NASA Technical Reports Server (NTRS)
Lewandowski, Leon; Struckman, Keith
1994-01-01
Microwave Vision (MV), a concept originally developed in 1985, could play a significant role in the solution to robotic vision problems. Originally our Microwave Vision concept was based on a pattern matching approach employing computer based stored replica correlation processing. Artificial Neural Network (ANN) processor technology offers an attractive alternative to the correlation processing approach, namely the ability to learn and to adapt to changing environments. This paper describes the Microwave Vision concept, some initial ANN-MV experiments, and the design of an ANN-MV system that has led to a second patent disclosure in the robotic vision field.
Reconfigurable microwave photonic repeater for broadband telecom missions: concepts and technologies
NASA Astrophysics Data System (ADS)
Aveline, M.; Sotom, M.; Barbaste, R.; Benazet, B.; Le Kernec, A.; Magnaval, J.; Ginestet, P.; Navasquillo, O.; Piqueras, M. A.
2017-11-01
Thales Alenia Space has elaborated innovative telecom payload concepts taking benefit from the capabilities of photonics and so-called microwave photonics. The latter consists in transferring RF/microwave signals on optical carriers and performing processing in the optical domain so as to benefit from specific attributes such as wavelength-division multiplexing or switching capabilities.
PROCESS INTENSIFICATION: MICROWAVE INITIATED REACTIONS USING A CONTINUOUS FLOW REACTOR
The concept of process intensification has been used to develop a continuous narrow channel reactor at Clarkson capable of carrying out reactions under isothermal conditions whilst being exposed to microwave (MW) irradiation thereby providing information on the true effect of mi...
Applications of active microwave imagery
NASA Technical Reports Server (NTRS)
Weber, F. P.; Childs, L. F.; Gilbert, R.; Harlan, J. C.; Hoffer, R. M.; Miller, J. M.; Parsons, J.; Polcyn, F.; Schardt, B. B.; Smith, J. L.
1978-01-01
The following topics were discussed in reference to active microwave applications: (1) Use of imaging radar to improve the data collection/analysis process; (2) Data collection tasks for radar that other systems will not perform; (3) Data reduction concepts; and (4) System and vehicle parameters: aircraft and spacecraft.
Mohammed, Muzaffer; Aslan, Kadir
2013-01-01
We demonstrate the design and the proof-of-concept use of a new, circular poly(methyl methacrylate)-based bioassay platform (PMMA platform), which affords for the rapid processing of 16 samples at once. The circular PMMA platform (5 cm in diameter) was coated with a silver nanoparticle film to accelerate the bioassay steps by microwave heating. A model colorimetric bioassay for biotinylated albumin (using streptavidin-labeled horse radish peroxidase) was performed on the PMMA platform coated with and without silver nanoparticles (a control experiment), and at room temperature and using microwave heating. It was shown that the simulated temperature profile of the PMMA platform during microwave heating were comparable to the real-time temperature profile during actual microwave heating of the constructed PMMA platform in a commercial microwave oven. The model colorimetric bioassay for biotinylated albumin was successfully completed in ~2 min (total assay time) using microwave heating, as compared to 90 min at room temperature (total assay time), which indicates a ~45-fold decrease in assay time. Our PMMA platform design afforded for significant reduction in non-specific interactions and low background signal as compared to non-silvered PMMA surfaces when employed in a microwave-accelerated bioassay carried out in a conventional microwave cavity.
Microwave remote sensing from space for earth resource surveys
NASA Technical Reports Server (NTRS)
1977-01-01
The concepts of radar remote sensing and microwave radiometry are discussed and their utility in earth resource sensing is examined. The direct relationship between the character of the remotely sensed data and the level of decision making for which the data are appropriate is considered. Applications of active and a passive microwave sensing covered include hydrology, land use, mapping, vegetation classification, environmental monitoring, coastal features and processes, geology, and ice and snow. Approved and proposed microwave sensors are described and the use of space shuttle as a development platform is evaluated.
Alternative Architecture for Commercial Space Solar Power
NASA Technical Reports Server (NTRS)
Potter, Seth
2000-01-01
This presentation discuss the space solar power (SSP) concept. It takes us step by step through the process: the use of sunlight and solar cells to create power, the conversion of the sunlight into electricity, the conversion of electricity to microwaves, and finally the from microwaves back to electricity by the Rectennas on Earth.
Advanced 3-V semiconductor technology assessment
NASA Technical Reports Server (NTRS)
Nowogrodzki, M.
1983-01-01
Components required for extensions of currently planned space communications systems are discussed for large antennas, crosslink systems, single sideband systems, Aerostat systems, and digital signal processing. Systems using advanced modulation concepts and new concepts in communications satellites are included. The current status and trends in materials technology are examined with emphasis on bulk growth of semi-insulating GaAs and InP, epitaxial growth, and ion implantation. Microwave solid state discrete active devices, multigigabit rate GaAs digital integrated circuits, microwave integrated circuits, and the exploratory development of GaInAs devices, heterojunction devices, and quasi-ballistic devices is considered. Competing technologies such as RF power generation, filter structures, and microwave circuit fabrication are discussed. The fundamental limits of semiconductor devices and problems in implementation are explored.
Yuan, Yuan; Macquarrie, Duncan J
2015-12-01
The biorefinery is an important concept for the development of alternative routes to a range of interesting and important materials from renewable resources. It ensures that the resources are used fully and that all parts of them are valorized. This paper develops this concept, using brown macroalgae Ascophyllum nodosum as an example, by assistance of microwave technology. A step-by-step process was designed to obtain fucoidan, alginates, sugars and biochar (alga residue) consecutively. The yields of fucoidan, alginates, sugars and biochar were 14.09%, 18.24%, 10.87% and 21.44%, respectively. To make an evaluation of the biorefinery process, seaweed sample was also treated for fucoidan extraction only, alginate extraction only and hydrothermal treatment for sugars and biochar only. The chemical composition and properties of each product were also analyzed. The results indicated that A. nodosum could be potentially used as feedstock for a biorefinery process to produce valuable chemicals and fuels. Copyright © 2015 Elsevier Ltd. All rights reserved.
IMPROVED TUBULARS FOR BETTER ECONOMICS IN DEEP GAS WELL DRILLING USING MICROWAVE TECHNOLOGY
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dinesh Agrawal; Paul Gigl; Mahlon Dennis
2005-03-01
The main objective of the research program has been to improve the rate-of-penetration in deep hostile environments by improving the life cycle and performance of coiled-tubing, an important component of a deep well drilling system for oil and gas exploration, by utilizing the latest developments in the microwave materials technology. Originally, it was proposed to accomplish this by developing an efficient and economically viable continuous microwave process to sinter continuously formed/extruded steel powder for the manufacture of seamless coiled tubing and other tubular products. However, based on the results and faced with insurmountable difficulties in the extrusion and de-waxing processes,more » the approach of achieving the goals of the program has been slightly changed. In the continuation proposal an approach of microwave sintering combined with Cold Isostatic Press (CIP) and joining (by induction or microwave) is adopted. This process can be developed into a semi-continuous sintering process if the CIP can produce parts fast enough to match the microwave sintering rates. Originally, the entire program was spread over three phases with the following goals: Phase I: Demonstration of the feasibility concept of continuous microwave sintering process for tubular steel products. Phase II: Design, building and testing of a prototype microwave system which shall be combined with a continuous extruder for steel tubular objects. Phase III: Execution of the plan for commercialization of the technology by one of the industrial partners. However, since some of the goals of the phase I were not completed, an extension of nine months was granted and we continued extrusion experiments, designed and built semicontinuous microwave sintering unit.« less
Development of a Multi-Point Microwave Interferometry (MPMI) Method
DOE Office of Scientific and Technical Information (OSTI.GOV)
Specht, Paul Elliott; Cooper, Marcia A.; Jilek, Brook Anton
2015-09-01
A multi-point microwave interferometer (MPMI) concept was developed for non-invasively tracking a shock, reaction, or detonation front in energetic media. Initially, a single-point, heterodyne microwave interferometry capability was established. The design, construction, and verification of the single-point interferometer provided a knowledge base for the creation of the MPMI concept. The MPMI concept uses an electro-optic (EO) crystal to impart a time-varying phase lag onto a laser at the microwave frequency. Polarization optics converts this phase lag into an amplitude modulation, which is analyzed in a heterodyne interfer- ometer to detect Doppler shifts in the microwave frequency. A version of themore » MPMI was constructed to experimentally measure the frequency of a microwave source through the EO modulation of a laser. The successful extraction of the microwave frequency proved the underlying physical concept of the MPMI design, and highlighted the challenges associated with the longer microwave wavelength. The frequency measurements made with the current equipment contained too much uncertainty for an accurate velocity measurement. Potential alterations to the current construction are presented to improve the quality of the measured signal and enable multiple accurate velocity measurements.« less
Microwave amplification based on quasiparticle SIS up and down frequency converters
NASA Astrophysics Data System (ADS)
Kojima, T.; Uzawa, Y.; Shan, W.
2018-02-01
Heterodyne instruments have recently attained quantum-limited low-noise performance, particularly in radio astronomy, but it is difficult to develop large heterodyne arrays such as a modern radio camera using cryogenic sensitive detectors based on microwave kinetic inductance detectors, transition edge sensors, etc. In the realization of the heterodyne array, the reduction of power dissipation for semiconductor-based amplifiers remains a major challenge. Alternatively, superconducting parametric amplifiers still seem to have several barriers to application, especially in terms of operating temperature. Here, we show a novel concept of microwave amplification based on up and down frequency-conversion processes using quasiparticle superconductor-insulator-superconductor (SIS) tunnel junctions. We demonstrate positive gain using a proof-of-concept test module, which operates with a power dissipation of several μW at a bath temperature of 4 K. The performance of the module suggests great potential for application in large arrays.
Advancing microwave technology for dehydration processing of biologics.
Cellemme, Stephanie L; Van Vorst, Matthew; Paramore, Elisha; Elliott, Gloria D
2013-10-01
Our prior work has shown that microwave processing can be effective as a method for dehydrating cell-based suspensions in preparation for anhydrous storage, yielding homogenous samples with predictable and reproducible drying times. In the current work an optimized microwave-based drying process was developed that expands upon this previous proof-of-concept. Utilization of a commercial microwave (CEM SAM 255, Matthews, NC) enabled continuous drying at variable low power settings. A new turntable was manufactured from Ultra High Molecular Weight Polyethylene (UHMW-PE; Grainger, Lake Forest, IL) to provide for drying of up to 12 samples at a time. The new process enabled rapid and simultaneous drying of multiple samples in containment devices suitable for long-term storage and aseptic rehydration of the sample. To determine sample repeatability and consistency of drying within the microwave cavity, a concentration series of aqueous trehalose solutions were dried for specific intervals and water content assessed using Karl Fischer Titration at the end of each processing period. Samples were dried on Whatman S-14 conjugate release filters (Whatman, Maidestone, UK), a glass fiber membrane used currently in clinical laboratories. The filters were cut to size for use in a 13 mm Swinnex(®) syringe filter holder (Millipore(™), Billerica, MA). Samples of 40 μL volume could be dehydrated to the equilibrium moisture content by continuous processing at 20% with excellent sample-to-sample repeatability. The microwave-assisted procedure enabled high throughput, repeatable drying of multiple samples, in a manner easily adaptable for drying a wide array of biological samples. Depending on the tolerance for sample heating, the drying time can be altered by changing the power level of the microwave unit.
Post-Correlation Processing for the VLBI2010 Proof-of-Concept System
NASA Technical Reports Server (NTRS)
Beaudoin, Christopher; Niell, Arthur
2010-01-01
For the past three years, the MIT Haystack Observatory and the broadband team have been developing a proof-of-concept broadband geodetic VLBI microwave (2-12 GHz) receiver. Also on-going at Haystack is the development of post-correlation processing needed to extract the geodetic observables. Using this processing, the first fully-phase-calibrated geodetic fringes have been produced from observations conducted with the proof-of-concept system. The results we present show that the phase-calibrated phase residuals from four 512 MHz bands spanning 2 GHz have an RMS phase variation of 8deg which corresponds to a delay uncertainty of 12 ps.
Microwave Sinterator Freeform Additive Construction System (MS-FACS)
NASA Technical Reports Server (NTRS)
Howe, Alan S.; Wilcox, Brian H.; Barmatz, Martin B.; Mercury, Michael B.; Siebert, Michael A.; Rieber, Richard R.
2013-01-01
The harmful properties of lunar dust, such as small size, glass composition, abnormal surface area, and coatings of imbedded nanophase iron, lead to a unique coupling of the dust with microwave radiation. This coupling can be exploited for rapid sintering of lunar soil for use as a construction material that can be formed to take on an infinite number of shapes and sizes. This work describes a system concept for building structures on the lunar surface using lunar regolith (soil). This system uses the ATHLETE (All-Terrain Hex- Limbed Extra-Terrestrial Explorer) mobility system as a positioning system with a microwave print head (similar to that of a smaller-scale 3D printer). A processing system delivers the lunar regolith to the microwave print head, where the microwave print head/chamber lays down a layer of melted regolith. An arm on the ATHLETE system positions the layer depending on the desired structure.
NASA Technical Reports Server (NTRS)
Kunath, R. R.; Bhasin, K. B.
1986-01-01
The desire for rapid beam reconfigurability and steering has led to the exploration of new techniques. Optical techniques have been suggested as potential candidates for implementing these needs. Candidates generally fall into one of two areas: those using fiber optic Beam Forming Networks (BFNs) and those using optically processed BFNs. Both techniques utilize GaAs Monolithic Microwave Integrated Circuits (MMICs) in the BFN, but the role of the MMIC for providing phase and amplitude variations is largely eliminated by some new optical processing techniques. This paper discusses these two types of optical BFN designs and provides conceptual designs of both systems.
Electro-optic modulation of a laser at microwave frequencies for interferometric purposes
NASA Astrophysics Data System (ADS)
Specht, Paul E.; Jilek, Brook A.
2017-02-01
A multi-point microwave interferometer (MPMI) concept was previously proposed by the authors for spatially-resolved, non-invasive tracking of a shock, reaction, or detonation front in energetic media [P. Specht et al., AIP Conf. Proc. 1793, 160010 (2017).]. The advantage of the MPMI concept over current microwave interferometry techniques is its detection of Doppler shifted microwave signals through electro-optic (EO) modulation of a laser. Since EO modulation preserves spatial variations in the Doppler shift, collecting the EO modulated laser light into a fiber array for recording with an optical heterodyne interferometer yields spatially-resolved velocity information. This work demonstrates the underlying physical principle of the MPMI diagnostic: the monitoring of a microwave signal with nanosecond temporal resolution using an optical heterodyne interferometer. For this purpose, the MPMI concept was simplified to a single-point construction using two tunable 1550 nm lasers and a 35.2 GHz microwave source. A (110) ZnTe crystal imparted the microwave frequency onto a laser, which was combined with a reference laser for determination of the microwave frequency in an optical heterodyne interferometer. A single, characteristic frequency associated with the microwave source was identified in all experiments, providing a means to monitor a microwave signal on nanosecond time scales. Lastly, areas for improving the frequency resolution of this technique are discussed, focusing on increasing the phase-modulated signal strength.
Electro-optic modulation of a laser at microwave frequencies for interferometric purposes.
Specht, Paul E; Jilek, Brook A
2017-02-01
A multi-point microwave interferometer (MPMI) concept was previously proposed by the authors for spatially-resolved, non-invasive tracking of a shock, reaction, or detonation front in energetic media [P. Specht et al., AIP Conf. Proc. 1793, 160010 (2017).]. The advantage of the MPMI concept over current microwave interferometry techniques is its detection of Doppler shifted microwave signals through electro-optic (EO) modulation of a laser. Since EO modulation preserves spatial variations in the Doppler shift, collecting the EO modulated laser light into a fiber array for recording with an optical heterodyne interferometer yields spatially-resolved velocity information. This work demonstrates the underlying physical principle of the MPMI diagnostic: the monitoring of a microwave signal with nanosecond temporal resolution using an optical heterodyne interferometer. For this purpose, the MPMI concept was simplified to a single-point construction using two tunable 1550 nm lasers and a 35.2 GHz microwave source. A (110) ZnTe crystal imparted the microwave frequency onto a laser, which was combined with a reference laser for determination of the microwave frequency in an optical heterodyne interferometer. A single, characteristic frequency associated with the microwave source was identified in all experiments, providing a means to monitor a microwave signal on nanosecond time scales. Lastly, areas for improving the frequency resolution of this technique are discussed, focusing on increasing the phase-modulated signal strength.
Microwave-induced cracking of pyrolytic tars coupled to microwave pyrolysis for syngas production.
Beneroso, D; Bermúdez, J M; Montes-Morán, M A; Arenillas, A; Menéndez, J A
2016-10-01
Herein a new process is proposed to produce a syngas-rich gas fraction (>80vol% H2+CO) from biowaste based on microwave heating within two differentiated steps in order to avoid tars production. The first step consists of the microwave pyrolysis of biowaste induced by a char-based susceptor at 400-800°C; tars, char and syngas-rich gas fractions being produced. The tars are then fed into the second step where a portion of the char from the first step is used as a bed material in a 0.3:1wt% ratio. This bed is heated up by microwaves up to 800°C, allowing thermal cracking of tars and additional syngas (>90vol% H2+CO) being then produced. This new concept arises as an alternative technology to the gasification of biowastes for producing syngas with no need for catalysts or gasifying reagents to minimise tars production. Copyright © 2016 Elsevier Ltd. All rights reserved.
The microwave radiometer spacecraft: A design study
NASA Technical Reports Server (NTRS)
Wright, R. L. (Editor)
1981-01-01
A large passive microwave radiometer spacecraft with near all weather capability of monitoring soil moisture for global crop forecasting was designed. The design, emphasizing large space structures technology, characterized the mission hardware at the conceptual level in sufficient detail to identify enabling and pacing technologies. Mission and spacecraft requirements, design and structural concepts, electromagnetic concepts, and control concepts are addressed.
Energy Efficient Microwave Hybrid Processing of Lime for Cement, Steel, and Glass Industries
DOE Office of Scientific and Technical Information (OSTI.GOV)
Fall, Morgana L; Yakovlev, Vadim; Sahi, Catherine
2012-02-10
In this study, the microwave materials interactions were studied through dielectric property measurements, process modeling, and lab scale microwave hybrid calcination tests. Characterization and analysis were performed to evaluate material reactions and energy usage. Processing parameters for laboratory scale and larger scale calcining experiments were developed for MAT limestone calcination. Early stage equipment design concepts were developed, with a focus on microwave post heating treatment. The retrofitting of existing rotary calcine equipment in the lime industry was assessed and found to be feasible. Ceralink sought to address some of the major barriers to the uptake of MAT identified as themore » need for (1) team approach with end users, technology partners, and equipment manufacturers, (2) modeling that incorporates kiln materials and variations to the design of industrial microwave equipment. This project has furthered the commercialization effort of MAT by working closely with an industrial lime manufacturer to educate them regarding MAT, identifying equipment manufacturer to supply microwave equipment, and developing a sophisticated MAT modeling with WPI, the university partner. MAT was shown to enhance calcining through lower energy consumption and faster reaction rates compared to conventional processing. Laboratory testing concluded that a 23% reduction in energy was possible for calcining small batches (5kg). Scale-up testing indicated that the energy savings increased as a function of load size and 36% energy savings was demonstrated (22 kg). A sophisticated model was developed which combines simultaneous microwave and conventional heating. Continued development of this modeling software could be used for larger scale calcining simulations, which would be a beneficial low-cost tool for exploring equipment design prior to actual building. Based on these findings, estimates for production scale MAT calcining benefits were calculated, assuming uptake of MAT in the US lime industry. This estimate showed that 7.3 TBTU/year could be saved, with reduction of 270 MMlbs of CO2 emissions, and $29 MM/year in economic savings. Taking into account estimates for MAT implementation in the US cement industry, an additional 39 TBTU/year, 3 Blbs of CO2 and $155 MM/year could be saved. One of the main remaining barriers to commercialization of MAT for the lime and cement industries is the sheer size of production. Through this project, it was realized that a production size MAT rotary calciner was not feasible, and a different approach was adapted. The concept of a microwave post heat section located in the upper portion of the cooler was devised and appears to be a more realistic approach for MAT implementation. Commercialization of this technology will require (1) continued pilot scale calcining demonstrations, (2) involvement of lime kiln companies, and (3) involvement of an industrial microwave equipment provider. An initial design concept for a MAT post-heat treatment section was conceived as a retrofit into the cooler sections of existing lime rotary calciners with a 1.4 year payback. Retrofitting will help spur implementation of this technology, as the capital investment will be minimal for enhancing the efficiency of current rotary lime kilns. Retrofits would likely be attractive to lime manufacturers, as the purchase of a new lime kiln is on the order of a $30 million dollar investment, where as a MAT retrofit is estimated on the order of $1 million. The path for commercialization lies in partnering with existing lime kiln companies, who will be able to implement the microwave post heat sections in existing and new build kilns. A microwave equipment provider has been identified, who would make up part of the continued development and commercialization team.« less
Feasibility and Performance of the Microwave Thermal Rocket Launcher
NASA Astrophysics Data System (ADS)
Parkin, Kevin L. G.; Culick, Fred E. C.
2004-03-01
Beamed-energy launch concepts employing a microwave thermal thruster are feasible in principle, and microwave sources of sufficient power to launch tons into LEO already exist. Microwave thermal thrusters operate on an analogous principle to nuclear thermal thrusters, which have experimentally demonstrated specific impulses exceeding 850 seconds. Assuming such performance, simple application of the rocket equation suggests that payload fractions of 10% are possible for a single stage to orbit (SSTO) microwave thermal rocket. We present an SSTO concept employing a scaled X-33 aeroshell. The flat aeroshell underside is covered by a thin-layer microwave absorbent heat-exchanger that forms part of the thruster. During ascent, the heat-exchanger faces the microwave beam. A simple ascent trajectory analysis incorporating X-33 aerodynamic data predicts a 10% payload fraction for a 1 ton craft of this type. In contrast, the Saturn V had 3 non-reusable stages and achieved a payload fraction of 4%.
Real time data acquisition of a countrywide commercial microwave link network
NASA Astrophysics Data System (ADS)
Chwala, Christian; Keis, Felix; Kunstmann, Harald
2015-04-01
Research in recent years has shown that data from commercial microwave link networks can provide very valuable precipitation information. Since these networks comprise the backbone of the cell phone network, they provide countrywide coverage. However acquiring the necessary data from the network operators is still difficult. Data is usually made available for researchers with a large time delay and often at irregular basis. This of course hinders the exploitation of commercial microwave link data in operational applications like QPE forecasts running at national meteorological services. To overcome this, we have developed a custom software in joint cooperation with our industry partner Ericsson. The software is installed on a dedicated server at Ericsson and is capable of acquiring data from the countrywide microwave link network in Germany. In its current first operational testing phase, data from several hundred microwave links in southern Germany is recorded. All data is instantaneously sent to our server where it is stored and organized in an emerging database. Time resolution for the Ericsson data is one minute. The custom acquisition software, however, is capable of processing higher sampling rates. Additionally we acquire and manage 1 Hz data from four microwave links operated by the skiing resort in Garmisch-Partenkirchen. We will present the concept of the data acquisition and show details of the custom-built software. Additionally we will showcase the accessibility and basic processing of real time microwave link data via our database web frontend.
NASA Astrophysics Data System (ADS)
Chang, S. S. L.
State of the art technology in circuits, fields, and electronics is discussed. The principles and applications of these technologies to industry, digital processing, microwave semiconductors, and computer-aided design are explained. Important concepts and methodologies in mathematics and physics are reviewed, and basic engineering sciences and associated design methods are dealt with, including: circuit theory and the design of magnetic circuits and active filter synthesis; digital signal processing, including FIR and IIR digital filter design; transmission lines, electromagnetic wave propagation and surface acoustic wave devices. Also considered are: electronics technologies, including power electronics, microwave semiconductors, GaAs devices, and magnetic bubble memories; digital circuits and logic design.
Microwave Extraction of Lunar Water for Rocket Fuel
NASA Technical Reports Server (NTRS)
Ethridge, Edwin C.; Donahue, Benjamin; Kaukler, William
2008-01-01
Nearly 50% of the lunar surface is oxygen, present as oxides in silicate rocks and soil. Methods for reduction of these oxides could liberate the oxygen. Remote sensing has provided evidence of significant quantities of hydrogen possibly indicating hundreds of millions of metric tons, MT, of water at the lunar poles. If the presence of lunar water is verified, water is likely to be the first in situ resource exploited for human exploration and for LOX-H2 rocket fuel. In-Situ lunar resources offer unique advantages for space operations. Each unit of product produced on the lunar surface represents 6 units that need not to be launched into LEO. Previous studies have indicated the economic advantage of LOX for space tugs from LEO to GEO. Use of lunar derived LOX in a reusable lunar lander would greatly reduce the LEO mass required for a given payload to the moon. And Lunar LOX transported to L2 has unique advantages for a Mars mission. Several methods exist for extraction of oxygen from the soil. But, extraction of lunar water has several significant advantages. Microwave heating of lunar permafrost has additional important advantages for water extraction. Microwaves penetrate and heat from within not just at the surface and excavation is not required. Proof of concept experiments using a moon in a bottle concept have demonstrated that microwave processing of cryogenic lunar permafrost simulant in a vacuum rapidly and efficiently extracts water by sublimation. A prototype lunar water extraction rover was built and tested for heating of simulant. Microwave power was very efficiently delivered into a simulated lunar soil. Microwave dielectric properties (complex electric permittivity and magnetic permeability) of lunar regolith simulant, JSC-1A, were measured down to cryogenic temperatures and above room temperature. The microwave penetration has been correlated with the measured dielectric properties. Since the microwave penetration depth is a function of temperature and frequency, an extraction system can be designed for water removal from different depths.
Chien, Yi-Chi
2012-01-15
Many laboratory-scale studies strongly suggested that remediation of petroleum hydrocarbon contaminated soil by microwave heating is very effective; however, little definitive field data existed to support the laboratory-scale observations. This study aimed to evaluate the performance of a field-scale microwave heating system to remediate petroleum hydrocarbon contaminated soil. A constant microwave power of 2 kW was installed directly in the contaminated area that applied in the decontamination process for 3.5h without water input. The C10-C40 hydrocarbons were destroyed, desorbed or co-evaporated with moisture from soil by microwave heating. The moisture may play an important role in the absorption of microwave and in the distribution of heat. The success of this study paved the way for the second and much larger field test in the remediation of petroleum hydrocarbon contaminated soil by microwave heating in place. Implemented in its full configuration for the first time at a real site, the microwave heating has demonstrated its robustness and cost-effectiveness in cleaning up petroleum hydrocarbon contaminated soil in place. Economically, the concept of the microwave energy supply to the soil would be a network of independent antennas which powered by an individual low power microwave generator. A microwave heating system with low power generators shows very flexible, low cost and imposes no restrictions on the number and arrangement of the antennas. Copyright © 2011 Elsevier B.V. All rights reserved.
IRIS - A concept for microwave sensing of soil moisture and ocean salinity
NASA Technical Reports Server (NTRS)
Moghaddam, M.; Njoku, E.
1997-01-01
A concept is described for passive microwave sensing of soil moisture and ocean salinity from space. The Inflatable Radiometric Imaging System (IRIS) makes use of a large-diameter, offset-fed, parabolic-torus antenna with multiple feeds, in a conical pushbroom configuration.
NASA Technical Reports Server (NTRS)
Hanley, G. M.
1981-01-01
Data resulting from a continuing effort to provide system/subsystem definition data to aid in the evaluation of the SPS program concept is presented. The specific data described relate to the proposed use of solid state devices as microwave power amplifiers in the satellite microwave power transmission subsystem.
Solid state SPS microwave generation and transmission study. Volume 2, phase 2: Appendices
NASA Technical Reports Server (NTRS)
Maynard, O. E.
1980-01-01
The solid state sandwich concept for SPS was further defined. The design effort concentrated on the spacetenna, but did include some system analysis for parametric comparison reasons. Basic solid state microwave devices were defined and modeled. An initial conceptual subsystems and system design was performed as well as sidelobe control and system selection. The selected system concept and parametric solid state microwave power transmission system data were assessed relevant to the SPS concept. Although device efficiency was not a goal, the sensitivities to design of this efficiency were parametrically treated. Sidelobe control consisted of various single step tapers, multistep tapers and Gaussian tapers. A hybrid concept using tubes and solid state was evaluated. Thermal analyses are included with emphasis on sensitivities to waste heat radiator form factor, emissivity, absorptivity, amplifier efficiency, material and junction temperature.
Investigation of direct solar-to-microwave energy conversion techniques
NASA Technical Reports Server (NTRS)
Chatterton, N. E.; Mookherji, T. K.; Wunsch, P. K.
1978-01-01
Identification of alternative methods of producing microwave energy from solar radiation for purposes of directing power to the Earth from space is investigated. Specifically, methods of conversion of optical radiation into microwave radiation by the most direct means are investigated. Approaches based on demonstrated device functioning and basic phenomenologies are developed. There is no system concept developed, that is competitive with current baseline concepts. The most direct methods of conversion appear to require an initial step of production of coherent laser radiation. Other methods generally require production of electron streams for use in solid-state or cavity-oscillator systems. Further development is suggested to be worthwhile for suggested devices and on concepts utilizing a free-electron stream for the intraspace station power transport mechanism.
NASA Technical Reports Server (NTRS)
Walton, W. T.; Wilheit, T. T.
1981-01-01
Definition studies and baseline design are summarized for the proposed, and now discontinued, LAMMR. The instrument is an offset parabolic reflector with Cassegrain feeds. The three-meter aperture reflector, to be constructed using graphite-epoxy technology, rotates continuously at 0.833 rps. The scan drive subsystem includes momentum compensation for the rotating mass which includes the reflector, the support arm and Cassegrain subreflector, feed horns and radiometer. Two total power radiometers are recommended for each frequency, one each for horizontal and vertical polarizations. The selection plan, definition study specifications, LAMMR performance specifications, and predicted accuracies and resolutions after processing are shown.
Solid state SPS microwave generation and transmission study. Volume 1: Phase 2
NASA Technical Reports Server (NTRS)
Maynard, O. E.
1980-01-01
The solid state sandwich concept for Solar Power Station (SPS) was investigated. The design effort concentrated on the spacetenna, but did include some system analysis for parametric comparison reasons. The study specifically included definition and math modeling of basic solid state microwave devices, an initial conceptual subsystems and system design, sidelobe control and system selection, an assessment of selected system concept and parametric solid state microwave power transmission system data relevant to the SPS concept. Although device efficiency was not a goal, the sensitivities to design of this efficiency were parametrically treated. Sidelobe control consisted of various single step tapers, multistep tapers, and Gaussian tapers. A preliminary assessment of a hybrid concept using tubes and solid state is also included. There is a considerable amount of thermal analysis provided with emphasis on sensitivities to waste heat radiator form factor, emissivity, absorptivity, amplifier efficiency, material and junction temperature.
Crew procedures and workload of retrofit concepts for microwave landing system
NASA Technical Reports Server (NTRS)
Summers, Leland G.; Jonsson, Jon E.
1989-01-01
Crew procedures and workload for Microwave Landing Systems (MLS) that could be retrofitted into existing transport aircraft were evaluated. Two MLS receiver concepts were developed. One is capable of capturing a runway centerline and the other is capable of capturing a segmented approach path. Crew procedures were identified and crew task analyses were performed using each concept. Crew workload comparisons were made between the MLS concepts and an ILS baseline using a task-timeline workload model. Workload indexes were obtained for each scenario. The results showed that workload was comparable to the ILS baseline for the MLS centerline capture concept, but significantly higher for the segmented path capture concept.
Microwave Tunable Metamaterial Based on Semiconductor-to-Metal Phase Transition.
Zhang, Guanqiao; Ma, He; Lan, Chuwen; Gao, Rui; Zhou, Ji
2017-07-18
A microwave tunable metamaterial utilizing the semiconductor-to-metal transition of vanadium dioxide (VO 2 ) is proposed, experimentally demonstrated and theoretically scrutinized. Basic concept of the design involves the combination of temperature-dependent hysteresis in VO 2 with resonance induced heating, resulting in a nonlinear response to power input. A lithographically prepared gold split-rings resonator (SRR) array deposited with VO 2 thin film is fabricated. Transmission spectra analysis shows a clear manifestation of nonlinearity, involving power-dependence of resonant frequency as well as transmitted intensity at both elevated and room temperature. Simulation performed with CST Microwave Studio conforms with the findings. The concept may find applications in transmission modulation and frequency tuning devices working under microwave frequency bands.
Digital communications: Microwave applications
NASA Astrophysics Data System (ADS)
Feher, K.
Transmission concepts and techniques of digital systems are presented; and practical state-of-the-art implementation of digital communications systems by line-of-sight microwaves is described. Particular consideration is given to statistical methods in digital transmission systems analysis, digital modulation methods, microwave amplifiers, system gain, m-ary and QAM microwave systems, correlative techniques and applications to digital radio systems, hybrid systems, digital microwave systems design, diversity and protection switching techniques, measurement techniques, and research and development trends and unsolved problems.
Microwave therapy for cutaneous human papilloma virus infection.
Bristow, Ivan; Lim, Wen Chean; Lee, Alvin; Holbrook, Daniel; Savelyeva, Natalia; Thomson, Peter; Webb, Christopher; Polak, Marta; Ardern-Jones, Michael R
2017-10-01
Human papilloma virus (HPV) infects keratinocytes of the skin and mucous membranes, and is associated with the induction of cutaneous warts and malignancy. Warts can induce significant morbidity and disability but most therapies, including cryotherapy, laser, and radiofrequency devices show low efficacy and induce discomfort through tissue destruction. Microwaves are readily capable of passing through highly keratinised skin to deliver energy and induce heating of the tissue in a highly controllable, uniform manner. To determine the effects of microwave on cutaneous HPV infection. We undertook a pilot study of microwave therapy to the skin in 32 consecutive individuals with 52 recalcitrant long-lived viral cutaneous warts. Additionally, we undertook a molecular characterisation of the effects of microwaves on the skin. Tissue inflammation was minimal, but 75.9% of lesions cleared which compares favourably with previous studies showing a clearance rate of 23-33% for cryotherapy or salicylic acid. We show that microwaves specifically induce dendritic cell cross-presentation of HPV antigen to CD8+ T cells and suggest that IL-6 may be important for DC IRF1 and IRF4 modulation to enhance this process. Keratinocyte-skin dendritic cell cross-talk is integral to host defence against HPV infections, and this pilot study supports the concept of microwave induction of anti-HPV immunity which offers a promising approach for treatment of HPV-induced viral warts and potentially HPV-related cancers.
Endothelium Preserving Microwave Treatment for Atherosclerosis
NASA Technical Reports Server (NTRS)
Fink, Patrick; Arndt, G. D.; Ngo, Phong
2003-01-01
This slide presentation reviews the use of microwave technology for treating Atherosclerosis while preserving the endothelium. The system uses catheter antennas as part of the system that is intended to treat atherosclerosis. The concept is to use a microwave catheter for heating the atherosclerotic lesions, and reduce constriction in the artery.
Free radical propulsion concept
NASA Technical Reports Server (NTRS)
Hawkins, C. E.; Nakanishi, S.
1981-01-01
A free radical propulsion concept utilizing the recombination energy of dissociated low molecular weight gases to produce thrust was examined. The concept offered promise of a propulsion system operating at a theoretical impulse, with hydrogen, as high as 2200 seconds at high thrust to power ratio, thus filling the gas existing between chemical and electrostatic propulsion capabilities. Microwave energy used to dissociate a continuously flowing gas was transferred to the propellant via three body recombination for conversion to propellant kinetic energy. Power absorption by the microwave plasma discharge was in excess of 90 percent over a broad range of pressures. Gas temperatures inferred from gas dynamic equations showed much higher temperatures from microwave heating than from electrothermal heating. Spectroscopic analysis appeared to corroborate the inferred temperatures of one of the gases tested.
GeoSTAR - A Synthetic Aperture Microwave Sounder for Geostationary Missions
NASA Technical Reports Server (NTRS)
Lambrigtsen, Bjorn; Wilson, William; Tanner, Alan; Kangaslahti, Pekka
2004-01-01
The Geostationary Synthetic Thinned Aperture Radiometer (GeoSTAR) is a new microwave atmospheric sounder under development. It will bring capabilities similar to those now available on low-earth orbiting environmental satellites to geostationary orbit - where such capabilities have not been available. GeoSTAR will synthesize the multimeter aperture needed to achieve the required spatial resolution, which will overcome the obstacle that has prevented a GEO microwave sounder from being implemented until now. The synthetic aperture approach has until recently not been feasible, due to the high power needed to operate the on-board high-speed massively parallel processing system required for 2D-synthesis, as well as a number of system and calibration obstacles. The development effort under way at JPL, with important contributions from the Goddard Space Flight Center and the University of Michigan, is intended to demonstrate the measurement concept and retire much of the technology risk.
Coaxial microwave electrothermal thruster performance in hydrogen
NASA Technical Reports Server (NTRS)
Richardson, W.; Asmussen, J.; Hawley, M.
1994-01-01
The microwave electro thermal thruster (MET) is an electric propulsion concept that offers the promise of high performance combined with a long lifetime. A unique feature of this electric propulsion concept is its ability to create a microwave plasma discharge separated or floating away from any electrodes or enclosing walls. This allows propellant temperatures that are higher than those in resistojets and reduces electrode and wall erosion. It has been demonstrated that microwave energy is coupled into discharges very efficiently at high input power levels. As a result of these advantages, the MET concept has been identified as a future high power electric propulsion possibility. Recently, two additional improvements have been made to the coaxial MET. The first was concerned with improving the microwave matching. Previous experiments were conducted with 10-30 percent reflected power when incident power was in excess of 600 W(exp 6). Power was reflected back to the generator because the impedance of the MET did not match the 50 ohm impedance of the microwave circuit. To solve this problem, a double stub tuning system has been inserted between the MET and the microwave power supply. The addition of the double stub tuners reduces the reflected power below 1 percent. The other improvement has prepared the coaxial MET for hydrogen experiments. To operate with hydrogen, the vacuum window which separates the coaxial line from the discharge chamber has been changed from teflon to boron nitride. All the microwave energy delivered to the plasma discharge passes through this vacuum window. This material change had caused problems in the past because of the increased microwave reflection coefficients associated with the electrical properties of boron nitride. However, by making the boron nitride window electrically one-half of a wavelength long, power reflection in the window has been eliminated. This technical note summarizes the experimental performance of the improved coaxial MET when operating in nitrogen, helium, and hydrogen gases.
NASA Technical Reports Server (NTRS)
2004-01-01
Looking like an alien space ship or a flying saucer the Microwave Lightcraft is an unconventional launch vehicle approach for delivering payload to orbit using power transmitted via microwaves. Microwaves re beamed from either a ground station or an orbiting solar power satellite to the lightcraft. The energy received breaks air molecules into a plasma and a magnetohydrodynamic fanjet provides the lifting force. Only a small amount of propellant is required for circulation, attitude control and deorbit.
A Study on a Microwave-Driven Smart Material Actuator
NASA Technical Reports Server (NTRS)
Choi, Sang H.; Chu, Sang-Hyon; Kwak, M.; Cutler, A. D.
2001-01-01
NASA s Next Generation Space Telescope (NGST) has a large deployable, fragmented optical surface (greater than or = 2 8 m in diameter) that requires autonomous correction of deployment misalignments and thermal effects. Its high and stringent resolution requirement imposes a great deal of challenge for optical correction. The threshold value for optical correction is dictated by lambda/20 (30 nm for NGST optics). Control of an adaptive optics array consisting of a large number of optical elements and smart material actuators is so complex that power distribution for activation and control of actuators must be done by other than hard-wired circuitry. The concept of microwave-driven smart actuators is envisioned as the best option to alleviate the complexity associated with hard-wiring. A microwave-driven actuator was studied to realize such a concept for future applications. Piezoelectric material was used as an actuator that shows dimensional change with high electric field. The actuators were coupled with microwave rectenna and tested to correlate the coupling effect of electromagnetic wave. In experiments, a 3x3 rectenna patch array generated more than 50 volts which is a threshold voltage for 30-nm displacement of a single piezoelectric material. Overall, the test results indicate that the microwave-driven actuator concept can be adopted for NGST applications.
Development of a high power microwave thruster, with a magnetic nozzle, for space applications
NASA Technical Reports Server (NTRS)
Power, John L.; Chapman, Randall A.
1989-01-01
This paper describes the current development of a high-power microwave electrothermal thruster (MET) concept at the NASA Lewis Research Center. Such a thruster would be employed in space for applications such as orbit raining, orbit maneuvering, station change, and possibly trans-lunar or trans-planetary propulsion of spacecraft. The MET concept employs low frequency continuous wave (CW) microwave power to create and continuously pump energy into a flowing propellant gas at relative high pressure via a plasma discharge. The propellant is heated to very high bulk temperatures while passing through the plasma discharge region and then is expanded through a throat-nozzle assembly to produce thrust, as in a conventional rocket engine. Apparatus, which is described, is being assembled at NASA Lewis to test the MET concept to CW power levels of 30 kW at a frequency of 915 MHz. The microwave energy is applied in a resonant cavity applicator and is absorbed by a plasma discharge in the flowing propellant. The ignited plasma acts as a lossy load, and with optimal tuning, energy absorption efficiencies over 95 percent (based on the applied microwave power) are expected. Nitrogen, helium, and hydrogen will be tested as propellants in the MET, at discharge chamber pressures to 10 atm.
Boukroufa, Meryem; Boutekedjiret, Chahrazed; Petigny, Loïc; Rakotomanomana, Njara; Chemat, Farid
2015-05-01
In this study, extraction of essential oil, polyphenols and pectin from orange peel has been optimized using microwave and ultrasound technology without adding any solvent but only "in situ" water which was recycled and used as solvent. The essential oil extraction performed by Microwave Hydrodiffusion and Gravity (MHG) was optimized and compared to steam distillation extraction (SD). No significant changes in yield were noticed: 4.22 ± 0.03% and 4.16 ± 0.05% for MHG and SD, respectively. After extraction of essential oil, residual water of plant obtained after MHG extraction was used as solvent for polyphenols and pectin extraction from MHG residues. Polyphenols extraction was performed by ultrasound-assisted extraction (UAE) and conventional extraction (CE). Response surface methodology (RSM) using central composite designs (CCD) approach was launched to investigate the influence of process variables on the ultrasound-assisted extraction (UAE). The statistical analysis revealed that the optimized conditions of ultrasound power and temperature were 0.956 W/cm(2) and 59.83°C giving a polyphenol yield of 50.02 mgGA/100 g dm. Compared with the conventional extraction (CE), the UAE gave an increase of 30% in TPC yield. Pectin was extracted by conventional and microwave assisted extraction. This technique gives a maximal yield of 24.2% for microwave power of 500 W in only 3 min whereas conventional extraction gives 18.32% in 120 min. Combination of microwave, ultrasound and the recycled "in situ" water of citrus peels allow us to obtain high added values compounds in shorter time and managed to make a closed loop using only natural resources provided by the plant which makes the whole process intensified in term of time and energy saving, cleanliness and reduced waste water. Copyright © 2014 Elsevier B.V. All rights reserved.
Geo-STAR: A Geostationary Microwave Sounder for the Future
NASA Technical Reports Server (NTRS)
Lambrigtsen, Bjorn H.; Brown, S. T.; Dinardo, S. J.; Gaier, T. C.; Kangaslahti, P. P.; Tanner, A. B.
2007-01-01
The Geostationary Synthetic Thinned Aperture Radiometer (GeoSTAR) is a new Earth remote sensing instrument concept that has been under development at the Jet Propulsion Laboratory. First conceived in 1998 as a NASA New Millennium Program mission and subsequently developed in 2003-2006 as a proof-of-concept prototype under the NASA Instrument Incubator Program, it is intended to fill a serious gap in our Earth remote sensing capabilities - namely the lack of a microwave atmospheric sounder in geostationary orbit. The importance of such observations have been recognized by the National Academy of Sciences National Research Council, which recently released its report on a 'Decadal Survey' of NASA Earth Science activities1. One of the recommended missions for the next decade is a geostationary microwave sounder. GeoSTAR is well positioned to meet the requirements of such a mission, and because of the substantial investment NASA has already made in GeoSTAR technology development, this concept is fast approaching the necessary maturity for implementation in the next decade. NOAA is also keenly interested in GeoSTAR as a potential payload on its next series of geostationary weather satellites, the GOES-R series. GeoSTAR, with its ability to map out the three-dimensional structure of temperature, water vapor, clouds, precipitation and convective parameters on a continual basis, will significantly enhance our ability to observe hurricanes and other severe storms. In addition, with performance matching that of current and next generation of low-earth-orbiting microwave sounders, GeoSTAR will also provide observations important to the study of the hydrologic cycle, atmospheric processes and climate variability and trends. In particular, with GeoSTAR it will be possible to fully resolve the diurnal cycle. We discuss the GeoSTAR concept and basic design, the performance of the prototype, and a number of science applications that will be possible with GeoSTAR. The work reported on here was performed at the Jet Propulsion Laboratory, California Institute of Technology under a contract with the National Aeronautics and Space Administration.
INVESTIGATION OF NEW CONCEPTS AND LINEAR BEAM TECHNIQUES FOR MICROWAVE POWER GENERATION.
ARSENIC ALLOYS, MILLIMETER WAVES, CAVITY RESONATORS, ELECTRON GUNS, ELECTRON DENSITY, EPITAXIAL GROWTH, OSCILLATORS, S BAND , X BAND , GERMANIUM...ELECTRIC FIELDS, SCATTERING, BRILLOUIN ZONES, RUBY, ELECTROSTRICTION, IONIZATION, MICROWAVE OSCILLATORS, KLYSTRONS , EXPERIMENTAL DESIGN.
Improved Linear-Ion-Trap Frequency Standard
NASA Technical Reports Server (NTRS)
Prestage, John D.
1995-01-01
Improved design concept for linear-ion-trap (LIT) frequency-standard apparatus proposed. Apparatus contains lengthened linear ion trap, and ions processed alternately in two regions: ions prepared in upper region of trap, then transported to lower region for exposure to microwave radiation, then returned to upper region for optical interrogation. Improved design intended to increase long-term frequency stability of apparatus while reducing size, mass, and cost.
Microwave Power for Smart Membrane Actuators
NASA Technical Reports Server (NTRS)
Choi, Sang H.; Song, Kyo D.; Golembiewski, Walter T.; Chu, Sang-Hyon; King, Glen C.
2002-01-01
The concept of microwave-driven smart membrane actuators is envisioned as the best option to alleviate the complexity associated with hard-wired control circuitry. A large, ultra-light space structure, such as solar sails and Gossamer spacecrafts, requires a distribution of power into individual membrane actuators to control them in an effective way. A patch rectenna array with a high voltage output was developed to drive smart membrane actuators. Networked patch rectenna array receives and converts microwave power into a DC power for an array of smart actuators. To use microwave power effectively, the concept of a power allocation and distribution (PAD) circuit is developed and tested for networking a rectenna/actuator patch array. For the future development, the PAD circuit could be imbedded into a single embodiment of rectenna and actuator array with the thin-film microcircuit embodiment. Preliminary design and fabrication of PAD circuitry that consists of a sixteen nodal elements were made for laboratory testing.
Design concept for the microwave interrogation structure in PARCS
NASA Technical Reports Server (NTRS)
Dick, G. J.; Klipstein, W. M.; Heavner, T. P.; Jefferts, S. R.
2002-01-01
In this paper we will describe key aspects of the conceptual design of the microwave interrogation structure in the laser-cooled cesium frequency standard that is part of the Primary Atomic Reference Clock in Space (PARCS) experiment.
Electromagnetic energy and food processing.
Mudgett, R
1988-01-01
The use of electromagnetic energy in food processing is reviewed with respect to food safety, nutritional quality, and organoleptic quality. The effects of nonionizing radiation sources such as microwave and radio-frequency energy and ionizing radiation sources, e.g. radioactive cobalt-60 and caesium-137, on the inactivation of microbes and nutrients are compared with those of conventional heating processes both in terms of their kinetic behavior and their mechanisms of interaction with foods. The kinetics of microwave and conventional thermal inactivation are considered for a generalized nth-order model based on time and temperature conditions. However, thermal inactivation effects are often modeled by 1st-order kinetics. Microbial and nutrient inactivation by ionizing sources are considered for a 1st-order model based on radiation dose. Both thermal and radiation resistance concepts are reviewed and some typical values of radiation resistance are given for sensitive vegetative bacterial cells, yeasts, and molds and for resistant bacterial spores and viruses. Nonionizing microwave energy sources are increasingly used in home and industrial food processing and are well-accepted by the American public. But, despite recent Food and Drug Administration approval of low and intermediate ionizing radiation dose levels for grains and other plants products and the fact that irradiated foods are sold in more than 20 countries of the world, public fears in the U.S. about nuclear energy may limit the role of ionizing radiation in food processing and preservation and may also limit the use of nuclear fuels as an alternate source of electrical energy.
NASA Technical Reports Server (NTRS)
Njoku, E.; Wilson, W.; Yueh, S.; Freeland, R.; Helms, R.; Edelstein, W.; Sadowy, G.; Farra, D.; West, R.; Oxnevad, K.
2001-01-01
This report describes a two-year study of a large-aperture, lightweight, deployable mesh antenna system for radiometer and radar remote sensing of the Earth from space. The study focused specifically on an instrument to measure ocean salinity and Soil moisture. Measurements of ocean salinity and soil moisture are of critical . importance in improving knowledge and prediction of key ocean and land surface processes, but are not currently obtainable from space. A mission using this instrument would be the first demonstration of deployable mesh antenna technology for remote sensing and could lead to potential applications in other remote sensing disciplines that require high spatial resolution measurements. The study concept features a rotating 6-m-diameter deployable mesh antenna, with radiometer and radar sensors, to measure microwave emission and backscatter from the Earth's surface. The sensors operate at L and S bands, with multiple polarizations and a constant look angle, scanning across a wide swath. The study included detailed analyses of science requirements, reflector and feedhorn design and performance, microwave emissivity measurements of mesh samples, design and test of lightweight radar electronic., launch vehicle accommodations, rotational dynamics simulations, and an analysis of attitude control issues associated with the antenna and spacecraft, The goal of the study was to advance the technology readiness of the overall concept to a level appropriate for an Earth science emission.
Long, Yun; Zhou, Linjie; Wang, Jian
2016-01-01
Photonic generation of microwave signal is obviously attractive for many prominent advantages, such as large bandwidth, low loss, and immunity to electromagnetic interference. Based on a single integrated silicon Mach–Zehnder modulator (MZM), we propose and experimentally demonstrate a simple and compact photonic scheme to enable frequency-multiplicated microwave signal. Using the fabricated integrated MZM, we also demonstrate the feasibility of microwave amplitude-shift keying (ASK) modulation based on integrated photonic approach. In proof-of-concept experiments, 2-GHz frequency-doubled microwave signal is generated using a 1-GHz driving signal. 750-MHz/1-GHz frequency-tripled/quadrupled microwave signals are obtained with a driving signal of 250 MHz. In addition, a 50-Mb/s binary amplitude coded 1-GHz microwave signal is also successfully generated. PMID:26832305
NASA Technical Reports Server (NTRS)
Hanley, G. M.
1981-01-01
This volume summarizes the basic requirements used as a guide to systems analysis, and is a basis for the selection of candidate Satellite Power Systems (SPS) point designs. Initially, these collected data reflected the level of definition resulting from the evaluation of a broad spectrum of SPS concepts. As the various concepts matured, these requirements were updated to reflect the requirements identified for the projected satellite system/subsystem point designs. Included is an updated version of earlier Rockwell concepts using klystrons as the specific microwave power amplification approach, as well as a more in-depth definition, analysis and preliminary point design on two concepts based on the use of advanced solid state technology to accomplish the task of high power amplification of the 2.45 GHz transmitted power beam to the Earth receiver. Finally, a preliminary definition of a concept using magnetrons as the microwave power amplifiers is presented.
Systems definition space-based power conversion systems. [for satellite power transmission to earth
NASA Technical Reports Server (NTRS)
1976-01-01
Potential space-located systems for the generation of electrical power for use on Earth are discussed and include: (1) systems producing electrical power from solar energy; (2) systems producing electrical power from nuclear reactors; and (3) systems for augmenting ground-based solar power plants by orbital sunlight reflectors. Systems (1) and (2) would utilize a microwave beam system to transmit their output to Earth. Configurations implementing these concepts were developed through an optimization process intended to yield the lowest cost for each. A complete program was developed for each concept, identifying required production rates, quantities of launches, required facilities, etc. Each program was costed in order to provide the electric power cost appropriate to each concept.
Huang, Jie; Lan, Xinwei; Luo, Ming; Xiao, Hai
2014-07-28
This paper reports a spatially continuous distributed fiber optic sensing technique using optical carrier based microwave interferometry (OCMI), in which many optical interferometers with the same or different optical path differences are interrogated in the microwave domain and their locations can be unambiguously determined. The concept is demonstrated using cascaded weak optical reflectors along a single optical fiber, where any two arbitrary reflectors are paired to define a low-finesse Fabry-Perot interferometer. While spatially continuous (i.e., no dark zone), fully distributed strain measurement was used as an example to demonstrate the capability, the proposed concept may also be implemented on other types of waveguide or free-space interferometers and used for distributed measurement of various physical, chemical and biological quantities.
Satellite Power Systems (SPS) concept definition study (exhibit C)
NASA Technical Reports Server (NTRS)
Hanley, G. M.
1978-01-01
A coplanar satellite conceptual approach was defined. This effort included several trade studies related to satellite design and also construction approaches for this satellite. A transportation system, consistent with this concept, was also studied, including an electric orbit transfer vehicle and a parallel-burn heavy lift launch vehicle. Work on a solid state microwave concept continued and several alternative approaches were evaluated. Computer determination of an optimized transistor and circuit design was also continued. Experiment/verification planning resulted in the development of a total solar array and microwave technology development plan, as well as definition of near-term research to evaluate key technology issues.
NASA Technical Reports Server (NTRS)
Ulaby, F. T.; Moore, R. K.; Fung, A. K.
1981-01-01
The three components of microwave remote sensing (sensor-scene interaction, sensor design, and measurement techniques), and the applications to geoscience are examined. The history of active and passive microwave sensing is reviewed, along with fundamental principles of electromagnetic wave propagation, antennas, and microwave interaction with atmospheric constituents. Radiometric concepts are reviewed, particularly for measurement problems for atmospheric and terrestrial sources of natural radiation. Particular attention is given to the emission by atmospheric gases, clouds, and rain as described by the radiative transfer function. Finally, the operation and performance characteristics of radiometer receivers are discussed, particularly for measurement precision, calibration techniques, and imaging considerations.
A flexible telecom satellite repeater based on microwave photonic technologies
NASA Astrophysics Data System (ADS)
Sotom, Michel; Benazet, Benoît; Maignan, Michel
2017-11-01
Future telecom satellite based on geo-stationary Earth orbit (GEO) will require advanced payloads in Kaband so as to receive, route and re-transmit hundreds of microwave channels over multiple antenna beams. We report on the proof-of-concept demonstration of a analogue repeater making use of microwave photonic technologies for supporting broadband, transparent, and flexible cross-connectivity. It has microwave input and output sections, and features a photonic core for LO distribution, frequency down-conversion, and cross-connection of RF channels. With benefits such as transparency to RF frequency, infinite RF isolation, mass and volume savings, such a microwave photonic cross-connect would compare favourably with microwave implementations, and based on optical MEMS switches could grow up to large port counts.
ERIC Educational Resources Information Center
Abdul-Razzaq, W.; Bushey, R.; Winn, G.
2011-01-01
Physics is essential for students who want to succeed in science and engineering. Excitement and interest in the content matter contribute to enhancing this success. We have developed a laboratory experiment that takes advantage of microwave ovens to demonstrate important physical concepts and increase interest in physics. This experiment…
Lunar Heat Flux Measurements Enabled by a Microwave Radiometer Aboard the Deep Space Gateway
NASA Astrophysics Data System (ADS)
Siegler, M.; Ruf, C.; Putzig, N.; Morgan, G.; Hayne, P.; Paige, D.; Nagihara, S.; Weber, R.
2018-02-01
We would like to present a concept to use the Deep Space Gateway as a platform for constraining the geothermal heat production, surface, and near-surface rocks, and dielectric properties of the Moon from orbit with passive microwave radiometery.
Analytical evaluation of ILM sensors. Volume 2: Appendices
NASA Technical Reports Server (NTRS)
Kirk, R. J.
1975-01-01
The applicability of various sensing concepts to independent landing monitor systems was analyzed. Microwave landing system MLS accuracy requirements are presented along with a description of MLS airborne equipment. Computer programs developed during the analysis are described and include: a mathematical computer model for use in the performance assessment of reconnaissance sensor systems; a theoretical formulation of electromagnetic scattering to generate data at high incidence angles; atmospheric attenuation of microwaves; and microwave radiometry, programs
NASA Technical Reports Server (NTRS)
1980-01-01
Potential health and ecological effects of the microwave beam from the microwave power transmission system (MPTS) of the satellite power system (SPS) are discussed. A detailed critical review of selected scientific articles from the published literature on the biological effects of nonionizing electromagnetic radiation is provided followed by an assessment of the possible effects of the SPS, based on exposure values for the reference system.
Coherence-length-gated distributed optical fiber sensing based on microwave-photonic interferometry.
Hua, Liwei; Song, Yang; Cheng, Baokai; Zhu, Wenge; Zhang, Qi; Xiao, Hai
2017-12-11
This paper presents a new optical fiber distributed sensing concept based on coherent microwave-photonics interferometry (CMPI), which uses a microwave modulated coherent light source to interrogate cascaded interferometers for distributed measurement. By scanning the microwave frequencies, the complex microwave spectrum is obtained and converted to time domain signals at known locations by complex Fourier transform. The amplitudes of these time domain pulses are a function of the optical path differences (OPDs) of the distributed interferometers. Cascaded fiber Fabry-Perot interferometers (FPIs) fabricated by femtosecond laser micromachining were used to demonstrate the concept. The experimental results indicated that the strain measurement resolution can be better than 0.6 µε using a FPI with a cavity length of 1.5 cm. Further improvement of the strain resolution to the nε level is achievable by increasing the cavity length of the FPI to over 1m. The tradeoff between the sensitivity and dynamic range was also analyzed in detail. To minimize the optical power instability (either from the light source or the fiber loss) induced errors, a single reflector was added in front of an individual FPI as an optical power reference for the purpose of compensation.
Microwave assisted reconstruction of optical interferograms for distributed fiber optic sensing.
Huang, Jie; Hua, Lei; Lan, Xinwei; Wei, Tao; Xiao, Hai
2013-07-29
This paper reports a distributed fiber optic sensing technique through microwave assisted separation and reconstruction of optical interferograms in spectrum domain. The approach involves sending a microwave-modulated optical signal through cascaded fiber optic interferometers. The microwave signal was used to resolve the position and reflectivity of each sensor along the optical fiber. By sweeping the optical wavelength and detecting the modulation signal, the optical spectrum of each sensor can be reconstructed. Three cascaded fiber optic extrinsic Fabry-Perot interferometric sensors were used to prove the concept. Their microwave-reconstructed interferogram matched well with those recorded individually using an optical spectrum analyzer. The application in distributed strain measurement has also been demonstrated.
Photonic measurement of microwave frequency based on phase modulation.
Zhou, Junqiang; Fu, Songnian; Shum, Perry Ping; Aditya, Sheel; Xia, Li; Li, Jianqiang; Sun, Xiaoqiang; Xu, Kun
2009-04-27
A photonic approach for microwave frequency measurement is proposed. In this approach, an optical carrier is modulated by an unknown microwave signal through a phase modulator. The modulated optical signal is then split into two parts; one part passes through a spool of polarization maintaining fiber (PMF) and the other one, through a dispersion compensation fiber (DCF), to introduce different microwave power penalties. After the microwave powers of the two parts are measured by two photodetectors, a fixed frequency-to-power mapping is established by obtaining an amplitude comparison function (ACF). A proof-of-concept experiment demonstrates frequency measurement over a range of 10.5 GHz, with measurement error less than +/-0.07 GHz.
Space Solar Power Concepts: Demonstrations to Pilot Plants
NASA Technical Reports Server (NTRS)
Carrington, Connie K.; Feingold, Harvey; Howell, Joe T. (Technical Monitor)
2002-01-01
The availability of abundant, affordable power where needed is a key to the future exploration and development of space as well as future sources of clean terrestrial power. One innovative approach to providing such power is the use of wireless power transmission (WPT). There are at least two possible WPT methods that appear feasible; microwave and laser. Microwave concepts have been generated, analyzed and demonstrated. Technologies required to provide an end-to-end system have been identified and roadmaps generated to guide technology development requirements. Recently, laser W T approaches have gained an increased interest. These approaches appear to be very promising and will possibly solve some of the major challenges that exist with the microwave option. Therefore, emphasis is currently being placed on the laser WPT activity. This paper will discuss the technology requirements, technology roadmaps and technology flight experiments demonstrations required to lead toward a pilot plant demonstration. Concepts will be discussed along with the modeling techniques that are used in developing them. Feasibility will be addressed along with the technology needs, issues and capabilities for particular concepts. Flight experiments and demonstrations will be identified that will pave the road from demonstrations to pilot plants and beyond.
Orbiting multi-beam microwave radiometer for soil moisture remote sensing
NASA Technical Reports Server (NTRS)
Shiue, J. C.; Lawrence, R. W.
1985-01-01
The effects of soil moisture and other factors on soil surface emissivity are reviewed and design concepts for a multibeam microwave radiometer with a 15 m antenna are described. Characteristic antenna gain and radiation patterns are shown and losses due to reflector roughness are estimated.
A Review of Microwave-Assisted Reactions for Biodiesel Production
Nomanbhay, Saifuddin; Ong, Mei Yin
2017-01-01
The conversion of biomass into chemicals and biofuels is an active research area as trends move to replace fossil fuels with renewable resources due to society’s increased concern towards sustainability. In this context, microwave processing has emerged as a tool in organic synthesis and plays an important role in developing a more sustainable world. Integration of processing methods with microwave irradiation has resulted in a great reduction in the time required for many processes, while the reaction efficiencies have been increased markedly. Microwave processing produces a higher yield with a cleaner profile in comparison to other methods. The microwave processing is reported to be a better heating method than the conventional methods due to its unique thermal and non-thermal effects. This paper provides an insight into the theoretical aspects of microwave irradiation practices and highlights the importance of microwave processing. The potential of the microwave technology to accomplish superior outcomes over the conventional methods in biodiesel production is presented. A green process for biodiesel production using a non-catalytic method is still new and very costly because of the supercritical condition requirement. Hence, non-catalytic biodiesel conversion under ambient pressure using microwave technology must be developed, as the energy utilization for microwave-based biodiesel synthesis is reported to be lower and cost-effective. PMID:28952536
A Review of Microwave-Assisted Reactions for Biodiesel Production.
Nomanbhay, Saifuddin; Ong, Mei Yin
2017-06-15
The conversion of biomass into chemicals and biofuels is an active research area as trends move to replace fossil fuels with renewable resources due to society's increased concern towards sustainability. In this context, microwave processing has emerged as a tool in organic synthesis and plays an important role in developing a more sustainable world. Integration of processing methods with microwave irradiation has resulted in a great reduction in the time required for many processes, while the reaction efficiencies have been increased markedly. Microwave processing produces a higher yield with a cleaner profile in comparison to other methods. The microwave processing is reported to be a better heating method than the conventional methods due to its unique thermal and non-thermal effects. This paper provides an insight into the theoretical aspects of microwave irradiation practices and highlights the importance of microwave processing. The potential of the microwave technology to accomplish superior outcomes over the conventional methods in biodiesel production is presented. A green process for biodiesel production using a non-catalytic method is still new and very costly because of the supercritical condition requirement. Hence, non-catalytic biodiesel conversion under ambient pressure using microwave technology must be developed, as the energy utilization for microwave-based biodiesel synthesis is reported to be lower and cost-effective.
A design concept for an MMIC (Monolithic Microwave Integrated Circuit) microstrip phased array
NASA Technical Reports Server (NTRS)
Lee, Richard Q.; Smetana, Jerry; Acosta, Roberto
1987-01-01
A conceptual design for a microstrip phased array with monolithic microwave integrated circuit (MMIC) amplitude and phase controls is described. The MMIC devices used are 20 GHz variable power amplifiers and variable phase shifters recently developed by NASA contractors for applications in future Ka proposed design, which concept is for a general NxN element array of rectangular lattice geometry. Subarray excitation is incorporated in the MMIC phased array design to reduce the complexity of the beam forming network and the number of MMIC components required.
Frequency agile microwave photonic notch filter with anomalously high stopband rejection.
Marpaung, David; Morrison, Blair; Pant, Ravi; Eggleton, Benjamin J
2013-11-01
We report a novel class microwave photonic (MWP) notch filter with a very narrow isolation bandwidth (10 MHz), an ultrahigh stopband rejection (>60 dB), a wide frequency tuning (1-30 GHz), and flexible bandwidth reconfigurability (10-65 MHz). This performance is enabled by a new concept of sideband amplitude and phase controls using an electro-optic modulator and an optical filter. This concept enables energy efficient operation in active MWP notch filters, and opens up a pathway toward enabling low-power nanophotonic devices as high-performance RF filters.
Wang, Grace C; Farnham, Mark; Jeffery, Elizabeth H
2012-07-11
In broccoli, sulforaphane forms when the glucosinolate glucoraphanin is hydrolyzed by the endogenous plant thiohydrolase myrosinase. A myrosinase cofactor directs hydrolysis away from the formation of bioactive sulforaphane and toward an inactive product, sulforaphane nitrile. The cofactor is more heat sensitive than myrosinase, presenting an opportunity to preferentially direct hydrolysis toward sulforaphane formation through regulation of thermal processing. Four broccoli cultivars were microwave heated, boiled, or steamed for various lengths of time. Production of nitrile during hydrolysis of unheated broccoli varied among cultivars from 91 to 52% of hydrolysis products (Pinnacle > Marathon > Patriot > Brigadier). Boiling and microwave heating caused an initial loss of nitrile, with a concomitant increase in sulforaphane, followed by loss of sulforaphane, all within 1 min. In contrast, steaming enhanced sulforaphane yield between 1.0 and 3.0 min in all but Brigadier. These data are proof of concept that steaming for 1.0-3.0 min provides less nitrile and more sulforaphane yield from a broccoli meal.
A Novel Oscillating Rectenna for Wireless Microwave Power Transmission
NASA Technical Reports Server (NTRS)
McSpadden, J. O.; Dickinson, R. M.; Fan, L.; Chang, K.
1998-01-01
A new concept for solid state wireless microwave power transmission is presented. A 2.45 GHz rectenna element that was designed for over 85% RF to dc power conversion efficiency has been used to oscillate at 3.3 GHz with an approximate 1% dc to RF conversion efficiency.
Advanced beamed-energy and field propulsion concepts
NASA Technical Reports Server (NTRS)
Myrabo, L. N.
1983-01-01
Specific phenomena which might lead to major advances in payload, range and terminal velocity of very advanced vehicle propulsion are studied. The effort focuses heavily on advanced propulsion spinoffs enabled by current government-funded investigations in directed-energy technology: i.e., laser, microwave, and relativistic charged particle beams. Futuristic (post-year 2000) beamed-energy propulsion concepts which indicate exceptional promise are identified and analytically investigated. The concepts must be sufficiently developed to permit technical understanding of the physical processes involved, assessment of the enabling technologies, and evaluation of their merits over conventional systems. Propulsion concepts that can be used for manned and/or unmanned missions for purposes of solar system exploration, planetary landing, suborbital flight, transport to orbit, and escape are presented. Speculations are made on the chronology of milestones in beamed-energy propulsion development, such as in systems applications of defense, satellite orbit-raising, global aerospace transportation, and manned interplanetary carriers.
Microstructure and Mechanical Properties of Microwave Post-processed Ni Coating
NASA Astrophysics Data System (ADS)
Zafar, Sunny; Sharma, Apurbba Kumar
2017-03-01
Flame-sprayed coatings are widely used in the industries attributed to their low cost and simple processing. However, the presence of porosity and poor adhesion with the substrate requires suitable post-processing of the as-sprayed deposits. In the present work, post-processing of the flame-sprayed Ni-based coating has been successfully attempted using microwave hybrid heating. Microwave post-processing of the flame-sprayed coatings was carried out at 2.45 GHz in a 1 kW multimode industrial microwave applicator. The microwave-processed and as-sprayed deposits were characterized for their microstructure, porosity, fracture toughness and surface roughness. The properties of the coatings were correlated with their abrasive wear behavior using a sliding abrasion test on a pin-on-disk tribometer. Microwave post-processing led to healed micropores and microcracks, thus causing homogenization of the microstructure in the coating layer. Therefore, microwave post-processed coating layer exhibits improved mechanical and tribological properties compared to the as-sprayed coating layer.
Zou, Zhaoyong; Lin, Kaili; Chen, Lei; Chang, Jiang
2012-11-01
Herein, carbonated hydroxyapatite (CHAp) nanopowders were synthesized via sonochemistry-assisted microwave process. The influences of microwave and ultrasonic irradiation on the crystallinity, morphology, yield, Ca/P molar ratio, specific surface area and dispersibility were investigated and compared with the conventional precipitation method. The results showed that sonochemistry-assisted microwave process significantly increased the synthetic efficiency. The well-crystallized nanopowders could be obtained at high yield of 98.8% in ultra-short-period of 5min. In addition, the crystallization process was promoted with the increase of ultrasonic and microwave power and the reaction time during the sonochemistry-assisted microwave process. The sonochemistry assistance also remarkably increased the specific surface area and dispersibility of the as-obtained products. These results suggest that the sonochemistry-assisted microwave process is an effective approach to synthesize CHAp with high efficiency. Copyright © 2012 Elsevier B.V. All rights reserved.
Fast microwave assisted pyrolysis of biomass using microwave absorbent.
Borges, Fernanda Cabral; Du, Zhenyi; Xie, Qinglong; Trierweiler, Jorge Otávio; Cheng, Yanling; Wan, Yiqin; Liu, Yuhuan; Zhu, Rongbi; Lin, Xiangyang; Chen, Paul; Ruan, Roger
2014-03-01
A novel concept of fast microwave assisted pyrolysis (fMAP) in the presence of microwave absorbents was presented and examined. Wood sawdust and corn stover were pyrolyzed by means of microwave heating and silicon carbide (SiC) as microwave absorbent. The bio-oil was characterized, and the effects of temperature, feedstock loading, particle sizes, and vacuum degree were analyzed. For wood sawdust, a temperature of 480°C, 50 grit SiC, with 2g/min of biomass feeding, were the optimal conditions, with a maximum bio-oil yield of 65 wt.%. For corn stover, temperatures ranging from 490°C to 560°C, biomass particle sizes from 0.9mm to 1.9mm, and vacuum degree lower than 100mmHg obtained a maximum bio-oil yield of 64 wt.%. This study shows that the use of microwave absorbents for fMAP is feasible and a promising technology to improve the practical values and commercial application outlook of microwave based pyrolysis. Copyright © 2014 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Dandl, R. A.; Guest, G. E.; Jory, H. R.
1990-12-01
The AMPHED facility was used to perform feasibility experiments to explore the generation of high-power microwave pulses from energy stored in a magnetic mirror plasma. The facility uses an open-ended magnetic mirror driven by pulsed or cw c- and x-band sources. Microwave horns were constructed to couple in the frequency range of 2.4 to 4 GHz to whistler waves in the plasma. Spontaneous bursts of microwave radiation in the range of 3 to 5 GHz were observed in the experiments. But the power levels were lower than expected for the whistler wave interaction. It is probable that the hot-electron energy densities achieved were not high enough to approach the threshold of the desired interaction.
On-chip microwave signal generation based on a silicon microring modulator.
Shao, Haifeng; Yu, Hui; Li, Xia; Li, Yan; Jiang, Jianfei; Wei, Huan; Wang, Gencheng; Dai, Tingge; Chen, Qimei; Yang, Jianyi; Jiang, Xiaoqing
2015-07-15
A photonic-assisted microwave signal generator based on a silicon microring modulator is demonstrated. The microring cavity incorporates an embedded PN junction that enables a microwave signal to modulate the lightwave circling inside. The DC component of the modulated light is trapped in the cavity, while the high-order sideband components are able to exit the cavity and then generate microwave signals at new frequencies in a photodetector. In our proof-of-concept experiment, a 10 GHz microwave signal is converted to a 20 GHz signal in the optical domain with an electrical harmonic suppression ratio of 22 dB. An analytic model is also established to explain the operation mechanism, which agrees well with the measured data.
NASA Technical Reports Server (NTRS)
1976-01-01
The SPS concepts which appear to be technically feasible are discussed in terms of the economic viability and competitive costs with other energy sources. The concepts discussed include: power station, microwave reception and conversion, space construction and maintenance, space transportation, and program costs and analysis. The conclusions presented include: (1) The maximum output of an individual microwave transmission link to earth is about 5 GW. (2) The mass of 10 GW SPS is between 47,000,000 and 124,000,00 kg. (3) The silicon solar cell arrays make up well over half the weight and cost of the satellite. (4) The SPS in equatorial orbit will be eclipsed by the earth and by other satellites.
NASA Technical Reports Server (NTRS)
Nussberger, A. A.; Woodcock, G. R.
1980-01-01
SPS satellite power distribution systems are described. The reference Satellite Power System (SPS) concept utilizes high-voltage klystrons to convert the onboard satellite power from dc to RF for transmission to the ground receiving station. The solar array generates this required high voltage and the power is delivered to the klystrons through a power distribution subsystem. An array switching of solar cell submodules is used to maintain bus voltage regulation. Individual klystron dc voltage conversion is performed by centralized converters. The on-board data processing system performs the necessary switching of submodules to maintain voltage regulation. Electrical power output from the solar panels is fed via switch gears into feeder buses and then into main distribution buses to the antenna. Power also is distributed to batteries so that critical functions can be provided through solar eclipses.
USDA-ARS?s Scientific Manuscript database
A new microwave heating process was developed for cooking microwaveable foods containing raw meats. A commercially available inverter-based microwave oven was modified for pasteurization of mechanically tenderized beef, inoculated with Escherichia coli O157:H7 (~ 5 log cfu/g) and packaged in a 12 o...
NASA Technical Reports Server (NTRS)
Billman, K. W.
1978-01-01
Concepts for space-based conversion of space radiation energy into useful energy for man's needs are developed and supported by studies of costs, material and size requirements, efficiency, and available technology. Besides the more studied solar power satellite system using microwave transmission, a number of alternative space energy concepts are considered. Topics covered include orbiting mirrors for terrestrial energy supply, energy conversion at a lunar polar site, ultralightweight structures for space power, radiatively sustained cesium plasmas for solar electric conversion, solar pumped CW CO2 laser, superelastic laser energy conversion, laser-enhanced dynamics in molecular rate processes, and electron beams in space for energy storage.
Lightwave technology in microwave systems
NASA Astrophysics Data System (ADS)
Popa, A. E.; Gee, C. M.; Yen, H. W.
1986-01-01
Many advanced microwave system concepts such as active aperture phased array antennas use distributed topologies in which lightwave circuits are being proposed to interconnect both the analog and digital modules of the system. Lightwave components designed to implement these interconnects are reviewed and their performance analyzed. The impact of trends in component development are discussed.
Solventless and One-Pot Synthesis of Cu(II) Phthalocyanine Complex: A Green Chemistry Experiment
ERIC Educational Resources Information Center
Sharma, R. K.; Sharma, Chetna; Sidhwani, Indu Tucker
2011-01-01
With the growing awareness of green chemistry, it is increasingly important for students to understand this concept in the context of laboratory experiments. Although microwave-assisted organic synthesis has become a common and invaluable technique in recent years, there have been few procedures published for microwave-assisted inorganic synthesis…
NASA Technical Reports Server (NTRS)
Hou, Arthur Y.; Zhang, Sara Q.; daSilva, Arlindo M.; Olson, William S.; Kummerow, Christian D.; Simpson, Joanne
2000-01-01
The Global Precipitation Mission, a satellite project under consideration as a follow-on to the Tropical Rainfall Measuring Mission (TRMM) by the National Aeronautics and Space Agency (NASA) in the United States, the National Space Development Agency (NASDA) in Japan, and other international partners, comprises an improved TRMM-like satellite and a constellation of 8 satellites carrying passive microwave radiometers to provide global rainfall measurements at 3-hour intervals. The success of this concept relies on the merits of rainfall estimates derived from passive microwave radiometers. This article offers a proof-of-concept demonstration of the benefits of using, rainfall and total precipitable water (TPW) information derived from such instruments in global data assimilation with observations from the TRMM Microwave Imager (TMI) and 2 Special Sensor Microwave/Imager (SSM/I) instruments. Global analyses that optimally combine observations from diverse sources with physical models of atmospheric and land processes can provide a comprehensive description of the climate systems. Currently, such data analyses contain significant errors in primary hydrological fields such as precipitation and evaporation, especially in the tropics. We show that assimilating the 6-h averaged TMI and SSM/I surface rainrate and TPW retrievals improves not only the hydrological cycle but also key climate parameters such as clouds, radiation, and the upper tropospheric moisture in the analysis produced by the Goddard Earth Observing System (GEOS) Data Assimilation System, as verified against radiation measurements by the Clouds and the Earth's Radiant Energy System (CERES) instrument and brightness temperature observations by the TIROS Operational Vertical Sounder (TOVS) instruments. Typically, rainfall assimilation improves clouds and radiation in areas of active convection, as well as the latent heating and large-scale motions in the tropics, while TPW assimilation leads to reduced moisture biases and improved radiative fluxes in clear-sky regions. Ensemble forecasts initialized with analyses that incorporate TMI and SSM/I rainfall and TPW data also yield better short-range predictions of geopotential heights, winds, and precipitation in the tropics. This study offers a compelling illustration of the potential of using rainfall and TPW information derived from passive microwave instruments to significantly improve the quality of 4-dimensional global datasets for climate analysis and weather forecasting applications.
Aqua Satellite Orbiting Earth Artist Concept
2002-05-08
NASA Aqua satellite carries six state-of-the-art instruments in a near-polar low-Earth orbit. Aqua is seen in this artist concept orbiting Earth. The six instruments are the Atmospheric Infrared Sounder (AIRS), the Advanced Microwave Sounding Unit (AMSU-A), the Humidity Sounder for Brazil (HSB), the Advanced Microwave Scanning Radiometer for EOS (AMSR-E), the Moderate Resolution Imaging Spectroradiometer (MODIS), and Clouds and the Earth's Radiant Energy System (CERES). Each has unique characteristics and capabilities, and all six serve together to form a powerful package for Earth observations. http://photojournal.jpl.nasa.gov/catalog/PIA18156
Transportation and operations aspects of space energy systems
NASA Technical Reports Server (NTRS)
Woodcock, Gordon R.
1989-01-01
A brief comparative analysis was made for three concepts of supplying large-scale electrical energy to Earth from space. The concepts were: (1) mining helium-3 on the Moon and returning it to Earth; (2) constructing solar power satellites in geosynchronous orbit from lunar materials (the energy is beamed by microwave to receivers on Earth); and (3) constructing power collection and beaming systems on the Moon itself and transmitting the energy to Earth by microwave. This analysis concerned mainly space transportation and operations, but each of the systems is briefly characterized to provide a basis for space transportation and operations analysis.
Satellite power system concept development and evaluation program. Volume 2: System definition
NASA Technical Reports Server (NTRS)
1981-01-01
The system level results of the system definition studies performed by NASA as a part of the Department of Energy/NASA satellite power system concept development and evaluation program are summarized. System requirements and guidelines are discussed as well as the major elements that comprise the reference system and its design options. Alternative system approaches including different system sizes, solid state amplifier (microwave) concepts, and laser power transmission system cost summaries are reviewed. An overview of the system analysis and planning efforts is included. The overall study led to the conclusion that the reference satellite power system concept is a feasible baseload source of electrical power and, within the assumed guidelines, the minimum cost per kilowatt is achieved at the maximum output of 5 gigawatts to the utility grid. Major unresolved technical issues include maximum allowable microwave power density in the ionosphere and performance/mass characteristics of laser power transmission systems.
Beamed energy for space craft propulsion - Conceptual status and development potential
NASA Technical Reports Server (NTRS)
Sercel, Joel C.; Frisbee, Robert H.
1987-01-01
This paper outlines the results of a brief study that sought to identify and characterize beamed energy spacecraft propulsion concepts that may have positive impact on the economics of space industrialization. It is argued that the technology of beamed energy propulsion systems may significantly improve the prospects for near-term colonization of outer space. It is tentatively concluded that, for space industrialization purposes, the most attractive near-term beamed energy propulsion systems are based on microwave technology. This conclusion is reached based on consideration of the common features that exist between beamed microwave propulsion and the Solar Power Satellite (SPS) concept. Laser power beaming also continues to be an attractive option for spacecraft propulsion due to the reduced diffraction-induced beam spread afforded by laser radiation wavelengths. The conceptual status and development potential of a variety of beamed energy propulsion concepts are presented. Several alternative space transportation system concepts based on beamed energy propulsion are described.
Microwave phase conjugation using artificial nonlinear microwave surfaces
NASA Astrophysics Data System (ADS)
Chang, Yian
1997-09-01
A new technique is developed and demonstrated to simulate nonlinear materials in the microwave and millimeter wave regime. Such materials are required to extend nonlinear optical techniques into longer wavelength areas. Using an array of antenna coupled mixers as an artificial nonlinear surface, we have demonstrated two-dimensional free space microwave phase conjugation at 10 GHz. The basic concept is to replace the weak nonlinearity of electron distribution in a crystal with the strong nonlinear V-I response of a P-N junction. This demnstration uses a three-wave mixing method with the effective nonlinear susceptibility χ(2) provided by an artificial nonlinear surface. The pump signal at 2ω (20 GHz) can be injected to the mixing elements electrically or optically. Electrical injection was first used to prove the concept of artificial nonlinear surfaces. However, due to the loss and size of microwave components, electrical injection is not practical for an array of artificial nonlinear surfaces, as would be needed in a three-dimensional free space phase conjugation setup. Therefore optical injection was implemented to carry the 2ω microwave pump signal in phase to all mixing elements. In both cases, two-dimensional free space phase conjugation was observed by directly measuring the electric field amplitude and phase distribution. The electric field wavefronts exhibited retro-directivity and auto- correction characteristics of phase conjugation. This demonstration surface also shows a power gain of 10 dB, which is desired for potential communication applications.
USDA-ARS?s Scientific Manuscript database
Microwaves are a common appliance in many households. In the United States microwave heating is the third most popular domestic heating method food foods. Microwave heating is also a commercial food processing technology that has been applied for cooking, drying, and tempering foods. It's use in ...
Microwave heat treating of manufactured components
Ripley, Edward B.
2007-01-09
An apparatus for heat treating manufactured components using microwave energy and microwave susceptor material. Heat treating medium such as eutectic salts may be employed. A fluidized bed introduces process gases which may include carburizing or nitriding gases. The process may be operated in a batch mode or continuous process mode. A microwave heating probe may be used to restart a frozen eutectic salt bath.
Accounting For Nonlinearity In A Microwave Radiometer
NASA Technical Reports Server (NTRS)
Stelzried, Charles T.
1991-01-01
Simple mathematical technique found to account adequately for nonlinear component of response of microwave radiometer. Five prescribed temperatures measured to obtain quadratic calibration curve. Temperature assumed to vary quadratically with reading. Concept not limited to radiometric application; applicable to other measuring systems in which relationships between quantities to be determined and readings of instruments differ slightly from linearity.
NASA Technical Reports Server (NTRS)
Smoot, G. F.; Aymon, J.; De Amici, G.; Bennett, C. L.; Kogut, A.; Gulkis, S.; Backus, C.; Galuk, K.; Jackson, P. D.; Keegstra, P.
1991-01-01
The concept and operation of the Differential Microwave Radiometers (DMR) instrument aboard NASA's Cosmic Background Explorer satellite are reviewed, with emphasis on the software identification and subtraction of potential systematic effects. Preliminary results obtained from the first six months of DMR data are presented, and implications for cosmology are discussed.
Non-equilibrium mechanisms of light in the microwave region
NASA Astrophysics Data System (ADS)
Mortenson, Juliana H. J.
2011-09-01
Quantum mechanics and quantum chemistry have taught for more than 100 years that "photons" associated with microwaves cannot exert photochemical effects because their "photon energies" are smaller than chemical bond energies. Those quantum theories have been strongly contradicted within the last few decades by physical experiments demonstrating non-equilibrium, photochemical and photomaterial activity by microwaves. Reactions among scientists to these real physical models and proofs have varied from disbelief and denial, to acceptance of the real physical phenomena and demands for revisions to quantum theory. At the previous "Nature of Light" meeting, an advance in the foundations of quantum mechanics was presented. Those discoveries have revealed the source of these conflicts between quantum theory and microwave experiments. Critical variables and constants were missing from quantum theory due to a minor mathematical inadvertence in Planck's original quantum work. As a result, erroneous concepts were formed nearly a century ago regarding the energetics and mechanisms of lower frequency light, such as in the microwave region. The new discoveries have revealed that the traditional concept of "photons" mistakenly attributed elementary particle status to what is actually an arbitrarily time-based collection of sub-photonic, elementary particles. In a mathematical dimensional sense, those time-based energy measurements cannot be mathematically equivalent to bond energies as historically believed. Only an "isolated quantity of energy", as De Broglie referred to it, can be equivalent to bond energy. With the aid of the new variables and constants, the non-equilibrium mechanisms of light in the microwave region can now be described. They include resonant absorption, splitting frequency stimulation leading to electronic excitation, and resonant acoustic transduction. Numerous practical engineering applications can be envisioned for non-equilibrium microwaves.
Remote sensing signatures of oceanic whitecap at different wavelengths
NASA Astrophysics Data System (ADS)
Anguelova, M. D.; Dowgiallo, D. J.; Smith, G. B.; Means, S. L.; Savelyev, I.; Frick, G. M.; Snow, C. M.; Schindall, J. A.; Bobak, J. P.
2012-12-01
Oceanic whitecaps are the most direct surface expression of breaking wind waves in the ocean. Whitecap fraction quantifies the breaking events and is thus a suitable forcing variable for parameterizing and predicting various air-sea interaction processes. To this end, we have compiled a database of whitecap fraction W from satellites-borne microwave radiometric observations. These observations provide the total W including foam generated during active breaking of wind-driven waves and residual foam left behind by these breaking waves. However, the whitecap fraction associated with the actively breaking waves WA is needed for dynamic air-sea processes in the upper ocean such as turbulent mixing, gas exchange, ocean ambient noise, and spray-mediated intensification of tropical storms. To parameterize such processes, a database of WA separate from W is needed. We pursue this separation of WA from W by combining the Phillips concept of breaking wave statistics which connects WA with the energy dissipation rate of breaking waves and parametric estimates of energy dissipation from wave spectra measured from buoys. We seek additional physical understanding of, and experimental support for, this separation with a multi-instrumental field campaign. The instrumentation deployed includes a suite of sensors recording the whitecaps and breaking waves on the surface over wide range of the electromagnetic spectrum: visible (video cameras), infrared (IR camera), and microwave (radiometers at two frequencies, 10 GHz and 37 GHz). An acoustic array with three nested-aperture array at frequencies up to 2.4 kHz and aerosol/particle counter provide data for the bubbles generated beneath and sea spray produced above the whitecaps. We also deployed a transmitter horn to collect data useful to asses Radio Frequency Interference (RFI), which affects the collection and accuracy of satellite-based data. Various auxiliary data such as wind speed, air temperature, humidity, wave field, and water temperature profile characterize the experimental conditions. The goal of this field campaign is to provide experimental data for determining WA and W independently from the Phillips concept for energy dissipation. In these measurements, we rely on the good separation between WA and W in the IR region of the electromagnetic spectrum. We use the IR data to identify a separation criterion which then can be applied to time series of microwave and acoustic data. Obtaining WA via this separation criterion and comparing the results with those from the Phillips concept, we will have additional possibility to constrain WA obtained using energy dissipation. The measurements are made in April-May, 2012, on the Floating Instrument Platform (FLIP) drifting along the coast of California from Monterey Bay south toward Point Conception. We describe the experiment, characterize the study site, and present first data collected during this campaign.
Liu, Yupeng; Liu, Yang; Li, Haiyan; Jiang, Di; Cao, Weiping; Chen, Hui; Xia, Lei; Xu, Ruimin
2016-07-01
A novel, compact microwave tunable bandpass filter integrated power divider, based on the high anisotropy electro-optic nematic liquid crystal, is proposed in this letter. Liquid crystal, as the electro-optic material, is placed between top inverted microstrip line and the metal plate. The proposed structure can realize continuous tunable bandpass response and miniaturization. The proposed design concept is validated by the good performance of simulation results and experimental results. The electro-optic material has shown great potential for microwave application.
NASA Technical Reports Server (NTRS)
Morin, T.; Chapman, R.; Filpus, J.; Hawley, M.; Kerber, R.; Asmussen, J.; Nakanishi, S.
1982-01-01
A microwave plasma system for transfer of electrical energy to hydrogen flowing through the system has potential application for coupling energy to a flowing gas in the electrothermal propulsion concept. Experimental systems have been designed and built for determination of the energy inputs and outputs and thrust for the microwave coupling of energy to hydrogen. Results for experiments with pressure in the range 100 microns-6 torr, hydrogen flow rate up to 1000 micronmoles/s, and total absorbed power to 700 w are presented.
Apparatus with moderating material for microwave heat treatment of manufactured components
Ripley, Edward B [Knoxville, TN
2011-05-10
An apparatus for heat treating manufactured components using microwave energy and microwave susceptor material. Heat treating medium such as eutectic salts may be employed. A fluidized bed introduces process gases which may include carburizing or nitriding gases The process may be operated in a batch mode or continuous process mode. A microwave heating probe may be used to restart a frozen eutectic salt bath.
Apparatus for microwave heat treatment of manufactured components
Babcock & Wilcox Technical Services Y-12, LLC
2008-04-15
An apparatus for heat treating manufactured components using microwave energy and microwave susceptor material. Heat treating medium such as eutectic salts may be employed. A fluidized bed introduces process gases which may include carburizing or nitriding gases. The process may be operated in a batch mode or continuous process mode. A microwave heating probe may be used to restart a frozen eutectic salt bath.
Methods for microwave heat treatment of manufactured components
Ripley, Edward B.
2010-08-03
An apparatus for heat treating manufactured components using microwave energy and microwave susceptor material. Heat treating medium such as eutectic salts may be employed. A fluidized bed introduces process gases which may include carburizing or nitriding gases. The process may be operated in a batch mode or continuous process mode. A microwave heating probe may be used to restart a frozen eutectic salt bath.
Plasma-assisted microwave processing of materials
NASA Technical Reports Server (NTRS)
Barmatz, Martin (Inventor); Jackson, Henry (Inventor); Ylin, Tzu-yuan (Inventor)
1998-01-01
A microwave plasma assisted method and system for heating and joining materials. The invention uses a microwave induced plasma to controllably preheat workpiece materials that are poorly microwave absorbing. The plasma preheats the workpiece to a temperature that improves the materials' ability to absorb microwave energy. The plasma is extinguished and microwave energy is able to volumetrically heat the workpiece. Localized heating of good microwave absorbing materials is done by shielding certain parts of the workpiece and igniting the plasma in the areas not shielded. Microwave induced plasma is also used to induce self-propagating high temperature synthesis (SHS) process for the joining of materials. Preferably, a microwave induced plasma preheats the material and then microwave energy ignites the center of the material, thereby causing a high temperature spherical wave front from the center outward.
Preface to the special issue on "Integrated Microwave Photonic Signal Processing"
NASA Astrophysics Data System (ADS)
Azaña, José; Yao, Jianping
2016-08-01
As Guest Editors, we are pleased to introduce this special issue on ;Integrated Microwave Photonic Signal Processing; published by the Elsevier journal Optics Communications. Microwave photonics is a field of growing importance from both scientific and practical application perspectives. The field of microwave photonics is devoted to the study, development and application of optics-based techniques and technologies aimed to the generation, processing, control, characterization and/or distribution of microwave signals, including signals well into the millimeter-wave frequency range. The use of photonic technologies for these microwave applications translates into a number of key advantages, such as the possibility of dealing with high-frequency, wide bandwidth signals with minimal losses and reduced electromagnetic interferences, and the potential for enhanced reconfigurability. The central purpose of this special issue is to provide an overview of the state of the art of generation, processing and characterization technologies for high-frequency microwave signals. It is now widely accepted that the practical success of microwave photonics at a large scale will essentially depend on the realization of high-performance microwave-photonic signal-processing engines in compact and integrated formats, preferably on a chip. Thus, the focus of the issue is on techniques implemented using integrated photonic technologies, with the goal of providing an update of the most recent advances toward realization of this vision.
Axion searches with microwave filters: the RADES project
NASA Astrophysics Data System (ADS)
Álvarez Melcón, Alejandro; Arguedas Cuendis, Sergio; Cogollos, Cristian; Díaz-Morcillo, Alejandro; Döbrich, Babette; Gallego, Juan Daniel; Gimeno, Benito; Irastorza, Igor G.; José Lozano-Guerrero, Antonio; Malbrunot, Chloé; Navarro, Pablo; Peña Garay, Carlos; Redondo, Javier; Vafeiadis, Theodoros; Wuensch, Walter
2018-05-01
We propose, design and construct a variant of the conventional axion haloscope concept that could be competitive in the search for dark matter axions of masses in the decade 10–100 μeV. Theses masses are located somewhat above the mass range in which existing experiments have reached sensitivity to benchmark QCD axion models. Our haloscope consists of an array of small microwave cavities connected by rectangular irises, in an arrangement commonly used in radio-frequency filters. The size of the unit cavity determines the main resonant frequency, while the possibility to connect a large number of cavities allows to reach large detection volumes. We develop the theoretical framework of the detection concept, and present design prescriptions to optimize detection capabilities. We describe the design and realization of a first small-scale prototype of this concept, called Relic Axion Detector Exploratory Setup (RADES). It consists of a copper-coated stainless steel five-cavities microwave filter with the detecting mode operating at around 8.4 GHz. This structure has been electromagnetically characterized at 2 K and 298 K, and it is now placed in ultra-high vacuum in one of the twin-bores of the 9 T CAST dipole magnet at CERN. We describe the data acquisition system developed for relic axion detection, and present preliminary results of the electromagnetic properties of the microwave filter, which show the potential of filters to reach QCD axion window sensitivity at X-band frequencies.
Microwave sintering of Ag-nanoparticle thin films on a polyimide substrate
DOE Office of Scientific and Technical Information (OSTI.GOV)
Fujii, S., E-mail: fujii.s.ap@m.titech.ac.jp; Department of Information and Communication System Engineering, National Institute of Technology, Okinawa College, Nago, Okinawa 905-2192; Kawamura, S.
2015-12-15
Ag-nanoparticle thin films on a polyimide substrate were subjected to microwave sintering by use of a single-mode waveguide applicator. A two-step sintering process was employed. First, at low conductivities of the film, the film sample was placed at the site of the maximum electric field and subjected to microwave irradiation. Second, when the conductivity of the film increased, the film sample was placed at the site of the maximum magnetic field and again subjected to microwave irradiation. The microwave sintering process was completed within 1.5 min, which is significantly lower than the time required for the oven heating process. Themore » resulting conductivity of the film, albeit only 30% of that of the bulk material, was seven times that of a film annealed at the same temperature in a furnace. Scanning electron microscopy images revealed that the nanoparticles underwent both grain necking and grain growth during microwave sintering. In addition, this sintering process was equivalent to the oven heating process performed at a 50 °C higher annealing temperature. An electromagnetic wave simulation and a heat transfer simulation of the microwave sintering process were performed to gain a thorough understanding of the process.« less
Analytical evaluation of ILM sensors, volume 1
NASA Technical Reports Server (NTRS)
Kirk, R. J.
1975-01-01
The functional requirements and operating environment constraints are defined for an independent landing monitor ILM which provides the flight crew with an independent assessment of the operation of the primary automatic landing system. The capabilities of radars, TV, forward looking infrared radiometers, multilateration, microwave radiometers, interferometers, and nuclear sensing concepts to meet the ILM conditions are analyzed. The most critical need for the ILM appears in the landing sequence from 1000 to 2000 meters from threshold through rollout. Of the sensing concepts analyzed, the following show potential of becoming feasible ILM's: redundant microwave landings systems, precision approach radar, airborne triangulation radar, multilateration with radar altimetry, and nuclear sensing.
NASA Astrophysics Data System (ADS)
Zhang, Linglin; Li, Yingguang; Zhou, Jing
2018-01-01
Microwave cuing technology is a promising alternative to conventional autoclave curing technology in high efficient and energy saving processing of polymer composites. Dielectric properties of composites are key parameters related to the energy conversion efficiency during the microwave curing process. However, existing methods of dielectric measurement cannot be applied to the microwave curing process. This paper presented an offline test method to solve this problem. Firstly, a kinetics model of the polymer composites under microwave curing was established based on differential scanning calorimetry to describe the whole curing process. Then several specially designed samples of different feature cure degrees were prepared and used to reflect the dielectric properties of the composite during microwave curing. It was demonstrated to be a feasible plan for both test accuracy and efficiency through extensive experimental research. Based on this method, the anisotropic complex permittivity of a carbon fiber/epoxy composite during microwave curing was accurately determined. Statistical results indicated that both the dielectric constant and dielectric loss of the composite increased at the initial curing stage, peaked at the maximum reaction rate point and decreased finally during the microwave curing process. Corresponding mechanism has also been systematically investigated in this work.
Six-Port Based Interferometry for Precise Radar and Sensing Applications.
Koelpin, Alexander; Lurz, Fabian; Linz, Sarah; Mann, Sebastian; Will, Christoph; Lindner, Stefan
2016-09-22
Microwave technology plays a more important role in modern industrial sensing applications. Pushed by the significant progress in monolithic microwave integrated circuit technology over the past decades, complex sensing systems operating in the microwave and even millimeter-wave range are available for reasonable costs combined with exquisite performance. In the context of industrial sensing, this stimulates new approaches for metrology based on microwave technology. An old measurement principle nearly forgotten over the years has recently gained more and more attention in both academia and industry: the six-port interferometer. This paper reviews the basic concept, investigates promising applications in remote, as well as contact-based sensing and compares the system with state-of-the-art metrology. The significant advantages will be discussed just as the limitations of the six-port architecture. Particular attention will be paid to impairment effects and non-ideal behavior, as well as compensation and linearization concepts. It will be shown that in application fields, like remote distance sensing, precise alignment measurements, as well as interferometrically-evaluated mechanical strain analysis, the six-port architecture delivers extraordinary measurement results combined with high measurement data update rates for reasonable system costs. This makes the six-port architecture a promising candidate for industrial metrology.
Microwave-Driven Multifunctional Capability of Membrane Structures
NASA Technical Reports Server (NTRS)
Choi, Sang H.; Chu, Sang-Hyong; Song, Kyo D.; King, Glen C.
2002-01-01
A large, ultra lightweight space structure, such as solar sails and Gossamer spacecrafts, requires a distributed power source to alleviate wire networks, unlike the localized on-board power infrastructures typically found in most small spacecrafts. The concept of microwave-driven multifunctional capability for membrane structures is envisioned as the best option to alleviate the complexity associated with hard-wired control circuitry and on-board power infrastructures. A rectenna array based on a patch configuration for high voltage output was developed to drive membrane actuators, sensors, probes, or other devices. Networked patch rectenna array receives and converts microwave power into a DC power for an array of smart actuators. To use microwave power effectively, the concept of a power allocation and distribution (PAD) circuit is adopted for networking a rectenna/actuator patch array. The use of patch rectennas adds a significant amount of rigidity to membrane flexibility and they are relatively heavy. A dipole rectenna array (DRA) appears to be ideal for thin-film membrane structures, since DRA is flexible and light. Preliminary design and fabrication of PAD circuitry that consists of a few nodal elements were made for laboratory testing. The networked actuators were tested to correlate the network coupling effect, power allocation and distribution, and response time.
Laboratory for Atmospheres: Instrument Systems Report
NASA Technical Reports Server (NTRS)
2011-01-01
Studies of the atmospheres of our solar system's planets including our own require a comprehensive set of observations, relying on instruments on spacecraft, aircraft, balloons, and on the surface. Laboratory personnel define requirements, conceive concepts, and develop instrument systems for spaceflight missions, and for balloon, aircraft, and ground-based observations. Laboratory scientists also participate in the design of data processing algorithms, calibration techniques, and data processing systems. The instrument sections of this report are organized by measurement technique: lidar, passive, in situ and microwave. A number of instruments in various stages of development or modification are also described. This report will be updated as instruments evolve.
Waveguide metatronics: Lumped circuitry based on structural dispersion.
Li, Yue; Liberal, Iñigo; Della Giovampaola, Cristian; Engheta, Nader
2016-06-01
Engineering optical nanocircuits by exploiting modularization concepts and methods inherited from electronics may lead to multiple innovations in optical information processing at the nanoscale. We introduce the concept of "waveguide metatronics," an advanced form of optical metatronics that uses structural dispersion in waveguides to obtain the materials and structures required to construct this class of circuitry. Using numerical simulations, we demonstrate that the design of a metatronic circuit can be carried out by using a waveguide filled with materials with positive permittivity. This includes the implementation of all "lumped" circuit elements and their assembly in a single circuit board. In doing so, we extend the concepts of optical metatronics to frequency ranges where there are no natural plasmonic materials available. The proposed methodology could be exploited as a platform to experimentally validate optical metatronic circuits in other frequency regimes, such as microwave frequency setups, and/or to provide a new route to design optical nanocircuitry.
Thermoelectric temperature control system for the pushbroom microwave radiometer (PBMR)
NASA Technical Reports Server (NTRS)
Dillon-Townes, L. A.; Averill, R. D.
1984-01-01
A closed loop thermoelectric temperature control system is developed for stabilizing sensitive RF integrated circuits within a microwave radiometer to an accuracy of + or - 0.1 C over a range of ambient conditions from -20 C to +45 C. The dual mode (heating and cooling) control concept utilizes partial thermal isolation of the RF units from an instrument deck which is thermally controlled by thermoelectric coolers and thin film heaters. The temperature control concept is simulated with a thermal analyzer program (MITAS) which consists of 37 nodes and 61 conductors. A full scale thermal mockup is tested in the laboratory at temperatures of 0 C, 21 C, and 45 C to confirm the validity of the control concept. A flight radiometer and temperature control system is successfully flight tested on the NASA Skyvan aircraft.
Development of low fat potato chips through microwave processing.
Joshi, A; Rudra, S G; Sagar, V R; Raigond, P; Dutt, S; Singh, B; Singh, B P
2016-08-01
Since snacks high in fats are known to be a significant source of fat and energy intake, these have been put in high dietary restraint category. Therefore, an attempt was made to process potato chips through microwave processing without incorporation of any oil in potato chips. Microwave processing of potato chips was done using microwave power varying from 180 to 600 W using constant sample size. Among eleven different drying models, Parabolic model was found to be the best fit through non-linear regression analysis to illustrate drying kinetics of potato chips. The structural, textural and colour attributes of microwaved potato chips were similar to commercial fried potato chips. It was found that at 600 W after 2.5-3.0 min of processing, potato chips gained the fracturability and crispiness index as that of commercial fried chips. Microwave processing was found suitable for processing of potato chips with low fat content (~3.09 vs 35.5 % in commercial preparation) and with acceptable sensory scores (≥7.6 on 9.0 point on hedonic scale vs 8.0 of control preparation).
Method and apparatus for selectively annealing heterostructures using microwave
NASA Technical Reports Server (NTRS)
Atwater, Harry A. (Inventor); Brain, Ruth A. (Inventor); Barmatz, Martin B. (Inventor)
1998-01-01
The present invention discloses a process for selectively annealing heterostructures using microwaves. A heterostructure, comprised of a material having higher microwave absorption and a material having lower microwave absorption, is exposed to microwaves in the cavity. The higher microwave absorbing material absorbs the microwaves and selectively heats while the lower microwave absorbing material absorbs small amounts of microwaves and minimally heats. The higher microwave absorbing material is thereby annealed onto the less absorbing material which is thermally isolated.
Method and apparatus for selectively annealing heterostructures using microwaves
NASA Technical Reports Server (NTRS)
Atwater, Harry A. (Inventor); Brain, Ruth A. (Inventor); Barmatz, Martin B. (Inventor)
1998-01-01
The present invention discloses a process for selectively annealing heterostructures using microwaves. A heterostructure, comprised of a material having higher microwave absorption and a material having lower microwave absorption, is exposed to microwaves in the cavity. The higher microwave absorbing material absorbs the microwaves and selectively heats while the lower microwave absorbing material absorbs small amounts of microwaves and minimally heats. The higher microwave absorbing material is thereby annealed onto the less absorbing material which is thermally isolated.
Space Solar Power Satellite Systems, Modern Small Satellites, and Space Rectenna
NASA Astrophysics Data System (ADS)
Bergsrud, Corey Alexis Marvin
Space solar power satellite (SSPS) systems is the concept of placing large satellite into geostationary Earth orbit (GEO) to harvest and convert massive amounts of solar energy into microwave energy, and to transmit the microwaves to a rectifying antenna (rectenna) array on Earth. The rectenna array captures and converts the microwave power into usable power that is injected into the terrestrial electric grid for use. This work approached the microwave power beam as an additional source of power (with solar) for lower orbiting satellites. Assuming the concept of retrodirectivity, a GEO-SSPS antenna array system tracks and delivers microwave power to lower orbiting satellites. The lower orbiting satellites are equipped with a stacked photovoltaic (PV)/rectenna array hybrid power generation unit (HPGU) in order to harvest solar and/or microwave energy for on-board use during orbit. The area, and mass of the PV array part of the HPGU was reduced at about 32% beginning-of-life power in order to achieve the spacecraft power requirements. The HPGU proved to offer a mass decrease in the PGU, and an increase in mission life due to longer living component life of the rectenna array. Moreover, greater mission flexibility is achieved through a track and power delivery concept. To validate the potential advantages offered by a HPGU, a mission concept was presented that utilizes modern small satellites as technology demonstrators. During launch, a smaller power receiving "daughter" satellite sits inside a larger power transmitting "mother" satellite. Once separated from the launch vehicle the daughter satellite is ejected away from the mother satellite, and each satellite deploys its respective power transmitting or power receiving hardware's for experimentation. The concept of close proximity mission operations between the satellites is considered. To validate the technology of the space rectenna array part of the HPGU, six milestones were completed in the design. The first milestone considers thermal analysis for antennas, and the second milestone compares commercial off-the-shelve high frequency substrates for thermal, and outgassing characteristics. Since the design of the rectenna system is centralized around the diode component, a diode analysis was conducted for the third milestone. Next, to efficiently transfer power between the different parts of the rectenna system a coplanar stripline was consider for the fourth milestone. The fifth milestone is a balanced-to-unbalanced transition structure that is needed to properly feed and measure different systems of the rectenna. The last milestone proposes laboratory measurement setups. Each of these milestones is a separate research question that is answered in this dissertation. The results of these rectenna milestones can be integrated into a HPGU.
2.45 GHz Microwave Processing and Its Influence on Glass Fiber Reinforced Plastics.
Teufl, Daniel; Zaremba, Swen
2018-05-18
During the production of fiber-reinforced composite materials, liquid resin is introduced into the fiber material and cured, i.e., hardened. An elevated temperature is needed for this curing. Microwave curing of composites has been investigated for some time, but it has mostly been done using small domestic or laboratory equipment. However, no investigation has been carried out using an industrial-sized chamber-microwave for glass fiber-reinforced plastic (GFRP). Here, we show that microwave curing produces laminates of the same quality as oven-cured ones. The study shows that, if the process is done right, GFRP samples can be produced with an industrial scale microwave. Even if not fully cured, microwave samples show a glass transition temperature measured with DMA ( T g-DMA ) that is comparable to the T g-DMA according to the proposed cure cycle on the data sheet. Specific microwave-cured configurations show better inter-laminar shear strength than oven specimens. The results show that microwave-based heat introduction can be a beneficial curing method for GFRP laminates. A microwave-optimized process is faster and leads to better mechanical properties.
2.45 GHz Microwave Processing and Its Influence on Glass Fiber Reinforced Plastics
Zaremba, Swen
2018-01-01
During the production of fiber-reinforced composite materials, liquid resin is introduced into the fiber material and cured, i.e., hardened. An elevated temperature is needed for this curing. Microwave curing of composites has been investigated for some time, but it has mostly been done using small domestic or laboratory equipment. However, no investigation has been carried out using an industrial-sized chamber-microwave for glass fiber-reinforced plastic (GFRP). Here, we show that microwave curing produces laminates of the same quality as oven-cured ones. The study shows that, if the process is done right, GFRP samples can be produced with an industrial scale microwave. Even if not fully cured, microwave samples show a glass transition temperature measured with DMA (Tg-DMA) that is comparable to the Tg-DMA according to the proposed cure cycle on the data sheet. Specific microwave-cured configurations show better inter-laminar shear strength than oven specimens. The results show that microwave-based heat introduction can be a beneficial curing method for GFRP laminates. A microwave-optimized process is faster and leads to better mechanical properties. PMID:29783684
New prospects in pretreatment of cotton fabrics using microwave heating.
Hashem, M; Taleb, M Abou; El-Shall, F N; Haggag, K
2014-03-15
As microwaves are known to give fast and rapid volume heating, the present study is undertaken to investigate the use of microwave heating for pretreatment cotton fabrics to reduce the pretreatment time, chemicals and water. The onset of the microwave heating technique on the physicochemical and performance properties of desized, scoured and bleached cotton fabric is elucidated and compared with those obtained on using conventional thermal heating. Combined one-step process for desizing, scouring and bleaching of cotton fabric under microwave heating was also investigated. The dual effect of adding urea, (as microwave absorber and hydrogen peroxide activator) has been exploiting to accelerate the pretreatment reaction of cotton fabric. DSC, FT-IR and SEM have been used to investigate the onset of microwave on the morphological and chemical change of cotton cellulose after pretreatment and bleaching under microwave heating. Results obtained show that, a complete fabric preparation was obtained in just 5 min on using microwave in pretreatments process and the fabric properties were comparable to those obtained in traditional pretreatment process which requires 2.5-3h for completion. Copyright © 2013 Elsevier Ltd. All rights reserved.
Design and operational experience of a microwave cavity axion detector for the 20 – 100 μ eV range
DOE Office of Scientific and Technical Information (OSTI.GOV)
Al Kenany, S.; Anil, M. A.; Backes, K. M.
We describe a dark matter axion detector designed, constructed, and operated both as an innovation platform for new cavity and amplifier technologies and as a data pathfinder in the 5-25 GHz range (~20-100 eV). The platform is small but flexible to facilitate the development of new microwave cavity and amplifier concepts in an operational environment. The experiment has recently completed its first data production; it is the first microwave cavity axion search to deploy a Josephson parametric amplifier and a dilution refrigerator to achieve near-quantum limited performance.
Design and operational experience of a microwave cavity axion detector for the 20 – 100 μ eV range
Al Kenany, S.; Anil, M. A.; Backes, K. M.; ...
2017-02-09
We describe a dark matter axion detector designed, constructed, and operated both as an innovation platform for new cavity and amplifier technologies and as a data pathfinder in the 5-25 GHz range (~20-100 eV). The platform is small but flexible to facilitate the development of new microwave cavity and amplifier concepts in an operational environment. The experiment has recently completed its first data production; it is the first microwave cavity axion search to deploy a Josephson parametric amplifier and a dilution refrigerator to achieve near-quantum limited performance.
Microwave photonics with superconducting quantum circuits
NASA Astrophysics Data System (ADS)
Gu, Xiu; Kockum, Anton Frisk; Miranowicz, Adam; Liu, Yu-xi; Nori, Franco
2017-11-01
In the past 20 years, impressive progress has been made both experimentally and theoretically in superconducting quantum circuits, which provide a platform for manipulating microwave photons. This emerging field of superconducting quantum microwave circuits has been driven by many new interesting phenomena in microwave photonics and quantum information processing. For instance, the interaction between superconducting quantum circuits and single microwave photons can reach the regimes of strong, ultra-strong, and even deep-strong coupling. Many higher-order effects, unusual and less familiar in traditional cavity quantum electrodynamics with natural atoms, have been experimentally observed, e.g., giant Kerr effects, multi-photon processes, and single-atom induced bistability of microwave photons. These developments may lead to improved understanding of the counterintuitive properties of quantum mechanics, and speed up applications ranging from microwave photonics to superconducting quantum information processing. In this article, we review experimental and theoretical progress in microwave photonics with superconducting quantum circuits. We hope that this global review can provide a useful roadmap for this rapidly developing field.
Feasibility study of microwave modulation DIAL system for global CO II monitoring
NASA Astrophysics Data System (ADS)
Hirano, Yoshihito; Kameyama, Shumpei; Ueno, Shinichi; Sugimoto, Nobuo; Kimura, Toshiyoshi
2006-12-01
A new concept of DIAL (DIfferential Absorption Lidar) system for global CO II monitoring using microwave modulation is introduced. This system uses quasi-CW lights which are intensity modulated in microwave region and receives a backscattered light from the ground. In this system, ON/OFF wavelength laser lights are modulated with microwave frequencies, and received lights of two wavelengths are able to be discriminated by modulation frequencies in electrical signal domain. Higher sensitivity optical detection can be realized compared with the conventional microwave modulation lidar by using direct down conversion of modulation frequency. The system also has the function of ranging by using pseudo-random coding in modulation. Fiber-based optical circuit using wavelength region of 1.6 micron is a candidate for the system configuration. After the explanation of this configuration, feasibility study of this system on the application to global CO II monitoring is introduced.
Biller, Patrick; Friedman, Cerri; Ross, Andrew B
2013-05-01
Microalgae are regarded as a promising source of lipids for bio-diesel production and bio-products. The current paper investigates the processing of microalgal slurries under controlled microwave irradiation. Microwave power was applied to reach temperatures of 80, 100, 120 and 140 °C at a constant residence time of 12 min. Microwave irradiation led to disruption of the algal cell walls which facilitated lipid extraction. The influence of inorganic material on microwave heating was assessed for three strains including, Nannochloropsis occulata, Chlorogloeopsis fritschii and Pseudochoricystis ellipsoidea. Mass balances were calculated and showed that the amount of carbon, nitrogen and total mass recovered in the residue was highly dependent on process conditions and algae strain. Hydrothermal microwave processing (HMP) was found to be an effective pre-treatment for hydrothermal liquefaction and extraction of lipids and phytochemicals. Copyright © 2013 Elsevier Ltd. All rights reserved.
Unlocking Potentials of Microwaves for Food Safety and Quality
Tang, Juming
2015-01-01
Microwave is an effective means to deliver energy to food through polymeric package materials, offering potential for developing short-time in-package sterilization and pasteurization processes. The complex physics related to microwave propagation and microwave heating require special attention to the design of process systems and development of thermal processes in compliance with regulatory requirements for food safety. This article describes the basic microwave properties relevant to heating uniformity and system design, and provides a historical overview on the development of microwave-assisted thermal sterilization (MATS) and pasteurization systems in research laboratories and used in food plants. It presents recent activities on the development of 915 MHz single-mode MATS technology, the procedures leading to regulatory acceptance, and sensory results of the processed products. The article discusses needs for further efforts to bridge remaining knowledge gaps and facilitate transfer of academic research to industrial implementation. PMID:26242920
Unlocking Potentials of Microwaves for Food Safety and Quality.
Tang, Juming
2015-08-01
Microwave is an effective means to deliver energy to food through polymeric package materials, offering potential for developing short-time in-package sterilization and pasteurization processes. The complex physics related to microwave propagation and microwave heating require special attention to the design of process systems and development of thermal processes in compliance with regulatory requirements for food safety. This article describes the basic microwave properties relevant to heating uniformity and system design, and provides a historical overview on the development of microwave-assisted thermal sterilization (MATS) and pasteurization systems in research laboratories and used in food plants. It presents recent activities on the development of 915 MHz single-mode MATS technology, the procedures leading to regulatory acceptance, and sensory results of the processed products. The article discusses needs for further efforts to bridge remaining knowledge gaps and facilitate transfer of academic research to industrial implementation. © 2015 Institute of Food Technologists®
Satellite Power Systems /SPS/ - Overview of system studies and critical technology
NASA Technical Reports Server (NTRS)
Manson, S. V.
1980-01-01
Systems studies and critical technology issues for the development and evaluation of Satellite Power Systems (SPS) for the photovoltaic generation of electrical energy and its transmission to earth are reviewed. Initial concept studies completed in 1976 and system definition studies initiated in the same year have indicated the technical feasibility of SPS and identified challenging issues to be addressed as part of the SPS Concept Development and Evaluation Program. Systems considered in the study include photovoltaic and solar thermal power conversion configurations employing klystron or solid state microwave generators or lasers for power transmission, and power transmission options, system constructability and in-orbit and ground operations. Technology investigations are being performed in the areas of microwave power transmission, structure/controls interactions and the behavior of key materials in the space/SPS environment. Favorable results have been obtained in the areas of microwave phase distribution and phase control, dc-RF conversion, antenna radiating element, and no insurmountable problems have been discovered in any of the investigations to date.
Networked Rectenna Array for Smart Material Actuators
NASA Technical Reports Server (NTRS)
Choi, Sang H.; Golembiewski, Walter T.; Song, Kyo D.
2000-01-01
The concept of microwave-driven smart material actuators is envisioned as the best option to alleviate the complexity associated with hard-wired control circuitry. Networked rectenna patch array receives and converts microwave power into a DC power for an array of smart actuators. To use microwave power effectively, the concept of a power allocation and distribution (PAD) circuit is adopted for networking a rectenna/actuator patch array. The PAD circuit is imbedded into a single embodiment of rectenna and actuator array. The thin-film microcircuit embodiment of PAD circuit adds insignificant amount of rigidity to membrane flexibility. Preliminary design and fabrication of PAD circuitry that consists of a few nodal elements were made for laboratory testing. The networked actuators were tested to correlate the network coupling effect, power allocation and distribution, and response time. The features of preliminary design are 16-channel computer control of actuators by a PCI board and the compensator for a power failure or leakage of one or more rectennas.
NASA Astrophysics Data System (ADS)
Liu, Ying; Zhao, Kun; Drew, Michael G. B.; Liu, Yue
2018-01-01
Reflection loss is usually calculated and reported as a function of the thickness of microwave absorption material. However, misleading results are often obtained since the principles imbedded in the popular methods contradict the fundamental facts that electromagnetic waves cannot be reflected in a uniform material except when there is an interface and that there are important differences between the concepts of characteristic impedance and input impedance. In this paper, these inconsistencies have been analyzed theoretically and corrections provided. The problems with the calculations indicate a gap between the background knowledge of material scientists and microwave engineers and for that reason a concise review of transmission line theory is provided along with the mathematical background needed for a deeper understanding of the theory of reflection loss. The expressions of gradient, divergence, Laplacian, and curl operators in a general orthogonal coordinate system have been presented including the concept of reciprocal vectors. Gauss's and Stokes's theorems have been related to Green's theorem in a novel way.
Effects of feedstock characteristics on microwave-assisted pyrolysis - A review.
Zhang, Yaning; Chen, Paul; Liu, Shiyu; Peng, Peng; Min, Min; Cheng, Yanling; Anderson, Erik; Zhou, Nan; Fan, Liangliang; Liu, Chenghui; Chen, Guo; Liu, Yuhuan; Lei, Hanwu; Li, Bingxi; Ruan, Roger
2017-04-01
Microwave-assisted pyrolysis is an important approach to obtain bio-oil from biomass. Similar to conventional electrical heating pyrolysis, microwave-assisted pyrolysis is significantly affected by feedstock characteristics. However, microwave heating has its unique features which strongly depend on the physical and chemical properties of biomass feedstock. In this review, the relationships among heating, bio-oil yield, and feedstock particle size, moisture content, inorganics, and organics in microwave-assisted pyrolysis are discussed and compared with those in conventional electrical heating pyrolysis. The quantitative analysis of data reported in the literature showed a strong contrast between the conventional processes and microwave based processes. Microwave-assisted pyrolysis is a relatively new process with limited research compared with conventional electrical heating pyrolysis. The lack of understanding of some observed results warrant more and in-depth fundamental research. Copyright © 2017 Elsevier Ltd. All rights reserved.
Apparatus and method for microwave processing of materials
Johnson, A.C.; Lauf, R.J.; Bible, D.W.; Markunas, R.J.
1996-05-28
Disclosed is a variable frequency microwave heating apparatus designed to allow modulation of the frequency of the microwaves introduced into a furnace cavity for testing or other selected applications. The variable frequency heating apparatus is used in the method of the present invention to monitor the resonant processing frequency within the furnace cavity depending upon the material, including the state thereof, from which the workpiece is fabricated. The variable frequency microwave heating apparatus includes a microwave signal generator and a high-power microwave amplifier or a microwave voltage-controlled oscillator. A power supply is provided for operation of the high-power microwave oscillator or microwave amplifier. A directional coupler is provided for detecting the direction and amplitude of signals incident upon and reflected from the microwave cavity. A first power meter is provided for measuring the power delivered to the microwave furnace. A second power meter detects the magnitude of reflected power. Reflected power is dissipated in the reflected power load. 10 figs.
Functional design for operational earth resources ground data processing
NASA Technical Reports Server (NTRS)
Baldwin, C. J. (Principal Investigator); Bradford, L. H.; Hutson, D. E.; Jugle, D. R.
1972-01-01
The author has identified the following significant results. Study emphasis was on developing a unified concept for the required ground system, capable of handling data from all viable acquisition platforms and sensor groupings envisaged as supporting operational earth survey programs. The platforms considered include both manned and unmanned spacecraft in near earth orbit, and continued use of low and high altitude aircraft. The sensor systems include both imaging and nonimaging devices, operated both passively and actively, from the ultraviolet to the microwave regions of the electromagnetic spectrum.
Portable microwave assisted extraction: An original concept for green analytical chemistry.
Perino, Sandrine; Petitcolas, Emmanuel; de la Guardia, Miguel; Chemat, Farid
2013-11-08
This paper describes a portable microwave assisted extraction apparatus (PMAE) for extraction of bioactive compounds especially essential oils and aromas directly in a crop or in a forest. The developed procedure, based on the concept of green analytical chemistry, is appropriate to obtain direct in-field information about the level of essential oils in natural samples and to illustrate green chemical lesson and research. The efficiency of this experiment was validated for the extraction of essential oil of rosemary directly in a crop and allows obtaining a quantitative information on the content of essential oil, which was similar to that obtained by conventional methods in the laboratory. Copyright © 2013 Elsevier B.V. All rights reserved.
The catalytic oxidation of malachite green by the microwave-Fenton processes.
Zheng, Huaili; Zhang, Huiqin; Sun, Xiaonan; Zhang, Peng; Tshukudu, Tiroyaone; Zhu, Guocheng
2010-01-01
Catalytic oxidation of malachite green using the microwave-Fenton process was investigated. 0% of malachite green de-colorization using the microwave process and 23.5% of malachite green de-colorization using the Fenton process were observed within 5 minutes. In contrast 95.4% of malachite green de-colorization using the microwave-Fenton was observed in 5 minutes. During the microwave-Fenton process, the optimum operating conditions for malachite green de-colorization were found to be 3.40 of initial pH, 0.08 mmol/L of Fe2+ concentration and 12.5 mmol/L of H2O2 concentration. Confirmatory tests were carried out under the optimum conditions and the COD removal rate of 82.0% and the de-colorization rate of 99.0% were observed in 5 minutes. The apparent kinetics equation of -dC/dt=0.0337 [malachite green]0.9860[Fe2+)]0.8234[H2O2]0.1663 for malachite green de-colorization was calculated, which implied that malachite green was the dominant factor in determining the removal efficiency of malachite green based on microwave-Fenton process.
Satellite Power Systems (SPS) Concept Definition Study. Volume 3: SPS Concept Evolution
NASA Technical Reports Server (NTRS)
Hanley, G.
1978-01-01
A solar photovoltaic satellite based upon the utilization of a GaAlAs solar cell is defined. Topics covered include silicon-based photovoltaics, solar thermal power conversion, microwave energy transmission, power distribution, structures, attitude control and stationkeeping, thermal, and information management and control.
Microwave processing of a dental ceramic used in computer-aided design/computer-aided manufacturing.
Pendola, Martin; Saha, Subrata
2015-01-01
Because of their favorable mechanical properties and natural esthetics, ceramics are widely used in restorative dentistry. The conventional ceramic sintering process required for their use is usually slow, however, and the equipment has an elevated energy consumption. Sintering processes that use microwaves have several advantages compared to regular sintering: shorter processing times, lower energy consumption, and the capacity for volumetric heating. The objective of this study was to test the mechanical properties of a dental ceramic used in computer-aided design/computer-aided manufacturing (CAD/CAM) after the specimens were processed with microwave hybrid sintering. Density, hardness, and bending strength were measured. When ceramic specimens were sintered with microwaves, the processing times were reduced and protocols were simplified. Hardness was improved almost 20% compared to regular sintering, and flexural strength measurements suggested that specimens were approximately 50% stronger than specimens sintered in a conventional system. Microwave hybrid sintering may preserve or improve the mechanical properties of dental ceramics designed for CAD/CAM processing systems, reducing processing and waiting times.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sudiana, I. Nyoman, E-mail: sudiana75@yahoo.com; Ngkoimani, La Ode; Usman, Ida
Microwave sintering of materials has attracted much research interest because of its significant advantages (e.g. reduced sintering temperatures and soaking times) over the conventional heating. Most researchers compared processes that occurred during the microwave and conventional heating at the same temperature and time. The enhancements found in the former method are indicated as a 'non-thermal effect' which is usually used for explaining the phenomena in microwave processing. Numerous recent studies have been focused on the effect to elucidate the microwave interaction mechanism with materials. Moreover, recent progress on microwave sources such as gyrotrons has opened the possibility for processing materialsmore » by using a higher microwave frequency. Therefore, the technology is expected to exhibit a stronger non-thermal effect. This paper presents results from a series of experiments to study the non-thermal effect on microwave sintered alumina. Sintering by using a wide rage of microwave frequencies up to 300 GHz as well as a conventional furnace was carried out. The linear shrinkages of samples for each sintering method were measured. Pores and grains taken from scanning electron microstructure (SEM) images of cut surfaces were also examined. The results of a comparative study of the shrinkages and microstructure evolutions of the sintered samples under annealing in microwave heating systems and in an electric furnace were analyzed. A notably different behavior of the shrinkages and microstructures of alumina after being annealed was found. The results suggested that microwave radiations provided an additional force for mass transports. The results also indicated that the sintering process depended on microwave frequencies.« less
Microwave Pretreatment For Hydrolysis Of Cellulose
NASA Technical Reports Server (NTRS)
Cullingford, Hatice S.; George, Clifford E.; Lightsey, George R.
1993-01-01
Microwave pretreatment enhances enzymatic hydrolysis of cellulosic wastes into soluble saccharides used as feedstocks for foods, fuels, and other products. Low consumption of energy, high yield, and low risk of proposed hydrolysis process incorporating microwave pretreatment makes process viable alternative to composting.
Advanced oxidation process using hydrogen peroxide/microwave system for solubilization of phosphate.
Liao, Ping Huang; Wong, Wayne T; Lo, Kwang Victor
2005-01-01
An advanced oxidation process (AOP) combining hydrogen peroxide and microwave heating was used for the solubilization of phosphate from secondary municipal sludge from an enhanced biological phosphorus removal process. The microwave irradiation is used as a generator agent of oxidizing radicals as well as a heating source in the process. This AOP process could facilitate the release of a large amount of the sludge-bound phosphorus from the sewage sludge. More than 84% of the total phosphorous could be released at a microwave heating time of 5 min at 170 degrees C. This innovative process has the potential of being applied to simple sludge treatment processes in domestic wastewater treatment and to the recovery of phosphorus from the wastewater.
Aguilar-Reynosa, Alejandra; Romaní, Aloia; Rodríguez-Jasso, Rosa M; Aguilar, Cristóbal N; Garrote, Gil; Ruiz, Héctor A
2017-11-01
This work describes the application of two forms of heating for autohydrolysis pretreatment on isothermal regimen: conduction-convection heating and microwave heating processing using corn stover as raw material for bioethanol production. Pretreatments were performed using different operational conditions: residence time (10-50 min) and temperature (160-200°C) for both pretreatments. Subsequently, the susceptibility of pretreated solids was studied using low enzyme loads, and high substrate loads. The highest conversion was 95.1% for microwave pretreated solids. Also solids pretreated by microwave heating processing showed better ethanol conversion in simultaneous saccharification and fermentation process (92% corresponding to 33.8g/L). Therefore, microwave heating processing is a promising technology in the pretreatment of lignocellulosic materials. Copyright © 2017 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Hu, Y.; Marshak, A.; Omar, A.; Lin, B.; Baize, R.
2018-02-01
We propose a concept that will put microwave and laser transmitters on the Deep Space Gateway platform for measurements of the Earth's atmosphere and ocean. Receivers will be placed on the ground, buoys, Argo floats, and cube satellites.
NASA Astrophysics Data System (ADS)
Matsui, Tatsunosuke
2017-09-01
Metamaterials, which enable us to realize novel physical effects that cannot be achieved using natural materials, have been extensively studied in recent years and significant progress has been made, especially in the field of optics. This game-changing concept has also initiated a rich variety of research activity in vacuum electronics. Here we review the recent development of metamaterial-based vacuum electronics for terahertz (THz) and microwave science and technology. The reversed Cherenkov radiation (RCR) in double-negative (DNG) metamaterials predicted by Veselago back in the 1960s has been experimentally verified in the microwave frequency range by utilizing specially designed DNG metamaterials. The interaction of an electron beam (e-beam) with DNG metamaterials may lead to the realization of novel applications such as microwave and THz radiation sources, accelerators, and even the visualization of invisibility cloaks. Smith-Purcell radiation (SPR) has recently received renewed interest owing to the development of metamaterials and the concept of spoof surface plasmon polaritons, as discussed in this review, and recent results on e-beam-induced directional and wide-band THz radiation with sharp multiple peaks from a graded grating, as well as directional and monochromatic special SPR and their possible application to THz orotron devices, are also reviewed.
Global precipitation measurement (GPM)
NASA Astrophysics Data System (ADS)
Neeck, Steven P.; Flaming, Gilbert M.; Adams, W. James; Smith, Eric A.
2001-12-01
The National Aeronautics and Space Administration (NASA) is studying options for future space-based missions for the EOS Follow-on Era (post 2003), building upon the measurements made by Pre-EOS and EOS First Series Missions. One mission under consideration is the Global Precipitation Measurement (GPM), a cooperative venture of NASA, Japan, and other international partners. GPM will capitalize on the experience of the highly successful Tropical Rainfall Measurement Mission (TRMM). Its goal is to extend the measurement of rainfall to high latitudes with high temporal frequency, providing a global data set every three hours. A reference concept has been developed consisting of an improved TRMM-like primary satellite with precipitation radar and microwave radiometer to make detailed and accurate estimates of the precipitation structure and a constellation of small satellites flying compact microwave radiometers to provide the required temporal sampling of highly variable precipitation systems. Considering that DMSP spacecraft equipped with SSMIS microwave radiometers, successor NPOESS spacecraft equipped with CMIS microwave radiometers, and other relevant international systems are expected to be in operation during the timeframe of the reference concept, the total number of small satellites required to complete the constellation will be reduced. A nominal plan is to begin implementation in FY'03 with launches in 2007. NASA is presently engaged in advanced mission studies and advanced instrument technology development related to the mission.
Six-Port Based Interferometry for Precise Radar and Sensing Applications
Koelpin, Alexander; Lurz, Fabian; Linz, Sarah; Mann, Sebastian; Will, Christoph; Lindner, Stefan
2016-01-01
Microwave technology plays a more important role in modern industrial sensing applications. Pushed by the significant progress in monolithic microwave integrated circuit technology over the past decades, complex sensing systems operating in the microwave and even millimeter-wave range are available for reasonable costs combined with exquisite performance. In the context of industrial sensing, this stimulates new approaches for metrology based on microwave technology. An old measurement principle nearly forgotten over the years has recently gained more and more attention in both academia and industry: the six-port interferometer. This paper reviews the basic concept, investigates promising applications in remote, as well as contact-based sensing and compares the system with state-of-the-art metrology. The significant advantages will be discussed just as the limitations of the six-port architecture. Particular attention will be paid to impairment effects and non-ideal behavior, as well as compensation and linearization concepts. It will be shown that in application fields, like remote distance sensing, precise alignment measurements, as well as interferometrically-evaluated mechanical strain analysis, the six-port architecture delivers extraordinary measurement results combined with high measurement data update rates for reasonable system costs. This makes the six-port architecture a promising candidate for industrial metrology. PMID:27669246
Full-time response of starch subjected to microwave heating.
Fan, Daming; Wang, Liyun; Zhang, Nana; Xiong, Lei; Huang, Luelue; Zhao, Jianxin; Wang, Mingfu; Zhang, Hao
2017-06-21
The effect of non-ionizing microwave radiation on starch is due to a gelatinization temperature range that changes starch structure and properties. However, the changes in starch upon microwave heating are observable throughout the heating process. We compared the effects on starch heating by microwaves to the effects by rapid and regular conventional heating. Our results show that microwave heating promotes the rapid rearrangement of starch molecules at low temperatures; starch showed a stable dielectric response and a high dielectric constant. Microwave heating changed the Cole-Cole curve and the polarization of starch suspension at low temperatures. A marked transition at 2.45 GHz resulted in a double-polarization phenomenon. At temperatures below gelatinization, microwave-induced dielectric rearrangement and changes in the polarization characteristics of starch suspensions reduced the absorption properties; at temperatures above gelatinization, these characteristics became consistent with conventional heating. Throughout the heating process, microwaves change the electrical response and polarization characteristics of the starch at low temperatures, but on the macro level, there is no enhancement of the material's microwave absorption properties. In contrast, with the warming process, the starch exhibited a "blocking effect", and the absorption properties of the starch quickly returned to the level observed in conductive heating after gelatinization.
Apparatus and method for microwave processing of materials
Johnson, Arvid C.; Lauf, Robert J.; Bible, Don W.; Markunas, Robert J.
1996-01-01
A variable frequency microwave heating apparatus (10) designed to allow modulation of the frequency of the microwaves introduced into a furnace cavity (34) for testing or other selected applications. The variable frequency heating apparatus (10) is used in the method of the present invention to monitor the resonant processing frequency within the furnace cavity (34) depending upon the material, including the state thereof, from which the workpiece (36) is fabricated. The variable frequency microwave heating apparatus (10) includes a microwave signal generator (12) and a high-power microwave amplifier (20) or a microwave voltage-controlled oscillator (14). A power supply (22) is provided for operation of the high-power microwave oscillator (14) or microwave amplifier (20). A directional coupler (24) is provided for detecting the direction and amplitude of signals incident upon and reflected from the microwave cavity (34). A first power meter (30) is provided for measuring the power delivered to the microwave furnace (32). A second power meter (26) detects the magnitude of reflected power. Reflected power is dissipated in the reflected power load (28).
Symposium on Space Industrialization, Huntsville, Ala., May 26, 27, 1976, Proceedings
NASA Technical Reports Server (NTRS)
1976-01-01
Space habitats are considered, with attention given the evolution of space station systems, space station habitability, space settlement planning methodology, and orbital assembly. Various aspects of the Space Transportation System are discussed, including Shuttle booster/propulsion growth concept, advanced earth orbital transportation systems technology, single-stage-to-orbit vehicles and aeromaneuvering orbit transfer vehicles. Materials processing in space is examined, with emphasis on biological materials, metallurgical materials, the uses of space ultrahigh vacuum, and extraterrestrial mining and industrial processing. Solar space power is investigated, with attention given the potential of satellite solar power stations, thermal engine power satellites and microwave power transmission to earth. Individual items are announced in this issue.
2012-10-03
µmeteoroids, weather, vibrations... Asteroid Mining Breakthrough Physics No known feasible concepts. --- Concept NTF NMS NCA Primary Challenges for Launch...weather, vibrations... Asteroid Mining Breakthrough Physics No known feasible concepts. --- 8 2.2 Microwave Augmentation of Solid Rocket Motors16,17 As...Astronautica, Vol. 52, 1, pp. 49-75, 30 May, 2002. 7. Sonter, M.J., “The Technical and Economic Feasibility of Mining the Near-Earth Asteroids ,” Acta
Microwave heating has been sought as a convenient way of enhancing chemical processes. The advantages of microwave heating, such as selective direct heating of materials of a catalytic site, minimized fouling on hot surfaces, process simplicity, rapid startup, as well as the pos...
CONTINUOUS MICROWAVE REACTORS FOR ORGANIC SYNTHESIS: HYDRODECHLORINATION AND HYDROLYSIS
Microwave heating has been sought as a convenient way of enhancing chemical processes. The advantages of microwave heating, such as selective direct heating of materials of a catalytic site, minimized fouling on hot surfaces, process simplicity, rapid startup, as well as the poss...
Model Stirrer Based on a Multi-Material Turntable for Microwave Processing Materials
Ye, Jinghua; Hong, Tao; Wu, Yuanyuan; Wu, Li; Liao, Yinhong; Zhu, Huacheng; Yang, Yang; Huang, Kama
2017-01-01
Microwaves have been widely used in the treatment of materials, such as heating, drying, and sterilization. However, the heating in the commonly used microwave applicators is usually uneven. In this paper, a novel multi-material turntable structure is creatively proposed to improve the temperature uniformity in microwave ovens. Three customized turntables consisting of polyethylene (PE) and alumina, PE and aluminum, and alumina and aluminum are, respectively, utilized in a domestic microwave oven in simulation. During the heating process, the processed material is placed on a fixed Teflon bracket which covers the constantly rotating turntable. Experiments are conducted to measure the surface and point temperatures using an infrared thermal imaging camera and optical fibers. Simulated results are compared qualitatively with the measured ones, which verifies the simulated models. Compared with the turntables consisting of a single material, a 26%–47% increase in temperature uniformity from adapting the multi-material turntable can be observed for the microwave-processed materials. PMID:28772457
Space solar power - An energy alternative
NASA Technical Reports Server (NTRS)
Johnson, R. W.
1978-01-01
The space solar power concept is concerned with the use of a Space Power Satellite (SPS) which orbits the earth at geostationary altitude. Two large symmetrical solar collectors convert solar energy directly to electricity using photovoltaic cells woven into blankets. The dc electricity is directed to microwave generators incorporated in a transmitting antenna located between the solar collectors. The antenna directs the microwave beam to a receiving antenna on earth where the microwave energy is efficiently converted back to dc electricity. The SPS design promises 30-year and beyond lifetimes. The SPS is relatively pollution free as it promises earth-equivalence of 80-85% efficient ground-based thermal power plant.
Cyclic additional optical true time delay for microwave beam steering with spectral filtering.
Cao, Z; Lu, R; Wang, Q; Tessema, N; Jiao, Y; van den Boom, H P A; Tangdiongga, E; Koonen, A M J
2014-06-15
Optical true time delay (OTTD) is an attractive way to realize microwave beam steering (MBS) due to its inherent features of broadband, low-loss, and compactness. In this Letter, we propose a novel OTTD approach named cyclic additional optical true time delay (CAO-TTD). It applies additional integer delays of the microwave carrier frequency to achieve spectral filtering but without disturbing the spatial filtering (beam steering). Based on such concept, a broadband MBS scheme for high-capacity wireless communication is proposed, which allows the tuning of both spectral filtering and spatial filtering. The experimental results match well with the theoretical analysis.
A Dual-Mode Microwave Applicator for Liver Tumor Thermotherapy
NASA Astrophysics Data System (ADS)
Reimann, Carolin; Schüßler, Martin; Jakoby, Rolf; Bazrafshan, Babak; Hübner, Frank; Vogl, Thomas
2018-03-01
The concept of a novel dual-mode microwave applicator for diagnosis and thermal ablation treatment of tumorous tissue is presented in this paper. This approach is realized by integrating a planar resonator array to, firstly, detect abnormalities by a relative dielectric analysis, and secondly, perform a highly localized thermal ablation. A further essential advantage is addressed by designing the applicator to be MRI compatible to provide a multimodal imaging procedure. Investigations for an appropriate frequency range lead to the use of much higher operating frequencies between 5 GHz and 10 GHz, providing a significantly lower power consumption for microwave ablation of only 20 W compared to commercial available applicators.
Herrero, M Antonia; Kremsner, Jennifer M; Kappe, C Oliver
2008-01-04
The concept of nonthermal microwave effects has received considerable attention in recent years and is the subject of intense debate in the scientific community. Nonthermal microwave effects have been postulated to result from a direct stabilizing interaction of the electric field with specific (polar) molecules in the reaction medium that is not related to a macroscopic temperature effect. In order to probe the existence of nonthermal microwave effects, four synthetic transformations (Diels-Alder cycloaddition, alkylation of triphenylphosphine and 1,2,4-triazole, direct amide bond formation) were reevaluated under both microwave dielectric heating and conventional thermal heating. In all four cases, previous studies have claimed the existence of nonthermal microwave effects in these reactions. Experimentally, significant differences in conversion and/or product distribution comparing the conventionally and microwave-heated experiments performed at the same measured reaction temperature were found. The current reevaluation of these reactions was performed in a dedicated reactor setup that allowed accurate internal reaction temperature measurements using a multiple fiber-optic probe system. Using this technology, the importance of efficient stirring and internal temperature measurement in microwave-heated reactions was made evident. Inefficient agitation leads to temperature gradients within the reaction mixture due to field inhomogeneities in the microwave cavity. Using external infrared temperature sensors in some cases results in significant inaccuracies in the temperature measurement. Applying the fiber-optic probe temperature monitoring device, a critical reevaluation of all four reactions has provided no evidence for the existence of nonthermal microwave effects. Ensuring efficient agitation of the reaction mixture via magnetic stirring, no significant differences in terms of conversion and selectivity between experiments performed under microwave or oil bath conditions at the same internally measured reaction temperatures were experienced. The observed effects were purely thermal and not related to the microwave field.
Apparatus and method for microwave processing of materials using field-perturbing tool
Tucker, Denise A.; Fathi, Zakaryae; Lauf, Robert J.
2001-01-01
A variable frequency microwave heating apparatus designed to allow modulation of the frequency of the microwaves introduced into a multi-mode microwave cavity for heating or other selected applications. A field-perturbing tool is disposed within the cavity to perturb the microwave power distribution in order to apply a desired level of microwave power to the workpiece.
Preliminary development of digital signal processing in microwave radiometers
NASA Technical Reports Server (NTRS)
Stanley, W. D.
1980-01-01
Topics covered involve a number of closely related tasks including: the development of several control loop and dynamic noise model computer programs for simulating microwave radiometer measurements; computer modeling of an existing stepped frequency radiometer in an effort to determine its optimum operational characteristics; investigation of the classical second order analog control loop to determine its ability to reduce the estimation error in a microwave radiometer; investigation of several digital signal processing unit designs; initiation of efforts to develop required hardware and software for implementation of the digital signal processing unit; and investigation of the general characteristics and peculiarities of digital processing noiselike microwave radiometer signals.
The GPM Common Calibrated Brightness Temperature Product
NASA Technical Reports Server (NTRS)
Stout, John; Berg, Wesley; Huffman, George; Kummerow, Chris; Stocker, Erich
2005-01-01
The Global Precipitation Measurement (GPM) project will provide a core satellite carrying the GPM Microwave Imager (GMI) and will use microwave observations from a constellation of other satellites. Each partner with a satellite in the constellation will have a calibration that meets their own requirements and will decide on the format to archive their brightness temperature (Tb) record in GPM. However, GPM multi-sensor precipitation algorithms need to input intercalibrated Tb's in order to avoid differences among sensors introducing artifacts into the longer term climate record of precipitation. The GPM Common Calibrated Brightness Temperature Product is intended to address this problem by providing intercalibrated Tb data, called "Tc" data, where the "c" stands for common. The precipitation algorithms require a Tc file format that is both generic and flexible enough to accommodate the different passive microwave instruments. The format will provide detailed information on the processing history in order to allow future researchers to have a record of what was done. The format will be simple, including the main items of scan time, latitude, longitude, and Tc. It will also provide spacecraft orientation, spacecraft location, orbit, and instrument scan type (cross-track or conical). Another simplification is to store data in real numbers, avoiding the ambiguity of scaled data. Finally, units and descriptions will be provided in the product. The format is built on the concept of a swath, which is a series of scans that have common geolocation and common scan geometry. Scan geometry includes pixels per scan, sensor orientation, scan type, and incidence angles. The Tc algorithm and data format are being tested using the pre-GPM Precipitation Processing System (PPS) software to generate formats and 1/0 routines. In the test, data from SSM/I, TMI, AMSR-E, and WindSat are being processed and written as Tc products.
System to continuously produce carbon fiber via microwave assisted plasma processing
White, Terry L; Paulauskas, Felix L; Bigelow, Timothy S
2014-03-25
A method for continuously processing carbon fiber including establishing a microwave plasma in a selected atmosphere contained in an elongated chamber having a microwave power gradient along its length defined by a lower microwave power at one end and a higher microwave power at the opposite end of the elongated chamber. The elongated chamber having an opening in each of the ends of the chamber that are adapted to allow the passage of the fiber tow while limiting incidental gas flow into or out of said chamber. A continuous fiber tow is introduced into the end of the chamber having the lower microwave power. The fiber tow is withdrawn from the opposite end of the chamber having the higher microwave power. The fiber to is subjected to progressively higher microwave energy as the fiber is being traversed through the elongated chamber.
High temperature acoustic and hybrid microwave/acoustic levitators for materials processing
NASA Technical Reports Server (NTRS)
Barmatz, Martin
1990-01-01
The physical acoustics group at the Jet Propulsion Laboratory developed a single mode acoustic levitator technique for advanced containerless materials processing. The technique was successfully demonstrated in ground based studies to temperatures of about 1000 C in a uniform temperature furnace environment and to temperatures of about 1500 C using laser beams to locally heat the sample. Researchers are evaluating microwaves as a more efficient means than lasers for locally heating a positioned sample. Recent tests of a prototype single mode hybrid microwave/acoustic levitator successfully demonstrated the feasibility of using microwave power as a heating source. The potential advantages of combining acoustic positioning forces and microwave heating for containerless processing investigations are presented in outline form.
Satellite Power Systems (SPS) concept definition study. Volume 4: SPS point design definition
NASA Technical Reports Server (NTRS)
Hanley, G.
1978-01-01
The satellite power systems point design concept is described. The concept definition includes satellite, ground and space systems, and their relationships. Emphasis is placed on the definition of the GaAlAs photovoltaic satellite system. The major subsystems of the satellite system including power conversion, power distribution and control, microwave, attitude control and stationkeeping, thermal control, structures, and information management and control are discussed.
NASA Astrophysics Data System (ADS)
Li, Zhuo; Xu, Bingzheng; Liu, Liangliang; Xu, Jia; Chen, Chen; Gu, Changqing; Zhou, Yongjin
2016-06-01
In this work, we report the existence of spoof localized surface plasmons (spoof-LSPs) arising with closed high contrast gratings (HCGs) at deep subwavelength scales, another platform for field localization at microwave frequencies. The HCGs are in the form of a periodic array of radial dielectric blocks with high permittivity around a metal core supporting spoof-LSPs of transverse magnetic (TM) form. Simulation results validate the phenomenon and a metamaterial approach is also given to capture all the resonant features of this kind of spoof-LSPs. In addition, experimental verification of the existence of spoof-LSPs supported by a three dimensional (3D) HCGs resonance structure in the microwave regime is presented. This work expands the original spoof-LSPs theory and opens up a new avenue for obtaining resonance devices in the microwave frequencies.
[Metabolic changes in cells under electromagnetic radiation of mobile communication systems].
Iakimenko, I L; Sidorik, E P; Tsybulin, A S
2011-01-01
Review is devoted to the analysis of biological effects of microwaves. The results of last years' researches indicated the potential risks of long-term low-level microwaves exposure for human health. The analysis of metabolic changes in living cells under the exposure of microwaves from mobile communication systems indicates that this factor is stressful for cells. Among the reproducible effects of low-level microwave radiation are overexpression of heat shock proteins, an increase of reactive oxygen species level, an increase of intracellular Ca2+, damage of DNA, inhibition of DNA reparation, and induction of apoptosis. Extracellular-signal-regulated kinases ERK and stress-related kinases p38MAPK are involved in metabolic changes. Analysis of current data suggests that the concept of exceptionally thermal mechanism of biological effects of microwaves is not correct. In turn, this raises the question of the need to revaluation of modern electromagnetic standards based on thermal effects of non-ionizing radiation on biological systems.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sakamoto, Naoki; Kato, Yushi; Kiriyama, Ryutaro
2011-01-07
A new concept on magnetic field of plasma production and confinement by using permanent magnets, i.e. cylindrically comb-shaped magnets, has been proposed to enhance efficiency of an electron cyclotron resonance (ECR) plasma for broad and dense ion beam source under the low pressure and also the low microwave power. The resonance zones corresponding to the fundamental ECR for 2.45 GHz and 11-13 GHz frequency are constructed at different positions. The profiles of the plasma parameters in the ECR ion source are different from each frequency of microwave. Large bore extractor is set at the opposite side against the microwave feeds.more » It is found that differences of their profiles also appear at those of ion beam profiles. We conducted to launch simultaneously multiplex frequency microwaves controlled individually, and tried to control the profiles of the plasma parameters and then those of extracted ion beam.« less
Ripley, Edward B [Knoxville, TN
2009-11-24
A thermocouple shield for use in radio frequency fields. In some embodiments the shield includes an electrically conductive tube that houses a standard thermocouple having a thermocouple junction. The electrically conductive tube protects the thermocouple from damage by an RF (including microwave) field and mitigates erroneous temperature readings due to the microwave or RF field. The thermocouple may be surrounded by a ceramic sheath to further protect the thermocouple. The ceramic sheath is generally formed from a material that is transparent to the wavelength of the microwave or RF energy. The microwave transparency property precludes heating of the ceramic sheath due to microwave coupling, which could affect the accuracy of temperature measurements. The ceramic sheath material is typically an electrically insulating material. The electrically insulative properties of the ceramic sheath help avert electrical arcing, which could damage the thermocouple junction. The electrically conductive tube is generally disposed around the thermocouple junction and disposed around at least a portion of the ceramic sheath. The concepts of the thermocouple shield may be incorporated into an integrated shielded thermocouple assembly.
Hyperenergetic manned aerospacecraft propelled by intense pulsed microwave power beam
NASA Astrophysics Data System (ADS)
Myrabo, Leik N.
1995-09-01
The objective of this research was to exploit wireless power transmission (microwave/millimeter)--to lower manned space transportation costs by two or three orders of magnitude. Concepts have been developed for lightweight, mass-producible, beam-propelled aerospacecraft called Lightcraft. The vehicles are designed for a 'mass-poor, energy-rich' (i.e. hyper-energentic flight infrastructure which utilizes remote microwave power stations to build an energy-beam highway to space. Although growth in laser power levels has lagged behind expectations, microwave and millimeter-wave source technology now exists for rapid scaling to the megawatt and gigawatt time-average power levels. The design exercise focused on the engine, structure, and receptive optics requirements for a 15 meter diameter, 5 person Earth- to-moon aerospacecraft. Key elements in the airbreathing accelerator propulsion system are: a) a 'flight-weight' 35GHz rectenna electric powerplant, b) microwave-induced 'Air Spike' and perimeter air-plasma generators, and c) MagnetoHydroDynamic-Fanjet engine with its superconducting magnets and external electrodes.
Li, Da-Wei; Zhang, Yao-Bin; Quan, Xie; Zhao, Ya-Zhi
2009-02-15
The advantage of rapid, selective and simultaneous heating of microwave heating technology was taken to remediate the crude oil-contaminated soil rapidly and to recover the oil contaminant efficiently. The contaminated soil was processed in the microwave field with addition of granular activated carbon (GAC), which was used as strong microwave absorber to enhance microwave heating of the soil mixture to remove the oil contaminant and recover it by a condensation system. The influences of some process parameters on the removal of the oil contaminant and the oil recovery in the remediation process were investigated. The results revealed that, under the condition of 10.0% GAC, 800 W microwave power, 0.08 MPa absolute pressure and 150 mL x min(-1) carrier gas (N2) flow-rate, more than 99% oil removal could be obtained within 15 min using this microwave thermal remediation enhanced by GAC; at the same time, about 91% of the oil contaminant could be recovered without significant changes in chemical composition. In addition, the experiment results showed that GAC can be reused in enhancing microwave heating of soil without changing its enhancement efficiency obviously.
Free radical propulsion concept
NASA Technical Reports Server (NTRS)
Hawkins, C. E.; Nakanishi, S.
1981-01-01
The concept of a free radical propulsion system, utilizing the recombination energy of dissociated low molecular weight gases to produce thrust, is analyzed. The system, operating at a theoretical impulse with hydrogen, as high as 2200 seconds at high thrust to power ratio, is hypothesized to bridge the gap between chemical and electrostatic propulsion capabilities. A comparative methodology is outlined by which characteristics of chemical and electric propulsion for orbit raising mission can be investigated. It is noted that free radicals proposed in rockets previously met with difficulty and complexity in terms of storage requirements; the present study proposes to eliminate the storage requirements by using electric energy to achieve a continuous-flow product of free radicals which are recombined to produce a high velocity propellant. Microwave energy used to dissociate a continuously flowing gas is transferred to the propellant via three-body-recombination for conversion to propellant kinetic energy. Microwave plasma discharge was found in excess of 90 percent over a broad range of pressure in preliminary experiments, and microwave heating compared to electrothermal heating showed much higher temperatures in gasdynamic equations.
NASA Technical Reports Server (NTRS)
Farmer, Jeffrey T.; Wahls, Deborah M.; Wright, Robert L.
1990-01-01
The global change technology initiative calls for a geostationary platform for Earth science monitoring. One of the major science instruments is the high frequency microwave sounder (HFMS) which uses a large diameter, high resolution, high frequency microwave antenna. This antenna's size and required accuracy dictates the need for a segmented reflector. On-orbit disturbances may be a significant factor in its design. A study was performed to examine the effects of the geosynchronous thermal environment on the performance of the strongback structure for a proposed antenna concept for this application. The study included definition of the strongback and a corresponding numerical model to be used in the thermal and structural analyses definition of the thermal environment, determination of structural element temperature throughout potential orbits, estimation of resulting thermal distortions, and assessment of the structure's capability to meet surface accuracy requirements. Analyses show that shadows produced by the antenna reflector surface play a major role in increasing thermal distortions. Through customization of surface coating and element expansion characteristics, the segmented reflector concept can meet the tight surface accuracy requirements.
Studying the effect of microwave heating on the digestion process and identification of proteins.
Devi, Shobha; Wu, Bo-Hung; Chu, Pei-Yu; Liu, Yue-Pei; Wu, Hsin-Lin; Ho, Yen-Peng
2017-02-01
The impact of microwave irradiation on the in-solution digestion processes and the detection limit of proteins are systematically studied. Kinetic processes of many peptides produced through the trypsin digestion of various proteins under microwave heating at 50°C were investigated with MALDI-MS. This study also examines the detection limits and digestion completeness of individual proteins under microwave heating at 50°C and at different time intervals (1, 5 and 30 min) using LC-MS. We conclude that if the peptides without missed cleavage dictate the detection limit, conventional digestion will lead to a better detection limit. The detection limit may not differ between the microwave and conventional heating if the peptides with missed cleavage sites and strong intensity are formed at the very early stage (i.e., less than 1 min) and are not further digested throughout the entire digestion process. The digestion of Escherichia coli lysate was compared under conventional and short time (microwave) conditions. The number of proteins identified under conventional heating exceeded that obtained from microwave heating over heating periods less than 5 min. The overall results show that the microwave-assisted digestion is not complete. Although the sequence coverage might be better, the detection limit might be worse than that under conventional heating. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Waveguide metatronics: Lumped circuitry based on structural dispersion
Li, Yue; Liberal, Iñigo; Della Giovampaola, Cristian; Engheta, Nader
2016-01-01
Engineering optical nanocircuits by exploiting modularization concepts and methods inherited from electronics may lead to multiple innovations in optical information processing at the nanoscale. We introduce the concept of “waveguide metatronics,” an advanced form of optical metatronics that uses structural dispersion in waveguides to obtain the materials and structures required to construct this class of circuitry. Using numerical simulations, we demonstrate that the design of a metatronic circuit can be carried out by using a waveguide filled with materials with positive permittivity. This includes the implementation of all “lumped” circuit elements and their assembly in a single circuit board. In doing so, we extend the concepts of optical metatronics to frequency ranges where there are no natural plasmonic materials available. The proposed methodology could be exploited as a platform to experimentally validate optical metatronic circuits in other frequency regimes, such as microwave frequency setups, and/or to provide a new route to design optical nanocircuitry. PMID:27386566
Optimisation of microwave-assisted processing in production of pineapple jam
NASA Astrophysics Data System (ADS)
Ismail, Nur Aisyah Mohd; Abdullah, Norazlin; Muhammad, Norhayati
2017-10-01
Pineapples are available all year round since they are unseasonal fruits. Due to the continuous harvesting of the fruit, the retailers and farmers had to find a solution such as the processing of pineapple into jam, to treat the unsuccessfully sold pineapples. The direct heating of pineapple puree during the production of pineapple jam can cause over degradation of quality of the fresh pineapple. Thus, this study aims to optimise the microwave-assisted processing conditions for producing pineapple jam which could reduce water activity and meets minimum requirement for pH and total soluble solids contents of fruit jam. The power and time of the microwave processing were chosen as the factors, while the water activity, pH and total soluble solids (TSS) content of the pineapple jam were determined as responses to be optimised. The microwave treatment on the pineapple jam was able to give significant effect on the water activity and TSS content of the pineapple jam. The optimum power and time for the microwave processing of pineapple jam is 800 Watt and 8 minutes, respectively. The use of domestic microwave oven for the pineapple jam production results in acceptable pineapple jam same as conventional fruit jam sold in the marketplace.
NASA Technical Reports Server (NTRS)
Parrish, Russell V.; Busquets, Anthony M.; Williams, Steven P.; Nold, Dean E.
2003-01-01
A simulation study was conducted in 1994 at Langley Research Center that used 12 commercial airline pilots repeatedly flying complex Microwave Landing System (MLS)-type approaches to parallel runways under Category IIIc weather conditions. Two sensor insert concepts of 'Synthetic Vision Systems' (SVS) were used in the simulated flights, with a more conventional electro-optical display (similar to a Head-Up Display with raster capability for sensor imagery), flown under less restrictive visibility conditions, used as a control condition. The SVS concepts combined the sensor imagery with a computer-generated image (CGI) of an out-the-window scene based on an onboard airport database. Various scenarios involving runway traffic incursions (taxiing aircraft and parked fuel trucks) and navigational system position errors (both static and dynamic) were used to assess the pilots' ability to manage the approach task with the display concepts. The two SVS sensor insert concepts contrasted the simple overlay of sensor imagery on the CGI scene without additional image processing (the SV display) to the complex integration (the AV display) of the CGI scene with pilot-decision aiding using both object and edge detection techniques for detection of obstacle conflicts and runway alignment errors.
Joyner, Helen S; Jones, Kari E; Rasco, Barbara A
2017-10-01
Pasta hydration and cooking requirements make in-package microwave pasteurization of pasta a processing challenge. The objective of this study was to assess instrumental and sensory attributes of microwave-treated pasta in comparison to conventionally cooked pasta. Fettuccine pasta was parboiled for 0, 3, 6, 9, or 12 min, pasteurized by microwaves at 915 MHz, then stored under refrigeration for 1 week. Pastas were evaluated by a trained sensory panel and with rheometry. Total pasta heat treatment affected both rheological and sensory behaviors; these differences were attributed to ultrastructure differences. Significant nonlinear behavior and dominant fluid-like behavior was observed in all pastas at strains >1%. Sensory results suggested microwave pasteurization may intensify the attributes associated with the aging of pasta such as retrogradation. A clear trend between magnitude of heat treatment and attribute intensity was not observed for all sensory attributes tested. The microwave pasta with the longest parboil time showed rheological behavior most similar to conventionally cooked pasta. Principal component analysis revealed that no microwave-treated pasta was similar to the control pasta. However, pasta parboiled for 9 min before microwave treatment had the greatest number of similar sensory attributes, followed by pasta parboiled for 6 or 12 min. Further study is needed to determine overall consumer acceptance of microwave-treated pasta and whether the differences in sensory and rheological behavior would impact consumer liking. The results of this study may be applied to optimize microwave pasteurization processes for cooked pasta and similar products, such as rice. The measurement and analysis procedures can be used to evaluate processing effects on a variety of different foods to determine overall palatability. © 2017 Wiley Periodicals, Inc.
Investigation on microwave heating for direct leaching of chalcopyrite ores and concentrates
NASA Astrophysics Data System (ADS)
Onol, Kubra; Saridede, Muhlis Nezihi
2013-03-01
The use of microwave energy in materials processing is a relatively new development presenting numerous advantages because of the rapid heating feature. Microwave technology has great potential to improve the extraction efficiency of metals in terms of both a reduction in required leaching time and an increase in the recovery of valuable metals. This method is especially pertinent in view of the increased demand for environment-friendly processes. In the present study, the influence of microwave heating on the direct leaching of chalcopyrite ores and concentrates were investigated. The results of microwave leaching experiments were compared with those obtained under conventional conditions. During these processes, parameters such as leaching media, temperature, and time have been worked to determine the optimum conditions for proper copper dissolution. Experimental results show that microwave leaching is more efficient than conventional leaching. The optimum leaching conditions for microwave leaching are the solid-to-liquid ratio of 1:100 g/mL, the temperature of 140°C, the solution of 0.5 M H2SO4 + 0.05 M Fe2(SO4)3, and the time of 1 h.
NASA Astrophysics Data System (ADS)
Shashank Lingappa, M.; Srinath, M. S.; Amarendra, H. J.
2017-07-01
Microwave processing of metals is an emerging area. Melting of bulk metallic materials through microwave irradiation is still immature. In view of this, the present paper discusses the melting of bulk Al 1050 metallic material through microwave irradiation. The melting process is carried out successfully in a domestic microwave oven with 900 W power at 2450 MHz frequency. Metallurgical and mechanical characterization of the processed and as-received material is carried out. Aluminium phase is found to be dominant in processed material when tested through x-ray diffraction (XRD). Microstructure study of as-cast metal through scanning electron microscopy (SEM) reveals the formation of uniform hexagonal grain structure free from pores and cavities. The average tensile strength of the cast material is found to be around 21% higher, when compared to as-received material. Vickers’ microhardness of the as-cast metal is measured and is 10% higher than that of the as-received metal. Radiography on as-cast metal shows no significant defects. Al 1050 material melted through microwave irradiation has exhibited superior properties than the as-received Al 1050.
The 2002 NASA Faculty Fellowship Program Research Reports
NASA Technical Reports Server (NTRS)
Bland, J. (Compiler)
2003-01-01
Contents include the following: System Identification of X-33. Neural Network Advanced Ceramic Technology for Space Applications at NASA MSFC. Developing a MATLAB-Based Tool for Visualization and Transformation. Subsurface Stress Fields in Single Crystal (Anisotropic). Contacts Our Space Future: A Challenge to the Conceptual Artist Concept Art for Presentation and Education. Identification and Characterization of Extremophile Microorganisms. Significant to Astrobiology. Mathematical Investigation of Gamma Ray and Neutron. Absorption Grid Patterns for Homeland Defense-Related Fourier Imaging Systems. The Potential of Microwave Radiation for Processing Martian Soil. Fuzzy Logic Trajectory Design and Guidance for Terminal Area.
Microwave power transmitting phased array antenna research project
NASA Technical Reports Server (NTRS)
Dickinson, R. M.
1978-01-01
An initial design study and the development results of an S band RF power transmitting phased array antenna experiment system are presented. The array was to be designed, constructed and instrumented to permit wireless power transmission technology evaluation measurements. The planned measurements were to provide data relative to the achievable performance in the state of the art of flexible surface, retrodirective arrays, as a step in technically evaluating the satellite power system concept for importing to earth, via microwave beams, the nearly continuous solar power available in geosynchronous orbit. Details of the microwave power transmitting phased array design, instrumentation approaches, system block diagrams, and measured component and breadboard characteristics achieved are presented.
NASA Astrophysics Data System (ADS)
Su, Jinlong; Tian, Yan; Hu, Fei; Gui, Liangqi; Cheng, Yayun; Peng, Xiaohui
2017-10-01
Dielectric constant is an important role to describe the properties of matter. This paper proposes This paper proposes the concept of mixed dielectric constant(MDC) in passive microwave radiometric measurement. In addition, a MDC inversion method is come up, Ratio of Angle-Polarization Difference(RAPD) is utilized in this method. The MDC of several materials are investigated using RAPD. Brightness temperatures(TBs) which calculated by MDC and original dielectric constant are compared. Random errors are added to the simulation to test the robustness of the algorithm. Keywords: Passive detection, microwave/millimeter, radiometric measurement, ratio of angle-polarization difference (RAPD), mixed dielectric constant (MDC), brightness temperatures, remote sensing, target recognition.
NASA Technical Reports Server (NTRS)
Filpus, J. W.; Hawley, M. C.
1984-01-01
A theoretical investigation of the effect of the microscopic energetics of the recombination reaction on the performance of a microwave-plasma electrothermal propulsion system is described, and the results of the analysis are presented. A series of experiments to test the concept is described and analyzed by comparison with a computer model of the recombination reaction. It is concluded that internal energy considerations are not likely to significantly affect the design of a microwave-plasma electrothermal rocket. The experimental results indicate that the microwave power is far higher than the capacity of the gas to absorb it; the cooling needed to control the energy dominates the experimental results.
Microwave processing of gustatory tissues for immunohistochemistry
Bond, Amanda; Kinnamon, John C.
2013-01-01
We use immunohistochemistry to study taste cell structure and function as a means to elucidate how taste receptor cells communicate with nerve fibers and adjacent taste cells. This conventional method, however, is time consuming. In the present study we used taste buds from rat circumvallate papillae to compare conventional immunohistochemical tissue processing with microwave processing for the colocalization of several biochemical pathway markers (PLCβ2, syntaxin-1, IP3R3, α-gustducin) and the nuclear stain, Sytox. The results of our study indicate that in microwave versus conventional immunocytochemistry: (1) fixation quality is improved; (2) the amount of time necessary for processing tissue is decreased; (3) antigen retrieval is no longer needed; (4) image quality is superior. In sum, microwave tissue processing of gustatory tissues is faster and superior to conventional immunohistochemical tissue processing for many applications. PMID:23473796
Satellite power systems (SPS) concept definition study. Volume 2, part 1: System engineering
NASA Technical Reports Server (NTRS)
Hanley, G. M.
1980-01-01
Top level trade studies are presented, including comparison of solid state and klystron concepts, higher concentration on the solar cells, composite and aluminum structure, and several variations to the reference concept. Detailed trade studies are presented in each of the subsystem areas (solar array, power distribution, structures, thermal control, attitude control and stationkeeping, microwave transmission, and ground receiving station). A description of the selected point design is also presented.
NASA Astrophysics Data System (ADS)
Wang, Wankun; Wang, Fuchun; Lu, Fanghai
2017-12-01
Microwave alkaline roasting-water dissolving process was proposed to improve the germanium (Ge) extraction from zinc oxide (ZnO) dust. The effects of important parameters were investigated and the process conditions were optimized using response surface methodology (RSM). The Ge extraction is consistent with the linear polynomial model type. Alkali-material ratio, microwave heating temperature and leaching temperature are the significant factors for this process. The optimized conditions are obtained as follows, alkali-material ratio of 0.9 kg/kg, aging time of 1.12 day, microwave heating at 658 K for 10 min, liquid-solid ratio of 4.31 L/kg, leaching temperature at 330 K, leaching time of 47 min with the Ge extraction about 99.38%. It is in consistence with the predictive value of 99.31%. Compared to the existed alkaline roasting process heated by electric furnace in literature, the alkaline roasting temperature and holding time. It shows a good prospect on leaching Ge from ZnO dust with microwave alkaline roasting-water dissolving process.
Microwave processes in the SPD-ATON stationary plasma thruster
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kirdyashev, K. P., E-mail: kpk@ms.ire.rssi.ru
2016-09-15
Results of experimental studies of microwave processes accompanying plasma acceleration in the SPD-ATON stationary plasma thruster are presented. Specific features of the generation of microwave oscillations in both the acceleration channel and the plasma flow outgoing from the thruster are analyzed on the basis of local measurements of the spectra of the plasma wave fields. Mechanisms for generation of microwave oscillations are considered with allowance for the inhomogeneity of the electron density and magnetic field behind the edge of the acceleration channel. The effect of microwave oscillations on the electron transport and the formation of the discharge current in themore » acceleration channel is discussed.« less
A concept for global crop forecasting. [using microwave radiometer satellites
NASA Technical Reports Server (NTRS)
Lovelace, U. M.; Wright, R. L.
1983-01-01
The mission, instrumentation, and design concepts for microwave radiometer satellites for continuous crop condition forecasting and monitoring on a global basis are described. Soil moisture affects both crop growth and the dielectric properties of the soil, and can be quantified by analysis of reflected radiance passively received by orbiting spacecraft. A dedicated satellite reading a swath 200 km across, with 1 km and 1 K temperature resolution, could track the time-varying changes of solid moisture, sea ice, and water surface temperature. Launched by the Shuttle into an interim orbit, a boost would place the satellite in a 400 or 700 km orbit. Resolution requirements indicate a 45-725 m diam antenna, with 70 dB gain, operating at frequencies of 1.08, 2.03, and 4.95 GHz to ensure atmospheric transparency. Alternative structural concepts include either double-layer tetrahedral or single-layer geodesic trusses as the basic structural members. An analysis of the electrostatic positioning of the parabolic antenna membrane is outlined.
Solar power satellite. Concept evaluation. Activities report. Volume 2: Detailed report
NASA Technical Reports Server (NTRS)
1977-01-01
Comparative data are presented among various design approaches to thermal engine and photovoltaic SPS (Solar Power System) concepts, to provide criteria for selecting the most promising systems for more detailed definition. The major areas of the SPS system to be examined include solar cells, microwave power transmission, transportation, structure, rectenna, energy payback, resources, and environmental issues.
NASA Technical Reports Server (NTRS)
Ho, P. T.; Coban, E.; Pelose, J.
1983-01-01
The design and development of a unique coupler crossbar 20 x 20 microwave switch matrix are described. The test results of the proof of concept model that meets the requirements for a high speed satellite switched, time division multiple access (SS-TDMA) system are presented.
Mid-infrared plasmonic inductors: Enhancing inductance with meandering lines
Torres, Víctor; Ortuño, Rubén; Rodríguez-Ulibarri, Pablo; Griol, Amadeu; Martínez, Alejandro; Navarro-Cía, Miguel; Beruete, Miguel; Sorolla, Mario
2014-01-01
We present a mid-infrared inductor that when applied to an extraordinary transmission hole array produces a strong redshift of the resonant peak accompanied by an unprecedented enlargement of the operation bandwidth. The importance of the result is twofold: from a fundamental viewpoint, the direct applicability of equivalent circuit concepts borrowed from microwaves is demonstrated, in frequencies as high as 17 THz upholding unification of plasmonics and microwave concepts and allowing for a simplification of structure design and analysis; in practical terms, a broadband funnelling of infrared radiation with fractional bandwidth and efficiency as high as 97% and 48%, respectively, is achieved through an area less than one hundredth the squared wavelength, which leads to an impressive accessible strong field localization that may be of great interest in sensing applications. PMID:24393839
NASA Astrophysics Data System (ADS)
Degrassie, J. S.
1990-12-01
The Soliton Microwave Generator (SMG) represents a truly new concept in the field of high power microwave (HPM) generation. A nonlinear, dispersive transmission line is used to convert an input voltage pulse into an HPM burst at the output. The system is all solid state and projects to be efficient and reliable. Single module peak powers in excess of 1 GW appear feasible, while combining modular units leads to a 10 GW system projection. This project for the DOE has allowed the first steps necessary in experimentally demonstrating the SMG. The project has ended successfully. A relatively high power lumped circuit SMG operating in the uhf band was designed, fabricated, and tested. The maximum peak output RF power was 16 MW from this line approx. 90 cm in length and 2 sq cm in cross section with a peak power efficiency of roughly 20 percent. Additionally a low power continuous strip-line approach demonstrated microwave generation well into L band, at approx. 2 GHz.
Microwave Nondestructive Evaluation of Dielectric Materials with a Metamaterial Lens
NASA Technical Reports Server (NTRS)
Shreiber, Daniel; Gupta, Mool; Cravey, Robin L.
2008-01-01
A novel microwave Nondestructive Evaluation (NDE) sensor was developed in an attempt to increase the sensitivity of the microwave NDE method for detection of defects small relative to a wavelength. The sensor was designed on the basis of a negative index material (NIM) lens. Characterization of the lens was performed to determine its resonant frequency, index of refraction, focus spot size, and optimal focusing length (for proper sample location). A sub-wavelength spot size (3 dB) of 0.48 lambda was obtained. The proof of concept for the sensor was achieved when a fiberglass sample with a 3 mm diameter through hole (perpendicular to the propagation direction of the wave) was tested. The hole was successfully detected with an 8.2 cm wavelength electromagnetic wave. This method is able to detect a defect that is 0.037 lambda. This method has certain advantages over other far field and near field microwave NDE methods currently in use.
Joyner Melito, Helen S; Jones, Kari E; Rasco, Barbara A
2016-06-01
Pasta presents a challenge to microwave processing due to its unique cooking requirements. The objective of this study was to determine the effects of microwave processing on pasta physicochemical and mechanical properties. Fettuccine pasta was parboiled for selected times, then pasteurized using a Microwave Assisted Pasteurization System and stored under refrigeration for 1 wk. Samples were analyzed using microscopy, mechanical testing, and chemical analyses after storage. While no significant differences were observed for free amylose among fresh samples, samples parboiled for ≤6 min had significantly higher free amylose, suggesting reduced starch retrogradation. Increased heat treatment increased degree of protein polymerization, observed in microstructures as increased gluten strand thickness and network density. Firmness and extensibility increased with increased parboil time; however, extension data indicated an overall weakening of microwave-treated pasta regardless of total cooking time. Overall, microwave pasteurization was shown to be a viable cooking method for pasta. © 2016 Institute of Food Technologists®
Data processing for the DMSP microwave radiometer system
NASA Technical Reports Server (NTRS)
Rigone, J. L.; Stogryn, A. P.
1977-01-01
A software program was developed and tested to process microwave radiometry data to be acquired by the microwave sensor (SSM/T) on the Defense Meteorological Satellite Program spacecraft. The SSM/T 7-channel microwave radiometer and systems data will be data-linked to Air Force Global Weather Central (AFGWC) where they will be merged with ephemeris data prior to product processing for use in the AFGWC upper air data base (UADB). The overall system utilizes an integrated design to provide atmospheric temperature soundings for global applications. The fully automated processing at AFGWC was accomplished by four related computer processor programs to produce compatible UADB soundings, evaluate system performance, and update the a priori developed inversion matrices. Tests with simulated data produced results significantly better than climatology.
NASA Technical Reports Server (NTRS)
Wilheit, Thomas T.; Yamasaki, Hiromichi
1990-01-01
The two microwave radiometers for TRMM are designed to measure thermal microwave radiation upwelling from the earth. The Electrically Scanning Microwave Radiometer (ESMR) scans from 50 deg to the left through nadir to 50 deg to the right in 78 steps with no moving mechanical parts in a band centered at 19.35 GHz. The TRMM concept uses the radar to develop a climatology of rain-layer thickness which can be used for the interpretation of the radiometer data over a swath wider than the radar. The ESMR data are useful for estimating rain intensity only over an ocean background. The Special Sensor Microwave/Imager (SSM/I), which scans conically with three dual polarized channels at 19, 37, and 85 GHz and a single polarized channel at 22 GHz, provides a wider range of rainfall intensities. The SSM/I spins about an axis parallel to the local spacecraft vector and 128 uniformly spaced samples of the 85 GHz data are taken on each scan over a 112-deg scan region simultaneously with 64 samples of the other frequencies.
Uniform batch processing using microwaves
NASA Technical Reports Server (NTRS)
Barmatz, Martin B. (Inventor); Jackson, Henry W. (Inventor)
2000-01-01
A microwave oven and microwave heating method generates microwaves within a cavity in a predetermined mode such that there is a known region of uniform microwave field. Samples placed in the region will then be heated in a relatively identical manner. Where perturbations induced by the samples are significant, samples are arranged in a symmetrical distribution so that the cumulative perturbation at each sample location is the same.
Improved Tubulars for Better Economics in Deep Gas Well Drilling Using Microwave Technology
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dinesh Agrawal
2006-09-30
The main objective of the entire research program has been to improve the rate-of-penetration in deep hostile environments by improving the life cycle and performance of coiled-tubing, an important component of a deep well drilling system for oil and gas exploration, by utilizing the latest developments in the microwave materials technology. Based on the results of the Phase I and insurmountable difficulties faced in the extrusion and de-waxing processes, the approach of achieving the goals of the program was slightly changed in the Phase II in which an approach of microwave sintering combined with Cold Isostatic Press (CIP) and joiningmore » (by induction or microwave) has been adopted. This process can be developed into a semicontinuous sintering process if the CIP can produce parts fast enough to match the microwave sintering rates. The main objective of the Phase II research program is to demonstrate the potential to economically manufacture microwave processed coiled tubing with improved performance for extended useful life under hostile coiled tubing drilling conditions. After the completion of the Phase II, it is concluded that scale up and sintering of a thin wall common O.D. size tubing that is widely used in the market is still to be proved and further experimentation and refinement of the sintering process is needed in Phase III. Actual manufacturing capability of microwave sintered, industrial quality, full length tubing will most likely require several million dollars of investment.« less
Improved Tubulars for Better Economics in Deep Gas Well Drilling using Microwave Technology
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dinesh Agrawal; Paul Gigl; Mark Hunt
2007-07-31
The main objective of the entire research program has been to improve the rate-of-penetration in deep hostile environments by improving the life cycle and performance of coiled-tubing, an important component of a deep well drilling system for oil and gas exploration, by utilizing the latest developments in the microwave materials technology. Based on the results of the Phase I and insurmountable difficulties faced in the extrusion and de-waxing processes, the approach of achieving the goals of the program was slightly changed in the Phase II in which an approach of microwave sintering combined with Cold Isostatic Press (CIP) and joiningmore » (by induction or microwave) has been adopted. This process can be developed into a semicontinuous sintering process if the CIP can produce parts fast enough to match the microwave sintering rates. The main objective of the Phase II research program is to demonstrate the potential to economically manufacture microwave processed coiled tubing with improved performance for extended useful life under hostile coiled tubing drilling conditions. After the completion of the Phase II, it is concluded that scale up and sintering of a thin wall common O.D. size tubing that is widely used in the market is still to be proved and further experimentation and refinement of the sintering process is needed in Phase III. Actual manufacturing capability of microwave sintered, industrial quality, full length tubing will most likely require several million dollars of investment.« less
Helium microwave-induced plasmas for element specific detection in chromatography
NASA Astrophysics Data System (ADS)
Long, Gary L.; Ducatte, Gerald R.; Lancaster, Edwin D.
1994-01-01
This review addresses the development and use of the microwave-induced plasma (MIP) using optical emission spectrometry for the purpose of element specific detection in chromatography. The plasma source that is the focus of this article is the He-based MIP operated at atmospheric pressure. The forms of chromatography that are covered include gas chromatography, liquid chromatography, and supercritical fluid chromatography. Concepts in plasma cavity design and the chromatograph-plasma interface are discussed along with the application of these hybrid systems to analytical determinations.
Application of microwave energy in the control of DPM, oxides of nitrogen and VOC emissions
NASA Astrophysics Data System (ADS)
Pallavkar, Sameer M.
The emissions of DPM (diesel particulate matter), NOx (oxides of nitrogen), and toxic VOCs (volatile organic compounds) from diesel engine exhaust gases and other sources such as chemical process industry and manufacturing industry have been a great environmental and health concern. Most control technologies for these emissions require elevated temperatures. The use of microwave energy as a source of heat energy, however, has not been fully explored. In this study, the microwave energy was used as the energy source in three separate emission control processes, namely, the regeneration of diesel particulate filter (DPF) for DPM control, the NOx reduction using a platinum catalyst, and the VOC destruction involving a ceramic based material. The study has demonstrated that microwave heating is an effective method in providing heat for the studied processes. The control efficiencies associated with the microwave-assisted processes have been observed to be high and acceptable. Further research, however, is required for the commercial use of these technologies.
NASA Astrophysics Data System (ADS)
Zhang, Wei; Rao, Qiaomeng
2018-01-01
In order to solve the problem of high speed, large capacity and limited spectrum resources of satellite communication network, a double-layered satellite network with global seamless coverage based on laser and microwave hybrid links is proposed in this paper. By analyzing the characteristics of the double-layered satellite network with laser and microwave hybrid links, an effectiveness evaluation index system for the network is established. And then, the fuzzy analytic hierarchy process, which combines the analytic hierarchy process and the fuzzy comprehensive evaluation theory, is used to evaluate the effectiveness of the double-layered satellite network with laser and microwave hybrid links. Furthermore, the evaluation result of the proposed hybrid link network is obtained by simulation. The effectiveness evaluation process of the proposed double-layered satellite network with laser and microwave hybrid links can help to optimize the design of hybrid link double-layered satellite network and improve the operating efficiency of the satellite system.
Analytical evaluation of ILM sensors
NASA Technical Reports Server (NTRS)
Kirk, R. J.; Johnson, C. E.; Doty, D.
1975-01-01
Functional requirements and operating environment constraints for an Independent Landing Monitor for aircraft landings in Cat. 2/3 weather conditions are identified and translated into specific sensing requirements. State-of-the-art capabilities of radar, TV, FLIR, multilateration, microwave radiometry, interferometry, redundant MLS and nuclear sensing concepts are evaluated and compared to the requirements. Concepts showing the best ILM potential are identified elsewhere in this series. Three specific concepts are identified: bistatic radar, complex interferometry, and circular synthetic aperture.
Microwave applicator for in-drum processing of radioactive waste slurry
White, Terry L.
1994-01-01
A microwave applicator for processing of radioactive waste slurry uses a waveguide network which splits an input microwave of TE.sub.10 rectangular mode to TE.sub.01 circular mode. A cylindrical body has four openings, each receiving 1/4 of the power input. The waveguide network includes a plurality of splitters to effect the 1/4 divisions of power.
A comparison of microwave versus direct solar heating for lunar brick production
NASA Technical Reports Server (NTRS)
Yankee, S. J.; Strenski, D. G.; Pletka, B. J.; Patil, D. S.; Mutsuddy, B. C.
1990-01-01
Two processing techniques considered suitable for producing bricks from lunar regolith are examined: direct solar heating and microwave heating. An analysis was performed to compare the two processes in terms of the amount of power and time required to fabricate bricks of various sizes. Microwave heating was shown to be significantly faster than solar heating for rapid production of realistic-size bricks. However, the relative simplicity of the solar collector(s) used for the solar furnace compared to the equipment necessary for microwave generation may present an economic tradeoff.
1992-04-27
spectrum analysis . 4. CONCLUSIONS * The nonthermal synthesis of crystalline nanoparticles of aluminum nitride, silicon carbide and silicon nitride is...51 R.E. Newnham, S.J. Jang, M. Xu, and F. Jones Theory of Microwave Interactions with Ceramic Mz terials .... 69 V.M. Kenkre An Analysis of the...the Performance of Microwave Process Systems Which Utilize High Q Cavities ............ 667 J.F. Gerling and G. Fournier Microwave Thermogravimetric
Distributed optical signal processing for microwave photonics subsystems.
Chew, Suen Xin; Nguyen, Linh; Yi, Xiaoke; Song, Shijie; Li, Liwei; Bian, Pengju; Minasian, Robert
2016-03-07
We propose and experimentally demonstrate a novel and practical microwave photonic system that is capable of executing cascaded signal processing functions comprising a microwave photonic bandpass filter and a phase shifter, while providing separate and independent control for each function. The experimental results demonstrate a single bandpass microwave photonic filter with a 3-dB bandwidth of 15 MHz and an out-of-band ratio of over 40 dB, together with a simultaneous RF phase tuning control of 0-215° with less than ± 3 dB filter shape variance.
NASA Technical Reports Server (NTRS)
Subramanyam, G.; Kapoor, V. J.; Chorey, C. M.; Bhasin, K. B.
1993-01-01
A reproducible fabrication process has been established for TlCaBaCuO thin films on LaAlO3 substrates by RF magnetron sputtering and post-deposition processing methods. Electrical transport properties of the thin films were measured on patterned four-probe test devices. Microwave properties of the films were obtained from unloaded Q measurements of all-superconducting ring resonators. This paper describes the processing, electrical and microwave properties of Tl2Ca1Ba2Cu2O(x) 2122-plane phase thin films.
NASA Astrophysics Data System (ADS)
Xu, Xingyuan; Wu, Jiayang; Shoeiby, Mehrdad; Nguyen, Thach G.; Chu, Sai T.; Little, Brent E.; Morandotti, Roberto; Mitchell, Arnan; Moss, David J.
2018-01-01
An arbitrary-order intensity differentiator for high-order microwave signal differentiation is proposed and experimentally demonstrated on a versatile transversal microwave photonic signal processing platform based on integrated Kerr combs. With a CMOS-compatible nonlinear micro-ring resonator, high quality Kerr combs with broad bandwidth and large frequency spacings are generated, enabling a larger number of taps and an increased Nyquist zone. By programming and shaping individual comb lines' power, calculated tap weights are realized, thus achieving a versatile microwave photonic signal processing platform. Arbitrary-order intensity differentiation is demonstrated on the platform. The RF responses are experimentally characterized, and systems demonstrations for Gaussian input signals are also performed.
Densification of LSGM electrolytes using activated microwave sintering
NASA Astrophysics Data System (ADS)
Kesapragada, S. V.; Bhaduri, S. B.; Bhaduri, S.; Singh, P.
Lanthanum gallate doped with alkaline rare earths (LSGM) powders were densified using an activated microwave sintering process for developing a dense stable electrolyte layer for applications in intermediate temperature-solid oxide fuel cells (IT-SOFCs). Due to heat generation in situ, the process of sintering gets activated with faster kinetics compared to a conventional sintering process. The effect of various microwave process parameters on the microstructure and phase formation was studied. The sintered pellets were characterized using scanning electron microscopy-energy dispersive analysis (SEM-EDAX), and X-ray diffraction (XRD). The density of LSGM pellets microwave sintered at 1350 °C for 20 min is greater than 95% theoretical density with a fine grained microstructure (˜2-3 μm) and without the presence of other phase(s).
Investigation of microwave hologram techniques for application to earth resources
NASA Technical Reports Server (NTRS)
Larson, R. W.; Bayma, R. W.; Evans, M. B.; Zelenka, J. S.; Doss, H. W.; Ferris, J. E.
1974-01-01
An investigation of microwave hologram techniques for application to earth resources was conducted during the period from June 1971 to November 1972. The objective of this investigation has been to verify the feasibility of an orbital microwave holographic radar experiment. The primary advantage of microwave hologram radar (MHR) over the side-looking airborne radar (SLAR) is that of aspect or viewing angle; the MHR has a viewing angle identical with that of photography and IR systems. The combination of these systems can thus extend the multispectral analysis concept to span optical through microwave wavelengths. Another advantage is the capacity of the MHR system to generate range contours by operating in a two-frequency mode. It should be clear that along-track resolution of an MHR can be comparable with SLAR systems, but cross-track resolution will be approximately an order of magnitude coarser than the range resolution achievable with an arbitrary SLAR system. An advantage of the MHR over the SLAR is that less average transmitter power is required. This reduction in power results from the much larger receiving apertures associated with MHR systems.
High-Power, High-Temperature Superconductor Technology Development
NASA Technical Reports Server (NTRS)
Bhasin, Kul B.
2005-01-01
Since the first discovery of high-temperature superconductors (HTS) 10 years ago, the most promising areas for their applications in microwave systems have been as passive components for communication systems. Soon after the discovery, experiments showed that passive microwave circuits made from HTS material exceeded the performance of conventional devices for low-power applications and could be 10 times as small or smaller. However, for superconducting microwave components, high-power microwave applications have remained elusive until now. In 1996, DuPont and Com Dev Ltd. developed high-power superconducting materials and components for communication applications under a NASA Lewis Research Center cooperative agreement, NCC3-344 "High Power High Temperature Superconductor (HTS) Technology Development." The agreement was cost shared between the Defense Advanced Research Projects Agency's (DARPA) Technology Reinvestment Program Office and the two industrial partners. It has the following objectives: 1) Material development and characterization for high-power HTS applications; 2) Development and validation of generic high-power microwave components; 3) Development of a proof-of-concept model for a high-power six-channel HTS output multiplexer.
Microwave processing of cement and concrete materials – towards an industrial reality?
DOE Office of Scientific and Technical Information (OSTI.GOV)
Buttress, Adam, E-mail: adam.buttress@nottingham.ac.uk; Jones, Aled; Kingman, Sam
2015-02-15
Each year a substantial body of literature is published on the use of microwave to process cement and concrete materials. Yet to date, very few if any have lead the realisation of a commercial scale industrial system and is the context under which this review has been undertaken. The state-of the–art is evaluated for opportunities, and the key barriers to the development of new microwave-based processing techniques to enhance production, processing and recycling of cement and concrete materials. Applications reviewed include pyro-processing of cement clinker; accelerated curing, non-destructive testing and evaluation (NDT&E), and end-of-life processing including radionuclide decontamination.
A Microwave Photonic Interference Canceller: Architectures, Systems, and Integration
NASA Astrophysics Data System (ADS)
Chang, Matthew P.
This thesis is a comprehensive portfolio of work on a Microwave Photonic Self-Interference Canceller (MPC), a specialized optical system designed to eliminate interference from radio-frequency (RF) receivers. The novelty and value of the microwave photonic system lies in its ability to operate over bandwidths and frequencies that are orders of magnitude larger than what is possible using existing RF technology. The work begins, in 2012, with a discrete fiber-optic microwave photonic canceller, which prior work had demonstrated as a proof-of-concept, and culminates, in 2017, with the first ever monolithically integrated microwave photonic canceller. With an eye towards practical implementation, the thesis establishes novelty through three major project thrusts. (Fig. 1): (1) Extensive RF and system analysis to develop a full understanding of how, and through what mechanisms, MPCs affect an RF receiver. The first investigations of how a microwave photonic canceller performs in an actual wireless environment and a digital radio are also presented. (2) New architectures to improve the performance and functionality of MPCs, based on the analysis performed in Thrust 1. A novel balanced microwave photonic canceller architecture is developed and experimentally demonstrated. The balanced architecture shows significant improvements in link gain, noise figure, and dynamic range. Its main advantage is its ability to suppress common-mode noise and reduce noise figure by increasing the optical power. (3) Monolithic integration of the microwave photonic canceller into a photonic integrated circuit. This thrust presents the progression of integrating individual discrete devices into their semiconductor equivalent, as well as a full functional and RF analysis of the first ever integrated microwave photonic canceller.
Efficient Energy-Storage Concept
NASA Technical Reports Server (NTRS)
Brantley, L. W. J.; Rupp, C.
1982-01-01
Space-platform energy-storage and attitude-stabilization system utilizes variable moment of inertia of two masses attached to ends of retractable cable. System would be brought to its initial operating speed by gravity-gradient pumping. When fully developed, concept could be part of an orbiting solar-energy collection system. Energy would be temporarily stored in system then transmitted to Earth by microwaves or other method.
NASA Technical Reports Server (NTRS)
Maynard, O. E.
1980-01-01
Progress in analysis and design of solid state approaches to the solar power satellite microwave power transmission system is reviewed with special emphasis on the Sandwich concept and the issues of maintenance of low junction temperatures for amplifiers to assure acceptable lifetime. Ten specific issues or considerations are discussed and their resolution or status is presented.
NASA Astrophysics Data System (ADS)
Chang, Jessie S. L.; Chan, Y. S.; Law, M. C.; Leo, C. P.
2017-07-01
The implementation of microwave technology in palm oil processing offers numerous advantages; besides elimination of polluted palm oil mill effluent, it also reduces energy consumption, processing time and space. However, microwave exposure could damage a material’s microstructure which affected the quality of fruit that can be related to its physical structure including the texture and appearance. In this work, empty fruit bunches, mesocarp and kernel was microwave dried and their respective microstructures were examined. The microwave pretreatments were conducted at 100W and 200W and the microstructure investigation of both treated and untreated samples were evaluated using scanning electron microscope. The micrographs demonstrated that microwave does not significantly influence kernel and mesocarp but noticeable change was found on the empty fruit bunches where the sizes of the granular starch were reduced and a small portion of the silica bodies were disrupted. From the experimental data, the microwave irradiation was shown to be efficiently applied on empty fruit bunches followed by mesocarp and kernel as significant weight loss and size reduction was observed after the microwave treatments. The current work showed that microwave treatment did not change the physical surfaces of samples but sample shrinkage is observed.
Smelting Magnesium Metal using a Microwave Pidgeon Method
Wada, Yuji; Fujii, Satoshi; Suzuki, Eiichi; Maitani, Masato M.; Tsubaki, Shuntaro; Chonan, Satoshi; Fukui, Miho; Inazu, Naomi
2017-01-01
Magnesium (Mg) is a lightweight metal with applications in transportation and sustainable battery technologies, but its current production through ore reduction using the conventional Pidgeon process emits large amounts of CO2 and particulate matter (PM2.5). In this work, a novel Pidgeon process driven by microwaves has been developed to produce Mg metal with less energy consumption and no direct CO2 emission. An antenna structure consisting of dolomite as the Mg source and a ferrosilicon antenna as the reducing material was used to confine microwave energy emitted from a magnetron installed in a microwave oven to produce a practical amount of pure Mg metal. This microwave Pidgeon process with an antenna configuration made it possible to produce Mg with an energy consumption of 58.6 GJ/t, corresponding to a 68.6% reduction when compared to the conventional method. PMID:28401910
Microwave off-gas treatment apparatus and process
Schulz, Rebecca L.; Clark, David E.; Wicks, George G.
2003-01-01
The invention discloses a microwave off-gas system in which microwave energy is used to treat gaseous waste. A treatment chamber is used to remediate off-gases from an emission source by passing the off-gases through a susceptor matrix, the matrix being exposed to microwave radiation. The microwave radiation and elevated temperatures within the combustion chamber provide for significant reductions in the qualitative and quantitative emissions of the gas waste stream.
Dudley, Gregory B.; Richert, Ranko
2015-01-01
The use of microwave radiation to drive chemical reactions has become ubiquitous in almost all fields of chemistry. In all of these areas it is principally due to rapid and convenient heating resulting in significantly higher rates of reaction, with other advantages including enhanced product selectivity and control of materials properties. Although microwave heating continues to grow as an enabling technology, fundamental research into the nature of microwave heating has not grown at the same rate. In the case of chemical reactions run in homogeneous solution, particularly synthetic organic reactions, there is considerable controversy over the origins of rate enhancement, with a fundamental question being whether there exist microwave-specific effects, distinct from what can be attained under conventional convective heating, that can accelerate a reaction rate. In this Perspective, we discuss unique aspects of microwave heating of molecules in solution and discuss the origin and nature of microwave-specific effects arising from the process of “selective heating” of reactants in solution. Integral to this discussion is work from the field of dielectric relaxation spectroscopy, which provides a model for selective heating by Debye relaxation processes. The Perspective also includes a critical discussion of hypotheses of non-thermal effects (alternatively classified here as resonant processes) and an outline of specific reaction parameters for chemical systems in which microwave-specific Debye relaxation processes can result in observable reaction rate enhancement. PMID:29308138
On the use of L-band microwave and multi-mission EO data for high resolution soil moisture
NASA Astrophysics Data System (ADS)
Bitar, Ahmad Al; Merlin, Olivier; Malbeteau, Yoann; Molero-Rodenas, Beatriz; Zribi, Mehrez; Sekhar, Muddu; Tomer, Sat Kumar; José Escorihuela, Maria; Stefan, Vivien; Suere, Christophe; Mialon, Arnaud; Kerr, Yann
2017-04-01
Sub-kilometric soil moisture maps have been increasingly mentioned as a need in the scientific community for many applications ranging from agronomical and hydrological (Wood et al. 2011). For example, this type of dataset will become essential to support the current evolution of the land surface and hydrologic modelling communities towards high resolution global modelling. But the ability of the different sensors to monitor soil moisture is different. The L-Band microwave EO provides, at a coarse resolution, the most sensitive information to surface soil moisture when compared to C-Band microwave, optical or C-band SAR. On the other hand the optical and radar sensors provide the spatial distribution of associated variables like surface soil moisture,surface temperature or vegetation leaf area index. This paper describes two complementary fusion approaches to obtain such data from optical or SAR in combination to microwave EO, and more precisely L-Band microwave from the SMOS mission. The first approach, called MAPSM, is based on the use of high resolution soil moisture from SAR and microwave. The two types of sensors have all weather capabilities. The approach uses the new concept of water change capacity (Tomer et al. 2015, 2016). It has been applied to the Berambadi watershed in South-India which is characterised by high cloud coverage. The second approach, called Dispatch, is based on the use of optical sensors in a physical disaggregation approach. It is a well-established approach (Merlin et al. 2012, Malbeteau et al. 2015) that has been implemented operationally in the CATDS (Centre Aval de Traitement des Données SMOS) processing centre (Molero et al. 2016). An analysis on the complementarity of the approaches is discussed. The results show the performances of the methods when compared to existing soil moisture monitoring networks in arid, sub-tropical and humid environments. They emphasis on the need for large inter-comparison studied for the qualification of such products on different climatic zones and on the need of an adaptative multisensor approach. The availability of the recent Sentinel-1 2 and 3 missions from ESA provides an exceptional environment to apply such algorithms at larger scales.
Périno-Issartier, Sandrine; Ginies, Christian; Cravotto, Giancarlo; Chemat, Farid
2013-08-30
A total of eight extraction techniques ranging from conventional methods (hydrodistillation (HD), steam distillation (SD), turbohydrodistillation (THD)), through innovative techniques (ultrasound assisted extraction (US-SD) and finishing with microwave assisted extraction techniques such as In situ microwave-generated hydrodistillation (ISMH), microwave steam distillation (MSD), microwave hydrodiffusion and gravity (MHG), and microwave steam diffusion (MSDf)) were used to extract essential oil from lavandin flowers and their results were compared. Extraction time, yield, essential oil composition and sensorial analysis were considered as the principal terms of comparison. The essential oils extracted using the more innovative processes were quantitatively (yield) and qualitatively (aromatic profile) similar to those obtained from the conventional techniques. The method which gave the best results was the microwave hydrodiffusion and gravity (MHG) method which gave reduced extraction time (30min against 220min for SD) and gave no differences in essential oil yield and sensorial perception. Copyright © 2013 Elsevier B.V. All rights reserved.
Wu, Lijie; Song, Ying; Hu, Mingzhu; Xu, Xu; Zhang, Hanqi; Yu, Aimin; Ma, Qiang; Wang, Ziming
2015-03-01
A simple and efficient integrated microwave processing system (IMPS) was firstly assembled and validated for the extraction of organophosphorus pesticides in fresh vegetables. Two processes under microwave irradiation, dynamic microwave-assisted extraction (DMAE) and microwave-accelerated solvent elution (MASE), were integrated for simplifying the pretreatment of the sample. Extraction, separation, enrichment and elution were finished in a simple step. The organophosphorus pesticides were extracted from the fresh vegetables into hexane with DMAE, and then the extract was directly introduced into the enrichment column packed with active carbon fiber (ACF). Subsequently, the organophosphorus pesticides trapped on the ACF were eluted with ethyl acetate under microwave irradiation. No further filtration or cleanup was required before analysis of the eluate by gas chromatography-mass spectrometry. Some experimental parameters affecting extraction efficiency were investigated and optimized, such as microwave output power, kind and volume of extraction solvent, extraction time, amount of sorbent, elution microwave power, kind and volume of elution solvent, elution solvent flow rate. Under the optimized conditions, the recoveries were in the range of 71.5-105.2%, and the relative standard deviations were lower than 11.6%. The experiment results prove that the present method is a simple and effective sample preparation method for the determination of pesticides in solid samples. Copyright © 2014 Elsevier B.V. All rights reserved.
Development of CVD Diamond for Industrial Applications Final Report CRADA No. TC-2047-02
DOE Office of Scientific and Technical Information (OSTI.GOV)
Caplan, M.; Olstad, R.; Jory, H.
2017-09-08
This project was a collaborative effort to develop and demonstrate a new millimeter microwave assisted chemical vapor deposition(CVD) process for manufacturing large diamond disks with greatly reduced processing times and costs from those now available. In the CVD process, carbon based gases (methane) and hydrogen are dissociated into plasma using microwave discharge and then deposited layer by layer as polycrystalline diamond onto a substrate. The available low frequency (2.45GHz) microwave sources used elsewhere (De Beers) result in low density plasmas and low deposition rates: 4 inch diamond disks take 6-8 weeks to process. The new system developed in this projectmore » uses a high frequency 30GHz Gyrotron as the microwave source and a quasi-optical CVD chamber resulting in a much higher density plasma which greatly reduced the diamond processing times (1-2 weeks)« less
Microwave applicator for in-drum processing of radioactive waste slurry
White, T.L.
1994-06-28
A microwave applicator for processing of radioactive waste slurry uses a waveguide network which splits an input microwave of TE[sub 10] rectangular mode to TE[sub 01] circular mode. A cylindrical body has four openings, each receiving 1/4 of the power input. The waveguide network includes a plurality of splitters to effect the 1/4 divisions of power. 4 figures.
NASA Technical Reports Server (NTRS)
Davis, H. P.
1978-01-01
The solar power satellite (SPS) concept, under evaluation by NASA since 1974, is discussed. A typical system providing a total of 10,000 MW of electrical power to the ground receiving stations is considered. Energy conversion systems, including the photovoltaic device category using single-crystal silicon cells, are taken into account, as are the 2.45-GHz microwave power-transmission link and the ground receiver (or rectenna). Concepts involving space construction of the satellite's large structures (5 x 25 km) are described, noting that a process similar to the familiar roll-forming of light sheet metal parts has been adapted to the space environment. Transportation vehicles are discussed, including the Space Shuttle planned to reach 60 flights per year by the mid 1980's. Electrical power forecasts and advanced systems cost projections are analyzed, together with a description of costs estimates. The indirect economics of energy research and development, and the present NASA/DOE SPS program are noted.
GaN Microwave DC-DC Converters
NASA Astrophysics Data System (ADS)
Ramos Franco, Ignacio
Increasing the operating frequency of switching converters can have a direct impact in the miniaturization and integration of power converters. The size of energy-storage passive components and the difficulty to integrate them with the rest of the circuitry is a major challenge in the development of a fully integrated power supply on a chip. The work presented in this thesis attempts to address some of the difficulties encountered in the design of high-frequency converters by applying concepts and techniques usually used in the design of high-efficiency power amplifiers and high-efficiency rectifiers at microwave frequencies. The main focus is in the analysis, design, and characterization of dc-dc converters operating at microwave frequencies in the low gigahertz range. The concept of PA-rectifier duality, where a high-efficiency power amplifier operates as a high-efficiency rectifier is investigated through non-linear simulations and experimentally validated. Additionally, the concept of a self-synchronous rectifier, where a transistor rectifier operates synchronously without the need of a RF source or driver is demonstrated. A theoretical analysis of a class-E self-synchronous rectifier is presented and validated through non-linear simulations and experiments. Two GaN class-E2 dc-dc converters operating at a switching frequency of 1 and 1.2 GHz are demonstrated. The converters achieve 80 % and 75 % dc-dc efficiency respectively and are among the highest-frequency and highest-efficiency reported in the literature. The application of the concepts established in the analysis of a self-synchronous rectifier to a power amplifier culminated in the development of an oscillating, self-synchronous class-E 2 dc-dc converter. Finally, a proof-of-concept fully integrated GaN MMIC class-E 2 dc-dc converter switching at 4.6 GHz is demonstrated for the first time to the best of our knowledge. The 3.8 mm x 2.6 mm chip contains distributed inductors and does not require any external components. The maximum measured dc-dc efficiency is approximately 45%.
Improved Tubulars for Better Economics in Deep Gas Well Drilling using Microwave Technology
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dinesh Agrawal; Paul Gigl; Mahlon Dennis
2006-02-01
The objective of the research program has been to improve the rate-of-penetration in deep hostile environments by improving the life cycle and performance of coiled-tubing, an important component of a deep well drilling system for oil and gas exploration. The current process of the manufacture long tubular steel products consists of shaping the tube from flat strip, welding the seam and sections into lengths that can be miles long, and coiling onto reels. However, the welds, that are a weak point, now limit the performance of the coil tubing. This is not only from a toughness standpoint but also frommore » a corrosion standpoint. By utilizing the latest developments in the sintering of materials with microwave energy and powder metal extrusion technology for the manufacture of seamless coiled tubing and other tubular products, these problems can be eliminated. The project is therefore to develop a continuous microwave process to sinter continuously steel tubulars and butt-join them using microwave/induction process. The program started about three years ago and now we are in the middle of Phase II. In Phase I (which ended in February 2005) a feasibility study of the extrusion process of steel powder and continuously sinter the extruded tubing was conducted. The research program has been based on the development of microwave technology to process tubular specimens of powder metals, especially steels. The existing microwave systems at the Materials Research Laboratory (MRL) and Dennis Tool Company (DTC) were suitably modified to process tubular small specimens. The precursor powder metals were either extruded or cold isostatically pressed (CIP) to form tubular specimens. After conducting an extensive and systematic investigation of extrusion process for producing long tubes, it was determined that there were several difficulties in adopting extrusion process and it cannot be economically used for producing thousands of feet long green tubing. Therefore, in the Phase II the approach was modified to the microwave sintering combined with Cold Isostatic Press (CIP) and joining (by induction or microwave). This process can be developed into a semi-continuous sintering process if the CIP can produce parts fast enough to match the microwave sintering rates. This report summarizes the progress made to-date in this new approach. The final steel composition matching with the Quality tubing's QT-16Cr80 was short listed and used for all experiments. Bonding experiments using 4 different braze powders were conducted and the process optimized to obtain high degree of bonding strength. For fabrication of green tubulars a large CIP unit was acquired and tested. This equipment is located at the Dennis Tool facility in Houston. Microwave sintering experiments for continuous processing of the CIPed tubes are under progress in order to identify the optimum conditions. There have been some reproducibility problems and we are at present working to resolve these problems.« less
Optimization of continuous and intermittent microwave extraction of pectin from banana peels.
Swamy, Gabriela John; Muthukumarappan, Kasiviswanathan
2017-04-01
Continuous and intermittent microwave-assisted extractions were used to extract pectin from banana peels. Extraction parameters which were employed in the continuous process were microwave power (300-900W), time (100-300s), pH (1-3) and in the intermittent process were microwave power (300-900W), pulse ratio (0.5-1), pH (1-3). The independent factors were optimized with the Box-Behnken response surface design (BBD) (three factor three level) with the desirability function methodology. Results indicate that the independent factors have substantial effect on the pectin yield. Optimized solutions for highest pectin yield (2.18%) from banana peels were obtained with microwave power of 900W, time 100s and pH 3.00 in the continuous method while the intermittent process yielded the highest pectin content (2.58%) at microwave power of 900W, pulse ratio of 0.5 and pH of 3.00. The optimized conditions were validated and close agreement was observed with the validation experiment and predicted value. Copyright © 2016 Elsevier Ltd. All rights reserved.
Schüßler, M; Puentes, M; Dubuc, D; Grenier, K; Jakoby, R
2012-01-01
The paper presents a technique that allows the simultaneous monitoring of the dielectric properties of liquids in microfluidic channels at microwave frequencies. It is capable of being integrated within the lab-on-a-chip concept and uses a composite right/left-handed transmission line resonator which is detuned by the dielectric loading of the liquids in the channels. By monitoring the change in the resonance spectrum of the resonator the loading profile can be derived with the multi-resonant perturbation method. From the value of the dielectric constant inference on the substances like cells or chemicals in the channels can be drawn. The paper presents concept, design, fabrication and characterization of prototype sensors. The sensors have been designed to operate between 20 and 30 GHz and were tested with water and water ethanol mixtures.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Momeni Hasan Abadi, Seyed Mohamad Amin, E-mail: momenihasana@wisc.edu; Booske, John H., E-mail: jhbooske@wisc.edu; Behdad, Nader, E-mail: behdad@wisc.edu
2016-08-07
We present a new approach to perform beam steering in reflecting type apertures such as reflectarray antennas. The proposed technique exploits macro-scale mechanical movements of parts of the structure to achieve two-dimensional microwave beam steering without using any solid-state devices or phase shifters integrated within the aperture of the antenna. The principles of operation of this microwave beam steering technique are demonstrated in an aperture occupied by ground-plane-backed, sub-wavelength capacitive patches with identical dimensions. We demonstrate that by tilting the ground plane underneath the entire patch array layer, a phase shift gradient can be created over the aperture of themore » reflectarray that determines the direction of the radiated beam. Changing the direction and slope of this phase shift gradient on the aperture allows for performing beam steering in two dimensions using only one control parameter (i.e., tilt vector of the ground plane). A proof-of-concept prototype of the structure operating at X-band is designed, fabricated, and experimentally characterized. Experiments demonstrate that small mechanical movements of the ground plane (in the order of 0.05λ{sub 0}) can be used to steer the beam direction in the ±10° in two dimensions. It is also demonstrated that this beam scanning range can be greatly enhanced to ±30° by applying this concept to the same structure when its ground plane is segmented.« less
Akkarachaneeyakorn, S; Laguerre, J C; Tattiyakul, J; Neugnot, B; Boivin, P; Morales, F J; Birlouez-Aragon, I
2010-05-01
To produce specialty malt, malts were roasted by combined microwave-hot air at various specific microwave powers (SP = 2.5 to 3 W/g), microwave heating times (t(mw) = 3.3 to 3.5 min), oven temperatures (T(oven) = 180 to 220 degrees C), and oven heating times (t(oven) = 60 to 150 min). The response variables, color, energy consumption by microwave (E(mw)) and oven (E(oven)), total energy consumption (E(tot)), quantity of neo-formed contaminants (NFCs), which include hydroxymethylfurfural, furfural, furan, and acrylamide were determined. Response surface methodology (RSM) was performed to analyze and predict the optimum conditions for the specialty malt. Production using combined microwave-hot air roasting process based on minimum energy consumption and level of NFCs. At 95% confident level, SP, T(oven), and t(oven) were the most influencing effects with regard to E(tot), whereas t(mw) did not affect E(tot). T(oven) and t(oven) significantly affected malt color. Only T(oven) significantly influenced the NFCs content. The optimum parameters were: SP = 2.68 W/g for 3.44 min, T(oven) = 206 degrees C for 136 min for coffee malt, SP = 2.5 W/g for 3.48 min, T(oven) = 214 degrees C for 136 min for chocolate malt, and SP = 2.5 W/g for 3.48 min, T(oven) = 211 degrees C for 150 min for black malt. Comparing with conventional process, combined microwave-hot air reduced E(tot) by approximately 40%, 26%, and 26% for coffee, chocolate, and black malts, respectively, and reduced HMF, furfural, furan, and acrylamide contents by 40%, 18%, 23%, and 95%, respectively, for black malt. An important goal for research institutions and the brewery industry is to produce colored malt by combining microwave and hot air roasting, while saving energy, getting desirable color, and avoiding the formation of carcinogenic and toxic neo-formed contaminants (NFCs). Therefore, one objective of this study was to compare energy consumption and content of NFCs during roasting of malt by hot air-only and combined microwave-hot air processes as well as to determine the effect of specific power, microwave processing time, oven temperature, and oven processing time during combined microwave-hot air roasting. Another objective was to predict the optimum conditions for the production of coffee, chocolate, and black malts.
New insights into a hot environment for early life.
Dai, Jianghong
2017-06-01
Investigating the physical-chemical setting of early life is a challenging task. In this contribution, the author attempted to introduce a provocative concept from cosmology - cosmic microwave background (CMB), which is the residual thermal radiation from a hot early Universe - to the field. For this purpose, the author revisited a recently deduced biomarker, the 1,6-anhydro bond of sugars in bacteria. In vitro, the 1,6-anhydro bond of sugars reflects and captures residual thermal radiation in thermochemical processes and therefore is somewhat analogous to CMB. In vivo, the formation process of the 1,6-anhydro bond of sugars on the peptidoglycan of prokaryotic cell wall is parallel to in vitro processes, suggesting that the 1,6-anhydro bond is an ideal CMB-like analogue that suggests a hot setting for early life. The CMB-like 1,6-anhydro bond is involved in the life cycle of viruses and the metabolism of eukaryotes, underlying this notion. From a novel perspective, the application of the concept of the CMB to microbial ecology may give new insights into a hot environment, such as hydrothermal vents, supporting early life and providing hypotheses to test in molecular palaeontology. © 2017 Society for Applied Microbiology and John Wiley & Sons Ltd.
Research progress on the effect of microwave sterilization on agricultural products quality
NASA Astrophysics Data System (ADS)
Zhu, Xiang-hao; Yang, Yu-xia; Duan, Zhen-hua
2018-02-01
Different sterilization methods have different effects on the quality of agricultural products, microwave sterilization inhibited or eliminated microorganism by the use of microwave thermal effects and non-thermal. In this paper, the effects of microwave sterilization on the quality of fruits and vegetables, dairy, meat, grain, aquatic products and other agricultural products were introduced, and the possible development trends of microwave sterilization in agricultural products processing application were put forward.
A Microwave Thermostatic Reactor for Processing Liquid Materials Based on a Heat-Exchanger.
Zhou, Yongqiang; Zhang, Chun; Xie, Tian; Hong, Tao; Zhu, Huacheng; Yang, Yang; Liu, Changjun; Huang, Kama
2017-10-08
Microwaves have been widely used in the treatment of different materials. However, the existing adjustable power thermostatic reactors cannot be used to analyze materials characteristics under microwave effects. In this paper, a microwave thermostatic chemical reactor for processing liquid materials is proposed, by controlling the velocity of coolant based on PLC (programmable logic controller) in different liquid under different constant electric field intensity. A nonpolar coolant (Polydimethylsiloxane), which is completely microwave transparent, is employed to cool the liquid materials. Experiments are performed to measure the liquid temperature using optical fibers, the results show that the precision of temperature control is at the range of ±0.5 °C. Compared with the adjustable power thermostatic control system, the effect of electric field changes on material properties are avoided and it also can be used to detect the properties of liquid materials and special microwave effects.
Red palm oil production by microwave irradiation
NASA Astrophysics Data System (ADS)
Sarah, M.; Widyastuti, S.; Ningsih, D.
2018-02-01
Preliminary study of red palm oil (RPO) production from palm fruitlets by microwave irradiation carried out in domestic microwave oven equipped with thermocouple. The various mass of fruitlets (800, 900 and 1000 g) were heated for 10-18 minutes with 2 minutes interval and microwave power of 400, 560 and 800 Watt respectively. Heated fruitlets were pressed by hydraulic presser to obtain RPO. This study observed heating time parameter was more crucial to RPO quality rather than temperature. Prolonged heating degraded carotenoids in the fruitlets during heating process yielded less carotenoids content in the palm oil. The best time and microwave power combination to produce RPO in this study was 14 minutes and 800 Watt respectively which yielded 11.67% RPO with 1.27% FFA content and carotenoids concentration of 1219.37 ppm. Overall, RPO production by microwave irradiation proceeded faster as compared to conventional process.
A Microwave Thermostatic Reactor for Processing Liquid Materials Based on a Heat-Exchanger
Zhou, Yongqiang; Zhang, Chun; Xie, Tian; Hong, Tao; Yang, Yang; Liu, Changjun; Huang, Kama
2017-01-01
Microwaves have been widely used in the treatment of different materials. However, the existing adjustable power thermostatic reactors cannot be used to analyze materials characteristics under microwave effects. In this paper, a microwave thermostatic chemical reactor for processing liquid materials is proposed, by controlling the velocity of coolant based on PLC (programmable logic controller) in different liquid under different constant electric field intensity. A nonpolar coolant (Polydimethylsiloxane), which is completely microwave transparent, is employed to cool the liquid materials. Experiments are performed to measure the liquid temperature using optical fibers, the results show that the precision of temperature control is at the range of ±0.5 °C. Compared with the adjustable power thermostatic control system, the effect of electric field changes on material properties are avoided and it also can be used to detect the properties of liquid materials and special microwave effects. PMID:28991195
Microwave Extraction of Volatiles for Mars Science and ISRU
NASA Technical Reports Server (NTRS)
Ethridge, Edwin C.; Kaulker, William F.
2012-01-01
The greatest advantage of microwave heating for volatiles extraction is that excavation can be greatly reduced. Surface support operations would be simple consisting of rovers with drilling capability for insertion of microwaves down bore holes to heat at desired depths. The rovers would also provide support to scientific instruments for volatiles analysis and for volatiles collection and storage. The process has the potential for a much lower mass and a less complex system than other in-situ processes. Microwave energy penetrates the surface heating within with subsequent sublimation of water or decomposition of volatile containing minerals. On Mars the volatiles should migrate to the surface to be captured with a cold trap. The water extraction and transport process coupled with atmospheric CO2 collection could readily lead to a propellant production process, H2O + CO2 yields CH4 + O2.
Electrical detection of microwave assisted magnetization reversal by spin pumping
DOE Office of Scientific and Technical Information (OSTI.GOV)
Rao, Siddharth; Subhra Mukherjee, Sankha; Elyasi, Mehrdad
2014-03-24
Microwave assisted magnetization reversal has been investigated in a bilayer system of Pt/ferromagnet by detecting a change in the polarity of the spin pumping signal. The reversal process is studied in two material systems, Pt/CoFeB and Pt/NiFe, for different aspect ratios. The onset of the switching behavior is indicated by a sharp transition in the spin pumping voltage. At a threshold value of the external field, the switching process changes from partial to full reversal with increasing microwave power. The proposed method provides a simple way to detect microwave assisted magnetization reversal.
Graphene-Based Josephson-Junction Single-Photon Detector
NASA Astrophysics Data System (ADS)
Walsh, Evan D.; Efetov, Dmitri K.; Lee, Gil-Ho; Heuck, Mikkel; Crossno, Jesse; Ohki, Thomas A.; Kim, Philip; Englund, Dirk; Fong, Kin Chung
2017-08-01
We propose to use graphene-based Josephson junctions (GJJs) to detect single photons in a wide electromagnetic spectrum from visible to radio frequencies. Our approach takes advantage of the exceptionally low electronic heat capacity of monolayer graphene and its constricted thermal conductance to its phonon degrees of freedom. Such a system could provide high-sensitivity photon detection required for research areas including quantum information processing and radio astronomy. As an example, we present our device concepts for GJJ single-photon detectors in both the microwave and infrared regimes. The dark count rate and intrinsic quantum efficiency are computed based on parameters from a measured GJJ, demonstrating feasibility within existing technologies.
Photoluminescence study of carbon dots from ginger and galangal herbs using microwave technique
NASA Astrophysics Data System (ADS)
Isnaeni; Rahmawati, I.; Intan, R.; Zakaria, M.
2018-03-01
Carbon dots are new type of fluorescent nanoparticle that can be synthesis easily from natural sources. We have synthesized carbon dots from ginger and galangal herbs using microwave technique and studied their optical properties. We synthesized colloidal carbon dots in water solvent by varying microwave processing time. UV-Vis absorbance, photoluminescence, time-resolved photoluminescence, and transmission electron microscope were utilized to study properties of carbon dots. We found that microwave processing time significantly affect optical properties of synthesized carbon dots. UV-Vis absorbance spectra and time-resolved photoluminescence results show that luminescent of carbon dots is dominated by recombination process from n-π* surface energy level. With further development, these carbon dots are potential for several applications.
Optically pre-amplified lidar-radar
NASA Astrophysics Data System (ADS)
Morvan, Loic; Dolfi, Daniel; Huignard, Jean-Pierre
2001-09-01
We present the concept of an optically pre-amplified intensity modulated lidar, where the modulation frequency is in the microwave domain (1-10 GHz). Such a system permits to combine directivity of laser beams with mature radar processing. As an intensity modulated or dual-frequency laser beam is directed on a target, the backscattered intensity is collected by an optical system, pass through an optical preamplifier, and is detected on a high speed photodiode in a direct detection scheme. A radar type processing permits then to extract range, speed and identification information. The association of spatially multimode amplifier and direct detection allows low sensitivity to atmospheric turbulence and large field of view. We demonstrated theoretically that optical pre-amplification can greatly enhance sensitivity, even in spatially multimode amplifiers, such as free-space amplifier or multimode doped fiber. Computed range estimates based on this concept are presented. Laboratory demonstrations using 1 to 3 GHz modulated laser sources and >20 dB gain in multimode amplifiers are detailed. Preliminary experimental results on range and speed measurements and possible use for large amplitude vibrometry will be presented.
Amorphization within the tablet: Using microwave irradiation to form a glass solution in situ.
Doreth, Maria; Hussein, Murtadha Abdul; Priemel, Petra A; Grohganz, Holger; Holm, René; Lopez de Diego, Heidi; Rades, Thomas; Löbmann, Korbinian
2017-03-15
In situ amorphization is a concept that allows to amorphize a given drug in its final dosage form right before administration. Hence, this approach can potentially be used to circumvent recrystallization issues that other amorphous formulation approaches are facing during storage. In this study, the feasibility of microwave irradiation to prepare amorphous solid dispersions (glass solutions) in situ was investigated. Indomethacin (IND) and polyvinylpyrrolidone K12 (PVP) were tableted at a 1:2 (w/w) ratio. In order to study the influence of moisture content and energy input on the degree of amorphization, tablet formulations were stored at different relative humidity (32, 43 and 54% RH) and subsequently microwaved using nine different power-time combinations up to a maximum energy input of 90kJ. XRPD results showed that up to 80% (w/w) of IND could be amorphized within the tablet. mDSC measurements revealed that with increasing microwaving power and time, the fractions of crystalline IND and amorphous PVP reduced, whereas the amount of in situ formed IND-PVP glass solution increased. Intrinsic dissolution showed that the dissolution rate of the microwaved solid dispersion was similar to that of a quench cooled, fully amorphous glass solution even though the microwaved samples contained residual crystalline IND. Copyright © 2017 Elsevier B.V. All rights reserved.
Emerging Trends in Microwave Processing of Spices and Herbs.
Rahath Kubra, Ismail; Kumar, Devender; Jagan Mohan Rao, Lingamallu
2016-10-02
Today, spices are integral part of our food as they provide sensory attributes such as aroma, color, flavour and taste to food. Further their antimicrobial, antioxidant, pharmaceutical and nutritional properties are also well known. Since spices are seasonal so their availability can be extended year round by adopting different preservation techniques. Drying and extraction are most important methods for preservation and value addition to spices. There are different techniques for drying of spices with their own advantages and limitations. A novel, non-conventional technique for drying of spices is use of microwave radiation. This technique proved to be very rapid, and also provide a good quality product. Similarly, there are a number of non-conventional extraction methods in use that are all, in principle, solid-liquid extractions but which introduce some form of additional energy to the process in order to facilitate the transfer of analytes from sample to solvent. This paper reviews latest advances in the use of microwave energy for drying of spices and herbs. Also, the review describes the potential application of microwave energy for extraction of essential oil/bioactive components from spices and herbs and the advantages of microwave-assisted process over the other extraction processes generally employed for extraction. It also showcases some recent research results on microwave drying/extraction from spices and herbs.
MICROWAVES IN GREEN AND SUSTAINABLE CHEMISTRY
In this chapter, we have outlined roles of microwave chemistry in the establishment of green and sustainable chemistry. Many examples, mostly from the authors' laboratories, have been presented of green microwave processes under solvent-free conditions or with solvents, including...
NASA Astrophysics Data System (ADS)
Raghuwanshi, Sanjeev Kumar; Srivastav, Akash
2017-12-01
Microwave photonics system provides high bandwidth capabilities of fiber optic systems and also contains the ability to provide interconnect transmission properties, which are virtually independent of length. The low-loss wide bandwidth capability of optoelectronic systems makes them attractive for the transmission and processing of microwave signals, while the development of high-capacity optical communication systems has required the use of microwave techniques in optical transmitters and receivers. These two strands have led to the development of the research area of microwave photonics. So, we can considered microwave photonics as the field that studies the interaction between microwave and optical waves for applications such as communications, radars, sensors and instrumentations. In this paper we have thoroughly reviewed the microwave generation techniques by using photonics technology.
[Application of microwave irradiation technology to the field of pharmaceutics].
Zhang, Xue-Bing; Shi, Nian-Qiu; Yang, Zhi-Qiang; Wang, Xing-Lin
2014-03-01
Microwaves can be directly transformed into heat inside materials because of their ability of penetrating into any substance. The degree that materials are heated depends on their dielectric properties. Materials with high dielectric loss are more easily to reach a resonant state by microwaves field, then microwaves can be absorbed efficiently. Microwave irradiation technique with the unique heating mechanisms could induce drug-polymer interaction and change the properties of dissolution. Many benefits such as improving product quality, increasing energy efficiency and reducing times can be obtained by microwaves. This paper summarized characteristics of the microwave irradiation technique, new preparation techniques and formulation process in pharmaceutical industry by microwave irradiation technology. The microwave technology provides a new clue for heating and drying in the field of pharmaceutics.
Mutlu, Selime; Kahraman, Kevser; Öztürk, Serpil
2017-02-01
The effects of microwave irradiation on resistant starch (RS) formation and functional properties in high-amylose corn starch, Hylon VII, by applying microwave-storing cycles and drying processes were investigated. The Response Surface Methodology (RSM) was used to optimize the reaction conditions, microwave time (2-4min) and power (20-100%), for RS formation. The starch:water (1:10) mixtures were cooked and autoclaved and then different microwave-storing cycles and drying (oven or freeze drying) processes were applied. The RS contents of the samples increased with increasing microwave-storing cycle. The highest RS (43.4%) was obtained by oven drying after 3 cycles of microwave treatment at 20% power for 2min. The F, p (<0.05) and R 2 values indicated that the selected models were consistent. Linear equations were obtained for oven-dried samples applied by 1 and 3 cycles of microwave with regression coefficients of 0.65 and 0.62, respectively. Quadratic equation was obtained for freeze-dried samples applied by 3 cycles of microwave with a regression coefficient of 0.83. The solubility, water binding capacity (WBC) and RVA viscosity values of the microwave applied samples were higher than those of native Hylon VII. The WBC and viscosity values of the freeze-dried samples were higher than those of the oven-dried ones. Copyright © 2016 Elsevier B.V. All rights reserved.
A TRMM-Based System for Real-Time Quasi-Global Merged Precipitation Estimates
NASA Technical Reports Server (NTRS)
Starr, David OC. (Technical Monitor); Huffman, G. J.; Adler, R. F.; Stocker, E. F.; Bolvin, D. T.; Nelkin, E. J.
2002-01-01
A new processing system has been developed to combine IR and microwave data into 0.25 degree x 0.25 degree gridded precipitation estimates in near-real time over the latitude band plus or minus 50 degrees. Tropical Rainfall Measuring Mission (TRMM) Microwave Imager (TMI) precipitation estimates are used to calibrate Special Sensor Microwave/Imager (SSM/I) estimates, and Advanced Microwave Sounding Unit (AMSU) and Advanced Microwave Scanning Radiometer (AMSR) estimates, when available. The merged microwave estimates are then used to create a calibrated IR estimate in a Probability-Matched-Threshold approach for each individual hour. The microwave and IR estimates are combined for each 3-hour interval. Early results will be shown, including typical tropical and extratropical storm evolution and examples of the diurnal cycle. Major issues will be discussed, including the choice of IR algorithm, the approach for merging the IR and microwave estimates, extension to higher latitudes, retrospective processing back to 1999, and extension to the GPCP One-Degree Daily product (for which the authors are responsible). The work described here provides one approach to using data from the future NASA Global Precipitation Measurement program, which is designed to provide Jill global coverage by low-orbit passive microwave satellites every three hours beginning around 2008.
Satellite power systems (SPS) concept definition study. Volume 1: Executive summary
NASA Technical Reports Server (NTRS)
Hanley, G. M.
1980-01-01
System definition studies resulted in a further definition of the reference system using gallium arsenide solar arrays, analysis of alternative subsystem options for the reference concept, preliminary solid state microwave concept studies, and an environmental analysis of laser transmission systems. The special emphasis studies concentrated on satellite construction, satellite construction base definition, satellite construction base construction, and rectenna construction. Major emphasis in the transportation studies was put on definition of a two stage parallel burn, vertical takeoff/horizontal landing concept. The electric orbit transfer vehicle was defined in greater detail. Program definition included cost analyses and schedule definition.
Song, Won-Jae; Kang, Dong-Hyun
2016-02-01
This study evaluated the efficacy of a 915 MHz microwave with 3 different levels to inactivate 3 serovars of Salmonella in peanut butter. Peanut butter inoculated with Salmonella enterica serovar Senftenberg, S. enterica serovar Typhimurium and S. enterica serovar Tennessee were treated with a 915 MHz microwave with 2, 4 and 6 kW and acid and peroxide values and color changes were determined after 5 min of microwave heating. Salmonella populations were reduced with increasing treatment time and treatment power. Six kW 915 MHz microwave treatment for 5 min reduced these three Salmonella serovars by 3.24-4.26 log CFU/g. Four and two kW 915 MHz microwave processing for 5 min reduced these Salmonella serovars by 1.14-1.48 and 0.15-0.42 log CFU/g, respectively. Microwave treatment did not affect acid, peroxide, or color values of peanut butter. These results demonstrate that 915 MHz microwave processing can be used as a control method for reducing Salmonella in peanut butter without producing quality deterioration. Copyright © 2015 Elsevier Ltd. All rights reserved.
Robust Hybrid Finite Element Methods for Antennas and Microwave Circuits
NASA Technical Reports Server (NTRS)
Gong, J.; Volakis, John L.
1996-01-01
One of the primary goals in this dissertation is concerned with the development of robust hybrid finite element-boundary integral (FE-BI) techniques for modeling and design of conformal antennas of arbitrary shape. Both the finite element and integral equation methods will be first overviewed in this chapter with an emphasis on recently developed hybrid FE-BI methodologies for antennas, microwave and millimeter wave applications. The structure of the dissertation is then outlined. We conclude the chapter with discussions of certain fundamental concepts and methods in electromagnetics, which are important to this study.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yafarov, R. K., E-mail: pirpc@yandex.ru
Scanning atomic-force and electron microscopies are used to study the self-organization kinetics of nanoscale domains upon the deposition of submonolayer carbon coatings on silicon (100) in the microwave plasma of low-pressure ethanol vapor. Model mechanisms of how silicon-carbon domains are formed are suggested. The mechanisms are based on Langmuir’s model of adsorption from the precursor state and modern concepts of modification of the equilibrium structure of the upper atomic layer in crystalline semiconductors under the influence of external action.
Space satellite power system. [conversion of solar energy by photovoltaic solar cell arrays
NASA Technical Reports Server (NTRS)
Glaser, P. E.
1974-01-01
The concept of a satellite solar power station was studied. It is shown that it offers the potential to meet a significant portion of future energy needs, is pollution free, and is sparing of irreplaceable earth resources. Solar energy is converted by photovoltaic solar cell arrays to dc energy which in turn is converted into microwave energy in a large active phased array. The microwave energy is beamed to earth with little attenuation and is converted back to dc energy on the earth. Economic factors are considered.
NASA Technical Reports Server (NTRS)
1979-01-01
An environmentally oriented microwave technology exploratory research program aimed at reducing the uncertainty associated with microwave power system critical technical issues is described. Topics discussed include: (1) Solar Power Satellite System (SPS) development plan elements; (2) critical technology issues related to the SPS preliminary reference configuration; (3) pilot plant to demonstrate commercial viability of the SPS system; and (4) research areas required to demonstrate feasibility of the SPS system. Progress in the development of advanced GaAs solar cells is reported along with a power distribution subsystem.
A Microwave Blade Tip Clearance Sensor for Propulsion Health Monitoring
NASA Technical Reports Server (NTRS)
Woike, Mark R.; Abdul-Aziz, Ali; Bencic, Timothy J.
2010-01-01
Microwave sensor technology is being investigated by the NASA Glenn Research Center as a means of making non-contact structural health measurements in the hot sections of gas turbine engines. This type of sensor technology is beneficial in that it is accurate, it has the ability to operate at extremely high temperatures, and is unaffected by contaminants that are present in turbine engines. It is specifically being targeted for use in the High Pressure Turbine (HPT) and High Pressure Compressor (HPC) sections to monitor the structural health of the rotating components. It is intended to use blade tip clearance to monitor blade growth and wear and blade tip timing to monitor blade vibration and deflection. The use of microwave sensors for this application is an emerging concept. Techniques on their use and calibration needed to be developed. As a means of better understanding the issues associated with the microwave sensors, a series of experiments have been conducted to evaluate their performance for aero engine applications. This paper presents the results of these experiments.
Welding of 3D-printed carbon nanotube–polymer composites by locally induced microwave heating
Sweeney, Charles B.; Lackey, Blake A.; Pospisil, Martin J.; Achee, Thomas C.; Hicks, Victoria K.; Moran, Aaron G.; Teipel, Blake R.; Saed, Mohammad A.; Green, Micah J.
2017-01-01
Additive manufacturing through material extrusion, often termed three-dimensional (3D) printing, is a burgeoning method for manufacturing thermoplastic components. However, a key obstacle facing 3D-printed plastic parts in engineering applications is the weak weld between successive filament traces, which often leads to delamination and mechanical failure. This is the chief obstacle to the use of thermoplastic additive manufacturing. We report a novel concept for welding 3D-printed thermoplastic interfaces using intense localized heating of carbon nanotubes (CNTs) by microwave irradiation. The microwave heating of the CNT-polymer composites is a function of CNT percolation, as shown through in situ infrared imaging and simulation. We apply CNT-loaded coatings to a 3D printer filament; after printing, microwave irradiation is shown to improve the weld fracture strength by 275%. These remarkable results open up entirely new design spaces for additive manufacturing and also yield new insight into the coupling between dielectric properties and radio frequency field response for nanomaterial networks. PMID:28630927
Welding of 3D-printed carbon nanotube-polymer composites by locally induced microwave heating.
Sweeney, Charles B; Lackey, Blake A; Pospisil, Martin J; Achee, Thomas C; Hicks, Victoria K; Moran, Aaron G; Teipel, Blake R; Saed, Mohammad A; Green, Micah J
2017-06-01
Additive manufacturing through material extrusion, often termed three-dimensional (3D) printing, is a burgeoning method for manufacturing thermoplastic components. However, a key obstacle facing 3D-printed plastic parts in engineering applications is the weak weld between successive filament traces, which often leads to delamination and mechanical failure. This is the chief obstacle to the use of thermoplastic additive manufacturing. We report a novel concept for welding 3D-printed thermoplastic interfaces using intense localized heating of carbon nanotubes (CNTs) by microwave irradiation. The microwave heating of the CNT-polymer composites is a function of CNT percolation, as shown through in situ infrared imaging and simulation. We apply CNT-loaded coatings to a 3D printer filament; after printing, microwave irradiation is shown to improve the weld fracture strength by 275%. These remarkable results open up entirely new design spaces for additive manufacturing and also yield new insight into the coupling between dielectric properties and radio frequency field response for nanomaterial networks.
NASA Astrophysics Data System (ADS)
del Hougne, Philipp; Fink, Mathias; Lerosey, Geoffroy
2017-12-01
Wave-front shaping has emerged over the past decade as a powerful tool to control wave propagation through complex media, initially in optics and more recently also in the microwave domain with important applications in telecommunication, imaging, and energy transfer. The crux of implementing wave-front shaping concepts in real life is often its need for (direct) feedback, requiring access to the target to focus on. Here, we present the shaping of a microwave field based on indirect, unsolicited, and blind feedback which may be the pivotal step towards practical implementations. With the example of a radio-frequency harvester in a metallic cavity, we demonstrate tenfold enhancement of the harvested power by wave-front shaping based on nonlinear signals detected at an arbitrary position away from the harvesting device.
Velmurugan, Jeyavel; Kalinin, Sergei V.; Kolmakov, Andrei; ...
2016-02-11
Here, noninvasive in situ nanoscale imaging in liquid environments is a current imperative in the analysis of delicate biomedical objects and electrochemical processes at reactive liquid–solid interfaces. Microwaves of a few gigahertz frequencies offer photons with energies of ≈10 μeV, which can affect neither electronic states nor chemical bonds in condensed matter. Here, we describe an implementation of scanning near-field microwave microscopy for imaging in liquids using ultrathin molecular impermeable membranes separating scanning probes from samples enclosed in environmental cells. We imaged a model electroplating reaction as well as individual live cells. Through a side-by-side comparison of the microwave imagingmore » with scanning electron microscopy, we demonstrate the advantage of microwaves for artifact-free imaging.« less
EXPEDITIOUS SOLVENT-FREE ORGANIC SYNTHESES USING MICROWAVE IRRADIATION
Microwave-expedited solvent-free synthetic processes involve the exposure of neat reactants to microwave (MW) irradiation in the presence of supported reagents or catalysts on mineral oxides. Recent developments are described and the salient features of these high yield protocol...
High-Temperature Superconductive Cabling Investigated for Space Solar Power Satellites
NASA Technical Reports Server (NTRS)
Tew, Roy C.; Juhasz, Albert J.
2000-01-01
NASA has been directed by Congress to take a fresh look at the Space Solar Power (SSP) concept that was studied by the Department of Energy and NASA about 20 years ago. To summarize, the concept involves (1) collecting solar energy and converting it to electrical energy via photovoltaic arrays on satellites in Earth orbit, (2) conducting the electricity to the microwave transmitting portion of the satellite, and (3) transmitting the power via microwave transmitters (or possibly via lasers) to ground power station antennas located on the surface of the Earth. One Sun Tower SSP satellite concept is illustrated here. This figure shows many photovoltaic arrays attached to a "backbone" that conducts electricity down to a wireless transmitter, which is pointed toward the Earth. Other variations on this concept use multiple backbones to reduce the overall length of the satellite structure. In addition, non-Sun-Tower concepts are being considered. The objective of the work reported here was to determine the benefits to the SSP concept of using high-temperature superconductors (HTS) to conduct the electricity from the photovoltaic arrays to the wireless power transmitters. Possible benefits are, for example, reduced mass, improved efficiency, and improved reliability. Dr. James Powell of Plus Ultra Technologies, Inc., of Stony Brook, New York, is conducting the study, and it is being managed by the NASA Glenn Research Center at Lewis Field via a task-order contract through Scientific Applications International Corp. (SAIC).
Hohenforst-Schmidt, Wolfgang; Zarogoulidis, Paul; Stopek, Joshua; Kosmidis, Efstratios; Vogl, Thomas; Linsmeier, Bernd; Tsakiridis, Kosmas; Lampaki, Sofia; Lazaridis, George; Mpakas, Andreas; Browning, Robert; Papaiwannou, Antonis; Drevelegas, Antonis; Baka, Sofia; Karavasilis, Vasilis; Mpoukovinas, Ioannis; Turner, J Francis; Zarogoulidis, Konstantinos; Brachmann, Johannes
2015-01-01
Novel therapies for lung cancer are being explored nowadays with local therapies being the tip of the arrow. Intratumoral chemotherapy administration and local microwave ablation have been investigated in several studies. It has been previously proposed that lipiodol has the ability to modify the microenvironment matrix. In our current study we investigated this theory in BALBC mice. In total 160 BALBC mice were divided in eight groups: a) control, b) cisplatin, c) microwave, d) microwave and lipiodol, e) cisplatin and lipiodol, f) microwave and cisplatin, g) lipiodol and h) lipiodol, cisplatin and microwave. Lewis lung carcinoma cell lines (10(6)) were injected into the right back leg of each mouse. After the 8th day, when the tumor volume was about 100mm(3) the therapy application was initiated, once per week for four weeks. Magnetic resonance imaging was performed for each tumor when a mouse died or when sacrificed if they were still alive by the end of the experiment (8-Canal multifunctional spool; NORAS MRI products, Gmbh, Germany). Imaging and survival revealed efficient tumor apoptosis for the groups b,c,d,e and f. However; severe toxicity was observed in group h and no follow up was available for this group after the second week of therapy administration. Lipiodol in its current form does assist in a more efficient way the distribution of cisplatin, as the microwave apoptotic effect. Future modification of lipiodol might provide a more efficient method of therapy enhancement. Combination of drug and microwave ablation is possible and has an efficient apoptotic effect.
Clare, D A; Bang, W S; Cartwright, G; Drake, M A; Coronel, P; Simunovic, J
2005-12-01
Shelf-stable milk could benefit from sensory quality improvement. Current methods of heating cause flavor and nutrient degradation through exposure to overheated thermal exchange surfaces. Rapid heating with microwaves followed by sudden cooling could reduce or eliminate this problem. The objectives for this study were focused on designing and implementing continuous microwave thermal processing of skim fluid milks (white and chocolate) to compare sensory, microbiological, and biochemical parameters with conventionally prepared, indirect UHT milks. All test products were aseptically packaged and stored at ambient temperature for 12 mo. Every 3 mo, samples were taken for microbiological testing, reactive sulfhydryl determinations, active enzyme analysis, instrumental viscosity readings, color measurements, and descriptive sensory evaluation. Microbiological plate counts were negative on all milks at each time point. Enzymatic assays showed that plasmin was inactivated by both heat treatments. 5,5'-dithio-bis(2-nitrobenzoic acid) analysis, a measure of reactive sulfhydryl (-SH-) groups, showed that the initial thiol content was not significantly different between the microwave-processed and UHT-treated milks. However, both heating methods resulted in an increased thiol level compared with conventionally pasteurized milk samples due to the higher temperatures attained. Sulfhydryl oxidase, a milk enzyme that catalyzes disulfide bond formation using a variety of protein substrates, retained activity following microwave processing, and decreased during storage. Viscosity values were essentially equivalent in microwave- and UHT-heated white skim milks. Sensory analyses established that UHT-treated milks were visibly darker, and exhibited higher caramelized and stale/fatty flavors with increased astringency compared with the microwave samples. Sweet aromatic flavor and sweet taste decreased during storage in both UHT and microwave milk products, whereas stale/fatty flavors increased over time. Sensory effects were more apparent in white milks than in chocolate varieties. These studies suggest that microwave technology may provide a useful alternative processing method for delivery of aseptic milk products that retain a long shelf life.
Microwave-induced biomimetic approach for hydroxyapatite coatings of chitosan scaffolds.
Kaynak Bayrak, Gökçe; Demirtaş, T Tolga; Gümüşderelioğlu, Menemşe
2017-02-10
Simulated body fluid (SBF) can form calcium phosphates on osteoinductive materials, so it is widely used for coating of bone scaffolds to mimic natural extracellular matrix (ECM). However, difficulties of bulk coating in 3D scaffolds and the necessity of long process times are the common problems for coating with SBF. In the present study, a microwave-assisted process was developed for rapid and internal coating of chitosan scaffolds. The scaffolds were fabricated as superporous hydrogel (SPH) by combining microwave irradiation and gas foaming methods. Then, they were immersed into 10x SBF-like solution and homogenous bone-like hydroxyapatite (HA) coating was achieved by microwave treatment at 600W without the need of any nucleating agent. Cell culture studies with MC3T3-E1 preosteoblasts showed that microwave-assisted biomimetic HA coating process could be evaluated as an efficient and rapid method to obtain composite scaffolds for bone tissue engineering. Copyright © 2016 Elsevier Ltd. All rights reserved.
Method for enhanced atomization of liquids
Thompson, Richard E.; White, Jerome R.
1993-01-01
In a process for atomizing a slurry or liquid process stream in which a slurry or liquid is passed through a nozzle to provide a primary atomized process stream, an improvement which comprises subjecting the liquid or slurry process stream to microwave energy as the liquid or slurry process stream exits the nozzle, wherein sufficient microwave heating is provided to flash vaporize the primary atomized process stream.
A Numerical Simulation of the Energy Conversion Process in Microwave Rocket
DOE Office of Scientific and Technical Information (OSTI.GOV)
Shibata, Teppei; Oda, Yasuhisa; Komurasaki, Kimiya
2008-04-28
In Microwave Rocket, a high power microwave beam ionizes atmospheric air inside of the thruster and the ionization front drives a shock wave. In this paper, CFD simulation was conducted using measured propagation velocity of the ionization front to evaluate the engine performance. As a result, maximum cycle efficiency was obtained at the power density of about 200 kW/m{sup 2} which is the transitional beam power condition between Microwave Supported Combustion and Microwave Supported Detonation regimes.
Characterization of Radioactive Waste Melter Feed Vitrified By Microwave Energy,
processed in the Defense Waste Processing Facility ( DWPF ) and poured into stainless steel canisters for eventual disposal in a geologic repository...Vitrification of melter feed samples is necessary for DWPF process and product control. Microwave fusion of melter feed at approximately 12OO deg C for 10
NASA Astrophysics Data System (ADS)
Fan, Ching-Lin; Shang, Ming-Chi; Hsia, Mao-Yuan; Wang, Shea-Jue; Huang, Bohr-Ran; Lee, Win-Der
2016-03-01
A Microwave-Induction Heating (MIH) scheme is proposed for the poly(4-vinylphenol) (PVP) gate insulator cross-linking process to replace the traditional oven heating cross-linking process. The cross-linking time is significantly decreased from 1 h to 5 min by heating the metal below the PVP layer using microwave irradiation. The necessary microwave power was substantially reduced to about 50 W by decreasing the chamber pressure. The MIH scheme is a good candidate to replace traditional thermal heating for cross-linking of PVP as the gate insulator for organic thin-film-transistors.
Production of xylooligosaccharide from wheat bran by microwave assisted enzymatic hydrolysis.
Wang, Tseng-Hsing; Lu, Shin
2013-06-01
The effective production of xylooligosaccharides (XOS) from wheat bran was investigated. Wheat bran contains rich hemicellulose which can be hydrolyzed by enzyme; the XOS were obtained by microwave assisted enzymatic hydrolysis. To improve the productivity of XOS, repeated microwave assisted enzymatic hydrolysis and activated carbon adsorption method was chosen to eliminate macromolecules in the XOS. On the basis of experimental data, an industrial XOS production process consisting of pretreatment, repeated microwave assisted enzymatic treatment and purification was designed. Using the designed process, 3.2g dry of purified XOS was produced from 50 g dry wheat bran powder. Copyright © 2012 Elsevier Ltd. All rights reserved.
Si-Ca species modification and microwave sintering for NiZn ferrites
NASA Astrophysics Data System (ADS)
Yang, Yin-Ju; Sheu, Ching-Iuan; Cheng, Syh-Yuh; Chang, Horng-Yi
2004-12-01
NiZn ferrite particles were precoated with Si-Ca precursor by sol-gel method. Thus convention-sintered particles exhibited small grain size about 2 μm and lowered magnetic permeability as well as increased coercive magnetic field effectively. Microwave sintering could suppress grain growth as the same result of conventional sintering specimens with SiO2-CaO precoating. In microwave process, the grain growth inhibition expressed more obviously for the SiO2-CaO precoated specimens. The magnetic permeability (∼300) after SiO2-CaO precoating became lower than original ferrite (∼800) without SiO2-CaO precoating in conventional sintering. However, the magnetic permeability was lowered no matter whether SiO2-CaO precoating in microwave process. On the other hand, microwave sintering possessed short processing time, for example, 1250 °C/5 min, to prohibit ZnO volatilization in accompanied with grain size reduction. Therefore, such contribution increased resistivity to about 12×106 Ω cm compared to 3×106 Ω cm of original NiZn ferrite. The large coercive magnetic field (Hc) was ascribed to the superposition of small grain size and stress induced by microwave sintering.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wu, Ping; Deng, Yuqun; Science and Technology on High Power Microwave Laboratory, Northwest Institute of Nuclear Technology, Xi'an 710024
In relativistic backward wave oscillators (RBWOs), although the slow wave structure (SWS) and electron beam determine the main characteristics of beam-wave interaction, many other factors can also significantly affect the microwave generation process. This paper investigates the influence of voltage rise time on beam-wave interaction in RBWOs. Preliminary analysis and PIC simulations demonstrate if the voltage rise time is moderately long, the microwave frequency will gradually increase during the startup process until the voltage reaches its amplitude, which can be explained by the dispersion relation. However, if the voltage rise time is long enough, the longitudinal resonance of the finitely-longmore » SWS will force the RBWO to work with unwanted longitudinal modes for a while and then gradually hop to the wanted longitudinal mode, and this will lead to an impure microwave frequency spectrum. Besides, a longer voltage rise time will delay the startup process and thus lead to a longer microwave saturation time. And if unwanted longitudinal modes are excited due to long voltage rise time, the microwave saturation time will be further lengthened. Therefore, the voltage rise time of accelerators adopted in high power microwave technology should not be too long in case unwanted longitudinal modes are excited.« less
Microwave-Assisted Ignition for Improved Internal Combustion Engine Efficiency
NASA Astrophysics Data System (ADS)
DeFilippo, Anthony Cesar
The ever-present need for reducing greenhouse gas emissions associated with transportation motivates this investigation of a novel ignition technology for internal combustion engine applications. Advanced engines can achieve higher efficiencies and reduced emissions by operating in regimes with diluted fuel-air mixtures and higher compression ratios, but the range of stable engine operation is constrained by combustion initiation and flame propagation when dilution levels are high. An advanced ignition technology that reliably extends the operating range of internal combustion engines will aid practical implementation of the next generation of high-efficiency engines. This dissertation contributes to next-generation ignition technology advancement by experimentally analyzing a prototype technology as well as developing a numerical model for the chemical processes governing microwave-assisted ignition. The microwave-assisted spark plug under development by Imagineering, Inc. of Japan has previously been shown to expand the stable operating range of gasoline-fueled engines through plasma-assisted combustion, but the factors limiting its operation were not well characterized. The present experimental study has two main goals. The first goal is to investigate the capability of the microwave-assisted spark plug towards expanding the stable operating range of wet-ethanol-fueled engines. The stability range is investigated by examining the coefficient of variation of indicated mean effective pressure as a metric for instability, and indicated specific ethanol consumption as a metric for efficiency. The second goal is to examine the factors affecting the extent to which microwaves enhance ignition processes. The factors impacting microwave enhancement of ignition processes are individually examined, using flame development behavior as a key metric in determining microwave effectiveness. Further development of practical combustion applications implementing microwave-assisted spark technology will benefit from predictive models which include the plasma processes governing the observed combustion enhancement. This dissertation documents the development of a chemical kinetic mechanism for the plasma-assisted combustion processes relevant to microwave-assisted spark ignition. The mechanism includes an existing mechanism for gas-phase methane oxidation, supplemented with electron impact reactions, cation and anion chemical reactions, and reactions involving vibrationally-excited and electronically-excited species. Calculations using the presently-developed numerical model explain experimentally-observed trends, highlighting the relative importance of pressure, temperature, and mixture composition in determining the effectiveness of microwave-assisted ignition enhancement.
A bibliography of electrothermal thruster technology, 1984
NASA Technical Reports Server (NTRS)
Sovey, J. S.; Hardy, T. L.; Englehart, M.
1986-01-01
Electrothermal propulsion concepts are briefly discussed as an introduction to a bibliography and author index. Nearly 700 citations are given for resistojets, thermal arcjets, pulsed electrothermal thrusters, microwave heated devices, solar thermal thrusters, and laser thermal thrusters.
Microwave-expedited solvent-free synthetic processes involve the exposure of neat reactants to microwave (MW) irradiation in the presence of supported reagents or catalysts on mineral oxides. Recent developments are described and the salient features of these high yield protocols...
A fully reconfigurable waveguide Bragg grating for programmable photonic signal processing.
Zhang, Weifeng; Yao, Jianping
2018-04-11
Since the discovery of the Bragg's law in 1913, Bragg gratings have become important optical devices and have been extensively used in various systems. In particular, the successful inscription of a Bragg grating in a fiber core has significantly boosted its engineering applications. However, a conventional grating device is usually designed for a particular use, which limits general-purpose applications since its index modulation profile is fixed after fabrication. In this article, we propose to implement a fully reconfigurable grating, which is fast and electrically reconfigurable by field programming. The concept is verified by fabricating an integrated grating on a silicon-on-insulator platform, which is employed as a programmable signal processor to perform multiple signal processing functions including temporal differentiation, microwave time delay, and frequency identification. The availability of ultrafast and reconfigurable gratings opens new avenues for programmable optical signal processing at the speed of light.
High power microwave source with a three dimensional printed metamaterial slow-wave structure.
French, David M; Shiffler, Don
2016-05-01
For over the last decade, the concept of metamaterials has led to new approaches for considering the interaction of radiation with complex structures. However, practical manifestations of such a device operating at high power densities have proven difficult to achieve due to the resonant nature of metamaterials and the resultant high electric fields, which place severe constraints on manufacturing the slow wave structures. In this paper, we describe the first experimental manifestation of a high power microwave device utilizing a metallic slow wave structure (metamaterial-like) fabricated using additive manufacturing. The feasibility of utilizing additive manufacturing as a technique for building these relatively complicated structures has thus been demonstrated. The MW class microwave source operates in the C-band and shows frequency tunablility with electron beam voltage. The basic electromagnetic characteristics of this device, the construction using additive manufacturing, and the basic performance as a microwave oscillator are considered. Due to the tunable nature of the device, it shows promise not only as an oscillator but also as a microwave amplifier. Therefore, the dispersive characteristics and a discussion of the anticipated gain is included as it relates to an amplifier configuration.
High power microwave source with a three dimensional printed metamaterial slow-wave structure
DOE Office of Scientific and Technical Information (OSTI.GOV)
French, David M.; Shiffler, Don
2016-05-15
For over the last decade, the concept of metamaterials has led to new approaches for considering the interaction of radiation with complex structures. However, practical manifestations of such a device operating at high power densities have proven difficult to achieve due to the resonant nature of metamaterials and the resultant high electric fields, which place severe constraints on manufacturing the slow wave structures. In this paper, we describe the first experimental manifestation of a high power microwave device utilizing a metallic slow wave structure (metamaterial-like) fabricated using additive manufacturing. The feasibility of utilizing additive manufacturing as a technique for buildingmore » these relatively complicated structures has thus been demonstrated. The MW class microwave source operates in the C-band and shows frequency tunablility with electron beam voltage. The basic electromagnetic characteristics of this device, the construction using additive manufacturing, and the basic performance as a microwave oscillator are considered. Due to the tunable nature of the device, it shows promise not only as an oscillator but also as a microwave amplifier. Therefore, the dispersive characteristics and a discussion of the anticipated gain is included as it relates to an amplifier configuration.« less
Process intensification of biodiesel production by using microwave and ionic liquids as catalyst
DOE Office of Scientific and Technical Information (OSTI.GOV)
Handayani, Prima Astuti; Chemical Engineering Program, Faculty of Engineering, Semarang State University; Abdullah
The energy crisis pushes the development and intensification of biodiesel production process. Biodiesel is produced by transesterification of vegetable oils or animal fats and conventionally produced by using acid/base catalyst. However, the conventional method requires longer processing time and obtains lower yield of biodiesel. The microwave has been intensively used to accelerate production process and ionic liquids has been introduced as source of catalyst. This paper discusses the overview of the development of biodiesel production through innovation using microwave irradiation and ionic liquids catalyst to increase the yield of biodiesel. The potential microwave to reduce the processing time will bemore » discussed and compared with other energy power, while the ionic liquids as a new generation of catalysts in the chemical industry will be also discussed for its use. The ionic liquids has potential to enhance the economic and environmental aspects because it has a low corrosion effect, can be recycled, and low waste form.« less
Process intensification of biodiesel production by using microwave and ionic liquids as catalyst
NASA Astrophysics Data System (ADS)
Handayani, Prima Astuti; Abdullah, dan Hadiyanto
2015-12-01
The energy crisis pushes the development and intensification of biodiesel production process. Biodiesel is produced by transesterification of vegetable oils or animal fats and conventionally produced by using acid/base catalyst. However, the conventional method requires longer processing time and obtains lower yield of biodiesel. The microwave has been intensively used to accelerate production process and ionic liquids has been introduced as source of catalyst. This paper discusses the overview of the development of biodiesel production through innovation using microwave irradiation and ionic liquids catalyst to increase the yield of biodiesel. The potential microwave to reduce the processing time will be discussed and compared with other energy power, while the ionic liquids as a new generation of catalysts in the chemical industry will be also discussed for its use. The ionic liquids has potential to enhance the economic and environmental aspects because it has a low corrosion effect, can be recycled, and low waste form.
Microwave processing of maple sap to maple syrup and maple syrup products.
Favreau, D; Sosle, V; Raghavan, G S
2001-01-01
A study of the physical process of concentration of maple sap to maple syrup and preparation of maple syrup products by microwave heating is described. Duty cycles of 60, 75 and 100% were used for the microwave application. During the process, some of the drying kinetics are discussed, including the reduction of moisture content with time, the progress of the process in terms of increasing sugar concentration and the power absorbed. Obviously, the rate of water removal was higher in case of the higher duty cycles. The total time required for finishing the syrup was also dependent on the initial mass of the load and the initial sugar content. The products obtained were compared with commercial graded products for the quality and met the highest standards prescribed by the industry. The absence of heat damage or browning of the product was identified as a distinct advantage that could be derived from microwave processing of maple syrup.
Radiofrequency and microwave radiation in the microelectronics industry.
Cohen, R
1986-01-01
The microscopic precision required to produce minute integrated circuits is dependent on several processes utilizing radiofrequency and microwave radiation. This article provides a review of radiofrequency and microwave exposures in microelectronics and of the physical and biologic properties of these types of radiation; summarizes the existing, relevant medical literature; and provides the clinician with guidelines for diagnosis and treatment of excessive exposures to microwave and radiofrequency radiation.
Microwave Processing of Polymeric Materials
1992-04-01
DECLASSIFICATION/DOWNGRADING SCHEDULE Approved for public release; distribution is unlimited 4 . PERFORMING ORGANIZATION REPORT NUMBER(S) 5. MONITORING ORGANIZATION... 4 2.1.1. Microwave Processing ................................................................. 4 2.1.1.1. Epoxy Resin Networks... 4 2.1.1.2. Epoxy Resin Composites
NASA Astrophysics Data System (ADS)
Horikoshi, Satoshi; Abe, Hideki; Torigoe, Kanjiro; Abe, Masahiko; Serpone, Nick
2010-08-01
This article examines the effect(s) of the 2.45-GHz microwave (MW) radiation in the synthesis of silver nanoparticles in aqueous media by reduction of the diaminesilver(i) complex, [Ag(NH3)2]+, with carboxymethylcellulose (CMC) in both batch-type and continuous-flow reactor systems with a particular emphasis on the characteristics of the microwaves in this process and the size distributions. This microwave thermally-assisted synthesis is compared to a conventional heating (CH) method, both requiring a reaction temperature of 100 °C to produce the nanoparticles, in both cases leading to the formation of silver colloids with different size distributions. Reduction of the diaminesilver(i) precursor complex, [Ag(NH3)2]+, by CMC depended on the solution temperature. Cooling the reactor during the heating process driven with 390-Watt microwaves (MW-390W/Cool protocol) yielded silver nanoparticles with sizes spanning the range 1-2 nm. By contrast, the size distribution of Ag nanoparticles with 170-Watt microwaves (no cooling; MW-170W protocol) was in the range 1.4-3.6 nm (average size ~3 nm). The overall results suggest the potential for a scale-up process in the microwave-assisted synthesis of nanoparticles. Based on the present data, a flow-through microwave reactor system is herein proposed for the continuous production of silver nanoparticles. The novel flow reactor system (flow rate, 600 mL min-1) coupled to 1200-Watt microwave radiation generated silver nanoparticles with a size distribution 0.7-2.8 nm (average size ca. 1.5 nm).
Microwave Cooking Practices in Minnesota Food Service Establishments.
Hedeen, Nicole; Reimann, David; Everstine, Karen
2016-03-01
Uneven cooking due to consumer use of microwave ovens to cook food products that have been prepared but are not ready to eat has been a documented risk factor in several foodborne disease outbreaks. However, the use of microwave ovens in restaurants and other food service establishments has not been well documented. The aim of this study was to describe the types of food service establishments that use microwave ovens, how these ovens are used, types of foods heated or cooked in these ovens, types of microwave ovens used in food service establishments, and the level of compliance with U.S. Food and Drug Administration (FDA) guidelines. From 2008 to 2009, the Minnesota Department of Health collected data from a convenience sample of 60 food establishments within the state. Facility types included fast-food restaurants, sit-down restaurants, school food service, nursing homes, hotels and motels, and daycare centers. Food preparation practices were classified as prep-serve, cookserve, or complex. Minnesota environmental health specialists administered a study questionnaire to managers during routine inspections. Establishments included in this study reported using microwave ovens primarily to warm commercial ready-to-eat products (67%) and to warm foods for palatability (50%). No minimum temperatures are required for these processes because these foods do not require pathogen destruction. However, food establishments using complex preparation practices more often reported using microwave ovens for multiple processes and for processes that require pathogen destruction. For establishments that did report microwave oven use for food requiring pathogen destruction, the majority of managers reported following most FDA recommendations for cooking and reheating for hot-holding potentially hazardous foods, but many did not report letting food stand for 2 min after cooking. Additional training on stand time after microwave cooking could be beneficial because of low reporting of this practice among study participants.
Using Microwaves for Extracting Water from the Moon
NASA Technical Reports Server (NTRS)
Ethridge, Edwin C.
2009-01-01
Twenty years ago, the Lunar Prospector remote sensing satellite provided evidence of relatively large hydrogen concentrations at the lunar poles and in particular concentrated in permanently shadowed craters. The scientific hypothesis is that the hydrogen is in the form of cryo-trapped water just under the surface of the soil. If true this would mean that an average of about 2% water ice is mixed with the lunar soil existing in the form of ice at cryogenic temperatures. For 5 years we have been investigating the use of microwaves for the processing of lunar soil. One of the early uses could be to use microwave energy to extract volatiles and in particular water from the lunar permafrost. Prototype experiments have shown that microwave energy at 2.45 GHz, as in consumer microwave ovens, will couple with and heat cryogenically cooled lunar soil permafrost simulant, resulting in the rapid sublimation of water vapor into the vacuum chamber. The water vapor has been collected on a cryogenic cold trap with high efficiency. The primary advantage of microwave processing is that the volatiles can be extracted in situ. Excavation would not be required. Microwave frequency dielectric property measurements are being made of different lunar soil simulants and plans are to measure Apollo lunar soil at different frequencies and over a range of temperatures. The materials properties are being used to evaluate the heating of lunar soil and develop COMSOL models that can be used to evaluate different microwave extraction scenarios. With COMSOL the heating from cryogenic temperatures can be calculated and COMSOL will permit temperature dependent materials properties to be used during the heating process. Calculations at different microwave frequencies will allow the evaluation of the type of hardware that would be needed to most efficiently extract the water and other volatiles.
Microwave-driven asbestos treatment and its scale-up for use after natural disasters.
Horikoshi, Satoshi; Sumi, Takuya; Ito, Shigeyuki; Dillert, Ralf; Kashimura, Keiichiro; Yoshikawa, Noboru; Sato, Motoyasu; Shinohara, Naoki
2014-06-17
Asbestos-containing debris generated by the tsunami after the Great East Japan Earthquake of March 11, 2011, was processed by microwave heating. The analysis of the treated samples employing thermo gravimetry, differential thermal analysis, X-ray diffractometry, scanning electron microscopy, and phase-contrast microscopy revealed the rapid detoxification of the waste by conversion of the asbestos fibers to a nonfibrous glassy material. The detoxification by the microwave method occurred at a significantly lower processing temperature than the thermal methods actually established for the treatment of asbestos-containing waste. The lower treatment temperature is considered to be a consequence of the microwave penetration depth into the waste material and the increased intensity of the microwave electric field in the gaps between the asbestos fibers resulting in a rapid heating of the fibers inside the debris. A continuous treatment plant having a capacity of 2000 kg day(-1) of asbestos-containing waste was built in the area affected by the earthquake disaster. This treatment plant consists of a rotary kiln to burn the combustible waste (wood) and a microwave rotary kiln to treat asbestos-containing inorganic materials. The hot flue gas produced by the combustion of wood is introduced into the connected microwave rotary kiln to increase the energy efficiency of the combined process. Successful operation of this combined device with regard to asbestos decomposition is demonstrated.
Continuous microwave regeneration apparatus for absorption media
Smith, Douglas D.
1999-01-01
A method and apparatus for continuously drying and regenerating ceramic beads for use in process gas moisture drying operations such as glove boxes. A microwave energy source is coupled to a process chamber to internally heat the ceramic beads and vaporize moisture contained therein. In a preferred embodiment, the moisture laden ceramic beads are conveyed toward the microwave source by a screw mechanism. The regenerated beads flow down outside of the screw mechanism and are available to absorb additional moisture.
Microwave bale moisture sensing: Field trial continued
USDA-ARS?s Scientific Manuscript database
A microwave moisture measurement technique was developed at the USDA, ARS Cotton Production and Processing Research Unit for moisture sensing of cotton bales after the bale press. The technique measures the propagation delay of a microwave signal that is transmitted through the cotton bale. This res...
NASA Astrophysics Data System (ADS)
Shenfeld, Ofer; Belotserkovsky, Edward; Goldwasser, Benad; Zur, Albert; Katzir, Abraham
1993-02-01
The heating of tissue by microwave radiation has attained a place of importance in various medical fields, such as the treatment of malignancies, urinary retention, and hypothermia. Accurate temperature measurements in these treated tissues is important for treatment planning and for the control of the heating process. It is also important to be able to measure spacial temperature distribution in the tissues because they are heated in a nonuniform way by the microwave radiation. Conventional temperature sensors used today are inaccurate in the presence of microwave radiation and require contact with the heated tissue. Fiber optic radiometry makes it possible to measure temperatures accurately in the presence of microwave radiation and does not require contact with the tissue. Accurate temperature measurements of tissues heated by microwave was obtained using a silver halide optic radiometer, enabling control of the heating process in other regions of the tissue samples. Temperature mappings of the heated tissues were performed and the nonuniform temperature distributions in these tissues was demonstrated.
Yu, Tao; Deng, Yihuan; Liu, Hongyu; Yang, Chunping; Wu, Bingwen; Zeng, Guangming; Lu, Li; Nishimura, Fumitake
2017-05-10
Microwave assisted with alkaline (MW-A) condition was applied in the pretreatment of swine manure, and the effect of the pretreatment on anaerobic treatment and biogas production was evaluated in this study. The two main microwaving (MW) parameters, microwaving power and reaction time, were optimized for the pretreatment. Response surface methodology (RSM) was used to investigate the effect of alkaline microwaving process for manure pretreatment at various values of pH and energy input. Results showed that the manure disintegration degree was maximized of 63.91% at energy input of 54 J/g and pH of 12.0, and variance analysis indicated that pH value played a more important role in the pretreatment than in energy input. Anaerobic digestion results demonstrated that MW-A pretreatment not only significantly increased cumulative biogas production, but also shortened the duration for a stable biogas production rate. Therefore, the alkaline microwaving pretreatment could become an alternative process for effective treatment of swine manure.
Brinley, T A; Dock, C N; Truong, V-D; Coronel, P; Kumar, P; Simunovic, J; Sandeep, K P; Cartwright, G D; Swartzel, K R; Jaykus, L-A
2007-06-01
Continuous-flow microwave heating has potential in aseptic processing of various food products, including purees from sweetpotatoes and other vegetables. Establishing the feasibility of a new processing technology for achieving commercial sterility requires evaluating microbial inactivation. This study aimed to assess the feasibility of using commercially available plastic pouches of bioindicators containing spores of Geobacillius stearothermophilus ATCC 7953 and Bacillus subtilis ATCC 35021 for evaluating the degree of microbial inactivation achieved in vegetable purees processed in a continuous-flow microwave heating unit. Sweetpotato puree seeded with the bioindicators was subjected to 3 levels of processing based on the fastest particles: undertarget process (F(0) approximately 0.65), target process (F(0) approximately 2.8), and overtarget process (F(0) approximately 10.10). After initial experiments, we found it was necessary to engineer a setup with 2 removable tubes connected to the continuous-flow microwave system to facilitate the injection of indicators into the unit without interrupting the puree flow. Using this approach, 60% of the indicators injected into the system could be recovered postprocess. Spore survival after processing, as evaluated by use of growth indicator dyes and standard plating methods, verified inactivation of the spores in sweetpotato puree. The log reduction results for B. subtilis were equivalent to the predesigned degrees of sterilization (F(0)). This study presents the first report suggesting that bioindicators such as the flexible, food-grade plastic pouches can be used for microbial validation of commercial sterilization in aseptic processing of foods using a continuous-flow microwave system.
Pérez-Páez, Rocío; Catalá-Civera, José Manuel; García-Baños, Beatriz; Castillo, Edgar F; Bastos, Johanna M; Zambrano, Luz S
2008-01-01
The palm oil mills extraction process requires the separation of oil-water-sludge emulsions. For this purpose, the use of sedimentation and/or centrifugation techniques have been required until now. However, significant losses persist in different process flows and new methods are needed to further decrease them, such as methods based on electromagnetic waves application. In the study, emulsions obtained from two flow processes, namely press liquor stream (PL) and recovered stream of the centrifugal step (RC), were exposed to microwave radiation with different exposure times. In the case of the press liquor stream, different oil/water dilution ratios were also studied. The sedimentation speed and efficiency were studied for the irradiated samples and compared to those obtained for the same fluids with no radiation. Also, chromatographic tests were performed on the recovered oil to determine the effect on the oil quality after microwave radiation. The obtained results allow us to conclude that microwave exposure during periods below 1 minute lead to better sedimentation speed and efficiency. It was observed that microwaves facilitate the break of the charges and polarities balances in the emulsions at considerably lower temperatures than the corresponding in the conventional process, without affecting the recovered oil quality.
Self-assembly of silica nanoparticles into hollow spheres via a microwave-assisted aerosol process
DOE Office of Scientific and Technical Information (OSTI.GOV)
Li, Shan; Jiangsu Key Laboratory of Advanced Catalytic Materials and Technology, Changzhou University, Changzhou 213164; Wang, Fei
2016-02-15
Highlights: • The silica hollow spheres were fabricated via a microwave-assisted aerosol process. • The formation of the hollow spheres was obtained through a one-step process. • The spheres indicated the remarkable sustained release of potassium persulfate. - Abstract: In this work, a simple and efficient strategy for fabrication of silica hollow spheres (SHSs) has been successfully introduced with a one-step microwave-assisted aerosol process using silica nanoparticles (SiO{sub 2}, 12–50 nm) and NH{sub 4}HCO{sub 3} as precursor materials. This approach combines the merits of microwave radiation and the aerosol technique. And the formation of SHSs is ascribed to solvent evaporationmore » and the as-generated gas from NH{sub 4}HCO{sub 3} decomposition in the microwave reactor. The morphology of the SHSs can be easily tuned by varying the residence time, amount of NH{sub 4}HCO{sub 3} and silica sources. The formation mechanism of SHSs was also investigated by structure analysis. In addition, the hollow spheres exhibited remarkable sustained release of potassium persulfate, by loading it into the porous structures. The results provide new sights into the fabrication of inorganic hollow spheres via a one-step process.« less
NASA Astrophysics Data System (ADS)
Shahbudin, S. N. A.; Othman, M. H.; Amin, Sri Yulis M.; Ibrahim, M. H. I.
2017-08-01
This article is about a review of optimization of metal injection molding and microwave sintering process on tungsten cemented carbide produce by metal injection molding process. In this study, the process parameters for the metal injection molding were optimized using Taguchi method. Taguchi methods have been used widely in engineering analysis to optimize the performance characteristics through the setting of design parameters. Microwave sintering is a process generally being used in powder metallurgy over the conventional method. It has typical characteristics such as accelerated heating rate, shortened processing cycle, high energy efficiency, fine and homogeneous microstructure, and enhanced mechanical performance, which is beneficial to prepare nanostructured cemented carbides in metal injection molding. Besides that, with an advanced and promising technology, metal injection molding has proven that can produce cemented carbides. Cemented tungsten carbide hard metal has been used widely in various applications due to its desirable combination of mechanical, physical, and chemical properties. Moreover, areas of study include common defects in metal injection molding and application of microwave sintering itself has been discussed in this paper.
Variable frequency microwave furnace system
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bible, D.W.; Lauf, R.J.
1994-06-14
A variable frequency microwave furnace system designed to allow modulation of the frequency of the microwaves introduced into a furnace cavity for testing or other selected applications. The variable frequency microwave furnace system includes a microwave signal generator or microwave voltage-controlled oscillator for generating a low-power microwave signal for input to the microwave furnace. A first amplifier may be provided to amplify the magnitude of the signal output from the microwave signal generator or the microwave voltage-controlled oscillator. A second amplifier is provided for processing the signal output by the first amplifier. The second amplifier outputs the microwave signal inputmore » to the furnace cavity. In the preferred embodiment, the second amplifier is a traveling-wave tube (TWT). A power supply is provided for operation of the second amplifier. A directional coupler is provided for detecting the direction of a signal and further directing the signal depending on the detected direction. A first power meter is provided for measuring the power delivered to the microwave furnace. A second power meter detects the magnitude of reflected power. Reflected power is dissipated in the reflected power load. 5 figs.« less
Variable frequency microwave furnace system
Bible, D.W.; Lauf, R.J.
1994-06-14
A variable frequency microwave furnace system designed to allow modulation of the frequency of the microwaves introduced into a furnace cavity for testing or other selected applications. The variable frequency microwave furnace system includes a microwave signal generator or microwave voltage-controlled oscillator for generating a low-power microwave signal for input to the microwave furnace. A first amplifier may be provided to amplify the magnitude of the signal output from the microwave signal generator or the microwave voltage-controlled oscillator. A second amplifier is provided for processing the signal output by the first amplifier. The second amplifier outputs the microwave signal input to the furnace cavity. In the preferred embodiment, the second amplifier is a traveling-wave tube (TWT). A power supply is provided for operation of the second amplifier. A directional coupler is provided for detecting the direction of a signal and further directing the signal depending on the detected direction. A first power meter is provided for measuring the power delivered to the microwave furnace. A second power meter detects the magnitude of reflected power. Reflected power is dissipated in the reflected power load. 5 figs.
Microwave oxidation treatment of sewage sludge.
Lo, Kwang V; Srinivasan, Asha; Liao, Ping H; Bailey, Sam
2015-01-01
Microwave-oxidation treatment of sewage sludge using various oxidants was studied. Two treatment schemes with a combination of hydrogen peroxide and ozone were examined: hydrogen peroxide and ozone were introduced into the sludge simultaneously, followed by microwave heating. The other involved the ozonation first, and then the resulting solution was subjected to microwave and hydrogen peroxide treatment. The set with ozonation followed by hydrogen peroxide plus microwave heating yielded higher soluble materials than those of the set with hydrogen peroxide plus ozone first and then microwave treatment. No settling was observed for all treatments in the batch operation, except ozone/microwave plus hydrogen peroxide set at 120°C. The pilot-scale continuous-flow 915 MHz microwave study has demonstrated that microwave-oxidation process is feasible for real-time industrial application. It would help in providing key data for the design of a full-scale system for treating sewage sludge and the formulation of operational protocols.
Behaviors of printed circuit boards due to microwave supported curing process of coating materials.
Bremerkamp, Felix; Nowottnick, Mathias; Seehase, Dirk; Bui, Trinh Dung
2012-01-01
The Application of a microwave supported curing process for coatings in the field of electronic industry poses a challenge. Here the implementation of this technology is represented. Within the scope of the investigation special PCB Test Layouts were designed and the polymer curing process examined by the method of dielectric analysis. Furthermore the coupling of microwave radiation with conductive PCB structures was analyzed experimentally by means of special test boards. The formation of standing waves and regular heating distribution along the conductive wires on the PCB could be observed. The experimental results were compared with numerical simulation. In this context the numerical analysis of microwave PCB interaction led to important findings concerning wave propagation on wired PCB. The final valuation demonstrated a substantial similarity between numerical simulations and experimental results.
Tellez, Hugo Mendoza; Alquisira, Joaquín Palacios; Alonso, Carlos Rius; Cortés, José Guadalupe López; Toledano, Cecilio Alvarez
2011-01-01
Green chemistry is the design of chemical processes that reduce or eliminate negative environmental impacts. The use and production of chemicals involve the reduction of waste products, non-toxic components, and improved efficiency. Green chemistry applies innovative scientific solutions in the use of new reagents, catalysts and non-classical modes of activation such as ultrasounds or microwaves. Kinetic behavior and non-thermal effect of poly(amic acid) synthesized from (6FDA) dianhydride and (BAPHF) diamine in a low microwave absorbing p-dioxane solvent at low temperature of 30, 50, 70 °C were studied, under conventional heating (CH), microwave (MW) and ultrasound irradiation (US). Results show that the polycondensation rate decreases (MW > US > CH) and that the increased rates observed with US and MW are due to decreased activation energies of the Arrhenius equation. Rate constant for a chemical process activated by conventional heating declines proportionally as the induction time increases, however, this behavior is not observed under microwave and ultrasound activation. We can say that in addition to the thermal microwave effect, a non-thermal microwave effect is present in the system. PMID:22072913
Tellez, Hugo Mendoza; Alquisira, Joaquín Palacios; Alonso, Carlos Rius; Cortés, José Guadalupe López; Toledano, Cecilio Alvarez
2011-01-01
Green chemistry is the design of chemical processes that reduce or eliminate negative environmental impacts. The use and production of chemicals involve the reduction of waste products, non-toxic components, and improved efficiency. Green chemistry applies innovative scientific solutions in the use of new reagents, catalysts and non-classical modes of activation such as ultrasounds or microwaves. Kinetic behavior and non-thermal effect of poly(amic acid) synthesized from (6FDA) dianhydride and (BAPHF) diamine in a low microwave absorbing p-dioxane solvent at low temperature of 30, 50, 70 °C were studied, under conventional heating (CH), microwave (MW) and ultrasound irradiation (US). Results show that the polycondensation rate decreases (MW > US > CH) and that the increased rates observed with US and MW are due to decreased activation energies of the Arrhenius equation. Rate constant for a chemical process activated by conventional heating declines proportionally as the induction time increases, however, this behavior is not observed under microwave and ultrasound activation. We can say that in addition to the thermal microwave effect, a non-thermal microwave effect is present in the system.
Vagadia, Brinda Harish; Raghavan, Vijaya
2018-01-01
Soymilk is lower in calories compared to cow’s milk, since it is derived from a plant source (no cholesterol) and is an excellent source of protein. Despite the beneficial factors, soymilk is considered as one of the most controversial foods in the world. It contains serine protease inhibitors which lower its nutritional value and digestibility. Processing techniques for the elimination of trypsin inhibitors and lipoxygenase, which have shorter processing time and lower production costs are required for the large-scale manufacturing of soymilk. In this study, the suitable conditions of time and temperature are optimized during microwave processing to obtain soymilk with maximum digestibility with inactivation of trypsin inhibitors, in comparison to the conventional thermal treatment. The microwave processing conditions at a frequency of 2.45 GHz and temperatures of 70 °C, 85 °C and 100 °C for 2, 5 and 8 min were investigated and were compared to conventional thermal treatments at the same temperature for 10, 20 and 30 min. Response surface methodology is used to design and optimize the experimental conditions. Thermal processing was able to increase digestibility by 7% (microwave) and 11% (conventional) compared to control, while trypsin inhibitor activity reduced to 1% in microwave processing and 3% in conventional thermal treatment when compared to 10% in raw soybean. PMID:29316679
Process for microwave sintering boron carbide
Holcombe, C.E.; Morrow, M.S.
1993-10-12
A method of microwave sintering boron carbide comprises leaching boron carbide powder with an aqueous solution of nitric acid to form a leached boron carbide powder. The leached boron carbide powder is coated with a glassy carbon precursor to form a coated boron carbide powder. The coated boron carbide powder is consolidated in an enclosure of boron nitride particles coated with a layer of glassy carbon within a container for microwave heating to form an enclosed coated boron carbide powder. The enclosed coated boron carbide powder is sintered within the container for microwave heating with microwave energy.
Process for microwave sintering boron carbide
Holcombe, Cressie E.; Morrow, Marvin S.
1993-01-01
A method of microwave sintering boron carbide comprises leaching boron carbide powder with an aqueous solution of nitric acid to form a leached boron carbide powder. The leached boron carbide powder is coated with a glassy carbon precursor to form a coated boron carbide powder. The coated boron carbide powder is consolidated in an enclosure of boron nitride particles coated with a layer of glassy carbon within a container for microwave heating to form an enclosed coated boron carbide powder. The enclosed coated boron carbide powder is sintered within the container for microwave heating with microwave energy.
Microwave Observations of Precipitation and the Atmosphere
NASA Technical Reports Server (NTRS)
Staelin, David H.; Rosenkranz, Philip W.
2004-01-01
This research effort had three elements devoted to improving satellite-derived passive microwave retrievals of precipitation rate: morphological rain-rate retrievals, warm rain retrievals, and extension of a study of geostationary satellite options. The morphological precipitation-rate retrieval method uses for the first time the morphological character of the observed storm microwave spectra. The basic concept involves: 1) retrieval of point rainfall rates using current algorithms, 2) using spatial feature vectors of the observations over segmented multi-pixel storms to estimate the integrated rainfall rate for that storm (cu m/s), and 3) normalization of the point rain-rate retrievals to ensure consistency with the storm-wide retrieval. This work is ongoing, but two key steps have been completed: development of a segmentation algorithm for defining spatial regions corresponding to single storms for purposes of estimation, and reduction of some of the data from NAST-M that will be used to support this research going forward. The warm rain retrieval method involved extension of Aquai/AIRS/AMSU/HSB algorithmic work on cloud water retrievals. The central concept involves the fact that passive microwave cloud water retrievals over approx. 0.4 mm are very likely associated with precipitation. Since glaciated precipitation is generally detected quite successfully using scattering signatures evident in the surface-blind 54- and 183-GHz bands, this new method complements the first by permitting precipitation retrievals of non-glaciated events. The method is most successful over ocean, but has detected non-glaciated convective cells over land, perhaps in their early formative stages. This work will require additional exploration and validation prior to publication. Passive microwave instrument configurations for use in geostationary orbit were studied. They employ parabolic reflectors between 2 and 4 meters in diameter, and frequencies up to approx.430 GHz; this corresponds to nadir spot diameters as small as 10 km.
Microwave heating: Industrial applications. Citations from the Engineering Index data base
NASA Astrophysics Data System (ADS)
Reed, W. E.
1980-06-01
Industrialized uses of microwave heating are covered in 225 citations, 22 of which are new entries. The topics include industrial heating and drying for processes such as paper drying, vulcanization, and textile processing. Equipment design and safety are also cited.
Far field focusing for a microwave patch antenna with composite substrate
NASA Astrophysics Data System (ADS)
Wan, Jian; Rybin, Oleg; Shulga, Sergey
2018-03-01
Modeling for a compact microwave antenna structure on base of a miniaturized rectangular patch antenna with composite substrate and magnetic superstrates is made in this study by using FDTD simulations. The resonant frequency of the antenna structure is supposed to be 15 GHz. The design of the antenna with composite substrate and without superstrate is made up by using the microwave miniaturization concept for rectangular patch antennas created by first author of this study. The optimal distance between the superstrate and antenna surface is found by using Fabry-Perot cavity theory as maximum values of power directivity and efficiency of the antenna is achieved. The comparative analysis with regard to some far and near field parameters of the above antenna structures and the antenna with dielectric substrate having same value of the relative permittivity is performed.
Microwave integrated circuits for space applications
NASA Technical Reports Server (NTRS)
Leonard, Regis F.; Romanofsky, Robert R.
1991-01-01
Monolithic microwave integrated circuits (MMIC), which incorporate all the elements of a microwave circuit on a single semiconductor substrate, offer the potential for drastic reductions in circuit weight and volume and increased reliability, all of which make many new concepts in electronic circuitry for space applications feasible, including phased array antennas. NASA has undertaken an extensive program aimed at development of MMICs for space applications. The first such circuits targeted for development were an extension of work in hybrid (discrete component) technology in support of the Advanced Communication Technology Satellite (ACTS). It focused on power amplifiers, receivers, and switches at ACTS frequencies. More recent work, however, focused on frequencies appropriate for other NASA programs and emphasizes advanced materials in an effort to enhance efficiency, power handling capability, and frequency of operation or noise figure to meet the requirements of space systems.
NASA Astrophysics Data System (ADS)
Che Abdullah, Salmie Suhana Binti; Teranishi, Takashi; Hayashi, Hidetaka; Kishimoto, Akira
2018-01-01
High operation temperature of solid oxide fuel cell (SOFC) results in high cell and operation cost, time consuming and fast cell degradation. Developing high performance SOFC that operates at lower temperature is required. Here we demonstrate 24 GHz microwave as a rapid heating source to replace conventional heating method for SOFC operation using 20 mol% Sm doped CeO2 electrolyte-supported single cell. The tested cell shows improvement of 62% in maximum power density at 630 °C under microwave heating. This improvement governs by bulk conductivity of the electrolyte. Investigation of ionic transference number reveals that the value is unchanged under microwave irradiation, confirming the charge carrier is dominated by oxygen ion species. This work shows a potential new concept of high performance as well as cost and energy effective SOFC.
Kovács, Petra Veszelovszki; Lemmer, Balázs; Keszthelyi-Szabó, Gábor; Hodúr, Cecilia; Beszédes, Sándor
2018-05-01
It has been numerously verified that microwave radiation could be advantageous as a pre-treatment for enhanced disintegration of sludge. Very few data related to the dielectric parameters of wastewater of different origins are available; therefore, the objective of our work was to measure the dielectric constant of municipal and meat industrial wastewater during a continuous flow operating microwave process. Determination of the dielectric constant and its change during wastewater and sludge processing make it possible to decide on the applicability of dielectric measurements for detecting the organic matter removal efficiency of wastewater purification process or disintegration degree of sludge. With the measurement of dielectric constant as a function of temperature, total solids (TS) content and microwave specific process parameters regression models were developed. Our results verified that in the case of municipal wastewater sludge, the TS content has a significant effect on the dielectric constant and disintegration degree (DD), as does the temperature. The dielectric constant has a decreasing tendency with increasing temperature for wastewater sludge of low TS content, but an adverse effect was found for samples with high TS and organic matter contents. DD of meat processing wastewater sludge was influenced significantly by the volumetric flow rate and power level, as process parameters of continuously flow microwave pre-treatments. It can be concluded that the disintegration process of food industry sludge can be detected by dielectric constant measurements. From technical purposes the applicability of dielectric measurements was tested in the purification process of municipal wastewater, as well. Determination of dielectric behaviour was a sensitive method to detect the purification degree of municipal wastewater.
Fish protein hydrolysates: application in deep-fried food and food safety analysis.
He, Shan; Franco, Christopher; Zhang, Wei
2015-01-01
Four different processes (enzymatic, microwave-intensified enzymatic, chemical, and microwave-intensified chemical) were used to produce fish protein hydrolysates (FPH) from Yellowtail Kingfish for food applications. In this study, the production yield and oil-binding capacity of FPH produced from different processes were evaluated. Microwave intensification significantly increased the production yields of enzymatic process from 42% to 63%. It also increased the production yields of chemical process from 87% to 98%. The chemical process and microwave-intensified chemical process produced the FPH with low oil-binding capacity (8.66 g oil/g FPH and 6.25 g oil/g FPH), whereas the microwave-intensified enzymatic process produced FPH with the highest oil-binding capacity (16.4 g oil/g FPH). The FPH from the 4 processes were applied in the formulation of deep-fried battered fish and deep-fried fish cakes. The fat uptake of deep-fried battered fish can be reduced significantly from about 7% to about 4.5% by replacing 1% (w/w) batter powder with FPH, and the fat uptake of deep-fried fish cakes can be significantly reduced from about 11% to about 1% by replacing 1% (w/w) fish mince with FPH. Food safety tests of the FPH produced by these processes demonstrated that the maximum proportion of FPH that can be safely used in food formulation is 10%, due to its high content of histamine. This study demonstrates the value of FPH to the food industry and bridges the theoretical studies with the commercial applications of FPH. © 2015 Institute of Food Technologists®
NASA Technical Reports Server (NTRS)
Hanley, G. M.
1981-01-01
Modifications to the reference concept were studied and the best approaches defined. The impact of the high efficiency multibandgap solar array on the reference concept design is considered. System trade studies for several solid state concepts, including the sandwich concept and a separate antenna/solar concept, are described. Two solid state concepts were selected and a design definition is presented for each. Magnetrons as an alternative to the reference klystrons for dc/RF conversion are evaluated. System definitions are presented for the preferred klystron and solid state concepts. Supporting systems are analyzed, with major analysis in the microwave, structures, and power distribution areas. Results of studies for thermal control, attitude control, stationkeeping, and details of a multibandgap solar cell study are included. Advanced laser concepts and the meteorological effects of a laser beam power transmission concept are considered.
Hohenforst-Schmidt, Wolfgang; Zarogoulidis, Paul; Stopek, Joshua; Kosmidis, Efstratios; Vogl, Thomas; Linsmeier, Bernd; Tsakiridis, Kosmas; Lampaki, Sofia; Lazaridis, George; Mpakas, Andreas; Browning, Robert; Papaiwannou, Antonis; Drevelegas, Antonis; Baka, Sofia; Karavasilis, Vasilis; Mpoukovinas, Ioannis; Turner, J Francis; Zarogoulidis, Konstantinos; Brachmann, Johannes
2015-01-01
Novel therapies for lung cancer are being explored nowadays with local therapies being the tip of the arrow. Intratumoral chemotherapy administration and local microwave ablation have been investigated in several studies. It has been previously proposed that lipiodol has the ability to modify the microenvironment matrix. In our current study we investigated this theory in BALBC mice. In total 160 BALBC mice were divided in eight groups: a) control, b) cisplatin, c) microwave, d) microwave and lipiodol, e) cisplatin and lipiodol, f) microwave and cisplatin, g) lipiodol and h) lipiodol, cisplatin and microwave. Lewis lung carcinoma cell lines (106) were injected into the right back leg of each mouse. After the 8th day, when the tumor volume was about 100mm3 the therapy application was initiated, once per week for four weeks. Magnetic resonance imaging was performed for each tumor when a mouse died or when sacrificed if they were still alive by the end of the experiment (8-Canal multifunctional spool; NORAS MRI products, Gmbh, Germany). Imaging and survival revealed efficient tumor apoptosis for the groups b,c,d,e and f. However; severe toxicity was observed in group h and no follow up was available for this group after the second week of therapy administration. Lipiodol in its current form does assist in a more efficient way the distribution of cisplatin, as the microwave apoptotic effect. Future modification of lipiodol might provide a more efficient method of therapy enhancement. Combination of drug and microwave ablation is possible and has an efficient apoptotic effect. PMID:25663938
Free-space microwave-power transmission
NASA Technical Reports Server (NTRS)
Brown, W. C.
1976-01-01
Laboratory-scale wireless transmission of microwave power approaches fifty-four percent efficiency. DC is converted to a 2.45-GHz signal and is transmitted through horn antenna array; microwave signal is received at rectenna and is simultaneously collected and rectified back to dc at receiving sites; dc is then processed for wired distribution.
Exploration of conditions for microwave roasting of almonds
USDA-ARS?s Scientific Manuscript database
Almond roasting is an energy-intensive process that is usually performed via hot-air convection. Microwave roasting could be a more energy-efficient alternative to hot-air roasting, but microwave roasting of almonds has not yet been thoroughly explored. Thus, the purpose of this study was to deter...
Exploration of conditions for microwave roasting of almonds (abstract)
USDA-ARS?s Scientific Manuscript database
Almond roasting is an energy-intensive process that is usually performed via hot-air convection. Microwave roasting could be a more energy-efficient alternative to hot-air roasting, but microwave roasting of almonds has not yet been thoroughly explored. Thus, the purpose of this study was to deter...
Electromagnetic field tapering using all-dielectric gradient index materials.
Yi, Jianjia; Piau, Gérard-Pascal; de Lustrac, André; Burokur, Shah Nawaz
2016-07-28
The concept of transformation optics (TO) is applied to control the flow of electromagnetic fields between two sections of different dimensions through a tapering device. The broadband performance of the field taper is numerically and experimentally validated. The taper device presents a graded permittivity profile and is fabricated through three-dimensional (3D) polyjet printing technology using low-cost all-dielectric materials. Calculated and measured near-field mappings are presented in order to validate the proposed taper. A good qualitative agreement is obtained between full-wave simulations and experimental tests. Such all-dielectric taper paves the way to novel types of microwave devices that can be easily fabricated through low-cost additive manufacturing processes.
Ultrafast Formation of ZnO Nanorods via Seed-Mediated Microwave Assisted Hydrolysis Process
NASA Astrophysics Data System (ADS)
Tan, S. T.; Umar, A. A.; Yahaya, M.; Yap, C. C.; Salleh, M. M.
2013-04-01
One dimensional (1D) zinc oxide, ZnO nanostructures have shown promising results for usage in photodiode and optoelectronic device due to their high surface area. Faster and conventional method for synthesis ZnO nanorods has become an attention for researcher today. In this paper, ZnO nanorods have been successfully synthesized via two-step process, namely alcothermal seeding and seed-mediated microwave hydrolysis process. In typical process, the ZnO nanoseeds were grown in the growth solution that contained equimolar (0.04 M) of zinc nitrate hexahydrate, Zn (NO3).6H2O and hexamethylenetetramine, HMT. The growth process was carried inside the inverted microwave within 5- 20 s. The effect of growth parameters (i.e. concentration, microwave power, time reaction) upon the modification of ZnO morphology was studied. ZnO nanostructures were characterized by Field emission scanning electron microscope (FESEM) and X-ray diffraction (XRD). The densities of nanorods were evaluated by the Image J analysis. It was found that the morphology (e.g. shape and size) of nanostructures has changed drastically with the increment of growth solution concentration. The density of ZnO nanorods was proven to increase with the increasing of reaction time and microwave power. We hypothesize that the microwave power might enhance the rate of nucleation and promote the faster nanostructure growth as compared with the normal heating condition due to the superheating phenomenon. This method might promote a new and faster alternative way in nanostructure growth which can be applied in currently existing application.
Sánchez-Pardo, María Elena; Ortiz-Moreno, Alicia; Mora-Escobedo, Rosalva; Necoechea-Mondragón, Hugo
2007-09-01
The present study compares the effect of baking process (microwave vs conventional oven) on starch bioavailability in fresh pound cake crumbs and in crumbs from pound cake stored for 8 days. Proximal chemical analysis, resistant starch (RS), retrograded starch (RS3) and starch hydrolysis index (HI) were evaluated. The empirical formula suggested by Granfeldt was used to determine the predicted glycemic index (pGI). Pound cake, one of Mexico's major bread products, was selected for analysis because the quality defects often associated with microwave baking might be reduced with the use of high-fat, high-moisture, batted dough. Differences in product moisture, RS and RS3 were observed in fresh microwave-baked and conventionally baked pound cake. RS3 increased significantly in conventionally baked products stored for 8 days at room temperature, whereas no significantly changes in RS3 were observed in the microwaved product. HI values for freshly baked and stored microwaved product were 59 and 62%, respectively (P > 0.05), whereas the HI value for the conventionally baked product decreased significantly after 8 days of storage. A pound cake with the desired HI and GI characteristics might be obtained by adjusting the microwave baking process.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Nad, Shreya; Department of Physics and Astronomy, Michigan State University, East Lansing, Michigan 48824; Gu, Yajun
2015-07-15
The microwave coupling efficiency of the 2.45 GHz, microwave plasma assisted diamond synthesis process is investigated by experimentally measuring the performance of a specific single mode excited, internally tuned microwave plasma reactor. Plasma reactor coupling efficiencies (η) > 90% are achieved over the entire 100–260 Torr pressure range and 1.5–2.4 kW input power diamond synthesis regime. When operating at a specific experimental operating condition, small additional internal tuning adjustments can be made to achieve η > 98%. When the plasma reactor has low empty cavity losses, i.e., the empty cavity quality factor is >1500, then overall microwave discharge coupling efficienciesmore » (η{sub coup}) of >94% can be achieved. A large, safe, and efficient experimental operating regime is identified. Both substrate hot spots and the formation of microwave plasmoids are eliminated when operating within this regime. This investigation suggests that both the reactor design and the reactor process operation must be considered when attempting to lower diamond synthesis electrical energy costs while still enabling a very versatile and flexible operation performance.« less
Atkins, Tonya M; Louie, Angelique Y; Kauzlarich, Susan M
2012-07-27
Silicon nanoparticles can be considered a green material, especially when prepared via a microwave-assisted method without the use of highly reactive reducing agents or hydrofluoric acid. A simple solution synthesis of hydrogen-terminated Si- and Mn-doped Si nanoparticles via microwave-assisted synthesis is demonstrated. The reaction of the Zintl salt, Na(4)Si(4), or Mn-doped Na(4)Si(4), Na(4)Si(4(Mn)), with ammonium bromide, NH(4)Br, produces small dispersible nanoparticles along with larger particles that precipitate. Allylamine and 1-amino-10-undecene were reacted with the hydrogen-terminated Si nanoparticles to provide water solubility and stability. A one-pot, single-reaction process and a one-pot, two-step reaction process were investigated. Details of the microwave-assisted process are provided, with the optimal synthesis being the one-pot, two-step reaction procedure and a total time of about 15 min. The nanoparticles were characterized by transmission electron microscopy (TEM), x-ray diffraction, and fluorescence spectroscopies. The microwave-assisted method reliably produces a narrow size distribution of Si nanoparticles in solution.
Numerical Analysis of Microwave Heating on Saponification Reaction
NASA Astrophysics Data System (ADS)
Huang, Kama; Jia, Kun
2005-01-01
Currently, microwave is widely used in chemical industry to accelerate chemical reactions. Saponification reaction has important applications in industry; some research results have shown that microwave heating can significantly accelerate the reaction [1]. But so far, no efficient method has been reported for the analysis of the heating process and design of an efficient reactor powered by microwave. In this paper, we present a method to study the microwave heating process on saponification reaction, where the reactant in a test tube is considered as a mixture of dilute solution. According to the preliminary measurement results, the effective permittivity of the mixture is approximately the permittivity of water, but the conductivity, which could change with the reaction, is derived from the reaction equation (RE). The electromagnetic field equation and reaction equation are coupled by the conductivity. Following that, the whole heating processes, which is described by Maxwell's equations, the reaction equation and heat transport equation (HTE), is analyzed by finite difference time domain (FDTD) method. The temperature rising in the test tube are measured and compared with the computational results. Good agreement can be seen between the measured and calculated results.
Zhu, Naishu; Ma, Shining; Sun, Xiaofeng
2016-12-28
In this paper, active screen plasma nitriding (ASPN) treatment was performed on polyacrylonitrile carbon fiber papers. Electric resistivity and microwave loss factor of carbon fiber were described to establish the relationship between processing parameters and fiber's ability to absorb microwaves. The surface processing effect of carbon fiber could be characterized by dynamic thermal mechanical analyzer testing on composites made of carbon fiber. When the process temperature was at 175 °C, it was conducive to obtaining good performance of dynamical mechanical properties. The treatment provided a way to change microwave heating properties of carbon fiber paper by performing different treatment conditions, such as temperature and time parameters. Atomic force microscope, scanning electron microscope, and X-ray photoelectron spectroscopy analysis showed that, during the course of ASPN treatment on carbon fiber paper, nitrogen group was introduced and silicon group was removed. The treatment of nitrogen-doped carbon fiber paper represented an alternative promising candidate for microwave curing materials used in repairing and heating technology, furthermore, an efficient dielectric layer material for radar-absorbing structure composite in metamaterial technology.
Kowalski, Stanisław
2013-11-15
The paper presents the results of microwave irradiation and conventional heating of honey. These two kinds of thermal treatment result in the formation of 5-hydroxymethyl-2-furfural (HMF), and changes in the antioxidant potential of honeys, which were studied as well. Four types of honey (honeydew, lime, acacia, buckwheat) were analyzed. Honey samples were subjected to conventional heating in a water bath (WB) at 90°C up to 60min or to the action of a microwave field (MW) with constant power of 1.26W/g of the sample up to 6min. Changes in the antioxidant capacity of honeys were measured as a percentage of free radical (ABTS(+)and DPPH) scavenging ability. Changes in the total polyphenols content (TPC) (equivalents of gallic acid mg/100g of honey) were also determined. Formation of HMF in honey treated with a microwave field was faster in comparison with the conventional process. Changes in the antioxidant properties of honey subjected to thermal or microwave processing might have been botanical origin dependent. Copyright © 2013 Elsevier Ltd. All rights reserved.
Wideband Agile Digital Microwave Radiometer
NASA Technical Reports Server (NTRS)
Gaier, Todd C.; Brown, Shannon T.; Ruf, Christopher; Gross, Steven
2012-01-01
The objectives of this work were to take the initial steps needed to develop a field programmable gate array (FPGA)- based wideband digital radiometer backend (>500 MHz bandwidth) that will enable passive microwave observations with minimal performance degradation in a radiofrequency-interference (RFI)-rich environment. As manmade RF emissions increase over time and fill more of the microwave spectrum, microwave radiometer science applications will be increasingly impacted in a negative way, and the current generation of spaceborne microwave radiometers that use broadband analog back ends will become severely compromised or unusable over an increasing fraction of time on orbit. There is a need to develop a digital radiometer back end that, for each observation period, uses digital signal processing (DSP) algorithms to identify the maximum amount of RFI-free spectrum across the radiometer band to preserve bandwidth to minimize radiometer noise (which is inversely related to the bandwidth). Ultimately, the objective is to incorporate all processing necessary in the back end to take contaminated input spectra and produce a single output value free of manmade signals to minimize data rates for spaceborne radiometer missions. But, to meet these objectives, several intermediate processing algorithms had to be developed, and their performance characterized relative to typical brightness temperature accuracy re quirements for current and future microwave radiometer missions, including those for measuring salinity, soil moisture, and snow pack.
PETI-298 Prepared by Microwave Synthesis: Neat Resin and Composite Properties
NASA Technical Reports Server (NTRS)
Smith, Joseph G.; Connell, John W.; Li, Chao-Jun; Wu, Wei; Criss, Jim M., Jr.
2004-01-01
PETI-298 is a high temperature/high performance matrix resin that is processable into composites by resin transfer molding (RTM), resin infusion and vacuum assisted RTM techniques. It is typically synthesized in a polar aprotic solvent from the reaction of an aromatic anhydride and a combination of diamines and endcapped with phenylethynylphthalic anhydride. Microwave synthesis of PETI-298 was investigated as a means to eliminate solvent and decrease reaction time. The monomers were manually mixed and placed in a microwave oven for various times to determine optimum reaction conditions. The synthetic process was subsequently scaled-up to 330g. Three batches were synthesized and combined to give 1 kg of material that was characterized for thermal and rheological properties and compared to PETI-298 prepared by the classic solution based synthetic method. The microwave synthesized PETI-298 was subsequently used to fabricate flat laminates on T650 carbon fabric by RTM. The composite panels were analyzed and mechanical properties determined and compared with those fabricated from PETI-298 prepared by the classic solution method. The microwave synthesis process and characterization of neat resin and carbon fiber reinforced composites fabricated by RTM will be presented. KEY WORDS: Resin Transfer Molding, High Temperature Polymers, Phenylethynyl Terminated Imides, Microwave Synthesis
Systems design and analysis of the microwave radiometer spacecraft
NASA Technical Reports Server (NTRS)
Garrett, L. B.
1981-01-01
Systems design and analysis data were generated for microwave radiometer spacecraft concept using the Large Advanced Space Systems (LASS) computer aided design and analysis program. Parametric analyses were conducted for perturbations off the nominal-orbital-altitude/antenna-reflector-size and for control/propulsion system options. Optimized spacecraft mass, structural element design, and on-orbit loading data are presented. Propulsion and rigid-body control systems sensitivities to current and advanced technology are established. Spacecraft-induced and environmental effects on antenna performance (surface accuracy, defocus, and boresight off-set) are quantified and structured material frequencies and modal shapes are defined.
An integrated probe design for measuring food quality in a microwave environment
NASA Astrophysics Data System (ADS)
O'Farrell, M.; Sheridan, C.; Lewis, E.; Zhao, W. Z.; Sun, T.; Grattan, K. T. V.
2007-07-01
The work presented describes the development of a novel integrated optical sensor system for the simultaneous and online measurement of the colour and temperature of food as it cooks in a large-scale microwave and hybrid oven systems. The integrated probe contains two different sensor concepts, one to monitor temperature and based on Fibre Bragg Grating (FBG) technology and a second for meat quality, based on reflection spectroscopy in the visible wavelength range. The combination of the two sensors into a single probe requires a careful configuration of the sensor approaches in the creation of an integrated probe design.
Application of metamaterial concepts to sensors and chipless RFID
NASA Astrophysics Data System (ADS)
Martín, F.; Herrojo, C.; Vélez, P.; Su, L.; Mata-Contreras, J.; Paredes, F.
2018-02-01
Several strategies for the implementation of microwave sensors based on the use of metamaterial-inspired resonators are pointed out, and examples of applications, including sensors for dielectric characterization and sensors for the measurement of spatial variables, are provided. It will be also shown that novel microwave encoders for chipless RFID systems with very high data capacity can be implemented. The fields of applications of the devices discussed in this talk include dielectric characterization of solids and liquids, angular velocity sensors for space applications, and near-field chipless RFID systems for secure paper applications, among others.
1993-02-28
on a potential microwave source with many novel properties. It combines the transferred electron effect in n-type GaAs material together with 2 the...the channel direction. This barrier could be a physical barrier provided by a high band-gap material in a MOSFET structure or a potential barrier...rralivtic vcloocltv flc’ld curve of GmAs\\. chargc- oscillation ii po, ~ible once the dectnic fiC Xi di ’!I;ihU1]0n ClC(I OceCd OheMO) Osld fticl, ’Idh in 3
NASA Technical Reports Server (NTRS)
Diak, George R.; Huang, Hung-Lung; Kim, Dongsoo
1990-01-01
The paper addresses the concept of synthetic satellite imagery as a visualization and diagnostic tool for understanding satellite sensors of the future and to detail preliminary results on the quality of soundings from the current sensors. Preliminary results are presented on the quality of soundings from the combination of the High-Resolution Infrared Radiometer Sounder and the Advanced Microwave Sounding Unit. Results are also presented on the first Observing System Simulation Experiment using this data in a mesoscale numerical prediction model.
Yang, Chao; Xiao, Feng; Wang, Jide; Su, Xintai
2014-12-01
CuO nanoparticles with different morphologies were synthesized by chemical precipitation and subsequently modified by microwave hydrothermal processing. The nanoparticles were precipitated by the introduction of a strong base to an aqueous solution of copper cations in the presence/absence of the polyethylene glycol and urea additives. The modification of the nanoparticles was subsequently carried out by a microwave hydrothermal treatment of suspensions of the precipitates, precipitated with and without the additives. X-ray powder diffraction analysis indicated that the crystallinity and crystallite size of the CuO nanoparticles increased after the microwave hydrothermal modification. Microscopy observations revealed the morphology changes induced by microwave hydrothermal processing. The thermal decomposition of ammonium perchlorate and the detection of volatile gases were performed to evaluate the catalytic and gas sensing properties of the synthesized CuO nanoparticles. Copyright © 2014 Elsevier Inc. All rights reserved.
Infrared fiber optic temperature monitoring of biological tissues heated in a microwave oven
NASA Astrophysics Data System (ADS)
Belotserkovsky, Edward; Ashkenasy, Y.; Shenfeld, Ofer; Drizlikh, S.; Zur, Albert; Katzir, Abraham
1993-05-01
The heating of tissue by microwave radiation has attained a place of importance in various medical fields such as the treatment of malignancies, urinary retention and hypothermia. Accurate temperature measurements in these treated tissues is important for treatment planning and for the control of the heating process. It is also important to be able to measure spacial temperature distribution in the tissues because they are heated in a non uniform way by the microwave radiation. Fiber optic radiometry makes possible accurate temperature measurement in the presence of microwave radiation and does not require contact with the tissue. Using a IR silver halide fiber optic radiometric temperature sensor we obtained accurate temperature measurements of tissues heated by microwave, enabling us to control the heating process in all regions of the tissue. We also performed temperature mapping of the heated tissues and demonstrated the non-uniform temperature distributions in them.
Photonic crystal nanocavity assisted rejection ratio tunable notch microwave photonic filter
Long, Yun; Xia, Jinsong; Zhang, Yong; Dong, Jianji; Wang, Jian
2017-01-01
Driven by the increasing demand on handing microwave signals with compact device, low power consumption, high efficiency and high reliability, it is highly desired to generate, distribute, and process microwave signals using photonic integrated circuits. Silicon photonics offers a promising platform facilitating ultracompact microwave photonic signal processing assisted by silicon nanophotonic devices. In this paper, we propose, theoretically analyze and experimentally demonstrate a simple scheme to realize ultracompact rejection ratio tunable notch microwave photonic filter (MPF) based on a silicon photonic crystal (PhC) nanocavity with fixed extinction ratio. Using a conventional modulation scheme with only a single phase modulator (PM), the rejection ratio of the presented MPF can be tuned from about 10 dB to beyond 60 dB. Moreover, the central frequency tunable operation in the high rejection ratio region is also demonstrated in the experiment. PMID:28067332
Microwave and continuous flow technologies in drug discovery.
Sadler, Sara; Moeller, Alexander R; Jones, Graham B
2012-12-01
Microwave and continuous flow microreactors have become mainstream heating sources in contemporary pharmaceutical company laboratories. Such technologies will continue to benefit from design and engineering improvements, and now play a key role in the drug discovery process. The authors review the applications of flow- and microwave-mediated heating in library, combinatorial, solid-phase, metal-assisted, and protein chemistries. Additionally, the authors provide a description of the combination of microwave and continuous flow platforms, with applications in the preparation of radiopharmaceuticals and in drug candidate development. Literature reviewed is chiefly 2000 - 2012, plus key citations from earlier reports. With the advent of microwave irradiation, reactions that normally took days to complete can now be performed in a matter of minutes. Coupled with the introduction of continuous flow microreactors, pharmaceutical companies have an easy way to improve the greenness and efficiency of many synthetic operations. The combined force of these technologies offers the potential to revolutionize discovery and manufacturing processes.
Photonic crystal nanocavity assisted rejection ratio tunable notch microwave photonic filter
NASA Astrophysics Data System (ADS)
Long, Yun; Xia, Jinsong; Zhang, Yong; Dong, Jianji; Wang, Jian
2017-01-01
Driven by the increasing demand on handing microwave signals with compact device, low power consumption, high efficiency and high reliability, it is highly desired to generate, distribute, and process microwave signals using photonic integrated circuits. Silicon photonics offers a promising platform facilitating ultracompact microwave photonic signal processing assisted by silicon nanophotonic devices. In this paper, we propose, theoretically analyze and experimentally demonstrate a simple scheme to realize ultracompact rejection ratio tunable notch microwave photonic filter (MPF) based on a silicon photonic crystal (PhC) nanocavity with fixed extinction ratio. Using a conventional modulation scheme with only a single phase modulator (PM), the rejection ratio of the presented MPF can be tuned from about 10 dB to beyond 60 dB. Moreover, the central frequency tunable operation in the high rejection ratio region is also demonstrated in the experiment.
Process characteristics for microwave assisted hydrothermal carbonization of cellulose.
Zhang, Junting; An, Ying; Borrion, Aiduan; He, Wenzhi; Wang, Nan; Chen, Yirong; Li, Guangming
2018-07-01
The process characteristics of microwave assisted hydrothermal carbonization of cellulose was investigated and a first order kinetics model based on carbon concentration was developed. Chemical properties analysis showed that comparing to conventional hydrothermal carbonization, hydrochar with comparable energy properties can be obtained with 5-10 times decrease in reaction time with assistance of microwave heating. Results from kinetics study was in great agreement with experimental analysis, that they both illustrated the predominant mechanism of the reaction depend on variations in the reaction rates of two co-existent pathways. Particularly, the pyrolysis-like intramolecular dehydration reaction was proved to be the predominant mechanism for hydrochar generation under high temperatures. Finally, the enhancement effects of microwave heating were reflected under both soluble and solid pathways in this research, suggesting microwave-assisted hydrothermal carbonization as a more attracting method for carbon-enriched hydrochar recovery. Copyright © 2018 Elsevier Ltd. All rights reserved.
Photonic crystal nanocavity assisted rejection ratio tunable notch microwave photonic filter.
Long, Yun; Xia, Jinsong; Zhang, Yong; Dong, Jianji; Wang, Jian
2017-01-09
Driven by the increasing demand on handing microwave signals with compact device, low power consumption, high efficiency and high reliability, it is highly desired to generate, distribute, and process microwave signals using photonic integrated circuits. Silicon photonics offers a promising platform facilitating ultracompact microwave photonic signal processing assisted by silicon nanophotonic devices. In this paper, we propose, theoretically analyze and experimentally demonstrate a simple scheme to realize ultracompact rejection ratio tunable notch microwave photonic filter (MPF) based on a silicon photonic crystal (PhC) nanocavity with fixed extinction ratio. Using a conventional modulation scheme with only a single phase modulator (PM), the rejection ratio of the presented MPF can be tuned from about 10 dB to beyond 60 dB. Moreover, the central frequency tunable operation in the high rejection ratio region is also demonstrated in the experiment.
Planar controlled zone microwave plasma system
Ripley, Edward B [Knoxville, TN; Seals, Roland D [Oak Ridge, TN; Morrell, Jonathan S [Knoxvlle, TN
2011-10-04
An apparatus and method for initiating a process gas plasma. A conductive plate having a plurality of conductive fingers is positioned in a microwave applicator. An arc forms between the conductive fingers to initiate the formation of a plasma. A transport mechanism may convey process materials through the plasma. A spray port may be provided to expel processed materials.
Controlled zone microwave plasma system
Ripley, Edward B [Knoxville, TN; Seals, Roland D [Oak Ridge, TN; Morrell, Jonathan S [Knoxville, TN
2009-10-20
An apparatus and method for initiating a process gas plasma. A conductive plate having a plurality of conductive fingers is positioned in a microwave applicator. An arc forms between the conductive fingers to initiate the formation of a plasma. A transport mechanism may convey process materials through the plasma. A spray port may be provided to expel processed materials.
Tan, Jason Cx; Chuah, Cheng-Hock; Cheng, Sit-Foon
2017-04-01
Conventional palm oil milling involves multiple stages after fruit collection; in particular, oil clarification introduces water into the pressed oil, which results in a large quantity of wastewater. A combined process of microwave pretreatment and solvent extraction to mill crude palm oil, without introducing water or steam, is described. An excellent yield (up to 30%) of oil was obtained with pretreatment in a 42 L, 1000 W and 2450 MHz microwave oven followed by hexane extraction. The optimum conditions (10 min microwave pretreatment and 12 h solvent extraction) yielded an oil with a low free fatty acid content (<1.0%) and an acceptable anisidine value (<3.0 meq kg -1 ). The oil had a fatty acid composition not resembling those of conventional crude palm oil and crude palm kernel oil. In the pretreatment, the leached oil had 6.3% lauric acid whereas the solvent extracted oil had only 1.5% lauric acid. Among the factors affecting the oil quality, microwave pretreatment affected the oil quality significantly; however, an optimised duration that would ensure high efficiency in solvent extraction also resulted in ruptured fruitlets, although not to the extent of causing excessive oxidation. In fact, microwave pretreatment should exceed 12 min; after only 15 min, the oil had 1-methylcyclopentanol (12.96%), 1-tetradecanol (9.44%), 1-nonadecene (7.22%), nonanal (7.13%) and 1-tridecene (5.09%), which probably arose from the degradation of fibres. Microwave pretreatment represents an alternative milling process for crude palm oil compared with conventional processes in the omission of wet treatment with steam. © 2016 Society of Chemical Industry. © 2016 Society of Chemical Industry.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Paulauskas, F.L.
The objective of this work was to investigate the beneficial effect of the variable frequency microwave (VFM) technology to cure thermosetting prepreg laminates. Further, it was to investigate the interrelationship and effect on the curing process of frequency, band width, and curing time with different types of laminates. Previous studies of microwave-assisted curing of neat resins (epoxy) and unidirectional glass and carbon fiber laminates with a fixed frequency of 2.45 GHz, have shown that a substantial reduction in the curing time was obtained. Results of this earlier work indicate that the microwave-assisted curing of multidirectional glass fiber laminates also showmore » a substantial reduction of the required curing time. This may be explained by the penetration of microwave energy directly and throughout the laminate with enhancement of the kinetics of the chemical reaction. The fixed frequency microwave radiation of 2.45 GHz has been demonstrated to be a partially acceptable method to cure unidirectional carbon fiber laminates. Multidirectional carbon fiber/epoxy laminates demonstrate a lack of coupling during the curing process. A direct curing of these laminates was not possible by microwave radiation with the experimental approach used in agreement with previous work. In addition to this short coming, the unidirectional laminate samples cured with the fixed frequency are visually nonuniform. Localized areas of darker colors (burn, hot spots, overheating) are attributed to the formation of standing waves within the microwave cavity. For this reason, the laminates are subject to proper rotation while curing through fixed frequency. The present research indicates that variable frequency microwave technology is a sound and acceptable processing method to effectively cure uni-, bi- or multi-directional thermosetting glass fiber laminates. Also, this methodology will effectively cure unidirectional thermosetting carbon fiber laminates. For all these cases, this technology yielded a substantial reduction in the required cure time of these laminates. Multidirectional carbon fiber laminates demonstrated a lack of coupling of VFM energy during the curing process.« less
Development of glass fibre reinforced composites using microwave heating technology
NASA Astrophysics Data System (ADS)
Köhler, T.; Vonberg, K.; Gries, T.; Seide, G.
2017-10-01
Fibre reinforced composites are differentiated by the used matrix material (thermoplastic versus duroplastic matrix) and the level of impregnation. Thermoplastic matrix systems get more important due to their suitability for mass production, their good shapeability and their high impact resistance. A challenge in the processing of these materials is the reduction of the melt flow paths of the thermoplastic matrix. The viscosity of molten thermoplastic material is distinctly higher than the viscosity of duroplastic material. An approach to reduce the flow paths of the thermoplastic melt is given by a commingling process. Composites made from commingling hybrid yarns consist of thermoplastic and reinforcing fibres. Fabrics made from these hybrid yarns are heated and consolidated by the use of heat pressing to form so called organic sheets. An innovative heating system is given by microwaves. The advantage of microwave heating is the volumetric heating of the material, where the energy of the electromagnetic radiation is converted into thermal energy inside the material. In this research project microwave active hybrid yarns are produced and examined at the Institute for Textile Technology of RWTH Aachen University (ITA). The industrial research partner Fricke und Mallah Microwave Technology GmbH, Peine, Germany develops an innovative pressing systems based on a microwave heating system. By implementing the designed microwave heating technology into an existing heat pressing process, FRTCs are being manufactured from glass and nanomodified polypropylene fibre woven fabrics. In this paper the composites are investigated for their mechanical and optical properties.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhang Zhili; Shneider, Mikhail N.
2010-03-15
This paper presents the experimental measurement and computational model of sodium plasma decay processes in mixture of sodium and argon by using radar resonance-enhanced multiphoton ionization (REMPI), coherent microwave Rayleigh scattering of REMPI. A single laser beam resonantly ionizes the sodium atoms by means of 2+1 REMPI process. The laser beam can only generate the ionization of the sodium atoms and have negligible ionization of argon. Coherent microwave scattering in situ measures the total electron number in the laser-induced plasma. Since the sodium ions decay by recombination with electrons, microwave scattering directly measures the plasma decay processes of the sodiummore » ions. A theoretical plasma dynamic model, including REMPI of the sodium and electron avalanche ionization (EAI) of sodium and argon in the gas mixture, has been developed. It confirms that the EAI of argon is several orders of magnitude lower than the REMPI of sodium. The theoretical prediction made for the plasma decay process of sodium plasma in the mixture matches the experimental measurement.« less
Wear study of Al-SiC metal matrix composites processed through microwave energy
NASA Astrophysics Data System (ADS)
Honnaiah, C.; Srinath, M. S.; Prasad, S. L. Ajit
2018-04-01
Particulate reinforced metal matrix composites are finding wider acceptance in many industrial applications due to their isotropic properties and ease of manufacture. Uniform distribution of reinforcement particulates and good bonding between matrix and reinforcement phases are essential features in order to obtain metal matrix composites with improved properties. Conventional powder metallurgy technique can successfully overcome the limitation of stir casting techniques, but it is time consuming and not cost effective. Use of microwave technology for processing particulate reinforced metal matrix composites through powder metallurgy technique is being increasingly explored in recent times because of its cost effectiveness and speed of processing. The present work is an attempt to process Al-SiC metal matrix composites using microwaves irradiated at 2.45 GHz frequency and 900 W power for 10 minutes. Further, dry sliding wear studies were conducted at different loads at constant velocity of 2 m/s for various sliding distances using pin-on-disc equipment. Analysis of the obtained results show that the microwave processed Al-SiC composite material shows around 34 % of resistance to wear than the aluminium alloy.
Microwave-assisted regeneration of synthetic zeolite used in tritium removal systems
DOE Office of Scientific and Technical Information (OSTI.GOV)
Tanaka, M.; Takayama, S.; Sano, S.
The regeneration process using synthetic honeycomb type 5A zeolite under microwave irradiation was experimentally investigated using a single-mode cavity at 2.46 GHz. In order to investigate the effect of electromagnetic fields, inductive heating by a magnetic field was applied to synthetic zeolite containing water. Because the microwave energy absorbed in the sample was less than 15 W, the zeolite sample was only heated to a temperature of 71 C. degrees. Water desorption was observed based on the increased temperature of the zeolite sample and the thermogravimetric curve that indicated a single step phenomenon. As a result, the regeneration process ofmore » zeolite was not complete over a period of 6000 s. A comparison of dielectric heating by an electric field with inductive heating by a magnetic field showed that the regeneration process by microwave irradiation was particularly beneficial in dielectric heating. (authors)« less
Testing of a Microwave Blade Tip Clearance Sensor at the NASA Glenn Research Center
NASA Technical Reports Server (NTRS)
Woike, Mark R.; Roeder, James W.; Hughes, Christopher E.; Bencic, Timothy J.
2009-01-01
The development of new active tip clearance control and structural health monitoring schemes in turbine engines and other types of rotating machinery requires sensors that are highly accurate and can operate in a high-temperature environment. The use of a microwave sensor to acquire blade tip clearance and tip timing measurements is being explored at the NASA Glenn Research Center. The microwave blade tip clearance sensor works on principles that are very similar to a short-range radar system. The sensor sends a continuous microwave signal towards a target and measures the reflected signal. The phase difference of the reflected signal is directly proportional to the distance between the sensor and the target being measured. This type of sensor is beneficial in that it has the ability to operate at extremely high temperatures and is unaffected by contaminants that may be present in turbine engines. The use of microwave sensors for this application is a new concept. Techniques on calibrating the sensors along with installation effects are not well quantified as they are for other sensor technologies. Developing calibration techniques and evaluating installation effects are essential in using these sensors to make tip clearance and tip timing measurements. As a means of better understanding these issues, the microwave sensors were used on a benchtop calibration rig, a large axial vane fan, and a turbofan. Background on the microwave tip clearance sensor, an overview of their calibration, and the results from their use on the axial vane fan and the turbofan will be presented in this paper.
Testing of a Microwave Blade Tip Clearance Sensor at the NASA Glenn Research Center
NASA Technical Reports Server (NTRS)
Woike, Mark R.; Roeder, James W.; Hughes, Christopher E.; Bencic, Timothy J.
2009-01-01
The development of new active tip clearance control and structural health monitoring schemes in turbine engines and other types of rotating machinery requires sensors that are highly accurate and can operate in a high temperature environment. The use of a microwave sensor to acquire blade tip clearance and tip timing measurements is being explored at the NASA Glenn Research Center. The microwave blade tip clearance sensor works on principles that are very similar to a short range radar system. The sensor sends a continuous microwave signal towards a target and measures the reflected signal. The phase difference of the reflected signal is directly proportional to the distance between the sensor and the target being measured. This type of sensor is beneficial in that it has the ability to operate at extremely high temperatures and is unaffected by contaminants that may be present in turbine engines. The use of microwave sensors for this application is a new concept. Techniques on calibrating the sensors along with installation effects are not well quantified as they are for other sensor technologies. Developing calibration techniques and evaluating installation effects are essential in using these sensors to make tip clearance and tip timing measurements. As a means of better understanding these issues, the microwave sensors were used on a bench top calibration rig, a large axial vane fan, and a turbofan. Background on the microwave tip clearance sensor, an overview of their calibration, and the results from their use on the axial vane fan and the turbofan will be presented in this paper.
Utilization of microwave energy for decontamination of oil polluted soils.
Iordache, Daniela; Niculae, Dumitru; Francisc, Ioan Hathazi
2010-01-01
Soil oil (petroleum) product pollution represents a great environmental threat as it may contaminate the neighboring soils and surface and underground water. Liquid fuel contamination may occur anywhere during oil (petroleum) product transportation, storing, handling and utilization. The polluted soil recovery represents a complex process due to the wide range of physical, chemical and biological properties of soils which should be analyzed in connection with the study of the contaminated soil behavior under the microwave field action. The soil, like any other non-metallic material, can be heated through microwave energy absorption due to the dielectric losses, expressed by its dielectric complex constant. Oil polluted soil behaves differently in a microwave field depending on the nature, structure and amount of the polluting fuel. Decontamination is performed through volatilization and retrieval of organic contaminant volatile components. After decontamination only a soil fixed residue remains, which cannot penetrate the underground anymore. In carrying out the soil recovery process by means of this technology we should also consider the soil characteristics such as: the soil type, temperature, moisture.The first part of the paper presents the theoretical aspects relating to the behavior of the polluted soil samples in the microwave field, as well as their relating experimental data. The experimental data resulting from the analysis of soils with a different level of pollution point out that the degree of pollutant recovery is high, contributing to changing the initial classification of soils from the point of view of pollution. The paper graphically presents the levels of microwave generated and absorbed power in soil samples, soil temperature during experimentations, specific processing parameters in a microwave field. It also presents the constructive solution of the microwave equipment designed for the contaminated soil in situ treatment.
Variable frequency microwave furnace system
Bible, Don W.; Lauf, Robert J.
1994-01-01
A variable frequency microwave furnace system (10) designed to allow modulation of the frequency of the microwaves introduced into a furnace cavity (34) for testing or other selected applications. The variable frequency microwave furnace system (10) includes a microwave signal generator (12) or microwave voltage-controlled oscillator (14) for generating a low-power microwave signal for input to the microwave furnace. A first amplifier (18) may be provided to amplify the magnitude of the signal output from the microwave signal generator (12) or the microwave voltage-controlled oscillator (14). A second amplifier (20) is provided for processing the signal output by the first amplifier (18). The second amplifier (20) outputs the microwave signal input to the furnace cavity (34). In the preferred embodiment, the second amplifier (20) is a traveling-wave tube (TWT). A power supply (22) is provided for operation of the second amplifier (20). A directional coupler (24) is provided for detecting the direction of a signal and further directing the signal depending on the detected direction. A first power meter (30) is provided for measuring the power delivered to the microwave furnace (32). A second power meter (26) detects the magnitude of reflected power. Reflected power is dissipated in the reflected power load (28).
Microwave Processing of Crowns from Winter Cereals for Light Microscopy.
USDA-ARS?s Scientific Manuscript database
Microwave processing of tissue considerably shortens the time it takes to prepare samples for light and electron microscopy. However, plant tissues from different species and different regions of the plant respond differently making it impossible to use a single protocol for all plant tissue. The ...
NASA Technical Reports Server (NTRS)
Vilnrotter, Victor A.
2012-01-01
The development and demonstration of a "polished panel" optical receiver concept on the 34 meter research antenna of the Deep Space Network (DSN) has been the subject of recent papers. This concept would enable simultaneous reception of optical and microwave signals by retaining the original shape of the main reflector for microwave reception, but with the aluminum panels polished to high reflectivity to enable focusing of optical signal energy as well. A test setup has been installed on the DSN's 34 meter research antenna at Deep Space Station 13 (DSS-13) of NASA's Goldstone Communications Complex in California, and preliminary experimental results have been obtained. This paper describes the results of our latest efforts to improve the point-spread function (PSF) generated by a custom polished panel, in an attempt to reduce the dimensions of the PSF, thus enabling more precise tracking and improved detection performance. The design of the new mechanical support structure and its operation are described, and the results quantified in terms of improvements in collected signal energy and optical communications performance, based on data obtained while tracking the planet Jupiter with the 34 meter research antenna at DSS-13.
USDA-ARS?s Scientific Manuscript database
The dielectric properties of food greatly influence its interaction with RF and MW electromagnetic fields and subsequently determine the absorption of microwave energy and consequent heating behavior of food materials in microwave heating and processing applications. Microwave heating is usually re...
A single cell model for pretreatment of wood by microwave explosion
Xianjun Li; Yongdong Zhou; Yonglin Yan; Zhiyong Cai; Fu Feng
2010-01-01
A theoretical model was developed to better understand the process of microwave explosion treatment of wood cells. The cell expansion and critical conditions concerning pressure and temperature of ray parenchyma cells in Eucalyptus urophylla were simulated during microwave pretreatment. The results indicate that longitudinal and circumferential stresses were generated...
Jiulong Xie; Chung Hse; Cornelis F. De Hoop; Tingxing Hu; Jinqiu Qi; Todd F. Shupe
2016-01-01
Cellulose nanofibers were successfully isolated from bamboo using microwave liquefaction combinedwith chemical treatment and ultrasonic nanofibrillation processes. The microwave liquefaction couldeliminate almost all the lignin in bamboo, resulting in high cellulose content residues within 7 min, andthe cellulose enriched residues could be readily purified by...
Rapid Cellulose-Mediated Microwave Sintering for High-Conductivity Ag Patterns on Paper.
Jung, Sunshin; Chun, Su Jin; Shon, Chae-Hwa
2016-08-10
Cellulose-based paper is essential in everyday life, but it also has further potentials for use in low-cost, printable, disposable, and eco-friendly electronics. Here, a method is developed for the cellulose-mediated microwave sintering of Ag patterns on conventional paper, in which the paper plays a significant role both as a flexible insulating substrate for the conductive Ag pattern and as a lossy dielectric media for rapid microwave heating. The anisotropic dielectric properties of the cellulose fibers mean that a microwave electric field applied parallel to the paper substrate provides sufficient heating to produce Ag patterns with a conductivity 29-38% that of bulk Ag in a short period of time (∼1 s) at 250-300 °C. Significantly, there is little thermal degradation of the substrate during this process. The microwave-sintered Ag patterns exhibit good mechanical stability against 10 000 bending cycles and can be easily soldered with lead-free solder. Therefore, cellulose-mediated microwave sintering presents a promising means of achieving short processing times and high electrical performance in flexible paper electronics.
Optically Transparent Microwave Polarizer Based On Quasi-Metallic Graphene.
Grande, Marco; Bianco, Giuseppe Valerio; Vincenti, Maria Antonietta; de Ceglia, Domenico; Capezzuto, Pio; Scalora, Michael; D'Orazio, Antonella; Bruno, Giovanni
2015-11-25
In this paper, we report on the engineering and the realization of optically transparent graphene-based microwave devices using Chemical Vapour Deposition (CVD) graphene whose sheet resistance may be tailored down to values below 30 Ω/sq. In particular, we show that the process was successfully used to realize and characterize a simple, optically transparent graphene-based wire-grid polarizer at microwave frequencies (X band). The availability of graphene operating in a quasi-metallic region may allow the integration of graphene layers in several microwave components, thus leading to the realization of fully transparent (and flexible) microwave devices.
Optically Transparent Microwave Polarizer Based On Quasi-Metallic Graphene
Grande, Marco; Bianco, Giuseppe Valerio; Vincenti, Maria Antonietta; de Ceglia, Domenico; Capezzuto, Pio; Scalora, Michael; D’Orazio, Antonella; Bruno, Giovanni
2015-01-01
In this paper, we report on the engineering and the realization of optically transparent graphene-based microwave devices using Chemical Vapour Deposition (CVD) graphene whose sheet resistance may be tailored down to values below 30 Ω/sq. In particular, we show that the process was successfully used to realize and characterize a simple, optically transparent graphene-based wire-grid polarizer at microwave frequencies (X band). The availability of graphene operating in a quasi-metallic region may allow the integration of graphene layers in several microwave components, thus leading to the realization of fully transparent (and flexible) microwave devices. PMID:26603112
Saleh, Khaldoun; Millo, Jacques; Marechal, Baptiste; Dubois, Benoît; Bakir, Ahmed; Didier, Alexandre; Lacroûte, Clément; Kersalé, Yann
2018-01-31
Optical frequency division of an ultrastable laser to the microwave frequency range by an optical frequency comb has allowed the generation of microwave signals with unprecedently high spectral purity and stability. However, the generated microwave signal will suffer from a very low power level if no external optical frequency comb repetition rate multiplication device is used. This paper reports theoretical and experimental studies on the beneficial use of the Vernier effect together with the spectral selective filtering in a double directional coupler add-drop optical fibre ring resonator to increase the comb repetition rate and generate high power microwaves. The studies are focused on two selective filtering aspects: the high rejection of undesirable optical modes of the frequency comb and the transmission of the desirable modes with the lowest possible loss. Moreover, the conservation of the frequency comb stability and linewidth at the resonator output is particularly considered. Accordingly, a fibre ring resonator is designed, fabricated, and characterized, and a technique to stabilize the resonator's resonance comb is proposed. A significant power gain is achieved for the photonically generated beat note at 10 GHz. Routes to highly improve the performances of such proof-of-concept device are also discussed.
"Hearing" Electromagnetic Waves
ERIC Educational Resources Information Center
Rojo, Marta; Munoz, Juan
2014-01-01
In this work, an educational experience is described in which a microwave communication link is used to make students aware that all electromagnetic waves have the same physical nature and properties. Experimental demonstrations are linked to theoretical concepts to increase comprehension of the physical principles underlying electromagnetic…
Patterned Ferroelectric Films for Tunable Microwave Devices
NASA Technical Reports Server (NTRS)
Miranda, Felix A.; Mueller, Carl H.
2008-01-01
Tunable microwave devices based on metal terminals connected by thin ferroelectric films can be made to perform better by patterning the films to include suitably dimensioned, positioned, and oriented constrictions. The patterns can be formed during fabrication by means of selective etching processes. If the width of the ferroelectric film in such a device is reduced at one or more locations, then both the microwave field and any applied DC bias (tuning) electric field become concentrated at those locations. The magnitudes of both the permittivity and the dielectric loss of a ferroelectric material are reduced by application of a DC field. Because the concentration of the DC field in the constriction(s) magnifies the permittivity- and loss-reducing effects of the applied DC voltage, the permittivity and dielectric loss in the constriction(s) are smaller in the constriction(s) than they are in the wider parts of the ferroelectric film. Furthermore, inasmuch as displacement current must flow through either the constriction(s) or the low-loss dielectric substrate, the net effect of the constriction(s) is equivalent to that of incorporating one or more low-loss, low-permittivity region(s) in series with the high-loss, high-permittivity regions. In a series circuit, the properties of the low-capacitance series element (in this case, the constriction) dominate the overall performance. Concomitantly, the capacitance between the metal terminals is reduced. By making the capacitance between the metal terminals small but tunable, a constriction increases the upper limit of the frequency range amenable to ferroelectric tuning. The present patterning concept is expected to be most advantageous for devices and circuits that must operate at frequencies from about 4 to about 60 GHz. A constriction can be designed such that the magnitude of the microwave electric field and the effective width of the region occupied by the microwave electric field become functions of the applied DC electric field, so that tunability is enhanced. It should even be possible to design the constriction to obtain a specific tuning-versus-voltage profile.
A feasibility study and mission analysis for the Hybrid Plume Plasma Rocket
NASA Technical Reports Server (NTRS)
Sullivan, Daniel J.; Micci, Michael M.
1990-01-01
The Hybrid Plume Plasma Rocket (HPPR) is a high power electric propulsion concept which is being developed at the MIT Plasma Fusion Center. This paper presents a theoretical overview of the concept as well as the results and conclusions of an independent study which has been conducted to identify and categorize those technologies which require significant development before the HPPR can be considered a viable electric propulsion device. It has been determined that the technologies which require the most development are high power radio-frequency and microwave generation for space applications and the associated power processing units, low mass superconducting magnets, a reliable, long duration, multi-megawatt space nuclear power source, and long term storage of liquid hydrogen propellant. In addition to this, a mission analysis of a one-way transfer from low earth orbit (LEO) to Mars indicates that a constant acceleration thrust profile, which can be obtained using the HPPR, results in faster trip times and greater payload capacities than those afforded by more conventional constant thrust profiles.
Experimental investigation on in-situ microwave casting of copper
NASA Astrophysics Data System (ADS)
Raman Mishra, Radha; Sharma, Apurbba Kumar
2018-04-01
The in-situ microwave casting of metallic materials is a recently developed casting process. The process works on the principles of hybrid microwave heating and is accomplished inside the applicator cavity. The process involves – melting of the charge, in-situ pouring and solidification of the melt. The electromagnetic and thermal properties of the charge affects microwave-material interaction and hence melting of the charge. On the other hand, cooling conditions inside the applicator controls solidification process. The present work reports on in-situ casting of copper developed inside a multimode cavity at 2.45 GHz using 1400 W. The molten metal was allowed to get poured in-situ inside a graphite mold and solidification was carried out in the same mold inside the applicator cavity. The interaction of microwave with the charge during exposure was studied and the role of oxide layer during meltingthe copper blocks has been presented. The developed in-situ cast was characterized to access the cast quality. Microstructural study revealed the homogeneous and dense structure of the cast. The X-ray diffraction pattern indicated presence of copper in different orientations with (1 1 1) as the dominant orientation. The average micro indentation hardness of the casts was found 93±20 HV.
Wojdyło, Aneta; Figiel, Adam; Oszmiański, Jan
2009-02-25
The objective of this study was to evaluate the application of vacuum-microwave drying (240, 360, and 480 W) in the production process of dehydrated strawberry and to compare and contrast the quality of these dehydrated strawberries in terms of their polyphenol compounds, concentration of some heat liable components, and color to that of freeze-dried, convective, and vacuum-dried strawberry. Thus, the effect of vacuum-microwave drying and other drying methods on the antioxidant activity of berries was evaluated. Whole fresh and dried fruits were assessed for phenolics (anthocyanins, flavanols, hydroxycinnamic acids, and flavonols), ascorbic acid, and antioxidant activity (all parameters were calculated on a dry matter basis). Analysis of data shows that ellagic acid and flavanol changes were affected by drying techniques and cultivar. Drying destroyed anthocyanins, flavanols, and ascorbic acid, and there was a significant decrease in antioxidant activity. The most striking result was that conventional and vacuum drying decreased antioxidant activity in both cultivars, whereas contradictory results were found for vacuum-microwave processed strawberry. This study has demonstrated that vacuum-microwave drying, especially at 240 W, can produce high-quality products, with the additional advantage of reduced processing times, compared to other processes such as freeze-drying.
NASA Astrophysics Data System (ADS)
Zhang, Xuesong
This dissertation aims to enhance the production of aromatic hydrocarbons in the catalytic microwave-induced pyrolysis, and maximize the production of renewable cycloalkanes for jet fuels in the hydrogenation process. In the process, ZSM-5 catalyst as the highly efficient catalyst was employed for catalyzing the pyrolytic volatiles from thermal decomposition of cellulose (a model compound of lignocellulosic biomass). A central composite experiment design (CCD) was used to optimize the product yields as a function of independent factors (e.g. catalytic temperature and catalyst to feed mass ratio). The low-density polyethylene (a mode compound of waste plastics) was then carried out in the catalytic microwave-induced pyrolysis in the presence of ZSM-5 catalyst. Thereafter, the catalytic microwave-induced co-pyrolysis of cellulose with low-density polyethylene (LDPE) was conducted over ZSM-5 catalyst. The results showed that the production of aromatic hydrocarbons was significantly enhanced and the coke formation was also considerably reduced comparing with the catalytic microwave pyrolysis of cellulose or LDPE alone. Moreover, practical lignocellulosic biomass (Douglas fir sawdust pellets) was converted into aromatics-enriched bio-oil by catalytic microwave pyrolysis. The bio-oil was subsequently hydrogenated by using the Raney Ni catalyst. A liquid-liquid extraction step was implemented to recover the liquid organics and remove the water content. Over 20% carbon yield of liquid product regarding lignocellulosic biomass was obtained. Up to 90% selectivity in the liquid product belongs to jet fuel range cycloalkanes. As the integrated processes was developed, catalytic microwave pyrolysis of cellulose with LDPE was conducted to improve aromatic production. After the liquid-liquid extraction by the optimal solvent (n-heptane), over 40% carbon yield of hydrogenated organics based on cellulose and LDPE were achieved in the hydrogenation process. As such, real lignocellulosic biomass with LDPE were transformed into aromatics via co-feed catalytic microwave pyrolysis. It was also found that close to 40% carbon yield of hydrogenated organics were garnered. Based on these outcomes, the reaction kinetics regarding non-catalytic co-pyrolysis and catalytic co-pyrolysis of biomass with plastics were also presented. In addition, the techno-economic analysis of the catalytically integrated processes from lignocellulosic biomass to renewable cycloalkanes for jet fuels was evaluated in the dissertation as well.
Using Microwaves for Extracting Water from the Moon
NASA Technical Reports Server (NTRS)
Ethridge, Edwin C.; Kaukler, William; Hepburn, Frank
2009-01-01
This disk contains 2 videos that accompanies the talk. Twenty years ago, the Lunar Prospector remote sensing satellite provided evidence of relatively large hydrogen concentrations at the lunar poles and in particular concentrated in permanently shadowed craters. The scientific hypothesis is that the hydrogen is in the form of cryo-trapped water just under the surface of the soil. If true this would mean that an average of about 2% water ice is mixed with the lunar soil existing in the form of ice at cryogenic temperatures. For 5 years we have been investigating the use of microwaves for the processing of lunar soil. One of the early uses could be to use microwave energy to extract volatiles and in particular water from the lunar permafrost. Prototype experiments have shown that microwave energy at 2.45 GHz, as in consumer microwave ovens, will couple with and heat cryogenically cooled lunar soil permafrost simulant, resulting in the rapid sublimation of water vapor into the vacuum chamber. The water vapor has been collected on a cryogenic cold trap with high efficiency. The primary advantage of microwave processing is that the volatiles can be extracted in situ. Excavation would not be required. Microwave frequency dielectric property measurements are being made of different lunar soil simulants and plans are to measure Apollo lunar soil at different frequencies and over a range of temperatures. The materials properties are being used to evaluate the heating of lunar soil and develop COMSOL models that can be used to evaluate different microwave extraction scenarios. With COMSOL the heating from cryogenic temperatures can be calculated and COMSOL will permit temperature dependent materials properties to be used during the heating process. Calculations at different microwave frequencies will allow the evaluation of the type of hardware that would be needed to most efficiently extract the water and other volatiles. The 1st video shows the results of the COMSOL models. The second video shows brief views of the lunar surface.
Using Microwaves for Extracting Water from the Moon
NASA Technical Reports Server (NTRS)
Ethridge, Edwin C.; Kaukler, William; Hepburn, Frank
2009-01-01
This disk contains a video that accompanies the talk. Twenty years ago, the Lunar Prospector remote sensing satellite provided evidence of relatively large hydrogen concentrations at the lunar poles and in particular concentrated in permanently shadowed craters. The scientific hypothesis is that the hydrogen is in the form of cryo-trapped water just under the surface of the soil. If true this would mean that an average of about 2% water ice is mixed with the lunar soil existing in the form of ice at cryogenic temperatures. For 5 years we have been investigating the use of microwaves for the processing of lunar soil. One of the early uses could be to use microwave energy to extract volatiles and in particular water from the lunar permafrost. Prototype experiments have shown that microwave energy at 2.45 GHz, as in consumer microwave ovens, will couple with and heat cryogenically cooled lunar soil permafrost simulant, resulting in the rapid sublimation of water vapor into the vacuum chamber. The water vapor has been collected on a cryogenic cold trap with high efficiency. The primary advantage of microwave processing is that the volatiles can be extracted in situ. Excavation would not be required. Microwave frequency dielectric property measurements are being made of different lunar soil simulants and plans are to measure Apollo lunar soil at different frequencies and over a range of temperatures. The materials properties are being used to evaluate the heating of lunar soil and develop COMSOL models that can be used to evaluate different microwave extraction scenarios. With COMSOL the heating from cryogenic temperatures can be calculated and COMSOL will permit temperature dependent materials properties to be used during the heating process. Calculations at different microwave frequencies will allow the evaluation of the type of hardware that would be needed to most efficiently extract the water and other volatiles. The video shows the partial results of the COMSOL modeling.
Ji, Zhenwei; Ma, Yunlei; Li, Wei; Li, Xiaoxiang; Zhao, Guangyi; Yun, Zhe; Qian, Jixian; Fan, Qingyu
2012-01-01
Limb-salvage surgery has been well recognized as a standard treatment and alternative to amputation for patients with malignant bone tumors. Various limb-sparing techniques have been developed including tumor prosthesis, allograft, autograft and graft-prosthesis composite. However, each of these methods has short- and long-term disadvantages such as nonunion, mechanical failures and poor limb function. The technique of intracorporeal devitalization of tumor-bearing bone segment in situ by microwave-induced hyperthermia after separating it from surrounding normal tissues with a safe margin is a promising limb-salvage method, which may avoid some shortcomings encountered by the above-mentioned conventional techniques. The purpose of this study is to assess the healing process and revitalization potential of the devitalized bone segment by this method in a dog model. In addition, the immediate effect of microwave on the biomechanical properties of bone tissue was also explored in an in vitro experiment. We applied the microwave-induced hyperthermia to devitalize the distal femurs of dogs in situ. Using a monopole microwave antenna, we could produce a necrotic bone of nearly 20 mm in length in distal femur. Radiography, bone scintigraphy, microangiography, histology and functional evaluation were performed at 2 weeks and 1, 2, 3, 6, 9 and 12 months postoperatively to assess the healing process. In a biomechanical study, two kinds of bone specimens, 3 and 6 cm in length, were used for compression and three-point bending test respectively immediately after extracorporeally devitalized by microwave. An in vivo study showed that intracorporeally and in situ devitalized bone segment by microwave had great revitalization potential. An in vitro study revealed that the initial mechanical strength of the extracorporeally devitalized bone specimen may not be affected by microwave. Our results suggest that the intracorporeal microwave devitalization of tumor-bearing bone segment in situ may be a promising limb-salvage method.
Zhao, Ya Li; Li, Ying Xian; Ma, Hong Bo; Li, Dong; Li, Hai Liang; Jiang, Rui; Kan, Guang Han; Yang, Zhen Zhong; Huang, Zeng Xin
2015-08-01
To gain a better understanding of gene expression changes in the brain following microwave exposure in mice. This study hopes to reveal mechanisms contributing to microwave-induced learning and memory dysfunction. Mice were exposed to whole body 2100 MHz microwaves with specific absorption rates (SARs) of 0.45 W/kg, 1.8 W/kg, and 3.6 W/kg for 1 hour daily for 8 weeks. Differentially expressing genes in the brains were screened using high-density oligonucleotide arrays, with genes showing more significant differences further confirmed by RT-PCR. The gene chip results demonstrated that 41 genes (0.45 W/kg group), 29 genes (1.8 W/kg group), and 219 genes (3.6 W/kg group) were differentially expressed. GO analysis revealed that these differentially expressed genes were primarily involved in metabolic processes, cellular metabolic processes, regulation of biological processes, macromolecular metabolic processes, biosynthetic processes, cellular protein metabolic processes, transport, developmental processes, cellular component organization, etc. KEGG pathway analysis showed that these genes are mainly involved in pathways related to ribosome, Alzheimer's disease, Parkinson's disease, long-term potentiation, Huntington's disease, and Neurotrophin signaling. Construction of a protein interaction network identified several important regulatory genes including synbindin (sbdn), Crystallin (CryaB), PPP1CA, Ywhaq, Psap, Psmb1, Pcbp2, etc., which play important roles in the processes of learning and memorye. Long-term, low-level microwave exposure may inhibit learning and memory by affecting protein and energy metabolic processes and signaling pathways relating to neurological functions or diseases. Copyright © 2015 The Editorial Board of Biomedical and Environmental Sciences. Published by China CDC. All rights reserved.
Photonics for microwave systems and ultra-wideband signal processing
NASA Astrophysics Data System (ADS)
Ng, W.
2016-08-01
The advantages of using the broadband and low-loss distribution attributes of photonics to enhance the signal processing and sensing capabilities of microwave systems are well known. In this paper, we review the progress made in the topical areas of true-time-delay beamsteering, photonic-assisted analog-to-digital conversion, RF-photonic filtering and link performances. We also provide an outlook on the emerging field of integrated microwave photonics (MWP) that promise to reduce the cost of MWP subsystems and components, while providing significantly improved form-factors for system insertion.
Integrable microwave filter based on a photonic crystal delay line.
Sancho, Juan; Bourderionnet, Jerome; Lloret, Juan; Combrié, Sylvain; Gasulla, Ivana; Xavier, Stephane; Sales, Salvador; Colman, Pierre; Lehoucq, Gaelle; Dolfi, Daniel; Capmany, José; De Rossi, Alfredo
2012-01-01
The availability of a tunable delay line with a chip-size footprint is a crucial step towards the full implementation of integrated microwave photonic signal processors. Achieving a large and tunable group delay on a millimetre-sized chip is not trivial. Slow light concepts are an appropriate solution, if propagation losses are kept acceptable. Here we use a low-loss 1.5 mm-long photonic crystal waveguide to demonstrate both notch and band-pass microwave filters that can be tuned over the 0-50-GHz spectral band. The waveguide is capable of generating a controllable delay with limited signal attenuation (total insertion loss below 10 dB when the delay is below 70 ps) and degradation. Owing to the very small footprint of the delay line, a fully integrated device is feasible, also featuring more complex and elaborate filter functions.
Coherent Population Transfer in Chiral Molecules Using Tailored Microwave Pulses
NASA Astrophysics Data System (ADS)
Perez, Cristobal; Steber, Amanda; Domingos, Sergio R.; Krin, Anna; Schmitz, David; Schnell, Melanie
2017-06-01
Over the last years, microwave three-wave mixing (M3WM) experiments have been shown to provide a sensitive way to generate and measure enantiomer-specific molecular responses. These experiments opened the door for enantiomeric excess determination in complex samples without previous separation or purification. We present here a new type of experiment, based on M3WM, to achieve enantiomeric enrichment of a chiral sample by using microwave pulses. We will show that control over the relative phases and polarizations of pulses provides a way to selectively populate a specific quantum rotational state with an enantiomer of choice. The experimental implementation as well as the characterization of the observed enantiomer-selective responses will be presented and discussed. As a proof of concept and to showcase the applicability of our approach we will present the enantiomer enrichment of several terpenes. Sandra Eibenberger, John Doyle, and David Patterson, arXiv:1608.04691 (2016)
How to Ignite an Atmospheric Pressure Microwave Plasma Torch without Any Additional Igniters
Leins, Martina; Gaiser, Sandra; Schulz, Andreas; Walker, Matthias; Schumacher, Uwe; Hirth, Thomas
2015-01-01
This movie shows how an atmospheric pressure plasma torch can be ignited by microwave power with no additional igniters. After ignition of the plasma, a stable and continuous operation of the plasma is possible and the plasma torch can be used for many different applications. On one hand, the hot (3,600 K gas temperature) plasma can be used for chemical processes and on the other hand the cold afterglow (temperatures down to almost RT) can be applied for surface processes. For example chemical syntheses are interesting volume processes. Here the microwave plasma torch can be used for the decomposition of waste gases which are harmful and contribute to the global warming but are needed as etching gases in growing industry sectors like the semiconductor branch. Another application is the dissociation of CO2. Surplus electrical energy from renewable energy sources can be used to dissociate CO2 to CO and O2. The CO can be further processed to gaseous or liquid higher hydrocarbons thereby providing chemical storage of the energy, synthetic fuels or platform chemicals for the chemical industry. Applications of the afterglow of the plasma torch are the treatment of surfaces to increase the adhesion of lacquer, glue or paint, and the sterilization or decontamination of different kind of surfaces. The movie will explain how to ignite the plasma solely by microwave power without any additional igniters, e.g., electric sparks. The microwave plasma torch is based on a combination of two resonators — a coaxial one which provides the ignition of the plasma and a cylindrical one which guarantees a continuous and stable operation of the plasma after ignition. The plasma can be operated in a long microwave transparent tube for volume processes or shaped by orifices for surface treatment purposes. PMID:25938699
NASA Technical Reports Server (NTRS)
Maynard, O. E.; Brown, W. C.; Edwards, A.; Haley, J. T.; Meltz, G.; Howell, J. M.; Nathan, A.
1975-01-01
The efforts and recommendations associated with preliminary design and concept definition for mechanical systems and flight operations are presented. Technical discussion in the areas of mission analysis, antenna structural concept, configuration analysis, assembly and packaging with associated costs are presented. Technology issues for the control system, structural system, thermal system and assembly including cost and man's role in assembly and maintenance are identified. Background and desired outputs for future efforts are discussed.
Effect of telescope antenna diagram on the data acquisition in a stellar interferometer
NASA Astrophysics Data System (ADS)
Longueteau, Emmanuel; Delage, Laurent; Reynaud, François
2017-11-01
This paper deals with the effect of the telescope size on accuracy of the data acquisition in a optical fibre linked stellar interferometer. In this context we introduce the concept of antenna diagram commonly used for microwaves antennae. This concept is essential to explain the contrasts and the phaseclosure acquisitions corruption in a stellar interferometer. The telescope pointing errors induces additional effects that are superimposed with the field limitation and could become critical.
González, A; Norambuena-Contreras, J; Storey, L; Schlangen, E
2018-05-15
The concept of self-healing asphalt mixtures by bitumen temperature increase has been used by researchers to create an asphalt mixture with crack-healing properties by microwave or induction heating. Metals, normally steel wool fibers (SWF), are added to asphalt mixtures prepared with virgin materials to absorb and conduct thermal energy. Metal shavings, a waste material from the metal industry, could be used to replace SWF. In addition, reclaimed asphalt pavement (RAP) could be added to these mixtures to make a more sustainable road material. This research aimed to evaluate the effect of adding metal shavings and RAP on the properties of asphalt mixtures with crack-healing capabilities by microwave heating. The research indicates that metal shavings have an irregular shape with widths larger than typical SWF used with asphalt self-healing purposes. The general effect of adding metal shavings was an improvement in the crack-healing of asphalt mixtures, while adding RAP to mixtures with metal shavings reduced the healing. The average surface temperature of the asphalt samples after microwave heating was higher than temperatures obtained by induction heating, indicating that shavings are more efficient when mixtures are heated by microwave radiation. CT scan analysis showed that shavings uniformly distribute in the mixture, and the addition of metal shavings increases the air voids. Overall, it is concluded that asphalt mixtures with RAP and waste metal shavings have the potential of being crack-healed by microwave heating. Copyright © 2018 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Cho, S. C.; Uhm, H. S.; Hong, Y. C.; Park, Y. G.; Park, J. S.
2008-06-01
Elimination of dimethyl methylphosphonate (DMMP) in liquid phase was studied by making use of a microwave plasma burner, exhibiting a safe removal capability of stockpiled chemical weapons. The microwave plasma burner consisted of a fuel injector and a plasma flame exit connected in series to a microwave plasma torch. The burner flames were sustained by injecting hydrocarbon fuels into the microwave plasma torch in air discharge. The Fourier transform infrared spectra indicated near perfect elimination of DMMP in the microwave plasma burner. This was confirmed by gas chromatography spectra as supporting data, revealing the disappearance of even intermediary compounds in the process of DMMP destruction. The experimental results and the physical configuration of the microwave plasma burner may provide an effective means of on-site removal of chemical warfare agents found on a battlefield.
DOE Office of Scientific and Technical Information (OSTI.GOV)
White, Terry L.; Paulauskas, Felix L.; Bigelow, Timothy S.
A method for continuously processing carbon fiber including establishing a microwave plasma in a selected atmosphere contained in an elongated chamber having a microwave power gradient along its length defined by a lower microwave power at one end and a higher microwave power at the opposite end of the elongated chamber. The elongated chamber having an opening in each of the ends of the chamber that are adapted to allow the passage of the fiber tow while limiting incidental gas flow into or out of said chamber. A continuous fiber tow is introduced into the end of the chamber havingmore » the lower microwave power. The fiber tow is withdrawn from the opposite end of the chamber having the higher microwave power. The fiber to is subjected to progressively higher microwave energy as the fiber is being traversed through the elongated chamber.« less
Melendez, Johan H.; Santaus, Tonya M.; Brinsley, Gregory; Kiang, Daniel; Mali, Buddha; Hardick, Justin; Gaydos, Charlotte A.; Geddes, Chris D.
2016-01-01
Nucleic acid-based detection of gonorrhea infections typically require a two-step process involving isolation of the nucleic acid, followed by the detection of the genomic target often involving PCR-based approaches. In an effort to improve on current detection approaches, we have developed a unique two-step microwave-accelerated approach for rapid extraction and detection of Neisseria gonorrhoeae (GC) DNA. Our approach is based on the use of highly-focused microwave radiation to rapidly lyse bacterial cells, release, and subsequently fragment microbial DNA. The DNA target is then detected by a process known as microwave-accelerated metal-enhanced fluorescence (MAMEF), an ultra-sensitive direct DNA detection analytical technique. In the present study, we show that highly focused microwaves at 2.45 GHz, using 12.3 mm gold film equilateral triangles, are able to rapidly lyse both bacteria cells and fragment DNA in a time- and microwave power-dependent manner. Detection of the extracted DNA can be performed by MAMEF, without the need for DNA amplification in less than 10 minutes total time or by other PCR-based approaches. Collectively, the use of a microwave-accelerated method for the release and detection of DNA represents a significant step forward towards the development of a point-of-care (POC) platform for detection of gonorrhea infections. PMID:27325503
Ho, Guan Sem; Faizal, Hasan Mohd; Ani, Farid Nasir
2017-11-01
High temperature thermal plasma has a major drawback which consumes high energy. Therefore, non-thermal plasma which uses comparatively lower energy, for instance, microwave plasma is more attractive to be applied in gasification process. Microwave-induced plasma gasification also carries the advantages in terms of simplicity, compactness, lightweight, uniform heating and the ability to operate under atmospheric pressure that gains attention from researchers. The present paper synthesizes the current knowledge available for microwave plasma gasification on solid fuels and waste, specifically on affecting parameters and their performance. The review starts with a brief outline on microwave plasma setup in general, and followed by the effect of various operating parameters on resulting output. Operating parameters including fuel characteristics, fuel injection position, microwave power, addition of steam, oxygen/fuel ratio and plasma working gas flow rate are discussed along with several performance criteria such as resulting syngas composition, efficiency, carbon conversion, and hydrogen production rate. Based on the present review, fuel retention time is found to be the key parameter that influences the gasification performance. Therefore, emphasis on retention time is necessary in order to improve the performance of microwave plasma gasification of solid fuels and wastes. Copyright © 2017 Elsevier Ltd. All rights reserved.
Investigations of microwave plasmas - Applications in electrothermal thruster systems
NASA Technical Reports Server (NTRS)
Haraburda, Scott S.; Hawley, Martin C.
1989-01-01
Experimental studies which have been conducted to develop understanding of plasma processes used for spacecraft propulsion are reviewed. The techniques discussed are calorimetry and volume measurements using the TM 011 and TM 012 modes in the microwave cavity system. The use of plasmas in electrical propulsion and microwave induction is reviewed. Plasma containment, microwave power production, energy distribution, and the pressure and flow dependence of the energy distribution are addressed. The plasma dimensions and their dependence on pressure, flow, and power are considered.
Investigations of microwave plasmas - Applications in electrothermal thruster systems
DOE Office of Scientific and Technical Information (OSTI.GOV)
Haraburda, S.S.; Hawley, M.C.
1989-01-01
Experimental studies which have been conducted to develop understanding of plasma processes used for spacecraft propulsion are reviewed. The techniques discussed are calorimetry and volume measurements using the TM 011 and TM 012 modes in the microwave cavity system. The use of plasmas in electrical propulsion and microwave induction is reviewed. Plasma containment, microwave power production, energy distribution, and the pressure and flow dependence of the energy distribution are addressed. The plasma dimensions and their dependence on pressure, flow, and power are considered. 10 refs.
Carballo, Silvia; Prats, Soledad; Maestre, Salvador; Todolí, José-Luis
2015-04-01
In this manuscript, a study of the effect of microwave radiation on the high-performance liquid chromatography separation of tocopherols and vitamin K1 was conducted. The novelty of the application was the use of a relatively low polarity mobile phase in which the dielectric heating effect was minimized to evaluate the nonthermal effect of the microwave radiation over the separation process. Results obtained show that microwave-assisted high-performance liquid chromatography had a shorter analysis time from 31.5 to 13.3 min when the lowest microwave power was used. Moreover, narrower peaks were obtained; hence the separation was more efficient maintaining or even increasing the resolution between the peaks. This result confirms that the increase in mobile phase temperature is not the only variable for improving the separation process but also other nonthermal processes must intervene. Fluorescence detection demonstrated better signal-to-noise compared to photodiode arrayed detection mainly due to the independent effect of microwave pulses on the baseline noise, but photodiode array detection was finally chosen as it allowed a simultaneous detection of nonfluorescent compounds. Finally, a determination of the content of the vitamin E homologs was carried out in different vegetable oils. Results were coherent with those found in the literature. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
NASA Astrophysics Data System (ADS)
Xiao, Wei; Huang, Kama; He, Jianbo; Wu, Ying
2017-09-01
The waveguide-based microwave plasma device is widely used to generate atmospheric plasma for some industrial applications. Nevertheless, the traditional tapered waveguide device has limited power efficiency and produces unstable plasma. A novel ridged waveguide with an oblique hole is proposed to produce microwave atmospheric plasma for fluid processing. By using the ridged waveguide, the microwave field can be well focused, which can sustain plasma at relatively low power. Besides, an oblique hole is used to decrease the power reflection and generate a stable plasma torch especially in the case of high flowing rates. Experiments have been performed with the air flowing rates ranging from 500 l h-1 to 1000 l h-1 and the microwave working frequency of 2.45 GHz. The results show that in comparison with the conventional tapered waveguide, this novel device can both sustain plasma at relative low power and increase the power transfer efficiency by 11% from microwave to plasma. Moreover, both devices are used to process the waste gas-CO and CH4. Significantly, the removal efficiency for CO and CH4 can be increased by 19.7% and 32% respectively in the ridged waveguide compared with the tapered waveguide. It demonstrates that the proposed device possesses a great potential in industrial applications because of its high efficiency and stable performance.
Duhain, G L M C; Minnaar, A; Buys, E M
2012-05-01
Cryptosporidium parvum oocysts have been found on the surface of vegetables in both developed and developing countries. C. parvum can contaminate vegetables via various routes, including irrigation water. This study investigated the effect of individual treatments of chlorine, blanching, blast freezing, and microwave heating, as well as combined treatments of chlorine and freezing, and chlorine and microwave heating on the viability of C. parvum oocysts inoculated on green peppers. The viability of the oocysts after the treatments was assessed using propidium iodide and a flow cytometer. Based on the propidium iodide staining, the chlorine treatments did not affect the viability of the oocysts. Blast freezing significantly inactivated 20% of the oocysts. Microwave heating and blanching significantly inactivated 93% of oocysts. Treatment with chlorine followed by blast freezing did not affect the viability of the oocysts significantly. Treatment with chlorine and microwave heating was significantly more effective than microwave heating alone and inactivated 98% of the oocysts. The study indicates that C. parvum oocysts are sensitive to heat and, to some extent, to blast freezing, but are resistant to chlorine. Therefore, the use of chlorine during vegetable processing is not a critical control point for C. parvum oocysts, and the consumption of raw or minimally processed vegetables may constitute a health risk as C. parvum oocysts can still be found viable on ready-to-eat, minimally processed vegetables.
Using Microwaves to Heat Lunar Soil
NASA Technical Reports Server (NTRS)
Ethridge, Edwin C.
2011-01-01
This slide presentation reviews the use of microwaves to heat lunar soil in order to obtain water. There appears to be large amounts of water in the lunar poles, in Martian areas in lower latitudes and some of the Moons of Jupiter. The presence of water in the south lunar polar region was demonstrated by the Lunar CRater Observation and Sensing Satellite (LCROSS) mission. Microwaves can be used to extract water from lunar soil without excavation. Using microwaves on a lunar soil simulant at least 95% of the water from the regolith permafrost simulant was extracted (2 minutes). The process is modeled using COMSOL Multiphysics Finite Element analysis microwave physics module and demonstrated usingan experiment of an microwave apparatus on a rover.
Dynamic dielectric properties of a wood liquefaction system using polyethylene glycol and glycerol
Mengchao Zhou; Thomas L. Eberhardt; Bo Cai; Chung-Yun Hse; Hui Pan
2017-01-01
Microwave-assisted liquefaction has shown potential for rapid thermal processing of lignocellulosic biomass. The efficiency of microwave heating depends largely on the dielectric properties of the materials being heated. The objective of this study was to investigate the dynamic interactions between microwave energy and the reaction system during the liquefaction of a...
Microwave-assisted liquefaction of rape straw for the production of bio-oils
Xing-Yan Huang; Feng Li; Jiu-Long Xie; Cornelis F. De Hoop; Chung-Yun Hse; Jin-Qiu Qi; Hui Xiao
2017-01-01
The acid-catalyzed liquefaction of rape straw in methanol using microwave energy was examined. Conversion yield and energy consumption were evaluated to profile the microwave-assisted liquefaction process. Chemical components of the bio-oils from various liquefaction conditions were identified. A higher reaction temperature was found to be beneficial to obtain higher...
NASA Astrophysics Data System (ADS)
Galeazzi, G.; Lombardi, A.; Ruoso, G.; Braggio, C.; Carugno, G.; Della Valle, F.; Zanello, D.; Dodonov, V. V.
2013-11-01
In this paper we present theoretical and experimental studies of the modifications of the thermal spectrum inside a microwave resonator due to a parametric amplification process. Both the degenerate and nondegenerate amplifiers are discussed. Theoretical calculations are compared with measurements performed with a microwave cavity parametric amplifier.
NASA Technical Reports Server (NTRS)
Vilnrotter, Victor
2013-01-01
There has been considerable interest in developing and demonstrating a hybrid "polished panel" optical receiver concept that would replace the microwave panels on the Deep Space Network's (DSN) 34 meter antennas with highly polished aluminum panels, thus enabling simultaneous opticaland microwave reception. A test setup has been installed on the 34 meter research antenna at DSS-13 (Deep Space Station 13) at NASA's Goldstone Deep Space Communications Complex in California in order to assess the feasibility of this concept. Here we describe the results of a recent effort todramatically reduce the dimensions of the point-spread function (PSF) generated by a custom polished panel, thus enabling improved optical communications performance. The latest results are compared to the previous configuration in terms of quantifiable PSF improvement. In addition, the performance of acquisition and tracking algorithms designed specifically for the polished panel PSF are evaluated and compared, based on data obtained from real-time tracking of planets and bright stars with the 34 meter research antenna at DSS-13.
NASA Astrophysics Data System (ADS)
Pop, P. A.; Ungur, P. A.; Caraban, A.; Marcu, F.
2009-11-01
The paper has presented some experiments realized at "Congips" Co. Oradea and University of Oradea, regarding of increase machining efficiency and quality for modeling gypsum plaster by using of microwave energy to gypsum ore roast. The elaboration process of microwave energy for modeling gypsum plaster has done on electromagnetic waves properties and specific properties for dielectric materials. Microwaves are radiations of electromagnetic waveform nature, determine by pulsations of electrical-E) and magnetically-H components of electromagnetic wave in interdependence with Maxwell equations. The gypsum ore is calcium sulphate dehydrate (CaSO4ṡ2H2O) using at modeling gypsum plaster fabrication, which is calcium sulphate hemihydrate (CaSO4ṡ1/2H2O), that has behavior of dielectric with losses. The gypsum ore getting in microwave field, in conditions of predictable pressure and temperature has transformed in modeling gypsum plaster, by quick lost of a part from crystallization water. The processing time is very short, which due to a great productivity and machining efficiency, finally of low process cost. All of these recommend continuing the research at pilot station level.
Microwave-Hydrothermal Treated Grape Peel as an Efficient Biosorbent for Methylene Blue Removal
Ma, Lin; Jiang, Chunhai; Lin, Zhenyu; Zou, Zhimin
2018-01-01
Biosorption using agricultural wastes has been proven as a low cost and efficient way for wastewater treatment. Herein, grape peel treated by microwave- and conventional-hydrothermal processes was used as low cost biosorbent to remove methylene blue (MB) from aqueous solutions. The adsorption parameters including the initial pH value, dosage of biosorbents, contact time, and initial MB concentration were investigated to find the optimum adsorption conditions. The biosorbent obtained by microwave-hydrothermal treatment only for 3 min at 180 °C (microwave-hydrothermal treated grape peel, MGP) showed faster kinetics and higher adsorption capability than that produced by a conventional-hydrothermal process (hydrothermal treated grape peel, HGP) with a duration time of 16 h. The maximum adsorption capability of MGP under the optimum conditions (pH = 11, a dosage of 2.50 g/L) as determined with the Langmuir model reached 215.7 mg/g, which was among the best values achieved so far on biosorbents. These results demonstrated that the grape peel treated by a quick microwave-hydrothermal process can be a very promising low cost and efficient biosorbent for organic dye removal from aqueous solutions. PMID:29385041
Investigation into the use of microwave sensors to monitor particulate manufacturing processes
NASA Astrophysics Data System (ADS)
Austin, John Samuel, III
Knowledge of a material's properties in-line during manufacture is of critical importance to many industries, including the pharmaceutical industry, and can be used for either process or quality control. Different microwave sensor configurations were tested to determine both the moisture content and the bulk density in pharmaceutical powders during processing on-line. Although these parameters can significantly affect a material's flowability, compressibility, and cohesivity, in the presence of blends, the picture is incomplete. Due to the ease with which particulate blends tend to segregate, blend uniformity and chemical composition are two critical parameters in nearly all solids manufacturing industries. The prevailing wisdom has been that microwave sensors are not capable of or sensitive enough to measure the relative concentrations of components in a blend. Consequently, it is common to turn to near infrared sensing to determine material composition on-line. In this study, a novel microwave sensor was designed and utilized to determine, separately, the concentrations of different components in a blend of pharmaceutical powders. This custom microwave sensor was shown to have comparable accuracy to the state-of-the-art for both chemical composition and moisture content determination.
Chin, Sanghoon; Thévenaz, Luc; Sancho, Juan; Sales, Salvador; Capmany, José; Berger, Perrine; Bourderionnet, Jérôme; Dolfi, Daniel
2010-10-11
We experimentally demonstrate a novel technique to process broadband microwave signals, using all-optically tunable true time delay in optical fibers. The configuration to achieve true time delay basically consists of two main stages: photonic RF phase shifter and slow light, based on stimulated Brillouin scattering in fibers. Dispersion properties of fibers are controlled, separately at optical carrier frequency and in the vicinity of microwave signal bandwidth. This way time delay induced within the signal bandwidth can be manipulated to correctly act as true time delay with a proper phase compensation introduced to the optical carrier. We completely analyzed the generated true time delay as a promising solution to feed phased array antenna for radar systems and to develop dynamically reconfigurable microwave photonic filters.
Optimization of palm fruit sterilization by microwave irradiation using response surface methodology
NASA Astrophysics Data System (ADS)
Sarah, M.; Madinah, I.; Salamah, S.
2018-02-01
This study reported optimization of palm fruit sterilization process by microwave irradiation. The results of fractional factorial experiments showed no significant external factors affecting temperature of microwave sterilization (MS). Response surface methodology (RSM) was employed and model equation of MS of palm fruit was built. Response surface plots and their corresponding contour plots were analyzed as well as solving model equation. The optimum process parameters for lipase reduction were obtained from MS of 1 kg palm fruit at microwave power of 486 Watt and heating time of 14 minutes. The experimental results showed reduction of lipase activity in the present work under MS treatment. The adequacy of the model equation for predicting the optimum response value was verified by validation data (P>0.15).
Magnetic carbon nanostructures: microwave energy-assisted pyrolysis vs. conventional pyrolysis.
Zhu, Jiahua; Pallavkar, Sameer; Chen, Minjiao; Yerra, Narendranath; Luo, Zhiping; Colorado, Henry A; Lin, Hongfei; Haldolaarachchige, Neel; Khasanov, Airat; Ho, Thomas C; Young, David P; Wei, Suying; Guo, Zhanhu
2013-01-11
Magnetic carbon nanostructures from microwave assisted- and conventional-pyrolysis processes are compared. Unlike graphitized carbon shells from conventional heating, different carbon shell morphologies including nanotubes, nanoflakes and amorphous carbon were observed. Crystalline iron and cementite were observed in the magnetic core, different from a single cementite phase from the conventional process.
Microwave Processing of Materials
1994-01-01
up to many meters in electrically insulating materials, such as ceramics, polymers, and certain composite materials. As discussed in Chapter 2, the...for University of Illinois, Urbana Center: High Performance Polymeric Materials Technology 1206 West Green Street Adhesives & Composites United...Michigan State University, application of microwave processing to polymers and polymer composites Dr. Raymond Decker, University Science Partners
In-line monitoring of granule moisture in fluidized-bed dryers using microwave resonance technology.
Buschmüller, Caroline; Wiedey, Wolfgang; Döscher, Claas; Dressler, Jochen; Breitkreutz, Jörg
2008-05-01
This is the first report on in-line moisture measurement of pharmaceutical products by microwave resonance technology. In order to meet the FDA's PAT approach, a microwave resonance sensor appropriate for pharmaceutical use was developed and implemented into two different fluidized-bed dryers. The novel sensor enables a continuous moisture measurement independent from the product density. Hence, for the first time precise real time determination of the moisture in pharmaceutical granules becomes possible. The qualification of the newly developed sensor was performed by drying placebo granules under experimental conditions and the validation using drug loaded granules under real process conditions. The results of the investigations show good correlations between water content of the granules determined by the microwave resonance sensor and both reference methods, loss on drying by infrared light exposure and Karl Fischer titration. Furthermore, a considerable time saving in the drying process was achieved through monitoring the residual water content continuously by microwave resonance technology instead of the formerly used discontinuous methods.
Technology for On-Chip Qubit Control with Microfabricated Surface Ion Traps
DOE Office of Scientific and Technical Information (OSTI.GOV)
Highstrete, Clark; Scott, Sean Michael; Nordquist, Christopher D.
2013-11-01
Trapped atomic ions are a leading physical system for quantum information processing. However, scalability and operational fidelity remain limiting technical issues often associated with optical qubit control. One promising approach is to develop on-chip microwave electronic control of ion qubits based on the atomic hyperfine interaction. This project developed expertise and capabilities at Sandia toward on-chip electronic qubit control in a scalable architecture. The project developed a foundation of laboratory capabilities, including trapping the 171Yb + hyperfine ion qubit and developing an experimental microwave coherent control capability. Additionally, the project investigated the integration of microwave device elements with surface ionmore » traps utilizing Sandia’s state-of-the-art MEMS microfabrication processing. This effort culminated in a device design for a multi-purpose ion trap experimental platform for investigating on-chip microwave qubit control, laying the groundwork for further funded R&D to develop on-chip microwave qubit control in an architecture that is suitable to engineering development.« less
[Application of microwave technology in extraction process of Guizhi Fuling capsule].
Wang, Zheng-kuan; Zhou, Mao; Liu, Yuan; Bi, Yu-an; Wang, Zhen-zhong; Xiao, Wei
2015-06-01
In this paper, optimization of the conditions of microwave technique in extraction process of Guizhi Fuling capsule in the condition of a pilot scale was carried out. First of all, through the single factor experiment investigation of various factors, the overall impact tendency and range of each factor were determined. Secondly, L9 (3(4)) orthogonal test optimization was used, and the contents of gallic acid in liquid, paeoniflorin, benzoic acid, cinnamic acid, benzoyl paeoniflorin, amygdalin of the liquid medicine were detected. The extraction rate and comprehensive evaluation were calculated with the extraction effect, as the judgment basis. Theoptimum extraction process of Guizhi Fuling capsule by microwave technology was as follows: the ratio of liquid to solid was 6: 1 added to drinking water, the microwave power was 6 kW, extraction time was 20 min for 3 times. The process of the three batch of amplification through verification, the results are stable, and compared with conventional water extraction has the advantages of energy saving, time saving, high efficiency advantages. The above results show the optimum extracting technology of high efficiency, stable and feasible.
NASA Astrophysics Data System (ADS)
Hidayanti, Nur; Suryanto, A.; Qadariyah, L.; Prihatini, P.; Mahfud, Mahfud
2015-12-01
A simple batch process was designed for the transesterification of coconut oil to alkyl esters using microwave assisted method. The product with yield above 93.225% of alkyl ester is called the biodiesel fuel. Response surface methodology was used to design the experiment and obtain the maximum possible yield of biodiesel in the microwave-assisted reaction from coconut oil with KOH as the catalyst. The results showed that the time reaction and concentration of KOH catalyst have significant effects on yield of alkyl ester. Based on the response surface methodology using the selected operating conditions, the time of reaction and concentration of KOH catalyst in transesterification process were 150 second and 0.25%w/w, respectively. The largest predicted and experimental yield of alkyl esters (biodiesel) under the optimal conditions are 101.385% and 93.225%, respectively. Our findings confirmed the successful development of process for the transesterification reaction of coconut oil by microwave-assisted heating, which is effective and time-saving for alkyl ester production.
NASA Astrophysics Data System (ADS)
Josephsen, Gary D.; Josephsen, Kelly A.; Beilman, Greg J.; Taylor, Jodie H.; Muiler, Kristine E.
2005-12-01
This is a report of the adaptation of microwave processing in the preparation of liver biopsies for transmission electron microscopy (TEM) to examine ultrastructural damage of mitochondria in the setting of metabolic stress. Hemorrhagic shock was induced in pigs via 35% total blood volume bleed and a 90-min period of shock followed by resuscitation. Hepatic biopsies were collected before shock and after resuscitation. Following collection, biopsies were processed for TEM by a rapid method involving microwave irradiation (Giberson, 2001). Samples pre- and postshock of each of two animals were viewed and scored using the mitochondrial ultrastructure scoring system (Crouser et al., 2002), a system used to quantify the severity of ultrastructural damage during shock. Results showed evidence of increased ultrastructural damage in the postshock samples, which scored 4.00 and 3.42, versus their preshock controls, which scored 1.18 and 1.27. The results of this analysis were similar to those obtained in another model of shock (Crouser et al., 2002). However, the amount of time used to process the samples was significantly shortened with methods involving microwave irradiation.
Optical isolation based on space-time engineered asymmetric photonic band gaps
NASA Astrophysics Data System (ADS)
Chamanara, Nima; Taravati, Sajjad; Deck-Léger, Zoé-Lise; Caloz, Christophe
2017-10-01
Nonreciprocal electromagnetic devices play a crucial role in modern microwave and optical technologies. Conventional methods for realizing such systems are incompatible with integrated circuits. With recent advances in integrated photonics, the need for efficient on-chip magnetless nonreciprocal devices has become more pressing than ever. This paper leverages space-time engineered asymmetric photonic band gaps to generate optical isolation. It shows that a properly designed space-time modulated slab is highly reflective/transparent for opposite directions of propagation. The corresponding design is magnetless, accommodates low modulation frequencies, and can achieve very high isolation levels. An experimental proof of concept at microwave frequencies is provided.
Restoring Redundancy to the MAP Propulsion System
NASA Technical Reports Server (NTRS)
O'Donnell, James R., Jr.; Davis, Gary T.; Ward, David K.; Bauer, Frank H. (Technical Monitor)
2002-01-01
The Microwave Anisotropy Probe (MAP) is a follow-on to the Differential Microwave Radiometer (DMR) instrument on the Cosmic Background Explorer (COBE). Due to the MAP project's limited mass, power, and financial resources, a traditional reliability concept including fully redundant components was not feasible. The MAP design employs selective hardware redundancy, along with backup software modes and algorithms, to improve the odds of mission success. In particular, MAP's propulsion system, which is used for orbit maneuvers and momentum management, uses eight thrusters positioned and oriented in such a way that its thruster-based attitude control modes can maintain three-axis attitude control in the event of the failure of any one thruster.
NASA Astrophysics Data System (ADS)
Guss, Paul; Rabin, Michael; Croce, Mark; Hoteling, Nathan; Schwellenbach, David; Kruschwitz, Craig; Mocko, Veronika; Mukhopadhyay, Sanjoy
2017-09-01
We demonstrate very high-resolution photon spectroscopy with a microwave-multiplexed 4-pixel transition edge sensor (TES) array. The readout circuit consists of superconducting microwave resonators coupled to radio frequency superconducting-quantum-interference devices (RF-SQUIDs) and transduces changes in input current to changes in phase of a microwave signal. We used a flux-ramp modulation to linearize the response and avoid low-frequency noise. The result is a very high-resolution photon spectroscopy with a microwave-multiplexed 4-pixel transition edge sensor array. We performed and validated a small-scale demonstration and test of all the components of our concept system, which encompassed microcalorimetry, microwave multiplexing, RF-SQUIDs, and software-defined radio (SDR). We shall display data we acquired in the first simultaneous combination of all key innovations in a 4-pixel demonstration, including microcalorimetry, microwave multiplexing, RF-SQUIDs, and SDR. We present the energy spectrum of a gadolinium-153 (153Gd) source we measured using our 4-pixel TES array and the RF-SQUID multiplexer. For each pixel, one can observe the two 97.4 and 103.2 keV photopeaks. We measured the 153Gd photon source with an achieved energy resolution of 70 eV, full width half maximum (FWHM) at 100 keV, and an equivalent readout system noise of 90 pA/pHz at the TES. This demonstration establishes a path for the readout of cryogenic x-ray and gamma ray sensor arrays with more elements and spectral resolving powers. We believe this project has improved capabilities and substantively advanced the science useful for missions such as nuclear forensics, emergency response, and treaty verification through the explored TES developments.
Thin-Film Ferroelectric Tunable Microwave Devices Being Developed
NASA Technical Reports Server (NTRS)
VanKeuls, Frederick W.
1999-01-01
Electronically tunable microwave components have become the subject of intense research efforts in recent years. Many new communications systems would greatly benefit from these components. For example, planned low Earth orbiting satellite networks have a need for electronically scanned antennas. Thin ferroelectric films are one of the major technologies competing to fill these applications. When a direct-current (dc) voltage is applied to ferroelectric film, the dielectric constant of the film can be decreased by nearly an order of magnitude, changing the high-frequency wavelength in the microwave device. Recent advances in film growth have demonstrated high-quality ferroelectric thin films. This technology may allow microwave devices that have very low power and are compact, lightweight, simple, robust, planar, voltage tunable, and affordable. The NASA Lewis Research Center has been designing, fabricating, and testing proof-of-concept tunable microwave devices. This work, which is being done in-house with funding from the Lewis Director's Discretionary Fund, is focusing on introducing better microwave designs to utilize these materials. We have demonstrated Ku- and K-band phase shifters, tunable local oscillators, tunable filters, and tunable diplexers. Many of our devices employ SrTiO3 as the ferroelectric. Although it is one of the more tunable and easily grown ferroelectrics, SrTiO3 must be used at cryogenic temperatures, usually below 100 K. At these temperatures, we frequently use high-temperature superconducting thin films of YBa2Cu3O7-8 to carry the microwave signals. However, much of our recent work has concentrated on inserting room-temperature ferroelectric thin films, such as BaxSr1- xTiO3 into these devices. The BaxSr1-xTiO3 films are used in conjuction with normal metal conductors, such as gold.
W. W. Hansen, Microwave Physics, and Silicon Valley
NASA Astrophysics Data System (ADS)
Leeson, David
2009-03-01
The Stanford physicist W. W. Hansen (b. 1909, AB '29 and PhD '32, MIT post-doc 1933-4, Prof. physics '35-'49, d. 1949) played a seminal role in the development of microwave electronics. His contributions underlay Silicon Valley's postwar ``microwave'' phase, when numerous companies, acknowledging their unique scientific debt to Hansen, flourished around Stanford University. As had the prewar ``radio'' companies, they furthered the regional entrepreneurial culture and prepared the ground for the later semiconductor and computer developments we know as Silicon Valley. In the 1930's, Hansen invented the cavity resonator. He applied this to his concept of the radio-frequency (RF) linear accelerator and, with the Varian brothers, to the invention of the klystron, which made microwave radar practical. As WWII loomed, Hansen was asked to lecture on microwaves to the physicists recruited to the MIT Radiation Laboratory. Hansen's ``Notes on Microwaves,'' the Rad Lab ``bible'' on the subject, had a seminal impact on subsequent works, including the Rad Lab Series. Because of Hansen's failing health, his postwar work, and MIT-Stanford rivalries, the Notes were never published, languishing as an underground classic. I have located remaining copies, and will publish the Notes with a biography honoring the centenary of Hansen's birth. After the war, Hansen founded Stanford's Microwave Laboratory to develop powerful klystrons and linear accelerators. He collaborated with Felix Bloch in the discovery of nuclear magnetic resonance. Hansen experienced first-hand Stanford's evolution from its depression-era physics department to corporate, then government funding. Hansen's brilliant career was cut short by his death in 1949, after his induction in the National Academy of Sciences. His ideas were carried on in Stanford's two-mile long linear accelerator and the development of Silicon Valley.
Dechlorination Mechanism of CuCl Residue from Zinc Hydrometallurgy by Microwave Roasting
NASA Astrophysics Data System (ADS)
Lu, Shuaidan; Ju, Shaohua; Peng, Jinhui; Zhu, Xiaoping; Srinivasakannan, C.; Zhang, Libo; Tu, Ganfeng
2015-04-01
Removal of chlorine (Cl) from the CuCl residue in the process of zinc hydrometallurgy is of great importance to improve the process economics. The current processing methods result in generation of large quantities of polluted discharge necessitating waste treatment systems. The present work attempts to de-chlorinate the CuCl residue through thermal treatment with application of microwave, towards which the effect of the major experimental factors such as roasting temperature, heating duration and particle size of samples on the process has been investigated. And the changes of Gibbs free energy (ΔG) of the dechlorination reactions are calculated which show that: 1) CuCl can react with H2O and air to produce CuO and HCl(g); 2) CuCl can be oxidized by air into CuO and Cl2 would be released. The tail gas chromatography, XRD and SEM-EDS analysis results of samples before and after microwave roasting verified the thermodynamics study results. Thus, the process of dechlorination by microwave roasting technology is feasible, and the tail gas can be mainly HCl(g) and air which can be absorbed with water and produce hydrochloride easily.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Herrero, M.; Martinez-Gallegos, S.; Labajos, F.M.
2011-11-15
Conventional and microwave heating routes have been used to prepare PET-LDH (polyethylene terephthalate-layered double hydroxide) composites with 1-10 wt% LDH by in situ polymerization. To enhance the compatibility between PET and the LDH, terephthalate or dodecyl sulphate had been previously intercalated in the LDH. PXRD and TEM were used to detect the degree of dispersion of the filler and the type of the polymeric composites obtained, and FTIR spectroscopy confirmed that the polymerization process had taken place. The thermal stability of these composites, as studied by thermogravimetric analysis, was enhanced when the microwave heating method was applied. Dodecyl sulphate wasmore » more effective than terephthalate to exfoliate the samples, which only occurred for the terephthalate ones under microwave irradiation. - Graphical abstract: Conventional and microwave heating routes were used to prepare PET-LDH (polyethylene terephthalate-layered double hydroxide) composites with 1-10 wt% LDH by in situ polymerization. To enhance the compatibility between PET and the LDH, terephthalate or dodecyl sulphate was previously intercalated into the LDH. The microwave process improves the dispersion and the thermal stability of nanocomposites due to the interaction of the microwave radiation and the dipolar properties of EG and the homogeneous heating. Highlights: > LDH-PET compatibility is enhanced by preintercalation of organic anions. > Dodecylsulphate performance is much better than that of terephthalate. > Microwave heating improves the thermal stability of the composites. > Microwave heating improves as well the dispersion of the inorganic phase.« less
Zielinski, M; Krzemieniewski, M
2007-01-01
This article shows the results of research on microwave radiation as a factor affecting organic compounds removal in a reactor with a biofilm. In the experiment a bioreactor was situated inside a microwave tube and there exposed to radiation. Municipal wastes were supplied to the bioreactor from a retention tank, to which they returned having passed through the reactor's packing. The whole system operated in a time cycle comprising a 24-hour detention of the wastewaters supply. The research was based on the specific properties of microwave heating, i.e. their ability to heat only the substances of appropriate dielectric properties. As the reactor was properly constructed and the microwave generator work was synchronised with that of the volumetric pump, microwave energy was directed mostly to the biofilm. It was observed that as a result of microwave radiation the process of organic compounds removal, defined as Chemical Oxygen Demand COD, increased its rate nearly by half. Simultaneously the process efficiency increased by 7.7% at the maximum. While analysing the changes the organic compounds underwent it was revealed that the load in-built in the biomass decreased by over half as a result of microwave radiation input at 2.5 W s(-1), which was optimal under the experimental conditions. Similarly the amount of pollutant remaining in the treated effluent decreased nearly by half, whereas the role of oxidation in removing organic pollutant increased in excess of 25% when compared to the control system.
Microwave Crystallization of Lithium Aluminum Germanium Phosphate Solid-State Electrolyte.
Mahmoud, Morsi M; Cui, Yuantao; Rohde, Magnus; Ziebert, Carlos; Link, Guido; Seifert, Hans Juergen
2016-06-23
Lithium aluminum germanium phosphate (LAGP) glass-ceramics are considered as promising solid-state electrolytes for Li-ion batteries. LAGP glass was prepared via the regular conventional melt-quenching method. Thermal, chemical analyses and X-ray diffraction (XRD) were performed to characterize the prepared glass. The crystallization of the prepared LAGP glass was done using conventional heating and high frequency microwave (MW) processing. Thirty GHz microwave (MW) processing setup were used to convert the prepared LAGP glass into glass-ceramics and compared with the conventionally crystallized LAGP glass-ceramics that were heat-treated in an electric conventional furnace. The ionic conductivities of the LAGP samples obtained from the two different routes were measured using impedance spectroscopy. These samples were also characterized using XRD and scanning electron microscopy (SEM). Microwave processing was successfully used to crystallize LAGP glass into glass-ceramic without the aid of susceptors. The MW treated sample showed higher total, grains and grain boundary ionic conductivities values, lower activation energy and relatively larger-grained microstructure with less porosity compared to the corresponding conventionally treated sample at the same optimized heat-treatment conditions. The enhanced total, grains and grain boundary ionic conductivities values along with the reduced activation energy that were observed in the MW treated sample was considered as an experimental evidence for the existence of the microwave effect in LAGP crystallization process. MW processing is a promising candidate technology for the production of solid-state electrolytes for Li-ion battery.
Bi, Xiaoyi; Wang, Peng; Jiang, Hong
2008-06-15
In order to develop a catalyst with high activity and stability for microwave assisted ClO2 catalytic oxidation, we prepared CuOn-La2O3/gamma-Al2O3 by impregnation-deposition method, and determined its properties using BET, XRF, XPS and chemical analysis techniques. The test results show that, better thermal ability of gamma-Al2O3 and high loading of Cu in the catalyst can be achieved by adding La2O3. The microwave assisted ClO2 catalytic oxidation process with CuOn-La2O3/gamma-Al2O3 used as catalyst was also investigated, and the results show that the catalyst has an excellent catalytic activity in treating synthetic wastewater containing 100 mg/L phenol, and 91.66% of phenol and 50.35% of total organic carbon (TOC) can be removed under the optimum process conditions. Compared with no catalyst process, CuOn-La2O3/gamma-Al2O3 can effectively degrade contaminants in short reaction time and with low oxidant dosage, extensive pH range. The comparison of phenol removal efficiency in the different process indicates that microwave irradiation and catalyst work together to oxidize phenol effectively. It can therefore be concluded from results and discussion that CuOn-La2O3/gamma-Al2O3 is a suitable catalyst in microwave assisted ClO2 catalytic oxidation process.
Sun, Bing; Wang, Bo; Zhu, Xiao-mei; Yan, Zhi-yu; Liu, Yong-jun; Liu, Hui
2016-03-01
Hydrogen is regarded as a kind of clean energy with high caloricity and non-pollution, which has been studied by many experts and scholars home and abroad. Microwave discharge plasma shows light future in the area of hydrogen production from ethanol solution, providing a new way to produce hydrogen. In order to further improve the technology and analyze the mechanism of hydrogen production with microwave discharge in liquid, emission spectrum of hydrogen production by microwave discharge plasma in ethanol solution was being studied. In this paper, plasma was generated on the top of electrode by 2.45 GHz microwave, and the spectral characteristics of hydrogen production from ethanol by microwave discharge in liquid were being studied using emission spectrometer. The results showed that a large number of H, O, OH, CH, C2 and other active particles could be produced in the process of hydrogen production from ethanol by microwave discharge in liquid. The emission spectrum intensity of OH, H, O radicals generated from ethanol is far more than that generated from pure water. Bond of O-H split by more high-energy particles from water molecule was more difficult than that from ethanol molecule, so in the process of hydrogen production by microwave discharge plasma in ethanol solution; the main source of hydrogen was the dehydrogenation and restructuring of ethanol molecules instead of water decomposition. Under the definite external pressure and temperature, the emission spectrum intensity of OH, H, O radicals increased with the increase of microwave power markedly, but the emission spectrum intensity of CH, C2 active particles had the tendency to decrease with the increase of microwave power. It indicated that the number of high energy electrons and active particles high energy electron energy increased as the increase of microwave power, so more CH, C2 active particles were split more thoroughly.
Microfabricated Microwave-Integrated Surface Ion Trap
NASA Astrophysics Data System (ADS)
Revelle, Melissa C.; Blain, Matthew G.; Haltli, Raymond A.; Hollowell, Andrew E.; Nordquist, Christopher D.; Maunz, Peter
2017-04-01
Quantum information processing holds the key to solving computational problems that are intractable with classical computers. Trapped ions are a physical realization of a quantum information system in which qubits are encoded in hyperfine energy states. Coupling the qubit states to ion motion, as needed for two-qubit gates, is typically accomplished using Raman laser beams. Alternatively, this coupling can be achieved with strong microwave gradient fields. While microwave radiation is easier to control than a laser, it is challenging to precisely engineer the radiated microwave field. Taking advantage of Sandia's microfabrication techniques, we created a surface ion trap with integrated microwave electrodes with sub-wavelength dimensions. This multi-layered device permits co-location of the microwave antennae and the ion trap electrodes to create localized microwave gradient fields and necessary trapping fields. Here, we characterize the trap design and present simulated microwave performance with progress towards experimental results. This research was funded, in part, by the Office of the Director of National Intelligence (ODNI), Intelligence Advanced Research Projects Activity (IARPA).
NASA Astrophysics Data System (ADS)
Wang, Jing-peng; Zhang, Yi-min; Huang, Jing; Liu, Tao
2018-04-01
The leaching kinetics of the vanadium leaching process were investigated by the comparison of microwave heating and conventional heating methods. Microwave heating with CaF2 had a synergistic effect and improved the vanadium leaching efficiency. In contrast to conventional heating leaching, microwave heating accelerated the vanadium leaching rate by approximately 1-3% and by approximately 15% when CaF2 was also used. The kinetics analysis showed that the calculated activation energy decreased in the microwave heating method in the presence and absence of CaF2. The control procedure of leaching also changed from a chemical reaction control step to a mixed chemical diffusion control step upon the addition of CaF2. Microwave heating was shown to be suitable for leaching systems with diffusion or mixed chemical diffusion control steps when the target mineral does not have a microwave absorbing ability.
NASA Astrophysics Data System (ADS)
Wang, Jing-peng; Zhang, Yi-min; Huang, Jing; Liu, Tao
2018-06-01
The leaching kinetics of the vanadium leaching process were investigated by the comparison of microwave heating and conventional heating methods. Microwave heating with CaF2 had a synergistic effect and improved the vanadium leaching efficiency. In contrast to conventional heating leaching, microwave heating accelerated the vanadium leaching rate by approximately 1-3% and by approximately 15% when CaF2 was also used. The kinetics analysis showed that the calculated activation energy decreased in the microwave heating method in the presence and absence of CaF2. The control procedure of leaching also changed from a chemical reaction control step to a mixed chemical diffusion control step upon the addition of CaF2. Microwave heating was shown to be suitable for leaching systems with diffusion or mixed chemical diffusion control steps when the target mineral does not have a microwave absorbing ability.
Effects of Microwave Radiation on Oil Recovery
NASA Astrophysics Data System (ADS)
Esmaeili, Abdollah
2011-12-01
A variety of oil recovery methods have been developed and applied to mature and depleted reservoirs in order to improve the efficiency. Microwave radiation oil recovery method is a relatively new method and has been of great interest in the recent years. Crude oil is typically co-mingled with suspended solids and water. To increase oil recovery, it is necessary to remove these components. The separation of oil from water and solids using gravitational settling methods is typically incomplete. Oil-in-water and oil-water-solid emulsions can be demulsified and separated into their individual layers by microwave radiation. The data also show that microwave separation is faster than gravity separation and can be faster than conventional heating at many conditions. After separation of emulsion into water and oil layers, water can be discharged and oil is collected. High-frequency microwave recycling process can recover oil and gases from oil shale, residual oil, drill cuttings, tar sands oil, contaminated dredge/sediments, tires and plastics with significantly greater yields and lower costs than are available utilizing existing known technologies. This process is environmentally friendly, fuel-generating recycler to reduce waste, cut emissions, and save energy. This paper presents a critical review of Microwave radiation method for oil recovery.
Liang, Qian; Chen, Huaguo; Zhou, Xin; Deng, Qingfang; Hu, Enming; Zhao, Chao; Gong, Xiaojian
2017-04-01
Microwave extraction combined ultrasonic pretreatment of flavonoids from Periploca forrestii Schltr. was investigated in this study, extraction process was first performed in an ultrasonic cleaner, then treated by microwave irradiation. The optimum ultrasonic time of 25 min was selected by single-factor experiments. A response surface methodology has been used to obtain a mathematical model that describes the process and analyzes the significant parameters ethanol concentration 59.92%, liquid to raw materials ratio 21.24 mL/g, microwave radiation time 209.53 s, and microwave power 274.14 w. In these optimum conditions, the yield of flavonoids from P. forrestii (TFPF) could be up to 9.11 ± 0.08%, which was increased by 14.30 and 19.86% compared microwave extraction and ultrasonic extraction, respectively. In vitro suppress hyaluronidase experimentation showed that TFPF purified using polyamide exhibited good anti-hyaluronidase ability with IC 50 value of 1.033 mg/mL, possessing certain anti-antiallergic and potential application prospect in pharmaceutical production of treating inflammation and other related fields. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Experimental and numerical modeling research of rubber material during microwave heating process
NASA Astrophysics Data System (ADS)
Chen, Hailong; Li, Tao; Li, Kunling; Li, Qingling
2018-05-01
This paper aims to investigate the heating behaviors of block rubber by experimental and simulated method. The COMSOL Multiphysics 5.0 software was utilized in numerical simulation work. The effects of microwave frequency, power and sample size on temperature distribution are examined. The effect of frequency on temperature distribution is obvious. The maximum and minimum temperatures of block rubber increase first and then decrease with frequency increasing. The microwave heating efficiency is maximum in the microwave frequency of 2450 MHz. However, more uniform temperature distribution is presented in other microwave frequencies. The influence of microwave power on temperature distribution is also remarkable. The smaller the power, the more uniform the temperature distribution on the block rubber. The effect of power on microwave heating efficiency is not obvious. The effect of sample size on temperature distribution is evidently found. The smaller the sample size, the more uniform the temperature distribution on the block rubber. However, the smaller the sample size, the lower the microwave heating efficiency. The results can serve as references for the research on heating rubber material by microwave technology.
Review on Photonic Generation of Chirp Arbitrary Microwave Waveforms for Remote Sensing Application
NASA Astrophysics Data System (ADS)
Raghuwanshi, Sanjeev Kumar; Srivastav, Akash; Athokpam, Bidhanshel Singh
2017-12-01
A novel technique to generate an arbitrary chirped waveform by harnessing features of lithium niobate (LiNb O_3) Mach-Zehnder modulator is proposed and demonstrated. The most important application of chirped microwave waveform is that, it improves the range resolution of radar. Microwave photonics system provides high bandwidth capabilities of fiber-optic systems and also contains the ability to provide interconnect transmission properties, which are virtually independent of length. The low-loss wide bandwidth capability of optoelectronic systems makes them attractive for the transmission and processing of microwave signals, while the development of high-capacity optical communication systems has required the use of microwave techniques in optical transmitters and receivers. These two strands have led to the development of the research area of microwave photonics. So, it should be consider that microwave photonics as the field that studies the interaction between microwave and optical waves for applications such as communications, radars, sensors and instrumentations. In this paper, we have thoroughly reviewed the arbitrary chirped microwave generation techniques by using photonics technology.
Broadband superior electromagnetic absorption of a discrete-structure microwave coating
NASA Astrophysics Data System (ADS)
Duan, Yuping; Xi, Qun; Liu, Wei; Wang, Tongmin
2016-10-01
A method of improving the electromagnetic (EM) absorption property of conventional microwave absorber (CMA) is proposed here. The structural design process was mainly concerned with systematic analysis and research into the impedance matching characteristic and induced current. By processing a CMA-carbonyl-iron powder (CIP) coating into many isolated regions, the discrete-structure microwave absorber (DMA) had a much better absorption property than the corresponding CMA. When the thickness was only 2.0 mm and the component content was 33 wt%, the loss of reflection was less than -10 dB shifted from 6-7 GHz to 7-13 GHz and the loss of minimum reflection decreased from 12.5 dB lost to 32 dB lost through a discrete-structure process. The microwave absorption properties of coatings with different component contents and thicknesses were investigated. The minimum reflection peaks tended to shift towards the lower frequency region as CIP content or coating thickness increased. By adjusting these three factors, a high-performance broadband absorber was produced.
NASA Astrophysics Data System (ADS)
Cheng, Song; Zhang, Shengzhou; Zhang, Libo; Xia, Hongying; Peng, Jinhui; Wang, Shixing
2017-09-01
Eupatorium adenophorum, global exotic weeds, was utilized as feedstock for preparation of activated carbon (AC) via microwave-induced KOH activation. Influences of the three vital process parameters - microwave power, activation time and impregnation ratio (IR) - have been assessed on the adsorption capacity and yield of AC. The process parameters were optimized utilizing the Design Expert software and were identified to be a microwave power of 700 W, an activation time of 15 min and an IR of 4, with the resultant iodine adsorption number and yield being 2,621 mg/g and 28.25 %, respectively. The key parameters that characterize the AC such as the brunauer emmett teller (BET) surface area, total pore volume and average pore diameter were estimated to be 3,918 m2/g, 2,383 ml/g and 2.43 nm, respectively, under the optimized process conditions. The surface characteristics of AC were characterized by Fourier transform infrared spectroscopy, scanning electron microscope and Transmission electron microscope.
Inhibitory effect of microwaved thinned nectarine extracts on polyphenol oxidase activity.
Redondo, Diego; Venturini, María E; Oria, Rosa; Arias, Esther
2016-04-15
By-products from agricultural practices or from the fruit processing industry are a source of bioactive compounds that could be used in the food industry. Such by-products include thinned fruits, which are expected to contain high quantities of interesting compounds. One possible application of this fruits is the prevention of the enzymatic browning suffered by fruits and vegetables after minimal processing. The aim of this study is to determine the in vitro and in vivo activity of microwaved extracts obtained from thinned nectarines. It has been observed that in vitro the extracts obtained after the application of high microwave power levels (500, 1000 and 1500 W) are mixed type inhibitors of polyphenoloxidase enzyme, showing an irreversible inactivation. This inhibition could be attributed to the Maillard reaction products formed during the microwave treatment. In vivo, a solution of 2% of the extract obtained at 1500 W inhibited the enzymatic browning in minimally processed peaches for 8 days of storage. Copyright © 2015 Elsevier Ltd. All rights reserved.
Observational clues to the energy release process in impulsive solar bursts
NASA Technical Reports Server (NTRS)
Batchelor, David
1990-01-01
The nature of the energy release process that produces impulsive bursts of hard X-rays and microwaves during solar flares is discussed, based on new evidence obtained using the method of Crannell et al. (1978). It is shown that the hard X-ray spectral index gamma is negatively correlated with the microwave peak frequency, suggesting a common source for the microwaves and X-rays. The thermal and nonthermal models are compared. It is found that the most straightforward explanations for burst time behavior are shock-wave particle acceleration in the nonthermal model and thermal conduction fronts in the thermal model.
Osseointegrated dental implants produced via microwave processing
NASA Astrophysics Data System (ADS)
Kutty, Muralithran G.
This research is a comprehensive effort to develop osseointegrated dental implants via microwave processing. A net-shape microwave sintering procedure was employed to fabricate dental implants. Commercial pure titanium powders (-100, -200 and -325 mesh sizes) were used in this work. This process eliminates the need for machining of implants and prevents contamination. The idea was to take advantage of the peculiar way microwave couple with metallic powders, i.e. generating heat in the interior of the sample and dissipating it away through the surface. The desired features for an implant, a dense core with surface pores, is not possible via conventional sintering. Coating with hydroxyapatite via electrodeposition and chemical combustion vapor deposition was also attempted to further enhance the bioactivity of this layer. Surface roughness and area were measured using a non-contact surface profilometer to further describe the unique surface. In-vitro studies, conducted using osteoblast cells extracted from neonatal rat calvarial, showed improved cell growth on all the uncoated porous samples. However, the highest cell growth was observed on the -200 mesh size samples. The higher surface area of the -200 mesh samples is attributed to this observation. This work was able to identify the processing parameters for titanium in microwave and establishes the importance of surface area as a key parameter for cell growth on porous surfaces as compared to surface roughness.
Dielectric Properties of Low-Level Liquid Waste
DOE Office of Scientific and Technical Information (OSTI.GOV)
L. E. Lagos; M. A. Ebadian
1998-10-20
The purpose of this study was to develop a data collection containing values for the dielectric properties of various low-level liquid waste (LLLW) simulants measured as a function of frequency, temperature, and composition. The investigation was motivated by current interest in the use of microwave processing for the treatment of radioactive waste. A large volume of transuranic liquid and sludge produced by the U.S. Department of Defense (DOD) during the production of nuclear fiel bars is stored at several U.S. Department of Energy (DOE) sites around the United States. Waste storage and disposal space is scarce, expensive, and must bemore » minimized. Thus, several DOE sites are pursuing the use of microwave heating as a means of achieving volume reduction and solidification of low-level liquid wastes. It is important to know which microwave frequencies should be employed tc achieve the most efficient processing at a range of different temperatures. The dielectric properties of the LLLW simulants can be utilized to determine the optimum frequencies for use with a particular LLLW or with other LLLWS of similar composition. Furthermore, nonlinear thermal processes, such as thermal runaway, which occur in the material being treated cannot be modeled without a knowledge of the temperature dependence of the dielectric properties. Often, this data does not exist; however, when it does, only very limited data near room temperature are available. The data collection generated in this study can be used to predict the behavior of a variety of microwave thermal treatment technologies, which have the potential of substantially reducing the volume of the LLLWS that are currently stored at many DOE sites. This information should help the users of the microwave reduction and solidification technology to optimize microwave processes used in the treatment of LLLW. The microwave reduction and solidification technology has clear advantages over other methods of reducing LLLWS. These include the incineration of combustibles, the evaporation of combustibles, the evaporation of liquids, and the compaction of noncombustibles. The handling of radioactive liquid waste is generally carried out within closed systems consisting of highly corrosion-resistant, welded, leak-tight pipes, tanks, and other apparatus. High power microwave processing is a promising technology for reducing risks to the environment and human health, thereby supporting the DOE's decontamination and decommissioning (D&D) objectives.« less
Yan, Wei-qiang; Zhang, Min; Huang, Lue-lue; Tang, Juming; Mujumdar, Arun S; Sun, Jin-cai
2010-06-01
In commercial deep-fat frying of potato chips, the oil content of the final products ranges from 35 to 45 g 100 g(-1) (wet basis). High-temperature frying may cause the formation of acrylamide, making the products unhealthy to the consumer. The aim of this research was to explore a new method, spouted bed microwave drying, to produce healthier puffed snack potato cubes as possible alternatives to oil-fried potato chips. The influence of drying conditions of the spouted bed microwave drying on puffing characteristics of potato cubes were studied and compared with the direct microwave and hot air drying method. Tandem combination drying of microwave-enhanced spouted bed drying (MWSB) could achieve a good expansion ratio, breaking force and rehydration ratio. The puffing characteristics of potato cubes were significantly affected (P < 0.05) by moisture content before starting microwave power in spouted bed microwave drying, by microwave (MW) power, and by the original size of potato cubes. The optimum processing parameters were the moisture content at the start of microwave power (60%), the size of potato cubes (10-12 mm), and microwave power (2-2.5 W g(-1)) Copyright (c) 2010 Society of Chemical Industry.
The reliability of thermocouples in microwave ceramics processing.
Aguilar, Juan; Valdez, Zarel; Ortiz, Ubaldo
2004-01-01
It is not rare to hear arguments against the use of thermocouples for taking temperatures in processes that are taking place under microwave fields. However, the simplicity of this device makes it attractive to consider its use. One question that arises when thermocouples are employed is whether the electric field perturbs the measurement, and if the thermocouple affects the processing. The process that was chosen for conducting this test was the synthesis of spinel (MgAl2O4) using microwaves as a power supply and hematite (Fe2O3) as an additive for both spinel formation promotion and susceptor. The alumina-based systems are very important to study because this is one of the most common ingredients in refractory materials. There are many discussions about the improvement of the process when microwaves are used, but a kinetic comparison cannot be performed if the temperature is unknown, and that is the reason for emphasizing the measurement techniques. The analysis of the obtained samples was carried out by X-ray diffraction of powders. The results of this work show that there is no difference between the products obtained when the thermocouple was inserted in the system, compared to processing without it; hence the thermocouple is appropriate for this application.
DC transport in two-dimensional electron systems under strong microwave illumination
NASA Astrophysics Data System (ADS)
Chakraborty, Shantanu
At low temperature (T) and weak magnetic field ( B), two dimensional electron systems (2DES) can exhibit strong 1/ B-periodic resistance oscillations on application of sufficiently strong microwave radiation. These oscillations are known as microwave induced resistance oscillations (MIROs), MIROs appearing near cyclotron resonance (CR) and its harmonics involve single photon processes and are called integer MIROs while the oscillations near CR subharmonics require multiphoton processes and are called fractional MIROs. Similar strong 1/B periodic resistance oscillations can occur due to strong dc current, and are known as Hall-field resistance oscillations (HIROs). Oscillations also occur for a combination of microwave radiation and strong dc current. In one prominent theory of MIROs, known as the displacement model, electrons make impurity-assisted transitions into higher or lower Landau levels by absorbing or emitting one or more (N) photons. In the presence of combined strong dc current and microwave radiation, electrons make transitions between Landau levels by absorbing or emitting photons followed by a space transition along the applied dc bias. The object of the dissertation is to explore how the different resistance oscillations area affected by strong microwave radiation when multiphoton processes are relevant. We used a coplanar waveguide (CPW) structure deposited on the sample, as opposed to simply placing the sample near the termination of a waveguide as is more the usual practice in this field. The CPW allows us to estimate the AC electric field (EAC) at the sample. In much of the work presented in this thesis we find that higher Nprocesses supersede the competing lower N processes as microwave power is increased. We show this in the presence and in the absence of a strong dc electric field. Finally, we look at the temperature evolution of fractional MIROs to compare the origin of the fractional MIROs with that of integer MIROs.
Effect of microwave argon plasma on the glycosidic and hydrogen bonding system of cotton cellulose.
Prabhu, S; Vaideki, K; Anitha, S
2017-01-20
Cotton fabric was processed with microwave (Ar) plasma to alter its hydrophilicity. The process parameters namely microwave power, process gas pressure and processing time were optimized using Box-Behnken method available in the Design Expert software. It was observed that certain combinations of process parameters improved existing hydrophilicity while the other combinations decreased it. ATR-FTIR spectral analysis was used to identify the strain induced in inter chain, intra chain, and inter sheet hydrogen bond and glycosidic covalent bond due to plasma treatment. X-ray diffraction (XRD) studies was used to analyze the effect of plasma on unit cell parameters and degree of crystallinity. Fabric surface etching was identified using FESEM analysis. Thus, it can be concluded that the increase/decrease in the hydrophilicity of the plasma treated fabric was due to these structural and physical changes. Copyright © 2016 Elsevier Ltd. All rights reserved.
Interaction of microwaves with carbon nanotubes to facilitate modification
NASA Technical Reports Server (NTRS)
Tour, James M. (Inventor); Dyke, Christopher A. (Inventor); Stephenson, Jason J. (Inventor); Yakobson, Boris I. (Inventor)
2011-01-01
The present invention is directed toward methods of crosslinking carbon nanotubes to each other using microwave radiation, articles of manufacture produced by such methods, compositions produced by such methods, and applications for such compositions and articles of manufacture. The present invention is also directed toward methods of radiatively modifying composites and/or blends comprising carbon nanotubes with microwaves, and to the compositions produced by such methods. In some embodiments, the modification comprises a crosslinking process, wherein the carbon nanotubes serve as a conduit for thermally and photolytically crosslinking the host matrix with microwave radiation.
Digital signal processing in microwave radiometers
NASA Technical Reports Server (NTRS)
Lawrence, R. W.; Stanley, W. D.; Harrington, R. F.
1980-01-01
A microprocessor based digital signal processing unit has been proposed to replace analog sections of a microwave radiometer. A brief introduction to the radiometer system involved and a description of problems encountered in the use of digital techniques in radiometer design are discussed. An analysis of the digital signal processor as part of the radiometer is then presented.
Behera, G; Sutar, P P; Aditya, S
2017-11-01
The commercially available dry turmeric powder at 10.34% d.b. moisture content was decontaminated using microwaves at high power density for short time. To avoid the loss of moisture from turmeric due to high microwave power, the drying kinetics were modelled and considered during optimization of microwave decontamination process. The effect of microwave power density (10, 33.5 and 57 W g -1 ), exposure time (10, 20 and 30 s) and thickness of turmeric layer (1, 2 and 3 mm) on total plate, total yeast and mold (YMC) counts, color change (∆E), average final temperature of the product (T af ), water activity (a w ), Page model rate constant (k) and total moisture loss (ML) was studied. The perturbation analysis was carried out for all variables. It was found that to achieve more than one log reduction in yeast and mold count, a substantial reduction in moisture content takes place leading to the reduced output. The microwave power density significantly affected the YMC, T af and a w of turmeric powder. But the thickness of sample and microwave exposure time showed effect only on T af , a w and ML. The colour of turmeric and Page model rate constant were not significantly changed during the process as anticipated. The numerical optimization was done at 57.00 W g -1 power density, 1.64 mm thickness of sample layer and 30 s exposure time. It resulted into 1.6 × 10 7 CFU g -1 YMC, 82.71 °C T af , 0.383 a w and 8.41% (d.b.) final moisture content.
NASA Astrophysics Data System (ADS)
Martin Esparza, Maria Eugenia
Combined hot air-microwave drying has been studied on apple (var. Granny Smith), with and without vacuum impregnation (VI) pretreatment with isotonic solution, respect to kinetics, microstructural and final quality items. In order to reach this objective, a drier has been designed and built, that allows to control and to register all the variables which take place during the drying process. Thermal and dielectric properties, that are very important characteristics when studying heat and mass transfer phenomena that occur during the combined drying process, have been related to temperature and/or moisture content throughout empirical equations. It could be observed that all these properties decreased with product moisture content. Respect to dielectric properties, a relationship among water binding forms to food structure and water molecules relaxation frequency has been found. On the other hand, the effect of drying treatment conditions (air rate, drying temperature, sample thickness and incident microwave power) on the drying rate, from an empirical model based on diffusional mechanisms with two kinetic parameters (k1 and k2), both function of the incident microwave power, has been studied. Microwave application to air drying implied a notable decrease on drying time, the higher the applied power the higher the reduction. Microstructural study by Cryo-Sem revealed fast water vaporization taking place when microwaves are applied. Vacuum impregnation did not implied an additional advantage for combined drying as drying rate was similar to that of NIV samples. Finally, it has been studied the influence of process conditions on the color and mechanical properties of the dried product (IV and NIV). Vacuum impregnation implied an increase on the fracture resistance and less purity and tone angle. Microwave application induced product browning with respect to air drying (tone decreased and purity increased).
Zhou, Huan; Agarwal, Anand K; Goel, Vijay K; Bhaduri, Sarit B
2013-10-01
There are two interesting features of this paper. First, we report herein a novel microwave assisted technique to prepare phosphate based orthopedic cements, which do not generate any exothermicity during setting. The exothermic reactions during the setting of phosphate cements can cause tissue damage during the administration of injectable compositions and hence a solution to the problem is sought via microwave processing. This solution through microwave exposure is based on a phenomenon that microwave irradiation can remove all water molecules from the alkaline earth phosphate cement paste to temporarily stop the setting reaction while preserving the active precursor phase in the formulation. The setting reaction can be initiated a second time by adding aqueous medium, but without any exothermicity. Second, a special emphasis is placed on using this technique to synthesize magnesium phosphate cements for orthopedic applications with their enhanced mechanical properties and possible uses as drug and protein delivery vehicles. The as-synthesized cements were evaluated for the occurrences of exothermic reactions, setting times, presence of Mg-phosphate phases, compressive strength levels, microstructural features before and after soaking in (simulated body fluid) SBF, and in vitro cytocompatibility responses. The major results show that exposure to microwaves solves the exothermicity problem, while simultaneously improving the mechanical performance of hardened cements and reducing the setting times. As expected, the cements are also found to be cytocompatible. Finally, it is observed that this process can be applied to calcium phosphate cements system (CPCs) as well. Based on the results, this microwave exposure provides a novel technique for the processing of injectable phosphate bone cement compositions. © 2013.
Pedrotti, Matheus F; Pereira, Leticia S F; Bizzi, Cezar A; Paniz, Jose N G; Barin, Juliano S; Flores, Erico M M
2017-11-01
In the present work, for the first time a systematic study was performed using an infrared camera and scanning electron microscopy (SEM) coupled to energy dispersive X-ray spectrometry (EDS) to evaluate the mechanisms involved in microwave-induced combustion method, which has been extensively used for sample preparation. Cellulose and glass fiber discs, wetted with the igniter solution (6molL -1 NH 4 NO 3 ), were evaluated under microwave field in a monomode system. The temperature of the discs surface was recorded during microwave irradiation and the effect of NH 4 NO 3 concentration and irradiation time on cellulose oxidation was evaluated. The morphology of the discs surface was characterized by SEM before and after irradiation in an inert atmosphere. According to the results, the surface temperature of the discs increased near to 100°C and remained in this temperature for few seconds while water evaporate. After that, temperature increased over 200°C due to the thermal decomposition of NH 4 NO 3 salt, releasing a large amount of energy that accelerates cellulose oxidation. The higher the igniter concentration, the shorter was the microwave irradiation time for cellulose oxidation. The SEM images revealed that cellulose disc was more porous after microwave irradiation, enhancing oxygen diffusion within the paper and making easier its ignition. The EDS spectrum of cellulose and glass fiber discs showed that signal intensity for nitrogen decreased after microwave irradiation, showing that NH 4 NO 3 was consumed during this process. Therefore, it was demonstrated that the ignition process is the result of synergic interaction of NH 4 NO 3 thermal decomposition and organic matter oxidation (cellulose) releasing heat and feeding the chain reaction. Copyright © 2017 Elsevier B.V. All rights reserved.
Consolidation of lunar regolith: Microwave versus direct solar heating
NASA Technical Reports Server (NTRS)
Kunitzer, J.; Strenski, D. G.; Yankee, S. J.; Pletka, B. J.
1991-01-01
The production of construction materials on the lunar surface will require an appropriate fabrication technique. Two processing methods considered as being suitable for producing dense, consolidated products such as bricks are direct solar heating and microwave heating. An analysis was performed to compare the two processes in terms of the amount of power and time required to fabricate bricks of various size. The regolith was considered to be a mare basalt with an overall density of 60 pct. of theoretical. Densification was assumed to take place by vitrification since this process requires moderate amounts of energy and time while still producing dense products. Microwave heating was shown to be significantly faster compared to solar furnace heating for rapid production of realistic-size bricks.
Evaluation of the effects of low energetic microwave irradiation on anaerobic digestion.
Bastiaens, Bert; Van den Broeck, Rob; Appels, Lise; Dewil, Raf
2017-11-01
The present study investigates the effects of microwave irradiation on the performance of anaerobic digestion processes. A first set of experiments is performed to distinguish the upper limit of the applied energy levels. Secondly, the effects of these treatments on the performance of the digestion process are evaluated in 3 experimental setups: (i) monitoring the acetic acid degradation, (ii) performing a biological methane potential (BMP) assay and (iii) conducting a specific methanogenic activity (SMA) test. The solubilisation experiment reveals a limited degree of disintegration of anaerobic biomass up to a microwave treatment of 10000 kJ/kg TS. Above this threshold value the soluble COD level started to rise, with up to 350% at 30000 kJ/kg TS regardless of the microwave output power. Because solubilisation of the biomass increases the easily degradable content, this would lead to false observations regarding increased activity. Therefore, solubilisation is minimized by limiting the microwave treatment to a maximum of 6000 kJ/kg TS during the second part of the experiments. Monitoring the degradation of acetic acid after a low intensity microwave treatment, reveals that microwave irradiation shortens the lag phase, e.g., from 21 to 3 h after a microwave treatment of 1000 kJ/kg TS at 100 W. However most treatments also result in a decrease of the maximum degradation and of the degradation rate of acetic acid. BMP assays are performed to evaluate the activity and performance of the entire anaerobic community. Every treatment results in a decreased biogas production potential and decreased biogas production rate. Moreover, each treatment induced an increase of the lag phase. The SMA experiments show no influence of the microwave irradiation in terms of biogas or methane production. Copyright © 2017 Elsevier Ltd. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Long, Fei, E-mail: long.drf@gmail.com; Chi, Shangsen; Institute of Advanced Materials and Technology, University of Science and Technology Beijing, Beijing 100083
Wurtzite Cu{sub 2}ZnSnS{sub 4} (CZTS) hexagonal prisms were synthesized by a simple ultrasound-microwave solvothermal method. The product was characterized by XRD, FESEM, EDS, TEM, Raman and UV–vis spectrometer. The hexagonal prisms were 0.5–2 μm wide and 5–12 μm long. The PVP played an important role in the formation of the CZTS hexagonal prisms. In addition, the ultrasound-assisted microwave process was helpful for synthesis of wurtzite rather than kesterite phase CZTS. A nucleation–dissolution–recrystallization mechanism was also proposed to explain the growth of the CZTS hexagonal prisms. - Graphical abstract: Wurtzite Cu{sub 2}ZnSnS{sub 4} hexagonal prisms were synthesized by ultrasound-microwave solvothermal method.more » The ultrasound-assisted microwave process and PVP were useful to the growth of CZTS. A nucleation–dissolution–recrystallization growth mechanism was also proposed. - Highlights: • Wurtzite Cu{sub 2}ZnSnS{sub 4} was prepared by ultrasound-assisted microwave solvothermal method. • The wurtzite CZTS hexagonal prisms are demonstrated a band gap of 1.49 eV. • Synergistic effect of ultrasound and microwave is helpful to prepare Wurtzite CZTS. • PVP plays an important role in the formation of the CZTS hexagonal prisms. • Nucleation–dissolution–recrystallization growth mechanism of the CZTS was proposed.« less
Melendez, Johan H; Santaus, Tonya M; Brinsley, Gregory; Kiang, Daniel; Mali, Buddha; Hardick, Justin; Gaydos, Charlotte A; Geddes, Chris D
2016-10-01
Nucleic acid-based detection of gonorrhea infections typically require a two-step process involving isolation of the nucleic acid, followed by detection of the genomic target often involving polymerase chain reaction (PCR)-based approaches. In an effort to improve on current detection approaches, we have developed a unique two-step microwave-accelerated approach for rapid extraction and detection of Neisseria gonorrhoeae (gonorrhea, GC) DNA. Our approach is based on the use of highly focused microwave radiation to rapidly lyse bacterial cells, release, and subsequently fragment microbial DNA. The DNA target is then detected by a process known as microwave-accelerated metal-enhanced fluorescence (MAMEF), an ultra-sensitive direct DNA detection analytical technique. In the current study, we show that highly focused microwaves at 2.45 GHz, using 12.3-mm gold film equilateral triangles, are able to rapidly lyse both bacteria cells and fragment DNA in a time- and microwave power-dependent manner. Detection of the extracted DNA can be performed by MAMEF, without the need for DNA amplification, in less than 10 min total time or by other PCR-based approaches. Collectively, the use of a microwave-accelerated method for the release and detection of DNA represents a significant step forward toward the development of a point-of-care (POC) platform for detection of gonorrhea infections. Copyright © 2016 Elsevier Inc. All rights reserved.
EXPEDITIOUS SYNTHETIC TRANSFORMATIONS USING MICROWAVES
Microwave-expedited solvent-free synthetic processes will be described for the synthesis of a variety of industrially significant compounds and intermediates namely, enamines, nitroalkenes, enones, oxidized sulfur compounds and ionic liquids. This solvent-free synthetic methodolo...
Chemical vapor infiltration using microwave energy
Devlin, David J.; Currier, Robert P.; Laia, Jr., Joseph R.; Barbero, Robert S.
1993-01-01
A method for producing reinforced ceramic composite articles by means of chemical vapor infiltration and deposition in which an inverted temperature gradient is utilized. Microwave energy is the source of heat for the process.
Active microwave sensing of the atmosphere, chapter 4
NASA Technical Reports Server (NTRS)
1975-01-01
The use of active microwave systems to study atmospheric phenomena is studied. Atmospheric pollution, weather prediction, climate and weather modification, weather danger and disaster warning, and atmospheric processes and interactions are covered.
Software-defined microwave photonic filter with high reconfigurable resolution
Wei, Wei; Yi, Lilin; Jaouën, Yves; Hu, Weisheng
2016-01-01
Microwave photonic filters (MPFs) are of great interest in radio frequency systems since they provide prominent flexibility on microwave signal processing. Although filter reconfigurability and tunability have been demonstrated repeatedly, it is still difficult to control the filter shape with very high precision. Thus the MPF application is basically limited to signal selection. Here we present a polarization-insensitive single-passband arbitrary-shaped MPF with ~GHz bandwidth based on stimulated Brillouin scattering (SBS) in optical fibre. For the first time the filter shape, bandwidth and central frequency can all be precisely defined by software with ~MHz resolution. The unprecedented multi-dimensional filter flexibility offers new possibilities to process microwave signals directly in optical domain with high precision thus enhancing the MPF functionality. Nanosecond pulse shaping by implementing precisely defined filters is demonstrated to prove the filter superiority and practicability. PMID:27759062
NASA Astrophysics Data System (ADS)
Ishikawa, Atsushi; Kato, Taiki; Takeyasu, Nobuyuki; Fujimori, Kazuhiro; Tsuruta, Kenji
2017-10-01
A technique of selective electroless plating onto PLA-ABS (Polylactic Acid-Acrylonitrile Butadiene Styrene) composite structures fabricated by three-dimensional (3D) printing is demonstrated to construct 3D microwave metamaterials. The reducing activity of the PLA surface is selectively enhanced by the chemical modification involving Sn2+ in a simple wet process, thereby forming a highly conductive Ag-plated membrane only onto the PLA surface. The fabricated metamaterial composed of Ag-plated PLA and non-plated ABS parts is characterized experimentally and numerically to demonstrate the important bi-anisotropic microwave responses arising from the 3D nature of metallodielectric structures. Our approach based on a simple wet chemical process allows for the creation of highly complex 3D metal-insulator structures, thus paving the way toward the sophisticated microwave applications of the 3D printing technology.
Software-defined microwave photonic filter with high reconfigurable resolution.
Wei, Wei; Yi, Lilin; Jaouën, Yves; Hu, Weisheng
2016-10-19
Microwave photonic filters (MPFs) are of great interest in radio frequency systems since they provide prominent flexibility on microwave signal processing. Although filter reconfigurability and tunability have been demonstrated repeatedly, it is still difficult to control the filter shape with very high precision. Thus the MPF application is basically limited to signal selection. Here we present a polarization-insensitive single-passband arbitrary-shaped MPF with ~GHz bandwidth based on stimulated Brillouin scattering (SBS) in optical fibre. For the first time the filter shape, bandwidth and central frequency can all be precisely defined by software with ~MHz resolution. The unprecedented multi-dimensional filter flexibility offers new possibilities to process microwave signals directly in optical domain with high precision thus enhancing the MPF functionality. Nanosecond pulse shaping by implementing precisely defined filters is demonstrated to prove the filter superiority and practicability.
Chun, Young Nam; Jeong, Byeo Ri
2017-07-28
Microwave drying-pyrolysis or drying-gasification characteristics were examined to convert sewage sludge into energy and resources. The gasification was carried out with carbon dioxide as a gasifying agent. The examination results were compared with those of the conventional heating-type electric furnace to compare both product characteristics. Through the pyrolysis or gasification, gas, tar, and char were generated as products. The produced gas was the largest component of each process, followed by the sludge char and the tar. During the pyrolysis process, the main components of the produced gas were hydrogen and carbon monoxide, with a small amount of hydrocarbons such as methane and ethylene. In the gasification process, however, the amount of carbon monoxide was greater than the amount of hydrogen. In microwave gasification, a large amount of heavy tar was produced. The largest amount of benzene in light tar was generated from the pyrolysis or gasification. Ammonia and hydrogen cyanide, which are precursors of NO x , were also generated. In the microwave heating method, the sludge char produced by pyrolysis and gasification had pores in the mesopore range. This could be explained that the gas obtained from the microwave pyrolysis or gasification of the wet sewage sludge can be used as an alternative fuel, but the tar and NO x precursors in the produced gas should be treated. Sludge char can be used as a biomass solid fuel or as a tar removal adsorbent if necessary.
NASA Technical Reports Server (NTRS)
Picard, Ghislain; Brucker, Ludovic; Roy, Alexandre; DuPont, FLorent; Champollion, Nicolas; Morin, Samuel
2014-01-01
Microwave radiometer observations have been used to retrieve snow depth and snow water equivalent on both land and sea ice, snow accumulation on ice sheets, melt events, snow temperature, and snow grain size. Modeling the microwave emission from snow and ice physical properties is crucial to improve the quality of these retrievals. It also is crucial to improve our understanding of the radiative transfer processes within the snow cover, and the snow properties most relevant in microwave remote sensing. Our objective is to present a recent microwave emission model and its validation. The model is named DMRT-ML (DMRT Multi-Layer).
Microwave amplification with nanomechanical resonators.
Massel, F; Heikkilä, T T; Pirkkalainen, J-M; Cho, S U; Saloniemi, H; Hakonen, P J; Sillanpää, M A
2011-12-14
The sensitive measurement of electrical signals is at the heart of modern technology. According to the principles of quantum mechanics, any detector or amplifier necessarily adds a certain amount of noise to the signal, equal to at least the noise added by quantum fluctuations. This quantum limit of added noise has nearly been reached in superconducting devices that take advantage of nonlinearities in Josephson junctions. Here we introduce the concept of the amplification of microwave signals using mechanical oscillation, which seems likely to enable quantum-limited operation. We drive a nanomechanical resonator with a radiation pressure force, and provide an experimental demonstration and an analytical description of how a signal input to a microwave cavity induces coherent stimulated emission and, consequently, signal amplification. This generic scheme, which is based on two linear oscillators, has the advantage of being conceptually and practically simpler than the Josephson junction devices. In our device, we achieve signal amplification of 25 decibels with the addition of 20 quanta of noise, which is consistent with the expected amount of added noise. The generality of the model allows for realization in other physical systems as well, and we anticipate that near-quantum-limited mechanical microwave amplification will soon be feasible in various applications involving integrated electrical circuits.
Re-Evaluating Satellite Solar Power Systems for Earth
NASA Technical Reports Server (NTRS)
Landis, Geoffrey A.
2006-01-01
The Solar Power Satellite System is a concept to collect solar power in space, and then transport it to the surface of the Earth by microwave (or possibly laser) beam, where if is converted into electrical power for terrestrial use. The recent increase in energy costs, predictions of the near-term exhaustion of oil, and prominence of possible climate change due to the "greenhouse effect" from burning of fossil fuels has again brought alternative energy sources to public attention, and the time is certainly appropriate to reexamine the economics of space based power. Several new concepts for Satellite Power System designs were evaluated to make the concept more economically feasible.
Ground-Based Calibration Of A Microwave Landing System
NASA Technical Reports Server (NTRS)
Kiriazes, John J.; Scott, Marshall M., Jr.; Willis, Alfred D.; Erdogan, Temel; Reyes, Rolando
1996-01-01
System of microwave instrumentation and data-processing equipment developed to enable ground-based calibration of microwave scanning-beam landing system (MSBLS) at distances of about 500 to 1,000 ft from MSBLS transmitting antenna. Ensures accuracy of MSBLS near touchdown point, without having to resort to expense and complex logistics of aircraft-based testing. Modified versions prove useful in calibrating aircraft instrument landing systems.
Wood liquefaction with phenol by microwave heating and FTIR evaluation
Gaiyun Li; Chungyun Hse; Tefu Qin
2015-01-01
We examined wood liquefaction using phenol and mixed acid catalysts with microwave heating, and compared that with similar processes that use oil bath heating. The reaction time for microwave heating to achieve a residue content was one sixth, one eighteenth, and one twenty-fourth of that from oil bath heating, respectively, for phenol to wood (P/W) ratios of 2.5/1, 2/...
Optical Microwave Interactions in Semiconductor Devices.
1980-11-01
geometry can be used in microwave-optical analog T signal processing systems. A theoretical and experimental study of mode locking in (GaAI)As injection... STUDY OF MODE-LOCKING IN (GaAl)As INJECTION LASER .......... ......................... ... 55 A. Experimental Set-Up and DC Characteristics...modulation and 4 detection of optical beams at microwave frequencies. Our approach for modulating the optical beam has been to study the modulation capability
NASA Astrophysics Data System (ADS)
Uijlenhoet, R.; Overeem, A.; Leijnse, H.; Rios Gaona, M. F.
2017-12-01
The basic principle of rainfall estimation using microwave links is as follows. Rainfall attenuates the electromagnetic signals transmitted from one telephone tower to another. By measuring the received power at one end of a microwave link as a function of time, the path-integrated attenuation due to rainfall can be calculated, which can be converted to average rainfall intensities over the length of a link. Microwave links from cellular communication networks have been proposed as a promising new rainfall measurement technique for one decade. They are particularly interesting for those countries where few surface rainfall observations are available. Yet to date no operational (real-time) link-based rainfall products are available. To advance the process towards operational application and upscaling of this technique, there is a need for freely available, user-friendly computer code for microwave link data processing and rainfall mapping. Such software is now available as R package "RAINLINK" on GitHub (https://github.com/overeem11/RAINLINK). It contains a working example to compute link-based 15-min rainfall maps for the entire surface area of The Netherlands for 40 hours from real microwave link data. This is a working example using actual data from an extensive network of commercial microwave links, for the first time, which will allow users to test their own algorithms and compare their results with ours. The package consists of modular functions, which facilitates running only part of the algorithm. The main processings steps are: 1) Preprocessing of link data (initial quality and consistency checks); 2) Wet-dry classification using link data; 3) Reference signal determination; 4) Removal of outliers ; 5) Correction of received signal powers; 6) Computation of mean path-averaged rainfall intensities; 7) Interpolation of rainfall intensities ; 8) Rainfall map visualisation. Some applications of RAINLINK will be shown based on microwave link data from a temperate climate (the Netherlands), and from a subtropical climate (Brazil). We hope that RAINLINK will promote the application of rainfall monitoring using microwave links in poorly gauged regions around the world. We invite researchers to contribute to RAINLINK to make the code more generally applicable to data from different networks and climates.
High Gradient Accelerator Research
DOE Office of Scientific and Technical Information (OSTI.GOV)
Temkin, Richard
The goal of the MIT program of research on high gradient acceleration is the development of advanced acceleration concepts that lead to a practical and affordable next generation linear collider at the TeV energy level. Other applications, which are more near-term, include accelerators for materials processing; medicine; defense; mining; security; and inspection. The specific goals of the MIT program are: • Pioneering theoretical research on advanced structures for high gradient acceleration, including photonic structures and metamaterial structures; evaluation of the wakefields in these advanced structures • Experimental research to demonstrate the properties of advanced structures both in low-power microwave coldmore » test and high-power, high-gradient test at megawatt power levels • Experimental research on microwave breakdown at high gradient including studies of breakdown phenomena induced by RF electric fields and RF magnetic fields; development of new diagnostics of the breakdown process • Theoretical research on the physics and engineering features of RF vacuum breakdown • Maintaining and improving the Haimson / MIT 17 GHz accelerator, the highest frequency operational accelerator in the world, a unique facility for accelerator research • Providing the Haimson / MIT 17 GHz accelerator facility as a facility for outside users • Active participation in the US DOE program of High Gradient Collaboration, including joint work with SLAC and with Los Alamos National Laboratory; participation of MIT students in research at the national laboratories • Training the next generation of Ph. D. students in the field of accelerator physics.« less
Utilizing commercial microwave for rapid and effective immunostaining.
Owens, Katrina; Park, Ji H; Kristian, Tibor
2013-09-30
There is an accumulating literature demonstrating the application of microwaves across a wide spectrum of histological techniques. Although exposure to microwaves for short periods resulted in substantial acceleration of all procedures this technique still is not adopted widely. In part, this may be due to concerns over solutions that will avoid induction of thermal damage to the tissue when using standard microwave. Here, we offer a cooling setup that can be used with conventional microwave ovens. We utilized dry ice for effective cooling during microwave irradiation of tissue samples. To prevent overheating, the cups with tissue during exposure to microwaves were surrounded with powdered dry ice. Since the dry ice does not touch the walls of the cups, freezing is prevented. Overheating is avoided by alternating the microwave treatment with 1-2 min time periods when the cups are cooled outside of the microwave oven. This technique was used on mouse brain sections that were immunostained with microglia-specific CD68 antiserum and astrocyte labeling GFAP antibody. Both standard and microwave-assisted immonolabeling gave comparable results visualizing cells with fine processes and low background signal. Short incubation time in the microwave requires high concentrations of antibody for tissue immunostaining. We show that by prolonging the microwaving procedure we were able to reduce the antibody concentration to the levels used in standard immunostaining protocol. In summary, our technique gives a possibility to use a conventional microwave for rapid and effective immunolabeling resulting in reduced amount of antibody required for satisfactory immunostaining. Published by Elsevier B.V.
Global microwave endometrial ablation for menorrhagia treatment
NASA Astrophysics Data System (ADS)
Fallahi, Hojjatollah; Å ebek, Jan; Frattura, Eric; Schenck, Jessica; Prakash, Punit
2017-02-01
Thermal ablation is a dominant therapeutic option for minimally invasive treatment of menorrhagia. Compared to other energy modalities for ablation, microwaves offer the advantages of conformal energy delivery to tissue within short times. The objective of endometrial ablation is to destroy the endometrial lining of the uterine cavity, with the clinical goal of achieving reduction in bleeding. Previous efforts have demonstrated clinical use of microwaves for endometrial ablation. A considerable shortcoming of most systems is that they achieve ablation of the target by translating the applicator in a point-to-point fashion. Consequently, treatment outcome may be highly dependent on physician skill. Global endometrial ablation (GEA) not only eliminates this operator dependence and simplifies the procedure but also facilitates shorter and more reliable treatments. The objective of our study was to investigate antenna structures and microwave energy delivery parameters to achieve GEA. Another objective was to investigate a method for automatic and reliable determination of treatment end-point. A 3D-coupled FEM electromagnetic and heat transfer model with temperature and frequency dependent material properties was implemented to characterize microwave GEA. The unique triangular geometry of the uterus where lateral narrow walls extend from the cervix to the fundus forming a wide base and access afforded through an endocervical approach limit the overall diameter of the final device. We investigated microwave antenna designs in a deployed state inside the uterus. The impact of ablation duration on treatment outcome was investigated. Prototype applicators were fabricated and experimentally evaluated in ex vivo tissue to verify the simulation results and demonstrate proof-of-concept.
Microwave Permittivity and Permeability Measurement on Lunar Soils
NASA Technical Reports Server (NTRS)
Barmatz, Martin; Steinfeld, David; Begley, Shelley B.; Winterhalter, Daniel; Allen, Carlton
2011-01-01
There has been interest in finding ways to process the lunar regolith since the early analyses of lunar samples returned from the Apollo moon missions. This fact has led to proposals for using microwaves to perform in-situ processing of the lunar soil to support future colonization of the moon. More recently, there has been speculation that the excellent microwave absorption of lunar soil came from the nanophase iron content in the regolith. The motivation for the present study was to begin obtaining a more fundamental understanding of the dielectric and magnetic properties of the regolith at microwave frequencies. A major objective of this study was to obtain information that would help answer the question about whether nanophase iron plays a major role in heating lunar soils. These new measurements over a wide frequency range can also determine the magnitude of the dielectric and magnetic absorption and if there are any resonant features that could be used to enhance processing of the regolith in the future. In addition, these microwave measurements would be useful in confirming that new simulants being developed, particularly those containing nanophase iron, would have the correct composition to simulate the lunar regolith. The results of this study suggest that nanophase iron does not play a major role in heating lunar regolith.
Woskov, Paul P.; Cohn, Daniel R.; Titus, Charles H.; Surma, Jeffrey E.
1997-01-01
Microwave-induced plasma for continuous, real time trace element monitoring under harsh and variable conditions. The sensor includes a source of high power microwave energy and a shorted waveguide made of a microwave conductive, high temperature capability refractory material communicating with the source of the microwave energy to generate a plasma. The high power waveguide is constructed to be robust in a hot, hostile environment. It includes an aperture for the passage of gases to be analyzed and a spectrometer is connected to receive light from the plasma. Provision is made for real time in situ calibration. The spectrometer disperses the light, which is then analyzed by a computer. The sensor is capable of making continuous, real time quantitative measurements of desired elements, such as the heavy metals lead and mercury. The invention may be incorporated into a high temperature process device and implemented in situ for example, such as with a DC graphite electrode plasma arc furnace. The invention further provides a system for the elemental analysis of process streams by removing particulate and/or droplet samples therefrom and entraining such samples in the gas flow which passes through the plasma flame. Introduction of and entraining samples in the gas flow may be facilitated by a suction pump, regulating gas flow, gravity or combinations thereof.
Sakiyan, Ozge; Sumnu, Gulum; Sahin, Serpil; Meda, Venkatesh
2007-05-01
Dielectric properties can be used to understand the behavior of food materials during microwave processing. Dielectric properties influence the level of interaction between food and high frequency electromagnetic energy. Dielectric properties are, therefore, important in the design of foods intended for microwave preparation. In this study, it was aimed to determine the variation of dielectric properties of different cake formulations during baking in microwave and infrared-microwave combination oven. In addition, the effects of formulation and temperature on dielectric properties of cake batter were examined. Dielectric constant and loss factor of cake samples were shown to be dependent on formulation, baking time, and temperature. The increase in baking time and temperature decreased dielectric constant and loss factor of all formulations. Fat content was shown to increase dielectric constant and loss factor of cakes.
A microwave plasma torch and its applications
NASA Astrophysics Data System (ADS)
Uhm, H. S.; Hong, Y. C.; Shin, D. H.
2006-05-01
A portable microwave plasma torch at atmospheric pressure by making use of magnetrons operated at 2.45 GHz and used in a home microwave oven has been developed. This electrodeless torch can be used in various areas including commercial, environmental and military applications. For example, perfluorocompounds (PFCs), which have long lifetimes and serious global warming implications, are widely used during plasma etching and plasma-assisted chamber cleaning processes in chemical vapour deposition systems. The microwave torch effectively eliminates PFCs. Efficient decomposition of toluene gas indicates the effectiveness of volatile organic compound eliminations from industrial emission and the elimination of airborne chemical and biological warfare agents. The microwave torch has been used to synthesize carbon nanotubes in an on-line system, thereby providing the opportunity of mass production of the nanotubes. There are other applications of the microwave plasma torch.
NASA Astrophysics Data System (ADS)
McDonald, K. C.; Kimball, J. S.
2004-12-01
The transition of the landscape between predominantly frozen and non-frozen conditions in seasonally frozen environments impacts climate, hydrological, ecological and biogeochemical processes profoundly. Satellite microwave remote sensing is uniquely capable of detecting and monitoring a range of related biophysical processes associated with the measurement of landscape freeze/thaw status. We present the development, physical basis, current techniques and selected hydrological applications of satellite-borne microwave remote sensing of landscape freeze/thaw states for the terrestrial cryosphere. Major landscape hydrological processes embracing the remotely-sensed freeze/thaw signal include timing and spatial dynamics of seasonal snowmelt and associated soil thaw, runoff generation and flooding, ice breakup in large rivers and lakes, and timing and length of vegetation growing seasons and associated productivity and trace gas exchange. Employing both active and passive microwave sensors, we apply a selection of temporal change classification algorithms to examine a variety of hydrologic processes. We investigate contemporaneous and retrospective applications of the QuikSCAT scatterometer, and the SSM/I and SMMR radiometers to this end. Results illustrate the strong correspondence between regional thawing, seasonal ice break up for rivers, and the springtime pulse in river flow. We present the physical principles of microwave sensitivity to landscape freeze/thaw state, recent progress in applying these principles toward satellite remote sensing of freeze/thaw processes over broad regions, and potential for future global monitoring of this significant phenomenon of the global cryosphere. This work was carried out at the Jet Propulsion Laboratory, California Institute of Technology, and at the University of Montana, Missoula, under contract to the National Aeronautics and Space Administration.
NASA Astrophysics Data System (ADS)
Hidayat, Mas Irfan P.; Fellicia, Dian Mughni; Rafandi, Ferdiansyah Iqbal
2018-04-01
Microwave assisted heating has been extensively used in materials processing particularly in extraction of TiO2 from Ilmenite (FeTiO3) minerals. Nevertheless, this method could generate non-uniform temperature distribution during the heating process. The observation of this phenomena in cylindrical ilmenite has been conducted by numerical simulation using finite element method according to the Poynthing's theorem. Four different cylinders with variation on its height were simulated in ANSYS 17 with input microwave power of 5.5 Kw. The results indicated that height of heated object could vigorously influence the uniformity of temperature inside the body.
NASA Astrophysics Data System (ADS)
Kinefuchi, K.; Funaki, I.; Shimada, T.; Abe, T.
2012-10-01
Under certain conditions during rocket flights, ionized exhaust plumes from solid rocket motors may interfere with radio frequency transmissions. To understand the relevant physical processes involved in this phenomenon and establish a prediction process for in-flight attenuation levels, we attempted to measure microwave attenuation caused by rocket exhaust plumes in a sea-level static firing test for a full-scale solid propellant rocket motor. The microwave attenuation level was calculated by a coupling simulation of the inviscid-frozen-flow computational fluid dynamics of an exhaust plume and detailed analysis of microwave transmissions by applying a frequency-dependent finite-difference time-domain method with the Drude dispersion model. The calculated microwave attenuation level agreed well with the experimental results, except in the case of interference downstream the Mach disk in the exhaust plume. It was concluded that the coupling estimation method based on the physics of the frozen plasma flow with Drude dispersion would be suitable for actual flight conditions, although the mixing and afterburning in the plume should be considered depending on the flow condition.
NASA Astrophysics Data System (ADS)
Zaeni, Ahmad; Safitri, Endang; Fuadah, Badrotul; Nyoman Sudiana, I.
2017-05-01
Chitin is the most widespread renewable natural sources following cellulose as the main source of chitosan. Chitin is isolated from crustacean waste and shrimp shells. Chitosan is derived from chitin throuhgt demineralisation, deproteination, decolorisation and deacetylation process using chemicals such as sodium hydroxide, hydrogen chloride and acetone. Glucosamine hydrochloride (GlcN-Cl) can be produced by hydrolysis of chitosan by using hydrogen chloride. During deacetylation and hydrolysis the solution is heated by hotplate or furnace. In this paper we use microwave instead of hotplate for production chitosan and GlcN-Cl. The research investigates effect of microwaves to amount of rendemen and their property. The chitosan was characterized its moisture content, solubility, and degree of deacetylation (DDA). Whereas the glucosammine hydrochloride characterized its functional groups using FTIR and crystallization by using X-Ray Difraction (XRD). The experimental results show that the use of microwave energy on deacetilation of chitosan and hydrolisis processes can decrease time consuming and reactant concentration during production. the DDA value obtained was very high from 70 to 85%. The results also show that microwaves meet chitosan and GlcN-Cl standards.
Dai, Yitang; Cen, Qizhuang; Wang, Lei; Zhou, Yue; Yin, Feifei; Dai, Jian; Li, Jianqiang; Xu, Kun
2015-12-14
Extraction of a microwave component from a low-time-jitter femtosecond pulse train has been attractive for current generation of spectrally pure microwave. In order to avoid the transfer from the optical amplitude noise to microwave phase noise (AM-PM), we propose to down-convert the target component to intermediate frequency (IF) before the opto-electronic conversion. Due to the much lower carrier frequency, the AM-PM is greatly suppressed. The target is then recovered by up-conversion with the same microwave local oscillation (LO). As long as the time delay of the second LO matches that of the IF carrier, the phase noise of the LO shows no impact on the extraction process. The residual noise of the proposed extraction is analyzed in theory, which is also experimentally demonstrated as averagely around -155 dBc/Hz under offset frequency larger than 1 kHz when 10-GHz tone is extracted from a home-made femtosecond fiber laser. Large tunable extraction from 1 GHz to 10 GHz is also reported.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Paulauskas, F.L.; Meek, T.T.
Studies of microwave-assisted curing of neat resins (epoxy) and unidirectional glass and carbon fiber laminates have shown that a substantial reduction in the curing time was obtained. This may be explained by the penetration of microwave energy directly and throughout the laminate with enhancement of the kinetics of the chemical reaction. Results of this work indicate that the microwave assisted curing of glass fiber laminates also shows a substantial reduction of the required curing time. Microwave radiation of 2.45 GHz has been demonstrated to be an acceptable method to cure unidirectional carbon fiber laminates. Also, effective curing of crossply (0/90)more » laminates through this method was observed when proper rotation of the parts accompanied the curing process. This is in accordance with previous work. Multidirectional carbon fiber/epoxy laminates demonstrate a lack of coupling during the curing process. A direct curing of these laminates was not possible by microwave radiation with the experimental approach used, in agreement with previous work. Nevertheless, a moderate reduction in the curing time of these thin laminates was observed due to hybrid curing.« less
Fast Microwave-assisted Pretreatment for Bioconversion of Sawdust Lignocellulose to Glucose
NASA Astrophysics Data System (ADS)
Nyoman Sudiana, I.; Mitsudo, Seitaro; Endang Susilowati, Prima; Ketut Sutiari, Desak; Widana Arsana, Made; Zamrun Firihu, Muhammad; Ode Ngkoimani, La; Aba, La; Sahaluddin Hasan, Erzam; Cahyono, Edi; Sabchevski, Svilen; Aripin, Haji; Gde Suastika, Komang
2017-05-01
A preliminary study of application microwave energy for bioconversion of cellulosic sawdust to glucose was performed. The effects of the microwave were compared to those of the conventional method for each solvent. It was expected that a broader mechanism responsible for the microwave effects on the chemical processes, especially the pretreatment on the hydrolysis of cellulose can be explained. Reagents used were an acid (HCl), an alkali (NaOH), and distilled water (H2O). The experimental results showed that the microwave-assisted pretreatment on the lignocellulosic sawdust faster than by using conventional heating (hotplate). Moreover by using microwave a higher glucose content compared to the conventional method was found. With microwave during hydrolisis, high temperatures and high reagent concentrations were not required. Pretreatment with a microwave at 800 Watt and solvent NaOH 22,50 mg/mL at a temperature of 120°c appeared to be most efficient found in this experiment. These results indicate that microwave effective for bioconversion of cellulosic sawdust to glucose. The microstructure evaluation by using SEM and XRD should be performed to understand more detail the effect especially on their cellulosic structural evolution.
[Determination of benzo(alpha)pyrene in food with microwave-assisted extraction].
Zhou, Na; Luo, He-Dong; Li, Na; Li, Yao-Qun
2014-03-01
Coupling derivative technique and constant-energy synchronous fluorescence scanning technique, a method of determining benzo[alpha] pyrene in foods by second derivative constant-energy synchronous spectrofluorimetry after microwave-assisted treatment of samples was established using domestic microwave oven. The main factors of influencing the efficiency of microwave extraction were discussed, including the extraction solvent types and amounts, the microwave extraction time, microwave radiation power and cooling time. And the comparison with ultrasonic extraction was made. Low-fat food samples, which were just microwave-extracted with mixed-solvents, could be analyzed immediately by the spectrofluorimetric technique. For high-fat food samples, microwave-assisted saponification and extraction were made at the same time, thus simplifying operation steps and reducing sample analysis time. So the whole sample analysis process could be completed within one hour. This method was simple, rapid and inexpensive. In consequence, it was applied to determine benzo(a)pyrene in food with good reproducibility and the recoveries of benzo(alpha) pyrene ranged from 90.0% to 105.0% for the low fat samples and 83.3% to 94.6% for high-fat samples.
van de Kruijs, Bastiaan H P; Dressen, Mark H C L; Meuldijk, Jan; Vekemans, Jef A J M; Hulshof, Lumbertus A
2010-04-07
A detailed study regarding the influence of microwave irradiation on the formation of a series of Grignard reagents in terms of rates and selectivities has revealed that these heterogeneous reactions may display a beneficial microwave effect. The interaction between microwaves and magnesium turnings generates violent electrostatic discharges. These discharges on magnesium lead to melting of the magnesium surface, thus generating highly active magnesium particles. As compared to conventional operation the microwave-induced discharges on the magnesium surface lead to considerably shorter initiation times for the insertion of magnesium in selected substrates (i.e. halothiophenes, halopyridines, octyl halides, and halobenzenes). Thermographic imaging and surface characterization by scanning electron microscopy showed that neither selective heating nor a "specific" microwave effect was causing the reduction in initiation times. This novel and straightforward initiation method eliminates the use of toxic and environmentally adverse initiators. Thus, this initiation method limits the formation of by-products. We clearly demonstrated that microwave irradiation enables fast Grignard reagent formation. Therefore, microwave technology is promising for process intensification of Grignard based coupling reactions.
Microwave photonic link with improved phase noise using a balanced detection scheme
NASA Astrophysics Data System (ADS)
Hu, Jingjing; Gu, Yiying; Tan, Wengang; Zhu, Wenwu; Wang, Linghua; Zhao, Mingshan
2016-07-01
A microwave photonic link (MPL) with improved phase noise performance using a dual output Mach-Zehnder modulator (DP-MZM) and balanced detection is proposed and experimentally demonstrated. The fundamental concept of the approach is based on the two complementary outputs of DP-MZM and the destructive combination of the photocurrent in balanced photodetector (BPD). Theoretical analysis is performed to numerical evaluate the additive phase noise performance and shows a good agreement with the experiment. Experimental results are presented for 4 GHz, 8 GHz and 12 GHz transmission link and an 11 dB improvement of phase noise performance at 10 MHz offset is achieved compared to the conventional intensity-modulation and direct-detection (IMDD) MPL.
Reconfigurable microwave photonic in-phase and quadrature detector for frequency agile radar.
Emami, Hossein; Sarkhosh, Niusha
2014-06-01
A microwave photonic in-phase and quadrature detector is conceived and practically demonstrated. The detector has the ability to become electronically reconfigured to operate at any frequency over a wide range. This makes it an excellent candidate for frequency agile radars and other electronic warfare systems based on frequency hopping. The detector exhibits a very low amplitude and phase imbalance, which removes the need for any imbalance compensation technique. The system is designed based on the transversal filtering concept and reconfigurability is achieved via wavelength control in a dispersive fiber. The system operation was demonstrated over a frequency range of 3.5-35 GHz, with a maximum of -32 dB amplitude imbalance.
NASA Astrophysics Data System (ADS)
Yonglin, Jiang; Bingguo, Liu; Peng, Liu; Jinhui, Peng; Libo, Zhang
2017-12-01
Conversion of electromagnetic energy into heat depends largely on the dielectric properties of the material being treated. Therefore, determining the dielectric properties of molybdenite concentrate and its microwave power penetration depth in relation to a temperature increment at the commercial frequency of 2.45 GHz is necessary to design industrial microwave processing units. In this study, the dielectric constants increased as the temperature increased in the entire experimental range. The loss factor presented an opposite trend, except for 298 K to 373 K (25 °C to 100 °C) in which a cavity perturbation resonator was used. The plots of nonlinear surface fitting indicate that the increase in dielectric loss causes a considerable decrease in penetration depth, but the dielectric constants exert a small positive effect. The thermogravimetric analysis (TGA-DSC) of the molybdenite concentrate was carried out to track its thermal decomposition process, aim to a dielectric analysis during the microwave heating. MoO3 was prepared from molybdenite concentrate through oxidation roasting in a microwave heating system and a resistance furnace, respectively. The phase transitions and morphology evolutions during oxidation roasting were characterized through X-ray diffraction and scanning electron microscopy. Results show that microwave thermal technique can produce high-purity molybdenum trioxide.
Assessment of Cochlear Damage after Microwave Irradiation.
1988-02-26
dosimetry measurements. Mr. Thomas J. Watkins, Washington Uni- versity School of Medicine provided excellent technical assis- tance throughout the study... MATERIAL AND METHODS Subjects.................................................. 6 Microwave Exposure....................................... 6 Histological...Processing.................................. 9 Microscopic Evaluation................................... 9 RESU LTS Dosimetry
Microwave Induced Direct Bonding of Single Crystal Silicon Wafers
NASA Technical Reports Server (NTRS)
Budraa, N. K.; Jackson, H. W.; Barmatz, M.
1999-01-01
We have heated polished doped single-crystal silicon wafers in a single mode microwave cavity to temperatures where surface to surface bonding occurred. The absorption of microwaves and heating of the wafers is attributed to the inclusion of n-type or p-type impurities into these substrates. A cylindrical cavity TM (sub 010) standing wave mode was used to irradiate samples of various geometry's at positions of high magnetic field. This process was conducted in vacuum to exclude plasma effects. This initial study suggests that the inclusion of impurities in single crystal silicon significantly improved its microwave absorption (loss factor) to a point where heating silicon wafers directly can be accomplished in minimal time. Bonding of these substrates, however, occurs only at points of intimate surface to surface contact. The inclusion of a thin metallic layer on the surfaces enhances the bonding process.
Bagley, Mark C; Baashen, Mohammed; Chuckowree, Irina; Dwyer, Jessica E; Kipling, David; Davis, Terence
2015-06-03
Microwave-assisted Suzuki-Miyaura cross-coupling reactions have been employed towards the synthesis of three different MAPKAPK2 (MK2) inhibitors to study accelerated aging in Werner syndrome (WS) cells, including the cross-coupling of a 2-chloroquinoline with a 3-pyridinylboronic acid, the coupling of an aryl bromide with an indolylboronic acid and the reaction of a 3-amino-4-bromopyrazole with 4-carbamoylphenylboronic acid. In all of these processes, the Suzuki-Miyaura reaction was fast and relatively efficient using a palladium catalyst under microwave irradiation. The process was incorporated into a rapid 3-step microwave-assisted method for the synthesis of a MK2 inhibitor involving 3-aminopyrazole formation, pyrazole C-4 bromination using N-bromosuccinimide (NBS), and Suzuki-Miyaura cross-coupling of the pyrazolyl bromide with 4-carbamoylphenylboronic acid to give the target 4-arylpyrazole in 35% overall yield, suitable for study in WS cells.
Development of Si(1-x)Ge(x) technology for microwave sensing applications
NASA Technical Reports Server (NTRS)
Mena, Rafael A.; Taub, Susan R.; Alterovitz, Samuel A.; Young, Paul E.; Simons, Rainee N.; Rosenfeld, David
1993-01-01
The progress for the first year of the work done under the Director's Discretionary Fund (DDF) research project entitled, 'Development of Si(1-x)Ge(x) Technology for Microwave Sensing Applications.' This project includes basic material characterization studies of silicon-germanium (SiGe), device processing on both silicon (Si) and SiGe substrates, and microwave characterization of transmission lines on silicon substrates. The material characterization studies consisted of ellipsometric and magneto-transport measurements and theoretical calculations of the SiGe band-structure. The device fabrication efforts consisted of establishing SiGe device processing capabilities in the Lewis cleanroom. The characterization of microwave transmission lines included studying the losses of various coplanar transmission lines and the development of transitions on silicon. Each part of the project is discussed individually and the findings for each part are presented. Future directions are also discussed.
System to continuously produce carbon fiber via microwave assisted plasma processing
White, Terry L [Knoxville, TN; Paulauskas, Felix L [Knoxville, TN; Bigelow, Timothy S [Knoxville, TN
2010-11-02
A system to continuously produce fully carbonized or graphitized carbon fibers using microwave-assisted plasma (MAP) processing comprises an elongated chamber in which a microwave plasma is excited in a selected gas atmosphere. Fiber is drawn continuously through the chamber, entering and exiting through openings designed to minimize in-leakage of air. There is a gradient of microwave power within the chamber with generally higher power near where the fiber exits and lower power near where the fiber enters. Polyacrylonitrile (PAN), pitch, or any other suitable organic/polymeric precursor fibers can be used as a feedstock for the inventive system. Oxidized or partially oxidized PAN or pitch or other polymeric fiber precursors are run continuously through a MAP reactor in an inert, non-oxidizing atmosphere to heat the fibers, drive off the unwanted elements such as oxygen, nitrogen, and hydrogen, and produce carbon or graphite fibers faster than conventionally produced carbon fibers.
A Review of Microwave Thermography Nondestructive Testing and Evaluation
Zhang, Hong; Yang, Ruizhen; He, Yunze; Foudazi, Ali; Cheng, Liang; Tian, Guiyun
2017-01-01
Microwave thermography (MWT) has many advantages including strong penetrability, selective heating, volumetric heating, significant energy savings, uniform heating, and good thermal efficiency. MWT has received growing interest due to its potential to overcome some of the limitations of microwave nondestructive testing (NDT) and thermal NDT. Moreover, during the last few decades MWT has attracted growing interest in materials assessment. In this paper, a comprehensive review of MWT techniques for materials evaluation is conducted based on a detailed literature survey. First, the basic principles of MWT are described. Different types of MWT, including microwave pulsed thermography, microwave step thermography, microwave pulsed phase thermography, and microwave lock-in thermography are defined and introduced. Then, MWT case studies are discussed. Next, comparisons with other thermography and NDT methods are conducted. Finally, the trends in MWT research are outlined, including new theoretical studies, simulations and modelling, signal processing algorithms, internal properties characterization, automatic separation and inspection systems. This work provides a summary of MWT, which can be utilized for material failures prevention and quality control. PMID:28505130
Uniform bulk material processing using multimode microwave radiation
Varma, Ravi; Vaughn, Worth E.
2000-01-01
An apparatus for generating uniform heating in material contained in a cylindrical vessel is described. TE.sub.10 -mode microwave radiation is coupled into a cylindrical microwave transition such that microwave radiation having TE.sub.11 -, TE.sub.01 - and TM.sub.01 -cylindrical modes is excited therein. By adjusting the intensities of these modes, substantially uniform heating of materials contained in a cylindrical drum which is coupled to the microwave transition through a rotatable choke can be achieved. The use of a poor microwave absorbing insulating cylindrical insert, such as aluminum oxide, for separating the material in the container from the container walls and for providing a volume through which air is circulated is expected to maintain the container walls at room temperature. The use of layer of highly microwave absorbing material, such as SiC, inside of the insulating insert and facing the material to be heated is calculated to improve the heating pattern of the present apparatus.
Lenaerts, S; Van Der Borght, M; Callens, A; Van Campenhout, L
2018-07-15
Freeze drying represents the current practice to stabilize mealworms, even though it is an energy demanding technique. Therefore, it was examined in the present study whether microwave drying could be a proper alternative. To this end, the impact of both drying techniques on the proximate composition, vitamin B 12 content, fatty acid profile, oxidation status and colour parameters of mealworms was investigated. Furthermore, the influence of the application of vacuum during microwave drying was studied. The different drying technologies resulted in small differences in the proximate composition, while the vitamin B 12 content was only reduced by microwave drying. The fat fraction of freeze dried mealworms showed a higher oxidation status than the fat of microwave dried mealworms. Application of a vacuum during the microwave drying process did not appear to offer advantages. This research shows that for mealworms microwave drying can be a proper alternative to freeze drying. Copyright © 2018 Elsevier Ltd. All rights reserved.
NASA Technical Reports Server (NTRS)
Butler, D.
1981-01-01
The microwave Scanning Beam Landing System's (MSBLS) performance in fog and rain was studied. The fog and rain effects on the Shuttle Ku-band system were determined. Specifically, microwave attenuation, beam distortion, and coordinate errors resulting from operation of the MSBLS in poor weather conditions were evaluated. The main physical processes giving rise to microwave attenuation were found to be absorption and scattering by water droplets. The general theory of scattering and absorption used is discussed and a listing of applicable computer programs is provided.
Microwave Absorption Characteristics of Tire
NASA Astrophysics Data System (ADS)
Zhang, Yuzhe; Hwang, Jiann-Yang; Peng, Zhiwei; Andriese, Matthew; Li, Bowen; Huang, Xiaodi; Wang, Xinli
The recycling of waste tires has been a big environmental problem. About 280 million waste tires are produced annually in the United States and more than 2 billion tires are stockpiled, which cause fire hazards and health issues. Tire rubbers are insoluble elastic high polymer materials. They are not biodegradable and may take hundreds of years to decompose in the natural environment. Microwave irradiation can be a thermal processing method for the decomposition of tire rubbers. In this study, the microwave absorption properties of waste tire at various temperatures are characterized to determine the conditions favorable for the microwave heating of waste tires.
Nonreciprocal frequency conversion in a multimode microwave optomechanical circuit
NASA Astrophysics Data System (ADS)
Feofanov, A. K.; Bernier, N. R.; Toth, L. D.; Koottandavida, A.; Kippenberg, T. J.
Nonreciprocal devices such as isolators, circulators, and directional amplifiers are pivotal to quantum signal processing with superconducting circuits. In the microwave domain, commercially available nonreciprocal devices are based on ferrite materials. They are barely compatible with superconducting quantum circuits, lossy, and cannot be integrated on chip. Significant potential exists for implementing non-magnetic chip-scale nonreciprocal devices using microwave optomechanical circuits. Here we demonstrate a possibility of nonreciprocal frequency conversion in a multimode microwave optomechanical circuit using solely optomechanical interaction between modes. The conversion scheme and the results reflecting the actual progress on the experimental implementation of the scheme will be presented.
NASA Technical Reports Server (NTRS)
Brucker, Ludovic; Picard, Ghislain; Roy, Alexandre; Dupont, Florent; Fily, Michel; Royer, Alain
2014-01-01
Microwave radiometer observations have been used to retrieve snow depth and snow water equivalent on both land and sea ice, snow accumulation on ice sheets, melt events, snow temperature, and snow grain size. Modeling the microwave emission from snow and ice physical properties is crucial to improve the quality of these retrievals. It also is crucial to improve our understanding of the radiative transfer processes within the snow cover, and the snow properties most relevant in microwave remote sensing. Our objective is to present a recent microwave emission model and its validation. The model is named DMRT-ML (DMRT Multi-Layer), and is available at http:lgge.osug.frpicarddmrtml.
Entanglement concentration and purification of two-mode squeezed microwave photons in circuit QED
NASA Astrophysics Data System (ADS)
Zhang, Hao; Alsaedi, Ahmed; Hayat, Tasawar; Deng, Fu-Guo
2018-04-01
We present a theoretical proposal for a physical implementation of entanglement concentration and purification protocols for two-mode squeezed microwave photons in circuit quantum electrodynamics (QED). First, we give the description of the cross-Kerr effect induced between two resonators in circuit QED. Then we use the cross-Kerr media to design the effective quantum nondemolition (QND) measurement on microwave-photon number. By using the QND measurement, the parties in quantum communication can accomplish the entanglement concentration and purification of nonlocal two-mode squeezed microwave photons. We discuss the feasibility of our schemes by giving the detailed parameters which can be realized with current experimental technology. Our work can improve some practical applications in continuous-variable microwave-based quantum information processing.
Microwave imaging of spinning object using orbital angular momentum
NASA Astrophysics Data System (ADS)
Liu, Kang; Li, Xiang; Gao, Yue; Wang, Hongqiang; Cheng, Yongqiang
2017-09-01
The linear Doppler shift used for the detection of a spinning object becomes significantly weakened when the line of sight (LOS) is perpendicular to the object, which will result in the failure of detection. In this paper, a new detection and imaging technique for spinning objects is developed. The rotational Doppler phenomenon is observed by using the microwave carrying orbital angular momentum (OAM). To converge the radiation energy on the area where objects might exist, the generation method of OAM beams is proposed based on the frequency diversity principle, and the imaging model is derived accordingly. The detection method of the rotational Doppler shift and the imaging approach of the azimuthal profiles are proposed, which are verified by proof-of-concept experiments. Simulation and experimental results demonstrate that OAM beams can still be used to obtain the azimuthal profiles of spinning objects even when the LOS is perpendicular to the object. This work remedies the insufficiency in existing microwave sensing technology and offers a new solution to the object identification problem.
NASA Astrophysics Data System (ADS)
Zhu, Huatao; Wang, Rong; Xiang, Peng; Pu, Tao; Fang, Tao; Zheng, Jilin; Li, Yuandong
2017-10-01
In this paper, a novel approach for photonic generation of microwave signals based on frequency multiplication using an injected distributed-feedback (DFB) semiconductor laser is proposed and demonstrated by a proof-of-concept experiment. The proposed system is mainly made up of a dual-parallel Mach-Zehnder modulator (DPMZM) and an injected DFB laser. By properly setting the bias voltage of the DPMZM, ±2-order sidebands with carrier suppression are generated, which are then injected into the slave laser. Due to the optical sideband locking and four-wave mixing (FWM) nonlinearity in the slave laser, new sidebands are generated. Then these sidebands are sent to an optical notch filter where all the undesired sidebands are removed. Finally, after photodetector detection, frequency multiplied microwave signals can be generated. Thanks to the flexibility of the optical sideband locking and FWM, frequency octupling, 12-tupling, 14-tupling and 16-tupling can be obtained.
Geostationary Microwave Sounders: Science, Applications and the Geostar Instrument Concept
NASA Technical Reports Server (NTRS)
Lambrigtsen, Bjorn; Gaier, Todd; Kangaslahti, Pekka; Lim, Boon; Tanner, Alan
2011-01-01
Microwave atmospheric sounders have long provided some of the most imporant data for use in numerical weather prediction (NWP) and have played an important role in atmospheric weather and climate research. With 7 US satellites now carrying such sensors, we are in a 'golden age' of microwave remote sensing of the atmosphere. However, as this fleet ages and is replaced by a smaller number of new sensors in the coming yars, the main shortcoming of sensors in low Earth orbit -i.e. poor spacial and temporal converage and sampling - will become more apparent. Placing such sensors on geostationary satellites, enabling time-continuous views of large portions of the Earth disc, would solve this problem. but the GEO orbit is approximately 40 times higher than a typical LEO orbit, which requires antenna apertures also about 40 times larger than for LEO systems to maintain spatial resolution, and it has not been feasible to develop such systems. Recently, a solution to this problem has appeared in the form of aperture synthesis.
Integrated Orbit, Attitude, and Structural Control System Design for Space Solar Power Satellites
NASA Technical Reports Server (NTRS)
Woods-Vedeler, Jessica (Technical Monitor); Moore, Chris (Technical Monitor); Wie, Bong; Roithmayr, Carlos
2001-01-01
The major objective of this study is to develop an integrated orbit, attitude, and structural control system architecture for very large Space Solar Power Satellites (SSPS) in geosynchronous orbit. This study focuses on the 1.2-GW Abacus SSPS concept characterized by a 3.2 x 3.2 km solar-array platform, a 500-m diameter microwave beam transmitting antenna, and a 500 700 m earth-tracking reflector. For this baseline Abacus SSPS configuration, we derive and analyze a complete set of mathematical models, including external disturbances such as solar radiation pressure, microwave radiation, gravity-gradient torque, and other orbit perturbation effects. The proposed control system architecture utilizes a minimum of 500 1-N electric thrusters to counter, simultaneously, the cyclic pitch gravity-gradient torque, the secular roll torque caused by an o.set of the center-of-mass and center-of-pressure, the cyclic roll/yaw microwave radiation torque, and the solar radiation pressure force whose average value is about 60 N.
Integrated Orbit, Attitude, and Structural Control Systems Design for Space Solar Power Satellites
NASA Technical Reports Server (NTRS)
Wie, Bong; Roithmayr, Carlos M.
2001-01-01
The major objective of this study is to develop an integrated orbit, attitude, and structural control systems architecture for very large Space Solar Power Satellites (SSPS) in geosynchronous orbit. This study focuses on the 1.2-GW Abacus SSPS concept characterized by a 3.2 x 3.2 km solar-array platform, a 500-m diameter microwave beam transmitting antenna, and a 500 x 700 m earth-tracking reflector. For this baseline Abacus SSPS configuration, we derive and analyze a complete set of mathematical models, including external disturbances such as solar radiation pressure, microwave radiation, gravity-gradient torque, and other orbit perturbation effects. The proposed control systems architecture utilizes a minimum of 500 1-N electric thrusters to counter, simultaneously, the cyclic pitch gravity-gradient torque, the secular roll torque caused by an offset of the center-of-mass and center-of-pressure, the cyclic roll/yaw microwave radiation torque, and the solar radiation pressure force whose average value is about 60 N.
Current Status of Thin Film (Ba,Sr) TiO3 Tunable Microwave Components for RF Communications
NASA Technical Reports Server (NTRS)
VanKeuls, F. W.; Romananofsky, R. R.; Mueller, C. H.; Warner, J. D.; Canedy, C. L.; Ramesh, R.; Miranda, F. A.
2000-01-01
The performance of proof-of-concept ferroelectric microwave devices has been moving steadily closer to the level needed for satellite and other rf communications applications. This paper will review recent progress at NASA Glenn in developing thin film Ba(x)Sr(1-x)TiO3 tunable microwave components for these applications. Phase shifters for phased array antennas, tunable filters and tunable oscillators employing microstrip and coupled microstrip configurations will be presented. Tunabilities, maximum dielectric constants, and phase shifter parameters will be discussed (e.g., coupled microstrip phase shifters with phase shift over 200 deg. at 18 GHz and a figure of merit of 74.3 deg./dB). Issues of postannealing, Mn-doping and Ba(x)Sr(1-x)TiO3 growth on sapphire and alumina substrates will be covered. The challenges of incorporating these devices into larger systems, such as yield, variability in phase shift and insertion loss, and protective coatings will also be addressed.
Current Status of Thin Film (Ba,Sr)TiO3 Tunable Microwave Components for RF Communications
NASA Technical Reports Server (NTRS)
VanKeuls, F. W.; Romanofsky, R. R.; Mueller, C. H.; Warner, J. D.; Canedy, C. L.; Ramesh, R.; Miranda, F. A.
2000-01-01
The performance of proof-of-concept ferroelectric microwave devices has been moving steadily closer to the level needed for satellite and other rf communications applications. This paper will review recent progress at NASA Glenn in developing thin film Ba(x)Sr(1-x)TiO3 tunable micro-wave components for these applications. Phase shifters for phased array antennas, tunable filters and tunable oscillators employing microstrip and coupled microstrip configurations will be presented. Tunabilities, maximum dielectric constants, and phase shifter parameters will be discussed (e.g., coupled microstrip phase shifters with phase shift over 200 deg at 18 GHz and a figure of merit of 74.3 deg/dB). Issues of post-annealing, Mn-doping and Ba(x)Sr(1-x) TiO3 growth on sapphire and alumina substrates will be covered. The challenges of incorporating these devices into larger systems, such as yield, variability in phase shift and insertion loss, and protective coatings will also be addressed.
Peters, Johanna; Bartscher, Kathrin; Döscher, Claas; Taute, Wolfgang; Höft, Michael; Knöchel, Reinhard; Breitkreutz, Jörg
2017-08-01
Microwave resonance technology (MRT) is known as a process analytical technology (PAT) tool for moisture measurements in fluid-bed granulation. It offers a great potential for wet granulation processes even where the suitability of near-infrared (NIR) spectroscopy is limited, e.g. colored granules, large variations in bulk density. However, previous sensor systems operating around a single resonance frequency showed limitations above approx. 7.5% granule moisture. This paper describes the application of a novel sensor working with four resonance frequencies. In-line data of all four resonance frequencies were collected and further processed. Based on calculation of density-independent microwave moisture values multiple linear regression (MLR) models using Karl-Fischer titration (KF) as well as loss on drying (LOD) as reference methods were build. Rapid, reliable in-process moisture control (RMSEP≤0.5%) even at higher moisture contents was achieved. Copyright © 2017 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Taruna, I.; Hakim, A. L.; Sutarsi
2018-03-01
Production of breadfruit powder has been an option to make easy its uses in various food processing. Accordingly, there is a need recently to apply advanced drying method, i.e. microwave drying, for improving quality since conventional methods produced highly variable product quality and required longer process. The present work was aimed to study the effect of microwave power and grinding time on physical quality of breadfruit powders. The experiment was done initially by drying breadfruit slices in a microwave dryer at power level of 420, 540, and 720 W and then grinding for 3, 5, and 7 min to get powdery product of less than 80 mesh. The physical quality of breadfruit powders were measured in terms of fineness modulus (FM), average particle size (D), whiteness (WI), total color difference (ΔE), water absorption (Wa), oil absorption (La), bulk density (ρb) and consistency gel (Gc). The results showed that physical quality of powders and its ranged-values included the FM (2.08-2.62), D (0.44-0.68 mm), WI (75.2-77.9), ΔE (7.4-10.5), Wa (5.5-6.2 ml/g), La (0.7-0.9 ml/g), ρb (0.62-0.70 g/cm3) and Gc (41.3-46.8 mm). The experiment revealed that variation of microwave power and grinding time affected significantly the quality of the breadfruit powders. However, microwave power was more dominant factor to affect quality of breadfruit powder in comparison to the grinding time.
Aïoun, Josiane; Chat, Sophie; Bordat, Christian; Péchoux, Christine
2013-01-01
Most studies using microwave irradiation (MWI) for the preparation of tissue samples have reported an improvement in structural integrity. However, there have been few studies on the effect of microwave (MW) on antigen preservation during sample preparation prior to immunolocalization. This report documents our experience of specimen preparation using an automatic microwave apparatus to obtain antigen preservation and retrieval. We tested the effects of MW processing vs. conventional procedures on the morphology and antigenicity of two different tissues: the brain and mammary gland, whose chemical composition and anatomical organization are quite different. We chose to locate the transcription factor PPARβ/δ using immunocytochemistry on brain tissue sections from hamsters. Antigen retrieval protocols involving MWI were used to restore immunoreactivity. We also studied the efficiency of the ultrastructural immunolocalization of both PPARγ and caveolin-1 following MWI vs. conventional treatment, on mammary gland tissue from mice at 10 days of lactation. Our findings showed that the treatment of tissue samples with MWI, in the context of a process lasting just a few hours from fixation to immunolocalization, enabled similar, or even better, results than conventional protocols. The quantification of immunolabeling for cav-1 indicated an increase in density of up to three-fold in tissues processed in the microwave oven. Furthermore, MW treatment permitted the localization of PPARβ/δ in glutaraldehyde-fixed specimens, which was impossible in the absence of MWI. This study thus showed that techniques involving the use of microwaves could largely improve both ultrastructure and immunodetection. Copyright © 2013 Elsevier Ltd. All rights reserved.
NASA Technical Reports Server (NTRS)
Kogut, Alan J.; Fixsen, D. J.; Chuss, D. T.; Dotson, J.; Dwek, E.; Halpern, M.; Hinshaw, G. F.; Meyer, S. M.; Moseley, S. H.; Seiffert, M. D.;
2011-01-01
The Primordial Inflation Explorer (PIXIE) is a concept for an Explorer-class mission to measure the gravity-wave signature of primordial inflation through its distinctive imprint on the linear polarization of the cosmic microwave background. The instrument consists of a polarizing Michelson interferometer configured as a nulling polarimeter to measure the difference spectrum between orthogonal linear polarizations from two co-aligned beams. Either input can view the sky or a temperature-controlled absolute reference blackbody calibrator. Rhe proposed instrument can map the absolute intensity and linear polarization (Stokes I, Q, and U parameters) over the full sky in 400 spectral channels spanning 2.5 decades in frequency from 30 GHz to 6 THz (1 cm to 50 micron wavelength). Multi-moded optics provide background-limited sensitivity using only 4 detectors, while the highly symmetric design and multiple signal modulations provide robust rejection of potential systematic errors. The principal science goal is the detection and characterization of linear polarization from an inflationary epoch in the early universe, with tensor-to-scalar ratio r < 10..3 at 5 standard deviations. The rich PIXIE data set can also constrain physical processes ranging from Big Bang cosmology to the nature of the first stars to physical conditions within the interstellar medium of the Galaxy.
Pierini, Gastón D; Foster, Christopher W; Rowley-Neale, Samuel J; Fernández, Héctor; Banks, Craig E
2018-06-12
Screen-printed electrodes (SPEs) are ubiquitous with the field of electrochemistry allowing researchers to translate sensors from the laboratory to the field. In this paper, we report an electrochemically driven intercalation process where an electrochemical reaction uses an electrolyte as a conductive medium as well as the intercalation source, which is followed by exfoliation and heating/drying via microwave irradiation, and applied to the working electrode of screen-printed electrodes/sensors (termed EDI-SPEs) for the first time. This novel methodology results in an increase of up to 85% of the sensor area (electrochemically active surface area, as evaluated using an outer-sphere redox probe). Upon further investigation, it is found that an increase in the electroactive area of the EDI-screen-printed based electrochemical sensing platforms is critically dependent upon the analyte and its associated electrochemical mechanism (i.e. adsorption vs. diffusion). Proof-of-concept for the electrochemical sensing of capsaicin, a measure of the hotness of chillies and chilli sauce, within both model aqueous solutions and a real sample (Tabasco sauce) is demonstrated in which the electroanalytical sensitivity (a plot of signal vs. concentration) is doubled when utilising EDI-SPEs over that of SPEs.
NASA Astrophysics Data System (ADS)
Suzuki, Aritoki; Bebek, Chris; Garcia-Sciveres, Maurice; Holland, Stephen; Kusaka, Akito; Lee, Adrian T.; Palaio, Nicholas; Roe, Natalie; Steinmetz, Leo
2018-04-01
We report on the development of commercially fabricated multichroic antenna-coupled transition edge sensor (TES) bolometer arrays for cosmic microwave background (CMB) polarimetry experiments. CMB polarimetry experiments have deployed instruments in stages. Stage II experiments deployed with O(1000) detectors and reported successful detection of B-mode (divergence-free) polarization pattern in the CMB. Stage III experiments have recently started observing with O(10,000) detectors with wider frequency coverage. A concept for a stage IV experiment, CMB-S4, is emerging to make a definitive measurement of CMB polarization from the ground with O(400,000) detectors. The orders of magnitude increase in detector count for CMB-S4 require a new approach in detector fabrication to increase fabrication throughput and reduce the cost. We report on collaborative efforts with two commercial micro-fabrication foundries to fabricate antenna-coupled TES bolometer detectors. The detector design is based on the sinuous antenna-coupled dichroic detector from the POLARBEAR-2 experiment. The TES bolometers showed the expected I-V response, and the RF performance agrees with the simulation. We will discuss the motivation, design consideration, fabrication processes, test results, and how industrial detector fabrication could be a path to fabricate hundreds of detector wafers for future CMB polarimetry experiments.
A quantized microwave quadrupole insulator with topologically protected corner states
NASA Astrophysics Data System (ADS)
Peterson, Christopher W.; Benalcazar, Wladimir A.; Hughes, Taylor L.; Bahl, Gaurav
2018-03-01
The theory of electric polarization in crystals defines the dipole moment of an insulator in terms of a Berry phase (geometric phase) associated with its electronic ground state. This concept not only solves the long-standing puzzle of how to calculate dipole moments in crystals, but also explains topological band structures in insulators and superconductors, including the quantum anomalous Hall insulator and the quantum spin Hall insulator, as well as quantized adiabatic pumping processes. A recent theoretical study has extended the Berry phase framework to also account for higher electric multipole moments, revealing the existence of higher-order topological phases that have not previously been observed. Here we demonstrate experimentally a member of this predicted class of materials—a quantized quadrupole topological insulator—produced using a gigahertz-frequency reconfigurable microwave circuit. We confirm the non-trivial topological phase using spectroscopic measurements and by identifying corner states that result from the bulk topology. In addition, we test the critical prediction that these corner states are protected by the topology of the bulk, and are not due to surface artefacts, by deforming the edges of the crystal lattice from the topological to the trivial regime. Our results provide conclusive evidence of a unique form of robustness against disorder and deformation, which is characteristic of higher-order topological insulators.
Microwave-assisted extraction of pectin from cocoa peel
NASA Astrophysics Data System (ADS)
Sarah, M.; Hanum, F.; Rizky, M.; Hisham, M. F.
2018-02-01
Pectin is a polymer of d-galacturonate acids linked by β-1,4 glycosidic bond. This study isolates pectin from cocoa peel (Theobroma cacao) using citric acid as solvent by microwave-assisted extraction method. Cocoa peels (moisture content of 10%) with citric acid solution (pH of 1.5) irradiated by microwave energy at various microwave power (180, 300, 450 and 600 W) for 10, 15, 20, 25 and 30 minutes respectively. Pectin obtained from this study was collected and filtrated by adding 96% ethanol to precipitate the pectin. The best results obtained from extraction process using microwave power of 180 Watt for 30 minutes. This combination of power and time yielded 42.3% pectin with moisture content, ash content, weight equivalent, methoxyl content and galacturonate levels were 8.08%, 5%, 833.33 mg, 6.51% and 58,08%, respectively. The result finding suggested that microwave-assisted extraction method has a great potency on the commercial pectin production.
Quantum-enabled temporal and spectral mode conversion of microwave signals
Andrews, R. W.; Reed, A. P.; Cicak, K.; Teufel, J. D.; Lehnert, K. W.
2015-01-01
Electromagnetic waves are ideal candidates for transmitting information in a quantum network as they can be routed rapidly and efficiently between locations using optical fibres or microwave cables. Yet linking quantum-enabled devices with cables has proved difficult because most cavity or circuit quantum electrodynamics systems used in quantum information processing can only absorb and emit signals with a specific frequency and temporal envelope. Here we show that the temporal and spectral content of microwave-frequency electromagnetic signals can be arbitrarily manipulated with a flexible aluminium drumhead embedded in a microwave circuit. The aluminium drumhead simultaneously forms a mechanical oscillator and a tunable capacitor. This device offers a way to build quantum microwave networks using separate and otherwise mismatched components. Furthermore, it will enable the preparation of non-classical states of motion by capturing non-classical microwave signals prepared by the most coherent circuit quantum electrodynamics systems. PMID:26617386