Sample records for microwave reflectometer ionization

  1. Microwave reflectometer ionization sensor

    NASA Technical Reports Server (NTRS)

    Seals, Joseph; Fordham, Jeffrey A.; Pauley, Robert G.; Simonutti, Mario D.

    1993-01-01

    The development of the Microwave Reflectometer Ionization Sensor (MRIS) Instrument for use on the Aeroassist Flight Experiment (AFE) spacecraft is described. The instrument contract was terminated, due to cancellation of the AFE program, subsequent to testing of an engineering development model. The MRIS, a four-frequency reflectometer, was designed for the detection and location of critical electron density levels in spacecraft reentry plasmas. The instrument would sample the relative magnitude and phase of reflected signals at discrete frequency steps across 4 GHz bandwidths centered at four frequencies: 20, 44, 95, and 140 GHz. The sampled data would be stored for later processing to calculate the distance from the spacecraft surface to the critical electron densities versus time. Four stepped PM CW transmitter receivers were located behind the thermal protection system of the spacecraft with horn antennas radiating and receiving through an insulating tile. Techniques were developed to deal with interference, including multiple reflections and resonance effects, resulting from the antenna configuration and operating environment.

  2. Methods to Determine the Deformation of the IRVE Hypersonic Inflatable Aerodynamic Decelerator

    NASA Technical Reports Server (NTRS)

    Young, William R.

    2011-01-01

    Small resonant targets used in conjunction with a microwave reflectometer to determine the deformation of the Hypersonic Inflatable Aerodynamic Decelerator (HIAD) during reentry are investigated. The reflectometer measures the distance to the targets and from this the HIAD deformation is determined. The HIAD is used by the Inflatable Reentry Vehicle Experiment (IRVE) which investigates the use of inflatable heat shields for atmospheric reentry. After several different microwave reflectometer systems were analyzed and compared it was determined that the most desirable for this application is the Frequency Doubling Target method.

  3. 2D microwave imaging reflectometer electronics.

    PubMed

    Spear, A G; Domier, C W; Hu, X; Muscatello, C M; Ren, X; Tobias, B J; Luhmann, N C

    2014-11-01

    A 2D microwave imaging reflectometer system has been developed to visualize electron density fluctuations on the DIII-D tokamak. Simultaneously illuminated at four probe frequencies, large aperture optics image reflections from four density-dependent cutoff surfaces in the plasma over an extended region of the DIII-D plasma. Localized density fluctuations in the vicinity of the plasma cutoff surfaces modulate the plasma reflections, yielding a 2D image of electron density fluctuations. Details are presented of the receiver down conversion electronics that generate the in-phase (I) and quadrature (Q) reflectometer signals from which 2D density fluctuation data are obtained. Also presented are details on the control system and backplane used to manage the electronics as well as an introduction to the computer based control program.

  4. Design and Validation of a Ten-Port Waveguide Reflectometer Sensor: Application to Efficiency Measurement and Optimization of Microwave-Heating Ovens

    PubMed Central

    Pedreño-Molina, Juan L.; Monzó-Cabrera, Juan; Lozano-Guerrero, Antonio; Toledo-Moreo, Ana

    2008-01-01

    This work presents the design, manufacturing process, calibration and validation of a new microwave ten-port waveguide reflectometer based on the use of neural networks. This low-cost novel device solves some of the shortcomings of previous reflectometers such as non-linear behavior of power sensors, noise presence and the complexity of the calibration procedure, which is often based on complex mathematical equations. These problems, which imply the reduction of the reflection coefficient measurement accuracy, have been overcome by using a higher number of probes than usual six-port configurations and by means of the use of Radial Basis Function (RBF) neural networks in order to reduce the influence of noise and non-linear processes over the measurements. Additionally, this sensor can be reconfigured whenever some of the eight coaxial power detectors fail, still providing accurate values in real time. The ten-port performance has been compared against a high-cost measurement instrument such as a vector network analyzer and applied to the measurement and optimization of energy efficiency of microwave ovens, with good results. PMID:27873961

  5. Measurement of ICRF wave propagation using a microwave reflectometer with fast antenna switching on GAMMA 10

    NASA Astrophysics Data System (ADS)

    Ikezoe, R.; Ichimura, M.; Itagaki, J.; Hirata, M.; Sumida, S.; Jang, S.; Izumi, K.; Tanaka, A.; Sekine, R.; Kubota, Y.; Shima, Y.; Kohagura, J.; Yoshikawa, M.; Sakamoto, M.; Nakashima, Y.

    2017-12-01

    Slow Alfvén wave in ion cyclotron range of frequency (ICRF) is a powerful tool to heat ions confined in a mirror field. In spite of its efficient heating effect that has been attained in the central cell of GAMMA 10, there are still unknown characteristics concerning boundary condition, transient variation of heating effect, exact picture of cyclotron damping, and so on. To study these characteristics in detail, a multi-point measurement of the waves inside the hot plasma has been recently developed by using a microwave reflectometer. In addition to a radial profile measurement that is available by a usual reflectometer, an axial measurement has been achieved by arraying transmitting and receiving horn antennas in the axial direction, which are repeatedly switched in time during a discharge with PIN diode switches. Another transmitting and receiving horn antenna pair was newly added to the system and probing at five cross sections was achieved in a single discharge with time resolution of about 1 ms at each antenna pair position. With the upgraded reflectometer system, axial and radial distributions of wave-induced fluctuations and those temporal behavior were clearly observed, offering valuable data on wave physics in a hot mirror plasma.

  6. Passive Wireless Vibration Sensing for Measuring Aerospace Structural Flutter

    NASA Technical Reports Server (NTRS)

    Wilson, William C.; Moore, Jason P.

    2017-01-01

    To reduce energy consumption, emissions, and noise, NASA is exploring the use of high aspect ratio wings on subsonic aircraft. Because high aspect ratio wings are susceptible to flutter events, NASA is also investigating methods of flutter detection and suppression. In support of that work a new remote, non-contact method for measuring flutter-induced vibrations has been developed. The new sensing scheme utilizes a microwave reflectometer to monitor the reflected response from an aeroelastic structure to ultimately characterize structural vibrations. To demonstrate the ability of microwaves to detect flutter vibrations, a carbon fiber-reinforced polymer (CFRP) composite panel was vibrated at various frequencies from 1Hz to 130Hz. The reflectometer response was found to closely resemble the sinusoidal response as measured with an accelerometer up to 100 Hz. The data presented demonstrate that microwaves can be used to measure flutter-induced aircraft vibrations.

  7. Optimization studies of the ITER low field side reflectometer.

    PubMed

    Diem, S J; Wilgen, J B; Bigelow, T S; Hanson, G R; Harvey, R W; Smirnov, A P

    2010-10-01

    Microwave reflectometry will be used on ITER to measure the electron density profile, density fluctuations due to MHD/turbulence, edge localized mode (ELM) density transients, and as an L-H transition monitor. The ITER low field side reflectometer system will measure both core and edge quantities using multiple antenna arrays spanning frequency ranges of 15-155 GHz for the O-mode system and 55-220 GHz for the X-mode system. Optimization studies using the GENRAY ray-tracing code have been done for edge and core measurements. The reflectometer launchers will utilize the HE11 mode launched from circular corrugated waveguide. The launched beams are assumed to be Gaussian with a beam waist diameter of 0.643 times the waveguide diameter. Optimum launcher size and placement are investigated by computing the antenna coupling between launchers, assuming the launched and received beams have a Gaussian beam pattern.

  8. Direct measurement of density oscillation induced by a radio-frequency wave.

    PubMed

    Yamada, T; Ejiri, A; Shimada, Y; Oosako, T; Tsujimura, J; Takase, Y; Kasahara, H

    2007-08-01

    An O-mode reflectometer at a frequency of 25.85 GHz was applied to plasmas heated by the high harmonic fast wave (21 MHz) in the TST-2 spherical tokamak. An oscillation in the phase of the reflected microwave in the rf range was observed directly for the first time. In TST-2, the rf (250 kW) induced density oscillation depends mainly on the poloidal rf electric field, which is estimated to be about 0.2 kV/m rms by the reflectometer measurement. Sideband peaks separated in frequency by ion cyclotron harmonics from 21 MHz, and peaks at ion cyclotron harmonics which are suggested to be quasimodes generated by parametric decay, were detected.

  9. An accurate automated technique for quasi-optics measurement of the microwave diagnostics for fusion plasma

    NASA Astrophysics Data System (ADS)

    Hu, Jianqiang; Liu, Ahdi; Zhou, Chu; Zhang, Xiaohui; Wang, Mingyuan; Zhang, Jin; Feng, Xi; Li, Hong; Xie, Jinlin; Liu, Wandong; Yu, Changxuan

    2017-08-01

    A new integrated technique for fast and accurate measurement of the quasi-optics, especially for the microwave/millimeter wave diagnostic systems of fusion plasma, has been developed. Using the LabVIEW-based comprehensive scanning system, we can realize not only automatic but also fast and accurate measurement, which will help to eliminate the effects of temperature drift and standing wave/multi-reflection. With the Matlab-based asymmetric two-dimensional Gaussian fitting method, all the desired parameters of the microwave beam can be obtained. This technique can be used in the design and testing of microwave diagnostic systems such as reflectometers and the electron cyclotron emission imaging diagnostic systems of the Experimental Advanced Superconducting Tokamak.

  10. Front-end antenna system design for the ITER low-field-side reflectometer system using GENRAY ray tracing.

    PubMed

    Wang, G; Doyle, E J; Peebles, W A

    2016-11-01

    A monostatic antenna array arrangement has been designed for the microwave front-end of the ITER low-field-side reflectometer (LFSR) system. This paper presents details of the antenna coupling coefficient analyses performed using GENRAY, a 3-D ray tracing code, to evaluate the plasma height accommodation capability of such an antenna array design. Utilizing modeled data for the plasma equilibrium and profiles for the ITER baseline and half-field scenarios, a design study was performed for measurement locations varying from the plasma edge to inside the top of the pedestal. A front-end antenna configuration is recommended for the ITER LFSR system based on the results of this coupling analysis.

  11. Radiometric Calibration Techniques for Signal-of-Opportunity Reflectometers

    NASA Technical Reports Server (NTRS)

    Piepmeier, Jeffrey R.; Shah, Rashmi; Deshpande, Manohar; Johnson, Carey

    2014-01-01

    Bi-static reflection measurements utilizing global navigation satellite service (GNSS) or other signals of opportunity (SoOp) can be used to sense ocean and terrestrial surface properties. End-to-end calibration of GNSS-R has been performed using well-characterized reflection surface (e.g., water), direct path antenna, and receiver gain characterization. We propose an augmented approach using on-board receiver electronics for radiometric calibration of SoOp reflectometers utilizing direct and reflected signal receiving antennas. The method calibrates receiver and correlator gains and offsets utilizing a reference switch and common noise source. On-board electronic calibration sources, such as reference switches, noise diodes and loop-back circuits, have shown great utility in stabilizing total power and correlation microwave radiometer and scatterometer receiver electronics in L-band spaceborne instruments. Application to SoOp instruments is likely to bring several benefits. For example, application to provide short and long time scale calibration stability of the direct path channel, especially in low signal-to-noise ratio configurations, is directly analogous to the microwave radiometer problem. The direct path channel is analogous to the loopback path in a scatterometer to provide a reference of the transmitted power, although the receiver is independent from the reflected path channel. Thus, a common noise source can be used to measure the gain ratio of the two paths. Using these techniques long-term (days to weeks) calibration stability of spaceborne L-band scatterometer and radiometer has been achieved better than 0.1. Similar long-term stability would likely be needed for a spaceborne reflectometer mission to measure terrestrial properties such as soil moisture.

  12. Multi-point measurement using two-channel reflectometer with antenna switching for study of high-frequency fluctuations in GAMMA 10

    NASA Astrophysics Data System (ADS)

    Ikezoe, R.; Ichimura, M.; Okada, T.; Itagaki, J.; Hirata, M.; Sumida, S.; Jang, S.; Izumi, K.; Tanaka, A.; Yoshikawa, M.; Kohagura, J.; Sakamoto, M.; Nakashima, Y.

    2017-03-01

    A two-channel microwave reflectometer system with fast microwave antenna switching capability was developed and applied to the GAMMA 10 tandem mirror device to study high-frequency small-amplitude fluctuations in a hot mirror plasma. The fast switching of the antennas is controlled using PIN diode switches, which offers the significant advantage of reducing the number of high-cost microwave components and digitizers with high bandwidths and large memory that are required to measure the spatiotemporal behavior of the high-frequency fluctuations. The use of two channels rather than one adds the important function of a simultaneous two-point measurement in either the radial direction or the direction of the antenna array to measure the phase profile of the fluctuations along with the normal amplitude profile. The density fluctuations measured using this system clearly showed the high-frequency coherent fluctuations that are associated with Alfvén-ion-cyclotron (AIC) waves in GAMMA 10. A correlation analysis applied to simultaneously measured density fluctuations showed that the phase component that was included in a reflected microwave provided both high coherence and a clear phase difference for the AIC waves, while the amplitude component showed neither significant coherence nor clear phase difference. The axial phase differences of the AIC waves measured inside the hot plasma confirmed the formation of a standing wave structure. The axial variation of the radial profiles was evaluated and a clear difference was found among the AIC waves for the first time, which would be a key to clarify the unknown boundary conditions of the AIC waves.

  13. Performance and data analysis aspects of the new DIII-D monostatic profile reflectometer system

    DOE PAGES

    Zeng, Lei; Peebles, William A.; Doyle, Edward J.; ...

    2014-08-07

    A new frequency-modulated (FMCW) profile reflectometer system, featuring a monostatic antenna geometry (using one microwave antenna for both launch and receive), has been installed on the DIII-D tokamak, providing a first experimental test of this measurement approach for profile reflectometry. Significant features of the new system are briefly described in this paper, including the new monostatic arrangement, use of overmoded, broadband transmission waveguide, and dual-polarization combination/demultiplexing. Updated data processing and analysis, and in-service performance aspects of the new monostatic profile reflectometer system are also presented. By using a raytracing code (GENRAY) to determine the approximate trajectory of the probe beam,more » the electron density (n e) profile can be successfully reconstructed with L-mode plasmas vertically shifted by more than 10 cm off the vessel midplane. Specifically, it is demonstrated that the new system has a capability to measure n e profiles with plasma vertical offsets of up to ±17 cm. Furthermore, examples are also presented of accurate, high time and spatial resolution density profile measurements made over a wide range of DIII-D conditions, e.g. the measured temporal evolution of the density profile across an L-H transition.« less

  14. Development of Long-Pulse Heating and Current Drive Actuators and Operational Techniques Compatible with a High-Z Divertor and First Wall

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wang, Guiding

    Accurate measurement of the edge electron density profile is essential to optimizing antenna coupling and assessment of impurity contamination in studying long-pulse plasma heating and current drive in fusion devices. Measurement of the edge density profile has been demonstrated on the US fusion devices such as C-Mod, DIII-D, and TFTR amongst many devices, and has been used for RF loading and impurity modeling calculations for many years. University of Science and Technology of China (USTC) has recently installed a density profile reflectometer system on the EAST fusion device at the Institute of Plasma Physics, Chinese Academy of Sciences in Chinamore » based on the University of California Los Angeles (UCLA)-designed reflectometer system on the DIII-D fusion device at General Atomics Company in San Diego, California. UCLA has been working with USTC to optimize the existing microwave antenna, waveguide system, microwave electronics, and data analysis to produce reliable edge density profiles. During the past budget year, progress has been made in all three major areas: effort to achieve reliable system operations under various EAST operational conditions, effort to optimize system performance, and effort to provide quality density profiles into EAST’s database routinely.« less

  15. Theoretical and experimental studies of reentry plasmas

    NASA Technical Reports Server (NTRS)

    Dunn, M. G.; Kang, S.

    1973-01-01

    A viscous shock-layer analysis was developed and used to calculate nonequilibrium-flow species distributions in the plasma layer of the RAM vehicle. The theoretical electron-density results obtained are in good agreement with those measured in flight. A circular-aperture flush-mounted antenna was used to obtain a comparison between theoretical and experimental antenna admittance in the presence of ionized boundary layers of low collision frequency. The electron-temperature and electron-density distributions in the boundary layer were independently measured. The antenna admittance was measured using a four-probe microwave reflectometer and these measured values were found to be in good agreement with those predicted. Measurements were also performed with another type of circular-aperture antenna and good agreement was obtained between the calculations and the experimental results. A theoretical analysis has been completed which permits calculation of the nonequilibrium, viscous shock-layer flow field for a sphere-cone body. Results are presented for two different bodies at several different altitudes illustrating the influences of bluntness and chemical nonequilibrium on several gas dynamic parameters of interest. Plane-wave transmission coefficients were calculated for an approximate space-shuttle body using a typical trajectory.

  16. Double-frequency microwave ionization of Na

    NASA Astrophysics Data System (ADS)

    Ruff, G. A.; Dietrick, K. M.; Gallagher, T. F.

    1990-11-01

    We report the ionization of Na atoms by the simultaneous application of microwave fields of two different frequencies. We conclude that the salient features of double-frequency ionization can be readily understood. Both the hydrogenlike ||m||=2 states and the nonhydrogenic ||m||=0 and 1 states ionize when the sum of the field amplitudes, the peak field, reaches the field required for ionization by a single microwave frequency, E=1/9n4 and E=1/3n5, respectively.

  17. A Numerical Simulation of the Energy Conversion Process in Microwave Rocket

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Shibata, Teppei; Oda, Yasuhisa; Komurasaki, Kimiya

    2008-04-28

    In Microwave Rocket, a high power microwave beam ionizes atmospheric air inside of the thruster and the ionization front drives a shock wave. In this paper, CFD simulation was conducted using measured propagation velocity of the ionization front to evaluate the engine performance. As a result, maximum cycle efficiency was obtained at the power density of about 200 kW/m{sup 2} which is the transitional beam power condition between Microwave Supported Combustion and Microwave Supported Detonation regimes.

  18. Ionization-Induced Self-Channeling of an Ultrahigh-Power Subnanosecond Microwave Beam in a Neutral Gas

    NASA Astrophysics Data System (ADS)

    Shafir, G.; Krasik, Ya. E.; Bliokh, Y. P.; Levko, D.; Cao, Y.; Leopold, J. G.; Gad, R.; Bernshtam, V.; Fisher, A.

    2018-03-01

    Ionization-induced self-channeling of a ≤500 MW , 9.6 GHz, <1 ns microwave beam injected into air at ˜4.5 ×103 Pa or He at ˜103 Pa is experimentally demonstrated for the first time. The plasma, generated by the impact ionization of the gas driven by the microwave beam, has a radial density distribution reducing towards the beam axis, where the microwave field is highest, because the ionization rate is a decreasing function of the microwave amplitude. This forms a plasma channel which prevents the divergence of the microwave beam. The experimental data obtained using various diagnostic methods are in good agreement with the results of analytical calculations, as well as particle in cell Monte Carlo collisional modeling.

  19. Airborne Observation of Ocean Surface Roughness Variations Using a Combination of Microwave Radiometer and Reflectometer Systems: The Second Virginia Offshore (Virgo II) Experiment

    DTIC Science & Technology

    2014-03-06

    from scattered satellite transmissions, was first demonstrated using Global Navigation Satellite System ( GNSS ) reflections. Recently, reflectometry has...Earth’s atmosphere. The 2012 GNSS +R workshop provided an opportunity for engineers and Earth scientists to assess the state of the art, demonstrate new...bi-static radar technique utilizes signals of opportunity transmitted from existing L-band Global Navigation Satellite Systems ( GNSS ), including GPS

  20. Implementation of the new multichannel X-mode edge density profile reflectometer for the ICRF antenna on ASDEX Upgrade

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Aguiam, D. E., E-mail: daguiam@ipfn.tecnico.ulisboa.pt; Silva, A.; Carvalho, P. J.

    A new multichannel frequency modulated continuous-wave reflectometry diagnostic has been successfully installed and commissioned on ASDEX Upgrade to measure the plasma edge electron density profile evolution in front of the Ion Cyclotron Range of Frequencies (ICRF) antenna. The design of the new three-strap ICRF antenna integrates ten pairs (sending and receiving) of microwave reflectometry antennas. The multichannel reflectometer can use three of these to measure the edge electron density profiles up to 2 × 10{sup 19} m{sup −3}, at different poloidal locations, allowing the direct study of the local plasma layers in front of the ICRF antenna. ICRF power coupling,more » operational effects, and poloidal variations of the plasma density profile can be consistently studied for the first time. In this work the diagnostic hardware architecture is described and the obtained density profile measurements were used to track outer radial plasma position and plasma shape.« less

  1. Classical subharmonic resonances in microwave ionization of lithium Rydberg atoms

    NASA Astrophysics Data System (ADS)

    Noel, Michael W.; Griffith, W. M.; Gallagher, T. F.

    2000-12-01

    We have studied the ionization of lithium Rydberg atoms by pulsed microwave fields in the regime in which the microwave frequency is equal to or a subharmonic of the classical Kepler frequency of the two-body Coulomb problem. We have observed a series of resonances where the atom is relatively stable against ionization. The resonances are similar to those seen previously in hydrogen, but with significant quantitative differences. We also present measurements of the distribution of states that remain bound after the microwave interaction for initial states near one of the classical subharmonic resonances.

  2. Use of a microwave diagnostics technique to measure the temperature of an axisymmetric ionized gas flow

    NASA Astrophysics Data System (ADS)

    Tsel'Sov, Iu. G.; Kondrat'ev, A. S.

    1990-12-01

    A method is developed for determining the temperature of an ionized gas on the basis of electron-density sounding. This technique is used to measure the cross-sectional temperature distribution of an axisymmetric ionized gas flow using microwave diagnostics.

  3. Breakdown simulations in a focused microwave beam within the simplified model

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Semenov, V. E.; Rakova, E. I.; Glyavin, M. Yu.

    2016-07-15

    The simplified model is proposed to simulate numerically air breakdown in a focused microwave beam. The model is 1D from the mathematical point of view, but it takes into account the spatial non-uniformity of microwave field amplitude along the beam axis. The simulations are completed for different frequencies and different focal lengths of microwave beams. The results demonstrate complicated regimes of the breakdown evolution which represents a series of repeated ionization waves. These waves start at the focal point and propagate towards incident microwave radiation. The ionization wave parameters vary during propagation. At relatively low frequencies, the propagation regime ofmore » subsequent waves can also change qualitatively. Each next ionization wave is less pronounced than the previous one, and the breakdown evolution approaches the steady state with relatively small plasma density. The ionization wave parameters are sensitive to the weak source of external ionization, but the steady state is independent on such a source. As the beam focal length decreases, the stationary plasma density increases and the onset of the steady state occurs faster.« less

  4. Confluence or independence of microwave plasma bullets in atmospheric argon plasma jet plumes

    NASA Astrophysics Data System (ADS)

    Li, Ping; Chen, Zhaoquan; Mu, Haibao; Xu, Guimin; Yao, Congwei; Sun, Anbang; Zhou, Yuming; Zhang, Guanjun

    2018-03-01

    Plasma bullet is the formation and propagation of a guided ionization wave (streamer), normally generated in atmospheric pressure plasma jet (APPJ). In most cases, only an ionization front produces in a dielectric tube. The present study shows that two or three ionization fronts can be generated in a single quartz tube by using a microwave coaxial resonator. The argon APPJ plumes with a maximum length of 170 mm can be driven by continuous microwaves or microwave pulses. When the input power is higher than 90 W, two or three ionization fronts propagate independently at first; thereafter, they confluence to form a central plasma jet plume. On the other hand, the plasma bullets move independently as the lower input power is applied. For pulsed microwave discharges, the discharge images captured by a fast camera show the ionization process in detail. Another interesting finding is that the strongest lightening plasma jet plumes always appear at the shrinking phase. Both the discharge images and electromagnetic simulations suggest that the confluence or independent propagation of plasma bullets is resonantly excited by the local enhanced electric fields, in terms of wave modes of traveling surface plasmon polaritons.

  5. Measurement of plasma decay processes in mixture of sodium and argon by coherent microwave scattering

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhang Zhili; Shneider, Mikhail N.

    2010-03-15

    This paper presents the experimental measurement and computational model of sodium plasma decay processes in mixture of sodium and argon by using radar resonance-enhanced multiphoton ionization (REMPI), coherent microwave Rayleigh scattering of REMPI. A single laser beam resonantly ionizes the sodium atoms by means of 2+1 REMPI process. The laser beam can only generate the ionization of the sodium atoms and have negligible ionization of argon. Coherent microwave scattering in situ measures the total electron number in the laser-induced plasma. Since the sodium ions decay by recombination with electrons, microwave scattering directly measures the plasma decay processes of the sodiummore » ions. A theoretical plasma dynamic model, including REMPI of the sodium and electron avalanche ionization (EAI) of sodium and argon in the gas mixture, has been developed. It confirms that the EAI of argon is several orders of magnitude lower than the REMPI of sodium. The theoretical prediction made for the plasma decay process of sodium plasma in the mixture matches the experimental measurement.« less

  6. The MRIS feasibility study

    NASA Technical Reports Server (NTRS)

    Neece, Robert T.; Cross, Aubrey E.; Schrader, James H.

    1993-01-01

    The Microwave Reflectometer Ionization Sensor (MRIS) is an instrument being developed for use in detecting and ranging of electron density layers in the reentry plasma of a space transfer vehicle. The rationale for the selection of the Double Sideband Suppressed Carrier (DSBSC) system used in the feasibility study for the MRIS is presented. A 25 GHz single-oscillator system and a 220 GHz double-oscillator system are described. The 25 GHz system was constructed and tested in the laboratory and test results are presented. As developed, the system employs a sideband spacing of 160 MHz. Based on an estimated electromagnetic wave velocity in the plasma, a round-trip phase shift measurement accuracy of +/- 7.6 degrees was required for the desired +/- 1/2 cm distance measurement accuracy. The interaction of parallel ground and reflecting planes produces interference that prevents the basic DSBSC system from meeting the accuracy goal so a frequency modulation was added to the system to allow averaging of the measured phase deviation. With an FM deviation of +/- 1 GHz, laboratory measurements were made for distances from 5 to 61 cm tip free space. Accounting for the plasma velocity factor, 82 percent of the data were equal to or better than the desired accuracy. Based on this measured result a sideband spacing to 250 MHz could be expected to yield data approximately 96 percent within the accuracy goal.

  7. Inversion algorithms for the microwave remote sensing of soil moisture. Experiments with swept frequency microwaves

    NASA Technical Reports Server (NTRS)

    Hancock, G. D.; Waite, W. P.

    1984-01-01

    Two experiments were performed employing swept frequency microwaves for the purpose of investigating the reflectivity from soil volumes containing both discontinuous and continuous changes in subsurface soil moisture content. Discontinuous moisture profiles were artificially created in the laboratory while continuous moisture profiles were induced into the soil of test plots by the environment of an agricultural field. The reflectivity for both the laboratory and field experiments was measured using bi-static reflectometers operated over the frequency ranges of 1.0 to 2.0 GHz and 4.0 to 8.0 GHz. Reflectivity models that considered the discontinuous and continuous moisture profiles within the soil volume were developed and compared with the results of the experiments. This comparison shows good agreement between the smooth surface models and the measurements. In particular the comparison of the smooth surface multi-layer model for continuous moisture profiles and the yield experiment measurements points out the sensitivity of the specular component of the scattered electromagnetic energy to the movement of moisture in the soil.

  8. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Takahashi, Masayuki, E-mail: m.takahashi@al.t.u-tokyo.ac.jp; Ohnishi, Naofumi

    A filamentary plasma is reproduced based on a fully kinetic model of electron and ion transports coupled with electromagnetic wave propagation. The discharge plasma transits from discrete to diffusive patterns at a 110-GHz breakdown, with decrease in the ambient pressure, because of the rapid electron diffusion that occurs during an increase in the propagation speed of the ionization front. A discrete plasma is obtained at low pressures when a low-frequency microwave is irradiated because the ionization process becomes more dominant than the electron diffusion, when the electrons are effectively heated by the low-frequency microwave. The propagation speed of the plasmamore » increases with decrease in the incident microwave frequency because of the higher ionization frequency and faster plasma diffusion resulting from the increase in the energy-absorption rate. An external magnetic field is applied to the breakdown volume, which induces plasma filamentation at lower pressures because the electron diffusion is suppressed by the magnetic field. The thrust performance of a microwave rocket is improved by the magnetic fields corresponding to the electron cyclotron resonance (ECR) and its higher-harmonic heating, because slower propagation of the ionization front and larger energy-absorption rates are obtained at lower pressures. It would be advantageous if the fundamental mode of ECR heating is coupled with a lower frequency microwave instead of combining the higher-harmonic ECR heating with the higher frequency microwave. This can improve the thrust performance with smaller magnetic fields even if the propagation speed increases because of the decrease in the incident microwave frequency.« less

  9. Reflectometer design using nonimaging optics

    NASA Astrophysics Data System (ADS)

    Snail, Keith A.

    1987-12-01

    A new type of two-stage reflectometer is proposed for the measurement of directional hemispherical reflectance. The proposed reflectometer consists of a primary collecting mirror coupled to a secondary mirror chosen to eliminate the Fresnel variation of the detector (or source) response. The secondary mirror shape needed is an inverted nonimaging compound parabolic concentrator (CPC). For direct mode operation, the detector is placed at the larger CPC aperture. Ray tracing of a CPC/ellipsoid reflectometer indicates that the throughput is high and isotropic. Design trade-offs and two-stage reflectometers employing a hemisphere and dual paraboloid primary are also discussed.

  10. Reflectometer design using nonimaging optics.

    PubMed

    Snail, K A

    1987-12-15

    A new type of two-stage reflectometer is proposed for the measurement of directional hemispherical reflectance. The proposed reflectometer consists of a primary collecting mirror coupled to a secondary mirror chosen to eliminate the Fresnel variation of the detector (or source) response. The secondary mirror shape needed is an inverted nonimaging compound parabolic concentrator (CPC). For direct mode operation, the detector is placed at the larger CPC aperture. Ray tracing of a CPC/ellipsoid reflectometer indicates that the throughput is high and isotropic. Design trade-offs and two-stage reflectometers employing a hemisphere and dual paraboloid primary are also discussed.

  11. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kung, C. C.; Kramer, G. J.; Johnson, E.

    Reflectometry, which uses the microwave radar technique to probe the magnetically confined fusion plasmas, is a very powerful tool to observe the density fluctuations in the fusion plasmas. Typically, two or more microwave beams of different frequencies are used to study the plasma density fluctuations. The frequency separation between these two beams of the PPPL designed reflectometer system upgrade on the DIII-D tokamak can be varied over 18 GHz. Due to the performance of the associated electronics, the local oscillator (LO) power level at the LO port of the I/Q demodulator suffers more than 12 dB of power fluctuations whenmore » the frequency separation is varied. Thus, the I/Q demodulator performance is impaired. In order to correct this problem, a power leveling circuit is introduced in the PPPL upgrade. According to the test results, the LO power fluctuation was regulated to be within 1 dB for greater than 16 dB of input power variation over the full dynamic bandwidth of the receiver.« less

  12. Characterization of weakly ionized argon flows for radio blackout mitigation experiments

    NASA Astrophysics Data System (ADS)

    Steffens, L.; Koch, U.; Esser, B.; Gülhan, A.

    2017-06-01

    For reproducing the so-called E × B communication blackout mitigation scheme inside the L2K arc heated facility of the DLR in weakly ionized argon §ows, a §at plate model has been equipped with a superconducting magnet, electrodes, and a setup comprising microwave plasma transmission spectroscopy (MPTS). A thorough characterization of the weakly ionized argon §ow has been performed including the use of microwave interferometry (MWI), Langmuir probe measurements, Pitot probe pro¦les, and spectroscopic methods like diode laser absorption spectroscopy (DLAS) and emission spectroscopy.

  13. MICROWAVES IN ORGANIC SYNTHESIS

    EPA Science Inventory

    The effect of microwaves, a non-ionizing radiation, on organic reactions is described both in polar solvents and under solvent-free conditions. The special applications are highlighted in the context of solventless organic synthesis which involve microwave (MW) exposure of neat r...

  14. Coincident Retrieval of Ocean Surface Roughness and Salinity Using Airborne and Satellite Microwave Radiometry and Reflectometry Measurements during the Carolina Offshore (Caro) Experiment.

    NASA Astrophysics Data System (ADS)

    Burrage, D. M.; Wesson, J. C.; Wang, D. W.; Garrison, J. L.; Zhang, H.

    2017-12-01

    The launch of the Cyclone Global Navigation Satellite System (CYGNSS) constellation of 8 microsats carrying GPS L-band reflectometers on 15 Dec., 2016, and continued operation of the L-band radiometer on the European Space Agency (ESA) Soil Moisture and Ocean Salinity (SMOS) satellite, allow these complementary technologies to coincidentally retrieve Ocean surface roughness (Mean Square Slope, MSS), Surface Wind speed (WSP), and Sea Surface Salinity (SSS). The Carolina Offshore (Caro) airborne experiment was conducted jointly by NRL SSC and Purdue University from 7-11 May, 2017 with the goal of under-flying CYGNSS and SMOS and overflying NOAA buoys, to obtain high-resolution reflectometer and radiometer data for combined retrieval of MSS, SSS and WSP on the continental shelf. Airborne instruments included NRL's Salinity Temperature and Roughness Remote Scanner (STARRS) L-, C- and IR-band radiometer system, and a 4-channel dual-pol L-band (GPS) and S-band (XM radio) reflectometer, built by Purdue University. Flights either crossed NOAA buoys on various headings, or intersected with specular point ground tracks at predicted CYGNSS overpass times. Prevailing winds during Caro were light to moderate (1-8 m/s), so specular returns dominated the reflectometer Delay Doppler Maps (DDMs), and MSS was generally low. In contrast, stronger winds (1-12 m/s) and rougher seas (wave heights 1-5 m) were experienced during the preceding Maine Offshore (Maineo) experiment in March, 2016. Several DDM observables were used to retrieve MSS and WSP, and radiometer brightness temperatures produced Sea Surface Temperature (SST), SSS and also WSP estimates. The complementary relationship of Kirchoff's formula e+r=1, between radiometric emissivity, e, and reflectivity, r, was exploited to seek consistent estimates of MSS, and use it to correct the SSS retrievals for sea surface roughness effects. The relative performance and utility of the various airborne and satellite retrieval algorithms were assessed, and the coincident buoy, aircraft and satellite retrievals of MSS, WSP and SSS were compared. During Caro WSP from the different instruments generally agreed. Some anomalously high wind retrievals found here and elsewhere in current CYGNSS Level 2 data may yield to the science team's recent L1 calibration revision.

  15. Fluctuations in microwave background radiation due to secondary ionization of the intergalactic gas in the universe

    NASA Technical Reports Server (NTRS)

    Sunyayev, R. A.

    1979-01-01

    Secondary heating and ionization of the intergalactic gas at redshifts z approximately 10-30 could lead to the large optical depth of the Universe for Thomson scattering and could smooth the primordial fluctuations formed at z approximately 1500. It is shown that the gas motions connected with the large scale density perturbations at z approximately 10-15 must lead to the generation of secondary fluctuations of microwave background. The contribution of the rich clusters of galaxies and young galaxies to the fluctuations of microwave background is also estimated.

  16. The interaction of intense, ultra-short microwave beams with the plasma generated by gas ionization

    NASA Astrophysics Data System (ADS)

    Shafir, G.; Cao, Y.; Bliokh, Y.; Leopold, J. G.; Levko, D.; Rostov, V.; Gad, R.; Fisher, A.; Bernshtam, V.; Krasik, Ya. E.

    2018-03-01

    Results of the non-linear interaction of an extremely short (0.6 ns) high power (˜500 MW) X-band focused microwave beam with the plasma generated by gas ionization are presented. Within certain gas pressure ranges, specific to the gas type, the plasma density is considerably lower around the microwave beam axis than at its periphery, thus forming guiding channel through which the beam self-focuses. Outside these pressure ranges, either diffuse or streamer-like plasma is observed. We also observe high energy electrons (˜15 keV), accelerated by the very high-power microwaves. A simplified analytical model of this complicated dynamical system and particle-in-cell numerical simulations confirm the experimental results.

  17. First results of the SOL reflectometer on Alcator C-Mod.

    PubMed

    Lau, C; Hanson, G; Lin, Y; Wilgen, J; Wukitch, S; Labombard, B; Wallace, G

    2012-10-01

    A swept-frequency X-mode reflectometer has been built on Alcator C-Mod to measure the scrape-off layer (SOL) density profiles adjacent to the lower hybrid launcher. The reflectometer system operates between 100 and 146 GHz at sweep rates from 10 μs to 1 ms and covers a density range of ∼10(16)-10(20) m(-3) at B(0) = 5-5.4 T. This paper discusses the analysis of reflectometer density profiles and presents first experimental results of SOL density profile modifications due to the application of lower hybrid range-of-frequencies power to L-mode discharges. Comparison between density profiles measured by the X-mode reflectometer and scanning Langmuir probes is also shown.

  18. Organic Synthesis Using Microwaves and Supported Reagents

    EPA Science Inventory

    In the electromagnetic radiation region, microwaves (0.3GHz-300GHz) lie between radiowave (Rf) and infrared (IR) frequencies with relatively large wavelengths (1 mm-1 m). Microwaves, non-ionizing radiation incapable of breaking bonds, are a form of energy that manifest as heat t...

  19. Portable six-port reflectometer for determining moisture content of biomass material

    USDA-ARS?s Scientific Manuscript database

    A portable six-port reflectometer (SPR) for determining moisture content of biomass material is proposed for the first time in this paper. The proposed system consists of a 5.13 GHz reflectometer used with an open-ended half-mode substrateintegrated waveguide (HMSIW) sensor. The complex permittivity...

  20. Microwave Heating of TV-Dinner Type Products

    USDA-ARS?s Scientific Manuscript database

    Modified from an inverter-based microwave oven, a new microwave system was developed to pasteurize mechanically tenderized beef, inoculated with Escherichia coli O157:H7 and placed into a 12 oz CPET tray containing de-ionized water. The system allowed the sample surface temperature to first increas...

  1. [Investigation of non-ionizing radiation hazards from physiotherapy equipment in 16 medical institutions].

    PubMed

    He, Jia-xi; Zhou, Wei; Qiu, Hai-li; Yang, Guang-tao

    2013-12-01

    To investigate the non-ionizing radiation hazards from physiotherapy equipment in medical institutions and to explore feasible control measures for occupational diseases. On-site measurement and assessment of ultra-high-frequency radiation, high-frequency electromagnetic field, microwave radiation, and laser radiation were carried out in 16 medical institutions using the methods in the Measurement of Physical Agents in Workplace (GBZ/T189-2007). All the investigated medical institutions failed to take effective protective measures against non-ionizing radiation. Of the 17 ultra-short wave therapy apparatus, 70.6%, 47.1%, and 17.64% had a safe intensity of ultra-high-frequency radiation on the head, chest, and abdomen, respectively. Of the 4 external high-frequency thermotherapy apparatus, 100%, 75%, and 75%had a safe intensity of high-frequency electromagnetic field on the head, chest, and abdomen, respectively. In addition, the intensities of microwave radiation and laser radiation produced by the 18 microwave therapy apparatus and 12 laser therapeutic apparatus met national health standards. There are non-ionizing radiation hazards from physiotherapy equipment in medical institutions, and effective prevention and control measures are necessary.

  2. Pregnancy and Radiation Exposure

    MedlinePlus

    ... pregnant women. Ionizing radiation is the kind of electromagnetic radiation produced by x-ray machines, radioactive isotopes ( ... The reproductive risk of nonionizing radiation, which includes electromagnetic fields emitted from computers, microwave communication systems, microwave ...

  3. An evaluation of ionizing radiation emitted by high power microwave generators

    NASA Astrophysics Data System (ADS)

    Lovell, C. David; Bolch, W. Emmett

    1992-02-01

    Ionizing radiation emitted by electron-beam driven high power microwave (HPM) generators were measured in the near and far-field using lithium fluoride (LiF) thermoluminescent dosimeters (TLD's). Simplified photon energy spectra were determined by measuring radiation transmission, at electron beam energies of 300 to 650 keV, through various thicknesses of steel and lead attenuators. These data were used to calculate the effective energy of the x-rays produced by interactions between the electrons and the walls or other structures of the HPM generators. Operators were polled to determine locations of burn marks or other visible damage to locate potential ionizing radiation source regions.

  4. The advanced thermionic converter with microwave power as an auxiliary ionization source

    NASA Technical Reports Server (NTRS)

    Manikopoulos, C. N.; Hatziprocopiou, M.; Chiu, H. S.; Shaw, D. T.

    1978-01-01

    In the search for auxiliary sources of ionization for the advanced thermionic converter plasma, as required for terrestial applications, the use of externally applied microwave power is considered. The present work is part of the advanced model thermionic converter development research currently performed at the laboratory for Power and Environmental Studies at SUNY Buffalo. Microwave power in the frequency range 1-3 GHz is used to externally pump a thermionic converter and the results are compared to the theoretical model proposed by Lam (1976) in describing the thermionic converter plasma. The electron temperature of the plasma is found to be raised considerably by effective microwave heating which results in the disappearance of the double sheath ordinarily erected in front of the emitter. The experimental data agree satisfactorily with theory in the low current region.

  5. Fast Determination of Ingredients in Solid Pharmaceuticals by Microwave-Enhanced In-Source Decay of Microwave Plasma Torch Mass Spectrometry.

    PubMed

    Su, Rui; Wang, Xinchen; Hou, Changming; Yang, Meiling; Huang, Keke; Chen, Huanwen

    2017-09-01

    Rapid qualitative and quantitative analysis of solid samples (e.g., pharmaceutical preparations) by using a small and low-resolution mass spectrometer without MS/MS function is still a challenge in ambient pressure ionization mass spectrometric analysis. Herein, a practically efficient method termed microwave-enhanced in-source decay (MEISD) using microwave plasma torch desorption ionization coupled with time-of-flight mass spectrometry (MPTDI-TOF MS) was developed for fast analysis of pharmaceutical tablets using a miniature TOF mass spectrometer without tandem mass function. The intensity of ISD fragmentation was evaluated under different microwave power values. Several factors, including desorption distance and time that might affect the signal intensity and fragmentation, were systematically investigated. It was observed that both the protonated molecular ions and major fragment ions from the active ingredients in tablets could be found in the full-scan mass spectra in positive ion mode, which were comparable to those obtained by a commercial LTQ-XL ion trap mass spectrometer. The structures of the ingredients could be elucidated in detail using the MEISD method, which promotes our understanding of the desorption/ionization processes in microwave plasma torch (MPT). Quantitative analysis of 10 tablets was achieved by full-scan MPTDI-TOF MS with low limit of detection (LOD, 0.763 mg/g), acceptable relative standard deviation (RSD < 7.33%, n =10), and 10 s for each tablet, showing promising applications in high throughput screening of counterfeit drugs. Graphical Abstract ᅟ.

  6. Fast Determination of Ingredients in Solid Pharmaceuticals by Microwave-Enhanced In-Source Decay of Microwave Plasma Torch Mass Spectrometry

    NASA Astrophysics Data System (ADS)

    Su, Rui; Wang, Xinchen; Hou, Changming; Yang, Meiling; Huang, Keke; Chen, Huanwen

    2017-09-01

    Rapid qualitative and quantitative analysis of solid samples (e.g., pharmaceutical preparations) by using a small and low-resolution mass spectrometer without MS/MS function is still a challenge in ambient pressure ionization mass spectrometric analysis. Herein, a practically efficient method termed microwave-enhanced in-source decay (MEISD) using microwave plasma torch desorption ionization coupled with time-of-flight mass spectrometry (MPTDI-TOF MS) was developed for fast analysis of pharmaceutical tablets using a miniature TOF mass spectrometer without tandem mass function. The intensity of ISD fragmentation was evaluated under different microwave power values. Several factors, including desorption distance and time that might affect the signal intensity and fragmentation, were systematically investigated. It was observed that both the protonated molecular ions and major fragment ions from the active ingredients in tablets could be found in the full-scan mass spectra in positive ion mode, which were comparable to those obtained by a commercial LTQ-XL ion trap mass spectrometer. The structures of the ingredients could be elucidated in detail using the MEISD method, which promotes our understanding of the desorption/ionization processes in microwave plasma torch (MPT). Quantitative analysis of 10 tablets was achieved by full-scan MPTDI-TOF MS with low limit of detection (LOD, 0.763 mg/g), acceptable relative standard deviation (RSD < 7.33%, n =10), and 10 s for each tablet, showing promising applications in high throughput screening of counterfeit drugs. [Figure not available: see fulltext.

  7. Ultrafast high-power microwave window breakdown: nonlinear and postpulse effects.

    PubMed

    Chang, C; Verboncoeur, J; Guo, M N; Zhu, M; Song, W; Li, S; Chen, C H; Bai, X C; Xie, J L

    2014-12-01

    The time- and space-dependent optical emissions of nanosecond high-power microwave discharges near a dielectric-air interface have been observed by nanosecond-response four-framing intensified-charged-coupled device cameras. The experimental observations indicate that plasma developed more intensely at the dielectric-air interface than at the free-space region with a higher electric-field amplitude. A thin layer of intense light emission above the dielectric was observed after the microwave pulse. The mechanisms of the breakdown phenomena are analyzed by a three-dimensional electromagnetic-field modeling and a two-dimensional electromagnetic particle-in-cell simulation, revealing the formation of a space-charge microwave sheath near the dielectric surface, accelerated by the normal components of the microwave field, significantly enhancing the local-field amplitude and hence ionization near the dielectric surface. The nonlinear positive feedback of ionization, higher electron mobility, and ultraviolet-driven photoemission due to the elevated electron temperature are crucial for achieving the ultrafast discharge. Following the high-power microwave pulse, the sheath sustains a glow discharge until the sheath collapses.

  8. INVESTIGATION OF NEW CONCEPTS AND LINEAR BEAM TECHNIQUES FOR MICROWAVE POWER GENERATION.

    DTIC Science & Technology

    ARSENIC ALLOYS, MILLIMETER WAVES, CAVITY RESONATORS, ELECTRON GUNS, ELECTRON DENSITY, EPITAXIAL GROWTH, OSCILLATORS, S BAND , X BAND , GERMANIUM...ELECTRIC FIELDS, SCATTERING, BRILLOUIN ZONES, RUBY, ELECTROSTRICTION, IONIZATION, MICROWAVE OSCILLATORS, KLYSTRONS , EXPERIMENTAL DESIGN.

  9. Non-Ionizing Radiation Used in Microwave Ovens

    MedlinePlus

    ... Human Services (HHS), U.S. Food and Drug Administration (FDA) FDA's Center for Devices and Radiological Health (CDRH) sets ... public health. These standards can be viewed on FDA's Code of Federal Regulations on Microwave Ovens . FDA ...

  10. Processing and interpretation of experiments in the microwave interferometry of shock waves in a weakly ionized plasma

    NASA Astrophysics Data System (ADS)

    Ershov, A. P.; Klishin, S. V.; Kuzovnikov, S. V.; Ponomareva, S. E.; Pyt'ev, Iu. P.

    1990-12-01

    The reduction method is applied to the microwave interferometry of shock waves in a weakly ionized plasma, making it possible to improve the spatial resolution of the instrument. It is shown experimentally that the structure of the shock wave electron component in a high-frequency discharge plasma in atomic and molecular gases is characterized by the presence of a precursor in the form of a rarefaction wave. The origin of the precursor is examined.

  11. Characterization of the Multi-Blade 10B-based detector at the CRISP reflectometer at ISIS for neutron reflectometry at ESS

    NASA Astrophysics Data System (ADS)

    Piscitelli, F.; Mauri, G.; Messi, F.; Anastasopoulos, M.; Arnold, T.; Glavic, A.; Höglund, C.; Ilves, T.; Lopez Higuera, I.; Pazmandi, P.; Raspino, D.; Robinson, L.; Schmidt, S.; Svensson, P.; Varga, D.; Hall-Wilton, R.

    2018-05-01

    The Multi-Blade is a Boron-10-based gaseous thermal neutron detector developed to face the challenge arising in neutron reflectometry at neutron sources. Neutron reflectometers are challenging instruments in terms of instantaneous counting rate and spatial resolution. This detector has been designed according to the requirements given by the reflectometers at the European Spallation Source (ESS) in Sweden. The Multi-Blade has been installed and tested on the CRISP reflectometer at the ISIS neutron and muon source in U.K.. The results on the detailed detector characterization are discussed in this manuscript.

  12. ELECTRON IONIZATION FREQUENCY IN HYDROGEN

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cottingham, W.B.; Buchsbaum, S.J.

    1963-05-01

    The frequency of ionization by electrons in hydrogen was measured during pulsed microwave breakdown in a waveguide. Optical radiation emanating from the plasma was used to determine the temporal rate of growth of electron density. Values of the ionization frequency are presented as a function of E/sub e//p/sub o/ for 36 < E/sub e//p/sub o/ < 200 v/cm-mm Hg. The measurements constitute an extension of the work of Madan, Gordon, Buchsbaum, and Brown who measured this coefficient up to an E/sub e//p/sub o/ of 40 v/cm-mm Hg by microwave cavity techniques. Comparison is made with previous d-c measurements of Rosemore » and with the theory of Allis and Brown. Good agreement is obtained with the measurements of Rose but not with the theory of Allis and Brown extended to high E/sub e//p/ sub o/, nor with the previous microwave measurements of Madan et al. (auth)« less

  13. Scrape-off layer reflectometer for Alcator C-Mod.

    PubMed

    Hanson, G R; Wilgen, J B; Lau, C; Lin, Y; Wallace, G M; Wukitch, S J

    2008-10-01

    A two-frequency x-mode reflectometer operating from 100 to 146 GHz is deployed on Alcator C-Mod to measure the density profile and fluctuations in the scrape-off layer (SOL) immediately in front of the new J-port ICRF antenna and the new C-port lower hybrid launcher. The reflectometer covers densities from 10(16) to 10(20) m(-3) at 5-5.4 T. To provide the greatest flexibility and capability to deal with density fluctuations approaching 100% peak-to-peak in the SOL, both full-phase and differential-phase measurement capabilities with sweep speeds of approximately 10 micros to >1 ms are implemented. The differential-phase measurement uses a difference frequency of 500 MHz, corresponding to cutoff layer separations ranging from about 0.1 to 1 mm. The reflectometer has six sets of launchers: three on the ICRF antenna and three on the lower hybrid launcher. Both the ICRF antenna and the lower hybrid launcher incorporate reflectometer antennas at their top, bottom, and midplane locations.

  14. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sun, X.; Yao, C.

    A prototype dual-blade stripline kicker for the APS multi-bend achromat (MBA) upgrade has been designed and developed. It was optimized with 3D CST Microwave Studio. The high voltage (HV) feedthrough and air-side connector were designed and optimized. Electromagnetic fields along the beam path, the deflecting angle, the high electric fields and their locations were calculated with 15kV differential pulse voltage applied to the kicker blades through the feedthroughs. Beam impedance and the power dissipation on different parts of the kicker and external loads were studied for a 48-bunch fill pattern. Our results show that the prototype kicker with its HVmore » feedthroughs meets the specified requirements. The results of TDR (time-domain reflectometer) test, high voltage pulse test and beam test of the prototype kicker assembly agreed with the simulations.« less

  15. NASA Hybrid Reflectometer Project

    NASA Technical Reports Server (NTRS)

    Lynch, Dana; Mancini, Ron (Technical Monitor)

    2002-01-01

    Time-domain and frequency-domain reflectometry have been used for about forty years to locate opens and shorts in cables. Interpretation of reflectometry data is as much art as science. Is there information in the data that is being missed? Can the reflectometers be improved to allow us to detect and locate defects in cables that are not outright shorts or opens? The Hybrid Reflectometer Project was begun this year at NASA Ames Research Center, initially to model wire physics, simulating time-domain reflectometry (TDR) signals in those models and validating the models against actual TDR data taken on testbed cables. Theoretical models of reflectometry in wires will give us an understanding of the merits and limits of these techniques and will guide the application of a proposed hybrid reflectometer with the aim of enhancing reflectometer sensitivity to the point that wire defects can be detected. We will point out efforts by some other researchers to apply wire physics models to the problem of defect detection in wires and we will describe our own initial efforts to create wire physics models and report on testbed validation of the TDR simulations.

  16. Simultaneous measurements of X-ray reflectivity and grazing incidence fluorescence at BL-16 beamline of Indus-2

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Das, Gangadhar; Kane, S. R.; Khooha, Ajay

    2015-05-15

    A new multipurpose x-ray reflectometer station has been developed and augmented at the microfocus beamline (BL-16) of Indus-2 synchrotron radiation source to facilitate synchronous measurements of specular x-ray reflectivity and grazing incidence x-ray fluorescence emission from thin layered structures. The design and various salient features of the x-ray reflectometer are discussed. The performance of the reflectometer has been evaluated by analyzing several thin layered structures having different surface interface properties. The results reveal in-depth information for precise determination of surface and interface properties of thin layered materials demonstrating the immense potential of the combined measurements of x-ray reflectivity and grazingmore » incidence fluorescence on a single reflectometer.« less

  17. Microwave Triggered Laser Ionization of Air

    NASA Astrophysics Data System (ADS)

    Vadiee, Ehsan; Prasad, Sarita; Jerald Buchenauer, C.; Schamiloglu, Edl

    2012-10-01

    The goal of this work is to study the evolution and dynamics of plasma expansion when a high power microwave (HPM) pulse is overlapped in time and space on a very small, localized region of plasma formed by a high energy laser pulse. The pulsed Nd:YAG laser (8 ns, 600mJ, repetition rate 10 Hz) is focused to generate plasma filaments in air with electron density of 10^17/cm^3. When irradiated with a high power microwave pulse these electrons would gain enough kinetic energy and further escalate avalanche ionization of air due to elastic electron-neutral collisions thereby causing an increased volumetric discharge region. An X-band relativistic backward wave oscillator(RBWO) at the Pulsed Power,Beams and Microwaves laboratory at UNM is constructed as the microwave source. The RBWO produces a microwave pulse of maximum power 400 MW, frequency of 10.1 GHz, and energy of 6.8 Joules. Special care is being given to synchronize the RBWO and the pulsed laser system in order to achieve a high degree of spatial and temporal overlap. A photodiode and a microwave waveguide detector will be used to ensure the overlap. Also, a new shadowgraph technique with a nanosecond time resolution will be used to detect changes in the shock wave fronts when the HPM signal overlaps the laser pulse in time and space.

  18. Microwave Imaging Reflectometry for the study of Edge Harmonic Oscillations on DIII-D [Microwave Imaging Reflectometry (MIR) for the study of Edge Harmonic Oscillations (EHOs) on DIII-D

    DOE PAGES

    Ren, X.; Chen, M.; Chen, X.; ...

    2015-10-23

    Quiescent H-mode (QH) is an ELM free mode of operation in which edge-localized harmonic oscillations (EHOs) are believed to enhance particle transport, thereby stabilizing ELMs and preventing damage to the divertor and plasma facing components. Microwave Imaging Reflectometer (MIR) enabling direct comparison between the measured and simulated 2D images of density fluctuations near the edge can determine the 2D structure of density oscillation which can help to explain the physics behind EHO modes. MIR data sometimes indicates a counter-propagation between higher (n>1) and dominant (n=1) harmonics of coherent EHOs in the steep gradient regions of the pedestal. To preclude diagnosticmore » artifacts, we have performed forward modeling that includes possible optical misalignments to show that offsets between transmitting and receiving antennas do not account for this feature. We have also simulated the non-uniform rotation of the EHO structure, which induces multiple harmonics that are properly characterized in the synthetic diagnostic. Excluding these possible explanations for the data, the counter-propagation observed in MIR data, which is not corroborated by external Mirnov coil array measurements, may be due to subtleties of the eigenmode structure, such as an inversion radius consistent with a magnetic island. Similar effects are observed in analysis of internal ECE-Imaging and BES data. Furthermore, the identification of a non-ideal structure motivates further exploration of nonlinear models of this instability.« less

  19. Development of a High-Throughput Microwave Imaging System for Concealed Weapons Detection

    DTIC Science & Technology

    2016-07-15

    hardware. Index Terms—Microwave imaging, multistatic radar, Fast Fourier Transform (FFT). I. INTRODUCTION Near-field microwave imaging is a non-ionizing...configuration, but its computational demands are extreme. Fast Fourier Transform (FFT) imaging has long been used to efficiently construct images sampled with...Simulated image of 25 point scatterers imaged at range 1.5m, with array layout depicted in Fig. 3. Left: image formed with Equation (5) ( Fourier

  20. NIST High Accuracy Reference Reflectometer-Spectrophotometer

    PubMed Central

    Proctor, James E.; Yvonne Barnes, P.

    1996-01-01

    A new reflectometer-spectrophotometer has been designed and constructed using state-of-the-art technology to enhance optical properties of materials measurements over the ultraviolet, visible, and near-infrared (UV-Vis-NIR) wavelength range (200 nm to 2500 nm). The instrument, Spectral Tri-function Automated Reference Reflectometer (STARR), is capable of measuring specular and diffuse reflectance, bidirectional reflectance distribution function (BRDF) of diffuse samples, and both diffuse and non-diffuse transmittance. Samples up to 30 cm by 30 cm can be measured. The instrument and its characterization are described. PMID:27805081

  1. Microwave pulse compression from a storage cavity with laser-induced switching

    DOEpatents

    Bolton, Paul R.

    1992-01-01

    A laser-induced switch and a multiple cavity configuration are disclosed for producing high power microwave pulses. The microwave pulses are well controlled in wavelength and timing, with a quick rise time and a variable shape and power of the pulse. In addition, a method of reducing pre-pulse leakage to a low level is disclosed. Microwave energy is directed coherently to one or more cavities that stores the energy in a single mode, represented as a standing wave pattern. In order to switch the stored microwave energy out of the main cavity and into the branch waveguide, a laser-actuated switch is provided for the cavity. The switch includes a laser, associated optics for delivering the beam into the main cavity, and a switching gas positioned at an antinode in the main cavity. When actuated, the switching gas ionizes, creating a plasma, which becomes reflective to the microwave energy, changing the resonance of the cavity, and as a result the stored microwave energy is abruptly switched out of the cavity. The laser may directly pre-ionize the switching gas, or it may pump an impurity in the switching gas to an energy level which switches when a pre-selected cavity field is attained. Timing of switching the cavities is controlled by varying the pathlength of the actuating laser beam. For example, the pathlengths may be adjusted to output a single pulse of high power, or a series of quick lower power pulses.

  2. Application of Time Domain Reflectometers to Urban Settings

    EPA Science Inventory

    Time domain reflectometers (TDRs) are in-situ monitoring probes that produce a temperature-compensated signal proportional to soil moisture content of the surrounding material when calibrated to a particular media. Typically used in agricultural settings, TDRs may also be applied...

  3. [Saccharomyces cerevisiae as a model organism for studying the carcinogenicity of non-ionizing electromagnetic fields and radiation].

    PubMed

    Voĭchuk, S I

    2014-01-01

    Medical and biological aspects of the effects of non-ionizing electromagnetic (EM) fields and radiation on human health are the important issues that have arisen as a result of anthropogenic impact on the biosphere. Safe use of man-made sources of non-ionizing electromagnetic fields and radiation in a broad range of frequencies--static, radio-frequency and microwave--is a subject of discussions and speculations. The main problem is the lack of understanding of the mechanism(s) of reception of EMFs by living organisms. In this review we have analyzed the existing literature data regarding the effects of the electromagnetic radiation on the model eukaryotic organism--yeast Saccharomyces cerevisiae. An attempt was made to estimate the probability of induction of carcinogenesis in humans under the influence of magnetic fields and electromagnetic radiation of extremely low frequency, radio frequency and microwave ranges.

  4. Assessment of Clogging Dynamics in Permeable Pavement Systems with Time Domain Reflectometers

    EPA Science Inventory

    Infiltration is a primary functional mechanism in green infrastructure stormwater controls. This study used time domain reflectometers (TDRs) to measure spatial infiltration and assess clogging dynamics of permeable pavement systems in Edison, NJ, and Louisville, KY. In 2009, t...

  5. Measuring the concentration of ozone produced by a pulsed microwave discharge

    NASA Astrophysics Data System (ADS)

    Stepanov, A. N.; Iazenkov, V. V.

    1991-09-01

    The possibility of efficient ozone production in a pulsed microwave discharge in oxygen is investigated experimentally in the context of the problem of creation of an artificial ionization region in the earth atmosphere. The experiments were conducted in commercial oxygen at a pressure of 30 tor. It is found that there exists a certain optimal (from the standpoint of ozone production) microwave pulse duration, which depends on the experimental conditions. A theoretical model is proposed which provides a consistent explanation for the experimental results.

  6. Observation of frequency up-conversion in the propagation of a high-power microwave pulse in a self-generated plasma

    NASA Technical Reports Server (NTRS)

    Kuo, S. P.; Zhang, Y. S.; Ren, A.

    1990-01-01

    A chamber experiment is conducted to study the propagation of a high-power microwave pulse. The results show that the pulse is experiencing frequency up-shift while ionizing the background air if the initial carrier frequency of the pulse is higher than the electron plasma frequency at the incident boundary. Such a frequency autoconversion process may lead to reflectionless propagation of a high-power microwave pulse through the atmosphere.

  7. Electromagnetic energy and food processing.

    PubMed

    Mudgett, R

    1988-01-01

    The use of electromagnetic energy in food processing is reviewed with respect to food safety, nutritional quality, and organoleptic quality. The effects of nonionizing radiation sources such as microwave and radio-frequency energy and ionizing radiation sources, e.g. radioactive cobalt-60 and caesium-137, on the inactivation of microbes and nutrients are compared with those of conventional heating processes both in terms of their kinetic behavior and their mechanisms of interaction with foods. The kinetics of microwave and conventional thermal inactivation are considered for a generalized nth-order model based on time and temperature conditions. However, thermal inactivation effects are often modeled by 1st-order kinetics. Microbial and nutrient inactivation by ionizing sources are considered for a 1st-order model based on radiation dose. Both thermal and radiation resistance concepts are reviewed and some typical values of radiation resistance are given for sensitive vegetative bacterial cells, yeasts, and molds and for resistant bacterial spores and viruses. Nonionizing microwave energy sources are increasingly used in home and industrial food processing and are well-accepted by the American public. But, despite recent Food and Drug Administration approval of low and intermediate ionizing radiation dose levels for grains and other plants products and the fact that irradiated foods are sold in more than 20 countries of the world, public fears in the U.S. about nuclear energy may limit the role of ionizing radiation in food processing and preservation and may also limit the use of nuclear fuels as an alternate source of electrical energy.

  8. Microwave Imaging Radar Reflectometer System Utilizing Digital Beam Forming

    NASA Astrophysics Data System (ADS)

    Hu, Fengqi; Li, Meijiao; Domier, Calvin W.; Liu, Xiaoguang; Luhmann, Neville C., Jr.

    2016-10-01

    Microwave Imaging Reflectometry is a radar-like technique developed to measure the electron density fluctuations in fusion plasmas. Phased Antenna Arrays can serve as electronically controlled ``lenses'' that can generate the required wavefronts by phase shifting and amplitude scaling, which is being realized in the digital domain with higher flexibility and faster processing speed. In the transmitter, the resolution of the phase control is 1.4 degrees and the amplitude control is 0.5 dB/ step. A V-band double-sided, printed bow tie antenna which exhibits 49% bandwidth (46 - 76 GHz) is employed. The antenna is fed by a microstrip transmission line for easy impedance matching. The simple structure and the small antenna are suitable for low cost fabrication, easy circuit integration, and phased antenna array multi-frequency applications. In the receiver part, a sub-array of 32 channels with 200 mil spacing is used to collect the scattered reflected signal from one unit spot on the plasma cutoff surface. Pre-amplification is used to control the noise level of the system and wire bondable components are used to accommodate the small spacing between each channel. After down converting, base band signals are digitized and processed in an FPGA module. U.S. Department of Energy Grant No. DE-FG02-99ER54531.

  9. Upgrade to the control system of the reflectometry diagnostic of ASDEX upgrade

    NASA Astrophysics Data System (ADS)

    Graça, S.; Santos, J.; Manso, M. E.

    2004-10-01

    The broadband frequency modulation-continuous wave microwave/millimeter wave reflectometer of ASDEX upgrade tokamak (Institut für Plasma Physik (IPP), Garching, Germany) developed by Centro de Fusão Nuclear (Lisboa, Portugal) with the collaboration of IPP, is a complex system with 13 channels (O and X modes) and two types of operation modes (swept and fixed frequency). The control system that ensures remote operation of the diagnostic incorporates VME and CAMAC bus based acquisition/timing systems. Microprocessor input/output boards are used to control and monitor the microwave circuitry and associated electronic devices. The implementation of the control system is based on an object-oriented client/server model: a centralized server manages the hardware and receives input from remote clients. Communication is handled through transmission control protocol/internet protocol sockets. Here we describe recent upgrades of the control system aiming to: (i) accommodate new channels; (ii) adapt to the heterogeneity of computing platforms and operating systems; and (iii) overcome remote access restrictions. Platform and operating system independence was achieved by redesigning the graphical user interface in JAVA. As secure shell is the standard remote access protocol adopted in major fusion laboratories, secure shell tunneling was implemented to allow remote operation of the diagnostic through the existing firewalls.

  10. Techniques to Determine Maintenace Frequency of Permeable Pavement Systems with Time Domain Reflectometers (TDRs

    EPA Science Inventory

    As the surface clogs in permeable pavement systems, they lose effectiveness and require maintenance. There is limited direct guidance for determining when maintenance is needed to prevent surface runoff bypass. Research is being conducted using multiple time domain reflectomete...

  11. Application of Time Domain Reflectometers in Urban Settings

    EPA Science Inventory

    Time domain reflectometers (TDRs) are sensors that measure the volumetric water content of soils and porous media. The sensors consist of stainless steel rods connected to a circuit board in an epoxy housing. An electromagnetic pulse is propagated along the rods. The time, or per...

  12. Optimal design of reflectometer density profile measurements using a radar systems approach (invited) (abstract)

    NASA Astrophysics Data System (ADS)

    Doyle, E. J.; Kim, K. W.; Peebles, W. A.; Rhodes, T. L.

    1997-01-01

    Reflectometry is an attractive and versatile diagnostic technique that can address a wide range of measurement needs on fusion devices. However, progress in the area of profile measurement has been hampered by the lack of a well-understood basis for the optimum design and implementation of such systems. Such a design basis is provided by the realization that reflectometer systems utilized for density profile measurements are in fact specialized forms of radar systems. In this article five criteria are introduced by which reflectometer systems can be systematically designed for optimal performance: range resolution, spatial sampling, turbulence immunity, bandwidth optimization, and the need for adaptive data processing. Many of these criteria are familiar from radar systems analysis, and are applicable to reflectometry after allowance is made for differences stemming from the nature of the plasma target. These criteria are utilized to critically evaluate current reflectometer density profile techniques and indicate improvements that can impact current and next step devices, such as ITER.

  13. [Dynamics of morphological changes in the spinal cord following exposure to non-ionizing microwave radiation].

    PubMed

    Belokrinitskiĭ, V S

    1983-05-01

    The structure of different portions (cervical, thoracic, lumbar, sacral and coccygeal) of the spinal cord were studied in the experiments on 50 animals with the use of the Nissl, Zimmermann, Cajal and other methods on days 1, 10, 20 and 30 after exposure to non-ionizing microwave radiation (NMI). Single exposure to NMI (wave length 12.6 cm, intensity 400-500 mW/cm2) for one hour (cats) or four hours (dogs) produces a severe distress of glial neurones and cells, which is marked by the appearance of dystrophic processes along the entire spinal cord. The disease progresses, leading to abnormalities of motor and other physiological functions of the body.

  14. Attenuation characteristics of electromagnetic waves in a weak collisional and fully ionized dusty plasma

    NASA Astrophysics Data System (ADS)

    Dan, Li; Guo, Li-Xin; Li, Jiang-Ting; Chen, Wei; Yan, Xu; Huang, Qing-Qing

    2017-09-01

    The expression of complex dielectric permittivity for non-magnetized fully ionized dusty plasma is obtained based on the kinetic equation in the Fokker-Planck-Landau collision model and the charging equation of the statistical theory. The influences of density, average size of dust grains, and balanced charging of the charge number of dust particles on the attenuation properties of electromagnetic waves in fully ionized dusty plasma are investigated by calculating the attenuation constant. In addition, the attenuation characteristics of weakly ionized and fully ionized dusty plasmas are compared. Results enriched the physical mechanisms of microwave attenuation for fully ionized dusty plasma and provide a theoretical basis for future studies.

  15. Development of frequency modulation reflectometer for KSTAR tokamak: Data analysis based on Gaussian derivative waveleta)

    NASA Astrophysics Data System (ADS)

    Seo, Seong-Heon; Lee, K. D.

    2012-10-01

    A frequency modulation reflectometer has been developed to measure the density profile of the KSTAR tokamak. It has two channels operating in X-mode in the frequency range of Q band (33-50 GHz) and V band (50-75 GHz). The full band is swept in 20 μs. The mixer output is directly digitized at the sampling rate of 100 MSamples/s. A new phase detection algorithm is developed to analyze both amplitude and frequency modulated signal. The algorithm is benchmarked for a synthesized amplitude modulation-frequency modulation signal. This new algorithm is applied to the data analysis of KSTAR reflectometer.

  16. Application of Time Domain Reflectometers in Urban Settings

    EPA Science Inventory

    This is a poster for the Million Trees NYC research symposium in New York City, NY, March 5-6, 2010. The poster gives a summary of how time domain reflectometers can be installed in urban fill soil, engineered bioretention media, and recycled concrete aggregate to document the ...

  17. GaAs MMIC: recovery from upset by x-ray pulse

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Armendariz, M.G.; Castle, J.G. Jr.

    1986-01-01

    Tolerance for fast neutrons and total ionizing dose is a feature of GaAs microwave monolithic integrated circuits (MMIC). However, upset during an ionizing pulse is expected to occur and delayed recovery due to backgating may be a problem. The purpose of this study of an experimental MMIC design is to observe the recovery of oscillator power output following upset by a short ionizing pulse as a function of applied bias, dose per pulse and case temperature.

  18. Microwave experiments on Prairie View Rotamak

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhou, R. J.; Institute of Plasma Physics, Chinese Academy of Sciences, Hefei 230031; Xu, M.

    2015-05-15

    A 6 kW/2.45 GHz microwave system has been added on Prairie View Rotamak, and a series of experiments with microwave heating in both O-mode and X-mode configurations have been performed. Effective ionization of hydrogen in the two configurations is observed when filling pressure of the hydrogen gas is under p{sub f}=0.1 Pa. Clear oscillations in plasma current I{sub p} and magnetic field B{sub R} are excited when microwaves are injected into plasma in the X-mode configuration. The higher the injected microwave power, the sooner the emergence of the magnetic oscillations in B{sub R}, which implies the microwave may have decreased the elongationmore » of the plasma. In the experiments, the efficiency of the current drive mechanism due to the injected microwave is about 0.2 kA/kW.« less

  19. High Resolution Millimeter Wave Inspecting of the Orbiter Acreage Heat Tiles of the Space Shuttle

    NASA Technical Reports Server (NTRS)

    Case, J. T.; Khakovsky, S.; Zoughi, r.; Hepburn, F.

    2007-01-01

    Presence of defects such as disbonds, delaminations, impact damage, in thermal protection systems can significantly reduce safety of the Space Shuttle and its crew. The physical cause of Space Shuttle Columbia's catastrophic failure was a breach in its thermal protection system, caused by a piece of external tank insulating foam separating from the external tank and striking the leading edge of the left wing of the orbiter. There is an urgent need for a rapid, robust and life-circle oriented nondestructive testing (NDT) technique capable of inspecting the external tank insulating foam as well as the orbiter's protective (acreage) heat tiles and its fuselage prior and subsequent to a launch. Such a comprehensive inspection technique enables NASA to perform life-cycle inspection on critical components of the orbiter and its supporting hardware. Consequently, NASA Marshall Space Flight Center initiated an investigation into several potentially viable NDT techniques for this purpose. Microwave and millimeter wave NDT methods have shown great potential to achieve these goals. These methods have been successfully used to produce images of the interior of various complex, thick and thin external tank insulating foam structures for real focused reflectometer at operating frequency from 50-100 GHz and for synthetic aperture techniques at Ku-band (12-18 GHz) and K-band (18-26 GHz). Preliminary results of inspecting heat tile specimens show that increasing resolution of the measurement system is an important issue. This paper presents recent results of an investigation for the purpose of detecting anomalies such as debonds and corrosion in metal substrate in complex multi-sectioned protective heat tile specimens using a real focused 150 GHz (D-band) reflectometer and wide-band millimeter wave holography at 33-50, GHz (Q-band).

  20. Quasi-steady carbon plasma source for neutral beam injector

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Koguchi, H., E-mail: h-koguchi@aist.go.jp; Sakakita, H.; Kiyama, S.

    2014-02-15

    Carbon plasma is successfully sustained during 1000 s without any carrier gas in the bucket type ionization chamber with cusp magnetic field. Every several seconds, seed plasmas having ∼3 ms duration time are injected into the ionization chamber by a shunting arch plasma gun. The weakly ionized carbon plasma ejected from the shunting arch is also ionized by 2.45 GHz microwave at the electron cyclotron resonance surface and the plasma can be sustained even in the interval of gun discharges. Control of the gun discharge interval allows to keep high pressure and to sustain the plasma for long duration.

  1. Quasi-steady carbon plasma source for neutral beam injector.

    PubMed

    Koguchi, H; Sakakita, H; Kiyama, S; Shimada, T; Sato, Y; Hirano, Y

    2014-02-01

    Carbon plasma is successfully sustained during 1000 s without any carrier gas in the bucket type ionization chamber with cusp magnetic field. Every several seconds, seed plasmas having ∼3 ms duration time are injected into the ionization chamber by a shunting arch plasma gun. The weakly ionized carbon plasma ejected from the shunting arch is also ionized by 2.45 GHz microwave at the electron cyclotron resonance surface and the plasma can be sustained even in the interval of gun discharges. Control of the gun discharge interval allows to keep high pressure and to sustain the plasma for long duration.

  2. Plasma channel created by ionization of gas by a surface wave

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Konovalov, V. N.; Kuz’min, G. P.; Minaev, I. M., E-mail: minaev1945@mail.ru

    2015-09-15

    Conditions for gas ionization in the field of a slow surface wave excited by a microwave source are considered. The gas ionization rate and the plasma density distribution over the radius of the discharge tube were studied by the optical method. The experiments were conducted in a dielectric tube with a radius much smaller than the tube length, the gas pressure being ∼1–3 Torr. It is shown that the stationary distribution of the plasma density is determined by diffusion processes.

  3. Pulsed discharges produced by high-power surface waves

    NASA Astrophysics Data System (ADS)

    Böhle, A.; Ivanov, O.; Kolisko, A.; Kortshagen, U.; Schlüter, H.; Vikharev, A.

    1996-02-01

    The mechanisms of the ionization front advance in surface-wave-produced discharges are investigated using two experimental set-ups. The high-power surface waves are excited in a 3 cm wavelength band by a surfaguide and a novel type of launcher (an E-plane junction). The ionization front velocity of the surface wave is measured for a wide range of gas pressures, incident microwave power and initial pre-ionization. The experimental results are compared with theoretical ones based on three different models. The comparison between theory and experiment allows one to suggest a new interpretation of the ionization front's advance. The ionization front velocity is determined by a breakdown wave or an ionization wave in the electric field of a high-power surface wave in the zone near the ionization front.

  4. Development of Surfaces Optically Suitable for Flat Solar Panels. [using a reflectometer which separately evaluates spectral and diffuse reflectivities of surfaces

    NASA Technical Reports Server (NTRS)

    1979-01-01

    A reflectometer which can separately evaluate the spectral and diffuse reflectivities of surfaces is described. A phase locked detection system for the reflectometer is also described. A selective coating on aluminum potentially useful for flat plate solar collector applications is presented. The coating is composed of strongly bound copper oxide (divalent) and is formed by an etching process performed on an aluminum alloy with high copper content. Fabrication costs are expected to be small due to the one stop fabrication process. A number of conclusions gathered from the literature as to the required optical properties of flat plate solar collectors are discussed.

  5. Localized microwave pulsed plasmas for ignition and flame front enhancement

    NASA Astrophysics Data System (ADS)

    Michael, James Bennett

    Modern combustor technologies require the ability to match operational parameters to rapidly changing demands. Challenges include variable power output requirements, variations in air and fuel streams, the requirement for rapid and well-controlled ignition, and the need for reliability at low fuel mixture fractions. Work on subcritical microwave coupling to flames and to weakly ionized laser-generated plasmas has been undertaken to investigate the potential for pulsed microwaves to allow rapid combustion control, volumetric ignition, and leaner combustion. Two strategies are investigated. First, subcritical microwaves are coupled to femtosecond laser-generated ionization to ignite methane/air mixtures in a quasi-volumetric fashion. Total energy levels are comparable to the total minimum ignition energies for laser and spark discharges, but the combined strategy allows a 90 percent reduction in the required laser energy. In addition, well-defined multi-dimensional ignition patterns are designated with multiple laser passes. Second, microwave pulse coupling to laminar flame fronts is achieved through interaction with chemiionization-produced electrons in the reaction zone. This energy deposition remains well-localized for a single microwave pulse, resulting in rapid temperature rises of greater than 200 K and maintaining flame propagation in extremely lean methane/air mixtures. The lean flammability limit in methane/air mixtures with microwave coupling has been decreased from an equivalence ratio 0.6 to 0.3. Additionally, a diagnostic technique for laser tagging of nitrogen for velocity measurements is presented. The femtosecond laser electronic excitation tagging (FLEET) technique utilizes a 120 fs laser to dissociate nitrogen along a laser line. The relatively long-lived emission from recombining nitrogen atoms is imaged with a delayed and fast-gated camera to measure instantaneous velocities. The emission strength and lifetime in air and pure nitrogen allow instantaneous velocity measurements. FLEET is shown to perform in high temperature and reactive mixtures.

  6. A novel technique for real-time estimation of edge pedestal density gradients via reflectometer time delay data

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zeng, L., E-mail: zeng@fusion.gat.com; Doyle, E. J.; Rhodes, T. L.

    2016-11-15

    A new model-based technique for fast estimation of the pedestal electron density gradient has been developed. The technique uses ordinary mode polarization profile reflectometer time delay data and does not require direct profile inversion. Because of its simple data processing, the technique can be readily implemented via a Field-Programmable Gate Array, so as to provide a real-time density gradient estimate, suitable for use in plasma control systems such as envisioned for ITER, and possibly for DIII-D and Experimental Advanced Superconducting Tokamak. The method is based on a simple edge plasma model with a linear pedestal density gradient and low scrape-off-layermore » density. By measuring reflectometer time delays for three adjacent frequencies, the pedestal density gradient can be estimated analytically via the new approach. Using existing DIII-D profile reflectometer data, the estimated density gradients obtained from the new technique are found to be in good agreement with the actual density gradients for a number of dynamic DIII-D plasma conditions.« less

  7. Method and apparatus utilizing ionizing and microwave radiation for saturation determination of water, oil and a gas in a core sample

    DOEpatents

    Maerefat, Nicida L.; Parmeswar, Ravi; Brinkmeyer, Alan D.; Honarpour, Mehdi

    1994-01-01

    A system for determining the relative permeabilities of gas, water and oil in a core sample has a microwave emitter/detector subsystem and an X-ray emitter/detector subsystem. A core holder positions the core sample between microwave absorbers which prevent diffracted microwaves from reaching a microwave detector where they would reduce the signal-to-noise ratio of the microwave measurements. The microwave emitter/detector subsystem and the X-ray emitter/detector subsystem each have linear calibration characteristics, allowing one subsystem to be calibrated with respect to the other subsystem. The dynamic range of microwave measurements is extended through the use of adjustable attenuators. This also facilitates the use of core samples with wide diameters. The stratification characteristics of the fluids may be observed with a windowed cell separator at the outlet of the core sample. The condensation of heavy hydrocarbon gas and the dynamic characteristics of the fluids are observed with a sight glass at the outlet of the core sample.

  8. Modeling of plasma chemical processes in the artificial ionized layer in the upper atmosphere by the nanosecond corona discharge

    NASA Astrophysics Data System (ADS)

    Vikharev, A. L.; Gorbachev, A. M.; Ivanov, O. A.; Kolisko, A. L.; Litvak, A. G.

    1993-08-01

    The plasma chemical processes in the corona discharge formed in air by a series of high voltage pulses of nanosecond duration are investigated experimentally. The experimental conditions (reduced electric field, duration and repetition frequency of the pulses, gas pressure in the chamber) modeled the regime of creation of the artificial ionized layer (AIL) in the upper atmosphere by a nanosecond microwave discharge. It was found that in a nanosecond microwave discharge predominantly generation of ozone occurs, and that the production of nitrogen dioxide is not large. The energy expenditures for the generation of one O 3 molecule were about 15 eV. On the basis of the experimental results the prognosis of the efficiency of ozone generation in AIL was made.

  9. MERITXELL: The Multifrequency Experimental Radiometer with Interference Tracking for Experiments over Land and Littoral-Instrument Description, Calibration and Performance.

    PubMed

    Querol, Jorge; Tarongí, José Miguel; Forte, Giuseppe; Gómez, José Javier; Camps, Adriano

    2017-05-10

    MERITXELL is a ground-based multisensor instrument that includes a multiband dual-polarization radiometer, a GNSS reflectometer, and several optical sensors. Its main goals are twofold: to test data fusion techniques, and to develop Radio-Frequency Interference (RFI) detection, localization and mitigation techniques. The former is necessary to retrieve complementary data useful to develop geophysical models with improved accuracy, whereas the latter aims at solving one of the most important problems of microwave radiometry. This paper describes the hardware design, the instrument control architecture, the calibration of the radiometer, and several captures of RFI signals taken with MERITXELL in urban environment. The multiband radiometer has a dual linear polarization total-power radiometer topology, and it covers the L-, S-, C-, X-, K-, Ka-, and W-band. Its back-end stage is based on a spectrum analyzer structure which allows to perform real-time signal processing, while the rest of the sensors are controlled by a host computer where the off-line processing takes place. The calibration of the radiometer is performed using the hot-cold load procedure, together with the tipping curves technique in the case of the five upper frequency bands. Finally, some captures of RFI signals are shown for most of the radiometric bands under analysis, which evidence the problem of RFI in microwave radiometry, and the limitations they impose in external calibration.

  10. Mechanical Design, Simulation, and Testing of Self-Aligning Gaussian Telescope and Stand for ITER LFS Reflectometer Diagnostic

    NASA Astrophysics Data System (ADS)

    Broughton, Rachel; Gomez, Michael; Zolfaghari, Ali; Morris, Lewis

    2016-10-01

    A self-aligning Gaussian telescope has been designed to compensate for the effect of movement in the ITER vacuum vessel on the transmission line. The purpose of the setup is to couple microwaves into and out of the vessel across the vacuum windows while allowing for both slow movements of the vessel, due to thermal growth, and rapid movements, due to vibrations and disruptions. Additionally, a test stand has been designed specifically to hold this telescope in order to imitate these movements. Consequently, this will allow for the assessment of the efficacy in applying the self-aligning Gaussian telescope approach. The motions of the test stand, as well as the stress on the telescope mechanism, have been virtually simulated using ANSYS workbench. A prototype of this test stand and self-aligning telescope will be built using a combination of custom machined parts and ordered parts. The completed mechanism will be tested at the lab in four different ways: slow single- and multi-direction movements, rapid multi-direction movement, functional laser alignment and self-aligning tests, and natural frequency tests. Once the prototype successfully passes all requirements, it will be tested with microwaves in the LFSR transmission line test stand at General Atomics. This work is supported by US DOE Contract No. DE-AC02-09CH11466.

  11. MERITXELL: The Multifrequency Experimental Radiometer with Interference Tracking for Experiments over Land and Littoral—Instrument Description, Calibration and Performance

    PubMed Central

    Querol, Jorge; Tarongí, José Miguel; Forte, Giuseppe; Gómez, José Javier; Camps, Adriano

    2017-01-01

    MERITXELL is a ground-based multisensor instrument that includes a multiband dual-polarization radiometer, a GNSS reflectometer, and several optical sensors. Its main goals are twofold: to test data fusion techniques, and to develop Radio-Frequency Interference (RFI) detection, localization and mitigation techniques. The former is necessary to retrieve complementary data useful to develop geophysical models with improved accuracy, whereas the latter aims at solving one of the most important problems of microwave radiometry. This paper describes the hardware design, the instrument control architecture, the calibration of the radiometer, and several captures of RFI signals taken with MERITXELL in urban environment. The multiband radiometer has a dual linear polarization total-power radiometer topology, and it covers the L-, S-, C-, X-, K-, Ka-, and W-band. Its back-end stage is based on a spectrum analyzer structure which allows to perform real-time signal processing, while the rest of the sensors are controlled by a host computer where the off-line processing takes place. The calibration of the radiometer is performed using the hot-cold load procedure, together with the tipping curves technique in the case of the five upper frequency bands. Finally, some captures of RFI signals are shown for most of the radiometric bands under analysis, which evidence the problem of RFI in microwave radiometry, and the limitations they impose in external calibration. PMID:28489056

  12. Method and apparatus utilizing ionizing and microwave radiation for saturation determination of water, oil and a gas in a core sample

    DOEpatents

    Maerefat, N.L.; Parmeswar, R.; Brinkmeyer, A.D.; Honarpour, M.

    1994-08-23

    A system is described for determining the relative permeabilities of gas, water and oil in a core sample has a microwave emitter/detector subsystem and an X-ray emitter/detector subsystem. A core holder positions the core sample between microwave absorbers which prevent diffracted microwaves from reaching a microwave detector where they would reduce the signal-to-noise ratio of the microwave measurements. The microwave emitter/detector subsystem and the X-ray emitter/detector subsystem each have linear calibration characteristics, allowing one subsystem to be calibrated with respect to the other subsystem. The dynamic range of microwave measurements is extended through the use of adjustable attenuators. This also facilitates the use of core samples with wide diameters. The stratification characteristics of the fluids may be observed with a windowed cell separator at the outlet of the core sample. The condensation of heavy hydrocarbon gas and the dynamic characteristics of the fluids are observed with a sight glass at the outlet of the core sample. 11 figs.

  13. Study of ion-gyroscale fluctuations in low-density L-mode plasmas heated by NBI on KSTAR

    NASA Astrophysics Data System (ADS)

    Lee, W.; Ko, S. H.; Leem, J.; Yun, G. S.; Park, H. K.; Wang, W. X.; Budny, R. V.; Kim, K. W.; Luhmann, N. C., Jr.; The KSTAR Team

    2018-04-01

    Broadband density fluctuations with peak frequency ranging from 150 to 400 kHz were measured using a multichannel microwave imaging reflectometer in core region of the low-density L-mode plasmas heated by neutral beam injection on KSTAR. These fluctuations have been studied by comparing the dominant mode scales estimated from the measurement with those predicted from linear gyrokinetic simulation. The measured poloidal wavenumbers are qualitatively comparable to those of the ‘fastest growing modes’ from simulations, whereas they are larger than those of the ‘transport-dominant modes’ by about a factor of three. The agreement on wavenumbers between the measurement and linear simulation (for the fastest growing modes) is probably due to sufficiently weak E × B flow shear compared to the maximum linear growth rate. Meanwhile, the transport-dominant modes seem to be related to the fluctuations in lower frequencies (˜80-150 kHz) observed in some of the measurement.

  14. Progress in the Design and Development of the ITER Low-Field Side Reflectometer (LFSR) System

    NASA Astrophysics Data System (ADS)

    Doyle, E. J.; Wang, G.; Peebles, W. A.; US LFSR Team

    2015-11-01

    The US has formed a team, comprised of personnel from PPPL, ORNL, GA and UCLA, to develop the LFSR system for ITER. The LFSR system will contribute to the measurement of a number of plasma parameters on ITER, including edge plasma electron density profiles, monitor Edge Localized Modes (ELMs) and L-H transitions, and provide physics measurements relating to high frequency instabilities, plasma flows, and other density transients. An overview of the status of design activities and component testing for the system will be presented. Since the 2011 conceptual design review, the number of microwave transmission lines (TLs) and antennas has been reduced from twelve (12) to seven (7) due to space constraint in the ITER Tokamak Port Plug. This change has required a reconfiguration and recalculation of the performance of the front-end antenna design, which now includes use of monostatic transmission lines and antennas. Work supported by US ITER/PPPL Subcontracts S013252-C and S012340, and PO 4500051400 from GA to UCLA.

  15. Microwave Argon Plasma Torch

    DTIC Science & Technology

    2013-07-01

    31st ICPIG, July 14-19, 2013, Granada , Spain Microwave Argon plasma torch E. Benova1, M. Pencheva-Atanasova1,2, P. Marinova1, V. Marchev1, T...See also ADA594770. International Conference on Phenomena in Ionized Gases (31st) (ICPIG) Held in Granada , Spain on 14-19 July 2013, The original...18 31st ICPIG, July 14-19, 2013, Granada , Spain EEDF usually strongly differs from Maxwellian and chages along the plasma column (this is

  16. Efficient pre-ionization by direct X-B mode conversion in VEST

    NASA Astrophysics Data System (ADS)

    Jo, JongGab; Lee, H. Y.; Kim, S. C.; Kim, S. H.; An, Y. H.; Hwang, Y. S.

    2017-01-01

    Pre-ionization experiments with pure toroidal field have been carried out in VEST (Versatile Experiment Spherical Torus) to investigate the feasibility of direct XB mode conversion from perpendicular LFS (Low Field Side) injection for efficient pre-ionization. Pre-ionization plasmas are studied by measuring the electron density and temperature profiles with respect to microwave power and toroidal field strength, and 2D full wave cold plasma simulation using the COMSOL Multiphysics is performed for the comparison. It is experimentally figured out that exceeding the threshold microwave power (>3 kW), the parametric decay and localized collisional heating is observed near the UHR (Upper Hybrid Resonance), and the efficient XB mode conversion can be achieved in both short density scale length (Ln) and magnetic scale length (LB) region positioned at outboard and inboard sides, respectively. From the 2D full wave simulations, the reflection and tunneling of X-wave near the R-cutoff layer according to the measured electron density profiles are analyzed with electric field polarization and power flow. Threshold electric field and wave power density for parametric decay are evaluated at least more than 4.8 × 104 V/m and 100 W/cm2, respectively. This study shows that efficient pre-ionization schemes using direct XB mode conversion can be realized by considering the key factors such as Ln, LB, and transmitted wave power at the UHR. Application to Ohmic start-up experiment is carried out to confirm the effect of the pre-ionization schemes on tokamak plasma start-up in VEST.

  17. Full-time response of starch subjected to microwave heating.

    PubMed

    Fan, Daming; Wang, Liyun; Zhang, Nana; Xiong, Lei; Huang, Luelue; Zhao, Jianxin; Wang, Mingfu; Zhang, Hao

    2017-06-21

    The effect of non-ionizing microwave radiation on starch is due to a gelatinization temperature range that changes starch structure and properties. However, the changes in starch upon microwave heating are observable throughout the heating process. We compared the effects on starch heating by microwaves to the effects by rapid and regular conventional heating. Our results show that microwave heating promotes the rapid rearrangement of starch molecules at low temperatures; starch showed a stable dielectric response and a high dielectric constant. Microwave heating changed the Cole-Cole curve and the polarization of starch suspension at low temperatures. A marked transition at 2.45 GHz resulted in a double-polarization phenomenon. At temperatures below gelatinization, microwave-induced dielectric rearrangement and changes in the polarization characteristics of starch suspensions reduced the absorption properties; at temperatures above gelatinization, these characteristics became consistent with conventional heating. Throughout the heating process, microwaves change the electrical response and polarization characteristics of the starch at low temperatures, but on the macro level, there is no enhancement of the material's microwave absorption properties. In contrast, with the warming process, the starch exhibited a "blocking effect", and the absorption properties of the starch quickly returned to the level observed in conductive heating after gelatinization.

  18. Self-consistent evolution of plasma discharge and electromagnetic fields in a microwave pulse compressor

    NASA Astrophysics Data System (ADS)

    Shlapakovski, A. S.; Beilin, L.; Hadas, Y.; Schamiloglu, E.; Krasik, Ya. E.

    2015-07-01

    Nanosecond-scale evolution of plasma and RF electromagnetic fields during the release of energy from a microwave pulse compressor with a plasma interference switch was investigated numerically using the code MAGIC. The plasma was simulated in the scope of the gas conductivity model in MAGIC. The compressor embodied an S-band cavity and H-plane waveguide tee with a shorted side arm filled with pressurized gas. In a simplified approach, the gas discharge was initiated by setting an external ionization rate in a layer crossing the side arm waveguide in the location of the electric field antinode. It was found that with increasing ionization rate, the microwave energy absorbed by the plasma in the first few nanoseconds increases, but the absorption for the whole duration of energy release, on the contrary, decreases. In a hybrid approach modeling laser ignition of the discharge, seed electrons were set around the electric field antinode. In this case, the plasma extends along the field forming a filament and the plasma density increases up to the level at which the electric field within the plasma decreases due to the skin effect. Then, the avalanche rate decreases but the density still rises until the microwave energy release begins and the electric field becomes insufficient to support the avalanche process. The extraction of the microwave pulse limits its own power by terminating the rise of the plasma density and filament length. For efficient extraction, a sufficiently long filament of dense plasma must have sufficient time to be formed.

  19. Novel analysis technique for measuring edge density fluctuation profiles with reflectometry in the Large Helical Device.

    PubMed

    Creely, A J; Ida, K; Yoshinuma, M; Tokuzawa, T; Tsujimura, T; Akiyama, T; Sakamoto, R; Emoto, M; Tanaka, K; Michael, C A

    2017-07-01

    A new method for measuring density fluctuation profiles near the edge of plasmas in the Large Helical Device (LHD) has been developed utilizing reflectometry combined with pellet-induced fast density scans. Reflectometer cutoff location was calculated by proportionally scaling the cutoff location calculated with fast far infrared laser interferometer (FIR) density profiles to match the slower time resolution results of the ray-tracing code LHD-GAUSS. Plasma velocity profile peaks generated with this reflectometer mapping were checked against velocity measurements made with charge exchange spectroscopy (CXS) and were found to agree within experimental uncertainty once diagnostic differences were accounted for. Measured density fluctuation profiles were found to peak strongly near the edge of the plasma, as is the case in most tokamaks. These measurements can be used in the future to inform inversion methods of phase contrast imaging (PCI) measurements. This result was confirmed with both a fixed frequency reflectometer and calibrated data from a multi-frequency comb reflectometer, and this method was applied successfully to a series of discharges. The full width at half maximum of the turbulence layer near the edge of the plasma was found to be only 1.5-3 cm on a series of LHD discharges, less than 5% of the normalized minor radius.

  20. Novel analysis technique for measuring edge density fluctuation profiles with reflectometry in the Large Helical Device

    NASA Astrophysics Data System (ADS)

    Creely, A. J.; Ida, K.; Yoshinuma, M.; Tokuzawa, T.; Tsujimura, T.; Akiyama, T.; Sakamoto, R.; Emoto, M.; Tanaka, K.; Michael, C. A.

    2017-07-01

    A new method for measuring density fluctuation profiles near the edge of plasmas in the Large Helical Device (LHD) has been developed utilizing reflectometry combined with pellet-induced fast density scans. Reflectometer cutoff location was calculated by proportionally scaling the cutoff location calculated with fast far infrared laser interferometer (FIR) density profiles to match the slower time resolution results of the ray-tracing code LHD-GAUSS. Plasma velocity profile peaks generated with this reflectometer mapping were checked against velocity measurements made with charge exchange spectroscopy (CXS) and were found to agree within experimental uncertainty once diagnostic differences were accounted for. Measured density fluctuation profiles were found to peak strongly near the edge of the plasma, as is the case in most tokamaks. These measurements can be used in the future to inform inversion methods of phase contrast imaging (PCI) measurements. This result was confirmed with both a fixed frequency reflectometer and calibrated data from a multi-frequency comb reflectometer, and this method was applied successfully to a series of discharges. The full width at half maximum of the turbulence layer near the edge of the plasma was found to be only 1.5-3 cm on a series of LHD discharges, less than 5% of the normalized minor radius.

  1. Optical Measurements of Air Plasma

    DTIC Science & Technology

    2008-05-05

    beam impact ionization of air was studied in the context of optical diagnostics . The electron beam originates in a pulsed 100 keV 20-mA source and...range of 636 Torr to 1 mTorr with pulse durations from 1 ms to 10 ms. Microwave diagnostics were used to quantify electron density and power; and an...optical diagnostic was used to quantify ozone production. An additional effort to quantify byproducts of electron impact ionization, that are

  2. Electron impact ionization of plasma important SiClX (X = 1-4) molecules: theoretical cross sections

    NASA Astrophysics Data System (ADS)

    Kothari, Harshit N.; Pandya, Siddharth H.; Joshipura, K. N.

    2011-06-01

    Electron impact ionization of SiClX (X = 1-4) molecules is less studied but an important process for understanding and modelling the interactions of silicon-chlorine plasmas with different materials. The SiCl3 radical is a major chloro-silicon species involved in the CVD (chemical vapour deposition) of silicon films from SiCl4/Ar microwave plasmas. We report in this paper the total ionization cross sections for electron collisions on these silicon compounds at incident energies from the ionization threshold to 2000 eV. We employ the 'complex scattering potential-ionization contribution' method and identify the relative importance of various channels, with ionization included in the cumulative inelastic scattering. New results are also presented on these exotic molecular targets. This work is significant in view of the paucity of theoretical studies on the radicals SiClX (X = 1-3) and on SiCl4.

  3. Low Energy Electrons in the Mars Plasma Environment

    NASA Technical Reports Server (NTRS)

    Link, Richard

    2001-01-01

    The ionosphere of Mars is rather poorly understood. The only direct measurements were performed by the Viking 1 and 2 landers in 1976, both of which carried a Retarding Potential Analyzer. The RPA was designed to measure ion properties during the descent, although electron fluxes were estimated from changes in the ion currents. Using these derived low-energy electron fluxes, Mantas and Hanson studied the photoelectron and the solar wind electron interactions with the atmosphere and ionosphere of Mars. Unanswered questions remain regarding the origin of the low-energy electron fluxes in the vicinity of the Mars plasma boundary. Crider, in an analysis of Mars Global Surveyor Magnetometer/Electron Reflectometer measurements, has attributed the formation of the magnetic pile-up boundary to electron impact ionization of exospheric neutral species by solar wind electrons. However, the role of photoelectrons escaping from the lower ionosphere was not determined. In the proposed work, we will examine the role of solar wind and ionospheric photoelectrons in producing ionization in the upper ionosphere of Mars. Low-energy (< 4 keV) electrons will be modeled using the two-stream electron transport code of Link. The code models both external (solar wind) and internal (photoelectron) sources of ionization, and accounts for Auger electron production. The code will be used to analyze Mars Global Surveyor measurements of solar wind and photoelectrons down to altitudes below 200 km in the Mars ionosphere, in order to determine the relative roles of solar wind and escaping photoelectrons in maintaining plasma densities in the region of the Mars plasma boundary.

  4. Lightning control system using high power microwave FEL

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Shiho, M.; Watanbe, A.; Kawasaki, S.

    A research project for developing a thunder lightning control system using an induction linac based high power microwave free electron laser (FEL) started at JAERI The system will produce weakly ionized plasma rod in the atmosphere by high power microwaves and control a lightning path, away from , e. g., nuclear power stations and rocket launchers. It has been known that about MW/cm{sup 2} power density is enough for the atmospheric breakdown in the microwave region, and which means high power microwave FEL with GW level output power is feasible for atmospheric breakdown, and accordingly is feasible for thunder lightningmore » control tool with making a conductive plasma channel in the atmosphere. From the microwave attenuation consideration in the atmosphere, FEL of 35GHz(0.13dB/km), 90GHz(0.35dB/km), 140GHz(1.7dB/km), and of 270 GHz(4.5dB/km) are the best candidates for the system. Comparing with other proposed lightning control system using visible or ultraviolet laser, the system using microwave has an advantage that microwave suffers smaller attenuation by rain or snow which always exist in the real atmospheric circumstances when lightning occurs.« less

  5. New diagnostic methods for laser plasma- and microwave-enhanced combustion

    PubMed Central

    Miles, Richard B; Michael, James B; Limbach, Christopher M; McGuire, Sean D; Chng, Tat Loon; Edwards, Matthew R; DeLuca, Nicholas J; Shneider, Mikhail N; Dogariu, Arthur

    2015-01-01

    The study of pulsed laser- and microwave-induced plasma interactions with atmospheric and higher pressure combusting gases requires rapid diagnostic methods that are capable of determining the mechanisms by which these interactions are taking place. New rapid diagnostics are presented here extending the capabilities of Rayleigh and Thomson scattering and resonance-enhanced multi-photon ionization (REMPI) detection and introducing femtosecond laser-induced velocity and temperature profile imaging. Spectrally filtered Rayleigh scattering provides a method for the planar imaging of temperature fields for constant pressure interactions and line imaging of velocity, temperature and density profiles. Depolarization of Rayleigh scattering provides a measure of the dissociation fraction, and multi-wavelength line imaging enables the separation of Thomson scattering from Rayleigh scattering. Radar REMPI takes advantage of high-frequency microwave scattering from the region of laser-selected species ionization to extend REMPI to atmospheric pressures and implement it as a stand-off detection method for atomic and molecular species in combusting environments. Femtosecond laser electronic excitation tagging (FLEET) generates highly excited molecular species and dissociation through the focal zone of the laser. The prompt fluorescence from excited molecular species yields temperature profiles, and the delayed fluorescence from recombining atomic fragments yields velocity profiles. PMID:26170432

  6. Coal-shale interface detection system

    NASA Technical Reports Server (NTRS)

    Campbell, R. A.; Hudgins, J. L.; Morris, P. W.; Reid, H., Jr.; Zimmerman, J. E. (Inventor)

    1979-01-01

    A coal-shale interface detection system for use with coal cutting equipment consists of a reciprocating hammer on which an accelerometer is mounted to measure the impact of the hammer as it penetrates the ceiling or floor surface of a mine. A pair of reflectometers simultaneously view the same surface. The outputs of the accelerometer and reflectometers are detected and jointly registered to determine when an interface between coal and shale is being cut through.

  7. Coal-shale interface detector

    NASA Technical Reports Server (NTRS)

    Reid, H., Jr. (Inventor)

    1980-01-01

    A coal-shale interface detector for use with coal cutting equipment is described. The detector consists of a reciprocating hammer with an accelerometer to measure the impact of the hammer as it penetrates the ceiling or floor surface of a mine. Additionally, a pair of reflectometers simultaneously view the same surface, and the outputs from the accelerometer and reflectometers are detected and jointly registered to determine when an interface between coal and shale is being cut through.

  8. Study of coherent reflectometer for imaging internal structures of highly scattering media

    NASA Astrophysics Data System (ADS)

    Poupardin, Mathieu; Dolfi, Agnes

    1996-01-01

    Optical reflectometers are potentially useful tools for imaging internal structures of turbid media, particularly of biological media. To get a point by point image, an active imaging system has to distinguish light scattered from a sample volume and light scattered by other locations in the media. Operating this discrimination of light with reflectometers based on coherence can be realized in two ways: assuring a geometric selection or a temporal selection. In this paper we present both methods, showing in each case the influence of the different parameters on the size of the sample volume under the assumption of single scattering. We also study the influence on the detection efficiency of the coherence loss of the incident light resulting from multiple scattering. We adapt a model, first developed for atmospheric lidar in turbulent atmosphere, to get an analytical expression of this detection efficiency in the function of the optical coefficients of the media.

  9. Preliminary Work for Identifying and Tracking Combustion Reaction Pathways by Coherent Microwave Mapping of Photoelectrons

    DTIC Science & Technology

    2016-06-24

    wall Radar technique has been built and preliminary results of pyrolysis of iso-butane have been obtained. Qualitative measurements of ethylene in...The (2+1) REMPI ionizations of ethylene (C2H4, 11B3u(π,3p) Rydberg manifold) was selectively induced at 310─325nm. The ethylene was detectable at...quantitative measurements of ethylene as one of the pyrolysis products by using coherent microwave Rayleigh scattering (Radar) from Resonant Enhanced Multi

  10. Risk Analysis for Nonthermal process interventions

    USDA-ARS?s Scientific Manuscript database

    Over the last few years a number of nonthermal process interventions including ionizing radiation and ultraviolet light, high pressure processing, pulsed-electric and radiofrequency electric fields, microwave and infrared technologies, bacteriophages, etc. have been approved by regulatory agencies, ...

  11. Experimental and theoretical investigation for the suppression of the plasma arc drop in the thermionic converter

    NASA Technical Reports Server (NTRS)

    Shaw, D. T.; Manikopoulos, C. N.; Chang, T.; Lee, C. H.; Chiu, N.

    1977-01-01

    Ion generation and recombination mechanisms in the cesium plasma as they pertain to the advanced mode thermionic energy converter were studied. The decay of highly ionized cesium plasma was studied in the near afterglow to examine the recombination processes. Very low recombination in such a plasma may prove to be of considerable importance in practical converters. The approaches of external cesium generation were vibrationally excited nitrogen as an energy source of ionization of cesium ion, and microwave power as a means of resonant sustenance of the cesium plasma. Experimental data obtained so far show that all three techniques - i.e., the non-LTE high-voltage pulsing, the energy transfer from vibrationally excited diatomic gases, and the external pumping with a microwave resonant cavity - can produce plasmas with their densities significantly higher than the Richardson density. The implication of these findings as related to Lam's theory is discussed.

  12. Digital communication with Rydberg atoms and amplitude-modulated microwave fields

    NASA Astrophysics Data System (ADS)

    Meyer, David H.; Cox, Kevin C.; Fatemi, Fredrik K.; Kunz, Paul D.

    2018-05-01

    Rydberg atoms, with one highly excited, nearly ionized electron, have extreme sensitivity to electric fields, including microwave fields ranging from 100 MHz to over 1 THz. Here, we show that room-temperature Rydberg atoms can be used as sensitive, high bandwidth, microwave communication antennas. We demonstrate near photon-shot-noise limited readout of data encoded in amplitude-modulated 17 GHz microwaves, using an electromagnetically induced-transparency (EIT) probing scheme. We measure a photon-shot-noise limited channel capacity of up to 8.2 Mbit s-1 and implement an 8-state phase-shift-keying digital communication protocol. The bandwidth of the EIT probing scheme is found to be limited by the available coupling laser power and the natural linewidth of the rubidium D2 transition. We discuss how atomic communication receivers offer several opportunities to surpass the capabilities of classical antennas.

  13. Automated data acquisition and processing for a Hohlraum reflectometer

    NASA Technical Reports Server (NTRS)

    Difilippo, Frank; Mirtich, Michael J.

    1988-01-01

    A computer and data acquisition board were used to automate a Perkin-Elmer Model 13 spectrophotometer with a Hohlraum reflectivity attachment. Additional electronic circuitry was necessary for amplification, filtering, and debouncing. The computer was programmed to calculate spectral emittance from 1.7 to 14.7 micrometers and also total emittance versus temperature. Automation of the Hohlraum reflectometer reduced the time required to determine total emittance versus temperature from about three hours to about 40 minutes.

  14. Coal-shale interface detection

    NASA Technical Reports Server (NTRS)

    Broussard, P. H.; Burch, J. L.; Drost, E. J.; Stein, R. J. (Inventor)

    1979-01-01

    A penetrometer for coal-shale interface detection is presented. It is used with coal cutting equipment consisting of a reciprocating hammer, having an accelerometer mounted thereon to measure the impact of the hammer as it penetrates the ceiling or floor surface of a mine. Additionally, a pair of reflectometers simultaneously view the same surface, and the outputs from the accelerometer and reflectometers are detected and jointly registered to determine when an interface between coal and shale is being cut through.

  15. Tear film measurement by optical reflectometry technique

    PubMed Central

    Lu, Hui; Wang, Michael R.; Wang, Jianhua; Shen, Meixiao

    2014-01-01

    Abstract. Evaluation of tear film is performed by an optical reflectometer system with alignment guided by a galvanometer scanner. The reflectometer system utilizes optical fibers to deliver illumination light to the tear film and collect the film reflectance as a function of wavelength. Film thickness is determined by best fitting the reflectance-wavelength curve. The spectral reflectance acquisition time is 15 ms, fast enough for detecting film thickness changes. Fast beam alignment of 1 s is achieved by the galvanometer scanner. The reflectometer was first used to evaluate artificial tear film on a model eye with and without a contact lens. The film thickness and thinning rate have been successfully quantified with the minimum measured thickness of about 0.3 μm. Tear films in human eyes, with and without a contact lens, have also been evaluated. A high-contrast spectral reflectance signal from the precontact lens tear film is clearly observed, and the thinning dynamics have been easily recorded from 3.69 to 1.31 μm with lipid layer thickness variation in the range of 41 to 67 nm. The accuracy of the measurement is better than ±0.58% of the film thickness at an estimated tear film refractive index error of ±0.001. The fiber-based reflectometer system is compact and easy to handle. PMID:24500519

  16. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Shlapakovski, A. S.; Beilin, L.; Krasik, Ya. E.

    Nanosecond-scale evolution of plasma and RF electromagnetic fields during the release of energy from a microwave pulse compressor with a plasma interference switch was investigated numerically using the code MAGIC. The plasma was simulated in the scope of the gas conductivity model in MAGIC. The compressor embodied an S-band cavity and H-plane waveguide tee with a shorted side arm filled with pressurized gas. In a simplified approach, the gas discharge was initiated by setting an external ionization rate in a layer crossing the side arm waveguide in the location of the electric field antinode. It was found that with increasingmore » ionization rate, the microwave energy absorbed by the plasma in the first few nanoseconds increases, but the absorption for the whole duration of energy release, on the contrary, decreases. In a hybrid approach modeling laser ignition of the discharge, seed electrons were set around the electric field antinode. In this case, the plasma extends along the field forming a filament and the plasma density increases up to the level at which the electric field within the plasma decreases due to the skin effect. Then, the avalanche rate decreases but the density still rises until the microwave energy release begins and the electric field becomes insufficient to support the avalanche process. The extraction of the microwave pulse limits its own power by terminating the rise of the plasma density and filament length. For efficient extraction, a sufficiently long filament of dense plasma must have sufficient time to be formed.« less

  17. [Metabolic changes in cells under electromagnetic radiation of mobile communication systems].

    PubMed

    Iakimenko, I L; Sidorik, E P; Tsybulin, A S

    2011-01-01

    Review is devoted to the analysis of biological effects of microwaves. The results of last years' researches indicated the potential risks of long-term low-level microwaves exposure for human health. The analysis of metabolic changes in living cells under the exposure of microwaves from mobile communication systems indicates that this factor is stressful for cells. Among the reproducible effects of low-level microwave radiation are overexpression of heat shock proteins, an increase of reactive oxygen species level, an increase of intracellular Ca2+, damage of DNA, inhibition of DNA reparation, and induction of apoptosis. Extracellular-signal-regulated kinases ERK and stress-related kinases p38MAPK are involved in metabolic changes. Analysis of current data suggests that the concept of exceptionally thermal mechanism of biological effects of microwaves is not correct. In turn, this raises the question of the need to revaluation of modern electromagnetic standards based on thermal effects of non-ionizing radiation on biological systems.

  18. Dark matter candidates and methods for detecting them

    NASA Technical Reports Server (NTRS)

    Raffelt, G. G.

    1992-01-01

    A number of experiments employing Ge and Si ionization detectors have excluded large regions in the plane of masses and scattering cross-sections for weakly-interacting dark matter (DM) candidates. It is judged that, before a realistic detection experiment for supersymmetric DM candidates can be conducted, significant development efforts will have to be completed for suitable cryogenic or ionization detectors. Pilot experiments have demonstrated the feasibility of axion searches with microwave cavities, but these are at least two orders of magnitude too low in sensitivity.

  19. Analysis of the ITER low field side reflectometer transmission line system.

    PubMed

    Hanson, G R; Wilgen, J B; Bigelow, T S; Diem, S J; Biewer, T M

    2010-10-01

    A critical issue in the design of the ITER low field side reflectometer is the transmission line (TL) system. A TL connects each launcher to a diagnostic instrument. Each TL will typically consist of ∼42 m of corrugated waveguide and up to ten miter bends. Important issues for the performance of the TL system are mode conversion and reflections. Minimizing these issues are critical to minimizing standing waves and phase errors. The performance of TL system is analyzed and recommendations are given.

  20. Improved integrating-sphere throughput with a lens and nonimaging concentrator.

    PubMed

    Chenault, D B; Snail, K A; Hanssen, L M

    1995-12-01

    A reflectometer design utilizing an integrating sphere with a lens and nonimaging concentrator is described. Compared with previous designs where a collimator was used to restrict the detector field of view, the concentrator-lens combination significantly increases the throughput of the reflectometer. A procedure for designing lens-concentrators is given along with the results of parametric studies. The measured angular response of a lens-concentrator system is compared with ray-trace predictions and with the response of an ideal system.

  1. Microwave Heating as an Alternative Quarantine Method for Disinfestation of Stored Food Grains

    PubMed Central

    Kumar, Girish; Shah, Narendra G.

    2013-01-01

    Insects and pests constitute a major threat to food supplies all over the world. Some estimates put the loss of food grains because of infestation to about 40% of the world production. Contemporary disinfestation methods are chemical fumigation, ionizing radiation, controlled atmosphere, conventional hot air treatment, and dielectric heating, that is, radio frequency and microwave energy, and so forth. Though chemical fumigation is being used extensively in stored food grains, regulatory issues, insect resistance, and environmental concerns demand technically effective and environmentally sound quarantine methods. Recent studies have indicated that microwave treatment is a potential means of replacing other techniques because of selective heating, pollution free environment, equivalent or better quality retention, energy minimization, and so forth. The current paper reviews the recent advances in Microwave (MW) disinfestation of stored food products and its principle and experimental results from previous studies in order to establish the usefulness of this technology. PMID:26904615

  2. Direct determination of trace phthalate esters in alcoholic spirits by spray-inlet microwave plasma torch ionization tandem mass spectrometry.

    PubMed

    Miao, Meng; Zhao, Gaosheng; Xu, Li; Dong, Junguo; Cheng, Ping

    2018-03-01

    A direct analytical method based on spray-inlet microwave plasma torch tandem mass spectrometry was applied to simultaneously determine 4 phthalate esters (PAEs), namely, benzyl butyl phthalate, diethyl phthalate, dipentyl phthalate, and dodecyl phthalate with extremely high sensitivity in spirits without sample treatment. Among the 4 brands of spirit products, 3 kinds of PAE compounds were directly determined at very low concentrations from 1.30 to 114 ng·g -1 . Compared with other online and off-line methods, the spray-inlet microwave plasma torch tandem mass spectrometry technique is extremely simple, rapid, sensitive, and high efficient, providing an ideal screening tool for PAEs in spirits. Copyright © 2017 John Wiley & Sons, Ltd.

  3. DOE Office of Scientific and Technical Information (OSTI.GOV)

    McAllister, R.S.

    Contents: Visual Acquisition Functions in Operational Environments; Investigation of Causes of Military Aircraft Accidents Involving Pilot Vertigo/Disorientation; Long Term Pulmonary Effects of Repeated Use of 100% Oxygen; Effects of Microwave Radiation on Naval Personnel; Effects of Extremely Low Frequency Radiation on Man; Behavioral Characteristics of Monkeys and Rats Irradiated with Microwaves; Evaluation of the Squirrel Monkey (Saimiri sciureus) as an Experimental Animal Model for Dysbaric Osteonecrosis; Oculovestibular Effects on Visual Performance in Moving Military Systems; Chronic Exposure of Mammals to Non-ionizing Electric and Magnetic Fields--Physiological and Psychophysiological Effects; and Open Literature Publications by Staff Members.

  4. Distributed Fiber-Optic Sensors for Vibration Detection

    PubMed Central

    Liu, Xin; Jin, Baoquan; Bai, Qing; Wang, Yu; Wang, Dong; Wang, Yuncai

    2016-01-01

    Distributed fiber-optic vibration sensors receive extensive investigation and play a significant role in the sensor panorama. Optical parameters such as light intensity, phase, polarization state, or light frequency will change when external vibration is applied on the sensing fiber. In this paper, various technologies of distributed fiber-optic vibration sensing are reviewed, from interferometric sensing technology, such as Sagnac, Mach–Zehnder, and Michelson, to backscattering-based sensing technology, such as phase-sensitive optical time domain reflectometer, polarization-optical time domain reflectometer, optical frequency domain reflectometer, as well as some combinations of interferometric and backscattering-based techniques. Their operation principles are presented and recent research efforts are also included. Finally, the applications of distributed fiber-optic vibration sensors are summarized, which mainly include structural health monitoring and perimeter security, etc. Overall, distributed fiber-optic vibration sensors possess the advantages of large-scale monitoring, good concealment, excellent flexibility, and immunity to electromagnetic interference, and thus show considerable potential for a variety of practical applications. PMID:27472334

  5. Development of a spatially resolved reflectometer to monitor corrosion of solar reflectors

    NASA Astrophysics Data System (ADS)

    Sutter, Florian; Meyen, Stephanie; Heller, Peter; Pitz-Paal, Robert

    2013-06-01

    Solar reflectors for Concentrating Solar Power (CSP) concentrators require a high reflectance and high specularity over the whole solar spectrum. During their lifetime of at least 20 years, the reflectors must withstand harsh outdoor conditions without loosing their reflective properties. Currently, there are not many devices available to measure the specular reflectance. In this work a prototype of a specular reflectometer with spatial resolution has been developed. The major advantage of the prototype compared to other reflectometers is the possibility of measuring the specular reflectance on an extended measuring spot of more than 5 cm in diameter with a spatial resolution of 37 pixel/mm. Additionally, measurements can be taken at three different acceptance half angles (φ = 3.5, 6.0, and 12.5 mrad) and at three different wavelengths (λ = 410 nm, 500 nm, and 656 nm). This lab scale instrument can be employed to monitor degradation effects, such as corrosion spots, and evaluate their influence on the specular reflectance of solar mirror materials.

  6. Distributed Fiber-Optic Sensors for Vibration Detection.

    PubMed

    Liu, Xin; Jin, Baoquan; Bai, Qing; Wang, Yu; Wang, Dong; Wang, Yuncai

    2016-07-26

    Distributed fiber-optic vibration sensors receive extensive investigation and play a significant role in the sensor panorama. Optical parameters such as light intensity, phase, polarization state, or light frequency will change when external vibration is applied on the sensing fiber. In this paper, various technologies of distributed fiber-optic vibration sensing are reviewed, from interferometric sensing technology, such as Sagnac, Mach-Zehnder, and Michelson, to backscattering-based sensing technology, such as phase-sensitive optical time domain reflectometer, polarization-optical time domain reflectometer, optical frequency domain reflectometer, as well as some combinations of interferometric and backscattering-based techniques. Their operation principles are presented and recent research efforts are also included. Finally, the applications of distributed fiber-optic vibration sensors are summarized, which mainly include structural health monitoring and perimeter security, etc. Overall, distributed fiber-optic vibration sensors possess the advantages of large-scale monitoring, good concealment, excellent flexibility, and immunity to electromagnetic interference, and thus show considerable potential for a variety of practical applications.

  7. SuperADAM: Upgraded polarized neutron reflectometer at the Institut Laue-Langevin

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Devishvili, A.; Zhernenkov, K.; Institut Laue-Langevin, BP 156, 38042 Grenoble

    2013-02-15

    A new neutron reflectometer SuperADAM has recently been built and commissioned at the Institut Laue-Langevin, Grenoble, France. It replaces the previous neutron reflectometer ADAM. The new instrument uses a solid state polarizer/wavelength filter providing a highly polarized (up to 98.6%) monochromatic neutron flux of 8 Multiplication-Sign 10{sup 4} n cm{sup -2} s{sup -1} with monochromatization {Delta}{lambda}/{lambda}= 0.7% and angular divergence {Delta}{alpha}= 0.2 mrad. The instrument includes both single and position sensitive detectors. The position sensitive detector allows simultaneous measurement of specular reflection and off-specular scattering. Polarization analysis for both specular reflection and off-specular scattering is achieved using either mirror analyzersmore » or a {sup 3}He spin filter cell. High efficiency detectors, low background, and high flux provides a dynamic range of up to seven decades in reflectivity. Detailed specifications and the instrument capabilities are illustrated with examples of recently collected data in the fields of thin film magnetism and thin polymer films.« less

  8. SuperADAM: Upgraded polarized neutron reflectometer at the Institut Laue-Langevin

    NASA Astrophysics Data System (ADS)

    Devishvili, A.; Zhernenkov, K.; Dennison, A. J. C.; Toperverg, B. P.; Wolff, M.; Hjörvarsson, B.; Zabel, H.

    2013-02-01

    A new neutron reflectometer SuperADAM has recently been built and commissioned at the Institut Laue-Langevin, Grenoble, France. It replaces the previous neutron reflectometer ADAM. The new instrument uses a solid state polarizer/wavelength filter providing a highly polarized (up to 98.6%) monochromatic neutron flux of 8 × 104 n cm-2 s-1 with monochromatization Δλ/λ = 0.7% and angular divergence Δα = 0.2 mrad. The instrument includes both single and position sensitive detectors. The position sensitive detector allows simultaneous measurement of specular reflection and off-specular scattering. Polarization analysis for both specular reflection and off-specular scattering is achieved using either mirror analyzers or a 3He spin filter cell. High efficiency detectors, low background, and high flux provides a dynamic range of up to seven decades in reflectivity. Detailed specifications and the instrument capabilities are illustrated with examples of recently collected data in the fields of thin film magnetism and thin polymer films.

  9. SuperADAM: upgraded polarized neutron reflectometer at the Institut Laue-Langevin.

    PubMed

    Devishvili, A; Zhernenkov, K; Dennison, A J C; Toperverg, B P; Wolff, M; Hjörvarsson, B; Zabel, H

    2013-02-01

    A new neutron reflectometer SuperADAM has recently been built and commissioned at the Institut Laue-Langevin, Grenoble, France. It replaces the previous neutron reflectometer ADAM. The new instrument uses a solid state polarizer/wavelength filter providing a highly polarized (up to 98.6%) monochromatic neutron flux of 8 × 10(4) n cm(-2) s(-1) with monochromatization Δλ∕λ = 0.7% and angular divergence Δα = 0.2 mrad. The instrument includes both single and position sensitive detectors. The position sensitive detector allows simultaneous measurement of specular reflection and off-specular scattering. Polarization analysis for both specular reflection and off-specular scattering is achieved using either mirror analyzers or a (3)He spin filter cell. High efficiency detectors, low background, and high flux provides a dynamic range of up to seven decades in reflectivity. Detailed specifications and the instrument capabilities are illustrated with examples of recently collected data in the fields of thin film magnetism and thin polymer films.

  10. Development of the low-field side reflectometer for ITER

    NASA Astrophysics Data System (ADS)

    Muscatello, Christopher; Anderson, James; Gattuso, Anthony; Doyle, Edward; Peebles, William; Seraydarian, Raymond; Wang, Guiding; Kramer, Gerrit; Zolfaghari, Ali; Atomics Team, General; University of California Los Angeles Team; Princeton Plasma Physics Laboratory Team

    2017-10-01

    The Low-Field Side Reflectometer (LFSR) for ITER will provide real-time edge density profiles every 10 ms for feedback control and every 24 μs for physics evaluation. The spatial resolution will be better than 5 mm over 30 - 165 GHz, probing the scrape-off layer to the top of the pedestal in H-mode plasmas. An antenna configuration has been selected for measurements covering anticipated plasma elevations. Laboratory validation of diagnostic performance is underway using a LFSR transmission line (TL) mockup. The 40-meter TL includes circular corrugated waveguide, length calibration feature, Gaussian telescope, vacuum windows, containment membranes, and expansion joint. Transceiver modules coupled to the input of the TL provide frequency-modulated (FM) data for evaluation of performance as a monostatic reflectometer. Results from the mockup tests are presented and show that, with some further optimization, the LFSR will meet or exceed the measurement requirements for ITER. An update of the LFSR instrumentation design status is also presented with preliminary test results. Work supported by PPPL under subcontract S013252-A.

  11. Role of superconducting electronics in advancing science and technology (invited) (abstract)

    NASA Astrophysics Data System (ADS)

    Faris, S. M.

    1988-08-01

    The promises of the ultrahigh-performance properties of superconductivity and Josephson junction technologies have been known for quite some time. This presentation describes the first superconducting electronics and measurement system and its important role as a major tool to advance microwave and millimeter wave technologies. This breakthrough tool is a sampling oscilloscope with 5-ps rise time, 50-μV sensitivity, and a time domain reflectometer with 8-ps rise time. In order to achieve these performance goals, several technological hurdles had to be overcome including perfecting a manufacturing process for building Josephson junction IC chips, developing an innovative cooling technique, developing interfaces and interconnections with bandwidths in excess of 70 GHz, and developing the room-temperature hardware and software necessary to make the instruments convenient, easy to use, easy to learn, in addition to making available functions and features users have come to expect from sophisticated digital test instrumentation. These technological developments are stepping stones leading to the realization of more sophisticated and complex electronic systems satisfying the needs of scientists, technologists, and engineers. The unprecedented speed and sensitivity make it possible to attack new frontiers.

  12. A microwave-mediated saponification of galactosylceramide and galactosylceramide I3-sulfate and identification of their lyso-compounds by delayed extraction matrix-assisted laser desorption ionization time-of-flight mass spectrometry.

    PubMed

    Taketomi, T; Hara, A; Uemura, K; Kurahashi, H; Sugiyama, E

    1996-07-16

    Small amounts of galactosylceramide (cerebroside) and galactosylceramide I3-sulfate (sulfatide) obtained from porcine spinal cord and equine kidney were deacylated by a rapid method of microwave-mediated saponification to prepare their lyso-compounds. Mass spectra of their protonated or deprotonated molecular ion peaks were detected by recently developed new technology of a delayed extraction matrix-assisted laser desorption ionization time-of-flight mass spectrometer with reflector detector in positive or negative ion mode. Long chain bases of lysocerebroside and lysosulfatide were different between porcine spinal cord and equine kidney, but similar to each other in the same organ, suggesting their common synthetic pathway. It is noted that the new rapid method can be similarly applied to the deacylation of both cerebroside and sulfatide in contrast to our classical method which was able to be applied to cerebroside, but not to sulfatide.

  13. Spatially resolved measurement of singlet delta oxygen by radar resonance-enhanced multiphoton ionization.

    PubMed

    Wu, Yue; Zhang, Zhili; Ombrello, Timothy M

    2013-07-01

    Coherent microwave Rayleigh scattering (Radar) from resonance-enhanced multiphoton ionization (REMPI) was demonstrated to directly and nonintrusively measure singlet delta oxygen, O(2)(a(1)Δ(g)), with high spatial resolution. Two different approaches, photodissociation of ozone and microwave discharge plasma in an argon and oxygen flow, were utilized for O(2)(a(1)Δ(g)) generation. The d(1)Π(g)←a(1)Δ(g) (3-0) and d(1)Π(g)←a(1)Δ(g) (1-0) bands of O(2)(a(1)Δ(g)) were detected by Radar REMPI for two different flow conditions. Quantitative absorption measurements using sensitive off-axis integrated cavity output spectroscopy (ICOS) was used simultaneously to evaluate the accuracy and sensitivity of the Radar REMPI technique. The detection limit of Radar REMPI was found to be comparable to the ICOS technique with a detection threshold of approximately 10(14) molecules/cm(3) but with a spatial resolution that was 8 orders of magnitude smaller than the ICOS technique.

  14. Measurement of xenon plasma properties in an ion thruster using laser Thomson scattering technique

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yamamoto, N.; Tomita, K.; Sugita, K.

    2012-07-15

    This paper reports on the development of a method for measuring xenon plasma properties using the laser Thomson scattering technique, for application to ion engine system design. The thresholds of photo-ionization of xenon plasma were investigated and the number density of metastable atoms, which are photo-ionized by a probe laser, was measured using laser absorption spectroscopy, for several conditions. The measured threshold energy of the probe laser using a plano-convex lens with a focal length of 200 mm was 150 mJ for a xenon mass flow rate of 20 {mu}g/s and incident microwave power of 6 W; the probe lasermore » energy was therefore set as 80 mJ. Electron number density was found to be (6.2 {+-} 0.4) Multiplication-Sign 10{sup 17} m{sup -3} and electron temperature was found to be 2.2 {+-} 0.4 eV at a xenon mass flow rate of 20 {mu}g/s and incident microwave power of 6 W. The threshold of the probe laser intensity against photo-ionization in a miniature xenon ion thruster is almost constant for various mass flow rates, since the ratio of population of the metastable atoms to the electron number density is little changed.« less

  15. In vivo microwave-based thermoacoustic tomography of rats (Conference Presentation)

    NASA Astrophysics Data System (ADS)

    Lin, Li; Zhou, Yong; Wang, Lihong V.

    2016-03-01

    Microwave-based thermoacoustic tomography (TAT), based on the measurement of ultrasonic waves induced by microwave pulses, can reveal tissue dielectric properties that may be closely related to the physiological and pathological status of the tissues. Using microwaves as the excitation source improved imaging depth because of their deep penetration into biological tissues. We demonstrate, for the first time, in vivo microwave-based thermoacoustic imaging in rats. The transducer is rotated around the rat in a full circle, providing a full two-dimensional view. Instead of a flat ultrasonic transducer, we used a virtual line detector based on a cylindrically focused transducer. A 3 GHz microwave source with 0.6 µs pulse width and an electromagnetically shielded transducer with 2.25 MHz central frequency provided clear cross-sectional images of the rat's body. The high imaging contrast, based on the tissue's rate of absorption, and the ultrasonically defined spatial resolution combine to reveal the spine, kidney, muscle, and other deeply seated anatomical features in the rat's abdominal cavity. This non-invasive and non-ionizing imaging modality achieved an imaging depth beyond 6 cm in the rat's tissue. Cancer diagnosis based on information about tissue properties from microwave band TAT can potentially be more accurate than has previously been achievable.

  16. Inhibition of quantum transport due to 'scars' of unstable periodic orbits

    NASA Technical Reports Server (NTRS)

    Jensen, R. V.; Sanders, M. M.; Saraceno, M.; Sundaram, B.

    1989-01-01

    A new quantum mechanism for the suppression of chaotic ionization of highly excited hydrogen atoms explains the appearance of anomalously stable states in the microwave ionization experiments of Koch et al. A novel phase-space representation of the perturbed wave functions reveals that the inhibition of quantum transport is due to the selective excitation of wave functions that are highly localized near unstable periodic orbits in the chaotic classical phase space. The 'scarred' wave functions provide a new basis for the quantum description of a variety of classically chaotic systems.

  17. Computational fluid dynamics and frequency-dependent finite-difference time-domain method coupling for the interaction between microwaves and plasma in rocket plumes

    NASA Astrophysics Data System (ADS)

    Kinefuchi, K.; Funaki, I.; Shimada, T.; Abe, T.

    2012-10-01

    Under certain conditions during rocket flights, ionized exhaust plumes from solid rocket motors may interfere with radio frequency transmissions. To understand the relevant physical processes involved in this phenomenon and establish a prediction process for in-flight attenuation levels, we attempted to measure microwave attenuation caused by rocket exhaust plumes in a sea-level static firing test for a full-scale solid propellant rocket motor. The microwave attenuation level was calculated by a coupling simulation of the inviscid-frozen-flow computational fluid dynamics of an exhaust plume and detailed analysis of microwave transmissions by applying a frequency-dependent finite-difference time-domain method with the Drude dispersion model. The calculated microwave attenuation level agreed well with the experimental results, except in the case of interference downstream the Mach disk in the exhaust plume. It was concluded that the coupling estimation method based on the physics of the frozen plasma flow with Drude dispersion would be suitable for actual flight conditions, although the mixing and afterburning in the plume should be considered depending on the flow condition.

  18. Using microwave heating to improve the desorption efficiency of high molecular weight VOC from beaded activated carbon.

    PubMed

    Fayaz, Mohammadreza; Shariaty, Pooya; Atkinson, John D; Hashisho, Zaher; Phillips, John H; Anderson, James E; Nichols, Mark

    2015-04-07

    Incomplete regeneration of activated carbon loaded with organic compounds results in heel build-up that reduces the useful life of the adsorbent. In this study, microwave heating was tested as a regeneration method for beaded activated carbon (BAC) loaded with n-dodecane, a high molecular weight volatile organic compound. Energy consumption and desorption efficiency for microwave-heating regeneration were compared with conductive-heating regeneration. The minimum energy needed to completely regenerate the adsorbent (100% desorption efficiency) using microwave regeneration was 6% of that needed with conductive heating regeneration, owing to more rapid heating rates and lower heat loss. Analyses of adsorbent pore size distribution and surface chemistry confirmed that neither heating method altered the physical/chemical properties of the BAC. Additionally, gas chromatography (with flame ionization detector) confirmed that neither regeneration method detectably altered the adsorbate composition during desorption. By demonstrating improvements in energy consumption and desorption efficiency and showing stable adsorbate and adsorbent properties, this paper suggests that microwave heating is an attractive method for activated carbon regeneration particularly when high-affinity VOC adsorbates are present.

  19. Investigating multiphoton phenomena using nonlinear dynamics

    NASA Astrophysics Data System (ADS)

    Huang, Shu

    Many seemingly simple systems can display extraordinarily complex dynamics which has been studied and uncovered through nonlinear dynamical theory. The leitmotif of this thesis is changing phase-space structures and their (linear or non-linear) stabilities by adding control functions (which act on the system as external perturbations) to the relevant Hamiltonians. These phase-space structures may be periodic orbits, invariant tori or their stable and unstable manifolds. One-electron systems and diatomic molecules are fundamental and important staging ground for new discoveries in nonlinear dynamics. In past years, increasing emphasis and effort has been put on the control or manipulation of these systems. Recent developments of nonlinear dynamical tools can provide efficient ways of doing so. In the first subtopic of the thesis, we are adding a control function to restore tori at prescribed locations in phase space. In the remainder of the thesis, a control function with parameters is used to change the linear stability of the periodic orbits which govern the processes in question. In this thesis, we report our theoretical analyses on multiphoton ionization of Rydberg atoms exposed to strong microwave fields and the dissociation of diatomic molecules exposed to bichromatic lasers using nonlinear dynamical tools. This thesis is composed of three subtopics. In the first subtopic, we employ local control theory to reduce the stochastic ionization of hydrogen atom in a strong microwave field by adding a relatively small control term to the original Hamiltonian. In the second subtopic, we perform periodic orbit analysis to investigate multiphoton ionization driven by a bichromatic microwave field. Our results show quantitative and qualitative agreement with previous studies, and hence identify the mechanism through which short periodic orbits organize the dynamics in multiphoton ionization. In addition, we achieve substantial time savings with this approach. In the third subtopic we extend our periodic orbit analysis to the dissociation of diatomic molecules driven by a bichromatic laser. In this problem, our results based on periodic orbit analysis again show good agreement with previous work, and hence promise more potential applications of this approach in molecular physics.

  20. Simultaneous measurement of X-ray specular reflection and off-specular diffuse scattering from liquid surfaces using a two-dimensional pixel array detector: the liquid-interface reflectometer of BL37XU at SPring-8.

    PubMed

    Yano, Yohko F; Uruga, Tomoya; Tanida, Hajime; Toyokawa, Hidenori; Terada, Yasuko; Yamada, Hironari

    2010-07-01

    An X-ray reflectometer for simultaneous measurement of specular and off-specular reflection of liquid surfaces is described. The reflectometer, equipped with a two-dimensional single X-ray photon-counting pixel array detector obtained the full range of X-ray specular and off-specular reflections in an extremely short time (1 s). Both the specular and off-specular reflection of water exhibited good agreement with the predicted capillary-wave theory within the appropriate instrumental resolution. The approach is also demonstrated on an aqueous solution of 1-dodecyl-3-methylimidazolium chloride. The monolayer in which the dodecyl chain faces upwards and the Cl(-) anion locates next to the imidazolium ring formed on the water surface was found to be laterally homogeneous. The use of a pixel array detector will be particularly powerful for in situ measurements to investigate both out-of-plane and in-plane structures simultaneously, not only for liquid surfaces but also for other thin films.

  1. Distinctive plume formation in atmospheric Ar and He plasmas in microwave frequency band and suitability for biomedical applications

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lee, H. Wk.; Kang, S. K.; Won, I. H.

    Distinctive discharge formation in atmospheric Ar and He plasmas was observed in the microwave frequency band using coaxial transmission line resonators. Ar plasmas formed a plasma plume whereas He formed only confined plasmas. As the frequency increased from 0.9 GHz to 2.45 GHz, the Ar plasma exhibited contraction and filamentation, and the He plasmas were constricted. Various powers and gas flow rates were applied to identify the effect of the electric field and gas flow rate on plasma plume formation. The He plasmas were more strongly affected by the electric field than the Ar plasmas. The breakdown and sustain powersmore » yielded opposite results from those for low-frequency plasmas (∼kHz). The phenomena could be explained by a change in the dominant ionization process with increasing frequency. Penning ionization and the contribution of secondary electrons in sheath region reduced as the frequency increased, leading to less efficient ionization of He because its ionization and excitation energies are higher than those of Ar. The emission spectra showed an increase in the NO and N{sub 2} second positive band in both the Ar and He plasmas with increasing frequency whereas the hydroxyl radical and atomic O peaks did not increase with increasing frequency but were highest at particular frequencies. Further, the frequency effect of properties such as the plasma impedance, electron density, and device efficiency were presented. The study is expected to be helpful for determining the optimal conditions of plasma systems for biomedical applications.« less

  2. High Power Microwave (HPM) and Ionizing Radiation Effects on CMOS Devices

    DTIC Science & Technology

    2010-03-01

    24 xviii Symbol Page VIH minimum input voltage for proper high voltage output...38 VOH output voltage corresponding to VIH ...design. The high level at the input, VIH , along with VDD, define the maximum permitted “Logic 1” region, which allows for proper state change for a

  3. Satellite Power System (SPS) microwave subsystem impacts and benefits

    NASA Technical Reports Server (NTRS)

    Dickinson, R. M.

    1977-01-01

    The impacts and benefits to society of the microwave subsystem resulting from the developing, construction and operating of a space solar power to earth, electric power delivery system are presented and discussed. The primary benefit (usable energy) is conveyed mainly in the fundamental frequency portion of the RF radiation beam that is intercepted and converted to electric power output. The small fraction of the microwave and other electromagnetic energy that does not end up in the electric utility grid, yields most of the subsystem impacts. The impacts range from harmonics and noise radiated by the transmitting antenna, through potential interference with ionospheric communications and navigation caused by the power beam heating the ionosphere, to the potential large land area requirements for the rectennas and low level microwave radiation around the rectennas. Additional benefits range from a very low level of waste heat liberated and lack of atmospheric emissions including noise while operating to having no residual ionizing radiation from the rectenna when it is deactivated.

  4. Self-excitation of microwave oscillations in plasma-assisted slow-wave oscillators by an electron beam with a movable focus

    NASA Astrophysics Data System (ADS)

    Bliokh, Yu. P.; Nusinovich, G. S.; Shkvarunets, A. G.; Carmel, Y.

    2004-10-01

    Plasma-assisted slow-wave oscillators (pasotrons) operate without external magnetic fields, which makes these devices quite compact and lightweight. Beam focusing in pasotrons is provided by ions, which appear in the device due to the impact ionization of a neutral gas by beam electrons. Typically, the ionization time is on the order of the rise time of the beam current. This means that, during the rise of the current, beam focusing by ions becomes stronger. Correspondingly, a beam of electrons, which was initially diverging radially due to the self-electric field, starts to be focused by ions, and this focus moves towards the gun as the ion density increases. This feature makes the self-excitation of electromagnetic (em) oscillations in pasotrons quite different from practically all other microwave sources where em oscillations are excited by a stationary electron beam. The process of self-excitation of em oscillations has been studied both theoretically and experimentally. It is shown that in pasotrons, during the beam current rise the amount of current entering the interaction space and the beam coupling to the em field vary. As a result, the self-excitation can proceed faster than in conventional microwave sources with similar operating parameters such as the operating frequency, cavity quality-factor and the beam current and voltage.

  5. Refractive and relativistic effects on ITER low field side reflectometer design.

    PubMed

    Wang, G; Rhodes, T L; Peebles, W A; Harvey, R W; Budny, R V

    2010-10-01

    The ITER low field side reflectometer faces some unique design challenges, among which are included the effect of relativistic electron temperatures and refraction of probing waves. This paper utilizes GENRAY, a 3D ray tracing code, to investigate these effects. Using a simulated ITER operating scenario, characteristics of the reflected millimeter waves after return to the launch plane are quantified as a function of a range of design parameters, including antenna height, antenna diameter, and antenna radial position. Results for edge/SOL measurement with both O- and X-mode polarizations using proposed antennas are reported.

  6. Development of Surfaces Optically Suitable for Flat Solar Panels

    NASA Technical Reports Server (NTRS)

    Desmet, D.; Jason, A.

    1978-01-01

    Three areas of research in the development of flat solar panels are described. (1) A reflectometer which can separately evaluate the spectral and diffuse reflectivities of surfaces was developed. The reflectometer has a phase locked detection system. (2) A coating composed of strongly bound copper oxide that is formed by an etching process performed on an aluminum alloy with high copper content was also developed. Because of this one step fabrication process, fabrication costs are expected to be small. (3) A literature search was conducted and conclusions on the required optical properties of flat plate solar collectors are presented.

  7. Feasibility study for distributed dose monitoring in ionizing radiation environments with standard and custom-made optical fibers

    NASA Astrophysics Data System (ADS)

    Van Uffelen, Marco; Berghmans, Francis; Brichard, Benoit; Borgermans, Paul; Decréton, Marc C.

    2002-09-01

    Optical fibers stimulate much interest since many years for their potential use in various nuclear environments, both for radiation tolerant and EMI-free data communication as well as for distributed sensing. Besides monitoring temperature and stress, measuring ionizing doses with optical fibers is particularly essential in applications such as long-term nuclear waste disposal monitoring, and for real-time aging monitoring of power and signal cables installed inside a reactor containment building. Two distinct options exist to perform optical fiber dosimetry. First, find an accurate model for a restricted application field that accounts for all the parameters that influence the radiation response of a standard fiber, or second, develop a dedicated fiber with a response that will solely depend on the deposited energy. Using various models presented in literature, we evaluate both standard commercially available and custom-made optical fibers under gamma radiation, particularly for distributed dosimetry applications with an optical time domain reflectometer (OTDR). We therefore present the radiation induced attenuation at near-infrared telecom wavelengths up to MGy total dose levels, with dose rates ranging from about 1 Gy/h up to 1 kGy/h, whereas temperature was raised step-wise from 25 °C to 85 °C. Our results allow to determine and compare the practical limitations of distributed dose measurements with both fiber types in terms of temperature sensitivity, dose estimation accuracy and spatial resolution.

  8. Probing resonant energy transfer in collisions of ammonia with Rydberg helium atoms by microwave spectroscopy

    NASA Astrophysics Data System (ADS)

    Zhelyazkova, V.; Hogan, S. D.

    2017-12-01

    We present the results of experiments demonstrating the spectroscopic detection of Förster resonance energy transfer from NH3 in the X1A1 ground electronic state to helium atoms in 1sns 3S1 Rydberg levels, where n = 37 and n = 40. For these values of n, the 1sns 3S1 → 1snp 3PJ transitions in helium lie close to resonance with the ground-state inversion transitions in NH3 and can be tuned through resonance using electric fields of less than 10 V/cm. In the experiments, energy transfer was detected by direct state-selective electric field ionization of the 3S1 and 3PJ Rydberg levels and by monitoring the population of the 3DJ levels following pulsed microwave transfer from the 3PJ levels. Detection by microwave spectroscopic methods represents a highly state selective, low-background approach to probing the collisional energy transfer process and the environment in which the atom-molecule interactions occur. The experimentally observed electric-field dependence of the resonant energy transfer process, probed both by direct electric field ionization and by microwave transfer, agrees well with the results of calculations performed using a simple theoretical model of the energy transfer process. For measurements performed in zero electric field with atoms prepared in the 1s40s 3S1 level, the transition from a regime in which a single energy transfer channel can be isolated for detection to one in which multiple collision channels begin to play a role has been identified as the NH3 density was increased.

  9. Mobile phone and my health

    NASA Astrophysics Data System (ADS)

    Surducan, Aneta; Dabala, Dana; Neamtu, Camelia; Surducan, Vasile; Surducan, Emanoil

    2013-11-01

    The interaction of the microwave radiation emitted by mobile phones with the user's body is analyzed from the International Commission on Non-Ionizing Radiation Protection (ICNIRP) recommendations perspective as a correlation between the specific absorption ratio (SAR) of the mobile phone and the call duration. The relative position of the cell phone to the user's body, the dielectric properties of the exposed body parts, the SAR value and the call duration are considered in the local body temperature rise due to the microwave heating effect. The recommended local temperature rise limit in the human body is evaluated according to standards. The aim of this study is to disseminate information to young people, especially high school students, about the microwave thermal effects on the human body, to make them aware of the environmental electromagnetic pollution and to offer them a simple method of biological self protection.

  10. Microfabricated ion frequency standard

    DOEpatents

    Schwindt, Peter; Biedermann, Grant; Blain, Matthew G.; Stick, Daniel L.; Serkland, Darwin K.; Olsson, III, Roy H.

    2010-12-28

    A microfabricated ion frequency standard (i.e. an ion clock) is disclosed with a permanently-sealed vacuum package containing a source of ytterbium (Yb) ions and an octupole ion trap. The source of Yb ions is a micro-hotplate which generates Yb atoms which are then ionized by a ultraviolet light-emitting diode or a field-emission electron source. The octupole ion trap, which confines the Yb ions, is formed from suspended electrodes on a number of stacked-up substrates. A microwave source excites a ground-state transition frequency of the Yb ions, with a frequency-doubled vertical-external-cavity laser (VECSEL) then exciting the Yb ions up to an excited state to produce fluorescent light which is used to tune the microwave source to the ground-state transition frequency, with the microwave source providing a precise frequency output for the ion clock.

  11. Microwave-assisted direct synthesis of butene from high-selectivity methane

    NASA Astrophysics Data System (ADS)

    Lu, Yi-heng; Li, Kang; Lu, Yu-wei

    2017-12-01

    Methane was directly converted to butene liquid fuel by microwave-induced non-oxidative catalytic dehydrogenation under 0.1-0.2 MPa. The results show that, under microwave heating in a two-stage fixed-bed reactor, in which nickel powder and NiOx-MoOy/SiO2 are used as the catalyst, the methane-hydrogen mixture is used as the raw material, with no acetylene detected. The methane conversion is more than 73.2%, and the selectivity of methane to butene is 99.0%. Increasing the hydrogen/methane feed volume ratio increases methane conversion and selectivity. Gas chromatography/electron impact ionization/mass spectrometry chromatographic analysis showed that the liquid fuel produced by methane dehydrogenation oligomerization contained 89.44% of butene, and the rest was acetic acid, ethanol, butenol and butyric acid, and the content was 1.0-3.0 wt%.

  12. Detection of Low Level Microwave Radiation Induced Deoxyribonucleic Acid Damage Vis-à-vis Genotoxicity in Brain of Fischer Rats

    PubMed Central

    Deshmukh, Pravin Suryakantrao; Megha, Kanu; Banerjee, Basu Dev; Ahmed, Rafat Sultana; Chandna, Sudhir; Abegaonkar, Mahesh Pandurang; Tripathi, Ashok Kumar

    2013-01-01

    Background: Non-ionizing radiofrequency radiation has been increasingly used in industry, commerce, medicine and especially in mobile phone technology and has become a matter of serious concern in present time. Objective: The present study was designed to investigate the possible deoxyribonucleic acid (DNA) damaging effects of low-level microwave radiation in brain of Fischer rats. Materials and Methods: Experiments were performed on male Fischer rats exposed to microwave radiation for 30 days at three different frequencies: 900, 1800 and 2450 MHz. Animals were divided into 4 groups: Group I (Sham exposed): Animals not exposed to microwave radiation but kept under same conditions as that of other groups, Group II: Animals exposed to microwave radiation at frequency 900 MHz at specific absorption rate (SAR) 5.953 × 10−4 W/kg, Group III: Animals exposed to 1800 MHz at SAR 5.835 × 10−4 W/kg and Group IV: Animals exposed to 2450 MHz at SAR 6.672 × 10−4 W/kg. At the end of the exposure period animals were sacrificed immediately and DNA damage in brain tissue was assessed using alkaline comet assay. Results: In the present study, we demonstrated DNA damaging effects of low level microwave radiation in brain. Conclusion: We concluded that low SAR microwave radiation exposure at these frequencies may induce DNA strand breaks in brain tissue. PMID:23833433

  13. Effect of neutrino rest mass on ionization equilibrium freeze-out

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Grohs, Evan Bradley; Fuller, George M.; Kishimoto, Chad T.

    2015-12-23

    We show how small neutrino rest masses can increase the expansion rate near the photon decoupling epoch in the early Universe, causing an earlier, higher temperature freeze-out for ionization equilibrium compared to the massless neutrino case. This yields a larger free-electron fraction, thereby affecting the photon diffusion length differently than the sound horizon at photon decoupling. This neutrino-mass and recombination effect depends strongly on the neutrino rest masses. Ultimately, though below current sensitivity, this effect could be probed by next-generation cosmic microwave background experiments, giving another observational handle on neutrino rest mass.

  14. Radiation Interaction with Therapeutic Drugs and Cell Membranes

    NASA Astrophysics Data System (ADS)

    Martin, Diana I.; Manaila, Elena N.; Moisescu, Mihaela I.; Savopol, Tudor D.; Kovacs, Eugenia A.; Cinca, Sabin A.; Matei, Constantin I.; Margaritescu, Irina D.; Iacob, Nicusor I.; Ighigeanu, Daniel I.; Craciun, Gabriela D.

    2007-04-01

    This transient permeabilized state of the cell membrane, named the ``cell electroporation'' (CE) can be used to increase cells uptake of drugs that do not readily pass cell membrane, thus enabling their cytotoxicity. The anticancer drugs, such as bleomycin (BL) and cisplatin, are the most candidates for the combined use with ionizing and non-ionizing radiation fields. The methods and installations for the cell electroporation by electron beam (EB) and microwave (MW) irradiation are presented. The viability tests of the human leukocytes under EB and MW exposure with/without the BL in the cell cultures are discussed.

  15. Plant Response to Microwaves at 2.45 GHz

    NASA Technical Reports Server (NTRS)

    Skiles, J. W.

    2003-01-01

    One method of beaming to Earth energy captured by Space Solar Power (SSP) satellites is by using microwaves. Since microwaves are non-ioniz ing and of low energy they probably will have little or no direct eff ect (either long- or short-term) on terrestrial biota. This contentio n must to be proved however, before the public will accept a continuo us beam of microwaves being sent to the ground near populated areas or onto agricultural lands. To begin to address this question, an exper iment has been done that exposed an important agronomic plant speaes (alfalfa, Medicago sativa L.) to a continuous microwave beam at 2.45 GHz and from between 0.5 to 1.2 milli-watts per square centimeter. Th e hypothesis was that plants exposed to microwaves will be no differe nt from those control plants that were not exposed to microwaves. The microwaves were broadcast over a tray of mature, growing plants in the laboratory. The control plants were subjected to the same environme ntal conditions (light, temperature, soil and nutrients) minus the mi crowave exposure. Both populations of plants were watered as needed. As may be seen, the experiment was designed so that the only variable to which the test plants were subjected was microwave exposure. Prec ise, non-destructive measurements were taken of leaf chlorophyll concentration over the period of the experiment. Also measured were gross plant variables such as stem length, internodal distance, and, at the end of the experiment, above-ground biomass, both fresh and dry weig hts. Soil temperatures on bare soil and under the plant canopy were a lso measured. After seven weeks of exposure to microwaves there was n o sigruficant difference between control and test plant populations. A number of other plant/ microwave exposure studies will be discussed in this presentation. However, this experiment is one of the few publ ished examples of organisms being exposed to continuos microwave illu mination at one of the proposed SSP microwave frequencies and intensi ties.

  16. Methane Synthesis from Automotive Paint Sludge via Microwave Assisted Pyrolysis

    NASA Astrophysics Data System (ADS)

    Rosli, N. L.; Rahman, N. Abd; Kadri, A.

    2018-05-01

    Methane gas, which has one atom of carbon and four atoms of hydrogen, is a valuable energy resource, which can be used in the energy sector. The purpose of this research work is to identify methane synthesis from Automotive Paint Sludge (APS) using microwave assisted pyrolysis. APS is known as a hazardous waste since it contains various chemicals that categorized as heavy metals and toxic substances. A modified conventional kitchen microwave was used to pyrolise the APS. The microwave was set with the power level of 600 W and 50 minutes radiation time. Through the experiment, pyrogas was collected into tedlar bag and was analysed using Gas Chromatography with Flame Ionization Detector (GC-FID). Results from the GC-FID were shown that the retention time of 3.3583, 3.2733, and 3.2267 min are proved to be methane gas. The results obtained are resembled with the results from the literature. This indicates methane gas was presented in the pyrogas of pyrolysis of APS and there is a possibility of producing methane gas. The research study suggests that it is possible to synthesize methane gas from the APS via microwave assisted pyrolysis, and in the meantime reduce the volume of APS in the landfill.

  17. Computational fluid dynamics and frequency-dependent finite-difference time-domain method coupling for the interaction between microwaves and plasma in rocket plumes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kinefuchi, K.; Funaki, I.; Shimada, T.

    Under certain conditions during rocket flights, ionized exhaust plumes from solid rocket motors may interfere with radio frequency transmissions. To understand the relevant physical processes involved in this phenomenon and establish a prediction process for in-flight attenuation levels, we attempted to measure microwave attenuation caused by rocket exhaust plumes in a sea-level static firing test for a full-scale solid propellant rocket motor. The microwave attenuation level was calculated by a coupling simulation of the inviscid-frozen-flow computational fluid dynamics of an exhaust plume and detailed analysis of microwave transmissions by applying a frequency-dependent finite-difference time-domain method with the Drude dispersion model.more » The calculated microwave attenuation level agreed well with the experimental results, except in the case of interference downstream the Mach disk in the exhaust plume. It was concluded that the coupling estimation method based on the physics of the frozen plasma flow with Drude dispersion would be suitable for actual flight conditions, although the mixing and afterburning in the plume should be considered depending on the flow condition.« less

  18. Remote steering of laser beams by radar- and laser-induced refractive-index gradients in the atmosphere Remote steering of laser beams

    NASA Astrophysics Data System (ADS)

    Zheltikov, A. M.; Shneider, M. N.; Voronin, A. A.; Sokolov, A. V.; Scully, M. O.

    2012-01-01

    Refractive-index gradients induced in the atmospheric air by properly tailored laser and microwave fields are shown to enable a remote steering of laser beams. Heating-assisted modulation of the refractive index of the air by microwave radiation is shown to support small-angle laser-beam bending with bending angles on the order of 10-2. Ionization of the atmospheric air by dyads of femto- and nanosecond laser pulses, on the other hand, can provide beam deflection angles in excess of π/5, offering an attractive strategy for radiation transfer, free-space communications, and laser-based standoff detection.

  19. Overview of Recent DIII-D Experimental Results

    NASA Astrophysics Data System (ADS)

    Fenstermacher, Max

    2015-11-01

    Recent DIII-D experiments have added to the ITER physics basis and to physics understanding for extrapolation to future devices. ELMs were suppressed by RMPs in He plasmas consistent with ITER non-nuclear phase conditions, and in steady state hybrid plasmas. Characteristics of the EHO during both standard high torque, and low torque enhanced pedestal QH-mode with edge broadband fluctuations were measured, including edge localized density fluctuations with a microwave imaging reflectometer. The path to Super H-mode was verified at high beta with a QH-mode edge, and in plasmas with ELMs triggered by Li granules. ITER acceptable TQ mitigation was obtained with low Ne fraction Shattered Pellet Injection. Divertor ne and Te data from Thomson Scattering confirm predicted drift-driven asymmetries in electron pressure, and X-divertor heat flux reduction and detachment were characterized. The crucial mechanisms for ExB shear control of turbulence were clarified. In collaboration with EAST, high beta-p scenarios were obtained with 80 % bootstrap fraction, high H-factor and stability limits, and large radius ITBs leading to low AE activity. Work supported by the US Department of Energy under DE-FC02-04ER54698 and DE-AC52-07NA27344.

  20. Theory and simulation of ion noise in microwave tubes

    NASA Astrophysics Data System (ADS)

    Manheimer, W. M.; Freund, H. P.; Levush, B.; Antonsen, T. M.

    2001-01-01

    Since there is always some ambient gas in electron beam devices, background ionization is ubiquitous. For long pulse times, the electrostatic potentials associated with this ionization can reach significant levels and give rise to such observed phenomena as phase noise in microwave tubes. This noise is usually associated with the motion of ions in the device; therefore, it is called ion noise. It often manifests itself as a slow phase fluctuation on the output signal. Observations of noise in microwave tubes such as coupled-cavity traveling wave tubes (CC-TWTs) and klystrons have been discussed in the literature. In this paper, a hybrid model is discussed in which the electron beam is described by the beam envelope equation, and the ions generated by beam ionization are treated as discrete particles using the one-dimensional equations of motion. The theoretical model provides good qualitative as well as reasonable quantitative insight into the origin of ion noise phenomena. The numerical results indicate that the model reproduces the salient features of the phase oscillations observed experimentally. That is, the scaling of the frequency of the phase oscillations with gas pressure in the device and the sensitive dependence of the phase oscillations on the focusing magnetic field. Two distinct time scales are observed in simulation. The fastest time scale oscillation is related to the bounce motion of ions in the axial potential wells formed by the scalloping of the electron beam. Slower sawtooth oscillations are observed to correlate with the well-to-well interactions induced by the ion coupling to the electron equilibrium. These oscillations are also correlated with ion dumping to the cathode or collector. As a practical matter, simulations indicate that the low frequency oscillations can be reduced significantly by using a well-matched electron beam propagating from the electron gun into the interaction circuit.

  1. Development of frequency modulation reflectometer for Korea Superconducting Tokamak Advanced Research tokamak

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Seo, Seong-Heon; Wi, H. M.; Lee, W. R.

    2013-08-15

    Frequency modulation reflectometer has been developed to measure the plasma density profile of the Korea Superconducting Tokamak Advanced Research tokamak. Three reflectometers are operating in extraordinary polarization mode in the frequency range of Q band (33.6–54 GHz), V band (48–72 GHz), and W band (72–108 GHz) to measure the density up to 7 × 10{sup 19} m{sup −3} when the toroidal magnetic field is 2 T on axis. The antenna is installed inside of the vacuum vessel. A new vacuum window is developed by using 50 μm thick mica film and 0.1 mm thick gold gasket. The filter bank ofmore » low pass filter, notch filter, and Faraday isolator is used to reject the electron cyclotron heating high power at attenuation of 60 dB. The full frequency band is swept in 20 μs. The mixer output is directly digitized with sampling rate of 100 MSamples/s. The phase is obtained by using wavelet transform. The whole hardware and software system is described in detail and the measured density profile is presented as a result.« less

  2. First detection of winds in red giants by microwave continuum techniques

    NASA Technical Reports Server (NTRS)

    Drake, S. A.; Linsky, J. L.

    1983-01-01

    Eight red giants and supergiants have been observed at 4885 MHz (6 cm) with the Very Large Array in an attempt to detect continuum emission. The bright giant Alpha-1 Her (M5 II) was detected at an average flux density of 0.9 + or - 0.13 mJy. Since the likely source of this emission is an ionized, optically thick component of a stellar wind, this detection implies a mass loss rate of 2 x 10 to the -9th solar masses per yr for the ionized gas. The fraction of the outflow in Alpha-1 Her that is ionized (0.002-0.02) seems to be similar to that previously found for Alpha Ori and Alpha Sco A. Alpha Boo (K2 IIIp) and Beta Gem (K0 III) are probable and definite detections, respectively. The derived ionized mass loss rates for these two stars are about 1 x 10 to the -10th solar masses per yr, implying in the case of Alpha Boo that the wind is largely ionized.

  3. Relativistic-microwave theory of ball lightning.

    PubMed

    Wu, H-C

    2016-06-22

    Ball lightning, a fireball sometimes observed during lightnings, has remained unexplained. Here we present a comprehensive theory for the phenomenon: At the tip of a lightning stroke reaching the ground, a relativistic electron bunch can be produced, which in turn excites intense microwave radiation. The latter ionizes the local air and the radiation pressure evacuates the resulting plasma, forming a spherical plasma bubble that stably traps the radiation. This mechanism is verified by particle simulations. The many known properties of ball lightning, such as the occurrence site, relation to the lightning channels, appearance in aircraft, its shape, size, sound, spark, spectrum, motion, as well as the resulting injuries and damages, are also explained. Our theory suggests that ball lighting can be created in the laboratory or triggered during thunderstorms. Our results should be useful for lightning protection and aviation safety, as well as stimulate research interest in the relativistic regime of microwave physics.

  4. Mobile phone and my health

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Surducan, Aneta; Dabala, Dana; Neamtu, Camelia, E-mail: emanoil.surducan@itim-cj.ro

    The interaction of the microwave radiation emitted by mobile phones with the user's body is analyzed from the International Commission on Non-Ionizing Radiation Protection (ICNIRP) recommendations perspective as a correlation between the specific absorption ratio (SAR) of the mobile phone and the call duration. The relative position of the cell phone to the user's body, the dielectric properties of the exposed body parts, the SAR value and the call duration are considered in the local body temperature rise due to the microwave heating effect. The recommended local temperature rise limit in the human body is evaluated according to standards. Themore » aim of this study is to disseminate information to young people, especially high school students, about the microwave thermal effects on the human body, to make them aware of the environmental electromagnetic pollution and to offer them a simple method of biological self protection.« less

  5. Overdense microwave plasma heating in the CNT stellarator

    NASA Astrophysics Data System (ADS)

    Hammond, K. C.; Diaz-Pacheco, R. R.; Köhn, A.; Volpe, F. A.; Wei, Y.

    2018-02-01

    Overdense plasmas have been attained with 2.45 GHz microwave heating in the low-field, low-aspect-ratio CNT stellarator. Densities higher than four times the ordinary (O) mode cutoff density were measured with 8 kW of power injected in the O-mode and, alternatively, with 6.5 kW in the extraordinary (X) mode. The temperature profiles peak at the plasma edge. This was ascribed to collisional damping of the X-mode at the upper hybrid resonant layer. The X-mode reaches that location by tunneling, mode-conversions or after polarization-scrambling reflections off the wall and in-vessel coils, regardless of the initial launch being in O- or X-mode. This interpretation was confirmed by full-wave numerical simulations. Also, as the CNT plasma is not completely ionized at these low microwave power levels, electron density was shown to increase with power. A dependence on magnetic field strength was also observed, for O-mode launch.

  6. Microwave-assisted direct synthesis of butene from high-selectivity methane

    PubMed Central

    Li, Kang; Lu, Yu-wei

    2017-01-01

    Methane was directly converted to butene liquid fuel by microwave-induced non-oxidative catalytic dehydrogenation under 0.1–0.2 MPa. The results show that, under microwave heating in a two-stage fixed-bed reactor, in which nickel powder and NiOx–MoOy/SiO2 are used as the catalyst, the methane–hydrogen mixture is used as the raw material, with no acetylene detected. The methane conversion is more than 73.2%, and the selectivity of methane to butene is 99.0%. Increasing the hydrogen/methane feed volume ratio increases methane conversion and selectivity. Gas chromatography/electron impact ionization/mass spectrometry chromatographic analysis showed that the liquid fuel produced by methane dehydrogenation oligomerization contained 89.44% of butene, and the rest was acetic acid, ethanol, butenol and butyric acid, and the content was 1.0–3.0 wt%. PMID:29308261

  7. A nonequilibrium model for a moderate pressure hydrogen microwave discharge plasma

    NASA Technical Reports Server (NTRS)

    Scott, Carl D.

    1993-01-01

    This document describes a simple nonequilibrium energy exchange and chemical reaction model to be used in a computational fluid dynamics calculation for a hydrogen plasma excited by microwaves. The model takes into account the exchange between the electrons and excited states of molecular and atomic hydrogen. Specifically, electron-translation, electron-vibration, translation-vibration, ionization, and dissociation are included. The model assumes three temperatures, translational/rotational, vibrational, and electron, each describing a Boltzmann distribution for its respective energy mode. The energy from the microwave source is coupled to the energy equation via a source term that depends on an effective electric field which must be calculated outside the present model. This electric field must be found by coupling the results of the fluid dynamics and kinetics solution with a solution to Maxwell's equations that includes the effects of the plasma permittivity. The solution to Maxwell's equations is not within the scope of this present paper.

  8. Relativistic-microwave theory of ball lightning

    NASA Astrophysics Data System (ADS)

    Wu, H.-C.

    2016-06-01

    Ball lightning, a fireball sometimes observed during lightnings, has remained unexplained. Here we present a comprehensive theory for the phenomenon: At the tip of a lightning stroke reaching the ground, a relativistic electron bunch can be produced, which in turn excites intense microwave radiation. The latter ionizes the local air and the radiation pressure evacuates the resulting plasma, forming a spherical plasma bubble that stably traps the radiation. This mechanism is verified by particle simulations. The many known properties of ball lightning, such as the occurrence site, relation to the lightning channels, appearance in aircraft, its shape, size, sound, spark, spectrum, motion, as well as the resulting injuries and damages, are also explained. Our theory suggests that ball lighting can be created in the laboratory or triggered during thunderstorms. Our results should be useful for lightning protection and aviation safety, as well as stimulate research interest in the relativistic regime of microwave physics.

  9. Relativistic-microwave theory of ball lightning

    PubMed Central

    Wu, H.-C.

    2016-01-01

    Ball lightning, a fireball sometimes observed during lightnings, has remained unexplained. Here we present a comprehensive theory for the phenomenon: At the tip of a lightning stroke reaching the ground, a relativistic electron bunch can be produced, which in turn excites intense microwave radiation. The latter ionizes the local air and the radiation pressure evacuates the resulting plasma, forming a spherical plasma bubble that stably traps the radiation. This mechanism is verified by particle simulations. The many known properties of ball lightning, such as the occurrence site, relation to the lightning channels, appearance in aircraft, its shape, size, sound, spark, spectrum, motion, as well as the resulting injuries and damages, are also explained. Our theory suggests that ball lighting can be created in the laboratory or triggered during thunderstorms. Our results should be useful for lightning protection and aviation safety, as well as stimulate research interest in the relativistic regime of microwave physics. PMID:27328835

  10. Large area plasma source

    NASA Technical Reports Server (NTRS)

    Foster, John (Inventor); Patterson, Michael (Inventor)

    2008-01-01

    An all permanent magnet Electron Cyclotron Resonance, large diameter (e.g., 40 cm) plasma source suitable for ion/plasma processing or electric propulsion, is capable of producing uniform ion current densities at its exit plane at very low power (e.g., below 200 W), and is electrodeless to avoid sputtering or contamination issues. Microwave input power is efficiently coupled with an ionizing gas without using a dielectric microwave window and without developing a throat plasma by providing a ferromagnetic cylindrical chamber wall with a conical end narrowing to an axial entrance hole for microwaves supplied on-axis from an open-ended waveguide. Permanent magnet rings are attached inside the wall with alternating polarities against the wall. An entrance magnet ring surrounding the entrance hole has a ferromagnetic pole piece that extends into the chamber from the entrance hole to a continuing second face that extends radially across an inner pole of the entrance magnet ring.

  11. [Atomic/ionic fluorescence in microwave plasma torch discharge with excitation of high current and microsecond pulsed hollow cathode lamp: Ca atomic/ionic fluorescence spectrometry].

    PubMed

    Gong, Zhen-bin; Liang, Feng; Yang, Peng-yuan; Jin, Qin-han; Huang, Ben-li

    2002-02-01

    A system of atomic and ionic fluorescence spectrometry in microwave plasma torch (MPT) discharge excited by high current microsecond pulsed hollow cathode lamp (HCMP HCL) has been developed. The operation conditions for Ca atomic and ionic fluorescence spectrometry have been optimized. Compared with atomic fluorescence spectrometry (AFS) in argon microwave induced plasma (MIP) and MPT with the excitation of direct current and conventional pulsed HCL, the system with HCMP HCL excitation can improve AFS and ionic fluorescence spectrometry (IFS) detection limits in MPT atomizer and ionizer. Detection limits (3 sigma) with HCMP HCL-MPT-AFS/IFS are 10.1 ng.mL-1 for Ca I 422.7 nm, 14.6 ng.mL-1 for Ca II 393.4 nm, and 37.4 ng.mL-1 for Ca II 396.8 nm, respectively.

  12. New progress of high current gasdynamic ion source (invited).

    PubMed

    Skalyga, V; Izotov, I; Golubev, S; Sidorov, A; Razin, S; Vodopyanov, A; Tarvainen, O; Koivisto, H; Kalvas, T

    2016-02-01

    The experimental and theoretical research carried out at the Institute of Applied Physics resulted in development of a new type of electron cyclotron resonance ion sources (ECRISs)-the gasdynamic ECRIS. The gasdynamic ECRIS features a confinement mechanism in a magnetic trap that is different from Geller's ECRIS confinement, i.e., the quasi-gasdynamic one similar to that in fusion mirror traps. Experimental studies of gasdynamic ECRIS were performed at Simple Mirror Ion Source (SMIS) 37 facility. The plasma was created by 37.5 and 75 GHz gyrotron radiation with power up to 100 kW. High frequency microwaves allowed to create and sustain plasma with significant density (up to 8 × 10(13) cm(-3)) and to maintain the main advantages of conventional ECRIS such as high ionization degree and low ion energy. Reaching such high plasma density relies on the fact that the critical density grows with the microwave frequency squared. High microwave power provided the average electron energy on a level of 50-300 eV enough for efficient ionization even at neutral gas pressure range of 10(-4)-10(-3) mbar. Gasdynamic ECRIS has demonstrated a good performance producing high current (100-300 mA) multi-charged ion beams with moderate average charge (Z = 4-5 for argon). Gasdynamic ECRIS has appeared to be especially effective in low emittance hydrogen and deuterium beams formation. Proton beams with current up to 500 emA and RMS emittance below 0.07 π ⋅ mm ⋅ mrad have been demonstrated in recent experiments.

  13. Dispersive liquid-liquid microextraction combined with microwave-assisted derivatization for determining lipoic acid and its metabolites in human urine.

    PubMed

    Tsai, Chia-Ju; Chen, Yen-Ling; Feng, Chia-Hsien

    2013-10-04

    This study explored dispersive liquid-liquid microextraction for extraction and concentration of lipoic acid in human urine. To improve the detection of lipoic acid by both capillary liquid chromatography (CapLC) with UV detection and matrix-assisted laser desorption ionization time-of-flight mass spectrometry (MALDI-TOF MS), microwave-assisted derivatization with 4-bromomethyl-6,7-dimethoxycoumarin was performed to render lipoic acid chromophores for UV detection and also high ionization efficiency in MALDI. All parameters that affected lipoic acid extraction and derivatization from urine were investigated and optimized. In the analyses of human urine samples, the two methods had a linear range of 0.1-20 μM with a correlation coefficient of 0.999. The detection limits of CapLC-UV and MALDI-TOF MS were 0.03 and 0.02 μM (S/N ≧ 3), respectively. The major metabolites of lipoic acid, including 6,8-bismethylthio-octanoic acid, 4,6-bismethylthio-hexanoic acid, and 2,4-bismethylthio-butanoic acid were also extracted by dispersive liquid-liquid microextraction and detected by MALDI-TOF MS. The minor metabolites (undetectable by MALDI-TOF MS), bisnorlipoic acid and tetranorlipoic acid were also extracted by dispersive liquid-liquid microextraction and identified with an LTQ Orbitrap mass spectrometer. After dispersive liquid-liquid microextraction and microwave-assisted derivatization, all lipoic acid derivatizations and metabolites were structurally confirmed by LTQ Orbitrap. Copyright © 2013 Elsevier B.V. All rights reserved.

  14. The duration of reionization constrains the ionizing sources

    NASA Astrophysics Data System (ADS)

    Sharma, Mahavir; Theuns, Tom; Frenk, Carlos

    2018-06-01

    We investigate how the nature of the galaxies that reionized the Universe affects the duration of reionization. We contrast two sets of models: one in which galaxies on the faint side of the luminosity function dominate the ionizing emissivity, and a second in which the galaxies on the bright side of the luminosity function dominate. The faint end of the luminosity function evolves slowly, therefore the transition from mostly neutral to mostly ionized state takes a much longer time in the first set of models compared to the second. Existing observational constraints on the duration of this transition are relatively weak, but taken at face value prefer the model in which galaxies on the bright side play a major role. Measurements of the kinetic Sunyaev-Zeldovich effect in the cosmic microwave background from the epoch of reionization also point in the same direction.

  15. Experiments with Plasmas Produced by Potassium-Seeded Cyanogen Oxygen Flames for Study of Radio Transmission at Simulated Reentry Vehicle Plasma Conditions

    NASA Technical Reports Server (NTRS)

    Huber, Paul W.; Gooderum, Paul B.

    1961-01-01

    A method for the chemical production of an ionized gas stream for application to radio transmission studies is described. Involved is the combustion of gaseous cyanogen and oxygen with the addition of vaporized potassium in some cases to further increase the ionization. Experiments are described in which a 3-inch-diameter subsonic free jet at atmospheric pressure is used, and the results are presented. The plasma obtained by using this method is sufficient to simulate plasma conditions expected for reentering hypersonic vehicles. The unseeded plasma stream temperature is indicated to be about 4,200 K, with the degree of ionization indicated to be that expected from thermal equilibrium considerations. Measurements of radio-signal loss due to the unseeded flame plasma are presented for microwaves of 8 to 20 kmc transmitted through the stream and for a dipole transmitting model of 219.5 mc immersed in the stream. Favorable comparison of these results with the simple plane-wave signal-attenuation theory was obtained. In the case of a 9.4-kmc microwave signal of 30-kw peak power, the preliminary indication is that the plasma characteristics were not changed due to this strong signal. Comparison of a simplified concept of radio-signal attenuation due to plasmas is made with some hypersonic reentry vehicle signal-loss data. Other areas of plasma research using this method for the transmission problem are indicated.

  16. Measurement of two-dimensional thickness of micro-patterned thin film based on image restoration in a spectroscopic imaging reflectometer.

    PubMed

    Kim, Min-Gab; Kim, Jin-Yong

    2018-05-01

    In this paper, we introduce a method to overcome the limitation of thickness measurement of a micro-patterned thin film. A spectroscopic imaging reflectometer system that consists of an acousto-optic tunable filter, a charge-coupled-device camera, and a high-magnitude objective lens was proposed, and a stack of multispectral images was generated. To secure improved accuracy and lateral resolution in the reconstruction of a two-dimensional thin film thickness, prior to the analysis of spectral reflectance profiles from each pixel of multispectral images, the image restoration based on an iterative deconvolution algorithm was applied to compensate for image degradation caused by blurring.

  17. AND/R: Advanced neutron diffractometer/reflectometer for investigation of thin films and multilayers for the life sciences

    PubMed Central

    Dura, Joseph A.; Pierce, Donald J.; Majkrzak, Charles F.; Maliszewskyj, Nicholas C.; McGillivray, Duncan J.; Lösche, Mathias; O'Donovan, Kevin V.; Mihailescu, Mihaela; Perez-Salas, Ursula; Worcester, David L.; White, Stephen H.

    2011-01-01

    An elastic neutron scattering instrument, the advanced neutron diffractometer/reflectometer (AND/R), has recently been commissioned at the National Institute of Standards and Technology Center for Neutron Research. The AND/R is the centerpiece of the Cold Neutrons for Biology and Technology partnership, which is dedicated to the structural characterization of thin films and multilayers of biological interest. The instrument is capable of measuring both specular and nonspecular reflectivity, as well as crystalline or semicrystalline diffraction at wave-vector transfers up to approximately 2.20 Å−1. A detailed description of this flexible instrument and its performance characteristics in various operating modes are given. PMID:21892232

  18. Dielectric polarization in the Planck theory of sonoluminescence.

    PubMed

    Prevenslik, T V

    1998-11-01

    Sonoluminescence observed in the cavitation of liquid H2O may be explained by the Planck theory of SL, which treats the bubbles as collapsing miniature masers having optical waves standing in resonance with the dimensions of the bubble cavity. Microwaves are shown to be created from the Planck energy of the standing waves, provided the bubble wall can be treated as a perfect blackbody surface. Liquid H2O is strongly absorbent in the ultraviolet and there the bubble approaches a Planck blackbody enclosure. The microwaves are created at frequencies proportional to the bubble collapse velocity only to be promptly absorbed by the rotation quantum states of the H2O and other bubble wall molecules. The microwaves are absorbed discretely at rotation line frequencies, or continuously by dipole rotation at frequencies from 1 to 30 GHz. In the liquid state, molecular rotation of the H2O molecule is hindered and the microwave energy is rapidly turned into bending energy by intermolecular collisions. Subsequently, the bubble wall molecules may thereby ionize and produce visible photons. The microwaves create intense electrical fields in the bubble wall by dielectric polarization. If the gases adjacent to the bubble wall undergo electrical breakdown, free electrons are created, thereby providing sonoluminescence with a magnetic field effect.

  19. MALDI MS analysis of oligonucleotides: desalting by functional magnetite beads using microwave-assisted extraction.

    PubMed

    Chen, Wei-Yu; Chen, Yu-Chie

    2007-11-01

    The presence of alkali cation adductions of oligonucleotides commonly deteriorates matrix-assisted laser desorption/ionization (MALDI) mass spectra. Thus, desalting is required for oligonucleotide samples prior to MALDI MS analysis in order to prevent the mass spectra from developing poor quality. In this paper, we demonstrate a new approach to extract traces of oligonucleotides from aqueous solutions containing high concentrations of salts using microwave-assisted extraction. The C18-presenting magnetite beads, capable of absorbing microwave irradiation, are used as affinity probes for oligonucleotides with the addition of triethylammonium acetate as the counterions. This new microwave-assisted extraction approach using magnetite beads as the trapping agents and as microwave-absorbers has been demonstrated to be very effective in the selective binding of oligonucleotides from aqueous solutions. The extraction of oligonucleotides from solutions onto the C18-presenting magnetite beads takes only 30 s to enrich oligonucleotides in sufficient quantities for MALDI MS analysis. After using this desalting approach, alkali cation adductions of oligonucleotides are dramatically reduced in the MALDI mass spectra. The presence of saturated NaCl (approximately 6 M) in the oligonucleotide sample is tolerated without degrading the mass spectra. The detection limit for d(A)6 is approximately 2.8 fmol.

  20. Microwave-assisted extraction of cyclotides from Viola ignobilis.

    PubMed

    Farhadpour, Mohsen; Hashempour, Hossein; Talebpour, Zahra; A-Bagheri, Nazanin; Shushtarian, Mozhgan Sadat; Gruber, Christian W; Ghassempour, Alireza

    2016-03-15

    Cyclotides are an interesting family of circular plant peptides. Their unique three-dimensional structure, comprising a head-to-tail circular backbone chain and three disulfide bonds, confers them stability against thermal, chemical, and enzymatic degradation. Their unique stability under extreme conditions creates an idea about the possibility of using harsh extraction methods such as microwave-assisted extraction (MAE) without affecting their structures. MAE has been introduced as a potent extraction method for extraction of natural compounds, but it is seldom used for peptide and protein extraction. In this work, microwave irradiation was applied to the extraction of cyclotides. The procedure was performed in various steps using a microwave instrument under different conditions. High-performance liquid chromatography (HPLC) and matrix-assisted laser desorption/ionization time-of-flight (MALDI-TOF) results show stability of cyclotide structures on microwave radiation. The influential parameters, including time, temperature, and the ratio of solvents that are affecting the MAE potency, were optimized. Optimal conditions were obtained at 20 min of irradiation time, 1200 W of system power in 60 °C, and methanol/water at the ratio of 90:10 (v/v) as solvent. The comparison of MAE results with maceration extraction shows that there are similarities between cyclotide sequences and extraction yields. Copyright © 2015 Elsevier Inc. All rights reserved.

  1. A PC based time domain reflectometer for space station cable fault isolation

    NASA Technical Reports Server (NTRS)

    Pham, Michael; McClean, Marty; Hossain, Sabbir; Vo, Peter; Kouns, Ken

    1994-01-01

    Significant problems are faced by astronauts on orbit in the Space Station when trying to locate electrical faults in multi-segment avionics and communication cables. These problems necessitate the development of an automated portable device that will detect and locate cable faults using the pulse-echo technique known as Time Domain Reflectometry. A breadboard time domain reflectometer (TDR) circuit board was designed and developed at the NASA-JSC. The TDR board works in conjunction with a GRiD lap-top computer to automate the fault detection and isolation process. A software program was written to automatically display the nature and location of any possible faults. The breadboard system can isolate open circuit and short circuit faults within two feet in a typical space station cable configuration. Follow-on efforts planned for 1994 will produce a compact, portable prototype Space Station TDR capable of automated switching in multi-conductor cables for high fidelity evaluation. This device has many possible commercial applications, including commercial and military aircraft avionics, cable TV, telephone, communication, information and computer network systems. This paper describes the principle of time domain reflectometry and the methodology for on-orbit avionics utility distribution system repair, utilizing the newly developed device called the Space Station Time Domain Reflectometer (SSTDR).

  2. The multipurpose time-of-flight neutron reflectometer “Platypus” at Australia's OPAL reactor

    NASA Astrophysics Data System (ADS)

    James, M.; Nelson, A.; Holt, S. A.; Saerbeck, T.; Hamilton, W. A.; Klose, F.

    2011-03-01

    In this manuscript we describe the major components of the Platypus time-of-flight neutron reflectometer at the 20 MW OPAL reactor in Sydney, Australia. Platypus is a multipurpose spectrometer for the characterisation of solid thin films, materials adsorbed at the solid-liquid interface and free-liquid surfaces. It also has the capacity to study magnetic thin films using spin-polarised neutrons. Platypus utilises a white neutron beam ( λ=2-20 Å) that is pulsed using boron-coated disc chopper pairs; thus providing the capacity to tailor the wavelength resolution of the pulses to suit the system under investigation. Supermirror optical components are used to focus, deflect or spin-polarise the broad bandwidth neutron beams, and typical incident spectra are presented for each configuration. A series of neutron reflectivity datasets are presented, indicating the quality and flexibility of this spectrometer. Minimum reflectivity values of <10 -7 are observed; while maximum thickness values of 325 nm have been measured for single-component films and 483 nm for a multilayer system. Off-specular measurements have also been made to investigate in-plane features as opposed to those normal to the sample surface. Finally, the first published studies conducted using the Platypus time-of-flight neutron reflectometer are presented.

  3. GINA--a polarized neutron reflectometer at the Budapest Neutron Centre.

    PubMed

    Bottyán, L; Merkel, D G; Nagy, B; Füzi, J; Sajti, Sz; Deák, L; Endrőczi, G; Petrenko, A V; Major, J

    2013-01-01

    The setup, capabilities, and operation parameters of the neutron reflectometer GINA, the recently installed "Grazing Incidence Neutron Apparatus" at the Budapest Neutron Centre, are introduced. GINA, a dance-floor-type, constant-energy, angle-dispersive reflectometer is equipped with a 2D position-sensitive detector to study specular and off-specular scattering. Wavelength options between 3.2 and 5.7 Å are available for unpolarized and polarized neutrons. Spin polarization and analysis are achieved by magnetized transmission supermirrors and radio-frequency adiabatic spin flippers. As a result of vertical focusing by a five-element pyrolytic graphite monochromator, the reflected intensity from a 20 × 20 mm(2) sample has been doubled. GINA is dedicated to studies of magnetic films and heterostructures, but unpolarized options for non-magnetic films, membranes, and other surfaces are also provided. Shortly after its startup, reflectivity values as low as 3 × 10(-5) have been measured by the instrument. The instrument capabilities are demonstrated by a non-polarized and a polarized reflectivity experiment on a Si wafer and on a magnetic film of [(62)Ni/(nat)Ni](5) isotope-periodic layer composition. The facility is now open for the international user community. Its further development is underway establishing new sample environment options and spin analysis of off-specularly scattered radiation as well as further decreasing the background.

  4. Determination of plant growth regulators in pears by microwave-assisted extraction and liquid chromatography with electrospray ionization mass spectrometry.

    PubMed

    Mao, Xuejin; Tang, Lijuan; Tan, Ting; Wan, Yiqun

    2014-06-01

    A new method for the determination of six plant growth regulators, 3-indolylacetic acid, 3-indolepropionic acid, 2-naphthoxyacetic acid, 2,4-dicholrophenoxyacetic acid, 1-naphthlcetic acid, and methyl naphthalene-1-acetate, in pears was established by liquid chromatography with electrospray ionization mass spectrometry. In this study, a microwave-assisted extraction technique was first applied for the determination of plant growth regulators in fruit and three cleanup techniques were, respectively, investigated for the purification of pear samples. The chromatographic separation was performed on a Diamonsil C18 column by using 0.01 mol/L formic acid/ammonium formate buffer solution (pH 3.5)/methanol (35:65, v/v) as the mobile phase with a flow rate of 0.7 mL/min in 1:1 split mode. The LODs ranged from 0.3 to 1.9 μg/kg. Under optimized conditions, the average recoveries (five replicates) for six plant growth regulators (spiked at 0.01, 0.05, and 0.5 mg/kg) ranged from 78.9 to 118.0%, and the RSDs were 1.4-10.3%. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  5. Effects of low power microwave radiation on biological activity of Collagenase enzyme and growth rate of S. Cerevisiae yeast

    NASA Astrophysics Data System (ADS)

    Alsuhaim, Hamad S.; Vojisavljevic, Vuk; Pirogova, E.

    2013-12-01

    Recently, microwave radiation, a type/subset of non-ionizing electromagnetic radiation (EMR) has been widely used in industry, medicine, as well as food technology and mobile communication. Use of mobile phones is rapidly growing. Four years from now, 5.1 billion people will be mobile phone users around the globe - almost 1 billion more mobile users than the 4.3 billion people worldwide using them now. Consequently, exposure to weak radiofrequency/microwave radiation generated by these devices is markedly increasing. Accordingly, public concern about potential hazards on human health is mounting [1]. Thermal effects of radiofrequency/microwave radiation are very well-known and extensively studied. Of particular interest are non-thermal effects of microwave exposures on biological systems. Nonthermal effects are described as changes in cellular metabolism caused by both resonance absorption and induced EMR and are often accompanied by a specific biological response. Non-thermal biological effects are measurable changes in biological systems that may or may not be associated with adverse health effects. In this study we studied non-thermal effects of low power microwave exposures on kinetics of L-lactate dehydrogenase enzyme and growth rate of yeast Saccharomyces Cerevisiae strains type II. The selected model systems were continuously exposed to microwave radiation at the frequency of 968MHz and power of 10dBm using the designed and constructed (custom made) Transverse Electro-Magnetic (TEM) cell [2]. The findings reveal that microwave radiation at 968MHz and power of 10dBm inhibits L-lactate dehydrogenase enzyme activity by 26% and increases significantly (15%) the proliferation rate of yeast cells.

  6. Non-equilibrium populations of hydrogen in high-redshift galaxies

    NASA Astrophysics Data System (ADS)

    Pomerantz, Brian B.; Redmond, Kayla; Strelnitski, Vladimir

    2014-07-01

    We investigate the possibility of maser amplification in hydrogen recombination lines from the galaxies of first generation, at z≲ 30. Combining analytical and computational approaches, we show that the transitions between the hydrogen Rydberg energy levels induced by the radiation from the ionizing star and by the (warmer than currently) cosmic microwave background can produce noticeable differences in the population distribution, as compared with previous computations for contemporary H+ regions, most of which ignored the processes induced by the ionizing star's radiation. In particular, the low (n≲ 30) α-transitions show an increased tendency towards population inversion, when ionization of the H+ region is caused by a very hot star at high redshift. The resulting maser/laser amplification can increase the brightness of the emitted lines and make them detectable. However, the limiting effects of maser saturation will probably not allow maser gains to exceed one or two orders of magnitude.

  7. Parametrizing the Reionization History with the Redshift Midpoint, Duration, and Asymmetry

    NASA Astrophysics Data System (ADS)

    Trac, Hy

    2018-05-01

    A new parametrization of the reionization history is presented to facilitate robust comparisons between different observations and with theory. The evolution of the ionization fraction with redshift can be effectively captured by specifying the midpoint, duration, and asymmetry parameters. Lagrange interpolating functions are then used to construct analytical curves that exactly fit corresponding ionization points. The shape parametrizations are excellent matches to theoretical results from radiation-hydrodynamic simulations. The comparative differences for reionization observables are: ionization fraction | {{Δ }}{x}{{i}}| ≲ 0.03, 21 cm brightness temperature | {{Δ }}{T}{{b}}| ≲ 0.7 {mK}, Thomson optical depth | {{Δ }}τ | ≲ 0.001, and patchy kinetic Sunyaev–Zel’dovich angular power | {{Δ }}{D}{\\ell }| ≲ 0.1 μ {{{K}}}2. This accurate and flexible approach will allow parameter-space studies and self-consistent constraints on the reionization history from 21 cm, cosmic microwave background (CMB), and high-redshift galaxies and quasars.

  8. Development of anatomically and dielectrically accurate breast phantoms for microwave imaging applications

    NASA Astrophysics Data System (ADS)

    O'Halloran, M.; Lohfeld, S.; Ruvio, G.; Browne, J.; Krewer, F.; Ribeiro, C. O.; Inacio Pita, V. C.; Conceicao, R. C.; Jones, E.; Glavin, M.

    2014-05-01

    Breast cancer is one of the most common cancers in women. In the United States alone, it accounts for 31% of new cancer cases, and is second only to lung cancer as the leading cause of deaths in American women. More than 184,000 new cases of breast cancer are diagnosed each year resulting in approximately 41,000 deaths. Early detection and intervention is one of the most significant factors in improving the survival rates and quality of life experienced by breast cancer sufferers, since this is the time when treatment is most effective. One of the most promising breast imaging modalities is microwave imaging. The physical basis of active microwave imaging is the dielectric contrast between normal and malignant breast tissue that exists at microwave frequencies. The dielectric contrast is mainly due to the increased water content present in the cancerous tissue. Microwave imaging is non-ionizing, does not require breast compression, is less invasive than X-ray mammography, and is potentially low cost. While several prototype microwave breast imaging systems are currently in various stages of development, the design and fabrication of anatomically and dielectrically representative breast phantoms to evaluate these systems is often problematic. While some existing phantoms are composed of dielectrically representative materials, they rarely accurately represent the shape and size of a typical breast. Conversely, several phantoms have been developed to accurately model the shape of the human breast, but have inappropriate dielectric properties. This study will brie y review existing phantoms before describing the development of a more accurate and practical breast phantom for the evaluation of microwave breast imaging systems.

  9. Early Breast Cancer Diagnosis Using Microwave Imaging via Space-Frequency Algorithm

    NASA Astrophysics Data System (ADS)

    Vemulapalli, Spandana

    The conventional breast cancer detection methods have limitations ranging from ionizing radiations, low specificity to high cost. These limitations make way for a suitable alternative called Microwave Imaging, as a screening technique in the detection of breast cancer. The discernible differences between the benign, malignant and healthy breast tissues and the ability to overcome the harmful effects of ionizing radiations make microwave imaging, a feasible breast cancer detection technique. Earlier studies have shown the variation of electrical properties of healthy and malignant tissues as a function of frequency and hence stimulates high bandwidth requirement. A Ultrawideband, Wideband and Narrowband arrays have been designed, simulated and optimized for high (44%), medium (33%) and low (7%) bandwidths respectively, using the EM (electromagnetic software) called FEKO. These arrays are then used to illuminate the breast model (phantom) and the received backscattered signals are obtained in the near field for each case. The Microwave Imaging via Space-Time (MIST) beamforming algorithm in the frequency domain, is next applied to these near field backscattered monostatic frequency response signals for the image reconstruction of the breast model. The main purpose of this investigation is to access the impact of bandwidth and implement a novel imaging technique for use in the early detection of breast cancer. Earlier studies show the implementation of the MIST imaging algorithm on the time domain signals via a frequency domain beamformer. The performance evaluation of the imaging algorithm on the frequency response signals has been carried out in the frequency domain. The energy profile of the breast in the spatial domain is created via the frequency domain Parseval's theorem. The beamformer weights calculated using these the MIST algorithm (not including the effect of the skin) has been calculated for Ultrawideband, Wideband and Narrowband arrays, respectively. Quality metrics such as dynamic range, radiometric resolution etc. are also evaluated for all the three types of arrays.

  10. Microwave assisted synthesis for A2E and development of LC-ESI-MS method for quantification of ocular bisretinoids in human retina.

    PubMed

    Kotnala, A; Senthilkumari, S; Halder, N; Kumar, A; Velpandian, T

    2018-01-15

    To develop a microwave assisted method for the rapid synthesis of A2E and also to develop a method to quantify N-retinylidene-N-retinylethanolamine(A2E), all-trans retinal dimer (ATRD), A2-glycerophospho ethanolamine (A2GPE), dihydropyridine phosphatidyl ethanolamine (A2DHPE) and monofuran A2E (MFA2E) in age matched retina. The development of microwave assisted synthesis of A2E, its purification and characterization for its utility in quantification in human retina. The semi-quantitative method development using LC-ESI-MS, LC-ESI-MS/MS and LC-APCI-MS/MS from pooled macula and peripheral retina for the bisretinoid analysis has been done. Maximum A2E conversion using microwave assisted process took place at 80°C for 45min with a yield of 55.01%. Highly sensitive and specific mass spectrometric method was developed using reverse phase C-18 separation with positive electrospray ionization and positive atmospheric phase chemical ionization of tandom mass spectrometry. A gradient mobile phase separation was achieved using water and methanol with 0.1% TFA. Multiple reaction monitoring acquisition for ESI and APCI was performed at ATRD m/z 551.2/522.2, A2GPE m/z 746.4/729.5, A2DHPEm/z 594.4/576.5, MFA2E m/z 608.2/591.2, A2E m/z 592.4/418.2. Method was validated using LC-ESI-SIM mode to determine selectivity, linearity, sensitivity, precision and accuracy. An attempt towards optimization of the synthetic procedure of A2E was made so as to reduce the lengthy reaction time without compromising the yield. Developed method was capable enough for the detection of low level of bisretinids in retina. Copyright © 2017 Elsevier B.V. All rights reserved.

  11. Health effects of prenatal radiation exposure.

    PubMed

    Williams, Pamela M; Fletcher, Stacy

    2010-09-01

    Pregnant women are at risk of exposure to nonionizing and ionizing radiation resulting from necessary medical procedures, workplace exposure, and diagnostic or therapeutic interventions before the pregnancy is known. Nonionizing radiation includes microwave, ultrasound, radio frequency, and electromagnetic waves. In utero exposure to nonionizing radiation is not associated with significant risks; therefore, ultrasonography is safe to perform during pregnancy. Ionizing radiation includes particles and electromagnetic radiation (e.g., gamma rays, x-rays). In utero exposure to ionizing radiation can be teratogenic, carcinogenic, or mutagenic. The effects are directly related to the level of exposure and stage of fetal development. The fetus is most susceptible to radiation during organogenesis (two to seven weeks after conception) and in the early fetal period (eight to 15 weeks after conception). Noncancer health effects have not been detected at any stage of gestation after exposure to ionizing radiation of less than 0.05 Gy (5 rad). Spontaneous abortion, growth restriction, and mental retardation may occur at higher exposure levels. The risk of cancer is increased regardless of the dose. When an exposure to ionizing radiation occurs, the total fetal radiation dose should be estimated and the mother counseled about the potential risks so that she can make informed decisions about her pregnancy management.

  12. Handheld directional reflectometer: an angular imaging device to measure BRDF and HDR in real time

    NASA Astrophysics Data System (ADS)

    Mattison, Phillip R.; Dombrowski, Mark S.; Lorenz, James M.; Davis, Keith J.; Mann, Harley C.; Johnson, Philip; Foos, Bryan

    1998-10-01

    Many applications require quantitative measurements of surface light scattering, including quality control on production lines, inspection of painted surfaces, inspection of field repairs, etc. Instruments for measuring surface scattering typically fall into two main categories, namely bidirectional reflectometers, which measure the angular distribution of scattering, and hemispherical directional reflectometers, which measure the total scattering into the hemisphere above the surface. Measurement of the bi-directional reflectance distribution function (BRDF) gives the greatest insight into how light is scattered from a surface. Measurements of BRDF, however, are typically very lengthy measurements taken by moving a source and detector to map the scattering. Since BRDF has four angular degrees of freedom, such measurements can require hours to days to complete. Instruments for measuring BRDF are also typically laboratory devices, although a field- portable bi-directional reflectometer does exist. Hemispherical directional reflectance (HDR) is a much easier measurement to make, although care must be taken to use the proper methodology when measuring at wavelengths beyond 10 micrometer, since integrating spheres (typically used to make such measurements) are very energy inefficient and lose their integrating properties at very long wavelengths. A few field- portable hemispherical directional reflectometers do exist, but typically measure HDR only at near-normal angles. Boeing Defense and Space Group and Surface Optics Corporation, under a contract from the Air Force Research Laboratory, have developed a new hand-held instrument capable of measuring both BRDF and HDR using a unique, patented angular imaging technique. A combination of an hemi-ellipsoidal mirror and an additional lens translate the angular scatter from a surface into a two-dimensional spatial distribution, which is recorded by an imaging array. This configuration fully maps the scattering from a half-hemisphere above the surface with more than 30,000 angularly-resolved points and update rates to 60 measurements per second. The instrument then computes HDR from the measured BDR. For ease of use, the instrument can also compare both the BRDF and HDR to preset limits, generating a Pass/Fail indicator for HDR and a high-acceptable-low image display of BRDF. Beam incidence elevation is variable from normal incidence ((theta) equals 0 degrees) to 5 degrees off grazing ((theta) equals 85 degrees), while scattering is measured to nearly 90 degrees off normal. Such capability is extremely important for any application requiring knowledge of surface appearance at oblique viewing angles. The current instrument operates over the range of 3 micrometer to 12 micrometer, with extension into the visible band possible.

  13. Comparative study on ambient ionization methods for direct analysis of navel orange tissues by mass spectrometry.

    PubMed

    Zhang, Hua; Bibi, Aisha; Lu, Haiyan; Han, Jing; Chen, Huanwen

    2017-08-01

    It is of sustainable interest to improve the sensitivity and selectivity of the ionization process, especially for direct analysis of complex samples without matrix separation. Herein, four ambient ionization methods including desorption atmospheric pressure chemical ionization (DAPCI), heat-assisted desorption atmospheric pressure chemical ionization (heat-assisted DAPCI), microwave plasma torch (MPT) and internal extractive electrospray ionization (iEESI) were employed for comparative analysis of the navel orange tissue samples by mass spectrometry. The volatile organic compounds (e.g. ethanol, vanillin, leaf alcohol and jasmine lactone) were successfully detected by non-heat-assisted DAPCI-MS, while semi-volatile organic compounds (e.g. 1-nonanol and ethyl nonanoate) together with low abundance of non-volatile organic compounds (e.g. sinensetin and nobiletin) were obtained by heat-assisted DAPCI-MS. Typical nonvolatile organic compounds [e.g. 5-(hydroxymethyl)furfural and glucosan] were sensitively detected with MPT-MS. Compounds of high polarity (e.g. amino acids, alkaloids and sugars) were easily profiled with iEESI-MS. Our data showed that more analytes could be detected when more energy was delivered for the desorption ionization purpose; however, heat-sensitive analytes would not be detected once the energy input exceeded the dissociation barriers of the analytes. For the later cases, soft ionization methods such as iEESI were recommended to sensitively profile the bioanalytes of high polarity. Copyright © 2017 John Wiley & Sons, Ltd. Copyright © 2017 John Wiley & Sons, Ltd.

  14. New progress of high current gasdynamic ion source (invited)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Skalyga, V., E-mail: skalyga@ipfran.ru; Sidorov, A.; Vodopyanov, A.

    2016-02-15

    The experimental and theoretical research carried out at the Institute of Applied Physics resulted in development of a new type of electron cyclotron resonance ion sources (ECRISs)—the gasdynamic ECRIS. The gasdynamic ECRIS features a confinement mechanism in a magnetic trap that is different from Geller’s ECRIS confinement, i.e., the quasi-gasdynamic one similar to that in fusion mirror traps. Experimental studies of gasdynamic ECRIS were performed at Simple Mirror Ion Source (SMIS) 37 facility. The plasma was created by 37.5 and 75 GHz gyrotron radiation with power up to 100 kW. High frequency microwaves allowed to create and sustain plasma withmore » significant density (up to 8 × 10{sup 13} cm{sup −3}) and to maintain the main advantages of conventional ECRIS such as high ionization degree and low ion energy. Reaching such high plasma density relies on the fact that the critical density grows with the microwave frequency squared. High microwave power provided the average electron energy on a level of 50-300 eV enough for efficient ionization even at neutral gas pressure range of 10{sup −4}–10{sup −3} mbar. Gasdynamic ECRIS has demonstrated a good performance producing high current (100-300 mA) multi-charged ion beams with moderate average charge (Z = 4-5 for argon). Gasdynamic ECRIS has appeared to be especially effective in low emittance hydrogen and deuterium beams formation. Proton beams with current up to 500 emA and RMS emittance below 0.07 π ⋅ mm ⋅ mrad have been demonstrated in recent experiments.« less

  15. Microwave continuum measurements and estimates of mass loss rates for cool giants and supergiants

    NASA Technical Reports Server (NTRS)

    Drake, S. A.; Linsky, J. L.

    1986-01-01

    Attention is given to the results of a sensitive, 6-cm radio continuum survey conducted with the NRAO VLA of 39 of the nearest single cool giants and supergiants of G0-M5 spectral types; the survey was conducted in order to obtain accurate measurements of the mass loss rates of ionized gas for a representative sample of such stars, in order to furnish constraints for, and a better understanding of, the total mass loss rates. The inferred angular diameters for the cool giant sources are noted to be twice as large as photospheric angular diameters, implying that these stars are surrounded by extended chromospheres containing warm partially ionized gas.

  16. Distributed fiber sensing system with wide frequency response and accurate location

    NASA Astrophysics Data System (ADS)

    Shi, Yi; Feng, Hao; Zeng, Zhoumo

    2016-02-01

    A distributed fiber sensing system merging Mach-Zehnder interferometer and phase-sensitive optical time domain reflectometer (Φ-OTDR) is demonstrated for vibration measurement, which requires wide frequency response and accurate location. Two narrow line-width lasers with delicately different wavelengths are used to constitute the interferometer and reflectometer respectively. A narrow band Fiber Bragg Grating is responsible for separating the two wavelengths. In addition, heterodyne detection is applied to maintain the signal to noise rate of the locating signal. Experiment results show that the novel system has a wide frequency from 1 Hz to 50 MHz, limited by the sample frequency of data acquisition card, and a spatial resolution of 20 m, according to 200 ns pulse width, along 2.5 km fiber link.

  17. Influence of a falling edge on high power microwave pulse combination

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Li, Jiawei; Huang, Wenhua; Science and Technology on High Power Microwave Laboratory, Northwest Institute of Nuclear Technology, Xi'an 710024

    This paper presents an explanation of the influence of a microwave falling edge on high-power microwave pulse combination. Through particle-in-cell simulations, we discover that the falling edge is the driving factor that limits the output power of the combined pulses. We demonstrate that the space charge field, which accumulates to become comparable to the E-field at the falling edge of the former pulse, will trap the electrons in the gas layer and decrease its energy to attain a high ionization rate. Hence, avalanche discharge, caused by trapped electrons, makes the plasma density to approach the critical density and cuts offmore » the latter microwave pulse. An X-band combination experiment is conducted with different pulse intervals. This experiment confirms that the high density plasma induced by the falling edge can cut off the latter pulse, and that the time required for plasma recombination in the transmission channel is several microseconds. To ensure a high output power for combined pulses, the latter pulse should be moved ahead of the falling edge of the former one, and consequently, a beat wave with high peak power becomes the output by adding two pulses with normal amplitudes.« less

  18. Self-consistent fluid modeling and simulation on a pulsed microwave atmospheric-pressure argon plasma jet

    NASA Astrophysics Data System (ADS)

    Chen, Zhaoquan; Yin, Zhixiang; Chen, Minggong; Hong, Lingli; Xia, Guangqing; Hu, Yelin; Huang, Yourui; Liu, Minghai; Kudryavtsev, A. A.

    2014-10-01

    In present study, a pulsed lower-power microwave-driven atmospheric-pressure argon plasma jet has been introduced with the type of coaxial transmission line resonator. The plasma jet plume is with room air temperature, even can be directly touched by human body without any hot harm. In order to study ionization process of the proposed plasma jet, a self-consistent hybrid fluid model is constructed in which Maxwell's equations are solved numerically by finite-difference time-domain method and a fluid model is used to study the characteristics of argon plasma evolution. With a Guass type input power function, the spatio-temporal distributions of the electron density, the electron temperature, the electric field, and the absorbed power density have been simulated, respectively. The simulation results suggest that the peak values of the electron temperature and the electric field are synchronous with the input pulsed microwave power but the maximum quantities of the electron density and the absorbed power density are lagged to the microwave power excitation. In addition, the pulsed plasma jet excited by the local enhanced electric field of surface plasmon polaritons should be the discharge mechanism of the proposed plasma jet.

  19. Ultrasound/microwave-assisted solid-liquid-solid dispersive extraction with high-performance liquid chromatography coupled to tandem mass spectrometry for the determination of neonicotinoid insecticides in Dendrobium officinale.

    PubMed

    Zheng, Shuilian; Wu, Huizhen; Li, Zuguang; Wang, Jianmei; Zhang, Hu; Qian, Mingrong

    2015-01-01

    A one-step ultrasound/microwave-assisted solid-liquid-solid dispersive extraction procedure was used for the simultaneous determination of eight neonicotinoids (dinotefuran, nitenpyram, thiamethoxam, clothianidin, imidacloprid, acetamiprid, thiacloprid, imidaclothiz) in dried Dendrobium officinale by liquid chromatography combined with electrospray ionization triple quadrupole tandem mass spectrometry in multiple reaction monitoring mode. The samples were quickly extracted by acetonitrile and cleaned up by the mixed dispersing sorbents including primary secondary amine, C18 , and carbon-GCB. Parameters that could influence the ultrasound/microwave-assisted extraction efficiency such as microwave irradiation power, ultrasound irradiation power, temperature, and solvent were investigated. Recovery studies were performing well (70.4-113.7%) at three examined spiking levels (10, 50, and 100 μg/kg). Meanwhile, the limits of quantification for the neonicotinoids ranged from 0.87 to 1.92 μg/kg. The method showed good linearity in the concentration range of 1-100 μg/L with correlation coefficients >0.99. This quick and useful analytical method could provide a basis for monitoring neonicotinoid insecticide residues in herbs. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  20. Influence of a falling edge on high power microwave pulse combination

    NASA Astrophysics Data System (ADS)

    Li, Jiawei; Huang, Wenhua; Zhu, Qi; Xiao, Renzhen; Shao, Hao

    2016-07-01

    This paper presents an explanation of the influence of a microwave falling edge on high-power microwave pulse combination. Through particle-in-cell simulations, we discover that the falling edge is the driving factor that limits the output power of the combined pulses. We demonstrate that the space charge field, which accumulates to become comparable to the E-field at the falling edge of the former pulse, will trap the electrons in the gas layer and decrease its energy to attain a high ionization rate. Hence, avalanche discharge, caused by trapped electrons, makes the plasma density to approach the critical density and cuts off the latter microwave pulse. An X-band combination experiment is conducted with different pulse intervals. This experiment confirms that the high density plasma induced by the falling edge can cut off the latter pulse, and that the time required for plasma recombination in the transmission channel is several microseconds. To ensure a high output power for combined pulses, the latter pulse should be moved ahead of the falling edge of the former one, and consequently, a beat wave with high peak power becomes the output by adding two pulses with normal amplitudes.

  1. Exposure assessment of microwave ovens and impact on total exposure in WLANs

    PubMed Central

    Plets, David; Verloock, Leen; Van Den Bossche, Matthias; Tanghe, Emmeric; Joseph, Wout; Martens, Luc

    2016-01-01

    In situ exposure of electric fields of 11 microwave ovens is assessed in an occupational environment and in an office. Measurements as a function of distance without load and with a load of 275 ml of tap water were performed at distances of <1 m. The maximal measured field was 55.2 V m−1 at 5 cm from the oven (without load), which is 2.5 and 1.1 times below the International Commission on Non-Ionizing Radiation Protection reference level for occupational exposure and general public exposure, respectively. For exposure at distances of >1 m, a model of the electric field in a realistic environment is proposed. In an office scenario, switching on a microwave oven increases the median field strength from 91 to 145 mV m−1 (+91 %) in a traditional Wireless Local Area Network (WLAN) deployment and from 44 to 92 mV m−1 (+109 %) in an exposure-optimised WLAN deployment. PMID:25956787

  2. The Ionization History of The Intergalactic Medium:

    NASA Technical Reports Server (NTRS)

    Madau, Piero

    2003-01-01

    The funded project seeked a unified description of the ionization, physical structure, and evolution of the intergalactic medium (IGM) and quasar intervening absorption systems. We proposed to conduct theoretical studies of the IGM and QSO absorbers in the context of current theories of galaxy formation, developing and using numerical and analytical techniques aimed at a detailed modeling of cosmological radiative transfer, gas dynamics, and thermal and ionization evolution. The ionization history of the IGM has important implications for the metagalactic UV background, intergalactic helium absorption 21-cm tomography, metal absorption systems, fluctuations in the microwave background, and the cosmic rate of structure and star formation. All the original objectives of our program have been achieved, and the results widely used and quoted by the community. Indeed, they remain relevant as the level and complexity of research in this area has increased substantially since our proposal was submitted, due to new discoveries on galaxy formation and evolution, a flood of high-quality data on the distant universe, new theoretical ideas and direct numerical simulations of structure formation in hierarchical clustering theories.

  3. Facile MALDI-MS analysis of neutral glycans in NaOH-doped matrixes: microwave-assisted deglycosylation and one-step purification with diamond nanoparticles.

    PubMed

    Tzeng, Yan-Kai; Chang, Cheng-Chun; Huang, Chien-Ning; Wu, Chih-Che; Han, Chau-Chung; Chang, Huan-Cheng

    2008-09-01

    A streamlined protocol has been developed to accelerate, simplify, and enhance matrix-assisted laser desorption/ionization (MALDI) time-of-flight (TOF) mass spectrometry (MS) of neutral underivatized glycans released from glycoproteins. It involved microwave-assisted enzymatic digestion and release of glycans, followed by rapid removal of proteins and peptides with carboxylated/oxidized diamond nanoparticles, and finally treating the analytes with NaOH before mixing them with acidic matrix (such as 2,5-dihydroxybenzoic acid) to suppress the formation of both peptide and potassiated oligosaccharide ions in MS analysis. The advantages of this protocol were demonstrated with MALDI-TOF-MS of N-linked glycans released from ovalbumin and ribonuclease B.

  4. A History of the International Commission on Non-Ionizing Radiation Protection.

    PubMed

    Repacholi, M H

    2017-10-01

    Concern about health risks from exposure to non-ionizing radiation (NIR) commenced in the 1950s after tracking radars were first introduced during the Second World War. Soon after, research on possible biological effects of microwave radiation in the former Soviet Union and the U.S. led to public and worker exposure limits being much lower in Eastern European than in Western countries, mainly because of different protection philosophies. As public concern increased, national authorities began introducing legislation to limit NIR exposures from domestic microwave ovens and workplace devices such as visual display units. The International Radiation Protection Association (IRPA) was formed in 1966 to represent national radiation protection societies. To address NIR protection issues, IRPA established a Working Group in 1974, then a Study Group in 1975, and finally the International NIR Committee (INIRC) in 1977. INIRC's publications quickly became accepted worldwide, and it was logical that it should become an independent commission. IRPA finally established the International Commission on Non-Ionizing Radiation Protection (ICNIRP), chartering its remit in 1992, and defining NIR as electromagnetic radiation (ultraviolet, visible, infrared), electromagnetic waves and fields, and infra- and ultrasound. ICNIRP's guidelines have been incorporated into legislation or adopted as standards in many countries. While ICNIRP has been subjected to criticism and close scrutiny by the public, media, and activists, it has continued to issue well-received, independent, science-based protection advice. This paper summarizes events leading to the formation of ICNIRP, its key activities up to 2017, ICNIRP's 25th anniversary year, and its future challenges.

  5. "Untangling the centimetre-wavelength sky"

    NASA Astrophysics Data System (ADS)

    Leahy, J. Patrick

    2015-08-01

    The global SED of the Milky Way reaches a minimum at about 80 GHz. In the decade below this, three emission processes predominate: synchrotron, from cosmic ray leptons spiralling in the Galactic magnetic field; free-free, from ionized gas in nebulae and the diffuse warm ionized medium; and anomalous microwaves (AME), believed to be dipole emission from spinning very small dust grains. Each component provides unique diagnostics: synchroton traces the lepton energy spectrum near 20 GeV and reveals the local and global structure of the Galactic magnetic field, free-free probes ionized gas where the usual H-alpha tracer is obscured, and AME traces a new interstellar component, whose relation to the general dust population can now be explored. In total intensity, accurate separation of these components is a hard problem not yet completely solved, mainly due to the spatial variability of the AME spectrum, which in the Planck 2015 analysis dominates the SED between 20 and 60 GHz. New large-area surveys in the frequency decade below the satellite microwave will, in combination with Planck and WMAP, will provide a far more robust determination of each component.In contrast to the confused situation in total intensity, only synchrotron contributes significant polarization in our band, and WMAP and Planck give a clear view of the polarized synchrotron sky, for the first time effectively free of Faraday rotation and depolarization. New ground-based microwave polarization surveys such as GMIMS, S-PASS, C-BASS, and QUIJOTE, will add much higher sensitivity and also have the high frequency resolution needed to trace the line-of-sight component of the magnetic field via Faraday synthesis. The polarization along the Galactic plane constrains models of the global Galactic magnetic field. Away from the plane, polarization probes the tangling of the field in the Galactic halo and clarifies the structure of the Galactic loops and spurs, which impose a large-scale coherence on the synchrotron sky. These loops are the largest objects in the sky, but their nature and distance is still controversial, and will be clarified by on-going studies of the ISM structure within 1-2 kpc of the Sun.

  6. Rotational shear effects on edge harmonic oscillations in DIII-D quiescent H-mode discharges

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chen, Xi; Burrell, Keith H.; Ferraro, Nathaniel M.

    In the quiescent H-mode (QH-mode) regime, edge harmonic oscillations (EHO) play an important role in avoiding transient edge localized mode (ELM) power fluxes by providing benign and continuous edge particle transport. A detailed theoretical, experimental and modeling comparison has been made of low-n (n ≤ 5) EHO in DIII-D QH-mode plasmas. The calculated linear eigenmode structure from the extended MHD code M3D-C1 matches closely the coherent EHO properties from external magnetics data and internal measurements using the ECE, BES, ECE-Imaging and microwave imaging reflectometer (MIR) diagnostics, as well as the kink/peeling mode properties found by the ideal MHD code ELITE.more » Numerical investigations indicate that the low-n EHO-like solutions from M3D-C1 are destabilized by the rotational shear while high-n modes are stabilized. This effect is independent of the rotation direction, suggesting that EHO can be destabilized in principle with rotation in either direction. Furthermore, the modeling results are consistent with observations of the EHO, support the proposed theory of the EHO as a rotational shear driven kink/peeling mode, and improve our understanding and confidence in creating and sustaining QH-mode in present and future devices.« less

  7. Electrostatic-probe measurements of plasma parameters for two reentry flight experiments at 25000 feet per second

    NASA Technical Reports Server (NTRS)

    Jones, W. L., Jr.; Cross, A. E.

    1972-01-01

    Unique plasma diagnostic measurements at high altitudes from two geometrically similar blunt body reentry spacecraft using electrostatic probe rakes are presented. The probes measured the positive ion density profiles (shape and magnitude) during the two flights. The probe measurements were made at eight discrete points (1 cm to 7 cm) from the vehicle surface in the aft flow field of the spacecraft over the altitude range of 85.3 to 53.3 km (280,000 to 175,000 ft) with measured densities of 10 to the 8th power to 10 to the 12th power electrons/cu cm, respectively. Maximum reentry velocity for each spacecraft was approximately 7620 meters/second (25,000 ft/sec). In the first flight experiment, water was periodically injected into a flow field which was contaminated by ablation products from the spacecraft nose region. The nonablative nose of the second spacecraft thereby minimized flow field contamination. Comparisons of the probe measured density profiles with theoretical calculations are presented with discussion as to the probable cause of significant disagreement. Also discussed are the correlation of probe measurements with vehicle angle of attack motions and the good high altitude agreement between electron densities inferred from the probe measurements, VHF antenna measurements, and microwave reflectometer diagnostic measurements.

  8. Rotational shear effects on edge harmonic oscillations in DIII-D quiescent H-mode discharges

    DOE PAGES

    Chen, Xi; Burrell, Keith H.; Ferraro, Nathaniel M.; ...

    2016-06-21

    In the quiescent H-mode (QH-mode) regime, edge harmonic oscillations (EHO) play an important role in avoiding transient edge localized mode (ELM) power fluxes by providing benign and continuous edge particle transport. A detailed theoretical, experimental and modeling comparison has been made of low-n (n ≤ 5) EHO in DIII-D QH-mode plasmas. The calculated linear eigenmode structure from the extended MHD code M3D-C1 matches closely the coherent EHO properties from external magnetics data and internal measurements using the ECE, BES, ECE-Imaging and microwave imaging reflectometer (MIR) diagnostics, as well as the kink/peeling mode properties found by the ideal MHD code ELITE.more » Numerical investigations indicate that the low-n EHO-like solutions from M3D-C1 are destabilized by the rotational shear while high-n modes are stabilized. This effect is independent of the rotation direction, suggesting that EHO can be destabilized in principle with rotation in either direction. Furthermore, the modeling results are consistent with observations of the EHO, support the proposed theory of the EHO as a rotational shear driven kink/peeling mode, and improve our understanding and confidence in creating and sustaining QH-mode in present and future devices.« less

  9. Alfven resonance mode conversion in the Phaedrus-T current drive experiments: Modelling and density fluctuations measurements

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Vukovic, M.; Harper, M.; Breun, R.

    1995-12-31

    Current drive experiments on the Phaedrus-T tokamak performed with a low field side two-strap fast wave antenna at frequencies below {omega}{sub cH} show loop volt drops of up to 30% with strap phasing (0, {pi}/2). RF induced density fluctuations in the plasma core have also been observed with a microwave reflectometer. It is believed that they are caused by kinetic Alfven waves generated by mode conversion of fast waves at the Alfven resonance. Correlation of the observed density fluctuations with the magnitude of the {Delta}V{sub loop} suggest that the {Delta}V{sub loop} is attributable to current drive/heating due to mode convertedmore » kinetic Alfven waves. The toroidal cold plasma wave code LION is used to model the Alfven resonance mode conversion surfaces in the experiments while the cylindrical hot plasma kinetic wave code ISMENE is used to model the behavior of kinetic Alfven waves at the Alfven resonance location. Initial results obtained from limited density, magnetic field, antenna phase, and impurity scans show good agreement between the RF induced density fluctuations and the predicted behavior of the kinetic Alfven waves. Detailed comparisons between the density fluctuations and the code predictions are presented.« less

  10. Application of reflectometry power flow for magnetic field pitch angle measurements in tokamak plasmas (invited).

    PubMed

    Gourdain, P-A; Peebles, W A

    2008-10-01

    Reflectometry has successfully demonstrated measurements of many important parameters in high temperature tokamak fusion plasmas. However, implementing such capabilities in a high-field, large plasma, such as ITER, will be a significant challenge. In ITER, the ratio of plasma size (meters) to the required reflectometry source wavelength (millimeters) is significantly larger than in existing fusion experiments. This suggests that the flow of the launched reflectometer millimeter-wave power can be realistically analyzed using three-dimensional ray tracing techniques. The analytical and numerical studies presented will highlight the fact that the group velocity (or power flow) of the launched microwaves is dependent on the direction of wave propagation relative to the internal magnetic field. It is shown that this dependence strongly modifies power flow near the cutoff layer in a manner that embeds the local magnetic field direction in the "footprint" of the power returned toward the launch antenna. It will be shown that this can potentially be utilized to locally determine the magnetic field pitch angle at the cutoff location. The resultant beam drift and distortion due to magnetic field and relativistic effects also have significant consequences on the design of reflectometry systems for large, high-field fusion experiments. These effects are discussed in the context of the upcoming ITER burning plasma experiment.

  11. Rotational shear effects on edge harmonic oscillations in DIII-D quiescent H-mode discharges

    NASA Astrophysics Data System (ADS)

    Chen, Xi; Burrell, K. H.; Ferraro, N. M.; Osborne, T. H.; Austin, M. E.; Garofalo, A. M.; Groebner, R. J.; Kramer, G. J.; Luhmann, N. C., Jr.; McKee, G. R.; Muscatello, C. M.; Nazikian, R.; Ren, X.; Snyder, P. B.; Solomon, W. M.; Tobias, B. J.; Yan, Z.

    2016-07-01

    In the quiescent H-mode (QH-mode) regime, edge harmonic oscillations (EHOs) play an important role in avoiding transient edge localized mode (ELM) power fluxes by providing benign and continuous edge particle transport. A detailed theoretical, experimental and modeling comparison has been made of low-n (n  ⩽  5) EHO in DIII-D QH-mode plasmas. The calculated linear eigenmode structure from the extended magentoohydrodynamics (MHD) code M3D-C1 matches closely the coherent EHO properties from external magnetics data and internal measurements using the ECE, BES, ECE-Imaging and microwave imaging reflectometer (MIR) diagnostics, as well as the kink/peeling mode properties found by the ideal MHD code ELITE. Numerical investigations indicate that the low-n EHO-like solutions from M3D-C1 are destabilized by rotation and/or rotational shear while high-n modes are stabilized. This effect is independent of the rotation direction, suggesting that EHOs can be destabilized in principle with rotation in either direction. The modeling results are consistent with observations of EHO, support the proposed theory of the EHO as a low-n kink/peeling mode destabilized by edge E  ×  B rotational shear, and improve our understanding and confidence in creating and sustaining QH-mode in present and future devices.

  12. Plasma column and nano-powder generation from solid titanium by localized microwaves in air

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Popescu, Simona; Jerby, Eli, E-mail: jerby@eng.tau.ac.il; Meir, Yehuda

    2015-07-14

    This paper studies the effect of a plasma column ejected from solid titanium by localized microwaves in an ambient air atmosphere. Nanoparticles of titanium dioxide (titania) are found to be directly synthesized in this plasma column maintained by the microwave energy in the cavity. The process is initiated by a hotspot induced by localized microwaves, which melts the titanium substrate locally. The molten hotspot emits ionized titanium vapors continuously into the stable plasma column, which may last for more than a minute duration. The characterization of the dusty plasma obtained is performed in-situ by small-angle X-ray scattering (SAXS), optical spectroscopy,more » and microwave reflection analyses. The deposited titania nanoparticles are structurally and morphologically analyzed by ex-situ optical and scanning-electron microscope observations, and also by X-ray diffraction. Using the Boltzmann plot method combined with the SAXS results, the electron temperature and density in the dusty plasma are estimated as ∼0.4 eV and ∼10{sup 19 }m{sup −3}, respectively. The analysis of the plasma product reveals nanoparticles of titania in crystalline phases of anatase, brookite, and rutile. These are spatially arranged in various spherical, cubic, lamellar, and network forms. Several applications are considered for this process of titania nano-powder production.« less

  13. A simultaneous multiple angle-wavelength dispersive X-ray reflectometer using a bent-twisted polychromator crystal

    PubMed Central

    Matsushita, Tadashi; Arakawa, Etsuo; Voegeli, Wolfgang; Yano, Yohko F.

    2013-01-01

    An X-ray reflectometer has been developed, which can simultaneously measure the whole specular X-ray reflectivity curve with no need for rotation of the sample, detector or monochromator crystal during the measurement. A bent-twisted crystal polychromator is used to realise a convergent X-ray beam which has continuously varying energy E (wavelength λ) and glancing angle α to the sample surface as a function of horizontal direction. This convergent beam is reflected in the vertical direction by the sample placed horizontally at the focus and then diverges horizontally and vertically. The normalized intensity distribution of the reflected beam measured downstream of the specimen with a two-dimensional pixel array detector (PILATUS 100K) represents the reflectivity curve. Specular X-ray reflectivity curves were measured from a commercially available silicon (100) wafer, a thin gold film coated on a silicon single-crystal substrate and the surface of liquid ethylene glycol with data collection times of 0.01 to 1000 s using synchrotron radiation from a bending-magnet source of a 6.5 GeV electron storage ring. A typical value of the simultaneously covered range of the momentum transfer was 0.01–0.45 Å−1 for the silicon wafer sample. The potential of this reflectometer for time-resolved X-ray studies of irreversible structural changes is discussed. PMID:23254659

  14. ON THE IONIZATION OF LUMINOUS WMAP SOURCES IN THE GALAXY: CONSTRAINTS FROM He RECOMBINATION LINE OBSERVATIONS WITH THE GBT

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Roshi, D. Anish; Plunkett, Adele; Rosero, Viviana

    2012-04-10

    Murray and Raham used the Wilkinson Microwave Anisotropy Probe (WMAP) free-free foreground emission map to identify diffuse ionized regions (DIRs) in the Galaxy. It has been found that the 18 most luminous WMAP sources produce more than half of the total ionizing luminosity of the Galaxy. We observed radio recombination lines (RRLs) toward the luminous WMAP source G49.75-0.45 with the Green Bank Telescope near 1.4 GHz. Hydrogen RRL is detected toward the source but no helium line is detected, implying that n{sub He{sup +}}/n{sub H{sup +}}< 0.024. This limit puts severe constraint on the ionizing spectrum. The total ionizing luminositymore » of G49 (3.05 Multiplication-Sign 10{sup 51} s{sup -1}) is {approx}2.8 times the luminosity of all radio H II regions within this DIR and this is generally the case for other WMAP sources. Murray and Rahman propose that the additional ionization is due to massive clusters ({approx}7.5 Multiplication-Sign 10{sup 3} M{sub Sun} for G49) embedded in the WMAP sources. Such clusters should produce enough photons with energy {>=}24.6 eV to fully ionize helium in the DIR. Our observations rule out a simple model with G49 ionized by a massive cluster. We also considered 'leaky' H II region models for the ionization of the DIR, suggested by Lockman and Anantharamaiah, but these models also cannot explain our observations. We estimate that the helium ionizing photons need to be attenuated by {approx}>10 times to explain the observations. If selective absorption of He ionizing photons by dust is causing this additional attenuation, then the ratio of dust absorption cross sections for He and H ionizing photons should be {approx}>6.« less

  15. Developments in the realization of diffuse reflectance scales at NPL

    NASA Astrophysics Data System (ADS)

    Chunnilall, Christopher J.; Clarke, Frank J. J.; Shaw, Michael J.

    2005-08-01

    The United Kingdom scales for diffuse reflectance are realized using two primary instruments. In the 360 nm to 2.5 μm spectral region the National Reference Reflectometer (NRR) realizes absolute measurement of reflectance and radiance factor by goniometric measurements. Hemispherical reflectance scales are obtained through the spatial integration of these goniometric measurements. In the mid-infrared region (2.5 μm - 55 μm) the hemispherical reflectance scale is realized by the Absolute Hemispherical Reflectometer (AHR). This paper describes some of the uncertainties resulting from errors in aligning the NRR and non-ideality in sample topography, together with its use to carry out measurements in the 1 - 1.6 μm region. The AHR has previously been used with grating spectrometers, and has now been coupled to a Fourier transform spectrometer.

  16. The argument for a unified approach to non-ionizing radiation protection

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Perala, R.A.; Rigden, G.J.; Pfeffer, R.A.

    1993-12-01

    In the next decade military equipment will be required to operate in severe electromagnetic environments. These environments are expected to contain most non-ionizing frequencies (D.C. to GHz), from hostile and/or non-hostile sources, and be severe enough to cause temporary upset or even catastrophic failure of electronic equipment. Over the past thirty years considerable emphasis has been placed on hardening critical systems to one or more of these non-ionizing radiation environments, the most prevalent being the nuclear-induced electromagnetic pulse (EMD). From this technology development there has evolved a hardening philosophy that applies to most of these non-ionizing radiation environments. The philosophy,more » which stresses the application of zonal shields plus penetration protection, can provide low-cost hardening against such diverse non-ionizing radiation as p-static, lightning, electromagnetic interference (EMI), EMP, high intensity radiated fields (HIRF), electromagnetic radiation (EMR), and high power microwaves (HPM). The objective in this paper is to describe the application of this philosophy to Army helicopters. The authors develop a unified specification complete with threat definitions and test methods which illustrates integration of EMP, lightning, and HIRF at the box qualification level. This paper is a summary of the effort documented in a cited reference.« less

  17. The effect of embryonic and fetal exposure to x-ray, microwaves, and ultrasound: Counseling the pregnant and nonpregnant patient about these risks

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Brent, R.L.

    The term radiation evokes emotional responses both from lay persons and from professionals. Many spokespersons are unfamiliar with radiation biology or the quantitative nature of the risks. Frequently, microwave, ultrasound, and ionizing radiation risks are confused. Although it is impossible to prove no risk for any environmental hazard, it appears that exposure to microwave radiation below the maximal permissible levels present no measurable risk to the embryo. Ultrasound exposure from diagnostic ultrasonographic-imaging equipment also is quite innocuous. It is true that continued surveillance and research into potential risks of these low-level exposures should continue; however, at present ultrasound not onlymore » improves obstetric care, but also reduces the necessity of diagnostic x-ray procedures. In the field of ionizing radiation, we have a better comprehension of the biologic effects and the quantitative maximum risks than for any other environmental hazard. Although the animal and human data support the conclusion that no increases in the incidence of gross congenital malformations, IUGR, or abortion will occur with exposures less than 5 rad, that does not mean that there are definitely no risks to the embryo exposed to lower doses of radiation, Whether there exists a linear or exponential dose-response relationship or a threshold exposure for genetic, carcinogenic, cell-depleting, and life-shortening effects has not been determined. It is obvious that the risks of 1-rad (.10Gy) or 5-rad (.05Gy) acute exposure are far below the spontaneous risks of the developing embryo because 15% of human embryos abort, 2.7% to 3.0% of human embryos have major malformations, 4% have intrauterine growth retardation, and 8% to 10% have early- or late-stage onset genetic disease. 92 references.« less

  18. The separated electric and magnetic field responses of luminescent bacteria exposed to pulsed microwave irradiation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Williams, Catrin F., E-mail: williamscf@cardiff.ac.uk; School of Biosciences, Cardiff University, Main Building, Cathays Park, Cardiff, CF10 3AT Wales; Geroni, Gilles M.

    Electromagnetic fields (EMFs) are ubiquitous in the digital world we inhabit, with microwave and millimetre wave sources of non-ionizing radiation employed extensively in electronics and communications, e.g., in mobile phones and Wi-Fi. Indeed, the advent of 5G systems and the “internet of things” is likely to lead to massive densification of wireless networks. Whilst the thermal effects of EMFs on biological systems are well characterised, their putative non-thermal effects remain a controversial subject. Here, we use the bioluminescent marine bacterium, Vibrio fischeri, to monitor the effects of pulsed microwave electromagnetic fields, of nominal frequency 2.5 GHz, on light emission. Separatedmore » electric and magnetic field effects were investigated using a resonant microwave cavity, within which the maxima of each field are separated. For pulsed electric field exposure, the bacteria gave reproducible responses and recovery in light emission. At the lowest pulsed duty cycle (1.25%) and after short durations (100 ms) of exposure to the electric field at power levels of 4.5 W rms, we observed an initial stimulation of bioluminescence, whereas successive microwave pulses became inhibitory. Much of this behaviour is due to thermal effects, as the bacterial light output is very sensitive to the local temperature. Conversely, magnetic field exposure gave no measurable short-term responses even at the highest power levels of 32 W rms. Thus, we were able to detect, de-convolute, and evaluate independently the effects of separated electric and magnetic fields on exposure of a luminescent biological system to microwave irradiation.« less

  19. The separated electric and magnetic field responses of luminescent bacteria exposed to pulsed microwave irradiation

    NASA Astrophysics Data System (ADS)

    Williams, Catrin F.; Geroni, Gilles M.; Pirog, Antoine; Lloyd, David; Lees, Jonathan; Porch, Adrian

    2016-08-01

    Electromagnetic fields (EMFs) are ubiquitous in the digital world we inhabit, with microwave and millimetre wave sources of non-ionizing radiation employed extensively in electronics and communications, e.g., in mobile phones and Wi-Fi. Indeed, the advent of 5G systems and the "internet of things" is likely to lead to massive densification of wireless networks. Whilst the thermal effects of EMFs on biological systems are well characterised, their putative non-thermal effects remain a controversial subject. Here, we use the bioluminescent marine bacterium, Vibrio fischeri, to monitor the effects of pulsed microwave electromagnetic fields, of nominal frequency 2.5 GHz, on light emission. Separated electric and magnetic field effects were investigated using a resonant microwave cavity, within which the maxima of each field are separated. For pulsed electric field exposure, the bacteria gave reproducible responses and recovery in light emission. At the lowest pulsed duty cycle (1.25%) and after short durations (100 ms) of exposure to the electric field at power levels of 4.5 W rms, we observed an initial stimulation of bioluminescence, whereas successive microwave pulses became inhibitory. Much of this behaviour is due to thermal effects, as the bacterial light output is very sensitive to the local temperature. Conversely, magnetic field exposure gave no measurable short-term responses even at the highest power levels of 32 W rms. Thus, we were able to detect, de-convolute, and evaluate independently the effects of separated electric and magnetic fields on exposure of a luminescent biological system to microwave irradiation.

  20. High Power Microwaves for Defense and Accelerator Applications

    DTIC Science & Technology

    1990-06-11

    pulsed power machines are typically made for laboratory simulation of charged particle and radiation spectra of nuclear explosions . Early on, it was...cathode and then explosive 10 ionization. After the first few nanoseconds, the electron emission is from a plasma produced at the cathode. Typically the...Virtually nothing is needed except an electron beam source. This power and simplicity makes vircators particularly interesting for single shot or explosively

  1. A Novel Microwave-Induced Plasma Ionization Source for Ion Mobility Spectrometry

    NASA Astrophysics Data System (ADS)

    Dai, Jianxiong; Zhao, Zhongjun; Liang, Gaoling; Duan, Yixiang

    2017-03-01

    This work demonstrates the application of a novel microwave induced plasma ionization (MIPI) source to ion mobility spectrometry (IMS). The MIPI source, called Surfatron, is composed of a copper cavity and a hollow quartz discharge tube. The ion mobility spectrum of synthetics air has a main peak with reduced mobility of 2.14 cm2V-1s-1 for positive ion mode and 2.29 cm2V-1s-1 for negative ion mode. The relative standard deviations (RSD) are 0.7% and 1.2% for positive and negative ion mode, respectively. The total ion current measured was more than 3.5 nA, which is much higher than that of the conventional 63Ni source. This indicates that a better signal-to-noise ratio (SNR) can be acquired from the MIPI source. The SNR was 110 in the analysis of 500 pptv methyl tert-butyl ether (MTBE), resulting in the limit of detection (SNR = 3) of 14 pptv. The linear range covers close to 2.5 orders of magnitude in the detection of triethylamine with a concentration range from 500 pptv to 80 ppbv. Finally, this new MIPI-IMS was used to detect some volatile organic compounds, which demonstrated that the MIPI-IMS has great potential in monitoring pollutants in air.

  2. Quantitative measurement of electron number in nanosecond and picosecond laser-induced air breakdown

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wu, Yue; Sawyer, Jordan C.; Su, Liu

    2016-05-07

    Here we present quantitative measurements of total electron numbers in laser-induced air breakdown at pressures ranging from atmospheric to 40 bar{sub g} by 10 ns and 100 ps laser pulses. A quantifiable definition for the laser-induced breakdown threshold is identified by a sharp increase in the measurable total electron numbers via dielectric-calibrated coherent microwave scattering. For the 10 ns laser pulse, the threshold of laser-induced breakdown in atmospheric air is defined as the total electron number of ∼10{sup 6}. This breakdown threshold decreases with an increase of pressure and laser photon energy (shorter wavelength), which is consistent with the theory of initialmore » multiphoton ionization and subsequent avalanche processes. For the 100 ps laser pulse cases, a clear threshold is not present and only marginal pressure effects can be observed, which is due to the short pulse duration leading to stronger multiphoton ionization and minimal collisional avalanche ionization.« less

  3. Long-term exposure to microwave radiation provokes cancer growth: evidences from radars and mobile communication systems.

    PubMed

    Yakymenko, I; Sidorik, E; Kyrylenko, S; Chekhun, V

    2011-06-01

    In this review we discuss alarming epidemiological and experimental data on possible carcinogenic effects of long term exposure to low intensity microwave (MW) radiation. Recently, a number of reports revealed that under certain conditions the irradiation by low intensity MW can substantially induce cancer progression in humans and in animal models. The carcinogenic effect of MW irradiation is typically manifested after long term (up to 10 years and more) exposure. Nevertheless, even a year of operation of a powerful base transmitting station for mobile communication reportedly resulted in a dramatic increase of cancer incidence among population living nearby. In addition, model studies in rodents unveiled a significant increase in carcinogenesis after 17-24 months of MW exposure both in tumor-prone and intact animals. To that, such metabolic changes, as overproduction of reactive oxygen species, 8-hydroxi-2-deoxyguanosine formation, or ornithine decarboxylase activation under exposure to low intensity MW confirm a stress impact of this factor on living cells. We also address the issue of standards for assessment of biological effects of irradiation. It is now becoming increasingly evident that assessment of biological effects of non-ionizing radiation based on physical (thermal) approach used in recommendations of current regulatory bodies, including the International Commission on Non-Ionizing Radiation Protection (ICNIRP) Guidelines, requires urgent reevaluation. We conclude that recent data strongly point to the need for re-elaboration of the current safety limits for non-ionizing radiation using recently obtained knowledge. We also emphasize that the everyday exposure of both occupational and general public to MW radiation should be regulated based on a precautionary principles which imply maximum restriction of excessive exposure.

  4. Preparation of κ-carra-oligosaccharides with microwave assisted acid hydrolysis method

    NASA Astrophysics Data System (ADS)

    Li, Guangsheng; Zhao, Xia; Lv, Youjing; Li, Miaomiao; Yu, Guangli

    2015-04-01

    A rapid method of microwave assisted acid hydrolysis was established to prepare κ-carra-oligosaccharides. The optimal hydrolysis condition was determined by an orthogonal test. The degree of polymerization (DP) of oligosaccharides was detected by high performance thin layer chromatography (HPTLC) and polyacrylamide gel electrophoresis (PAGE). Considering the results of HPTLC and PAGE, the optimum condition of microwave assisted acid hydrolysis was determined. The concentration of κ-carrageenan was 5 mg mL-1; the reaction solution was adjusted to pH 3 with diluted hydrochloric acid; the solution was hydrolyzed under microwave irradiation at 100 for 15 °C min. Oligosaccharides were separated by a Superdex 30 column (2.6 cm × 90 cm) using AKTA Purifier UPC100 and detected with an online refractive index detector. Each fraction was characterized by electrospray ionization mass spectrometry (ESI-MS). The data showed that odd-numbered κ-carra-oligosaccharides with DP ranging from 3 to 21 could be obtained with this method, and the structures of the oligosaccharides were consistent with those obtained by traditional mild acid hydrolysis. The new method was more convenient, efficient and environment-friendly than traditional mild acid hydrolysis. Our results provided a useful reference for the preparation of oligosaccharides from other polysaccharides.

  5. Status of the Signals of Opportunity Airborne Demonstrator (SoOp-AD)

    NASA Technical Reports Server (NTRS)

    Garrison, Jim; Lin, Yao-Cheng; Piepmeier, Jeff; Knuble, Joe; Hersey, Ken; Du Toit, Cornelus; Joseph, Alicia; Deshpande, Manohar; Alikakos, George; O'Brien, Steve; hide

    2016-01-01

    Root zone soil moisture (RZSM) is not directly measured by any current satellite instrument, despite its importance as a key link between surface hydrology and deeper processes. Presently, model assimilation of surface measurements or indirect estimates using other methods must be used to estimate this value. Signals of Opportunity (SoOp) methods, exploiting reflected P- and S-band communication satellite signals, have many of the benefits of both active and passive microwave remote sensing. Reutilization of active transmitters, with forward-scattering geometry, presents a strong reflected signal even at orbital altitudes. Microwave radiometry is advantageous as it measures emissivity, which is directly related to dielectric constant and sensitive to water content of soil. Synthetic aperture radar (SAR) is used in P-band (400 MHz) for soil moisture and biomass, but faces issues in obtaining permission to transmit due to spectrum regulations, particularly over North America and Europe. A primary advantage of SAR is excellent spatial resolution. Signals-of-opportunity (SoOp) reflectometry provides a good compromise between radiometry and SAR by providing decent sensitivity and special resolution for RZSM measurements without issues of spectrum access. Further, a SoOp instrument would not be limited to operating in only a few protected frequencies and is also expected to have less susceptibility to radio-frequency interference (RFI). Although advantageous if available, SoOp techniques do not require the ability to demodulate or decode the communication signals. The SoOp instrument is receive only and therefore requires much less electrical power than a SAR and is more similar to a radiometer in receiver architecture. These unique features of SoOp circumvent past obstacles to a spaceborne P-band remote sensing mission and have the potential to enable new RZSM measurements that are not possible with present technology. We will present the latest development status of a SoOp reflectometer airborne demonstrator (SoOp-AD) operating at 250 MHz to take advantage of existing communication satellite. The instrument is currently in laboratory integration and test.

  6. Fast combustion waves and chemi-ionization processes in a flame initiated by a powerful local plasma source in a closed reactor

    PubMed Central

    Artem'ev, K. V.; Berezhetskaya, N. K.; Kazantsev, S. Yu.; Kononov, N. G.; Kossyi, I. A.; Popov, N. A.; Tarasova, N. M.; Filimonova, E. A.; Firsov, K. N.

    2015-01-01

    Results are presented from experimental studies of the initiation of combustion in a stoichiometric methane–oxygen mixture by a freely localized laser spark and by a high-current multispark discharge in a closed chamber. It is shown that, preceding the stage of ‘explosive’ inflammation of a gas mixture, there appear two luminous objects moving away from the initiator along an axis: a relatively fast and uniform wave of ‘incomplete combustion’ under laser spark ignition and a wave with a brightly glowing plasmoid behind under ignition from high-current slipping surface discharge. The gas mixtures in both the ‘preflame’ and developed-flame states are characterized by a high degree of ionization as the result of chemical ionization (plasma density ne≈1012 cm−3) and a high frequency of electron–neutral collisions (νen≈1012 s−1). The role of chemical ionization in constructing an adequate theory for the ignition of a gas mixture is discussed. The feasibility of the microwave heating of both the preflame and developed-flame plasma, supplementary to a chemical energy source, is also discussed. PMID:26170426

  7. Novel mono-static arrangement of the ASDEX Upgrade high field side reflectometers compatible with electron cyclotron resonance heating stray radiation.

    PubMed

    Silva, A; Varela, P; Meneses, L; Manso, M

    2012-10-01

    The ASDEX Upgrade frequency modulated continuous wave broadband reflectometer system uses a mono-static antenna configuration with in-vessel hog-horns and 3 dB directional couplers. The operation of the new electron cyclotron resonance heating (ECRH) launcher and the start of collective Thomson scattering experiments caused several events where the fragile dummy loads inside the high field side directional couplers were damaged, due to excessive power resulting from the ECRH stray fields. In this paper, we present a non-conventional application of the existing three-port directional coupler that hardens the system to the ECRH stray fields and at the same time generates the necessary reference signal. Electromagnetic simulations and laboratory tests were performed to validate the proposed solution and are compared with the in-vessel calibration tests.

  8. Invited Article: Polarization ``Down Under'': The polarized time-of-flight neutron reflectometer PLATYPUS

    NASA Astrophysics Data System (ADS)

    Saerbeck, T.; Klose, F.; Le Brun, A. P.; Füzi, J.; Brule, A.; Nelson, A.; Holt, S. A.; James, M.

    2012-08-01

    This review presents the implementation and full characterization of the polarization equipment of the time-of-flight neutron reflectometer PLATYPUS at the Australian Nuclear Science and Technology Organisation (ANSTO). The functionality and efficiency of individual components are evaluated and found to maintain a high neutron beam polarization with a maximum of 99.3% through polarizing Fe/Si supermirrors. Neutron spin-flippers with efficiencies of 99.7% give full control over the incident and scattered neutron spin direction over the whole wavelength spectrum available in the instrument. The first scientific experiments illustrate data correction mechanisms for finite polarizations and reveal an extraordinarily high reproducibility for measuring magnetic thin film samples. The setup is now fully commissioned and available for users through the neutron beam proposal system of the Bragg Institute at ANSTO.

  9. Invited article: polarization "down under": the polarized time-of-flight neutron reflectometer PLATYPUS.

    PubMed

    Saerbeck, T; Klose, F; Le Brun, A P; Füzi, J; Brule, A; Nelson, A; Holt, S A; James, M

    2012-08-01

    This review presents the implementation and full characterization of the polarization equipment of the time-of-flight neutron reflectometer PLATYPUS at the Australian Nuclear Science and Technology Organisation (ANSTO). The functionality and efficiency of individual components are evaluated and found to maintain a high neutron beam polarization with a maximum of 99.3% through polarizing Fe/Si supermirrors. Neutron spin-flippers with efficiencies of 99.7% give full control over the incident and scattered neutron spin direction over the whole wavelength spectrum available in the instrument. The first scientific experiments illustrate data correction mechanisms for finite polarizations and reveal an extraordinarily high reproducibility for measuring magnetic thin film samples. The setup is now fully commissioned and available for users through the neutron beam proposal system of the Bragg Institute at ANSTO.

  10. Portable Infrared Reflectometer Designed and Manufactured for Evaluating Emittance in the Laboratory or in the Field

    NASA Technical Reports Server (NTRS)

    Jaworske, Donald A.

    2000-01-01

    The optical properties of materials play a key role in spacecraft thermal control. In space, radiant heat transfer is the only mode of heat transfer that can reject heat from a spacecraft. One of the key properties for defining radiant heat transfer is emittance, a measure of how efficiently a surface can reject heat in comparison to a perfect black body emitter. Heat rejection occurs in the infrared region of the spectrum, nominally in the range of 2 to 25 mm. To calculate emittance, one obtains the reflectance over this spectral range, calculates spectral absorptance by difference, and then uses Kirchhoff s Law and the Stefan-Boltzmann equation to calculate emittance. A new portable infrared reflectometer, the SOC 400t, was designed and manufactured to evaluate the emittance of surfaces and coatings in the laboratory or in the field. It was developed by Surface Optics Corporation under a contract with the NASA Glenn Research Center at Lewis Field to replace the Center s aging Gier-Dunkle DB-100 infrared reflectometer. The specifications for the new instrument include a wavelength range of 2 to 25 mm; reflectance repeatability of +/-1 percent; self-calibrating, near-normal spectral reflectance measurements; a full scan measurement time of 3.5 min, a sample size of 1.27 cm (0.5 in.); a spectral resolution selectable from 4, 8, 16, or 32/cm; and optical property characterization utilizing an automatic integration to calculate total emittance in a selectable temperature range.

  11. Vehicle-mounted high-power microwave systems and health risk communication in a deployed environment.

    PubMed

    Westhoff, John L; Roberts, Brad J; Erickson, Kristin

    2013-01-01

    Vehicle-mounted high-power microwave systems have been developed to counter the improvised explosive device threat in southwest Asia. Many service members only vaguely comprehend the nature of these devices and the nonionizing radio frequency (RF) radiation they emit. Misconceptions about the health effects of RF radiation have the potential to produce unnecessary anxiety. We report an incident in which concern for exposure to radiation from a high-power microwave device thought to be malfunctioning led to an extensive field investigation, multiple evaluations by clinicians in theater, and subsequent referrals to an Occupational Health clinic upon return from deployment. When acute exposure to RF does occur, the effects are thermally mediated and immediately perceptible--limiting the possibility of injury. Unlike ionizing radiation, RF radiation is not known to cause cancer and the adverse health effects are not cumulative. Medical officers counseling service members concerned about potential RF radiation exposure should apply established principles of risk communication, attend to real and perceived risks, and enlist the assistance of technical experts to properly characterize an exposure when appropriate.

  12. Microwave heating causes rapid degradation of antioxidants in polypropylene packaging, leading to greatly increased specific migration to food simulants as shown by ESI-MS and GC-MS.

    PubMed

    Alin, Jonas; Hakkarainen, Minna

    2011-05-25

    Microwave heating of commercial microwavable polypropylene packaging in contact with fatty food simulants caused significant antioxidant degradation and increased specific migration as shown by electrospray ionization-mass spectrometry (ESI-MS) and gas chromatography-mass spectrometry (GC-MS). Degradation of the antioxidants Irgafos 168 and Irganox 1010 was not detected during conventional heating of polypropylene packaging at the same temperature. The migration into aqueous food simulants was primarily restricted by the water solubility of the migrants. Using isooctane as fatty food simulant caused significant swelling and greatly enhanced overall migration values compared to the other fatty food simulant, 99.9% ethanol, or the aqueous food simulants 10% ethanol, 3% acetic acid, or water. ESI-MS spectra clearly reflected the overall migration values, and the number and amount of compounds detected decreased as the hydrophilicity of the food simulant increased. ESI-MS was shown to be an excellent tool for the analysis of semivolatile migrants and a good complement to GC-MS analysis of volatile migrants.

  13. Liquid-phase and solid-phase microwave irradiations for reduction of graphite oxide

    NASA Astrophysics Data System (ADS)

    Zhao, Na; Wen, Chen-Yu; Zhang, David Wei; Wu, Dong-Ping; Zhang, Zhi-Bin; Zhang, Shi-Li

    2014-12-01

    In this paper, two microwave irradiation methods: (i) liquid-phase microwave irradiation (MWI) reduction of graphite oxide suspension dissolved in de-ionized water and N, N-dimethylformamide, respectively, and (ii) solid-phase MWI reduction of graphite oxide powder have been successfully carried out to reduce graphite oxide. The reduced graphene oxide products are thoroughly characterized by scanning electron microscopy, atomic force microscopy, X-ray photoelectron spectroscopy, Fourier transform infrared spectral analysis, Raman spectroscopy, UV-Vis absorption spectral analysis, and four-point probe conductivity measurements. The results show that both methods can efficiently remove the oxygen-containing functional groups attached to the graphite layers, though the solid-phase MWI reduction method can obtain far more efficiently a higher quality-reduced graphene oxide with fewer defects. The I(D)/I(G) ratio of the solid-phase MWI sample is as low as 0.46, which is only half of that of the liquid-phase MWI samples. The electrical conductivity of the reduced graphene oxide by the solid method reaches 747.9 S/m, which is about 25 times higher than that made by the liquid-phase method.

  14. The epoch of cosmic heating by early sources of X-rays

    NASA Astrophysics Data System (ADS)

    Eide, Marius B.; Graziani, Luca; Ciardi, Benedetta; Feng, Yu; Kakiichi, Koki; Di Matteo, Tiziana

    2018-05-01

    Observations of the 21 cm line from neutral hydrogen indicate that an epoch of heating (EoH) might have preceded the later epoch of reionization. Here we study the effects on the ionization state and the thermal history of the intergalactic medium (IGM) during the EoH induced by different assumptions on ionizing sources in the high-redshift Universe: (i) stars; (ii) X-ray binaries (XRBs); (iii) thermal bremsstrahlung of the hot interstellar medium (ISM); and (iv) accreting nuclear black holes (BHs). To this aim, we post-process outputs from the (100 h-1 comoving Mpc)3 hydrodynamical simulation MassiveBlack-II with the cosmological 3D radiative transfer code CRASH, which follows the propagation of ultraviolet and X-ray photons, computing the thermal and ionization state of hydrogen and helium through the EoH. We find that stars determine the fully ionized morphology of the IGM, while the spectrally hard XRBs pave way for efficient subsequent heating and ionization by the spectrally softer ISM. With the seeding prescription in MassiveBlack-II, BHs do not contribute significantly to either ionization or heating. With only stars, most of the IGM remains in a cold state (with a median T = 11 K at z = 10), however, the presence of more energetic sources raises the temperature of regions around the brightest and more clustered sources above that of the cosmic microwave background, opening the possibility to observing the 21 cm signal in emission.

  15. A novel property of gold nanoparticles: Free radical generation under microwave irradiation.

    PubMed

    Paudel, Nava Raj; Shvydka, Diana; Parsai, E Ishmael

    2016-04-01

    Gold nanoparticles (GNPs) are known to be effective mediators in microwave hyperthermia. Interaction with an electromagnetic field, large surface to volume ratio, and size quantization of nanoparticles (NPs) can lead to increased cell killing beyond pure heating effects. The purpose of this study is to explore the possibility of free radical generation by GNPs in aqueous media when they are exposed to a microwave field. A number of samples with 500 mM 5,5-dimethyl-1-pyrroline N-oxide (DMPO) in 20 ppm GNP colloidal suspensions were scanned with an electron paramagnetic resonance (EPR)/electron spin resonance spectrometer to generate and detect free radicals. A fixed (9.68 GHz) frequency microwave from the spectrometer has served for both generation and detection of radicals. EPR spectra obtained as first derivatives of intensity with the spectrometer were double integrated to get the free radical signal intensities. Power dependence of radical intensity was studied by applying various levels of microwave power (12.5, 49.7, and 125 mW) while keeping all other scan parameters the same. Free radical signal intensities from initial and final scans, acquired at the same power levels, were compared. Hydroxyl radical (OH⋅) signal was found to be generated due to the exposure of GNP-DMPO colloidal samples to a microwave field. Intensity of OH⋅ signal thus generated at 12.5 mW microwave power for 2.8 min was close to the intensity of OH⋅ signal obtained from a water-DMPO sample exposed to 1.5 Gy ionizing radiation dose. For repeated scans, higher OH⋅ intensities were observed in the final scan for higher power levels applied between the initial and the final scans. Final intensities were higher also for a shorter time interval between the initial and the final scans. Our results observed for the first time demonstrate that GNPs generate OH⋅ radicals in aqueous media when they are exposed to a microwave field. If OH⋅ radicals can be generated close to deoxyribonucleic acid of cells by proper localization of NPs, NP-aided microwave hyperthermia can yield cell killing via both elevated temperature and free radical generation.

  16. Final Report on Development of Optimized Field-Reversed Configuration Plasma Formation Techniques for Magnetized Target Fusion

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lynn, Alan

    2013-11-01

    The University of New Mexico (UNM) proposed a collaboration with Los Alamos National Laboratory (LANL) to develop and test methods for improved formation of field-reversed configuration (FRC) plasmas relevant to magnetized target fusion (MTF) energy research. MTF is an innovative approach for a relatively fast and cheap path to the production of fusion energy that utilizes magnetic confinement to assist in the compression of a hot plasma to thermonuclear conditions by an external driver. LANL is currently pursing demonstration of the MTF concept via compression of an FRC plasma by a metal liner z-pinch in conjunction with the Air Forcemore » Research Laboratory in Albuquerque, NM. A key physics issue for the FRC's ultimate success as an MTF target lies in the initial pre-ionization (PI) stage. The PI plasma sets the initial conditions from which the FRC is created. In particular, the PI formation process determines the amount of magnetic flux that can be trapped to form the FRC. A ringing theta pinch ionization (RTPI) technique, such as currently used by the FRX-L device at LANL, has the advantages of high ionization fraction, simplicity (since no additional coils are required), and does not require internal electrodes which can introduce impurities into the plasma. However RTPI has been shown to only trap 50% of the initial bias flux at best and imposes additional engineering constraints on the capacitor banks. The amount of trapped flux plays an important role in the FRC's final equilibrium, transport, and stability properties, and provides increased ohmic heating of the FRC through induced currents as the magnetic field decays. Increasing the trapped flux also provides the route to greatest potential gains in FRC lifetime, which is essential to provide enough time to translate and compress the FRC effectively. In conjunction with LANL we initially planned to develop and test a microwave break- down system to improve the initial PI plasma formation. The UNM team would design the microwave optics and oversee the fabrication and assembly of all components and assist with integration into the FRX-L machine control system. LANL would provide a preexisting 65 kW X-band microwave source and some associated waveguide hardware. Once constructed and installed, UNM would take the lead in operating the microwave breakdown system and conducting studies to optimize its use in FRC PI formation in close cooperation with the needs of the LANL MTF team. In conjunction with our LANL collaborators, we decided after starting the project to switch from a microwave plasma breakdown approach to a plasma gun technology to use for enhanced plasma formation in the FRX-L field-reversed configuration experiment at LANL. Plasma guns would be able to provide significantly higher density plasma with greater control over its distribution in time and space within the experiment. This would allow greater control and ne-tuning of the PI plasma formed in the experiment. Multiple plasma guns would be employed to fill a Pyrex glass test chamber (built at UNM) with plasma which would then be characterized and optimized for the MTF effort.« less

  17. Microwave Assisted Synthesis, Physicochemical, Photophysical, Single Crystal X-ray and DFT Studies of Novel Push-Pull Chromophores.

    PubMed

    Khan, Salman A; Asiri, Abdullah M; Basisi, Hadi Mussa; Arshad, Muhammad Nadeem; Sharma, Kamlesh

    2015-11-01

    Two push-pull chromophores were synthesized by knoevenagel condensation under microwave irradiation. The structure of synthesized chromophores were established by spectroscopic (FT-IR, (1)H NMR, (13)C NMR, EI-MS) and elemental analysis. Structure of the chromophores was further conformed by X-ray crystallographic. UV-Vis and fluorescence spectroscopy measurements provided that chromophores were good absorbent and fluorescent properties. Fluorescence polarity studies demonstrated that chromophores were sensitive to the polarity of the microenvironment provided by different solvents. Physicochemical parameters, including singlet absorption, extinction coefficient, stokes shift, oscillator strength, dipole moment and flurescence quantum yield were investigated in order to explore the analytical potential of the synthesized chromophores. In addition, the total energy, frontier molecular orbitals, hardness, electron affinity, ionization energy, electrostatic potential map were also studied computationally by using density functional theoretical method.

  18. The 24 GHz measurements of 2.2 lambda conical horn antennas illuminating a conducting sheet

    NASA Technical Reports Server (NTRS)

    Cross, A. E.; Marshall, R. E.; Hearn, C. P.; Neece, R. T.

    1993-01-01

    Monostatic reflection-coefficient magnitude, absolute value of Gamma, measurements occurring between a radiating horn and a metal reflecting plate are presented for a family of three 2.2 lambda diameter conical horn antennas. The three horns have different aperture phase deviations: 6 deg, 22.5 deg, and 125 deg. Measurements of the magnitude of absolute value of Gamma as a function of horn-plate separation (d) extend from an effective antenna aperture short (d = O) to beyond the far-field boundary (d = 2D(sup 2)/lambda, where D is the antenna diameter). Measurement data are presented with various physical environments for each of the horns. Measured scalar data are compared with theoretical data from two models, a numerical model for a circular waveguide aperture in a ground plane and a scalar diffraction theory model. This work was conducted in support of the development effort for a spaceborne multifrequency microwave reflectometer designed to accurately determine the distance from a space vehicle's surface to a reflecting plasma boundary. The metal reflecting plate was used to simulate the RF reflectivity of a critically dense plasma. The resulting configuration, a ground plane mounted aperture facing a reflecting plane in close proximity, produces a strong interaction between the ground plane and the reflecting plate, especially at integral half-wavelength separations. The transition coefficient is characterized by large amplitude variations.

  19. First International Symposium on Nonthermal Medical/Biological Treatments using Electromagnetic Fields and Ionized Gases

    DTIC Science & Technology

    1999-11-30

    Natick Soldier Center. Sample products include spaghetti sauce, orange juice and yogurt - based drinks or puddings. Benefits of PEF treatment compared...Kiel, AFRL, Brooks AFB. Pulsed microwave radiation in the 1.25 to 9.35 GHz range was found to affect the growth of bacteria in the presence of certain...being very effective for biological decontamination. A major US company has already a commercial product on sale. An in-depth analysis of

  20. Continuum ionization transition probabilities of atomic oxygen

    NASA Technical Reports Server (NTRS)

    Samson, J. A. R.; Petrosky, V. E.

    1974-01-01

    The technique of photoelectron spectroscopy was employed in the investigation. Atomic oxygen was produced in a microwave discharge operating at a power of 40 W and at a pressure of approximately 20 mtorr. The photoelectron spectrum of the oxygen with and without the discharge is shown. The atomic states can be clearly seen. In connection with the measurement of the probability for transitions into the various ionic states, the analyzer collection efficiency was determined as a function of electron energy.

  1. Counter Electrical Generation and Distribution: An Assessment for Global Strike in 2035

    DTIC Science & Technology

    2012-02-15

    magnetic field . Satellites in low earth orbit (LEO) or high earth orbit (HEO) orbits would be disabled from effects of the ionizing electrons on...of delivery.34 High power microwaves may also offer an ability to “dial down” the electro- magnetic fields being used to fine tune the effects on the...target system and reduce collateral damage. At high levels of electro- magnetic fields , permanent and catastrophic damage to circuitry, power lines

  2. Microwave-plasma in a simple magnetized torus

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rypdal, K.; Fredriksen, M.; Olsen, O.M.

    1997-05-01

    In a magnetized torus with no poloidal field component, a weakly ionized plasma is produced by microwaves at 2.45 GHz in the O-mode as well as the X-mode. The neutral gas pressure p{sub g} ranges from 5{times}10{sup {minus}5} to 1{times}10{sup {minus}3} mbar, n{sub e}{approximately}1{minus}5{times}10{sup 16}m{sup {minus}3}, and T{sub e}{approximately}2{minus}6 eV. The O-mode is only weakly absorbed at the electron cyclotron resonance (ECR), but is partly converted to the X-mode by wall reflections. The X-mode is absorbed via the upper hybrid resonance (UHR), presumably through conversion to and absorption of electron Bernstein waves (EBW). For p{sub g}{gt}1{times}10{sup {minus}3} mbar the EBWmore » absorption is collisional, but for lower p{sub g} a collisionless transit particle mechanism could be responsible. Typically the spatial plasma distribution depends mainly on the major radius R, and the measured n{sub e}(R) increases monotonically with R from the ECR to an UHR near the outer wall. T{sub e} is determined by the particle balance, and is proportional to the ionization energy. The average n{sub e} is determined by power balance, and increases with wave power. {copyright} {ital 1997 American Institute of Physics.}« less

  3. Reflectometer for pseudo-Brewster angle spectrometry (BAIRS)

    NASA Astrophysics Data System (ADS)

    Potter, Roy F.

    2000-10-01

    A simple, robust reflectometer, pre-set for several angles of incidence (AOI), has been designed and used for determining the optical parameters of opaque samples having a specular surface. A single, linear polarizing element permits the measurement of perpendicular(s) and parallel (p) reflectence at each AOI. The BAIRS algorithm determines the empirical optical parameters for the subject surface at the pseudo-Brewster AOI, based on the measurement of p/s at two AOI's and, in turn the optical constants n and k (or (epsilon) 1 and (epsilon) 2). Radiation sources in current use, are a stabilized tungsten-halide lamp or a deuterium lamp for the visible and near UV spectral regions. Silica fiber optics and lenses deliver input and output radiation from the source and to a CCD array scanned diffraction spectrometer. Results for a sample of GaAs will be presented along with a discussion of dispersion features in the optical constant spectra.

  4. Photoconductive circuit element reflectometer

    DOEpatents

    Rauscher, Christen

    1990-01-01

    A photoconductive reflectometer for characterizing semiconductor devices at millimeter wavelength frequencies where a first photoconductive circuit element (PCE) is biased by a direct current voltage source and produces short electrical pulses when excited into conductance by short first laser light pulses. The electrical pulses are electronically conditioned to improve the frequency related amplitude characteristics of the pulses which thereafter propagate along a transmission line to a device under test. Second PCEs are connected along the transmission line to sample the signals on the transmission line when excited into conductance by short second laser light pulses, spaced apart in time a variable period from the first laser light pulses. Electronic filters connected to each of the second PCEs act as low-pass filters and remove parasitic interference from the sampled signals and output the sampled signals in the form of slowed-motion images of the signals on the transmission line.

  5. Photoconductive circuit element reflectometer

    DOEpatents

    Rauscher, C.

    1987-12-07

    A photoconductive reflectometer for characterizing semiconductor devices at millimeter wavelength frequencies where a first photoconductive circuit element (PCE) is biased by a direct current voltage source and produces short electrical pulses when excited into conductance by short first laser light pulses. The electrical pulses are electronically conditioned to improve the frequency related amplitude characteristics of the pulses which thereafter propagate along a transmission line to a device under test. Second PCEs are connected along the transmission line to sample the signals on the transmission line when excited into conductance by short second laser light pulses, spaced apart in time a determinable period from the first laser light pulses. Electronic filters connected to each of the second PCEs act as low-pass filters and remove parasitic interference from the sampled signals and output the sampled signals in the form of slowed-motion images of the signals on the transmission line. 4 figs.

  6. A Computer Aided Broad Band Impedance Matching Technique Using a Comparison Reflectometer. Ph.D. Thesis

    NASA Technical Reports Server (NTRS)

    Gordy, R. S.

    1972-01-01

    An improved broadband impedance matching technique was developed. The technique is capable of resolving points in the waveguide which generate reflected energy. A version of the comparison reflectometer was developed and fabricated to determine the mean amplitude of the reflection coefficient excited at points in the guide as a function of distance, and the complex reflection coefficient of a specific discontinuity in the guide as a function of frequency. An impedance matching computer program was developed which is capable of impedance matching the characteristics of each disturbance independent of other reflections in the guide. The characteristics of four standard matching elements were compiled, and their associated curves of reflection coefficient and shunt susceptance as a function of frequency are presented. It is concluded that an economical, fast, and reliable impedance matching technique has been established which can provide broadband impedance matches.

  7. New signal processing technique for density profile reconstruction using reflectometry.

    PubMed

    Clairet, F; Ricaud, B; Briolle, F; Heuraux, S; Bottereau, C

    2011-08-01

    Reflectometry profile measurement requires an accurate determination of the plasma reflected signal. Along with a good resolution and a high signal to noise ratio of the phase measurement, adequate data analysis is required. A new data processing based on time-frequency tomographic representation is used. It provides a clearer separation between multiple components and improves isolation of the relevant signals. In this paper, this data processing technique is applied to two sets of signals coming from two different reflectometer devices used on the Tore Supra tokamak. For the standard density profile reflectometry, it improves the initialization process and its reliability, providing a more accurate profile determination in the far scrape-off layer with density measurements as low as 10(16) m(-1). For a second reflectometer, which provides measurements in front of a lower hybrid launcher, this method improves the separation of the relevant plasma signal from multi-reflection processes due to the proximity of the plasma.

  8. Fiber cavity ring-down using an optical time-domain reflectometer

    NASA Astrophysics Data System (ADS)

    Passos, D. J.; Silva, S. O.; Fernandes, J. R. A.; Marques, M. B.; Frazão, O.

    2014-12-01

    This work presented a demonstration of the potential for a fiber based cavity ring-down (CRD) using an optical time-domain reflectometer (OTDR). The OTDR was used to send the impulses down into about 20 km of a standard single optical fiber, at the end of which the fiber cavity ring-down was placed. The OTDR measured no appreciable losses, so other CRDs multiplexed could be spliced in parallel along the same optical fiber. To demonstrate the behavior and sensitivity of the proposed configuration, a displacement sensor based on a fiber taper with a diameter of 50 μm was placed inside the fiber loop, and the induced losses were measured on the CRD signal — a sensitivity of 11.8 ± 0.5 μs/mm was achieved. The dynamic range of the sensing head used in this configuration was about 2 mm. Finally, this work was also compared with different works published in the literature.

  9. Reflectometry diagnostics on TCV

    NASA Astrophysics Data System (ADS)

    Molina Cabrera, Pedro; Coda, Stefano; Porte, Laurie; Offeddu, Nicola; Tcv Team

    2017-10-01

    Both profile reflectometer and Doppler back-scattering (DBS) diagnostics are being developed for the TCV Tokamak using a steerable quasi-optical launcher and universal polarizers. First results will be presented. A pulse reflectometer is being developed to complement Thomson Scattering measurements of electron density, greatly increasing temporal resolution and also effectively enabling fluctuation measurements. Pulse reflectometry consists of sending short pulses of varying frequency and measuring the roundtrip group-delay with precise chronometers. A fast arbitrary waveform generator is used as a pulse source feeding frequency multipliers that bring the pulses to V-band. A DBS diagnostic is currently operational in TCV. DBS may be used to infer the perpendicular velocity and wave number spectrum of electron density fluctuations in the 3-15 cm-1 wave-number range. Off-the-shelf transceiver modules, originally used for VNA measurements, are being used in a Doppler radar configuration. See author list of S. Coda et al., 2017 Nucl. Fusion 57 102011.

  10. Skull and cerebrospinal fluid effects on microwave radiation propagation in human brain

    NASA Astrophysics Data System (ADS)

    Ansari, M. A.; Zarei, M.; Akhlaghipour, N.; Niknam, A. R.

    2017-12-01

    The determination of microwave absorption distribution in the human brain is necessary for the detection of brain tumors using thermo-acoustic imaging and for removing them using hyperthermia treatment. In contrast to ionizing radiation, hyperthermia treatment can be applied to remove tumors inside the brain without the concern of including secondary malignancies, which typically form from the neuronal cells of the septum pellucidum. The aim of this study is to determine the microwave absorption distribution in an adult human brain and to study the effects of skull and cerebrospinal fluid on the propagation of microwave radiation inside the brain. To this end, we simulate the microwave absorption distribution in a realistic adult brain model (Colin 27) using the mesh-based Monte Carlo (MMC) method. This is because in spite of there being other numerical methods, the MMC does not require a large memory, even for complicated geometries, and its algorithm is simple and easy to implement with low computational cost. The brain model is constructed using high-resolution (1 mm isotropic voxel) and low noise magnetic resonance imaging (MRI) scans and its volume contains 181×217×181 voxels, covering the brain completely. Using the MMC method, the radiative transport equation is solved and the absorbed microwave energy distribution in different brain regions is obtained without any fracture or anomaly. The simulation results show that the skull and cerebrospinal fluid guide the microwave radiation and suppress its penetration through deep brain compartments as a shielding factor. These results reveal that the MMC can be used to predict the amount of required energy to increase the temperature inside the tumour during hyperthermia treatment. Our results also show why a deep tumour inside an adult human brain cannot be efficiently treated using hyperthermia treatment. Finally, the accuracy of the presented numerical method is verified using the signal flow graph technique.

  11. Simulation of the electromagnetic field in a cylindrical cavity of an ECR ions source

    NASA Astrophysics Data System (ADS)

    Estupiñán, A.; Orozco, E. A.; Dugar-Zhabon, V. D.; Murillo Acevedo, M. T.

    2017-12-01

    Now there are numerous sources for multicharged ions production, each being designed for certain science or technological objectives. Electron cyclotron resonance ion sources (ECRIS) are best suited for designing heavy ion accelerators of very high energies, because they can generate multicharged ion beams at relatively great intensities. In these sources, plasma heating and its confinement are effected predominantly in minimum-B magnetic traps, this type of magnetic trap consist of two current coils used for the longitudinal magnetic confinement and a hexapole system around the cavity to generate a transversal confinement of the plasma. In an ECRIS, the electron cyclotron frequency and the microwave frequency are maintained equal on a quasi-ellipsoidal surface localized in the trap volume. It is crucial to heat electrons to energies sufficient to ionize K- and L-levels of heavy atoms. In this work, we present the preliminary numerical results concerning the space distribution of TE 111 microwave field in a cylindrical cavity. The 3D microwave field is calculated by solving the Maxwell equations through the Yee’s method. The magnetic field of minimum-B configuration is determined using the Biot-Savart law. The parameters of the magnetic system are that which guarantee the ECR surface location in a zone of a reasonably high microwave tension. Additionally, the accuracy of electric and magnetic fields calculations are checked.

  12. Effect of Various Finishing Procedures on the Reflectivity (Shine) of Tooth Enamel - An In-vitro Study.

    PubMed

    Patil, Harshal Ashok; Chitko, Shrikant Shrinivas; Kerudi, Veerendra Virupaxappa; Maheshwari, Amit Ratanlal; Patil, Neeraj Suresh; Tekale, Pawankumar Dnyandeo; Gore, Ketan Ashorao; Zope, Amit Ashok

    2016-08-01

    Reflectivity of an object is a good parameter for surface finish. As the patient evaluates finishing as a function of gloss/reflectivity/shine an attempt is made here to evaluate changes in surface finish with custom made reflectometer. The aim of the present study was to study the effect of various procedures during orthodontic treatment on the shine of enamel, using a custom made reflectometer. Sixty one extracted premolars were collected and each tooth was mounted on acrylic block. Reflectivity of the teeth was measured as compared to standard before any procedure. One tooth was kept as standard throughout the study. Sixty teeth were acid etched. Reflectivity was measured on custom made reflectometer and readings recorded. Same procedure was repeated after debonding. Then 60 samples were divided into three groups: Group 1 - Tungsten Carbide, Group 2 - Astropol, Group 3- Sof-Lex disc depending upon the finishing method after debonding and reflectivity was measured. The mean percentage of reflectivity after acid etching was 31.4%, debonding 45.5%, Tungsten carbide bur finishing (Group 1) was 58.3%, Astropol (Group 2) 72.8%, and Sof-Lex disc (Group 3) 84.4% as that to the standard. There was statistically very highly significant (p<0.001) difference in reflectivity restored by the three finishing materials in the study. Thus, the light reflection was better in Group 3> Group 2> Group 1. The primary goal was to restore the enamel to its original state after orthodontic treatment. The methods tested in this study could not restore the original enamel reflectivity.

  13. Investigation clogging dynamic of permeable pavement systems using embedded sensors

    NASA Astrophysics Data System (ADS)

    Razzaghmanesh, Mostafa; Borst, Michael

    2018-02-01

    Permeable pavement is a stormwater control measure commonly selected in both new and retrofit applications. However, there is limited information about the clogging mechanism of these systems that effects the infiltration. A permeable pavement site located at the Seitz Elementary School, on Fort Riley, Kansas was selected for this study. An 80-space parking lot was built behind the school as part of an EPA collaboration with the U.S. Army. The parking lot design includes a permeable interlocking concrete pavement section along the downgradient edge. This study monitored the clogging progress of the pavement section using twelve water content reflectometers and three buried tipping bucket rain gauges. This clogging dynamic investigation was divided into three stages namely pre-clogged, transitional, and clogged. Recorded initial relative water content of all three stages were significantly and negatively correlated to antecedent dry weather periods with stronger correlations during clogged conditions. The peak relative water content correlation with peak rainfall 10-min intensity was significant for the water content reflectometers located on the western edge away from the eastern edge; this correlation was strongest during transition stage. Once clogged, rainfall measurements no longer correlated with the buried tipping bucket rain gauges. Both water content reflectometers and buried tipping bucket rain gauges showed the progress of surface clogging. For every 6 mm of rain, clogging advanced 1 mm across the surface. The results generally support the hypothesis that the clogging progresses from the upgradient to the downgradient edge. The magnitude of the contributing drainage area and rainfall characteristics are effective factors on rate and progression of clogging.

  14. 78 FR 46932 - Notice of Availability of Government-Owned Inventions; Available for Licensing

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-08-02

    ... APPARATUS, Issued on June 18, 2013//U.S. Patent Number 8,477,308: POLARIZED, SPECULAR REFLECTOMETER APPARATUS, Issued on July 2, 2013. ADDRESSES: Requests for copies of the inventions cited should be directed...

  15. Nonperturbative Time Dependent Solution of a Simple Ionization Model

    NASA Astrophysics Data System (ADS)

    Costin, Ovidiu; Costin, Rodica D.; Lebowitz, Joel L.

    2018-02-01

    We present a non-perturbative solution of the Schrödinger equation {iψ_t(t,x)=-ψ_{xx}(t,x)-2(1 +α sinω t) δ(x)ψ(t,x)} , written in units in which \\hbar=2m=1, describing the ionization of a model atom by a parametric oscillating potential. This model has been studied extensively by many authors, including us. It has surprisingly many features in common with those observed in the ionization of real atoms and emission by solids, subjected to microwave or laser radiation. Here we use new mathematical methods to go beyond previous investigations and to provide a complete and rigorous analysis of this system. We obtain the Borel-resummed transseries (multi-instanton expansion) valid for all values of α, ω, t for the wave function, ionization probability, and energy distribution of the emitted electrons, the latter not studied previously for this model. We show that for large t and small α the energy distribution has sharp peaks at energies which are multiples of ω, corresponding to photon capture. We obtain small α expansions that converge for all t, unlike those of standard perturbation theory. We expect that our analysis will serve as a basis for treating more realistic systems revealing a form of universality in different emission processes.

  16. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Paudel, Nava Raj, E-mail: nrpaudel@yahoo.com; Shvydka, Diana; Parsai, E. Ishmael

    Purpose: Gold nanoparticles (GNPs) are known to be effective mediators in microwave hyperthermia. Interaction with an electromagnetic field, large surface to volume ratio, and size quantization of nanoparticles (NPs) can lead to increased cell killing beyond pure heating effects. The purpose of this study is to explore the possibility of free radical generation by GNPs in aqueous media when they are exposed to a microwave field. Methods: A number of samples with 500 mM 5,5-dimethyl-1-pyrroline N-oxide (DMPO) in 20 ppm GNP colloidal suspensions were scanned with an electron paramagnetic resonance (EPR)/electron spin resonance spectrometer to generate and detect free radicals.more » A fixed (9.68 GHz) frequency microwave from the spectrometer has served for both generation and detection of radicals. EPR spectra obtained as first derivatives of intensity with the spectrometer were double integrated to get the free radical signal intensities. Power dependence of radical intensity was studied by applying various levels of microwave power (12.5, 49.7, and 125 mW) while keeping all other scan parameters the same. Free radical signal intensities from initial and final scans, acquired at the same power levels, were compared. Results: Hydroxyl radical (OH⋅) signal was found to be generated due to the exposure of GNP–DMPO colloidal samples to a microwave field. Intensity of OH⋅ signal thus generated at 12.5 mW microwave power for 2.8 min was close to the intensity of OH⋅ signal obtained from a water–DMPO sample exposed to 1.5 Gy ionizing radiation dose. For repeated scans, higher OH⋅ intensities were observed in the final scan for higher power levels applied between the initial and the final scans. Final intensities were higher also for a shorter time interval between the initial and the final scans. Conclusions: Our results observed for the first time demonstrate that GNPs generate OH⋅ radicals in aqueous media when they are exposed to a microwave field. If OH⋅ radicals can be generated close to deoxyribonucleic acid of cells by proper localization of NPs, NP-aided microwave hyperthermia can yield cell killing via both elevated temperature and free radical generation.« less

  17. Electrode structure of a compact microwave driven capacitively coupled atomic beam source

    NASA Astrophysics Data System (ADS)

    Shimabukuro, Yuji; Takahashi, Hidenori; Wada, Motoi

    2018-01-01

    A compact magnetic field free atomic beam source was designed, assembled and tested the performance to produce hydrogen and nitrogen atoms. A forced air-cooled solid-state microwave power supply at 2.45 GHz frequency drives the source up to 100 W through a coaxial transmission cable coupled to a triple stub tuner for realizing a proper matching condition to the discharge load. The discharge structure of the source affected the range of operation pressure, and the pressure was reduced by four orders of magnitude through improving the electrode geometry to enhance the local electric field intensity. Optical emission spectra of the produced plasmas indicate production of hydrogen and nitrogen atoms, while the flux intensity of excited nitrogen atoms monitored by a surface ionization type detector showed the signal level close to a source developed for molecular beam epitaxy applications with 500 W RF power.

  18. MICROWAVE SPECTROSCOPY OF THE CALCIUM 4snf→4s(n+1)d, 4sng, 4snh, 4sni, AND 4snk TRANSITIONS

    NASA Astrophysics Data System (ADS)

    Nunkaew, Jirakan; Gallagher, Tom

    2015-06-01

    We use a delayed field ionization technique to observe the microwave transitions of calcium Rydberg states, from the 4snf states to the 4s(n+1)d, 4sng, 4snh, 4sni, and 4snk states for 18≤ n≤23. We analyze the observed intervals between the ℓ and (ℓ+1), ℓ≥5, states of the same n to determine the Ca^+ 4s dipole and quadrupole polarizabilities. We show that the adiabatic core polarization model is not adequate to extract the Ca^+ 4s dipole and quadrupole polarizabilities and a non adiabatic treatment is required. We use the non adiabatic core polarization model to determine the ionic dipole and quadrupole polarizabilities to be α_d=76.9(3);a_0^3 and α_q=206(9);a_0^5, respectively.

  19. Functional Fe3O4@ZnO magnetic nanoparticle-assisted enrichment and enzymatic digestion of phosphoproteins from saliva.

    PubMed

    Chen, Wei-Yu; Chen, Yu-Chie

    2010-11-01

    Saliva contains various proteins, particularly abundant are phosphoproteins, that may be related to disease occurrences and that play significant roles in a biological system. Thus, medical diagnostics will benefit tremendously if disease-related protein biomarkers are discovered from saliva. In this paper, we propose and demonstrate an approach using functional zinc oxide coated iron oxide magnetic nanoparticles (Fe(3)O(4)@ZnO MNPs) as affinity probes to selectively enrich phosphoproteins from complex saliva samples and as microwave absorbers to assist the enrichment and subsequent tryptic digestion of trapped proteins under microwave heating. The target species trapped by MNPs were characterized by matrix-assisted laser desorption/ionization mass spectrometry (MALDI MS) combined with protein database search. Entire analysis time was shortened to less than 20 min. The detection limit of this approach for a monophosphopeptide was as low as 250 pM (10 μL).

  20. Thrust generation experiments on microwave rocket with a beam concentrator for long distance wireless power feeding

    NASA Astrophysics Data System (ADS)

    Fukunari, Masafumi; Yamaguchi, Toshikazu; Nakamura, Yusuke; Komurasaki, Kimiya; Oda, Yasuhisa; Kajiwara, Ken; Takahashi, Koji; Sakamoto, Keishi

    2018-04-01

    Experiments using a 1 MW-class gyrotron were conducted to examine a beamed energy propulsion rocket, a microwave rocket with a beam concentrator for long-distance wireless power feeding. The incident beam is transmitted from a beam transmission mirror system. The beam transmission mirror system expands the incident beam diameter to 240 mm to extend the Rayleigh length. The beam concentrator receives the beam and guides it into a 56-mm-diameter cylindrical thruster tube. Plasma ignition and ionization front propagation in the thruster were observed through an acrylic window using a fast-framing camera. Atmospheric air was used as a propellant. Thrust generation was achieved with the beam concentrator. The maximum thrust impulse was estimated as 71 mN s/pulse from a pressure history at the thrust wall at the input energy of 638 J/pulse. The corresponding momentum coupling coefficient, Cm was inferred as 204 N/MW.

  1. Search for Linear Polarization of the Cosmic Background Radiation

    DOE R&D Accomplishments Database

    Lubin, P. M.; Smoot, G. F.

    1978-10-01

    We present preliminary measurements of the linear polarization of the cosmic microwave background (3 deg K blackbody) radiation. These ground-based measurements are made at 9 mm wavelength. We find no evidence for linear polarization, and set an upper limit for a polarized component of 0.8 m deg K with a 95% confidence level. This implies that the present rate of expansion of the Universe is isotropic to one part in 10{sup 6}, assuming no re-ionization of the primordial plasma after recombination

  2. Interaction of Ionizing Radiation, Genetically Active Chemicals, and Radiofrequency Radiation in Human and Rodent Cells

    DTIC Science & Technology

    1990-12-01

    proflavin , a drug known to intercalate with DNA. Again, when cells were exposed simultaneously to RFR SAR = 40.8- + 13.4 (SD) W/kg or 40 W/kg at power...densities of 87 or 65 mW/cm ), no effect of the RFR on the proflavin induced mutagenicity was observed (Meltz et al., 1990). SCE Induction Previously...Meltz ML, Eagan P, and Erwin DN (1990). Proflavin and Microwave Radiation: Absence of a Mutagenic Interaction. Bioelectromagnetics 11:149-157. Ciaravino

  3. Millimeter wave absorption in the nonhuman primate eye at 35 GHz and 94 GHz.

    PubMed

    Chalfin, Steven; D'Andrea, John A; Comeau, Paul D; Belt, Michael E; Hatcher, Donald J

    2002-07-01

    The purpose of this study was to evaluate anterior segment bioeffects of pulsed 35 GHz and 94 GHz microwave exposure in the nonhuman primate eye. Five juvenile rhesus monkeys (Macaca mulatta) underwent baseline anterior segment ocular assessment consisting of slit lamp examination, corneal topography, specular microscopy, and pachymetry. These studies were repeated after exposure of one eye to pulsed 35 GHz or 94 GHz microwaves at varied fluences, with the other eye serving as a control. The mean fluence required to produce a threshold corneal lesion (faint epithelial edema and fluorescein staining) was 7.5 J cm(-2) at 35 GHz and 5 J cm(-2) at 94 GHz. Transient changes in corneal topography and pachymetry were noted at these fluences. Endothelial cell counts remained unchanged. Threshold corneal injury from 35 GHz and 94 GHz microwave exposure is produced at fluences below those previously reported for CO2 laser radiation. These data may help elucidate the mechanism of thermal injury to the cornea, and resolve discrepancies between IEEE C95.1 (1999), NCRP (1986), and ICNIRP (1998) safety standards for exposure to non-ionizing radiation at millimeter wavelengths.

  4. Preliminary results for a higher-precision measurement of the helium n=2 triplet P fine structure

    NASA Astrophysics Data System (ADS)

    Kato, K.; Skinner, T. D. G.; George, M. C.; Fitzakerley, D. W.; Vutha, A. C.; Storry, C. H.; Bezginov, N.; Valdez, T.; Hessels, E. A.

    2017-04-01

    Preliminary results for a higher-precision measurement of the n=2 triplet P J=1 to J=2 fine-structure interval in atomic helium are presented. A beam of metastable helium atoms is created in a liquid-nitrogen-cooled dc-discharge source, and is intensified using a 2D-MOT. These atoms are excited to the 2 triplet P state, and undergo a frequency-offset separated-oscillatory-field (FOSOF) microwave experiment. Only atoms which undergo a microwave transition, in the time-separated microwave fields are laser-excited to a Rydberg state and then Stark ionized and counted. Our new experimental design has eliminated the major systematic effects of previous experiments, and has led to a substantial improvement in the signal-to-noise ratio of the collected data. Our final improved measurement (with an expected uncertainty of less than 100 Hz) will allow for a test of 2-electron QED-theory in the helium n=2 triplet P system, and will be an important step towards obtaining a precise determination of the fine-structure constant. This research is supported by NSERC, CRC, CFI and NIST.

  5. Effects of moisture content in cigar tobacco on nicotine extraction. Similarity between soxhlet and focused open-vessel microwave-assisted techniques.

    PubMed

    Ng, Lay-Keow; Hupé, Michel

    2003-09-05

    The effects of tobacco moisture on nicotine yield were investigated in this study. Soxhlet and microwave-assisted techniques were used to extract nicotine from cigar fillers of varying moisture contents (5-20%), using a polar (methanol) and a non-polar (isooctane) solvent. The extracts were analyzed by a gas chromatograph equipped with a flame-ionization detector. For both extraction techniques, higher nicotine yields were consistently obtained with methanol than with isooctane from the same samples. Solubility of nicotine salts in methanol but not in isooctane is the major cause of this observation. Moreover, pronounced effects of the tobacco moisture content on extraction efficiency were observed with isooctane but not with methanol. For microwave assisted extraction (MAE) with isooctane, nicotine yield increased from 3 to 70% as the moisture level in tobacco was raised from 3 to 13%, and leveled off thereafter. Similar observations were made with Soxhlet extraction. While MAE results were rationalized by the known cell-rupture process, a mechanism based on the interaction between the solvents and the structural components of the plant cells has been proposed to account for the observations made with Soxhlet extraction.

  6. Primordial non-Gaussianity and reionization

    NASA Astrophysics Data System (ADS)

    Lidz, Adam; Baxter, Eric J.; Adshead, Peter; Dodelson, Scott

    2013-07-01

    The statistical properties of the primordial perturbations contain clues about their origins. Although the Planck collaboration has recently obtained tight constraints on primordial non-Gaussianity from cosmic microwave background measurements, it is still worthwhile to mine upcoming data sets in an effort to place independent or competitive limits. The ionized bubbles that formed at redshift z˜6-20 during the epoch of reionization were seeded by primordial overdensities, and so the statistics of the ionization field at high redshift are related to the statistics of the primordial field. Here we model the effect of primordial non-Gaussianity on the reionization field. The epoch and duration of reionization are affected, as are the sizes of the ionized bubbles, but these changes are degenerate with variations in the properties of the ionizing sources and the surrounding intergalactic medium. A more promising signature is the power spectrum of the spatial fluctuations in the ionization field, which may be probed by upcoming 21 cm surveys. This has the expected 1/k2 dependence on large scales, characteristic of a biased tracer of the matter field. We project how well upcoming 21 cm observations will be able to disentangle this signal from foreground contamination. Although foreground cleaning inevitably removes the large-scale modes most impacted by primordial non-Gaussianity, we find that primordial non-Gaussianity can be separated from foreground contamination for a narrow range of length scales. In principle, futuristic redshifted 21 cm surveys may allow constraints competitive with Planck.

  7. Non-destructive phase and intensity distributed measurements of the nonlinear stage of modulation instability in optical fibers

    NASA Astrophysics Data System (ADS)

    Mussot, Arnaud; Naveau, Corentin; Szriftgiser, Pascal; Copie, François; Kudlinski, Alexandre; Conforti, Matteo; Trillo, Stefano

    2018-02-01

    We report a novel experimental setup to perform distributed characterization in intensity and phase of the nonlinear stage of modulation instability by means of a non-invasive experimental setup : a heterodyne time domain reflectometer.

  8. A novel reflectometer for relative reflectance measurements of CCDs

    NASA Astrophysics Data System (ADS)

    Hart, Murdock; Barkhouser, Robert H.; Gunn, James E.; Smee, Stephen A.

    2016-07-01

    The high quantum efficiencies (QE) of backside illuminated charge coupled devices (CCD) has ushered in the age of the large scale astronomical survey. The QE of these devices can be greater than 90%, and is dependent upon the operating temperature, device thickness, backside charging mechanisms, and anti-reflection (AR) coatings. But at optical wavelengths the QE is well approximated as one minus the reflectance, thus the measurement of the backside reflectivity of these devices provides a second independent measure of their QE. We have designed and constructed a novel instrument to measure the relative specular reflectance of CCD detectors, with a significant portion of this device being constructed using a 3D fused deposition model (FDM) printer. This device implements both a monitor and measurement photodiode to simultaneously collect in- cident and reflected measurements reducing errors introduced by the relative reflectance calibration process. While most relative reflectometers are highly dependent upon a precisely repeatable target distance for accurate measurements, we have implemented a method of measurement which minimizes these errors. Using the reflectometer we have measured the reflectance of two types of Hamamatsu CCD detectors. The first device is a Hamamatsu 2k x 4k backside illuminated high resistivity p-type silicon detector which has been optimized to operate in the blue from 380 nm - 650 nm. The second detector being a 2k x 4k backside illuminated high resistivity p-type silicon detector optimized for use in the red from 640 nm - 960 nm. We have not only been able to measure the reflectance of these devices as a function of wavelength we have also sampled the reflectance as a function of position on the device, and found a reflection gradient across these devices.

  9. On-farm quick tests for estimating nitrogen in dairy manure.

    PubMed

    Van Kessel, J S; Reeves, J B

    2000-08-01

    Manure nutrient analyses performed rapidly on the farm could be useful for nutrient management programs. The objective of this experiment was to evaluate six quick tests for their accuracy in estimating total manure N or NH4+-N. The quick tests included the hydrometer, electrical conductivity meter and pen, reflectometer, Agros N Meter, and Quantofix-N-Volumeter. The hydrometer was used to estimate total N, while the remaining tests were used to estimate NH4+-N. Samples (107) were collected from dairy farms in five northeastern states. Samples were analyzed for total N and NH4+-N by traditional laboratory methods and using each of the quick tests. Manure compositions ranged from 1.4 to 38.6% dry matter (DM), 0.9 to 9.5 kg/m3 total N, and 0.3 to 4.7 kg/m3 NH4+-N. The estimated concentration of total N or NH4+-N determined by each quick test was regressed against laboratory-determined values. The hydrometer did not estimate total N accurately. The strongest relationship for estimation of NH4+-N was with the Quantofix-N-Volumeter followed by the Agros N Meter, the reflectometer, and the electrical conductivity meter and pen. When the samples were split into high (>12%) and low (< or =12%) DM groups, in all cases the r2 for the regression equation was higher for the low DM group than for the high DM group. The Agros N Meter, the reflectometer, and the conductivity meter and pen did not perform well for the high DM group. These data indicate that several quick tests are viable options for measuring NH4+-N concentrations in dairy slurries and solids.

  10. Advanced density profile reflectometry; the state-of-the-art and measurement prospects for ITER

    NASA Astrophysics Data System (ADS)

    Doyle, E. J.

    2006-10-01

    Dramatic progress in millimeter-wave technology has allowed the realization of a key goal for ITER diagnostics, the routine measurement of the plasma density profile from millimeter-wave radar (reflectometry) measurements. In reflectometry, the measured round-trip group delay of a probe beam reflected from a plasma cutoff is used to infer the density distribution in the plasma. Reflectometer systems implemented by UCLA on a number of devices employ frequency-modulated continuous-wave (FM-CW), ultrawide-bandwidth, high-resolution radar systems. One such system on DIII-D has routinely demonstrated measurements of the density profile over a range of electron density of 0-6.4x10^19,m-3, with ˜25 μs time and ˜4 mm radial resolution, meeting key ITER requirements. This progress in performance was made possible by multiple advances in the areas of millimeter-wave technology, novel measurement techniques, and improved understanding, including: (i) fast sweep, solid-state, wide bandwidth sources and power amplifiers, (ii) dual polarization measurements to expand the density range, (iii) adaptive radar-based data analysis with parallel processing on a Unix cluster, (iv) high memory depth data acquisition, and (v) advances in full wave code modeling. The benefits of advanced system performance will be illustrated using measurements from a wide range of phenomena, including ELM and fast-ion driven mode dynamics, L-H transition studies and plasma-wall interaction. The measurement capabilities demonstrated by these systems provide a design basis for the development of the main ITER profile reflectometer system. This talk will explore the extent to which these reflectometer system designs, results and experience can be translated to ITER, and will identify what new studies and experimental tests are essential.

  11. SPEAR — ToF neutron reflectometer at the Los Alamos Neutron Science Center

    NASA Astrophysics Data System (ADS)

    Dubey, M.; Jablin, M. S.; Wang, P.; Mocko, M.; Majewski, J.

    2011-11-01

    This article discusses the Surface ProfilE Analysis Reflectometer (SPEAR), a vertical scattering geometry time-of-flight reflectometer, at the Los Alamos National Laboratory Lujan Neutron Scattering Center. SPEAR occupies flight path 9 and receives spallation neutrons from a polychromatic, pulsed (20Hz) source that pass through a liquid-hydrogen moderator at 20K coupled with a Be filter to shift their energy spectrum. The spallation neutrons are generated by bombarding a tungsten target with 800MeV protons obtained from an accelerator. The process produces an integrated neutron flux of ˜ 3.4×106 cm-2 s-1 at a proton current of 100 μA. SPEAR employs choppers and frame overlap mirrors to obtain a neutron wavelength range of 4.5-16 Å. SPEAR uses a single 200mm long 3He linear position-sensitive detector with ˜ 2 mm FWHM resolution for simultaneous studies of both specular and off-specular scattering. SPEAR's moderated neutrons are collimated into a beam which impinges from above upon a level sample with an average angle of 0.9° to the horizontal, to facilitate air-liquid interface studies. In the vertical direction, the beam converges at the sample position. The neutrons can be further collimated to the desired divergence by finely slitting the beam using a set of two 10B4C slit packages. The instrument is ideally suited to study organic and inorganic thin films with total thicknesses between 5 and 3000 Å in a variety of environments. Specifically designed sample chambers available at the instrument provide the opportunity to study biological systems at the solid-liquid interface. SPEAR's unique experimental capabilities are demonstrated by specific examples in this article. Finally, an outlook for SPEAR and perspectives on future instrumentation are discussed.

  12. Reionization and its imprint of the cosmic microwave background

    NASA Technical Reports Server (NTRS)

    Dodelson, Scott; Jubas, Jay M.

    1995-01-01

    Early reionization changes the pattern of anisotropies expected in the cosmic microwave backgrond. To explore these changes, we derive from first principles the equations governing anisotropies, focusing on the interactions of photons with electrons. Vishniac (1987) claimed that second-order terms can be large in a reionized universe, so we derive equations correct to second order in the perturbations. There are many more second-order terms than were considered by Vishniac. To understand the basic physics involved, we present a simple analytic approximation to the first-order equation. Then, turning to the second order equation, we show that the Vishniac term is indeed the only important one. We also present numerical results for a variety of ionization histories (in a standard cold dark matter universe) and show quantitatively how the signal in several experiments depends on the ionization history. The most pronounced indication of a reionized universe would be seen in very small scale experiments; the expected signal in the Owens Valley experiment is smaller by a factor of order 10 if the last scattering surface is at a redshift z approximately = 100 as it would be if the universe were reionized very early. On slightly larger scales, the expected signal in a reionized universe is smaller than it would be with standard recombination, but only a factor of 2 or so. The signal is even smaller in these experiments in the intermediate case where some photons last scattered at the standard recombination epoch.

  13. Reionization of Hydrogen and Helium by Early Stars and Quasars

    NASA Astrophysics Data System (ADS)

    Wyithe, J. Stuart B.; Loeb, Abraham

    2003-04-01

    We compute the reionization histories of hydrogen and helium caused by the ionizing radiation fields produced by stars and quasars. For the quasars we use a model based on halo-merger rates that reproduces all known properties of the quasar luminosity function at high redshifts. The less constrained properties of the ionizing radiation produced by stars are modeled with two free parameters: (i) a transition redshift, ztran, above which the stellar population is dominated by massive, zero-metallicity stars and below which it is dominated by a Scalo mass function; and (ii) the product of the escape fraction of stellar ionizing photons from their host galaxies and the star formation efficiency, fescf*. We constrain the allowed range of these free parameters at high redshifts on the basis of the lack of the H I Gunn-Peterson trough at z<~6 and the upper limit on the total intergalactic optical depth for electron scattering, τes<0.18, from recent cosmic microwave background (CMB) experiments. We find that quasars ionize helium by a redshift z~4, but cannot reionize hydrogen by themselves before z~6. A major fraction of the allowed combinations of fescf* and ztran leads to an early peak in the ionized fraction because of the presence of metal-free stars at high redshifts. This sometimes results in two reionization epochs, namely, an early H II or He III overlap phase followed by recombination and a second overlap phase. Even if early overlap is not achieved, the peak in the visibility function for scattering of the CMB often coincides with the early ionization phase rather than with the actual reionization epoch. Consequently, τes does not correspond directly to the reionization redshift. We generically find values of τes>~7%, which should be detectable by the MAP satellite.

  14. Apparatus for Teaching Physics.

    ERIC Educational Resources Information Center

    Gottlieb, Herbert H., Ed.

    1982-01-01

    Discusses: (1) construction of an integrated spherical reflectometer; (2) limitations of the NOAA Weather Radio Network; and (3) a simple experiment to demonstrate/measure influence of damping force on amplitude resonance. Also discusses whether or not a homemade electrophorus can lose its charge and then recharge itself. (JN)

  15. A low cost, simple, portable instrument for the measurement of infra-red reflectance of paints

    NASA Astrophysics Data System (ADS)

    Marson, F.

    1982-05-01

    The construction and design of a low cost, simple, portable infra-red reflectometer which can be used to estimate the reflectance of paint films in the 800 nm region is described. The infra-red reflectances of a range of lustreless, semigloss and gloss olive drab camouflage paints determined using this instrument are compared to those obtained using modified commercial equipment and to the reflectances measured at 800 nm using a Cary model 17 spectrophotometer. The new reflectometer was shown to be superior to the modified commercial instrument currently specified in Australian government paint specifications and to be capable of estimating the reflectance of olive drab paints to within about one per cent of the Cary derived reflectance values. The reflectance values for a range of 24 experimental coatings made with pigments of varying absorption in the infra-red region are used to illustrate the effect of the instrument's spectral response and the necessity of establishing a reliable working standard.

  16. Assessment of the measurement performance of the in-vessel system of gap 6 of the ITER plasma position reflectometer using a finite-difference time-domain Maxwell full-wave code.

    PubMed

    da Silva, F; Heuraux, S; Ricardo, E; Quental, P; Ferreira, J

    2016-11-01

    We conducted a first assessment of the measurement performance of the in-vessel components at gap 6 of the ITER plasma position reflectometry with the aid of a synthetic Ordinary Mode (O-mode) broadband frequency-modulated continuous-wave reflectometer implemented with REFMUL, a 2D finite-difference time-domain full-wave Maxwell code. These simulations take into account the system location within the vacuum vessel as well as its access to the plasma. The plasma case considered is a baseline scenario from Fusion for Energy. We concluded that for the analyzed scenario, (i) the plasma curvature and non-equatorial position of the antenna have neglectable impact on the measurements; (ii) the cavity-like space surrounding the antenna can cause deflection and splitting of the probing beam; and (iii) multi-reflections on the blanket wall cause a substantial error preventing the system from operating within the required error margin.

  17. Detrimental Effect Elimination of Laser Frequency Instability in Brillouin Optical Time Domain Reflectometer by Using Self-Heterodyne Detection

    PubMed Central

    Li, Yongqian; Li, Xiaojuan; An, Qi; Zhang, Lixin

    2017-01-01

    A useful method for eliminating the detrimental effect of laser frequency instability on Brillouin signals by employing the self-heterodyne detection of Rayleigh and Brillouin scattering is presented. From the analysis of Brillouin scattering spectra from fibers with different lengths measured by heterodyne detection, the maximum usable pulse width immune to laser frequency instability is obtained to be about 4 µs in a self-heterodyne detection Brillouin optical time domain reflectometer (BOTDR) system using a broad-band laser with low frequency stability. Applying the self-heterodyne detection of Rayleigh and Brillouin scattering in BOTDR system, we successfully demonstrate that the detrimental effect of laser frequency instability on Brillouin signals can be eliminated effectively. Employing the broad-band laser modulated by a 130-ns wide pulse driven electro-optic modulator, the observed maximum errors in temperatures measured by the local heterodyne and self-heterodyne detection BOTDR systems are 7.9 °C and 1.2 °C, respectively. PMID:28335508

  18. Strain measurement using a Brillouin optical time domain reflectometer for development of aircraft structure health monitoring system

    NASA Astrophysics Data System (ADS)

    Shimizu, Takayuki; Yari, Takashi; Nagai, Kanehiro; Takeda, Nobuo

    2001-07-01

    We conducted theoretical and experimental approaches for applying Brillouin optical time domain reflectometer (BOTDR) to aircraft and spacecraft structure health monitoring system. Firstly, distributed strain was measured by BOTDR under 3-point bending test and a spatial resolution was enhanced up to 0.5m using Brillouin spectrum analysis and processing though the device used in this experiment had a spatial resolution of 2m normally. Secondly, dynamic strain measurement was executed under cyclic loading conditions. Brillouin spectrum measured under dynamic conditions is equivalent to superposed spectrum using many spectra measured under static loading conditions. As the measured spectrum was decomposed into many spectra in static loading state, the strain amplitude and its ratio could be estimated. Thirdly, strain and temperature could be measured independently using combined system of BOTDR and fiber Bragg grating (FBG) with wavelength division multiplexing (WDM). Additionally, the application of BOTDR sensing system was shown for a prototype carbon fiber reinforced plastic (CFRP) liquid hydrogen (LH2) tank under cryogenic condition.

  19. Technical overview of the millimeter-wave imaging reflectometer on the DIII-D tokamak (invited)

    DOE PAGES

    Muscatello, Christopher M.; Domier, Calvin W.; Hu, Xing; ...

    2014-07-22

    The two-dimensional mm-wave imaging reflectometer (MIR) on DIII-D is a multi-faceted device for diagnosing electron density fluctuations in fusion plasmas. Its multi-channel, multi-frequency capabilities and high sensitivity permit visualization and quantitative diagnosis of density perturbations, including correlation length, wavenumber, mode propagation velocity, and dispersion. The two-dimensional capabilities of MIR are made possible with twelve vertically separated sightlines and four-frequency operation (corresponding to four radial channels). The 48-channel DIII-D MIR system has a tunable source that can be stepped in 500 µs increments over a range of 56 to 74 GHz. An innovative optical design keeps both on-axis and off-axis channelsmore » focused at the cutoff surface, permitting imaging over an extended poloidal region. As a result, the integrity of the MIR optical design is confirmed by comparing Gaussian beam calculations to laboratory measurements of the transmitter beam pattern and receiver antenna patterns.« less

  20. Distributed phase birefringence measurements based on polarization correlation in phase-sensitive optical time-domain reflectometers.

    PubMed

    Soto, Marcelo A; Lu, Xin; Martins, Hugo F; Gonzalez-Herraez, Miguel; Thévenaz, Luc

    2015-09-21

    In this paper a technique to measure the distributed birefringence profile along optical fibers is proposed and experimentally validated. The method is based on the spectral correlation between two sets of orthogonally-polarized measurements acquired using a phase-sensitive optical time-domain reflectometer (ϕOTDR). The correlation between the two measured spectra gives a resonance (correlation) peak at a frequency detuning that is proportional to the local refractive index difference between the two orthogonal polarization axes of the fiber. In this way the method enables local phase birefringence measurements at any position along optical fibers, so that any longitudinal fluctuation can be precisely evaluated with metric spatial resolution. The method has been experimentally validated by measuring fibers with low and high birefringence, such as standard single-mode fibers as well as conventional polarization-maintaining fibers. The technique has potential applications in the characterization of optical fibers for telecommunications as well as in distributed optical fiber sensing.

  1. Millimeter-wave reflectometry for electron density profile and fluctuation measurements on NSTX

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kubota, S.; Nguyen, X. V.; Peebles, W. A.

    2001-01-01

    A millimeter-wave reflectometry system for electron density profile and fluctuation measurements is being developed and installed on the National Spherical Torus Experiment. The initial frequency coverage will be in the bands 12--18, 20--32, and 33--50 GHz, provided by frequency-tunable solid-state sources. These frequencies correspond to O-mode cutoff densities ranging from 1.8x10{sup 12} to 3.1x10{sup 13}cm{sup -3}, which will span both the plasma core ({rho}=r/a<0.8) and edge ({rho}>0.8) regions. Operated as a broadband swept-frequency (frequency-modulated continuous-wave) reflectometer, the diagnostic is expected to provide routine (shot-to-shot) time- ({<=}50 {mu}s) and spatially resolved ({approx}1 cm) density profiles. The previous hardware can be easilymore » reconfigured as a fixed-frequency reflectometer for density fluctuation measurements. The combination of measurements would be valuable for studying phenomena such as possible L- to H-mode transitions and edge-localized modes.« less

  2. Experiment Automation with a Robot Arm using the Liquids Reflectometer Instrument at the Spallation Neutron Source

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zolnierczuk, Piotr A; Vacaliuc, Bogdan; Sundaram, Madhan

    The Liquids Reflectometer instrument installed at the Spallation Neutron Source (SNS) enables observations of chemical kinetics, solid-state reactions and phase-transitions of thin film materials at both solid and liquid surfaces. Effective measurement of these behaviors requires each sample to be calibrated dynamically using the neutron beam and the data acquisition system in a feedback loop. Since the SNS is an intense neutron source, the time needed to perform the measurement can be the same as the alignment process, leading to a labor-intensive operation that is exhausting to users. An update to the instrument control system, completed in March 2013, implementedmore » the key features of automated sample alignment and robot-driven sample management, allowing for unattended operation over extended periods, lasting as long as 20 hours. We present a case study of the effort, detailing the mechanical, electrical and software modifications that were made as well as the lessons learned during the integration, verification and testing process.« less

  3. Optical coherence domain reflectometry guidewire

    DOEpatents

    Colston, Billy W.; Everett, Matthew; Da Silva, Luiz B.; Matthews, Dennis

    2001-01-01

    A guidewire with optical sensing capabilities is based on a multiplexed optical coherence domain reflectometer (OCDR), which allows it to sense location, thickness, and structure of the arterial walls or other intra-cavity regions as it travels through the body during minimally invasive medical procedures. This information will be used both to direct the guidewire through the body by detecting vascular junctions and to evaluate the nearby tissue. The guidewire contains multiple optical fibers which couple light from the proximal to distal end. Light from the fibers at the distal end of the guidewire is directed onto interior cavity walls via small diameter optics such as gradient index lenses and mirrored corner cubes. Both forward viewing and side viewing fibers can be included. The light reflected or scattered from the cavity walls is then collected by the fibers, which are multiplexed at the proximal end to the sample arm of an optical low coherence reflectometer. The guidewire can also be used in nonmedical applications.

  4. High Resolution Millimeter Wave Detection of Vertical Cracks in the Space Shuttle External Tank Spray-On-Foam Insulation (SOFI)

    NASA Technical Reports Server (NTRS)

    Kharkovsky, S.; Zoughi, R.; Hepburn, F.

    2006-01-01

    Space Shuttle Columbia s catastrophic failure, the separation of a piece of spray-on-foam insulation (SOFI) from the external tank (ET) in the Space Shuttle Discovery s flight in 2005 and crack detected in its ET foam prior to its successful launch in 2006 emphasize the need for effective nondestructive methods for inspecting the shuttle ET SOFI. Millimeter wave nondestructive testing methods have been considered as potential and effective inspection tools for evaluating the integrity of the SOFI. This paper presents recent results of an investigation for the purpose of detecting vertical cracks in SOFI panels using a focused millimeter wave (150 GHz) reflectometer. The presented images of the SOFI panels show the capability of this reflectometer for detecting tight vertical cracks (also as a function of crack opening dimension) in exposed SOFI panels and while covered by a piece of SOFI ramp simulating a more realistic and challenging situation.

  5. Was Star Formation Suppressed in High-Redshift Minihalos?

    NASA Astrophysics Data System (ADS)

    Haiman, Zoltán; Bryan, Greg L.

    2006-10-01

    The primordial gas in the earliest dark matter halos, collapsing at redshifts z~20, with masses Mhalo~106 Msolar and virial temperatures Tvir<104 K, relied on the presence of molecules for cooling. Several theoretical studies have suggested that gas contraction and star formation in these minihalos was suppressed by radiative, chemical, thermal, and dynamical feedback processes. The recent measurement by the Wilkinson Microwave Anisotropy Probe (WMAP) of the optical depth to electron scattering, τ~0.09+/-0.03, provides the first empirical evidence for this suppression. The new WMAP result is consistent with vanilla models of reionization, in which ionizing sources populate cold dark matter halos down to a virial temperature of Tvir=104 K. On the other hand, we show that in order to avoid overproducing the optical depth, the efficiency for the production of ionizing photons in minihalos must have been about an order of magnitude lower than expected from massive metal-free stars and lower than the efficiency in large halos that can cool via atomic hydrogen (Tvir>104 K). This conclusion is insensitive to assumptions about the efficiency of ionizing photon production in the large halos, as long as reionization ends by z=6, as required by the spectra of bright quasars at z<~6. Our conclusion is strengthened if the clumping of the ionized gas evolves with redshift, as suggested by semianalytical predictions and three-dimensional numerical simulations.

  6. Human health monitoring technology

    NASA Astrophysics Data System (ADS)

    Kim, Byung-Hyun; Yook, Jong-Gwan

    2017-05-01

    Monitoring vital signs from human body is very important to healthcare and medical diagnosis, because they contain valuable information about arterial occlusions, arrhythmia, atherosclerosis, autonomous nervous system pathologies, stress level, and obstructive sleep apnea. Existing methods, such as electrocardiogram (ECG) sensor and photoplethysmogram (PPG) sensor, requires direct contact to the skin and it can causes skin irritation and the inconvenience of long-term wearing. For reducing the inconvenience in the conventional sensors, microwave and millimeter-wave sensors have been proposed since 1970s using micro-Doppler effect from one's cardiopulmonary activity. The Doppler radar sensor can remotely detect the respiration and heartbeat up to few meters away from the subject, but they have a multiple subject issue and are not suitable for an ambulatory subject. As a compromise, a noncontact proximity vital sign sensor has been recently proposed and developed. The purpose of this paper is to review the noncontact proximity vital sign sensors for detection of respiration, heartbeat rate, and/or wrist pulse. This sensor basically employs near-field perturbation of radio-frequency (RF) planar resonator due to the proximity of the one's chest or radial artery at the wrist. Various sensing systems based on the SAW filter, phase-locked loop (PLL) synthesizer, reflectometer, and interferometer have been proposed. These self-sustained systems can measure the nearfield perturbation and transform it into DC voltage variation. Consequently, they can detect the respiration and heartbeat rate near the chest of subject and pulse from radial artery at the wrist.

  7. Use of Time Domain Reflectometers (TDRs) in Permeable Pavement Systems to Predict Maintenance Needs and Effectiveness

    EPA Science Inventory

    As the surface in permeable pavement systems clogs, infiltration capacity decreases, so maintenance is required to maintain hydrologic performance. There is limited direct guidance for determining when maintenance is needed to prevent surface runoff bypass. Research is being co...

  8. Pressure Balance at Mars and Solar Wind Interaction with the Martian Atmosphere

    NASA Technical Reports Server (NTRS)

    Krymskii, A. M.; Ness, N. F.; Crider, D. H.; Breus, T. K.; Acuna, M. H.; Hinson, D.

    2003-01-01

    The strongest crustal fields are located in certain regions in the Southern hemisphere. In the Northern hemisphere, the crustal fields are rather weak and usually do not prevent direct interaction between the SW and the Martian ionosphere/atmosphere. Exceptions occur in the isolated mini-magnetospheres formed by the crustal anomalies. Electron density profiles of the ionosphere of Mars derived from radio occultation data obtained by the Radio Science Mars Global Surveyor (MGS) experiment have been compared with the crustal magnetic fields measured by the MGS Magnetometer/Electron Reflectometer (MAG/ER) experiment. A study of 523 electron density profiles obtained at latitudes from +67 deg. to +77 deg. has been conducted. The effective scale-height of the electron density for two altitude ranges, 145-165 km and 165-185 km, and the effective scale-height of the neutral atmosphere density in the vicinity of the ionization peak have been derived for each of the profiles studied. For the regions outside of the potential mini-magnetospheres, the thermal pressure of the ionospheric plasma for the altitude range 145-185 km has been estimated. In the high latitude ionosphere at Mars, the total pressure at altitudes 160 and 180 km has been mapped. The solar wind interaction with the ionosphere of Mars and origin of the sharp drop of the electron density at the altitudes 200-210 km will be discussed.

  9. Confined ion energy >200 keV and increased fusion yield in a DPF with monolithic tungsten electrodes and pre-ionization

    NASA Astrophysics Data System (ADS)

    Lerner, Eric J.; Hassan, Syed M.; Karamitsos, Ivana; Von Roessel, Fred

    2017-10-01

    To reduce impurities in the dense plasma focus FF-1 device, we used monolithic tungsten electrodes with pre-ionization. With this new set-up, we demonstrated a three-fold reduction of impurities by mass and a ten-fold reduction by ion number. FF-1 produced a 50% increase in fusion yield over our previous copper electrodes, both for a single shot and for a mean of ten consecutive shots with the same conditions. These results represent a doubling of fusion yield as compared with any other plasma focus device with the same 60 kJ energy input. In addition, FF-1 produced a new single-shot record of 240 ± 20 keV for mean ion energy, a record for any confined fusion plasma, using any device, and a 50% improvement in ten-shot mean ion energy. With a deuterium-nitrogen mix and corona-discharge pre-ionization, we were also able to reduce the standard deviation in the fusion yield to about 15%, a four-fold reduction over the copper-electrode results. We intend to further reduce impurities with new experiments using microwave treatment of tungsten electrodes, followed by the use of beryllium electrodes.

  10. Hydrogen and sulfur recovery from hydrogen sulfide wastes

    DOEpatents

    Harkness, J.B.L.; Gorski, A.J.; Daniels, E.J.

    1993-05-18

    A process is described for generating hydrogen and elemental sulfur from hydrogen sulfide waste in which the hydrogen sulfide is [dis]associated under plasma conditions and a portion of the hydrogen output is used in a catalytic reduction unit to convert sulfur-containing impurities to hydrogen sulfide for recycle, the process also including the addition of an ionizing gas such as argon to initiate the plasma reaction at lower energy, a preheater for the input to the reactor and an internal adjustable choke in the reactor for enhanced coupling with the microwave energy input.

  11. Hydrogen and sulfur recovery from hydrogen sulfide wastes

    DOEpatents

    Harkness, John B. L.; Gorski, Anthony J.; Daniels, Edward J.

    1993-01-01

    A process for generating hydrogen and elemental sulfur from hydrogen sulfide waste in which the hydrogen sulfide is associated under plasma conditions and a portion of the hydrogen output is used in a catalytic reduction unit to convert sulfur-containing impurities to hydrogen sulfide for recycle, the process also including the addition of an ionizing gas such as argon to initiate the plasma reaction at lower energy, a preheater for the input to the reactor and an internal adjustable choke in the reactor for enhanced coupling with the microwave energy input.

  12. Recent discoveries from the cosmic microwave background: a review of recent progress

    NASA Astrophysics Data System (ADS)

    Staggs, Suzanne; Dunkley, Jo; Page, Lyman

    2018-04-01

    Measurements of the anisotropies in the cosmic microwave background (CMB) radiation have provided a wealth of information about the cosmological model that describes the contents and evolution of the universe. These data have led to a standard model described by just six parameters. In this review we focus on discoveries made in the past decade from satellite and ground-based experiments, and look ahead to those anticipated in the coming decade. We provide an introduction to the key CMB observables including temperature and polarization anisotropies, and describe recent progress towards understanding the initial conditions of structure formation, and establishing the properties of the contents of the universe including neutrinos. Results are now being derived both from the primordial CMB signal that traces the behavior of the universe at 400 000 years of cosmic time, as well as from the signals imprinted at later times due to scattering from galaxy clusters, from the motion of electrons in the ionized universe, and from the gravitational lensing of the CMB photons. We describe current experimental methods to measure the CMB, particularly focusing on details relevant for ground and balloon-based instruments, and give an overview of the broad data analysis methods required to convert measurements of the microwave sky into cosmological parameters.

  13. Compton scattering of the microwave background by quasar-blown bubbles

    NASA Technical Reports Server (NTRS)

    Voit, G. Mark

    1994-01-01

    At least 10% of quasars drive rapid outflows from the central regions of their host galaxies. The mass and energy flow rates in these winds are difficult to measure, but their kinetic luminosities probably exceed 10(exp 45) ergs/s. This kind of outflow easily sunders the interstellar medium of the host and blows a bubble in the intergalactic medium. After the quasar shuts off, the hot bubble continues to shock intergalactic gas until its leading edge merges with the Hubble flow. The interior hot gas Compton scatters microwave background photons, potentially providing a way to detect these bubbles. Assuming that quasar kinetic luminosities scale with their blue luminosities, we integrate over the quasar luminosity function to find the total distortion (y) of the microwave background produced by the entire population of quasar wind bubbles. This calculation of y distortion is remarkably insensitive to the properties of the intergalactic medium (IGM), quasar lifetimes, and cosmological parameters. Current Cosmic Background Explorer (COBE) limits on y constrain the kinetic luminosities of quasars to be less than several times their bolometric radiative luminosities. Within this constraint, quasars can still expel enough kinetic luminosity to shock the entire IGM by z = 0, but cannot heat and ionize the IGM by z = 4 unless omega(sub IGM) much less than 10(exp -2).

  14. RF breakdown in "cold" slow wave structures operating at travelling wave mode of TM01

    NASA Astrophysics Data System (ADS)

    Yuan, Yuzhang; Zhang, Jun; Zhong, Huihuang; Zhang, Dian; Bai, Zhen; Zhu, Danni

    2018-01-01

    RF breakdown experiments and simulations in "cold" slow wave structures (SWSs) are executed. All the SWSs are designed as traveling wave structures, which operate at the π/2 mode of TM01 waves. The experimental results indicate that the input microwave energy is mainly absorbed, not reflected by the RF breakdown process in traveling wave SWSs. Both larger magnitude of Es-max and more numbers of periods of SWSs aggravate the microwave absorption in the breakdown process and bring about a shorter transmission pulse width. We think that the critical surface E-field of the multi-period SWSs is 1 MV/cm. However, little correlation between RF breakdown effects and Bext is observed in the experiments. The simulation conditions are coincident with the experimental setup. Explosive emissions of electrons in the rounded corner of SWSs together with the ionization of the gas layer close to it supply the breakdown plasma. The gas layer consists of water vapor and hydrogen gas and has a pressure of 1 Pa. Different kinds of circumstances of SWSs are simulated. We mainly concern about the characteristic of the plasma and its influence on microwave power. Comprehensive simulation results are obtained. The simulation results match the experimental results basically and are helpful in explaining the RF breakdown phenomenon physically.

  15. Recent discoveries from the cosmic microwave background: a review of recent progress.

    PubMed

    Staggs, Suzanne; Dunkley, Jo; Page, Lyman

    2018-04-01

    Measurements of the anisotropies in the cosmic microwave background (CMB) radiation have provided a wealth of information about the cosmological model that describes the contents and evolution of the universe. These data have led to a standard model described by just six parameters. In this review we focus on discoveries made in the past decade from satellite and ground-based experiments, and look ahead to those anticipated in the coming decade. We provide an introduction to the key CMB observables including temperature and polarization anisotropies, and describe recent progress towards understanding the initial conditions of structure formation, and establishing the properties of the contents of the universe including neutrinos. Results are now being derived both from the primordial CMB signal that traces the behavior of the universe at 400 000 years of cosmic time, as well as from the signals imprinted at later times due to scattering from galaxy clusters, from the motion of electrons in the ionized universe, and from the gravitational lensing of the CMB photons. We describe current experimental methods to measure the CMB, particularly focusing on details relevant for ground and balloon-based instruments, and give an overview of the broad data analysis methods required to convert measurements of the microwave sky into cosmological parameters.

  16. Use of Water Content Reflectometers in Bioinfiltration/Bioretention to Measure Water Movement and Estimate Evapotranspiration - abstract

    EPA Science Inventory

    Most bioinfiltration/bioretention models assume runoff is evenly distributed across the surface area and after the engineered fill media is no longer saturated, the volumetric water content (VWC) is constant throughout the media profile and at field capacity. Four to nine water ...

  17. Use of Water Content Reflectometers in Bioinfiltration/Bioretention to Measure Water Movement and Estimate Evapotranspiration

    EPA Science Inventory

    Most bioinfiltration/bioretention models assume runoff is evenly distributed across the surface area and after the engineered fill media is no longer saturated, the volumetric water content (VWC) is constant throughout the media profile and at field capacity. Four to nine water ...

  18. Improved Apparatus to Study Matter-Wave Quantum Optics in a Sodium Spinor Bose-Einstein Condensate

    NASA Astrophysics Data System (ADS)

    Zhong, Shan; Bhagat, Anita; Zhang, Qimin; Schwettmann, Arne

    2017-04-01

    We present and characterize our recently improved experimental apparatus for studying matter-wave quantum optics in spin space in ultracold sodium gases. Improvements include our recent addition of a 3D-printed Helmholtz coil frame for field stabilization and a crossed optical dipole trap. Spin-exchange collisions in the F = 1 spinor Bose-Einstein condensate can be precisely controlled by microwave dressing, and generate pairs of entangled atoms with magnetic quantum numbers mF = + 1 and mF = - 1 from pairs of mF = 0 atoms. Spin squeezing generated by the collisions can reduce the noise of population measurements below the shot noise limit. Versatile microwave pulse sequences will be used to implement an interferometer, a phase-sensitive amplifier and other devices with sub-shot noise performance. With an added ion detector to detect Rydberg atoms via pulse-field ionization, we later plan to study the effect of Rydberg excitations on the spin evolution of the ultracold gas.

  19. Microwave spectroscopy of high-L, n=9 Rydberg levels of nickel: Polarizabilities and moments of the Ni+ ion

    NASA Astrophysics Data System (ADS)

    Woods, Shannon; Smith, Chris; Keele, Julie; Lundeen, S. R.

    2013-02-01

    The complete pattern of Rydberg binding energies of the 18 n=9 levels of nickel with L=6, 7, and 8 was measured using microwave plus resonant-excitation Stark-ionization spectroscopy. The measured pattern is consistent with the form predicted with the effective potential model, showing significant structure proportional to scalar products of tensor operators of order 0-4. The variation of the structure with L separates the various contributing terms and provides determinations of several properties of the Ni+ core ion. These include the quadrupole moment, Q = -0.469 78(9) a.u., the hexadecapole moment, Π = 0.36(5) a.u., the scalar and tensor dipole polarizabilities, αD,0= 7.949(2) a.u., αD,2=0.905(12) a.u., the scalar quadrupole polarizability, αQ,0=55(8) a.u., the g value, gJ=1.257(14), and the vector hyperpolarizability, βD,1=0.454(24) a.u.

  20. Effect of argon ion activity on the properties of Y 2O 3 thin films deposited by low pressure PACVD

    NASA Astrophysics Data System (ADS)

    Barve, S. A.; Jagannath; Deo, M. N.; Kishore, R.; Biswas, A.; Gantayet, L. M.; Patil, D. S.

    2010-10-01

    Yttrium oxide thin films are deposited by microwave electron cyclotron resonance (ECR) plasma assisted metal organic chemical vapour deposition process using an indegeneously developed Y(thd) 3 {(2,2,6,6-tetramethyl-3,5-heptanedionate)yttrium} precursor. Depositions were carried out at two different argon gas flow rates keeping precursor and oxygen gas flow rate constant. The deposited coatings are characterized by X-ray photoelectron spectroscopy (XPS), glancing angle X-ray diffraction (GIXRD) and infrared spectroscopy. Optical properties of the films are studied by spectroscopic ellipsometry. Hardness and elastic modulus of the films are measured by load depth sensing nanoindentation technique. Stability of the film and its adhesion with the substrate is inferred from the nanoscratch test. It is shown here that, the change in the argon gas flow rates changes the ionization of the gas in the microwave ECR plasma and imposes a drastic change in the characteristics like composition, structure as well as mechanical properties of the deposited film.

  1. Modeling Plasma Formation in a Micro-gap at Microwave Frequency

    NASA Astrophysics Data System (ADS)

    Bowman, Arthur; Remillard, Stephen

    2013-03-01

    In the presence of a strong electric field, gas molecules become ionized, forming a plasma. The study of this dielectric breakdown at microwave frequency has important applications in improving the operation of radio frequency (RF) devices, where the high electric fields present in small gaps can easily ionize gases like air. A cone and tuner resonant structure was used to induce breakdown of diatomic Nitrogen in adjustable micro-gaps ranging from 13 to 1,156 μm. The electric field for plasma formation exhibited strong pressure dependence in the larger gap sizes, as predicted by previous theoretical and experimental work. Pressure is proportional to the frequency of collision between electrons and molecules, which increases with pressure when the gap is large, but levels off in the micro-gap region. A separate model of the breakdown electric field based on the characteristic diffusion length of the plasma also fit the data poorly for these smaller gap sizes. This may be explained by a hypothesis that dielectric breakdown at and below the 100 μm gap size occurs outside the gap, an argument that is supported by the observation of very high breakdown threshold electric fields in this region. Optical emissions revealed that vibrational and rotational molecular transitions of the first positive electronic system are suppressed in micro-gaps, indicating that transitions into the molecular ground state do not occur in micro-gap plasmas. Acknowledgements: National Science Foundation under NSF-REU Grant No. PHY/DMR-1004811, the Provost's Office of Hope College, and the Hope College Division of Natural and Applied Sciences.

  2. Microwave Driven Magnetic Plasma Accelerator Studies (CYCLOPS)

    NASA Technical Reports Server (NTRS)

    Crimi, G. F.; Eckert, A. C.; Miller, D. B.

    1967-01-01

    A microwave-driven cyclotron resonance plasma acceleration device was investigated using argon, krypton, xenon, and mercury as propellants. Limited ranges of propellant flow rate, input power, and magnetic field strength were used. Over-all efficiencies (including the 65% efficiency of the input polarizer) less than 10% were obtained for specific impulse values between 500 and 1500 sec. Power transfer efficiencies, however, approached 100% of the input power available in the right-hand component of the incident circularly polarized radiation. Beam diagnostics using Langmuir probes, cold gas mapping, r-f mapping and ion energy analyses were performed in conjunction with an engine operating in a pulsed mode. Measurements of transverse electron energies at the position of cyclotron resonant absorption yielded energy values more than an order of magnitude lower than anticipated. The measured electron energies were, however, consistent with the low values of average ion energy measured by retarding potential techniques. The low values of average ion energy were also consistent with the measured thrust values. It is hypothesized that ionization and radiation limit the electron kinetic energy to low-values thus limiting the energy which is finally transferred to the ion. Thermalization by electron-electron collision was also identified as an additional loss mechanism. The use of light alkali metals, which have relatively few low lying energy levels to excite, with the input power to mass ratio selected so as to limit the electron energies to less than the second ionization potential, is suggested. It is concluded, however, that the over-all efficiency for such propellants would be less than 40 per cent.

  3. Effect of Inductive Coil Geometry on the Thrust Efficiency of a Microwave Assisted Discharge Inductive Plasma Accelerator

    NASA Technical Reports Server (NTRS)

    Hallock, Ashley; Polzin, Kurt; Emsellem, Gregory

    2012-01-01

    Pulsed inductive plasma thrusters [1-3] are spacecraft propulsion devices in which electrical energy is capacitively stored and then discharged through an inductive coil. The thruster is electrodeless, with a time-varying current in the coil interacting with a plasma covering the face of the coil to induce a plasma current. Propellant is accelerated and expelled at a high exhaust velocity (O(10-100 km/s)) by the Lorentz body force arising from the interaction of the magnetic field and the induced plasma current. While this class of thruster mitigates the life-limiting issues associated with electrode erosion, pulsed inductive plasma thrusters require high pulse energies to inductively ionize propellant. The Microwave Assisted Discharge Inductive Plasma Accelerator (MAD-IPA) [4, 5] is a pulsed inductive plasma thruster that addressees this issue by partially ionizing propellant inside a conical inductive coil via an electron cyclotron resonance (ECR) discharge. The ECR plasma is produced using microwaves and permanent magnets that are arranged to create a thin resonance region along the inner surface of the coil, restricting plasma formation, and in turn current sheet formation, to a region where the magnetic coupling between the plasma and the inductive coil is high. The use of a conical theta-pinch coil is under investigation. The conical geometry serves to provide neutral propellant containment and plasma plume focusing that is improved relative to the more common planar geometry of the Pulsed Inductive Thruster (PIT) [2, 3], however a conical coil imparts a direct radial acceleration of the current sheet that serves to rapidly decouple the propellant from the coil, limiting the direct axial electromagnetic acceleration in favor of an indirect acceleration mechanism that requires significant heating of the propellant within the volume bounded by the current sheet. In this paper, we describe thrust stand measurements performed to characterize the performance (specific impulse, thrust efficiency) of the MAD-IPA thruster. Impulse data are obtained at various pulse energies, mass flow rates and inductive coil. geometries. Dependencies on these experimental parameters are discussed in the context of the current sheet formation and electromagnetic plasma acceleration processes.

  4. BioRef: A versatile time-of-flight reflectometer for soft matter applications at Helmholtz-Zentrum Berlin

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Strobl, M.; Kreuzer, M.; Helmholtz-Zentrum Berlin, Hahn-Meitner-Platz 1, 14109 Berlin

    2011-05-15

    BioRef is a versatile novel time-of-flight reflectometer featuring a sample environment for in situ infrared spectroscopy at the reactor neutron source BER II of the Helmholtz Zentrum Berlin fuer Materialien und Energie (HZB). After two years of design and construction phase the instrument has recently undergone commissioning and is now available for specular and off-specular neutron reflectivity measurements. BioRef is especially dedicated to the investigation of soft matter systems and studies at the solid-liquid interface. Due to flexible resolution modes and variable addressable wavelength bands that allow for focusing onto a selected scattering vector range, BioRef enables a broad rangemore » of surface and interface investigations and even kinetic studies with subsecond time resolution. The instrumental settings can be tailored to the specific requirements of a wide range of applications. The performance is demonstrated by several reference measurements, and the unique option of in situ on-board infrared spectroscopy is illustrated by the example of a phase transition study in a lipid multilayer film.« less

  5. Dependence of the Brillouin gain spectrum on linear strain distribution for optical time-domain reflectometer-type strain sensors

    NASA Astrophysics Data System (ADS)

    Naruse, Hiroshi; Tateda, Mitsuhiro; Ohno, Hiroshige; Shimada, Akiyoshi

    2002-12-01

    We theoretically derive the shape of the Brillouin gain spectrum, that is, the Brillouin backscattered-light power spectrum, produced in an optical fiber under conditions of a strain distribution that changes linearly with a constant slope. The modeled measurement system is an optical time-domain reflectometer-type strain sensor system. The linear strain distribution is one of the fundamental distributions and is produced in, for example, a beam to which a concentrated load is applied. By analyzing a function that expresses the shape of the derived Brillouin gain spectrum, we show that the strain calculated from the frequency at which the spectrum has a peak value coincides with that at the center of the effective pulsed light. In addition, the peak value and the full width at half-maximum of the Brillouin gain spectrum are both influenced by the strain difference between the two ends of the effective pulse. We investigate this influence in detail and obtain the relationship between strain difference and strain measurement error.

  6. Double peak-induced distance error in short-time-Fourier-transform-Brillouin optical time domain reflectometers event detection and the recovery method.

    PubMed

    Yu, Yifei; Luo, Linqing; Li, Bo; Guo, Linfeng; Yan, Jize; Soga, Kenichi

    2015-10-01

    The measured distance error caused by double peaks in the BOTDRs (Brillouin optical time domain reflectometers) system is a kind of Brillouin scattering spectrum (BSS) deformation, discussed and simulated for the first time in the paper, to the best of the authors' knowledge. Double peak, as a kind of Brillouin spectrum deformation, is important in the enhancement of spatial resolution, measurement accuracy, and crack detection. Due to the variances of the peak powers of the BSS along the fiber, the measured starting point of a step-shape frequency transition region is shifted and results in distance errors. Zero-padded short-time-Fourier-transform (STFT) can restore the transition-induced double peaks in the asymmetric and deformed BSS, thus offering more accurate and quicker measurements than the conventional Lorentz-fitting method. The recovering method based on the double-peak detection and corresponding BSS deformation can be applied to calculate the real starting point, which can improve the distance accuracy of the STFT-based BOTDR system.

  7. Scrape-off layer reflectometer for Alcator C-Mod.

    PubMed

    Lau, Cornwall; Hanson, Greg; Wilgen, John; Lin, Yijun; Wukitch, Steve

    2010-10-01

    A swept-frequency X-mode reflectometer is being built for Alcator C-Mod to measure the scrape-off layer density profiles at the top, middle, and bottom locations in front of both the new lower hybrid launcher and the new ion cyclotron range of frequencies antenna. The system is planned to operate between 100 and 146 GHz at sweep rates from 10 μs to 1 ms, and will cover a density range of approximately 10(16)-10(20) m(-3) at B(0)=5-5.4 T. To minimize the effects of density fluctuations, both differential phase and full phase reflectometry will be employed. Design, test data, and calibration results of this electronics system will be discussed. To reduce attenuation losses, tallguide (TE(01)) will be used for most of the transmission line system. Simulations of high mode conversion in tallguide components, such as e-plane hyperbolic secant radius of curvature bends, tapers, and horn antennas will be shown. Experimental measurements of the total attenuation losses of these components in the lower hybrid waveguide run will also be presented.

  8. Complex EUV imaging reflectometry: spatially resolved 3D composition determination and dopant profiling with a tabletop 13nm source

    NASA Astrophysics Data System (ADS)

    Porter, Christina L.; Tanksalvala, Michael; Gerrity, Michael; Miley, Galen P.; Esashi, Yuka; Horiguchi, Naoto; Zhang, Xiaoshi; Bevis, Charles S.; Karl, Robert; Johnsen, Peter; Adams, Daniel E.; Kapteyn, Henry C.; Murnane, Margaret M.

    2018-03-01

    With increasingly 3D devices becoming the norm, there is a growing need in the semiconductor industry and in materials science for high spatial resolution, non-destructive metrology techniques capable of determining depth-dependent composition information on devices. We present a solution to this problem using ptychographic coherent diffractive imaging (CDI) implemented using a commercially available, tabletop 13 nm source. We present the design, simulations, and preliminary results from our new complex EUV imaging reflectometer, which uses coherent 13 nm light produced by tabletop high harmonic generation. This tool is capable of determining spatially-resolved composition vs. depth profiles for samples by recording ptychographic images at multiple incidence angles. By harnessing phase measurements, we can locally and nondestructively determine quantities such as device and thin film layer thicknesses, surface roughness, interface quality, and dopant concentration profiles. Using this advanced imaging reflectometer, we can quantitatively characterize materials-sciencerelevant and industry-relevant nanostructures for a wide variety of applications, spanning from defect and overlay metrology to the development and optimization of nano-enhanced thermoelectric or spintronic devices.

  9. Indirect dark matter signatures in the cosmic dark ages. II. Ionization, heating, and photon production from arbitrary energy injections

    NASA Astrophysics Data System (ADS)

    Slatyer, Tracy R.

    2016-01-01

    Any injection of electromagnetically interacting particles during the cosmic dark ages will lead to increased ionization, heating, production of Lyman-α photons and distortions to the energy spectrum of the cosmic microwave background, with potentially observable consequences. In this paper we describe numerical results for the low-energy electrons and photons produced by the cooling of particles injected at energies from keV to multi-TeV scales, at arbitrary injection redshifts (but focusing on the post-recombination epoch). We use these data, combined with existing calculations modeling the cooling of these low-energy particles, to estimate the resulting contributions to ionization, excitation and heating of the gas, and production of low-energy photons below the threshold for excitation and ionization. We compute corrected deposition-efficiency curves for annihilating dark matter, and demonstrate how to compute equivalent curves for arbitrary energy-injection histories. These calculations provide the necessary inputs for the limits on dark matter annihilation presented in the accompanying paper I, but also have potential applications in the context of dark matter decay or deexcitation, decay of other metastable species, or similar energy injections from new physics. We make our full results publicly available at http://nebel.rc.fas.harvard.edu/epsilon, to facilitate further independent studies. In particular, we provide the full low-energy electron and photon spectra, to allow matching onto more detailed codes that describe the cooling of such particles at low energies.

  10. RICO: A NEW APPROACH FOR FAST AND ACCURATE REPRESENTATION OF THE COSMOLOGICAL RECOMBINATION HISTORY

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fendt, W. A.; Wandelt, B. D.; Chluba, J.

    2009-04-15

    We present RICO, a code designed to compute the ionization fraction of the universe during the epoch of hydrogen and helium recombination with an unprecedented combination of speed and accuracy. This is accomplished by training the machine learning code PICO on the calculations of a multilevel cosmological recombination code which self-consistently includes several physical processes that were neglected previously. After training, RICO is used to fit the free electron fraction as a function of the cosmological parameters. While, for example, at low redshifts (z {approx}< 900), much of the net change in the ionization fraction can be captured by loweringmore » the hydrogen fudge factor in RECFAST by about 3%, RICO provides a means of effectively using the accurate ionization history of the full recombination code in the standard cosmological parameter estimation framework without the need to add new or refined fudge factors or functions to a simple recombination model. Within the new approach presented here, it is easy to update RICO whenever a more accurate full recombination code becomes available. Once trained, RICO computes the cosmological ionization history with negligible fitting error in {approx}10 ms, a speedup of at least 10{sup 6} over the full recombination code that was used here. Also RICO is able to reproduce the ionization history of the full code to a level well below 0.1%, thereby ensuring that the theoretical power spectra of cosmic microwave background (CMB) fluctuations can be computed to sufficient accuracy and speed for analysis from upcoming CMB experiments like Planck. Furthermore, it will enable cross-checking different recombination codes across cosmological parameter space, a comparison that will be very important in order to assure the accurate interpretation of future CMB data.« less

  11. [Patient exposure to electromagnetic fields in magnetic resonance scanners: a review].

    PubMed

    Guibelalde del Castillo, E

    2013-12-01

    The use of non-ionizing electromagnetic fields in the low frequency end of the electromagnetic spectrum and static fields, radiofrequencies (RF), and microwaves is fundamental both in modern communication systems and in diagnostic medical imaging techniques like magnetic resonance imaging (MRI). The proliferation of these applications in recent decades has led to intense activity in developing regulations to guarantee their safety and to the establishment of guidelines and legal recommendations for the public, workers, and patients. In April 2012 it was foreseen that the European Parliament and Council would approve and publish a directive on the minimum health and safety requirements regarding the exposure of workers to the risks arising from electromagnetic fields, which would modify Directive 2004/40/EC. New studies related to the exposure to electromagnetic radiation and its impact on health published in recent years have led to a new postponement, and it is now foreseen that the directive will come into effect in October 2013. One of the most noteworthy aspects of the new version of the directive is the exclusion of the limits of occupational exposure to electromagnetic fields in the clinical use of MRI. In exchange for this exception, physicians and experts in protection against non-ionizing radiation are asked to make additional efforts to train workers exposed to non-ionizing radiation and to establish mechanisms to guarantee the correct application of non-ionizing electromagnetic fields in patients, along similar lines to the principles of justification and optimization established for ionizing radiation. On the basis of the most recently published studies, this article reviews some safety-related aspects to take into account when examining patients with MRI with high magnetic fields. Copyright © 2013 SERAM. Published by Elsevier Espana. All rights reserved.

  12. Levels of detail analysis of microwave scattering from human head models for brain stroke detection

    PubMed Central

    2017-01-01

    In this paper, we have presented a microwave scattering analysis from multiple human head models. This study incorporates different levels of detail in the human head models and its effect on microwave scattering phenomenon. Two levels of detail are taken into account; (i) Simplified ellipse shaped head model (ii) Anatomically realistic head model, implemented using 2-D geometry. In addition, heterogenic and frequency-dispersive behavior of the brain tissues has also been incorporated in our head models. It is identified during this study that the microwave scattering phenomenon changes significantly once the complexity of head model is increased by incorporating more details using magnetic resonance imaging database. It is also found out that the microwave scattering results match in both types of head model (i.e., geometrically simple and anatomically realistic), once the measurements are made in the structurally simplified regions. However, the results diverge considerably in the complex areas of brain due to the arbitrary shape interface of tissue layers in the anatomically realistic head model. After incorporating various levels of detail, the solution of subject microwave scattering problem and the measurement of transmitted and backscattered signals were obtained using finite element method. Mesh convergence analysis was also performed to achieve error free results with a minimum number of mesh elements and a lesser degree of freedom in the fast computational time. The results were promising and the E-Field values converged for both simple and complex geometrical models. However, the E-Field difference between both types of head model at the same reference point differentiated a lot in terms of magnitude. At complex location, a high difference value of 0.04236 V/m was measured compared to the simple location, where it turned out to be 0.00197 V/m. This study also contributes to provide a comparison analysis between the direct and iterative solvers so as to find out the solution of subject microwave scattering problem in a minimum computational time along with memory resources requirement. It is seen from this study that the microwave imaging may effectively be utilized for the detection, localization and differentiation of different types of brain stroke. The simulation results verified that the microwave imaging can be efficiently exploited to study the significant contrast between electric field values of the normal and abnormal brain tissues for the investigation of brain anomalies. In the end, a specific absorption rate analysis was carried out to compare the ionizing effects of microwave signals to different types of head model using a factor of safety for brain tissues. It is also suggested after careful study of various inversion methods in practice for microwave head imaging, that the contrast source inversion method may be more suitable and computationally efficient for such problems. PMID:29177115

  13. Effects of low Earth orbit environment on the Long Duration Exposure Facility thermal control coatings

    NASA Technical Reports Server (NTRS)

    Sampair, Thomas R.; Berrios, William M.

    1992-01-01

    One of the benefits of the Long Duration Exposure Facility (LDEF) was the opportunity to study the before and after effects of low earth orbit space environment on the spacecraft thermal control coatings. Since the LDEF's thermal control was totally passive by design, the selection of the external surface absorptivity to emissivity ratio (alpha/epsilon) and the ability for the coating to retain the alpha/epsilon over time was an important consideration in the thermal design of the LDEF. The primary surface coating chosen for the LDEF structure was clear chromic anodized aluminum with an average design alpha/epsilon of 0.32/0.16. External surface absorptivity (alpha) and emissivity (epsilon) were measured on all intercostals, longerons, tray mounting flanges, thermal control panels, and a limited number of experiment surface coatings after the experiment trays were removed from the LDEF structure. All surface alpha/epsilon measurements were made using portable hand held infrared and solar spectrum reflectometers. The absorptivity measurements were taken with a Devices and Services SSR-ER version 5.0 solar spectra reflectometer which has a stated uncertainty of +/- 0.01, and all normal emissivity measurements were made using the Gier Dunkle DB-100 infrared reflectometer also with a stated uncertainty of +/- 0.01. Both instruments were calibrated in the laboratory by LaRC instrumentation personnel before being used in the field at KSC. A combined total of 733 measurements were taken on the anodized aluminum hardware which included the structure (intercostals, longerons, and center ring), earth and space end thermal control panels, and experiment tray mounting flanges. The facility thermal control coatings measured in this survey cover 33 percent of the total exposed LDEF surface area. To correlate low earth orbit environmental effects on the anodized coatings, measurements were taken in both exposed and unexposed surfaces and compared to quality assurance (QA) measurements taken on the new surfaces at the time of hardware fabrication in 1978. The results of investigation are presented.

  14. Discrimination of radiation quality through second harmonic out-of-phase cw-ESR detection.

    PubMed

    Marrale, Maurizio; Longo, Anna; Brai, Maria; Barbon, Antonio; Brustolon, Marina

    2014-02-01

    The ability to discriminate the quality of ionizing radiation is important because the biological effects produced in tissue strongly depends on both absorbed dose and linear energy transfer (LET) of ionizing particles. Here we present an experimental electron spin resonance (ESR) analysis aimed at discriminating the effective LETs of various radiation beams (e.g., 19.3 MeV protons, (60)Co photons and thermal neutrons). The measurement of the intensities of the continuous wave spectrometer signal channel first harmonic in-phase and the second harmonic out-of-phase components are used to distinguish the radiation quality. A computational analysis, was carried out to evaluate the dependence of the first harmonic in-phase and second harmonic out-of-phase components on microwave power, modulation amplitude and relaxation times, and highlights that these components could be used to point out differences in the relaxation times. On the basis of this numerical analysis the experimental results are discussed. The methodology described in this study has the potential to provide information on radiation quality.

  15. Circular states of atomic hydrogen

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lutwak, R.; Holley, J.; Chang, P.P.

    1997-08-01

    We describe the creation of circular states of hydrogen by adiabatic transfer of a Rydberg state in crossed electric and magnetic fields, and also by adiabatic passage in a rotating microwave field. The latter method permits rapid switching between the two circular states of a given n manifold. The two methods are demonstrated experimentally, and results are presented of an analysis of the field ionization properties of the circular states. An application for the circular states is illustrated by millimeter-wave resonance in hydrogen of the n=29{r_arrow}n=30 transition. {copyright} {ital 1997} {ital The American Physical Society}

  16. Microwave dual frequency propagation experiment using the Mariner Venus Mercury probe.

    NASA Technical Reports Server (NTRS)

    Levy, G. S.

    1972-01-01

    The Mariner Venus Mercury spacecraft (MVM) will be launched in a multiple planet flyby orbit. A coherent dual frequency down link operating at 2.3 and 8.4 GHz will be used to measure the dispersive nature of the transmission medium. Radio tracking will produce Doppler and range information at both 2.3 and 8.4 GHz so that the dispersive group and phase velocity perturbations of the medium can be measured. Interpretation of the dispersive results will yield information about the neutral and ionized atmospheres of Venus and Mercury, the interplanetary media, the solar wind, and corona.

  17. Measurements of electron avalanche formation time in W-band microwave air breakdown

    NASA Astrophysics Data System (ADS)

    Cook, Alan M.; Hummelt, Jason S.; Shapiro, Michael A.; Temkin, Richard J.

    2011-08-01

    We present measurements of formation times of electron avalanche ionization discharges induced by a focused 110 GHz millimeter-wave beam in atmospheric air. Discharges take place in a free volume of gas, with no nearby surfaces or objects. When the incident field amplitude is near the breakdown threshold for pulsed conditions, measured formation times are ˜0.1-2 μs over the pressure range 5-700 Torr. Combined with electric field breakdown threshold measurements, the formation time data shows the agreement of 110 GHz air breakdown with the similarity laws of gas discharges.

  18. Deviation from Normal Boltzmann Distribution of High-lying Energy Levels of Iron Atom Excited by Okamoto-cavity Microwave-induced Plasmas Using Pure Nitrogen and Nitrogen-Oxygen Gases.

    PubMed

    Wagatsuma, Kazuaki

    2015-01-01

    This paper describes several interesting excitation phenomena occurring in a microwave-induced plasma (MIP) excited with Okamoto-cavity, especially when a small amount of oxygen was mixed with nitrogen matrix in the composition of the plasma gas. An ion-to-atom ratio of iron, which was estimated from the intensity ratio of ion to atomic lines having almost the same excitation energy, was reduced by adding oxygen gas to the nitrogen MIP, eventually contributing to an enhancement in the emission intensities of the atomic lines. Furthermore, Boltzmann plots for iron atomic lines were observed in a wide range of the excitation energy from 3.4 to 6.9 eV, indicating that plots of the atomic lines having lower excitation energies (3.4 to 4.8 eV) were well fitted on a straight line while those having more than 5.5 eV deviated upwards from the linear relationship. This overpopulation would result from any other excitation process in addition to the thermal excitation that principally determines the Boltzmann distribution. A Penning-type collision with excited species of nitrogen molecules probably explains this additional excitation mechanism, in which the resulting iron ions recombine with captured electrons, followed by cascade de-excitations between closely-spaced excited levels just below the ionization limit. As a result, these high-lying levels might be more populated than the low-lying levels of iron atom. The ionization of iron would be caused less actively in the nitrogen-oxygen plasma than in a pure nitrogen plasma, because excited species of nitrogen molecule, which can provide the ionization energy in a collision with iron atom, are consumed through collisions with oxygen molecules to cause their dissociation. It was also observed that the overpopulation occurred to a lesser extent when oxygen gas was added to the nitrogen plasma. The reason for this was also attributed to decreased number density of the excited nitrogen species due to collisions with oxygen molecule.

  19. Rapid determination of eight bioactive alkaloids in Portulaca oleracea L. by the optimal microwave extraction combined with positive-negative conversion multiple reaction monitor (+/-MRM) technology.

    PubMed

    Liang, Xiao; Tian, Jinlong; Li, Lingzhi; Gao, Jun; Zhang, Qingyi; Gao, Pinyi; Song, Shaojiang

    2014-03-01

    A rapid and reliable microwave extraction and the triple quadrupole-linear ion trap mass spectrometry method was developed and validated for the determination of eight alkaloids in Portulaca oleracea L. The optimal microwave extraction (MWE) condition was performed at 60 °C for 12 min with ethanol-water (70:30, v/v) as the extracting solvent, and the solvent to solid ratio was 30:1. The alkaloids were first detected simultaneously by electrospray ionization tandem mass spectrometry under positive-negative conversion multiple reaction monitor ((+/-)MRM) technique. With investigating three different columns, samples were separated in only 8 min on a Waters ACQUITY UPLC HSS T3 (50 × 2.1 mm(2), 1.8 μm) column using acetonitrile and formic acid-water solution as a mobile phase with a flow rate at 0.2 mL/min. All calibration curves showed good linearity (r>0.999) within the test ranges. The method developed was validated with acceptable sensitivity, intra- and inter-day precision, reproducibility, and extraction recoveries. It was successfully applied to the determination of eight alkaloids in Portulaca oleracea L. from different sources and different harvest periods. The method also provide a reference for extraction and determination of alkaloids in other complex systems. © 2013 Elsevier B.V. All rights reserved.

  20. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Atrio-Barandela, F.; Kashlinsky, A., E-mail: atrio@usal.es, E-mail: Alexander.Kashlinsky@nasa.gov

    The epoch of first star formation and the state of the intergalactic medium (IGM) at that time are not directly observable with current telescopes. The radiation from those early sources is now part of the cosmic infrared background (CIB) and, as these sources ionize the gas around them, the IGM plasma would produce faint temperature anisotropies in the cosmic microwave background (CMB) via the thermal Sunyaev-Zeldovich (TSZ) effect. While these TSZ anisotropies are too faint to be detected, we show that the cross-correlation of maps of source-subtracted CIB fluctuations from Euclid, with suitably constructed microwave maps at different frequencies, canmore » probe the physical state of the gas during reionization and test/constrain models of the early CIB sources. We identify the frequency-combined, CMB-subtracted microwave maps from space- and ground-based instruments to show that they can be cross-correlated with the forthcoming all-sky Euclid CIB maps to detect the cross-power at scales ∼5'-60' with signal-to-noise ratios (S/Ns) of up to S/N ∼ 4-8 depending on the contribution to the Thomson optical depth during those pre-reionization epochs (Δτ ≅ 0.05) and the temperature of the IGM (up to ∼10{sup 4} K). Such a measurement would offer a new window to explore the emergence and physical properties of these first light sources.« less

  1. Progress in diagnostics of the COMPASS tokamak

    NASA Astrophysics Data System (ADS)

    Weinzettl, V.; Adamek, J.; Berta, M.; Bilkova, P.; Bogar, O.; Bohm, P.; Cavalier, J.; Dejarnac, R.; Dimitrova, M.; Ficker, O.; Fridrich, D.; Grover, O.; Hacek, P.; Havlicek, J.; Havranek, A.; Horacek, J.; Hron, M.; Imrisek, M.; Komm, M.; Kovarik, K.; Krbec, J.; Markovic, T.; Matveeva, E.; Mitosinkova, K.; Mlynar, J.; Naydenkova, D.; Panek, R.; Paprok, R.; Peterka, M.; Podolnik, A.; Seidl, J.; Sos, M.; Stockel, J.; Tomes, M.; Varavin, M.; Varju, J.; Vlainic, M.; Vondracek, P.; Zajac, J.; Zacek, F.; Stano, M.; Anda, G.; Dunai, D.; Krizsanoczi, T.; Refy, D.; Zoletnik, S.; Silva, A.; Gomes, R.; Pereira, T.; Popov, Tsv.; Sarychev, D.; Ermak, G. P.; Zebrowski, J.; Jakubowski, M.; Rabinski, M.; Malinowski, K.; Nanobashvili, S.; Spolaore, M.; Vianello, N.; Gauthier, E.; Gunn, J. P.; Devitre, A.

    2017-12-01

    The COMPASS tokamak at IPP Prague is a small-size device with an ITER-relevant plasma geometry and operating in both the Ohmic as well as neutral beam assisted H-modes since 2012. A basic set of diagnostics installed at the beginning of the COMPASS operation has been gradually broadened in type of diagnostics, extended in number of detectors and collected channels and improved by an increased data acquisition speed. In recent years, a significant progress in diagnostic development has been motivated by the improved COMPASS plasma performance and broadening of its scientific programme (L-H transition and pedestal scaling studies, magnetic perturbations, runaway electron control and mitigation, plasma-surface interaction and corresponding heat fluxes, Alfvenic and edge localized mode observations, disruptions, etc.). In this contribution, we describe major upgrades of a broad spectrum of the COMPASS diagnostics and discuss their potential for physical studies. In particular, scrape-off layer plasma diagnostics will be represented by a new concept for microsecond electron temperature and heat flux measurements - we introduce a new set of divertor Langmuir and ball-pen probe arrays, newly constructed probe heads for reciprocating manipulators as well as several types of standalone probes. Among optical tools, an upgraded high-resolution edge Thomson scattering diagnostic for pedestal studies and a set of new visible light and infrared (plasma-surface interaction investigations) cameras will be described. Particle and beam diagnostics will be covered by a neutral particle analyzer, diagnostics on a lithium beam, Cherenkov detectors (for a direct detection of runaway electrons) and neutron detectors. We also present new modifications of the microwave reflectometer for fast edge density profile measurements.

  2. Water content measurement in forest soils and decayed wood using time domain reflectometry

    Treesearch

    Andrew Gray; Thomas Spies

    1995-01-01

    The use of time domain reflectometry to measure moisture content in forest soils and woody debris was evaluated. Calibrations were developed on undisturbed soil cores from four forest stands and on point samples from decayed logs. An algorithm for interpreting irregularly shaped traces generated by the reflectometer was also developed. Two different calibration...

  3. Wilkinson Microwave Anisotropy Probe (WMAP) First Year Observations: TE Polarization

    NASA Technical Reports Server (NTRS)

    Kogut, A.; Spergel, D. N.; Barnes, C.; Bennett, C. L.; Halpern, M.; Hinshaw, G.; Jarosik, N.; Limon, M.; Meyer, S. S.; Page, L.; hide

    2001-01-01

    The Wilkinson Microwave Anisotropy Probe (WMAP) has mapped the full sky in Stokes I, Q, and U parameters at frequencies 23, 33, 41, 61, and 94 GHz. We detect correlations between the temperature and polarization maps significant at more than 10 standard deviations. The correlations are inconsistent with instrument noise and are significantly larger than the upper limits established for potential systematic errors. The correlations are present in all WAMP frequency bands with similar amplitude from 23 to 94 GHz, and are consistent with a superposition of a CMB signal with a weak foreground. The fitted CMB component is robust against different data combinations and fitting techniques. On small angular scales (theta less than 5 deg), the WMAP data show the temperature-polarization correlation expected from adiabatic perturbations in the temperature power spectrum. The data for l greater than 20 agree well with the signal predicted solely from the temperature power spectra, with no additional free parameters. We detect excess power on large angular scales (theta greater than 10 deg) compared to predictions based on the temperature power spectra alone. The excess power is well described by reionization at redshift 11 is less than z(sub r) is less than 30 at 95% confidence, depending on the ionization history. A model-independent fit to reionization optical depth yields results consistent with the best-fit ACDM model, with best fit value t = 0.17 +/- 0.04 at 68% confidence, including systematic and foreground uncertainties. This value is larger than expected given the detection of a Gunn-Peterson trough in the absorption spectra of distant quasars, and implies that the universe has a complex ionization history: WMAP has detected the signal from an early epoch of reionization.

  4. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Brent, R.L.

    Many professionals are unfamiliar with radiation biology or the quantitative nature of the risks. Frequently, microwave, ultrasound, and ionizing radiation risks are confused. Although it is impossible to prove no risk for any environmental hazard, it appears that exposure to microwave radiation below the maximal permissible levels present no measurable risk to the embryo. Ultrasound exposure from diagnostic ultrasonographic imaging equipment also is quite innocuous. It is true that continued surveillance and research into potential risks of these low-level exposures should continue, but at present ultrasound not only improves obstetric care but also reduces the necessity of diagnostic x-ray procedures.more » In the field of ionizing radiation, we have as good a comprehension of the biologic effects and the quantitative maximum risks as of any other environmental hazard. Although the animal and human data support the conclusion that no increases in the incidence of gross congenital malformations, intrauterine growth retardation, or abortion will occur with exposures less than 5 rad, that does not mean that there are definitely no risks to the embryo exposed to lower doses of radiation. Whether there exists a linear or exponential dose-response relationship or a threshold exposure for genetic, carcinogenic, cell-depleting, and life-shortening effects has not been determined. In establishing maximum permissible levels for the embryo at low exposures, refer to Tables 4, 5, 6, 8, and 9. It is obvious that the risks of 1-rad or 5-rad acute exposure are far below the spontaneous risks of the developing embryo because 15 per cent of human embryos abort, 2.7 to 3.0 per cent of human embryos have major malformations, 4 per cent have intrauterine growth retardation, and 8 to 10 per cent have early- or late-onset genetic disease. 98 references.« less

  5. Experiment and theoretical study of the propagation of high power microwave pulse in air breakdown environment

    NASA Technical Reports Server (NTRS)

    Kuo, S. P.; Ren, A.; Zhang, Y. S.

    1991-01-01

    In the study of the propagation of high power microwave pulse, one of the main concerns is how to minimize the energy loss of the pulse before reaching the destination. In the very high power region, one has to prevent the cutoff reflection caused by the excessive ionization in the background air. A frequency auto-conversion process which can lead to reflectionless propagation of powerful EM pulses in self-generated plasmas is studied. The theory shows that under the proper conditions the carrier frequency, omega, of the pulse will indeed shift upward with the growth of plasma frequency, omega(sub pe). Thus, the plasma during breakdown will always remain transparent to the pulse (i.e., omega greater than omega(sub pe)). A chamber experiment to demonstrate the frequency auto-conversion during the pulse propagation through the self-generated plasma is then conducted in a chamber. The detected frequency shift is compared with the theoretical result calculated y using the measured electron density distribution along the propagation path of the pulse. Good agreement between the theory and the experiment results is obtained.

  6. Planck Visualization Project: Seeing and Hearing the Cosmic Microwave Background

    NASA Astrophysics Data System (ADS)

    van der Veen, J.

    2010-08-01

    The Planck Mission, launched May 14, 2009, will measure the sky over nine frequency channels, with temperature sensitivity of a few microKelvin, and angular resolution of up to 5 arc minutes. Planck is expected to provide the data needed to set tight constraints on cosmological parameters, study the ionization history of the Universe, probe the dynamics of the inflationary era, and test fundamental physics. The Planck Education and Public Outreach collaborators at NASA's Jet Propulsion Laboratory, the University of California, Santa Barbara and Purdue University are preparing a variety of materials to present the science goals of the Planck Mission to the public. Two products currently under development are an interactive simulation of the mission which can be run in a virtual reality environment, and an interactive presentation on interpreting the power spectrum of the Cosmic Microwave Background with music. In this paper we present a brief overview of CMB research and the Planck Mission, and discuss how to explain, to non-technical audiences, the theory of how we derive information about the early universe from the power spectrum of the CMB by using the physics of music.

  7. Chemo-selective high yield microwave assisted reaction turns cellulose to green chemicals.

    PubMed

    Hassanzadeh, Salman; Aminlashgari, Nina; Hakkarainen, Minna

    2014-11-04

    Exceptionally high cellulose liquefaction yields, up to 87% as calculated from the amount of solid residue, were obtained under mild conditions by utilizing the synergistic effect of microwave radiation and acid catalysis. The effect of processing conditions on degradation products was fingerprinted by rapid laser desorption ionization-mass spectrometry (LDI-MS) method. The reaction was chemo-tunable, enabling production of glucose (Glc) or levulinic acid (LeA) at significantly high selectivity and yields, the relative molar yields being up to 50 and 69%, respectively. A turning point from pure depolymerization to glucose to further degradation to levulinic acid and formic acid was observed at approximately 50% liquefaction or above 140 °C. This was accompanied by the formation of small amounts of solid spherical carbonized residues. The reaction was monitored by multiple analytical techniques. The high yields were connected to the ability of the process to break the strong secondary interactions in cellulose. The developed method has great potential for future production of green platform chemicals. Copyright © 2014 Elsevier Ltd. All rights reserved.

  8. Reionization and the cosmic microwave background in an open universe

    NASA Technical Reports Server (NTRS)

    Persi, Fred M.

    1995-01-01

    If the universe was reionized at high reshift (z greater than or approximately equal to 30) or never recombined, then photon-electron scattering can erase fluctuations in the cosmic microwave background at scales less than or approximately equal to 1 deg. Peculiar motion at the surface of last scattering will then have given rise to new anisotropy at the 1 min level through the Vishniac effect. Here the observed fluctuations in galaxy counts are extrapolated to high redshifts using linear theory, and the expected anisotropy is computed. The predicted level of anisotropies is a function of Omega(sub 0) and the ratio of the density in ionized baryons to the critical density and is shown to depend strongly on the large- and small-scale power. It is not possible to make general statements about the viability of all reionized models based on current observations, but it is possible to rule out specific models for structure formation, particularly those with high baryonic content or small-scale power. The induced fluctuations are shown to scale with cosmological parameters and optical depth.

  9. ECR Plasma Source for Heavy Ion Beam Charge Neutralization

    NASA Astrophysics Data System (ADS)

    Efthimion, P. C.; Gilson, E.; Grisham, L.; Davidson, R. C.; Yu, S.; Logan, B. G.

    2002-11-01

    Highly ionized plasmas are being considered as a medium for charge neutralizing heavy ion beams in order to focus beyond the space-charge limit. Calculations suggest that plasma at a density of 1 - 100 times the ion beam density and at a length ˜ 0.1-0.5 m would be suitable for achieving a high level of charge neutralization. An ECR source has been built at the Princeton Plasma Physics Laboratory (PPPL) to support a joint Neutralized Transport Experiment (NTX) at the Lawrence Berkeley National Laboratory (LBNL) to study ion beam neutralization with plasma. The ECR source operates at 13.6 MHz and with solenoid magnetic fields of 1-10 gauss. The goal is to operate the source at pressures ˜ 10-5 Torr at full ionization. The initial operation of the source has been at pressures of 10-4 - 10-1 Torr. Electron densities in the range of 10^8 - 10^11 cm-3 have been achieved. Low-pressure operation is important to reduce ion beam ionization. A cusp magnetic field has been installed to improve radial confinement and reduce the field strength on the beam axis. In addition, axial confinement is believed to be important to achieve lower-pressure operation. At moderate pressures (> 1 mTorr) the wave damping is collisional, and at low pressures (< 1 mTorr) there is a distinct electron cyclotron resonance. The source has recently been configured to operate with 2.45 GHz microwaves with similar results. At the present operating range the source can simulate the plasma produced by photo-ionization in the target chamber.

  10. ALICE—An advanced reflectometer for static and dynamic experiments in magnetism at synchrotron radiation facilities

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Abrudan, R.; Helmholtz-Zentrum-Berlin for Materials and Energy, 12489 Berlin; Brüssing, F.

    2015-06-15

    We report on significant developments of a high vacuum reflectometer (diffractometer) and spectrometer for soft x-ray synchrotron experiments which allows conducting a wide range of static and dynamic experiments. Although the chamber named ALICE was designed for the analysis of magnetic hetero- and nanostructures via resonant magnetic x-ray scattering, the instrument is not limited to this technique. The versatility of the instrument was testified by a series of pilot experiments. Static measurements involve the possibility to use scattering and spectroscopy synchrotron based techniques (photon-in photon-out, photon-in electron-out, and coherent scattering). Dynamic experiments require either laser or magnetic field pulses tomore » excite the spin system followed by x-ray probe in the time domain from nano- to femtosecond delay times. In this temporal range, the demagnetization/remagnetization dynamics and magnetization precession in a number of magnetic materials (metals, alloys, and magnetic multilayers) can be probed in an element specific manner. We demonstrate here the capabilities of the system to host a variety of experiments, featuring ALICE as one of the most versatile and demanded instruments at the Helmholtz Center in Berlin-BESSY II synchrotron center in Berlin, Germany.« less

  11. An evaluation of the NASA/GSFC Barnes field spectral reflectometer model 14-758, using signal/noise as a measure of utility

    NASA Astrophysics Data System (ADS)

    Bell, R.; Labovitz, M. L.

    1982-07-01

    A Barnes field spectral reflectometer which collected information in 373 channels covering the region from 0.4 to 2.5 micrometers was assessed for signal utility. A band was judged unsatisfactory if the probability was 0.1 or greater than its signal to noise ratio was less than eight to one. For each of the bands the probability of a noisy observation was estimated under a binomial assumption from a set of field crop spectra covering an entire growing season. A 95% confidence interval was calculated about each estimate and bands whose lower confidence limits were greater than 0.1 were judged unacceptable. As a result, 283 channels were deemed statistically satisfactory. Excluded channels correspond to portions of the electromagnetic spectrum (EMS) where high atmospheric absorption and filter wheel overlap occur. In addition, the analyses uncovered intervals of unsatisfactory detection capability within the blue, red and far infrared regions of vegetation spectra. From the results of the analysis it was recommended that 90 channels monitored by the instrument under consideration be eliminated from future studies. These channels are tabulated and discussed.

  12. AMOR - the versatile reflectometer at SINQ

    NASA Astrophysics Data System (ADS)

    Clemens, D.; Gross, P.; Keller, P.; Schlumpf, N.; Könnecke, M.

    2000-03-01

    We report on a new facility for neutron reflectometry situated at the end position of a cold neutron guide at the Swiss Spallation Neutron Source SINQ. The instrument is a flexible apparatus, adaptable to the needs of the user's individual experiment. Principally designed to operate in the time-of-flight mode it is also capable to exploit the fact that SINQ is a continuous source because PSI's developments in the field of thin film multilayers are fruitfully applied. By means of multilayer monochromators it can be converted into a constant wavelength reflectometer. Polarized neutron reflectometry on AMOR takes advantage of remanent FeCo/Ti:N supermirrors and multilayers which can be operated in a way that no spin flippers are needed. The time and angular contributions to the resolution in momentum transfer are separately determinable in TOF mode. The total length of the instrument is adjustable in order to optimize resolution together with the illumination of the sample's surface. Large sample environments can be placed on the sample table that is actively isolated against vibrations. Single detectors and an EMBL 3He area detector can be chosen, alternatively. The instrument concept as well as parameters of its components are presented.

  13. A simple solution to systematic errors in density determination by X-ray reflectivity: The XRR-density evaluation (XRR-DE) method

    NASA Astrophysics Data System (ADS)

    Bergese, P.; Bontempi, E.; Depero, L. E.

    2006-10-01

    X-ray reflectivity (XRR) is a non-destructive, accurate and fast technique for evaluating film density. Indeed, sample-goniometer alignment is a critical experimental factor and the overriding error source in XRR density determination. With commercial single-wavelength X-ray reflectometers, alignment is difficult to control and strongly depends on the operator. In the present work, the contribution of misalignment on density evaluation error is discussed, and a novel procedure (named XRR-density evaluation or XRR-DE method) to minimize the problem will be presented. The method allows to overcome the alignment step through the extrapolation of the correct density value from appropriate non-specular XRR data sets. This procedure is operator independent and suitable for commercial single-wavelength X-ray reflectometers. To test the XRR-DE method, single crystals of TiO 2 and SrTiO 3 were used. In both cases the determined densities differed from the nominal ones less than 5.5%. Thus, the XRR-DE method can be successfully applied to evaluate the density of thin films for which only optical reflectivity is today used. The advantage is that this method can be considered thickness independent.

  14. Earth Observing System/Advanced Microwave Sounding Unit-A (EOS/AMSU-A): Developer derating policy

    NASA Technical Reports Server (NTRS)

    Maciel, Roberto M.

    1994-01-01

    The derating requirements/factors tabulated in Appendix B of the Goddard Space Flight Center Preferred Parts List (GSFC PPL) and Appendix A of MIL-STD-975 (NASA Standard Electrical, Electronic and Electromechanical (EEE) Parts List) should be used. Where differences occur, the PPL derating factors should have precedence over the derating factors of MIL-STD-975. When a derating factor is not provided in either the PPL or MIL-STD-975, the GSFC EOS Parts Branch Specialist should be consulted. In addition, the Performance Assurance Requirement (PAR) stipulates that all piece parts shall function at or above twice the expected ionizing radiation dose.

  15. Spectroscopic confirmation of a galaxy at redshift z = 8.6.

    PubMed

    Lehnert, M D; Nesvadba, N P H; Cuby, J-G; Swinbank, A M; Morris, S; Clément, B; Evans, C J; Bremer, M N; Basa, S

    2010-10-21

    Galaxies had their most significant impact on the Universe when they assembled their first generations of stars. Energetic photons emitted by young, massive stars in primeval galaxies ionized the intergalactic medium surrounding their host galaxies, cleared sightlines along which the light of the young galaxies could escape, and fundamentally altered the physical state of the intergalactic gas in the Universe continuously until the present day. Observations of the cosmic microwave background, and of galaxies and quasars at the highest redshifts, suggest that the Universe was reionized through a complex process that was completed about a billion years after the Big Bang, by redshift z ≈ 6. Detecting ionizing Lyman-α photons from increasingly distant galaxies places important constraints on the timing, location and nature of the sources responsible for reionization. Here we report the detection of Lyα photons emitted less than 600 million years after the Big Bang. UDFy-38135539 (ref. 5) is at a redshift of z = 8.5549 ± 0.0002, which is greater than those of the previously known most distant objects, at z = 8.2 (refs 6 and 7) and z = 6.96 (ref. 8). We find that this single source is unlikely to provide enough photons to ionize the volume necessary for the emission line to escape, requiring a significant contribution from other, probably fainter galaxies nearby.

  16. On-site Rapid Diagnosis of Intracranial Hematoma using Portable Multi-slice Microwave Imaging System.

    PubMed

    Mobashsher, Ahmed Toaha; Abbosh, A M

    2016-11-29

    Rapid, on-the-spot diagnostic and monitoring systems are vital for the survival of patients with intracranial hematoma, as their conditions drastically deteriorate with time. To address the limited accessibility, high costs and static structure of currently used MRI and CT scanners, a portable non-invasive multi-slice microwave imaging system is presented for accurate 3D localization of hematoma inside human head. This diagnostic system provides fast data acquisition and imaging compared to the existing systems by means of a compact array of low-profile, unidirectional antennas with wideband operation. The 3D printed low-cost and portable system can be installed in an ambulance for rapid on-site diagnosis by paramedics. In this paper, the multi-slice head imaging system's operating principle is numerically analysed and experimentally validated on realistic head phantoms. Quantitative analyses demonstrate that the multi-slice head imaging system is able to generate better quality reconstructed images providing 70% higher average signal to clutter ratio, 25% enhanced maximum signal to clutter ratio and with around 60% hematoma target localization compared to the previous head imaging systems. Nevertheless, numerical and experimental results demonstrate that previous reported 2D imaging systems are vulnerable to localization error, which is overcome in the presented multi-slice 3D imaging system. The non-ionizing system, which uses safe levels of very low microwave power, is also tested on human subjects. Results of realistic phantom and subjects demonstrate the feasibility of the system in future preclinical trials.

  17. First measurement of the bulk flow of nearby galaxies using the cosmic microwave background

    NASA Astrophysics Data System (ADS)

    Lavaux, Guilhem; Afshordi, Niayesh; Hudson, Michael J.

    2013-04-01

    Peculiar velocities in the nearby Universe can be measured via the kinetic Sunyaev-Zel'dovich (kSZ) effect. Using a statistical method based on an optimized cross-correlation with nearby galaxies, we extract the kSZ signal generated by plasma halo of galaxies from the cosmic microwave background (CMB) temperature anisotropies observed by the Wilkinson Microwave Anisotropy Probe (WMAP). Marginalizing over the thermal Sunyaev-Zel'dovich contribution from clusters of galaxies, possible unresolved point source contamination, and Galactic foregrounds, we find a kSZ bulk flow signal present at the ˜90 per cent confidence level in the seven-year WMAP data. When only galaxies within 50 h-1 Mpc are included in the kSZ template, we find a bulk flow in the CMB frame of |V| = 533 ± 263 km s-1, in the direction l = 324 ± 27, b = -7 ± 17, consistent with bulk flow measurements on a similar scale using classical distance indicators. We show how this comparison constrains, for the first time, the (ionized) baryonic budget in the local universe. On very large (˜500 h-1 Mpc) scales, we find a 95 per cent upper limit of 470 km s-1, inconsistent with some analyses of bulk flow of clusters from the kSZ. We estimate that the significance of the bulk flow signal may increase to 3σ-5σ using data from the Planck probe.

  18. Novel approach to microwave-assisted extraction and micro-solid-phase extraction from soil using graphite fibers as sorbent.

    PubMed

    Xu, Li; Lee, Hian Kee

    2008-05-30

    A single-step extraction-cleanup procedure involving microwave-assisted extraction (MAE) and micro-solid-phase extraction (micro-SPE) has been developed for the analysis of polycyclic aromatic hydrocarbons (PAHs) from soil samples. Micro-SPE is a relatively new extraction procedure that makes use of a sorbent enclosed within a sealed polypropylene membrane envelope. In the present work, for the first time, graphite fiber was used as a sorbent material for extraction. MAE-micro-SPE was used to cleanup sediment samples and to extract and preconcentrate five PAHs in sediment samples prepared as slurries with addition of water. The best extraction conditions comprised of microwave heating at 50 degrees C for a duration of 20 min, and an elution (desorption) time of 5 min using acetonitrile with sonication. Using gas chromatography (GC)-flame ionization detection (FID), the limits of detection (LODs) of the PAHs ranged between 2.2 and 3.6 ng/g. With GC-mass spectrometry (MS), LODs were between 0.0017 and 0.0057 ng/g. The linear ranges were between 0.1 and 50 or 100 microg/g for GC-FID analysis, and 1 and 500 or 1000 ng/g for GC-MS analysis. Granular activated carbon was also used for the micro-SPE device but was found to be not as efficient in the PAH extraction. The MAE-micro-SPE method was successfully used for the extraction of PAHs in river and marine sediments, demonstrating its applicability to real environmental solid matrixes.

  19. High Pressure Microwave Powered UV Light Sources

    NASA Astrophysics Data System (ADS)

    Cekic, M.; Frank, J. D.; Popovic, S.; Wood, C. H.

    1997-10-01

    Industrial microwave powered (*electrodeless*) light sources have been limited to quiescent pressures of 300 Torr of buffer gas and metal- halide fills. Recently developed multi-atmospheric electronegative bu lb fills (noble gas-halide excimers, metal halide) require electric field s for ionization that are often large multiples of the breakdown voltage for air. For these fills an auxiliary ignition system is necessary. The most successful scheme utilizes a high voltage pulse power supply and a novel field emission source. Acting together they create localized condition of pressure reduction and high free electron density. This allows the normal microwave fields to drive this small region into avalanche, ignite the bulb, and heat the plasma to it's operating poin t Standard diagnostic techniques of high density discharges are inapplicable to the excimer bulbs, because of the ionic molecular exci ted state structure and absence of self-absorption. The method for temperature determination is based on the equilibrium population of certain vibrational levels of excimer ionic excited states. Electron d ensity was determined from the measurements of Stark profiles of H_β radiation from a small amount of hydrogen mixed with noble gas and halogens. At the present time, high pressure (Te 0.5eV, ne 3 x 10^17 cm-3) production bulbs produce over 900W of radiation in a 30nm band, centered at 30nm. Similarly, these prototypes when loaded with metal-halide bulb fills produce 1 kW of radiation in 30nm wide bands, centered about the wavelength of interest.

  20. Exposure to Mobile Phone Radiation Opens New Horizons in Alzheimer’s Disease Treatment

    PubMed Central

    Mortazavi, SAR; Shojaei-Fard, MB; Haghani, M; Shokrpour, N; Mortazavi, SMJ

    2013-01-01

    Alzheimer’s disease, the most common type of dementia and a progressive neurodegenerative disease, occurs when the nerve cells in the brain die. Although there are medications that can help delay the development of Alzheimer’s disease, there is currently no cure for this disease. Exposure to ionizing and non-ionizing radiation may cause adverse health effects such as cancer.  Looking at the other side of the coin, there are reports indicating stimulatory or beneficial effects after exposure to cell phone radiofrequency radiation. Mortazavi et al. have previously reported some beneficial cognitive effects such as decreased reaction time after human short-term exposure to cell phone radiation or occupational exposure to radar microwave radiation. On the other hand, some recent reports have indicated that RF radiation may have a role in protecting against cognitive impairment in Alzheimer’s disease. Although the majority of these data come from animal studies that cannot be easily extrapolated to humans, it can be concluded that this memory enhancing approach may open new horizons in treatment of cognitive impairment in Alzheimer disease. PMID:25505755

  1. A novel model of interaction between high frequency electromagnetic non-ionizing fields and microtubules viewed as coupled two-degrees of freedom harmonic oscillators.

    PubMed

    Caligiuri, Luigi Maxmilian

    2015-01-01

    The question regarding the potential biological and adverse health effects of non-ionizing electromagnetic fields on living organisms is of primary importance in biophysics and medicine. Despite the several experimental evidences showing such occurrence in a wide frequency range from extremely low frequency to microwaves, a definitive theoretical model able to explain a possible mechanism of interaction between electromagnetic fields and living matter, especially in the case of weak and very weak intensities, is still missing. In this paper it has been suggested a possible mechanism of interaction involving the resonant absorption of electromagnetic radiation by microtubules. To this aim these have been modeled as non-dissipative forced harmonic oscillators characterized by two coupled "macroscopic" degrees of freedom, respectively describing longitudinal and transversal vibrations induced by the electromagnetic field. We have shown that the proposed model, although at a preliminary stage, is able to explain the ability of even weak electromagnetic radiating electromagnetic fields to transfer high quantities of energy to living systems by means of a resonant mechanism, so capable to easily damage microtubules structure.

  2. Exposure to mobile phone radiation opens new horizons in Alzheimer's disease treatment.

    PubMed

    Mortazavi, Sar; Shojaei-Fard, Mb; Haghani, M; Shokrpour, N; Mortazavi, Smj

    2013-09-01

    Alzheimer's disease, the most common type of dementia and a progressive neurodegenerative disease, occurs when the nerve cells in the brain die. Although there are medications that can help delay the development of Alzheimer's disease, there is currently no cure for this disease. Exposure to ionizing and non-ionizing radiation may cause adverse health effects such as cancer.  Looking at the other side of the coin, there are reports indicating stimulatory or beneficial effects after exposure to cell phone radiofrequency radiation. Mortazavi et al. have previously reported some beneficial cognitive effects such as decreased reaction time after human short-term exposure to cell phone radiation or occupational exposure to radar microwave radiation. On the other hand, some recent reports have indicated that RF radiation may have a role in protecting against cognitive impairment in Alzheimer's disease. Although the majority of these data come from animal studies that cannot be easily extrapolated to humans, it can be concluded that this memory enhancing approach may open new horizons in treatment of cognitive impairment in Alzheimer disease.

  3. Synchrotron-based valence shell photoionization of CH radical

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gans, B., E-mail: berenger.gans@u-psud.fr, E-mail: christian.alcaraz@u-psud.fr; Falvo, C.; Holzmeier, F.

    2016-05-28

    We report the first experimental observations of X{sup +} {sup 1}Σ{sup +}←X {sup 2}Π and a{sup +} {sup 3}Π←X {sup 2}Π single-photon ionization transitions of the CH radical performed on the DESIRS beamline at the SOLEIL synchrotron facility. The radical was produced by successive hydrogen-atom abstractions on methane by fluorine atoms in a continuous microwave discharge flow tube. Mass-selected ion yields and photoelectron spectra were recorded as a function of photon energy using a double imaging photoelectron/photoion coincidence spectrometer. The ion yield appears to be strongly affected by vibrational and electronic autoionizations, which allow the observation of high Rydberg statesmore » of the neutral species. The photoelectron spectra enable the first direct determinations of the adiabatic ionization potential and the energy of the first triplet state of the cation with respect to its singlet ground state. This work also brings valuable information on the complex electronic structure of the CH radical and its cation and adds new observations to complement our understanding of Rydberg states and autoionization processes.« less

  4. Portable Chemical Agent Detection System: Differential Reflectometer and Light Scattering Approaches

    DTIC Science & Technology

    2005-02-15

    possible to conduct elemental analysis on modified capillaries because of the polymer coating. Instead, measurements of electroosmotic flow were used...design There are several essential requirements for a sensitive chemiluminescence cell (Figure 1); good reagent/analyte mixing for maximum photon yield...Cutaway of Chemiluminescence cell the cooled pint housing. In our design, the concentric inlets will increase photon collection due to better mixing of

  5. Proof of Concept: Development of Snow Liquid Water Content Profiler Using CS650 Reflectometers at Caribou, ME, USA.

    PubMed

    Pérez Díaz, Carlos L; Muñoz, Jonathan; Lakhankar, Tarendra; Khanbilvardi, Reza; Romanov, Peter

    2017-03-21

    The quantity of liquid water in the snowpack defines its wetness. The temporal evolution of snow wetness's plays a significant role in wet-snow avalanche prediction, meltwater release, and water availability estimations and assessments within a river basin. However, it remains a difficult task and a demanding issue to measure the snowpack's liquid water content (LWC) and its temporal evolution with conventional in situ techniques. We propose an approach based on the use of time-domain reflectometry (TDR) and CS650 soil water content reflectometers to measure the snowpack's LWC and temperature profiles. For this purpose, we created an easily-applicable, low-cost, automated, and continuous LWC profiling instrument using reflectometers at the Cooperative Remote Sensing Science and Technology Center-Snow Analysis and Field Experiment (CREST-SAFE) in Caribou, ME, USA, and tested it during the snow melt period (February-April) immediately after installation in 2014. Snow Thermal Model (SNTHERM) LWC simulations forced with CREST-SAFE meteorological data were used to evaluate the accuracy of the instrument. Results showed overall good agreement, but clearly indicated inaccuracy under wet snow conditions. For this reason, we present two (for dry and wet snow) statistical relationships between snow LWC and dielectric permittivity similar to Topp's equation for the LWC of mineral soils. These equations were validated using CREST-SAFE in situ data from winter 2015. Results displayed high agreement when compared to LWC estimates obtained using empirical formulas developed in previous studies, and minor improvement over wet snow LWC estimates. Additionally, the equations seemed to be able to capture the snowpack state (i.e., onset of melt, medium, and maximum saturation). Lastly, field test results show advantages, such as: automated, continuous measurements, the temperature profiling of the snowpack, and the possible categorization of its state. However, future work should focus on improving the instrument's capability to measure the snowpack's LWC profile by properly calibrating it with in situ LWC measurements. Acceptable validation agreement indicates that the developed snow LWC, temperature, and wetness profiler offers a promising new tool for snow hydrology research.

  6. Escape fraction of ionizing photons during reionization: Effects due to supernova feedback and runaway ob stars

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kimm, Taysun; Cen, Renyue

    2014-06-20

    The fraction of hydrogen ionizing photons escaping from galaxies into the intergalactic medium is a critical ingredient in the theory of reionization. We use two zoomed-in, high-resolution (4 pc), cosmological radiation hydrodynamic simulations with adaptive mesh refinement to investigate the impact of two physical mechanisms (supernova, SN, feedback, and runaway OB stars) on the escape fraction (f {sub esc}) at the epoch of reionization (z ≥ 7). We implement a new, physically motivated SN feedback model that can approximate the Sedov solutions at all (from the free expansion to snowplow) stages. We find that there is a significant time delaymore » of about ten million years between the peak of star formation and that of escape fraction, due to the time required for the build-up and subsequent destruction of the star-forming cloud by SN feedback. Consequently, the photon number-weighted mean escape fraction for dwarf galaxies in halos of mass 10{sup 8}-10{sup 10.5} M {sub ☉} is found to be 〈f{sub esc}〉∼11%, although instantaneous values of f {sub esc} > 20% are common when star formation is strongly modulated by the SN explosions. We find that the inclusion of runaway OB stars increases the mean escape fraction by 22% to 〈f{sub esc}〉∼14%. As SNe resulting from runaway OB stars tend to occur in less dense environments, the feedback effect is enhanced and star formation is further suppressed in halos with M{sub vir}≳10{sup 9} M{sub ⊙} in the simulation with runaway OB stars compared with the model without them. While both our models produce enough ionizing photons to maintain a fully ionized universe at z ≤ 7 as observed, a still higher amount of ionizing photons at z ≥ 9 appears necessary to accommodate the high observed electron optical depth inferred from cosmic microwave background observations.« less

  7. Optimization of Microwave-Assisted Extraction Conditions for Five Major Bioactive Compounds from Flos Sophorae Immaturus (Cultivars of Sophora japonica L.) Using Response Surface Methodology.

    PubMed

    Liu, Jin-Liang; Li, Long-Yun; He, Guang-Hua

    2016-03-02

    Microwave-assisted extraction was applied to extract rutin; quercetin; genistein; kaempferol; and isorhamnetin from Flos Sophorae Immaturus. Six independent variables; namely; solvent type; particle size; extraction frequency; liquid-to-solid ratio; microwave power; and extraction time were examined. Response surface methodology using a central composite design was employed to optimize experimental conditions (liquid-to-solid ratio; microwave power; and extraction time) based on the results of single factor tests to extract the five major components in Flos Sophorae Immaturus. Experimental data were fitted to a second-order polynomial equation using multiple regression analysis. Data were also analyzed using appropriate statistical methods. Optimal extraction conditions were as follows: extraction solvent; 100% methanol; particle size; 100 mesh; extraction frequency; 1; liquid-to-solid ratio; 50:1; microwave power; 287 W; and extraction time; 80 s. A rapid and sensitive ultra-high performance liquid chromatography method coupled with electrospray ionization quadrupole time-of-flight tandem mass spectrometry (EIS-Q-TOF MS/MS) was developed and validated for the simultaneous determination of rutin; quercetin; genistein; kaempferol; and isorhamnetin in Flos Sophorae Immaturus. Chromatographic separation was accomplished on a Kinetex C18 column (100 mm × 2.1 mm; 2.6 μm) at 40 °C within 5 min. The mobile phase consisted of 0.1% aqueous formic acid and acetonitrile (71:29; v/v). Isocratic elution was carried out at a flow rate of 0.35 mL/min. The constituents of Flos Sophorae Immaturus were simultaneously identified by EIS-Q-TOF MS/MS in multiple reaction monitoring mode. During quantitative analysis; all of the calibration curves showed good linear relationships (R² > 0.999) within the tested ranges; and mean recoveries ranged from 96.0216% to 101.0601%. The precision determined through intra- and inter-day studies showed an RSD% of <2.833%. These results demonstrate that the developed method is accurate and effective and could be readily utilized for the comprehensive quality control of Flos Sophorae Immaturus.

  8. Ultracompact/ultralow power electron cyclotron resonance ion source for multipurpose applications.

    PubMed

    Sortais, P; Lamy, T; Médard, J; Angot, J; Latrasse, L; Thuillier, T

    2010-02-01

    In order to drastically reduce the power consumption of a microwave ion source, we have studied some specific discharge cavity geometries in order to reduce the operating point below 1 W of microwave power (at 2.45 GHz). We show that it is possible to drive an electron cyclotron resonance ion source with a transmitter technology similar to those used for cellular phones. By the reduction in the size and of the required microwave power, we have developed a new type of ultralow cost ion sources. This microwave discharge system (called COMIC, for COmpact MIcrowave and Coaxial) can be used as a source of light, plasma or ions. We will show geometries of conductive cavities where it is possible, in a 20 mm diameter chamber, to reduce the ignition of the plasma below 100 mW and define typical operating points around 5 W. Inside a simple vacuum chamber it is easy to place the source and its extraction system anywhere and fully under vacuum. In that case, current densities from 0.1 to 10 mA/cm(2) (Ar, extraction 4 mm, 1 mAe, 20 kV) have been observed. Preliminary measurements and calculations show the possibility, with a two electrodes system, to extract beams within a low emittance. The first application for these ion sources is the ion injection for charge breeding, surface analyzing system and surface treatment. For this purpose, a very small extraction hole is used (typically 3/10 mm for a 3 microA extracted current with 2 W of HF power). Mass spectrum and emittance measurements will be presented. In these conditions, values down to 1 pi mm mrad at 15 kV (1sigma) are observed, thus very close to the ones currently observed for a surface ionization source. A major interest of this approach is the possibility to connect together several COMIC devices. We will introduce some new on-going developments such as sources for high voltage implantation platforms, fully quartz radioactive ion source at ISOLDE or large plasma generators for plasma immersion, broad or ribbon beams generation.

  9. Polysialylated N-Glycans Identified in Human Serum Through Combined Developments in Sample Preparation, Separations and Electrospray ionization-mass spectrometry

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kronewitter, Scott R.; Marginean, Ioan; Cox, Jonathan T.

    The N-glycan diversity of human serum glycoproteins, i.e. the human blood serum N-glycome, is complex due to the range of glycan structures potentially synthesizable by human glycosylation enzymes. The reported glycome, however, is limited by methods of sample preparation, available analytical platforms, e.g., based upon electrospray ionization-mass spectrometry (ESI-MS), and software tools for data analysis. In this report, several improvements have been implemented in sample preparation and analysis to extend ESI-MS glycan characterization and to provide an improved view of glycan diversity. Sample preparation improvements include acidified, microwave-accelerated, PNGase F N-glycan release, and sodium borohydride reduction were optimized to improvemore » quantitative yields and conserve the number of glycoforms detected. Two-stage desalting (during solid phase extraction and on the analytical column) increased the sensitivity by reducing analyte signal division between multiple reducing-end-forms or cation adducts. On-line separations were improved by using extended length graphitized carbon columns and adding TFA as an acid modifier to a formic acid/reversed phase gradient which provides additional resolving power and significantly improved desorption of both large and heavily sialylated glycans. To improve MS sensitivity and provide gentler ionization conditions at the source-MS interface, subambient pressure ionization with nanoelectrospray (SPIN) has been utilized. When method improvements are combined together with the Glycomics Quintavariate Informed Quantification (GlyQ-IQ) recently described1 these technologies demonstrate the ability to significantly extend glycan detection sensitivity and provide expanded glycan coverage. We demonstrate application of these advances in the context of the human serum glycome, and for which our initial observations include detection of a new class of heavily sialylated N-glycans, including polysialylated N-glycans.« less

  10. Energetic particle transport and alpha driven instabilities in advanced confinement DT plasmas on TFTR

    NASA Astrophysics Data System (ADS)

    Stratton, B. C.; Budny, R. V.; Darrow, D. S.; Fisher, R. K.; Fredrickson, E. D.; Fu, G. Y.; Medley, S. S.; Nazikian, R.; Petrov, M. P.; Redi, M. H.; Ruskov, E.; Taylor, G.; White, R. B.; Zweben, S. J.; TFTR Group

    1999-09-01

    The article reviews the physics of fusion alpha particles and energetic neutral beam ions studied in the final phase of TFTR operation, with an emphasis on observations in reversed magnetic shear (RS) and enhanced reversed shear (ERS) DT plasmas. Energy resolved measurements of the radial profiles of confined, trapped alphas in RS plasmas exhibit reduced core alpha density with increasing alpha energy, in contrast to plasmas with normal monotonic shear. The measured profiles are consistent with predictions of increased alpha loss due to stochastic ripple diffusion and increased first orbit loss in RS plasmas. In experiments in which a short tritium beam pulse is injected into a deuterium RS plasma, the measured DT neutron emission is lower than standard predictions assuming first orbit loss and stochastic ripple diffusion of the beam ions. A microwave reflectometer measured the spatial localization of low toroidal mode number (n), alpha driven toroidal Alfvén eigenmodes (TAEs) in DT RS discharges. Although the observed ballooning character of the n = 4 mode is consistent with predictions of a kinetic MHD stability code, the observed antiballooning nature of the n = 2 mode is not. Furthermore, the modelling does not show the observed strong dependence of mode frequency on n. These alpha driven TAEs do not cause measurable alpha loss in TFTR. Other Alfvén frequency modes with n = 2-4 seen in both DT and DD ERS and RS discharges are localized to the weak magnetic shear region near qmin. In 10-20% of DT discharges, normal low n MHD activity causes alpha loss at levels above the first orbit loss rate.

  11. Utilizing Calibrated GPS Reflected Signals to Estimate Soil Reflectivity and Dielectric Constant: Results from SMEX02

    NASA Technical Reports Server (NTRS)

    Katzberg, Stephen J.; Torres, Omar; Grant, Michael S.; Masters, Dallas

    2006-01-01

    Extensive reflected GPS data was collected using a GPS reflectometer installed on an HC130 aircraft during the Soil Moisture Experiment 2002 (SMEX02) near Ames, Iowa. At the same time, widespread surface truth data was acquired in the form of point soil moisture profiles, areal sampling of near-surface soil moisture, total green biomass and precipitation history, among others. Previously, there have been no reported efforts to calibrate reflected GPS data sets acquired over land. This paper reports the results of two approaches to calibration of the data that yield consistent results. It is shown that estimating the strength of the reflected signals by either (1) assuming an approximately specular surface reflection or (2) inferring the surface slope probability density and associated normalization constants give essentially the same results for the conditions encountered in SMEX02. The corrected data is converted to surface reflectivity and then to dielectric constant as a test of the calibration approaches. Utilizing the extensive in-situ soil moisture related data this paper also presents the results of comparing the GPS-inferred relative dielectric constant with the Wang-Schmugge model frequently used to relate volume moisture content to dielectric constant. It is shown that the calibrated GPS reflectivity estimates follow the expected dependence of permittivity with volume moisture, but with the following qualification: The soil moisture value governing the reflectivity appears to come from only the top 1-2 centimeters of soil, a result consistent with results found for other microwave techniques operating at L-band. Nevertheless, the experimentally derived dielectric constant is generally lower than predicted. Possible explanations are presented to explain this result.

  12. Soil moisture retrieval by active/passive microwave remote sensing data

    NASA Astrophysics Data System (ADS)

    Wu, Shengli; Yang, Lijuan

    2012-09-01

    This study develops a new algorithm for estimating bare surface soil moisture using combined active / passive microwave remote sensing on the basis of TRMM (Tropical Rainfall Measuring Mission). Tropical Rainfall Measurement Mission was jointly launched by NASA and NASDA in 1997, whose main task was to observe the precipitation of the area in 40 ° N-40 ° S. It was equipped with active microwave radar sensors (PR) and passive sensor microwave imager (TMI). To accurately estimate bare surface soil moisture, precipitation radar (PR) and microwave imager (TMI) are simultaneously used for observation. According to the frequency and incident angle setting of PR and TMI, we first need to establish a database which includes a large range of surface conditions; and then we use Advanced Integral Equation Model (AIEM) to calculate the backscattering coefficient and emissivity. Meanwhile, under the accuracy of resolution, we use a simplified theoretical model (GO model) and the semi-empirical physical model (Qp Model) to redescribe the process of scattering and radiation. There are quite a lot of parameters effecting backscattering coefficient and emissivity, including soil moisture, surface root mean square height, correlation length, and the correlation function etc. Radar backscattering is strongly affected by the surface roughness, which includes the surface root mean square roughness height, surface correlation length and the correlation function we use. And emissivity is differently affected by the root mean square slope under different polarizations. In general, emissivity decreases with the root mean square slope increases in V polarization, and increases with the root mean square slope increases in H polarization. For the GO model, we found that the backscattering coefficient is only related to the root mean square slope and soil moisture when the incident angle is fixed. And for Qp Model, through the analysis, we found that there is a quite good relationship between Qpparameter and root mean square slope. So here, root mean square slope is a parameter that both models shared. Because of its big influence to backscattering and emissivity, we need to throw it out during the process of the combination of GO model and Qp model. The result we obtain from the combined model is the Fresnel reflection coefficient in the normal direction gama(0). It has a good relationship with the soil dielectric constant. In Dobson Model, there is a detailed description about Fresnel reflection coefficient and soil moisture. With the help of Dobson model and gama(0) that we have obtained, we can get the soil moisture that we want. The backscattering coefficient and emissivity data used in combined model is from TRMM/PR, TMI; with this data, we can obtain gama(0); further, we get the soil moisture by the relationship of the two parameters-- gama(0) and soil moisture. To validate the accuracy of the retrieval soil moisture, there is an experiment conducted in Tibet. The soil moisture data which is used to validate the retrieval algorithm is from GAME-Tibet IOP98 Soil Moisture and Temperature Measuring System (SMTMS). There are 9 observing sites in SMTMS to validate soil moisture. Meanwhile, we use the SMTMS soil moisture data obtained by Time Domain Reflectometer (TDR) to do the validation. And the result shows the comparison of retrieval and measured results is very good. Through the analysis, we can see that the retrieval and measured results in D66 is nearly close; and in MS3608, the measured result is a little higher than retrieval result; in MS3637, the retrieval result is a little higher than measured result. According to the analysis of the simulation results, we found that this combined active and passive approach to retrieve the soil moisture improves the retrieval accuracy.

  13. Combinatorial and high-throughput approaches in polymer science

    NASA Astrophysics Data System (ADS)

    Zhang, Huiqi; Hoogenboom, Richard; Meier, Michael A. R.; Schubert, Ulrich S.

    2005-01-01

    Combinatorial and high-throughput approaches have become topics of great interest in the last decade due to their potential ability to significantly increase research productivity. Recent years have witnessed a rapid extension of these approaches in many areas of the discovery of new materials including pharmaceuticals, inorganic materials, catalysts and polymers. This paper mainly highlights our progress in polymer research by using an automated parallel synthesizer, microwave synthesizer and ink-jet printer. The equipment and methodologies in our experiments, the high-throughput experimentation of different polymerizations (such as atom transfer radical polymerization, cationic ring-opening polymerization and emulsion polymerization) and the automated matrix-assisted laser desorption/ionization time-of-flight mass spectroscopy (MALDI-TOF MS) sample preparation are described.

  14. Large-scale anisotropy of the cosmic microwave background radiation

    NASA Technical Reports Server (NTRS)

    Silk, J.; Wilson, M. L.

    1981-01-01

    Inhomogeneities in the large-scale distribution of matter inevitably lead to the generation of large-scale anisotropy in the cosmic background radiation. The dipole, quadrupole, and higher order fluctuations expected in an Einstein-de Sitter cosmological model have been computed. The dipole and quadrupole anisotropies are comparable to the measured values, and impose important constraints on the allowable spectrum of large-scale matter density fluctuations. A significant dipole anisotropy is generated by the matter distribution on scales greater than approximately 100 Mpc. The large-scale anisotropy is insensitive to the ionization history of the universe since decoupling, and cannot easily be reconciled with a galaxy formation theory that is based on primordial adiabatic density fluctuations.

  15. Radiation and health*

    PubMed Central

    Lindell, B.

    1987-01-01

    Radiation has been a source of fascination and concern ever since Wilhelm Konrad Röntgen discovered X-rays on 8 November 1895. Over the years, health workers as well as the public have been concerned about medical uses of X-rays, the presence of radon in buildings, radioactive waste from nuclear power stations, fallout from nuclear test explosions, radioactive consumer products, microwave ovens, and many other sources of radiation. Most recently, the tragic accident at the Chernobyl nuclear power station in the USSR, and the subsequent contamination over most of Europe, has again wakened interest and concern and also reminded us about a number of misconceptions about radiation. This article describes the essentials about radiation (especially ionizing radiation) and its health effects. PMID:3496982

  16. Refractive-index profiling of embedded microstructures in optical materials

    NASA Astrophysics Data System (ADS)

    Dave, Digant P.; Milner, Thomas E.

    2002-04-01

    We describe use of a phase-sensitive low-coherence reflectometer to measure spatial variation of refractive index in optical materials. The described interferometric technique is demonstrated to be a valuable tool to profile the refractive index of optical elements such as integrated waveguides and photowritten optical microstructures. As an example, a refractive-index profile is mapped of a microstructure written in a microscope glass slide with an ultrashort-pulse laser.

  17. OPTICAL FIBRES AND FIBREOPTIC SENSORS: Polarisation reflectometry of anisotropic optical fibres

    NASA Astrophysics Data System (ADS)

    Konstantinov, Yurii A.; Kryukov, Igor'I.; Pervadchuk, Vladimir P.; Toroshin, Andrei Yu

    2009-11-01

    Anisotropic, polarisation-maintaining fibres have been studied using a reflectometer and integrated optic polariser. Linearly polarised pulses were launched into the fibre under test at different angles between their plane of polarisation and the main optical axis of the fibre. A special procedure for the correlation analysis of these reflectograms is developed to enhance the reliability of the information about the longitudinal optical uniformity ofanisotropic fibres.

  18. Application of Time Domain Reflectometers in Urban Settings ...

    EPA Pesticide Factsheets

    Time domain reflectometers (TDRs) are sensors that measure the volumetric water content of soils and porous media. The sensors consist of stainless steel rods connected to a circuit board in an epoxy housing. An electromagnetic pulse is propagated along the rods. The time, or period, required for the signal to travel down the rods and back varies with the volumetric water content of the surrounding media and temperature. A calibration curve is needed for the specific media. TDRs were developed mostly for agricultural applications; however, the technology has also been applied to forestry and ecological research. This study demonstrates the use of TDRs for quantifying drainage properties in low impact development (LID) stormwater controls, specifically permeable pavement and rain garden systems. TDRs were successfully used to monitor the responses of urban fill, engineered bioretention media, and the aggregate storage layer under permeable pavement to multiple rain events of varying depth, intensity, and duration. The hydrologic performance of permeable pavement and rain garden systems has previously been quantified for underdrain systems, but there have been few studies of systems that drain to the underlying soils. We know of no published studies outlining the use of TDR technology to document drainage properties in media other than soil. In this study TDRs were installed at multiple locations and depths in underlying urban fill soils, engineered bior

  19. Prototype Development and Evaluation of Self-Cleaning Concentrated Solar Power Collectors

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mazumder, Malay K.; Horenstein, Mark N.; Joglekar, Nitin R.

    The feasibility of integrating and retrofitting transparent electrodynamic screens (EDS) on the front surfaces of solar collectors was established as a means to provide active self-cleaning properties for parabolic trough and heliostat reflectors, solar panels, and Fresnel lenses. Prototype EDS-integrated solar collectors, including second-surface glass mirrors, metallized Acrylic-film mirrors, and dielectric mirrors, were produced and tested in environmental test chambers for removing the dust layer deposited on the front surface of the mirrors. The evaluation of the prototype EDS-integrated mirrors was conducted using dust and environmental conditions that simulate the field conditions of the Mojave Desert. Test results showed thatmore » the specular reflectivity of the mirrors could be maintained at over 90% over a wide range of dust loadings ranging from 0 to 10 g/m 2, with particle diameter varying from 1 to 50 μm. The measurement of specular reflectivity (SR) was performed using a D&S Reflectometer at wavelength 660 nm. A non-contact reflectometer was designed and constructed for rapid measurement of specular reflectivity at the same wavelength. The use of this new noncontact instrument allowed us to measure SR before and after EDS activation. Several EDS prototypes were constructed and evaluated with different electrode configurations, electrode materials, and encapsulating dielectric materials.« less

  20. In situ polarized 3He system for the Magnetism Reflectometer at the Spallation Neutron Source.

    PubMed

    Tong, X; Jiang, C Y; Lauter, V; Ambaye, H; Brown, D; Crow, L; Gentile, T R; Goyette, R; Lee, W T; Parizzi, A; Robertson, J L

    2012-07-01

    We report on the in situ polarized (3)He neutron polarization analyzer developed for the time-of-flight Magnetism Reflectometer at the Spallation Neutron Source at Oak Ridge National Laboratory. Using the spin exchange optical pumping method, we achieved a (3)He polarization of 76% ± 1% and maintained it for the entire three-day duration of the test experiment. Based on transmission measurements with unpolarized neutrons, we show that the average analyzing efficiency of the (3)He system is 98% for the neutron wavelength band of 2-5 Å. Using a highly polarized incident neutron beam produced by a supermirror bender polarizer, we obtained a flipping ratio of >100 with a transmission of 25% for polarized neutrons, averaged over the wavelength band of 2-5 Å. After the cell was depolarized for transmission measurements, it was reproducibly polarized and this performance was maintained for three weeks. A high quality polarization analysis experiment was performed on a reference sample of Fe/Cr multilayer with strong spin-flip off-specular scattering. Using a combination of the position sensitive detector, time-of-flight method, and the excellent parameters of the (3)He cell, the polarization analysis of the two-dimensional maps of reflected, refracted, and off-specular scattered intensity above and below the horizon were obtained, simultaneously.

  1. The study of excited oxygen molecule gas species production and quenching on thermal protection system materials

    NASA Technical Reports Server (NTRS)

    Nordine, Paul C.; Fujimoto, Gordon T.; Greene, Frank T.

    1987-01-01

    The detection of excited oxygen and ozone molecules formed by surface catalyzed oxygen atom recombination and reaction was investigated by laser induced fluorescence (LIF), molecular beam mass spectrometric (MBMS), and field ionization (FI) techniques. The experiment used partially dissociated oxygen flows from a microwave discharge at pressures in the range from 60 to 400 Pa or from an inductively coupled RF discharge at atmospheric pressure. The catalyst materials investigated were nickel and the reaction cured glass coating used for Space Shuttle reusable surface insulation tiles. Nonradiative loss processes for the laser excited states makes LIF detection of O2 difficult such that formation of excited oxygen molecules could not be detected in the flow from the microwave discharge or in the gaseous products of atom loss on nickel. MBMS experiments showed that ozone was a product of heterogeneous O atom loss on nickel and tile surfaces at low temperatures and that ozone is lost on these materials at elevated temperatures. FI was separately investigated as a method by which excited oxygen molecules may be conveniently detected. Partial O2 dissociation decreases the current produced by FI of the gas.

  2. [Simultaneous determination of cocaine and its metabolite ecgonine methyl ester in human blood using microwave extraction-gas chromatography].

    PubMed

    Wang, Xiaobo; Ye, Nengsheng; Wang, Jifen; Gu, Xuexin

    2010-07-01

    A method was developed for the simultaneous determination of cocaine (COC) and its metabolite ecgonine methyl ester (EME) in human blood using gas chromatography-mass spectrometry (GC-MS) and gas chromatography-flame ionization detection (GC-FID). The blood sample was prepared by microwave extraction (MWE). The optimal parameters of MWE were as follows: 6 mL of chloroform-isopropanol (9: 1, v/v) mixture as extraction solvent, the pH value of the sample was adjusted at 10.0 with 0.05 mol/L Na2CO3-NaHCO3 buffer, the extraction was performed at 40 degrees C for 6 min. The COC and EME in the extract were qualified using GC-MS and quantitated using GC-FID. The average recoveries of COC and EME were from 79.91% to 99.85%, the relative standard deviations were less than 3.10%, and the limits of detection (LOD) were 60 and 40 mg/L, respectively. In the method COC and EME were detected without derivatization. The method is rapid, accurate and sensitive, and can be used for the simultaneous determination of COC and EME in blood samples.

  3. Simultaneous Determination of Oleanolic Acid and Ursolic Acid by in Vivo Microdialysis via UHPLC-MS/MS Using Magnetic Dispersive Solid Phase Extraction Coupling with Microwave-Assisted Derivatization and Its Application to a Pharmacokinetic Study of Arctiumlappa L. Root Extract in Rats.

    PubMed

    Zheng, Zhenjia; Zhao, Xian-En; Zhu, Shuyun; Dang, Jun; Qiao, Xuguang; Qiu, Zhichang; Tao, Yanduo

    2018-04-18

    Simultaneous detection of oleanolic acid and ursolic acid in rat blood by in vivo microdialysis can provide important pharmacokinetics information. Microwave-assisted derivatization coupled with magnetic dispersive solid phase extraction was established for the determination of oleanolic acid and ursolic acid by liquid chromatography tandem mass spectrometry. 2'-Carbonyl-piperazine rhodamine B was first designed and synthesized as the derivatization reagent, which was easily adsorbed onto the surface of Fe 3 O 4 /graphene oxide. Simultaneous derivatization and extraction of oleanolic acid and ursolic acid were performed on Fe 3 O 4 /graphene oxide. The permanent positive charge of the derivatization reagent significantly improved the ionization efficiencies. The limits of detection were 0.025 and 0.020 ng/mL for oleanolic acid and ursolic acid, respectively. The validated method was shown to be promising for sensitive, accurate, and simultaneous determination of oleanolic acid and ursolic acid. It was used for their pharmacokinetics study in rat blood after oral administration of Arctiumlappa L. root extract.

  4. VUV Emission of Microwave Driven Argon Plasma Source

    NASA Astrophysics Data System (ADS)

    Henriques, Julio; Espinho, Susana; Felizardo, Edgar; Tatarova, Elena; Dias, Francisco; Ferreira, Carlos

    2013-09-01

    An experimental and kinetic modeling investigation of a low-pressure (0.1-1.2 mbar), surface wave (2.45 GHz) induced Ar plasma as a source vacuum ultraviolet (VUV) light is presented, using visible and VUV optical spectroscopy. The electron density and the relative VUV emission intensities of excited Ar atoms (at 104.8 nm and 106.6 nm) and ions (at 92.0 nm and 93.2 nm) were determined as a function of the microwave power and pressure. The experimental results were analyzed using a 2D self-consistent theoretical model based on a set of coupled equations including the electron Boltzmann equation, the rate balance equations for the most important electronic excited species and for charged particles, the gas thermal balance equation, and the wave electrodynamics. The principal collisional and radiative processes for neutral Ar(3p54s) and Ar(3p54p) and ionized Ar(3s3p6 2S1/2) levels are accounted for. Model predictions are in good agreement with the experimental measurements. This study was funded by the Foundation for Science and Technology, Portuguese Ministry of Education and Science, under the research contract PTDC/FIS/108411/2008.

  5. The observable signature of late heating of the Universe during cosmic reionization.

    PubMed

    Fialkov, Anastasia; Barkana, Rennan; Visbal, Eli

    2014-02-13

    Models and simulations of the epoch of reionization predict that spectra of the 21-centimetre transition of atomic hydrogen will show a clear fluctuation peak, at a redshift and scale, respectively, that mark the central stage of reionization and the characteristic size of ionized bubbles. This is based on the assumption that the cosmic gas was heated by stellar remnants-particularly X-ray binaries-to temperatures well above the cosmic microwave background at that time (about 30 kelvin). Here we show instead that the hard spectra (that is, spectra with more high-energy photons than low-energy photons) of X-ray binaries make such heating ineffective, resulting in a delayed and spatially uniform heating that modifies the 21-centimetre signature of reionization. Rather than looking for a simple rise and fall of the large-scale fluctuations (peaking at several millikelvin), we must expect a more complex signal also featuring a distinct minimum (at less than a millikelvin) that marks the rise of the cosmic mean gas temperature above the microwave background. Observing this signal, possibly with radio telescopes in operation today, will demonstrate the presence of a cosmic background of hard X-rays at that early time.

  6. A simulation approach to material removal in microwave drilling of soda lime glass at 2.45 GHz

    NASA Astrophysics Data System (ADS)

    Lautre, Nitin Kumar; Sharma, Apurbba Kumar; Pradeep, Kumar; Das, Shantanu

    2015-09-01

    Material removal during microwave drilling is basically due to thermal ablation of the material in the vicinity of the drilling tool. The microtip of the tool, also termed as concentrator, absorbs microwaves and ionizes the dielectric in its proximity creating a zone of plasma. The plasma takes the shape of a sphere owing to the atmospheric sphere, which acts as the source of thermal energy to be used for processing a material. This mechanism of heating, also called localized microwave heating, was used in the present study to drill holes in 1.2-mm-thick soda lime glass. The mechanism of material removal had been analyzed through simulation of the hot spot region, and the results were attempted to explain through experiment observations. It was realized that the glass being a poor conductor of heat, a low power (90 W in this case) yields better drilling results owing to more localized heat corresponding to a low-volume plasma sphere. The low application time prevents further heat transfer, and a localized concentration of heat becomes possible that primarily causes the material ablation. The plasma sphere appears sustain while the tool moves through the bulk of the glass thickness although its volume gets further shrunk. The process needs careful selection of the parameters. The simulation results show relatively low temperature in the top half (opposite to the tool tip) of the plasma sphere which eventually causes the semimolten viscous glass to collapse into the drill cavity as the tool advances into the bulk and stops the movement of the tool. The continued plasma sphere raises the tip temperature, which makes the tip to melt and gets blunt. The plasma formation ceases owing to larger diameter of the tool, and the tool gets stuck which could be verified through experimental results.

  7. [The electroporation effects of high power pulse microwave and electromagnetic pulse irradiation on the membranes of cardiomyocyte cells and the mechanism therein involved].

    PubMed

    Deng, Hua; Wang, Dewen; Peng, Ruiyun; Wang, Shuiming; Chen, Jiankui; Zhang, Sa; Dong, Bo; Wang, Xiaomin

    2005-08-01

    Though there is ongoing public concern on potential hazards and risk of electromagnetic radiation, the bioeffects mechanism of electromagnetic fields remains obscure. Heart is one of the organs susceptive to electromagnetic fields (EMF). This study was designed to assess the influence of high power pulse microwave and electromagnetic pulse irradiation on cardiomyocytes, to explore the critical mechanism of electromagnetic fields, and to explain the regular course of injury caused by exposure to pulse EMF. Cultured cardiomyocytes were irradiated by high power pulse microwave and electromagnetic pulse first, then a series of apparatus including atom force microscope, laser scanning confocal microscope and flow cytometer were used to examine the changes of cell membrane conformation, structure and function. After irradiation, the cardiomyocytes pulsated slower or stop, the cells conformation was abnormal, the cells viability declined, and the percentage of apoptosis and necrosis increased significantly (P< 0.01). The cell membrane had pores unequal in size, and lost its penetration character. The concentration of Na+, K+, Ca2+, Cl-, Mg2+, Ca2+ and P3+ in cell culture medium increased significantly (P< 0.01). and the concentration of Ca2+ in cells ([Ca2+]i) decreased significantly (P<0.01). The results indicated that cardiomyocytes are susceptible to non-ionizing radiation. Pulse electromagnetic field can induce cardiomyocytes electroporation, and can do great damage to cells conformation, structure and function. Electroporation is one of the most critical mechanisms to explain the athermal effects of electromagnetic radiation.

  8. Measuring patchy reionization with kSZ2-21 cm correlations

    NASA Astrophysics Data System (ADS)

    Ma, Q.; Helgason, K.; Komatsu, E.; Ciardi, B.; Ferrara, A.

    2018-05-01

    We study cross-correlations of the kinetic Sunyaev-Zel'dovich effect (kSZ) and 21 cm signals during the epoch of reionization (EoR) to measure the effects of patchy reionisation. Since the kSZ effect is proportional to the line-of-sight velocity, the kSZ-21 cm cross correlation suffers from cancellation at small angular scales. We thus focus on the correlation between the kSZ-squared field (kSZ2) and 21 cm signals. When the global ionization fraction is low (xe ≲ 0.7), the kSZ2 fluctuation is dominated by rare ionized bubbles, which leads to an anticorrelation with the 21 cm signal. When 0.8 ≲ xe < 1, the correlation is dominated by small pockets of neutral regions, leading to a positive correlation. However, at very high redshifts when xe < 0.15, the spin temperature fluctuations change the sign of the correlation from negative to positive, as weakly ionized regions can have strong 21 cm signals in this case. To extract this correlation, we find that Wiener filtering is effective in removing large signals from the primary cosmic microwave background (CMB) anisotropy. The expected signal-to-noise ratios for a ˜10-h integration of upcoming Square Kilometre Array data cross-correlated with maps from the current generation of CMB observatories with 3.4μK arcmin noise and 1.7 arcmin beam over 100 deg2 are 51, 60, and 37 for xe = 0.2, 0.5, and 0.9, respectively.

  9. VUV absorption spectroscopy measurements of the role of fast neutral atoms in a high-power gap breakdown

    NASA Astrophysics Data System (ADS)

    Filuk, A. B.; Bailey, J. E.; Cuneo, M. E.; Lake, P. W.; Nash, T. J.; Noack, D. D.; Maron, Y.

    2000-12-01

    The maximum power achieved in a wide variety of high-power devices, including electron and ion diodes, z pinches, and microwave generators, is presently limited by anode-cathode gap breakdown. A frequently discussed hypothesis for this effect is ionization of fast neutral atoms injected throughout the anode-cathode gap during the power pulse. We describe a newly developed diagnostic tool that provides a direct test of this hypothesis. Time-resolved vacuum-ultraviolet absorption spectroscopy is used to directly probe fast neutral atoms with 1-mm spatial resolution in the 10-mm anode-cathode gap of the SABRE 5 MV, 1 TW applied-B ion diode. Absorption spectra collected during Ar RF glow discharges and with CO2 gas fills confirm the reliability of the diagnostic technique. Throughout the 50-100 ns ion diode pulses no measurable neutral absorption was seen, setting upper limits of (0.12-1.5)×1014 cm-3 for ground-state fast neutral atom densities of H, C, N, O, and F. The absence of molecular absorption bands also sets upper limits of (0.16-1.2)×1015 cm-3 for common simple molecules. These limits are low enough to rule out ionization of fast neutral atoms as a breakdown mechanism. Breakdown due to ionization of molecules is also found to be unlikely. This technique can now be applied to quantify the role of neutral atoms in other high-power devices.

  10. Vitamin D Levels and Related Genetic Polymorphisms, Sun Exposure, Skin Color, and Risk of Aggressive Prostate Cancer

    DTIC Science & Technology

    2011-07-01

    sun exposure, and dietary calcium and vitamin D intake are ascertained. Finally, the melanin content of the skin is measured using a skin reflectance...meter called a Dermaspectrometer, to measure baseline skin melanin content, which is known to inhibit vitamin D synthesis from sunlight. This...three hospitals in Chicago, along with demographic and medical information, BMI, and skin melanin content using a portable narrow-band reflectometer

  11. Influence of the anisotropy on the performance of D-band SiC IMPATT diodes

    NASA Astrophysics Data System (ADS)

    Chen, Qing; Yang, Lin'an; Wang, Shulong; Zhang, Yue; Dai, Yang; Hao, Yue

    2015-03-01

    Numerical simulation has been made to predict the RF performance of <0001> direction and <> direction p+/n/n-/n+ (single drift region) 4H silicon carbide (4H-SiC) impact-ionization-avalanche-transit-time (IMPATT) diodes for operation at D-band frequencies. We observed that the output performance of 4H-SiC IMPATT diode is sensitive to the crystal direction of the one-dimensional current flow. The simulation results show that <0001> direction 4H-SiC IMPATT diode provides larger breakdown voltage for its lower electron and hole ionization rates and higher dc-to-rf conversion efficiency (η) for its higher ratio of drift zone voltage drop (VD) to breakdown voltage (VB) compared with those for <> direction 4H-SiC IMPATT diode, which lead to higher-millimeter-wave power output for <0001> direction 4H-SiC IMPATT compared to <> direction. However, the quality factor Q for the <> direction 4H-SiC IMPATT diode is lower than that of <0001> direction, which implies that the <> direction 4H-SiC IMPATT diode exhibits better stability and higher growth rate of microwave oscillation compared with <0001> direction 4H-SiC IMPATT diode.

  12. Radio emission of extensive air showers at microwave frequencies

    NASA Astrophysics Data System (ADS)

    Filonenko, A. D.

    2016-05-01

    It is found that the power of the incoherent radiation of ionization electrons of an extensive air shower in the frequency range of 150 GHz is more than 10-24 W/m2Hz, with the shower energy ~1018 eV at a distance of 5 km from its axis. This means that, unlike fluorescent detectors, a radio telescope with an effective area of more than 300 m2 can monitor the trajectory of showers with an energy higher than 1018 eV at any time of the day regardless of the weather. The spectrum maximum near the frequency of 150 GHz is roughly three orders of magnitude higher than the value experimentally measured in the characteristic band (~5-10 GHz).

  13. Absorber for microwave investigation in the open space

    NASA Astrophysics Data System (ADS)

    Kubacki, Roman; Smólski, Bogusław; Głuszewski, Wojciech; Przesmycki, Rafał; Rudyk, Karol

    2017-04-01

    In some circumstances there is a need to realize the Electromagnetic Compatibility (EMC) investigation not in the specialized anechoic chamber but in the open space. Typical absorbers used in anechoic chamber to reduce the reflected rays from walls and floor, such as ferrite plates and graphite cones, are not suitable in the open space. In the work the investigation of the flexible absorbing material intended to the liquidation of the radiation reflected from the ground has been presented. As an absorbing material the metallic-glass with graphite was elaborated. This material was additionally exposed to the ionizing radiation in the dose of 100 kGy in the radioactive gamma source. The permittivity, permeability as well as the shielding properties have been analyzed.

  14. Advances in the biological effects of terahertz wave radiation.

    PubMed

    Zhao, Li; Hao, Yan-Hui; Peng, Rui-Yun

    2014-01-01

    The terahertz (THz) band lies between microwave and infrared rays in wavelength and consists of non-ionizing radiation. Both domestic and foreign research institutions, including the army, have attached considerable importance to the research and development of THz technology because this radiation exhibits both photon-like and electron-like properties, which grant it considerable application value and potential. With the rapid development of THz technology and related applications, studies of the biological effects of THz radiation have become a major focus in the field of life sciences. Research in this field has only just begun, both at home and abroad. In this paper, research progress with respect to THz radiation, including its biological effects, mechanisms and methods of protection, will be reviewed.

  15. Note: 4-bounce neutron polarizer for reflectometry applications

    NASA Astrophysics Data System (ADS)

    Nagy, B.; Merkel, D. G.; Jakab, L.; Füzi, J.; Veres, T.; Bottyán, L.

    2018-05-01

    A neutron polarizer using four successive reflections on m = 2.5 supermirrors was built and installed at the GINA neutron reflectometer at the Budapest Neutron Centre. This simple setup exhibits 99.6% polarizing efficiency with 80% transmitted intensity of the selected polarization state. Due to the geometry, the higher harmonics in the incident beam are filtered out, while the optical axis of the beam remains intact for easy mounting and dismounting the device in an existing experimental setup.

  16. Characterization and Measurements from the Infrared Grazing Angle Reflectometer

    DTIC Science & Technology

    2012-06-14

    18 3. List of sample scatter pattern fitting values. All values were taken from Ngan’s paper ”Experimental Analysis of BRDF Models - Supplemental” [1...using a BRDF model , and the absorptance can be modeled using a Fresnel absorptance. After defining both of these values, we can calculate the power seen... BRDF model of the face of the detector. This paper will examine the case of a flat detector with some index of refraction n. This air-detector

  17. Assessment of surface roughness by use of soft x-ray scattering

    NASA Astrophysics Data System (ADS)

    Meng, Yan-li; Wang, Yong-gang; Chen, Shu-yan; Chen, Bo

    2009-08-01

    A soft x-ray reflectometer with laser produced plasma source has been designed, which can work from wavelength 8nm to 30 nm and has high performance. Using the soft x-ray reflectometer above, the scattering light distribution of silicon and zerodur mirrors which have super-smooth surfaces could be measured at different incidence angle and different wavelength. The measurement when the incidence angle is 2 degree and the wavelength is 11nm has been given in this paper. A surface scattering theory of soft x-ray grazing incidence optics based on linear system theory and an inverse scattering mathematical model is introduced. The vector scattering theory of soft x-ray scattering also is stated in detail. The scattering data are analyzed by both the methods above respectively to give information about the surface profiles. On the other hand, both the two samples are measured by WYKO surface profiler, and the surface roughness of the silicon and zerodur mirror is 1.3 nm and 1.5nm respectively. The calculated results are in quantitative agreement with those measured by WYKO surface profiler, which indicates that soft x-ray scattering is a very useful tool for the evaluation of highly polished surfaces. But there still some difference among the results of different theory and WYKO, and the possible reasons of such difference have been discussed in detail.

  18. The Southwest Research Institute ultraviolet reflectance chamber (SwURC): a far ultraviolet reflectometer

    NASA Astrophysics Data System (ADS)

    Winters, Gregory S.; Retherford, Kurt D.; Davis, Michael W.; Escobedo, Stephen M.; Bassett, Eric C.; Patrick, Edward L.; Nagengast, Maggie E.; Fairbanks, Matthew H.; Miles, Paul F.; Parker, Joel W.; Gladstone, G. Randall; Slater, David C.; Stern, S. Alan

    2012-10-01

    We designed and assembled a highly capable UV reflectometer chamber and data acquisition system to provide bidirectional scattering data of various surfaces and materials. This chamber was initially conceived to create laboratory-based UV reflectance measurements of water frost on lunar soil/regolith simulants, to support interpretation of UV reflectance data from the Lyman Alpha Mapping Project ("LAMP") instrument on-board the NASA Lunar Reconnaissance Orbiter spacecraft. A deuterium lamp illuminates surfaces and materials at a fixed 45° incident beam angle over the 115 to 200 nm range via a monochromator, while a photomultiplier tube detector is scanned to cover emission angles -85° to +85° (with a gap from -60° to -30°, due to the detector blocking the incident beam). Liquid nitrogen cools the material/sample mount when desired. The chamber can be configured to test a wide range of samples and materials using sample trays and holders. Test surfaces to date include aluminum mirrors, water ice, reflectance standards, and frozen mixtures of water and lunar soil/regolith stimulant. Future UV measurements planned include Apollo lunar samples, meteorite samples, other ices, minerals, and optical surfaces. Since this chamber may well be able to provide useful research data for groups outside Southwest Research Institute, we plan to take requests from and collaborate with others in the UV and surface reflection research community.

  19. Production and Performance of the InFOCmicronS 20-40 keV Graded Multilayer Mirror

    NASA Technical Reports Server (NTRS)

    Berendse, F.; Owens, S. M.; Serlemitsos, P. J.; Tueller, J.; Chan, K.-W.; Soong, Y.; Krimm, H.; Baumgartner, W. H.; Tamura, K.; Okajima, T.; hide

    2002-01-01

    The International Focusing Optics Collaboration for micron Crab Sensitivity (InFOC micronS) balloon-borne hard x-ray incorporates graded multilayer technology to obtain significant effective area at energies previously inaccessible to x-ray optics. The telescope mirror consists of 2040 segmented thin aluminum foils coated with replicated Pt/C multilayers. A sample of these foils was scanned using a pencil-beam reflectometer to determine, multilayer quality. The results of the reflectometer measurements demonstrate our capability to produce large quantity of foils while maintaining high-quality multilayers with a mean Nevot-Croce interface roughness of 0.5nm. We characterize the performance of the complete InFOC micronS telescope with a pencil beam raster scan to determine the effective area and encircled energy function of the telescope. The effective area of the complete telescope is 78, 42 and 22 square centimeters at 20 30 and 40 keV. respectively. The measured encircled energy fraction of the mirror has a half-power diameter of 2.0 plus or minus 0.5 arcmin (90% confidence). The mirror successfully obtained an image of the accreting black hole Cygnus X-1 during a balloon flight in July, 2001. The successful completion and flight test of this telescope demonstrates that graded-multilayer telescopes can be manufactured with high reliability for future x-ray telescope missions such as Constellation-X.

  20. AMOR - the time-of-flight neutron reflectometer at SINQ/PSI

    NASA Astrophysics Data System (ADS)

    Gupta, Mukul; Gutberlet, T.; Stahn, J.; Keller, P.; Clemens, D.

    2004-07-01

    The apparatus for multioptional reflectometry (AMOR) at SINQ/PSI is a versatile reflectometer operational in the time-of-flight (TOF) mode (in a wavelength range of 0.15 nm <λ < 1.3 nm) as well as in the monochromatic (theta-2theta) mode with both polarized and unpolarized neutrons. AMOR is designed to perform reflectometry measurements in horizontal sample-plane geometry which allows studying both solid-liquid and liquid-liquid interfaces. A pulsed cold neutron beam from the end position of the neutron guide is produced by a dual-chopper system (side-by-side) having two windows at 180^{circ} and rotatable with a maximum frequency of 200 Hz. In the TOF mode, the chopper frequency, width of the gating window and the chopper-detector distance can be selected independently providing a wide range of q-resolution (Delta q/q=1-10&%slash;). Remanent FeCoV/Ti : N supermirrors are used as polarizer/analyzer with a polarization efficiency of sim97&%slash;. For the monochromatic wavelength mode, a Ni/Ti multilayer is used as a monochromator, giving sim50&%slash; reflectivity at a wavelength of 0.47 nm. In the present work, a detailed description of the instrument and setting-up of the polarization option is described. Results from some of the recent studies with polarized neutrons and measurements on liquid surfaces are presented.

  1. Upgrades to the Polarized Neutron Reflectometer Asterix at LANSCE

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pynn, Roger

    2015-03-16

    We have upgraded the polarized neutron reflectometer, Asterix, at the Lujan Neutron Scattering Center at Los Alamos for the benefit of the research communities that study magnetic and complex-fluid films, both of which play important roles in support of the DOE’s energy mission. The upgrades to the instrument include: • A secondary spectrometer that was integrated with a Huber sample goniometer purchased with other funds just prior to the start of our project. The secondary spectrometer provides a flexible length for the scattered flight path, includes a mechanism to select among 3 alternative polarization analyzers as well as a supportmore » for new neutron detectors. Also included is an optic rail for reproducible positioning of components for Spin Echo Scattering Angle Measurement (SESAME). The entire secondary spectrometer is now non-magnetic, as required for neutron Larmor labeling. • A broad-band neutron polarizer for the incident neutron beam based on the V geometry. • A wide-angle neutron polarization analyzer • A 2d position-sensitive neutron detector • Electromagnetic coils (Wollaston prisms) for SESAME plus the associated power supplies, cooling, safety systems and integration into the data acquisition system. The upgrades allowed a nearly effortless transition between configurations required to serve the polarized neutron reflectometry community, users of the 11 T cryomagnet and users of SESAME.« less

  2. Effects of ICRF power on SOL density profiles and LH coupling during simultaneous LH and ICRF operation on Alcator C-Mod

    NASA Astrophysics Data System (ADS)

    Lau, C.; Lin, Y.; Wallace, G.; Wukitch, S. J.; Hanson, G. R.; Labombard, B.; Ochoukov, R.; Shiraiwa, S.; Terry, J.

    2013-09-01

    A dedicated experiment during simultaneous lower hybrid (LH) and ion cyclotron range-of-frequencies (ICRF) operations is carried out to evaluate and understand the effects of ICRF power on the scrape-off-layer (SOL) density profiles and on the resultant LH coupling for a wide range of plasma parameters on Alcator C-Mod. Operation of the LH launcher with the adjacent ICRF antenna significantly degrades LH coupling while operation with the ICRF antenna that is not magnetically connected to the LH launcher minimally affects LH coupling. An X-mode reflectometer system at three poloidal locations adjacent to the LH launcher and a visible video camera imaging the LH launcher are used to measure local SOL density profile and emissivity modifications with the application of LH and LH + ICRF power. These measurements confirm that the density in front of the LH launcher depends strongly on the magnetic field line mapping of the active ICRF antenna. Reflectometer measurements also observe both ICRF-driven and LH-driven poloidal density profile asymmetries, especially a strong density depletion at certain poloidal locations in front of the LH launcher during operation with a magnetically connected ICRF antenna. The results indicate that understanding both LH-driven flows and ICRF sheath driven flows may be necessary to understand the observed density profile modifications and LH coupling results during simultaneous LH + ICRF operation.

  3. Correlations Between Variations in Solar EUV and Soft X-Ray Irradiance and Photoelectron Energy Spectra Observed on Mars and Earth

    NASA Technical Reports Server (NTRS)

    Peterson, W. K.; Brain, D. A.; Mitchell, D. L.; Bailey, S. M.; Chamberlin, P. C.

    2013-01-01

    Solar extreme ultraviolet (EUV; 10-120 nm) and soft X-ray (XUV; 0-10 nm) radiation are major heat sources for the Mars thermosphere as well as the primary source of ionization that creates the ionosphere. In investigations of Mars thermospheric chemistry and dynamics, solar irradiance models are used to account for variations in this radiation. Because of limited proxies, irradiance models do a poor job of tracking the significant variations in irradiance intensity in the EUV and XUV ranges over solar rotation time scales when the Mars-Sun-Earth angle is large. Recent results from Earth observations show that variations in photoelectron energy spectra are useful monitors of EUV and XUV irradiance variability. Here we investigate photoelectron energy spectra observed by the Mars Global Surveyor (MGS) Electron Reflectometer (ER) and the FAST satellite during the interval in 2005 when Earth, Mars, and the Sun were aligned. The Earth photoelectron data in selected bands correlate well with calculations based on 1 nm resolution observations above 27 nm supplemented by broadband observations and a solar model in the 0-27 nm range. At Mars, we find that instrumental and orbital limitations to the identifications of photoelectron energy spectra in MGS/ER data preclude their use as a monitor of solar EUV and XUV variability. However, observations with higher temporal and energy resolution obtained at lower altitudes on Mars might allow the separation of the solar wind and ionospheric components of electron energy spectra so that they could be used as reliable monitors of variations in solar EUV and XUV irradiance than the time shifted, Earth-based, F(10.7) index currently used.

  4. Lunar Surface Charging during Solar Energetic Particle Events

    NASA Astrophysics Data System (ADS)

    Halekas, Jasper S.; Delory, G. T.; Mewaldt, R. A.; Lin, R. P.; Fillingim, M. O.; Brain, D. A.; Lee, C. O.; Stubbs, T. J.; Farrell, W. M.; Hudson, M. K.

    2006-09-01

    The surface of the Moon, not protected by any substantial atmosphere, is directly exposed to the impact of both solar UV and solar wind plasma and energetic particles. This creates a complex lunar electrostatic environment, with the surface typically charging slightly positive in sunlight, and negative in shadow. Observations from the Apollo era and theoretical considerations strongly suggest that surface charging leads to dust electrification and transport, posing a potentially significant hazard for exploration. The most significant charging effects should occur when the Moon is exposed to high-temperature plasmas like those encountered in the terrestrial plasmasheet or in solar storms. We now present evidence for kilovolt-scale negative charging of the shadowed lunar surface during solar energetic particle (SEP) events, utilizing data from the Lunar Prospector Electron Reflectometer (LP ER). We find that SEP events are associated with the most extreme lunar surface charging observed during the LP mission - rivaled only by previously reported charging during traversals of the terrestrial plasmasheet. The largest charging event observed by LP is a 4 kV negative surface potential (as compared to typical values of V) during a SEP event in May 1998. We characterize lunar surface charging during several SEP events, and compare to energetic particle measurements from ACE, Wind, and SOHO in order to determine the relationship between SEP events and extreme lunar surface charging. Space weather events are already considered by NASA to be a significant hazard to lunar exploration, due to high-energy ionizing radiation. Our observations demonstrate that plasma interactions with the lunar surface during SEP events, causing extreme surface charging and potentially significant dust electrification and transport, represent an additional hazard associated with space weather.

  5. Correlations between variations in solar EUV and soft X-ray irradiance and photoelectron energy spectra observed on Mars and Earth

    NASA Astrophysics Data System (ADS)

    Peterson, W. K.; Brain, D. A.; Mitchell, D. L.; Bailey, S. M.; Chamberlin, P. C.

    2013-11-01

    extreme ultraviolet (EUV; 10-120 nm) and soft X-ray (XUV; 0-10 nm) radiation are major heat sources for the Mars thermosphere as well as the primary source of ionization that creates the ionosphere. In investigations of Mars thermospheric chemistry and dynamics, solar irradiance models are used to account for variations in this radiation. Because of limited proxies, irradiance models do a poor job of tracking the significant variations in irradiance intensity in the EUV and XUV ranges over solar rotation time scales when the Mars-Sun-Earth angle is large. Recent results from Earth observations show that variations in photoelectron energy spectra are useful monitors of EUV and XUV irradiance variability. Here we investigate photoelectron energy spectra observed by the Mars Global Surveyor (MGS) Electron Reflectometer (ER) and the FAST satellite during the interval in 2005 when Earth, Mars, and the Sun were aligned. The Earth photoelectron data in selected bands correlate well with calculations based on 1 nm resolution observations above 27 nm supplemented by broadband observations and a solar model in the 0-27 nm range. At Mars, we find that instrumental and orbital limitations to the identifications of photoelectron energy spectra in MGS/ER data preclude their use as a monitor of solar EUV and XUV variability. However, observations with higher temporal and energy resolution obtained at lower altitudes on Mars might allow the separation of the solar wind and ionospheric components of electron energy spectra so that they could be used as reliable monitors of variations in solar EUV and XUV irradiance than the time shifted, Earth-based, F10.7 index currently used.

  6. Determination of melamine in animal feed based on liquid chromatography tandem mass spectrometry analysis and dynamic microwave-assisted extraction coupled on-line with strong cation-exchange resin clean-up.

    PubMed

    Chen, Ligang; Zeng, Qinglei; Du, Xiaobo; Sun, Xin; Zhang, Xiaopan; Xu, Yang; Yu, Aimin; Zhang, Hanqi; Ding, Lan

    2009-11-01

    In this work, a new method was developed for the determination of melamine (MEL) in animal feed. The method was based on the on-line coupling of dynamic microwave-assisted extraction (DMAE) to strong cation-exchange (SCX) resin clean-up. The MEL was first extracted by 90% acidified methanol aqueous solution (v/v, pH = 3) under the action of microwave energy, and then the extract was cooled and passed through the SCX resin. Thus, the protonated MEL was retained on the resin through ion exchange interaction and the sample matrixes were washed out. Some obvious benefits were achieved, such as acceleration of analytical process, together with reduction in manual handling, risk of contamination, loss of analyte, and sample consumption. Finally, the analyte was separated by a liquid chromatograph with a SCX analytical column, and then identified and quantitatived by a tandem mass spectrometry with positive ionization mode and multiple-reaction monitoring. The DMAE parameters were optimized by the Box-Behnken design. The linearity of quantification obtained by analyzing matrix-matched standards is in the range of 50-5,000 ng g(-1). The limit of detection and limit of quantification obtained are 12.3 and 41.0 ng g(-1), respectively. The mean intra- and inter-day precisions expressed as relative standard deviations with three fortified levels (50, 250, and 500 ng g(-1)) are 5.1% and 7.3%, respectively, and the recoveries of MEL are in the range of 76.1-93.5%. The proposed method was successfully applied to determine MEL in different animal feeds obtained from the local market. MEL was detectable with the contents of 279, 136, and 742 ng g(-1) in three samples.

  7. A microwave resonator for limiting depth sensitivity for electron paramagnetic resonance spectroscopy of surfaces.

    PubMed

    Sidabras, Jason W; Varanasi, Shiv K; Mett, Richard R; Swarts, Steven G; Swartz, Harold M; Hyde, James S

    2014-10-01

    A microwave Surface Resonator Array (SRA) structure is described for use in Electron Paramagnetic Resonance (EPR) spectroscopy. The SRA has a series of anti-parallel transmission line modes that provides a region of sensitivity equal to the cross-sectional area times its depth sensitivity, which is approximately half the distance between the transmission line centers. It is shown that the quarter-wave twin-lead transmission line can be a useful element for design of microwave resonators at frequencies as high as 10 GHz. The SRA geometry is presented as a novel resonator for use in surface spectroscopy where the region of interest is either surrounded by lossy material, or the spectroscopist wishes to minimize signal from surrounding materials. One such application is in vivo spectroscopy of human finger-nails at X-band (9.5 GHz) to measure ionizing radiation dosages. In order to reduce losses associated with tissues beneath the nail that yield no EPR signal, the SRA structure is designed to limit depth sensitivity to the thickness of the fingernail. Another application, due to the resonator geometry and limited depth penetration, is surface spectroscopy in coating or material science. To test this application, a spectrum of 1.44 μM of Mg(2+) doped polystyrene 1.1 mm thick on an aluminum surface is obtained. Modeling, design, and simulations were performed using Wolfram Mathematica (Champaign, IL; v. 9.0) and Ansys High Frequency Structure Simulator (HFSS; Canonsburg, PA; v. 15.0). A micro-strip coupling circuit is designed to suppress unwanted modes and provide a balanced impedance transformation to a 50 Ω coaxial input. Agreement between simulated and experimental results is shown.

  8. A microwave resonator for limiting depth sensitivity for electron paramagnetic resonance spectroscopy of surfaces

    PubMed Central

    Sidabras, Jason W.; Varanasi, Shiv K.; Mett, Richard R.; Swarts, Steven G.; Swartz, Harold M.; Hyde, James S.

    2014-01-01

    A microwave Surface Resonator Array (SRA) structure is described for use in Electron Paramagnetic Resonance (EPR) spectroscopy. The SRA has a series of anti-parallel transmission line modes that provides a region of sensitivity equal to the cross-sectional area times its depth sensitivity, which is approximately half the distance between the transmission line centers. It is shown that the quarter-wave twin-lead transmission line can be a useful element for design of microwave resonators at frequencies as high as 10 GHz. The SRA geometry is presented as a novel resonator for use in surface spectroscopy where the region of interest is either surrounded by lossy material, or the spectroscopist wishes to minimize signal from surrounding materials. One such application is in vivo spectroscopy of human finger-nails at X-band (9.5 GHz) to measure ionizing radiation dosages. In order to reduce losses associated with tissues beneath the nail that yield no EPR signal, the SRA structure is designed to limit depth sensitivity to the thickness of the fingernail. Another application, due to the resonator geometry and limited depth penetration, is surface spectroscopy in coating or material science. To test this application, a spectrum of 1.44 μM of Mg2+ doped polystyrene 1.1 mm thick on an aluminum surface is obtained. Modeling, design, and simulations were performed using Wolfram Mathematica (Champaign, IL; v. 9.0) and Ansys High Frequency Structure Simulator (HFSS; Canonsburg, PA; v. 15.0). A micro-strip coupling circuit is designed to suppress unwanted modes and provide a balanced impedance transformation to a 50 Ω coaxial input. Agreement between simulated and experimental results is shown. PMID:25362434

  9. A microwave resonator for limiting depth sensitivity for electron paramagnetic resonance spectroscopy of surfaces

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sidabras, Jason W.; Varanasi, Shiv K.; Hyde, James S.

    2014-10-15

    A microwave Surface Resonator Array (SRA) structure is described for use in Electron Paramagnetic Resonance (EPR) spectroscopy. The SRA has a series of anti-parallel transmission line modes that provides a region of sensitivity equal to the cross-sectional area times its depth sensitivity, which is approximately half the distance between the transmission line centers. It is shown that the quarter-wave twin-lead transmission line can be a useful element for design of microwave resonators at frequencies as high as 10 GHz. The SRA geometry is presented as a novel resonator for use in surface spectroscopy where the region of interest is eithermore » surrounded by lossy material, or the spectroscopist wishes to minimize signal from surrounding materials. One such application is in vivo spectroscopy of human finger-nails at X-band (9.5 GHz) to measure ionizing radiation dosages. In order to reduce losses associated with tissues beneath the nail that yield no EPR signal, the SRA structure is designed to limit depth sensitivity to the thickness of the fingernail. Another application, due to the resonator geometry and limited depth penetration, is surface spectroscopy in coating or material science. To test this application, a spectrum of 1.44 μM of Mg{sup 2+} doped polystyrene 1.1 mm thick on an aluminum surface is obtained. Modeling, design, and simulations were performed using Wolfram Mathematica (Champaign, IL; v. 9.0) and Ansys High Frequency Structure Simulator (HFSS; Canonsburg, PA; v. 15.0). A micro-strip coupling circuit is designed to suppress unwanted modes and provide a balanced impedance transformation to a 50 Ω coaxial input. Agreement between simulated and experimental results is shown.« less

  10. Microwaves from GSM mobile telephones affect 53BP1 and gamma-H2AX foci in human lymphocytes from hypersensitive and healthy persons.

    PubMed

    Markovà, Eva; Hillert, Lena; Malmgren, Lars; Persson, Bertil R R; Belyaev, Igor Y

    2005-09-01

    The data on biologic effects of nonthermal microwaves (MWs) from mobile telephones are diverse, and these effects are presently ignored by safety standards of the International Commission for Non-Ionizing Radiation Protection (ICNIRP). In the present study, we investigated effects of MWs of Global System for Mobile Communication (GSM) at different carrier frequencies on human lymphocytes from healthy persons and from persons reporting hypersensitivity to electromagnetic fields (EMFs). We measured the changes in chromatin conformation, which are indicative of stress response and genotoxic effects, by the method of anomalous viscosity time dependence, and we analyzed tumor suppressor p53-binding protein 1 (53BP1) and phosphorylated histone H2AX (gamma-H2AX), which have been shown to colocalize in distinct foci with DNA double-strand breaks (DSBs), using immunofluorescence confocal laser microscopy. We found that MWs from GSM mobile telephones affect chromatin conformation and 53BP1/gamma-H2AX foci similar to heat shock. For the first time, we report here that effects of MWs from mobile telephones on human lymphocytes are dependent on carrier frequency. On average, the same response was observed in lymphocytes from hypersensitive and healthy subjects.

  11. Microwaves from GSM Mobile Telephones Affect 53BP1 and γ-H2AX Foci in Human Lymphocytes from Hypersensitive and Healthy Persons

    PubMed Central

    Markovà, Eva; Hillert, Lena; Malmgren, Lars; Persson, Bertil R. R.; Belyaev, Igor Y.

    2005-01-01

    The data on biologic effects of nonthermal microwaves (MWs) from mobile telephones are diverse, and these effects are presently ignored by safety standards of the International Commission for Non-Ionizing Radiation Protection (ICNIRP). In the present study, we investigated effects of MWs of Global System for Mobile Communication (GSM) at different carrier frequencies on human lymphocytes from healthy persons and from persons reporting hypersensitivity to electromagnetic fields (EMFs). We measured the changes in chromatin conformation, which are indicative of stress response and genotoxic effects, by the method of anomalous viscosity time dependence, and we analyzed tumor suppressor p53-binding protein 1 (53BP1) and phosphorylated histone H2AX (γ-H2AX), which have been shown to colocalize in distinct foci with DNA double-strand breaks (DSBs), using immunofluorescence confocal laser microscopy. We found that MWs from GSM mobile telephones affect chromatin conformation and 53BP1/γ-H2AX foci similar to heat shock. For the first time, we report here that effects of MWs from mobile telephones on human lymphocytes are dependent on carrier frequency. On average, the same response was observed in lymphocytes from hypersensitive and healthy subjects. PMID:16140623

  12. Anisotropies in the cosmic microwave background: an analytic approach

    NASA Astrophysics Data System (ADS)

    Hu, Wayne; Sugiyama, Naoshi

    1995-05-01

    We introduce a conceptually simple yet powerful analytic method which traces the structure of cosmic microwave background anisotropies to better than 5%-10% in temperature fluctuations on all scales. It is applicable to any model in which the gravitational potential is known and last scattering is sufficiently early. Moreover, it recovers and explains the presence of the 'Doppler peaks' at degree scales as driven acoustic oscillations of the photon-baryon fluid. We treat in detail such subtleties as the time dependence of the gravitational driving force, anisotropic stress from the neutrino quadrupole, and damping during the recombination process, again all from an analytic standpoint. We apply this formalism to the standard cold dark matter model to gain physical insight into the anisotropies, including the dependence of the peak locations and heights on cosmological parameters such as Omegab and h. Furthermore, the ionization history controls damping due to the finite thickness of the last scattering surface, which is in fact mianly caused by photon diffusion. In addition to being a powerful probe into the nature of anisotropies, this treatment can be used in place of the standard Boltzmann code where 5%-10% accuracy in temperature fluctuations is satisfactory and/or speed is essential. Equally importantly, it can be used as a portable standard by which numerical codes can be tested and compared.

  13. Dual ultrasonic-assisted dispersive liquid-liquid microextraction coupled with microwave-assisted derivatization for simultaneous determination of 20(S)-protopanaxadiol and 20(S)-protopanaxatriol by ultra high performance liquid chromatography-tandem mass spectrometry.

    PubMed

    Zhao, Xian-En; Lv, Tao; Zhu, Shuyun; Qu, Fei; Chen, Guang; He, Yongrui; Wei, Na; Li, Guoliang; Xia, Lian; Sun, Zhiwei; Zhang, Shijuan; You, Jinmao; Liu, Shu; Liu, Zhiqiang; Sun, Jing; Liu, Shuying

    2016-03-11

    This paper, for the first time, reported a speedy hyphenated technique of low toxic dual ultrasonic-assisted dispersive liquid-liquid microextraction (dual-UADLLME) coupled with microwave-assisted derivatization (MAD) for the simultaneous determination of 20(S)-protopanaxadiol (PPD) and 20(S)-protopanaxatriol (PPT). The developed method was based on ultra high performance liquid chromatography tandem mass spectrometry (UHPLC-MS/MS) detection using multiple-reaction monitoring (MRM) mode. A mass spectrometry sensitizing reagent, 4'-carboxy-substituted rosamine (CSR) with high reaction activity and ionization efficiency was synthesized and firstly used as derivatization reagent. Parameters of dual-UADLLME, MAD and UHPLC-MS/MS conditions were all optimized in detail. Low toxic brominated solvents were used as extractant instead of traditional chlorinated solvents. Satisfactory linearity, recovery, repeatability, accuracy and precision, absence of matrix effect and extremely low limits of detection (LODs, 0.010 and 0.015ng/mL for PPD and PPT, respectively) were achieved. The main advantages were rapid, sensitive and environmentally friendly, and exhibited high selectivity, accuracy and good matrix effect results. The proposed method was successfully applied to pharmacokinetics of PPD and PPT in rat plasma. Copyright © 2016 Elsevier B.V. All rights reserved.

  14. Planck intermediate results. XLVII. Planck constraints on reionization history

    NASA Astrophysics Data System (ADS)

    Planck Collaboration; Adam, R.; Aghanim, N.; Ashdown, M.; Aumont, J.; Baccigalupi, C.; Ballardini, M.; Banday, A. J.; Barreiro, R. B.; Bartolo, N.; Basak, S.; Battye, R.; Benabed, K.; Bernard, J.-P.; Bersanelli, M.; Bielewicz, P.; Bock, J. J.; Bonaldi, A.; Bonavera, L.; Bond, J. R.; Borrill, J.; Bouchet, F. R.; Boulanger, F.; Bucher, M.; Burigana, C.; Calabrese, E.; Cardoso, J.-F.; Carron, J.; Chiang, H. C.; Colombo, L. P. L.; Combet, C.; Comis, B.; Couchot, F.; Coulais, A.; Crill, B. P.; Curto, A.; Cuttaia, F.; Davis, R. J.; de Bernardis, P.; de Rosa, A.; de Zotti, G.; Delabrouille, J.; Di Valentino, E.; Dickinson, C.; Diego, J. M.; Doré, O.; Douspis, M.; Ducout, A.; Dupac, X.; Elsner, F.; Enßlin, T. A.; Eriksen, H. K.; Falgarone, E.; Fantaye, Y.; Finelli, F.; Forastieri, F.; Frailis, M.; Fraisse, A. A.; Franceschi, E.; Frolov, A.; Galeotta, S.; Galli, S.; Ganga, K.; Génova-Santos, R. T.; Gerbino, M.; Ghosh, T.; González-Nuevo, J.; Górski, K. M.; Gruppuso, A.; Gudmundsson, J. E.; Hansen, F. K.; Helou, G.; Henrot-Versillé, S.; Herranz, D.; Hivon, E.; Huang, Z.; Ilić, S.; Jaffe, A. H.; Jones, W. C.; Keihänen, E.; Keskitalo, R.; Kisner, T. S.; Knox, L.; Krachmalnicoff, N.; Kunz, M.; Kurki-Suonio, H.; Lagache, G.; Lähteenmäki, A.; Lamarre, J.-M.; Langer, M.; Lasenby, A.; Lattanzi, M.; Lawrence, C. R.; Le Jeune, M.; Levrier, F.; Lewis, A.; Liguori, M.; Lilje, P. B.; López-Caniego, M.; Ma, Y.-Z.; Macías-Pérez, J. F.; Maggio, G.; Mangilli, A.; Maris, M.; Martin, P. G.; Martínez-González, E.; Matarrese, S.; Mauri, N.; McEwen, J. D.; Meinhold, P. R.; Melchiorri, A.; Mennella, A.; Migliaccio, M.; Miville-Deschênes, M.-A.; Molinari, D.; Moneti, A.; Montier, L.; Morgante, G.; Moss, A.; Naselsky, P.; Natoli, P.; Oxborrow, C. A.; Pagano, L.; Paoletti, D.; Partridge, B.; Patanchon, G.; Patrizii, L.; Perdereau, O.; Perotto, L.; Pettorino, V.; Piacentini, F.; Plaszczynski, S.; Polastri, L.; Polenta, G.; Puget, J.-L.; Rachen, J. P.; Racine, B.; Reinecke, M.; Remazeilles, M.; Renzi, A.; Rocha, G.; Rossetti, M.; Roudier, G.; Rubiño-Martín, J. A.; Ruiz-Granados, B.; Salvati, L.; Sandri, M.; Savelainen, M.; Scott, D.; Sirri, G.; Sunyaev, R.; Suur-Uski, A.-S.; Tauber, J. A.; Tenti, M.; Toffolatti, L.; Tomasi, M.; Tristram, M.; Trombetti, T.; Valiviita, J.; Van Tent, F.; Vielva, P.; Villa, F.; Vittorio, N.; Wandelt, B. D.; Wehus, I. K.; White, M.; Zacchei, A.; Zonca, A.

    2016-12-01

    We investigate constraints on cosmic reionization extracted from the Planck cosmic microwave background (CMB) data. We combine the Planck CMB anisotropy data in temperature with the low-multipole polarization data to fit ΛCDM models with various parameterizations of the reionization history. We obtain a Thomson optical depth τ = 0.058 ± 0.012 for the commonly adopted instantaneous reionization model. This confirms, with data solely from CMB anisotropies, the low value suggested by combining Planck 2015 results with other data sets, and also reduces the uncertainties. We reconstruct the history of the ionization fraction using either a symmetric or an asymmetric model for the transition between the neutral and ionized phases. To determine better constraints on the duration of the reionization process, we also make use of measurements of the amplitude of the kinetic Sunyaev-Zeldovich (kSZ) effect using additional information from the high-resolution Atacama Cosmology Telescope and South Pole Telescope experiments. The average redshift at which reionization occurs is found to lie between z = 7.8 and 8.8, depending on the model of reionization adopted. Using kSZ constraints and a redshift-symmetric reionization model, we find an upper limit to the width of the reionization period of Δz < 2.8. In all cases, we find that the Universe is ionized at less than the 10% level at redshifts above z ≃ 10. This suggests that an early onset of reionization is strongly disfavoured by the Planck data. We show that this result also reduces the tension between CMB-based analyses and constraints from other astrophysical sources.

  15. Valence shell threshold photoelectron spectroscopy of the CHxCN (x = 0-2) and CNC radicals.

    PubMed

    Garcia, Gustavo A; Krüger, Julia; Gans, Bérenger; Falvo, Cyril; Coudert, Laurent H; Loison, Jean-Christophe

    2017-07-07

    We present the photoelectron spectroscopy of four radical species, CH x CN (x = 0-2) and CNC, formed in a microwave discharge flow-tube reactor by consecutive H abstractions from CH 3 CN (CH x CN + F → CH x-1 CN + HF (x = 1-3)). The spectra were obtained combining tunable vacuum ultraviolet synchrotron radiation with double imaging electron/ion coincidence techniques, which yielded mass-selected threshold photoelectron spectra. The results obtained for H 2 CCN complement existing ones while for the other radicals the data represent the first observation of their (single-photon) ionizing transitions. In the case of H 2 CCN, Franck-Condon calculations have been performed in order to assign the vibrational structure of the X + 1 A 1 ←X 2 B 1 ionizing transition. A similar treatment for the HCCN, CCN, and CNC radicals appeared to be more complicated mainly because a Renner-Teller effect strongly affects the vibrational levels of the ground electronic state of the HCCN + , CCN, and CNC species. Nevertheless, the first adiabatic ionization energies of these radicals are reported and compared to our ab initio calculated values, leading to new values for enthalpies of formation (Δ f H 298 0 (HCCN + (X 2 A ' ))=1517±12kJmol -1 ,Δ f H 298 0 (CCN(X 2 Π))=682±13kJmol -1 , and Δ f H 298 0 (CNC(X 2 Πg))=676±12kJmol -1 ), which are of fundamental importance for astrochemistry.

  16. VUV absorption spectroscopy measurements of the role of fast neutral atoms in a high-power gap breakdown

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Filuk, A. B.; Bailey, J. E.; Cuneo, M. E.

    The maximum power achieved in a wide variety of high-power devices, including electron and ion diodes, z pinches, and microwave generators, is presently limited by anode-cathode gap breakdown. A frequently discussed hypothesis for this effect is ionization of fast neutral atoms injected throughout the anode-cathode gap during the power pulse. We describe a newly developed diagnostic tool that provides a direct test of this hypothesis. Time-resolved vacuum-ultraviolet absorption spectroscopy is used to directly probe fast neutral atoms with 1-mm spatial resolution in the 10-mm anode-cathode gap of the SABRE 5 MV, 1 TW applied-B ion diode. Absorption spectra collected duringmore » Ar RF glow discharges and with CO{sub 2} gas fills confirm the reliability of the diagnostic technique. Throughout the 50--100 ns ion diode pulses no measurable neutral absorption was seen, setting upper limits of (0.12--1.5)x10{sup 14}cm{sup -3} for ground-state fast neutral atom densities of H, C, N, O, and F. The absence of molecular absorption bands also sets upper limits of (0.16--1.2)x10{sup 15}cm{sup -3} for common simple molecules. These limits are low enough to rule out ionization of fast neutral atoms as a breakdown mechanism. Breakdown due to ionization of molecules is also found to be unlikely. This technique can now be applied to quantify the role of neutral atoms in other high-power devices.« less

  17. Compact Instruments Measure Heat Potential

    NASA Technical Reports Server (NTRS)

    2009-01-01

    Based in Huntsville, Alabama, AZ Technology Inc. is a woman- and veteran-owned business that offers expertise in electromechanical-optical design and advanced coatings. AZ Technology has received eight Small Business Innovation Research (SBIR) contracts with Marshall Space Flight Center for the development of spectral reflectometers and the measurement of surface thermal properties. The company uses a variety of measurement services and instruments, including the Spectrafire, a portable spectral emissometer it used to assist General Electric with the design of its award-winning Giraffe Warmer for neonatal intensive care units.

  18. United States of America

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Schulman, M.

    1975-03-01

    A report is given of the activities of the USA in the field of food irradiation. The existing facilities and the dosimetric procedures are described including several new dosimeter systems. Chemical changes due to irradiation were studied in a lot of foodstuffs such as soybeans, shrimps, meat, and chicken- based pet food products as well as in model systems. Effects of irradiation on the content of Clostridium botulinum in foodstuffs were investigated. Studies in radicidation, radurization and the combination of ionizing radiation with UV, heat, or microwave treatment were performed. Radiopreservation was studied in a lot of foodstuffs. Extensive feedingmore » studies were performed in rats, mice and dogs to assess the wholesomeness of irradiated beef, strawberries and papayas. Furthermore, a short review is given of the present legislation and clearances and the economics. (MG)« less

  19. Quasi-stellar objects in the intergalactic medium: Source for the cosmic X-ray background

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sherman, R.D.

    1980-06-15

    QSOs are regarded as sources of both electromagnetic radiation and ejected matter that heat and ionize a dense intergalactic medium (IGM). Using current estimates of QSO luminosity, number density, evolution, and spectral index, we study three viable models: the diffuse cosmic X-ray background is (1) due entirely to thermal Bremsstrahlung of the IGM, (2) completely supplied by QSO X-radiation, (3) or a combination of both. The upper limits on an IGM fractional density with respect to closure are ..cap omega..=0.26, 0.24, and 0.21 for pure collisional, photo/collisional mixture, and pure photoionization, respectively. These calculations give emission spectra, Compton distortion ofmore » the cosmic microwave background, and optical depths to distant OSOs for comparison with relevant data.« less

  20. Delivery outcome among physiotherapists in Sweden: is non-ionizing radiation a fetal hazard

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kallen, B.; Malmquist, G.; Moritz, U.

    1982-03-01

    A cohort study was made on 2,043 infants born to 2,018 females registered as physiotherapists at the time of pregnancy during 1973 to 1978. The incidence of perinatal death, serious malformation, short gestational duration, and low birth weight was slightly below the expected with consideration given to maternal age and parity distribution. Information on occupational exposure (use of shortwave, microwave, and ultrasonic equipment, X-ray exposure, use of electrostimulator or hexachlorophene-containing soaps) was obtained in a case-control study within the cohort from mail questionnaires with a 93% response rate. The only positive finding was a higher incidence of shortwave equipment usemore » among the females with a dead or malformed infant than among controls. Various explanations for this finding are discussed.« less

  1. Probing the Early Universe with the SZ Effect

    NASA Technical Reports Server (NTRS)

    Joy, M. K.; Carlstrom, J. E.; Rose, M. Franklin (Technical Monitor)

    2001-01-01

    The Cosmic Microwave Background Radiation (CMBR) which we observe today is relic radiation which last interacted with matter more than 10 billion years ago, when the expanding universe cooled to the point that free electrons and ionized nuclei recombined to form atoms. Prior to recombination, scattering between photons and free electrons was a very frequent occurrence, and the distance light could penetrate was small; afterwards, with free electrons out of circulation, the universe became largely transparent to light. Thus, the CMBR photons we observe today give us a clear view of the state of the early universe. Measured deviations in the intensity of the CMBR trace the small perturbations in the primordial matter density, which have been amplified by gravitational forces to form the magnificent, complex structures which comprise the present-day universe.

  2. Radar research on thunderstorms and lightning

    NASA Technical Reports Server (NTRS)

    Rust, W. D.; Doviak, R. J.

    1982-01-01

    Applications of Doppler radar to detection of storm hazards are reviewed. Normal radar sweeps reveal data on reflectivity fields of rain drops, ionized lightning paths, and irregularities in humidity and temperature. Doppler radar permits identification of the targets' speed toward or away from the transmitter through interpretation of the shifts in the microwave frequency. Wind velocity fields can be characterized in three dimensions by the use of two radar units, with a Nyquist limit on the highest wind speeds that may be recorded. Comparisons with models numerically derived from Doppler radar data show substantial agreement in storm formation predictions based on information gathered before the storm. Examples are provided of tornado observations with expanded Nyquist limits, gust fronts, turbulence, lightning and storm structures. Obtaining vertical velocities from reflectivity spectra is discussed.

  3. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Huang, Qing-Guo; Wang, Ke, E-mail: huangqg@itp.ac.cn, E-mail: wangke@itp.ac.cn

    The early reionization (ERE) is supposed to be a physical process which happens after recombination, but before the instantaneous reionization caused by the first generation of stars. We investigate the effect of the ERE on the temperature and polarization power spectra of cosmic microwave background (CMB), and adopt principal components analysis (PCA) to model-independently reconstruct the ionization history during the ERE. In addition, we also discuss how the ERE affects the cosmological parameter estimates, and find that the ERE does not impose any significant influences on the tensor-to-scalar ratio r and the neutrino mass at the sensitivities of current experiments.more » The better CMB polarization data can be used to give a tighter constraint on the ERE and might be important for more precisely constraining cosmological parameters in the future.« less

  4. High-intensity xenon plasma discharge lamp for bulk-sensitive high-resolution photoemission spectroscopy.

    PubMed

    Souma, S; Sato, T; Takahashi, T; Baltzer, P

    2007-12-01

    We have developed a highly brilliant xenon (Xe) discharge lamp operated by microwave-induced electron cyclotron resonance (ECR) for ultrahigh-resolution bulk-sensitive photoemission spectroscopy (PES). We observed at least eight strong radiation lines from neutral or singly ionized Xe atoms in the energy region of 8.4-10.7 eV. The photon flux of the strongest Xe I resonance line at 8.437 eV is comparable to that of the He Ialpha line (21.218 eV) from the He-ECR discharge lamp. Stable operation for more than 300 h is achieved by efficient air-cooling of a ceramic tube in the resonance cavity. The high bulk sensitivity and high-energy resolution of PES using the Xe lines are demonstrated for some typical materials.

  5. The effects of Dark Matter annihilation on cosmic reionization

    DOE PAGES

    Kaurov, Alexander A.; Hooper, Dan; Gnedin, Nickolay Y.

    2016-12-15

    We revisit the possibility of constraining the properties of dark matter (DM) by studying the epoch of cosmic reionization. Previous studies have shown that DM annihilation was unlikely to have provided a large fraction of the photons that ionized the universe, but instead played a subdominant role relative to stars and quasars. The DM, however, begins to efficiently annihilate with the formation of primordial microhalos atmore » $$z\\sim100-200$$, much earlier than the formation of the first stars. Therefore, if DM annihilation ionized the universe at even the percent level over the interval $$z \\sim 20-100$$, it can leave a significant imprint on the global optical depth, $$\\tau$$. Moreover, we show that cosmic microwave background (CMB) polarization data and future 21 cm measurements will enable us to more directly probe the DM contribution to the optical depth. In order to compute the annihilation rate throughout the epoch of reionization, we adopt the latest results from structure formation studies and explore the impact of various free parameters on our results. Here, we show that future measurements could make it possible to place constraints on the dark matter's annihilation cross section that are at a level comparable to those obtained from the observations of dwarf galaxies, cosmic ray measurements, and studies of recombination.« less

  6. Optimization of {sup 6}LiF:ZnS(Ag) Scintillator Light Yield Using Geant4

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yehuda-Zada, Y.; Ben-Gurion University; Pritchard, K.

    2015-07-01

    Neutrons provide an effective tool to probe materials structure. Neutron diffraction is a method to determine the atomic and magnetic structure of a material based on neutron scattering. By this method a collimated incident beam of thermal neutrons heat the examined sample and based on the obtained diffraction pattern information on the structure of the material is provided. Research for developing a novel cold neutron detector for Chromatic Analysis Neutron Diffractometer Or Reflectometer (CANDOR) is underway at the NIST center for neutron research. The system unique design is aimed to provide over ten times fold faster analysis of materials thanmore » conventional system. In order to achieve the fast analysis a large number of neutron detectors is required. A key design constraint for this detector is the thickness of the neutron sensitive element. This is met using {sup 6}LiF:ZnS(Ag) scintillation material with embedded wavelength shifting (WLS) fibers conducting scintillation light to silicon photomultiplier photo-sensors. The detector sensitivity is determined by both the neutron capture probability ({sup 6}Li density) and the detectable light output produced by the ZnS(Ag) ionization, the latter of which is hindered by the fluorescence absorption of the scintillation light by the ZnS. Tradeoffs between the neutron capture probability, stimulated light production and light attenuation for determining the optimal stoichiometry of the {sup 6}LiF and ZnS(Ag) as well as the volume ratio of scintillator and fiber. Simulations performed using the GEANT4 Monte Carlo package were made in order to optimize the detector design. GEANT4 enables the investigation of the neutron interaction with the detector, the ionization process and the light transfer process following the nuclear process. The series of conversions required for this detector were modelled: - A cold neutron enters the sensor and is captured by {sup 6}Li in the scintillator mixture ({sup 6}Li (n,α) {sup 3}H reaction). The study of investigating the capture process probability for neutron energy of 5.1 meV to 2.27 meV (4 - 6 A) is presented. - Alpha particles and tritons travel for a few microns in the scintillation material (α ∼0.007 mm, T ∼0.04 mm) losing energy and ionizing the ZnS. The mean free path of the two particles in each of the component materials and the complete compound was investigated. - The ionization of the ZnS(Ag) scintillation material produces blue light photons with luminescence wavelength of 450 nm. The amount of light output produced for different grain sizes of ZnS is discussed. - A large portion of the scintillation photons are reabsorbed during their passage through the scintillation material. - The blue photons that reach the WLS fibers are absorbed by fluorescent dye and are re-emitted as green photons, conducted by the fiber to the SiPM photo-sensor. This work presents the CANDOR unique design and its design constrains, the results measured by the ultra-thin {sup 6}LiF:ZnS(Ag)-based neutron detector versus the simulation results for several binder concentrations. The light measurement attenuation results along with the measured stopping power were utilized to predict the sensitivity results of configuration with different ZnS grain size, weight ratios and fibers geometry (number and location). The simulations enable to optimize the final sensor design. This design successfully achieved both the high gamma rejection with a sensitive and accurate neutron event detection of 80 percent. (authors)« less

  7. High speed reflectometer for EUV mask-blanks

    NASA Astrophysics Data System (ADS)

    Wies, Christian; Lebert, Rainer; Jagle, Bernhard; Juschkin, L.; Sobel, F.; Seitz, H.; Walter, Ronny; Laubis, C.; Scholze, F.; Biel, W.; Steffens, O.

    2005-06-01

    AIXUV GmbH and partners have developed a high speed Reflectometer for EUV mask-blanks which is fully compliant with the SEMI-standard P38 for EUV-mask-blank metrology. The system has been installed in June 2004 at SCHOTT Lithotec AG. It features high throughput, high lateral and spectral resolution, high reproducibility and low absolute uncertainty. Using AIXUV's EUV-LAMP and debris mitigation, low cost-of-ownership and high availability is expected. The spectral reflectance of up to 3 mask-blanks per hour can be measured with at least 20 spots each. The system is push button-controlled. Results are stored in CSV file format. For a spot size of 0.1x1 mm2, 2000 spectral channels of 1.6 pm bandwidth are recorded from 11.6 nm to 14.8 nm. The reflectance measurement is based on the comparison of the sample under test to two reference mirrors calibrated at the PTB radiometry laboratory at BESSY II. The three reflection spectra are recorded simultaneously. For each spot more than 107 photons are accumulated in about 20 s, providing statistical reproducibility below 0.2% RMS. The total uncertainty is below 0.5% absolute. Wavelength calibration better than 1 pm RMS over the whole spectral range is achieved by reference to NIST published wavelengths of about 100 xenon emission lines. It is consistent with the wavelength of the krypton 3d-5p absorption resonance at 13.5947 nm to better than 2 pm.

  8. High speed reflectometer for EUV mask-blanks

    NASA Astrophysics Data System (ADS)

    Wies, C.; Lebert, R.; Jaegle, B.; Juschkin, L.; Sobel, F.; Seitz, H.; Walter, R.; Laubis, C.; Scholze, F.; Biel, W.; Steffens, O.

    2005-05-01

    AIXUV GmbH and partners have developed a high speed Reflectometer for EUV mask-blanks which is fully compliant with the SEMI-standard P38 for EUV-mask-blank metrology. The system has been installed in June 2004 at SCHOTT Lithotec AG. It features high throughput, high lateral and spectral resolution, high reproduci-bility and low absolute uncertainty. Using AIXUV's EUV-LAMP and debris mitigation, low cost-of-ownership and high availability is expected. The spectral reflectance of up to 3 mask-blanks per hour can be measured with at least 20 spots each. The system is push button-controlled. Results are stored in CSV file format. For a spot size of 0.1×1 mm2, 2000 spectral chan-nels of 1.6 pm bandwidth are recorded from 11.6 nm to 14.8 nm. The reflectance measurement is based on the comparison of the sample under test to two reference mirrors calibrated at the PTB radiometry laboratory at BESSY II. The three reflection spectra are recorded simultaneously. For each spot more than 107 photons are ac-cumulated in about 20 s, providing statistical reproducibility below 0.2 % RMS. The total uncertainty is below 0.5 % absolute. Wavelength calibration better than 1 pm RMS over the whole spectral range is achieved by refe-rence to NIST published wavelengths of about 100 xenon emission lines. It is consistent with the wavelength of the krypton 3d-5p absorption resonance at 13.5947 nm to better than 2 pm.

  9. A Search for Hot, Diffuse Gas in Superclusters

    NASA Technical Reports Server (NTRS)

    Boughn, Stephen P.

    1998-01-01

    The HEA01 A2 full sky, 2-10 keV X-ray map was searched for diffuse emission correlated with the plane of the local supercluster of galaxies and a positive correlation was found at the 99% confidence level. The most obvious interpretation is that the local supercluster contains a substantial amount of hot (10(exp 8) OK), diffuse gas, i.e. ionized hydrogen, with a density on the order of 2 - 3 x 10(exp -6) ions per cubic centimeter. This density is about an order of magnitude larger than the average baryon density of the universe and is consistent with a supercluster collapse factor of 10. The implied total mass is of the order of 10(exp 16) times the mass of the sun and would constitute a large fraction of the baryonic matter in the local universe. This result supports current thinking that most of the ordinary matter in the universe is in the form of ionized hydrogen; however, the high temperature implied by the X-ray emission is at the top of the range predicted by most theories. The presence of a large amount of hot gas would leave its imprint on the Cosmic Microwave Background (CMB) via the Sunyaev-Zel'dovich (SZ) effect. A marginal decrement (-17 muK) was found in the COBE 4-year 53 GHz CMB map coincident with the plane of the local supercluster. Although the detection is only 1beta, the level is consistent with the SZ effect predicted from the hot gas. If these results are confirmed by future observations they will have important implications for the formation of large-scale structure in the universe. Three other projects related directly to the HEAO 1 map or the X-ray background in general benefited from this NASA grant. They are: (1) "Correlations between the Cosmic X-ray and Microwave Backgrounds: Constraints on a Cosmological Constant"; (2) "Cross-correlation of the X-ray Background with Radio Sources: Constraining the Large-Scale Structure of the X-ray Background"; and (3) "Radio and X-ray Emission Mechanisms in Advection Dominated Accretion Flow".

  10. An Aerobraking Strategy for Determining Mars Upper Atmospheric Structure

    NASA Astrophysics Data System (ADS)

    Bougher, S. W.; Murphy, J. R.; Haberle, R. M.

    1997-07-01

    The Mars Global Surveyor (MGS) spacecraft will enter Mars orbit on Sept. 12, 1997, and thereafter undergo aerobraking for roughly 4-months. The final data-taking orbit to be achieved is sun-synchronous (2PM/2AM). An aerobraking strategy has been developed that not only will provide the walk-in capability needed to safely achieve the required Mars orbit, but also will provide a careful monitoring of the atmospheric structure. In particular, the linkage between the lower (0-100 km) and upper (100- 150 km) Mars atmospheres will be investigated. A suite of complementary measurements is planned that will probe the atmosphere over 0-150 km, including : (1) MGS Accelerometer density and inferred temperatures (100-150 km), (2) MGS Thermal Emission Spectrometer (TES) nadir (25-30 km) and limb (up to about 55 km) temperatures, (3) MGS Electron Reflectometer (ER) F1-peak heights (near 130 km), (4) ground-based microwave disk-averaged temperatures (0-70 km), and (5) Mars Pathfinder (MPF) surface meteorological data at 20 N latitude. These datasets acquired during the aerobraking phase will enable the current state of the atmosphere to be examined. Potential dust storm activity and its manifestations throughout the atmosphere can be monitored over Ls = 184 to 250. A corresponding library of coupled 3-D model simulations, based upon the NASA Ames Mars GCM and the NCAR Mars Thermospheric GCM (MTGCM), will be used to : (1) validate the current state of the Mars atmosphere, (2) investigate the various orbital, seasonal, LAT-LT-LON, and potential dust storm trends, and (3) predict the structure of the Mars atmosphere in the aerobraking corridor that is approaching in future MGS orbits. The in-situ accelerometer and ER data will eventually be used to construct a Mars empirical model covering 100-150 km. We will present a few selected GCM simulations to illustrate the expected atmospheric response to a dust storm event. In addition, we will discuss why these upper atmosphere datasets are important to future Mars missions.

  11. [Biological effects of non-ionizing electromagnetic radiation].

    PubMed

    Fedorowski, A; Steciwko, A

    1998-01-01

    Since the mid 1970's, when Adey discovered that extremely-low-frequency electromagnetic field (ELF EMF) may affect the calcium ions efflux from various cells, bioeffects of non-ionizing radiation (NIR) have become the subject of growing interest and numerous research projects. At present, the fact that NIR exerts both stimulatory and inhibitory effects on different physiological cellular parameters is rather unquestionable. At the same time, some epidemiological studies suggest that exposure to EMF is potentially harmful even if its intensity is very low. It has been proved that thermal factors are not responsible for these effects, therefore nowadays, they are called 'non-thermal effects'. Our paper deals with three different aspects of biological effects of non-ionizing radiation, bioelectromagnetism, electromagnetobiology and electromagnetic bioinformation. Firstly, we describe how EMF and photons can be produced within a living cell, how biological cycles are controlled, and what are the features of endogenous electromagnetic radiation. Secondly, we discuss various facets of external EMF interactions with living matter, focusing on extremely-low-frequencies, radio- and microwaves. Possible mechanisms of these interactions are also mentioned. Finally, we present a short overview of current theories which explain how electromagnetic couplings may control an open and dissipative structure, namely the living organism. The theory of electromagnetic bioinformation seems to explain how different physiological processes are triggered and controlled, as well as how long-range interactions may possibly occur within the complex biological system. The review points out that the presented research data must be assessed very carefully since its evaluation is crucial to set the proper limits of EMF exposure, both occupational and environmental. The study of biological effects of non-ioinizing radiation may also contribute to the development of new diagnostic and therapeutic methods.

  12. Planck intermediate results: XLVII. Planck constraints on reionization history

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Adam, R.; Aghanim, N.; Ashdown, M.

    In this paper, we investigate constraints on cosmic reionization extracted from the Planck cosmic microwave background (CMB) data. We combine the Planck CMB anisotropy data in temperature with the low-multipole polarization data to fit ΛCDM models with various parameterizations of the reionization history. We obtain a Thomson optical depth τ = 0.058 ± 0.012 for the commonly adopted instantaneous reionization model. This confirms, with data solely from CMB anisotropies, the low value suggested by combining Planck 2015 results with other data sets, and also reduces the uncertainties. We reconstruct the history of the ionization fraction using either a symmetric ormore » an asymmetric model for the transition between the neutral and ionized phases. To determine better constraints on the duration of the reionization process, we also make use of measurements of the amplitude of the kinetic Sunyaev-Zeldovich (kSZ) effect using additional information from the high-resolution Atacama Cosmology Telescope and South Pole Telescope experiments. The average redshift at which reionization occurs is found to lie between z = 7.8 and 8.8, depending on the model of reionization adopted. Using kSZ constraints and a redshift-symmetric reionization model, we find an upper limit to the width of the reionization period of Δz < 2.8. In all cases, we find that the Universe is ionized at less than the 10% level at redshifts above z ≃ 10. This suggests that an early onset of reionization is strongly disfavoured by the Planck data. Finally, we show that this result also reduces the tension between CMB-based analyses and constraints from other astrophysical sources.« less

  13. Planck intermediate results: XLVII. Planck constraints on reionization history

    DOE PAGES

    Adam, R.; Aghanim, N.; Ashdown, M.; ...

    2016-12-12

    In this paper, we investigate constraints on cosmic reionization extracted from the Planck cosmic microwave background (CMB) data. We combine the Planck CMB anisotropy data in temperature with the low-multipole polarization data to fit ΛCDM models with various parameterizations of the reionization history. We obtain a Thomson optical depth τ = 0.058 ± 0.012 for the commonly adopted instantaneous reionization model. This confirms, with data solely from CMB anisotropies, the low value suggested by combining Planck 2015 results with other data sets, and also reduces the uncertainties. We reconstruct the history of the ionization fraction using either a symmetric ormore » an asymmetric model for the transition between the neutral and ionized phases. To determine better constraints on the duration of the reionization process, we also make use of measurements of the amplitude of the kinetic Sunyaev-Zeldovich (kSZ) effect using additional information from the high-resolution Atacama Cosmology Telescope and South Pole Telescope experiments. The average redshift at which reionization occurs is found to lie between z = 7.8 and 8.8, depending on the model of reionization adopted. Using kSZ constraints and a redshift-symmetric reionization model, we find an upper limit to the width of the reionization period of Δz < 2.8. In all cases, we find that the Universe is ionized at less than the 10% level at redshifts above z ≃ 10. This suggests that an early onset of reionization is strongly disfavoured by the Planck data. Finally, we show that this result also reduces the tension between CMB-based analyses and constraints from other astrophysical sources.« less

  14. DISSECTING THE HIGH- z INTERSTELLAR MEDIUM THROUGH INTENSITY MAPPING CROSS-CORRELATIONS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Serra, Paolo; Doré, Olivier; Lagache, Guilaine, E-mail: Paolo.Serra@jpl.nasa.gov

    We explore the detection, with upcoming spectroscopic surveys, of three-dimensional power spectra of emission line fluctuations produced in different phases of the interstellar medium (ISM) by forbidden transitions of ionized carbon [C ii] (157.7 μ m), ionized nitrogen [N ii] (121.9 and 205.2 μ m), and neutral oxygen [O i] (145.5 μ m) at redshift z  > 4. These lines are important coolants of both the neutral and the ionized medium, and probe multiple phases of the ISM. In the framework of the halo model, we compute predictions of the three-dimensional power spectra for two different surveys, showing that they havemore » the required sensitivity to detect cross-power spectra between the [C ii] line and both the [O i] line and the [N ii] lines with sufficient signal-to-noise ratio. The importance of cross-correlating multiple lines with the intensity mapping technique is twofold. On the one hand, we will have multiple probes of the different phases of the ISM, which is key to understanding the interplay between energetic sources, and the gas and dust at high redshift. This kind of study will be useful for a next-generation space observatory such as the NASA Far-IR Surveyor, which will probe the global star formation and the ISM of galaxies from the peak of star formation to the epoch of reionization. On the other hand, emission lines from external galaxies are an important foreground when measuring spectral distortions of the cosmic microwave background spectrum with future space-based experiments like PIXIE; measuring fluctuations in the intensity mapping regime will help constrain the mean amplitude of these lines, and will allow us to better handle this important foreground.« less

  15. Population inversions in ablation plasmas generated by intense electron beams. Final report, 1 November 1985-31 October 1988

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gilgenbach, R.M.; Kammash, T.; Brake, M.L.

    1988-11-01

    Experiments during the past three years have concerned the generation and spectroscopic study of electron beam-driven carbon plasmas in order to explore the production of optical and ultraviolet radiation from nonequilibrium populations. The output of MELBA (Michigan Electron Long Beam Accelerator), has been connected to an electron-beam diode consisting of an aluminum (or brass) cathode stalk and a carbon anode. Magnetic-field coils were designed, procured, and utilized to focus the electron beam. A side viewing port permitted spectroscopic diagnostics to view across the surface of the anode. Spectroscopic diagnosis was performed using a 1-m spectrograph capable of operation from themore » vacuum-ultraviolet through the visible. This spectrograph is coupled to a 1024-channel optical multichannel analyzer. Spectra taken during the initial 400-ns period of the e-beam pulse showed a low effective-charge plasma with primarily molecular components (C/sub 2/, CH) as well as atomic hydrogen and singly ionized carbon (CII). When the generator pulse was crowbarred after the first 400 ns, the spectra revealed a continuation of the low-charge-state plasma. At times greater than 400 ns in non-crowbarred shots, the spectra revealed a highly ionized plasma with a very large intensity line at 2530 Angstroms due to CIV (5g-4f), and lower-intensity lines due to CIII and CII. This CIV line emission increased with time, peaking sharply between 750 and 900 ns, and decayed rapidly in less than 100 ns. Emission from these high ionization states may be due to electron beam-plasma instabilities, as this emission was accompanied by high levels of radio frequency and microwave emission.« less

  16. Modeling and Numerical Simulation of Microwave Pulse Propagation in Air Breakdown Environment

    NASA Technical Reports Server (NTRS)

    Kuo, S. P.; Kim, J.

    1991-01-01

    Numerical simulation is used to investigate the extent of the electron density at a distant altitude location which can be generated by a high-power ground-transmitted microwave pulse. This is done by varying the power, width, shape, and carrier frequency of the pulse. The results show that once the breakdown threshold field is exceeded in the region below the desired altitude location, electron density starts to build up in that region through cascading breakdown. The generated plasma attenuates the pulse energy (tail erosion) and thus deteriorates the energy transmission to the destined altitude. The electron density saturates at a level limited by the pulse width and the tail erosion process. As the pulse continues to travel upward, though the breakdown threshold field of the background air decreases, the pulse energy (width) is reduced more severely by the tail erosion process. Thus, the electron density grows more quickly at the higher altitude, but saturates at a lower level. Consequently, the maximum electron density produced by a single pulse at 50 km altitude, for instance, is limited to a value below 10(exp 6) cm(exp -3). Three different approaches are examined to determine if the ionization at the destined location can be improved: a repetitive pulse approach, a focused pulse approach, and two intersecting beams. Only the intersecting beam approach is found to be practical for generating the desired density level.

  17. Microwave-assisted solid-phase peptide synthesis of the 60-110 domain of human pleiotrophin on 2-chlorotrityl resin.

    PubMed

    Friligou, Irene; Papadimitriou, Evangelia; Gatos, Dimitrios; Matsoukas, John; Tselios, Theodore

    2011-05-01

    A fast and efficient microwave-assisted solid phase peptide synthesis (MW-SPPS) of a 51mer peptide, the main heparin-binding site (60-110) of human pleiotrophin (hPTN), using 2-chlorotrityl chloride resin (CLTR-Cl) following the 9-fluorenylmethyloxycarbonyl/tert-butyl (Fmoc/tBu) methodology and with the standard N,N'-diisopropylcarbodiimide/1-hydroxybenzotriazole (DIC/HOBt) coupling reagents, is described. An MW-SPPS protocol was for the first time successfully applied to the acid labile CLTR-Cl for the faster synthesis of long peptides (51mer peptide) and with an enhanced purity in comparison to conventional SPPS protocols. The synthesis of such long peptides is not trivial and it is generally achieved by recombinant techniques. The desired linear peptide was obtained in only 30 h of total processing time and in 51% crude yield, in which 60% was the purified product obtained with 99.4% purity. The synthesized peptide was purified by reversed phase high performance liquid chromatography (RP-HPLC) and identified by electrospray ionization mass spectrometry (ESI-MS). Then, the regioselective formation of the two disulfide bridges of hPTN 60-110 was successfully achieved by a two-step procedure, involving an oxidative folding step in dimethylsulfoxide (DMSO) to form the Cys(77)-Cys(109) bond, followed by iodine oxidation to form the Cys(67)-Cys(99) bond.

  18. 42GHz ECRH assisted Plasma Breakdown in tokamak SST-1

    NASA Astrophysics Data System (ADS)

    Shukla, B. K.; Pradhan, S.; Patel, Paresh; Babu, Rajan; Patel, Jatin; Patel, Harshida; Dhorajia, Pragnesh; Tanna, V.; Atrey, P. K.; Manchanda, R.; Gupta, Manoj; Joisa, Shankar; Gupta, C. N.; Danial, Raju; Singh, Prashant; Jha, R.; Bora, D.

    2015-03-01

    In SST-1, 42GHz ECRH system has been commissioned to carry out breakdown and heating experiments at 0.75T and 1.5T operating toroidal magnetic fields. The 42GHz ECRH system consists of high power microwave source Gyrotron capable to deliver 500kW microwave power for 500ms duration, approximately 20 meter long transmission line and a mirror based launcher. The ECRH power in fundamental O-mode & second harmonic X-mode is launched from low field side (radial port) of the tokamak. At 0.75T operation, approximately 300 kW ECH power is launched in second harmonic X-mode and successful ECRH assisted breakdown is achieved at low loop_voltage ~ 3V. The ECRH power is launched around 45ms prior to loop voltage. The hydrogen pressure in tokamak is maintained ~ 1×10-5mbar and the pre-ionized density is ~ 4×1012/cc. At 1.5T operating toroidal magnetic field, the ECH power is launched in fundamental O-mode. The ECH power at fundamental harmonic is varied from 100 kW to 250 kW and successful breakdown is achieved in all ECRH shots. In fundamental harmonic there is no delay in breakdown while at second harmonic ~ 40ms delay is observed, which is normal in case of second harmonic ECRH assisted breakdown.

  19. Longitudinal measurement of chromatic dispersion along an optical fiber transmission system with a new correction factor

    NASA Astrophysics Data System (ADS)

    Abbasi, Madiha; Imran Baig, Mirza; Shafique Shaikh, Muhammad

    2013-12-01

    At present existence OTDR based techniques have become a standard practice for measuring chromatic dispersion distribution along an optical fiber transmission link. A constructive measurement technique has been offered in this paper, in which a four wavelength bidirectional optical time domain reflectometer (OTDR) has been used to compute the chromatic dispersion allocation beside an optical fiber transmission system. To improve the correction factor a novel formulation has been developed, which leads to an enhanced and defined measurement. The investigational outcomes obtained are in good harmony.

  20. Real-time investigation of protein unfolding at an air–water interface at the 1 s time scale

    PubMed Central

    Yano, Yohko F.; Arakawa, Etsuo; Voegeli, Wolfgang; Matsushita, Tadashi

    2013-01-01

    Protein unfolding at an air–water interface has been demonstrated such that the X-ray reflectivity can be measured with an acquisition time of 1 s using a recently developed simultaneous multiple-angle–wavelength-dispersive X-ray reflectometer. This has enabled the electron density profile of the adsorbed protein molecules to be obtained in real time. A globular protein, lysozyme, adsorbed at the air–water interface is found to unfold into a flat shape within 1 s. PMID:24121352

  1. Analysis of a novel sensor interrogation technique based on fiber cavity ring-down (CRD) loop and OTDR

    NASA Astrophysics Data System (ADS)

    Yüksel, Kivilcim; Yilmaz, Anil

    2018-07-01

    We present the analysis of a remote sensor based on fiber Cavity Ring-Down (CRD) loop interrogated by an Optical Time Domain Reflectometer (OTDR) taking into account both practical limitations and the related signal processing. A commercial OTDR is used for both pulse generation and sensor output detection. This allows obtaining a compact and simple design for intensity-based sensor applications. This novel sensor interrogation approach is experimentally demonstrated by placing a variable attenuator inside the fiber loop that mimics a sensor head.

  2. Fiber optic security seal including plural Bragg gratings

    DOEpatents

    Forman, Peter R.

    1994-01-01

    An optical security system enables the integrity of a container seal to be remotely interrogated. A plurality of Bragg gratings is written holographically into the core of at least one optical fiber placed about the container seal, where each Bragg grating has a predetermined location and a known frequency for reflecting incident light. A time domain reflectometer is provided with a variable frequency light output that corresponds to the reflecting frequencies of the Bragg gratings to output a signal that is functionally related to the location and reflecting frequency of each of the Bragg gratings.

  3. Applications Of Measurement Techniques To Develop Small-Diameter, Undersea Fiber Optic Cables

    NASA Astrophysics Data System (ADS)

    Kamikawa, Neil T.; Nakagawa, Arthur T.

    1984-12-01

    Attenuation, strain, and optical time domain reflectometer (OTDR) measurement techniques were applied successfully in the development of a minimum-diameter, electro-optic sea floor cable. Temperature and pressure models for excess attenuation in polymer coated, graded-index fibers were investigated analytically and experimentally using these techniques in the laboratory. The results were used to select a suitable fiber for the cable. Measurements also were performed on these cables during predeployment and sea-trial testing to verify laboratory results. Application of the measurement techniques and results are summarized in this paper.

  4. High-resolution reflectometer for monitoring of biological samples

    NASA Astrophysics Data System (ADS)

    Men, Liqiu; Lu, Ping; Chen, Qiying

    2008-06-01

    High-resolution optical low-coherence reflectometry is applied to monitor biological samples. It has been found that the reflectivity of aged cow's milk is significantly lower than that of the fresh milk with a difference of 5.35dB. During the process of heating the fresh milk at a constant temperature of 80°C, the reflectivity of the milk gradually decreases with the increase of the heating duration. The technique is proved to be effective in monitoring the change in the refractive index of the sample.

  5. First tests of a MIEZE (modulated intensity by Zero effort)-type instrument on a pulsed neutron source

    NASA Astrophysics Data System (ADS)

    Bleuel, M.; Bröll, M.; Lang, E.; Littrell, K.; Gähler, R.; Lal, J.

    2006-01-01

    In this paper we report the results of our first tests of a novel proof-of-principle instrument developed at the IPNS, Argonne. The experiment was performed on the time of flight POSY1 instrument, the polarized reflectometer at the IPNS, which was modified to accommodate the apparatus. Two sets of RF-flippers were tested together, generating a modulated intensity by zero effort (MIEZE)-type neutron resonant spin echo signal which was observed at the detector using a wide neutron wavelength band.

  6. Evaluation of low-frequency operational limit of proposed ITER low-field-side reflectometer waveguide run including miter bends.

    PubMed

    Wang, G; Peebles, W A; Doyle, E J; Crocker, N A; Wannberg, C; Lau, C; Hanson, G R; Doane, J L

    2017-10-01

    The present design concept for the ITER low-field-side reflectometer transmission line (TL) consists of an ∼40 m long, 6.35 cm diameter helically corrugated waveguide (WG) together with ten 90° miter bends. This paper presents an evaluation of the TL performance at low frequencies (33-50 GHz) where the predicted HE 11 mode ohmic and mode conversion losses start to increase significantly. Quasi-optical techniques were used to form a near Gaussian beam to efficiently couple radiation in this frequency range into the WG. It was observed that the output beams from the guide remained linearly polarized with cross-polarization power levels of ∼1.5%-3%. The polarization rotation due to the helical corrugations was in the range ∼1°-3°. The radiated beam power profiles typically show excellent Gaussian propagation characteristics at distances >20 cm from the final exit aperture. The round trip propagation loss was found to be ∼2.5 dB at 50 GHz and ∼6.5 dB at 35 GHz, showing an inverse increase with frequency. This was consistent with updated calculations of miter bend and ohmic losses. At low frequencies (33-50 GHz), the mode purity remained very good at the exit of the waveguide, and the losses are perfectly acceptable for operation in ITER. The primary challenge may come from the future addition of a Gaussian telescope and other filter components within the corrugated guide, which will likely introduce additional perturbations to the beam profile and an increase in mode-conversion loss.

  7. Bubble velocity, diameter, and void fraction measurements in a multiphase flow using fiber optic reflectometer

    NASA Astrophysics Data System (ADS)

    Lim, Ho-Joon; Chang, Kuang-An; Su, Chin B.; Chen, Chi-Yueh

    2008-12-01

    A fiber optic reflectometer (FOR) technique featuring a single fiber probe is investigated for its feasibility of measuring the bubble velocity, diameter, and void fraction in a multiphase flow. The method is based on the interference of the scattered signal from the bubble surface with the Fresnel reflection signal from the tip of the optical fiber. Void fraction is obtained with a high accuracy if an appropriate correction is applied to compensate the underestimated measurement value. Velocity information is accurately obtained from the reflected signals before the fiber tip touches the bubble surface so that several factors affecting the traditional dual-tip probes such as blinding, crawling, and drifting effects due to the interaction between the probe and bubbles can be prevented. The coherent signals reflected from both the front and rear ends of a bubble can provide velocity information. Deceleration of rising bubbles and particles due to the presence of the fiber probe is observed when they are very close to the fiber tip. With the residence time obtained, the bubble chord length can be determined by analyzing the coherent signal for velocity determination before the deceleration starts. The bubble diameters are directly obtained from analyzing the signals of the bubbles that contain velocity information. The chord lengths of these bubbles measured by FOR represent the bubble diameters when the bubble shape is spherical or represent the minor axes when the bubble shape is ellipsoidal. The velocity and size of bubbles obtained from the FOR measurements are compared with those obtained simultaneously using a high speed camera.

  8. Density perturbation mode structure of high frequency compressional and global Alfvén eigenmodes in the National Spherical Torus Experiment using a novel reflectometer analysis technique

    NASA Astrophysics Data System (ADS)

    Crocker, N. A.; Kubota, S.; Peebles, W. A.; Rhodes, T. L.; Fredrickson, E. D.; Belova, E.; Diallo, A.; LeBlanc, B. P.; Sabbagh, S. A.

    2018-01-01

    Reflectometry measurements of compressional (CAE) and global (GAE) Alfvén eigenmodes are analyzed to obtain the amplitude and spatial structure of the density perturbations associated with the modes. A novel analysis technique developed for this purpose is presented. The analysis also naturally yields the amplitude and spatial structure of the density contour radial displacement, which is found to be 2-4 times larger than the value estimated directly from the reflectometer measurements using the much simpler ‘mirror approximation’. The modes were driven by beam ions in a high power (6 MW) neutral beam heated H-mode discharge (#141398) in the National Spherical Torus Experiment. The results of the analysis are used to assess the contribution of the modes to core energy transport and ion heating. The total displacement amplitude of the modes, which is shown to be larger than previously estimated (Crocker et al 2013 Nucl. Fusion 53 43017), is compared to the predicted threshold (Gorelenkov et al 2010 Nucl. Fusion 50 84012) for the anomalously high heat diffusion inferred from transport modeling in similar NSTX discharges. The results of the analysis also have strong implications for the energy transport via coupling of CAEs to kinetic Alfvén waves seen in simulations with the Hybrid MHD code (Belova et al 2015 Phys. Rev. Lett. 115 15001). Finally, the amplitudes of the observed CAEs fall well below the threshold for causing significant ion heating by stochastic velocity space diffusion (Gates et al 2001 Phys. Rev. Lett. 87 205003).

  9. Evaluation of low-frequency operational limit of proposed ITER low-field-side reflectometer waveguide run including miter bends

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wang, Guiding; Peebles, W. A.; Doyle, E. J.

    The present design concept for the ITER low-field-side reflectometer transmission line (TL) consists of an ~40 m long, 6.35 cm diameter helically corrugated waveguide (WG) together with ten 90° miter bends. This paper presents an evaluation of the TL performance at low frequencies (33-50 GHz) where the predicted HE11 mode ohmic and mode conversion losses start to increase significantly. Quasi-optical techniques were used to form a near Gaussian beam to efficiently couple radiation in this frequency range into the WG. We observed that the output beams from the guide remained linearly polarized with cross-polarization power levels of ~1.5%-3%. The polarizationmore » rotation due to the helical corrugations was in the range ~1°-3°. The radiated beam power profiles typically show excellent Gaussian propagation characteristics at distances >20 cm from the final exit aperture. The round trip propagation loss was found to be ~2.5 dB at 50 GHz and ~6.5 dB at 35 GHz, showing an inverse increase with frequency. This was consistent with updated calculations of miter bend and ohmic losses. At low frequencies (33-50 GHz), the mode purity remained very good at the exit of the waveguide, and the losses are perfectly acceptable for operation in ITER. Finally, the primary challenge may come from the future addition of a Gaussian telescope and other filter components within the corrugated guide, which will likely introduce additional perturbations to the beam profile and an increase in mode-conversion loss.« less

  10. A Physical Model for the Evolving Ultraviolet Luminosity Function of High Redshift Galaxies and their Contribution to the Cosmic Reionization

    NASA Astrophysics Data System (ADS)

    Cai, Zhen-Yi; Lapi, Andrea; Bressan, Alessandro; De Zotti, Gianfranco; Negrello, Mattia; Danese, Luigi

    2014-04-01

    We present a physical model for the evolution of the ultraviolet (UV) luminosity function of high-redshift galaxies, taking into account in a self-consistent way their chemical evolution and the associated evolution of dust extinction. Dust extinction is found to increase fast with halo mass. A strong correlation between dust attenuation and halo/stellar mass for UV selected high-z galaxies is thus predicted. The model yields good fits of the UV and Lyman-α (Lyα) line luminosity functions at all redshifts at which they have been measured. The weak observed evolution of both luminosity functions between z = 2 and z = 6 is explained as the combined effect of the negative evolution of the halo mass function; of the increase with redshift of the star formation efficiency due to the faster gas cooling; and of dust extinction, differential with halo mass. The slope of the faint end of the UV luminosity function is found to steepen with increasing redshift, implying that low luminosity galaxies increasingly dominate the contribution to the UV background at higher and higher redshifts. The observed range of the UV luminosities at high z implies a minimum halo mass capable of hosting active star formation M crit <~ 109.8 M ⊙, which is consistent with the constraints from hydrodynamical simulations. From fits of Lyα line luminosity functions, plus data on the luminosity dependence of extinction, and from the measured ratios of non-ionizing UV to Lyman-continuum flux density for samples of z ~= 3 Lyman break galaxies and Lyα emitters, we derive a simple relationship between the escape fraction of ionizing photons and the star formation rate. It implies that the escape fraction is larger for low-mass galaxies, which are almost dust-free and have lower gas column densities. Galaxies already represented in the UV luminosity function (M UV <~ -18) can keep the universe fully ionized up to z ~= 6. This is consistent with (uncertain) data pointing to a rapid drop of the ionization degree above z ~= 6, such as indications of a decrease of the comoving emission rate of ionizing photons at z ~= 6, a decrease of sizes of quasar near zones, and a possible decline of the Lyα transmission through the intergalactic medium at z > 6. On the other hand, the electron scattering optical depth, τes, inferred from cosmic microwave background (CMB) experiments favor an ionization degree close to unity up to z ~= 9-10. Consistency with CMB data can be achieved if M crit ~= 108.5 M ⊙, implying that the UV luminosity functions extend to M UV ~= -13, although the corresponding τes is still on the low side of CMB-based estimates.

  11. Far-infrared BRDFs and reflectance spectra of candidate SOFIA telescope, cavity, and focal-plane instrument surfaces

    NASA Astrophysics Data System (ADS)

    Meyer, Allan W.; Smith, Sheldon M.; Koerber, Christopher T.

    2000-06-01

    The far-infrared reflectance and scattering properties of telescope surfaces, surrounding cavity walls, and surfaces within focal-plane instruments can be significant contributors to background noise. Radiation from sources well off-axis, such as the earth, moon or aircraft engines may be multiply scattered by the cavity walls and/or surface facets of a complex telescope structure. The Non-Specular Reflectometer at NASA Ames Research Center was reactivated and upgraded, and used to measure reflectance and Bi- directional Reflectance Distribution Functions for samples of planned telescope system structural materials and associated surface treatments.

  12. Return to the red planet

    NASA Astrophysics Data System (ADS)

    Nichols, Robert G.

    1992-10-01

    The paper discusses the type of data which will be collected by the NASA's Mars Observer spacecraft when it reaches the planet next year. These will include measurements on the Martian magnetic field, the volcanic activity, the dust storms, seasonal weather cycles, and the planet's atmosphere and gravitational field. The Mars Observer's instruments include a magnetometer, an electron reflectometer, an IR radiometer, a laser altimeter, a thermal-emission spectrometer, a gamma-ray spectrometer, a camera, and a radio system. The program is counting on the vehicle's longevity so that it can participate in a Russian mission due to arrive at Mars in September 1995.

  13. Monitoring technique for a hybrid PS/WDM-PON by using a tunable OTDR and FBGs

    NASA Astrophysics Data System (ADS)

    Hann, Swook; Yoo, Jun-sang; Park, Chang-Soo

    2006-05-01

    A monitoring technique for hybrid passive optical networks (PON) is presented. The technique is based on the remote sensing of fibre Bragg gratings (FBGs) using a tunable optical time domain reflectometer (OTDR). The FBG would help discern an individual event during the monitoring of the hybrid PON in collaboration with the information provided by the Rayleigh backscattered power. The hybrid architecture of passive splitter-PON and WDM-PON can be analysed by the monitoring method by using the tunable OTDR and FBGs at the central office under the in-service state of PON.

  14. At-wavelength metrology facility for soft X-ray reflection optics

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sokolov, A., E-mail: andrey.sokolov@helmholtz-berlin.de; Bischoff, P.; Eggenstein, F.

    2016-05-15

    A new Optics Beamline coupled to a versatile UHV reflectometer is successfully operating at BESSY-II. It is used to carry out at-wavelength characterization and calibration of in-house produced gratings and novel nano-optical devices as well as mirrors and multilayer systems in the UV and XUV spectral region. This paper presents most recent commissioning data of the beamline and shows their correlation with initial beamline design calculations. Special attention is paid to beamline key parameters which determine the quality of the measurements such as high-order suppression and stray light behavior. The facility is open to user operation.

  15. Study of Optical Fiber Sensors for Cryogenic Temperature Measurements.

    PubMed

    De Miguel-Soto, Veronica; Leandro, Daniel; Lopez-Aldaba, Aitor; Beato-López, Juan Jesus; Pérez-Landazábal, José Ignacio; Auguste, Jean-Louis; Jamier, Raphael; Roy, Philippe; Lopez-Amo, Manuel

    2017-11-30

    In this work, the performance of five different fiber optic sensors at cryogenic temperatures has been analyzed. A photonic crystal fiber Fabry-Pérot interferometer, two Sagnac interferometers, a commercial fiber Bragg grating (FBG), and a π-phase shifted fiber Bragg grating interrogated in a random distributed feedback fiber laser have been studied. Their sensitivities and resolutions as sensors for cryogenic temperatures have been compared regarding their advantages and disadvantages. Additionally, the results have been compared with the given by a commercial optical backscatter reflectometer that allowed for distributed temperature measurements of a single mode fiber.

  16. Fiber optic security seal including plural Bragg gratings

    DOEpatents

    Forman, P.R.

    1994-09-27

    An optical security system enables the integrity of a container seal to be remotely interrogated. A plurality of Bragg gratings is written holographically into the core of at least one optical fiber placed about the container seal, where each Bragg grating has a predetermined location and a known frequency for reflecting incident light. A time domain reflectometer is provided with a variable frequency light output that corresponds to the reflecting frequencies of the Bragg gratings to output a signal that is functionally related to the location and reflecting frequency of each of the Bragg gratings. 2 figs.

  17. Possible applications of time domain reflectometry in planetary exploration missions

    NASA Technical Reports Server (NTRS)

    Heckendorn, S.

    1982-01-01

    The use of a time domain reflectometer (TDR) for planetary exploration is considered. Determination of the apparent dielectric constant and hence, the volumetric water content of frozen and unfrozen soils using the TDR is described. Earth-based tests were performed on a New York state sandy soil and a Wyoming Bentonite. Use of both a cylindrical coaxial transmission line and a parallel transmission line as probes was evaluated. The water content of the soils was varied and the apparent dielectric constant measured in both frozen and unfrozen states. Advantages and disadvantages of the technique are discussed.

  18. Study of Optical Fiber Sensors for Cryogenic Temperature Measurements

    PubMed Central

    Leandro, Daniel; Lopez-Aldaba, Aitor; Beato-López, Juan Jesus; Pérez-Landazábal, José Ignacio; Auguste, Jean-Louis; Jamier, Raphael; Roy, Philippe; Lopez-Amo, Manuel

    2017-01-01

    In this work, the performance of five different fiber optic sensors at cryogenic temperatures has been analyzed. A photonic crystal fiber Fabry-Pérot interferometer, two Sagnac interferometers, a commercial fiber Bragg grating (FBG), and a π-phase shifted fiber Bragg grating interrogated in a random distributed feedback fiber laser have been studied. Their sensitivities and resolutions as sensors for cryogenic temperatures have been compared regarding their advantages and disadvantages. Additionally, the results have been compared with the given by a commercial optical backscatter reflectometer that allowed for distributed temperature measurements of a single mode fiber. PMID:29189755

  19. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kaurov, Alexander A., E-mail: kaurov@uchicago.edu

    We explore a time-dependent energy dissipation of the energetic electrons in the inhomogeneous intergalactic medium (IGM) during the epoch of cosmic reionization. In addition to the atomic processes, we take into account the inverse Compton (IC) scattering of the electrons on the cosmic microwave background photons, which is the dominant channel of energy loss for electrons with energies above a few MeV. We show that: (1) the effect on the IGM has both local (atomic processes) and non-local (IC radiation) components; (2) the energy distribution between hydrogen and helium ionizations depends on the initial energy of an electron; (3) themore » local baryon overdensity significantly affects the fractions of energy distributed in each channel; and (4) the relativistic effect of the atomic cross-section becomes important during the epoch of cosmic reionization. We release our code as open source for further modification by the community.« less

  20. A promising diagnostic method: Terahertz pulsed imaging and spectroscopy

    PubMed Central

    Sun, Yiwen; Sy, Ming Yiu; Wang, Yi-Xiang J; Ahuja, Anil T; Zhang, Yuan-Ting; Pickwell-MacPherson, Emma

    2011-01-01

    The terahertz band lies between the microwave and infrared regions of the electromagnetic spectrum. This radiation has very low photon energy and thus it does not pose any ionization hazard for biological tissues. It is strongly attenuated by water and very sensitive to water content. Unique absorption spectra due to intermolecular vibrations in this region have been found in different biological materials. These unique features make terahertz imaging very attractive for medical applications in order to provide complimentary information to existing imaging techniques. There has been an increasing interest in terahertz imaging and spectroscopy of biologically related applications within the last few years and more and more terahertz spectra are being reported. This paper introduces terahertz technology and provides a short review of recent advances in terahertz imaging and spectroscopy techniques, and a number of applications such as molecular spectroscopy, tissue characterization and skin imaging are discussed. PMID:21512652

  1. Cataract after exposure to non-ionizing radiant energy.

    PubMed Central

    Zaret, M M; Snyder, W Z; Birenbaum, L

    1976-01-01

    The case histories of two individuals exposed to thermal radiation emitted from an electric oven and range were presented. In one patient, earlier exposure to medical diathermy appears to have initiated delayed or late-appearing, capsular cataracts. Instead of the anticipated slow progression, the cataractogenesis was accelerated following recent, repeated exposure to the intense, infrared radiation. In the other patient, exposed solely to infrared radiation, a chorioretinal lesion indistinguishable from the type characteristically secondary to repeated, thermal radiation was observed. More recently, the earliest sign of thermal radiation cataractogenesis, capsular opacification, has become evident. The widespread availability of radiant energy sources such as diathermy machines, microwave ovens, and electric ovens and ranges makes it imperative to examine carefully any possible hazards that may result from their use. With this in mind, radiant energy should be considered in the differential diagnosis of cataractogenesis. Images PMID:990233

  2. A theoretical and experimental investigation of cylindrical electrostatic probes at arbitrary incidence in flowing plasma

    NASA Technical Reports Server (NTRS)

    Jenkins, R. V.; Jones, W. L., Jr.

    1974-01-01

    The theory for calculating the current collected by a negatively biased cylindrical electrostatic probe at an arbitrary angle of attack in a weakley ionized flowing plasma is presented. The theory was constructed by considering both random and directed motion simultaneous with dynamic coupling of the flow properties and of the electric field of the probe. This direct approach yielded a theory that is more general than static plasma theories modified to account for flow. Theoretical calculations are compared with experimental electrostatic probe data obtained in the free stream of an arc-heated hypersonic wind tunnel. The theoretical calculations are based on flow conditions and plasma electron densities measured by an independent microwave interferometer technique. In addition, the theory is compared with laboratory and satellite data previously published by other investigators. In each case the comparison gives good agreement.

  3. Design of a Microwave Assisted Discharge Inductive Plasma Accelerator

    NASA Technical Reports Server (NTRS)

    Hallock, Ashley K.; Polzin, Kurt A.

    2010-01-01

    A new plasma accelerator concept that employs electrodeless plasma preionization and pulsed inductive acceleration is presented. Preionization is achieved through an electron cyclotron resonance discharge that produces a weakly-ionized plasma at the face of a conical theta pinch-shaped inductive coil. The presence of the preionized plasma allows for current sheet formation at lower discharge voltages than those found in other pulsed inductive accelerators. The location of an electron cyclotron resonance discharge can be controlled through the design of the applied magnetic field in the thruster. A finite-element model of the magnetic field was used as a design tool, allowing for the implementation of an arrangement of permanent magnets that yields a small volume of preionized propellant at the coil face. This allows for current sheet formation at the face of the inductive coil, minimizing the initial inductance of the pulse circuit and maximizing the potential efficiency of the new accelerator.

  4. Planck constraint on relic primordial black holes

    NASA Astrophysics Data System (ADS)

    Clark, Steven J.; Dutta, Bhaskar; Gao, Yu; Strigari, Louis E.; Watson, Scott

    2017-04-01

    We investigate constraints on the abundance of primordial black holes (PBHs) in the mass range 1015- 1017 g using data from the cosmic microwave background (CMB) and MeV extragalactic gamma-ray background (EGB). Hawking radiation from PBHs with lifetime greater than the age of the Universe leaves an imprint on the CMB through modification of the ionization history and the damping of CMB anisotropies. Using a model for redshift-dependent energy injection efficiencies, we show that a combination of temperature and polarization data from Planck provides the strongest constraint on the abundance of PBHs for masses ˜1015- 1016 g , while the EGB dominates for masses ≳1016 g . Both the CMB and EGB now rule out PBHs as the dominant component of dark matter for masses ˜1016- 1017 g . Planned MeV gamma-ray observatories are ideal for further improving constraints on PBHs in this mass range.

  5. On the Utilization of In-flight Radiation-induced Performance Data and Anomaly Resolution of Commercial Off the Shelf (COTS) Electronics

    NASA Technical Reports Server (NTRS)

    LeBel, Kenneth A.; Poivey, Christian; Barth, Janet L.

    2003-01-01

    This viewgraph presentation presents an overview of the use of in-flight science data to review the radiation effects on commercial off the shelf (COTS) electronics used in recent spacecraft missions. The authors review the hazards that the space radiation environment pose for spacecraft electronics. They specifically discuss long term effects such as total ionizing dose (TID) and short term effects like single particle events (SEE). The advantages of using COTS electronics despite not being radiation hardened are mentioned. The reasons cite for tracking in-flight performance of COTS electronics include: anomaly resolution, validate ground tests and environmental predictions and provide lessons for future designers. Sample radiation impacts of science data from the following missions are analyzed: SOHO/LASCO 3 Coronograph, Microwave Anisotrophy Probe, Hubble Space Telescope and Chandra X-Ray Observatory.

  6. Plasma diagnostics of non-equilibrium atmospheric plasma jets

    NASA Astrophysics Data System (ADS)

    Shashurin, Alexey; Scott, David; Keidar, Michael; Shneider, Mikhail

    2014-10-01

    Intensive development and biomedical application of non-equilibrium atmospheric plasma jet (NEAPJ) facilitates rapid growth of the plasma medicine field. The NEAPJ facility utilized at the George Washington University (GWU) demonstrated efficacy for treatment of various cancer types (lung, bladder, breast, head, neck, brain and skin). In this work we review recent advances of the research conducted at GWU concerned with the development of NEAPJ diagnostics including Rayleigh Microwave Scattering setup, method of streamer scattering on DC potential, Rogowski coils, ICCD camera and optical emission spectroscopy. These tools allow conducting temporally-resolved measurements of plasma density, electrical potential, charge and size of the streamer head, electrical currents flowing though the jet, ionization front propagation speed etc. Transient dynamics of plasma and discharge parameters will be considered and physical processes involved in the discharge will be analyzed including streamer breakdown, electrical coupling of the streamer tip with discharge electrodes, factors determining NEAPJ length, cross-sectional shape and propagation path etc.

  7. Multiaperture ion beam extraction from gas-dynamic electron cyclotron resonance source of multicharged ions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sidorov, A.; Dorf, M.; Zorin, V.

    2008-02-15

    Electron cyclotron resonance ion source with quasi-gas-dynamic regime of plasma confinement (ReGIS), constructed at the Institute of Applied Physics, Russia, provides opportunities for extracting intense and high-brightness multicharged ion beams. Despite the short plasma lifetime in a magnetic trap of a ReGIS, the degree of multiple ionization may be significantly enhanced by the increase in power and frequency of the applied microwave radiation. The present work is focused on studying the intense beam quality of this source by the pepper-pot method. A single beamlet emittance measured by the pepper-pot method was found to be {approx}70 {pi} mm mrad, and themore » total extracted beam current obtained at 14 kV extraction voltage was {approx}25 mA. The results of the numerical simulations of ion beam extraction are found to be in good agreement with experimental data.« less

  8. Constraints on the Sunyaev-Zel'dovich signal from the warm-hot intergalactic medium from WMAP and SPT data

    NASA Astrophysics Data System (ADS)

    Génova-Santos, Ricardo; Suárez-Velásquez, I.; Atrio-Barandela, F.; Mücket, J. P.

    2013-07-01

    The fraction of ionized gas in the warm-hot intergalactic medium induces temperature anisotropies on the cosmic microwave background similar to those of clusters of galaxies. The Sunyaev-Zel'dovich (SZ) anisotropies due to these low-density, weakly non-linear, baryon filaments cannot be distinguished from that of clusters using frequency information, but they can be separated since their angular scales are very different. To determine the relative contribution of the WHIM SZ signal to the radiation power spectrum of temperature anisotropies, we explore the parameter space of the concordance Λ cold dark matter model using Monte Carlo Markov chains and the Wilkinson Microwave Anisotropy Probe 7 yr and South Pole Telescope data. We find marginal evidence of a contribution by diffuse gas, with amplitudes of AWHIM = 10-20 μK2, but the results are also compatible with a null contribution from the WHIM, allowing us to set an upper limit of AWHIM < 43 μK2 (95.4 per cent CL). The signal produced by galaxy clusters remains at ACL = 4.5 μK2, a value similar to what is obtained when no WHIM is included. From the measured WHIM amplitude, we constrain the temperature-density phase diagram of the diffuse gas, and find it to be compatible with numerical simulations. The corresponding baryon fraction in the WHIM varies from 0.43 to 0.47, depending on model parameters. The forthcoming Planck data could set tighter constraints on the temperature-density relation.

  9. Influence of iron substitution by selected rare-earth ions on the properties of NiZn ferrite fillers and PVC magneto-polymer composites

    NASA Astrophysics Data System (ADS)

    Ušák, Elemír; Ušáková, Mariana; Dosoudil, Rastislav; Šoka, Martin; Dobročka, Edmund

    2018-04-01

    Nickel-zinc ferrites are very important soft magnetic materials from the point of view of diverse technical applications (such as, e.g., various electronic devices and components) for their high magnetic permeability and permittivity, low core loss, high resistivity, high Curie temperature as well as mechanical strength and chemical stability. Due to their good absorbing properties, they can be used as microwave absorbing and shielding materials with the aim of decreasing the environmental pollution caused by non-ionizing microwave radiation. The ferrite material incorporated into the polymer matrix creates qualitatively new magneto-polymer composite material taking benefits from both components. The properties typical for polymers (elasticity, mouldability, etc.) are combined with good high-frequency magnetic parameters, thus allowing to utilize these materials, e.g., in high-frequency applications where especially flexibility of composite materials plays a key role. Small amounts of selected rare-earth (RE) ions, in particular Y3+, La3+, Eu3+ and Gd3+ have been embedded into the nickel-zinc ferrite that has been used as the magnetic filler in magnetic polymer composites with polyvinylchloride (PVC) acting as the polymeric matrix. The effect of various types of rare-earth ions on the structural as well as quasi-static and dynamic (electro)magnetic properties of the ferrite fillers as well as ferrite/PVC composites, in particular the frequency dispersion of the complex permeability, has been studied.

  10. K-shell auger decay of atomic oxygen

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Stolte, W.C.; Lu, Y.; Samson, J.A.R.

    1997-04-01

    The aim of the present research is to understand the interaction between the ejected photoelectron and Auger electron produced by the Auger decay of a 1s hole in atomic oxygen, and to understand the influence this interaction has on the shape of the ionization cross sections. To accomplish this the authors have measured the relative ion yields (ion/photon) in the vicinity of the oxygen K-shell (525 - 533 eV) for O{sup +} and O{sup 2+}. The measurements were performed at the ALS on beamline, 6.3.2. The atomic oxygen was produced by passing molecular oxygen through a microwave-driven discharge. A Rydbergmore » analysis of the two series leading to the [1s]2s{sup 2}2p{sup 4}({sup 4}P) and [1s]2s{sup 2}2p{sup 4}({sup 2}P) limits were obtained. This analysis shows some differences to the recently published results by Menzel et al. The energy position of the main 1s{sup 1}2s{sup 2}2p{sup 5}({sup 3}P) resonance differs by approximately 1 eV from the authors value, all members of the ({sup 2}P)np series differ by 0.3 eV, but the members of the ({sup 4}P)np series agree. The molecular resonance at 530.5 eV and those between 539 eV and 543 eV, measured with the microwave discharge off show identical results in both experiments.« less

  11. Cosmological Signatures of a Mirror Twin Higgs

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chacko, Zackaria; Curtin, David; Geller, Michael

    We explore the cosmological signatures associated with the twin baryons, electrons, photons and neutrinos in the Mirror Twin Higgs framework. We consider a scenario in which the twin baryons constitute a subcomponent of dark matter, and the contribution of the twin photon and neutrinos to dark radiation is suppressed due to late asymmetric reheating, but remains large enough to be detected in future cosmic microwave background (CMB) experiments. We show that this framework can lead to distinctive signals in large scale structure and in the cosmic microwave background. Baryon acoustic oscillations in the mirror sector prior to recombination lead tomore » a suppression of structure on large scales, and leave a residual oscillatory pattern in the matter power spectrum. This pattern depends sensitively on the relative abundances and ionization energies of both twin hydrogen and helium, and is therefore characteristic of this class of models. Although both mirror photons and neutrinos constitute dark radiation in the early universe, their effects on the CMB are distinct. This is because prior to recombination the twin neutrinos free stream, while the twin photons are prevented from free streaming by scattering off twin electrons. In the Mirror Twin Higgs framework the relative contributions of these two species to the energy density in dark radiation is predicted, leading to testable effects in the CMB. These highly distinctive cosmological signatures may allow this class of models to be discovered, and distinguished from more general dark sectors.« less

  12. Taking the Universe's Temperature with Spectral Distortions of the Cosmic Microwave Background.

    PubMed

    Hill, J Colin; Battaglia, Nick; Chluba, Jens; Ferraro, Simone; Schaan, Emmanuel; Spergel, David N

    2015-12-31

    The cosmic microwave background (CMB) energy spectrum is a near-perfect blackbody. The standard model of cosmology predicts small spectral distortions to this form, but no such distortion of the sky-averaged CMB spectrum has yet been measured. We calculate the largest expected distortion, which arises from the inverse Compton scattering of CMB photons off hot, free electrons, known as the thermal Sunyaev-Zel'dovich (TSZ) effect. We show that the predicted signal is roughly one order of magnitude below the current bound from the COBE-FIRAS experiment, but it can be detected at enormous significance (≳1000σ) by the proposed Primordial Inflation Explorer (PIXIE). Although cosmic variance reduces the effective signal-to-noise ratio to 230σ, this measurement will still yield a subpercent constraint on the total thermal energy of electrons in the observable Universe. Furthermore, we show that PIXIE can detect subtle relativistic effects in the sky-averaged TSZ signal at 30σ, which directly probe moments of the optical depth-weighted intracluster medium electron temperature distribution. These effects break the degeneracy between the electron density and the temperature in the mean TSZ signal, allowing a direct inference of the mean baryon density at low redshift. Future spectral distortion probes will thus determine the global thermodynamic properties of ionized gas in the Universe with unprecedented precision. These measurements will impose a fundamental "integral constraint" on models of galaxy formation and the injection of feedback energy over cosmic time.

  13. Characteristics of Mini-Magnetospheres Formed by Paleo-Magnetic Fields of Mars

    NASA Technical Reports Server (NTRS)

    Ness, N. F.; Krymskii, A. M.; Crider, D. H.; Breus, T. K.; Acuna, M. H.; Hinson, D.; Barashyan, K. K.

    2003-01-01

    The intensely and non-uniformly magnetized crustal sources generate an effective large-scale magnetic field. In the Southern hemisphere the strongest crustal fields lead to the formation of large-scale mini-magnetospheres. In the Northern hemisphere, the crustal fields are rather weak and there are only isolated mini-magnetospheres. Re-connection with the interplanetary magnetic field (IMF) occurs in many localized regions. This may occur not only in cusp-like structures above nearly vertical field anomalies but also in halos extending several hundreds of kilometers from these sources. Re-connection will permit solar wind (SW) and more energetic particles to precipitate into and heat the neutral atmosphere. Electron density profiles of the ionosphere of Mars derived from radio occultation data obtained by the Radio Science Mars Global Surveyor (MGS) experiment are concentrated in the near polar regions. The effective scale-height of the neutral atmosphere density in the vicinity of the ionization peak has been derived for each of the profiles studied. The effective scale-heights have been compared with the crustal magnetic fields measured by the MGS Magnetometer/Electron Reflectometer (MAG/ER) experiment. A significant difference between the large-scale mini-magnetospheres and regions outside of them has been found. The neutral atmosphere is cooler inside the large-scale mini-magnetospheres. It appears that outside of the cusps the strong crustal magnetic fields prevent additional heating of the neutral atmosphere by direct interaction of the SW. The scale-height of the neutral atmosphere density derived from the experiment with the MGS Accelerometer has been compared with MAG/ER data. The scale-height was found to be usually larger than mean value near the boundaries of potential mini-magnetospheres and around cusps . It may indicate that the paleo-magnetic/IMF field re-connection is characteristic of the mini-magnetospheres at Mars.

  14. Experimental Results of the Impact of an Ion Thruster Plasma on Microwave Propagation

    NASA Technical Reports Server (NTRS)

    Zaman, Afroz J.; Lambert, Kevin M.

    2000-01-01

    Electric thrusters are being considered for a variety of space missions because of the significant propellant savings that result from the use of high performance, electric propulsion technologies. Propellant mass savings reduces spacecraft launch requirements and increases mission lifetime and payload. The impact of electric thruster plasma plumes on microwave signal propagation however is an important spacecraft integration concern. Arcjets were the first electric thrusters to be considered for operational missions. Ling, et al. studied the effect of arcjet plumes on propagation. Arcjets produce a lightly ionized plume and Ling's analysis predicted that the plume would have a negligible effect on communication. Plumes from the higher performance ion thrusters being developed exhibit higher ionization levels, plasma temperatures and particle velocities than arcjets. Therefore, there was a need to assess the impact due to these plumes. To address this need, the authors designed and performed a series of experiments to examine propagation effects of plumes. The challenge with these experiments was that they had to be performed in the operational environment of the thruster. Therefore, the experiments were conducted inside a metal chamber which could be depressurized to simulate a near vacuum condition of space. The metal chamber presents a potential large source of error to the propagation measurements due to the corruption of the desired data by multiple wall reflections within the chamber. This chamber effect was minimized by employing a pulsed-continuous wave transmitter and receiver system. This system based on an HP8510 Network Analyzer, uses external hardware time gating to eliminate the clutter of the spurious reflections. Additionally, high gain antennas were used in the measurements to ensure that minimal amounts of energy were transmitted/received in undesirable directions. The measurements took place in Vacuum Facility 5 of the Electric Propulsion Laboratory at the NASA Glenn Research Center. This facility utilizes a cylindrical, stainless steel, vacuum chamber, which is 18.3 m long and 4.6 m in diameter. For the tests being described here a 30 cm diameter, xenon ion thruster was used. The thruster provided between 500 W and 2.3 kW of operating power. The thruster was mounted on a stand along the axis of the chamber near one of its ends and could be moved axially.

  15. Experimental Results of the Impact of an Ion Thruster Plasma on Microwave Propagation

    NASA Technical Reports Server (NTRS)

    Zaman, Afroz J.; Lambert, Kevin M.

    2000-01-01

    Electric thrusters are being considered for a variety of space missions because of the significant propellant savings that result from the use of high performance, electric propulsion technologies, Propellant mass savings reduces spacecraft launch requirements and increases mission lifetime and payload. The impact of electric thruster plasma plumes on microwave signal propagation however is an important spacecraft integration concern. Arcjets were the first electric thrusters to be considered for operational missions. Ling, et al., studied the effect of arcjet plumes on propagation. Arcjets produce a lightly ionized plume and Ling's analysis predicted that the plume would have a negligible effect on communication. Plumes from the higher performance ion thrusters being developed exhibit higher ionization levels, plasma temperatures and particle velo@ities than arcjets. Therefore, there was a need to assess the impact due to these plumes. To address this need, the authors designed and performed a series of experiments to examine propagation effects of plumes. The challenge with these experiments was that they had to be performed in the operational environment of the thruster. Therefore, the experiments were conducted inside a metal chamber which could be depressurized to simulate a near vacuum condition of space. The metal chamber presents a potential large source of error to the propagation measurements due to the corruption of the desired data by multiple wall reflections within the chamber. This chamber effect was minimized by employing a pulsed-continuous wave transmitter and receiver system. This system, based on an HP8510 Network Analyzer, uses external hardware time gating to eliminate the clutter of the spurious reflections. Additionally, high gain antennas were used in the measurements to ensure that minimal amounts of energy ",ere transmitted/received in undesirable directions. The measurements took place in Vacuum Facility 5 of the Electric Propulsion Laboratory at the NASA Glenn Research Center. This facility utilizes a cylindrical, stainless steel, vacuum chamber, which is 18.3 m long and 4.6 m in diameter. For the tests being described here a 30 cm diameter, xenon ion thruster was used. The thruster provided between 500 W and 2.3 kW of operating power. The thruster was mounted on a stand along the axis of the chamber near one of its ends.

  16. Design, modeling, and diagnostics of microplasma generation at microwave frequency

    NASA Astrophysics Data System (ADS)

    Miura, Naoto

    Plasmas are partially ionized gases that find wide utility in the processing of materials, especially in integrated circuit fabrication. Most industrial applications of plasma occur in near-vacuum where the electrons are hot (>10,000 K) but the gas remains near room temperature. Typical atmospheric plasmas, such as arcs, are hot and destructive to sensitive materials. Recently the emerging field of microplasmas has demonstrated that atmospheric ionization of cold gases is possible if the plasma is microscopic. This dissertation investigates the fundamental physical properties of two classes of microplasma, both driven by microwave electric fields. The extension of point-source microplasmas into a line-shaped plasma is also described. The line-shape plasma is important for atmospheric processing of materials using roll-coating. Microplasma generators driven near 1 GHz were designed using microstrip transmission lines and characterized using argon near atmospheric pressure. The electrical characteristics of the microplasma including the discharge voltage, current and resistance were estimated by comparing the experimental power reflection coefficient to that of an electromagnetic simulation. The gas temperature, argon metastable density and electron density were obtained by optical absorption and emission spectroscopy. The microscopic internal plasma structure was probed using spatially-resolved diode laser absorption spectroscopy of excited argon states. The spatially resolved diagnostics revealed that argon metastable atoms were depleted within the 200mum core of the microplasma where the electron density was maximum. Two microplasma generators, the split-ring resonator (SRR) and the transmission line (T-line) generator, were compared. The SRR ran efficiently with a high impedance plasma (>1000 O) and was stabilized by the self-limiting of absorbed power (<1W) as a lower impedance plasma caused an impedance mismatch. Gas temperatures were <1000 K and electron densities were ~1020 m-3, conditions which are favorable for treatment of delicate materials. The T-line generator ran most efficiently with an intense, low impedance plasma that matched the impedance of the T-line (35 O). With the T-line generator, the absorbed power could exceed 20W, which created an electron density of 1021 m-3, but the gas temperature exceeded 2000 K. Finally, line-shaped microplasmas based on resonant and non-resonant configurations were developed, tested, and analyzed.

  17. The at-wavelength metrology facility for UV- and XUV-reflection and diffraction optics at BESSY-II

    PubMed Central

    Schäfers, F.; Bischoff, P.; Eggenstein, F.; Erko, A.; Gaupp, A.; Künstner, S.; Mast, M.; Schmidt, J.-S.; Senf, F.; Siewert, F.; Sokolov, A.; Zeschke, Th.

    2016-01-01

    A technology center for the production of high-precision reflection gratings has been established. Within this project a new optics beamline and a versatile reflectometer for at-wavelength characterization of UV- and XUV-reflection gratings and other (nano-) optical elements has been set up at BESSY-II. The Plane Grating Monochromator beamline operated in collimated light (c-PGM) is equipped with an SX700 monochromator, of which the blazed gratings (600 and 1200 lines mm−1) have been recently exchanged for new ones of improved performance produced in-house. Over the operating range from 10 to 2000 eV this beamline has very high spectral purity achieved by (i) a four-mirror arrangement of different coatings which can be inserted into the beam at different angles and (ii) by absorber filters for high-order suppression. Stray light and scattered radiation is removed efficiently by double sets of in situ exchangeable apertures and slits. By use of in- and off-plane bending-magnet radiation the beamline can be adjusted to either linear or elliptical polarization. One of the main features of a novel 11-axes reflectometer is the possibility to incorporate real life-sized gratings. The samples are adjustable within six degrees of freedom by a newly developed UHV-tripod system carrying a load up to 4 kg, and the reflectivity can be measured between 0 and 90° incidence angle for both s- and p-polarization geometry. This novel powerful metrology facility has gone into operation recently and is now open for external users. First results on optical performance and measurements on multilayer gratings will be presented here. PMID:26698047

  18. Use of different surface analysis techniques for the study of the photo-degradation of a polymeric matrix composite

    NASA Astrophysics Data System (ADS)

    Larena, A.; Ochoa, S. Jimenez de

    2004-11-01

    Polypropylene matrix composites, with different reinforcement degrees of long glass fibres, are usually used in different fields of the industry, like aeronautics or automotive. Owed to their huge application field, and work under diverse and severe conditions, samples of the materials were exposed to artificial accelerated photo ageing in UV chamber (Heraeus Xenotest 15OS). Although the oxidative mechanism of the PP is known enough, the fact that the material presents a high content of glass fibre, cause a surface degradation higher than that the case of no reinforced materials, owed to the presence of the fibres near the surface. In order to study this topographic modifications, the optical confocal microscopy is used that allows us the analysis of the material surface with more accuracy than a surface profiler, and with nanometric precision. We also want a correlation between surface degradation studied by confocal microscopy and reflectometer measurements. By this way, we can know the surface state, and the degradation evolution, by means of a set of easy measurements, taken with a portable reflectometer, in samples at work, without preparation. Since these materials shall fulfil some aesthetic requirements, we study also, by means of UV-vis spectroscopy, Yellow Index and White Index variations, trying to explain the photochemical processes causing these modifications. Also, the fact that these materials are usually subjected to surface treatments like adhesion or painting makes necessary the study of surface energy. We study the variation of this factor with exposing time and percentage of fibre, by means of contact angle measurements, with different liquids of known surface tensions.

  19. Method and apparatus for selectively annealing heterostructures using microwave

    NASA Technical Reports Server (NTRS)

    Atwater, Harry A. (Inventor); Brain, Ruth A. (Inventor); Barmatz, Martin B. (Inventor)

    1998-01-01

    The present invention discloses a process for selectively annealing heterostructures using microwaves. A heterostructure, comprised of a material having higher microwave absorption and a material having lower microwave absorption, is exposed to microwaves in the cavity. The higher microwave absorbing material absorbs the microwaves and selectively heats while the lower microwave absorbing material absorbs small amounts of microwaves and minimally heats. The higher microwave absorbing material is thereby annealed onto the less absorbing material which is thermally isolated.

  20. Method and apparatus for selectively annealing heterostructures using microwaves

    NASA Technical Reports Server (NTRS)

    Atwater, Harry A. (Inventor); Brain, Ruth A. (Inventor); Barmatz, Martin B. (Inventor)

    1998-01-01

    The present invention discloses a process for selectively annealing heterostructures using microwaves. A heterostructure, comprised of a material having higher microwave absorption and a material having lower microwave absorption, is exposed to microwaves in the cavity. The higher microwave absorbing material absorbs the microwaves and selectively heats while the lower microwave absorbing material absorbs small amounts of microwaves and minimally heats. The higher microwave absorbing material is thereby annealed onto the less absorbing material which is thermally isolated.

  1. Simulating Terrestrial Gamma Ray Flashes due to cosmic ray shower electrons and positrons

    NASA Astrophysics Data System (ADS)

    Connell, Paul

    2017-04-01

    The University of Valencia has developed a software simulator LEPTRACK to simulate the relativistic runaway electron avalanches, RREA, that are presumed to be the cause of Terrestrial Gamma Ray Flashes and their powerful accompanying Ionization/Excitation Flashes. We show here results of LEPTRACK simulations of RREA by the interaction of MeV energy electrons/positrons and photons in cosmic ray showers traversing plausible electric field geometries expected in storm clouds. The input beams of MeV shower products were created using the CORSIKA software package from the Karlsruhe Institute of Technology. We present images, videos and plots showing the different Ionization, Excitation and gamma-ray photon density fields produced, along with their time and spatial profile evolution, which depend critically on where the line of shower particles intercept the electric field geometry. We also show a new effect of incoming positrons in the shower, which make up a significant fraction of shower products, in particular their apparent "orbiting" within a high altitude negative induced shielding charge layer, which has been conjectured to produce a signature microwave emission, as well as a short range 511 keV annihilation line. The interesting question posed is if this conjectured positron emission can be observed and correlated with TGF orbital observations to show if a TGF originates in the macro E-fields of storm clouds or the micro E-fields of lightning leaders where this positron "orbiting" is not likely to occur.

  2. Winds of change: reionization by starburst galaxies

    NASA Astrophysics Data System (ADS)

    Sharma, Mahavir; Theuns, Tom; Frenk, Carlos; Bower, Richard G.; Crain, Robert A.; Schaller, Matthieu; Schaye, Joop

    2017-06-01

    We investigate the properties of the galaxies that reionized the Universe and the history of cosmic reionization using the 'Evolution and Assembly of Galaxies and their Environments' (eagle) cosmological hydrodynamical simulations. We obtain the evolution of the escape fraction of ionizing photons in galaxies assuming that galactic winds create channels through which 20 per cent of photons escape when the local surface density of star formation is greater than 0.1 M⊙ yr-1 kpc-2. Such threshold behaviour for the generation of winds is observed, and the rare local objects that have such high star formation surface densities exhibit high escape fractions of ˜10 per cent. In our model, the luminosity-weighted mean escape fraction increases with redshift as \\bar{f}_esc=0.045 ((1+z)/4)^{1.1} at z > 3, and the galaxy number weighted mean as = 2.2 × 10-3 ((1 + z)/4)4, and becomes constant ≈0.2 at redshift z > 10. The escape fraction evolves as an increasingly large fraction of stars forms above the critical surface density of star formation at earlier times. This evolution of the escape fraction, combined with that of the star formation rate density from eagle, reproduces the inferred evolution of the filling factor of ionized regions during the reionization epoch (6 < z < 8), the evolution of the post-reionization (0 ≤ z < 6) hydrogen photoionization rate and the optical depth due to Thomson scattering of the cosmic microwave background photons measured by the Planck satellite.

  3. Summary of Research/Publications

    NASA Technical Reports Server (NTRS)

    1997-01-01

    Summary of research/publications include:(1) Comment on broadening of water microwave lines by collisions with helium atoms; (2) Calculations of ion-molecule deuterium fractionation reactions involving HD; (3) Ab initio predictions on the rotational spectra of carbon-chain carbene molecules; (4) Theoretical IR spectra of ionized naphthalene; (5) Improved collisional excitation rates for interstellar water; (6) Calculations on the competition between association and reaction for C3H+ + H2; (7) Theoretical infrared spectra of some model polycyclic aromatic hydrocarbons: effect of ionization; (8) Calculations concerning interstellar isomeric abundance ratios for C3H and C3H2; (9) New calculations on the ion-molecule processes C2H2+ + H2 C2H3+ + H and C2H2+ + H2 C2H4+; (10) Anisotropic rigid rotor potential energy function for H2O-H2; (11) A correlated ab initio study of linear carbon-chain radicals CnH (n=2-7); (12) Ab initio characterization of MgCCH, MgCCH+, and MgC2 and pathways to their formation in the interstellar medium; (13) Why HOC+ is detectable in interstellar clouds: The rate of the reaction between HOC+ and H2; (14) A correlated ab initio study of the X 2A 1 and A 2E states of MgCH3; (15) On the stability of interstellar carbon clusters: The rate of the reaction between C3 and O; and (16) The rate of the reaction between CN and C2H2 at interstellar temperatures.

  4. Carbon nanowalls: a new versatile graphene based interface for the laser desorption/ionization-mass spectrometry detection of small compounds in real samples.

    PubMed

    Hosu, I S; Sobaszek, M; Ficek, M; Bogdanowicz, R; Drobecq, H; Boussekey, L; Barras, A; Melnyk, O; Boukherroub, R; Coffinier, Y

    2017-07-13

    Carbon nanowalls, vertically aligned graphene nanosheets, attract attention owing to their tunable band gap, high conductivity, high mechanical robustness, high optical absorbance and other remarkable properties. In this paper, we report for the first time the use of hydrophobic boron-doped carbon nanowalls (CNWs) for laser desorption/ionization of small compounds and their subsequent detection by mass spectrometry (LDI-MS). The proposed method offers sensitive detection of various small molecules in the absence of an organic matrix. The CNWs were grown by microwave plasma enhanced chemical vapor deposition (MW-PECVD), using a boron-carbon gas flow ratio of 1200 in H 2 /CH 4 plasma, on silicon <100> wafer. The hydrophobicity of the surface offers a straightforward MS sample deposition, consisting of drop casting solutions of analytes and drying in air. Limits of detection in the picomolar and femtomolar ranges (25 fmol μL -1 for neurotensin) were achieved for different types of compounds (fatty acids, lipids, metabolites, saccharides and peptides) having clinical or food industry applications. This rapid and sensitive procedure can also be used for quantitative measurements without internal standards with RSDs <19%, as in the case of glucose in aqueous solutions (LOD = 0.32 ± 0.02 pmol), blood serum or soft drinks. Moreover, melamine (63 ± 8.19 ng μL -1 ), a toxic compound, together with creatinine and paracetamol, was detected in urine samples, while lecithin was detected in food supplements.

  5. VUV absorption spectroscopy measurements of the role of fast neutral atoms in high-power gap breakdown

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    FILUK,A.B.; BAILEY,JAMES E.; CUNEO,MICHAEL E.

    The maximum power achieved in a wide variety of high-power devices, including electron and ion diodes, z pinches, and microwave generators, is presently limited by anode-cathode gap breakdown. A frequently-discussed hypothesis for this effect is ionization of fast neutral atoms injected throughout the anode-cathode gap during the power pulse. The authors describe a newly-developed diagnostic tool that provides the first direct test of this hypothesis. Time-resolved vacuum-ultraviolet absorption spectroscopy is used to directly probe fast neutral atoms with 1 mm spatial resolution in the 10 mm anode-cathode gap of the SABRE 5 MV, 1 TW applied-B ion diode. Absorption spectramore » collected during Ar RF glow discharges and with CO{sub 2} gas fills confirm the reliability of the diagnostic technique. Throughout the 50--100 ns ion diode pulses no measurable neutral absorption is seen, setting upper limits of 0.12--1.5 x 10{sup 14} cm{sup {minus}3} for ground state fast neutral atom densities of H, C, N, O, F. The absence of molecular absorption bands also sets upper limits of 0.16--1.2 x 10{sup 15} cm{sup {minus}3} for common simple molecules. These limits are low enough to rule out ionization throughout the gap as a breakdown mechanism. This technique can now be applied to quantify the role of neutral atoms in other high-power devices.« less

  6. Microwave furnace having microwave compatible dilatometer

    DOEpatents

    Kimrey, Jr., Harold D.; Janney, Mark A.; Ferber, Mattison K.

    1992-01-01

    An apparatus for measuring and monitoring a change in the dimension of a sample being heated by microwave energy is described. The apparatus comprises a microwave heating device for heating a sample by microwave energy, a microwave compatible dilatometer for measuring and monitoring a change in the dimension of the sample being heated by microwave energy without leaking microwaves out of the microwave heating device, and a temperature determination device for measuring and monitoring the temperature of the sample being heated by microwave energy.

  7. Microwave furnace having microwave compatible dilatometer

    DOEpatents

    Kimrey, H.D. Jr.; Janney, M.A.; Ferber, M.K.

    1992-03-24

    An apparatus for measuring and monitoring a change in the dimension of a sample being heated by microwave energy is described. The apparatus comprises a microwave heating device for heating a sample by microwave energy, a microwave compatible dilatometer for measuring and monitoring a change in the dimension of the sample being heated by microwave energy without leaking microwaves out of the microwave heating device, and a temperature determination device for measuring and monitoring the temperature of the sample being heated by microwave energy. 2 figs.

  8. The reflectance of Ames 24E, Infrablack, and Martin black. [anodizing coatings for far-infrared space telescopes

    NASA Technical Reports Server (NTRS)

    Smith, Sheldon M.

    1989-01-01

    Results are reported from measurements of the specular reflectances (SRs) and bidirectional reflectance distribution functions (BRDFs) of three black optical coatings in the FIR wavelength range. The nonspecular reflectometer apparatus described by Smith (1984) is employed, and the data are presented in tables and graphs and discussed in detail. It is found that Ames 24E has an FIR SR one order of magnitude lower than that of Martin black (MB), with BRDF values characteristic of a nearly Lambertian surface, while Infrablack has SR two orders lower than MB and a specular-diffuse surface; MB itself has a very specular surface.

  9. Spectral infrared hemispherical reflectance measurements for LDEF tray clamps

    NASA Technical Reports Server (NTRS)

    Cromwell, B. K.; Shepherd, S. D.; Pender, C. W.; Wood, B. E.

    1993-01-01

    Infrared hemispherical reflectance measurements that were made on 58 chromic acid anodized tray clamps from LDEF are described. The measurements were made using a hemiellipsoidal mirror reflectometer with interferometer for wavelengths between 2-15 microns. The tray clamps investigated were from locations about the entire spacecraft and provided the opportunity for comparing the effects of atomic oxygen at each location. Results indicate there was essentially no dependence on atomic oxygen fluence for the surfaces studied, but there did appear to be a slight dependence on solar radiation exposure. The reflectances of the front sides of the tray clamps consistently were slightly higher than for the protected rear tray clamp surfaces.

  10. Quality of dry chemistry testing.

    PubMed

    Nakamura, H; Tatsumi, N

    1999-01-01

    Since the development of the qualitative test paper for urine in 1950s, several kinds of dry-state-reagents and their automated analyzers have been developed. "Dry chemistry" has become to be called since the report on the development of quantitative test paper for serum bilirubin with reflectometer in the end of 1960s and dry chemistry has been world widely known since the presentation on the development of multilayer film reagent for serum biochemical analytes by Eastman Kodak Co at the 10th IFCC Meeting in the end of 1970s. We have reported test menu, results in external quality assessment, merits and demerits, and the future possibilities of dry chemistry.

  11. Performance assessment of geotechnical structural elements using distributed fiber optic sensing

    NASA Astrophysics Data System (ADS)

    Monsberger, Christoph; Woschitz, Helmut; Lienhart, Werner; Račanský, Václav; Hayden, Martin

    2017-04-01

    Geotechnical structural elements are used to underpin heavy structures or to stabilize slopes and embankments. The bearing capacity of these components is usually verified by geotechnical load tests. It is state of the art to measure the resulting deformations with electronic sensors at the surface and therefore, the load distribution along the objects cannot be determined. This paper reports about distributed strain measurements with an optical backscatter reflectometer along geotechnical elements. In addition to the installation of the optical fiber in harsh field conditions, results of investigations of the fiber optic system in the laboratory and the most significant results of the field trials are presented.

  12. Temperature measurements in an ytterbium fiber amplifier up to the mode instability threshold

    NASA Astrophysics Data System (ADS)

    Beier, F.; Heinzig, M.; Sattler, Bettina; Walbaum, Till; Haarlammert, N.; Schreiber, T.; Eberhardt, R.; Tünnermann, A.

    2016-03-01

    We report on the measurement of the longitudinal temperature distribution in a fiber amplifier fiber during high power operation. The measurement signal of an optical frequency domain reflectometer is coupled to an ytterbium doped amplifier fiber via a wavelength division multiplexer. The longitudinal temperature distribution was examined for different pump powers with a sub mm resolution. The results show even small temperature variations induced by slight changes of the environmental conditions along the fiber. The mode instability threshold of the fiber under investigation was determined to be 480W and temperatures could be measured overall the measured output power values.

  13. Technique for finding and identifying filters that cut off OTDR lights in front of ONU from a central office

    NASA Astrophysics Data System (ADS)

    Takaya, Masaaki; Honda, Hiroyasu; Narita, Yoshihiro; Yamamoto, Fumihiko; Arakawa, Koji

    2006-04-01

    We report on a newly developed in-service measurement technique that can be used from a central office to find and identify any filter in front of an ONU on an optical fiber access network. Using this system, in-service tests can be performed because the test lights are modulated at a high frequency. Moreover, by using the equipment we developed, this confirmation operation can be performed continuously and automatically with existing automatic fiber testing systems. The developed technique is effective for constructing a fiber line testing system with an optical time domain reflectometer.

  14. Microwave. Instructor's Edition. Louisiana Vocational-Technical Education.

    ERIC Educational Resources Information Center

    Blanton, William

    This publication contains related study assignments and job sheets for a course in microwave technology. The course is organized into 12 units covering the following topics: introduction to microwave, microwave systems, microwave oscillators, microwave modulators, microwave transmission lines, transmission lines, detectors and mixers, microwave…

  15. Variable frequency microwave heating apparatus

    DOEpatents

    Bible, Don W.; Lauf, Robert J.; Johnson, Arvid C.; Thigpen, Larry T.

    1999-01-01

    A variable frequency microwave heating apparatus (10) designed to allow modulation of the frequency of the microwaves introduced into a multi-mode microwave cavity (34) for testing or other selected applications. The variable frequency microwave heating apparatus (10) includes a microwave signal generator (12) and a high-power microwave amplifier (20) or a high-power microwave oscillator (14). A power supply (22) is provided for operation of the high-power microwave oscillator (14) or microwave amplifier (20). A directional coupler (24) is provided for detecting the direction and amplitude of signals incident upon and reflected from the microwave cavity (34). A first power meter (30) is provided for measuring the power delivered to the microwave furnace (32). A second power meter (26) detects the magnitude of reflected power. Reflected power is dissipated in the reflected power load (28).

  16. Supercritical Carbon Dioxide and Microwave-Assisted Extraction of Functional Lipophilic Compounds from Arthrospira platensis

    PubMed Central

    Esquivel-Hernández, Diego A.; López, Víctor H.; Rodríguez-Rodríguez, José; Alemán-Nava, Gibrán S.; Cuéllar-Bermúdez, Sara P.; Rostro-Alanis, Magdalena; Parra-Saldívar, Roberto

    2016-01-01

    Arthrospira platensis biomass was used in order to obtain functional lipophilic compounds through green extraction technologies such as supercritical carbon dioxide fluid extraction (SFE) and microwave-assisted extraction (MAE). The temperature (T) factor was evaluated for MAE, while for SFE, pressure (P), temperature (T), and co-solvent (ethanol) (CS) were evaluated. The maximum extraction yield of the obtained oleoresin was (4.07% ± 0.14%) and (4.27% ± 0.10%) for SFE and MAE, respectively. Extracts were characterized by gas chromatography mass spectrometry (GC-MS) and gas chromatography flame ionization detector (GC-FID). The maximum contents of functional lipophilic compounds in the SFE and MAE extracts were: for carotenoids 283 ± 0.10 μg/g and 629 ± 0.13 μg/g, respectively; for tocopherols 5.01 ± 0.05 μg/g and 2.46 ± 0.09 μg/g, respectively; and for fatty acids 34.76 ± 0.08 mg/g and 15.88 ± 0.06 mg/g, respectively. In conclusion, the SFE process at P 450 bar, T 60 °C and CS 53.33% of CO2 produced the highest yield of tocopherols, carotenoids and fatty acids. The MAE process at 400 W and 50 °C gives the best extracts in terms of tocopherols and carotenoids. For yield and fatty acids, the MAE process at 400 W and 70 °C produced the highest values. Both SFE and MAE showed to be suitable green extraction technologies for obtaining functional lipophilic compounds from Arthrospira platensis. PMID:27164081

  17. Comparison of MP AES and ICP-MS for analysis of principal and selected trace elements in nitric acid digests of sunflower (Helianthus annuus).

    PubMed

    Karlsson, Stefan; Sjöberg, Viktor; Ogar, Anna

    2015-04-01

    The use of nitrogen as plasma gas for microwave plasma atomic emission spectroscopy (MP AES) is an interesting development in analytical science since the running cost can be significantly reduced in comparison to the inductively coupled argon plasma. Here, we evaluate the performance of the Agilent 4100 MP AES instrument for the analysis of principal metals (Ca, K, Mg, and Na), lithogenic metals (Al, Fe, and Mn) and selected trace metals (As, Ba, Cd, Co, Cr, Cu, Mo, Ni, Pb, V, and Zn) in nitric acid plant digests. The digests were prepared by microwave-assisted dissolution of dry plant material from sunflower (Helianthus annuus) in concentrated nitric acid. Comparisons are made with analysis of the same solutions with ICP-MS (Agilent 7500cx) using the octopole reaction system (ORS) in the collision mode for As, Fe, and V. The limits of detection were usually in the low µg L(-1) range and all principal and lithogenic metals were successfully determined with the MP AES and provided almost identical results with the ICP-MS. The same applies for the selected trace metals except for As, Co and Mo where the concentrations were below the detection limit with the MP AES. For successful analysis we recommend that (i) only atom lines are used, (ii) ionization is minimized (e.g. addition of CsNO3) and (iii) the use of internal standards should be considered to resolve spectral interferences. Copyright © 2014 Elsevier B.V. All rights reserved.

  18. Synthesis of Spiro Indole-2-Ones Using Three Component Reaction of N-Alkylisatins and Triphenylphosphonium Intermediates.

    PubMed

    Moradi, Ali Varasteh

    2017-01-01

    A simple and efficient procedure is achieved for the synthesis of indole-2-one derivatives via three-component reaction of N-alkylisatin, activated acetylenic compounds and alkyl bromide in the presence of triphenylphosphine in water under two conditions; room temperature and microwave irradiation. All chemicals used in this work were prepared from Fluka (Buchs, Switzerland) and were used without further purification. N-alkylisatin were synthesized in the laboratory in the procedure that is reported in the literature. Electrothermal 9100 apparatus is employed for measuring of melting points of products. Elemental analyses for C, H, and N were performed with Heraeus CHN-O-Rapid analyzer. Mass spectra were recorded on a FINNIGAN-MAT 8430 spectrometer operating at an ionization potential of 70 eV. Measurement of IR spectra was performed by Shimadzu IR-460 spectrometer. 1H, and 13C NMR spectra were evaluated with a BRUKER DRX- 500 AVANCE spectrometer at 500.1 and 125.8 MHz, respectively. The results were demonstrated that simple mixing of N-alkylisatin, dialkyl acetylenedicarboxylate and alkyl bromides in the presence of triphenylphosphine by using of microwave condition is the efficient method for preparation of indole derivatives in good yields. In the optimized reaction conditions, water is solvent and temperature of the mixture of reaction is 80 oC. In this study, the reaction of activated acetylenic compounds with N-alkylisatin and alkyl bromide in the presence of triphenylphosphine is investigated which is led to a facile synthesis of some functionalized indoles. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.

  19. Supercritical Carbon Dioxide and Microwave-Assisted Extraction of Functional Lipophilic Compounds from Arthrospira platensis.

    PubMed

    Esquivel-Hernández, Diego A; López, Víctor H; Rodríguez-Rodríguez, José; Alemán-Nava, Gibrán S; Cuéllar-Bermúdez, Sara P; Rostro-Alanis, Magdalena; Parra-Saldívar, Roberto

    2016-05-05

    Arthrospira platensis biomass was used in order to obtain functional lipophilic compounds through green extraction technologies such as supercritical carbon dioxide fluid extraction (SFE) and microwave-assisted extraction (MAE). The temperature (T) factor was evaluated for MAE, while for SFE, pressure (P), temperature (T), and co-solvent (ethanol) (CS) were evaluated. The maximum extraction yield of the obtained oleoresin was (4.07% ± 0.14%) and (4.27% ± 0.10%) for SFE and MAE, respectively. Extracts were characterized by gas chromatography mass spectrometry (GC-MS) and gas chromatography flame ionization detector (GC-FID). The maximum contents of functional lipophilic compounds in the SFE and MAE extracts were: for carotenoids 283 ± 0.10 μg/g and 629 ± 0.13 μg/g, respectively; for tocopherols 5.01 ± 0.05 μg/g and 2.46 ± 0.09 μg/g, respectively; and for fatty acids 34.76 ± 0.08 mg/g and 15.88 ± 0.06 mg/g, respectively. In conclusion, the SFE process at P 450 bar, T 60 °C and CS 53.33% of CO₂ produced the highest yield of tocopherols, carotenoids and fatty acids. The MAE process at 400 W and 50 °C gives the best extracts in terms of tocopherols and carotenoids. For yield and fatty acids, the MAE process at 400 W and 70 °C produced the highest values. Both SFE and MAE showed to be suitable green extraction technologies for obtaining functional lipophilic compounds from Arthrospira platensis.

  20. Cosmic microwave background theory

    PubMed Central

    Bond, J. Richard

    1998-01-01

    A long-standing goal of theorists has been to constrain cosmological parameters that define the structure formation theory from cosmic microwave background (CMB) anisotropy experiments and large-scale structure (LSS) observations. The status and future promise of this enterprise is described. Current band-powers in ℓ-space are consistent with a ΔT flat in frequency and broadly follow inflation-based expectations. That the levels are ∼(10−5)2 provides strong support for the gravitational instability theory, while the Far Infrared Absolute Spectrophotometer (FIRAS) constraints on energy injection rule out cosmic explosions as a dominant source of LSS. Band-powers at ℓ ≳ 100 suggest that the universe could not have re-ionized too early. To get the LSS of Cosmic Background Explorer (COBE)-normalized fluctuations right provides encouraging support that the initial fluctuation spectrum was not far off the scale invariant form that inflation models prefer: e.g., for tilted Λ cold dark matter sequences of fixed 13-Gyr age (with the Hubble constant H0 marginalized), ns = 1.17 ± 0.3 for Differential Microwave Radiometer (DMR) only; 1.15 ± 0.08 for DMR plus the SK95 experiment; 1.00 ± 0.04 for DMR plus all smaller angle experiments; 1.00 ± 0.05 when LSS constraints are included as well. The CMB alone currently gives weak constraints on Λ and moderate constraints on Ωtot, but theoretical forecasts of future long duration balloon and satellite experiments are shown which predict percent-level accuracy among a large fraction of the 10+ parameters characterizing the cosmic structure formation theory, at least if it is an inflation variant. PMID:9419321

  1. A determination of the spectra of Galactic components observed by the Wilkinson Microwave Anisotropy Probe

    NASA Astrophysics Data System (ADS)

    Davies, R. D.; Dickinson, C.; Banday, A. J.; Jaffe, T. R.; Górski, K. M.; Davis, R. J.

    2006-08-01

    Wilkinson Microwave Anisotropy Probe (WMAP) data when combined with ancillary data on free-free, synchrotron and dust allow an improved understanding of the spectrum of emission from each of these components. Here, we examine the sky variation at intermediate latitudes using a cross-correlation technique. In particular, we compare the observed emission in 15 selected sky regions to three `standard' templates. The free-free emission of the diffuse ionized gas is fitted by a well-known spectrum at K and Ka band, but the derived emissivity corresponds to a mean electron temperature of ~4000-5000 K. This is inconsistent with estimates from Galactic HII regions although a variation in the derived ratio of Hα to free-free intensity by a factor of ~2 is also found from region to region. The origin of the discrepancy is unclear. The anomalous emission associated with dust is clearly detected in most of the 15 fields studied. The anomalous emission correlates well with the Finkbeiner, Davis & Schlegel model 8 predictions (FDS8) at 94 GHz, with an effective spectral index between 20 and 60 GHz, of β ~ -2.85. Furthermore, the emissivity varies by a factor of ~2 from cloud to cloud. A modestly improved fit to the anomalous dust at K band is provided by modulating the template by an estimate of the dust colour temperature, specifically FDS8 × Tn. We find a preferred value n ~ 1.6, although there is a scatter from region to region. Nevertheless, the preferred index drops to zero at higher frequencies where the thermal dust emission dominates. The synchrotron emission steepens between GHz frequencies and the WMAP bands. There are indications of spectral index variations across the sky but the current data are not precise enough to accurately quantify this from region to region. Our analysis of the WMAP data indicates strongly that the dust-correlated emission at the low WMAP frequencies has a spectrum which is compatible with spinning dust; we find no evidence for a synchrotron component correlated with dust. The importance of these results for the correction of cosmic microwave background data for Galactic foreground emission is discussed.

  2. Microwave-based medical diagnosis using particle swarm optimization algorithm

    NASA Astrophysics Data System (ADS)

    Modiri, Arezoo

    This dissertation proposes and investigates a novel architecture intended for microwave-based medical diagnosis (MBMD). Furthermore, this investigation proposes novel modifications of particle swarm optimization algorithm for achieving enhanced convergence performance. MBMD has been investigated through a variety of innovative techniques in the literature since the 1990's and has shown significant promise in early detection of some specific health threats. In comparison to the X-ray- and gamma-ray-based diagnostic tools, MBMD does not expose patients to ionizing radiation; and due to the maturity of microwave technology, it lends itself to miniaturization of the supporting systems. This modality has been shown to be effective in detecting breast malignancy, and hence, this study focuses on the same modality. A novel radiator device and detection technique is proposed and investigated in this dissertation. As expected, hardware design and implementation are of paramount importance in such a study, and a good deal of research, analysis, and evaluation has been done in this regard which will be reported in ensuing chapters of this dissertation. It is noteworthy that an important element of any detection system is the algorithm used for extracting signatures. Herein, the strong intrinsic potential of the swarm-intelligence-based algorithms in solving complicated electromagnetic problems is brought to bear. This task is accomplished through addressing both mathematical and electromagnetic problems. These problems are called benchmark problems throughout this dissertation, since they have known answers. After evaluating the performance of the algorithm for the chosen benchmark problems, the algorithm is applied to MBMD tumor detection problem. The chosen benchmark problems have already been tackled by solution techniques other than particle swarm optimization (PSO) algorithm, the results of which can be found in the literature. However, due to the relatively high level of complexity and randomness inherent to the selection of electromagnetic benchmark problems, a trend to resort to oversimplification in order to arrive at reasonable solutions has been taken in literature when utilizing analytical techniques. Here, an attempt has been made to avoid oversimplification when using the proposed swarm-based optimization algorithms.

  3. 78 FR 7939 - Energy Conservation Program: Test Procedures for Microwave Ovens (Active Mode)

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-02-04

    ...The U.S. Department of Energy (DOE) proposes to revise its test procedures for microwave ovens established under the Energy Policy and Conservation Act. The proposed amendments would add provisions for measuring the active mode energy use for microwave ovens, including both microwave-only ovens and convection microwave ovens. Specifically, DOE is proposing provisions for measuring the energy use of the microwave-only cooking mode for both microwave-only ovens and convection microwave ovens based on the testing methods in the latest draft version of the International Electrotechnical Commission Standard 60705, ``Household microwave ovens--Methods for measuring performance.'' DOE is proposing provisions for measuring the energy use of the convection-only cooking mode for convection microwave ovens based on the DOE test procedure for conventional ovens in our regulations. DOE is also proposing to calculate the energy use of the convection-microwave cooking mode for convection microwave ovens by apportioning the microwave-only mode and convection-only mode energy consumption measurements based on typical consumer use.

  4. Calibration and standardization of microwave ovens for fixation of brain and peripheral nerve tissue.

    PubMed

    Login, G R; Leonard, J B; Dvorak, A M

    1998-06-01

    Rapid and reproducible fixation of brain and peripheral nerve tissue for light and electron microscopy studies can be done in a microwave oven. In this review we report a standardized nomenclature for diverse fixation techniques that use microwave heating: (1) microwave stabilization, (2) fast and ultrafast primary microwave-chemical fixation, (3) microwave irradiation followed by chemical fixation, (4) primary chemical fixation followed by microwave irradiation, and (5) microwave fixation used in various combinations with freeze fixation. All of these methods are well suited to fix brain tissue for light microscopy. Fast primary microwave-chemical fixation is best for immunoelectron microscopy studies. We also review how the physical characteristics of the microwave frequency and the dimensions of microwave oven cavities can compromise microwave fixation results. A microwave oven can be calibrated for fixation when the following parameters are standardized: irradiation time; water load volume, initial temperature, and placement within the oven; fixative composition, volume, and initial temperature; and specimen container shape and placement within the oven. Using two recently developed calibration tools, the neon bulb array and the agar-saline-Giemsa tissue phantom, we report a simple calibration protocol that identifies regions within a microwave oven for uniform microwave fixation. Copyright 1998 Academic Press.

  5. High brightness microwave lamp

    DOEpatents

    Kirkpatrick, Douglas A.; Dolan, James T.; MacLennan, Donald A.; Turner, Brian P.; Simpson, James E.

    2003-09-09

    An electrodeless microwave discharge lamp includes a source of microwave energy, a microwave cavity, a structure configured to transmit the microwave energy from the source to the microwave cavity, a bulb disposed within the microwave cavity, the bulb including a discharge forming fill which emits light when excited by the microwave energy, and a reflector disposed within the microwave cavity, wherein the reflector defines a reflective cavity which encompasses the bulb within its volume and has an inside surface area which is sufficiently less than an inside surface area of the microwave cavity. A portion of the reflector may define a light emitting aperture which extends from a position closely spaced to the bulb to a light transmissive end of the microwave cavity. Preferably, at least a portion of the reflector is spaced from a wall of the microwave cavity. The lamp may be substantially sealed from environmental contamination. The cavity may include a dielectric material is a sufficient amount to require a reduction in the size of the cavity to support the desired resonant mode.

  6. Study of electromagnetic radiation pollution in an Indian city.

    PubMed

    Dhami, A K

    2012-11-01

    Electromagnetic radiation emitted by cell phone towers is a form of environmental pollution and is a new health hazard, especially to children and patients. The present studies were taken to estimate the microwave/RF pollution by measuring radiation power densities near schools and hospitals of Chandigarh city in India. The cell phone radiations were measured using a handheld portable power density meter TES 593 and specific absorption rates were estimated from the measured values. These values of electromagnetic radiation in the environment were compared with the levels at which biological system of humans and animals starts getting affected. The values were also compared with the international exposure limits set by the International Commission on Non-Ionizing Radiation Protection (ICNIRP). The highest measured power density was 11.48 mW/m(2) which is 1,148% of the biological limit. The results indicated that the exposure levels in the city were below the ICNIRP limit, but much above the biological limit.

  7. Environmental assessment for the satellite power system concept development and evaluation program: nonmicrowave health and ecological effects

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    White, M R

    1980-11-01

    A Concept Development and Evaluation Program is being carried out for a proposed Satellite Power System (SPS). For purposes of this evaluation, a preliminary reference system has been developed. SPS, as described in the reference system, would collect solar energy on satellites in geosychronous orbit in space. The energy would be converted to microwaves and beamed to an earth-receiving antenna (rectenna). One task in the environmental part of the program is the assessment of the nonmicrowave effects on health and the environment. These effects would result from all phases of SPS development and operation. This report covers the current knowledgemore » regarding these effects, and is based on the reference system. The assessment is summarized as to scope, methodology, impacts of terrestrial development, launch and recovery of spacecraft, space activities (including health effects of the space environment, ionizing radiation, electromagnetic exposure, spacecraft charging and environmental interactions, occupational hazards, etc.) and construction and operation of rectenna (ground receiving station).« less

  8. Intense THz pulses down-regulate genes associated with skin cancer and psoriasis: a new therapeutic avenue?

    PubMed Central

    Titova, Lyubov V.; Ayesheshim, Ayesheshim K.; Golubov, Andrey; Rodriguez-Juarez, Rocio; Woycicki, Rafal; Hegmann, Frank A.; Kovalchuk, Olga

    2013-01-01

    Terahertz (THz) radiation lies between the infrared and microwave regions of the electromagnetic spectrum and is non-ionizing. We show that exposure of artificial human skin tissue to intense, picosecond-duration THz pulses affects expression levels of numerous genes associated with non-melanoma skin cancers, psoriasis and atopic dermatitis. Genes affected by intense THz pulses include nearly half of the epidermal differentiation complex (EDC) members. EDC genes, which are mapped to the chromosomal human region 1q21, encode for proteins that partake in epidermal differentiation and are often overexpressed in conditions such as psoriasis and skin cancer. In nearly all the genes differentially expressed by exposure to intense THz pulses, the induced changes in transcription levels are opposite to disease-related changes. The ability of intense THz pulses to cause concerted favorable changes in the expression of multiple genes implicated in inflammatory skin diseases and skin cancers suggests potential therapeutic applications of intense THz pulses. PMID:23917523

  9. Visualization of in vivo metabolic flows reveals accelerated utilization of glucose and lactate in penumbra of ischemic heart

    PubMed Central

    Sugiura, Yuki; Katsumata, Yoshinori; Sano, Motoaki; Honda, Kurara; Kajimura, Mayumi; Fukuda, Keiichi; Suematsu, Makoto

    2016-01-01

    Acute ischemia produces dynamic changes in labile metabolites. To capture snapshots of such acute metabolic changes, we utilized focused microwave treatment to fix metabolic flow in vivo in hearts of mice 10 min after ligation of the left anterior descending artery. The left ventricle was subdivided into short-axis serial slices and the metabolites were analyzed by capillary electrophoresis mass spectrometry and matrix-assisted laser desorption/ionization imaging mass spectrometry. These techniques allowed us to determine the fate of exogenously administered 13C6-glucose and 13C3-lactate. The penumbra regions, which are adjacent to the ischemic core, exhibited the greatest adenine nucleotide energy charge and an adenosine overflow extending from the ischemic core, which can cause ischemic hyperemia. Imaging analysis of metabolic pathway flows revealed that the penumbra executes accelerated glucose oxidation, with remaining lactate utilization for tricarboxylic acid cycle for energy compensation, suggesting unexpected metabolic interplays of the penumbra with the ischemic core and normoxic regions. PMID:27581923

  10. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kaurov, Alexander A., E-mail: kaurov@uchicago.edu

    The methods for studying the epoch of cosmic reionization vary from full radiative transfer simulations to purely analytical models. While numerical approaches are computationally expensive and are not suitable for generating many mock catalogs, analytical methods are based on assumptions and approximations. We explore the interconnection between both methods. First, we ask how the analytical framework of excursion set formalism can be used for statistical analysis of numerical simulations and visual representation of the morphology of ionization fronts. Second, we explore the methods of training the analytical model on a given numerical simulation. We present a new code which emergedmore » from this study. Its main application is to match the analytical model with a numerical simulation. Then, it allows one to generate mock reionization catalogs with volumes exceeding the original simulation quickly and computationally inexpensively, meanwhile reproducing large-scale statistical properties. These mock catalogs are particularly useful for cosmic microwave background polarization and 21 cm experiments, where large volumes are required to simulate the observed signal.« less

  11. Electromagnetic interference in cardiac rhythm management devices.

    PubMed

    Sweesy, Mark W; Holland, James L; Smith, Kerry W

    2004-01-01

    Clinicians caring for cardiac device patients with implanted pacemakers or cardioverter defibrillators (ICDs) are frequently asked questions by their patients concerning electromagnetic interference (EMI) sources and the devices. EMI may be radiated or conducted and may be present in many different forms including (but not limited to) radiofrequency waves, microwaves, ionizing radiation, acoustic radiation, static and pulsed magnetic fields, and electric currents. Manufacturers have done an exemplary job of interference protection with device features such as titanium casing, signal filtering, interference rejection circuits, feedthrough capacitors, noise reversion function, and programmable parameters. Nevertheless, EMI remains a real concern and a potential danger. Many factors influence EMI including those which the patient can regulate (eg, distance from and duration of exposure) and some the patient cannot control (eg, intensity of the EMI field, signal frequency). Potential device responses are many and range from simple temporary oversensing to permanent device damage Several of the more common EMI-generating devices and their likely effects on cardiac devices are considered in the medical, home, and daily living and work environments.

  12. Magnetic Effects in a Moderate-Temperature, High-Beta, Toroidal Plasma Device

    NASA Astrophysics Data System (ADS)

    Edwards, W. F.; Singh, A. K.; Held, E. D.

    2011-10-01

    A small toroidal machine (STOR-1M; minor radius 4.5 cm), on loan from the University of Saskatchewan, has been modified to operate at hydrogen ionization levels ~0.1%, beta values between 0.1 and 1, electron number density ~5x1016/m3, temperature ~5 eV, and applied toroidal magnetic field ~20 gauss. Plasma is generated using magnetron-produced microwaves. Langmuir and Hall probes determine radial profiles of electron number density, temperature, and magnetic field. For most values of the externally-applied magnetic field, the internal field is the same with or without plasma, however, in a narrow window of B, diamagnetism and other effects are present. The effect is observed with no externally induced current; plasma currents are self generated through some sort of relaxation process. Beta and radius conditions correlate well with similar magnetic structures in the laboratory (eg., plasma focus, Z pinch) and in space (eg., Venus flux ropes, solar coronal loops).

  13. Plasma-assisted microwave processing of materials

    NASA Technical Reports Server (NTRS)

    Barmatz, Martin (Inventor); Jackson, Henry (Inventor); Ylin, Tzu-yuan (Inventor)

    1998-01-01

    A microwave plasma assisted method and system for heating and joining materials. The invention uses a microwave induced plasma to controllably preheat workpiece materials that are poorly microwave absorbing. The plasma preheats the workpiece to a temperature that improves the materials' ability to absorb microwave energy. The plasma is extinguished and microwave energy is able to volumetrically heat the workpiece. Localized heating of good microwave absorbing materials is done by shielding certain parts of the workpiece and igniting the plasma in the areas not shielded. Microwave induced plasma is also used to induce self-propagating high temperature synthesis (SHS) process for the joining of materials. Preferably, a microwave induced plasma preheats the material and then microwave energy ignites the center of the material, thereby causing a high temperature spherical wave front from the center outward.

  14. Application of the Haar Wavelet to the Analysis of Plasma and Atmospheric Fluctuations

    NASA Astrophysics Data System (ADS)

    Maslov, S. A.; Kharchevsky, A. A.; Smirnov, V. A.

    2017-12-01

    The parameters of turbulence measured by means of a Doppler reflectometer at the plasma periphery in an L-2M stellarator and in atmospheric vortices (typhoons and tornadoes) are investigated using the wavelet methods with involvement of the Haar function. The periods of time taken for the transition (a bound of parameters) to occur in the L-2M stellarator plasma and in atmospheric processes are estimated. It is shown that high-and low-frequency oscillations of certain parameters, in particular, pressure, that occur in atmospheric vortices decay or increase at different moments of time, whereas the density fluctuation amplitudes that occur in plasma at different frequencies vary in a synchronous manner.

  15. A millimeter-wave reflectometer for whole-body hydration sensing

    NASA Astrophysics Data System (ADS)

    Zhang, W.-D.; Brown, E. R.

    2016-05-01

    This paper demonstrates a non-invasive method to determine the hydration level of human skin by measuring the reflectance of W-band (75-110 GHz) and Ka-band (26-40 GHz) radiation. Ka-band provides higher hydration accuracy (<1%) and greater depth of penetration (> 1 mm), thereby allowing access to the important dermis layer of skin. W-band provides less depth of penetration but finer spatial resolution (~2 mm). Both the hydration sensing concept and experimental results are presented here. The goal is to make a human hydration sensor that is 1% accurate or better, operable by mechanically scanning, and fast enough to measure large areas of the human body in seconds.

  16. Distributed fiber optical sensing of oxygen with optical time domain reflectometry.

    PubMed

    Eich, Susanne; Schmälzlin, Elmar; Löhmannsröben, Hans-Gerd

    2013-05-31

    In many biological and environmental applications spatially resolved sensing of molecular oxygen is desirable. A powerful tool for distributed measurements is optical time domain reflectometry (OTDR) which is often used in the field of telecommunications. We combine this technique with a novel optical oxygen sensor dye, triangular-[4] phenylene (TP), immobilized in a polymer matrix. The TP luminescence decay time is 86 ns. The short decay time of the sensor dye is suitable to achieve a spatial resolution of some meters. In this paper we present the development and characterization of a reflectometer in the UV range of the electromagnetic spectrum as well as optical oxygen sensing with different fiber arrangements.

  17. Distributed Fiber Optical Sensing of Oxygen with Optical Time Domain Reflectometry

    PubMed Central

    Eich, Susanne; Schmälzlin, Elmar; Löhmannsröben, Hans-Gerd

    2013-01-01

    In many biological and environmental applications spatially resolved sensing of molecular oxygen is desirable. A powerful tool for distributed measurements is optical time domain reflectometry (OTDR) which is often used in the field of telecommunications. We combine this technique with a novel optical oxygen sensor dye, triangular-[4] phenylene (TP), immobilized in a polymer matrix. The TP luminescence decay time is 86 ns. The short decay time of the sensor dye is suitable to achieve a spatial resolution of some meters. In this paper we present the development and characterization of a reflectometer in the UV range of the electromagnetic spectrum as well as optical oxygen sensing with different fiber arrangements. PMID:23727953

  18. Polarization effects on hard target calibration of lidar systems

    NASA Technical Reports Server (NTRS)

    Kavaya, Michael J.

    1987-01-01

    The theory of hard target calibration of lidar backscatter data, including laboratory measurements of the pertinent target reflectance parameters, is extended to include the effects of polarization of the transmitted and received laser radiation. The bidirectional reflectance-distribution function model of reflectance is expanded to a 4 x 4 matrix allowing Mueller matrix and Stokes vector calculus to be employed. Target reflectance parameters for calibration of lidar backscatter data are derived for various lidar system polarization configurations from integrating sphere and monostatic reflectometer measurements. It is found that correct modeling of polarization effects is mandatory for accurate calibration of hard target reflectance parameters and, therefore, for accurate calibration of lidar backscatter data.

  19. Far-infrared /FIR/ optical black bidirectional reflectance distribution function /BRDF/

    NASA Technical Reports Server (NTRS)

    Smith, S. M.

    1981-01-01

    A nonspecular reflectometer and its operation at far-infrared wavelengths are described. Large differences in nonspecular reflectance were found to exist between different optically black coatings. Normal incidence bidirectional reflectance distribution function /BRDF) measurements at wavelengths between 12 and 316 microns of three black coatings show that their mean BRDFs increase with wavelength. The specularity of two of these coatings also showed a strong wavelength dependence, while the specularity of one coating seemed independent of wavelength. The BRDF of one coating depended on the angle of incidence at 12 and 38 microns, but not at 316 microns. Beyond 200 microns, it was found necessary to correct the measurements for the beam spread of the instrument.

  20. Metal-coated Bragg grating reflecting fibre

    NASA Astrophysics Data System (ADS)

    Chamorovskiy, Yu. K.; Butov, O. V.; Kolosovskiy, A. O.; Popov, S. M.; Voloshin, V. V.; Vorob'ev, I. L.; Vyatkin, M. Yu.

    2017-03-01

    High-temperature optical fibres (OF) with fibre Bragg gratings (FBG) arrays written over a long length and in-line metal coating have been made for the first time. The optical parameters of the FBG arrays were tested by the optical frequency domain reflectometer (OFDR) method in a wide temperature range, demonstrating no degradation in reflection at heating up to 600 °C for a fibre with Al coating. The mechanical strength of the developed fibre was practically the same as "ordinary" OF with similar coating, showing the absence of the influence of FBG writing process on fibre strength. Further experiments are necessary to evaluate the possibility of further increases in the operational temperature range.

Top