 25 °C below the Tc, the isotropic phase appeared stationary as an approximately 2% fraction in the liquid crystalline phase. The temperature of the liquid crystalline state was estimated to be 38 °C according to the line width, which is at least 7 °C lower than the Tc. The temperature of this isotropic phase should be higher than 45 °C, which is considered to be a non-equilibrium local heating state induced by microwave irradiation. Microwaves at a power of 195 W were irradiated to the isotropic phase of PCH3 at 50 °C and after 2 min, the temperature reached 220 °C. The temperature of PCH3 under microwave irradiation was estimated by measurement of the chemical shift changes of individual protons in the molecule. These results demonstrate that microwave heating generates very high temperature within a short time using an in situ microwave irradiation NMR spectrometer.

  8. MICROWAVES IN ORGANIC SYNTHESIS

    EPA Science Inventory

    The effect of microwaves, a non-ionizing radiation, on organic reactions is described both in polar solvents and under solvent-free conditions. The special applications are highlighted in the context of solventless organic synthesis which involve microwave (MW) exposure of neat r...

  9. Microwave device investigations

    NASA Technical Reports Server (NTRS)

    Choudhury, K. K. D.; Haddad, G. I.; Kwok, S. P.; Masnari, N. A.; Trew, R. J.

    1972-01-01

    Materials, devices and novel schemes for generation, amplification and detection of microwave and millimeter wave energy are studied. Considered are: (1) Schottky-barrier microwave devices; (2) intermodulation products in IMPATT diode amplifiers; and (3) harmonic generation using Read diode varactors.

  10. Television Microwave--1971.

    ERIC Educational Resources Information Center

    Peterson, Roger E.

    Since it became a reality just before World War II, terrestrial microwave has improved in systems and equipments, but with the improvements have come higher costs. Television microwave costs are so high because users are demanding more capability, land prices have increased, operating costs are higher, and there is frequency congestion along many…

  11. Microwave processing of ceramics

    SciTech Connect

    Katz, J.D.

    1993-01-01

    Recent work in the areas of microwave processing and joining of ceramics is briefly reviewed. Advantages and disadvantages of microwave processing as well as some of the current issues in the field are discussed. Current state and potential for future commercialization of this technology is also addressed.

  12. Microwave processing of ceramics

    SciTech Connect

    Katz, J.D.

    1993-04-01

    Recent work in the areas of microwave processing and joining of ceramics is briefly reviewed. Advantages and disadvantages of microwave processing as well as some of the current issues in the field are discussed. Current state and potential for future commercialization of this technology is also addressed.

  13. Variable frequency microwave heating apparatus

    DOEpatents

    Bible, Don W.; Lauf, Robert J.; Johnson, Arvid C.; Thigpen, Larry T.

    1999-01-01

    A variable frequency microwave heating apparatus (10) designed to allow modulation of the frequency of the microwaves introduced into a multi-mode microwave cavity (34) for testing or other selected applications. The variable frequency microwave heating apparatus (10) includes a microwave signal generator (12) and a high-power microwave amplifier (20) or a high-power microwave oscillator (14). A power supply (22) is provided for operation of the high-power microwave oscillator (14) or microwave amplifier (20). A directional coupler (24) is provided for detecting the direction and amplitude of signals incident upon and reflected from the microwave cavity (34). A first power meter (30) is provided for measuring the power delivered to the microwave furnace (32). A second power meter (26) detects the magnitude of reflected power. Reflected power is dissipated in the reflected power load (28).

  14. Variable frequency microwave heating apparatus

    SciTech Connect

    Bible, D.W.; Lauf, R.J.; Johnson, A.C.; Thigpen, L.T.

    1999-10-05

    A variable frequency microwave heating apparatus (10) designed to allow modulation of the frequency of the microwaves introduced into a multi-mode microwave cavity (34) for testing or other selected applications. The variable frequency microwave heating apparatus (10) includes a microwave signal generator (12) and a high-power microwave amplifier (20) or a high-power microwave oscillator (14). A power supply (22) is provided for operation of the high-power microwave oscillator (14) or microwave amplifier (20). A directional coupler (24) is provided for detecting the direction and amplitude of signals incident upon and reflected from the microwave cavity (34). A first power meter (30) is provided for measuring the power delivered to the microwave furnace (32). A second power meter (26) detects the magnitude of reflected power. Reflected power is dissipated in the reflected power load (28).

  15. Structural, electrical, and optical properties of transparent gallium oxide thin films grown by plasma-enhanced atomic layer deposition

    SciTech Connect

    Shan, F.K.; Liu, G.X.; Lee, W.J.; Lee, G.H.; Kim, I.S.; Shin, B.C.

    2005-07-15

    Gallium oxide (Ga{sub 2}O{sub 3}) thin films were deposited on silicon (100) and sapphire (001) substrates using the plasma-enhanced atomic layer deposition (PEALD) technique with an alternating supply of reactant source, [(CH{sub 3}){sub 2}GaNH{sub 2}]{sub 3}, and oxygen plasma. The thin films were annealed at different temperatures (500, 700, and 900 deg. C, respectively) in a rapid thermal annealing system for 1 min. It was found that Ga{sub 2}O{sub 3} thin films deposited by PEALD showed excellent step coverage characteristics. X-ray diffraction measurements showed that the as-deposited thin film was amorphous. However, the thin films annealed at temperatures higher than 700 deg. C showed a (400) orientation of the monoclinic structure. An atomic force microscope was used to investigate the surface morphologies of the thin films. The thin films showed very smooth surfaces; the roughness of the as-deposited thin film was about 4 A . With increasing annealing temperature, the thin film became rougher compared with that annealed at lower temperatures. A double-beam spectrophotometer was used to measure the transmittances of the thin films on the sapphire substrates. The thin films showed a very high transmittance (nearly 100%). The band-gap energies of the thin films were determined by a linear fit of the transmittance spectra and were calculated to be between 5.0 and 5.24 eV. The electrical properties of thin films of Pt/film/Si structure were also investigated. It was found that, with increasing annealing temperature, the insulating characteristics of the Ga{sub 2}O{sub 3} thin films were significantly improved. Spectroscopic ellipsometry was used to derive the refractive indices and the thicknesses of the thin films. The refractive indices of the thin films showed normal dispersion behavior. The refractive indices of the thin films annealed at low temperatures were smaller than those annealed at high temperatures.

  16. Electron scattering mechanisms in GZO films grown on a-sapphire substrates by plasma-enhanced molecular beam epitaxy

    SciTech Connect

    Liu, H. Y.; Avrutin, V.; Izyumskaya, N.; Oezguer, Ue.; Morkoc, H.; Yankovich, A. B.; Kvit, A. V.; Voyles, P. M.

    2012-05-15

    We report on the mechanisms governing electron transport using a comprehensive set of ZnO layers heavily doped with Ga (GZO) grown by plasma-enhanced molecular-beam epitaxy on a-plane sapphire substrates with varying oxygen-to-metal ratios and Ga fluxes. The analyses were conducted by temperature dependent Hall measurements which were supported by microstructural investigations as well. Highly degenerate GZO layers with n > 5 x 10{sup 20} cm{sup -3} grown under metal-rich conditions (reactive oxygen-to-metal ratio <1) show relatively larger grains ({approx}20-25 nm by x-ray diffraction) with low-angle boundaries parallel to the polar c-direction. For highly conductive GZO layers, ionized-impurity scattering with almost no compensation is the dominant mechanism limiting the mobility in the temperature range from 15 to 330 K and the grain-boundary scattering governed by quantum-mechanical tunnelling is negligible. However, due to the polar nature of ZnO having high crystalline quality, polar optical phonon scattering cannot be neglected for temperatures above 150 K, because it further reduces mobility although its effect is still substantially weaker than the ionized impurity scattering even at room temperature (RT). Analysis of transport measurements and sample microstructures by x-ray diffraction and transmission electron microscopy led to a correlation between the grain sizes in these layers and mobility even for samples with a carrier concentration in the upper 10{sup 20} cm{sup -3} range. In contrast, electron transport in GZO layers grown under oxygen-rich conditions (reactive oxygen-to-metal ratio >1), which have inclined grain boundaries and relatively smaller grain sizes of 10-20 nm by x-ray diffraction, is mainly limited by compensation caused by acceptor-type point-defect complexes, presumably (Ga{sub Zn}-V{sub Zn}), and scattering on grain boundaries. The GZO layers with n <10{sup 20} cm{sup -3} grown under metal-rich conditions with reduced Ga fluxes

  17. Microwave hydrology: A trilogy

    NASA Technical Reports Server (NTRS)

    Stacey, J. M.; Johnston, E. J.; Girard, M. A.; Regusters, H. A.

    1985-01-01

    Microwave hydrology, as the term in construed in this trilogy, deals with the investigation of important hydrological features on the Earth's surface as they are remotely, and passively, sensed by orbiting microwave receivers. Microwave wavelengths penetrate clouds, foliage, ground cover, and soil, in varying degrees, and reveal the occurrence of standing liquid water on and beneath the surface. The manifestation of liquid water appearing on or near the surface is reported by a microwave receiver as a signal with a low flux level, or, equivalently, a cold temperature. Actually, the surface of the liquid water reflects the low flux level from the cosmic background into the input terminals of the receiver. This trilogy describes and shows by microwave flux images: the hydrological features that sustain Lake Baykal as an extraordinary freshwater resource; manifestations of subsurface water in Iran; and the major water features of the Congo Basin, a rain forest.

  18. Microwave ion source

    SciTech Connect

    Leung, Ka-Ngo; Reijonen, Jani; Thomae, Rainer W.

    2005-07-26

    A compact microwave ion source has a permanent magnet dipole field, a microwave launcher, and an extractor parallel to the source axis. The dipole field is in the form of a ring. The microwaves are launched from the middle of the dipole ring using a coaxial waveguide. Electrons are heated using ECR in the magnetic field. The ions are extracted from the side of the source from the middle of the dipole perpendicular to the source axis. The plasma density can be increased by boosting the microwave ion source by the addition of an RF antenna. Higher charge states can be achieved by increasing the microwave frequency. A xenon source with a magnetic pinch can be used to produce intense EUV radiation.

  19. Microwave radiation hazards around large microwave antenna.

    NASA Technical Reports Server (NTRS)

    Klascius, A.

    1973-01-01

    The microwave radiation hazards associated with the use of large antennas become increasingly more dangerous to personnel as the transmitters go to ever higher powers. The near-field area is of the greatest concern. It has spill over from subreflector and reflections from nearby objects. Centimeter waves meeting in phase will reinforce each other and create hot spots of microwave energy. This has been measured in front of and around several 26-meter antennas. Hot spots have been found and are going to be the determining factor in delineating safe areas for personnel to work. Better techniques and instruments to measure these fields are needed for the evaluation of hazard areas.

  20. Microwave bonding of MEMS component

    NASA Technical Reports Server (NTRS)

    Barmatz, Martin B. (Inventor); Mai, John D. (Inventor); Jackson, Henry W. (Inventor); Budraa, Nasser K. (Inventor); Pike, William T. (Inventor)

    2005-01-01

    Bonding of MEMs materials is carried out using microwave. High microwave absorbing films are placed within a microwave cavity, and excited to cause selective heating in the skin of the material. This causes heating in one place more than another. Thereby minimizing the effects of the bonding microwave energy.

  1. Microwave drilling of bones.

    PubMed

    Eshet, Yael; Mann, Ronit Rachel; Anaton, Abby; Yacoby, Tomer; Gefen, Amit; Jerby, Eli

    2006-06-01

    This paper presents a feasibility study of drilling in fresh wet bone tissue in vitro using the microwave drill method [Jerby et al, 2002], toward testing its applicability in orthopaedic surgery. The microwave drill uses a near-field focused energy (typically, power under approximately 200 W at 2.45-GHz frequency) in order to penetrate bone in a drilling speed of approximately 1 mm/s. The effect of microwave drilling on mechanical properties of whole ovine tibial and chicken femoral bones drilled in vitro was studied using three-point-bending strength and fatigue tests. Properties were compared to those of geometrically similar bones that were equivalently drilled using the currently accepted mechanical rotary drilling method. Strength of mid-shaft, elastic moduli, and cycles to failure in fatigue were statistically indistinguishable between specimen groups assigned for microwave and mechanical drilling. Carbonized margins around the microwave-drilled hole were approximately 15% the hole diameter. Optical and scanning electron microscopy studies showed that the microwave drill produces substantially smoother holes in cortical bone than those produced by a mechanical drill. The hot spot produced by the microwave drill has the potential for overcoming two major problems presently associated with mechanical drilling in cortical and trabecular bone during orthopaedic surgeries: formation of debris and rupture of bone vasculature during drilling.

  2. Microwave and RF assisted chemical vapor infiltration

    SciTech Connect

    Devlin, D.J.; Barbero, R.S.

    1995-05-01

    Work during this reporting period has focused on the development of a CVI technique for rapid production of carbon/carbon and alumina composite systems. The focus of the alumina effort is towards porous materials for membrane supports and hot gas filtration. Industrial interest in these applications include companies such as: Dow, Westinghouse, Amoco and DuPont. Applications for the carbon materials are numerous and include: brakes, sporting goods, biomedical materials, flaps and seals for thrust control, after burner nozzles, turbine engine flaps and rotors. This effort will focus on aircraft brakes. A collaboration is underway with Hitco a major producer of carbon/carbon materials.

  3. Microwave coupler and method

    DOEpatents

    Holcombe, Cressie E.

    1985-01-01

    The present invention is directed to a microwave coupler for enhancing the heating or metallurgical treatment of materials within a cold-wall, rapidly heated cavity as provided by a microwave furnace. The coupling material of the present invention is an alpha-rhombohedral-boron-derivative-structure material such as boron carbide or boron silicide which can be appropriately positioned as a susceptor within the furnace to heat other material or be in powder particulate form so that composites and structures of boron carbide such as cutting tools, grinding wheels and the like can be rapidly and efficiently formed within microwave furnaces.

  4. Microwave coupler and method

    DOEpatents

    Holcombe, C.E.

    1984-11-29

    The present invention is directed to a microwave coupler for enhancing the heating or metallurgical treatment of materials within a cold-wall, rapidly heated cavity as provided by a microwave furnace. The coupling material of the present invention is an alpha-rhombohedral-boron-derivative-structure material such as boron carbide or boron silicide which can be appropriately positioned as a susceptor within the furnace to heat other material or be in powder particulate form so that composites and structures of boron carbide such as cutting tools, grinding wheels and the like can be rapidly and efficiently formed within microwave furnaces.

  5. Microwave vision for robots

    NASA Technical Reports Server (NTRS)

    Lewandowski, Leon; Struckman, Keith

    1994-01-01

    Microwave Vision (MV), a concept originally developed in 1985, could play a significant role in the solution to robotic vision problems. Originally our Microwave Vision concept was based on a pattern matching approach employing computer based stored replica correlation processing. Artificial Neural Network (ANN) processor technology offers an attractive alternative to the correlation processing approach, namely the ability to learn and to adapt to changing environments. This paper describes the Microwave Vision concept, some initial ANN-MV experiments, and the design of an ANN-MV system that has led to a second patent disclosure in the robotic vision field.

  6. Monolithic microwave integrated circuits

    NASA Astrophysics Data System (ADS)

    Pucel, R. A.

    Monolithic microwave integrated circuits (MMICs), a new microwave technology which is expected to exert a profound influence on microwave circuit designs for future military systems as well as for the commercial and consumer markets, is discussed. The book contains an historical discussion followed by a comprehensive review presenting the current status in the field. The general topics of the volume are: design considerations, materials and processing considerations, monolithic circuit applications, and CAD, measurement, and packaging techniques. All phases of MMIC technology are covered, from design to testing.

  7. Microwave sterilization of enterobacteria.

    PubMed

    Rosaspina, S; Anzanel, D; Salvatorelli, G

    1993-01-01

    A new method is described which makes it possible to treat metal materials with microwaves. In consequence scalpel blades as well as cover glasses contaminated with four species of bacteria (Salmonella typhi, Proteus mirabilis, Escherichia coli and Pseudomonas aeruginosa) were sterilized. With this method sterilization can be achieved quite rapidly (1.5-2 min). Scanning electron microscopy revealed a progressive alteration in the morphology of micro-organisms and this proved proportional to the microwave exposure time. Only in Proteus mirabilis were no modifications found, even after long periods of microwave exposure. PMID:8302204

  8. Microwave thawing apparatus and method

    DOEpatents

    Fathi, Zakaryae; Lauf, Robert J.; McMillan, April D.

    2004-06-01

    An apparatus for thawing a frozen material includes: a microwave energy source; a microwave applicator which defines a cavity for applying microwave energy from the microwave source to a material to be thawed; and a shielded region which is shielded from the microwave source, the shielded region in fluid communication with the cavity so that thawed material may flow from the cavity into the shielded region.

  9. Plasma-enhanced atomic layer deposition of nanoscale yttria-stabilized zirconia electrolyte for solid oxide fuel cells with porous substrate.

    PubMed

    Ji, Sanghoon; Cho, Gu Young; Yu, Wonjong; Su, Pei-Chen; Lee, Min Hwan; Cha, Suk Won

    2015-02-11

    Nanoscale yttria-stabilized zirconia (YSZ) electrolyte film was deposited by plasma-enhanced atomic layer deposition (PEALD) on a porous anodic aluminum oxide supporting substrate for solid oxide fuel cells. The minimum thickness of PEALD-YSZ electrolyte required for a consistently high open circuit voltage of 1.17 V at 500 °C is 70 nm, which is much thinner than the reported thickness of 180 nm using nonplasmatic ALD and is also the thinnest attainable value reported in the literatures on a porous supporting substrate. By further reducing the electrolyte thickness, the grain size reduction resulted in high surface grain boundary density at the cathode/electrolyte interface.

  10. Assessing quality parameters in dry-cured ham using microwave spectroscopy.

    PubMed

    Bjarnadottir, S G; Lunde, K; Alvseike, O; Mason, A; Al-Shamma'a, A I

    2015-10-01

    Microwave spectroscopy has been applied in numerous non-food industry applications, and recently also in the food industry, for non-destructive measurements. In this study, a dry-cured ham model was designed and chemical analyses were performed for determining water activity, water content and salt content (sodium chloride) for all samples. These chemical parameters were also measured using microwave spectroscopy, with a rectangular microwave cavity resonator. Results indicate that microwave spectroscopy may be a promising technique for determination of water activity, salt content and water content in dry-cured ham using either reflected or transmitted signals.

  11. Optical emission spectrometric determination of arsenic and antimony by continuous flow chemical hydride generation and a miniaturized microwave microstrip argon plasma operated inside a capillary channel in a sapphire wafer

    NASA Astrophysics Data System (ADS)

    Pohl, Pawel; Zapata, Israel Jimenéz; Bings, Nicolas H.; Voges, Edgar; Broekaert, José A. C.

    2007-05-01

    Continuous flow chemical hydride generation coupled directly to a 40 W, atmospheric pressure, 2.45 GHz microwave microstrip Ar plasma operated inside a capillary channel in a sapphire wafer has been optimized for the emission spectrometric determination of As and Sb. The effect of the NaBH 4 concentration, the concentration of HCl, HNO 3 and H 2SO 4 used for sample acidification, the Ar flow rate, the reagent flow rates, the liquid volume in the separator as well as the presence of interfering metals such as Fe, Cu, Ni, Co, Zn, Cd, Mn, Pb and Cr, was investigated in detail. A considerable influence of Fe(III) (enhancement of up to 50 %) for As(V) and of Fe(III), Cu(II) and Cr(III) (suppression of up to 75%) as well as of Cd(II) and Mn(II) (suppression by up to 25%) for Sb(III) was found to occur, which did not change by more than a factor of 2 in the concentration range of 2-20 μg ml - 1 . The microstrip plasma tolerated the introduction of 4.2 ml min - 1 of H 2 in the Ar working gas, which corresponded to an H 2/Ar ratio of 28%. Under these conditions, the excitation temperature as measured with Ar atom lines and the electron number density as determined from the Stark broadening of the H β line was of the order of 5500 K and 1.50 · 10 14 cm - 3 , respectively. Detection limits (3σ) of 18 ng ml - 1 for As and 31 ng ml - 1 for Sb were found and the calibration curves were linear over 2 orders of magnitude. With the procedure developed As and Sb could be determined at the 45 and 6.4 μg ml - 1 level in a galvanic bath solution containing 2.5% of NiSO 4. Additionally, As was determined in a coal fly ash reference material (NIST SRM 1633a) with a certified concentration of As of 145 ± 15 μg g - 1 and a value of 144 ± 4 μg g - 1 was found.

  12. Emitron: microwave diode

    DOEpatents

    Craig, G.D.; Pettibone, J.S.; Drobot, A.T.

    1982-05-06

    The invention comprises a new class of device, driven by electron or other charged particle flow, for producing coherent microwaves by utilizing the interaction of electromagnetic waves with electron flow in diodes not requiring an external magnetic field. Anode and cathode surfaces are electrically charged with respect to one another by electron flow, for example caused by a Marx bank voltage source or by other charged particle flow, for example by a high energy charged particle beam. This produces an electric field which stimulates an emitted electron beam to flow in the anode-cathode region. The emitted electrons are accelerated by the electric field and coherent microwaves are produced by the three dimensional spatial and temporal interaction of the accelerated electrons with geometrically allowed microwave modes which results in the bunching of the electrons and the pumping of at least one dominant microwave mode.

  13. Microwave Oven Observations.

    ERIC Educational Resources Information Center

    Sumrall, William J.; Richardson, Denise; Yan, Yuan

    1998-01-01

    Explains a series of laboratory activities which employ a microwave oven to help students understand word problems that relate to states of matter, collect data, and calculate and compare electrical costs to heat energy costs. (DDR)

  14. Microwave Radiation Detector

    NASA Technical Reports Server (NTRS)

    Lesh, J. R.

    1984-01-01

    Direct photon detector responds to microwave frequencies. Method based on trapped-ion frequency-generation standards proposed to detect radio-frequency (RF) radiation at 40.5 GHz. Technique used for directdetection (RF) communication, radar, and radio astronomy.

  15. Microwave sensing from orbit

    NASA Technical Reports Server (NTRS)

    Kritikos, H. N.; Shiue, J.

    1979-01-01

    Microwave sensors, used in conjunction with the traditional sensors of visible and infrared light to extend present capabilities of global weather forecasts and local storm watches, are discussed. The great advantage of these sensors is that they can penetrate or 'see' through cloud formations to monitor temperature, humidity and wind fields below the clouds. Other uses are that they can penetrate the earth deeper than optical and IR systems; they can control their own angle of incidence; they can detect oil spills; and they can enhance the studies of the upper atmosphere through measurement of temperature, water vapor and other gaseous species. Two types of microwave sensors, active and passive, are examined. Special attention is given to the study of the microwave radiometer and the corresponding temperature resolution as detected by the antenna. It is determined that not only will the microwave remote sensors save lives by allowing close monitoring of developing storms, but also save approximately $172 million/year.

  16. Microwave beam power

    NASA Technical Reports Server (NTRS)

    Faymon, Karl A.

    1989-01-01

    Information on microwave beam power is given in viewgraph form. Information is given on orbit transfer proulsion applications, costs of delivering 100 kWe of usable power, and costs of delivering a 1 kg payload into orbit.

  17. The microwave drill.

    PubMed

    Jerby, E; Dikhtyar, V; Aktushev, O; Grosglick, U

    2002-10-18

    We present a drilling method that is based on the phenomenon of local hot spot generation by near-field microwave radiation. The microwave drill is implemented by a coaxial near-field radiator fed by a conventional microwave source. The near-field radiator induces the microwave energy into a small volume in the drilled material under its surface, and a hot spot evolves in a rapid thermal-runaway process. The center electrode of the coaxial radiator itself is then inserted into the softened material to form the hole. The method is applicable for drilling a variety of nonconductive materials. It does not require fast rotating parts, and its operation makes no dust or noise. PMID:12386331

  18. Microwave fluid flow meter

    DOEpatents

    Billeter, Thomas R.; Philipp, Lee D.; Schemmel, Richard R.

    1976-01-01

    A microwave fluid flow meter is described utilizing two spaced microwave sensors positioned along a fluid flow path. Each sensor includes a microwave cavity having a frequency of resonance dependent upon the static pressure of the fluid at the sensor locations. The resonant response of each cavity with respect to a variation in pressure of the monitored fluid is represented by a corresponding electrical output which can be calibrated into a direct pressure reading. The pressure drop between sensor locations is then correlated as a measure of fluid velocity. In the preferred embodiment the individual sensor cavities are strategically positioned outside the path of fluid flow and are designed to resonate in two distinct frequency modes yielding a measure of temperature as well as pressure. The temperature response can then be used in correcting for pressure responses of the microwave cavity encountered due to temperature fluctuations.

  19. Microwave emissions from snow

    NASA Technical Reports Server (NTRS)

    Chang, A. T. C.

    1984-01-01

    The radiation emitted from dry and wet snowpack in the microwave region (1 to 100 GHz) is discussed and related to ground observations. Results from theoretical model calculations match the brightness temperatures obtained by truck mounted, airborne and spaceborne microwave sensor systems. Snow wetness and internal layer structure complicate the snow parameter retrieval algorithm. Further understanding of electromagnetic interaction with snowpack may eventually provide a technique to probe the internal snow properties

  20. High power microwave generator

    DOEpatents

    Ekdahl, C.A.

    1983-12-29

    A microwave generator efficiently converts the energy of an intense relativistic electron beam (REB) into a high-power microwave emission using the Smith-Purcell effect which is related to Cerenkov radiation. Feedback for efficient beam bunching and high gain is obtained by placing a cylindrical Smith-Purcell transmission grating on the axis of a toroidal resonator. High efficiency results from the use of a thin cold annular highly-magnetized REB that is closely coupled to the resonant structure.