Sample records for microwave sintering method

  1. Method for heat treating and sintering metal oxides with microwave radiation

    DOEpatents

    Holcombe, Cressie E.; Dykes, Norman L.; Meek, Thomas T.

    1989-01-01

    A method for microwave sintering materials, primarily metal oxides, is described. Metal oxides do not normally absorb microwave radiation at temperatures ranging from about room temperature to several hundred degrees centrigrade are sintered with microwave radiation without the use of the heretofore required sintering aids. This sintering is achieved by enclosing a compact of the oxide material in a housing or capsule formed of a oxide which has microwave coupling properties at room temprature up to at least the microwave coupling temperature of the oxide material forming the compact. The heating of the housing effects the initial heating of the oxide material forming the compact by heat transference and then functions as a thermal insulator for the encased oxide material after the oxide material reaches a sufficient temperature to adequately absorb or couple with microwave radiation for heating thereof to sintering temperature.

  2. Method of sintering materials with microwave radiation

    DOEpatents

    Kimrey, Jr., Harold D.; Holcombe, Jr., Cressie E.; Dykes, Norman L.

    1994-01-01

    A method of sintering ceramic materials following: A compacted article comprising inorganic particles coated with carbon is provided, the carbon providing improved microwave coupling. The compacted article is then heated by microwave radiation to a temperature and for a period of time sufficient to sinter the compacted article.

  3. Sub-second carbon-nanotube-mediated microwave sintering for high-conductivity silver patterns on plastic substrates

    NASA Astrophysics Data System (ADS)

    Jung, Sunshin; Chun, Su Jin; Han, Joong Tark; Woo, Jong Seok; Shon, Cha-Hwa; Lee, Geon-Woong

    2016-02-01

    A method of microwave sintering that is mediated by carbon nanotubes (CNTs) has been developed to obtain high-conductivity Ag patterns on the top of heat-sensitive plastic substrates within a short time. The Ag patterns are printed on CNTs formed on plastic substrates and rapidly heated to a great extent by the heat transferred from the microwave-heated CNTs. The conductivity of the microwave-sintered Ag patterns reaches ~39% that of bulk Ag within 1 s without substrate deformation. Furthermore, microwave sintering enhances the adhesion of Ag patterns to the thermoplastic substrates because the sintering causes interfacial fusion between the Ag patterns and the substrates, and CNTs physically connect the patterns with the substrates.A method of microwave sintering that is mediated by carbon nanotubes (CNTs) has been developed to obtain high-conductivity Ag patterns on the top of heat-sensitive plastic substrates within a short time. The Ag patterns are printed on CNTs formed on plastic substrates and rapidly heated to a great extent by the heat transferred from the microwave-heated CNTs. The conductivity of the microwave-sintered Ag patterns reaches ~39% that of bulk Ag within 1 s without substrate deformation. Furthermore, microwave sintering enhances the adhesion of Ag patterns to the thermoplastic substrates because the sintering causes interfacial fusion between the Ag patterns and the substrates, and CNTs physically connect the patterns with the substrates. Electronic supplementary information (ESI) available: Temperature difference in Ag/CNT/PC samples; the carbon content and electrical performance after microwave sintering; microwave sintering of Ag/CNT patterns; physical connection between the substrate and sintered Ag lines; touch-piano (figure and movie). See DOI: 10.1039/c5nr08082g

  4. Method of sintering materials with microwave radiation

    DOEpatents

    Kimrey, H.D. Jr.; Holcombe, C.E. Jr.; Dykes, N.L.

    1994-06-14

    Disclosed is a method of sintering ceramic materials. A compacted article comprising inorganic particles coated with carbon is provided, the carbon providing improved microwave coupling. The compacted article is then heated by microwave radiation to a temperature and for a period of time sufficient to sinter the compacted article. No Drawings

  5. Microwave sintering of single plate-shaped articles

    DOEpatents

    Katz, Joel D.; Blake, Rodger D.

    1995-01-01

    Apparatus and method for high temperature sintering of plate-shaped articles of alumina, magnesia, silica, yttria, zirconia, and mixtures thereof using microwave radiation. An article is placed within a sintering structure located within a sintering container which is placed in a microwave cavity for heating. The rates at which heating and cooling take place is controlled.

  6. Microwave sintering of single plate-shaped articles

    DOEpatents

    Katz, J.D.; Blake, R.D.

    1995-07-11

    Apparatus and method are disclosed for high temperature sintering of plate-shaped articles of alumina, magnesia, silica, yttria, zirconia, and mixtures thereof using microwave radiation. An article is placed within a sintering structure located within a sintering container which is placed in a microwave cavity for heating. The rates at which heating and cooling take place is controlled. 2 figs.

  7. Microwave sintering of sol-gel derived abrasive grain

    DOEpatents

    Plovnick, Ross; Celikkaya, Ahmet; Blake, Rodger D.

    1997-01-01

    A method is provided for making microwave-sintered, free flowing alpha alumina-based ceramic abrasive grain, under conditions effective to couple microwaves with calcined alpha alumina-based abrasive gain precursor and sinter it at a temperature of at least about 1150.degree. C.

  8. [Study on friction and wear properties of dental zirconia ceramics processed by microwave and conventional sintering methods].

    PubMed

    Guoxin, Hu; Ying, Yang; Yuemei, Jiang; Wenjing, Xia

    2017-04-01

    This study evaluated the wear of an antagonist and friction and wear properties of dental zirconia ceramic that was subjected to microwave and conventional sintering methods. Ten specimens were fabricated from Lava brand zirconia and randomly assigned to microwave and conventional sintering groups. A profile tester for surface roughness was used to measure roughness of the specimens. Wear test was performed, and steatite ceramic was used as antagonist. Friction coefficient curves were recorded, and wear volume were calculated. Finally, optical microscope was used to observe the surface morphology of zirconia and steatite ceramics. Field emission scanning electron microscopy was used to observe the microstructure of zirconia. Wear volumes of microwave and conventionally sintered zirconia were (6.940±1.382)×10⁻², (7.952±1.815) ×10⁻² mm³, respectively. Moreover, wear volumes of antagonist after sintering by the considered methods were (14.189±4.745)×10⁻², (15.813±3.481)×10⁻² mm³, correspondingly. Statistically significant difference was not observed in the wear resistance of zirconia and wear volume of steatite ceramic upon exposure to two kinds of sintering methods. Optical microscopy showed that ploughed surfaces were apparent in zirconia. The wear surface of steatite ceramic against had craze, accompanied by plough. Scanning electron microscopy showed that zirconia was sintered compactly when subjected to both conventional sintering and microwave methods, whereas grains of zirconia sintered by microwave alone were smaller and more uniform. Two kinds of sintering methods are successfully used to produce dental zirconia ceramics with similar friction and wear properties.
.

  9. [Translucency of dental zirconia ceramics sintered in conventional and microwave ovens].

    PubMed

    Yuemei, Jiang; Ying, Yang; Wenhui, Zhan; Guoxin, Hu; Qiuxia, Yang

    2015-12-01

    To evaluate the effect of microwave sintering on the translucency of zirconia and to compare these effect with those of conventional sintering. The relationship between the microstructure of specimens and translucency was investigated. A total of 10 disc-shaped specimens were fabricated from 2 commercial brands of zirconia, namely, Zenostar and Lava. Each group included 5 discs. Conventional sintering was performed according to the manufacturers' specifications. The maximum temperature for Zenostar was 1,490 °C, whereas that for Lava was 1,500 °C. The dwelling time was 2 h. The sintering temperature for microwave sintering was 1,420 °C, heating rate was 15 °C · min⁻¹, and dwelling time was 30 min. After sintering, the translucency parameter (TP) of the specimens were measured with ShadeEye NCC. The sintered density of the specimens was determined by Archimedes' method. The grain size and microstructure of the specimens were investigated by scanning electron microscopy. Density and translucency slightly increased by microwave sintering, but no significant difference was found between microwave and conventional sintering (P > 0.05). Small and uniform microstructure were obtained from microwave sintering. The mean TP of Lava was significantly higher than that of Zenostar (P < 0.001). The translucency of zirconia sintered by microwave sintering is similar to that of the zirconia sintered by conventional sintering.

  10. Microwave sintering of multiple articles

    DOEpatents

    Blake, Rodger D.; Katz, Joel D.

    1993-01-01

    Apparatus and method for producing articles of alumina and of alumina and silicon carbide in which the articles are sintered at high temperatures using microwave radiation. The articles are placed in a sintering container which is placed in a microwave cavity for heating. The rates at which heating and cooling take place is controlled.

  11. Effect on the grain size of single-mode microwave sintered NiCuZn ferrite and zinc titanate dielectric resonator ceramics.

    PubMed

    Sirugudu, Roopas Kiran; Vemuri, Rama Krishna Murthy; Venkatachalam, Subramanian; Gopalakrishnan, Anisha; Budaraju, Srinivasa Murty

    2011-01-01

    Microwave sintering of materials significantly depends on dielectric, magnetic and conductive Losses. Samples with high dielectric and magnetic loss such as ferrites could be sintered easily. But low dielectric loss material such as dielectric resonators (paraelectrics) finds difficulty in generation of heat during microwave interaction. Microwave sintering of materials of these two classes helps in understanding the variation in dielectric and magnetic characteristics with respect to the change in grain size. High-energy ball milled Ni0.6Cu0.2Zn0.2Fe1.98O4-delta and ZnTiO3 are sintered in conventional and microwave methods and characterized for respective dielectric and magnetic characteristics. The grain size variation with higher copper content is also observed with conventional and microwave sintering. The grain size in microwave sintered Ni0.6Cu0.2Zn0.2Fe1.98O4-delta is found to be much small and uniform in comparison with conventional sintered sample. However, the grain size of microwave sintered sample is almost equal to that of conventional sintered sample of Ni0.3Cu0.5Zn0.2Fe1.98O4-delta. In contrast to these high dielectric and magnetic loss ferrites, the paraelectric materials are observed to sinter in presence of microwaves. Although microwave sintered zinc titanate sample showed finer and uniform grains with respect to conventional samples, the dielectric characteristics of microwave sintered sample are found to be less than that of conventional sample. Low dielectric constant is attributed to the low density. Smaller grain size is found to be responsible for low quality factor and the presence of small percentage of TiO2 is observed to achieve the temperature stable resonant frequency.

  12. A comparative study of conventionally sintered and microwave sintered nickel zinc ferrite

    NASA Astrophysics Data System (ADS)

    Rani, Rekha; Juneja, J. K.; Raina, K. K.; Kotnala, R. K.; Prakash, Chandra

    2014-04-01

    For the present work, nickel zinc ferrite having compositional formula Ni0.8Zn0.2Fe2O4 was synthesized by conventional solid state method and sintered in conventional and microwave furnaces. Pellets were sintered with very short soaking time of 10 min at 1150 °C in microwave furnace whereas 4 hrs of soaking time was selected for conventional sintering at 1200 °C. Phase formation was confirmed by X-ray diffraction analysis technique. Scanning electron micrographs were taken for microstructural study. Dielectric properties were studied as a function of temperature. To study magnetic behavior, M-H hysteresis loops were recorded for both samples. It is observed that microwave sintered sample could obtain comparable properties to the conventionally sintered one in lesser soaking time at lower sintering temperature.

  13. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sudiana, I. Nyoman, E-mail: sudiana75@yahoo.com; Ngkoimani, La Ode; Usman, Ida

    Microwave sintering of materials has attracted much research interest because of its significant advantages (e.g. reduced sintering temperatures and soaking times) over the conventional heating. Most researchers compared processes that occurred during the microwave and conventional heating at the same temperature and time. The enhancements found in the former method are indicated as a 'non-thermal effect' which is usually used for explaining the phenomena in microwave processing. Numerous recent studies have been focused on the effect to elucidate the microwave interaction mechanism with materials. Moreover, recent progress on microwave sources such as gyrotrons has opened the possibility for processing materialsmore » by using a higher microwave frequency. Therefore, the technology is expected to exhibit a stronger non-thermal effect. This paper presents results from a series of experiments to study the non-thermal effect on microwave sintered alumina. Sintering by using a wide rage of microwave frequencies up to 300 GHz as well as a conventional furnace was carried out. The linear shrinkages of samples for each sintering method were measured. Pores and grains taken from scanning electron microstructure (SEM) images of cut surfaces were also examined. The results of a comparative study of the shrinkages and microstructure evolutions of the sintered samples under annealing in microwave heating systems and in an electric furnace were analyzed. A notably different behavior of the shrinkages and microstructures of alumina after being annealed was found. The results suggested that microwave radiations provided an additional force for mass transports. The results also indicated that the sintering process depended on microwave frequencies.« less

  14. Process for microwave sintering boron carbide

    DOEpatents

    Holcombe, C.E.; Morrow, M.S.

    1993-10-12

    A method of microwave sintering boron carbide comprises leaching boron carbide powder with an aqueous solution of nitric acid to form a leached boron carbide powder. The leached boron carbide powder is coated with a glassy carbon precursor to form a coated boron carbide powder. The coated boron carbide powder is consolidated in an enclosure of boron nitride particles coated with a layer of glassy carbon within a container for microwave heating to form an enclosed coated boron carbide powder. The enclosed coated boron carbide powder is sintered within the container for microwave heating with microwave energy.

  15. Process for microwave sintering boron carbide

    DOEpatents

    Holcombe, Cressie E.; Morrow, Marvin S.

    1993-01-01

    A method of microwave sintering boron carbide comprises leaching boron carbide powder with an aqueous solution of nitric acid to form a leached boron carbide powder. The leached boron carbide powder is coated with a glassy carbon precursor to form a coated boron carbide powder. The coated boron carbide powder is consolidated in an enclosure of boron nitride particles coated with a layer of glassy carbon within a container for microwave heating to form an enclosed coated boron carbide powder. The enclosed coated boron carbide powder is sintered within the container for microwave heating with microwave energy.

  16. Method and device for microwave sintering large ceramic articles

    DOEpatents

    Kimrey, Jr., Harold D.

    1990-01-01

    A microwave sintering system and method are provided for extremely uniform sintering of large and/or irregular shaped ceramic articles at microwave frequencies of at least 28 GHz in the hundreds of kilowatts power range in an untuned cavity. A 28 GHz, 200 kw gyrotron with variable power output is used as the microwave source connected to an untuned microwave cavity formed of an electrically conductive housing through an overmoded waveguide arrangement which acts in conjunction with a mode promoter within the cavity to achieve unexpected field uniformity. The part to be sintered is placed in the cavity and supported on a removable high temperature table in a central location within the cavity. The part is surrounded by a microwave transparent bulk insulating material to reduce thermal heat loss at the part surfaces and maintain more uniform temperature. The cavity may be operated at a high vacuum to aid in preventing arcing. The system allows controlled increased heating rates of greater than 200.degree. C./min to provide rapid heating of a ceramic part to a selected sintering temperature where it is maintained by regulating the microwave power applied to the part. As a result of rapid heating, the extent of non-isothermal processes such as segregation of impurities to the grain boundaries are minimized and exaggerated grain growth is reduced, thereby strengthening the mechanical properties of the ceramic part being sintered.

  17. Si-Ca species modification and microwave sintering for NiZn ferrites

    NASA Astrophysics Data System (ADS)

    Yang, Yin-Ju; Sheu, Ching-Iuan; Cheng, Syh-Yuh; Chang, Horng-Yi

    2004-12-01

    NiZn ferrite particles were precoated with Si-Ca precursor by sol-gel method. Thus convention-sintered particles exhibited small grain size about 2 μm and lowered magnetic permeability as well as increased coercive magnetic field effectively. Microwave sintering could suppress grain growth as the same result of conventional sintering specimens with SiO2-CaO precoating. In microwave process, the grain growth inhibition expressed more obviously for the SiO2-CaO precoated specimens. The magnetic permeability (∼300) after SiO2-CaO precoating became lower than original ferrite (∼800) without SiO2-CaO precoating in conventional sintering. However, the magnetic permeability was lowered no matter whether SiO2-CaO precoating in microwave process. On the other hand, microwave sintering possessed short processing time, for example, 1250 °C/5 min, to prohibit ZnO volatilization in accompanied with grain size reduction. Therefore, such contribution increased resistivity to about 12×106 Ω cm compared to 3×106 Ω cm of original NiZn ferrite. The large coercive magnetic field (Hc) was ascribed to the superposition of small grain size and stress induced by microwave sintering.

  18. Microwave-Assisted Synthesis of High Dielectric Constant CaCu3Ti4O12 from Sol-Gel Precursor

    NASA Astrophysics Data System (ADS)

    Ouyang, Xin; Cao, Peng; Huang, Saifang; Zhang, Weijun; Huang, Zhaohui; Gao, Wei

    2015-07-01

    CaCu3Ti4O12 (CCTO) powders derived from sol-gel precursors were calcined and sintered via microwave radiation. The obtained CCTO powders were compared with that obtained via a conventional heating method. For microwave heating, 89.1 wt.% CCTO was achieved from the sol-gel precursor, after only 17 min at 950°C. In contrast, the conventional calcination method required 3 h to generate 87.6 wt.% CCTO content at 1100°C. In addition, the CCTO powders prepared through 17 min of microwave calcination exhibited a small particle size distribution of D50 = 3.826 μm. It was found that a lengthy hold time of 1 h by microwave sintering is required to obtain a high dielectric constant (3.14 × 103 at 102 Hz) and a reasonably low dielectric loss (0.161) in the sintered CCTO ceramic. Based upon the distinct microstructures, the dielectric responses of the CCTO samples sintered by different methods are attributed to space charge polarization and internal barrier layer capacitor mechanism.

  19. Mechanical parameters of strontium doped hydroxyapatite sintered using microwave and conventional methods.

    PubMed

    Curran, Declan J; Fleming, Thomas J; Towler, Mark R; Hampshire, Stuart

    2011-11-01

    The effects of ion substitution in hydroxyapatite (HA) on crystal structure and lattice stability is investigated in the green state and post sintering. The effects of ion incorporation on the biaxial flexural strength and hardness are also investigated. Sintering is carried out at 1200 °C using comparative conventional and microwave regimes. Post sintering, the effects of ion incorporation manifest as an increase in the lattice d-spacings and a reduction of the crystallite size. Some HA decomposition occurs with β-TCP stabilisation in conventional sintering (CS), but this phase is destabilised during microwave sintering (MS), generating α-TCP. Conventional sintering (CS) allows higher densification in the undoped samples. Overall, for the Sr-doped compositions, the MS samples retain higher amounts of HA and experience higher density levels compared to the CS samples. Published by Elsevier Ltd.

  20. Method of sintering ceramic materials

    DOEpatents

    Holcombe, Cressie E.; Dykes, Norman L.

    1992-01-01

    A method for sintering ceramic materials is described. A ceramic article is coated with layers of protective coatings such as boron nitride, graphite foil, and niobium. The coated ceramic article is embedded in a container containing refractory metal oxide granules and placed within a microwave oven. The ceramic article is heated by microwave energy to a temperature sufficient to sinter the ceramic article to form a densified ceramic article having a density equal to or greater than 90% of theoretical density.

  1. New materials through a variety of sintering methods

    NASA Astrophysics Data System (ADS)

    Jaworska, L.; Cyboroń, J.; Cygan, S.; Laszkiewicz-Łukasik, J.; Podsiadło, M.; Novak, P.; Holovenko, Y.

    2018-03-01

    New sintering techniques make it possible to obtain materials with special properties that are impossible to obtain by conventional sintering techniques. This issue is especially important for ceramic materials for application under extreme conditions. Following the tendency to limit critical materials in manufacturing processes, the use of W, Si, B, Co, Cr should be limited, also. One of the cheapest and widely available materials is aluminum oxide, which shows differences in phase composition, grain size, hardness, strain and fracture toughness of the same type of powder, sintered via various methods. In this paper the alumina was sintered using the conventional free sintering process, microwave sintering, Spark Plasma Sintering (SPS), high pressure-high temperature method (HP-HT) and High Pressure Spark Plasma Sintering (HP SPS). Phase composition analysis, by X-ray diffraction of the alumina materials sintered using various methods, was carried out. For the conventional sintering method, compacts are composed of α-Al2O3 and θ-Al2O3. For compacts sintered using SPS, microwave and HP-HT methods, χ-Al2O3 and γ-Al2O3 phases were additionally present. Mechanical and physical properties of the obtained materials were compared between the methods of sintering. On the basis of images from scanning electron microscope quantitative analysis was performed to determine the degree of grain growth of alumina after sintering.

  2. Method of sintering ceramic materials

    DOEpatents

    Holcombe, C.E.; Dykes, N.L.

    1992-11-17

    A method for sintering ceramic materials is described. A ceramic article is coated with layers of protective coatings such as boron nitride, graphite foil, and niobium. The coated ceramic article is embedded in a container containing refractory metal oxide granules and placed within a microwave oven. The ceramic article is heated by microwave energy to a temperature sufficient to sinter the ceramic article to form a densified ceramic article having a density equal to or greater than 90% of theoretical density. 2 figs.

  3. A Review of Metal Injection Molding- Process, Optimization, Defects and Microwave Sintering on WC-Co Cemented Carbide

    NASA Astrophysics Data System (ADS)

    Shahbudin, S. N. A.; Othman, M. H.; Amin, Sri Yulis M.; Ibrahim, M. H. I.

    2017-08-01

    This article is about a review of optimization of metal injection molding and microwave sintering process on tungsten cemented carbide produce by metal injection molding process. In this study, the process parameters for the metal injection molding were optimized using Taguchi method. Taguchi methods have been used widely in engineering analysis to optimize the performance characteristics through the setting of design parameters. Microwave sintering is a process generally being used in powder metallurgy over the conventional method. It has typical characteristics such as accelerated heating rate, shortened processing cycle, high energy efficiency, fine and homogeneous microstructure, and enhanced mechanical performance, which is beneficial to prepare nanostructured cemented carbides in metal injection molding. Besides that, with an advanced and promising technology, metal injection molding has proven that can produce cemented carbides. Cemented tungsten carbide hard metal has been used widely in various applications due to its desirable combination of mechanical, physical, and chemical properties. Moreover, areas of study include common defects in metal injection molding and application of microwave sintering itself has been discussed in this paper.

  4. Evaluation of Microstructure and Mechanical Properties of Al-TiC Metal Matrix Composite Prepared by Conventional, Microwave and Spark Plasma Sintering Methods

    PubMed Central

    Ghasali, Ehsan; Fazili, Ali; Alizadeh, Masoud; Shirvanimoghaddam, Kamyar; Ebadzadeh, Touradj

    2017-01-01

    In this research, the mechanical properties and microstructure of Al-15 wt % TiC composite samples prepared by spark plasma, microwave, and conventional sintering were investigated. The sintering process was performed by the speak plasma sintering (SPS) technique, microwave and conventional furnaces at 400 °C, 600 °C, and 700 °C, respectively. The results showed that sintered samples by SPS have the highest relative density (99% of theoretical density), bending strength (291 ± 12 MPa), and hardness (253 ± 23 HV). The X-ray diffraction (XRD) investigations showed the formation of TiO2 from the surface layer decomposition of TiC particles. Scanning electron microscopy (SEM) micrographs demonstrated uniform distribution of reinforcement particles in all sintered samples. The SEM/EDS analysis revealed the formation of TiO2 around the porous TiC particles. PMID:29088114

  5. Microwave sintering of nanophase ceramics without concomitant grain growth

    DOEpatents

    Eastman, Jeffrey A.; Sickafus, Kurt E.; Katz, Joel D.

    1993-01-01

    A method of sintering nanocrystalline material is disclosed wherein the nanocrystalline material is microwaved to heat the material to a temperature less than about 70% of the melting point of the nanocrystalline material expressed in degrees K. This method produces sintered nanocrystalline material having a density greater than about 95% of theoretical and an average grain size not more than about 3 times the average grain size of the nanocrystalline material before sintering. Rutile TiO.sub.2 as well as various other ceramics have been prepared. Grain growth of as little as 1.67 times has resulted with densities of about 90% of theoretical.

  6. Effect of Dopants and Sintering Method on the Properties of Ceria-Based Electrolytes for IT-SOFCs Applications

    NASA Astrophysics Data System (ADS)

    Sharma, Payal; Sharma, Chetan; Singh, Kanchan L.; Singh, Anirudh P.

    2018-05-01

    Doped and co-doped ceria ceramics are used as electrolyte materials in solid oxide fuel cells. In this work, ceria-based oxides, Ce0.90Gd0.06Y0.02M0.02O2-δ (M = Ca, Fe, La, and Sr) were prepared by conventional as well as microwave processing from the precursors prepared by the mixed oxide method. The consolidated calcined powders in pellet form were sintered in microwave energy at 1400°C for 20 min and in an electric furnace of IR radiation at 1400°C for 6 h. The x-ray diffraction analysis confirmed that all the compositions were crystallized into a cubic fluorite structure. Surface morphology of the sintered products was studied using scanning electron microscopy and the microhardness was investigated using the Vickers hardness test. The comparative results analysis shows that the microwave-sintered samples have uniform grain growth, higher density and higher microhardness than the corresponding conventionally sintered products. The microwave-sintered sample of composition Ce0.90Gd0.06Y0.02Sr0.02O2-δ was found to have the highest microhardness among the four compositions due to its high density and smallest grain size.

  7. Vitrification of radioactive contaminated soil by means of microwave energy

    NASA Astrophysics Data System (ADS)

    Yuan, Xun; Qing, Qi; Zhang, Shuai; Lu, Xirui

    2017-03-01

    Simulated radioactive contaminated soil was successfully vitrified by microwave sintering technology and the solidified body were systematically studied by Raman, XRD and SEM-EDX. The Raman results show that the solidified body transformed to amorphous structure better at higher temperature (1200 °C). The XRD results show that the metamictization has been significantly enhanced by the prolonged holding time at 1200 °C by microwave sintering, while by conventional sintering technology other crystal diffraction peaks, besides of silica at 2θ = 27.830°, still exist after being treated at 1200 °C for much longer time. The SEM-EDX discloses the micro-morphology of the sample and the uniform distribution of Nd element. All the results show that microwave technology performs vitrification better than the conventional sintering method in solidifying radioactive contaminated soil.

  8. Rapid Cellulose-Mediated Microwave Sintering for High-Conductivity Ag Patterns on Paper.

    PubMed

    Jung, Sunshin; Chun, Su Jin; Shon, Chae-Hwa

    2016-08-10

    Cellulose-based paper is essential in everyday life, but it also has further potentials for use in low-cost, printable, disposable, and eco-friendly electronics. Here, a method is developed for the cellulose-mediated microwave sintering of Ag patterns on conventional paper, in which the paper plays a significant role both as a flexible insulating substrate for the conductive Ag pattern and as a lossy dielectric media for rapid microwave heating. The anisotropic dielectric properties of the cellulose fibers mean that a microwave electric field applied parallel to the paper substrate provides sufficient heating to produce Ag patterns with a conductivity 29-38% that of bulk Ag in a short period of time (∼1 s) at 250-300 °C. Significantly, there is little thermal degradation of the substrate during this process. The microwave-sintered Ag patterns exhibit good mechanical stability against 10 000 bending cycles and can be easily soldered with lead-free solder. Therefore, cellulose-mediated microwave sintering presents a promising means of achieving short processing times and high electrical performance in flexible paper electronics.

  9. Microwave sintering of boron carbide

    DOEpatents

    Blake, R.D.; Katz, J.D.; Petrovic, J.J.; Sheinberg, H.

    1988-06-10

    A method for forming boron carbide into a particular shape and densifying the green boron carbide shape. Boron carbide in powder form is pressed into a green shape and then sintered, using a microwave oven, to obtain a dense boron carbide body. Densities of greater than 95% of theoretical density have been obtained. 1 tab.

  10. EFFECT OF MICROWAVE SINTERING ON THE STRUCTURAL AND ELECTRICAL PROPERTIES OF Li0.51Zn0.2Ti0.2V0.01Fe2.08O4 FERRITE

    NASA Astrophysics Data System (ADS)

    Maisnam, Mamata; Phanjoubam, Sumitra

    2013-07-01

    Effect of microwave sintering on the structural and electrical properties of Li+0.51Zn2+0.2Ti4+0.2V5+0.01Fe3+2.08O2-4 is studied in comparison with that of conventionally sintered one. The technique is advantageous in terms of significantly reduced size of microwave kilns and rapid heating compared to the cumbersome and slow heating of conventional sintering technology. Microwave sintering produced enhanced densification and much finer microstructures. The DC resistivity is markedly increased. Microwave sintering reduces chances of evaporation of lithium and oxygen during sintering of lithium based ferrites resulting in formation of lesser ferrous ions. This has profound effect on the electrical properties of microwave sintered ferrites. The dielectric constant is significantly reduced possibly due to reduced space charge polarization and the temperature dependence of the dielectric properties are also studied.

  11. Dielectric Properties of Sol-Gel Derived Barium Strontium Titanate and Microwave Sintering of Ceramics

    NASA Astrophysics Data System (ADS)

    Selmi, Fathi A.

    This thesis consists of two areas of research: (1) sol-gel processing of Ba_{rm 1-x}Sr_{rm x} TiO_3 ceramics and their dielectric properties measurement; and (2) microwave versus conventional sintering of ceramics such as Al_2 O_3, Ba_{ rm 1-x}Sr_{rm x}TiO_3, Sb-doped SnO _2 and YBa_2Cu _3O_7. Sol-gel powders of BaTiO_3, SrTiO_3, and their solid solutions were synthesized by the hydrolysis of titanium isopropoxide and Ba and Sr methoxyethoxides. The loss tangent and dielectric constant of both sol-gel and conventionally prepared and sintered Ba_{rm 1-x}Sr _{rm x}TiO _3 ceramics were investigated at high frequencies. The sol-gel prepared ceramics showed higher dielectric constant and lower loss compared to those prepared conventionally. Ba _{rm 1-x}Sr _{rm x}TiO_3 ceramics were tunable with applied bias, indicating the potential use of this material for phase shifter applications. Porous Ba_{0.65}Sr _{0.35}TiO_3 was also investigated to lower the dielectric constant. Microwave sintering of alpha -Al_2O_3 and SrTiO_3 was investigated using an ordinary kitchen microwave oven (2.45 GHz; 600 Watts). The use of microwaves with good insulation of alpha -Al_2O_3 and SrTiO_3 samples resulted in their rapid sintering with good final densities of 96 and 98% of the theoretical density, respectively. A comparison of grain size for conventionally and microwave sintered SrTiO_3 samples did not show a noticeable difference. However, the grain size of microwave sintered alpha-Al_2O _3 was found to be larger than that of conventionally sintered sample. These results show that rapid sintering of ceramics can be achieved by using microwave radiation. The sintering behavior of coprecipitated Sb-doped SnO_2 was investigated using microwave power absorption. With microwave power, samples were sintered at 1450^circC for 20 minutes and showed a density as high as 99.9% of theoretical. However, samples fired in a conventional electric furnace at the same temperature for 4 hours showed only 60% of theoretical density. Microwave sintering also led to improvement in terms of uniform structure and electrical properties. Ba_{0.65}Sr _{0.35}TiO_3 was sintered using the microwave power at 1300 ^circC for 10 minutes. A density of 99% was achieved with small and uniform grain size. Superconducting powders have been successfully prepared by the sol-gel process and sintered and annealed using microwave power. Sintering and densification was achieved in a shorter time with microwave heating than with conventional heating and microwave heating appears to result in refined microstructure.

  12. Enhanced Photoluminescent Properties and Crystalline Morphology of LiBaPO4:Tm3+ Phosphor through Microwave Sintering Method

    PubMed Central

    Lai, Hsuan-Lin; Weng, Min-Hang; Yang, Ru-Yuan; Chang, Shoou-Jinn

    2016-01-01

    An investigation of the photoluminescent properties and crystalline morphology of blue emitting LiBa1−xPO4:xTm3+ phosphors with various concentrations (x = 0.005–0.030) of Tm3+ ions were synthesized by microwave sintering. For comparison, the LiBa1−xPO4:xTm3+ powders sintered at the same sintering condition but in a conventional furnace were also investigated. LiBaPO4 without second phase was formed no matter which furnace was used. More uniform grain size distributions are obtained by microwave sintering. When the concentration of Tm3+ ion was x = 0.015, the luminescence intensity reached a maximum value, and then decreased with the increases of the Tm3+ concentration due to concentration quenching effect. The microwave sintering significantly enhanced the emission intensity of LiBa1−xPO4:xTm3+ phosphors. Additionally, the d-d interaction is the key mechanism of concentration quenching for LiBaPO4:Tm3+. The chromaticity (x, y) for all LiBa1−xPO4:xTm3+ phosphors are located at (0.16, 0.05), which will be classified as a blue region. PMID:28773483

  13. Microwave processing of a dental ceramic used in computer-aided design/computer-aided manufacturing.

    PubMed

    Pendola, Martin; Saha, Subrata

    2015-01-01

    Because of their favorable mechanical properties and natural esthetics, ceramics are widely used in restorative dentistry. The conventional ceramic sintering process required for their use is usually slow, however, and the equipment has an elevated energy consumption. Sintering processes that use microwaves have several advantages compared to regular sintering: shorter processing times, lower energy consumption, and the capacity for volumetric heating. The objective of this study was to test the mechanical properties of a dental ceramic used in computer-aided design/computer-aided manufacturing (CAD/CAM) after the specimens were processed with microwave hybrid sintering. Density, hardness, and bending strength were measured. When ceramic specimens were sintered with microwaves, the processing times were reduced and protocols were simplified. Hardness was improved almost 20% compared to regular sintering, and flexural strength measurements suggested that specimens were approximately 50% stronger than specimens sintered in a conventional system. Microwave hybrid sintering may preserve or improve the mechanical properties of dental ceramics designed for CAD/CAM processing systems, reducing processing and waiting times.

  14. Microwave sintering of nanopowder ZnNb2O6: Densification, microstructure and microwave dielectric properties

    NASA Astrophysics Data System (ADS)

    Bafrooei, H. Barzegar; Nassaj, E. Taheri; Hu, C. F.; Huang, Q.; Ebadzadeh, T.

    2014-12-01

    High density ZnNb2O6 ceramics were successfully fabricated by microwave sintering of ZnO-Nb2O5 and ZnNb2O6 nanopowders. Phase formation, microstructure and microwave electrical properties of the microwave sintered (MS) and microwave reaction sintered (MRS) specimens were examined using X-ray diffraction, field emission scanning electron microscopy and microwave dielectric properties measurement. Specimens were sintered in a temperature range from 950 to 1075 °C for 30 min at an interval of 25 °C using a microwave furnace operated at 2.45 GHz frequency, 3 kW power. XRD pattern revealed the formation of pure columbite phase of ZnNb2O6. The SEM micrographs show grain growth and reduction in porosity of specimens with the increase in sintering temperature. Good combination of microwave dielectric properties (εr~23.6, Qf~64,300 GHz and τf~-66 ppm/°C and εr~24, Qf~75,800 GHz and τf~-64 ppm/°C) was obtained for MS- and MRS-prepared samples at 1000 °C and 1050 °C for 30 min, respectively.

  15. Densification kinetics of nanocrystalline zirconia powder using microwave and spark plasma sintering--a comparative study.

    PubMed

    Vasylkiv, Oleg; Demirskyi, Dmytro; Sakka, Yoshio; Ragulya, Andrey; Borodianska, Hanna

    2012-06-01

    Two-stage densification process of nanosized 3 mol% yttria-stabilized zirconia (3Y-SZ) polycrystalline compacts during consolidation via microwave and spark-plasma sintering have been observed. The values of activation energies obtained for microwave and spark-plasma sintering 260-275 kJ x mol(-1) are quite similar to that of conventional sintering of zirconia, suggesting that densification during initial stage is controlled by the grain-boundary diffusion mechanism. The sintering behavior during microwave sintering was significantly affected by preliminary pressing conditions, as the surface diffusion mechanism (230 kJ x mol(-1)) is active in case of cold-isostatic pressing procedure was applied.

  16. Microwave sintering of Ag-nanoparticle thin films on a polyimide substrate

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fujii, S., E-mail: fujii.s.ap@m.titech.ac.jp; Department of Information and Communication System Engineering, National Institute of Technology, Okinawa College, Nago, Okinawa 905-2192; Kawamura, S.

    2015-12-15

    Ag-nanoparticle thin films on a polyimide substrate were subjected to microwave sintering by use of a single-mode waveguide applicator. A two-step sintering process was employed. First, at low conductivities of the film, the film sample was placed at the site of the maximum electric field and subjected to microwave irradiation. Second, when the conductivity of the film increased, the film sample was placed at the site of the maximum magnetic field and again subjected to microwave irradiation. The microwave sintering process was completed within 1.5 min, which is significantly lower than the time required for the oven heating process. Themore » resulting conductivity of the film, albeit only 30% of that of the bulk material, was seven times that of a film annealed at the same temperature in a furnace. Scanning electron microscopy images revealed that the nanoparticles underwent both grain necking and grain growth during microwave sintering. In addition, this sintering process was equivalent to the oven heating process performed at a 50 °C higher annealing temperature. An electromagnetic wave simulation and a heat transfer simulation of the microwave sintering process were performed to gain a thorough understanding of the process.« less

  17. Thermal insulation for high temperature microwave sintering operations and method thereof

    DOEpatents

    Holcombe, Cressie E.; Dykes, Norman L.; Morrow, Marvin S.

    1995-01-01

    Superior microwave transparent thermal insulations for high temperature microwave sintering operations were prepared. One embodiment of the thermal insulation comprises granules of boron nitride coated with a very thin layer of glassy carbon made by preparing a glassy carbon precursor and blending it with boron nitride powder to form a mixture. The blended mixture is granulated to form a grit which is dried and heated to form the granules of boron nitride coated with a glassy carbon. Alternatively, grains of glassy carbon are coated with boron nitride by blending a mixture of a slurry comprising boron nitride, boric acid binder, and methyl alcohol with glassy carbon grains to form a blended mixture. The blended mixture is dried to form grains of glassy carbon coated with boron nitride. In addition, a physical mixture of boron nitride powder and glassy carbon grains has also been shown to be an excellent thermal insulation material for microwave processing and sintering.

  18. Method of preparing thermal insulation for high temperature microwave sintering operations

    DOEpatents

    Holcombe, Cressie E.; Dykes, Norman L.; Morrow, Marvin S.

    1996-01-01

    Superior microwave transparent thermal insulations for high temperature microwave sintering operations were prepared. One embodiment of the thermal insulation comprises granules of boron nitride coated with a very thin layer of glassy carbon made by preparing a glassy carbon precursor and blending it with boron nitride powder to form a mixture. The blended mixture is granulated to form a grit which is dried and heated to form the granules of boron nitride coated with a glassy carbon. Alternatively, grains of glassy carbon are coated with boron nitride by blending a mixture of a slurry comprising boron nitride, boric acid binder, and methyl alcohol with glassy carbon grains to form a blended mixture. The blended mixture is dried to form grains of glassy carbon coated with boron nitride. In addition, a physical mixture of boron nitride powder and glassy carbon grains has also been shown to be an excellent thermal insulation material for microwave processing and sintering.

  19. Freeze drying vs microwave drying-methods for synthesis of sinteractive thoria powders

    NASA Astrophysics Data System (ADS)

    Annie, D.; Chandramouli, V.; Anthonysamy, S.; Ghosh, Chanchal; Divakar, R.

    2017-02-01

    Thoria powders were synthesized by oxalate precipitation from an aqueous solution of the nitrate. The filtered precipitates were freeze dried or microwave dried before being calcined at 1073 K. The thoria powders obtained were characterized for crystallite size, specific surface area, bulk density, particle size distribution and residual carbon. Microstructure of the product was studied using scanning electron microscopy (SEM) and transmission electron microscopy (TEM). Sinterability of the synthesized powders was studied by measuring the density of the sintered compacts. Powders that can be consolidated and sintered to densities ∼96% theoretical density (TD) at 1773 K were obtained.

  20. [Microwave sintering of nanometer powder of alumina and zirconia-based dental ceramics].

    PubMed

    Chen, Yi-Fan; Lu, Dong-Mei; Wan, Qian-Bing; Jin, Yong; Zhu, Ju-Mu

    2006-02-01

    The objective of the present study was to investigate the feasibility and reliability of sintering alumina and zirconia-based all-ceramic materials through a recently introduced microwave heating technique. The variation of crystal phases, the growth of grain sizes and microstructural features of these materials were evaluated after sintering. Four different groups of powder (l00%Al2O3, 60%Al2O3+40%ZrO2, 40% Al2O3+60%ZrO2, 100% ZrO2) were respectively press-compacted to fabricate green disk samples, 5 specimen of each group were prepared. All the samples were surrounded by refractory materials for heat containment and processed at 1 600 degrees C in a domestic microwave oven (850 W, 2 450 MHz), 1 600 degrees C/5 min for heating rate, 10 min for holding time. After sintering, the phase composition and average grain size of these ceramics were examined using X-ray diffraction (XRD). Their microstructure characteristics were studied by scanning electron microscopy (SEM). All the specimens were successfully sintered with the application of microwave heating system in combination with a suitable thermal insulator. No phase change was found in alumina while monoclinic-zirconia was found to be transformed to tetragonal-zirconia. A little grain size growth of Al2O3 and ZrO2 has been observed with Al2O3 24.1 nm/before and 51.8 nm/after; ZrO2 25.3 nm/before and 29.7 nm/after. The SEM photos indicated that the microwave-sintered Al2O3-ZrO2 ceramics had a uniform crystal distribution and their crystal sizes could be maintained within the range of nanometers. It is expected that in the near future microwave heating system could be a promising substitute for conventional processing methods due to its unparalled advantages, including more rapid heating rate, shortened sintering time, superfine grain size, improved microstructure and much less expensive equipment.

  1. Densification of LSGM electrolytes using activated microwave sintering

    NASA Astrophysics Data System (ADS)

    Kesapragada, S. V.; Bhaduri, S. B.; Bhaduri, S.; Singh, P.

    Lanthanum gallate doped with alkaline rare earths (LSGM) powders were densified using an activated microwave sintering process for developing a dense stable electrolyte layer for applications in intermediate temperature-solid oxide fuel cells (IT-SOFCs). Due to heat generation in situ, the process of sintering gets activated with faster kinetics compared to a conventional sintering process. The effect of various microwave process parameters on the microstructure and phase formation was studied. The sintered pellets were characterized using scanning electron microscopy-energy dispersive analysis (SEM-EDAX), and X-ray diffraction (XRD). The density of LSGM pellets microwave sintered at 1350 °C for 20 min is greater than 95% theoretical density with a fine grained microstructure (˜2-3 μm) and without the presence of other phase(s).

  2. Method of preparing thermal insulation for high temperature microwave sintering operations

    DOEpatents

    Holcombe, C.E.; Dykes, N.L.; Morrow, M.S.

    1996-07-16

    Superior microwave transparent thermal insulations for high temperature microwave sintering operations were prepared. One embodiment of the thermal insulation comprises granules of boron nitride coated with a very thin layer of glassy carbon made by preparing a glassy carbon precursor and blending it with boron nitride powder to form a mixture. The blended mixture is granulated to form a grit which is dried and heated to form the granules of boron nitride coated with a glassy carbon. Alternatively, grains of glassy carbon are coated with boron nitride by blending a mixture of a slurry comprising boron nitride, boric acid binder, and methyl alcohol with glassy carbon grains to form a blended mixture. The blended mixture is dried to form grains of glassy carbon coated with boron nitride. In addition, a physical mixture of boron nitride powder and glassy carbon grains has also been shown to be an excellent thermal insulation material for microwave processing and sintering. 1 fig.

  3. Thermal insulation for high temperature microwave sintering operations and method thereof

    DOEpatents

    Holcombe, C.E.; Dykes, N.L.; Morrow, M.S.

    1995-09-12

    Superior microwave transparent thermal insulations for high temperature microwave sintering operations were prepared. One embodiment of the thermal insulation comprises granules of boron nitride coated with a very thin layer of glassy carbon made by preparing a glassy carbon precursor and blending it with boron nitride powder to form a mixture. The blended mixture is granulated to form a grit which is dried and heated to form the granules of boron nitride coated with a glassy carbon. Alternatively, grains of glassy carbon are coated with boron nitride by blending a mixture of a slurry comprising boron nitride, boric acid binder, and methyl alcohol with glassy carbon grains to form a blended mixture. The blended mixture is dried to form grains of glassy carbon coated with boron nitride. In addition, a physical mixture of boron nitride powder and glassy carbon grains has also been shown to be an excellent thermal insulation material for microwave processing and sintering. 1 fig.

  4. A device for microwave sintering large ceramic articles

    DOEpatents

    Kimrey, H.D. Jr.

    1987-07-24

    A microwave sintering system is provided for uniform sintering of large and/or irregular shapes ceramic articles at microwave frequencies of at least 28 GHz in the hundreds of kilowatts power range in an untuned cavity. A 28 GHz, 200 kw gyrotron with variable power output is used as the microwave source connected to an untuned microwave cavity formed of an electrically conductive housing. The part to be sintered is placed in the cavity and supported on a removable high temperature table in a central location within the cavity. The part is surrounded by a microwave transparent bulk insulating material to reduce thermal heat loss at the part surfaces and maintain more uniform temperature. The cavity may be operated at a high vacuum to aid in preventing arcing. The system allows controlled increased heating rates of greater than 200/degree/C/min to provide rapid heating of a ceramic part to a selected sintering temperature where it is maintained by regulating the microwave power applied to the part. As a result of rapid heating, the extent on non-isothermal processes such as segregation of impurities to the grain boundaries are minimized and exaggerated grain growth is reduced, thereby strengthening the mechanical properties of the ceramic part being sintered. 1 fig.

  5. Rapid immobilization of simulated radioactive soil waste by microwave sintering.

    PubMed

    Zhang, Shuai; Shu, Xiaoyan; Chen, Shunzhang; Yang, Huimin; Hou, Chenxi; Mao, Xueli; Chi, Fangting; Song, Mianxin; Lu, Xirui

    2017-09-05

    A rapid and efficient method is particularly necessary in the timely disposal of seriously radioactive contaminated soil. In this paper, a series of simulated radioactive soil waste containing different contents of neodymium oxide (3-25wt.%) has been successfully vitrified by microwave sintering at 1300°C for 30min. The microstructures, morphology, element distribution, density and chemical durability of as obtained vitrified forms have been analyzed. The results show that the amorphous structure, homogeneous element distribution, and regular density improvement are well kept, except slight cracks emerge on the magnified surface for the 25wt.% Nd 2 O 3 -containing sample. Moreover, all the vitrified forms exhibit excellent chemical durability, and the leaching rates of Nd are kept as ∼10 -4 -10 -6 g/(m 2 day) within 42days. This demonstrates a potential application of microwave sintering in radioactive contaminated soil disposal. Copyright © 2017 Elsevier B.V. All rights reserved.

  6. Investigation of mechanical and thermal properties of microwave-sintered lunar simulant materials using 2.45 GHz radiation

    NASA Technical Reports Server (NTRS)

    Meek, T. T.

    1990-01-01

    The mechanical and thermal properties of lunar simulant material were investigated. An alternative method of examining thermal shock in microwave-sintered lunar samples was researched. A computer code was developed that models how the fracture toughness of a thermally shocked lunar simulant sample is related to the sample hardness as measured by a micro-hardness indentor apparatus. This technique enables much data to be gathered from a few samples. Several samples were sintered at different temperatures and for different times at the temperatures. The melting and recrystallization characteristics of a well-studied binary system were also investigated to see if the thermodynamic barrier for the nucleation of a crystalline phase may be affected by the presence of a microwave field. The system chosen was the albite (sodium alumino silicate) anorthite system (calcium alumino silicate). The results of these investigations are presented.

  7. IMPROVED TUBULARS FOR BETTER ECONOMICS IN DEEP GAS WELL DRILLING USING MICROWAVE TECHNOLOGY

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dinesh Agrawal; Paul Gigl; Mahlon Dennis

    2005-03-01

    The main objective of the research program has been to improve the rate-of-penetration in deep hostile environments by improving the life cycle and performance of coiled-tubing, an important component of a deep well drilling system for oil and gas exploration, by utilizing the latest developments in the microwave materials technology. Originally, it was proposed to accomplish this by developing an efficient and economically viable continuous microwave process to sinter continuously formed/extruded steel powder for the manufacture of seamless coiled tubing and other tubular products. However, based on the results and faced with insurmountable difficulties in the extrusion and de-waxing processes,more » the approach of achieving the goals of the program has been slightly changed. In the continuation proposal an approach of microwave sintering combined with Cold Isostatic Press (CIP) and joining (by induction or microwave) is adopted. This process can be developed into a semi-continuous sintering process if the CIP can produce parts fast enough to match the microwave sintering rates. Originally, the entire program was spread over three phases with the following goals: Phase I: Demonstration of the feasibility concept of continuous microwave sintering process for tubular steel products. Phase II: Design, building and testing of a prototype microwave system which shall be combined with a continuous extruder for steel tubular objects. Phase III: Execution of the plan for commercialization of the technology by one of the industrial partners. However, since some of the goals of the phase I were not completed, an extension of nine months was granted and we continued extrusion experiments, designed and built semicontinuous microwave sintering unit.« less

  8. Improved Tubulars for Better Economics in Deep Gas Well Drilling Using Microwave Technology

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dinesh Agrawal

    2006-09-30

    The main objective of the entire research program has been to improve the rate-of-penetration in deep hostile environments by improving the life cycle and performance of coiled-tubing, an important component of a deep well drilling system for oil and gas exploration, by utilizing the latest developments in the microwave materials technology. Based on the results of the Phase I and insurmountable difficulties faced in the extrusion and de-waxing processes, the approach of achieving the goals of the program was slightly changed in the Phase II in which an approach of microwave sintering combined with Cold Isostatic Press (CIP) and joiningmore » (by induction or microwave) has been adopted. This process can be developed into a semicontinuous sintering process if the CIP can produce parts fast enough to match the microwave sintering rates. The main objective of the Phase II research program is to demonstrate the potential to economically manufacture microwave processed coiled tubing with improved performance for extended useful life under hostile coiled tubing drilling conditions. After the completion of the Phase II, it is concluded that scale up and sintering of a thin wall common O.D. size tubing that is widely used in the market is still to be proved and further experimentation and refinement of the sintering process is needed in Phase III. Actual manufacturing capability of microwave sintered, industrial quality, full length tubing will most likely require several million dollars of investment.« less

  9. Improved Tubulars for Better Economics in Deep Gas Well Drilling using Microwave Technology

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dinesh Agrawal; Paul Gigl; Mark Hunt

    2007-07-31

    The main objective of the entire research program has been to improve the rate-of-penetration in deep hostile environments by improving the life cycle and performance of coiled-tubing, an important component of a deep well drilling system for oil and gas exploration, by utilizing the latest developments in the microwave materials technology. Based on the results of the Phase I and insurmountable difficulties faced in the extrusion and de-waxing processes, the approach of achieving the goals of the program was slightly changed in the Phase II in which an approach of microwave sintering combined with Cold Isostatic Press (CIP) and joiningmore » (by induction or microwave) has been adopted. This process can be developed into a semicontinuous sintering process if the CIP can produce parts fast enough to match the microwave sintering rates. The main objective of the Phase II research program is to demonstrate the potential to economically manufacture microwave processed coiled tubing with improved performance for extended useful life under hostile coiled tubing drilling conditions. After the completion of the Phase II, it is concluded that scale up and sintering of a thin wall common O.D. size tubing that is widely used in the market is still to be proved and further experimentation and refinement of the sintering process is needed in Phase III. Actual manufacturing capability of microwave sintered, industrial quality, full length tubing will most likely require several million dollars of investment.« less

  10. Microwave Sintering of Ceramic Materials for Industrial Application Final Report CRADA No. TC-1116-95

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Caplan, M.; Tandon, R.; Callis, R.

    The goal of this project was to develop the commercial capability in the US to sinter alumina oxide ceramic parts for the semiconductor manufacturing equipment industry. We planned to use the millimeter microwave (30 GHz) sintering system first developed by IAP in Russia.

  11. Densification and Electrical Properties of Zinc Oxide Varistors Microwave-Sintered Under Different Oxygen Partial Pressures

    NASA Astrophysics Data System (ADS)

    Lin, Cong; Wang, Bo; Xu, Zheng; Peng, Hu

    2012-11-01

    ZnO varistors were prepared by microwave sintering under different oxygen partial pressures. The temperature profile and the densification behavior in different atmospheres were investigated. It was found that the density of ZnO varistors during sintering was the key factor affecting the absorption of microwave energy. The electrical properties, including the nonlinear properties and capacitance-voltage ( C- V) characteristics, were also carefully studied. The results showed that the oxygen partial pressure has significant effects on the electrical properties of ZnO varistors by changing the concentration of defects through a series of reactions involving oxygen during sintering.

  12. Method of making a composite refractory material

    DOEpatents

    Morrow, Marvin S.; Holcombe, Cressie E.

    1995-01-01

    A composite refractory material is prepared by combining boron carbide with furan resin to form a mixture containing about 8 wt. % furan resin. The mixture is formed into a pellet which is placed into a grit pack comprising an oxide of an element such as yttrium to form a sinterable body. The sinterable body is sintered under vacuum with microwave energy at a temperature no greater than 2000.degree. C. to form a composite refractory material.

  13. Method of making a composite refractory material

    DOEpatents

    Morrow, M.S.; Holcombe, C.E.

    1995-09-26

    A composite refractory material is prepared by combining boron carbide with furan resin to form a mixture containing about 8 wt. % furan resin. The mixture is formed into a pellet which is placed into a grit pack comprising an oxide of an element such as yttrium to form a sinterable body. The sinterable body is sintered under vacuum with microwave energy at a temperature no greater than 2000 C to form a composite refractory material.

  14. On the Mechanism of Microwave Flash Sintering of Ceramics

    PubMed Central

    Bykov, Yury V.; Egorov, Sergei V.; Eremeev, Anatoly G.; Kholoptsev, Vladislav V.; Plotnikov, Ivan V.; Rybakov, Kirill I.; Sorokin, Andrei A.

    2016-01-01

    The results of a study of ultra-rapid (flash) sintering of oxide ceramic materials under microwave heating with high absorbed power per unit volume of material (10–500 W/cm3) are presented. Ceramic samples of various compositions—Al2O3; Y2O3; MgAl2O4; and Yb(LaO)2O3—were sintered using a 24 GHz gyrotron system to a density above 0.98–0.99 of the theoretical value in 0.5–5 min without isothermal hold. An analysis of the experimental data (microwave power; heating and cooling rates) along with microstructure characterization provided an insight into the mechanism of flash sintering. Flash sintering occurs when the processing conditions—including the temperature of the sample; the properties of thermal insulation; and the intensity of microwave radiation—facilitate the development of thermal runaway due to an Arrhenius-type dependency of the material’s effective conductivity on temperature. The proper control over the thermal runaway effect is provided by fast regulation of the microwave power. The elevated concentration of defects and impurities in the boundary regions of the grains leads to localized preferential absorption of microwave radiation and results in grain boundary softening/pre-melting. The rapid densification of the granular medium with a reduced viscosity of the grain boundary phase occurs via rotation and sliding of the grains which accommodate their shape due to fast diffusion mass transport through the (quasi-)liquid phase. The same mechanism based on a thermal runaway under volumetric heating can be relevant for the effect of flash sintering of various oxide ceramics under a dc/ac voltage applied to the sample. PMID:28773807

  15. Effects of La2O3-B2O3-ZnO additions on the low temperature sintering and microwave dielectric properties of (Ca0.61La0.26) TiO3 ceramics

    NASA Astrophysics Data System (ADS)

    Chen, Y. W.; Li, E. Z.; Niu, N.; Zou, M. Y.; Duan, S. X.; Zhang, S. R.

    2017-02-01

    The influence of La2O3-B2O3-ZnO (LBZ) additions on the sintering behavior, microstructure, phase composition, and the microwave dielectric properties of (Ca0.61La0.26) TiO3 (CLT) ceramics have been investigated. The results indicate that the LBZ additions could efficiently lower the sintering temperature of the CLT ceramics from 1400°C to 950°C, and excellent microwave properties remain. Small amount of LBZ glass promotes the densification of the CLT ceramics and enhances the microwave dielectric properties. However, excess amount of LBZ glass deteriorates the dielectric properties because of the increasing glass phase. The CLT ceramic with 3 wt. % LBZ additions, sintered at 950°C, exhibit excellent properties: εr= 103.12, Q× f = 8826 GHz(f=3.312 GHz) and τƒ=299.52 ppm/°C.

  16. Effects of in situ synthesized mullite whisker on mechanical properties of Al2O3-SiC composite by microwave sintering

    NASA Astrophysics Data System (ADS)

    Dang, Xudan; Wei, Meng; Fan, Bingbing; Guan, Keke; Zhang, Rui; Long, Weimin; Zhang, Hongsong

    2017-06-01

    In situ synthesis of mullite whisker was introduced to Al2O3-SiC composite by microwave sintering. The effects of sintering parameters (sintering temperature, holding time and SiC particle size) on thermal shock resistance of Al2O3-SiC composite were also studied in this paper. Original SiC particles coated with SiO2 by a sol-gel method were reacted with Al2O3 particles, resulting in the in situ growth of mullite. The phase composition was identified by x-ray diffraction (XRD). The bridging of mullite whisker between Al2O3 and SiC particles was observed by scanning electron microscopy (SEM) analysis. The thermal shock resistance of samples was investigated through the combination of water quenching and three-point bending methods. The results show that the thermal shock resistance of Al2O3-SiC composite with mullite whisker reinforced remarkably, indicating better mechanical properties than the Al2O3-SiC composite without mullite whisker. Finally, the optimum process parameters (the sintering temperature of 1500 °C, the holding time of 30 min, and the SiC particle size of 5 µm) for toughening Al2O3-SiC composite by in situ synthesized mullite whisker were obtained.

  17. Effect of microwave-assisted sintering on dielectric properties of CaCu3Ti4O12 ceramic

    NASA Astrophysics Data System (ADS)

    Rani, Suman; Ahlawat, Neetu; Punia, R.; Kundu, R. S.; Ahlawat, N.

    2016-05-01

    In this present work, CaCu3Ti4O12 (CCTO) was synthesized by conventional solid-state reaction technique. The synthesis process was carried out in two phases; by conventional process (calcination and sintering at 1080°C for 10 hours) and phase II involves the micro assisted pre sintering of conventionally calcined CCTO for very short soaking time of 30 min at 1080°C in a microwave furnace followed by sintering at 1080°C for 10 hours in conventional furnace. X-ray diffraction (XRD) patterns confirmed the formation of single phase ceramic. Dielectric properties were studied over the frequency range from 50Hz -5MHz at temperatures (273K-343K). It was observed that pre- microwave sintering enhance the dielectric constant values from 10900 to 11893 and respectively reduces the dielectric loss values from 0.49 to 0.34 at room temperature(1 KHz). CCTO ceramics which are found desirable for many technological applications. The effect is more pronounced at low frequencies of applied electric field.

  18. Improved Tubulars for Better Economics in Deep Gas Well Drilling using Microwave Technology

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dinesh Agrawal; Paul Gigl; Mahlon Dennis

    2006-02-01

    The objective of the research program has been to improve the rate-of-penetration in deep hostile environments by improving the life cycle and performance of coiled-tubing, an important component of a deep well drilling system for oil and gas exploration. The current process of the manufacture long tubular steel products consists of shaping the tube from flat strip, welding the seam and sections into lengths that can be miles long, and coiling onto reels. However, the welds, that are a weak point, now limit the performance of the coil tubing. This is not only from a toughness standpoint but also frommore » a corrosion standpoint. By utilizing the latest developments in the sintering of materials with microwave energy and powder metal extrusion technology for the manufacture of seamless coiled tubing and other tubular products, these problems can be eliminated. The project is therefore to develop a continuous microwave process to sinter continuously steel tubulars and butt-join them using microwave/induction process. The program started about three years ago and now we are in the middle of Phase II. In Phase I (which ended in February 2005) a feasibility study of the extrusion process of steel powder and continuously sinter the extruded tubing was conducted. The research program has been based on the development of microwave technology to process tubular specimens of powder metals, especially steels. The existing microwave systems at the Materials Research Laboratory (MRL) and Dennis Tool Company (DTC) were suitably modified to process tubular small specimens. The precursor powder metals were either extruded or cold isostatically pressed (CIP) to form tubular specimens. After conducting an extensive and systematic investigation of extrusion process for producing long tubes, it was determined that there were several difficulties in adopting extrusion process and it cannot be economically used for producing thousands of feet long green tubing. Therefore, in the Phase II the approach was modified to the microwave sintering combined with Cold Isostatic Press (CIP) and joining (by induction or microwave). This process can be developed into a semi-continuous sintering process if the CIP can produce parts fast enough to match the microwave sintering rates. This report summarizes the progress made to-date in this new approach. The final steel composition matching with the Quality tubing's QT-16Cr80 was short listed and used for all experiments. Bonding experiments using 4 different braze powders were conducted and the process optimized to obtain high degree of bonding strength. For fabrication of green tubulars a large CIP unit was acquired and tested. This equipment is located at the Dennis Tool facility in Houston. Microwave sintering experiments for continuous processing of the CIPed tubes are under progress in order to identify the optimum conditions. There have been some reproducibility problems and we are at present working to resolve these problems.« less

  19. Influence of Ce addition on biomedical porous Ti-51 atomic percentage (at. %) Ni shape memory alloy fabricated by microwave sintering

    NASA Astrophysics Data System (ADS)

    Ibrahim, Mustafa K.; Hamzah, E.; Saud, Safaa N.; Nazim, E. M.; Bahador, A.

    2017-12-01

    Ti-Ni and Ti-Ni-Ce shape memory alloys (SMAs) were successfully fabricated by microwave sintering. The improvement of the mechanical properties especially the elastic modulus is the most important criterion in this research. The high elastic modulus problems are the most critical issues frequently encountered in hard tissue replacement applications. The effect of Ce addition with four atomic percentages (0 %, 0.19 %, 0.385 % and, 1.165 %) on the microstructure, phase composition, transformation temperatures and mechanical properties was investigated by scanning electron microscopy (SEM), X-ray diffraction (XRD), Differential Scanning Calorimeter (DSC), and compression test. The microstructure shows plates-like with needles-like inside the titanium-rich region. The compression strain was improved, but reduces the compression strength. The addition of cerium improved the properties by reducing the elastic modulus to be very close to the natural human bone, also the microwave sintering gives TiNi SMAs with low elastic modulus comparing with other methods. Based on the results, the 0.385 at. % Ce exhibited a remarkable highest compressive strain and lower elastic modulus compared with the other percentages. In conclusion, the present results indicate that Ti-Ni-Ce SMAs could be a potential alternative to improve Ti-51 at %Ni SMAs for certain biomedical applications.

  20. Method of making tantalum capacitors

    DOEpatents

    McMillan, April D.; Clausing, Robert E.; Vierow, William F.

    1998-01-01

    A method for manufacturing tantalum capacitors includes preparing a tantalum compact by cold pressing tantalum powder, placing the compact, along with loose refractory metal powder, in a microwave-transparent casket to form an assembly, and heating the assembly for a time sufficient to effect at least partial sintering of the compact and the product made by the method.

  1. Cu3Mo2O9: An Ultralow-Firing Microwave Dielectric Ceramic with Good Temperature Stability and Chemical Compatibility with Aluminum

    NASA Astrophysics Data System (ADS)

    Wen, Wangxi; Li, Chunchun; Sun, Yihua; Tang, Ying; Fang, Liang

    2018-02-01

    An ultralow-firing microwave dielectric ceramic Cu3Mo2O9 with orthorhombic structure has been fabricated via a solid-state reaction method. X-ray diffraction analysis, Rietveld refinement, Raman spectroscopy, energy-dispersive spectrometry, and scanning electron microscopy were employed to explore the phase purity, crystal structure, and microstructure. Pure and dense Cu3Mo2O9 ceramics could be obtained in the sintering temperature range from 580°C to 680°C. The sample sintered at 660°C for 4 h exhibited the highest relative density (˜ 97.2%) and best microwave dielectric properties with ɛ r = 7.2, Q × f = 19,300 GHz, and τ f = - 7.8 ppm/°C. Chemical compatibility with aluminum electrodes was also confirmed. All the results suggest that Cu3Mo2O9 ceramic is a promising candidate for use in ultralow-temperature cofired ceramic applications.

  2. Microwave sintering of ceramic materials

    NASA Astrophysics Data System (ADS)

    Karayannis, V. G.

    2016-11-01

    In the present study, the potential of microwave irradiation as an innovative energy- efficient alternative to conventional heating technologies in ceramic manufacturing is reviewed, addressing the advantages/disadvantages, while also commenting on future applications of possible commercial interest. Ceramic materials have been extensively studied and used due to several advantages they exhibit. Sintering ceramics using microwave radiation, a novel technology widely employed in various fields, can be an efficient, economic and environmentally-friendlier approach, to improve the consolidation efficiency and reduce the processing cycle-time, in order to attain substantial energy and cost savings. Microwave sintering provides efficient internal heating, as energy is supplied directly and penetrates the material. Since energy transfer occurs at a molecular level, heat is generated throughout the material, thus avoiding significant temperature gradients between the surface and the interior, which are frequently encountered at high heating rates upon conventional sintering. Thus, rapid, volumetric and uniform heating of various raw materials and secondary resources for ceramic production is possible, with limited grain coarsening, leading to accelerated densification, and uniform and fine-grained microstructures, with enhanced mechanical performance. This is particularly important for manufacturing large-size ceramic products of quality, and also for specialty ceramic materials such as bioceramics and electroceramics. Critical parameters for the process optimization, including the electromagnetic field distribution, microwave-material interaction, heat transfer mechanisms and material transformations, should be taken into consideration.

  3. Effect of microwave-assisted sintering on dielectric properties of CaCu{sub 3}Ti{sub 4}O{sub 12} ceramic

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rani, Suman, E-mail: sumanranigju@gmail.com; Ahlawat, Neetu; Punia, R.

    2016-05-23

    In this present work, CaCu{sub 3}Ti{sub 4}O{sub 12} (CCTO) was synthesized by conventional solid-state reaction technique. The synthesis process was carried out in two phases; by conventional process (calcination and sintering at 1080°C for 10 hours) and phase II involves the micro assisted pre sintering of conventionally calcined CCTO for very short soaking time of 30 min at 1080°C in a microwave furnace followed by sintering at 1080°C for 10 hours in conventional furnace. X-ray diffraction (XRD) patterns confirmed the formation of single phase ceramic. Dielectric properties were studied over the frequency range from 50Hz -5MHz at temperatures (273K-343K). It wasmore » observed that pre- microwave sintering enhance the dielectric constant values from 10900 to 11893 and respectively reduces the dielectric loss values from 0.49 to 0.34 at room temperature(1 KHz). CCTO ceramics which are found desirable for many technological applications. The effect is more pronounced at low frequencies of applied electric field.« less

  4. Preparation of Oxidation-Resistant Ultra High Melting Temperature Materials and Structures Using Laser Method

    DTIC Science & Technology

    2009-06-06

    sample within a small ceramic muffle. The microwave absorption coefficient of most ceramics is low, but increases with temperature. Thus, as the...increased using additives with higher absorption 7 coefficients . Silicon carbide has a higher loss tangent at 2.4 GHz than most ceramics, and thus...electron beam sintering. Microwave heating works well for large volumes, but ceramics normally have a low dielectric absorption constant at room

  5. Research on sintering behavior and microwave dielectric property of (Mg0.95Ca0.05)TiO3 ceramics for cross coupling filter

    NASA Astrophysics Data System (ADS)

    Luo, Chunya; Ma, Zhichao; Hu, Laisheng; Hu, Mingzhe; Huang, Xiaomin

    2015-12-01

    The microwave dielectric properties of 0.95%MgTiO3-0.05%CaTiO3 (abbreviated as 95MCT hereafter) ceramics have been studied for application in dielectric cross coupling filters. ZnO and Nb2O5 were selected as liquid sintering aids to lower the sintering temperature and enhance the Qf value of 95MCT and simultaneously we varied the mole ratio of ZnO : Nb2O5 to tune the microwave dielectric properties of 95MCT. When the ZnO : Nb2O5 mole ratio was 1.5 and the co-doping content was 0.25 wt.%, the optimal sintering temperature of 95MCT ceramic could be lowered from 1400∘C to 1320∘C and the Qf value could be improved by about 7.7%. The optimal microwave dielectric properties obtained under this condition were Qf = 72730 GHz (6.8 GHz), ɛr = 20.29 and τf = -6.84ppm/∘C, which demonstrated great potential usage in ceramic industry. High values of Qf ceramic were used to design the dielectric cross coupling filter. The dielectric filter measured at 2.35 GHz exhibited a 6.7% bandwidth (insert loss > -3 dB) of center frequency.

  6. Process for manufacturing multilayer capacitors

    DOEpatents

    Lauf, Robert J.; Holcombe, Cressie E.; Dykes, Norman L.

    1996-01-01

    The invention is directed to a method of manufacture of multilayer electrical components, especially capacitors, and components made by such a method. High capacitance dielectric materials and low cost metallizations layered with such dielectrics may be fabricated as multilayer electrical components by sintering the metallizations and the dielectrics during the fabrication process by application of microwave radiation.

  7. Flash microwave synthesis and sintering of nanosized La{sub 0.75}Sr{sub 0.25}Cr{sub 0.93}Ru{sub 0.07}o{sub 3-{delta}} for fuel cell application

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Combemale, L., E-mail: lionel.combemale@u-bourgogne.f; Caboche, G.; Stuerga, D.

    2009-10-15

    Perovskite-oxide nanocrystals of La{sub 0.75}Sr{sub 0.25}Cr{sub 0.93}Ru{sub 0.07}O{sub 3-{delta}} with a mean size around 10 nm were prepared by microwave flash synthesis. This reaction was performed in alcoholic solution using metallic salts, sodium ethoxide and microwave autoclave. The obtained powder was characterised after purification by energy dispersive X-ray analysis (EDX), X-ray powder diffraction (XRD), BET adsorption technique, photon correlation spectroscopy (PCS) and transmission electron microscopy (TEM). The results show that integrated perovskite-type phase and uniform particle size were obtained in the microwave treated samples. At last the synthesised powder was directly used in a sintering process. A porous solid, inmore » accordance with the expected applications, was then obtained at low sintering temperature (1000 deg. C) without use of pore forming agent. - Graphical abstract: TEM photograph of La{sub 0.75}Sr{sub 0.25}Cr{sub 0.93}Ru{sub 0.07}O{sub 3-{delta}} obtained by microwave flash synthesis. This picture confirms the nanometric size of the ceramic particles.« less

  8. Process for manufacturing multilayer capacitors

    DOEpatents

    Lauf, R.J.; Holcombe, C.E.; Dykes, N.L.

    1996-01-02

    The invention is directed to a method of manufacture of multilayer electrical components, especially capacitors, and components made by such a method. High capacitance dielectric materials and low cost metallizations layered with such dielectrics may be fabricated as multilayer electrical components by sintering the metallizations and the dielectrics during the fabrication process by application of microwave radiation. 4 figs.

  9. Morphological Characterization Of Titania Slag Obtained From Red Sediment Placer Ilmenite Using Microwave Energy

    NASA Astrophysics Data System (ADS)

    Srikant, S. S.; Mukherjee, P. S.; Bhima Rao, R.

    2015-04-01

    This paper deals with the main objective to observe the effect of microwave heat treatment for the production of Titania rich slag and pig iron from placer ilmenite. The experiments carried out in the present investigation on the oxidized ilmenite sample for microwave heat treatment in microwave sintering furnace reveals that a product can be obtained containing Titania rich slag and metalized iron. The in-depth characterisation of these products using SEM-EDAX shows that around 75-85 % of titanium dioxide is formed in terms of titania rich slag by using microwave sintering furnace after reduction of oxidized ilmenite with proper stoichiometric graphitic carbon and silicon carbide (SiC) susceptor. The titania rich slag is considered to be better input material for production of pigment grade titanium dioxide. On the other hand, the pig iron obtained as by product from titania rich slag is also important for automobile and steel industries application.

  10. Microwave Sinterator Freeform Additive Construction System (MS-FACS)

    NASA Technical Reports Server (NTRS)

    Howe, Alan S.; Wilcox, Brian H.; Barmatz, Martin B.; Mercury, Michael B.; Siebert, Michael A.; Rieber, Richard R.

    2013-01-01

    The harmful properties of lunar dust, such as small size, glass composition, abnormal surface area, and coatings of imbedded nanophase iron, lead to a unique coupling of the dust with microwave radiation. This coupling can be exploited for rapid sintering of lunar soil for use as a construction material that can be formed to take on an infinite number of shapes and sizes. This work describes a system concept for building structures on the lunar surface using lunar regolith (soil). This system uses the ATHLETE (All-Terrain Hex- Limbed Extra-Terrestrial Explorer) mobility system as a positioning system with a microwave print head (similar to that of a smaller-scale 3D printer). A processing system delivers the lunar regolith to the microwave print head, where the microwave print head/chamber lays down a layer of melted regolith. An arm on the ATHLETE system positions the layer depending on the desired structure.

  11. Novel ultra-low temperature co-fired microwave dielectric ceramic at 400 degrees and its chemical compatibility with base metal

    PubMed Central

    Di, Zhou; Li-Xia, Pang; Ze-Ming, Qi; Biao-Bing, Jin; Xi, Yao

    2014-01-01

    A novel NaAgMoO4 material with spinel-like structure was synthesized by using the solid state reaction method and the ceramic sample was well densified at an extreme low sintering temperature about 400°C. Rietveld refinement of the crystal structure was performed using FULLPROF program and the cell parameters are a = b = c = 9.22039 Å with a space group F D −3 M (227). High performance microwave dielectric properties, with a permittivity ~7.9, a Qf value ~33,000 GHz and a temperature coefficient of resonant frequency ~−120 ppm/°C, were obtained. From X-ray diffraction (XRD) and Energy Dispersive Spectrometer (EDS) analysis of the co-fired sample, it was found that the NaAgMoO4 ceramic is chemically compatible with both silver and aluminum at the sintering temperature and this makes it a promising candidate for the ultra-low temperature co-fired ceramics technology. Analysis of infrared and THz spectra indicated that dielectric polarizability at microwave region of the NaAgMoO4 ceramic was equally contributed by ionic displasive and electronic polarizations. Its small microwave dielectric permittivity can also be explained well by the Shannon's additive rule. PMID:25099530

  12. Microwave-assisted reactive sintering and lithium ion conductivity of Li1.3Al0.3Ti1.7(PO4)3 solid electrolyte

    NASA Astrophysics Data System (ADS)

    Hallopeau, Leopold; Bregiroux, Damien; Rousse, Gwenaëlle; Portehault, David; Stevens, Philippe; Toussaint, Gwenaëlle; Laberty-Robert, Christel

    2018-02-01

    Li1.3Al0.3Ti1.7(PO4)3 (LATP) materials are made of a three-dimensional framework of TiO6 octahedra and PO4 tetrahedra, which provides several positions for Li+ ions. The resulting high ionic conductivity is promising to yield electrolytes for all-solid-state Li-ion batteries. In order to elaborate dense ceramics, conventional sintering methods often use high temperature (≥1000 °C) with long dwelling times (several hours) to achieve high relative density (∼90%). In this work, an innovative synthesis and processing approach is proposed. A fast and easy processing technique called microwave-assisted reactive sintering is used to both synthesize and sinter LATP ceramics with suitable properties in one single step. Pure and crystalline LATP ceramics can be achieved in only 10 min at 890 °C starting from amorphous, compacted LATP's precursors powders. Despite a relative density of 88%, the ionic conductivity measured at ambient temperature (3.15 × 10-4 S cm-1) is among the best reported so far. The study of the activation energy for Li+ conduction confirms the high quality of the ceramic (purity and crystallinity) achieved by using this new approach, thus emphasizing its interest for making ion-conducting ceramics in a simple and fast way.

  13. Discussion on Microwave-Matter Interaction Mechanisms by In Situ Observation of "Core-Shell" Microstructure during Microwave Sintering.

    PubMed

    Liu, Wenchao; Xu, Feng; Li, Yongcun; Hu, Xiaofang; Dong, Bo; Xiao, Yu

    2016-02-23

    This research aims to deepen the understanding of the interaction mechanisms between microwave and matter in a metal-ceramic system based on in situ synchrotron radiation computed tomography. A special internal "core-shell" microstructure was discovered for the first time and used as an indicator for the interaction mechanisms between microwave and matter. Firstly, it was proved that the microwave magnetic field acted on metal particles by way of inducing an eddy current in the surface of the metal particles, which led to the formation of a "core-shell" microstructure in the metal particles. On this basis, it was proposed that the ceramic particles could change the microwave field and open a way for the microwave, thereby leading to selective heating in the region around the ceramic particles, which was verified by the fact that all the "core-shell" microstructure was located around ceramic particles. Furthermore, it was indicated that the ceramic particles would gather the microwaves, and might lead to local heating in the metal-ceramic contact region. The focusing of the microwave was proved by the quantitative analysis of the evolution rate of the "core-shell" microstructure in a different region. This study will help to reveal the microwave-matter interaction mechanisms during microwave sintering.

  14. Control of Silver Diffusion in Low-Temperature Co-Fired Diopside Glass-Ceramic Microwave Dielectrics

    PubMed Central

    Chou, Chen-Chia; Chang, Chun-Yao; Chen, Guang-Yu; Feng, Kuei-Chih; Tsao, Chung-Ya

    2017-01-01

    Electrode material for low-temperature co-fired diopside glass-ceramic used for microwave dielectrics was investigated in the present work. Diffusion of silver from the electrode to diopside glass-ceramics degrades the performance of the microwave dielectrics. Two approaches were adopted to resolve the problem of silver diffusion. Firstly, silicon-oxide (SiO2) powder was employed and secondly crystalline phases were chosen to modify the sintering behavior and inhibit silver ions diffusion. Nanoscale amorphous SiO2 powder turns to the quartz phase uniformly in dielectric material during the sintering process, and prevents the silver from diffusion. The chosen crystalline phase mixing into the glass-ceramics enhances crystallinity of the material and inhibits silver diffusion as well. The result provides a method to decrease the diffusivity of silver ions by adding the appropriate amount of SiO2 and appropriate crystalline ceramics in diopside glass-ceramic dielectric materials. Finally, we used IEEE 802.11a 5.8 GHz as target specification to manufacture LTCC antenna and the results show that a good broadband antenna was made using CaMgSi2O6 with 4 wt % silicon oxide. PMID:29286330

  15. Microwave processed NiMg ferrite: Studies on structural and magnetic properties

    NASA Astrophysics Data System (ADS)

    Chandra Babu Naidu, K.; Madhuri, W.

    2016-12-01

    Ferrites are magnetic semiconductors realizing an important role in electrical and electronic circuits where electrical and magnetic property coupling is required. Though ferrite materials are known for a long time, there is a large scope in the improvement of their properties (vice sintering and frequency dependence of electrical and magnetic properties) with the current technological trends. Forth coming technology is aimed at miniaturization and smart gadgets, electrical components like inductors and transformers cannot be included in integrated circuits. These components are incorporated into the circuit as surface mount devices whose fabrication involves low temperature co-firing of ceramics and microwave monolithic integrated circuits technologies. These technologies demand low temperature sinter-ability of ferrites. This article presents low temperature microwave sintered Ni-Mg ferrites of general chemical formula Ni1-xMgxFe2O4 (x=0, 0.2, 0.4, 0.5, 0.6, 0.8, 1) for potential applications as transformer core materials. The series of ferrites are characterized using X-ray diffractometer, scanning electron microscopy, Fourier transform infrared and vibrating sample magnetometer for investigating structural, morphological and magnetic properties respectively. The initial permeability is studied with magnesium content, temperature and frequency in the temperature range of 308 K-873 K and 42 Hz-5 MHz.

  16. Innovative processing of dense LSGM electrolytes for IT-SOFC's

    NASA Astrophysics Data System (ADS)

    Rambabu, B.; Ghosh, Samrat; Zhao, Weichang; Jena, Hrudananda

    This paper reports for the first time the attempted synthesis of SrO- and MgO-doped LaGaO 3 (La 1- xSr xGa 1- yMg yO 3-0.5(x+ y), LSGM) perovskite by an aqueous 'regenerative' solution route. This novel technique enabled recycling of the undesired product and subsequently yielded product with much better phase purity and density than that obtained from the solid-state route. La 0.8Sr 0.2Ga 0.85Mg 0.15O 2.825 (LSGM-2015) and LaGaO 3 were prepared using both the regenerative sol-gel (RSG) and conventional solid-state route at 1400 °C. Series of La 0.8Sr 0.2Ga 0.83Mg 0.17O 2.815 (LSGM-2017) pellets were also prepared by the RSG method at different sintering temperature (1200-1500 °C) and time. The effect of conventional and microwave sintering of samples obtained from both solid-state and regenerative route was also investigated. Microwave heating was carried out using SiC as a microwave susceptor. The LSGM pellets prepared by using different synthetic methods were characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM), electrochemical impedance spectroscopy (EIS) and pellet density was determined by pycnometry. The LSGM-2015 prepared by RSG route exhibited conductivity σ t = 0.066 and 0.029 S cm -1 at 800 and 700 °C, respectively, and activation energy of the bulk, grain-boundary, and total are E b = 0.97 eV, E gb = 1.03 eV and E t = 1.01 eV, respectively. The sintering temperature severely affected the grain size (<0.1-10 μm) and also the grain-boundary resistance (3-175 kΩ). The unique aspect of this RSG technique is that the final product can be recycled which makes the process cost effective and time saving compared to the solid-state ceramic technique and this technique would allow optimization of processing parameters in a cost effective and time saving manner for obtaining well sintered LSGM as an electrolyte for IT-SOFC's.

  17. PHASE EVOLUTION AND MICROWAVE DIELECTRIC PROPERTIES OF (Li0.5Bi0.5)(W1-xMox)O4(0.0 ≤ x ≤ 1.0) CERAMICS WITH ULTRA-LOW SINTERING TEMPERATURES

    NASA Astrophysics Data System (ADS)

    Zhou, Di; Guo, Jing; Yao, Xi; Pang, Li-Xia; Qi, Ze-Ming; Shao, Tao

    2012-11-01

    The (Li0.5Bi0.5)(W1-xMox)O4(0.0 ≤ x ≤ 1.0) ceramics were prepared via the solid state reaction method. The sintering temperature decreased almost linearly from 755°C for (Li0.5Bi0.5)WO4 to 560°C for (Li0.5Bi0.5)MoO4. When the x≤0.3, a wolframite solid solution can be formed. For x = 0.4 and x = 0.6 compositions, both the wolframite and scheelite phases can be formed from the X-ray diffraction analysis, while two different kinds of grains can be revealed from the scanning electron microscopy and energy-dispersive X-ray spectrometer results. High performance of microwave dielectric properties were obtained in the (Li0.5Bi0.5)(W0.6Mo0.4)O4 ceramic sintered at 620°C with a relative permittivity of 31.5, a Qf value of 8500 GHz (at 8.2 GHz), and a temperature coefficient value of +20 ppm/°C. Complex dielectric spectra of pure (Li0.5Bi0.5)WO4 ceramic gained from the infrared spectra were extrapolated down to microwave range, and they were in good agreement with the measured values. The (Li0.5Bi0.5)(W1-xMox)O4(0.0 ≤ x ≤ 1.0) ceramics might be promising for low temperature co-fired ceramic technology.

  18. Microwave absorption studies of magnetic sublattices in microwave sintered Cr3+ doped SrFe12O19

    NASA Astrophysics Data System (ADS)

    Praveena, K.; Sadhana, K.; Liu, Hsiang-Lin; Bououdina, M.

    2017-03-01

    The partial substitution of Fe3+ by Cr3+ in strontium hexaferrite has shown to be an effective method to tailor anisotropy for many novel microwave applications. Some basic studies have revealed that this substitution leads to unusual interactions among the magnetic sublattices of the hexaferrite. In order to investigate these interactions, Cr3+ doped SrCrxFe12-xO19 (x=0.0, 0.1, 0.3, 0.5, 0.7 and 0.9) (m-type) hexaferrites were prepared by microwave-hydrothermal (m-H) method and subsequently sintered at 950 °C/90 min using microwave furnace. The magnetic hysteresis (m-H) loops revealed the ferromagnetic nature of nanoparticles (NPs). The coercive field was increasing from 3291 Oe to 7335 Oe with increasing chromium content. This resulting compacts exhibited high squareness ratio (Mr/Ms-80%). The intrinsic coercivity (Hci) above 1,20,000 Oe and high values of magnetocrystalline anisotropy revealed that all samples are magnetically hard materials. A material with high loss as well as high dielectric constant may be desired in applications such as electromagnetic (EM) wave absorbing coatings. The room temperature complex dielectric and magnetic properties (ε‧, ε‧‧, μ‧ and μ‧‧) of Cr3+ doped SrFe12O19 were measured in X-band region. The frequency dependent dielectric and magnetic losses were increasing to large extent. The reflection coefficient varied from -16 to -33 dB at 10.1 GHz as Cr3+ concentration increased from x=0.0 to x=0.9. Ferromagnetic resonance spectra (FMR) were measured in the X-band (9.4 GHz), linewidth decreases with chromium concentration from 1368 to 752 Oe from x=0.0 to x=0.9, which is quite low compared to commercial samples. We also have detailed origins of the FMR linewidth broadenings in terms of some important theoretical models. These results show that chromium doped strontium hexaferrites are useful for microwave absorption in the X-band frequency and also have potential for use in low frequency self-biased microwave/millimeter devices such as circulators and isolators.

  19. Microstructure and microwave magnetic properties of Low-Firing Li0.42Zn0.27Ti0.11Mn0.1Fe2.1O4 ferrite

    NASA Astrophysics Data System (ADS)

    Xie, Fei; Jia, Lijun; Shen, Qihang; Qiu, Hua; Zhang, Huaiwu

    2018-03-01

    Low firing temperature and excellent gyromagnetic properties such as high remanence square ratio and narrow ferromagnetic resonance line width are required for the application in nonreciprocal microwave ferrite devices based on low temperature cofired ceramics (LTCC) technology. In this research, Bi2O3-Li2CO3 mixture was introduced as the sintering agent to lower the sintering temperature of Li0.42Zn0.27Ti0.11Mn0.1Fe2.1O4 ferrite. The influence of Bi2O3-Li2CO3 mixture upon the phase composition, composite microstructures and gyromagnetic properties of LiZnTiMn ferrite sintered at low temperature has been investigated for LTCC integration applications. With a proper amount of Bi2O3-Li2CO3 mixture, the sintering temperature of LiZnTiMn ferrite successfully reduced to below 900°C from 1100°C without degradation of magnetic properties, meanwhile, both of saturation flux density and remanence square ratio were increased.

  20. Raman spectra of Nd/Sn cosubstituted Ba6-3xSm8+2xTi18O54 microwave dielectric ceramics

    NASA Astrophysics Data System (ADS)

    Wu, S. Y.; Li, Y.; Chen, X. M.

    2004-11-01

    The Raman spectra and dielectric properties of Nd /Sn cosubstituted Ba6-3xSm8+2xTi18O54 (x =2/3) microwave dielectric ceramics were discussed as the functions of composition and sintering time. The peaks in 753cm-1 were caused by the second order scatter. The peaks in 425 and 403cm-1 became sharper with prolonging sintering time, and this reflected the increased lattice defects. The shoulder peak near 292cm-1 was caused by the octahedral tilt when A site is Nd3+. The Raman shifts in 590, 520, 280, and 232cm-1 indicated no obvious change in position, but all peaks became sharper with prolonging sintering time. This indicated the increased ordering degree of A-site cations. With prolonging sintering time, the Qf factor (Q is the inverse of dielectric loss, tan δ, and f is the resonant frequency) increased, and the temperature coefficient of resonant frequency significantly decreased or became more negative, while the dielectric constant indicated no significant variation.

  1. Sintering characteristic and microwave dielectric properties of 0.45Ca0.6Nd0.267TiO3-0.55Li0.5Nd0.5TiO3 ceramics with La2O3-B2O3-ZnO additive

    NASA Astrophysics Data System (ADS)

    Chen, Yawei; Zhang, Shuren; Li, Enzhu; Niu, Na; Yang, Hongcheng

    2018-02-01

    The La2O3-B2O3-ZnO (LBZ) glass was proved to be an effective sintering aid of the 0.45Ca0.6Nd0.26TiO3-0.55Li0.5Nd0.5TiO3 (CNT-LNT) ceramics. The influence of LBZ glass on the phase composition, low temperature sintering process, microstructure, activation energy, and dielectric properties of CNT-LNT ceramics was investigated in detail. The LBZ glass induced an obvious decrease of the CNT-LNT ceramics sintering temperature from 1350 to 1000 °C due to the liquid phase formation, which reduced the activation energy ( E a) of the CNT-LNT ceramics. In addition, the near zero temperature coefficient of resonant frequency (τƒ) value was obtained by adding moderate quantity of LBZ glass. CNT-LNT + 5 wt% LBZ (CNT-LNT + 5L) ceramics sintered at 1000°C/4 h displayed good microwave dielectric properties of: ɛ r = 101.7, Q × f = 1560 GHz ( f = 3.25 GHz) and τ ƒ = 2.3 ppm °C-1.

  2. Synthesis and Characterization of Nano Boron Nitride Reinforced Magnesium Composites Produced by the Microwave Sintering Method

    PubMed Central

    Seetharaman, Sankaranarayanan; Subramanian, Jayalakshmi; Tun, Khin Sandar; Hamouda, Abdelmagid S.; Gupta, Manoj

    2013-01-01

    In this study, magnesium composites with nano-size boron nitride (BN) particulates of varying contents were synthesized using the powder metallurgy (PM) technique incorporating microwave-assisted two-directional sintering followed by hot extrusion. The effect of nano-BN addition on the microstructural and the mechanical behavior of the developed Mg/BN composites were studied in comparison with pure Mg using the structure-property correlation. Microstructural characterization revealed uniform distribution of nano-BN particulates and marginal grain refinement. The coefficient of thermal expansion (CTE) value of the magnesium matrix was improved with the addition of nano-sized BN particulates. The results of XRD studies indicate basal texture weakening with an increase in nano-BN addition. The composites showed improved mechanical properties measured under micro-indentation, tension and compression loading. While the tensile yield strength improvement was marginal, a significant increase in compressive yield strength was observed. This resulted in the reduction of tension-compression yield asymmetry and can be attributed to the weakening of the strong basal texture. PMID:28809252

  3. Low-Temperature Sintering Li3Mg1.8Ca0.2NbO6 Microwave Dielectric Ceramics with LMZBS Glass

    NASA Astrophysics Data System (ADS)

    Wang, Gang; Zhang, Huaiwu; Liu, Cheng; Su, Hua; Jia, Lijun; Li, Jie; Huang, Xin; Gan, Gongwen

    2018-05-01

    Li3Mg1.8Ca0.2NbO6 ceramics doped with Li2O-MgO-ZnO-B2O3-SiO2 glass (LMZBS) were prepared via a solid-state route. The LMZBS glass effectively reduced the sintering temperature of Li3Mg1.8Ca0.2NbO6 ceramics to 950°C. The effects of the LMZBS glass on the sintering behavior, microstructures and microwave dielectric properties of Li3Mg1.8Ca0.2NbO6 ceramics are discussed in detail. Among all the LMZBS doped Li3Mg1.8Ca0.2NbO6 ceramics, the sample with 1 wt.% of LMZBS glass sintered at 950°C for 4 h exhibited good dielectric properties: ɛ r = 16.7, Q × f = 31,000 GHz (9.92 GHz), τ f = - 1.3 ppm/°C. The Li3Mg1.8Ca0.2NbO6 ceramics possessed excellent chemical compatibility with Ag electrodes, and could be applied in low temperature co-fired ceramics (LTCC) applications.

  4. Microstructure and Mechanical Behavior of Microwave Sintered Cu50Ti50 Amorphous Alloy Reinforced Al Metal Matrix Composites

    NASA Astrophysics Data System (ADS)

    Reddy, M. Penchal; Ubaid, F.; Shakoor, R. A.; Mohamed, A. M. A.

    2018-06-01

    In the present work, Al metal matrix composites reinforced with Cu-based (Cu50Ti50) amorphous alloy particles synthesized by ball milling followed by a microwave sintering process were studied. The amorphous powders of Cu50Ti50 produced by ball milling were used to reinforce the aluminum matrix. They were examined by x-ray diffraction (XRD), scanning electron microscopy (SEM), microhardness and compression testing. The analysis of XRD patterns of the samples containing 5 vol.%, 10 vol.% and 15 vol.% Cu50Ti50 indicates the presence of Al and Cu50Ti50 peaks. SEM images of the sintered composites show the uniform distribution of reinforced particles within the matrix. Mechanical properties of the composites were found to increase with an increasing volume fraction of Cu50Ti50 reinforcement particles. The hardness and compressive strength were enhanced to 89 Hv and 449 MPa, respectively, for the Al-15 vol.% Cu50Ti50 composites.

  5. Microwave dielectric properties of CaCu3Ti4O12-Al2O3 composite

    NASA Astrophysics Data System (ADS)

    Rahman, Mohd Fariz Ab; Abu, Mohamad Johari; Karim, Saniah Ab; Zaman, Rosyaini Afindi; Ain, Mohd Fadzil; Ahmad, Zainal Arifin; Mohamed, Julie Juliewatty

    2016-07-01

    (1-x)CaCu3Ti4O12 + (x)Al2O3 composite (0 ≤ x ≤0.25) was prepared via conventional solid-state reaction method. The fabrication of sample was started with synthesizing stoichiometric CCTO from CaCO3, CuO and TiO2 powders, then wet-mixed in deionized water for 24 h. The process was continued with calcined CCTO powder at 900 °C for 12 h before sintered at 1040 °C for 10 h. Next, the calcined CCTO powder with different amount of Al2O3 were mixed for 24 h, then palletized and sintered at 1040 °C for 10. X-ray diffraction analysis on the sintered samples showed that CCTO powder was in a single phase, meanwhile the trace of secondary peaks which belong to CaAl2O4 and Corundum (Al2O3) could be observed in the other samples Scanning electron microscopy analysis showed that the grain size of the sample is firstly increased with addition of Al2O3 (x = 0.01), then become smaller with the x > 0.01. Microwave dielectric properties showed that the addition of Al2O3 (x = 0.01) was remarkably reduced the dielectric loss while slightly increased the dielectric permittivity. However, further addition of Al2O3 was reduced both dielectric loss and permittivity at least for an order of magnitude.

  6. Magnetic and dielectric characterization of Co{sub 0.9}Ni{sub 0.1}Fe{sub 2}O{sub 4} prepared by hydroxide co-precipitation method

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mane, S. M., E-mail: manesagar99@gmail.com; Vijaysingh Mohite Patil Mahavidyalaya Natepute, Solapur-413109; Tirmali, P. M., E-mail: pravintirmali@gmail.com

    2016-04-13

    Co{sub 1–x} Ni{sub x}Fe{sub 2}O{sub 4} (where x=0.1) were prepared by using the hydroxide co-precipitation method. An obtained precipitate was sintered at 1100°C by microwave sintering technique. The structural analysis confirms the single-phase cubic spinel structure with Fd-3m space group. The magnetic characterization was carried out at temperature 300K.Saturation magnetisation and coercivity is 77.22 and 908 Oe. Irreversibility is observed between the ZFC and FC curves at 100 Oe. The variation in the dielectric constant and loss tangent are studied at room temperature with increasing frequency. Continues decrease in the the dielectric constant with increasing frequency shows inverse dependence onmore » frequency. Morphological and elemental studies were done by using the scanning electron microscope with EDAX.« less

  7. Bismuth Titanate Fabricated by Spray-on Deposition and Microwave Sintering For High-Temperature Ultrasonic Transducers.

    PubMed

    Searfass, Clifford T; Pheil, C; Sinding, K; Tittmann, B R; Baba, A; Agrawal, D K

    2016-01-01

    Thick films of ferroelectric bismuth titanate (Bi4Ti3O12) have been fabricated by spray-on deposition in conjunction with microwave sintering for use as high-temperature ultrasonic transducers. The elastic modulus, density, permittivity, and conductivity of the films were characterized. Electro-mechanical properties of the films were estimated with a commercial d33 meter which gave 16 pC/N. This value is higher than typically reported for bulk bismuth titanate; however, these films withstand higher field strengths during poling which is correlated with higher d33 values. Films were capable of operating at 650 °C for roughly 5 min before depoling and can operate at 600 °C for at least 7 days.

  8. Structure and Dielectric Properties of (Sr0.2Ca0.488Nd0.208) TiO3-Li3NbO4 Ceramic Composites

    NASA Astrophysics Data System (ADS)

    Xia, C. C.; Chen, G. H.

    2017-12-01

    The new ceramic composites of (1-x) Li3NbO4-x (Sr0.2Ca0.488Nd0.208)TiO3 were prepared by the conventional solid state reaction method. The sintering behavior, phase composition, microstructure and microwave dielectric properties of the ceramics were investigated specially. The SEM and XRD results show that (1-x) Li3NbO4-x (Sr0.2Ca0.488Nd0.208) TiO3 (0.35≤x≤0.5) composites were composed of two phase, i.e. perovskite and Li3NbO4. With the increase of x, the ɛr increases from 27.1 to 38.7, Q×f decreases from 55000 GHz to 16770 GHz, and the τ f increases from -49 ppm/°C to 226.7 ppm/°C. The optimized dielectric properties with ɛr∼31.4, Q×f~16770GHz and τf~-8.1ppm/°C could be obtained as x=0.4 sintered at 1100°C for 4h. The as-prepared ceramic is expected to be used in resonators, filters, and other microwave devices.

  9. Effects of Gd-Substitutions on the Microstructure, Electrical and Electromagnetic Behavior of M-Type Hexagonal Ferrites

    NASA Astrophysics Data System (ADS)

    Ahmad, Ishtiaq; Ahmad, Mahmood; Ali, Ihsan; Kanwal, M.; Awan, M. S.; Mustafa, Ghulam; Ahmad, Mukhtar

    2015-07-01

    A series of Gd-substituted Ba-Co-based (M-type) hexaferrites having the chemical compositions of Ba0.5Co0.5Gd x Fe12- x O19 ( x = 0.0, 0.2, 0.4, 0.6, 0.8, 1.0) were prepared by co-precipitation method. The pellets formed by co-precipitated powder were calcined at a temperature of 1200°C for 20 h. Final sintering was done at 1320°C for 4 h. From the x-ray diffraction analysis, it was revealed that all the samples showed M-type hexagonal structure as a major phase. The scanning electron microscope was used to examine the morphology of the sintered ferrites. The average grain size estimated by the line intercept method was found to be in the range of 2.8-1.0 μm. The room temperature DC resistivity increases with increasing Gd-contents to make these ferrites useful for high frequency applications and microwave devices. Lower values of coercivity ( H c) and higher saturation magnetization ( M s) may be suitable to enhance the permeability of these ferrites, which is favorable for impedance matching in microwave absorption. In addition, reflection coefficients for a sample was also measured from a frequency of 1 MHz to 3 GHz and a reflection peak was observed at about 2.2 GHz.

  10. Microwave-assisted one-step patterning of aqueous colloidal silver.

    PubMed

    Yang, G; Zhou, Y W; Guo, Z R; Wan, Y; Ding, Q; Bai, T T; Wang, C L; Gu, N

    2012-07-05

    A new approach of utilizing microwave to pattern gradient concentric silver nanoparticle ring structures has been presented. The width and height of a single ring and the space between adjacent rings can be adjusted by changing the silver colloidal concentration and the microwave output power. By simply enhancing the ambient vapour pressure to the saturated value during microwave-assisted evaporation, sub-100 nm rings can be deposited in between adjacent micro-rings over a distance of millimetres. Combined with microwave sintering, this approach can also create conductive silver tracks in a single step, showing huge potential in fabricating micro- and nano-electronic devices in an ultra-fast and cost-effective fashion.

  11. Osseointegrated dental implants produced via microwave processing

    NASA Astrophysics Data System (ADS)

    Kutty, Muralithran G.

    This research is a comprehensive effort to develop osseointegrated dental implants via microwave processing. A net-shape microwave sintering procedure was employed to fabricate dental implants. Commercial pure titanium powders (-100, -200 and -325 mesh sizes) were used in this work. This process eliminates the need for machining of implants and prevents contamination. The idea was to take advantage of the peculiar way microwave couple with metallic powders, i.e. generating heat in the interior of the sample and dissipating it away through the surface. The desired features for an implant, a dense core with surface pores, is not possible via conventional sintering. Coating with hydroxyapatite via electrodeposition and chemical combustion vapor deposition was also attempted to further enhance the bioactivity of this layer. Surface roughness and area were measured using a non-contact surface profilometer to further describe the unique surface. In-vitro studies, conducted using osteoblast cells extracted from neonatal rat calvarial, showed improved cell growth on all the uncoated porous samples. However, the highest cell growth was observed on the -200 mesh size samples. The higher surface area of the -200 mesh samples is attributed to this observation. This work was able to identify the processing parameters for titanium in microwave and establishes the importance of surface area as a key parameter for cell growth on porous surfaces as compared to surface roughness.

  12. The effect of microwave and conventional heating on a modified sol-gel derived biphasic calcium phosphate

    NASA Astrophysics Data System (ADS)

    Herradi, S.; Bouhazma, S.; Khaldi, M.; El Hachadi, A.; El Bali, B.; Lachkar, M.

    2018-03-01

    A facile sol-gel method was used to synthesize either hydroxyapatite (HA) or beta-tricalcium phosphate (β-TCP) as the major phase. Herein, we report, on the one hand, the effect of a very low maturation temperature on the final powder composition after drying step, and on the other hand, we compare the effect of calcination of this powder by microwave or electric furnace. It was found that microwave heating has led to the formation of hydroxyapatite phase upon 180°C for 20 minutes, however, XRD patterns show that the powder becomes less crystallized upon 220°C and amorphous upon 230°C. In contrast, furnace heating at 600°C and 700°C converts the as-synthesized powder to β-TCP as the major phase together with HA as the minor phase. This work shows the possibility to obtain the as-prepared BCP at much lower maturation temperature; it also gives an insight into the role, of either microwave or conventional heating, in controlling the ratio between HA and β-TCP in the sintered powder.

  13. The microwave properties of Ag(Ta0.8Nb0.2)O3 thick film interdigital capacitors on alumina substrates

    NASA Astrophysics Data System (ADS)

    Lee, Ku-Tak; Koh, Jung-Hyuk

    2012-01-01

    In this paper, we will introduce the microwave properties of Ag(Ta0.8Nb0.2)O3 thick film planar type interdigital capacitors fabricated on alumina substrates. The tailored paraelectric state of Ag(Ta,Nb)O3 allows the material to be regarded as a part of the family of microwave materials. As thick films formed in our experiment, Ag(Ta,Nb)O3 exhibited extremely low dielectric loss with relatively high dielectric permittivity. This low dielectric loss is a very important issue for microwave applications. Therefore, we investigated the microwave properties of Ag(Ta0.8Nb0.2)O3 thick film planar type interdigital capacitors. Ag(Ta0.8Nb0.2)O3 thick films were prepared by a screen-printing method on alumina substrates and were sintered at 1140 °C for 2 hrs. The XRD analysis results showed that the Ag(Ta0.8Nb0.2)O3 thick film has the perovskite structure. The frequency dependent dielectric permittivity showed that these Ag(Ta0.8Nb0.2)O3 thick film planar type interdigital capacitors have very weak frequency dispersions with low loss tangents in the microwave range.

  14. Emerging Ceramic-based Materials for Dentistry

    PubMed Central

    Denry, I.; Kelly, J.R.

    2014-01-01

    Our goal is to give an overview of a selection of emerging ceramics and issues for dental or biomedical applications, with emphasis on specific challenges associated with full-contour zirconia ceramics, and a brief synopsis on new machinable glass-ceramics and ceramic-based interpenetrating phase composites. Selected fabrication techniques relevant to dental or biomedical applications such as microwave sintering, spark plasma sintering, and additive manufacturing are also reviewed. Where appropriate, the authors have added their opinions and guidance. PMID:25274751

  15. Characterization of microwave assisted sintered graphene toughened alumina (GTA) nano composites

    NASA Astrophysics Data System (ADS)

    Vandana, K. I. Vishnu; Suman, K. N. S.; Viswabaskaran, V.

    2017-07-01

    The objective of the present work is to characterize different mechanical properties of a nano composite made out of a combination of nano alumina and nano graphene. The nano powders of alumina and Graphene were mixed using High Energy Ball Mill and weight ratio of Al:G-C was maintained in the range of 0 to 2wt%. The prepared alumoorganic nano Composite Powders were compacted by Uniaxial Pellet Press and Graphene Toughened alumina (GTA) based composites were sintered in inert atmosphere at 1600°C using Hybrid Microwave Furnace. XRD and SEM studies are conducted on these specimens. Density and hardness tests are also performed on these specimens. In addition, wear and fracture toughness tests will also be carried out. In order to strengthen the experimental observations obtained, theoretical interpretation will be given to enhance the present work.

  16. ISRU 3D printing for habitats and structures on the Moon

    NASA Astrophysics Data System (ADS)

    Cowley, Aidan

    2016-07-01

    In-situ-resource utilisation (ISRU) in combination with 3D printing may evolve into a key technology for future exploration. Setting up a lunar facility could be made much simpler by using additive manufacturing techniques to build elements from local materials - this would drastically reduce mission mass requirements and act as an excellent demonstrator for ISRU on other planetary bodies. Fabricating structures and components using Lunar regolith is an area of interest for ESA, as evidenced by past successful General Studies Program (GSP) and ongoing technology development studies. In this talk we detail a number of projects looking into the behavior of Lunar regolith simulants, their compositional variants and approaches to sintering such material that are under-way involving EAC, ESTEC and DLR. We report on early studies into utilizing conventional thermal sintering approaches of simulants as well as microwave sintering of these compositions. Both techniques are candidates for developing a 3D printing methodology using Lunar regolith. It is known that the differences in microwave effects between the actual lunar soil and lunar simulants can be readily ascribed to the presence of nanophase metallic Fe, native to Lunar regolith but lacking in simulants. In compostions of simulant with increased Illmenite (FeTiO3) concentrations, we observe improved regolith response to microwave heating, and the readily achieved formation of a glassy melt in ambient atmosphere. The improved response relative to untreated simulant is likely owing to the increased Fe content in the powder mix.

  17. Applied mathematical problems in modern electromagnetics

    NASA Astrophysics Data System (ADS)

    Kriegsman, Gregory

    1994-05-01

    We have primarily investigated two classes of electromagnetic problems. The first contains the quantitative description of microwave heating of dispersive and conductive materials. Such problems arise, for example, when biological tissue are exposed, accidentally or purposefully, to microwave radiation. Other instances occur in ceramic processing, such as sintering and microwave assisted chemical vapor infiltration and other industrial drying processes, such as the curing of paints and concrete. The second class characterizes the scattering of microwaves by complex targets which possess two or more disparate length and/or time scales. Spatially complex scatterers arise in a variety of applications, such as large gratings and slowly changing guiding structures. The former are useful in developing microstrip energy couplers while the later can be used to model anatomical subsystems (e.g., the open guiding structure composed of two legs and the adjoining lower torso). Temporally complex targets occur in applications involving dispersive media whose relaxation times differ by orders of magnitude from thermal and/or electromagnetic time scales. For both cases the mathematical description of the problems gives rise to complicated ill-conditioned boundary value problems, whose accurate solutions require a blend of both asymptotic techniques, such as multiscale methods and matched asymptotic expansions, and numerical methods incorporating radiation boundary conditions, such as finite differences and finite elements.

  18. Microwave Absorption Properties of La0.8Ca0.2-xAgxMnO3 (x=0.05; x=0.15) Synthesized by Sol-Gel Method

    NASA Astrophysics Data System (ADS)

    Kurniawan, B.; Laksmi, W.; Sahara, N. A.

    2018-04-01

    Microwave absorption properties of La0.8Ca0.2-xAgxMnO3 (x= 0.05; 0.15) is reported in this paper. Lanthanum manganite materials was reported as a potential absorber material [1][2][3]. In this paper, the material was synthesized by sol-gel method, calcined at 550°C, and sintered at 900°C. The material was characterized by X-Ray Diffractometer (XRD), and we found that the materials were single phased. Through SEM-EDS characterization it is found that the materials have compositional purity. The resistivity of the materials is obtained by four point probe method, and it is shown that Ag doped decreases the resistivity of the materials. Reflection loss of La0.8Ca0.15Ag0.05MnO3 reaches -4.470 dB and La0.8Ca0.05Ag0.15MnO3 reaches - 7.953 dB.

  19. Book of Abstracts, 1983 IEEE International Symposium on Applications of Ferroelectrics (ISAF).

    DTIC Science & Technology

    1984-05-31

    adverse internal stresses develop which can contribute to the a31 coefficient. To lower the a31 coefficient the polyurethane is foamed , in addition to...light beams. Since the grating shift depends on the recording mechanism, measurements of the energy transfer can also give additional information on the... addition of Mn ( 1-2 ,ol %) to complete the sintering and decrease the dielectric loss at microwave frequnecy. The sintering w=s madc at 1500W-1600 C

  20. Effects of Natural Rubber on Microwave Absorption Characteristics of Some Li-Ni-Zn Ferrite-Thermoplastic Natural Rubber Composites

    NASA Astrophysics Data System (ADS)

    Abdul Hamid, Siti Atkah; Abdullah, Mustaffa Hj.; Ahmad, Sahrim Hj.; Mansor, Abdul Aziz; Yusoff, Ahmad Nazlim

    2002-09-01

    A microwave (Li0.5Fe0.5)0.4Ni0.3Zn0.3Fe2O4 (LNZ) ferrite was prepared by a conventional sintering method in air. Thermoplastic natural rubber (TPNR) was prepared from polypropylene (PP) and natural rubber (NR) in the ratios of 80:20, 70:30, 60:40, 50:50 and 40:60 with liquid natural rubber as a compatibilizer by a melt blending technique. LNZ ferrite-TPNR composites with 20 wt% ferrite filler were prepared using a Brabender plasticorder internal mixer. The microwave electromagnetic properties of the composites were studied in the frequency range of 0.3-13.5 GHz using a microwave vector network analyzer (MVNA). The real and imaginary components of the relative complex dielectric permittivity (\\varepsilonr*=\\varepsilonr\\prime-j\\varepsilonr\\prime\\prime) and magnetic permeability (μr*=μr\\prime-jμr\\prime\\prime) were calculated from the measured complex scattering parameters (S11* and S12*) using the Nicolson-Ross model. The dielectric and magnetic properties were found to depend on the NR and PP content in the composites. The minimum reflection loss (RL) under the matching conditions increases with increasing NR content.

  1. Method for preparing spherical ferrite beads and use thereof

    DOEpatents

    Lauf, Robert J.; Anderson, Kimberly K.; Montgomery, Frederick C.; Collins, Jack L.

    2002-01-01

    The invention allows the fabrication of small, dense, highly polished spherical beads of hexagonal ferrites with selected compositions for use in nonreciprocal microwave and mm-wave devices as well as in microwave absorbent or reflective coatings, composites, and the like. A porous, generally spherical bead of hydrous iron oxide is made by a sol-gel process to form a substantially rigid bead having a generally fine crystallite size and correspondingly finely distributed internal porosity. The resulting gel bead is washed and hydrothermally reacted with a soluble alkaline earth salt (typically Ba or Sr) under conditions of elevated temperature and pressure to convert the bead into a mixed hydrous iron-alkaline earth oxide while retaining the generally spherical shape. This mixed oxide bead is then washed, dried, and calcined to produce the desired (BaFe.sub.12 O.sub.19 or SrFe.sub.12 O.sub.19) crystal structure. The calcined bead is then sintered to form a dense bead of the BaFe.sub.12 O.sub.19 and SrFe.sub.12 O.sub.19 phase suitable for polishing and incorporation into various microwave devices and components.

  2. SrO- and MgO-doped microwave sintered 3D printed tricalcium phosphate scaffolds: mechanical properties and in vivo osteogenesis in a rabbit model.

    PubMed

    Tarafder, Solaiman; Dernell, William S; Bandyopadhyay, Amit; Bose, Susmita

    2015-04-01

    The presence of interconnected macro pores allows guided tissue regeneration in tissue engineering scaffolds. However, highly porous scaffolds suffer from having poor mechanical strength. Previously, we showed that microwave sintering could successfully be used to improve mechanical strength of macro porous tricalcium phosphate (TCP) scaffolds. This study reports the presence of SrO and MgO as dopants in TCP scaffolds improves mechanical and in vivo biological performance. We have used direct three dimensional printing (3DP) technology for scaffold fabrication. These 3DP scaffolds possessed multiscale porosity, that is, 3D interconnected designed macro pores along with intrinsic micro pores. A significant increase in mechanical strength, between 37 and 41%, was achieved due to SrO and MgO doping in TCP as compared with pure TCP. Maximum compressive strengths of 9.38 ± 1.86 MPa and 12.01 ± 1.56 MPa were achieved by conventional and microwave sintering, respectively, for SrO-MgO-doped 3DP scaffolds with 500 μm designed pores. Histomorphological and histomorphometric analysis revealed a significantly higher osteoid, bone and haversian canal formation induced by the presence of SrO and MgO dopants in 3DP TCP as compared with pure TCP scaffolds when tested in rabbit femoral condyle defect model. Increased osteon and thus enhanced network of blood vessel formation, and osteocalcin expression were observed in the doped TCP scaffolds. Our results show that these 3DP SrO-MgO-doped TCP scaffolds have the potential for early wound healing through accelerated osteogenesis and vasculogenesis. © 2014 Wiley Periodicals, Inc.

  3. A microwave applicator for uniform irradiation by circularly polarized waves in an anechoic chamber

    NASA Astrophysics Data System (ADS)

    Chiang, W. Y.; Wu, M. H.; Wu, K. L.; Lin, M. H.; Teng, H. H.; Tsai, Y. F.; Ko, C. C.; Yang, E. C.; Jiang, J. A.; Barnett, L. R.; Chu, K. R.

    2014-08-01

    Microwave applicators are widely employed for materials heating in scientific research and industrial applications, such as food processing, wood drying, ceramic sintering, chemical synthesis, waste treatment, and insect control. For the majority of microwave applicators, materials are heated in the standing waves of a resonant cavity, which can be highly efficient in energy consumption, but often lacks the field uniformity and controllability required for a scientific study. Here, we report a microwave applicator for rapid heating of small samples by highly uniform irradiation. It features an anechoic chamber, a 24-GHz microwave source, and a linear-to-circular polarization converter. With a rather low energy efficiency, such an applicator functions mainly as a research tool. This paper discusses the significance of its special features and describes the structure, in situ diagnostic tools, calculated and measured field patterns, and a preliminary heating test of the overall system.

  4. A microwave applicator for uniform irradiation by circularly polarized waves in an anechoic chamber.

    PubMed

    Chiang, W Y; Wu, M H; Wu, K L; Lin, M H; Teng, H H; Tsai, Y F; Ko, C C; Yang, E C; Jiang, J A; Barnett, L R; Chu, K R

    2014-08-01

    Microwave applicators are widely employed for materials heating in scientific research and industrial applications, such as food processing, wood drying, ceramic sintering, chemical synthesis, waste treatment, and insect control. For the majority of microwave applicators, materials are heated in the standing waves of a resonant cavity, which can be highly efficient in energy consumption, but often lacks the field uniformity and controllability required for a scientific study. Here, we report a microwave applicator for rapid heating of small samples by highly uniform irradiation. It features an anechoic chamber, a 24-GHz microwave source, and a linear-to-circular polarization converter. With a rather low energy efficiency, such an applicator functions mainly as a research tool. This paper discusses the significance of its special features and describes the structure, in situ diagnostic tools, calculated and measured field patterns, and a preliminary heating test of the overall system.

  5. An investigation of the thermal shock resistance of lunar regolith and the recovery of hydrogen from lunar soil heated using microwave radiation

    NASA Technical Reports Server (NTRS)

    Meek, T. T.

    1991-01-01

    The objective is to develop a better understanding of the thermal shock properties of lunar regolith sintered using 2.45 GHz electromagnetic radiation and to do a preliminary study into the recovery of bound hydrogen in lunar soil heated using 2.45 GHz radiation. During the first phase of this work, lunar simulant material was used to test whether or not microhardness data could be used to infer thermal shock resistance and later actual lunar regolith was used. Results are included on the lunar regolith since this is of primary concern and not the simulant results. They were similar, however. The second phase investigated the recovery of hydrogen from lunar regolith and results indicate that microwave heating of lunar regolith may be a good method for recovery of bound gases in the regolith.

  6. Phase study and surface morphology of beta-alumina

    NASA Astrophysics Data System (ADS)

    Tak, S. K.

    2018-05-01

    Beta alumina ceramic is well known as a polycrystalline ceramic material. The characteristic crystal structure of beta-alumina makes it useful as a separator in sodium sulphur batteries and other electrochemical devices requiring the passage of sodium ions. β"-alumina powders for this study were prepared by zeta process. The pellets were sintered at different microwave power levels and power schedule to optimize the sintering conditions to obtain preferred β" phase with improved microstructure. Phase identification was studied by X-ray diffraction (XRD). XRD analysis shows increase in β'' phase as the sintering temperature was increased from 1400°C to 1600°C. Surface morphology of the pellets was carried out by Scanning Electron microscopy (SEM). SEM studies revealed the formation and growth of platelet grains with interconnected porosity.

  7. The phase compositions and microwave dielectric properties of Li2Zn(Ti1-xSnx)3O8 ceramics

    NASA Astrophysics Data System (ADS)

    Lu, Xuepeng; Hu, Jie; Chen, Haoyuan; Xu, Wensheng; Li, Shuai

    2017-08-01

    The Li2Zn(Ti1-xSnx)3O8 (0.02≤x≤0.20) ceramics were prepared by the conventional solid-state ceramic route. The sintering behavior, phase compositions, microstructures and microwave dielectric properties of Li2Zn(Ti1-xSnx)3O8 ceramics were thoroughly investigated. The XRD patterns of Li2Zn(Ti1-xSnx)3O8 ceramics exhibited a single spinel as the main phase in the x value range of 0.02-0.08. The dielectric constants decreased linearly with increasing the substitution of Sn, which was mainly controlled by dielectric polarizabilities and secondary phase. The variation of Q×f values was dependent on average grain sizes and secondary phase. The τf values of Li2Zn(Ti1-xSnx)3O8 ceramics became more negative with higher substitution of Sn, which was related to the variations of their cell volumes. Typically, the Li2Zn(Ti0.92Sn0.08)3O8 ceramic sintered at 1075 °C for 4h exhibited good microwave dielectric properties: ɛr= 24.4, Q×f=89300 GHz, τf= -16.0 ppm/°C.

  8. Powder Metallurgy Fabrication of Porous 51(at.%)Ni-Ti Shape Memory Alloys for Biomedical Applications

    NASA Astrophysics Data System (ADS)

    Ibrahim, Mustafa K.; Hamzah, E.; Saud, Safaa N.; Nazim, E. M.

    2018-05-01

    The effect of time and temperature on the microwave sintering of 51(at.%)Ni-Ti shape memory alloys (SMAs) was investigated in the current research. Furthermore, the microstructure, mechanical properties, and bio-corrosion properties were analyzed based on the sintering conditions. The results revealed that the sintering condition of 700 °C for 15 min produced a part with coherent surface survey that does not exhibit gross defects. Increasing the sintering time and temperature created defects on the outer surface, while reducing the temperature to 550 °C severely affected the mechanical properties. The microstructure of these samples showed two regions of Ni-rich region and Ti-rich region between them Ti2Ni, NiTi, and Ni3Ti phases. The differential scanning calorimeter (DSC) curves of Ni-Ti samples exhibited a multi-step phase transformation B19'-R-B2 during heating and cooling. An increase in the sintering temperature from 550 to 700 °C was found to increase the fracture strength significantly and decreased the fracture strain slightly. Reducing the sintering temperature from 700 to 550 °C severely affected the corrosion behaviors of 51%Ni-Ti SMAs. This research aims to select the optimum parameters to produce Ni-Ti alloys with desired microstructure, mechanical properties, and corrosion behaviors for biomedical applications.

  9. SinterHab

    NASA Astrophysics Data System (ADS)

    Rousek, Tomáš; Eriksson, Katarina; Doule, Ondřej

    2012-05-01

    This project describes a design study for a core module on a Lunar South Pole outpost, constructed by 3D printing technology with the use of in-situ resources and equipped with a bio-regenerative life support system. The module would be a hybrid of deployable (CLASS II) and in-situ built (CLASS III) structures. It would combine deployable membrane structures and pre-integrated rigid elements with a sintered regolith shell for enhanced radiation and micrometeorite shielding. The closed loop ecological system would support a sustainable presence on the Moon with particular focus on research activities. The core module accommodates from four to eight people, and provides laboratories as a test bed for development of new lunar technologies directly in the environment where they will be used. SinterHab also includes an experimental garden for development of new bio-regenerative life support system elements. The project explores these various concepts from an architectural point-of-view particularly, as they constitute the building, construction and interior elements. The construction method for SinterHab is based on 3D printing by sintering of the lunar regolith. Sinterator robotics 3D printing technology proposed by NASA JPL enables construction of future generations of large lunar settlements with little imported material and the use of solar energy. The regolith is processed, placed and sintered by the Sinterator robotics system which combines the NASA ATHLETE and the Chariot remotely controlled rovers. Microwave sintering creates a rigid structure in the form of walls, vaults and other architectural elements. The interior is coated with a layer of inflatable membranes inspired by the TransHab project. The life-support system is mainly bio-regenerative and several parts of the system are intrinsically multifunctional and serve more than one purpose. The plants for food production are also an efficient part of atmosphere revitalization and water treatment. Moreover, the plants will be used as a "winter garden" for psychological and recreational purposes. The water in the revitalization system has a multifunctional use, as radiation shielding in the safe-haven habitat core. The garden module creates an artificial outdoor environment mitigating the notion of confinement on the lunar surface. Fiber optics systems and plasma lamps are used for transmission of natural and artificial light into the interior.

  10. Studies on magnetocapacitance, dielectric, ferroelectric, and magnetic properties of microwave sintered (1-x) (Ba0.8Sr0.2TiO3) - x (Co0.9Ni0.1Fe2O4) multiferroic composite

    NASA Astrophysics Data System (ADS)

    Mane, Sagar M.; Tirmali, Pravin M.; Ranjit, Bhakti; Khan, Madiha; Khan, Nargis; Tarale, Arjun N.; Kulkarni, Shrinivas B.

    2018-07-01

    Present paper reports the synthesis of multiferroic composite (1-x) [Ba0.8Sr0.2Ti)O3]-x[Co0.9Ni0.1Fe2O4] were x = 0.1, 0.2, 0.3 and 0.4. Both phases of the composite i.e. ferroelectric (BST) and ferrite (CNFO) are synthesized via hydroxide co-precipitation method followed by microwave sintering technique at 1100 °C. These composites were characterized for their structural, microstructural, dielectric analysis, magnetodielectric (MD) effect and ferroelectric properties. Presence of both the phases ferroelectric (BST) and ferromagnetic (CNFO) are confirmed by the x-ray diffraction and scanning electron microscopic analysis. Maxwell-Wagner type dielectric dispersion is observed in frequency dependent dielectric measurement. Temperature-dependent dielectric properties were measured from 25 °C to 500 °C at various applied frequencies. Ferroelectric behavior in the composites was confirmed by the polarization vs. Electric field analysis. The magnetodielectric effect was studied in the presence of applied magnetic field from 0 to 1 Tesla. Magnetocapacitance (%) increases with increase in the ferrite concentration in the ferroelectric phase. The maximum percentage of magnetocapacitance is observed in 60BST-40CNFO composite which is MC = 30% at the frequency 1 KHz with the applied magnetic field is 1-Tesla. Room temperature magnetic hysteresis loops show an increase in saturation magnetization (Ms) with an increase in ferrite concentration.

  11. Silicon carbide passive heating elements in microwave-assisted organic synthesis.

    PubMed

    Kremsner, Jennifer M; Kappe, C Oliver

    2006-06-09

    Microwave-assisted organic synthesis in nonpolar solvents is investigated utilizing cylinders of sintered silicon carbide (SiC)--a chemically inert and strongly microwave absorbing material--as passive heating elements (PHEs). These heating inserts absorb microwave energy and subsequently transfer the generated thermal energy via conduction phenomena to the reaction mixture. The use of passive heating elements allows otherwise microwave transparent or poorly absorbing solvents such as hexane, carbon tetrachloride, tetrahydrofuran, dioxane, or toluene to be effectively heated to temperatures far above their boiling points (200-250 degrees C) under sealed vessel microwave conditions. This opens up the possibility to perform microwave synthesis in unpolar solvent environments as demonstrated successfully for several organic transformations, such as Claisen rearrangements, Diels-Alder reactions, Michael additions, N-alkylations, and Dimroth rearrangements. This noninvasive technique is a particularly valuable tool in cases where other options to increase the microwave absorbance of the reaction medium, such as the addition of ionic liquids as heating aids, are not feasible due to an incompatibility of the ionic liquid with a particular substrate. The SiC heating elements are thermally and chemically resistant to 1500 degrees C and compatible with any solvent or reagent.

  12. Effects of TiO2 addition on microwave dielectric properties of Li2MgSiO4 ceramics

    NASA Astrophysics Data System (ADS)

    Rose, Aleena; Masin, B.; Sreemoolanadhan, H.; Ashok, K.; Vijayakumar, T.

    2018-03-01

    Silicates have been widely studied for substrate applications in microwave integrated circuits owing to their low dielectric constant and low tangent loss values. Li2MgSiO4 (LMS) ceramics are synthesized through solid-state reaction route using TiO2 as an additive to the pure ceramics. Variations in dielectric properties of LMS upon TiO2 addition in different weight percentages (0.5, 1.5, 2) are studied by keeping the sintering parameters constant. Crystalline structure, phase composition, and microstructure of LMS and LMS-TiO2 ceramics were studied using x-ray diffraction spectrometer and High Resolution Scanning electron microscope. Density was measured through Archimedes method and the microwave dielectric properties were examined by Cavity perturbation technique. LMS achieved relative permittivity (ε r) of 5.73 and dielectric loss (tan δ) of 5.897 × 10‑4 at 8 GHz. In LMS-TiO2 ceramics, 0.5 wt% TiO2 added LMS showed comparatively better dielectric properties than other weight percentages where ε r = 5.67, tan δ = 7.737 × 10‑4 at 8 GHz.

  13. Treatment options for low-level radiologically contaminated ORNL filtercake

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lee, Hom-Ti; Bostick, W.D.

    1996-04-01

    Water softening sludge (>4000 stored low level contaminated drums; 600 drums per year) generated by the ORNL Process Waste Treatment Plant must be treated, stabilized, and placed in safe storage/disposal. The sludge is primarily CaCO{sub 3} and is contaminated by low levels of {sup 90}Sr and {sup 137}Cs. In this study, microwave sintering and calcination were evaluated for treating the sludge. The microwave melting experiments showed promise: volume reductions were significant (3-5X), and the waste form was durable with glass additives (LiOH, fly ash). A commercial vendor using surrogate has demonstrated a melt mineralization process that yields a dense monolithicmore » waste form with a volume reduction factor (VR) of 7.7. Calcination of the sludge at 850-900 C yielded a VR of 2.5. Compaction at 4500 psi increased the VR to 4.2, but the compressed form is not dimensionally stable. Addition of paraffin helped consolidate fines and yielded a VR of 3.5. In conclusion, microwave melting or another form of vitrification is likely to be the best method; however for immediate implementation, the calculation/compaction/waxing process is viable.« less

  14. Epsilon Metal Waste Form for Immobilization of Noble Metals from Used Nuclear Fuel

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Crum, Jarrod V.; Strachan, Denis M.; Rohatgi, Aashish

    2013-10-01

    Epsilon metal (ε-metal), an alloy of Mo, Pd, Rh, Ru, and Tc, is being developed as a waste form to treat and immobilize the undissolved solids and dissolved noble metals from aqueous reprocessing of commercial used nuclear fuel. Epsilon metal is an attractive waste form for several reasons: increased durability relative to borosilicate glass, it can be fabricated without additives (100% waste loading), and in addition it also benefits borosilicate glass waste loading by eliminating noble metals from the glass and thus the processing problems related there insolubility in glass. This work focused on the processing aspects of the epsilonmore » metal waste form development. Epsilon metal is comprised of refractory metals resulting in high reaction temperatures to form the alloy, expected to be 1500 - 2000°C making it a non-trivial phase to fabricate by traditional methods. Three commercially available advanced technologies were identified: spark-plasma sintering, microwave sintering, and hot isostatic pressing, and investigated as potential methods to fabricate this waste form. Results of these investigations are reported and compared in terms of bulk density, phase assemblage (X-ray diffraction and elemental analysis), and microstructure (scanning electron microscopy).« less

  15. Epsilon metal waste form for immobilization of noble metals from used nuclear fuel

    NASA Astrophysics Data System (ADS)

    Crum, Jarrod V.; Strachan, Denis; Rohatgi, Aashish; Zumhoff, Mac

    2013-10-01

    Epsilon metal (ɛ-metal), an alloy of Mo, Pd, Rh, Ru, and Tc, is being developed as a waste form to treat and immobilize the undissolved solids and dissolved noble metals from aqueous reprocessing of commercial used nuclear fuel. Epsilon metal is an attractive waste form for several reasons: increased durability relative to borosilicate glass, it can be fabricated without additives (100% waste loading), and in addition it also benefits borosilicate glass waste loading by eliminating noble metals from the glass, thus the processing problems related to their insolubility in glass. This work focused on the processing aspects of the epsilon metal waste form development. Epsilon metal is comprised of refractory metals resulting in high alloying temperatures, expected to be 1500-2000 °C, making it a non-trivial phase to fabricate by traditional methods. Three commercially available advanced technologies were identified: spark-plasma sintering, microwave sintering, and hot isostatic pressing, and investigated as potential methods to fabricate this waste form. Results of these investigations are reported and compared in terms of bulk density, phase assemblage (X-ray diffraction and elemental analysis), and microstructure (scanning electron microscopy).

  16. Stress insensitive multilayer chip inductor with ferrite core

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Vishwas, B.; Madhuri, W., E-mail: madhuriw12@gmail.com; Rao, N. Madhusudan

    2015-06-24

    Mg{sub 0.25}Cu{sub 0.25}Zn{sub 0.5}Fe{sub 2}O{sub 4} is synthesized by sol gel auto combustion technique. The obtained ferrite powder is finally sintered in a microwave furnace at 850°C. Multilayer chip inductor (MLCI) of two layers is prepared by screen printing technique. The sintered ferrite is characterized by X-ray diffraction. The frequency response of dielectric constant is studied in the frequency range of 100Hz to 5MHz. Dielectric polarization is discussed in the light of Maxwell-Wagner interfacial polarization. The prepared MLCI is studied for stress sensitivity in the range of 0 to 8 MPa.

  17. Facile synthesis and strongly microstructure-dependent electrochemical properties of graphene/manganese dioxide composites for supercapacitors

    NASA Astrophysics Data System (ADS)

    Zhang, Caiyun; Zhu, Xiaohong; Wang, Zhongxing; Sun, Ping; Ren, Yinjuan; Zhu, Jiliang; Zhu, Jianguo; Xiao, Dingquan

    2014-09-01

    Graphene has attracted much attention since it was firstly stripped from graphite by two physicists in 2004, and the supercapacitor based on graphene has obtained wide attention and much investment as well. For practical applications of graphene-based supercapacitors, however, there are still many challenges to solve, for instance, to simplify the technological process, to lower the fabrication cost, and to improve the electrochemical performance. In this work, graphene/MnO2 composites are prepared by a microwave sintering method, and we report here a relatively simple method for the supercapacitor packaging, i.e., dipping Ni-foam into a graphene/MnO2 composite solution directly for a period of time to coat the active material on a current collector. It is found that the microwave reaction time has a significant effect on the microstructure of graphene/MnO2 composites, and consequently, the electrochemical properties of the supercapacitors based on graphene/MnO2 composites are strongly microstructure dependent. An appropriately longer microwave reaction time, namely, 15 min, facilitates a very dense and homogeneous microstructure of the graphene/MnO2 composites, and thus, excellent electrochemical performance is achieved in the supercapacitor device, including a high specific capacitance of 296 F/g and a high capacitance retention of 93% after 3,000 times of charging/discharging cycles.

  18. Facile synthesis and strongly microstructure-dependent electrochemical properties of graphene/manganese dioxide composites for supercapacitors.

    PubMed

    Zhang, Caiyun; Zhu, Xiaohong; Wang, Zhongxing; Sun, Ping; Ren, Yinjuan; Zhu, Jiliang; Zhu, Jianguo; Xiao, Dingquan

    2014-01-01

    Graphene has attracted much attention since it was firstly stripped from graphite by two physicists in 2004, and the supercapacitor based on graphene has obtained wide attention and much investment as well. For practical applications of graphene-based supercapacitors, however, there are still many challenges to solve, for instance, to simplify the technological process, to lower the fabrication cost, and to improve the electrochemical performance. In this work, graphene/MnO2 composites are prepared by a microwave sintering method, and we report here a relatively simple method for the supercapacitor packaging, i.e., dipping Ni-foam into a graphene/MnO2 composite solution directly for a period of time to coat the active material on a current collector. It is found that the microwave reaction time has a significant effect on the microstructure of graphene/MnO2 composites, and consequently, the electrochemical properties of the supercapacitors based on graphene/MnO2 composites are strongly microstructure dependent. An appropriately longer microwave reaction time, namely, 15 min, facilitates a very dense and homogeneous microstructure of the graphene/MnO2 composites, and thus, excellent electrochemical performance is achieved in the supercapacitor device, including a high specific capacitance of 296 F/g and a high capacitance retention of 93% after 3,000 times of charging/discharging cycles. 81.05.ue; 78.67.Sc; 88.80.fh.

  19. Facile synthesis and strongly microstructure-dependent electrochemical properties of graphene/manganese dioxide composites for supercapacitors

    PubMed Central

    2014-01-01

    Graphene has attracted much attention since it was firstly stripped from graphite by two physicists in 2004, and the supercapacitor based on graphene has obtained wide attention and much investment as well. For practical applications of graphene-based supercapacitors, however, there are still many challenges to solve, for instance, to simplify the technological process, to lower the fabrication cost, and to improve the electrochemical performance. In this work, graphene/MnO2 composites are prepared by a microwave sintering method, and we report here a relatively simple method for the supercapacitor packaging, i.e., dipping Ni-foam into a graphene/MnO2 composite solution directly for a period of time to coat the active material on a current collector. It is found that the microwave reaction time has a significant effect on the microstructure of graphene/MnO2 composites, and consequently, the electrochemical properties of the supercapacitors based on graphene/MnO2 composites are strongly microstructure dependent. An appropriately longer microwave reaction time, namely, 15 min, facilitates a very dense and homogeneous microstructure of the graphene/MnO2 composites, and thus, excellent electrochemical performance is achieved in the supercapacitor device, including a high specific capacitance of 296 F/g and a high capacitance retention of 93% after 3,000 times of charging/discharging cycles. PACS 81.05.ue; 78.67.Sc; 88.80.fh PMID:25258609

  20. The effect of the YBCO-PST composite composition on the superconducting carrier concentration determined by microwave studies under high pressure

    NASA Astrophysics Data System (ADS)

    Krupski, M.; Stankowski, J.; Przybył, S.; Andrzejewski, B.; Kaczmarek, A.; Hilczer, B.; Marfaing, J.; Caranoni, C.

    1999-07-01

    The effect of hydrostatic pressure ( p<0.6 GPa) on the superconducting critical temperature Tc in YBa 2Cu 3O 7- δ-Pb(Sc 0.5Ta 0.5)O 3 (YBCO-PST) composite is measured by the method of magnetically modulated microwave absorption (MMMA). The Tc dependence on the PST fraction in weight x (0, 0.25, 0.5 and 0.75) is approximated by an inverted parabola function whereas the influence of pressure on Tc is represented by the equation: d Tc/d p=0.61(2)-1.72(6) x. The result may be explained assuming that PST phase in YBCO-PST composite influences the superconducting carrier concentration similar to the chemical substitution in YBa 2Cu 3O 7 [J.J. Neumeier, H.A. Zimmermann, Phys. Rev. B 47 (1993) 8385]. It is suggested that ions from PST diffuse to YBCO cell during the sintering of the composite.

  1. High Temperature Microwave Dielectric Properties of JSC-1AC Lunar Simulant

    NASA Technical Reports Server (NTRS)

    Allan, Shawn M.; Merritt, Brandon J.; Griffin, Brittany F.; Hintze, Paul E.; Shulman, Holly S.

    2011-01-01

    Microwave heating has many potential lunar applications including sintering regolith for lunar surface stabilization and heating regolith for various oxygen production reactors. The microwave properties of lunar simulants must be understood so this technology can be applied to lunar operations. Dielectric properties at microwave frequencies for a common lunar simulant, JSC-1AC, were measured up to 1100 C, which is approximately the melting point. The experimentally determined dielectric properties included real and imaginary permittivity (epsilon', epsilon"), loss tangent (tan delta), and half-power depth, the di stance at which a material absorbs 50% of incident microwave energy. Measurements at 2.45 GHz revealed tan delta of JSC-1A increases from 0.02 at 25 C to 0.31 at 110 C. The corresponding half-power depth decreases from a peak of 286 mm at 110 C, to 13 mm at 1100 C. These data indicate that JSC-1AC becomes more absorbing, and thus a better microwave heater as temperature increases. A half-power depth maximum at 100-200 C presents a barrier to direct microwave heating at low temperatures. Microwave heating experiments confirm the sluggish heating effect of weak absorption below 200 C, and increasingly strong absorption above 200 C, leading to rapid heating and melting of JSC-1AC.

  2. [Effect of two-step sintering method on properties of zirconia ceramic].

    PubMed

    Huang, Hui; Wei, Bin; Zhang, Fu-Qiang; Sun, Jing; Gao, Lian

    2008-04-01

    To study the influence of two-step sintering method on the sintering property, mechanical properties and microstructure of zirconia ceramic. The nano-size zirconia powder were compacted and divided into two groups, one group for one-step sintering method, another group for two-step sintering method. All samples sintered at different temperature. The relative density, three-bend strength, HV hardness, fracture toughness and microstructure of sintered block were investigated. Two-step sintering method influenced the sintering property and mechanical properties of zirconia ceramic. The maximal relative density was 98.49% at 900 degrees C/1,450 degrees C sintering temperature. There were significant difference of mechanical properties between one-step sintering and two-step sintering, the three-bend strength and fracture toughness declined, hardness increased at two-step sintering. The three-bend strength, HV hardness and fracture toughness reached to maximum value as 1,059.08 MPa +/- 75.24 MPa, 1,377.00 MPa +/- 16.37 MPa and 5.92 MPa x m1/2 +/- 0.37 MPa x m1/2 at 900 degrees C/1,450 degrees C sintering temperature respectively. Microscopy revealed the relationship between the porosity and shapes of grains was correlated to strength of the zirconia ceramics. Despite of the two-step sintering method influences the properties of zirconia, it also is a promising esthetic all-ceramic dental material.

  3. Process for manufacturing tantalum capacitors

    DOEpatents

    Lauf, Robert J.; Holcombe, Cressie E.; Dykes, Norman L.

    1993-01-01

    A process for manufacturing tantalum capacitors in which microwave energy is used to sinter a tantalum powder compact in order to achieve higher surface area and improved dielectric strength. The process comprises cold pressing tantalum powder with organic binders and lubricants to form a porous compact. After removal of the organics, the tantalum compact is heated to 1300.degree. to 2000.degree. C. by applying microwave radiation. Said compact is then anodized to form a dielectric oxide layer and infiltrated with a conductive material such as MnO.sub.2. Wire leads are then attached to form a capacitor to said capacitor is hermetically packaged to form the finished product.

  4. Process for manufacturing tantalum capacitors

    DOEpatents

    Lauf, R.J.; Holcombe, C.E.; Dykes, N.L.

    1993-02-02

    A process for manufacturing tantalum capacitors in which microwave energy is used to sinter a tantalum powder compact in order to achieve higher surface area and improved dielectric strength. The process comprises cold pressing tantalum powder with organic binders and lubricants to form a porous compact. After removal of the organics, the tantalum compact is heated to 1,300 to 2,000 C by applying microwave radiation. Said compact is then anodized to form a dielectric oxide layer and infiltrated with a conductive material such as MnO[sub 2]. Wire leads are then attached to form a capacitor to said capacitor is hermetically packaged to form the finished product.

  5. Titanium diboride-chromium diboride-yttrium titanium oxide ceramic composition and a process for making the same

    DOEpatents

    Holcombe, Cressie E.; Dykes, Norman L.

    1991-01-01

    A ceramic composition is described. The ceramic composition consists essentially of from about 84 to 96 w/o titanium diboride, from about 1 to 9 w/o chromium diboride, and from about 3 to about 15 w/o yttrium-titanium-oxide. A method of making the ceramic composition is also described. The method of making the ceramic composition comprises the following steps: Step 1--A consolidated body containing stoichiometric quantities of titanium diboride and chromium diboride is provided. Step 2--The consolidated body is enclosed in and in contact with a thermally insulated package of yttria granules having a thickness of at least 0.5 inches. Step 3--The consolidated body enclosed in the thermally insulated package of yttria granules is heated in a microwave oven with microwave energy to a temperature equal to or greater than 1,900 degrees centigrade to sinter and uniformly disperse yttria particles having a size range from about 1 to about 12 microns throughout the consolidated body forming a densified body consisting essentially of titanium diboride, chromium diboride, and yttrium-titanium-oxide. The resulting densified body has enhanced fracture toughness and hardness.

  6. Process for making a titanium diboride-chromium diboride-yttrium titanium oxide ceramic composition

    DOEpatents

    Holcombe, Cressie E.; Dykes, Norman L.

    1992-01-01

    A ceramic composition composition is described. The ceramic composition consists essentially of from about 84 to 96 w/o titanium diboride, from about 1 to 9 w/o chromium diboride, and from about 3 to aobut 15 w/o yttrium-titanium-oxide. A method of making the ceramic composition is also described. The method of making the ceramic composition comprises the following steps: Step 1--A consolidated body containing stoichiometric quantities of titanium diboride and chromium diboride is provided. Step 2--The consolidated body is enclosed in and in contact with a thermally insulated package of yttria granules having a thickness of at least 0.5 inches. Step 3--The consolidated body enclosed in the thermally insulated package of yttria granules is heated in a microwave oven with microwave energy to a temperature equal to or greater than 1,900 degrees centigrade to sinter and uniformly disperse yttria particles having a size range from about 1 to about 12 microns throughout the consolidated body forming a densified body consisting essentially of titanium diboride, chromium diboride, and yttrium-titanium-oxide. The resulting densified body has enhanced fracture toughness and hardness.

  7. Process for making a titanium diboride-chromium diboride-yttrium titanium oxide ceramic composition

    DOEpatents

    Holcombe, C.E.; Dykes, N.L.

    1992-04-28

    A ceramic composition is described. The ceramic composition consists essentially of from about 84 to 96 w/o titanium diboride, from about 1 to 9 w/o chromium diboride, and from about 3 to about 15 w/o yttrium-titanium-oxide. A method of making the ceramic composition is also described. The method of making the ceramic composition comprises the following steps: Step 1--A consolidated body containing stoichiometric quantities of titanium diboride and chromium diboride is provided. Step 2--The consolidated body is enclosed in and in contact with a thermally insulated package of yttria granules having a thickness of at least 0.5 inches. Step 3--The consolidated body enclosed in the thermally insulated package of yttria granules is heated in a microwave oven with microwave energy to a temperature equal to or greater than 1,900 degrees centigrade to sinter and uniformly disperse yttria particles having a size range from about 1 to about 12 microns throughout the consolidated body forming a densified body consisting essentially of titanium diboride, chromium diboride, and yttrium-titanium-oxide. The resulting densified body has enhanced fracture toughness and hardness. No Drawings

  8. Photovoltaic studies of Dye Sensitized Solar cells Fabricated from Microwave Exposed Photo anodes

    NASA Astrophysics Data System (ADS)

    Ramachandran, Anju; Sreekala, C. O.; Sreelatha, K. S.; Jinchu, I.

    2018-02-01

    The configuration of Dye Sensitized solar cells (DSSC), consists of sintered nanoparticle titanium dioxide film, dyes, electrolyte and counter electrodes. Upon the absorption of photons by the dye molecules, excitons are generated, subsequently electrons are injected into the TiO2 photoanode. Afterward the electrons injected into the TiO2 photoanode, to produce photocurrent, scavenged by redox couple, and the hole transport to the photo cathode. The power conversion efficiency of the device depends on the amount of dye adsorbed by the photoanode. This paper explores in enhancing the efficiency of the device by controlled microwave exposure. With same exposure time, the photoanode is exposed at three different frequencies. SEM analysis is carried out to find the porosity of the photoanode on exposure. Current density is found to have an effect on microwave exposure.

  9. Characterization of M-type barium hexagonal ferrite-based wide band microwave absorber

    NASA Astrophysics Data System (ADS)

    Meshram, M. R.; Agrawal, Nawal K.; Sinha, Bharoti; Misra, P. S.

    2004-05-01

    This paper present the design, development and characterization of the hexagonal ferrite powder [BaCo 0.5δTi 0.5δMn 0.1Fe (11.87-δ)O 19] and [Ba(MnTi) δFe (12-2δ)O 19] at δ=1.6 as a microwave absorber. The hexagonal ferrite powder has been developed by dry attrition and sintering procedure. The developed ferrite powder 60% by weight has been mixed in epoxy resin to form a microwave-absorbing paint. This paint was coated on a conducting aluminum sheet to study the absorption characteristics of a linearly polarized TE wave at X band. The results for single- and two-layer microwave absorbers for different coating thicknesses have been reported. It has been found that it shows the broadband characteristics with minimum absorption of 8 dB from 8 to 12 GHz for a coating thickness of 2 mm.These paints are very useful in military applications such as RCS reduction, camouflaging of the target and prevention of EMI, etc.

  10. Nano-crystalline Magnesium Substituted Cadmium Ferrites as X-band Microwave Absorbers

    NASA Astrophysics Data System (ADS)

    Bhongale, S. R.; Ingawale, H. R.; Shinde, T. J.; Pubby, Kunal; Bindra Narang, Sukhleen; Vasambekar, P. N.

    2017-11-01

    The magnetic and electromagnetic properties of nanocrystalline spinel ferrites with chemical formula MgxCd1-xFe2O4 (x = 0, 0.2, 0.4, 0.6, 0.8 and 1.0) prepared by oxalate co-precipitation method under microwave sintering technique were studied. The magnetic and dielectric parameters of ferrites were determined by using vibrating sample magnetometer (VSM) and vector network analyzer (VNA) respectively. Magnetic parameters such as saturation magnetizations (Ms), coercive force (Hc), remnant magnetization (Mr), Yafet-Kittel (Y-K) angle of ferrites were determined from hysteresis loops. The variation of real permittivity (ε‧), dielectric loss tangent (tanδe), real permeability (μ‧) and magnetic loss tangent (tanδm) with frequency and Mg2+content were studied in X-band frequency range. The values of ε‧, tanδe, μ‧ and tanδm of ferrites were observed to be in range of 4.2 - 6.12, 2.9 × 10-1 - 6 × 10-2, 0.6 - 1.12 and 4.5 × 10-1 - 2 × 10-3 respectively for the prepared compositions. The study of variation of reflection loss with frequency of all ferrites shows that ferrite with magnesium content x = 0.4 can be potential candidate for microwave applications in X-band.

  11. Doped tricalcium phosphate bone tissue engineering scaffolds using sucrose as template and microwave sintering: enhancement of mechanical and biological properties.

    PubMed

    Ke, Dongxu; Bose, Susmita

    2017-09-01

    β-tricalcium phosphate (β-TCP) is a widely used biocompatible ceramic in orthopedic and dental applications. However, its osteoinductivity and mechanical properties still require improvements. In this study, porous β-TCP and MgO/ZnO-TCP scaffolds were prepared by the thermal decomposition of sucrose. Crack-free cylindrical scaffolds could only be prepared with the addition of MgO and ZnO due to their stabilization effects. Porous MgO/ZnO-TCP scaffolds with a density of 61.39±0.66%, an estimated pore size of 200μm and a compressive strength of 24.96±3.07MPa were prepared by using 25wt% sucrose after conventional sintering at 1250°C. Microwave sintering further increased the compressive strength to 37.94±6.70MPa, but it decreased the open interconnected porosity to 8.74±1.38%. In addition, the incorporation of polycaprolactone (PCL) increased 22.36±3.22% of toughness while maintaining its compressive strength at 25.45±2.21MPa. Human osteoblast cell line was seeded on scaffolds to evaluate the effects of MgO/ZnO and PCL on the biological property of β-TCP in vitro. Both MgO/ZnO and PCL improved osteoinductivity of β-TCP. PCL also decreased osteoblastic apoptosis due to its particular surface chemistry. This novel porous MgO/ZnO-TCP scaffold with PCL shows improved mechanical and biological properties, which has great potential in bone tissue engineering applications. Copyright © 2017. Published by Elsevier B.V.

  12. Effects of soldering methods on tensile strength of a gold-palladium metal ceramic alloy.

    PubMed

    Ghadhanfari, Husain A; Khajah, Hasan M; Monaco, Edward A; Kim, Hyeongil

    2014-10-01

    The tensile strength obtained by conventional postceramic application soldering and laser postceramic welding may require more energy than microwave postceramic soldering, which could provide similar tensile strength values. The purpose of the study was to compare the tensile strength obtained by microwave postceramic soldering, conventional postceramic soldering, and laser postceramic welding. A gold-palladium metal ceramic alloy and gold-based solder were used in this study. Twenty-seven wax specimens were cast in gold-palladium noble metal and divided into 4 groups: laser welding with a specific postfiller noble metal, microwave soldering with a postceramic solder, conventional soldering with the same postceramic solder used in the microwave soldering group, and a nonsectioned control group. All the specimens were heat treated to simulate a normal porcelain sintering sequence. An Instron Universal Testing Machine was used to measure the tensile strength for the 4 groups. The means were analyzed statistically with 1-way ANOVA. The surface and fracture sites of the specimens were subjectively evaluated for fracture type and porosities by using a scanning electron microscope. The mean (standard deviation) ultimate tensile strength values were as follows: nonsectioned control 818 ±30 MPa, microwave 516 ±34 MPa, conventional 454 ±37 MPa, and laser weld 191 ±39 MPa. A 1-way ANOVA showed a significant difference in ultimate tensile strength among the groups (F3,23=334.5; P<.001). Follow-up multiple comparisons showed a significant difference among all the groups. Microwave soldering resulted in a higher tensile strength for gold and palladium noble metals than either conventional soldering or laser welding. Conventional soldering resulted in a higher tensile strength than laser welding. Under the experimental conditions described, either microwave or conventional postceramic soldering would appear to satisfy clinical requirements related to tensile strength. Copyright © 2014 Editorial Council for the Journal of Prosthetic Dentistry. Published by Elsevier Inc. All rights reserved.

  13. Microwave dielectric properties of CaCu{sub 3}Ti{sub 4}O{sub 12}-Al{sub 2}O{sub 3} composite

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rahman, Mohd Fariz Ab; Abu, Mohamad Johari; Zaman, Rosyaini Afindi

    2016-07-19

    (1-x)CaCu{sub 3}Ti{sub 4}O{sub 12} + (x)Al{sub 2}O{sub 3} composite (0 ≤ x ≤0.25) was prepared via conventional solid-state reaction method. The fabrication of sample was started with synthesizing stoichiometric CCTO from CaCO{sub 3}, CuO and TiO{sub 2} powders, then wet-mixed in deionized water for 24 h. The process was continued with calcined CCTO powder at 900 °C for 12 h before sintered at 1040 °C for 10 h. Next, the calcined CCTO powder with different amount of Al{sub 2}O{sub 3} were mixed for 24 h, then palletized and sintered at 1040 °C for 10. X-ray diffraction analysis on the sinteredmore » samples showed that CCTO powder was in a single phase, meanwhile the trace of secondary peaks which belong to CaAl{sub 2}O{sub 4} and Corundum (Al{sub 2}O{sub 3}) could be observed in the other samples Scanning electron microscopy analysis showed that the grain size of the sample is firstly increased with addition of Al{sub 2}O{sub 3} (x = 0.01), then become smaller with the x > 0.01. Microwave dielectric properties showed that the addition of Al{sub 2}O{sub 3} (x = 0.01) was remarkably reduced the dielectric loss while slightly increased the dielectric permittivity. However, further addition of Al{sub 2}O{sub 3} was reduced both dielectric loss and permittivity at least for an order of magnitude.« less

  14. Rapid microwave assisted synthesis of YIn1-xMnxO3 blue pigments: Synthesis, microstructure and optical properties

    NASA Astrophysics Data System (ADS)

    Zhou, Yuncheng; Jiang, Peng; Kuang, Jianlei; Yang, Xueshan; Cao, Wenbin

    2018-07-01

    The YIn1-xMnxO3 (0.1 ≤x ≤ 0.5) blue pigment samples are successfully prepared through a sol-gel process followed by microwave assisted sintering process. All the samples are shown single phases in the X-ray diffraction results. In the morphology study from scanning electronic microscope, the samples are composed of loosely connected small particles. The oxidation state of Mn is confirmed to be 3 + from the results of X-ray photonelectronic scan. The optical properties are characterized by UV-Visible spectrum and UV-visible-NIR spectrum. The samples exhibit intense blue color and they show small absorption in infrared region.

  15. A Preliminary Attempt at Sintering an Ultrafine Alumina Powder Using Microwaves

    DTIC Science & Technology

    1994-09-01

    and unusual properties [Ref. B4]. Dielectric properties of individual ceramic phases differ depending on parameters such as compositicn...useful parameter is an estimate of the amount of power dissipated into a dielectric with a known effective loss factor. For a high frequency electric...cavities, and their influence in ceramic samples must be considered. Therefore scattering, diffraction, interference, and reflection and refraction

  16. Broadening microwave absorption via a multi-domain structure

    NASA Astrophysics Data System (ADS)

    Liu, Zhengwang; Che, Renchao; Wei, Yong; Liu, Yupu; Elzatahry, Ahmed A.; Dahyan, Daifallah Al.; Zhao, Dongyuan

    2017-04-01

    Materials with a high saturation magnetization have gained increasing attention in the field of microwave absorption; therefore, the magnetization value depends on the magnetic configuration inside them. However, the broad-band absorption in the range of microwave frequency (2-18 GHz) is a great challenge. Herein, the three-dimensional (3D) Fe/C hollow microspheres are constructed by iron nanocrystals permeating inside carbon matrix with a saturation magnetization of 340 emu/g, which is 1.55 times as that of bulk Fe, unexpectedly. Electron tomography, electron holography, and Lorentz transmission electron microscopy imaging provide the powerful testimony about Fe/C interpenetration and multi-domain state constructed by vortex and stripe domains. Benefiting from the unique chemical and magnetic microstructures, the microwave minimum absorption is as strong as -55 dB and the bandwidth (<-10 dB) spans 12.5 GHz ranging from 5.5 to 18 GHz. Morphology and distribution of magnetic nano-domains can be facilely regulated by a controllable reduction sintering under H2/Ar gas and an optimized temperature over 450-850 °C. The findings might shed new light on the synthesis strategies of the materials with the broad-band frequency and understanding the association between multi-domain coupling and microwave absorption performance.

  17. The effect of glass additives on the microwave dielectric properties of Ba(Mg{sub 1/3}Ta{sub 2/3})O{sub 3} ceramics

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Surendran, K.P.; Mohanan, P.; Sebastian, M.T.

    2004-11-01

    The effect of glass additives on the densification, phase evolution, microstructure and microwave dielectric properties of Ba(Mg{sub 1/3}Ta{sub 2/3})O{sub 3} (BMT) was investigated. Different weight percentages of quenched glass such as B{sub 2}O{sub 3}, SiO{sub 2}, B{sub 2}O{sub 3}-SiO{sub 2}, ZnO-B{sub 2}O{sub 3}, 5ZnO-2B{sub 2}O{sub 3}, Al{sub 2}O{sub 3}-SiO{sub 2}, Na{sub 2}O-2B{sub 2}O{sub 3}.10H{sub 2}O, BaO-B{sub 2}O{sub 3}-SiO{sub 2}, MgO-B{sub 2}O{sub 3}-SiO{sub 2}, PbO-B{sub 2}O{sub 3}-SiO{sub 2}, ZnO-B{sub 2}O{sub 3}-SiO{sub 2} and 2MgO-Al{sub 2}O{sub 3}-5SiO{sub 2} were added to calcined BMT precursor. The sintering temperature of the glass-added BMT samples were lowered down to 1300 deg. C compared to solid-statemore » sintering where the temperature was 1650{sup o}C. The formation of high temperature satellite phases such as Ba{sub 5}Ta{sub 4}O{sub 15} and Ba{sub 7}Ta{sub 6}O{sub 22} were found to be suppressed by the glass addition. Addition of glass systems such as B{sub 2}O{sub 3}, ZnO-B{sub 2}O{sub 3}, 5ZnO-2B{sub 2}O{sub 3} and ZnO-B{sub 2}O{sub 3}-SiO{sub 2} improved the densification and microwave dielectric properties. Other glasses were found to react with BMT to form low-Q phases which prevented densification. The microwave dielectric properties of undoped BMT with a densification of 93.1% of the theoretical density were {epsilon}r=24.8, {tau}f=8ppm/{sup o}C and Q{sub u}xf=80,000GHz. The BMT doped with 1.0wt% of B{sub 2}O{sub 3} has Q{sub u}xf=124,700GHz, {epsilon}r=24.2, and {tau}f=-1.3ppm/ deg/ C. The unloaded Q factor of 0.2wt% ZnO-B{sub 2}O{sub 3}-doped BMT was 136,500GHz while that of 1.0wt% of 5ZnO-2B{sub 2}O{sub 3} added ceramic was Q{sub u}xf=141,800GHz. The best microwave quality factor was observed for ZnO-B{sub 2}O{sub 3}-SiO{sub 2} (ZBS) glass-added ceramics which can act as a perfect liquid-phase medium for the sintering of BMT. The microwave dielectric properties of 0.2wt% ZBS-added BMT dielectric was Q{sub u}xf=152,800GHz, {epsilon}r=25.5, and {tau}f=-1.5ppm/ deg. C.« less

  18. Sintering and microstructure of silicon carbide ceramic with Y3Al5O12 added by sol-gel method*

    PubMed Central

    Guo, Xing-zhong; Yang, Hui

    2005-01-01

    Silicon carbide (SiC) ceramic with YAG (Y3Al5O12) additive added by sol-gel method was liquid-phase sintered at different sintering temperatures, and the sintering mechanism and microstructural characteristics of resulting silicon carbide ceramics were analyzed by X-ray diffraction (XRD), scanning electron microscopy (SEM) and elemental distribution of surface (EDS). YAG (yttrium aluminum garnet) phase formed before the sintering and its uniform distribution in the SiC/YAG composite powder decreased the sintering temperature and improved the densification of SiC ceramic. The suitable sintering temperature was 1860 °C with the specimen sintered at this temperature having superior sintering and mechanical properties, smaller crystal size and fewer microstructure defects. Three characteristics of improved toughness of SiC ceramic with YAG added by sol-gel method were microstructural densification, main-crack deflection and crystal ‘bridging’. PMID:15682507

  19. 77 FR 51046 - Certain Sintered Rare Earth Magnets, Methods of Making Same and Products Containing Same; Notice...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-08-23

    ... INTERNATIONAL TRADE COMMISSION [Docket No. 2908] Certain Sintered Rare Earth Magnets, Methods of... Certain Sintered Rare Earth Magnets, Methods of Making Same and Products Containing Same, DN 2908; the... importation, and the sale within the United States after importation of certain sintered rare earth magnets...

  20. 77 FR 58578 - Certain Sintered Rare Earth Magnets, Methods of Making Same and Products Containing Same...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-09-21

    ... INTERNATIONAL TRADE COMMISSION [Investigation No. 337-TA-855] Certain Sintered Rare Earth Magnets... importation of certain sintered rare earth magnets, methods of making same and products containing same by... importation of certain sintered rare earth magnets, methods of making same and products containing same that...

  1. Methods of flash sintering

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Raj, Rishi; Cologna, Marco; Francis, John S.

    2016-05-10

    This disclosure provides methods of flash sintering and compositions created by these methods. Methods for sintering multilayered bodies are provided in which a sintered body is produced in less than one minute. In one aspect, each layer is of a different composition, and may be constituted wholly from a ceramic or from a combination of ceramic and metallic particles. When the body includes a layer of an anode composition, a layer of an electrolyte composition and a layer of a cathode composition, the sintered body can be used to produce a solid oxide fuel cell.

  2. Pressureless sintering of whisker-toughened ceramic composites

    DOEpatents

    Tiegs, T.N.

    1993-05-04

    A pressureless sintering method is disclosed for use in the production of whisker-toughened ceramic composites wherein the sintered density of composites containing up to about 20 vol. % SiC whiskers is improved by reducing the average aspect ratio of the whiskers to from about 10 to about 20. Sintering aids further improve the density, permitting the production of composites containing 20 vol. % SiC with sintered densities of 94% or better of theoretical density by a pressureless sintering method.

  3. Pressureless sintering of whiskered-toughened ceramic composites

    DOEpatents

    Tiegs, Terry N.

    1994-01-01

    A pressureless sintering method is disclosed for use in the production of whisker-toughened ceramic composites wherein the sintered density of composites containing up to about 20 vol. % SiC whiskers is improved by reducing the average aspect ratio of the whiskers to from about 10 to about 20. Sintering aids further improve the density, permitting the production of composites containing 20 vol. % SiC with sintered densities of 94% or better of theoretical density by a pressureless sintering method.

  4. Pressureless sintering of whisker-toughened ceramic composites

    DOEpatents

    Tiegs, Terry N.

    1993-01-01

    A pressureless sintering method is disclosed for use in the production of whisker-toughened ceramic composites wherein the sintered density of composites containing up to about 20 vol. % SiC whiskers is improved by reducing the average aspect ratio of the whiskers to from about 10 to about 20. Sintering aids further improve the density, permitting the production of composites containing 20 vol. % SiC with sintered densities of 94% or better of theoretical density by a pressureless sintering method.

  5. Physicomechanical, In Vitro and In Vivo Performance of 3D Printed Doped Tricalcium Phosphate Scaffolds for Bone Tissue Engineering and Drug Delivery

    NASA Astrophysics Data System (ADS)

    Tarafder, Solaiman

    Although tricalcium phosphate (TCP) is widely used in bone tissue engineering, the strength degradation kinetics is not well controlled. This study focuses on the underlying mechanism of strength degradation kinetics by incorporating trace elements in TCP. The objective of this research is to modify the mechanical properties of TCP to achieve the desired degradation rate for the specific need, and improve the in vivo bioactivity for early wound healing by incorporating trace elements such as strontium (Sr2+), magnesium (Mg2+) and silicon (Si4+) as dopants. The hypothesis of this research is that the presence of different trace elements in TCP will influence its phase stability, microstructure, mechanical strength, and both in vitro and in vivo bioactivity. Direct three dimensional printing (3DP) was used to fabricate designed interconnected macroporous pure and doped TCP scaffolds. Microwave sintering as opposed to conventional sintering was also used for better densification and higher mechanical strength. A maximum compressive strength of 10.95 +/- 1.28 MPa and 12.01 +/- 1.56 MPa were achieved for pure and Sr2+-Mg2+ doped TCP scaffolds with 500 microm designed pores (˜400 microm after sintering) sintered in microwave furnace, respectively. Substitution of Mg2+ and Sr2+ into calcium (Ca2+) sites of TCP crystal lattice contributed to phase stability and controlled gradual degradation. On the other hand, Si4+ substitution into phosphorous (P5+) sites destabilized the crystal structure and accelerated degradation of TCP. Interconnected macroporous beta-TCP scaffolds facilitated in vivo guided bone tissue regeneration through infiltration of cells and extracellular matrix into the designed pores. Presence of Sr2+, Mg2+ and Si4+ into beta-TCP induced increased in vivo early bone formation and better bone remodeling through increased extracellular matrix production such as, collagen and osteocalcin, when tested in rat and rabbit distal femur model. The presence of Si4+ along with Mg 2+ induced increased new blood vessel formation. Our results exhibited that Sr2+, Mg2+ and Si4+ doped 3DP TCP scaffolds have strong potential in bone tissue engineering applications for early wound healing.

  6. Parallel Large-Scale Molecular Dynamics Simulation Opens New Perspective to Clarify the Effect of a Porous Structure on the Sintering Process of Ni/YSZ Multiparticles.

    PubMed

    Xu, Jingxiang; Higuchi, Yuji; Ozawa, Nobuki; Sato, Kazuhisa; Hashida, Toshiyuki; Kubo, Momoji

    2017-09-20

    Ni sintering in the Ni/YSZ porous anode of a solid oxide fuel cell changes the porous structure, leading to degradation. Preventing sintering and degradation during operation is a great challenge. Usually, a sintering molecular dynamics (MD) simulation model consisting of two particles on a substrate is used; however, the model cannot reflect the porous structure effect on sintering. In our previous study, a multi-nanoparticle sintering modeling method with tens of thousands of atoms revealed the effect of the particle framework and porosity on sintering. However, the method cannot reveal the effect of the particle size on sintering and the effect of sintering on the change in the porous structure. In the present study, we report a strategy to reveal them in the porous structure by using our multi-nanoparticle modeling method and a parallel large-scale multimillion-atom MD simulator. We used this method to investigate the effect of YSZ particle size and tortuosity on sintering and degradation in the Ni/YSZ anodes. Our parallel large-scale MD simulation showed that the sintering degree decreased as the YSZ particle size decreased. The gas fuel diffusion path, which reflects the overpotential, was blocked by pore coalescence during sintering. The degradation of gas diffusion performance increased as the YSZ particle size increased. Furthermore, the gas diffusion performance was quantified by a tortuosity parameter and an optimal YSZ particle size, which is equal to that of Ni, was found for good diffusion after sintering. These findings cannot be obtained by previous MD sintering studies with tens of thousands of atoms. The present parallel large-scale multimillion-atom MD simulation makes it possible to clarify the effects of the particle size and tortuosity on sintering and degradation.

  7. Pressureless sintering of whiskered-toughened ceramic composites

    DOEpatents

    Tiegs, T.N.

    1994-12-27

    A pressureless sintering method is disclosed for use in the production of whisker-toughened ceramic composites wherein the sintered density of composites containing up to about 20 vol. % SiC whiskers is improved by reducing the average aspect ratio of the whiskers to from about 10 to about 20. Sintering aids further improve the density, permitting the production of composites containing 20 vol. % SiC with sintered densities of 94% or better of theoretical density by a pressureless sintering method. 6 figures.

  8. Development of nanosized lanthanum strontium aluminum manganite as electrodes for potentiometric oxygen sensor

    DOE PAGES

    Mullen, Max R.; Spirig, John V.; Hoy, Julia; ...

    2014-11-01

    Nanocrystalline La0.8Sr0.2Al0.9Mn0.1O3 (LSAM) was synthesized by a microwave-assisted citrate method, and characterized by electron microscopy and X-ray diffraction. Electrical behavior of LSAM was investigated by impedance spectroscopy and activation energy of conduction was obtained. Joining of sintered bodies of LSAM and yttria-stabilized tetragonal zirconia polycrystals (YTZP), an extensively studied oxygen ion conducting electrolyte, was examined by isostatic hot pressing methods. Characteristics of the joining region were evaluated with microprobe Raman spectroscopy, and products formed at the interface, primarily strontium zirconate, was confirmed by examination of high temperature chemical reaction between LSAM and YTZP powders. Finally, the electrical properties of themore » LSAM were exploited for development of a high temperature oxygen sensor in which LSAM functioned as the electrode and YTZP as electrolyte.« less

  9. An application of powder metallurgy to dentistry.

    PubMed

    Oda, Y; Ueno, S; Kudoh, Y

    1995-11-01

    Generally, the dental casting method is used to fabricate dental prostheses made with metal. The method of fabricating dental prostheses from sintered titanium alloy has certain advantages: the elimination of casting defects, a sintering temperature that is lower than the melting point, and a shorter processing time. By examining (1) the properties of green, sintered compacts of titanium powder, (2) the effects of adding aluminum powder on the properties of green, sintered compacts of Ti-Al compound, and (3) the effects of adding copper powder on the properties of green, sintered compacts of Ti-Al-Cu compound, the authors developed a sintered titanium alloy on a trial basis. Because the properties satisfied the requirements of dental restorations, a powder metallurgical method of making dental restorations from this sintered titanium alloy was devised. Applications of such sintered titanium alloys for the metal coping of metal-ceramic crowns and denture base plates were discussed.

  10. Array automated assembly task low cost silicon solar array project, phase 2

    NASA Technical Reports Server (NTRS)

    Olson, C.

    1980-01-01

    Analyses of solar cell and module process steps for throughput rate, cost effectiveness, and reproductibility are reported. In addition to the concentration on cell and module processing sequences, an investigation was made into the capability of using microwave energy in the diffusion, sintering, and thick film firing steps of cell processing. Although the entire process sequence was integrated, the steps are treated individually with test and experimental data, conclusions, and recommendations.

  11. Low-temperature sintered Li2(MnxTi1-x)O3 microwave dielectric ceramics with adjustable τf

    NASA Astrophysics Data System (ADS)

    Liu, Cheng; Zhang, Huaiwu; Su, Hua; Li, Jie; Liao, Yulong; Jia, Lijun; Li, Yuanxun

    2017-12-01

    B2O3-Bi2O3-SiO2-ZnO (BBSZ) glass-modified Li2(MnxTi1-x)O3 ceramics were fabricated via a solid-state reaction route. Pure phase and dense crystal morphology were obtained at 900∘C. Suitable amount of Mn4+-ion substitution could adjust the τf value of the Li2(MnxTi1-x)O3 system to near zero. Among all of the Li2(MnxTi1-x)O3 samples, the sample with x = 0.9 (marked as BL9 in this paper) possessed good microwave dielectric properties: 𝜀r = 18, Q × f = 14,056 GHz (9.58 GHz) and τf = (+)2.43 ppm/∘C. It is suggested that the Li2(MnxTi1-x)O3 ceramic with BBSZ glass is a suitable low-temperature co-fired ceramic (LTCC) candidate for microwave applications.

  12. Synthesis of Highly Uniform and Compact Lithium Zinc Ferrite Ceramics via an Efficient Low Temperature Approach.

    PubMed

    Xu, Fang; Liao, Yulong; Zhang, Dainan; Zhou, Tingchuan; Li, Jie; Gan, Gongwen; Zhang, Huaiwu

    2017-04-17

    LiZn ferrite ceramics with high saturation magnetization (4πM s ) and low ferromagnetic resonance line widths (ΔH) represent a very critical class of material for microwave ferrite devices. Many existing approaches emphasize promotion of the grain growth (average size is 10-50 μm) of ferrite ceramics to improve the gyromagnetic properties at relatively low sintering temperatures. This paper describes a new strategy for obtaining uniform and compact LiZn ferrite ceramics (average grains size is ∼2 μm) with enhanced magnetic performance by suppressing grain growth in great detail. The LiZn ferrites with a formula of Li 0.415 Zn 0.27 Mn 0.06 Ti 0.1 Fe 2.155 O 4 were prepared by solid reaction routes with two new sintering strategies. Interestingly, results show that uniform, compact, and pure spinel ferrite ceramics were synthesized at a low temperature (∼850 °C) without obvious grain growth. We also find that a fast second sintering treatment (FSST) can further improve their gyromagnetic properties, such as higher 4πM s and lower ΔH. The two new strategies are facile and efficient for densification of LiZn ferrite ceramics via suppressing grain growth at low temperatures. The sintering strategy reported in this study also provides a referential experience for other ceramics, such as soft magnetism ferrite ceramics or dielectric ceramics.

  13. Performance of a Wideband Cadmium Ferrite Microstrip Patch Antenna in the X-Band Region

    NASA Astrophysics Data System (ADS)

    Bhongale, S. R.; Ingavale, H. R.; Shinde, T. J.; Vasambekar, P. N.

    2018-01-01

    Magnesium-substituted cadmium ferrites with the chemical composition Mg x Cd1- x Fe2O4 ( x = 0, 0.4 and 0.8) were prepared by an oxalate co-precipitation method under microwave sintering technique. The structural properties of ferrites were studied by x-ray diffraction, Fourier transform infrared spectroscopy and field emission scanning electron microscope techniques. The scattering parameters such as reflection coefficient ( S 11) and transmission coefficient ( S 21) at microwave frequencies of palletized ferrites were measured by using a vector network analyzer. The software module 85071E followed by scattering parameters was used to determine the electromagnetic properties of the ferrites. The values determined for electromagnetic parameters such as the real part of permittivity ( ɛ'), permeability ( μ'), dielectric loss tangent (tan δ e) and magnetic loss tangent (tan δ m) of synthesized ferrites were used to design rectangular microstrip patch antennas. The performance of magnesium-substituted Cd ferrites as substrate for microstrip patch antennas was investigated. The antenna parameters such as return loss, bandwidth, voltage standing wave ratio, Smith chart and radiation pattern were studied. It is found that the Cd ferrite has applicability as a substrate for wideband antennas in the X-band region.

  14. Electrically-conductive proppant and methods for making and using same

    DOEpatents

    Cannan, Chad; Roper, Todd; Savoy, Steve; Mitchell, Daniel R.

    2016-09-06

    Electrically-conductive sintered, substantially round and spherical particles and methods for producing such electrically-conductive sintered, substantially round and spherical particles from an alumina-containing raw material. Methods for using such electrically-conductive sintered, substantially round and spherical particles in hydraulic fracturing operations.

  15. Department of Defense Advisory Group on Electron Devices. Special Technology Area Review on Microwave Packaging Technology. Appendix

    DTIC Science & Technology

    1993-02-01

    sintered in hydrogen furnace at very high temperatures . Multiple furnace firing occurs until the binders are removed and part density is achieved "* Process...and base Low temperature co-fired ceramic - Metallized for shielding and grounding - Low resistance thick-film metallization - High thermal resistance...ESPECIALLY LOW TEMPERATURE COFIRED CERAMIC CERAMICS HIGH THERMAL CONDUCTIVITY,MATCHED GaAS AND SILICON SUBSTRATE MATERIALS I I,1Z#A,17Mr1 J, TI

  16. Effect of Annealing Time of YAG:Ce3+ Phosphor on White Light Chromaticity Values

    NASA Astrophysics Data System (ADS)

    Abd, Husnen R.; Hassan, Z.; Ahmed, Naser M.; Almessiere, Munirah Abdullah; Omar, A. F.; Alsultany, Forat H.; Sabah, Fayroz A.; Osman, Ummu Shuhada

    2018-02-01

    Yttrium and aluminium nitrate phosphors doped with cerium nitrate and mixed with urea (fuel) are prepared by using microwave-induced combustion synthesis according to the formula Y(3-0.06)Al5O12:0.06Ce3+ (YAG:Ce3+) to produce white light emitting diodes by conversion from blue indium gallium nitride-light emitting diode chips. The sintering time with fixed temperature (1050°C) for phosphor powder was optimized and found to be 5 h. The crystallinity, structure, chemical composition, luminescent properties with varying currents densities and chromaticity were characterized by x-ray diffraction, field emission-scanning electron microscopy, transmission electron microscopy, energy dispersive spectroscopy, photoluminescence emission, electroluminescence and standard CIE 1931 chromaticity diagram, respectively. The energy levels of Ce3+ in YAG were discussed based on its absorption and excitation spectra. The results show that the obtained YAG:Ce3+ phosphor sintered for 5 h has good crystallinity with pure phase, low agglomerate with spherical shaped particles and strong yellow emission, offering cool-white LED with tuneable correlated color temperature and a good color rendering index compared to those prepared by sintering for 2 h and as-prepared phosphor powders.

  17. In vitro and in vivo performance of bioactive Ti6Al4V/TiC/HA implants fabricated by a rapid microwave sintering technique.

    PubMed

    Choy, Man Tik; Tang, Chak Yin; Chen, Ling; Wong, Chi Tak; Tsui, Chi Pong

    2014-09-01

    Failure of the bone-implant interface in a joint prosthesis is a main cause of implant loosening. The introduction of a bioactive substance, hydroxyapatite (HA), to a metallic bone-implant may enhance its fixation on human bone by encouraging direct bone bonding. Ti6Al4V/TiC/HA composites with a reproducible porous structure (porosity of 27% and pore size of 6-89 μm) were successfully fabricated by a rapid microwave sintering technique. This method allows the biocomposites to be fabricated in a short period of time under ambient conditions. Ti6Al4V/TiC/HA composites exhibited a compressive strength of 93 MPa, compressive modulus of 2.9 GPa and microhardness of 556 HV which are close to those of the human cortical bone. The in vitro preosteoblast MC3T3-E1 cells cultured on the Ti6Al4V/TiC/HA composite showed that the composite surface could provide a biocompatible environment for cell adhesion, proliferation and differentiation without any cytotoxic effects. This is among the first attempts to study the in vivo performance of load-bearing Ti6Al4V/TiC and Ti6Al4V/TiC/HA composites in a live rabbit. The results indicated that the Ti6Al4V/TiC/HA composite had a better bone-implant interface compared with the Ti6Al4V/TiC implant. Based on the microstructural features, the mechanical properties, and the in vitro and in vivo test results from this study, the Ti6Al4V/TiC/HA composites have the potential to be employed in load-bearing orthopedic applications. Copyright © 2014 Elsevier B.V. All rights reserved.

  18. Temperature compensation effects of TiO2 on Ca[(Li1/3Nb2/3)0.8Sn0.2]O3-δ microwave dielectric ceramic

    NASA Astrophysics Data System (ADS)

    Hu, Mingzhe; Wei, Huanghe; Xiao, Lihua; Zhang, Kesheng; Hao, Yongde

    2017-10-01

    The crystal structure and dielectric properties of TiO2-modified Ca[(Li1/3Nb2/3)0.8Sn0.2]O3-δ microwave ceramics are investigated in the present paper. The crystal structure is probed by XRD patterns and their Rietveld refinement, results show that a single perovskite phase is formed in TiO2-modified Ca[(Li1/3Nb2/3)0.8Sn0.2]O3-δ ceramics with the crystal structure belonging to the orthorhombic Pbnm 62 space group. Raman spectra results indicate that the B-site order-disorder structure transition is a key point to the dielectric loss of TiO2-modified Ca[(Li1/3Nb2/3)0.8Sn0.2]O3-δ ceramics at microwave frequencies. After properly modified by TiO2, the large negative temperature coefficient of Ca[(Li1/3Nb2/3)0.8Sn0.2]O3-δ ceramic can be compensated and the optimal microwave dielectric properties can reach 𝜀r = 25.66, Qf = 18,894 GHz and TCF = -6.3 ppm/∘C when sintered at 1170∘C for 2.5 h, which manifests itself for potential use in microwave dielectric devices for modern wireless communication.

  19. Effect of sintering atmosphere on properties of porous stainless steel for biomedical applications.

    PubMed

    Dudek, Agata; Włodarczyk, Renata

    2013-01-01

    This study discusses manufacturing of metallic biomaterials by means of powder metallurgy with consideration for their unquestionable advantages, i.e. opportunities of obtaining materials with controllable porosity. The paper focuses on properties of 316 L stainless steel obtained using the method of powder metallurgy with respect to compacting pressure and sintering atmosphere. All the specimens were compacted at 700, 400 and 225 MPa, and sintered at 1250 °C. In order to analyze the sintering atmosphere, three different media were used: dissociated ammonia, hydrogen and vacuum. The study covered sintering density, porosity, microstructure analysis and corrosion resistance. The proposed method of powder metallurgy allowed for obtaining materials with predictable size and distribution of pores, depending on the parameters of sinter preparation (compaction force, sinter atmosphere). High corrosion resistance of the materials (sintering in the atmosphere of hydrogen and in vacuum) and high porosity in the sinters studied offer opportunities for using them for medical purposes. Copyright © 2012 Elsevier B.V. All rights reserved.

  20. Low-loss electromagnetic composites for RF and microwave applications.

    PubMed

    Wang, Hong; Yang, Haibo; Xiang, Feng; Yao, Xi

    2011-09-01

    Low-loss electromagnetic composites with high permittivity and permeability will benefit the miniaturization and multifunctional of RF devices. A kind of low-loss dielectric-magnetic ceramic-ceramic composite was developed by hybrid processing technology with the goal of integrating the dielectric properties and magnetic properties. The hybrid processing technology exhibits the advantage of lowered sintering temperatures for the composites while retaining good microstructure and high performance. By introducing elastomer as matrix, a kind of flexible low-loss dielectric-magnetic ceramic-polymer composite was prepared and studied. The obtained flexible dielectric-magnetic ceramic-polymer composite exhibited low loss and good mechanical properties. The results show good effects on lowering the dielectric loss and extending the cut-off magnetic frequency of the electromagnetic composite. Methods for tailoring the properties of the multifunctional composites were proposed and discussed.

  1. Heat treatment effects on dielectric properties of SRFe{sub 12}O{sub 19} hexaferrite prepared by an SHS route

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Panchal, Nital R.; Jotania, Rajshree B., E-mail: natal_panchal@yahoo.co.in, E-mail: rbjotania@gmail.com

    2011-07-01

    The M-type Strontium Hexaferrite SRFe{sub 12}O{sub 19} particles were prepared by a Self propagating High temperature Synthesis (SHS) route. Precursors were heated under two different conditions: microwave heating for 30 minutes and sintered at 950 deg C for 4 hrs. The dielectric properties: dielectric constant ({epsilon}{sup '}), dielectric loss (tan {delta} ) and ac conductivity ({sigma}{sub ac}) were measured at room temperature in the frequency range from 100 Hz to 2 MHz. The samples present a non-linear behavior for the dielectric constant at 1 kHz, 100 kHz and 2 MHz. The dielectric properties of prepared Strontium Hexaferrite samples were discussedmore » in view of applications as a material for microwave devices, permanent magnets and high density magnetic recording media. (author)« less

  2. METHOD OF JOINING CARBIDES TO BASE METALS

    DOEpatents

    Krikorian, N.H.; Farr, J.D.; Witteman, W.G.

    1962-02-13

    A method is described for joining a refractory metal carbide such as UC or ZrC to a refractory metal base such as Ta or Nb. The method comprises carburizing the surface of the metal base and then sintering the base and carbide at temperatures of about 2000 deg C in a non-oxidizing atmosphere, the base and carbide being held in contact during the sintering step. To reduce the sintering temperature and time, a sintering aid such as iron, nickel, or cobait is added to the carbide, not to exceed 5 wt%. (AEC)

  3. Method of forming a ceramic to ceramic joint

    DOEpatents

    Cutler, Raymond Ashton; Hutchings, Kent Neal; Kleinlein, Brian Paul; Carolan, Michael Francis

    2010-04-13

    A method of joining at least two sintered bodies to form a composite structure, includes: providing a joint material between joining surfaces of first and second sintered bodies; applying pressure from 1 kP to less than 5 MPa to provide an assembly; heating the assembly to a conforming temperature sufficient to allow the joint material to conform to the joining surfaces; and further heating the assembly to a joining temperature below a minimum sintering temperature of the first and second sintered bodies. The joint material includes organic component(s) and ceramic particles. The ceramic particles constitute 40-75 vol. % of the joint material, and include at least one element of the first and/or second sintered bodies. Composite structures produced by the method are also disclosed.

  4. [Application of sintered Ti powder to dental prostheses].

    PubMed

    Hikosaka, Tatsuya; Tanaka, Yoshinobu; Hoshiai, Kazumoto; Kanazawa, Takeshi; Nakamura, Yoshinori; Tsuda, Kenji; Ohasi, Hideya

    2005-04-01

    Powder metallurgy is a metal processing technology. Porous titanium produced from powder is widely used. The method is applied to titanium, which is not easy to cast as it sinters under melting point. In prosthetic dentistry, powder metallurgy can be applied to high fusing metal that is biocompatible. In this study, we examined the mechanical characteristics of the Ti sheet produced by sintering and discussed its application to dental prosthesis manufacturing. Ti sheets of 1-mm thickness, in which a binder was added to spherical Ti powder, were produced with the Doctor Blade Method. The sintering was carried out between 900-1150 degrees C at 6 temperatures. The sintered compact was evaluated by dimensional change rate, hardness test, bending strength, tensile strength and SEM observation. Another compact was sintered on the refractory cast. Mechanical strength significantly increased with sintering temperature. In addition, excellent mechanical strength was acquired by adding crushed powder and performing the de-binder process. In the sintering on the refractory cast, pre-baking for more than 100 minutes and sintering at over 1050 degrees C was needed for practical application. It thus seems possible to apply sintered titanium to dental prostheses. However, it will be necessary to examine the control of the shrinkage of the sintered compact in the future too.

  5. Method of forming aluminum oxynitride material and bodies formed by such methods

    DOEpatents

    Bakas, Michael P [Ammon, ID; Lillo, Thomas M [Idaho Falls, ID; Chu, Henry S [Idaho Falls, ID

    2010-11-16

    Methods of forming aluminum oxynitride (AlON) materials include sintering green bodies comprising aluminum orthophosphate or another sacrificial material therein. Such green bodies may comprise aluminum, oxygen, and nitrogen in addition to the aluminum orthophosphate. For example, the green bodies may include a mixture of aluminum oxide, aluminum nitride, and aluminum orthophosphate or another sacrificial material. Additional methods of forming aluminum oxynitride (AlON) materials include sintering a green body including a sacrificial material therein, using the sacrificial material to form pores in the green body during sintering, and infiltrating the pores formed in the green body with a liquid infiltrant during sintering. Bodies are formed using such methods.

  6. Sintered rare earth-iron Laves phase magnetostrictive alloy product and preparation thereof

    DOEpatents

    Malekzadeh, Manoochehr; Pickus, Milton R.

    1979-01-01

    A sintered rare earth-iron Laves phase magnetostrictive alloy product characterized by a grain oriented morphology. The grain oriented morphology is obtained by magnetically aligning powder particles of the magnetostrictive alloy prior to sintering. Specifically disclosed are grain oriented sintered compacts of Tb.sub.x Dy.sub.1-x Fe.sub.2 and their method of preparation. The present sintered products have enhanced magnetostrictive properties.

  7. Neutron and electron diffraction studies of La(Zn1/2Ti1/2)O3 perovskite.

    PubMed

    Ubic, Rick; Hu, Yi; Abrahams, Isaac

    2006-08-01

    The crystallography and microwave dielectric properties of La(Zn(1/2)Ti(1/2))O(3) (LZT) ceramics prepared via the mixed-oxide route were investigated in this study. While samples were largely single phase, small amounts of ZnO impurity were detected in sintered pellets. Observed reflections in electron and neutron diffraction patterns indicate that the symmetry of LZT is P2(1)/n. The B site is ordered on {110} or pseudocubic {111}, but the presence of the pseudocubic 1/2(111) reflection is in itself insufficient to indicate the existence of such order. Rietveld refinements of the neutron diffraction data yield an excellent fit for such a model. The structure is highly twinned, with variants related through common {211} composition planes and 90 degrees rotations about <011>. The microwave dielectric properties measured were epsilon(r) = 34, Qf = 36,090 and tau(f) = -70 MK(-1).

  8. Method of producing amorphous thin films

    DOEpatents

    Brusasco, Raymond M.

    1992-01-01

    Disclosed is a method of producing thin films by sintering which comprises: a. coating a substrate with a thin film of an inorganic glass forming parulate material possessing the capability of being sintered, and b. irridiating said thin film of said particulate material with a laser beam of sufficient power to cause sintering of said material below the temperature of liquidus thereof. Also disclosed is the article produced by the method claimed.

  9. Method of producing amorphous thin films

    DOEpatents

    Brusasco, R.M.

    1992-09-01

    Disclosed is a method of producing thin films by sintering which comprises: (a) coating a substrate with a thin film of an inorganic glass forming material possessing the capability of being sintered; and (b) irradiating said thin film of said particulate material with a laser beam of sufficient power to cause sintering of said material below the temperature of liquidus thereof. Also disclosed is the article produced by the method claimed. 4 figs.

  10. Surface-selective laser sintering of thermolabile polymer particles using water as heating sensitizer

    NASA Astrophysics Data System (ADS)

    Antonov, E. N.; Krotova, L. I.; Minaev, N. V.; Minaeva, S. A.; Mironov, A. V.; Popov, V. K.; Bagratashvili, V. N.

    2015-11-01

    We report the implementation of a novel scheme for surface-selective laser sintering (SSLS) of polymer particles, based on using water as a sensitizer of laser heating and sintering of particles as well as laser radiation at a wavelength of 1.94 μm, corresponding to the strong absorption band of water. A method of sintering powders of poly(lactide-co-glycolide), a hydrophobic bioresorbable polymer, after modifying its surface with an aqueous solution of hyaluronic acid is developed. The sintering thresholds for wetted polymer are by 3 - 4 times lower than those for sintering in air. The presence of water restricts the temperature of the heated polymer, preventing its thermal destruction. Polymer matrices with a developed porous structure are obtained. The proposed SSLS method can be applied to produce bioresorbable polymer matrices for tissue engineering.

  11. Faxing Structures to the Moon: Freeform Additive Construction System (FACS)

    NASA Technical Reports Server (NTRS)

    Howe, A. Scott; Wilcox, Brian; McQuin, Christopher; Townsend, Julie; Rieber, Richard; Barmatz, Martin; Leichty, John

    2013-01-01

    Using the highly articulated All-Terrain Hex-Limbed Extra-Terrestrial Explorer (ATHLETE) robotic mobility system as a precision positioning tool, a variety of print head technologies can be used to 3D print large-scale in-situ structures on planetary surfaces such as the moon or Mars. In effect, in the same way CAD models can be printed in a 3D printer, large-scale structures such as walls, vaults, domes, berms, paving, trench walls, and other insitu derived elements can be FAXed to the planetary surface and built in advance of the arrival of crews, supplementing equipment and materials brought from earth. This paper discusses the ATHLETE system as a mobility / positioning platform, and presents several options for large-scale additive print head technologies, including tunable microwave "sinterator" approaches and in-situ concrete deposition. The paper also discusses potential applications, such as sintered-in-place habitat shells, radiation shielding, road paving, modular bricks, and prefabricated construction components.

  12. The Influence of Sintering Method on Kaolin-Based Geopolymer Ceramics with Addition of Ultra High Molecular Weight Polyethylene as Binder

    NASA Astrophysics Data System (ADS)

    Romisuhani, A.; AlBakri, M. M.; Kamarudin, H.; Andrei, S. V.

    2017-11-01

    The influence of sintering method on kaolin-based geopolymer ceramics with addition of Ultra High Molecular Weight Polyethylene as binder were studied. Geopolymer were formed at room temperature from kaolin and sodium silicate in a highly alkaline medium, followed by curing and drying at 80 °C. 12 M of sodium hydroxide solution were mixed with sodium silicate at a ratio of 0.24 to form alkaline activator. Powder metallurgy technique were used in order to produce kaolin geopolymer ceramics with addition of Ultra High Molecular Weight Polyethylene. The samples were heated at temperature of 1200 °C with two different sintering method which are conventional method and two-step sintering method. The strength and density were tested.

  13. Sintering Uranium Dioxide of Domestic Production. Report No. 78; SINTERIZACION DE DIOXIDO DE URANIO DE PRODUCCION NACIONAL. Informe No. 78

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Carrea, A.J.

    1963-01-01

    After a brief indication of the uranium- oxygen equilibrium and the methods for the preparation of UO/sub 2/, the sintering of UO/sub 2/ is considered. The effects of various sintering atmospheres on the properties of the product are discussed and tabulated. The method used for the processing of domestic ores for the preparation of UO/sub 2/ and the fabricition of the sintered UO/sub 2/are described. The properties of the product obtained are illustrated graphically. (J.S.R.)

  14. Green synthesis of Si-incorporated hydroxyapatite using sodium metasilicate as silicon precursor and in vitro antibiotic release studies.

    PubMed

    Abinaya Sindu, P; Kolanthai, Elayaraja; Suganthi, R V; Thanigai Arul, K; Manikandan, E; Catalani, Luiz H; Narayana Kalkura, S

    2017-10-01

    The aim of the current study is to synthesize nanosized silicon incorporated HAp (Si-HAP) using sodium metasilicate as the silicon source. The sol-gel derived samples were further subjected to microwave irradiation. Incorporation of Si into HAp did not alter the HAp phase, as confirmed by the X-ray diffraction analysis (XRD). Moreover, variation in the lattice parameters of the Si-incorporated HAp indicates that Si is substituted into the HAp lattice. The decrease in the intensity of the peaks attributed to hydroxyl groups, which appeared in the FTIR and Raman spectra of Si-HAp, further confirms the Si substitution in HAp lattices. The silicon incorporation enhanced the nanorods length by 70%, when compared to that of pure HAp. Microwave irradiation improved the crystallinity of Si-HAp when compared to as-synthesized Si-HAp samples. As-synthesized Si-incorporated HAp sample showed an intense blue emission under UV excitation. Microwave irradiation reduced the intensity of blue emission and exhibited red shift due to the reduction of defects in the Si-HAp crystal. The morphological change from rod to spherical and ribbon-like forms was observed with an increase in silicon content. Further, Si-HAp exhibited better bioactivity and low dissolution rate. Initially there was a burst release of amoxicillin from all the samples, subsequently it followed a sustained release. The microwave-irradiated HAp showed extended period of sustained release than that of as-synthesized HAp and Si-HAp. Similarly, the microwave-irradiated Si-incorporated samples exhibited prolonged drug release, as compared to that of the as-synthesized samples. Hence, Si-HAp is rapidly synthesized by a simple and cost effective method without inducing any additional phases, as compared to the conventional sintering process. This study provides a new insight into the rapid green synthesis of Si-HAp. Si-HAp could emerge as a promising material for the bone tissue replacement and as a drug delivery system. Copyright © 2017 Elsevier B.V. All rights reserved.

  15. Cobalt ferrite sphere-coated buckhorn-like barium titanate: Fabrication, characterization, its dielectric resonance, and microwave attenuation properties

    NASA Astrophysics Data System (ADS)

    Ji, Renlong; Cao, Chuanbao

    2014-10-01

    Barium titanate (BTO) with different morphology is prepared through hydrothermal method using titania spheres as precursor, then calcined at different temperatures and ultimately coated with cobalt ferrite (BTO/CFO). The dielectric dispersion of the composite containing BTO (75 wt. % ratio in paraffin wax) shows evidence of resonance behaviour in the microwave spectrum, rather than the usually observed relaxation mode. The imaginary part of permittivity (ɛ″) displays a strong peak in the 10-13 GHz frequency region, especially for buckhorn-like BTO (hydrothermally synthesized at 110 °C and calcined at 1100 °C). The dielectric response anomaly of BTO in special morphology is due to the emission of plane acoustic waves caused by electrostrictive and converse piezoelectric effects. An accepted model is adopted to simulate the resonance frequency. The minimum reflection loss of cauliflower-like BTO (hydrothermally synthesized at 110 °C, then calcined at 600 °C for 2 h, 75 wt. % ratio) in paraffin wax reaches -30.831 dB at 10.56 GHz with a matching thickness of 2 mm, lower than all the reported values. When the sintering temperature is changed to 1100 °C (buckhorn-like BTO), the minimum reflection loss value is -24.37 dB at 12.56 GHz under the thickness of 3 mm. After combination with CFO, the value reaches -42.677 dB when the thickness is 5.6 mm. The ginger-like BTO (hydrothermally synthesized at 200 °C and calcined at different temperatures) is inferior in microwave reflection reduction. The electromagnetic interference shielding effectiveness of buckhorn-like BTO composite is calculated to be -12.7 dB (94.6% shielding) at resonance frequency (2 mm, 11.52 GHz). This work clearly shows the potential to tune the dielectric property of ferroelectrics through control of morphology, facilitating new comprehension of the ferroelectrics in microwave regime.

  16. SEM and TEM characterization of microstructure of stainless steel composites reinforced with TiB{sub 2}

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sulima, Iwona, E-mail: isulima@up.krakow.pl

    Steel-8TiB{sub 2} composites were produced by two new sintering techniques, i.e. Spark Plasma Sintering (SPS) and High Pressure-High Temperature (HP-HT) sintering. This study discusses the impact of these sintering methods on the microstructure of steel composites reinforced with TiB{sub 2} particles. Scanning electron microscopy (SEM), wavelength dispersive spectroscopy (WDS), X-ray diffraction, electron backscatter diffraction (EBSD) and transmission electron microscopy (TEM) were used to analyze the microstructure evolution in steel matrix composites. The results of microscopic examinations revealed a close relationship between the composite microstructure and the methods and conditions of sintering. Substantial differences were observed in the grain size ofmore » materials sintered by HP-HT and SPS. It has been demonstrated that the composites sintered by HP-HT tend to form a chromium-iron-nickel phase in the steel matrix. In contrast, the microstructure of the composites sintered by SPS is characterized by the presence of complex borides and chromium-iron phase. - Highlights: •The steel-8TiB{sub 2} composites were fabricated by Spark Plasma Sintering (SPS) and High Pressure-High Temperature (HP-HT). •Sintering techniques has an important effect on changes in the microstructure of steel-8TiB{sub 2} composites. •New phases of different size and morphology were identified.« less

  17. Sintering of Lead-Free Piezoelectric Sodium Potassium Niobate Ceramics

    PubMed Central

    Malič, Barbara; Koruza, Jurij; Hreščak, Jitka; Bernard, Janez; Wang, Ke; Fisher, John G.; Benčan, Andreja

    2015-01-01

    The potassium sodium niobate, K0.5Na0.5NbO3, solid solution (KNN) is considered as one of the most promising, environment-friendly, lead-free candidates to replace highly efficient, lead-based piezoelectrics. Since the first reports of KNN, it has been recognized that obtaining phase-pure materials with a high density and a uniform, fine-grained microstructure is a major challenge. For this reason the present paper reviews the different methods for consolidating KNN ceramics. The difficulties involved in the solid-state synthesis of KNN powder, i.e., obtaining phase purity, the stoichiometry of the perovskite phase, and the chemical homogeneity, are discussed. The solid-state sintering of stoichiometric KNN is characterized by poor densification and an extremely narrow sintering-temperature range, which is close to the solidus temperature. A study of the initial sintering stage revealed that coarsening of the microstructure without densification contributes to a reduction of the driving force for sintering. The influences of the (K + Na)/Nb molar ratio, the presence of a liquid phase, chemical modifications (doping, complex solid solutions) and different atmospheres (i.e., defect chemistry) on the sintering are discussed. Special sintering techniques, such as pressure-assisted sintering and spark-plasma sintering, can be effective methods for enhancing the density of KNN ceramics. The sintering behavior of KNN is compared to that of a representative piezoelectric lead zirconate titanate (PZT). PMID:28793702

  18. Titanium dental copings prepared by a powder metallurgy method: a preliminary report.

    PubMed

    Eriksson, Mikael; Andersson, Matts; Carlström, Elis

    2004-01-01

    The purpose of this study was to determine if the Procera pressed-powder method can be used to fabricate titanium copings. Commercially pure titanium powder was used to prepare the copings. The powder was pressed onto an enlarged tooth preparation die of aluminum using cold isostatic pressing. The outer shape of the coping was formed using a Procera milling machine, and the copings were vacuum sintered. Titanium copings could be prepared using this method. The density of the sintered copings reached 97% to 99%+ of theoretic density, and the copings showed ductile behavior after sintering. Enlarging the tooth preparation die to compensate for the sintering shrinkage could optimize the final size of the copings. Ductile and dense titanium dental copings can be produced with powder-metal processing using cold isostatic pressing, followed by milling and sintering to final shape. The forming technique has, if properly optimized, a potential of becoming a more cost-efficient production method than spark erosion.

  19. Method of forming a joint

    DOEpatents

    Butt, Darryl Paul; Cutler, Raymond Ashton; Rynders, Steven Walton; Carolan, Michael Francis

    2006-08-22

    A method of joining at least two sintered bodies to form a composite structure, including providing a first multicomponent metallic oxide having a perovskitic or fluorite crystal structure; providing a second sintered body including a second multicomponent metallic oxide having a crystal structure of the same type as the first; and providing at an interface a joint material containing at least one metal oxide containing at least one metal identically contained in at least one of the first and second multicomponent metallic oxides. The joint material is free of cations of Si, Ge, Sn, Pb, P and Te and has a melting point below the sintering temperatures of both sintered bodies. The joint material is heated to a temperature above the melting point of the metal oxide(s) and below the sintering temperatures of the sintered bodies to form the joint. Structures containing such joints are also disclosed.

  20. Apparatus and method for direct measurement of coal ash sintering and fusion properties at elevated temperatures and pressures

    DOEpatents

    Khan, M. Rashid

    1990-01-01

    A high-pressure microdilatometer is provided for measuring the sintering and fusion properties of various coal ashes under the influence of elevated pressures and temperatures in various atmospheres. Electrical resistivity measurements across a sample of coal ash provide a measurement of the onset of the sintering and fusion of the ash particulates while the contraction of the sample during sintering is measured with a linear variable displacement transducer for detecting the initiation of sintering. These measurements of sintering in coal ash at different pressures provide a mechanism by which deleterious problems due to the sintering and fusion of ash in various combustion systems can be minimized or obviated.

  1. [Microwave In-situ Regeneration of Cu-Mn-Ce/ZSM Catalyst Adsorbed Toluene and Distribution of Bed Temperature].

    PubMed

    Hu, Xue-jiao; Bo, Long-li; Liang, Xin-xin; Meng, Hai-long

    2015-08-01

    Microwave in-situ regeneration of Cu-Mn-Ce/ZSM catalyst adsorbed toluene, distribution of fixed bed temperature, adsorption breakthrough curves of the catalyst after several regenerations and characterizations of the catalyst by BET and SEM were investigated in this study. The research indicated that regeneration effect of the catalyst adsorbed was excellent under conditions of microwave power 117 W, air flow 0.5 m3 x h(-1) and catalyst dosage of 800 g. Toluene desorbed was oxidized onto the surface of the catalyst, and the adsorption capacity of the catalyst was recovered simultaneously. Under microwave irradiation, bed temperature decreased slowly from inside to outside in horizontal level, and increased gradually from down to up in vertical level so that the highest temperature reached 250-350 degrees C at the upper sites of the bed. Sintering and agglomeration occurred on the surface of the catalyst in the course of regeneration so that the special surface area and micropore volume of the catalyst were reduced and breakthrough time was shortened, which was verified by six adsorption breakthrough curves and related characteristics of the catalyst. However, the structure of the catalyst was steady after two regenerations, and adsorption breakthrough time was kept at 70 min. The result showed that the changes of surface morphology and pore structure were positively correlated with the distribution of bed temperature.

  2. Two-Step Reactive Aid Sintering of BaZr0.8Y0.2O3- δ Proton-Conducting Ceramics

    NASA Astrophysics Data System (ADS)

    Wang, Siwei; Chen, Yan; Zhang, Lingling; Ren, Cong; Chen, Fanglin; Brinkman, Kyle S.

    2015-12-01

    Ceramic-based proton conductors enable high-temperature hydrogen economy applications such as hydrogen separation membranes, fuel cells, and steam electrolyzers. BaZr0.8Y0.2O3- δ (BZY) proton-conducting oxide possesses the highest level of proton conductivity reported to date, but poor sinterability hinders its widespread utilization. In this paper, we report a two-step reactive aid sintering (TRAS) method involving the introduction of BaCO3 and B2O3-Li2O for the preparation of dense BZY ceramics sintered at 1500°C. The resulting BZY samples showed a pure perovskite structure with a dramatic increase in the relative density to 91.5%. In addition, the shrinkage during sintering was improved to 19.3% by a TRAS method as compared to 2.6% by the conventional solid date reaction method. The bulk conductivity was improved due to enhanced densification, while the grain boundary conductivity decreased due to the blocking behavior of the sintering aid resulting in a decrease in the total conductivity of the samples.

  3. Two-Step Reactive Aid Sintering of BaZr 0.8Y 0.2O 3-δ Proton-Conducting Ceramics

    DOE PAGES

    Wang, Siwei; Chen, Yan; Zhang, Lingling; ...

    2015-10-14

    Ceramic-based proton conductors enable high-temperature hydrogen economy applications such as hydrogen separation membranes, fuel cells, and steam electrolyzers. BaZr 0.8Y 0.2O 3-δ (BZY) proton-conducting oxide possesses the highest level of proton conductivity reported to date, but poor sinterability hinders its widespread utilization. Here, we report a two-step reactive aid sintering (TRAS) method involving the introduction of BaCO 3 and B 2O 3-Li 2O for the preparation of dense BZY ceramics sintered at 1500°C. The resulting BZY samples showed a pure perovskite structure with a dramatic increase in the relative density to 91.5%. In addition, the shrinkage during sintering was improvedmore » to 19.3% by a TRAS method as compared to 2.6% by the conventional solid date reaction method. Moreover, the bulk conductivity was improved due to enhanced densification, while the grain boundary conductivity decreased due to the blocking behavior of the sintering aid resulting in a decrease in the total conductivity of the samples.« less

  4. Effect of Process Parameter on Barium Titanate Stannate (BTS) Materials Sintered at Low Sintering

    NASA Astrophysics Data System (ADS)

    Shukla, Alok; Bajpai, P. K.

    2011-11-01

    Ba(Ti1-xSnx)O3 solid solutions with (x = 0.15, 0.20, 0.30 and 0.40) are synthesized using conventional solid state reaction method. Formation of solid solutions in the range 0 ≤ x ≤0.40 is confirmed using X-ray diffraction technique. Single phase solid solutions with homogeneous grain distribution are observed at relatively low sintering by controlling process parameters viz. sintering time. Composition at optimized temperature (1150 °C) sintered by varying the sintering time, stabilize in cubic perovskite phase. The % experimental density increase with increasing the time of sintering instead of increasing sintering temperature. The lattice parameter increases by increasing the tin composition in the material. This demonstrates that process parameter optimization can lead to single phase at relatively lower sintering-a major advantage for the materials used as capacitor element in MLCC.

  5. Flash sintering of ceramic materials

    NASA Astrophysics Data System (ADS)

    Dancer, C. E. J.

    2016-10-01

    During flash sintering, ceramic materials can sinter to high density in a matter of seconds while subjected to electric field and elevated temperature. This process, which occurs at lower furnace temperatures and in shorter times than both conventional ceramic sintering and field-assisted methods such as spark plasma sintering, has the potential to radically reduce the power consumption required for the densification of ceramic materials. This paper reviews the experimental work on flash sintering methods carried out to date, and compares the properties of the materials obtained to those produced by conventional sintering. The flash sintering process is described for oxides of zirconium, yttrium, aluminium, tin, zinc, and titanium; silicon and boron carbide, zirconium diboride, materials for solid oxide fuel applications, ferroelectric materials, and composite materials. While experimental observations have been made on a wide range of materials, understanding of the underlying mechanisms responsible for the onset and latter stages of flash sintering is still elusive. Elements of the proposed theories to explain the observed behaviour include extensive Joule heating throughout the material causing thermal runaway, arrested by the current limitation in the power supply, and the formation of defect avalanches which rapidly and dramatically increase the sample conductivity. Undoubtedly, the flash sintering process is affected by the electric field strength, furnace temperature and current density limit, but also by microstructural features such as the presence of second phase particles or dopants and the particle size in the starting material. While further experimental work and modelling is still required to attain a full understanding capable of predicting the success of the flash sintering process in different materials, the technique non-etheless holds great potential for exceptional control of the ceramic sintering process.

  6. Silicon nitride sintered body

    NASA Technical Reports Server (NTRS)

    Suzuki, K.; Shinohara, N.

    1984-01-01

    The sintering of silicon carbide and it production are described. The method of production is by calcination in which molding is followed by sintering without compression. The invention improves the composition of the silicon carbide ceramic. Six examples of the invention are illustrated and discussed.

  7. Effect of the application of surface treatments before and after sintering on the flexural strength, phase transformation and surface topography of zirconia.

    PubMed

    Kurtulmus-Yilmaz, Sevcan; Aktore, Huseyin

    2018-05-01

    To evaluate the effects of airborne-particle abrasion (APA) and Er,Cr:YSGG laser irradiation on 4-point-flexural strength, phase transformation and morphologic changes of zirconia ceramics treated at pre-sintered or post-sintered stage. Three hundred and forty-two bar shaped zirconia specimens were milled with different sizes according to the flexural strength test (n = 10), X-ray diffraction (XRD) (n = 4) and field emission scanning electron microscope (FE-SEM) (n = 4) analyses. For each test protocol, specimens were divided into 4 main groups whether the surface treatments applied before or after sintering and whether the specimens received heat treatment or not as pre-sintered, post-sintered no-heat and post-sintered heat-treated groups, and a group was served as control. Main groups were further divided into 6 equal subgroups according to surface treatment method applied (2 W-, 3 W-, 4 W-, 5 W-, 6 W-laser irradiations and APA). Surface treatments were applied to pre-sintered groups before sintering and to post-sintered groups after sintering. Post-sintered heat-treated groups were subjected to veneer ceramic firing simulation after surface treatments. Flexural strength and flexural modulus values were statistically analysed and monoclinic phase content was calculated. Weibull analysis was used to evaluate strength reliability and fractographic analysis was conducted. Highest flexural strength values were detected at post-sintered no-heat APA and 4W-laser groups (P < 0.05). Pre-sintered groups showed statistically lower flexural strength values. Heat treatment decreased the strength of the specimens. Monoclinic phase content was only detected at post-sintered no-heat groups and the highest amount was detected at APA group. Rougher surfaces and deeper irregularities were detected at FE-SEM images pre-sintered groups. Application of surface treatments at pre-sintered stage may be detrimental for zirconia ceramics in terms of flexural strength. Treating the surface of zirconia ceramic before sintering process is not recommended due to significant decrease in flexural strength values. 2 W-4 W Er,Cr:YSGG laser irradiations can be regarded as alternative surface treatment methods when zirconia restoration would be subjected to veneer ceramic firing procedures. Copyright © 2018 Elsevier Ltd. All rights reserved.

  8. Removable partial denture alloys processed by laser-sintering technique.

    PubMed

    Alageel, Omar; Abdallah, Mohamed-Nur; Alsheghri, Ammar; Song, Jun; Caron, Eric; Tamimi, Faleh

    2018-04-01

    Removable partial dentures (RPDs) are traditionally made using a casting technique. New additive manufacturing processes based on laser sintering has been developed for quick fabrication of RPDs metal frameworks at low cost. The objective of this study was to characterize the mechanical, physical, and biocompatibility properties of RPD cobalt-chromium (Co-Cr) alloys produced by two laser-sintering systems and compare them to those prepared using traditional casting methods. The laser-sintered Co-Cr alloys were processed by the selective laser-sintering method (SLS) and the direct metal laser-sintering (DMLS) method using the Phenix system (L-1) and EOS system (L-2), respectively. L-1 and L-2 techniques were 8 and 3.5 times more precise than the casting (CC) technique (p < 0.05). Co-Cr alloys processed by L-1 and L-2 showed higher (p < 0.05) hardness (14-19%), yield strength (10-13%), and fatigue resistance (71-72%) compared to CC alloys. This was probably due to their smaller grain size and higher microstructural homogeneity. All Co-Cr alloys exhibited low porosity (2.1-3.3%); however, pore distribution was more homogenous in L-1 and L-2 alloys when compared to CC alloys. Both laser-sintered and cast alloys were biocompatible. In conclusion, laser-sintered alloys are more precise and present better mechanical and fatigue properties than cast alloys for RPDs. © 2017 Wiley Periodicals, Inc. J Biomed Mater Res Part B: Appl Biomater, 106B: 1174-1185, 2018. © 2017 Wiley Periodicals, Inc.

  9. Nanostructured MgTiO3 thick films obtained by electrophoretic deposition from nanopowders prepared by solar PVD

    NASA Astrophysics Data System (ADS)

    Apostol, Irina; Mahajan, Amit; Monty, Claude J. A.; Venkata Saravanan, K.

    2015-12-01

    A novel combination of solar physical vapor deposition (SPVD) and electrophoretic deposition (EPD) that was developed to grow MgTiO3 nanostructured thick films is presented. Obtaining nanostructured MgTiO3 thick films, which can replace bulk ceramic components, a major trend in electronic industry, is the main objective of this work. The advantage of SPVD is direct synthesis of nanopowders, while EPD is simple, fast and inexpensive technique for preparing thick films. SPVD technique was developed at CNRS-PROMES Laboratory, Odeillo-Font Romeu, France, while the EPD was performed at University of Aveiro - DeMAC/CICECO, Portugal. The nanopowders with an average crystallite size of about 30 nm prepared by SPVD were dispersed in 50 ml of acetone in basic media with addition of triethanolamine. The obtained well-dispersed and stable suspensions were used for carrying out EPD on 25 μm thick platinum foils. After deposition, films with thickness of about 22-25 μm were sintered in air for 15 min at 800, 900 and 1000 °C. The structural and microstructural characterization of the sintered thick films was carried out using XRD and SEM, respectively. The thickness of the sintered samples were about 18-20 μm, which was determined by cross-sectional SEM. Films sintered at 900 °C exhibit a dielectric constant, ɛr ∼18.3 and dielectric loss, tan δ ∼0.0012 at 1 MHz. The effects of processing techniques (SPVD and EPD) on the structure, microstructure and dielectric properties are reported in detail. The obtained results indicate that the thick films obtained in the present study can be promising for low loss materials for microwave and millimeter wave applications.

  10. Comparison of laser and intense pulsed light sintering (IPL) for inkjet-printed copper nanoparticle layers

    PubMed Central

    Niittynen, Juha; Sowade, Enrico; Kang, Hyunkyoo; Baumann, Reinhard R.; Mäntysalo, Matti

    2015-01-01

    In this contribution we discuss the sintering of an inkjet-printed copper nanoparticle ink based on electrical performance and microstructure analysis. Laser and intense pulsed light (IPL) sintering are employed in order to compare the different techniques and their feasibility for electronics manufacturing. A conductivity of more than 20% of that of bulk copper material has been obtained with both sintering methods. Laser and IPL sintering techniques are considered to be complementary techniques and are highly suitable in different application fields. PMID:25743631

  11. Numerical Simulation of Sintering Process in Ceramic Powder Injection Moulded Components

    NASA Astrophysics Data System (ADS)

    Song, J.; Barriere, T.; Liu, B.; Gelin, J. C.

    2007-05-01

    A phenomenological model based on viscoplastic constitutive law is presented to describe the sintering process of ceramic components obtained by powder injection moulding. The parameters entering in the model are identified through sintering experiments in dilatometer with the proposed optimization method. The finite element simulations are carried out to predict the density variations and dimensional changes of the components during sintering. A simulation example on the sintering process of hip implant in alumina has been conducted. The simulation results have been compared with the experimental ones. A good agreement is obtained.

  12. Method to synthesize bulk iron nitride

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Monson, Todd; Lavernia, Enrique J.; Zheng, Baolong

    Bulk iron nitride can be synthesized from iron nitride powder by spark plasma sintering. The iron nitride can be spark plasma sintered at a temperature of less than 600°C. and a pressure of less than 600 MPa, with 400 MPa or less most often being sufficient. High pressure SPS can consolidate dense iron nitrides at a lower temperature to avoid decomposition. The higher pressure and lower temperature of spark discharge sintering avoids decomposition and limits grain growth, enabling enhanced magnetic properties. The method can further comprise synthesis of nanocrystalline iron nitride powders using two-step reactive milling prior to high-pressure sparkmore » discharge sintering.« less

  13. Microstructure and Mechanical Properties of Highly Alloyed FeCrMoVC Steel Fabricated by Spark Plasma Sintering

    NASA Astrophysics Data System (ADS)

    Oh, Seung-Jin; Jun, Joong-Hwan; Lee, Min-Ha; Shon, In-Jin; Lee, Seok-Jae

    2018-05-01

    In this study, we successfully fabricated highly alloyed FeCrMoVC specimens within 2 min by using the spark plasma sintering (SPS) method. The densities of the sintered specimens were almost identical to their theoretical values. Fine (Mo, V)-rich carbides with lamellar structure were precipitated along the grain boundaries of the as-sintered specimen, whereas relatively large carbides were formed additionally in the transgranular region during the tempering treatment. Compared with the specimen produced by a conventional casting method, the FeCrMoVC specimens from SPS showed smaller grain size with finer carbides and higher hardness values.

  14. Cathode preparation method for molten carbonate fuel cell

    DOEpatents

    Smith, James L.; Sim, James W.; Kucera, Eugenia H.

    1988-01-01

    A method of preparing a porous cathode structure for use in a molten carbonate fuel cell begins by providing a porous integral plaque of sintered nickel oxide particles. The nickel oxide plaque can be obtained by oxidizing a sintered plaque of nickel metal or by compacting and sintering finely divided nickel oxide particles to the desired pore structure. The porous sintered nickel oxide plaque is contacted with a lithium salt for a sufficient time to lithiate the nickel oxide structure and thus enhance its electronic conductivity. The lithiation can be carried out either within an operating fuel cell or prior to assembling the plaque as a cathode within the fuel cell.

  15. Effect of Sintering Temperature on Structural, Dielectric, and Magnetic Properties of Multiferroic YFeO₃ Ceramics Fabricated by Spark Plasma Sintering.

    PubMed

    Wang, Meng; Wang, Ting; Song, Shenhua; Ma, Qing; Liu, Renchen

    2017-03-07

    Based on precursor powders with a size of 200-300 nm prepared by the low-temperature solid reaction method, phase-pure YFeO₃ ceramics are fabricated using spark plasma sintering (SPS) at different temperatures. X-ray diffraction (XRD) and scanning electron microscopy (SEM) reveal that the high-purity YFeO₃ ceramics can be prepared using SPS, while the results from X-ray photoelectron spectroscopy (XPS) show that the concentration of oxygen vacancies resulting from transformation from Fe 3+ to Fe 2+ is low. The relative density of the 1000 °C-sintered sample is as high as 97.7%, which is much higher than those of the samples sintered at other temperatures. The present dielectric and magnetic properties are much better than those of the samples fabricated by conventional methods. These findings indicate that the YFeO₃ ceramics prepared by the low temperature solid reaction and SPS methods possess excellent dielectric and magnetic properties, making them suitable for potential applications involving magnetic storage.

  16. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wang, Siwei; Chen, Yan; Zhang, Lingling

    Ceramic-based proton conductors enable high-temperature hydrogen economy applications such as hydrogen separation membranes, fuel cells, and steam electrolyzers. BaZr 0.8Y 0.2O 3-δ(BZY) proton-conducting oxide possesses the highest level of proton conductivity reported to date, but poor sinterability hinders its widespread utilization. In this paper, we report a two-step reactive aid sintering (TRAS) method involving the introduction of BaCO 3 and B 2O 3-Li 2O for the preparation of dense BZY ceramics sintered at 1500°C. The resulting BZY samples showed a pure perovskite structure with a dramatic increase in the relative density to 91.5%. In addition, the shrinkage during sintering wasmore » improved to 19.3% by a TRAS method as compared to 2.6% by the conventional solid date reaction method. In conclusion, the bulk conductivity was improved due to enhanced densification, while the grain boundary conductivity decreased due to the blocking behavior of the sintering aid resulting in a decrease in the total conductivity of the samples.« less

  17. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wang, Siwei; Chen, Yan; Zhang, Lingling

    Ceramic-based proton conductors enable high-temperature hydrogen economy applications such as hydrogen separation membranes, fuel cells, and steam electrolyzers. BaZr 0.8Y 0.2O 3-δ (BZY) proton-conducting oxide possesses the highest level of proton conductivity reported to date, but poor sinterability hinders its widespread utilization. Here, we report a two-step reactive aid sintering (TRAS) method involving the introduction of BaCO 3 and B 2O 3-Li 2O for the preparation of dense BZY ceramics sintered at 1500°C. The resulting BZY samples showed a pure perovskite structure with a dramatic increase in the relative density to 91.5%. In addition, the shrinkage during sintering was improvedmore » to 19.3% by a TRAS method as compared to 2.6% by the conventional solid date reaction method. Moreover, the bulk conductivity was improved due to enhanced densification, while the grain boundary conductivity decreased due to the blocking behavior of the sintering aid resulting in a decrease in the total conductivity of the samples.« less

  18. Work Function and Conductivity of Inkjet-Printed Silver Layers: Effect of Inks and Post-treatments

    NASA Astrophysics Data System (ADS)

    Mitra, Dana; Mitra, Kalyan Yoti; Dzhagan, Volodymyr; Pillai, Nikhil; Zahn, Dietrich R. T.; Baumann, Reinhard R.

    2018-03-01

    The electronic properties of a printed layer are influenced by a number of factors, including the nature of the ink (nanoparticle- or solution-based), ink composition (solvents, additives, concentration), and post-treatment technologies, especially sintering. One of the major challenges in the field of printed electronics is achieving the desired performance, for example, in terms of conductivity, resistivity, or work function (WF). This work investigates the dependence of sheet resistance and WF on various sintering methodologies. Four different silver nanoparticle inks were inkjet-printed on a flexible polymeric foil and post-treated by thermal sintering (in an oven) or novel sintering processes using infrared or intense pulsed light. The surfaces of the printed and sintered layers were investigated optically, and various inhomogeneities in the layer surface were observed, varying from a smooth to a highly rough appearance with ring-shaped drying structures. An analysis of the sheet resistance revealed notable variation among the various inks and sintering methodologies used. Here, for the very first time, WF is measured and evaluated as a function of sintering methodology and silver ink, and the respective layer formation characteristics realized with the inkjet printing technology. The WF values obtained by ultraviolet photoemission show a similar spread and allow unambiguous trends to be tracked with respect to the type of ink and sintering method used. The values of the WF obtained range from 3.7 eV to 4.3 eV, approaching the reported bulk values of 4.3-4.7 eV. The various silver inks resulted in different WFs when the same sintering method was used, while the same silver ink resulted in different WFs when various sintering methods were applied. Therefore, it is believed that the WF can be tuned over a broad range in a controlled manner to satisfy electronic device requirements.

  19. SINTERING METHOD

    DOEpatents

    Googin, J.M.

    1963-11-01

    Methods of making articles by powder metallurgy techniques are presented. An article is made by packing a metal powder into a desired shape, raising the temperature of the powder compact to a sintering temperature in the presence of a reducing gas, and alternately increasing and decreasing the pressure of the gas while the temperatume is being raised. The product has a greater density than can be achieved by sintering for the same length of time at a constant gas pressure. (AEC)

  20. [Effect of compaction pressure on the properties of dental machinable zirconia ceramic].

    PubMed

    Huang, Hui; Wei, Bin; Zhang, Fu-qiang; Sun, Jing; Gao, Lian

    2010-10-01

    To investigate the effect of compaction pressure on the linear shrinkage, sintering property and machinability of the dental zirconia ceramic. The nano-size zirconia powder was compacted at different isostatic pressure and sintered at different temperature. The linear shrinkage of sintered body was measured and the relative density was tested using the Archimedes method. The cylindrical surface of pre-sintering blanks was traversed using a hard metal tool. Surface and edge quality were checked visually using light stereo microscopy. The sintering behaviour depended on the compaction pressure. Increasing compaction pressure led to higher sintering rate and lower sintering temperature. Increasing compaction pressure also led to decreasing linear shrinkage of the sintered bodies, from 24.54% of 50 MPa to 20.9% of 400 MPa. Compaction pressure showed only a weak influence on machinability of zirconia blanks, but the higher compaction pressure resulted in the poor surface quality. The better sintering property and machinability of dental zirconia ceramic is found for 200-300 MPa compaction pressure.

  1. Powder metallurgy: Solid and liquid phase sintering of copper

    NASA Technical Reports Server (NTRS)

    Sheldon, Rex; Weiser, Martin W.

    1993-01-01

    Basic powder metallurgy (P/M) principles and techniques are presented in this laboratory experiment. A copper based system is used since it is relatively easy to work with and is commercially important. In addition to standard solid state sintering, small quantities of low melting metals such as tin, zinc, lead, and aluminum can be added to demonstrate liquid phase sintering and alloy formation. The Taguchi Method of experimental design was used to study the effect of particle size, pressing force, sintering temperature, and sintering time. These parameters can be easily changed to incorporate liquid phase sintering effects and some guidelines for such substitutions are presented. The experiment is typically carried out over a period of three weeks.

  2. Monoclinic β-Li2TiO3 nanocrystalline particles employing novel urea assisted solid state route: Synthesis, characterization and sintering behavior

    NASA Astrophysics Data System (ADS)

    Tripathi, Biranchi M.; Mohanty, Trupti; Prakash, Deep; Tyagi, A. K.; Sinha, P. K.

    2017-07-01

    Pure phase monoclinic nano-crystalline Li2TiO3 powder was synthesized by a novel urea assisted solid state synthesis method using readily available and economical precursors. A single phase and well crystalline Li2TiO3 powder has been obtained at slightly lower temperature (600-700 °C) and shorter duration (2 h) as compared to the conventional solid state method. The proposed method has significant advantages in comparison to other viable methods mainly in terms of phase purity, powder properties and sinterability. Analysis of chemical composition using inductively coupled plasma atomic emission spectroscopy (ICP-AES) shows no loss of lithium from Li2TiO3 in the proposed method. The emergence of monoclinic Li2TiO3 phase was confirmed by X-ray diffraction (XRD) pattern of as-synthesized powder. The crystallite size of Li2TiO3 powder was calculated to be in the range of 15-80 nm, which varied as a function of urea composition and temperature. The morphology of as-prepared Li2TiO3 powders was examined by scanning electron microscope (SEM). The effect of urea composition on phase and morphology was investigated so as to delineate the role of urea. Upon sintering at < 1000 °C temperature, the Li2TiO3 powder compact attained about 98% of the theoretical density with fine grained (grain size: 2-3 μm) microstructure. It indicates excellent sinter-ability of Li2TiO3 powder synthesized by the proposed method. The fine grained structure is desirable for better tritium breeding performance of Li2TiO3. Electrochemical impedance spectroscopy at variable temperature showed good electrical properties of Li2TiO3. The proposed method is simple, anticipated to be cost effective and convenient to realise for large scale production of phase pure nanocrystalline and having significantly enhanced sinter-ability Li2TiO3 powder.

  3. Effect of Electromagnetic Interactions on the Undulatory Temperature Dependent Behaviour of Non-Resonant Microwave Absorption Signal Amplitude in Bi2Sr2CaCu2O8+x

    NASA Astrophysics Data System (ADS)

    Padam, Gursharan K.; Ekbote, Shrikant N.; Sharma, Mukul; Tripathy, Malay R.; Srivastava, Ganesh P.; Das, Bijoy K.

    2006-01-01

    Variation of non-resonant microwave absorption (NRMA) signal amplitude in single-phase Bi-2212 (5 wt % Ag) sintered pellets (Tc\\circ ˜ 96 K) while increasing temperature from 15 to 105 K has been investigated and discussed. These studies show an undulatory behavior of an initial fall in the amplitude (15-71.8 K) with a subsequent narrow weak temperature independent region (71.8-75.6 K) and then a rise peaking at ˜82.5 K followed by a final exponential fall (82.5-105 K). A detailed discussion on earlier reported data has suggested that this undulatory behavior cannot be understood in terms of existing approaches involving effect of Josephson interactions (JI) alone among vortices. In our opinion, the entire undulatory behavior observed in the present samples can be explained with the inclusion of electromagnetic interaction (EMI) along with JI.

  4. Microwave plasma synthesis of Si/Ge and Si/WSi2 nanoparticles for thermoelectric applications

    NASA Astrophysics Data System (ADS)

    Petermann, Nils; Schneider, Tom; Stötzel, Julia; Stein, Niklas; Weise, Claudia; Wlokas, Irenäus; Schierning, Gabi; Wiggers, Hartmut

    2015-08-01

    The utilization of microwave-based plasma systems enables a contamination-free synthesis of highly specific nanoparticles in the gas phase. A reactor setup allowing stable, long-term operation was developed with the support of computational fluid dynamics. This paper highlights the prospects of gas-phase plasma synthesis to produce specific materials for bulk thermoelectrics. Taking advantage of specific plasma reactor properties such as Coulomb repulsion in combination with gas temperatures considerably higher than 1000 K, spherical and non-aggregated nanoparticles of multiple compositions are accessible. Different strategies towards various nanostructured composites and alloys are discussed. It is shown that, based on doped silicon/germanium alloys and composites, thermoelectric materials with zT values up to almost unity can be synthesized in one step. First experimental results concerning silicon/tungsten silicide thermoelectrics applying the nanoparticle-in-alloy idea are presented indicating that this concept might work. However, it is found that tungsten silicides show a surprising sinter activity more than 1000 K below their melting temperature.

  5. Reflow-oven-processing of pressureless sintered-silver interconnects

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wereszczak, Andrew A.; Chen, Branndon R.; Oistad, Brian A.

    Here, a method was developed to pressurelessly fabricate strong and consistent sinterable-silver joints or interconnects using reflow oven heating. Circular sinterable-silver interconnects, having nominal diameter of 5 mm and 0.1 mm thickness were stencil printed, contact-dried, and then pressurelessly sinter-bonded to Au-plated direct copper bonded ceramic substrates at 250 °C in ambient air. That sintering was done in either a reflow oven or a convective oven (latter being a conventional heating source for processing sinterable-silver). Consistently strong (>40 MPa) interconnects were produced with reflow oven heating and were as strong as those produced with convective oven heating. This is significantmore » because reflow oven technology affords better potential for continuous mass production and it was shown that strong sintered-silver bonds can indeed be achieved with its use.« less

  6. Lanthanide (Nd, Gd) compounds with garnet and monazite structures. Powders synthesis by "wet" chemistry to sintering ceramics by Spark Plasma Sintering

    NASA Astrophysics Data System (ADS)

    Potanina, Ekaterina; Golovkina, Ludmila; Orlova, Albina; Nokhrin, Aleksey; Boldin, Maksim; Sakharov, Nikita

    2016-05-01

    Complex oxide Y2.5Nd0.5Al5O12 with garnet structure and phosphates NdPO4 and GdPO4 with monazite structure were obtained by using precipitation methods. Ceramics Y2.5Nd0.5Al5O12 and NdPO4 were processed by Spark Plasma Sintering (SPS). Relative density more 98%, sintering time did not exceed 8 min, sintering temperature 1330-1390 °C. Leaching rates of elements from ceramics were 10-6-10-7 g/(cm2 d). The process of ceramics sintering has two-stage character: the first step of sintering-compaction process is related to the plastic flow of the material, the second step-to the process of grain boundary diffusion and grain growth.

  7. Reflow-oven-processing of pressureless sintered-silver interconnects

    DOE PAGES

    Wereszczak, Andrew A.; Chen, Branndon R.; Oistad, Brian A.

    2018-01-04

    Here, a method was developed to pressurelessly fabricate strong and consistent sinterable-silver joints or interconnects using reflow oven heating. Circular sinterable-silver interconnects, having nominal diameter of 5 mm and 0.1 mm thickness were stencil printed, contact-dried, and then pressurelessly sinter-bonded to Au-plated direct copper bonded ceramic substrates at 250 °C in ambient air. That sintering was done in either a reflow oven or a convective oven (latter being a conventional heating source for processing sinterable-silver). Consistently strong (>40 MPa) interconnects were produced with reflow oven heating and were as strong as those produced with convective oven heating. This is significantmore » because reflow oven technology affords better potential for continuous mass production and it was shown that strong sintered-silver bonds can indeed be achieved with its use.« less

  8. Method of manufacturing ceramic shaped articles

    NASA Technical Reports Server (NTRS)

    Inoue, K.

    1983-01-01

    A method of manufacturing ceramic shaped articles, wherein tapes of ceramic powder material in mixture with a binder material and special additives are shaped and then articles are stamped out from said tapes and sintered in a sintering furnace is described.

  9. Method of joining ITM materials using a partially or fully-transient liquid phase

    DOEpatents

    Butt, Darryl Paul; Cutler, Raymond Ashton; Rynders, Steven Walton; Carolan, Michael Francis

    2006-03-14

    A method of forming a composite structure includes: (1) providing first and second sintered bodies containing first and second multicomponent metallic oxides having first and second identical crystal structures that are perovskitic or fluoritic; (2) providing a joint material containing at least one metal oxide: (a) containing (i) at least one metal of an identical IUPAC Group as at least one sintered body metal in one of the multicomponent metallic oxides, (ii) a first row D-Block transition metal not contained in the multicomponent metallic oxides, and/or (iii) a lanthanide not contained in the multicomponent metallic oxides; (b) free of metals contained in the multicomponent metallic oxides; (c) free of cations of boron, silicon, germanium, tin, lead, arsenic, antimony, phosphorus and tellurium; and (d) having a melting point below the sintering temperatures of the sintered bodies; and (3) heating to a joining temperature above the melting point and below the sintering temperatures.

  10. Sintering activation energy MoSi2-WSi2-Si3N4 ceramic

    NASA Astrophysics Data System (ADS)

    Titov, D. D.; Lysenkov, A. S.; Kargin, Yu F.; Frolova, M. G.; Gorshkov, V. A.; Perevislov, S. N.

    2018-04-01

    The activation energy of sintering process was calculated based on dilatometric studies of shrinkage processes (Mo,W)Si2 + Si3N4 composite ceramic. (Mo,W)Si2 powders was obtained by solid-phase solutions of 70 wt% MoSi2 and 30 wt% WSi2 by SHS in the ISMAN RAS. The concentration rate Si3N4 was from 1 to 15 wt.%. The sintering was carried out to 1850°C in Ar atmosphere the heating rate of 5, 10, 12 and 15°C/min by the way of dilatometer tests. Based on the differential kinetic analysis method (Friedman’s method), the sintering process activation energy of (Mo,W)Si2 + Si3N4 were calculated. The two-stage sintering process and the dependence of the activation energy on the Si3N4 content was shown. Average value of 370 kJ/mol for Q was obtained.

  11. A new integrated evaluation method of heavy metals pollution control during melting and sintering of MSWI fly ash.

    PubMed

    Li, Rundong; Li, Yanlong; Yang, Tianhua; Wang, Lei; Wang, Weiyun

    2015-05-30

    Evaluations of technologies for heavy metal control mainly examine the residual and leaching rates of a single heavy metal, such that developed evaluation method have no coordination or uniqueness and are therefore unsuitable for hazard control effect evaluation. An overall pollution toxicity index (OPTI) was established in this paper, based on the developed index, an integrated evaluation method of heavy metal pollution control was established. Application of this method in the melting and sintering of fly ash revealed the following results: The integrated control efficiency of the melting process was higher in all instances than that of the sintering process. The lowest integrated control efficiency of melting was 56.2%, and the highest integrated control efficiency of sintering was 46.6%. Using the same technology, higher integrated control efficiency conditions were all achieved with lower temperatures and shorter times. This study demonstrated the unification and consistency of this method. Copyright © 2015 Elsevier B.V. All rights reserved.

  12. The Evolution and Development of the Lunar Regolith and Implications for Lunar Surface Operations and Construction

    NASA Technical Reports Server (NTRS)

    McKay, David

    2009-01-01

    The lunar regolith consists of about 90% submillimeter particles traditionally termed lunar soil. The remainder consists of larger particles ranging up to boulder size rocks. At the lower size end, soil particles in the 10s of nanometer sizes are present in all soil samples. Lunar regolith overlies bedrock which consists of either lava flows in mare regions or impact-produced megaregolith in highland regions. Lunar regolith has been produced over billions of years by a combination of breaking and communition of bedrock by meteorite bombardment coupled with a variety of complex space weathering processes including solar wind implantation, solar flare and cosmic ray bombardment with attendant radiation damage, melting, vaporization, and vapor condensation driven by impact, and gardening and turnover of the resultant soil. Lunar regolith is poorly sorted compared to most terrestrial soils, and has interesting engineering properties including strong grain adhesion, over-compacted soil density, an abundance of agglutinates with sharp corners, and a variety of properties related to soil maturity. The NASA program has supported a variety of engineering test research projects, the production of bricks by solar or microwave sintering, the production of concrete, the in situ sintering and glazing of regolith by microwave, and the extraction of useful resources such as oxygen, hydrogen, iron, aluminum, silicon and other products. Future requirements for a lunar surface base or outpost will include construction of protective berms, construction of paved roadways, construction of shelters, movement and emplacement of regolith for radiation shielding and thermal control, and extraction of useful products. One early need is for light weight but powerful digging, trenching, and regolith-moving equipment.

  13. The effect of milling time and sintering temperature on Mn, Ti substituted barium hexaferrite nanoparticle

    NASA Astrophysics Data System (ADS)

    Yustanti, Erlina; Manaf, Azwar

    2018-04-01

    Barium hexaferrite (BaO.6Fe2O3/BaFe12O19) is a permanent magnetic material and microwave absorbing material. The value of microwave absorption can be increased through the engineering of the material structure, while the reduction of crystallite and particle size up to nanometer results device performance improvement to be superior. In this research, the structural engineering through mechanical alloying and crystallite size reduction through high power ultrasonic irradiation will be explained. Mixing and alloying of Sigma Aldrich BaCO3, Fe2O3, MnCO3, TiO2 p.a 99% precursor material used ball mill with powder ratio of vial at 1:10. Mechanical alloying for 60 hours at 160 rpm produced amorphous material. The process of the crystalline embryo nucleation for 4 hours produced multicrystalline material at a sinter temperature of 1100°C. Phase analysis of the mechanical alloying result using x-ray diffractometer was confirmed either the formation of BaO.6Fe2-xMnx/2Tix/2O3 (x=0.5) single phase. Multicrystalline powder of BaO.6Fe2-xMnx/2Tix/2O3 (x=0.5) was obtained through 20 hours hand grinding and re-milling to bulk sample. Crystallite size reduction in the analysis was conducted through particle density variation in ultrasonic reactor and variation of the increase in ultrasonic time. Increase in milling time up to 60 hours produced fragmenting so that particle size reduction from 18.8 µm to 0.9 µm was occurred. The 12-h ultrasonic irradiation at a frequency of 20 kHz amplitude of 60 µm produced a crystallite-size reduction up to 18 nm at a 10 g/L particle density.

  14. Tailoring of processing parameters for sintering microsphere-based scaffolds with dense-phase carbon dioxide

    PubMed Central

    Jeon, Ju Hyeong; Bhamidipati, Manjari; Sridharan, BanuPriya; Scurto, Aaron M.; Berkland, Cory J.; Detamore, Michael S.

    2015-01-01

    Microsphere-based polymeric tissue-engineered scaffolds offer the advantage of shape-specific constructs with excellent spatiotemporal control and interconnected porous structures. The use of these highly versatile scaffolds requires a method to sinter the discrete microspheres together into a cohesive network, typically with the use of heat or organic solvents. We previously introduced subcritical CO2 as a sintering method for microsphere-based scaffolds; here we further explored the effect of processing parameters. Gaseous or subcritical CO2 was used for making the scaffolds, and various pressures, ratios of lactic acid to glycolic acid in poly(lactic acid-co-glycolic acid), and amounts of NaCl particles were explored. By changing these parameters, scaffolds with different mechanical properties and morphologies were prepared. The preferred range of applied subcritical CO2 was 15–25 bar. Scaffolds prepared at 25 bar with lower lactic acid ratios and without NaCl particles had a higher stiffness, while the constructs made at 15 bar, lower glycolic acid content, and with salt granules had lower elastic moduli. Human umbilical cord mesenchymal stromal cells (hUCMSCs) seeded on the scaffolds demonstrated that cells penetrate the scaffolds and remain viable. Overall, the study demonstrated the dependence of the optimal CO2 sintering parameters on the polymer and conditions, and identified desirable CO2 processing parameters to employ in the sintering of microsphere-based scaffolds as a more benign alternative to heat-sintering or solvent-based sintering methods. PMID:23115065

  15. Sintered silicon carbide molded body and method for its production

    NASA Technical Reports Server (NTRS)

    Omori, M.; Sendai, M.; Ohira, K.

    1984-01-01

    Sintered silicon carbide shapes are described. They are produced by using a composition containing an oxide of at least one element chosen from the group: Li, Be, Mg, Si, Ca, Ti, V, Cr, Mn, Fe, Co, Ni, Zn, Nb, Mo, Ba, Tc, Ta, W and Th as a supplement to known sintering aids.

  16. [Study on preparation and physicochemical properties of surface modified sintered bone].

    PubMed

    Li, Jingfeng; Zheng, Qixin; Guo, Xiaodong

    2012-06-01

    The aim of this study is to investigate a new method for preparing a biomimetic bone material-surface modified sintered bovine cancellous bone, and to improve its bioactivity as a tissue engineering bone. The prepared sintered bovine cancellous bones with the same size were randomly divided into two groups, immersing in 1 and 1. 5 times simulated body fluid (SBF), respectively. The three time periods of soak time were 7, 14, and 21 days. After sintered bone was dried, the surface morphology of sintered bone and surface mineralization composition were observed under scanning electron microscopy (SEM). By comparing the effect of surface modification of sintered bone materials, we chose the most ideal material and studied its pore size, the rate of the porosity, the compress and bend intensity. And then the material and the sintered bone material without surface modification were compared. The study indicated that sintered bone material immersed in SBF (1.5 times) for 14 days showed the best effect of surface modification, retaining the original physico-chemical properties of sintered bone.

  17. Chemical Sintering Generates Uniform Porous Hyaluronic Acid Hydrogels

    PubMed Central

    Cam, Cynthia; Segura, Tatiana

    2014-01-01

    Implantation of scaffolds for tissue repair has been met with limited success primarily due to the inability to achieve vascularization within the construct. Many strategies have shifted to incorporate pores into these scaffolds to encourage rapid cellular infiltration and subsequent vascular ingrowth. We utilized an efficient chemical sintering technique to create a uniform network of polymethyl methacrylate (PMMA) microspheres for porous hyaluronic acid hydrogel formation. The porous hydrogels generated from chemical sintering possessed comparable pore uniformity and interconnectivity as the commonly used non- and heat sintering techniques. Moreover, similar cell response to the porous hydrogels generated from each sintering approach was observed in cell viability, spreading, proliferation in vitro, as well as, cellular invasion in vivo. We propose chemical sintering of PMMA microspheres using a dilute acetone solution as an alternative method to generating porous hyaluronic acid hydrogels since it requires equal or ten-fold less processing time as the currently used non-sintering or heat sintering technique, respectively. PMID:24120847

  18. The Effects of Atmosphere on the Sintering of Ultrafine-Grained Tungsten with Ti

    NASA Astrophysics Data System (ADS)

    Ren, Chai; Koopman, Mark; Fang, Z. Zak; Zhang, Huan

    2016-11-01

    Tungsten (W) is a brittle material at room temperature making it very difficult to fabricate. Although the lack of ductility remains a difficult challenge, nano-sized and ultrafine-grained (UFG) structures offer the potential to overcome tungsten's room-temperature brittleness. One way to manufacture UFG W is to compact and sinter nano-sized W powder. It is challenging, however, to control grain growth during sintering. As one method to inhibit grain growth, the effect of Ti-based additives on the densification and grain growth of nano-W powders was investigated in this study. Addition of 1% Ti into tungsten led to more than a 63% decrease in average grain size of sintered samples at comparable density levels. It was found that sintering in Ar yielded a finer grain size than sintering in H2 at similar densities. The active diffusion mechanisms during sintering were different for W-1% Ti nano powders sintered in Ar and H2.

  19. Effect of Sintering Temperature on Structural, Dielectric, and Magnetic Properties of Multiferroic YFeO3 Ceramics Fabricated by Spark Plasma Sintering

    PubMed Central

    Wang, Meng; Wang, Ting; Song, Shenhua; Ma, Qing; Liu, Renchen

    2017-01-01

    Based on precursor powders with a size of 200–300 nm prepared by the low-temperature solid reaction method, phase-pure YFeO3 ceramics are fabricated using spark plasma sintering (SPS) at different temperatures. X-ray diffraction (XRD) and scanning electron microscopy (SEM) reveal that the high-purity YFeO3 ceramics can be prepared using SPS, while the results from X-ray photoelectron spectroscopy (XPS) show that the concentration of oxygen vacancies resulting from transformation from Fe3+ to Fe2+ is low. The relative density of the 1000 °C-sintered sample is as high as 97.7%, which is much higher than those of the samples sintered at other temperatures. The present dielectric and magnetic properties are much better than those of the samples fabricated by conventional methods. These findings indicate that the YFeO3 ceramics prepared by the low temperature solid reaction and SPS methods possess excellent dielectric and magnetic properties, making them suitable for potential applications involving magnetic storage. PMID:28772626

  20. Effects of sintering temperature on electrical properties of sheep enamel hydroxyapatite

    NASA Astrophysics Data System (ADS)

    Dumludag, F.; Gunduz, O.; Kılıc, O.; Kılıc, B.; Ekren, N.; Kalkandelen, C.; Oktar, F. N.

    2017-12-01

    Bioceramics, especially calcium phosphate based bioceramics, whose examples are hydroxyapatite, and calcium phosphate powders have been widely used in the biomedical engineering applications. Hydroxyapatite (HA) is one of the most promising biomaterials, which are derived from natural sources, chemical method, animal like dental enamel and corals. The influence of sintering temperature on the electrical properties (i.e. DC conductivity, AC conductivity) of samples of sintered sheep enamel (SSSE) was studied in air and in vacuum ambient at room temperature. The sheep enamel were sintered at varying temperatures between 1000°C and 1300°C. DC conductivity results revealed that while dc conductivity of the SSSE decreases with increasing the sintering temperature in air ambient the values increased with increasing the sintering temperature in vacuum ambient. AC conductivity measurements were performed in the frequency range of 40 Hz - 105 Hz. The results showed that ac conductivity values decrease with increasing the sintering temperature.

  1. Accelerated sintering in phase-separating nanostructured alloys

    PubMed Central

    Park, Mansoo; Schuh, Christopher A.

    2015-01-01

    Sintering of powders is a common means of producing bulk materials when melt casting is impossible or does not achieve a desired microstructure, and has long been pursued for nanocrystalline materials in particular. Acceleration of sintering is desirable to lower processing temperatures and times, and thus to limit undesirable microstructure evolution. Here we show that markedly enhanced sintering is possible in some nanocrystalline alloys. In a nanostructured W–Cr alloy, sintering sets on at a very low temperature that is commensurate with phase separation to form a Cr-rich phase with a nanoscale arrangement that supports rapid diffusional transport. The method permits bulk full density specimens with nanoscale grains, produced during a sintering cycle involving no applied stress. We further show that such accelerated sintering can be evoked by design in other nanocrystalline alloys, opening the door to a variety of nanostructured bulk materials processed in arbitrary shapes from powder inputs. PMID:25901420

  2. SINTERED REFRACTORY MASS

    DOEpatents

    Williams, A.E.

    1955-09-01

    A method is given for joining sintered masses of refractory compounds. It consists in maintaining the masses in contact with each other by application of a moderate pressure, while they are at sintering temperature. The sintered masses are subjected to am applied pressure of about 1/2 to 1 ton per square inch of the surface in contact for about 10 minutes, and the temperature employed may be fropn about 1400 deg C to 2000 deg C. Refractory oxides to which the invention may be applied are beryllia, alumina, thoria, and magnesia.

  3. Sintering behavior and mechanical properties of zirconia compacts fabricated by uniaxial press forming

    PubMed Central

    Oh, Gye-Jeong; Yun, Kwi-Dug; Lee, Kwang-Min; Lim, Hyun-Pil

    2010-01-01

    PURPOSE The purpose of this study was to compare the linear sintering behavior of presintered zirconia blocks of various densities. The mechanical properties of the resulting sintered zirconia blocks were then analyzed. MATERIALS AND METHODS Three experimental groups of dental zirconia blocks, with a different presintering density each, were designed in the present study. Kavo Everest® ZS blanks (Kavo, Biberach, Germany) were used as a control group. The experimental group blocks were fabricated from commercial yttria-stabilized tetragonal zirconia powder (KZ-3YF (SD) Type A, KCM. Corporation, Nagoya, Japan). The biaxial flexural strengths, microhardnesses, and microstructures of the sintered blocks were then investigated. The linear sintering shrinkages of blocks were calculated and compared. RESULTS Despite their different presintered densities, the sintered blocks of the control and experimental groups showed similar mechanical properties. However, the sintered block had different linear sintering shrinkage rate depending on the density of the presintered block. As the density of the presintered block increased, the linear sintering shrinkage decreased. In the experimental blocks, the three sectioned pieces of each block showed the different linear shrinkage depending on the area. The tops of the experimental blocks showed the lowest linear sintering shrinkage, whereas the bottoms of the experimental blocks showed the highest linear sintering shrinkage. CONCLUSION Within the limitations of this study, the density difference of the presintered zirconia block did not affect the mechanical properties of the sintered zirconia block, but affected the linear sintering shrinkage of the zirconia block. PMID:21165274

  4. Coupling of in-situ X-ray Microtomography Observations with Discrete Element Simulations-Application to Powder Sintering

    NASA Astrophysics Data System (ADS)

    Olmos, L.; Bouvard, D.; Martin, C. L.; Bellet, D.; Di Michiel, M.

    2009-06-01

    The sintering of both a powder with a wide particle size distribution (0-63 μm) and of a powder with artificially created pores is investigated by coupling in situ X-ray microtomography observations with Discrete Element simulations. The micro structure evolution of the copper particles is observed by microtomography all along a typical sintering cycle at 1050° C at the European Synchrotron Research Facilities (ESRF, Grenoble, France). A quantitative analysis of the 3D images provides original data on interparticle indentation, coordination and particle displacements throughout sintering. In parallel, the sintering of similar powder systems has been simulated with a discrete element code which incorporates appropriate sintering contact laws from the literature. The initial numerical packing is generated directly from the 3D microtomography images or alternatively from a random set of particles with the same size distribution. The comparison between the information drawn from the simulations and the one obtained by tomography leads to the conclusion that the first method is not satisfactory because real particles are not perfectly spherical as the numerical ones. On the opposite the packings built with the second method show sintering behaviors close to the behaviors of real materials, although particle rearrangement is underestimated by DEM simulations.

  5. Advanced Ceramic Technology for Space Applications at NASA MSFC

    NASA Technical Reports Server (NTRS)

    Alim, Mohammad A.

    2003-01-01

    The ceramic processing technology using conventional methods is applied to the making of the state-of-the-art ceramics known as smart ceramics or intelligent ceramics or electroceramics. The sol-gel and wet chemical processing routes are excluded in this investigation considering economic aspect and proportionate benefit of the resulting product. The use of ceramic ingredients in making coatings or devices employing vacuum coating unit is also excluded in this investigation. Based on the present information it is anticipated that the conventional processing methods provide identical performing ceramics when compared to that processed by the chemical routes. This is possible when sintering temperature, heating and cooling ramps, peak temperature (sintering temperature), soak-time (hold-time), etc. are considered as variable parameters. In addition, optional calcination step prior to the sintering operation remains as a vital variable parameter. These variable parameters constitute a sintering profile to obtain a sintered product. Also it is possible to obtain identical products for more than one sintering profile attributing to the calcination step in conjunction with the variables of the sintering profile. Overall, the state-of-the-art ceramic technology is evaluated for potential thermal and electrical insulation coatings, microelectronics and integrated circuits, discrete and integrated devices, etc. applications in the space program.

  6. Effect of grain size on structural and dielectric properties of barium titanate piezoceramics synthesized by high energy ball milling

    NASA Astrophysics Data System (ADS)

    Verma, Narendra Kumar; Patel, Sandeep Kumar Singh; Kumar, Dinesh; Singh, Chandra Bhal; Singh, Akhilesh Kumar

    2018-05-01

    We have investigated the effect of sintering temperature on the densification behaviour, grain size, structural and dielectric properties of BaTiO3 ceramics, prepared by high energy ball milling method. The Powder x-ray diffraction reveals the tetragonal structure with space group P4mm for all the samples. The samples were sintered at four different temperatures, (T = 900°C, 1000°C, 1100°C, 1200°C and 1300°C). Density increased with increasing sintering temperature, reaching up to 97% at 1300°C. A grain growth was observed with increasing sintering temperature. Impedance analyses of the sintered samples at various temperatures were performed. Increase in dielectric constant and Curie temperature is observed with increasing sintering temperature.

  7. Method for sintering fuel cell electrodes using a carrier

    DOEpatents

    Donelson, R.; Bryson, E.S.

    1995-03-28

    A carrier is described for conveying components of a fuel cell to be sintered through a sintering furnace. The carrier comprises a metal sheet coated with a carbon-based paint, the carbon-based paint comprising an organic binder. The carbon-based paint may be an alcohol or a solvent-based paint or a water-based paint.

  8. Corrigendum to "Extra-terrestrial construction processes - Advancements, opportunities and challenges" [Adv. Space Res. 60 (2017) 1413-1429

    NASA Astrophysics Data System (ADS)

    Lim, Sungwoo; Prabhu, Vibha Levin; Anand, Mahesh; Taylor, Lawrence A.

    2018-05-01

    The authors regret that because of an oversight, the published manuscript contained following errors (i) the estimated energy consumption for laser sintering was ten times larger than the real value as a result of incorrect unit conversion from J/mm2 ∗ thickness (μm) to kW h/m3; (ii) an inappropriate comparison with Benaroya (2010) as the estimation for energy consumption in Benaroya (2010) was based on a conventional furnace and NOT microwave heating. The revised text pertaining to paragraph 2 of Section 2.2.1, the last paragraph of Section 3.3 and Table 1 are provided below.

  9. Monolithic translucent BaMgAl 10O 17:Eu 2+ phosphors for laser-driven solid state lighting

    DOE PAGES

    Cozzan, Clayton; Brady, Michael J.; O’Dea, Nicholas; ...

    2016-10-11

    With high power light emitting diodes and laser diodes being explored for white light generation and visible light communication, thermally robust encapsulation schemes for color-converting inorganic phosphors are essential. In the current work, the canonical blue-emitting phosphor, high purity Eu-doped BaMgAl 10O 17, has been prepared using microwave-assisted heating (25 min) and densified into translucent ceramic phosphor monoliths using spark plasma sintering (30 min). Lastly, the resulting translucent ceramic monoliths convert UV laser light to blue light with the same efficiency as the starting powder and provide superior thermal management in comparison with silicone encapsulation.

  10. Effects of the addition of municipal solid waste incineration fly ash on the behavior of polychlorinated dibenzo-p-dioxins and furans in the iron ore sintering process.

    PubMed

    Min, Yi; Liu, Chengjun; Shi, Peiyang; Qin, Chongda; Feng, Yutao; Liu, Baichen

    2018-04-11

    Raw materials were co-sintered with municipal solid waste incineration (MSWI) fly ash through iron ore sintering to promote the safe treatment and utilization of MSWI fly ash. To assess the feasibility of this co-sintering method, in this study, the effects of the addition of MSWI fly ash on the formation and emission of polychlorinated dibenzo-p-dioxins and furans (PCDD/Fs) were estimated via iron ore sintering pot experiments. During co-sintering, most of the PCDD/Fs in the added MSWI fly ash were decomposed and transformed into PCDD/Fs associated with iron sintering, and the concentrations of lower- and mid-chlorinated congeners increased. As there was a sufficient chlorine source and the sintering bed permeability was decreased by the addition of MSWI fly ash, the PCDD/F concentration in the exhaust gas increased. The mass emission of PCDD/Fs decreased; however, the emission of toxic PCDD/Fs increased beyond the total emissions from the independent MSW incineration and iron ore sintering processes due to the transformation of PCDD/F congeners. The co-sintering may be an important solution after technological improvements in the flue gas cleaning system and PCDD/F formation inhibition procedures. Copyright © 2018. Published by Elsevier Ltd.

  11. Report on in-situ studies of flash sintering of uranium dioxide

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Raftery, Alicia Marie

    Flash sintering is a novel type of field assisted sintering that uses an electric field and current to provide densification of materials on very short time scales. The potential for field assisted sintering techniques to be used in producing nuclear fuel is gaining recognition due to the potential economic benefits and improvements in material properties. The flash sintering behavior has so far been linked to applied and material parameters, but the underlying mechanisms active during flash sintering have yet to be identified. This report summarizes the efforts to investigate flash sintering of uranium dioxide using dilatometer studies at Los Alamosmore » National Laboratory and two separate sets of in-situ studies at Brookhaven National Laboratory’s NSLS-II XPD-1 beamline. The purpose of the dilatometer studies was to understand individual parameter (applied and material) effects on the flash behavior and the purpose of the in-situ studies was to better understand the mechanisms active during flash sintering. As far as applied parameters, it was found that stoichiometry, or oxygen-to-metal ratio, has a significant effect on the flash behavior (time to flash and speed of flash). Composite systems were found to have degraded sintering behavior relative to pure UO 2. The critical field studies are complete for UO 2.00 and will be analyzed against an existing model for comparison. The in-situ studies showed that the strength of the field and current are directly related to the sample temperature, with temperature-driven phase changes occurring at high values. The existence of an ‘incubation time’ has been questioned, due to a continuous change in lattice parameter values from the moment that the field is applied. Some results from the in-situ experiments, which should provide evidence regarding ion migration, are still being analyzed. Some preliminary conclusions can be made from these results with regard to using field assisted sintering to fabricate nuclear fuel. First, the pure UO 2-based system shows promising behavior with flash sintering, but composite systems are likely to show better sintering behavior with spark plasma sintering. Efforts to develop these methods should therefore be tailored towards the likelihood of success. Additionally, modeling is a rapidly developing aspect of current flash sintering research and should be used in parallel with experiments. Ultimately, ongoing flash sintering studies on various materials, like those summarized in this report, are rapidly contributing to the feasibility of controlling this method for use in the future.« less

  12. Surface hardening of Al alloys through controlled ball-milling and sintering.

    PubMed

    Kim, Seek Hyeoun; Kim, Yong Jin; Ahn, Jung-Ho

    2012-07-01

    One of the drawbacks of aluminum and its alloys is the lack of proper heat-treatment for surface-hardening. In the present work, a new and simple method of hardening the surface of aluminum and its alloys was developed. Low-energy ball-milling using specific process control agents (PCAs) was employed, using subsequent sintering in a controlled atmosphere. The PCAs in the present work were very effective both for milling and the formation of hard nanocrystalline dispersoids during sintering. The residual oxygen in a sintering atmosphere also played an important role in the formation of AIN or Al-O-N dispersoids. Through the proper control of the processing atmosphere and PCAs, the hardness and thickness of the hardened layers could be adjusted. The results of the wear test showed that the present aluminum alloys can be effectively utilized as light-weight components with a good wear resistance. Furthermore, the present method involves a simple forming process of die-compaction and sintering.

  13. Production technology of an electrolyte for Na/S batteries

    NASA Astrophysics Data System (ADS)

    Heimke, G.; Mayer, H.; Reckziegel, A.

    1982-05-01

    The trend to develop a cheap electrochemical electric battery and the development of the Na/S system are discussed. The main element in this type of battery is the beta Al2O3 solid electrolyte. Characteristics for this material of first importance are: specific surface, density of green and of sintered material, absence of cracks, gas permeability, resistance to flexion, purity, electrical conductivity, crystal structure and dimensions. Influence of production method on all these characteristics were investigated, e.g., method of compacting powder, tunnel kiln sintering versus static chamber furnace sintering, sintering inside a container or not, and type of kiln material when sintering in a container. In the stationary chamber furnace, beta alumina ceramics were produced with a density of 3.2 g/cm3, a mechanical strength higher than 160 MPa, and an electrical conductivity of about 0.125 Ohm-1cm-1 at 300 C. The best kiln material proved to be MgO and MgAl2O3.MgO ceramics.

  14. Conventional and two step sintering of PZT-PCN ceramics

    NASA Astrophysics Data System (ADS)

    Keshavarzi, Mostafa; Rahmani, Hooman; Nemati, Ali; Hashemi, Mahdieh

    2018-02-01

    In this study, PZT-PCN ceramic was made via sol-gel seeding method and effects of conventional sintering (CS) as well as two-step sintering (TSS) were investigated on microstructure, phase formation, density, dielectric and piezoelectric properties. First, high quality powder was achieved by seeding method in which the mixture of Co3O4 and Nb2O5 powder was added to the prepared PZT sol to form PZT-PCN gel. After drying and calcination, pyrochlore free PZT-PCN powder was synthesized. Second, CS and TSS were applied to achieve dense ceramic. The optimum temperature used for 2 h of conventional sintering was obtained at 1150 °C; finally, undesired ZrO2 phase formed in CS procedure was removed successfully with TSS procedure and dielectric and piezoelectric properties were improved compared to the CS procedure. The best electrical properties obtained for the sample sintered by TSS in the initial temperature of T 1 = 1200 °C and secondary temperature of T 2 = 1000 °C for 12 h.

  15. Influence of processing parameters on microstructure and biocompatibility of surface laser sintered hydroxyapatite-SiO2 composites.

    PubMed

    Kivitz, E; Görke, R; Schilling, A F; Zhang, J; Heinrich, J G

    2013-05-01

    Silica-doped hydroxyapatite (HA) is a promising material concerning biocompatibility to natural bone, bioactivity and osteoconductive characteristics. HA exhibits phase transformations during sintering which are attendant to the change in volume and thermal strain. To avoid cracks during sintering, the exact knowledge of the phase transition temperatures is necessary. The sintering behavior of HA can be improved by adding amorphous silica with a low coefficient of thermal expansion. Therefore, the phase transformations in the system HA-SiO2 were analyzed by using differential scanning calorimetry followed by quantitative phase analysis by X-ray diffraction with the Riedveld method. The maximum sintering temperature without reversible phase transformation was defined as 1265°C. In laser surface sintered (LSS) samples, amorphous SiO2 , HA, and Si-α-TCP (or α-TCP) were detected. By comparison, only crystalline phases, such as cristobalite, HA, β-TCP, and Si-α-TCP (or α-TCP), were determined after furnace sintering. Scanning electron microscopy micrographs of furnace sintered and LSS samples show the differences in the resulting microstructures. Biocompatibility was determined by measuring cell activity of osteoblasts cultivated on four laser-sintered materials in the HA-SiO2 system in comparison to normal cell culture plastic. Cell proliferation was similar on all surfaces. The level of the cell activity on day 8 varied depending on the composition of the material and increased linearly as the amorphous SiO2 content rose. Taken together a laser-based method to develop novel biocompatible HA-SiO2 ceramics with adjustable properties and possible applications as orthopedic bioceramics are discussed. Copyright © 2012 Wiley Periodicals, Inc.

  16. Development of Al2O3 electrospun fibers prepared by conventional sintering method or plasma assisted surface calcination

    NASA Astrophysics Data System (ADS)

    Mudra, E.; Streckova, M.; Pavlinak, D.; Medvecka, V.; Kovacik, D.; Kovalcikova, A.; Zubko, P.; Girman, V.; Dankova, Z.; Koval, V.; Duzsa, J.

    2017-09-01

    In this paper, the electrospinning method was used for preparation of α-Al2O3 microfibers from PAN/Al(NO3)3 precursor solution. The precursor fibers were thermally treated by conventional method in furnace or low-temperature plasma induced surface sintering method in ambient air. The four different temperatures of PAN/Al(NO3)3 precursors were chosen for formation of α-Al2O3 phase by conventional sintering way according to the transition features observed in the TG/DSC analysis. In comparison, the low-temperature plasma treatment at atmospheric pressure was used as an alternative sintering method at the exposure times of 5, 10 and 30 min. FTIR analysis was used for evaluation of residual polymer after plasma induced calcination and for studying the mechanism of polymer degradation. The polycrystalline alumina fibers arranged with the nanoparticles was created continuously throughout the whole volume of the sample. On the other side the low temperature approach, high density of reactive species and high power density of plasma generated at atmospheric pressure by used plasma source allowed rapid removal of polymer in preference from the surface of fibers leading to the formation of composite ceramic/polymer fibers. This plasma induced sintering of PAN/Al(NO3)3 can have obvious importance in industrial applications where the ceramic character of surface with higher toughness of the fibers are required.

  17. HSPES membrane electrode assembly

    NASA Technical Reports Server (NTRS)

    Kindler, Andrew (Inventor); Yen, Shiao-Ping (Inventor)

    2000-01-01

    An improved fuel cell electrode, as well as fuel cells and membrane electrode assemblies that include such an electrode, in which the electrode includes a backing layer having a sintered layer thereon, and a non-sintered free-catalyst layer. The invention also features a method of forming the electrode by sintering a backing material with a catalyst material and then applying a free-catalyst layer.

  18. Preparation and flash sintering of MgTiO3 nanopowders obtained by the polyacrylamide gel method

    NASA Astrophysics Data System (ADS)

    Su, Xinghua; Bai, Ge; Zhang, Jing; Zhou, Jie; Jia, Yongjie

    2018-06-01

    Using a polyacrylamide gel method, phase pure and well-dispersed MgTiO3 nanopowders were prepared at 800 °C for 2 h. It was found that a high mole ratio of monomers to precursors resulted in low formation temperature of MgTiO3, due to the highly mixing homogeneity and smaller particle sizes of precursors. Sintering behaviors of MgTiO3 nanopowders under DC electric field from 500 to 800 V/cm were investigated. Nearly full dense MgTiO3 ceramics can be prepared in 30 s. An abrupt and simultaneous increase in current density and power dissipation were observed in sintering process, which are characteristics of flash sintering. The power dissipation for the flash sintering was found to be 82 mW/mm3. The densities and average grain sizes of samples increase with the increase of the electrical field strength. It was suggested that Joule heating was the main mechanism of flash sintering of MgTiO3 ceramics. Our work provides a useful route for the fabrication of dense MgTiO3 ceramics at low temperature in short time.

  19. Method of manufacture of single phase ceramic superconductors

    DOEpatents

    Singh, J.P.; Poeppel, R.B.; Goretta, K.C.; Chen, N.

    1995-03-28

    A ceramic superconductor is produced by close control of oxygen partial pressure during sintering of the material. The resulting microstructure of YBa{sub 2}Cu{sub 3}O{sub x} indicates that sintering kinetics are enhanced at reduced p(O{sub 2}) and that because of second phase precipitates, grain growth is prevented. The density of specimens sintered at 910 C increased from 79 to 94% theoretical when p(O{sub 2}) was decreased from 0.1 to 0.0001 MPa. The increase in density with decrease in p(O{sub 2}) derives from enhanced sintering kinetics, due to increased defect concentration and decreased activation energy of the rate-controlling species undergoing diffusion. Sintering at 910 C resulted in a fine-grain microstructure, with an average grain size of about 4 {mu}m. Post sintering annealing in a region of stability for the desired phase converts the second phases and limits grain growth. The method of pinning grain boundaries by small scale decompositive products and then annealing to convert its product to the desired phase can be used for other complex asides. Such a microstructure results in reduced microcracking, strengths as high as 230 MPa and high critical current density capacity. 25 figures.

  20. Method of manufacture of single phase ceramic superconductors

    DOEpatents

    Singh, Jitrenda P.; Poeppel, Roger B.; Goretta, Kenneth C.; Chen, Nan

    1995-01-01

    A ceramic superconductor is produced by close control of oxygen partial pressure during sintering of the material. The resulting microstructure of YBa.sub.2 Cu.sub.3 O.sub.x indicates that sintering kinetics are enhanced at reduced p(O.sub.2) and that because of second phase precipitates, grain growth is prevented. The density of specimens sintered at 910.degree. C. increased from 79 to 94% theoretical when p(O.sub.2) was decreased from 0.1 to 0.0001 MPa. The increase in density with decrease in p(O.sub.2) derives from enhanced sintering kinetics, due to increased defect concentration and decreased activation energy of the rate-controlling species undergoing diffusion. Sintering at 910.degree. C resulted in a fine-grain microstructure, with an average grain size of about 4 .mu.m. Post sintering annealing in a region of stability for the desired phase converts the second phases and limits grain growth. The method of pinning grain boundaries by small scale decompositive products and then annealing to convert its product to the desired phase can be used for other complex asides. Such a microstructure results in reduced microcracking, strengths as high as 230 MPa and high critical current density capacity.

  1. Fabrication of Ce3+ doped Gd3Ga3Al2O12 ceramics by reactive sintering method

    NASA Astrophysics Data System (ADS)

    Ye, Yong; Liu, Peng; Yan, Dongyue; Xu, Xiaodong; Zhang, Jian

    2017-09-01

    Ce3+ doped Gd3Ga3Al2O12 (Ce:GGAG) ceramics were fabricated by solid state reactive sintering method in this study. The ceramics were pre-sintered in normal muffle furnace in air at various temperature range from 1410 °C to 1550 °C for 10 h and post-treated by hot isostatic press at 1400 °C/2 h in 200 MPa Ar. The phase and microstructure evolution of Ce: GGAG samples during the densification process were investigated by X-ray diffraction and scanning electron microscope. Pure GGAG phase appeared with the temperature increased to 1200 °C. The fully dense and translucent GGAG ceramics were fabricated by pre-sintering at 1450 °C and followed by HIP treatment.

  2. Method for fabricating prescribed flaws in the interior of metals

    DOEpatents

    Hsu, David K.; Thompson, Donald O.

    1989-03-07

    The method for fabricating a metal body having a flaw of predetermined size and shape located therein comprises placing half of the metal powder required to make the metal body in the die of a press and pressing it to create a flat upper surface thereon. A piece of copper foil is cut to the size and shape of the desired interior crack and placed on the upper surface of the powder and centered in position. The remaining powder is then placed in the die to cover the copper foil. The powder is first cold pressed and removed from the press. The powder metal piece is then sintered in a furnace at a temperature above the melting point of the copper and below the melting point of the metal. It is then removed from the furnace, cooled to room temperature, and placed back in the die and pressed further. This procedure results in an interior flaw or crack. Modified forms of the method involve using a press-sinter-press-sinter cycle with the first sinter being below the melting point of the copper and the second sinter being above the melting point of the copper and below the melting point of the metal.

  3. Systems and methods for remote long standoff biometric identification using microwave cardiac signals

    NASA Technical Reports Server (NTRS)

    McGrath, William R. (Inventor); Talukder, Ashit (Inventor)

    2012-01-01

    Systems and methods for remote, long standoff biometric identification using microwave cardiac signals are provided. In one embodiment, the invention relates to a method for remote biometric identification using microwave cardiac signals, the method including generating and directing first microwave energy in a direction of a person, receiving microwave energy reflected from the person, the reflected microwave energy indicative of cardiac characteristics of the person, segmenting a signal indicative of the reflected microwave energy into a waveform including a plurality of heart beats, identifying patterns in the microwave heart beats waveform, and identifying the person based on the identified patterns and a stored microwave heart beats waveform.

  4. Structural and mechanical characterization of boron doped biphasic calcium phosphate produced by wet chemical method and subsequent thermal treatment

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Albayrak, Onder, E-mail: albayrakonder@mersin.edu.tr

    In the current study, boron doped biphasic calcium phosphate bioceramics consisting of a mixture of boron doped hydroxyapatite (BHA) and beta tricalcium phosphate (β-TCP) of varying BHA/β-TCP ratios were obtained after sintering stage. The effects of varying boron contents and different sintering temperatures on the BHA/β-TCP ratios and on the sinterability of the final products were investigated. Particle sizes and morphologies of the obtained precipitates were determined using SEM. XRD and FTIR investigation were conducted to detect the boron formation in the structure of HA and quantitative analysis was performed to determine the BHA/β-TCP ratio before and after sintering stage.more » In order to determine the sinterability of the obtained powders, pellets were prepared and sintered; the rates of densification were calculated and obtained results were correlated by SEM images. Also Vickers microhardness values of the sintered samples were determined. The experimental results verified that boron doped hydroxyapatite powders were obtained after sintering stage and the structure consists of a mixture of BHA and β-TCP. As the boron content used in the precipitation stage increases, β-TCP content of the BHA/β-TCP ratio increases but sinterability, density and microhardness deteriorate. As the sintering temperature increases, β-TCP content, density and microhardness of the samples increase and sinterability improves. - Highlights: • This is the first paper about boron doped biphasic calcium phosphate bioceramics. • Boron doping affects the structural and mechanical properties. • BHA/β-TCP ratio can be adjustable with boron content and sintering temperature.« less

  5. Applying Massively Parallel Kinetic Monte Carlo Methods to Simulate Grain Growth and Sintering in Powdered Metals

    DTIC Science & Technology

    2011-09-01

    Structure Evolution During Sintering From [19]. ...................................20 Figure 10. Ising Model Configuration With Eight Nearest Neighbors...INTRODUCTION A. MOTIVATION The ability to fabricate structural components from metals with a fine (micron- sized), controlled grain size is one of the...hallmarks of modern, structural metallurgy. Powder metallurgy, in particular, consists of powder manufacture, powder blending, compacting, and sintering

  6. Method of forming and assembly of parts

    DOEpatents

    Ripley, Edward B.

    2010-12-28

    A method of assembling two or more parts together that may be metal, ceramic, metal and ceramic parts, or parts that have different CTE. Individual parts are formed and sintered from particles that leave a network of interconnecting porosity in each sintered part. The separate parts are assembled together and then a fill material is infiltrated into the assembled, sintered parts using a method such as capillary action, gravity, and/or pressure. The assembly is then cured to yield a bonded and fully or near-fully dense part that has the desired physical and mechanical properties for the part's intended purpose. Structural strength may be added to the parts by the inclusion of fibrous materials.

  7. Development of a sintering process for recycling oil shale fly ash and municipal solid waste incineration bottom ash into glass ceramic composite

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhang, Zhikun; Zhang, Lei; Li, Aimin, E-mail: leeam@dlut.edu.cn

    Highlights: • Glass ceramic composite is prepared from oil shale fly ash and MSWI bottom ash. • A novel method for the production of glass ceramic composite is presented. • It provides simple route and lower energy consumption in terms of recycling waste. • The vitrified slag can promote the sintering densification process of glass ceramic. • The performances of products decrease with the increase of oil shale fly ash content. - Abstract: Oil shale fly ash and municipal solid waste incineration bottom ash are industrial and municipal by-products that require further treatment before disposal to avoid polluting the environment.more » In the study, they were mixed and vitrified into the slag by the melt-quench process. The obtained vitrified slag was then mixed with various percentages of oil shale fly ash and converted into glass ceramic composites by the subsequent sintering process. Differential thermal analysis was used to study the thermal characteristics and determine the sintering temperatures. X-ray diffraction analysis was used to analyze the crystalline phase compositions. Sintering shrinkage, weight loss on ignition, density and compressive strength were tested to determine the optimum preparation condition and study the co-sintering mechanism of vitrified amorphous slag and oil shale fly ash. The results showed the product performances increased with the increase of sintering temperatures and the proportion of vitrified slag to oil shale fly ash. Glass ceramic composite (vitrified slag content of 80%, oil shale fly ash content of 20%, sintering temperature of 1000 °C and sintering time of 2 h) showed the properties of density of 1.92 ± 0.05 g/cm{sup 3}, weight loss on ignition of 6.14 ± 0.18%, sintering shrinkage of 22.06 ± 0.6% and compressive strength of 67 ± 14 MPa. The results indicated that it was a comparable waste-based material compared to previous researches. In particular, the energy consumption in the production process was reduced compared to conventional vitrification and sintering method. Chemical resistance and heavy metals leaching results of glass ceramic composites further confirmed the possibility of its engineering applications.« less

  8. Low temperature sintered giant dielectric permittivity CaCu3Ti4O12 sol-gel synthesized nanoparticle capacitors

    NASA Astrophysics Data System (ADS)

    Puli, Venkata Sreenivas; Adireddy, Shiva; Kothakonda, Manish; Elupula, Ravinder; Chrisey, Douglas B.

    This paper reports on synthesis of polycrystalline complex perovskite CaCu3Ti4O12 (as CCTO) ceramic powders prepared by a sol-gel auto combustion method at different sintering temperatures and sintering times, respectively. The effect of sintering time on the structure, morphology, dielectric and electrical properties of CCTO ceramics is investigated. Tuning the electrical properties via different sintering times is demonstrated for ceramic samples. X-ray diffraction (XRD) studies confirm perovskite-like structure at room temperature. Abnormal grain growth is observed for ceramic samples. Giant dielectric permittivity was realized for CCTO ceramics. High dielectric permittivity was attributed to the internal barrier layer capacitance (IBLC) model associated with the Maxwell-Wagner (MW) polarization mechanism.

  9. Study of structural and magnetic properties of cobalt ferrite nanoparticles sintered at different temperature

    NASA Astrophysics Data System (ADS)

    Kumari, Mukesh; Bhatnagar, Mukesh Chander

    2018-05-01

    Cobalt ferrite (CFO) has been synthesized in the form of nanoparticles (NPs) through sol-gel auto-combustion method. The prepared NPs of CFO were sintered for four hours at various temperatures from 300°C to 900°C. The physical properties of the sintered samples have been optimized using X-ray diffraction (XRD), Raman spectroscopy and physical properties measurement system (PPMS). The XRD and Raman studies have confirmed the cubic spinel phase formation of CFO NPs. XRD results showed that as we increase the sintering temperature the crystallite size of particles increases. Whereas the magnetic studies revealed that the saturation magnetization (MS) increases while the coercivity (HC) of nanoparticles decreases with increase of sintering temperature.

  10. Study on selective laser sintering of glass fiber reinforced polystyrene

    NASA Astrophysics Data System (ADS)

    Yang, Laixia; Wang, Bo; Zhou, Wenming

    2017-12-01

    In order to improve the bending strength of Polystyrene (PS) sintered parts by selective laser sintering, Polystyrene/glass fiber (PS/GF) composite powders were prepared by mechanical mixing method. The size distribution of PS/GF composite powders was characterized by laser particle size analyzer. The optimum ratio of GF was determined by proportioning sintering experiments. The influence of process parameters on the bending strength of PS and PS/GF sintered parts was studied by orthogonal test. The result indicates that the particle size of PS/GF composite powder is mainly distributed in 24.88 μm~139.8 μm. When the content of GF is 10%, it has better strengthen effect. Finally, the article used the optimum parameter of the two materials to sinter prototype, it is found that the PS/GF prototype has the advantages of good accuracy and high strength.

  11. Mechanical and microstructural characterization of W–Cu FGM fabricated by one-step sintering method through PM route

    NASA Astrophysics Data System (ADS)

    Gupta, Rajat; Kumar, Rohit; Chaubey, A. K.; Kanpara, Shailesh; Khirwadkar, S. S.

    2018-03-01

    Five layer W-Cu functionally graded material (FGM) for components in nuclear fusion application was fabricated by a one-step resistance sintering process, known as spark plasma sintering (SPS). In this study effect of sintering temperature (Ts) on physical, mechanical and surface property was investigated. Detailed microstructural study revealed that the graded structure of the composite layers with varying composition from 0 to 100 wt% W and Cu in opposite directions could be well densified after the SPS process. It also indicates that the fine microstructure within functionally graded layers can be maintained because of short sintering time. The sample sintered at 1050°C shows more than 90% theoretical density, hardness greater than 239±5 Hv and excellent surface scratch resistance. The result demonstrates that SPS is promising and more suitable process for fabrication of W-Cu FGM.

  12. Sintered silver joints via controlled topography of electronic packaging subcomponents

    DOEpatents

    Wereszczak, Andrew A.

    2014-09-02

    Disclosed are sintered silver bonded electronic package subcomponents and methods for making the same. Embodiments of the sintered silver bonded EPSs include topography modification of one or more metal surfaces of semiconductor devices bonded together by the sintered silver joint. The sintered silver bonded EPSs include a first semiconductor device having a first metal surface, the first metal surface having a modified topography that has been chemically etched, grit blasted, uniaxial ground and/or grid sliced connected to a second semiconductor device which may also include a first metal surface with a modified topography, a silver plating layer on the first metal surface of the first semiconductor device and a silver plating layer on the first metal surface of the second semiconductor device and a sintered silver joint between the silver plating layers of the first and second semiconductor devices which bonds the first semiconductor device to the second semiconductor device.

  13. In vitro biodegradation testing of Mg-alloy EZK400 and manufacturing of implant prototypes using PM (powder metallurgy) methods.

    PubMed

    Wolff, M; Luczak, M; Schaper, J G; Wiese, B; Dahms, M; Ebel, T; Willumeit-Römer, R; Klassen, T

    2018-09-01

    The study is focussing towards Metal Injection Moulding (MIM) of Mg-alloys for biomedical implant applications. Especially the influence of the sintering processing necessary for the consolidation of the finished part is in focus of this study. In doing so, the chosen high strength EZK400 Mg-alloy powder material was sintered using different sintering support bottom plate materials to evaluate the possibility of iron impurity pick up during sintering. It can be shown that iron pick up took place from the steel bottom plate into the specimen. Despite the fact that a separating boron nitrite (BN) barrier layer was used and the Mg-Fe phase diagram is not predicting any significant solubility to each other. As a result of this study a new bottom plate material not harming the sintering and the biodegradation performance of the as sintered material, namely a carbon plate material, was found.

  14. Effect of sandblasting on surface roughness of zirconia-based ceramics and shear bond strength of veneering porcelain.

    PubMed

    He, Min; Zhang, Zutai; Zheng, Dongxiang; Ding, Ning; Liu, Yan

    2014-01-01

    This study aims to investigate the effect of sandblasting on the surface roughness of zirconia and the shear bond strength of the veneering porcelain. Pre-sintered zirconia plates were prepared and divided into four groups. Group A were not treated at all; group B were first sandblasted under 0.2 MPa pressure and then densely sintered; group C and D were sintered first, and then sandblasted under 0.2 MPa and 0.4 MPa pressures respectively. Surface roughness was measured and 3D roughness was reconstructed for the specimens, which were also analyzed with X-ray diffractometry. Finally after veneering porcelain sintering, shear bond tests were conducted. Sandblasting zirconia before sintering significantly increased surface roughness and the shear bond strength between zirconia and veneering porcelain (p<0.05). Sandblasting zirconia before sintering is a useful method to increase surface roughness and could successfully improve the bonding strength of veneering porcelain.

  15. Sintering Behavior of Hypereutectic Aluminum-Silicon Metal Matrix Composites Powder

    NASA Astrophysics Data System (ADS)

    Rudianto, Haris; Sun, Yang Sang; Jin, Kim Yong; Woo, Nam Ki

    Lightweight materials of Aluminum-Silicon P/M alloys offer the advantage of high-wear resistance, high strength, good temperature resistance, and a low coefficient of thermal expansion. An A359 MMC alloy was mixed together with Alumix 231 in this research. Powders were compacted with compaction pressure up to 700 MPa. Particle size and compaction pressure influenced green density. Compacted powders were sintered in a tube furnace under a flowing nitrogen gas. Sintering temperature, heating rate and sintering time were verified to determine best sintering conditions of the alloys. Chemical composition also contributed to gain higher sintered density. Precipitation strengthening method was used to improve mechanical properties of this materials.T6 heat treatment was carried out to produce fine precipitates to impede movement of dislocation. The chemical composition of this materials allow for the potential formation of several strengthening precipitates including θ (Al2Cu) and β (Mg2Si).

  16. The extraction of essential oil from patchouli leaves (Pogostemon cablin Benth) using microwave hydrodistillation and solvent-free microwave extraction methods

    NASA Astrophysics Data System (ADS)

    Putri, D. K. Y.; Kusuma, H. S.; Syahputra, M. E.; Parasandi, D.; Mahfud, M.

    2017-12-01

    Patchouli plant (Pogostemon cablin Benth) is one of the important essential oil-producing plant, contributes more than 50% of total exports of Indonesia’s essential oil. However, the extraction of patchouli oil that has been done in Indonesia is generally still used conventional methods that require enormous amount of energy, high solvent usage, and long time of extraction. Therefore, in this study, patchouli oil extraction was carried out by using microwave hydrodistillation and solvent-free microwave extraction methods. Based on this research, it is known that the extraction of patchouli oil using microwave hydrodistillation method with longer extraction time (240 min) only produced patchouli oil’s yield 1.2 times greater than solvent-free microwave extraction method which require faster extraction time (120 min). Otherwise the analysis of electric consumption and the environmental impact, the solvent-free microwave extraction method showed a smaller amount when compared with microwave hydrodistillation method. It is conclude that the use of solvent-free microwave extraction method for patchouli oil extraction is suitably method as a new green technique.

  17. Cryomilled and spark plasma sintered titanium: the evolution of microstructure

    NASA Astrophysics Data System (ADS)

    Kozlík, Jiří; Becker, Hanka; Harcuba, Petr; Stráský, Josef; Janeček, Milos

    2017-05-01

    Bulk ultra-fine grained (UFG) commercially pure Ti was prepared by cryogenic milling in liquid argon and subsequent spark plasma sintering (SPS). During cryogenic milling, individual powder particles are repetitively severely deformed by attrition forces. Powder particles were not significantly refined, but due to severe repetitive plastic deformation, ultra-fine grained microstructure emerges within each powder particle. Cryogenic milling can be therefore considered as a specific severe plastic deformation (SPD) method. Compactization of cryomilled powder by SPS technique (also referred to as field assisted sintering technique - FAST) requires significantly lower sintering temperatures and shorter sintering times for successful compaction when compared to any other sintering technique. This is crucial for maintaining the UFG microstructure due to its limited thermal stability. Several specimens were prepared by varying processing parameters, in particular the sintering temperature. The microstructure of powders and compacted samples was observed by scanning electron microscopy (SEM). Increased sintering temperature results in recrystallization and grain growth. A trade-off relationship between the density of compacted material and grain size was identified. Microhardness of the material was found to depend on residual porosity rather than grain size. This contribution presents cryogenic milling and spark plasma sintering as a viable alternative for achieving UFG microstructure in commercially pure Ti.

  18. Synthesis and characterization of nanocrystalline Nd{sup 3+}-doped gadolinium scandium aluminum garnet powders by a gel-combustion method

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Su, Jing, E-mail: zlj007@126.com; Miao, Ju-hong; Xu, Lin-hua

    2012-07-15

    Graphical abstract: The graph shows the emission spectra (λ{sub ex} = 808 nm) of 1 at.% Nd:GSAG powders sintered at different temperatures for 3 h. Compared with the powder sintered at 900 °C, the PL intensity of the powder sintered at 1000 °C decreased significantly. The changes in the PL intensity should mainly due to the crystallinity and dispersion of the powders. Highlights: ► We synthesized Nd:GSAG nano-powders by gel-combustion method successfully. ► We analyzed the structure and the morphology of the heat-treated products. ► We studied the optical characteristics of Nd:GSAG nano-powders. -- Abstract: Nd{sup 3+}-doped gadolinium scandium aluminummore » garnet (Nd:GSAG) precursor was synthesized by a gel combustion method using metal nitrates and citric acid as raw materials. The structure and morphology of the precursor and the sintered powders were studied by means of X-ray diffraction (XRD), infrared spectroscopy (IR) and transmission electron microscopy (TEM). The results showed that the precursor transformed into pure GSAG polycrystalline phase at about 800 °C, and the powders sintered at 800–1000 °C were well-dispersed with average particle sizes in the range of 30–80 nm. Optical properties of Nd:GSAG nano-powders were characterized by using photoluminescence spectroscopy. The highest photoluminescence intensity was achieved for the powder sintered at 900 °C.« less

  19. Microstructure and Mechanical Properties of Ti-6Al-4V Fabricated by Selective Laser Melting of Powder Produced by Granulation-Sintering-Deoxygenation Method

    NASA Astrophysics Data System (ADS)

    Sun, Pei; Fang, Z. Zak; Zhang, Ying; Xia, Yang

    2017-12-01

    Commercial spherical Ti powders for additive manufacturing applications are produced today by melt-atomization methods at relatively high costs. A meltless production method, called granulation-sintering-deoxygenation (GSD), was developed recently to produce spherical Ti alloy powder at a significantly reduced cost. In this new process, fine hydrogenated Ti particles are agglomerated to form spherical granules, which are then sintered to dense spherical particles. After sintering, the solid fully dense spherical Ti alloy particles are deoxygenated using novel low-temperature deoxygenation processes with either Mg or Ca. This technical communication presents results of 3D printing using GSD powder and the selective laser melting (SLM) technique. The results showed that tensile properties of parts fabricated from spherical GSD Ti-6Al-4V powder by SLM are comparable with typical mill-annealed Ti-6Al-4V. The characteristics of 3D printed Ti-6Al-4V from GSD powder are also compared with that of commercial materials.

  20. Synthesis and microwave dielectric behavior of (Bi1-xPbx)NbO4 ceramics

    NASA Astrophysics Data System (ADS)

    Butee, S. P.; Kambale, K. R.; Upadhyay, Shaishav; Bashaiah, S.; Raju, K. C. James; Panda, Himanshu

    2016-03-01

    Ceramic samples of (Bi1-xPbx)NbO4 (x=0, 0.025, 0.05, 0.10, 0.15, 0.20) with 0.75wt.% V2O5 addition sintered at 920∘C, 940∘C and 960∘C are investigated. Pb is selected as a substitute for Bi3+ in BiNbO4 ceramics as it exists in two stable valence states of +2 and +4 and the average valency matches to that of Bi3+. The average Shannon radius (for octahedral coordination) of Pb2+ (1.19Å) and Pb4+(0.775Å) cations is 0.9825Å, which is similar to that of Bi3+ ion (1.03Å). The dense (>94%) polycrystalline (Bi1-xPbx)NbO4 samples fabricated mostly reveal orthorhombic (Pnna) phase (α-BiNbO4, Sp. Gp. 52) by powder XRD. Presence of satellite Pb2Nb2O7 phase, the amount of which is increasing with increase in Pb content, is also noticed. The microwave dielectric constant (ɛr‧) values of the niobates are found to increase from 42 to 71, whereas the quality factor (Qu.f) values are found to decrease from 5400 to 550 GHz with increasing substitution of Pb. The compositions so synthesized are important as hardly there are any microwave dielectric ceramics available with 45<ɛr‧<75.

  1. Sintering of micro-trusses created by extrusion-3D-printing of lunar regolith inks

    NASA Astrophysics Data System (ADS)

    Taylor, Shannon L.; Jakus, Adam E.; Koube, Katie D.; Ibeh, Amaka J.; Geisendorfer, Nicholas R.; Shah, Ramille N.; Dunand, David C.

    2018-02-01

    The development of in situ fabrication methods for the infrastructure required to support human life on the Moon is necessary due to the prohibitive cost of transporting large quantities of materials from the Earth. Cellular structures, consisting of a regular network (truss) of micro-struts with ∼500 μm diameters, suitable for bricks, blocks, panels, and other load-bearing structural elements for habitats and other infrastructure are created by direct-extrusion 3D-printing of liquid inks containing JSC-1A lunar regolith simulant powders, followed by sintering. The effects of sintering time, temperature, and atmosphere (air or hydrogen) on the microstructures, mechanical properties, and magnetic properties of the sintered lunar regolith micro-trusses are investigated. The air-sintered micro-trusses have higher relative densities, linear shrinkages, and peak compressive strengths, due to the improved sintering of the struts within the micro-trusses achieved by a liquid or glassy phase. Whereas the hydrogen-sintered micro-trusses show no liquid-phase sintering or glassy phase, they contain metallic iron 0.1-2 μm particles from the reduction of ilmenite, which allows them to be lifted with magnets.

  2. Method of making a layered composite electrode/electrolyte

    DOEpatents

    Visco, Steven J.; Jacobson, Craig P.; DeJonghe, Lutgard C.

    2005-01-25

    An electrode/electrolyte structure is prepared by a plurality of methods. An unsintered (possibly bisque fired) moderately catalytic electronically-conductive or homogeneous mixed ionic electronic conductive electrode material is deposited on a layer composed of a sintered or unsintered ionically-conductive electrolyte material prior to being sintered. A layer of particulate electrode material is deposited on an unsintered ("green") layer of electrolyte material and the electrode and electrolyte layers are sintered simultaneously, sometimes referred to as "co-firing," under conditions suitable to fully densify the electrolyte while the electrode retains porosity. Or, the layer of particulate electrode material is deposited on a previously sintered layer of electrolyte, and then sintered. Subsequently, a catalytic material is added to the electrode structure by infiltration of an electrolcatalyst precursor (e.g., a metal salt such as a transition metal nitrate). This may be followed by low temperature firing to convert the precursor to catalyst. The invention allows for an electrode with high electronic conductivity and sufficient catalytic activity to achieve high power density in an ionic (electrochemical) device such as fuel cells and electrolytic gas separation systems.

  3. Finite element method analysis of cold forging for deformation and densification of Mo alloyed sintered steel

    NASA Astrophysics Data System (ADS)

    Kamakoshi, Y.; Nishida, S.; Kanbe, K.; Shohji, I.

    2017-10-01

    In recent years, powder metallurgy (P/M) materials have been expected to be applied to automobile products. Then, not only high cost performance but also more strength, wear resistance, long-life and so on are required for P/M materials. As an improvement method of mechanical properties of P/M materials, a densification is expected to be one of effective processes. In this study, to examine behaviours of the densification of Mo-alloyed sintered steel in a cold-forging process, finite element method (FEM) analysis was performed. Firstly, a columnar specimen was cut out from the inner part of a sintered specimen and a load-stroke diagram was obtained by the compression test. 2D FEM analysis was performed using the obtained load-stroke diagram. To correct the errors of stress between the porous mode and the rigid-elastic mode of analysis software, the analysis of a polynominal approximation was performed. As a result, the modified true stress-true strain diagram was obtained for the sintered steel with the densification. Afterwards, 3D FEM analysis of backward extrusion was carried out using the modified true stress-true strain diagram. It was confirmed that both the shape and density of the sintered steel analyzed by new FEM analysis that we suggest correspond well with experimental ones.

  4. Sintering and Microstructure of BaTiO3 Nano Particles Synthesized by Molten Salt Method.

    PubMed

    Lee, Chang-Hyun; Shin, Hyo-Soon; Yeo, Dong-Hun; Ha, Gook-Hyun; Nahm, Sahn

    2016-05-01

    In order to establish thinner dielectric layers in thick film electronic components such as MLCC (Multilayer ceramic capacitor), BaTiO3 nanoparticles have been utilized. However, studies on the synthesis of nanoparticles smaller than 20 nm, the characteristics of the BaTiO3 powder, and the powder's sintering are lacking. Therefore, this paper aims to synthesize BaTiO3 particles smaller than 20 nm by using the molten salt method and evaluate the microstructure and dielectric properties by varying the sintering temperature from 750 degrees C to 1200 degrees C. Through the molten salt method and by using KOH-KCl mixed salt, 20 nm BaTiO3 powder was synthesized at a low temperature of 150 degrees C. Sintering the pellets formed from the synthesized 20 nm BaTiO3 nano powder led to the observation of an unusual phenomenon where the particles grew to approximate sizes below 850 degrees C where densification progressed. At sintering temperatures above 950 degrees C, particles that expanded into rod shapes were observed and these particles were identified to be unreacted TiO2 based on the results of the EDX (Energy Dispersive X-ray Spectroscopy) analysis and phase analysis results.

  5. Influence of Sintering Temperature on Hardness and Wear Properties of TiN Nano Reinforced SAF 2205

    NASA Astrophysics Data System (ADS)

    Oke, S. R.; Ige, O. O.; E Falodun, O.; Obadele, B. A.; Mphalele, M. R.; Olubambi, P. A.

    2017-12-01

    Conventional duplex stainless steel degrade in wear and mechanical properties at high temperature. Attempts have been made by researchers to solve this problems leading to the dispersion of second phase particles into duplex matrix. Powder metallurgy methods have been used to fabricate dispersion strengthened steels with a challenge of obtaining fully dense composite and grain growth. This could be resolved by appropriate selection of sintering parameters especially temperature. In this research, spark plasma sintering was utilized to fabricate nanostructured duplex stainless steel grade SAF 2205 with 5 wt.% nano TiN addition at different temperatures ranging from 1000 °C to 1200 °C. The effect of sintering temperature on the microstructure, density, hardness and wear of the samples was investigated. The results showed that the densities and grain sizes of the sintered nanocomposites increased with increasing the sintering temperature. The microstructures reveal ferrite and austenite grains with fine precipitates within the ferrite grains. The study of the hardness and wear behaviors, of the samples indicated that the optimum properties were obtained for the sintering temperature of 1150 °C.

  6. Double coating protection of Nd-Fe-B magnets: Intergranular phosphating treatment and copper plating

    NASA Astrophysics Data System (ADS)

    Zheng, Jingwu; Chen, Haibo; Qiao, Liang; Lin, Min; Jiang, Liqiang; Che, Shenglei; Hu, Yangwu

    2014-12-01

    In this work, a double coating protection technique of phosphating treatment and copper plating was made to improve the corrosion resistance of sintered Nd-Fe-B magnets. In other words, the intergranular region of sintered Nd-Fe-B is allowed to generate passive phosphate conversion coating through phosphating treatment, followed by the copper coating on the surface of sintered Nd-Fe-B. The morphology and corrosion resistance of the phosphated sintered Nd-Fe-B were observed using SEM and electrochemical method respectively. The phosphate conversion coating was formed more preferably on the intergranular region of sintered Nd-Fe-B than on the main crystal region; just after a short time of phosphating treatment, the intergranular region of sintered Nd-Fe-B has been covered by the phosphate conversion coating and the corrosion resistance is significantly improved. With the synergistic protection of the intergranular phosphorization and the followed copper electrodeposition, the corrosion resistance of the sintered Nd-Fe-B is significantly better than that with a single phosphate film or single plating protection.

  7. Consolidation & Factors Influencing Sintering Process in Polymer Powder Based Additive Manufacturing

    NASA Astrophysics Data System (ADS)

    Sagar, M. B.; Elangovan, K.

    2017-08-01

    Additive Manufacturing (AM) is two decade old technology; where parts are build layer manufacturing method directly from a CAD template. Over the years, AM techniques changes the future way of part fabrication with enhanced intricacy and custom-made features are aimed. Commercially polymers, metals, ceramic and metal-polymer composites are in practice where polymers enhanced the expectations in AM and are considered as a kind of next industrial revolution. Growing trend in polymer application motivated to study their feasibility and properties. Laser sintering, Heat sintering and Inhibition sintering are the most successful AM techniques for polymers but having least application. The presentation gives up selective sintering of powder polymers and listed commercially available polymer materials. Important significant factors for effective processing and analytical approaches to access them are discussed.

  8. Pressure- and Additive-Mediated Sintering of B4C at Relatively Low Temperatures

    NASA Astrophysics Data System (ADS)

    Goswami, Ramasis; Qadri, Syed B.; Wollmershauser, James; Kolel-Veetil, Manoj K.; Feygelson, Boris

    2017-03-01

    A significant improvement in sinterability of B4C was achieved at a relatively low temperature by applying high pressure (2 GPa) and adding a small amount (5 wt pct) of Ni. The sintered B4C and Ni powder mixture showed improved hardness in the range of 21 to 32 GPa and improved modulus as compared to the sintered B4C powder without additive. This is mostly attributed to the formation of Ni4B3, as characterized by Reitveld refinement method and transmission electron microscopy (TEM), which enhances the bonding between B4C particles. These results provide a new avenue toward the development of sintering of B4C at relatively low temperatures (<0.5 T m of B4C).

  9. Morphology and phase identification of micron to nanosized manganese oxide (MnO) with variations in sintering time

    NASA Astrophysics Data System (ADS)

    Sasongko, Muhammad Ilman Nur; Puspitasari, Poppy; Yazirin, Cepi; Tsamroh, Dewi Izzatus; Risdanareni, Puput

    2017-09-01

    Manganese oxide (MnO) occurs in many rock types and may take the form of minerals. MnO has its drawbacks, namely highly reactive oxidizing species classified as dangerous and explosive at temperatures above 55 °C. Despite this,MnO has excellent magnetic, electrochemical, and conductivity properties, which should be reduced to nano-size to maximize their use and improve the properties of MnO. Phase and morphology characterization of powder this research aims to reduce the grain size of the MnO from micro to nano using the sol-gel method with various sintering times. Sol-gel is a simple synthesis method that has been proven capable of synthesizing a wide variety of micro-sized oxide materials into nano. Sintering time is a technique performed in the synthesis process to dry the material to a temperature above the normal temperature. The temperature used for sintering starting from 600 °C to 1000 °C. Characterizations were done using XRD, SEM, EDX, and FTIR machines. The sintering processes in this study used a temperature of 600 °C with different sintering periods of 30, 60 and 90 minutes. The XRD characterization with a 30-minute sintering time resulted in the smallest MnO in the form crystalline powder of 47.3 nm. The highest intensity (degree of crystallinity) found in MnO sintered for 90 minutes. The results of the morphological characterization of SEM showed a morphological change in MnO from micro-sized triangular to nano-sized spherical shape. The EDX characterization results indicated that the 30-minute sintering caused the lowest change in Mn and the highest change in O. The results of FTIR characterization showed a shift in C-H and Mn-O followed by an increase in the group of N-H, C=O and Mn-O.

  10. 40 CFR 63.7851 - Who implements and enforces this subpart?

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... defined in § 63.90, except for approval of an alternative method for the oil content of the sinter plant feedstock or volatile organic compound measurements for the sinter plant windbox exhaust stream stack as...

  11. 40 CFR 63.7851 - Who implements and enforces this subpart?

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... defined in § 63.90, except for approval of an alternative method for the oil content of the sinter plant feedstock or volatile organic compound measurements for the sinter plant windbox exhaust stream stack as...

  12. 40 CFR 63.7851 - Who implements and enforces this subpart?

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... defined in § 63.90, except for approval of an alternative method for the oil content of the sinter plant feedstock or volatile organic compound measurements for the sinter plant windbox exhaust stream stack as...

  13. 40 CFR 63.7851 - Who implements and enforces this subpart?

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... defined in § 63.90, except for approval of an alternative method for the oil content of the sinter plant feedstock or volatile organic compound measurements for the sinter plant windbox exhaust stream stack as...

  14. Generalized green synthesis and formation mechanism of sponge-like ferrite micro-polyhedra with tunable structure and composition

    NASA Astrophysics Data System (ADS)

    Tong, Guoxiu; Du, Fangfang; Xiang, Lingjing; Liu, Fangting; Mao, Lulu; Guan, Jianguo

    2013-12-01

    This paper describes a green versatile glucose-engineered precipitation-sintering process that allows for the selective and mass preparation of spongy porous ferrite (M = Fe, Zn, Co, Ni, Mn, etc.) micro-polyhedra with tunable morphology, texture, and composition. Some kinetic factors, such as the molar ratio of glucose to metal nitrates, reaction temperature, sintering temperature and time, and type of metal nitrates, can be expediently employed to modulate their aspect ratio, shape, size, composition, and textural properties. In this protocol, glucose functions as a reductant, protecting agent, structure-directing agent, and a sacrificial template to guide the assembly of sheet-like nuclei into polyhedral precursors and the formation of spongy porous structures. Owing to larger EM parameters, multiresonant behavior, and dissipative current, spongy porous Fe3O4 polyhedra exhibited enhanced microwave-absorbing properties. This endows them with important potential applications in magnetic devices, catalysis, sorption, photoluminescence, electromagnetic wave absorbing materials, anode materials, and so on. Meanwhile, this general approach can be extended to synthesize other porous sponges with regular geometric configuration because it is simple, inexpensive, environmentally benign, and suitable for extensive production.This paper describes a green versatile glucose-engineered precipitation-sintering process that allows for the selective and mass preparation of spongy porous ferrite (M = Fe, Zn, Co, Ni, Mn, etc.) micro-polyhedra with tunable morphology, texture, and composition. Some kinetic factors, such as the molar ratio of glucose to metal nitrates, reaction temperature, sintering temperature and time, and type of metal nitrates, can be expediently employed to modulate their aspect ratio, shape, size, composition, and textural properties. In this protocol, glucose functions as a reductant, protecting agent, structure-directing agent, and a sacrificial template to guide the assembly of sheet-like nuclei into polyhedral precursors and the formation of spongy porous structures. Owing to larger EM parameters, multiresonant behavior, and dissipative current, spongy porous Fe3O4 polyhedra exhibited enhanced microwave-absorbing properties. This endows them with important potential applications in magnetic devices, catalysis, sorption, photoluminescence, electromagnetic wave absorbing materials, anode materials, and so on. Meanwhile, this general approach can be extended to synthesize other porous sponges with regular geometric configuration because it is simple, inexpensive, environmentally benign, and suitable for extensive production. Electronic supplementary information (ESI) available: Nitrogen adsorption-desorption isotherms, the corresponding pore size distribution curves, TG-DSC curves, XRD pattern, and IR spectra for the precursors; XRD patterns of the samples obtained at various temperatures under N2; XRD pattern, reduction rate, and reactive oxygen species production of ZnO-ZnFe2O4 XRD patterns, SEM images, EDX patterns, nitrogen adsorption-desorption isotherms, and the corresponding pore size distribution curves of CoFe2O4-NiFe2O4-Co1.29Ni1.71O4 polyhedra and NiO-ZnFe2O4. See DOI: 10.1039/c3nr03745b

  15. Method of preparing uranium nitride or uranium carbonitride bodies

    DOEpatents

    Wilhelm, Harley A.; McClusky, James K.

    1976-04-27

    Sintered uranium nitride or uranium carbonitride bodies having a controlled final carbon-to-uranium ratio are prepared, in an essentially continuous process, from U.sub.3 O.sub.8 and carbon by varying the weight ratio of carbon to U.sub.3 O.sub.8 in the feed mixture, which is compressed into a green body and sintered in a continuous heating process under various controlled atmospheric conditions to prepare the sintered bodies.

  16. Development of nano-structured duplex and ferritic stainless steels by pulverisette planetary milling followed by pressureless sintering

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    R, Shashanka, E-mail: shashankaic@gmail.com; Chaira, D., E-mail: chaira.debasis@gmail.com

    Nano-structured duplex and ferritic stainless steel powders are prepared by planetary milling of elemental Fe, Cr and Ni powder for 40 h and then consolidated by conventional pressureless sintering. The progress of milling and the continuous refinement of stainless steel powders have been confirmed by means of X-ray diffraction and scanning electron microscopy. Activation energy for the formation of duplex and ferritic stainless steels is calculated by Kissinger method using differential scanning calorimetry and is found to be 159.24 and 90.17 KJ/mol respectively. Both duplex and ferritic stainless steel powders are consolidated at 1000, 1200 and 1400 °C in argonmore » atmosphere to study microstructure, density and hardness. Maximum sintered density of 90% and Vickers microhardness of 550 HV are achieved for duplex stainless steel sintered at 1400 °C for 1 h. Similarly, 92% sintered density and 263 HV microhardness are achieved for ferritic stainless steel sintered at 1400 °C. - Highlights: • Synthesized duplex and ferritic stainless steels by pulverisette planetary milling • Calculated activation energy for the formation of duplex and ferritic stainless steels • Studied the effect of sintering temperature on density, hardness and microstructure • Duplex stainless steel exhibits 90% sintered density and microhardness of 550 HV. • Ferritic stainless steel shows 92% sintered density and 263 HV microhardness.« less

  17. Thermal method for fabricating a hydrogen separation membrane on a porous substrate

    DOEpatents

    Song, Sun-Ju [Orland Park, IL; Lee, Tae H [Naperville, IL; Chen, Ling [Woodridge, IL; Dorris, Stephen E [LaGrange Park, IL; Balachandran, Uthamalingam [Hinsdale, IL

    2009-10-20

    A thermal method of making a hydrogen permeable composition is disclosed. A mixture of metal oxide powder and ceramic oxide powder and optionally a pore former is formed and pressed to form an article. The article is dried at elevated temperatures and then sintered in a reducing atmosphere to provide a dense hydrogen permeable portion near the surface of the sintered mixture. The dense hydrogen permeable portion has a higher initial concentration of metal than the remainder of the sintered mixture and is present in the range of from about 20 to about 80 percent by volume of the dense hydrogen permeable portion.

  18. Surface-structured diffuser by iterative down-size molding with glass sintering technology.

    PubMed

    Lee, Xuan-Hao; Tsai, Jung-Lin; Ma, Shih-Hsin; Sun, Ching-Cherng

    2012-03-12

    In this paper, a down-size sintering scheme for making high-performance diffusers with micro structure to perform beam shaping is presented and demonstrated. By using down-size sintering method, a surface-structure film is designed and fabricated to verify the feasibility of the sintering technology, in which up to 1/8 dimension reduction has been achieved. Besides, a special impressing technology has been applied to fabricate diffuser film with various materials and the transmission efficiency is as high as 85% and above. By introducing the diffuser into possible lighting applications, the diffusers have been shown high performance in glare reduction, beam shaping and energy saving.

  19. High density, uniformly distributed W/UO2 for use in Nuclear Thermal Propulsion

    NASA Astrophysics Data System (ADS)

    Tucker, Dennis S.; Barnes, Marvin W.; Hone, Lance; Cook, Steven

    2017-04-01

    An inexpensive, quick method has been developed to obtain uniform distributions of UO2 particles in a tungsten matrix utilizing 0.5 wt percent low density polyethylene. Powders were sintered in a Spark Plasma Sintering (SPS) furnace at 1600 °C, 1700 °C, 1750 °C, 1800 °C and 1850 °C using a modified sintering profile. This resulted in a uniform distribution of UO2 particles in a tungsten matrix with high densities, reaching 99.46% of theoretical for the sample sintered at 1850 °C. The powder process is described and the results of this study are given below.

  20. Fabrication of thin layer beta alumina

    NASA Technical Reports Server (NTRS)

    Tennenhouse, G. J.

    1977-01-01

    Beta alumina tubes having walls 700 microns, 300 microns, and 140 microns were processed by extrusion and sintering utilizing Ford proprietary binder and fabrication systems. Tubes prepared by this method have properties similar to tubes prepared by isostatic pressing and sintering, i.e. density greater than 98% of theoretical and a helium leak rate less than 3 x 10 to the -9th power cc/sq cm/sec. Ford ultrasonic bonding techniques were used for bonding beta alumina end caps to open ended beta -alumina tubes prior to sintering. After sintering, the bond was hermetic, and the integrity of the bonded area was comparable to the body of the tube.

  1. Effect of sintering on structure and magnetic properties of Mn-doped Zn ferrite

    NASA Astrophysics Data System (ADS)

    Farheen, Atiya; Singh, Rajender

    2018-05-01

    The Mn-doped zinc ferrites, MnxZn1-xFe2O4 (x= 0 and 0.1) were prepared using co-precipitation method. The as-prepared samples were sintered at different temperatures. The x-ray diffraction pattern for all the samples confirms single phase spinel structure with Fd-3m space group. The lattice parameters have been estimated using Rietveld fitting. The magnetic moment is found to increase with Mn-doping. The magnetization increases as the sintering temperature increases up to 1200°C. The as-prepared samples are super paramagnetic, while the sintered samples are ferrimagnetic in nature.

  2. Silicon carbide sintered products and a method for their manufacturing

    NASA Technical Reports Server (NTRS)

    Suzuki, K.

    1986-01-01

    SiC based sinters are produced by pressureless sintering from a SiC-AlN solid solution containing Al2 to 20, N 0.2 to 10, O 0.2 to 5, a Group IIIB element 0 to 15 percent, the remainder being Si and C. Thus, a 90:10 mixture of SiC and AlN powders were cold pressed at 2000 kg/sq cm and sintered for 5 hours at 2100 C in a nitrogen atmosphere. The resulting product had density of 3.11 g/cu cm and bending strength at ambient and 1400 C at 68.5 and 66.3 kg/sq mm.

  3. Nuclear Rocket Ceramic Metal Fuel Fabrication Using Tungsten Powder Coating and Spark Plasma Sintering

    NASA Technical Reports Server (NTRS)

    Barnes, M. W.; Tucker, D. S.; Hone, L.; Cook, S.

    2017-01-01

    Nuclear thermal propulsion is an enabling technology for crewed Mars missions. An investigation was conducted to evaluate spark plasma sintering (SPS) as a method to produce tungsten-depleted uranium dioxide (W-dUO2) fuel material when employing fuel particles that were tungsten powder coated. Ceramic metal fuel wafers were produced from a blend of W-60vol% dUO2 powder that was sintered via SPS. The maximum sintering temperatures were varied from 1,600 to 1,850 C while applying a 50-MPa axial load. Wafers exhibited high density (>95% of theoretical) and a uniform microstructure (fuel particles uniformly dispersed throughout tungsten matrix).

  4. Enery Efficient Press and Sinter of Titanium Powder for Low-Cost Components in Vehicle Applications

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Thomas Zwitter; Phillip Nash; Xiaoyan Xu

    2011-03-31

    This is the final technical report for the Department of Energy NETL project NT01931 Energy Efficient Press and Sinter of Titanium Powder for Low-Cost Components in Vehicle Applications. Titanium has been identified as one of the key materials with the required strength that can reduce the weight of automotive components and thereby reduce fuel consumption. Working with newly developed sources of titanium powder, Webster-Hoff will develop the processing technology to manufacture low cost vehicle components using the single press/single sinter techniques developed for iron based powder metallurgy today. Working with an automotive or truck manufacturer, Webster-Hoff will demonstrate the feasibilitymore » of manufacturing a press and sinter titanium component for a vehicle application. The project objective is two-fold, to develop the technology for manufacturing press and sinter titanium components, and to demonstrate the feasibility of producing a titanium component for a vehicle application. The lowest cost method for converting metal powder into a net shape part is the Powder Metallurgy Press and Sinter Process. The method involves compaction of the metal powder in a tool (usually a die and punches, upper and lower) at a high pressure (up to 60 TSI or 827 MPa) to form a green compact with the net shape of the final component. The powder in the green compact is held together by the compression bonds between the powder particles. The sinter process then converts the green compact to a metallurgically bonded net shape part through the process of solid state diffusion. The goal of this project is to expand the understanding and application of press and sinter technology to Titanium Powder applications, developing techniques to manufacture net shape Titanium components via the press and sinter process. In addition, working with a vehicle manufacturer, demonstrate the feasibility of producing a titanium component for a vehicle. This is not a research program, but rather a project to develop a process for press and sinter of net shape Titanium components. All of these project objectives have been successfully completed.« less

  5. Influence of the sintering temperature on the electrical properties of Ce-doped WO3 ceramics prepared from nano-powders

    NASA Astrophysics Data System (ADS)

    Dong, Liang; Chen, Han-Jun; Wang, Yu; Li, De-Zhu; Li, Tong-Ye; Zhao, Yong

    2007-04-01

    Using a nm-level powder fabricated by a wet chemical method as precursor, the CeO2-doped WO3 ceramics were prepared by the conventional solid state reaction at sintering temperatures from 600 to 1100 °C. The x-ray diffraction analysis reveals the coexistence of different WO3 phases in the samples sintered at temperatures below 900 °C, whereas a single phase appears in the samples sintered above 1000 °C. No new Ce-W compound appears. As the sintering temperature increases, the electrical properties of the samples display an interesting transformation from linear to nonlinear behaviour. The measurements of scanning electron microscope, complex impedance and electrical stability indicate that a lot of grain boundary regions in the samples sintered at low temperatures strongly influences the electrical transportation. Therefore, the electrical nonlinearity is due to a basic process controlled by the back-to-back Schottky barriers at grain boundaries with suitable thickness as well as the coexistence of phases.

  6. Low-cost optical fabrication of flexible copper electrode via laser-induced reductive sintering and adhesive transfer

    NASA Astrophysics Data System (ADS)

    Back, Seunghyun; Kang, Bongchul

    2018-02-01

    Fabricating copper electrodes on heat-sensitive polymer films in air is highly challenging owing to the need of expensive copper nanoparticles, rapid oxidation of precursor during sintering, and limitation of sintering temperature to prevent the thermal damage of the polymer film. A laser-induced hybrid process of reductive sintering and adhesive transfer is demonstrated to cost-effectively fabricate copper electrode on a polyethylene film with a thermal resistance below 100 °C. A laser-induced reductive sintering process directly fabricates a high-conductive copper electrode onto a glass donor from copper oxide nanoparticle solution via photo-thermochemical reduction and agglomeration of copper oxide nanoparticles. The sintered copper patterns were transferred in parallel to a heat-sensitive polyethylene film through self-selective surface adhesion of the film, which was generated by the selective laser absorption of the copper pattern. The method reported here could become one of the most important manufacturing technologies for fabricating low-cost wearable and disposable electronics.

  7. Fabrication and Analysis of the Wear Properties of Hot-Pressed Al-Si/SiCp + Al-Si-Cu-Mg Metal Matrix Composite

    NASA Astrophysics Data System (ADS)

    Bang, Jeongil; Oak, Jeong-Jung; Park, Yong Ho

    2016-01-01

    The aim of this study was to characterize microstructures and mechanical properties of aluminum metal matrix composites (MMC's) prepared by powder metallurgy method. Consolidation of mixed powder with gas atomized Al-Si/SiCp powder and Al-14Si-2.5Cu-0.5Mg powder by hot pressing was classified according to sintering temperature and sintering time. Sintering condition was optimized using tensile properties of sintered specimens. Ultimate tensile strength of the optimized sintered specimen was 228 MPa with an elongation of 5.3% in longitudinal direction. In addition, wear properties and behaviors of the sintered aluminum-based MMC's were analyzed in accordance with vertical load and linear speed. As the linear speed and vertical load of the wear increased, change of the wear behavior occurred in order of oxidation of Al-Si matrix, formation of C-rich layer, Fe-alloying to matrix, and melting of the specimen

  8. Effect of sintering temperature on micro structural and impedance spectroscopic properties of Ni0.5Zn0.5Fe2O4 nano ferrite

    NASA Astrophysics Data System (ADS)

    Venkatesh, Davuluri; Ramesh, K. V.; Sastry, C. V. S. S.

    2017-07-01

    Ni-Zn nanoferrite Ni0.5Zn0.5Fe2O4 is prepared by citrate gel auto combustion method and sintered at various temperatures 800, 900, 1000, 1100 and 1200°C. The room temperature x-ray diffraction conforms that the single phase spinel structure is formed. Crystallite size and density were increased with increasing of sintering temperature. From Raman spectroscopy all sintered samples are single phase with cubic spinel structure belong to Fd3m space group. From surface morphology studies it is clearly observed that the particle size increased with increasing of sintering temperature. Impedance spectroscopy revel that increasing of conductivity is due to grain resistance is decreased with increasing of sintering temperature. Cole-Cole plots are studied from impedance data. The electrical modulus analysis shows that non-Debye nature of Ni0.5Zn0.5Fe2O4 ferrite.

  9. Implementation of a spark plasma sintering facility in a hermetic glovebox for compaction of toxic, radiotoxic, and air sensitive materials

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tyrpekl, V., E-mail: vaclav.tyrpekl@ec.europa.eu, E-mail: vaclav.tyrpekl@gmail.com; Berkmann, C.; Holzhäuser, M.

    Spark plasma sintering (SPS) is a rapidly developing method for densification of powders into compacts. It belongs to the so-called “field assisted sintering techniques” that enable rapid sintering at much lower temperatures than the classical approaches of pressureless sintering of green pellets or hot isostatic pressing. In this paper, we report the successful integration of a SPS device into a hermetic glovebox for the handling of highly radioactive material containing radioisotopes of U, Th, Pu, Np, and Am. The glovebox implantation has been facilitated by the replacement of the hydraulic system to apply pressure with a compact electromechanical unit. Themore » facility has been successfully tested using UO{sub 2} powder. Pellets with 97% of the theoretical density were obtained at 1000 °C for 5 min, significantly lower than the ∼1600 °C for 5-10 h used in conventional pellet sintering.« less

  10. Strength and fatigue properties of three-step sintered dense nanocrystal hydroxyapatite bioceramics

    NASA Astrophysics Data System (ADS)

    Guo, Wen-Guang; Qiu, Zhi-Ye; Cui, Han; Wang, Chang-Ming; Zhang, Xiao-Jun; Lee, In-Seop; Dong, Yu-Qi; Cui, Fu-Zhai

    2013-06-01

    Dense hydroxyapatite (HA) ceramic is a promising material for hard tissue repair due to its unique physical properties and biologic properties. However, the brittleness and low compressive strength of traditional HA ceramics limited their applications, because previous sintering methods produced HA ceramics with crystal sizes greater than nanometer range. In this study, nano-sized HA powder was employed to fabricate dense nanocrystal HA ceramic by high pressure molding, and followed by a three-step sintering process. The phase composition, microstructure, crystal dimension and crystal shape of the sintered ceramic were examined by X-ray diffraction (XRD) and scanning electron microscopy (SEM). Mechanical properties of the HA ceramic were tested, and cytocompatibility was evaluated. The phase of the sintered ceramic was pure HA, and the crystal size was about 200 nm. The compressive strength and elastic modulus of the HA ceramic were comparable to human cortical bone, especially the good fatigue strength overcame brittleness of traditional sintered HA ceramics. Cell attachment experiment also demonstrated that the ceramics had a good cytocompatibility.

  11. Structure and properties of sintered MM-Fe-B magnets

    NASA Astrophysics Data System (ADS)

    Shang, R. X.; Xiong, J. F.; Li, R.; Zuo, W. L.; Zhang, J.; Zhao, T. Y.; Chen, R. J.; Sun, J. R.; Shen, B. G.

    2017-05-01

    MM14Fe79.9B6.1 magnets were prepared by conventional sintering method. The Curie temperature of the sintered MM2Fe14B magnet was about 210 °C. When the sintering temperature increased from 1010 °C to 1030 °C, the density of the magnet increased from 6.85 g/cm3 to 7.52 g/cm3. After the first stage tempering at 900 °C, the (BH)max and Hcj had a slight increase. The maximum value of (BH)max = 7.6 MGOe and Hcj = 1080 Oe was obtained when sintered at 1010 °C and tempering at 900 °C, respectively. The grain size grew very large when the sintering temperature increased to 1050 °C, and the magnetic properties deteriorated rapidly. La reduced by ˜ 7.5 at. % in grains, which is almost equal to the increased percentage of Nd. That is mainly because La-Fe-B is very difficult to form the 2: 14: 1 phase.

  12. Toward Interpreting Failure in Sintered-Silver Interconnection Systems

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wereszczak, Andrew A; Waters, Shirley B

    2016-01-01

    The mechanical strength and subsequent reliability of a sintered-silver interconnection system is a function of numerous independent parameters. That system is still undergoing process development. Most of those parameters (e.g., choice of plating) are arguably and unfortunately taken for granted and are independent of the silver s cohesive strength. To explore such effects, shear strength testing and failure analyses were completed on a simple, mock sintered-silver interconnection system consisting of bonding two DBC ceramic substrates. Silver and gold platings were part of the test matrix, as was pre-drying strategies, and the consideration of stencil-printing vs. screen-printing. Shear strength of sintered-silvermore » interconnect systems was found to be was insensitive to the choice of plating, drying practice, and printing method provided careful and consistent processing of the sintered-silver are practiced. But if the service stress in sintered silver interconnect systems is anticipated to exceed ~ 60 MPa, then the system will likely fail.« less

  13. Synthesis and electrical behavior of Ni-Ti substituted Y-type hexaferrites for high frequency application

    NASA Astrophysics Data System (ADS)

    Ahmad, Bashir; Ashiq, Muhammad Naeem; Mumtaz, Saleem; Ali, Irshad; Najam-Ul-Haq, Muhmmad; Sadiq, Imran

    2018-04-01

    This article reports the fabrication of Ni-Ti doped derivatives of Sr2Co2Fe12-2xO22 by economical Sol-gel method. At room temperature X-ray diffraction (XRD) pattern of powder was obtained after sintering at 1050 °C. The XRD analysis revealed the formation of pure Sr-Y hexaferrite phase. It was found that the observed values of dielectric parameters decreased with increasing Ni-Ti substitution. The higher values of dielectric constants and dielectric loss factor at lower frequency were owing to surface charge polarization. In all the samples the resonance peaks were also observed. The observed room temperature DC electrical resistivity found to increase from 1.8x106 to 4.9x109 ohm cm. The observed activation energies values of the fabricated materials are found in 0.52-0.82 eV range. The decrease in dielectric parameters and increase in resistivity of the fabricated samples with substituents suggest these materials have worth application in micro-wave devices as such devices required highly resistive materials.

  14. Crystal structure, magnetic properties and advances in hexaferrites: A brief review

    NASA Astrophysics Data System (ADS)

    Jotania, Rajshree

    2014-10-01

    Hexaferrites are hard magnetic materials and specifically ferri-magnetic oxides with hexagonal magnetoplumbite type crystallographic structure. Hexagonal ferrites are used as permanent magnets, high-density perpendicular and magneto-optical recording media, and microwave devices like resonance isolators, filters, circulators, phase shifters because of their high magnetic permeability, high electrical resistivity and moderable permittivity. In addition to these; hexagonal ferrites have excellent chemical stability, mechanical hardness and low eddy current loss at high frequencies. The preparation of hexaferrites is a complicated process. Various experimental techniques like standard ceramic techniques, solvent free synthesis route, co precipitation, salt-melt, ion exchange, sol-gel, citrate synthesis, hydrothermal synthesis, spray drying, water-in-oil microemulsion, reverse micelle etc are used to prepare hexaferrite materials. Structural, dielectric and magnetic properties, crystallite size of hexaferrites depend upon nature of substituted ions, method of preparation, sintering temperature and time. The recent interest is nanotechnology, the development of hexaferrite fibres and composites with carbon nano tubes (CNT). Magnetic properties of some doped and un-doped hexaferrites are discussed here. Recent advances in hexaferrites also highlighted in present paper.

  15. Clean recycle and utilization of hazardous iron-bearing waste in iron ore sintering process.

    PubMed

    Gan, Min; Ji, Zhiyun; Fan, Xiaohui; Chen, Xuling; Zhou, Yang; Wang, Guojing; Tian, Ye; Jiang, Tao

    2018-04-18

    Applying recycled iron-bearing waste materials (RIM) into iron ore sintering process is the general disposal approach worldwide, while its use is still a thorny problem. Results showed that adding RIM increased contents of hazardous elements (K, Na, Pb, Zn, and Cl) in sinter product, and also enhanced emission concentration of PM 2.5 in flue gas; increasing reaction temperature, and contents of CaO & coke breeze in raw mixtures improved hazardous elements removal. Based on these features, a novel method through granulating natural iron ores and RIM separately and distributing granulated RIM in bottom sintering layers was proposed for clean RIM cycle. When recycling 5% RIM, granulating RIM separately with higher contents of CaO and coke breeze removed hazardous elements effectively, the contents of which in sinter were reduced to comparable level of the case without RIM. Moreover, distributing RIM in bottom sintering layer reached intensive release of hazardous elements and PM 2.5 during sintering, which reduced the flue gas volume needing purification by about 2/3. Through activated carbon purification, about 60% of PM 2.5 comprised high contents of hazardous elements was removed. Novel technique eliminated the negative impact of RIM and has the prospect to reach clean recycle in sinter-making plants. Copyright © 2018. Published by Elsevier B.V.

  16. Wettability of eutectic NaLiCO3 salt on magnesium oxide substrates at 778 K

    NASA Astrophysics Data System (ADS)

    Li, Chuan; Li, Qi; Cao, Hui; Leng, Guanghui; Li, Yongliang; Wang, Li; Zheng, Lifang; Ding, Yulong

    2018-06-01

    We investigated the wetting behavior of a eutectic carbonate salt of NaLiCO3 on MgO substrates at an elevated temperature of 778 K by measuring contact angle with a sessile drop method. Both sintered and non-sintered MgO were prepared and used as the substrates. The sintered substrates were obtained by sintering compacted MgO powders at 500-1300 °C. For comparison purposes, a single crystal MgO substrate was also used in the work. The different sintering temperatures provided MgO substrates with different structures, allowing their effects on salt penetration and hence wettability and surface energy to be investigated. A scanning electron microscope equipped with energy dispersive spectrometry and an atomic force microscope were used to observe the morphology and structures of the MgO substrates as well as the salt penetration. The results showed a good wettability of the carbonate salt on both the sintered and non-sintered MgO substrates and the wettability depended strongly on the structure of the substrates. The non-sintered MgO substrate has a loose surface particle packing with large pores and crevices, leading to significant salt infiltration, and the corresponding contact angle was measured to be ∼25°. The contact angle of the salt on the sintered MgO substrates increased with an increase in the sintering temperature of the MgO substrate, and the contact angle of the salt on the single crystal substrate was the highest at ∼40°. The effect of the sintering temperature for making the MgO substrate could be linked to the surface energy, and the linkage is validated by the AFM measurements of the adhesion forces of the MgO substrates.

  17. Effect of Starch on Sintering Behavior for Fabricating Porous Cordierite Ceramic

    NASA Astrophysics Data System (ADS)

    Li, Ye; Cao, Wei; Gong, Lunlun; Zhang, Ruifang; Cheng, Xudong

    2016-10-01

    Porous cordierite ceramics were prepared with starch as pore-forming agent by solid-state method. The green bodies were sintered at 1,100-1,400 °C for 2 h. The characterization was focused on thermal analysis, phase evolution, sintering behavior, porosity and micro-structural changes. The results show that cordierite becomes the main crystallization phase at 1,200 °C. The shrinkage behavior shows the most obvious dependence on the sintering temperature and starch content, and it can be divided into three stages. Moreover, the open porosity increases with the increase of starch content, but the pore-forming effectivity decreases. Nevertheless, compared with the open porosity curves, the bulk density curves are more in line with the linear rule. The microphotographs show the densification process with the sintering temperature and the variation of pore connectivity with the starch content.

  18. Characterizations of Rapid Sintered Nanosilver Joint for Attaching Power Chips

    PubMed Central

    Feng, Shuang-Tao; Mei, Yun-Hui; Chen, Gang; Li, Xin; Lu, Guo-Quan

    2016-01-01

    Sintering of nanosilver paste has been extensively studied as a lead-free die-attach solution for bonding semiconductor power chips, such as the power insulated gated bipolar transistor (IGBT). However, for the traditional method of bonding IGBT chips, an external pressure of a few MPa is reported necessary for the sintering time of ~1 h. In order to shorten the processing duration time, we developed a rapid way to sinter nanosilver paste for bonding IGBT chips in less than 5 min using pulsed current. In this way, we firstly dried as-printed paste at about 100 °C to get rid of many volatile solvents because they may result in defects or voids during the out-gassing from the paste. Then, the pre-dried paste was further heated by pulse current ranging from 1.2 kA to 2.4 kA for several seconds. The whole procedure was less than 3 min and did not require any gas protection. We could obtain robust sintered joint with shear strength of 30–35 MPa for bonding 1200-V, 25-A IGBT and superior thermal properties. Static and dynamic electrical performance of the as-bonded IGBT assemblies was also characterized to verify the feasibility of this rapid sintering method. The results indicate that the electrical performance is comparable or even partially better than that of commercial IGBT modules. The microstructure evolution of the rapid sintered joints was also studied by scanning electron microscopy (SEM). This work may benefit the wide usage of nanosilver paste for rapid bonding IGBT chips in the future. PMID:28773686

  19. Characterizations of Rapid Sintered Nanosilver Joint for Attaching Power Chips.

    PubMed

    Feng, Shuang-Tao; Mei, Yun-Hui; Chen, Gang; Li, Xin; Lu, Guo-Quan

    2016-07-12

    Sintering of nanosilver paste has been extensively studied as a lead-free die-attach solution for bonding semiconductor power chips, such as the power insulated gated bipolar transistor (IGBT). However, for the traditional method of bonding IGBT chips, an external pressure of a few MPa is reported necessary for the sintering time of ~1 h. In order to shorten the processing duration time, we developed a rapid way to sinter nanosilver paste for bonding IGBT chips in less than 5 min using pulsed current. In this way, we firstly dried as-printed paste at about 100 °C to get rid of many volatile solvents because they may result in defects or voids during the out-gassing from the paste. Then, the pre-dried paste was further heated by pulse current ranging from 1.2 kA to 2.4 kA for several seconds. The whole procedure was less than 3 min and did not require any gas protection. We could obtain robust sintered joint with shear strength of 30-35 MPa for bonding 1200-V, 25-A IGBT and superior thermal properties. Static and dynamic electrical performance of the as-bonded IGBT assemblies was also characterized to verify the feasibility of this rapid sintering method. The results indicate that the electrical performance is comparable or even partially better than that of commercial IGBT modules. The microstructure evolution of the rapid sintered joints was also studied by scanning electron microscopy (SEM). This work may benefit the wide usage of nanosilver paste for rapid bonding IGBT chips in the future.

  20. Cantilever testing of sintered-silver interconnects

    DOE PAGES

    Wereszczak, Andrew A.; Chen, Branndon R.; Jadaan, Osama M.; ...

    2017-10-19

    Cantilever testing is an underutilized test method from which results and interpretations promote greater understanding of the tensile and shear failure responses of interconnects, metallizations, or bonded joints. The use and analysis of this method were pursued through the mechanical testing of sintered-silver interconnects that joined Ni/Au-plated copper pillars or Ti/Ni/Ag-plated silicon pillars to Ag-plated direct bonded copper substrates. Sintered-silver was chosen as the interconnect test medium because of its high electrical and thermal conductivities and high-temperature capability—attractive characteristics for a candidate interconnect in power electronic components and other devices. Deep beam theory was used to improve upon the estimationsmore » of the tensile and shear stresses calculated from classical beam theory. The failure stresses of the sintered-silver interconnects were observed to be dependent on test-condition and test-material-system. In conclusion, the experimental simplicity of cantilever testing, and the ability to analytically calculate tensile and shear stresses at failure, result in it being an attractive mechanical test method to evaluate the failure response of interconnects.« less

  1. Cantilever testing of sintered-silver interconnects

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wereszczak, Andrew A.; Chen, Branndon R.; Jadaan, Osama M.

    Cantilever testing is an underutilized test method from which results and interpretations promote greater understanding of the tensile and shear failure responses of interconnects, metallizations, or bonded joints. The use and analysis of this method were pursued through the mechanical testing of sintered-silver interconnects that joined Ni/Au-plated copper pillars or Ti/Ni/Ag-plated silicon pillars to Ag-plated direct bonded copper substrates. Sintered-silver was chosen as the interconnect test medium because of its high electrical and thermal conductivities and high-temperature capability—attractive characteristics for a candidate interconnect in power electronic components and other devices. Deep beam theory was used to improve upon the estimationsmore » of the tensile and shear stresses calculated from classical beam theory. The failure stresses of the sintered-silver interconnects were observed to be dependent on test-condition and test-material-system. In conclusion, the experimental simplicity of cantilever testing, and the ability to analytically calculate tensile and shear stresses at failure, result in it being an attractive mechanical test method to evaluate the failure response of interconnects.« less

  2. Design and Fabrication of an Experimental Microheater Array Powder Sintering Printer

    NASA Astrophysics Data System (ADS)

    Holt, Nicholas; Zhou, Wenchao

    2018-03-01

    Microheater array powder sintering (MAPS) is a novel additive manufacturing process that uses an array of microheaters to selectively sinter powder particles. MAPS shows great promise as a new method of printing flexible electronics by enabling digital curing of conductive inks on a variety of substrates. For MAPS to work effectively, a microscale air gap needs to be maintained between the heater array and the conductive ink. In this article, we present an experimental MAPS printer with air gap control for printing conductive circuits. First, we discuss design aspects necessary to implement MAPS. An analysis is performed to validate that the design can maintain the desired air gap between the microheaters and the sintering layer, which consists of a silver nanoparticle ink. The printer is tested by printing conductive lines on a flexible plastic substrate with silver nanoparticle ink. Results show MAPS performs on par with or better than the existing fabrication methods for printed electronics in terms of both the print quality (conductivity of the printed line) and print speed, which shows MAPS' great promise as a competitive new method for digital production of printed electronics.

  3. Physical properties and microstructure study of 316L SS fabricated by metal injection moulding process

    NASA Astrophysics Data System (ADS)

    Dandang, Nur Aidah Nabihah; Harun, Wan Sharuzi Wan; Khalil, Nur Zalikha; Ismail, Muhammad Hussain; Ibrahim, Rosdi

    2017-12-01

    Metal injection moulding (MIM) has been practised to process alloy powders to become components with significant physical and mechanical properties. Dissimilar than other methods, MIM focuses on the production of high volume, a small, and complex shape of products. The performance of the compacts depends on the suitable sintering parameters that governs their strengths in the final phase which determines the excellent properties of the sintered compacts. Three different sintering temperatures were utilised; 1100, 1200, and 1300 °C with two different soaking times; 1 and 3 hours at 10 °C/min heating rate to study their effect on the physical properties and microstructure analysis of 316L SS alloy compacts. The shrinkage measurement, surface roughness, and density measurement had been conducted for physical properties study. Different sintering temperatures give an effect to the physical properties of the sintered compacts. The shrinkage measurement at 1300 °C and 3-hour sintering condition demonstrated the highest percentage reading which was 10.1 % compared to the lowest percentage reading of 6.4 % at 1100 °C and 1-hour sintering conditions. Whereas, the minimum percentage of density measurement can be found at sintering conditions of 1100 °C and 1-hour which is 83.9 % and the highest percentage is at 1300 °C and 3-hour sintering condition which is about 89.51 %. Therefore, it has been determined that there could be a significant relationship between sintering temperature and physical properties in which it can be found from the porosity of the compact based on the microstructure studies.

  4. Fabrication of thermoelectric modules with Mg2Si and SrRuO3 by the spark plasma sintering method

    NASA Astrophysics Data System (ADS)

    Nishio, Keishi; Sawada, Yukie; Arai, Koya; Sakamoto, Tatsuya; Kogo, Yasuo; Iida, Tsutomu

    2012-06-01

    Thermoelectric (TE) modules with a π structure were fabricated by the spark plasma sintering method. The modules were composed of SrRuO3 for the p-type semiconductor, Mg2Si for the n-type semiconductor, and Ni for the electrodes. The SrRuO3 powder was synthesized using the metal-citric-acid complex decomposition method. Mg2Si bulk prepared by meltquenching was ground into powder and sieved to a particle size of 75 μm or less. To obtain the sintered body of SrRuO3, the powder was sintered using spark plasma sintering (SPS). For SPS, the precursor powder was placed in a graphite die and kept at that temperature under a uni-axial pressure of 50 MPa and in vacuum conditions (less than 7 Pa). After sintering by SPS, the ceramic sample was annealed at 1573K in air because the SrRuO3 was slightly reduced during the SPS process in the graphite die. These TE sintered bodies were cut and polished. The dimensions of the samples used for fabrication of the p-type parts of the TE modules were 4.50×9.50×7.45 mm3 and those for the n-type parts were 5.50×11.45×7.45 mm3. Pressed Ni powder was put between these TE materials and the Ni electrodes in order to connect them together, and electrical power was passed through the electrodes from the SPS equipment. The output power under temperature differences ΔT ranging from 100 to 500 K was measured. The open-circuit voltage, maximum output current and maximum output power increased with increasing temperature difference ΔT. The open-circuit voltage of the single module was 91.0 mV, and the maximum output current and maximum output power were 5000 mA and 110 mW at ΔT=500 K, respectively.

  5. Characterizing Sintered Nano-Hydroxyapatite Sol-Gel Coating Deposited on a Biomedical Ti-Zr-Nb Alloy

    NASA Astrophysics Data System (ADS)

    Jafari, Hassan; Hessam, Hamid; Shahri, Seyed Morteza Ghaffari; Assadian, Mahtab; Shairazifard, Shahin Hamtaie Pour; Idris, Mohd Hasbullah

    2016-03-01

    In this study, sol-gel dip-coating method was used to coat nano-hydroxyapatite on specimens of Ti-14Zr-13Nb alloy for orthopedic applications. The coated specimens were sintered at three different temperatures and time spans to evaluate the impact of sintering process on microstructure, mechanical, bio-corrosion, and bioactivity properties of the coating. Field-emission scanning electron microscopy and x-ray diffraction were used to analyze the coating microstructure. Coating adhesion and mechanical performance were also investigated by scratch testing. Besides, electrochemical corrosion and immersion tests were performed in simulated body fluid to examine the sintering effect on corrosion performance and bioactivity of the coatings, respectively. The evaluations of coated specimens displayed that sintering at elevated temperatures leads to higher surface integrity and improves crystallinity of the nano-hydroxyapatite to approximately 89% which brings about distinctively enhanced mechanical properties. Similarly, it improved the corrosion rate for about 17 times through sintering at 700 °C. Immersion test proved that the coating increased the bioactivity resulted from the dissolution of calcium phosphates into the corresponding environment. It is noticeable that sintering the dip-coated specimens in the nano-hydroxyapatite improves corrosion performance and maintains bioactive behaviors as well.

  6. A Review of Microwave-Assisted Reactions for Biodiesel Production

    PubMed Central

    Nomanbhay, Saifuddin; Ong, Mei Yin

    2017-01-01

    The conversion of biomass into chemicals and biofuels is an active research area as trends move to replace fossil fuels with renewable resources due to society’s increased concern towards sustainability. In this context, microwave processing has emerged as a tool in organic synthesis and plays an important role in developing a more sustainable world. Integration of processing methods with microwave irradiation has resulted in a great reduction in the time required for many processes, while the reaction efficiencies have been increased markedly. Microwave processing produces a higher yield with a cleaner profile in comparison to other methods. The microwave processing is reported to be a better heating method than the conventional methods due to its unique thermal and non-thermal effects. This paper provides an insight into the theoretical aspects of microwave irradiation practices and highlights the importance of microwave processing. The potential of the microwave technology to accomplish superior outcomes over the conventional methods in biodiesel production is presented. A green process for biodiesel production using a non-catalytic method is still new and very costly because of the supercritical condition requirement. Hence, non-catalytic biodiesel conversion under ambient pressure using microwave technology must be developed, as the energy utilization for microwave-based biodiesel synthesis is reported to be lower and cost-effective. PMID:28952536

  7. A Review of Microwave-Assisted Reactions for Biodiesel Production.

    PubMed

    Nomanbhay, Saifuddin; Ong, Mei Yin

    2017-06-15

    The conversion of biomass into chemicals and biofuels is an active research area as trends move to replace fossil fuels with renewable resources due to society's increased concern towards sustainability. In this context, microwave processing has emerged as a tool in organic synthesis and plays an important role in developing a more sustainable world. Integration of processing methods with microwave irradiation has resulted in a great reduction in the time required for many processes, while the reaction efficiencies have been increased markedly. Microwave processing produces a higher yield with a cleaner profile in comparison to other methods. The microwave processing is reported to be a better heating method than the conventional methods due to its unique thermal and non-thermal effects. This paper provides an insight into the theoretical aspects of microwave irradiation practices and highlights the importance of microwave processing. The potential of the microwave technology to accomplish superior outcomes over the conventional methods in biodiesel production is presented. A green process for biodiesel production using a non-catalytic method is still new and very costly because of the supercritical condition requirement. Hence, non-catalytic biodiesel conversion under ambient pressure using microwave technology must be developed, as the energy utilization for microwave-based biodiesel synthesis is reported to be lower and cost-effective.

  8. Method of electrode fabrication for solid oxide electrochemical cells

    DOEpatents

    Jensen, R.R.

    1990-11-20

    A process for fabricating cermet electrodes for solid oxide electrochemical cells by sintering is disclosed. First, a porous metal electrode is fabricated on a solid oxide cell, such as a fuel cell by, for example, sintering, and is then infiltrated with a high volume fraction stabilized zirconia suspension. A second sintering step is used to sinter the infiltrated zirconia to a high density in order to more securely attach the electrode to the solid oxide electrolyte of the cell. High performance fuel electrodes can be obtained with this process. Further electrode performance enhancement may be achieved if stabilized zirconia doped with cerium oxide, chromium oxide, titanium oxide, and/or praseodymium oxide for electronic conduction is used. 5 figs.

  9. Method of electrode fabrication for solid oxide electrochemical cells

    DOEpatents

    Jensen, Russell R.

    1990-01-01

    A process for fabricating cermet electrodes for solid oxide electrochemical cells by sintering is disclosed. First, a porous metal electrode is fabricated on a solid oxide cell, such as a fuel cell by, for example, sintering, and is then infiltrated with a high volume fraction stabilized zirconia suspension. A second sintering step is used to sinter the infiltrated zirconia to a high density in order to more securely attach the electrode to the solid oxide electrolyte of the cell. High performance fuel electrodes can be obtained with this process. Further electrode performance enhancement may be achieved if stabilized zirconia doped with cerium oxide, chromium oxide, titanium oxide, and/or praseodymium oxide for electronic conduction is used.

  10. Spark plasma sintering and porosity studies of uranium nitride

    NASA Astrophysics Data System (ADS)

    Johnson, Kyle D.; Wallenius, Janne; Jolkkonen, Mikael; Claisse, Antoine

    2016-05-01

    In this study, a number of samples of UN sintered by the SPS method have been fabricated, and highly pure samples ranging in density from 68% to 99.8%TD - corresponding to an absolute density of 14.25 g/cm3 out of a theoretical density of 14.28 g/cm3 - have been fabricated. By careful adjustment of the sintering parameters of temperature and applied pressure, the production of pellets of specific porosity may now be achieved between these ranges. The pore closure behaviour of the material has also been documented and compared to previous studies of similar materials, which demonstrates that full pore closure using these methods occurs near 97.5% of relative density.

  11. Effect of Manganese Addition on the Structure, Magnetic Properties and Microwave Absorption of La0.8Ba0.2MnxFe½(1-x)Ti½(1-x)O3

    NASA Astrophysics Data System (ADS)

    Adi, W. A.; Indro, M. N.; Kusumastuti, A. A.

    2017-03-01

    We have carried out modification of La0.8Ba0.2MnxFe½(1-x)Ti½(1-x)O3 (x = 0.1 - 0.8) magnetic materials by wet milling method. Raw materials of La2O3, BaCO3, Fe2O3, TiO2 and MnCO3 were mixed according to stoichiometry calculation for each composition. The mixture was milled for 5 hours and then sintered at 1000 °C for 5 hours. The refinement results by X-ray diffraction pattern shows that the increasing Mn composition enhances the mass fraction of La0.8Ba0.2MnxFe½(1-x)Ti½(1-x)O3 phase which has the same structure as LaMnO3. For x = 0.8 a single phase of LaMnO3 was formed. The single phase has a crystal monoclinic crystal structure with space group of I 1 2 / a 1, with lattice parameters given by a = 5.519(5) Å, b = 5.5537(5) Å and c = 7.8176(9) Å, α = γ = 90o and β = 90.345(6)o, V = 239.64(3) Å3, ρ = 6.463 gr.cm-3, wRp = 5.96, and χ2 (chi-squared) = 1.17. The hysteresis curve shows that the sample with composition x = 0.8 produces ferromagnetic behaviour at room temperature. The ferromagnetic properties arise due to the mixed valence of Mn3+ and Mn4+ ions through a double exchange mechanism. The results of the microwave absorption indicated that there was a broadening of absorption peak frequency at 9.9 GHz. The reflection loss (RL) increases with the increasing of LaMnO3 phase. For x = 0.8 we have the best of RL where the microwave absorption was calculated reaching 95% at the highest peak frequency with a thickness of 1.5 mm. Thus we have been successful in creating a single phase of La0.8Ba0.2MnxFe½(1-x)Ti½(1-x)O3 with application as a microwave absorber.

  12. Porous calcium polyphosphate bone substitutes: additive manufacturing versus conventional gravity sinter processing-effect on structure and mechanical properties.

    PubMed

    Hu, Youxin; Shanjani, Yaser; Toyserkani, Ehsan; Grynpas, Marc; Wang, Rizhi; Pilliar, Robert

    2014-02-01

    Porous calcium polyphosphate (CPP) structures proposed as bone-substitute implants and made by sintering CPP powders to form bending test samples of approximately 35 vol % porosity were machined from preformed blocks made either by additive manufacturing (AM) or conventional gravity sintering (CS) methods and the structure and mechanical characteristics of samples so made were compared. AM-made samples displayed higher bending strengths (≈1.2-1.4 times greater than CS-made samples), whereas elastic constant (i.e., effective elastic modulus of the porous structures) that is determined by material elastic modulus and structural geometry of the samples was ≈1.9-2.3 times greater for AM-made samples. X-ray diffraction analysis showed that samples made by either method displayed the same crystal structure forming β-CPP after sinter annealing. The material elastic modulus, E, determined using nanoindentation tests also showed the same value for both sample types (i.e., E ≈ 64 GPa). Examination of the porous structures indicated that significantly larger sinter necks resulted in the AM-made samples which presumably resulted in the higher mechanical properties. The development of mechanical properties was attributed to the different sinter anneal procedures required to make 35 vol % porous samples by the two methods. A primary objective of the present study, in addition to reporting on bending strength and sample stiffness (elastic constant) characteristics, was to determine why the two processes resulted in the observed mechanical property differences for samples of equivalent volume percentage of porosity. An understanding of the fundamental reason(s) for the observed effect is considered important for developing improved processes for preparation of porous CPP implants as bone substitutes for use in high load-bearing skeletal sites. Copyright © 2013 Wiley Periodicals, Inc.

  13. Method of producing improved microstructure and properties for ceramic superconductors

    DOEpatents

    Singh, Jitendra P.; Guttschow, Rob A.; Dusek, Joseph T.; Poeppel, Roger B.

    1996-01-01

    A ceramic superconductor is produced by close control of oxygen partial pressure during sintering of the material. The resulting microstructure of YBa.sub.2 Cu.sub.3 O.sub.x indicates that sintering kinetics are enhanced at reduced p(O.sub.2). The density of specimens sintered at 910.degree. C. increased from 79 to 94% theoretical when p(O.sub.2) was decreased from 0.1 to 0.0001 MPa. The increase in density with decrease in p(O.sub.2) derives from enhanced sintering kinetics, due to increased defect concentration and decreased activation energy of the rate-controlling species undergoing diffusion. Sintering at 910.degree. C. resulted in a fine-grain microstructure, with an average grain size of approximately 4 .mu.m. Such a microstructure results in reduced microcracking, strengths as high as 191 MPa and high critical current density capacity.

  14. Method of producing improved microstructure and properties for ceramic superconductors

    DOEpatents

    Singh, J.P.; Guttschow, R.A.; Dusek, J.T.; Poeppel, R.B.

    1996-06-11

    A ceramic superconductor is produced by close control of oxygen partial pressure during sintering of the material. The resulting microstructure of YBa{sub 2}Cu{sub 3}O{sub x} indicates that sintering kinetics are enhanced at reduced p(O{sub 2}). The density of specimens sintered at 910 C increased from 79 to 94% theoretical when p(O{sub 2}) was decreased from 0.1 to 0.0001 MPa. The increase in density with decrease in p(O{sub 2}) derives from enhanced sintering kinetics, due to increased defect concentration and decreased activation energy of the rate-controlling species undergoing diffusion. Sintering at 910 C resulted in a fine-grain microstructure, with an average grain size of approximately 4 {micro}m. Such a microstructure results in reduced microcracking, strengths as high as 191 MPa and high critical current density capacity. 20 figs.

  15. Fabrication and thermoelectric properties of n-type (Sr0.9Gd0.1)TiO3 oxides

    NASA Astrophysics Data System (ADS)

    Li, Liangliang; Qin, Xiaoying; Liu, Yongfei; Xin, Hongxing; Zhang, Jian; Li, Di; Song, Chunjun; Guo, Guanglei; Dou, Yunchen; Zou, Tianhua

    2014-02-01

    The n-type oxides (Sr0.9Gd0.1)TiO3 (SGTO) have been successfully prepared via a sol-gel process followed by solid-state sintering. The effects of sintering temperature on the thermoelectric (TE) properties of the SGTO samples have been investigated. The Seebeck coefficient showed no obvious difference, while the electrical conductivity increased with increasing sintering temperature, benefiting from an enhancement of densification. The maximum power factor (PF) value, 20.5μW/K2cm at 370 K in the metallic region, was observed for the sample sintered at 1748 K. As a result, the peak figure of merit (ZT) values for the samples sintered at higher than 1673 K were in the range of 0.28-0.30. All the results indicate that such synthetic method provides a simple and effective way to prepare TE oxides.

  16. Synthesis and characterisation of novel low temperature ceramic and its implementation as substrate in dual segment CDRA

    NASA Astrophysics Data System (ADS)

    Kumari, Preeti; Tripathi, Pankaj; Sahu, Bhagirath; Singh, S. P.; Parkash, Om; Kumar, Devendra

    2018-02-01

    Li2O-(2-3x)MgO-(x)Al2O3-P2O5 (LMAP) (x = 0.00-0.08) ceramic system was prepared through solid state synthesis route at different sintering temperatures (800-925 °C). A small addition of Al2O3 (x = 0.02) in LMAP ceramics lowers the sintering temperature by more than 100 °C with good relative density of 94.13%. The sintered samples were characterized in terms of density, apparent porosity, water absorption, crystal structure, micro-structure and microwave dielectric properties. Silver compatibility test is also performed for its use as electrode material in low temperature co-fired ceramic (LTCC) application. To check the performance of the prepared LTCC as substrate, a microstrip-fed aperture-coupled dual segment cylindrical dielectric resonator antenna (DS-CDRA) is designed using LMAP (x = 0.02) ceramic as substrate material and Barium Strontium Titanate with 10 wt% of PbO-BaO-B2O3-SiO2 glass (BSTG) and Teflon as the components of resonating material. The simulation study of the DS-CDRA is performed using the Ansys High Frequency Structure Simulator (HFSS) software. A conductive coating of silver is used on the substrate. The simulated and measured -10 dB reflection coefficient bandwidths of 910 MHz (9.07-9.98 GHz at resonant frequency of 9.49 GHz) and 1080 MHz (8.68-9.76 GHz at resonant frequency of 9.36 GHz), respectively are achieved. The measured results of the fabricated antenna are found in good agreement with the simulation results. The prepared material can find potential applications in radar and radio navigation as well as radio astronomy and military satellite communication.

  17. A strategy to optimize the thermoelectric performance in a spark plasma sintering process

    PubMed Central

    Chiu, Wan-Ting; Chen, Cheng-Lung; Chen, Yang-Yuan

    2016-01-01

    Spark plasma sintering (SPS) is currently widely applied to existing alloys as a means of further enhancing the alloys’ figure of merit. However, the determination of the optimal sintering condition is challenging in the SPS process. This report demonstrates a systematic way to independently optimize the Seebeck coefficient S and the ratio of electrical to thermal conductivity (σ/κ) and thus achieve the maximum figure of merit zT = S2(σ/κ)T. Sb2−xInxTe3 (x = 0–0.2) were chosen as examples to validate the method. Although high sintering temperature and pressure are helpful in enhancing the compactness and electrical conductivity of pressed samples, the resultant deteriorated Seebeck coefficient and increasing thermal conductivity eventually offset the benefit. We found that the optimal sintering temperature coincides with temperatures at which the maximum Seebeck coefficient begins to degrade, whereas the optimal sintering pressure coincided with the pressure at which the σ/κ ratio reaches a maximum. Based on this principle, the optimized sintering conditions were determined, and the zT of Sb1.9In0.1Te3 is raised to 0.92 at 600 K, showing an approximately 84% enhancement. This work develops a facile strategy for selecting the optimal SPS sintering condition to further enhance the zT of bulk specimens. PMID:26975209

  18. Effect of Microwave Non thermal Plasma Irradiation on the Adsorptive Properties of Active Carbon Preliminarily Impregnated with Poly(vinyl alcohol)

    NASA Astrophysics Data System (ADS)

    Ueshima, Masato; Toda, Eriko; Nakajima, Yuki; Sugiyama, Kazuo

    2010-08-01

    Microwave non thermal plasma irradiation was conducted on active carbon (AC) preliminarily impregnated with poly(vinyl alcohol) (PVA) in order to modify the adsorption properties of active carbon, particularly to increase hydrophobicity. The plasma was produced by applying microwave power on the PVA-impregnated active carbon (PVA/AC) placed in a low vacuum chamber (<10 Torr). The surface of the plasma-treated PVA/AC was imaged using scanning electron microscopy and atomic force microscopy (SEM and AFM, respectively), and analyzed using X-ray photoelectron spectroscopy (XPS). Hydrophobicity of the plasma-treated PVA/AC was compared to that of untreated PVA/AC and AC by a sinking test in water/methanol mixed solutions. The hydrophobicity drastically increased for PVA/AC treatment with 1-min plasma irradiation. The AFM results indicated that the surface roughness of the PVA/AC was dependent upon the hydrophobicity, rather than reduction of free energy due to reduction of polarized functional groups. NaOH and HCl adsorption onto the plasma-treated PVA/AC was also measured. Adsorption capacity of plasma-treated PVA/AC increased for NaOH, whereas it decreased for HCl. The plasma treatment not only increased the hydrophobicity of PVA/AC, but also changed its acid-base adsorption properties. We have developed a new material based on active carbon, which is light, hydrophobic and electrically conductive by using a combination of PVA sintering and plasma irradiation.

  19. UO2 fuel pellets fabrication via Spark Plasma Sintering using non-standard molybdenum die

    NASA Astrophysics Data System (ADS)

    Papynov, E. K.; Shichalin, O. O.; Mironenko, A. Yu; Tananaev, I. G.; Avramenko, V. A.; Sergienko, V. I.

    2018-02-01

    The article investigates spark plasma sintering (SPS) of commercial uranium dioxide (UO2) powder of ceramic origin into highly dense fuel pellets using non-standard die instead of usual graphite die. An alternative and formerly unknown method has been suggested to fabricate UO2 fuel pellets by SPS for excluding of typical problems related to undesirable carbon diffusion. Influence of SPS parameters on chemical composition and quality of UO2 pellets has been studied. Also main advantages and drawbacks have been revealed for SPS consolidation of UO2 in non-standard molybdenum die. The method is very promising due to high quality of the final product (density 97.5-98.4% from theoretical, absence of carbon traces, mean grain size below 3 μm) and mild sintering conditions (temperature 1100 ºC, pressure 141.5 MPa, sintering time 25 min). The results are interesting for development and probable application of SPS in large-scale production of nuclear ceramic fuel.

  20. Processing of sintered alpha SiC

    NASA Technical Reports Server (NTRS)

    Storm, R. S.

    1984-01-01

    Processing methods of sintered alpha SiC for engine applications are developed in a cost effective manner, using a submicron sized powder blended with sintering aids (boron and carbon). The processes for forming a green powder compact, such as dry pressing, cold isostatic pressing and green machining, slip casting, aqueous extrusion, plastic extrusion, and injection molding, are described. Dry pressing is the simplest route to component fabrication, and is carried out at approximately 10,000 psi pressure, while in the cold isostatic method the pressure could go as high as 20,000 psi. Surfactants are added to control settling rates and casting characteristics in the slip casting. The aqueous extrusion process is accomplished by a hydraulic ram forcing the aqueous mixture through a die. The plastic forming processes of extrusion and injection molding offer the potential of greater diversity in shape capacity. The physical properties of sintered alpha SiC (hardness, Young's modulus, shear modulus, and thermal diffusivity) are extensively tested. Corrosion resistance test results of silicon carbide are included.

  1. Synthesis and Characterization of Hydroxyapatite Powder by Wet Precipitation Method

    NASA Astrophysics Data System (ADS)

    Cahyaningrum, S. E.; Herdyastuty, N.; Devina, B.; Supangat, D.

    2018-01-01

    Hydroxyapatite is main inorganic component of the bone with formula Ca10(PO4)6(OH)2. Hydroxyapatite can be used as substituted bone biomaterial because biocompatible, non toxic, and osteoconductive. In this study, hydroxyapatite is synthesized using wet precipitation method from egg shell. The product was sintered at different temperatures of 800°C to 1000°C to improve its crystallinity. The hydroxyapatite was characterized by X-ray analysis, Scanning Electron Microscopy (SEM) and Fourier Transform Infrared Spectroscopy (FTIR) to reveal its phase content, morphology and types of bond present within it. The analytical results showed hydroxyapatite had range in crystallinity from 85.527 to 98.753%. The analytical functional groups showed that presence of functional groups such as OH, (PO4)3 2-, and CO3 2- that indicated as hydroxyapatite. The result of characterization SEM indicated that hydroxyapatite without sintering and HAp sintering at 800 °C were irregular shape without pore. The best hydroxyapatite with temperature sintering at 900 °C showed oval shaped with pores without agglomerated.

  2. Development of a sintering process for recycling oil shale fly ash and municipal solid waste incineration bottom ash into glass ceramic composite.

    PubMed

    Zhang, Zhikun; Zhang, Lei; Li, Aimin

    2015-04-01

    Oil shale fly ash and municipal solid waste incineration bottom ash are industrial and municipal by-products that require further treatment before disposal to avoid polluting the environment. In the study, they were mixed and vitrified into the slag by the melt-quench process. The obtained vitrified slag was then mixed with various percentages of oil shale fly ash and converted into glass ceramic composites by the subsequent sintering process. Differential thermal analysis was used to study the thermal characteristics and determine the sintering temperatures. X-ray diffraction analysis was used to analyze the crystalline phase compositions. Sintering shrinkage, weight loss on ignition, density and compressive strength were tested to determine the optimum preparation condition and study the co-sintering mechanism of vitrified amorphous slag and oil shale fly ash. The results showed the product performances increased with the increase of sintering temperatures and the proportion of vitrified slag to oil shale fly ash. Glass ceramic composite (vitrified slag content of 80%, oil shale fly ash content of 20%, sintering temperature of 1000 °C and sintering time of 2h) showed the properties of density of 1.92 ± 0.05 g/cm(3), weight loss on ignition of 6.14 ± 0.18%, sintering shrinkage of 22.06 ± 0.6% and compressive strength of 67 ± 14 MPa. The results indicated that it was a comparable waste-based material compared to previous researches. In particular, the energy consumption in the production process was reduced compared to conventional vitrification and sintering method. Chemical resistance and heavy metals leaching results of glass ceramic composites further confirmed the possibility of its engineering applications. Copyright © 2015 Elsevier Ltd. All rights reserved.

  3. Effect of sintering temperature on the microstructure and properties of foamed glass-ceramics prepared from high-titanium blast furnace slag and waste glass

    NASA Astrophysics Data System (ADS)

    Chen, Chang-hong; Feng, Ke-qin; Zhou, Yu; Zhou, Hong-ling

    2017-08-01

    Foamed glass-ceramics were prepared via a single-step sintering method using high-titanium blast furnace slag and waste glass as the main raw materials The influence of sintering temperature (900-1060°C) on the microstructure and properties of foamed glass-ceramics was studied. The results show that the crystal shape changed from grainy to rod-shaped and finally turned to multiple shapes as the sintering temperature was increased from 900 to 1060°C. With increasing sintering temperature, the average pore size of the foamed glass-ceramics increased and subsequently decreased. By contrast, the compressive strength and the bulk density decreased and subsequently increased. An excessively high temperature, however, induced the coalescence of pores and decreased the compressive strength. The optimal properties, including the highest compressive strength (16.64 MPa) among the investigated samples and a relatively low bulk density (0.83 g/cm3), were attained in the case of the foamed glass-ceramics sintered at 1000°C.

  4. The influence of Ca/P ratio on the properties of hydroxyapatite bioceramics

    NASA Astrophysics Data System (ADS)

    Ramesh, S.; Tan, C. Y.; Hamdi, M.; Sopyan, I.; Teng, W. D.

    2007-07-01

    The paper reports on the effect of Ca/P ratio (1.57, 1.67 and 1.87) on the densification behaviour of nanocrystalline hydroxyapatite (HA) prepared by a chemical precipitation method. Green compacts were prepared and sintered at temperatures ranging from 1000°C to 1350°C. The sintered samples were characterized to determine the HA phase stability, bulk density, hardness, fracture toughness and Young's modulus. XRD analysis revealed that the phase stability was not disrupted throughout the sintering regime employed for HA having Ca/P ratio of 1.57 and 1.67. However, secondary phases were observed for HA having a Ca/P ratio of 1.87 when sintered at high temperatures. In general, regardless of Ca/P ratio, the HA bodies achieved > 95% relative density when sintered at 1100°C-1250°C. The results indicated that the stoichiometric HA (Ca/P ratio = 1.67) exhibited the overall best properties, with the highest hardness of 7.23 GPa and fracture toughness of 1.28 MPam1/2 being attained when sintered at 1000°C-1050°C.

  5. Low sintering temperature glass waste forms for sequestering radioactive iodine

    DOEpatents

    Nenoff, Tina M.; Krumhansl, James L.; Garino, Terry J.; Ockwig, Nathan W.

    2012-09-11

    Materials and methods of making low-sintering-temperature glass waste forms that sequester radioactive iodine in a strong and durable structure. First, the iodine is captured by an adsorbant, which forms an iodine-loaded material, e.g., AgI, AgI-zeolite, AgI-mordenite, Ag-silica aerogel, ZnI.sub.2, CuI, or Bi.sub.5O.sub.7I. Next, particles of the iodine-loaded material are mixed with powdered frits of low-sintering-temperature glasses (comprising various oxides of Si, B, Bi, Pb, and Zn), and then sintered at a relatively low temperature, ranging from 425.degree. C. to 550.degree. C. The sintering converts the mixed powders into a solid block of a glassy waste form, having low iodine leaching rates. The vitrified glassy waste form can contain as much as 60 wt % AgI. A preferred glass, having a sintering temperature of 500.degree. C. (below the silver iodide sublimation temperature of 500.degree. C.) was identified that contains oxides of boron, bismuth, and zinc, while containing essentially no lead or silicon.

  6. Effect of graphenenano-platelets on the mechanical properties of Mg/3wt%Al alloy-nanocomposite

    NASA Astrophysics Data System (ADS)

    Kumar, Pravir; Kujur, MilliSuchita; Mallick, Ashis; Sandar Tun, Khin; Gupta, Manoj

    2018-04-01

    The bulk Mg/3%Al/0.1%GNP alloy-nano composite was fabricated using powder metallurgy route assisted with microwave sintering and followed by hot extrusion. The microstructural and Raman spectroscopy studies were performed to characterize the graphene nano-platelet(GNP).EDX tests confirmed the presence and the homogeneous distribution of Al and graphene nano-platelets in the magnesium alloy-nanocomposite. The addition of 3 wt% Al and 0.1wt%GNP to the Mg changed Vicker hardness, ultimate tensile strength and failure strain by +46.15%,+17.6% and -5% respectively. The fabricated composite offers higher resistance to the local deformation than monolithic Mg and Mg/3%Al alloy, revealed by the load/unload-indentation depth curve.

  7. PREPARATION OF COMPACTS MADE FROM URANIUM AND BERYLLIUM BY SINTERING

    DOEpatents

    Angier, R.P.

    1961-04-11

    A powder metallurgical method for making high-density compacts of uranium and beryllium is reported. Powdered UBe/sub 9/ and powdered Be are blended, compacted, and then sintered by rapidly heating to a temperature of approximately 1220 to 1280 deg C in an inert atmosphere.

  8. Multiferroic properties of microwave sintered PbFe12-xO19-δ

    NASA Astrophysics Data System (ADS)

    Prathap, S.; Madhuri, W.

    2017-05-01

    The effect of iron deficiency on the structural, electrical, ferroelectric and magnetic properties of nano PbFe12-xO19-δ (where x=0.0, 0.25, 0.50, 0.75, 1.0) hexaferrites prepared by sol-gel auto combustion and processed by microwaves are investigated. X-ray analysis confirms single phase magneto-plumbite phase formation. The surface morphology is studied from Field Emission Scanning Electron Microscope. Further, optical properties are investigated using Fourier Transform Infrared spectra and UV-visible spectra. AC electrical conductivity is estimated as a function of temperature and frequency in the range of room temperature (RT) to 500 °C and 100 Hz to 5MHz. AC electrical conduction analysis shows that conduction is mainly due to small polaron hopping mechanism. The variation of polarization with applied electric field exhibits hysteresis loop confirming the ferroelectric nature. The initial permeability studies with varying temperature reveals that the Curie transition temperature for the present series is around 400 °C. Variation of initial permeability with frequency ranging from 100 to 5 MHz shows a constant value (except for x=0.0) opening avenues for high frequency applications.

  9. Effect of Sintering Temperature on Dielectric Properties of Iron Deficient Nickel-Ferrite

    NASA Astrophysics Data System (ADS)

    Rani, Renu; Singh, Sangeeta; Juneja, J. K.; Prakash, Chandra; Raina, K. K.

    2011-11-01

    Nickel Ferrite among all the magneto ceramic materials have been studied very much due to its large number of applications. But there is a large scope of modification of its properties. Thus people still working on it for improvisation of its properties via compositional and structural modifications. Present paper reporting the preparation and characterization of iron deficient Nickel ferrite for different sintering temperature. Ferrite samples having the general formula NiFe1.98O4 were prepared using the standard ceramic method. The phase formation was confirmed by X-ray diffraction technique. The effect of sintering temperature on the electrical properties and resistivity was studied. The data shows that dielectric properties are highly dependent on the sintering temperature.

  10. Citrate gel-combustion synthesis and sintering of nanocrystalline ThO2 powders

    NASA Astrophysics Data System (ADS)

    Sanjay Kumar, D.; Ananthasivan, K.; Amirthapandian, S.; Dasgupta, Arup; Jogeswara Rao, G.

    2017-12-01

    A systematic study of the influence of citric acid to nitrate mole (R) ratio (R = 0 to 0.50) on the citrate gel-combustion synthesis of nanocrystalline (nc) ThO2 in bulk quantities (30 g) by using citrate gel-combustion was carried out. The nc-ThO2 powders were characterized for their bulk density, size distribution of particles, specific surface area, carbon residue and X-ray crystallite size. All these powders were compacted at pressures varying from 60 to 353 MPa and sintered by using the "two-step sintering" method. Powders prepared from a mixture with an "R" value of 0.125 compacted at 243 MPa yielded a maximum sintered density of 98.8 ± 0.3% T.D. For nc-ThO2, this is the highest sintered density reported so far. The microstructural investigations on nc-ThO2 powders were carried out by using both scanning electron microscopy (SEM) and transmission electron microscopy (TEM). SEM images of the sintered thoria monoliths revealed faceted grains with well defined grain boundaries. Shrinkage anisotropy factor (α) revealed that the compacts prepared from the powders obtained from starting mixtures with R values of 0.125-0.50 had undergone uniform sintering (near isotropic shrinkage).

  11. Sol-gel synthesis of lithium metatitanate as tritium breeding material under different sintering conditions

    NASA Astrophysics Data System (ADS)

    Lu, Wei; Wang, Jing; Pu, Wenjing; Li, Kaiping; Ma, Shubing; Wang, Weihua

    2018-04-01

    Lithium metatitanate (Li2TiO3) is a promising tritium breeding material candidate for solid blanket of D-T fusion reactors, due to its high mechanical strength, chemical stability, and tritium release rate. In this paper, Li2TiO3 powder with homogeneous crystal structure is synthesized by sol-gel method. The chemical reactions in gel thermal cracking and sintering process are studied by thermo gravimetric/differential scanning calorimetry (TG-DSC). The relationship between the sintering condition and the particle/grain size is characterized by X-ray diffraction (XRD) and scanning electron microscopy (SEM). Results show that below 673 K the gel precursor is completely decomposed and Li2TiO3 phase initially forms. The LiTiO2 by-product formed under the reductive atmosphere in muffle furnace, could be oxidized continually to Li2TiO3 at higher sintering temperature (≥1273 K) for longer sintering time (≥10 h). Both grain and particle sizes rely on a linear growth with the increase of sintering time at 1273 K. Over 1473 K, significant agglomerations exist among particles. The optimal sintering condition is selected as 1273 K for 10 h, for the purer Li2TiO3 phase (>99%), smaller grain and particle size.

  12. Improvement of mechanical strength of sintered Mo alloyed steel by optimization of sintering and cold-forging processes with densification

    NASA Astrophysics Data System (ADS)

    Kamakoshi, Y.; Shohji, I.; Inoue, Y.; Fukuda, S.

    2017-10-01

    Powder metallurgy (P/M) materials have been expected to be spread in automotive industry. Generally, since sintered materials using P/M ones contain many pores and voids, mechanical properties of them are inferior to those of conventional wrought materials. To improve mechanical properties of the sintered materials, densification is effective. The aim of this study is to improve mechanical strength of sintered Mo-alloyed steel by optimizing conditions in sintering and cold-forging processes. Mo-alloyed steel powder was compacted. Then, pre-sintering (PS) using a vacuum sintering furnace was conducted. Subsequently, coldforging (CF) by a backward extrusion method was conducted to the pre-sintered specimen. Moreover, the cold-forged specimen was heat treated by carburizing, tempering and quenching (CQT). Afterwards, mechanical properties were investigated. As a result, it was found that the density of the PS specimen is required to be more than 7.4 Mg/m3 to strengthen the specimen by heat treatment after CF. Furthermore, density and the microstructure of the PS specimen are most important factors to make the high density and strength material by CF. At the CF load of 1200 kN, the maximum density ratio reached approximately 99% by the use of the PS specimen with proper density and microstructure. At the CF load of 900 kN, although density ratio was high like more than 97.8%, transverse rupture strength decreased sharply. Since densification caused high shear stress and stress concentration in the surface layer, microcracks occurred by the damages of inter-particle sintered connection of the surface layer. On the contrary, in case of the CF load of 1200 kN, ultra-densification of the surface layer occurred by a sufficient plastic flow. Such sufficient compressed specimens regenerated the sintered connections by high temperature heat treatment and thus the high strength densified material was obtained. These processes can be applicable to near net shape manufacturing without surface machining.

  13. A time domain based method for the accurate measurement of Q-factor and resonance frequency of microwave resonators

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gyüre, B.; Márkus, B. G.; Bernáth, B.

    2015-09-15

    We present a novel method to determine the resonant frequency and quality factor of microwave resonators which is faster, more stable, and conceptually simpler than the yet existing techniques. The microwave resonator is pumped with the microwave radiation at a frequency away from its resonance. It then emits an exponentially decaying radiation at its eigen-frequency when the excitation is rapidly switched off. The emitted microwave signal is down-converted with a microwave mixer, digitized, and its Fourier transformation (FT) directly yields the resonance curve in a single shot. Being a FT based method, this technique possesses the Fellgett (multiplex) and Connesmore » (accuracy) advantages and it conceptually mimics that of pulsed nuclear magnetic resonance. We also establish a novel benchmark to compare accuracy of the different approaches of microwave resonator measurements. This shows that the present method has similar accuracy to the existing ones, which are based on sweeping or modulating the frequency of the microwave radiation.« less

  14. Method of making an air electrode material having controlled sinterability

    DOEpatents

    Vasilow, Theodore R.; Kuo, Lewis J. H.; Ruka, Roswell J.

    1994-01-01

    A tubular, porous ceramic electrode structure (3) is made from the sintered admixture of doped lanthanum manganite and an additive containing cerium where a solid electrolyte (4), substantially surrounds the air electrode, and a porous outer fuel electrode (7) substantially surrounds the electrolyte, to form a fuel cell (1).

  15. Method of making an air electrode material having controlled sinterability

    DOEpatents

    Vasilow, T.R.; Kuo, L.J.H.; Ruka, R.J.

    1994-08-30

    A tubular, porous ceramic electrode structure is made from the sintered admixture of doped lanthanum manganite and an additive containing cerium where a solid electrolyte, substantially surrounds the air electrode, and a porous outer fuel electrode substantially surrounds the electrolyte, to form a fuel cell. 2 figs.

  16. Hot isostatic pressing of silicon nitride Sisub3n4 containing zircon, or zirconia and silica

    NASA Technical Reports Server (NTRS)

    Somiya, S.; Yoshimura, M.; Suzuki, T.; Nishimura, H.

    1980-01-01

    A hydrothermal synthesis apparatus with a 10 KB cylinder was used to obtain a sintered body of silicon nitride. The sintering auxiliary agents used were zircon (ZrSiO4) and a mixture of zirconia (ZrO2) and silica (SiO2). Experiments were conducted with the amounts of ZrSi04 or ArO2 and SiO2 varying over a wide range and the results compared to discover the quantity of additive which produced sintering in silicon nitride by the hot pressing method.

  17. Application of spark plasma sintering for fabricating Nd-Fe-B composite

    NASA Astrophysics Data System (ADS)

    Sivkov, A. A.; Ivashutenko, A. S.; Lomakina, A. A.

    2015-10-01

    Constant magnets are applied in such fields as electric equipment and electric generators with fixed rotor. Rare earth metal neodymium is well known as promising material. Production of magnets by sintering three elements (neodymium, iron and boron) is one the most promising methods. But there are difficulties in choosing the right temperature for sintering and further processing. Structure and properties of the product, consisted of rare earth metals, was analyzed. X-ray analysis of the resulting product and the finished constant magnet was performed. Vickers microhardness was obtained.

  18. Method of making sintered ductile intermetallic-bonded ceramic composites

    DOEpatents

    Plucknett, Kevin; Tiegs, Terry N.; Becher, Paul F.

    1999-01-01

    A method of making an intermetallic-bonded ceramic composite involves combining a particulate brittle intermetallic precursor with a particulate reactant metal and a particulate ceramic to form a mixture and heating the mixture in a non-oxidizing atmosphere at a sufficient temperature and for a sufficient time to react the brittle intermetallic precursor and the reactant metal to form a ductile intermetallic and sinter the mixture to form a ductile intermetallic-bonded ceramic composite.

  19. 78 FR 7939 - Energy Conservation Program: Test Procedures for Microwave Ovens (Active Mode)

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-02-04

    ...The U.S. Department of Energy (DOE) proposes to revise its test procedures for microwave ovens established under the Energy Policy and Conservation Act. The proposed amendments would add provisions for measuring the active mode energy use for microwave ovens, including both microwave-only ovens and convection microwave ovens. Specifically, DOE is proposing provisions for measuring the energy use of the microwave-only cooking mode for both microwave-only ovens and convection microwave ovens based on the testing methods in the latest draft version of the International Electrotechnical Commission Standard 60705, ``Household microwave ovens--Methods for measuring performance.'' DOE is proposing provisions for measuring the energy use of the convection-only cooking mode for convection microwave ovens based on the DOE test procedure for conventional ovens in our regulations. DOE is also proposing to calculate the energy use of the convection-microwave cooking mode for convection microwave ovens by apportioning the microwave-only mode and convection-only mode energy consumption measurements based on typical consumer use.

  20. Microwave-emitting rotor, separator apparatus including same, methods of operation and design thereof

    DOEpatents

    Meikrantz, David H.

    2006-12-19

    An apparatus for use in separating, at least in part, a mixture, including at least one chamber and at least one microwave generation device configured for communicating microwave energy into the at least one chamber is disclosed. The rotor assembly may comprise an electric generator for generating electricity for operating the microwave generation device. At least one microwave generation device may be positioned within a tubular interior shaft extending within the rotor assembly. At least a portion of the tubular interior shaft may be substantially transparent to microwave energy. Microwave energy may be emitted in an outward radial direction or toward an anticipated boundary surface defined between a mixture and a separated constituent thereof. A method including flowing a mixture through at least one chamber and communicating microwave energy into the at least one chamber while rotating same is disclosed. Methods of operating a centrifugal separator and design thereof are disclosed.

  1. Influence of different heat treatment methods of titania film on performance of DSSCs

    NASA Astrophysics Data System (ADS)

    More, Venumadhav; Mokurala, Krishna; Bhargava, Parag

    2018-04-01

    Titania mesoporous film is a key component of dye-sensitized solar cells (DSSCs) as it transfers electrons from dye molecule to external circuit through the transparent conducting oxide (TCO). Interparticle connectivity, porosity and cracks in the titania films play an important role in determining the performance of DSSCs. The heating schedule with respect to the repetitive coating to build up titania film thickness impacts the titania film characteristics. In the present study, experiments were designed to carry out heat treatments with expectation of improving connectivity and healing cracks. Repetitive screen printing was carried out with either heat treatment after each print step (multiple sintering) or the heat treatment was carried out just once after the desired thickness had been attained (single-step sintering). Interconnectivity of the titania particles in the sintered titania film was analyzed by impedance spectroscopy and nanoindentation. Titania films sintered by MS showed better performance in terms of higher efficiency for the corresponding DSSCs than those prepared using titania films sintered by SS.

  2. Peridynamic Theory as a New Paradigm for Multiscale Modeling of Sintering

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Silling, Stewart A.; Abdeljawad, Fadi; Ford, Kurtis Ross

    2017-09-01

    Sintering is a component fabrication process in which powder is compacted by pressing or some other means and then held at elevated temperature for a period of hours. The powder grains bond with each other, leading to the formation of a solid component with much lower porosity, and therefore higher density and higher strength, than the original powder compact. In this project, we investigated a new way of computationally modeling sintering at the length scale of grains. The model uses a high-fidelity, three-dimensional representation with a few hundred nodes per grain. The numerical model solves the peridynamic equations, in whichmore » nonlocal forces allow representation of the attraction, adhesion, and mass diffusion between grains. The deformation of the grains is represented through a viscoelastic material model. The project successfully demonstrated the use of this method to reproduce experimentally observed features of material behavior in sintering, including densification, the evolution of microstructure, and the occurrence of random defects in the sintered solid.« less

  3. Effects of sintering atmosphere and temperature on structural and magnetic properties of Ni-Cu-Zn ferrite nano-particles: Magnetic enhancement by a reducing atmosphere

    NASA Astrophysics Data System (ADS)

    Gholizadeh, Ahmad; Jafari, Elahe

    2017-01-01

    In this work, effects of sintering atmosphere and temperature on structural and magnetic properties of Ni0.3Cu0.2Zn0.5Fe2O4 nanoparticles prepared by citrate precursor method have been studied. The structural characterization of the samples by X-ray powder diffraction and FT-IR spectroscopy is evidence for formation of a cubic structure with no presence of impurity phase. Calculated values of crystallite size and unit cell parameter show an increase with sintering temperature under different atmospheres. Variation of saturation magnetization with sintering temperature and atmosphere can be attributed to change of three factors: magnetic core size, inversion parameter and the change of Fe3+-ion concentration due to the presence of Fe4+ and Fe2+ ions. The saturation magnetization gradually grows with sintering temperature due to increase of magnetic core size and a maximum 63 emu/g was achieved at 600 °C under carbon monoxide-ambient atmosphere.

  4. Installation and certification of continuous VOC emissions monitoring systems for a steel mill sinter plant

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Taylor, K.L.; Macak, J.J. III; Cioffi, J.

    1999-07-01

    The counties of Lake, Porter, and LaPorte in Northwest Indiana are classified as severe non-attainment for the ozone National Ambient Air Quality Standard (NAAQS). In response to the non-attainment problem, the Indiana Department of Environmental Management (IDEM) promulgated a number of regulations over the last several years. One of these rules requires steel mills with sinter plants to control and continuously monitor volatile organic compound (VOC) emissions from the facilities. One of the accepted compliance methods is to install and certify Continuous Emission Monitoring Systems (CEMS) to monitor VOC emissions and volumetric flow rate in order to generate a VOCmore » emission number in units of pounds per hour. Compliance with the regulation also requires that the sinter plants accurately monitor sinter production in order to determine compliance during the winter months, when the limits are based on pounds of VOC emissions per ton of sinter produced.« less

  5. Low temperature sintering of fluorapatite glass-ceramics.

    PubMed

    Denry, Isabelle; Holloway, Julie A

    2014-02-01

    Fluorapatite glass-ceramics have been shown to be excellent candidates as scaffold materials for bone grafts, however, scaffold production by sintering is hindered by concurrent crystallization of the glass. Objective, our goal was to investigate the effect of Ca/Al ratio on the sintering behavior of Nb-doped fluorapatite-based glasses in the SiO2-Al2O3-P2O5-MgO-Na2O-K2O-CaO-CaF2 system. Methods, glass compositions with Ca/Al ratio of 1 (A), 2 (B), 4 (C) and 19 (D) were prepared by twice melting at 1525°C for 3h. Glasses were either cast as cylindrical ingots or ground into powders. Disk-shaped specimens were prepared by either sectioning from the ingots or powder-compacting in a mold, followed by heat treatment at temperatures ranging between 700 and 1050°C for 1h. The density was measured on both sintered specimens and heat treated discs as controls. The degree of sintering was determined from these measurements. Results and Significance XRD showed that fluorapatite crystallized in all glass-ceramics. A high degree of sintering was achieved at 775°C for glass-ceramic D (98.99±0.04%), and 900°C for glass-ceramic C (91.31±0.10). Glass-ceramics A or B were only partially sintered at 1000°C (63.6±0.8% and 74.1±1.5%, respectively). SEM revealed a unique microstructure of micron-sized spherulitic fluorapatite crystals in glass-ceramics C and D. Increasing the Ca/Al ratio promoted low temperature sintering of fluorapatite glass-ceramics, which are traditionally difficult to sinter. Copyright © 2013 Academy of Dental Materials. Published by Elsevier Ltd. All rights reserved.

  6. Sintering polycrystalline olivine and polycrystalline clinopyroxene containing trace amount of graphite from natural crystals

    NASA Astrophysics Data System (ADS)

    Tsubokawa, Yumiko; Ishikawa, Masahiro

    2017-09-01

    Graphite-bearing polycrystalline olivine and polycrystalline clinopyroxene with submicron to micron grain size were successfully sintered from a single crystal of naturally occurring olivine (Fo88-92Fa12-8: Mg1.76-1.84Fe0.16-0.24SiO4) and a single crystal of naturally occurring clinopyroxene (Di99Hed1: Ca0.92Na0.07Mn0.01Mg0.93Fe0.01Al0.06Si2O6). The milled powders of both these crystals were sintered under argon gas flow at temperatures ranging from 1130 to 1350 °C for 2 h. As the sintering temperature increased, the average grain size of olivine increased from 0.2 to 1.4 µm and that of clinopyroxene increased from 0.1 to 2.4 µm. The porosity of sintered samples remained at an almost-constant volume of 2-5% for olivine and 3-4% for clinopyroxene. The samples sintered from powders milled with ethanol exhibited trace amount of graphite, identified via Raman spectroscopy analysis. As the sintering temperature increased, the intensity of the graphite Raman peak decreased, compared with both olivine and clinopyroxene peaks. The carbon content of the sintered samples was estimated to be a few hundred ppm. The in-plane size ( L a ) of graphite in the sintered olivine was estimated to be <15 nm. Our experiments demonstrate new possibilities for preparing graphite-bearing silicate-mantle mineral rocks, and this method might be useful in understanding the influence of the physical properties of graphite on grain-size-sensitive rheology or the seismic velocity of the Earth's mantle.[Figure not available: see fulltext.

  7. Thermal and Electrical Characterization of Alumina Substrate for Microelectronic Applications

    NASA Astrophysics Data System (ADS)

    Ahmad, S.; Ibrahim, A.; Alias, R.; Shapee, S. M.; Ambak, Z.; Zakaria, S. Z.; Yahya, M. R.; Mat, A. F. A.

    2010-03-01

    This paper reports the effect of sintering temperature on thermal and electrical properties of alumina material as substrate for microelectronic devices. Alumina materials in the form of green sheet with 1 mm thickness were sintered at 1100° C, 1300° C and 1500° C for about 20 hours using heating and cooling rates of 2° C/min. The densities were measured using densitometer and the microstructures of the samples were analyzed using SEM micrographs. Meanwhile thermal and electrical properties of the samples were measured using flash method and impedance analyzer respectively. It was found that thermal conductivity and thermal diffusivity of the substrate increases as sintering temperature increases. It was found also that the dielectric constant of alumina substrate increases as the sintering temperature increases.

  8. Gas response properties of citrate gel synthesized nanocrystalline MgFe{sub 2}O{sub 4}: Effect of sintering temperature

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Patil, J.Y.; Mulla, I.S.; Suryavanshi, S.S., E-mail: sssuryavanshi@rediffmail.com

    2013-02-15

    Graphical abstract: Display Omitted Highlights: ► Synthesis of nanocrystalline MgFe{sub 2}O{sub 4} by economical citrate gel combustion method. ► Structural, morphological, and gas response properties of MgFe{sub 2}O{sub 4}. ► Enhancement in selectivity of MgFe{sub 2}O{sub 4} towards LPG with sintering temperature. ► Use of MgFe{sub 2}O{sub 4} to detect different gases at different operating temperatures. -- Abstract: Spinel type MgFe{sub 2}O{sub 4} material was synthesized by citrate gel combustion method. The effect of sintering temperature on structural, morphological, and gas response properties was studied. The powder X-ray diffraction pattern and transmission electron microscope study confirms nanocrystalline spinel structure ofmore » the synthesized powder. The material was tested for response properties to various reducing gases like liquid petroleum gas (LPG), acetone, ethanol, and ammonia. The results demonstrated n-type semiconducting behavior of MgFe{sub 2}O{sub 4} material. It was revealed that MgFe{sub 2}O{sub 4} sintered at 973 K was most sensitive to LPG at 648 K and to acetone at 498 K. However MgFe{sub 2}O{sub 4} sintered at 1173 K exhibited higher response and selectivity to LPG with marginal increase in the operating temperature. Furthermore, the sensor exhibited a fast response and a good recovery. It was observed that the particles size, porosity, and surface activity of the sensor material is affected by the sintering temperature.« less

  9. Comparative evaluation of surface porosities in conventional heat polymerized acrylic resin cured by water bath and microwave energy with microwavable acrylic resin cured by microwave energy

    PubMed Central

    Singh, Sunint; Palaskar, Jayant N.; Mittal, Sanjeev

    2013-01-01

    Background: Conventional heat cure poly methyl methacrylate (PMMA) is the most commonly used denture base resin despite having some short comings. Lengthy polymerization time being one of them and in order to overcome this fact microwave curing method was recommended. Unavailability of specially designed microwavable acrylic resin made it unpopular. Therefore, in this study, conventional heat cure PMMA was polymerized by microwave energy. Aim and Objectives: This study was designed to evaluate the surface porosities in PMMA cured by conventional water bath and microwave energy and compare it with microwavable acrylic resin cured by microwave energy. Materials and Methods: Wax samples were obtained by pouring molten wax into a metal mold of 25 mm × 12 mm × 3 mm dimensions. These samples were divided into three groups namely C, CM, and M. Group C denotes conventional heat cure PMMA cured by water bath method, CM denotes conventional heat cure PMMA cured by microwave energy, M denotes specially designed microwavable acrylic denture base resin cured by microwave energy. After polymerization, each sample was scanned in three pre-marked areas for surface porosities using the optical microscope. As per the literature available, this instrument is being used for the first time to measure the porosity in acrylic resin. It is a reliable method of measuring area of surface pores. Portion of the sample being scanned is displayed on the computer and with the help of software area of each pore was measured and data were analyzed. Results: Conventional heat cure PMMA samples cured by microwave energy showed maximum porosities than the samples cured by conventional water bath method and microwavable acrylic resin cured by microwave energy. Higher percentage of porosities was statistically significant, but well within the range to be clinically acceptable. Conclusion: Within the limitations of this in-vitro study, conventional heat cure PMMA can be cured by microwave energy without compromising on its property such as surface porosity. PMID:24015000

  10. Numerical Study of the Features of Ti-Nb Alloy Crystallization during Selective Laser Sintering

    NASA Astrophysics Data System (ADS)

    Dmitriev, A. I.; Nikonov, A. Y.

    2016-07-01

    The demand for implants with individual shape requires the development of new methods and approaches to their production. The obvious advantages of additive technologies and selective laser sintering are the capabilities to form both the external shape of the product and its internal structure. Recently appeared and attractive from the perspective of biomechanical compatibility are beta alloys of titanium-niobium that have similar mechanical properties to those of cortical bone. This paper studies the processes occurring at different stages of laser sintering using computer simulation on atomic scale. The effect of cooling rate on the resulting crystal structure of Ti-Nb alloy was analysed. Also, the dependence of tensile strength of sintered particles on heating time and cooling rate was studied. It was shown that the main parameter, which determines the adhesive properties of sintered particles, is the contact area obtained during sintering process. The simulation results can both help defining the technological parameters of the process to provide the desired mechanical properties of the resulting products and serve as a necessary basis for calculations on large scale levels in order to study the behaviour of actually used implants.

  11. Low-temperature sintering and electrical properties of strontium- and magnesium-doped lanthanum gallate with V2O5 additive

    NASA Astrophysics Data System (ADS)

    Ha, Sang Bu; Cho, Yoon Ho; Ji, Ho-Il; Lee, Jong-Ho; Kang, Yun Chan; Lee, Jong-Heun

    2011-03-01

    The effects of a V2O5 additive on the low-temperature sintering and ionic conductivity of strontium- and magnesium-doped lanthanum gallate (LSGM: La0.8Sr0.2Ga0.8Mg0.2O2.8) are studied. The LSGM powders prepared by the glycine nitrate method are mixed with 0.5-2 at.% of VO5/2 and then sintered at 1100-1400 °C in air for 4 h. The apparent density and phase purity of the LSGM specimens are increased with increasing sintering temperature and VO5/2 concentration due to the enhanced sintering and mass transfer via the intergranular liquid phase. The 1 at.% VO5/2-doped LSGM specimen sintered at 1300 °C exhibits a high oxide ion conductivity of ∼0.027 S cm-1 at 700 °C over a wide range of oxygen partial pressure (PO2 =10-27 - 1 atm), thereby demonstrating its potential as a useful electrolyte for anode-supported solid oxide fuel cells (SOFCs) without the requirement for any buffer layer between the electrolyte and anode.

  12. Mesoscale Thermodynamically motivated Statistical Mechanics based Kinetic Model for Sintering monoliths

    NASA Astrophysics Data System (ADS)

    Mohan, Nisha

    Modeling the evolution of microstructure during sintering is a persistent challenge in ceramics science, although needed as the microstructure impacts properties of an engineered material. Bridging the gap between microscopic and continuum models, kinetic Monte Carlo (kMC) methods provide a stochastic approach towards sintering and microstructure evolution. These kMC models work at the mesoscale, with length and time-scales between those of atomistic and continuum approaches. We develop a sintering/compacting model for the two-phase sintering of boron nitride ceramics and allotropes alike. Our formulation includes mechanisms for phase transformation between h-BN and c-BN and takes into account thermodynamics of pressure and temperature on interaction energies and mechanism rates. In addition to replicating the micro-structure evolution observed in experiments, it also captures the phase diagram of Boron Nitride materials. Results have been analyzed in terms of phase diagrams and crystal growth. It also serves with insights to guide the choice of additives and conditions for the sintering process.While detailed time and spatial resolutions are lost in any MC, the progression of stochastic events still captures plausible local energy minima and long-time temporal developments. DARPA.

  13. Interaction of microwaves with carbon nanotubes to facilitate modification

    NASA Technical Reports Server (NTRS)

    Tour, James M. (Inventor); Dyke, Christopher A. (Inventor); Stephenson, Jason J. (Inventor); Yakobson, Boris I. (Inventor)

    2011-01-01

    The present invention is directed toward methods of crosslinking carbon nanotubes to each other using microwave radiation, articles of manufacture produced by such methods, compositions produced by such methods, and applications for such compositions and articles of manufacture. The present invention is also directed toward methods of radiatively modifying composites and/or blends comprising carbon nanotubes with microwaves, and to the compositions produced by such methods. In some embodiments, the modification comprises a crosslinking process, wherein the carbon nanotubes serve as a conduit for thermally and photolytically crosslinking the host matrix with microwave radiation.

  14. [Rapid prototyping: a very promising method].

    PubMed

    Haverman, T M; Karagozoglu, K H; Prins, H-J; Schulten, E A J M; Forouzanfar, T

    2013-03-01

    Rapid prototyping is a method which makes it possible to produce a three-dimensional model based on two-dimensional imaging. Various rapid prototyping methods are available for modelling, such as stereolithography, selective laser sintering, direct laser metal sintering, two-photon polymerization, laminated object manufacturing, three-dimensional printing, three-dimensional plotting, polyjet inkjet technology,fused deposition modelling, vacuum casting and milling. The various methods currently being used in the biomedical sector differ in production, materials and properties of the three-dimensional model which is produced. Rapid prototyping is mainly usedforpreoperative planning, simulation, education, and research into and development of bioengineering possibilities.

  15. METHOD FOR PREPARATION OF SINTERABLE BERYLLIUM OXIDE

    DOEpatents

    Sturm, B.J.

    1963-08-13

    High-purity beryllium oxide for nuclear reactor applications can be prepared by precipitation of beryllium oxalate monohydrate from aqueous solution at a temperature above 50 deg C and subsequent calcination of the precipitate. Improved purification with respect to metallic impurities is obtained, and the product beryllium oxide sinters reproducibly to a high density. (AEC)

  16. Enhanced thermal diffusivity of copperbased composites using copper-RGO sheets

    NASA Astrophysics Data System (ADS)

    Kim, Sangwoo; Kwon, Hyouk-Chon; Lee, Dohyung; Lee, Hyo-Soo

    2017-11-01

    The synthesis of copper-reduced graphene oxide (RGO) sheets was investigated in order to control the agglutination of interfaces and develop a manufacturing process for copper-based composite materials based on spark plasma sintering. To this end, copper-GO (graphene oxide) composites were synthesized using a hydrothermal method, while the copper-reduced graphene oxide composites were made by hydrogen reduction. Graphene oxide-copper oxide was hydrothermally synthesized at 80 °C for 5 h, and then annealed at 800 °C for 5 h in argon and hydrazine rate 9:1 to obtain copper-RGO flakes. The morphology and structure of these copper-RGO sheets were characterized using scanning electron microscopy, transmission electron microscopy, X-ray diffraction, X-ray photoelectron spectroscopy and Raman spectroscopy. After vibratory mixing of the synthesized copper-RGO composites (0-2 wt%) with copper powder, they were sintered at 600 °C for 5 min under100 MPa of pressure by spark plasma sintering process. The thermal diffusivity of the resulting sintered composite was characterized by the laser flash method at 150 °C.

  17. Lunar in situ resource utilization by activated thermites

    NASA Astrophysics Data System (ADS)

    Hobosyan, Mkhitar; Martirosyan, Karen

    2011-10-01

    NASA's anticipated returns to the Moon by 2020, subsequent establishment of lunar in situ resource utilization technologies are essential. The surface of Moon is covered with small eroded particles of regolith called lunar dust that adheres electro-statically to everything coming in contact with it, and is of much concern for future lunar base because of its continual mitigation. The next major concern is the protection of equipment and personnel in long term expeditions from harmful UV radiation, which can be made by constructing protective buildings. For construction of permanent structures it is highly desired to have regular shaped sintered regolith with utilization of local materials and with minimum energy consumption. In this study the concept of sintering of lunar regolith with activated thermite reactions is discussed. The thermodynamic calculations as well as the experimental procedure is provided to prove the effectiveness of activated thermites for regolith sintering using local lunar resources with a low (15 wt. %) concentration of aluminum or magnesium. The thermite method is much more energy efficient than the other sintering methods suggested in literature.

  18. Method and apparatus for selectively annealing heterostructures using microwave

    NASA Technical Reports Server (NTRS)

    Atwater, Harry A. (Inventor); Brain, Ruth A. (Inventor); Barmatz, Martin B. (Inventor)

    1998-01-01

    The present invention discloses a process for selectively annealing heterostructures using microwaves. A heterostructure, comprised of a material having higher microwave absorption and a material having lower microwave absorption, is exposed to microwaves in the cavity. The higher microwave absorbing material absorbs the microwaves and selectively heats while the lower microwave absorbing material absorbs small amounts of microwaves and minimally heats. The higher microwave absorbing material is thereby annealed onto the less absorbing material which is thermally isolated.

  19. Method and apparatus for selectively annealing heterostructures using microwaves

    NASA Technical Reports Server (NTRS)

    Atwater, Harry A. (Inventor); Brain, Ruth A. (Inventor); Barmatz, Martin B. (Inventor)

    1998-01-01

    The present invention discloses a process for selectively annealing heterostructures using microwaves. A heterostructure, comprised of a material having higher microwave absorption and a material having lower microwave absorption, is exposed to microwaves in the cavity. The higher microwave absorbing material absorbs the microwaves and selectively heats while the lower microwave absorbing material absorbs small amounts of microwaves and minimally heats. The higher microwave absorbing material is thereby annealed onto the less absorbing material which is thermally isolated.

  20. Microstructures and mechanical properties of powder injection molded Ti-6Al-4V/HA powder.

    PubMed

    Thian, E S; Loh, N H; Khor, K A; Tor, S B

    2002-07-01

    Taguchi method with an L9 orthogonal array was employed to investigate the sintered properties of Ti-6Al-4V/HA tensile bars produced by powder injection molding. The effects of sintering factors at the 90% significance level: sintering temperature (1050 degrees C, 1100 degrees C and 1150 degrees C), heating rate (5 degrees C/min, 7.5 degrees C/min and 10 degrees C/min), holding time (30, 45 and 60 min) and cooling rate (5 degrees C/min, 20 degrees C/min and 40 degrees C/min) were investigated. Results showed that sintering temperature, heating rate and cooling rate have significant effects on sintered properties, whereas the influence of holding time was insignificant. It was found that a sintering temperature of 1100 degrees C, a heating rate of 7.5 degrees C/min and a cooling rate of 5 degrees C/min increased the relative density, Vicker's microhardness, flexural strength and flexural modulus. However, a further increment of sintering temperature to 1150 degrees C did not show any discernable improvement in the relative density and Vicker's microhardness, but there was a slight increase of 0.6% and 0.9% in the flexural strength and flexural modulus, respectively. Mechanically strong Ti-6Al-4V/HA parts with an open porosity of around 50% were developed.

  1. Phosphorus as sintering activator in powder metallurgical steels: characterization of the distribution and its technological impact.

    PubMed

    Krecar, Dragan; Vassileva, Vassilka; Danninger, Herbert; Hutter, Herbert

    2004-06-01

    Powder metallurgy is a highly developed method of manufacturing reliable ferrous parts. The main processing steps in a powder metallurgical line are pressing and sintering. Sintering can be strongly enhanced by the formation of a liquid phase during the sintering process when using phosphorus as sintering activator. In this work the distribution (effect) of phosphorus was investigated by means of secondary ion mass spectrometry (SIMS) supported by Auger electron spectroscopy (AES) and electron probe micro analysis (EPMA). To verify the influence of the process conditions (phosphorus content, sintering atmosphere, time) on the mechanical properties, additional measurements of the microstructure (pore shape) and of impact energy were performed. Analysis of fracture surfaces was performed by means of scanning electron microscopy (SEM). The concentration of phosphorus differs in the samples from 0 to 1% (w/ w). Samples with higher phosphorus concentrations (1% (w/ w) and above) are also measurable by EPMA, whereas the distributions of P at technically relevant concentrations and the distribution of possible impurities are only detectable (visible) by means of SIMS. The influence of the sintering time on the phosphorus distribution will be demonstrated. In addition the grain boundary segregation of P was measured by AES at the surface of in-situ broken samples. It will be shown that the distribution of phosphorus depends also on the concentration of carbon in the samples.

  2. Method of making sintered ductile intermetallic-bonded ceramic composites

    DOEpatents

    Plucknett, K.; Tiegs, T.N.; Becher, P.F.

    1999-05-18

    A method of making an intermetallic-bonded ceramic composite involves combining a particulate brittle intermetallic precursor with a particulate reactant metal and a particulate ceramic to form a mixture and heating the mixture in a non-oxidizing atmosphere at a sufficient temperature and for a sufficient time to react the brittle intermetallic precursor and the reactant metal to form a ductile intermetallic and sinter the mixture to form a ductile intermetallic-bonded ceramic composite. 2 figs.

  3. Consolidation and densification methods for fibrous monolith processing

    DOEpatents

    Sutaria, Manish P.; Rigali, Mark J.; Cipriani, Ronald A.; Artz, Gregory J.; Mulligan, Anthony C.

    2006-06-20

    Methods for consolidation and densification of fibrous monolith composite structures are provided. Consolidation and densification of two- and three-dimensional fibrous monolith components having complex geometries can be achieved by pressureless sintering. The fibrous monolith composites are formed from filaments having at least a first material composition generally surrounded by a second material composition. The composites are sintered at a pressure of no more than about 30 psi to provide consolidated and densified fibrous monolith composites.

  4. Effects of Ceramic Density and Sintering Temperature on the Mechanical Properties of a Novel Polymer-Infiltrated Ceramic-Network Zirconia Dental Restorative (Filling) Material.

    PubMed

    Li, Weiyan; Sun, Jian

    2018-05-10

    BACKGROUND Polymer-infiltrated ceramic-network (PICN) dental material is a new and practical development in orthodontics. Sintering is the process of forming a stable solid mass from a powder by heating without melting. The aim of this study was to evaluate the effects of sintering temperature on the mechanical properties of a PICN zirconia dental material. MATERIAL AND METHODS A dense zirconia ceramic and four PICN zirconia dental materials, with varying porosities, were sintered at three different temperatures; 12 PICN zirconia dental materials based on these porous ceramics were prepared, as well as a pure polymer. After the specimen preparation, flexural strength and elastic modulus values were measured using the three-point bending test, and fracture toughness were determined by the single-edge notched beam (SENB) method. The Vickers hardness test method was used with an indentation strength (IS) test. Scanning electron microscopy (SEM) was used to examine the microstructure of the ceramic surface and the fracture surface. RESULTS Mechanical properties of the PICN dental materials, including flexural strength, elastic modulus, fracture toughness, and hardness, were more similar to the properties of natural teeth when compared with traditional dental ceramic materials, and were affected by the density and sintering temperature. SEM showed that the porous ceramic network became cohesive and that the length of cracks in the PICN dental material was reduced. CONCLUSIONS PICN zirconia dental materials were characterized by similar mechanical properties to natural dental tissues, but further studies are required continue to improve the similarities with natural human enamel and dentin.

  5. Effects of Ceramic Density and Sintering Temperature on the Mechanical Properties of a Novel Polymer-Infiltrated Ceramic-Network Zirconia Dental Restorative (Filling) Material

    PubMed Central

    Li, Weiyan

    2018-01-01

    Background Polymer-infiltrated ceramic-network (PICN) dental material is a new and practical development in orthodontics. Sintering is the process of forming a stable solid mass from a powder by heating without melting. The aim of this study was to evaluate the effects of sintering temperature on the mechanical properties of a PICN zirconia dental material. Material/Methods A dense zirconia ceramic and four PICN zirconia dental materials, with varying porosities, were sintered at three different temperatures; 12 PICN zirconia dental materials based on these porous ceramics were prepared, as well as a pure polymer. After the specimen preparation, flexural strength and elastic modulus values were measured using the three-point bending test, and fracture toughness were determined by the single-edge notched beam (SENB) method. The Vickers hardness test method was used with an indentation strength (IS) test. Scanning electron microscopy (SEM) was used to examine the microstructure of the ceramic surface and the fracture surface. Results Mechanical properties of the PICN dental materials, including flexural strength, elastic modulus, fracture toughness, and hardness, were more similar to the properties of natural teeth when compared with traditional dental ceramic materials, and were affected by the density and sintering temperature. SEM showed that the porous ceramic network became cohesive and that the length of cracks in the PICN dental material was reduced. Conclusions PICN zirconia dental materials were characterized by similar mechanical properties to natural dental tissues, but further studies are required continue to improve the similarities with natural human enamel and dentin. PMID:29746449

  6. Processing of uranium dioxide nuclear fuel pellets using spark plasma sintering

    NASA Astrophysics Data System (ADS)

    Ge, Lihao

    Uranium dioxide (UO2), one of the most common nuclear fuels, has been applied in most of the nuclear plant these days for electricity generation. The main objective of this research is to introduce a novel method for UO 2 processing using spark plasma sintering technique (SPS). Firstly, an investigation into the influence of processing parameters on densification of UO2 powder during SPS is presented. A broad range of sintering temperatures, hold time and heating rates have been systematically varied to investigate their influence on the sintered pellet densification process. The results revealed that up to 96% theoretical density (TD) pellets can be obtained at a sintering temperature of 1050 °C for 30s hold time and a total run time of only 10 minutes. A systematic study is performed by varying the sintering temperature between 750°C to 1450°C and hold time between 0.5 min to 20 min to obtain UO2 pellets with a range of densities and grain sizes. The microstructure development in terms of grain size, density and porosity distribution is investigated. The Oxygen/Uranium (O/U) ratio of the resulting pellets is found to decrease after SPS. The mechanical and thermal properties of UO2 are evaluated. For comparable density and grain size, Vickers hardness and Young's modulus are in agreement with the literature value. The thermal conductivity of UO2 increases with the density but the grain size in the investigated range has no significant influence. Overall, the mechanical and thermal properties of UO2 are comparable with the one made using conventional sintering methods. Lastly, the influence of chromium dioxide (Cr2O3) and zirconium diboride (ZrB2) on the grain size of doped UO 2 fuel pellet is performed to investigate the feasibility of producing large-grain-size nuclear fuel using SPS. The benefits of using SPS over the conventional sintering of UO2 are summarized. The future work of designing macro-porous UO2 pellet and thorium dioxide (ThO 2) cored UO2 pellet is also proposed.

  7. Sintering of beta-type alumina bodies using alpha-alumina encapsulation

    DOEpatents

    McEntire, Bryan J.; Virkar, Anil V.

    1981-01-01

    A method of sintering a shaped green, beta-type alumina body comprising: (A) inserting said body into an open chamber prepared by exposing the interior surface of a container consisting essentially of at least about 50 weight percent of alpha-alumina and a remainder of other refractory material to a sodium oxide or sodium oxide producing environment; (B) sealing the chamber; and heating the chamber with the shaped body encapsulated therein to a temperature and for a time necessary to sinter said body to the desired density. The encapsulation chamber prepared as described above is also claimed.

  8. Raman analysis of non stoichiometric Ni1-δO

    NASA Astrophysics Data System (ADS)

    Dubey, Paras; Choudhary, K. K.; Kaurav, Netram

    2018-04-01

    Thermal decomposition method was used to synthesize non-stoichiometric nickel oxide at different sintering temperatures upto 1100 °C. The structure of synthesized compounds were analyzed by X ray diffraction analysis (XRD) and magnetic ordering was studied with the help of Raman scattering spectroscopy for the samples sintered at different temperature. It was found that due to change in sintering temperature the stoichiometry of the sample changes and hence intensity of two magnon band changes. These results were interpreted as the decomposition temperature increases, which heals the defects present in the non-stoichiometric nickel oxide and antiferromagnetic spin correlation changes accordingly.

  9. Method and apparatus for radio frequency ceramic sintering

    DOEpatents

    Hoffman, Daniel J.; Kimrey, Jr., Harold D.

    1993-01-01

    Radio frequency energy is used to sinter ceramic materials. A coaxial waveguide resonator produces a TEM mode wave which generates a high field capacitive region in which a sample of the ceramic material is located. Frequency of the power source is kept in the range of radio frequency, and preferably between 60-80 MHz. An alternative embodiment provides a tunable radio frequency circuit which includes a series input capacitor and a parallel capacitor, with the sintered ceramic connected by an inductive lead. This arrangement permits matching of impedance over a wide range of dielectric constants, ceramic volumes, and loss tangents.

  10. Method and apparatus for radio frequency ceramic sintering

    DOEpatents

    Hoffman, D.J.; Kimrey, H.D. Jr.

    1993-11-30

    Radio frequency energy is used to sinter ceramic materials. A coaxial waveguide resonator produces a TEM mode wave which generates a high field capacitive region in which a sample of the ceramic material is located. Frequency of the power source is kept in the range of radio frequency, and preferably between 60-80 MHz. An alternative embodiment provides a tunable radio frequency circuit which includes a series input capacitor and a parallel capacitor, with the sintered ceramic connected by an inductive lead. This arrangement permits matching of impedance over a wide range of dielectric constants, ceramic volumes, and loss tangents. 6 figures.

  11. Effects of Molar Ratios and Sintering Times on Crystal Structures and Surface Morphology of Nd1+xFeO3 Oxide Alloy Prepared by using Solid Reaction Method

    NASA Astrophysics Data System (ADS)

    Sujiono, E. H.; Agus, J.; Samnur, S.; Triyana, K.

    2018-05-01

    The effects of molar ratios and sintering times on crystal structures and surface morphology on NdFeO3 oxide alloy have been studied. NdFeO3 oxide alloy formed by chemical preparation with solid reaction method using raw oxide Fe2O3 (99.9 %) and Nd2O3 (99.9 %) powders. In this article we reported the effects of molar ratios x = (–0.1, –0.2 and –0.3) and sintering times for 15 h and 20 h on crystal structures and surface morphology of Nd1+xFeO3 synthesized by solid-state reaction method. The results indicate that variation of molar ratio and sintering time has influenced the FWHM, crystalline size and grain size. The Nd1+xFeO3 have a major phase is NdFeO3, and other minor phases are Fe2O3, Nd2O3 and Nd(OH)3. The dominant intensity of hkl (121) with a value in FWHM, crystallite size, and grain size an indication the results will be applied as a gas sensor material as the focus of the further study.

  12. Coupled microwave/photoassisted methods for environmental remediation.

    PubMed

    Horikoshi, Satoshi; Serpone, Nick

    2014-11-05

    The microwave-induced acceleration of photocatalytic reactions was discovered serendipitously in the late 1990s. The activity of photocatalysts is enhanced significantly by both microwave radiation and UV light. Particularly relevant, other than as a heat source, was the enigmatic phenomenon of the non-thermal effect(s) of the microwave radiation that facilitated photocatalyzed reactions, as evidenced when examining various model contaminants in aqueous media. Results led to an examination of the possible mechanism(s) of the microwave effect(s). In the present article we contend that the microwaves' non-thermal effect(s) is an important factor in the enhancement of TiO2-photoassisted reactions involving the decomposition of organic pollutants in model wastewaters by an integrated (coupled) microwave-/UV-illumination method (UV/MW). Moreover, such coupling of no less than two irradiation methods led to the fabrication and ultimate investigation of microwave discharged electrodeless lamps (MDELs) as optimal light sources; their use is also described. The review focuses on the enhanced activity of photocatalytic reactions when subjected to microwave radiation and concentrates on the authors' research of the past few years.

  13. Digital communications: Microwave applications

    NASA Astrophysics Data System (ADS)

    Feher, K.

    Transmission concepts and techniques of digital systems are presented; and practical state-of-the-art implementation of digital communications systems by line-of-sight microwaves is described. Particular consideration is given to statistical methods in digital transmission systems analysis, digital modulation methods, microwave amplifiers, system gain, m-ary and QAM microwave systems, correlative techniques and applications to digital radio systems, hybrid systems, digital microwave systems design, diversity and protection switching techniques, measurement techniques, and research and development trends and unsolved problems.

  14. Extra-terrestrial construction processes - Advancements, opportunities and challenges

    NASA Astrophysics Data System (ADS)

    Lim, Sungwoo; Prabhu, Vibha Levin; Anand, Mahesh; Taylor, Lawrence A.

    2017-10-01

    Government space agencies, including NASA and ESA, are conducting preliminary studies on building alternative space-habitat systems for deep-space exploration. Such studies include development of advanced technologies for planetary surface exploration, including an in-depth understanding of the use of local resources. Currently, NASA plans to land humans on Mars in the 2030s. Similarly, other space agencies from Europe (ESA), Canada (CSA), Russia (Roscosmos), India (ISRO), Japan (JAXA) and China (CNSA) have already initiated or announced their plans for launching a series of lunar missions over the next decade, ranging from orbiters, landers and rovers for extended stays on the lunar surface. As the Space Odyssey is one of humanity's oldest dreams, there has been a series of research works for establishing temporary or permanent settlement on other planetary bodies, including the Moon and Mars. This paper reviews current projects developing extra-terrestrial construction, broadly categorised as: (i) ISRU-based construction materials; (ii) fabrication methods; and (iii) construction processes. It also discusses four categories of challenges to developing an appropriate construction process: (i) lunar simulants; (ii) material fabrication and curing; (iii) microwave-sintering based fabrication; and (iv) fully autonomous and scaled-up construction processes.

  15. A novel route for synthesis of nanocrystalline hydroxyapatite from eggshell waste.

    PubMed

    Siva Rama Krishna, D; Siddharthan, A; Seshadri, S K; Sampath Kumar, T S

    2007-09-01

    The eggshell waste has been value engineered to a nanocrystalline hydroxyapatite (HA) by microwave processing. To highlight the advantages of eggshell as calcium precursor in the synthesis of HA (OHA), synthetic calcium hydroxide was also used to form HA (SHA) following similar procedure and were compared with a commercially available pure HA (CHA). All the HAs were characterized by X-ray powder diffraction (XRD) method, Fourier transform infrared (FT-IR) spectroscopy, scanning electron microscopy (SEM), transmission electron microscopy (TEM) and specific surface area measurements. Nanocrystalline nature of OHA is revealed through characteristic broad peaks in XRD patterns, platelets of length 33-50 nm and width 8-14 nm in TEM micrograph and size calculations from specific surface area measurements. FT-IR spectra showed characteristic bands of HA and additionally peaks of carbonate ions. The cell parameter calculations suggest the formation of carbonated HA of B-type. The OHA exhibits superior sinterability in terms of hardness and density than both SHA and CHA may be due to larger surface area of its spherulite structure. The in vitro dissolution study shows longer stability in phosphate buffer and cell culture test using osteoblast cells establishes biocompatibility of OHA.

  16. High-performance and flexible thermoelectric films by screen printing solution-processed nanoplate crystals.

    PubMed

    Varghese, Tony; Hollar, Courtney; Richardson, Joseph; Kempf, Nicholas; Han, Chao; Gamarachchi, Pasindu; Estrada, David; Mehta, Rutvik J; Zhang, Yanliang

    2016-09-12

    Screen printing allows for direct conversion of thermoelectric nanocrystals into flexible energy harvesters and coolers. However, obtaining flexible thermoelectric materials with high figure of merit ZT through printing is an exacting challenge due to the difficulties to synthesize high-performance thermoelectric inks and the poor density and electrical conductivity of the printed films. Here, we demonstrate high-performance flexible films and devices by screen printing bismuth telluride based nanocrystal inks synthesized using a microwave-stimulated wet-chemical method. Thermoelectric films of several tens of microns thickness were screen printed onto a flexible polyimide substrate followed by cold compaction and sintering. The n-type films demonstrate a peak ZT of 0.43 along with superior flexibility, which is among the highest reported ZT values in flexible thermoelectric materials. A flexible thermoelectric device fabricated using the printed films produces a high power density of 4.1 mW/cm(2) with 60 °C temperature difference between the hot side and cold side. The highly scalable and low cost process to fabricate flexible thermoelectric materials and devices demonstrated here opens up many opportunities to transform thermoelectric energy harvesting and cooling applications.

  17. Pass-Band Characteristics of an L-Shaped Waveguide in a Diamond Structure Photonic Crystal

    NASA Astrophysics Data System (ADS)

    Chen, Shibin; Ma, Jingcun; Yao, Yunshi; Liu, Xin; Lin, Ping

    2018-06-01

    The conduction characteristics of a L-shaped waveguide in a diamond structure photonic crystal is investigated in this paper. The waveguides were fabricated with titanium dioxide ceramic via 3-D printing and sintering. The effects of the position and size of line defects on the transmission characteristics are first simulated using a finite-difference time-domain method. The simulated results show that, when the length of the rectangular defect equals the lattice constant, multiple extended modes are generated. When the centers of the single unit cell of the diamond structure and the line defect waveguide coincide, higher transmission efficiency in the line defect can be achieved. In addition, the corner of the L-shaped waveguide was optimized to reduce reflection loss at the turning point using the arc transition of the large diameter. Our experimental results indicate that L-shaped waveguides with an optimized photonic band gap structure and high-K materials can produce a pass-band between 13.8 GHz and 14.4 GHz and increase transmission efficiency. The computed results agree with the experimental results. Our results may help the integration of microwave devices in the future and possibly enable new applications of photonic crystals.

  18. High-performance and flexible thermoelectric films by screen printing solution-processed nanoplate crystals

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Varghese, Tony; Hollar, Courtney; Richardson, Joseph

    Screen printing allows for direct conversion of thermoelectric nanocrystals into flexible energy harvesters and coolers. However, obtaining flexible thermoelectric materials with high figure of merit ZT through printing is an exacting challenge due to the difficulties to synthesize high-performance thermoelectric inks and the poor density and electrical conductivity of the printed films. Here, we demonstrate high-performance flexible films and devices by screen printing bismuth telluride based nanocrystal inks synthesized using a microwave-stimulated wet-chemical method. Thermoelectric films of several tens of microns thickness were screen printed onto a flexible polyimide substrate followed by cold compaction and sintering. The n-type films demonstratemore » a peak ZT of 0.43 along with superior flexibility, which is among the highest reported ZT values in flexible thermoelectric materials. A flexible thermoelectric device fabricated using the printed films produces a high power density of 4.1 mW/cm 2 with 60°C temperature difference between the hot side and cold side. In conclusion, the highly scalable and low cost process to fabricate flexible thermoelectric materials and devices demonstrated here opens up many opportunities to transform thermoelectric energy harvesting and cooling applications.« less

  19. Apparatus and method for microwave processing of materials

    DOEpatents

    Johnson, A.C.; Lauf, R.J.; Bible, D.W.; Markunas, R.J.

    1996-05-28

    Disclosed is a variable frequency microwave heating apparatus designed to allow modulation of the frequency of the microwaves introduced into a furnace cavity for testing or other selected applications. The variable frequency heating apparatus is used in the method of the present invention to monitor the resonant processing frequency within the furnace cavity depending upon the material, including the state thereof, from which the workpiece is fabricated. The variable frequency microwave heating apparatus includes a microwave signal generator and a high-power microwave amplifier or a microwave voltage-controlled oscillator. A power supply is provided for operation of the high-power microwave oscillator or microwave amplifier. A directional coupler is provided for detecting the direction and amplitude of signals incident upon and reflected from the microwave cavity. A first power meter is provided for measuring the power delivered to the microwave furnace. A second power meter detects the magnitude of reflected power. Reflected power is dissipated in the reflected power load. 10 figs.

  20. High-performance and flexible thermoelectric films by screen printing solution-processed nanoplate crystals

    DOE PAGES

    Varghese, Tony; Hollar, Courtney; Richardson, Joseph; ...

    2016-09-12

    Screen printing allows for direct conversion of thermoelectric nanocrystals into flexible energy harvesters and coolers. However, obtaining flexible thermoelectric materials with high figure of merit ZT through printing is an exacting challenge due to the difficulties to synthesize high-performance thermoelectric inks and the poor density and electrical conductivity of the printed films. Here, we demonstrate high-performance flexible films and devices by screen printing bismuth telluride based nanocrystal inks synthesized using a microwave-stimulated wet-chemical method. Thermoelectric films of several tens of microns thickness were screen printed onto a flexible polyimide substrate followed by cold compaction and sintering. The n-type films demonstratemore » a peak ZT of 0.43 along with superior flexibility, which is among the highest reported ZT values in flexible thermoelectric materials. A flexible thermoelectric device fabricated using the printed films produces a high power density of 4.1 mW/cm 2 with 60°C temperature difference between the hot side and cold side. In conclusion, the highly scalable and low cost process to fabricate flexible thermoelectric materials and devices demonstrated here opens up many opportunities to transform thermoelectric energy harvesting and cooling applications.« less

  1. High-performance and flexible thermoelectric films by screen printing solution-processed nanoplate crystals

    PubMed Central

    Varghese, Tony; Hollar, Courtney; Richardson, Joseph; Kempf, Nicholas; Han, Chao; Gamarachchi, Pasindu; Estrada, David; Mehta, Rutvik J.; Zhang, Yanliang

    2016-01-01

    Screen printing allows for direct conversion of thermoelectric nanocrystals into flexible energy harvesters and coolers. However, obtaining flexible thermoelectric materials with high figure of merit ZT through printing is an exacting challenge due to the difficulties to synthesize high-performance thermoelectric inks and the poor density and electrical conductivity of the printed films. Here, we demonstrate high-performance flexible films and devices by screen printing bismuth telluride based nanocrystal inks synthesized using a microwave-stimulated wet-chemical method. Thermoelectric films of several tens of microns thickness were screen printed onto a flexible polyimide substrate followed by cold compaction and sintering. The n-type films demonstrate a peak ZT of 0.43 along with superior flexibility, which is among the highest reported ZT values in flexible thermoelectric materials. A flexible thermoelectric device fabricated using the printed films produces a high power density of 4.1 mW/cm2 with 60 °C temperature difference between the hot side and cold side. The highly scalable and low cost process to fabricate flexible thermoelectric materials and devices demonstrated here opens up many opportunities to transform thermoelectric energy harvesting and cooling applications. PMID:27615036

  2. High-Pressure Spark Plasma Sintering (HP SPS): A Promising and Reliable Method for Preparing Ti-Al-Si Alloys.

    PubMed

    Knaislová, Anna; Novák, Pavel; Cygan, Sławomir; Jaworska, Lucyna; Cabibbo, Marcello

    2017-04-27

    Ti-Al-Si alloys are prospective material for high-temperature applications. Due to low density, good mechanical properties, and oxidation resistance, these intermetallic alloys can be used in the aerospace and automobile industries. Ti-Al-Si alloys were prepared by powder metallurgy using reactive sintering, milling, and spark plasma sintering. One of the novel SPS techniques is high-pressure spark plasma sintering (HP SPS), which was tested in this work and applied to a Ti-10Al-20Si intermetallic alloy using a pressure of 6 GPa and temperatures ranging from 1318 K (1045 °C) to 1597 K (1324 °C). The low-porosity consolidated samples consist of Ti₅Si₃ silicides in an aluminide (TiAl) matrix. The hardness varied between 720 and 892 HV 5.

  3. High-Pressure Spark Plasma Sintering (HP SPS): A Promising and Reliable Method for Preparing Ti–Al–Si Alloys

    PubMed Central

    Knaislová, Anna; Novák, Pavel; Cygan, Sławomir; Jaworska, Lucyna; Cabibbo, Marcello

    2017-01-01

    Ti–Al–Si alloys are prospective material for high-temperature applications. Due to low density, good mechanical properties, and oxidation resistance, these intermetallic alloys can be used in the aerospace and automobile industries. Ti–Al–Si alloys were prepared by powder metallurgy using reactive sintering, milling, and spark plasma sintering. One of the novel SPS techniques is high-pressure spark plasma sintering (HP SPS), which was tested in this work and applied to a Ti–10Al–20Si intermetallic alloy using a pressure of 6 GPa and temperatures ranging from 1318 K (1045 °C) to 1597 K (1324 °C). The low-porosity consolidated samples consist of Ti5Si3 silicides in an aluminide (TiAl) matrix. The hardness varied between 720 and 892 HV 5. PMID:28772824

  4. Irradiation resistance of silicon carbide joint at light water reactor–relevant temperature

    DOE PAGES

    Koyanagi, T.; Katoh, Y.; Kiggans, J. O.; ...

    2017-03-10

    We fabricated and irradiated monolithic silicon carbide (SiC) to SiC plate joints with neutrons at 270–310 °C to 8.7 dpa for SiC. The joining methods included solid state diffusion bonding using titanium and molybdenum interlayers, SiC nanopowder sintering, reaction sintering with a Ti-Si-C system, and hybrid processing of polymer pyrolysis and chemical vapor infiltration (CVI). All the irradiated joints exhibited apparent shear strength of more than 84 MPa on average. Significant irradiation-induced cracking was found in the bonding layers of the Ti and Mo diffusion bonds and Ti-Si-C reaction sintered bond. Furthermore, the SiC-based bonding layers of the SiC nanopowdermore » sintered and hybrid polymer pyrolysis and CVI joints all showed stable microstructure following the irradiation.« less

  5. Adhesive bonding using variable frequency microwave energy

    DOEpatents

    Lauf, Robert J.; McMillan, April D.; Paulauskas, Felix L.; Fathi, Zakaryae; Wei, Jianghua

    1998-01-01

    Methods of facilitating the adhesive bonding of various components with variable frequency microwave energy are disclosed. The time required to cure a polymeric adhesive is decreased by placing components to be bonded via the adhesive in a microwave heating apparatus having a multimode cavity and irradiated with microwaves of varying frequencies. Methods of uniformly heating various articles having conductive fibers disposed therein are provided. Microwave energy may be selectively oriented to enter an edge portion of an article having conductive fibers therein. An edge portion of an article having conductive fibers therein may be selectively shielded from microwave energy.

  6. Adhesive bonding using variable frequency microwave energy

    DOEpatents

    Lauf, R.J.; McMillan, A.D.; Paulauskas, F.L.; Fathi, Z.; Wei, J.

    1998-08-25

    Methods of facilitating the adhesive bonding of various components with variable frequency microwave energy are disclosed. The time required to cure a polymeric adhesive is decreased by placing components to be bonded via the adhesive in a microwave heating apparatus having a multimode cavity and irradiated with microwaves of varying frequencies. Methods of uniformly heating various articles having conductive fibers disposed therein are provided. Microwave energy may be selectively oriented to enter an edge portion of an article having conductive fibers therein. An edge portion of an article having conductive fibers therein may be selectively shielded from microwave energy. 26 figs.

  7. Adhesive bonding using variable frequency microwave energy

    DOEpatents

    Lauf, R.J.; McMillan, A.D.; Paulauskas, F.L.; Fathi, Z.; Wei, J.

    1998-09-08

    Methods of facilitating the adhesive bonding of various components with variable frequency microwave energy are disclosed. The time required to cure a polymeric adhesive is decreased by placing components to be bonded via the adhesive in a microwave heating apparatus having a multimode cavity and irradiated with microwaves of varying frequencies. Methods of uniformly heating various articles having conductive fibers disposed therein are provided. Microwave energy may be selectively oriented to enter an edge portion of an article having conductive fibers therein. An edge portion of an article having conductive fibers therein may be selectively shielded from microwave energy. 26 figs.

  8. Comparison of microwave hydrodistillation and solvent-free microwave extraction of essential oil from Melaleuca leucadendra Linn

    NASA Astrophysics Data System (ADS)

    Ismanto, A. W.; Kusuma, H. S.; Mahfud, M.

    2017-12-01

    The comparison of solvent-free microwave extraction (SFME) and microwave hydrodistillation (MHD) in the extraction of essential oil from Melaleuca leucadendra Linn. was examined. Dry cajuput leaves were used in this study. The purpose of this study is also to determine optimal condition (microwave power). The relative electric consumption of SFME and MHD methods are both showing 0,1627 kWh/g and 0,3279 kWh/g. The results showed that solvent-free microwave extraction methods able to reduce energy consumption and can be regarded as a green technique for extraction of cajuput oil.

  9. Kinetic and Mechanism Study of Vanadium Acid Leaching from Black Shale Using Microwave Heating Method

    NASA Astrophysics Data System (ADS)

    Wang, Jing-peng; Zhang, Yi-min; Huang, Jing; Liu, Tao

    2018-04-01

    The leaching kinetics of the vanadium leaching process were investigated by the comparison of microwave heating and conventional heating methods. Microwave heating with CaF2 had a synergistic effect and improved the vanadium leaching efficiency. In contrast to conventional heating leaching, microwave heating accelerated the vanadium leaching rate by approximately 1-3% and by approximately 15% when CaF2 was also used. The kinetics analysis showed that the calculated activation energy decreased in the microwave heating method in the presence and absence of CaF2. The control procedure of leaching also changed from a chemical reaction control step to a mixed chemical diffusion control step upon the addition of CaF2. Microwave heating was shown to be suitable for leaching systems with diffusion or mixed chemical diffusion control steps when the target mineral does not have a microwave absorbing ability.

  10. Kinetic and Mechanism Study of Vanadium Acid Leaching from Black Shale Using Microwave Heating Method

    NASA Astrophysics Data System (ADS)

    Wang, Jing-peng; Zhang, Yi-min; Huang, Jing; Liu, Tao

    2018-06-01

    The leaching kinetics of the vanadium leaching process were investigated by the comparison of microwave heating and conventional heating methods. Microwave heating with CaF2 had a synergistic effect and improved the vanadium leaching efficiency. In contrast to conventional heating leaching, microwave heating accelerated the vanadium leaching rate by approximately 1-3% and by approximately 15% when CaF2 was also used. The kinetics analysis showed that the calculated activation energy decreased in the microwave heating method in the presence and absence of CaF2. The control procedure of leaching also changed from a chemical reaction control step to a mixed chemical diffusion control step upon the addition of CaF2. Microwave heating was shown to be suitable for leaching systems with diffusion or mixed chemical diffusion control steps when the target mineral does not have a microwave absorbing ability.

  11. IMPROVEMENTS IN OR RELATING TO THE PRODUCTION OF SINTERED URANIUM DIOXIDE

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Russell, L.E.; Harrison, J.D.L.; Brett, N.H.

    A method is described for producing a dense sintered body of uranium dioxide or a mixture thereof with plutonium dioxide. Compacted uranium dioxide or a compacted uranium dioxide-plutonium dioxide mixture is heated to at least 1300 deg C in an atmosphere of carbon dioxide or carbon dioxide mixed with carbon monoxide. (R.J.S.)

  12. Consolidation and densification methods for fibrous monolith processing

    DOEpatents

    Sutaria, Manish P.; Rigali, Mark J.; Cipriani, Ronald A.; Artz, Gregory J.; Mulligan, Anthony C.

    2004-05-25

    Methods for consolidation and densification of fibrous monolith composite structures are provided. Consolidation and densification of two- and three-dimensional fibrous monolith components having complex geometries can be achieved by pressureless sintering. The fibrous monolith composites are formed from filaments having at least a first material composition generally surrounded by a second material composition. The composites are sintered in an inert gas or nitrogen gas at a pressure of no more than about 30 psi to provide consolidated and densified fibrous monolith composites.

  13. Studies of reaction geometry in oxidation and reduction of the alkaline silver electrode

    NASA Technical Reports Server (NTRS)

    Butler, E. A.; Blackham, A. U.

    1971-01-01

    Two methods of surface area estimations of sintered silver electrodes have given roughness factors of 58 and 81. One method is based on constant current oxidation, the other is based on potentiostatic oxidation. Examination of both wire and sintered silver electrodes via scanning electron microscopy at various stages of oxidation have shown that important structural features are mounds of oxide. In potentiostatic oxidations these appear to form on sites instantaneously nucleated while in constant current oxidations progressive nucleation is indicated.

  14. Microwave assisted esterification of acidified oil from waste cooking oil by CERP/PES catalytic membrane for biodiesel production.

    PubMed

    Zhang, Honglei; Ding, Jincheng; Zhao, Zengdian

    2012-11-01

    The traditional heating and microwave assisted method for biodiesel production using cation ion-exchange resin particles (CERP)/PES catalytic membrane were comparatively studied to achieve economic and effective method for utilization of free fatty acids (FFAs) from waste cooking oil (WCO). The optimal esterification conditions of the two methods were investigated and the experimental results showed that microwave irradiation exhibited a remarkable enhanced effect for esterification compared with that of traditional heating method. The FFAs conversion of microwave assisted esterification reached 97.4% under the optimal conditions of reaction temperature 60°C, methanol/acidified oil mass ratio 2.0:1, catalytic membrane (annealed at 120°C) loading 3g, microwave power 360W and reaction time 90min. The study results showed that it is a fast, easy and green way to produce biodiesel applying microwave irradiation. Copyright © 2012 Elsevier Ltd. All rights reserved.

  15. Synthesis and mechanical/magnetic properties of nano-grained iron-oxides prepared with an inert gas condensation and pulse electric current sintering process

    NASA Astrophysics Data System (ADS)

    Choa, Yong-Ho; Nakayama, Tatachika; Sekino, Tohru; Niihara, Koichi

    1999-04-01

    Nanocrystalline iron-oxide powder was fabricated with an inert gas condensation (IGC) method combined with evaporation, and in-situ oxidation techniques. The particle size of iron-oxide powder was controlled by varying the helium gas pressure between 0.1 and 10 Torr, with the smallest one =10 nm at 0.1 Torr. The nanostructure was characterized by TEM. Nanocrystalline iron-oxide powder was sintered with the pulse electric current sintering (PECS) method to obtain densified γ-Fe2O3 materials, and suitably densified nano-grained γ-Fe2O3 materials (≈ 40 nm) of great hardness were obtained. The correlation between the nanostructure and magnetic properties of nanocrystalline powder and densified γ-Fe2O3 materials was also investigated.

  16. Porous metals from sintering of nanoparticles

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cappillino, Patrick J.; Robinson, David B.

    A method including encapsulating or capping metallic nanoparticles by a dendrimer or a polymer with binding sites for metal particless or metal ions dispersed in a fluid; modifying the fluid to disrupt the interaction of the dendrimer or polymer with the particles; and subsequently or concomitantly sintering or partially consolidating the zero valent metal. A method including introducing a first metal salt and a second metal salt into a dendrimer or a polymer with binding sites for metals or metal ions; reducing a metal ion of the first metal salt to a zero valent first metal and a metal ionmore » of the second metal salt to a zero valend second metal; disrupting an interaction between the dendrimer or the polymer and the first metal and the second metal; and sintering or partially consolidating the first metal and the second metal.« less

  17. Method and apparatus for thickness measurement using microwaves

    DOEpatents

    Woskov, Paul [Bedford, MA; Lamar, David A [West Richland, WA

    2001-01-01

    The method for measuring the thickness of a material which transmits a detectable amount of microwave radiation includes irradiating the material with coherent microwave radiation tuned over a frequency range. Reflected microwave radiation is detected, the reflected radiation having maxima and minima over the frequency range as a result of coherent interference of microwaves reflected from reflecting surfaces of the material. The thickness of the material is determined from the period of the maxima and minima along with knowledge of the index of refraction of the material.

  18. Influence of temperature and aging time on HA synthesized by the hydrothermal method.

    PubMed

    Kothapalli, C R; Wei, M; Legeros, R Z; Shaw, M T

    2005-05-01

    The influence of temperature and aging time on the morphology and mechanical properties of nano-sized hydroxyapatite (HA) synthesized by a hydrothermal method is reported here. The pre-mixed reactants were poured into a stirred autoclave and reacted at temperatures between 25-250 degrees C for 2-10 h. HA powders thus obtained were examined using X-ray diffraction (XRD), high-resolution field emission scanning electron microscopy (FESEM) and a particle size analyzer. It was found that the aspect ratio of the particles increased with the reaction temperature. The length of the HA particles increased with the reaction temperature below 170 degrees C, but it decreased when the temperature was raised above 170 degrees C. The agglomerates of HA particles were formed during synthesis, and their sizes were strongly dependent on reaction temperatures. As the reaction temperature increased, the agglomerate size decreased (p = 0.008). The density of the discs pressed from these samples reached 85-90% of the theoretical density after sintering at 1200 degrees C for 1 h. No decomposition to other calcium phosphates was detected at this sintering temperature. A correlation existed (p = 0.05) between the agglomerate sizes of HA particles synthesized at various conditions and their sintered densities. With the increase of the agglomerate size, the sintered density of the HA compact decreased. It was found that both the sintered density and flexural strength increased with increasing aging time and reaction temperature. A maximum flexural strength of 78 MPa was observed for the samples synthesized at 170 degrees C for 5 h with the predicted average at these conditions being 65 MPa. These samples attained an average sintered density of 88%.

  19. Development of high Tc (greater than 110K) Bi, Tl and Y-based materials as superconducting circuit elements

    NASA Technical Reports Server (NTRS)

    Haertling, Gene H.; Lee, Burtrand; Grabert, Gregory; Gilmour, Phillip

    1991-01-01

    This report is presented in two parts. Part 1 deals primarily with Bi-based materials and a small amount of work on a Y-based composition while Part 2 covers work on Tl-based materials. In Part 1, a reliable and reproducible process for producing bulk bismuth-based superconductors has been developed. It is noted however, that a percentage of the tapecast material experiences curling and fracturing after a 30 hour sintering period and is thus in need of further examination. The Bi-Sr-Ca-Cu-O (BSCCO) material has been characterized by critical temperature data, X-ray diffraction data, and surface morphology. In the case of T sub c, it is not critical to anneal the material. It appears that the BSCCO material has the possibility of producing a better grounding strap than that of the 123 material. Attempts to reproduce near room temperature superconductors in the Y-Ba-Cu-O system were unsuccessful. In Part 2, several methods of processing the high temperature superconductor Tl2Ba2Ca2Cu3O10 were investigated; i.e., different precursor compositions were sintered at various sintering times and temperatures. The highest superconductig temperature was found to be 117.8K when fired at 900 C for three hours. Higher sintering temperatures produced a melted sample which was nonsuperconducting at liquid nitrogen temperature. Also, a preliminary study found Li2O substitutions for copper appeared to increase the transition temperature and create fluxing action upon sintering. It was suggested that lower sintering temperatures might be obtained with lithium additions to produce reliable Tl2Ba2Ca2Cu3O10 processing methods.

  20. Production of large resonant plasma volumes in microwave electron cyclotron resonance ion sources

    DOEpatents

    Alton, Gerald D.

    1998-01-01

    Microwave injection methods for enhancing the performance of existing electron cyclotron resonance (ECR) ion sources. The methods are based on the use of high-power diverse frequency microwaves, including variable-frequency, multiple-discrete-frequency, and broadband microwaves. The methods effect large resonant "volume" ECR regions in the ion sources. The creation of these large ECR plasma volumes permits coupling of more microwave power into the plasma, resulting in the heating of a much larger electron population to higher energies, the effect of which is to produce higher charge state distributions and much higher intensities within a particular charge state than possible in present ECR ion sources.

  1. Selection of biological indicator for validating microwave heating sterilization.

    PubMed

    Sasaki, K; Mori, Y; Honda, W; Miyake, Y

    1998-01-01

    For the purpose of selecting an appropriate biological indicator for evaluation of the effects of microwave heating sterilization, we examined aerobic bacterial spores to determine whether microwaves have non-thermal sterilization effects. After microwave irradiation on dry bacterial spores (three species), none of the bacterial spores were killed. The survival rate of the spores after microwave irradiation of spore suspensions (twelve species) was compared with that after heating by a conventional method. The order of heat resistance in the bacterial species was similar between the two heating methods. Bacillus stearothermophilus spores were the most heat-resistant. These results suggest that microwaves have no non-thermal sterilization effects on bacterial spores, the specific resistant spores to microwave heating, and microwave heating sterilization can be evaluated in the same way as for conventional heating sterilization. As a biological indicator for evaluation of overkill sterilization, B. stearothermophilus spores may be appropriate for microwave heating sterilization as well as steam sterilization.

  2. Method of nitriding, carburizing, or oxidizing refractory metal articles using microwaves

    DOEpatents

    Holcombe, Cressie E.; Dykes, Norman L.; Tiegs, Terry N.

    1992-01-01

    A method of nitriding an article of refractory-nitride-forming metal or metalloids. A consolidated metal or metalloid article is placed inside a microwave oven and nitrogen containing gas is introduced into the microwave oven. The metal or metalloid article is heated to a temperature sufficient to react the metal or metalloid with the nitrogen by applying a microwave energy within the microwave oven. The metal or metalloid article is maintained at that temperature for a period of time sufficient to convert the article of metal or metalloid to an article of refractory nitride. in addition, a method of applying a coating, such as a coating of an oxide, a carbide, or a carbo-nitride, to an article of metal or metalloid by microwave heating.

  3. Method of nitriding, carburizing, or oxidizing refractory metal articles using microwaves

    DOEpatents

    Holcombe, C.E.; Dykes, N.L.; Tiegs, T.N.

    1992-10-13

    A method of nitriding an article of refractory-nitride-forming metal or metalloids. A consolidated metal or metalloid article is placed inside a microwave oven and nitrogen containing gas is introduced into the microwave oven. The metal or metalloid article is heated to a temperature sufficient to react the metal or metalloid with the nitrogen by applying a microwave energy within the microwave oven. The metal or metalloid article is maintained at that temperature for a period of time sufficient to convert the article of metal or metalloid to an article of refractory nitride. in addition, a method of applying a coating, such as a coating of an oxide, a carbide, or a carbo-nitride, to an article of metal or metalloid by microwave heating.

  4. Effect of sintering temperature on the microstructure, electrical and magnetic properties of Zn0.98 Mn0.02O material

    NASA Astrophysics Data System (ADS)

    Sebayang, K.; Aryanto, D.; Simbolon, S.; Kurniawan, C.; Hulu, S. F.; Sudiro, T.; Ginting, M.; Sebayang, P.

    2018-02-01

    Zn0.98Mn0.02O material was synthesized from ZnO and MnO2 powders using solid state reaction method. The microstructure, electrical and magnetic properties of Zn0.98Mn0.02O were studied as a function of sintering temperature. The X-ray diffraction analysis indicates that the main phase of synthesized sample is composed of hexagonal wurtzite ZnO phase. While the secondary phase of ZnMnO3 were found at the sintering temperature of 700°C and 900°C. The electrical properties measurement of Zn0.98Mn0.02O sample revealed that the resistivity and the dielectric constant of samples increase with the increase of sintering temperature. The ferromagnetic properties at room temperature were observed in the Zn0.98Mn0.02O samples sintered at 500°C and 700°C. It also found that the increase in sintering temperature leads to a tendency toward the changes in the magnetic properties into paramagnetic. The presence of ZnMnO3 secondary phases in Zn0.98Mn0.02O system is believed to be a factor that affects the decrease of the electrical and magnetic properties of the sample.

  5. Synthesis of Ti-6Al-4V alloy with nano-TiN microstructure via spark plasma sintering technique

    NASA Astrophysics Data System (ADS)

    E Falodun, O.; Obadele, B. A.; Oke, S. R.; E Maja, M.; Olubambi, P. A.

    2017-12-01

    The effect of nano-TiN dispersion strengthened Ti-6Al-4V via spark plasma sintering method has been investigated. Ti-6Al-4V with 4 vol. percent of nano-TiN were mixed in a Turbula shaker mixer for 8 h at a speed of 49 rpm and the admixed powders were sintered at sintering temperature range of 1000 - 1100 °C, holding time of 10-30 mins, heating rate of 100 °C/min under an applied pressure of 50 MPa. The morphology of the as-received and sintered compacts was examined by scanning electron microscopy (SEM) equipped with energy dispersive X-ray spectroscopy (EDS) and phase analysis was done by X-ray diffractometry (XRD). The sintered compacts without nano-TiN reveal lamellar structure while reinforced Ti-6Al-4V with nano-TiN shows a bimodal structure and titanium nitride has a great influence on a grain growth at high temperature. Furthermore, the microstructural formation mechanism was investigated. With the addition of the content of Ti-6Al-4V with 4 vol.% of nano-TiN, the micro-hardness also improved and this was due to homogenous distribution of TiN in Ti-6Al-4V matrix.

  6. Effect of sintering temperatures on the in vitro bioactivity, molecular structure and mechanical properties of titanium/carbonated hydroxyapatite nanobiocomposites

    NASA Astrophysics Data System (ADS)

    Youness, Rasha A.; Taha, Mohammed A.; Ibrahim, Medhat A.

    2017-12-01

    Titanium-containing carbonated hydroxyapatite (Ti-CHA) nanocomposite powders, with different CHA contents, have been prepared using high-energy ball milling method. The effect of sintering temperatures, 900, 1100 and 1300 °C on molecular structure and microstructure of these samples were examined by XRD; Fourier transform infrared (FTIR) spectroscopy and scanning electron microscopy (SEM), respectively. Furthermore, their mechanical properties including hardness, longitudinal modulus, Young's modulus, shear modulus, bulk modulus and Poisson's ratio were measured by ultrasonic non-destructive technique. Moreover, bioactivity of sintered samples at different firing temperatures was assessed by immersing them in simulated body fluid at 37 ± 0.5 °C for 7 days and then, analyzed by FTIR spectroscopy. The results pointed out that increasing sintering temperature up to 1100 °C caused significant increases in densities and mechanical properties of these nanocomposite samples. However, further increase of firing temperature to 1300 °C was responsible for complete CHA decomposition and the resultant α-tricalcium (α-TCP) phase greatly affected these properties. On the contrary, better bioactivity was observed for sintered samples at 900 °C only. However, increase of sintering temperature of these samples up to 1300 °C led to severe decrease in their bioactivity due to the formation of highly soluble α-TCP phase.

  7. [Studies on sintering of dental porcelain. (Part 1) Binary system sintering of alumina and low fusing frit (author's transl)].

    PubMed

    Kuwayama, N; Kon, M

    1981-04-01

    Dental porcelains were made from frit and glass powder with electro fused alumina powder addition in the range from 20 to 60 wt% using sintering method at the temperature from 500 degree C to 1 000 degree C, and the effects of alumina content and firing temperature on firing processes of sintered composite were investigated. Shrinkage curves of the powder compacts varied with kind of frit and content of alumina. Particulary, powder compact with alumina addition in the range from 50 to 55% was found to have a remarkable influence for extention of firing temperature range. The densification of the powder compacts was considered to be accelerated by the dissolution of a small a mount of alumina particle into the frit and glass above 900 degree C. Expansion coefficient value of sintered composite of alumina and Pyrex glass powder gradually increased with increase of alumina content. Inversely, expansion coefficient of soda-lime-silica glass showed the minimum value at 40 wt% alumina content and then had a tendency of slight increases with increase of alumina content.

  8. Development of 2024 AA-Yttrium composites by Spark Plasma Sintering

    NASA Astrophysics Data System (ADS)

    Vidyasagar, CH S.; Karunakar, D. B.

    2018-04-01

    The method of fabrication of MMNCs is quite a challenge, which includes advanced processing techniques like Spark Plasma Sintering (SPS), etc. The objective of the present work is to fabricate aluminium based MMNCs with the addition of small amounts of yttrium using Spark Plasma Sintering and to evaluate their mechanical and microstructure properties. Samples of 2024 AA with yttrium ranging from 0.1% to 0.5 wt% are fabricated by Spark Plasma Sintering (SPS). Hardness of the samples is determined using Vickers hardness testing machine. The metallurgical characterization of the samples is evaluated by Optical Microscopy (OM), Field Emission Scanning Electron Microscopy (FE-SEM). Unreinforced 2024 AA sample is also fabricated as a benchmark to compare its properties with those of the composite developed. It is found that the yttrium addition increases the above mentioned properties by altering the precipitation kinetics and intermetallic formation to some extent and then decreases gradually when yttrium wt% increases beyond 0.3 wt%. High density (˂ 99.75) is achieved in the samples and highest hardness achieved is 114 Hv, fabricated by spark plasma sintering and uniform distribution of yttrium is observed.

  9. Preparation of micro-porous bioceramic containing silicon-substituted hydroxyapatite and beta-tricalcium phosphate.

    PubMed

    Fuh, Lih-Jyh; Huang, Ya-Jing; Chen, Wen-Cheng; Lin, Dan-Jae

    2017-06-01

    Dimensional instability caused by sintering shrinkage is an inevitable drawback for conventional processing of hydroxyapatite (HA). A new preparation method for biphasic calcium phosphates was developed to increase micro pores and biodegradation without significant dimensional change. Powder pressed HA discs, under 100MPa, were immersed in a colloidal mixture of tetraethoxysilane (TEOS) and ammonium hydroxide for 10min, followed by drying, and then were sintered at 900°C, 1050°C, and 1200°C, respectively. Comparing with pure HA discs, the newly prepared product sintered up to 1200°C contained silicon substituted HA, beta-tricalcium phosphate, and calcium silicate with better micro-porosity, high specific surface area, less sintering shrinkage and the strength maintained. The cytocompatibility test demonstrated a better viability for D1 mice stem cells cultured on TEOS treated HA for 14days compared to the pure HA. This simple TEOS sol-gel pretreatment has the potential to be applied to any existing manufacturing process of HA scaffold for better control of sintering shrinkage, create micropores, and increase biodegradation. Copyright © 2017 Elsevier B.V. All rights reserved.

  10. Sinter of uniform, predictable, blemish-free nickel plaque for large aerospace nickel cadmium cells

    NASA Technical Reports Server (NTRS)

    Seiger, H. N.

    1975-01-01

    A series of nickel slurry compositions were tested. Important slurry parameters were found to be the nature of the binder, a pore former and the method of mixing. A slow roll mixing which is non-turbulent successfully eliminated entrapped air so that bubbles and pockets were avoided in the sinter. A slurry applicator was developed which enabled an equal quantity of slurry to be applied to both sides of the grid. Sintering in a furnace having a graded atmosphere characteristic, ranging from oxidizing to strongly reducing, improved adhesion of porous sinter to grid and resulted in a uniform welding of nickel particles to each other throughout the plaque. Sintering was carried out in a horizontal furnace having three heating zones and 16 heating control circuits. Tests used for plaque evaluation include (1) appearance, (2) grid location and adhesion, (3) mechanical strength, (4) thickness, (5) weight per unit area, (6) void volume per unit area, (7) surface area and (8) electrical resistance. Plaque material was impregnated using Heliotek proprietary processes and 100 AH cells were fabricated.

  11. Effect of fiber addition on slow crack growth of a dental porcelain.

    PubMed

    de Araújo, Maico Dutra; Miranda, Ranulfo Benedito de Paula; Fredericci, Catia; Yoshimura, Humberto Naoyuki; Cesar, Paulo Francisco

    2015-04-01

    To evaluate the effect of the processing method (conventional sintering, S, and heat-pressing, HP) and addition of potassium titanate fibers, PTF, on the microstructure, mechanical properties (flexural strength, σf, and Weibull parameters, m and σ5%), slow crack growth parameters n (stress corrosion susceptibility coefficient), and optical properties (translucency parameter, TP, and opalescence index, OI) of a feldsphatic dental porcelain. Disks (n = 240, Ø12 × 1 mm) of porcelain (Vintage-Halo, Shofu) were produced using S and HP methods with and without addition of 10 wt% (conventional sintering) or 5 wt% (heat-pressing) of PTF. For the S method, porcelain was sintered in a conventional furnace. In the HP technique, refractory molds were produced by lost wax technique. The porcelain slurry was dry-pressed (3t/30s) to form a cylinder with 12 mm (diameter) and 20mm (height), which was heat-pressed for 5 min/3.5 bar into the mold. Specimens were tested for biaxial flexural strength in artificial saliva at 37°C. Weibull analysis was used to determine m and σ5%. Slow crack growth (SCG) parameters were determined by the dynamic fatigue test, and specimens were tested in biaxial flexure at five stress rates: 10(-2), 10(-1), 10(0), 10(1) and 10(2)MPa/s (n=10), immersed in artificial saliva at 37°C. Parameter n was calculated and statistically analyzed according to ASTM F394-78. Optical properties were determined in a spectrophotometer in the diffuse reflectance mode. The highest n value was obtained by the combination of heat-pressing with fiber addition (37.1) and this value was significantly higher than those obtained by both sintered groups (26.2 for control group and 27.7 for sintered with fiber). Although heat-pressing alone also resulted in higher n values compared to the sintered groups, there were no significant differences among them. Fiber addition had no effect on mechanical strength, but it resulted in decreased TP values and increased OI values for both processing methods. Heat-pressing alone was able to reduce the porosity level of the porcelain. Addition of PTF combined with heat-pressing can reduce strength degradation of a dental porcelain compared to sintered materials with or without fibers. Heat-pressing (HP) alone should be considered as a good alternative for clinical cases where high translucency is required. Copyright © 2014 Elsevier Ltd. All rights reserved.

  12. Low temperature synthesis and sintering of d-UO2 nanoparticles.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nenoff, Tina Maria; Ferreira, Summer Rhodes; Robinson, David B.

    We report on the novel room temperature method of synthesizing advanced nuclear fuels; a method that virtually eliminates any volatility of components. This process uses radiolysis to form stable nanoparticle (NP) nuclear transuranic (TRU) fuel surrogates and in-situ heated stage TEM to sinter the NPs. The radiolysis is performed at Sandia's Gamma Irradiation Facility (GIF) 60Co source (3 x 10{sup 6} rad/hr). Using this method, sufficient quantities of fuels for research purposes can be produced for accelerated advanced nuclear fuel development. We are focused on both metallic and oxide alloy nanoparticles of varying compositions, in particular d-U, d-U/La alloys andmore » d-UO2 NPs. We present detailed descriptions of the synthesis procedures, the characterization of the NPs, the sintering of the NPs, and their stability with temperature. We have employed UV-vis, HRTEM, HAADF-STEM imaging, single particle EDX and EFTEM mapping characterization techniques to confirm the composition and alloying of these NPs.« less

  13. Coarse-grained computation for particle coagulation and sintering processes by linking Quadrature Method of Moments with Monte-Carlo

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zou Yu, E-mail: yzou@Princeton.ED; Kavousanakis, Michail E., E-mail: mkavousa@Princeton.ED; Kevrekidis, Ioannis G., E-mail: yannis@Princeton.ED

    2010-07-20

    The study of particle coagulation and sintering processes is important in a variety of research studies ranging from cell fusion and dust motion to aerosol formation applications. These processes are traditionally simulated using either Monte-Carlo methods or integro-differential equations for particle number density functions. In this paper, we present a computational technique for cases where we believe that accurate closed evolution equations for a finite number of moments of the density function exist in principle, but are not explicitly available. The so-called equation-free computational framework is then employed to numerically obtain the solution of these unavailable closed moment equations bymore » exploiting (through intelligent design of computational experiments) the corresponding fine-scale (here, Monte-Carlo) simulation. We illustrate the use of this method by accelerating the computation of evolving moments of uni- and bivariate particle coagulation and sintering through short simulation bursts of a constant-number Monte-Carlo scheme.« less

  14. Titanium compacts produced by the pulvimetallurgical hydride-dehydride method for biomedical applications.

    PubMed

    Barreiro, M M; Grana, D R; Kokubu, G A; Luppo, M I; Mintzer, S; Vigna, G

    2010-04-01

    Titanium powder production by the hydride-dehydride method has been developed as a non-expensive process. In this work, commercially pure grade two Ti specimens were hydrogenated. The hydrided material was milled in a planetary mill. The hydrided titanium powder was dehydrided and then sieved to obtain a particle size between 37 and 125 microm in order to compare it with a commercial powder produced by chemical reduction with a particle size lower than 150 microm. Cylindrical green compacts were obtained by uniaxial pressing of the powders at 343 MPa and sintering in vacuum. The powders and the density of sintered compacts were characterized, the oxygen content was measured and in vivo tests were performed in the tibia bones of Wistar rats in order to evaluate their biocompatibility. No differences were observed between the materials which were produced either with powders obtained by the hydride-dehydride method or with commercial powders produced by chemical reduction regarding modifications in compactation, sintering and biological behaviour.

  15. Experimental study on parasitic mode suppression using FeSiAl in relativistic klystron amplifier

    NASA Astrophysics Data System (ADS)

    Zhang, Zehai

    2015-03-01

    Experimental study of parasitic mode suppression using electromagnetic attenuate material FeSiAl in an S-band Relativistic Klystron Amplifier (RKA) is presented in this paper. The FeSiAl powder is coated and sintered onto the inner surface of a drift tube which locates between the input and the middle cavity of the RKA. Cold tests show that the attenuate rate of the tube against parasitic mode TE11 is about 50%. Experiments carried out on the Torch-01 accelerator present that the tube is effective in suppressing the parasitic mode. Two typical outputs are obtained. When the diode voltage is on a moderate level, the RKA operates well and the parasitic mode is totally suppressed. The pulse length of the High Power Microwave (HPM) almost equals the electron beam pulse length and the HPM average output power is about 300 MW, with a power efficiency of 10%. When the diode voltage is on a higher level, the output power and efficiency rise but the parasitic mode oscillation occurred and the pulse length is shortened. By contrast, the parasitic mode oscillation is too strong for the RKA to operate normally with un-sintered drift tube. The experimental study implies that FeSiAl is effective in suppressing the parasitic mode oscillation in a certain extent. However, total suppression needs a deeper attenuate rate and further investigation.

  16. Experimental study on parasitic mode suppression using FeSiAl in Relativistic Klystron Amplifier.

    PubMed

    Zhang, Zehai

    2015-03-01

    Experimental study of parasitic mode suppression using electromagnetic attenuate material FeSiAl in an S-band Relativistic Klystron Amplifier (RKA) is presented in this paper. The FeSiAl powder is coated and sintered onto the inner surface of a drift tube which locates between the input and the middle cavity of the RKA. Cold tests show that the attenuate rate of the tube against parasitic mode TE11 is about 50%. Experiments carried out on the Torch-01 accelerator present that the tube is effective in suppressing the parasitic mode. Two typical outputs are obtained. When the diode voltage is on a moderate level, the RKA operates well and the parasitic mode is totally suppressed. The pulse length of the High Power Microwave (HPM) almost equals the electron beam pulse length and the HPM average output power is about 300 MW, with a power efficiency of 10%. When the diode voltage is on a higher level, the output power and efficiency rise but the parasitic mode oscillation occurred and the pulse length is shortened. By contrast, the parasitic mode oscillation is too strong for the RKA to operate normally with un-sintered drift tube. The experimental study implies that FeSiAl is effective in suppressing the parasitic mode oscillation in a certain extent. However, total suppression needs a deeper attenuate rate and further investigation.

  17. Particle morphology influence on mechanical and biocompatibility properties of injection molded Ti alloy powder.

    PubMed

    Gülsoy, H Özkan; Gülsoy, Nagihan; Calışıcı, Rahmi

    2014-01-01

    Titanium and Titanium alloys exhibits properties that are excellent for various bio-applications. Metal injection molding is a processing route that offers reduction in costs, with the added advantage of near net-shape components. Different physical properties of Titanium alloy powders, shaped and processed via injection molding can achieve high complexity of part geometry with mechanical and bioactivity properties, similar or superior to wrought material. This study describes that the effect of particle morphology on the microstructural, mechanical and biocompatibility properties of injection molded Ti-6Al-4V (Ti64) alloy powder for biomaterials applications. Ti64 powders irregular and spherical in shape were injection molded with wax based binder. Binder debinding was performed in solvent and thermal method. After debinding the samples were sintered under high vacuum. Metallographic studies were determined to densification and the corresponding microstructural changes. Sintered samples were immersed in a simulated body fluid (SBF) with elemental concentrations that were comparable to those of human blood plasma for a total period of 15 days. Both materials were implanted in fibroblast culture for biocompatibility evaluations were carried out. The results show that spherical and irregular powder could be sintered to a maximum theoretical density. Maximum tensile strength was obtained for spherical shape powder sintered. The tensile strength of the irregular shape powder sintered at the same temperature was lower due to higher porosity. Finally, mechanical tests show that the irregular shape powder has lower mechanical properties than spherical shape powder. The sintered irregular Ti64 powder exhibited better biocompatibility than sintered spherical Ti64 powder. Results of study showed that sintered spherical and irregular Ti64 powders exhibited high mechanical properties and good biocompatibility properties.

  18. [Effect of staining method and sintering temperature on the color of porcelain-fused-to-metal restorations].

    PubMed

    Wang, Yan; Yan, Wei-hao; Zhang, Xin-chun; Huang, Yue; Shen, Lin-han

    2004-12-01

    To investigate the effect of staining method and sintering temperature on the color of porcelain-fused-metal restorations. 40 cylindrical stained porcelain-metal specimens of 15 mm in diameter and 6 mm in height were fabricated with customized mould, consisting of 2 mm Ni-Cr metal, 1 mm opaque porcelain, 2 mm dentine porcelain and 1 mm enamel porcelain. The specimens were prepared by 5 techniques, 8 for each group. Group A: internal staining, Group B: external staining, 900 degrees centigrade sintering temperature was used in both A and B group; Group C to E: external staining, with the sintering temperature of 880 degrees centigrade, 900 degrees centigrade and 920 degrees centigrade respectively. Sofu A2 porcelain and Sofu 44 stain system were used for the study. Using standard white plate as a reference, colors (L*,a*,b* coordinates) of the specimens were measured with a computerized colorimeter. Student's t test and one way ANOVA were used to analyze the data. DeltaE, b* and Delta C(ab)* of Group B (external staining) and group A (internal staining) were 43.72 +/- 2.99/26.51 +/- 1.64/31.31 +/- 2.48 and 39.71 +/- 1.78/23.69 +/- 0.36/26.55 +/- 2.16, respectively. The values of the former group were significantly higher than that of the latter (P < 0.05); For Group C to E, there were no significant differences in all the color parameters. Staining method has a significant effect on the color parameters of porcelain-fused-to-metal restorations; For external staining, within the clinically-used range, changing the sintering temperature does not have an obvious effect on the color.

  19. Enhanced Multiferroic Properties of YMnO3 Ceramics Fabricated by Spark Plasma Sintering Along with Low-Temperature Solid-State Reaction

    PubMed Central

    Wang, Meng; Wang, Ting; Song, Shenhua; Ravi, Muchakayala; Liu, Renchen; Ji, Shishan

    2017-01-01

    Based on precursor powders with a size of 200–300 nm prepared by the low-temperature solid-state reaction method, phase-pure YMnO3 ceramics are fabricated using spark plasma sintering (SPS). X-ray diffraction (XRD) and scanning electron microscopy (SEM) reveal that the high-purity YMnO3 ceramics can be prepared by SPS at 1000 °C for 5 minutes with annealing at 800 °C for 2 h. The relative density of the sample is as high as 97%, which is much higher than those of the samples sintered by other methods. The present dielectric and magnetic properties are much better than those of the samples fabricated by conventional methods and SPS with ball-milling precursors, and the ferroelectric loops at room temperature can be detected. These findings indicate that the YMnO3 ceramics prepared by the low temperature solid reaction method and SPS possess excellent dielectric lossy ferroelectric properties at room temperature, and magnetic properties at low temperature (10 K), making them suitable for potential multiferroic applications. PMID:28772832

  20. The development and characterization of a novel aluminum-copper-magnesium P/M alloy

    NASA Astrophysics Data System (ADS)

    Boland, Christopher Daniel

    Powder metallurgy (P/M) is a metal fabrication process that is characterized by high yield and ability to be automated, as well as the resultant part complexity and reproducibility. This press and sinter process is favoured by the automotive industry. Aluminum alloy P/M parts are particularly attractive because they have a high strength to weight ratio and they can be made to have high corrosion and wear resistance. There are few commercial Al P/M alloys currently in use and they occupy a small portion of the market. To expand the use of aluminum in the industry a new alloy was created, modeled after the wrought AC2024 family of alloys. P/M 2324, with a nominal composition of Al-4.4Cu-1.5Mg, was assessed using physical, chemical and mechanical methods to help maximize alloy properties through processing. The objective of this work was to develop a viable industrial alloy. The investigation of 2324 included the evaluation of starting powders, starting composition, processing methods, secondary treatments, and industrial response. All blending and compacting was completed at Dalhousie University, while sintering was undertaken at Dalhousie and GKN Sinter Metals. The green alloy was assessed for best compaction pressure using green density and strength. The sintered alloy was assessed to determine the best press and sinter variables, using dimensional change, sintered density, apparent hardness, tensile properties and microscopy. These same sintered properties were tested to determine if sintering done on a laboratory scale could be replicated industrially. The viability of heat treatment was tested using differential scanning calorimetry, hardness and tensile properties. The alloy was also subject to modifications of Cu and Mg amounts, as well as to the addition of tin to the base composition. It was determined that compaction at 400MPa and sintering at 600°C for 20min produced the best properties for the sintered bodies. The resultant mechanical properties were attributed to a high sintered density (2.68g/cm 3 or 97% of theoretical) and strengthening mechanisms present in the Al-Cu-Mg system. These mechanisms included possible secondary phases formed in the alloy seen using microscopy and differential scanning calorimetry analyses. A T6 heat treatment of solutionizing at 495°C for 1.5h, water quench and aging for 10h was found to improve the properties of 2324. Modifications to Cu and Mg alloying additions produced few gains. However, the presence of 0.2Sn (w/o) was found to enhance the alloy. Resultant properties of the optimal alloy included an apparent hardness of 76.6HRE and an ultimate tensile strength of 367MPa. Also studied was the discrepancy observed in sintering at GKN and Dalhousie and the mechanisms at work with the addition of Sn. 2324 was adapted successfully to P/M applications. It was capable of performing against an established Al P/M industry standard, and with further testing its uses can undoubtedly be expanded.

  1. Apparatus and method for microwave processing of materials

    DOEpatents

    Johnson, Arvid C.; Lauf, Robert J.; Bible, Don W.; Markunas, Robert J.

    1996-01-01

    A variable frequency microwave heating apparatus (10) designed to allow modulation of the frequency of the microwaves introduced into a furnace cavity (34) for testing or other selected applications. The variable frequency heating apparatus (10) is used in the method of the present invention to monitor the resonant processing frequency within the furnace cavity (34) depending upon the material, including the state thereof, from which the workpiece (36) is fabricated. The variable frequency microwave heating apparatus (10) includes a microwave signal generator (12) and a high-power microwave amplifier (20) or a microwave voltage-controlled oscillator (14). A power supply (22) is provided for operation of the high-power microwave oscillator (14) or microwave amplifier (20). A directional coupler (24) is provided for detecting the direction and amplitude of signals incident upon and reflected from the microwave cavity (34). A first power meter (30) is provided for measuring the power delivered to the microwave furnace (32). A second power meter (26) detects the magnitude of reflected power. Reflected power is dissipated in the reflected power load (28).

  2. Improved consolidation of silicon carbide

    NASA Technical Reports Server (NTRS)

    Freedman, M. R.; Millard, M. L.

    1986-01-01

    Alpha silicon carbide powder was consolidated by both dry and wet methods. Dry pressing in a double acting steel die yielded sintered test bars with an average flexural strength of 235.6 MPa with a critical flaw size of approximately 100 micro m. An aqueous slurry pressing technique produced sintered test bars with an average flexural strength of 440.8 MPa with a critical flaw size of approximately 25 micro m. Image analysis revealed a reduction in both pore area and pore size distribution in the slurry pressed sintered test bars. The improvements in the slurry pressed material properties are discussed in terms of reduced agglomeration and improved particle packing during consolidation.

  3. Ceramic electrolyte coating methods

    DOEpatents

    Seabaugh, Matthew M.; Swartz, Scott L.; Dawson, William J.; McCormick, Buddy E.

    2004-10-12

    Processes for preparing aqueous suspensions of a nanoscale ceramic electrolyte material such as yttrium-stabilized zirconia. The invention also includes a process for preparing an aqueous coating slurry of a nanoscale ceramic electrolyte material. The invention further includes a process for depositing an aqueous spray coating slurry including a ceramic electrolyte material on pre-sintered, partially sintered, and unsintered ceramic substrates and products made by this process.

  4. THERMAL FISSION REACTOR COMPOSITIONS AND METHOD OF FABRICATING SAME

    DOEpatents

    Blainey, A.

    1959-10-01

    A body is presented for use in a thermal fission reactor comprising a sintered compressed mass of a substance of the group consisting of uranium, thorium, and oxides and carbides of uranium and thorium, enclosed in an envelope of a sintered, compacted, heat-conductive material of the group consisting of beryllium, zirconium, and oxides and carbides of beryllium and zirconium.

  5. Porous-electrode preparation method

    DOEpatents

    Arons, R.M.; Dusek, J.T.

    1981-09-17

    A porous sintered plaque is provided with a bimodal porosity that is especially well suited for use as an electrode within a molten carbonate fuel cell. The coarse porosity is sufficient for admitting gases into contact with the reaction surfaces while the fine porosity is wetted with and retains molten electrolyte on the reaction sites. The electrode structure is prepared by providing a very fine powder such as nickel oxide and blending the powder with a suitable decomposable binder to form a solid mass. The mass is comminuted into agglomerate size particles substantially larger than the fine oxide particles and formed into a cohesive compact for subsequent sintering. Sintering is carried out at sufficient conditions to bind the agglomerates together into a porous structure having both coarse and fine porosity. Where lithiated nickel oxide cathodes are prepared, the sintering conditions can be moderate enough to retain substantial quantities of lithium within the electrode for adequate conductivity.

  6. Porous electrode preparation method

    DOEpatents

    Arons, Richard M.; Dusek, Joseph T.

    1983-01-01

    A porous sintered plaque is provided with a bimodal porosity that is especially well suited for use as an electrode within a molten carbonate fuel cell. The coarse porosity is sufficient for admitting gases into contact with the reaction surfaces while the fine porosity is wetted with and retains molten electrolyte on the reaction sites. The electrode structure is prepared by providing a very fine powder of such as nickel oxide and blending the powder with a suitable decomposable binder to form a solid mass. The mass is comminuted into agglomerate size particles substantially larger than the fine oxide particles and formed into a cohesive compact for subsequent sintering. Sintering is carried out at sufficient conditions to bind the agglomerates together into a porous structure having both coarse and fine porosity. Where lithiated nickel oxide cathodes are prepared, the sintering conditions can be moderate enough to retain substantial quantities of lithium within the electrode for adequate conductivity.

  7. Porous electrode preparation method

    DOEpatents

    Arons, R.M.; Dusek, J.T.

    1983-10-18

    A porous sintered plaque is provided with a bimodal porosity that is especially well suited for use as an electrode within a molten carbonate fuel cell. The coarse porosity is sufficient for admitting gases into contact with the reaction surfaces while the fine porosity is wetted with and retains molten electrolyte on the reaction sites. The electrode structure is prepared by providing a very fine powder of such as nickel oxide and blending the powder with a suitable decomposable binder to form a solid mass. The mass is comminuted into agglomerate size particles substantially larger than the fine oxide particles and formed into a cohesive compact for subsequent sintering. Sintering is carried out at sufficient conditions to bind the agglomerates together into a porous structure having both coarse and fine porosity. Where lithiated nickel oxide cathodes are prepared, the sintering conditions can be moderate enough to retain substantial quantities of lithium within the electrode for adequate conductivity. 2 figs.

  8. Influence of B2O3 content on sintering behaviour and dielectric properties of La2O3-B2O3-CaO/Al2O3 glass-ceramic composites for LTCC applications

    NASA Astrophysics Data System (ADS)

    Wang, F. L.; Zhang, Y. W.; Chen, X. Y.; Mao, H. J.; Zhang, W. J.

    2018-01-01

    La2O3-B2O3-CaO glasses with different B2O3 content were synthesized by melting method to produce glass/ceramic composites in this work. XRD and DSC results revealed that the diminution of B2O3 content was beneficial to increase the crystallization tendency of glass and improve the quality of crystalline phase, while decreasing the effect of glass during sintering process as sintering aids. The choice of glass/ceramic mass ratio was also influenced by the B2O3 content of glass. Dense samples sintered at 875 ºC showed good dielectric properties which meet the requirement of LTCC applications: moderate dielectric constant (7.8-9.4) and low dielectric loss (2.0×10-3).

  9. All-photonic drying and sintering process via flash white light combined with deep-UV and near-infrared irradiation for highly conductive copper nano-ink

    PubMed Central

    Hwang, Hyun-Jun; Oh, Kyung-Hwan; Kim, Hak-Sung

    2016-01-01

    We developed an ultra-high speed photonic sintering method involving flash white light (FWL) combined with near infrared (NIR) and deep UV light irradiation to produce highly conductive copper nano-ink film. Flash white light irradiation energy and the power of NIR/deep UV were optimized to obtain high conductivity Cu films. Several microscopic and spectroscopic characterization techniques such as scanning electron microscopy (SEM), a x-ray diffraction (XRD), and Fourier-transform infrared (FT-IR) spectroscopy were employed to characterize the Cu nano-films. Optimally sintered Cu nano-ink films produced using a deep UV-assisted flash white light sintering technique had the lowest resistivity (7.62 μΩ·cm), which was only 4.5-fold higher than that of bulk Cu film (1.68 μΩ•cm). PMID:26806215

  10. Effect of the quantity of carbonate components and sintering parameters on the quality of hydrothermally synthesized carbonate hydroxyapatite

    NASA Astrophysics Data System (ADS)

    Ruddyard, A. A.; Soejoko, D. S.; Nurlely

    2017-07-01

    Carbonated hydroxyapatite is a biomaterial with high biocompatibility with human bone, moreso than regular hydroxyapatite, making it an acceptable synthetic bone graft material. The purpose of this research is to study the effect of sintering temperature and time on carbonated hydroxyapatite samples synthesized using a hydrothermal method with CaCO3 as one of its components. The samples are then characterized using Fourier-Transform Infrared Spectroscopy, X-Ray Diffraction, and Scanning Electron Microscope. Infrared (IR) spectra showed that the CO3 content in each sample is proportional to the amount of CaCO3 used during synthesis. X-Ray Diffraction (XRD) patterns showed an increase in apatite content and a decrease in calcite content as sintering temperature and time increases, with temperature increases having a stronger effect on the samples than time increases. Calcite disappears completely after sintering at 900 °C for 2 hours.

  11. Fabrication of Fe1.1Se0.5Te0.5 bulk by a high energy ball milling technique

    NASA Astrophysics Data System (ADS)

    Liu, Jixing; Li, Chengshan; Zhang, Shengnan; Feng, Jianqing; Zhang, Pingxiang; Zhou, Lian

    2017-11-01

    Fe1.1Se0.5Te0.5 superconducting bulks were successfully synthesized by a high energy ball milling (HEBM) aided sintering technique. Two advantages of this new technique have been revealed compared with traditional solid state sintering method. One is greatly increased the density of sintered bulks. It is because the precursor powders with β-Fe(Se, Te) and δ-Fe(Se, Te) were obtained directly by the HEBM process and without formation of liquid Se (and Te), which could avoid the huge volume expansion. The other is the obvious decrease of sintering temperature and dwell time due to the effective shortened length of diffusion paths. The superconducting critical temperature Tc of 14.2 K in our sample is comparable with those in previous reports, and further optimization of chemical composition is on the way.

  12. All-photonic drying and sintering process via flash white light combined with deep-UV and near-infrared irradiation for highly conductive copper nano-ink.

    PubMed

    Hwang, Hyun-Jun; Oh, Kyung-Hwan; Kim, Hak-Sung

    2016-01-25

    We developed an ultra-high speed photonic sintering method involving flash white light (FWL) combined with near infrared (NIR) and deep UV light irradiation to produce highly conductive copper nano-ink film. Flash white light irradiation energy and the power of NIR/deep UV were optimized to obtain high conductivity Cu films. Several microscopic and spectroscopic characterization techniques such as scanning electron microscopy (SEM), a x-ray diffraction (XRD), and Fourier-transform infrared (FT-IR) spectroscopy were employed to characterize the Cu nano-films. Optimally sintered Cu nano-ink films produced using a deep UV-assisted flash white light sintering technique had the lowest resistivity (7.62 μΩ·cm), which was only 4.5-fold higher than that of bulk Cu film (1.68 μΩ•cm).

  13. Improved magnetic properties and growth anisotropy of chemically modified Sr ferrites

    NASA Astrophysics Data System (ADS)

    Lee, Jung W.; Cho, Yong S.; Amarakoon, Vasantha R. W.

    1999-04-01

    Magnetic properties and microstructural characteristics of SrOṡ5.9Fe2O3 chemically modified with Si and Ca were investigated by changing experimental parameters such as additive composition, the ratio of Ca/Si, and sintering condition. A novel particulate coating method utilizing sol-gel reactions was used to uniformly incorporate the additives of Si and Ca. This method was very successful in obtaining homogeneous grain growth and fine grains. A sample containing the gel additives of 0.6 wt % SiO2 and 0.7 wt % CaO and sintered at 1200 °C for 4 h was found to significantly suppress abnormal grain growth, resulting in submicron-sized grains and high density. A distinct grain boundary phase containing Si and Ca was observed by increasing the sintering temperature to 1250 °C. The resultant microstructural characteristics favorably affected magnetic properties. For example, the chemically modified sample exhibited a higher coercivity of 3530 Oe compared to a value of 2050 Oe obtained for the sample without the additives. On the other hand, an increase in the ratio of Ca/Si or in sintering temperature tended to induce a large anisotropy during grain growth.

  14. Production of High-Purity Anhydrous Nickel(II) Perrhenate for Tungsten-Based Sintered Heavy Alloys

    PubMed Central

    Leszczyńska-Sejda, Katarzyna; Benke, Grzegorz; Kopyto, Dorota; Majewski, Tomasz; Drzazga, Michał

    2017-01-01

    This paper presents a method for the production of high-purity anhydrous nickel(II) perrhenate. The method comprises sorption of nickel(II) ions from aqueous nickel(II) nitrate solutions, using strongly acidic C160 cation exchange resin, and subsequent elution of sorbed nickel(II) ions using concentrated perrhenic acid solutions. After the neutralization of the resulting rhenium-nickel solutions, hydrated nickel(II) perrhenate is then separated and then dried at 160 °C to obtain the anhydrous form. The resulting compound is reduced in an atmosphere of dissociated ammonia in order to produce a Re-Ni alloy powder. This study provides information on the selected properties of the resulting Re-Ni powder. This powder was used as a starting material for the production of 77W-20Re-3Ni heavy alloys. Microstructure examination results and selected properties of the produced sintered heavy alloys were compared to sintered alloys produced using elemental W, Re, and Ni powders. This study showed that the application of anhydrous nickel(II) perrhenate in the production of 77W-20Re-3Ni results in better properties of the sintered alloys compared to those made from elemental powders. PMID:28772808

  15. Microstructure and properties of aluminium-aluminium oxide graded composite materials

    NASA Astrophysics Data System (ADS)

    Kamaruzaman, F. F.; Nuruzzaman, D. M.; Ismail, N. M.; Hamedon, Z.; Iqbal, A. K. M. A.; Azhari, A.

    2018-03-01

    In this research works, four-layered aluminium-aluminium oxide (Al-Al2O3) graded composite materials were fabricated using powder metallurgy (PM) method. In processing, metal-ceramic graded composite materials of 0%, 10%, 20% and 30% weight percentage of ceramic concentration were prepared under 30 ton compaction load using a cylindrical die-punch set made of steel. After that, two-step pressureless sintering was carried out at sintering temperature and time 600°C and 3 hours respectively. It was observed that the sintered cylindrical specimens of 30 mm diameter were prepared successfully. The graded composite specimens were analysed and the properties such as density, microstructure and hardness were measured. It was found that after sintering process, the diameter of the graded cylindrical structure was decreased. Using both Archimedes method and rule of mixture (ROM), he density of structure was measured. The obtained results revealed that the microvickers hardness was increased as the ceramic component increases in the graded layer. Moreover, it was observed that the interface of the graded structure is clearly distinguished within the multilayer stack and the ceramic particles are almost uniformly distributed in the Al matrix.

  16. Tensile Properties and Fracture Characteristics of Nanostructured Copper and Cu-SiC Nanocomposite Produced by Mechanical Milling and Spark Plasma Sintering Process

    NASA Astrophysics Data System (ADS)

    Akbarpour, M. R.

    2018-03-01

    The presence of large grains within nanometric and ultrafine grain matrix is an effective method in order to enhance strength while keeping the high ductility of metals. For this purpose, in this research, spark plasma sintering (SPS) was used to consolidate milled Cu and Cu-SiC powders. In SPS process, local sparks with high temperature between particles take place and locally lead to intense grain growth, and therefore, this method has the ability to produce bimodal grain structures in copper and copper-based composites. Microstructural and mechanical studies showed ≈ 185 and ≈ 437 nm matrix grain sizes, high tensile yield strength values of ≈ 188.4 and ≈ 296.9 MPa, and fracture strain values of 15.1 and 6.7% for sintered Cu and Cu-4 vol.% SiC nanocomposite materials, respectively. The presence of nanoparticles promoted the occurrence of static recrystallization and decreased the fraction of coarse grains in microstructure. The high tensile properties of the produced materials are attributed to fine grain size, homogenous dispersion of nanoparticles and retarded grain boundary migration during sintering.

  17. Alternative to conventional extraction of vetiver oil: Microwave hydrodistillation of essential oil from vetiver roots (Vetiveria zizanioides)

    NASA Astrophysics Data System (ADS)

    Kusuma, H. S.; Altway, A.; Mahfud, M.

    2017-12-01

    In this study the extraction of essential oil from vetiver roots (Vetiveria zizanioides) has been carried out by using microwave hydrodistillation. In the extraction of vetiver oil using microwave hydrodistillation method is studied the effect of microwave power, feed to solvent (F/S) ratio and extraction time on the yield of vetiver oil. Besides, in this study can be seen that microwave hydrodistillation method offers important advantages over hydrodistillation, such as shorter extraction time (3 h vs. 24 h for hydrodistillation); better yields (0.49% vs. 0.46% for hydrodistillation); and environmental impact (energy cost is appreciably higher for performing hydrodistillation than that required for extraction using microwave hydrodistillation). Based on the analysis using GC-MS can be seen 19 components on vetiver oil that has been extracted using microwave hydrodistillation. In addition, GC-MS analysis showed that the main components of vetiver oil that has been extracted using microwave hydrodistillation method were β-Gurjunene (30.12%), α-Vetivone (20.12%), 4-(1-cyclohexenyl)-2-trimethylsilymethyl-1-buten-3-yne (13.52%) and δ-Selinene (7.27%).

  18. Apparatus and method for microwave processing of materials using field-perturbing tool

    DOEpatents

    Tucker, Denise A.; Fathi, Zakaryae; Lauf, Robert J.

    2001-01-01

    A variable frequency microwave heating apparatus designed to allow modulation of the frequency of the microwaves introduced into a multi-mode microwave cavity for heating or other selected applications. A field-perturbing tool is disposed within the cavity to perturb the microwave power distribution in order to apply a desired level of microwave power to the workpiece.

  19. Microwave thawing apparatus and method

    DOEpatents

    Fathi, Zakaryae; Lauf, Robert J.; McMillan, April D.

    2004-06-01

    An apparatus for thawing a frozen material includes: a microwave energy source; a microwave applicator which defines a cavity for applying microwave energy from the microwave source to a material to be thawed; and a shielded region which is shielded from the microwave source, the shielded region in fluid communication with the cavity so that thawed material may flow from the cavity into the shielded region.

  20. Production of large resonant plasma volumes in microwave electron cyclotron resonance ion sources

    DOEpatents

    Alton, G.D.

    1998-11-24

    Microwave injection methods are disclosed for enhancing the performance of existing electron cyclotron resonance (ECR) ion sources. The methods are based on the use of high-power diverse frequency microwaves, including variable-frequency, multiple-discrete-frequency, and broadband microwaves. The methods effect large resonant ``volume`` ECR regions in the ion sources. The creation of these large ECR plasma volumes permits coupling of more microwave power into the plasma, resulting in the heating of a much larger electron population to higher energies, the effect of which is to produce higher charge state distributions and much higher intensities within a particular charge state than possible in present ECR ion sources. 5 figs.

  1. Combined Inkjet Printing and Infrared Sintering of Silver Nanoparticles using a Swathe-by-Swathe and Layer-by-Layer Approach for 3-Dimensional Structures.

    PubMed

    Vaithilingam, Jayasheelan; Simonelli, Marco; Saleh, Ehab; Senin, Nicola; Wildman, Ricky D; Hague, Richard J M; Leach, Richard K; Tuck, Christopher J

    2017-02-22

    Despite the advancement of additive manufacturing (AM)/3-dimensional (3D) printing, single-step fabrication of multifunctional parts using AM is limited. With the view of enabling multifunctional AM (MFAM), in this study, sintering of metal nanoparticles was performed to obtain conductivity for continuous line inkjet printing of electronics. This was achieved using a bespoke three-dimensional (3D) inkjet-printing machine, JETx, capable of printing a range of materials and utilizing different post processing procedures to print multilayered 3D structures in a single manufacturing step. Multiple layers of silver were printed from an ink containing silver nanoparticles (AgNPs) and infrared sintered using a swathe-by-swathe (SS) and layer-by-layer sintering (LS) regime. The differences in the heat profile for the SS and LS was observed to influence the coalescence of the AgNPs. Void percentage of both SS and LS samples was higher toward the top layer than the bottom layer due to relatively less IR exposure in the top than the bottom. The results depicted a homogeneous microstructure for LS of AgNPs and showed less deformation compared to the SS. Electrical resistivity of the LS tracks (13.6 ± 1 μΩ cm) was lower than the SS tracks (22.5 ± 1 μΩ cm). This study recommends the use of LS method to sinter the AgNPs to obtain a conductive track in 25% less time than SS method for MFAM.

  2. Electrical wire explosion process of copper/silver hybrid nano-particle ink and its sintering via flash white light to achieve high electrical conductivity.

    PubMed

    Chung, Wan-Ho; Hwang, Yeon-Taek; Lee, Seung-Hyun; Kim, Hak-Sung

    2016-05-20

    In this work, combined silver/copper nanoparticles were fabricated by the electrical explosion of a metal wire. In this method, a high electrical current passes through the metal wire with a high voltage. Consequently, the metal wire evaporates and metal nanoparticles are formed. The diameters of the silver and copper nanoparticles were controlled by changing the voltage conditions. The fabricated silver and copper nano-inks were printed on a flexible polyimide (PI) substrate and sintered at room temperature via a flash light process, using a xenon lamp and varying the light energy. The microstructures of the sintered silver and copper films were observed using a scanning electron microscope (SEM) and a transmission electron microscope (TEM). To investigate the crystal phases of the flash-light-sintered silver and copper films, x-ray diffraction (XRD) was performed. The absorption wavelengths of the silver and copper nano-inks were measured using ultraviolet-visible spectroscopy (UV-vis). Furthermore, the resistivity of the sintered silver and copper films was measured using the four-point probe method and an alpha step. As a result, the fabricated Cu/Ag film shows a high electrical conductivity (4.06 μΩcm), which is comparable to the resistivity of bulk copper (1.68 μΩcm). In addition, the fabricated Cu/Ag nanoparticle film shows superior oxidation stability compared to the Cu nanoparticle film.

  3. Enhanced Sintering of β"-Al2O3/YSZ with the Sintering Aids of TiO2 and MnO2

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lu, Xiaochuan; Li, Guosheng; Kim, Jin Yong

    2015-07-11

    β"-Al2O3 has been the dominated choice for the electrolyte materials of sodium batteries because of its high ionic conductivity, excellent stability with the electrode materials, satisfactory mechanical strength, and low material cost. To achieve adequate electrical and mechanical performance, sintering of β"-Al2O3 is typically carried out at temperatures above 1600oC with deliberate efforts on controlling the phase, composition, and microstructure. Here, we reported a simple method to fabricate β"-Al2O3/YSZ electrolyte at relatively lower temperatures. With the starting material of boehmite, single phase of β"-Al2O3 can be achieved at as low as 1200oC. It was found that TiO2 was extremely effectivemore » as a sintering aid for the densification of β"-Al2O3 and similar behavior was observed with MnO2 for YSZ. With the addition of 2 mol% TiO2 and 5 mol% MnO2, the β"-Al2O3/YSZ composite was able to be densified at as low as 1400oC with a fine microstructure and good electrical/mechanical performance. This study demonstrated a new approach of synthesis and sintering of β"-Al2O3/YSZ composite, which represented a simple and low-cost method for fabrication of high-performance β"-Al2O3/YSZ electrolyte.« less

  4. Microwaving of normally opaque and semi-opaque substances

    DOEpatents

    Sheinberg, Haskell; Meek, Thomas T.; Blake, Rodger D.

    1990-01-01

    Method of heating small particles using microwave radiation which are not normally capable of being heated by microwaves. The surfaces of the particles are coated with a material which is transparent to microwave radiation in order to cause microwave coupling to the particles and thus accomplish heating of the particles.

  5. Optimization of microwave digestion for mercury determination in marine biological samples by cold vapour atomic absorption spectrometry.

    PubMed

    Cardellicchio, Nicola; Di Leo, Antonella; Giandomenico, Santina; Santoro, Stefania

    2006-01-01

    Optimization of acid digestion method for mercury determination in marine biological samples (dolphin liver, fish and mussel tissues) using a closed vessel microwave sample preparation is presented. Five digestion procedures with different acid mixtures were investigated: the best results were obtained when the microwave-assisted digestion was based on sample dissolution with HNO3-H2SO4-K2Cr2O7 mixture. A comparison between microwave digestion and conventional reflux digestion shows there are considerable losses of mercury in the open digestion system. The microwave digestion method has been tested satisfactorily using two certified reference materials. Analytical results show a good agreement with certified values. The microwave digestion proved to be a reliable and rapid method for decomposition of biological samples in mercury determination.

  6. A study on flash sintering and related phenomena in titania and its composite with alumina

    NASA Astrophysics Data System (ADS)

    Shikhar

    In 2010, Cologna et. al. [1] reported that with a help of small electric field 120 Vcm-1, the sintering temperature of 3 mol % yittria stabilized zirconia could be brought down to 850°C from 1450°C. On top of reducing the temperature requirements, the green sample could be sintered from starting density of 50% to near full density in mere 5 seconds, a sintering rate three orders of magnitude higher than conventional methods. This discovery led to the emergence of a new field of enhanced sintering with electric field, named "Flash Sintering". The objective of this thesis is to understand the phenomenological behavior of flash-sintering and related phenomena on titania and its composites with alumina at elevated temperature. The possible mechanisms to explain flash sintering are discussed: Joule heating and the avalanche of defect generation [2], both induced by the rapid rise in conductivity just before the onset of the flash. Apparently, both mechanisms play a role. The thesis covers the response of pure titania and composites of titania-alumina under flash and compared with conventional sintering. We start with the sintering behavior of pure titania and observe lowering of sintering temperature requirements with higher applied electric field. The conductivity of titania during flash is also measured, and compared with the nominal conductivity of titania at equivalent temperatures. The conductivity during flash is determined to be have a different activation energy. For the composites of titania-alumina, effect of flash on the constrained sintering was studied. It is a known fact that sintering of one component of composite slows down when the other component of a different densification rate is added to it, called constrained sintering. In our case, large inclusions of alumina particles were added to nano-grained titania green compact that hindered its densification. Flash sintering was found to be overcoming this problem and near full densification was achieved. In another experiment, effect of high current density and hold time under flash on the chemical reaction (phase transformation) of titania and alumina to form Al2TiO5 is studied. It was found that not only flash enhances the kinetics of reaction when compared with conventional heating at equivalent temperatures, but also brought down the phase transformation temperature for this spinel formation, as reported by the phase diagram. In-situ X-ray diffraction experiments were performed at the synchrotron facility in Argonne National Laboratory. The specimen temperature were measured during the experiment on the basis of peak shift with temperature and were found to be matching with our predicted values by Black-Body-Radiation model. We also observed the instant evolution of texture in grain orientation of pure titania under flash and their disappearance as the fields were switched off. Study on chemical kinetics between titania and alumina were also performed which supported our findings of in-house experiments.

  7. Electric field-assisted sintering of nanocrystalline hydroxyapatite for biomedical applications

    NASA Astrophysics Data System (ADS)

    Tran, Tien Bich

    As the main inorganic component of bone, hydroxyapatite (HA, Ca 10(PO4)6(OH)2) should be an ideal candidate in biomaterials selection. When grain sizes are in the nanometric regime, protein adsorption and cell adhesion are enhanced, while strength, hardness, and wear resistance are improved. Unfortunately, low phase stability, poor sinterability, and a tendency towards exaggerated grain coarsening challenge full densification of nanocrystalline hydroxyapatite by conventional sintering methods. The field-assisted sintering technique (FAST) has successfully consolidated a variety of nanocrystalline metals and ceramics in dramatically reduced times. The sintering enhancements observed during FAST can be attributed to thermal and athermal effects. The rapid heating rates (up to ˜1000ºC/min) afforded by FAST contribute a significant thermal effect. Since fast heating rates reduce powder exposure to sub-sintering temperatures, non-densifying surface diffusion is limited. The athermal effects of FAST are less well understood and can include plasma generation, dielectric breakdown, particle surface cleaning, grain boundary pinning, and space charge effects. Applying the field-assisted sintering technique to nanocrystalline hydroxyapatite yielded surprising results. Deviations from conventional densification behavior were observed, with dehydroxylation identified as the most deleterious process to densification as well as mechanical and biological performance. Since hydroxyapatite is not a stable phase at high temperatures and low water partial pressure atmospheres, desintering due to dehydroxylation-related pore formation became apparent during Stage III sintering. In fact, the degree of desintering and pore formation increased with the extent of Stage III sintering and grain growth. The atomic rearrangements taking place during grain boundary migration are believed to favor the formation of more-stable oxyapatite through hydroxyapatite dehydroxylation. This behavior was consistent during varied heating rate (50--400ºC/min) and varied pressure application (25--90 MPa) studies. While in vitro cytocompatibility studies using MG63 osteoblast-like cells demonstrated the biocompatibility of the FAST-processed specimens, bioactivity was sensitive to processing parameters. Since extensive dehydroxylation reduces the surface charge of the sintered materials, apatite deposition during simulated body fluid immersion only occurred when dehydroxylation was mild---i.e., on specimens sintered at low temperatures (800--900ºC) or for short periods. Microstructural investigations revealed that HA sintered at temperatures above 900ºC under an applied electric field contained nanometric residual pores in grain interiors, as well as micron-sized dehydroxylation-related pores at grain boundaries and grain boundary junctions. These larger pores were responsible for the increasing embrittlement of specimens sintered at higher temperatures. Although grain size dependence could not be found in the 60--100 nm grain size range, fracture toughness (KIC = 1.92 MPa√m, maximum) increased with decreasing sintering temperature. Results from the suite of investigations conducted demonstrate that biocompatible and bioactive nanocrystalline hydroxyapatite with enhanced mechanical properties can be efficiently manufactured by field-assisted sintering under controlled processing conditions.

  8. Corrosion resistance assessment of Co-Cr alloy frameworks fabricated by CAD/CAM milling, laser sintering, and casting methods.

    PubMed

    Tuna, Süleyman Hakan; Özçiçek Pekmez, Nuran; Kürkçüoğlu, Işin

    2015-11-01

    The effects of fabrication methods on the corrosion resistance of frameworks produced with Co-Cr alloys are not clear. The purpose of this in vitro study was to evaluate the electrochemical corrosion resistance of Co-Cr alloy specimens that were fabricated by conventional casting, milling, and laser sintering. The specimens fabricated with 3 different methods were investigated by potentiodynamic tests and electrochemical impedance spectroscopy in an artificial saliva. Ions released into the artificial saliva were estimated with inductively coupled plasma-mass spectrometry, and the results were statistically analyzed. The specimen surfaces were investigated with scanning electron microscopy before and after the tests. In terms of corrosion current and Rct properties, statistically significant differences were found both among the means of the methods and among the means of the material groups (P<.05). With regard to ions released, a statistically significant difference was found among the material groups (P<.05); however, no difference was found among the methods. Scanning electron microscopic imaging revealed that the specimens produced by conventional casting were affected to a greater extent by etching and electrochemical corrosion than those produced by milling and laser sintering. The corrosion resistance of a Co-Cr alloy specimens fabricated by milling or laser sintering was greater than that of the conventionally cast alloy specimens. The Co-Cr specimens produced by the same method also differed from one another in terms of corrosion resistance. These differences may be related to the variations in the alloy compositions. Copyright © 2015 Editorial Council for the Journal of Prosthetic Dentistry. Published by Elsevier Inc. All rights reserved.

  9. A comparison of essential oils obtained from lavandin via different extraction processes: Ultrasound, microwave, turbohydrodistillation, steam and hydrodistillation.

    PubMed

    Périno-Issartier, Sandrine; Ginies, Christian; Cravotto, Giancarlo; Chemat, Farid

    2013-08-30

    A total of eight extraction techniques ranging from conventional methods (hydrodistillation (HD), steam distillation (SD), turbohydrodistillation (THD)), through innovative techniques (ultrasound assisted extraction (US-SD) and finishing with microwave assisted extraction techniques such as In situ microwave-generated hydrodistillation (ISMH), microwave steam distillation (MSD), microwave hydrodiffusion and gravity (MHG), and microwave steam diffusion (MSDf)) were used to extract essential oil from lavandin flowers and their results were compared. Extraction time, yield, essential oil composition and sensorial analysis were considered as the principal terms of comparison. The essential oils extracted using the more innovative processes were quantitatively (yield) and qualitatively (aromatic profile) similar to those obtained from the conventional techniques. The method which gave the best results was the microwave hydrodiffusion and gravity (MHG) method which gave reduced extraction time (30min against 220min for SD) and gave no differences in essential oil yield and sensorial perception. Copyright © 2013 Elsevier B.V. All rights reserved.

  10. Re-exchange of Fe and Cu at the interface in sintered Nd-Fe-B magnets: A method to eliminate Fe precipitation at grain boundaries

    NASA Astrophysics Data System (ADS)

    Yang, YuQi; Si, HengGang; Yang, Hao; Zhang, Lan; Huang, DongFang; Chen, BaiYi; Xu, Fang; Hu, YongMei; Han, BaoJun

    2018-01-01

    According to the decoupling hypothesis for magnetic grains, the coercivity in sintered Nd-Fe-B magnets is increased after Cu doping, which is due to the formation of non-magnetic grain boundaries. However, this method partially fails, and ferromagnetic Fe-segregation occurs at the grain boundary. We discovered both experimentally and through calculation that the Fe content at the grain boundaries can be tuned across a wide range by introducing another element of Ag. Segregated Fe at high temperature at the grain boundary re-dissolves into Nd2Fe14B grains during annealing at low temperature. Both configurable and magnetic entropies contribute a large driving force for the formation of nonmagnetic grain boundaries. Almost zero Fe content could be achieved at the grain boundaries of sintered Nd-Fe-B magnet.

  11. 2D all-solid state fabric supercapacitor fabricated via an all solution process for use in smart textiles

    NASA Astrophysics Data System (ADS)

    Jang, Yunseok; Jo, Jeongdai; Woo, Kyoohee; Lee, Seung-Hyun; Kwon, Sin; Kim, Kwang-Young; Kang, Dongwoo

    2017-05-01

    We propose a method to fabricate a supercapacitor for smart textiles using silver (Ag) nanoparticle (NP) ink, simple spray patterning systems, and intense pulsed light (IPL) sintering systems. The Ag NP current collectors provided as high conductivity as the metal current collectors. The spray patterning technique is useful for fabricating supercapacitors because it is simple, fast, and cheap. IPL systems reduced the sintering temperature of Ag NPs and prevented thermal damage to the textiles during the Ag NP sintering process. The two-dimensional (2D) all-solid state fabric supercapacitor with an interdigitated configuration, developed here, exhibited a specific capacitance of 25.7 F/g and an energy density of 1.5 Wh/kg at a power density of 64.3 W/kg. These results support the utility of our proposed method in the development of energy textiles.

  12. Computer-Aided Design of Low-Noise Microwave Circuits

    NASA Astrophysics Data System (ADS)

    Wedge, Scott William

    1991-02-01

    Devoid of most natural and manmade noise, microwave frequencies have detection sensitivities limited by internally generated receiver noise. Low-noise amplifiers are therefore critical components in radio astronomical antennas, communications links, radar systems, and even home satellite dishes. A general technique to accurately predict the noise performance of microwave circuits has been lacking. Current noise analysis methods have been limited to specific circuit topologies or neglect correlation, a strong effect in microwave devices. Presented here are generalized methods, developed for computer-aided design implementation, for the analysis of linear noisy microwave circuits comprised of arbitrarily interconnected components. Included are descriptions of efficient algorithms for the simultaneous analysis of noisy and deterministic circuit parameters based on a wave variable approach. The methods are therefore particularly suited to microwave and millimeter-wave circuits. Noise contributions from lossy passive components and active components with electronic noise are considered. Also presented is a new technique for the measurement of device noise characteristics that offers several advantages over current measurement methods.

  13. Extension of the master sintering curve for constant heating rate modeling

    NASA Astrophysics Data System (ADS)

    McCoy, Tammy Michelle

    The purpose of this work is to extend the functionality of the Master Sintering Curve (MSC) such that it can be used as a practical tool for predicting sintering schemes that combine both a constant heating rate and an isothermal hold. Rather than just being able to predict a final density for the object of interest, the extension to the MSC will actually be able to model a sintering run from start to finish. Because the Johnson model does not incorporate this capability, the work presented is an extension of what has already been shown in literature to be a valuable resource in many sintering situations. A predicted sintering curve that incorporates a combination of constant heating rate and an isothermal hold is more indicative of what is found in real-life sintering operations. This research offers the possibility of predicting the sintering schedule for a material, thereby having advanced information about the extent of sintering, the time schedule for sintering, and the sintering temperature with a high degree of accuracy and repeatability. The research conducted in this thesis focuses on the development of a working model for predicting the sintering schedules of several stabilized zirconia powders having the compositions YSZ (HSY8), 10Sc1CeSZ, 10Sc1YSZ, and 11ScSZ1A. The compositions of the four powders are first verified using x-ray diffraction (XRD) and the particle size and surface area are verified using a particle size analyzer and BET analysis, respectively. The sintering studies were conducted on powder compacts using a double pushrod dilatometer. Density measurements are obtained both geometrically and using the Archimedes method. Each of the four powders is pressed into ¼" diameter pellets using a manual press with no additives, such as a binder or lubricant. Using a double push-rod dilatometer, shrinkage data for the pellets is obtained over several different heating rates. The shrinkage data is then converted to reflect the change in relative density of the pellets based on the green density and the theoretical density of each of the compositions. The Master Sintering Curve (MSC) model is then utilized to generate data that can be utilized to predict the final density of the respective powder over a range of heating rates. The Elton Master Sintering Curve Extension (EMSCE) is developed to extend the functionality of the MSC tool. The parameters generated from the original MSC are used in tandem with the solution to the closed integral, theta ≡ 1cTo T1Texp -QRT dT, over a set range of temperatures. The EMSCE is used to generate a set of sintering curves having both constant heating rate and isothermal hold portions. The EMSCE extends the usefulness of the MSC by allowing this generation of a complete sintering schedule rather than just being able to predict the final relative density of a given material. The EMSCE is verified by generating a set of curves having both constant heating rate and an isothermal hold for the heat-treatment. The modeled curves are verified experimentally and a comparison of the model and experimental results are given for a selected composition. Porosity within the final product can hinder the product from sintering to full density. It is shown that some of the compositions studied did not sinter to full density because of the presence of large porosity that could not be eliminated in a reasonable amount of time. A statistical analysis of the volume fraction of porosity is completed to show the significance of the presence in the final product. The reason this is relevant to the MSC is that the model does not take into account the presence of porosity and assumes that the samples sinter to full density. When this does not happen, the model actually under-predicts the final density of the material.

  14. Transparent ceramic photo-optical semiconductor high power switches

    DOEpatents

    Werne, Roger W.; Sullivan, James S.; Landingham, Richard L.

    2016-01-19

    A photoconductive semiconductor switch according to one embodiment includes a structure of sintered nanoparticles of a high band gap material exhibiting a lower electrical resistance when excited by light relative to an electrical resistance thereof when not exposed to the light. A method according to one embodiment includes creating a mixture comprising particles, at least one dopant, and at least one solvent; adding the mixture to a mold; forming a green structure in the mold; and sintering the green structure to form a transparent ceramic. Additional system, methods and products are also presented.

  15. Development of a statistically proven injection molding method for reaction bonded silicon nitride, sintering reaction bonded silicon nitride, and sintered silicon nitride

    NASA Astrophysics Data System (ADS)

    Steiner, Matthias

    A statistically proven, series injection molding technique for ceramic components was developed for the construction of engines and gas turbines. The flow behavior of silicon injection-molding materials was characterized and improved. Hot-isostatic-pressing reaction bonded silicon nitride (HIPRBSN) was developed. A nondestructive component evaluation method was developed. An injection molding line for HIPRBSN engine components precombustion chamber, flame spreader, and valve guide was developed. This line allows the production of small series for engine tests.

  16. Method of Making Uranium Dioxide Bodies

    DOEpatents

    Wilhelm, H. A.; McClusky, J. K.

    1973-09-25

    Sintered uranium dioxide bodies having controlled density are produced from U.sub.3 O.sub.8 and carbon by varying the mole ratio of carbon to U.sub.3 O.sub.8 in the mixture, which is compressed and sintered in a neutral or slightly oxidizing atmosphere to form dense slightly hyperstoichiometric uranium dioxide bodies. If the bodies are to be used as nuclear reactor fuel, they are subsequently heated in a hydrogen atmosphere to achieve stoichiometry. This method can also be used to produce fuel elements of uranium dioxide -- plutonium dioxide having controlled density.

  17. Performance and Reliability of Bonded Interfaces for High-temperature Packaging: Annual Progress Report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    DeVoto, Douglas J.

    2017-10-19

    As maximum device temperatures approach 200 °Celsius, continuous operation, sintered silver materials promise to maintain bonds at these high temperatures without excessive degradation rates. A detailed characterization of the thermal performance and reliability of sintered silver materials and processes has been initiated for the next year. Future steps in crack modeling include efforts to simulate crack propagation directly using the extended finite element method (X-FEM), a numerical technique that uses the partition of unity method for modeling discontinuities such as cracks in a system.

  18. Optimization of enzymes-microwave-ultrasound assisted extraction of Lentinus edodes polysaccharides and determination of its antioxidant activity.

    PubMed

    Yin, Chaomin; Fan, Xiuzhi; Fan, Zhe; Shi, Defang; Gao, Hong

    2018-05-01

    Enzymes-microwave-ultrasound assisted extraction (EMUE) method had been used to extract Lentinus edodes polysaccharides (LEPs). The enzymatic temperature, enzymatic pH, microwave power and microwave time were optimized by response surface methodology. The yields, properties and antioxidant activities of LEPs from EMUE and other extraction methods including hot-water extraction, enzymes-assisted extraction, microwave-assisted extraction and ultrasound-assisted extraction were evaluated. The results showed that the highest LEPs yield of 9.38% was achieved with enzymatic temperature of 48°C, enzymatic pH of 5.0, microwave power of 440W and microwave time of 10min, which correlated well with the predicted value of 9.79%. Additionally, LEPs from different extraction methods possessed typical absorption peak of polysaccharides, which meant different extraction methods had no significant effects on type of glycosidic bonds and sugar ring of LEPs. However, SEM images of LEPs from different extraction methods were significantly different. Moreover, the different LEPs all showed antioxidant activities, but LEPs from EMUE showed the highest reducing power when compared to other LEPs. The results indicated LEPs from EMUE can be used as natural antioxidant component in the pharmaceutical and functional food industries. Copyright © 2018 Elsevier B.V. All rights reserved.

  19. The use of Spark Plasma Sintering method for high-rate diffusion welding of high-strength UFG titanium alloys

    NASA Astrophysics Data System (ADS)

    Nokhrin, A. V.; Chuvil'deev, V. N.; Boldin, M. S.; Piskunov, A. V.; Kozlova, N. A.; Chegurov, M. K.; Popov, A. A.; Lantcev, E. A.; Kopylov, V. I.; Tabachkova, N. Yu

    2017-07-01

    The article provides an example of applying the technology of spark plasma sintering (SPS) to ensure high-rate diffusion welding of high-strength ultra-fine-grained UFG titanium alloys. Weld seams produced from Ti-5Al-2V UFG titanium alloy and obtained through SPS are characterized by high density, hardness and corrosion resistance.

  20. Method and means of reducing erosion of components of plasma devices exposed to helium and hydrogen isotope radiation

    DOEpatents

    Kaminsky, Manfred S.; Das, Santosh K.; Rossing, Thomas D.

    1977-01-25

    Surfaces of components of plasma devices exposed to radiation by atoms or ions of helium or isotopes of hydrogen can be protected from damage due to blistering by shielding the surfaces with a structure formed by sintering a powder of aluminum or beryllium and its oxide or by coating the surfaces with such a sintered metal powder.

  1. Processing of non-oxide ceramics from sol-gel methods

    DOEpatents

    Landingham, Richard; Reibold, Robert A.; Satcher, Joe

    2014-12-12

    A general procedure applied to a variety of sol-gel precursors and solvent systems for preparing and controlling homogeneous dispersions of very small particles within each other. Fine homogenous dispersions processed at elevated temperatures and controlled atmospheres make a ceramic powder to be consolidated into a component by standard commercial means: sinter, hot press, hot isostatic pressing (HIP), hot/cold extrusion, spark plasma sinter (SPS), etc.

  2. Investigating the Effects of Pin Tool Design on Friction Stir Welded Ti-6Al-4V

    NASA Technical Reports Server (NTRS)

    Rubisoff, H. A.; Querin, J. A.; Schneider, Judy A.; Magee, D.

    2009-01-01

    Friction stir welding (FSWing), a solid state joining technique, uses a non-consumable rotating pin tool to thermomechanically join materials. Heating of the weldment caused by friction and deformation is a function of the interaction between the pin tool and the work piece. Therefore, the geometry of the pin tool is in part responsible for the resulting microstructure and mechanical properties. In this study microwave sintered tungsten carbide (WC) pin tools with tapers and flats were used to FSW Ti-6Al-4V. Transverse sections of welds were mechanically tested, and the microstructure was characterized using optical microscopy (OM) and scanning election microscopy (SEM). X-ray diffraction (XRD) and electron back-scatter diffraction (EBSD) were used to characterize the texture within the welds produced from the different pin tool designs.

  3. Relation between the microstructure and the electromagnetic properties of BaTiO3/Ni0.5Zn0.5Fe2O4 ceramic composite

    NASA Astrophysics Data System (ADS)

    Xiao, Bin; Tang, Yu; Ma, Guodong; Ma, Ning; Du, Piyi

    2015-06-01

    The microstructure-property relation in ferroelectric/ferromagnetic composite is investigated in detail, exemplified by typical sol-gel-derived 0.3BTO/0.7NZFO ceramic composite. The effect of microstructural factors including intergrain connectivity, grain size and interfaces on the dielectric and magnetic properties of the composite prepared by conventional ceramic method and three-step sintering method is discussed both experimentally and theoretically. It reveals that the dielectric behavior of the composite is controlled by a hybrid dielectric process that combines the contribution of Debye-like dipoles and Maxwell-Wagner (M-W or interfacial) polarization. Enhanced dielectric, magnetic and conductive behaviors appear in the composite with better intergrain connectivity and larger grain size derived by sol-gel route and three-step sintering method. The effective permittivity contributed by Debye-like dipoles exhibits a value of ~130,000 in three-step sintered composite, which is almost the same as that in conventionally sintered one, but that contributed by M-W response is much smaller in the former. Compared with conventionally prepared samples, the relaxation time ( τ) is 3.476 × 10-6 s, about one order of magnitude smaller, and the dc electrical conductivity is 3.890 × 10-3 S/m, one order of magnitude higher in three-step sintered composite. The minimum dielectric loss reveals almost the same (~0.2) for all samples, but shows distinguishable difference in low-frequency region. Meanwhile, an initial permeability of 84, twice as large as that of conventionally prepared composite and 56 % the value of single-phased NZFO ferrite (~150), and a saturation magnetization of 63.5 emu/g, 32 % higher than that of conventional one and approximately 84 % the value of single-phased NZFO ferrite (~76 emu/g), appear simultaneously in three-step sintered composite with larger grain size and better intergrain connectivity. It is clear that the discovery is helpful for establishing a more explicit view on the physics of multi-functional composite materials, while the composite with optimized microstructure is beneficial to be used as a high-performance material.

  4. Microwave-Assisted Drying for the Conservation of Honeybee Pollen.

    PubMed

    Canale, Angelo; Benelli, Giovanni; Castagna, Antonella; Sgherri, Cristina; Poli, Piera; Serra, Andrea; Mele, Marcello; Ranieri, Annamaria; Signorini, Francesca; Bientinesi, Matteo; Nicolella, Cristiano

    2016-05-12

    Bee pollen is becoming an important product thanks to its nutritional properties, including a high content of bioactive compounds such as essential amino acids, antioxidants, and vitamins. Fresh bee pollen has a high water content (15%-30% wt %), thus it is a good substrate for microorganisms. Traditional conservation methods include drying in a hot air chamber and/or freezing. These techniques may significantly affect the pollen organoleptic properties and its content of bioactive compounds. Here, a new conservation method, microwave drying, is introduced and investigated. The method implies irradiating the fresh pollen with microwaves under vacuum, in order to reduce the water content without reaching temperatures capable of thermally deteriorating important bioactive compounds. The method was evaluated by taking into account the nutritional properties after the treatment. The analyzed parameters were phenols, flavonoids, with special reference to rutin content, and amino acids. Results showed that microwave drying offers important advantages for the conservation of bee pollen. Irrespective of microwave power and treatment time, phenol and flavonoid content did not vary over untreated fresh pollen. Similarly, rutin content was unaffected by the microwave drying, suggesting that the microwave-assisted drying could be a powerful technology to preserve bioprotective compounds in fresh pollen.

  5. Temperature variation in metal ceramic technology analyzed using time domain optical coherence tomography

    NASA Astrophysics Data System (ADS)

    Sinescu, Cosmin; Topala, Florin I.; Negrutiu, Meda Lavinia; Duma, Virgil-Florin; Podoleanu, Adrian G.

    2014-01-01

    The quality of dental prostheses is essential in providing good quality medical services. The metal ceramic technology applied in dentistry implies ceramic sintering inside the dental oven. Every ceramic material requires a special sintering chart which is recommended by the producer. For a regular dental technician it is very difficult to evaluate if the temperature inside the oven remains the same as it is programmed on the sintering chart. Also, maintaining the calibration in time is an issue for the practitioners. Metal ceramic crowns develop a very accurate pattern for the ceramic layers depending on the temperature variation inside the oven where they are processed. Different patterns were identified in the present study for the samples processed with a variation in temperature of +30 °C to +50 °C, respectively - 30 0°C to -50 °C. The OCT imagistic evaluations performed for the normal samples present a uniform spread of the ceramic granulation inside the ceramic materials. For the samples sintered at a higher temperature an alternation between white and darker areas between the enamel and opaque layers appear. For the samples sintered at a lower temperature a decrease in the ceramic granulation from the enamel towards the opaque layer is concluded. The TD-OCT methods can therefore be used efficiently for the detection of the temperature variation due to the ceramic sintering inside the ceramic oven.

  6. [Effect of repeated sintering and variations in thickness on the color and microstructure of dental lithium disilicate-based glass ceramic veneers].

    PubMed

    Cui, Huang; Jia, Yu; Shaofeng, Meng; Biyun, Gao

    2017-08-01

    Objective The aim of this study is to evaluate the effect of repeated sintering and variation in thickness on the color and microstructure of dental lithium disilicate-based glass ceramic veneers. Methods A total of 24 computer aided design and computer aided manufacturing (CAD/CAM) veneers was fabricated using the IPS e.max-CAD LS2 and then randomly divided into four groups (S0, S1, S2, S3; n=6). Each group was sintered 0, 1, 2, 3 times individually according to the manufacturer's recommendation. The color parameters (L, C, H, a, b values) of all the specimens were measured by a Vita easyshade dental colorimeter. The results were statistically analyzed using the SAS 9.1.3 software for MANOVA and LSD. Subsequently, the microstructures of the intersecting surfaces of the specimens were observed by scanning electron microscopy (SEM). Results After repeated sintering, the L value significantly decreased (P<0.05). For the C and b values, statistical differences were observed among the groups except between S2 and S3. SEM results showed that the interlocking microstructures of rod-shaped Li₂Si₂O₅ crystals became more compact when the number of sintering times was increased. Conclusion Repeated sintering exhibited significant influence on the color of the IPS e.max-CAD LS2 veneers.

  7. Field assisted sintering of refractory carbide ceramics and fiber reinforced ceramic matrix composites

    NASA Astrophysics Data System (ADS)

    Gephart, Sean

    The sintering behaviors of silicon carbide (SiC) and boron carbide (B4C) based materials were investigated using an emerging sintering technology known as field assisted sintering technology (FAST), also known as spark plasma sintering (SPS) and pulse electric current sintering (PECS). Sintering by FAST utilizes high density electric current, uniaxial pressure, and relatively high heating rate compared to conventional sintering techniques. This effort investigated issues of scaling from laboratory FAST system (25 ton capacity) to industrial FAST system (250 ton capacity), as well as exploring the difference in sintering behavior of single phase B4C and SiC using FAST and conventional sintering techniques including hot-pressing (HP) and pressure-less sintering (PL). Materials were analyzed for mechanical and bulk properties, including characterization of density, hardness, fracture toughness, fracture (bend) strength, elastic modulus and microstructure. A parallel investigation was conducted in the development of ceramic matrix composites (CMC) using SiC powder impregnation of fiber compacts followed by FAST sintering. The FAST technique was used to sinter several B4C and SiC materials to near theoretical density. Preliminary efforts established optimized sintering temperatures using the smaller 25 ton laboratory unit, targeting a sample size of 40 mm diameter and 8 mm thickness. Then the same B4C and SiC materials were sintered by the larger 250 ton industrial FAST system, a HP system, and PL sintering system with a targeted dense material geometry of 4 x 4 x 0.315 inches3 (101.6 x 101.6 x 8 mm3). The resulting samples were studied to determine if the sintering dynamics and/or the resulting material properties were influenced by the sintering technique employed. This study determined that FAST sintered ceramic materials resulted in consistently higher averaged values for mechanical properties as well as smaller grain size when compared to conventionally sintered materials. While FAST sintered materials showed higher average values, in general they also showed consistently larger variation in the scattered data and consequently larger standard deviation for the resulting material properties. In addition, dynamic impact testing (V50 test) was conducted on the resulting materials and it was determined that there was no discernable correlation between observed mechanical properties of the ceramic materials and the resulting dynamic testing. Another study was conducted on the sintering of SiC and carbon fiber reinforced SiC ceramic matrix composites (CMC) using FAST. There has been much interest recently in fabricating high strength, low porosity SiC CMC.s for high temperature structural applications, but the current methods of production, namely chemical vapor infiltration (CVI), melt infiltration (MI), and polymer infiltration and pyrolysis (PIP), are considered time consuming and involve material related shortcomings associated with their respective methodologies. In this study, SiC CMC.s were produced using the 25 ton laboratory unit with a target sample size of 40 mm diameter and 3 mm thickness, as well as on the larger 250 ton industrial FAST system targeting a sample size of 101.6 x 101.6 x 3 mm3 to investigate issues associated with scaling. Several sintering conditions were explored including: pressure of 35-65 MPa, temperature of 1700-1900°C, and heating rates between 50-400°C/min. The SiC fibers used in this study were coated using chemical vapor deposition (CVD) with boron nitride (BN) and pyrolytic carbon to act as a barrier layer and preserve the integrity of the fibers during sintering. Then the barrier coating was coated by an outer layer of SiC to enhance the bonding between the fibers and the SiC matrix. Microstructures of the sintered samples were examined by FE-SEM. Mechanical properties including flexural strength-deflection and stress-strain were characterized using 4-point bend testing. Tensile testing was performed on the larger 101.6 x 101.6 x 3 mm samples. The microstructures of samples sintered using the 25 ton laboratory FAST system showed a reduction in porosity and good adhesion between the fiber-fiber and fiber-matrix interface. The microstructures of samples sintered on the 250 ton industrial FAST system showed a reduction in porosity, but there was visible reaction of the fiber and fiber coatings with the surrounding matrix. Additionally, there was significant radial cracking of the fibers visible in the microstructures. There is gap in the understanding of sintering behavior between laboratory and industrial scale FAST systems. The vast majority of publications on FAST sintering have been primarily focused on small sample geometries (20 mm diameter, less than 3 mm thick). A study was coordinated to investigate the thermal properties during heating and cooling using a 250 ton industrial FAST system at 900°C using B4C and SiC materials inside the graphite die assembly. The thermal properties were then compared to the resulting material properties of the identically sintered B4C and SiC to approximately 94% relative density, at a temperature of 1950°C, pressure of 45 MPa, 10 minute hold, and heated at a rate of 100°C/min. The study determined that at 900°C there were significant thermal gradients within the system for the examined materials, and that these gradients correlated well with the material property difference of the samples sintered at higher temperatures where the gradients are presumably larger due to an increase in radiative heat loss. The observed temperatures throughout the graphite were significantly different between B4C and SiC. These temperatures also correlated well with the material properties of the sintered products which showed more substantial variation for B4C when compared to SiC which was overall less affected by thermal gradients. This was attributed to the intrinsic thermal conductivity difference between the two subject materials which was manifested as thermal gradients throughout the material and graphite die assembly. Additionally, both the observed temperature gradients throughout the graphite die assembly and the difference in temperature reading between the optical pyrometer and thermocouples were significantly larger for the 250 ton FAST system than previous publications have demonstrated experimentally or via modeling of smaller laboratory scale systems. The findings from this work showed that relative to conventional sintering methods, the FAST process demonstrated comparable or improved material and mechanical properties with a significantly shorter processing cycle. However, the results demonstrated on the 25 ton laboratory scale unit were significantly different compared to results for the same materials sintered using the 250 ton industrial scale unit. The temperature gradients observed on the 250 ton FAST unit were significantly larger than previous reports on smaller FAST units. This result showed future efforts to scale up the FAST sintering process while maintaining similar results will require careful attention to minimizing temperature gradients. This could potentially be achieved by reducing radiative heat loss during processing and/or optimizing the graphite die design and implementing heat spreaders in specific locations dependent on the host material.s thermal and electrical properties as well as the sample geometry.

  8. [Condition optimization experiment of microwave extaction of flavonoids in rhizome of Drynaria fortunei].

    PubMed

    Yang, Bin; Hu, Fu-chao; Chen, Gong-xi; Jiang, Dao-song

    2009-12-01

    The experiment extracted flavonoids in rhizome of Drynaria fortunei by microwave extraction, and determined the extraction rate through colorimetry. Through the single factor experiment and orthogonal method, the optimum extraction conditions were as follows: ethanol concentration was 40%, solid-liquid ratio was 1:20 (g/mL), microwave power was 325 W, extraction time was 40 s. Under these conditions, the extraction rate reached 1.73%. In all condtions, microwave power has the most significant effect on extraction rate. Microwave extraction has obvious advantages in comparison with traditional sovent refluxing method.

  9. No major differences found between the effects of microwave-based and conventional heat treatment methods on two different liquid foods.

    PubMed

    Géczi, Gábor; Horváth, Márk; Kaszab, Tímea; Alemany, Gonzalo Garnacho

    2013-01-01

    Extension of shelf life and preservation of products are both very important for the food industry. However, just as with other processes, speed and higher manufacturing performance are also beneficial. Although microwave heating is utilized in a number of industrial processes, there are many unanswered questions about its effects on foods. Here we analyze whether the effects of microwave heating with continuous flow are equivalent to those of traditional heat transfer methods. In our study, the effects of heating of liquid foods by conventional and continuous flow microwave heating were studied. Among other properties, we compared the stability of the liquid foods between the two heat treatments. Our goal was to determine whether the continuous flow microwave heating and the conventional heating methods have the same effects on the liquid foods, and, therefore, whether microwave heat treatment can effectively replace conventional heat treatments. We have compared the colour, separation phenomena of the samples treated by different methods. For milk, we also monitored the total viable cell count, for orange juice, vitamin C contents in addition to the taste of the product by sensory analysis. The majority of the results indicate that the circulating coil microwave method used here is equivalent to the conventional heating method based on thermal conduction and convection. However, some results in the analysis of the milk samples show clear differences between heat transfer methods. According to our results, the colour parameters (lightness, red-green and blue-yellow values) of the microwave treated samples differed not only from the untreated control, but also from the traditional heat treated samples. The differences are visually undetectable, however, they become evident through analytical measurement with spectrophotometer. This finding suggests that besides thermal effects, microwave-based food treatment can alter product properties in other ways as well.

  10. No Major Differences Found between the Effects of Microwave-Based and Conventional Heat Treatment Methods on Two Different Liquid Foods

    PubMed Central

    Géczi, Gábor; Horváth, Márk; Kaszab, Tímea; Alemany, Gonzalo Garnacho

    2013-01-01

    Extension of shelf life and preservation of products are both very important for the food industry. However, just as with other processes, speed and higher manufacturing performance are also beneficial. Although microwave heating is utilized in a number of industrial processes, there are many unanswered questions about its effects on foods. Here we analyze whether the effects of microwave heating with continuous flow are equivalent to those of traditional heat transfer methods. In our study, the effects of heating of liquid foods by conventional and continuous flow microwave heating were studied. Among other properties, we compared the stability of the liquid foods between the two heat treatments. Our goal was to determine whether the continuous flow microwave heating and the conventional heating methods have the same effects on the liquid foods, and, therefore, whether microwave heat treatment can effectively replace conventional heat treatments. We have compared the colour, separation phenomena of the samples treated by different methods. For milk, we also monitored the total viable cell count, for orange juice, vitamin C contents in addition to the taste of the product by sensory analysis. The majority of the results indicate that the circulating coil microwave method used here is equivalent to the conventional heating method based on thermal conduction and convection. However, some results in the analysis of the milk samples show clear differences between heat transfer methods. According to our results, the colour parameters (lightness, red-green and blue-yellow values) of the microwave treated samples differed not only from the untreated control, but also from the traditional heat treated samples. The differences are visually undetectable, however, they become evident through analytical measurement with spectrophotometer. This finding suggests that besides thermal effects, microwave-based food treatment can alter product properties in other ways as well. PMID:23341982

  11. Anisotropic Dielectric Properties of Carbon Fiber Reinforced Polymer Composites during Microwave Curing

    NASA Astrophysics Data System (ADS)

    Zhang, Linglin; Li, Yingguang; Zhou, Jing

    2018-01-01

    Microwave cuing technology is a promising alternative to conventional autoclave curing technology in high efficient and energy saving processing of polymer composites. Dielectric properties of composites are key parameters related to the energy conversion efficiency during the microwave curing process. However, existing methods of dielectric measurement cannot be applied to the microwave curing process. This paper presented an offline test method to solve this problem. Firstly, a kinetics model of the polymer composites under microwave curing was established based on differential scanning calorimetry to describe the whole curing process. Then several specially designed samples of different feature cure degrees were prepared and used to reflect the dielectric properties of the composite during microwave curing. It was demonstrated to be a feasible plan for both test accuracy and efficiency through extensive experimental research. Based on this method, the anisotropic complex permittivity of a carbon fiber/epoxy composite during microwave curing was accurately determined. Statistical results indicated that both the dielectric constant and dielectric loss of the composite increased at the initial curing stage, peaked at the maximum reaction rate point and decreased finally during the microwave curing process. Corresponding mechanism has also been systematically investigated in this work.

  12. Joining of porous silicon carbide bodies

    DOEpatents

    Bates, Carl H.; Couhig, John T.; Pelletier, Paul J.

    1990-05-01

    A method of joining two porous bodies of silicon carbide is disclosed. It entails utilizing an aqueous slip of a similar silicon carbide as was used to form the porous bodies, including the sintering aids, and a binder to initially join the porous bodies together. Then the composite structure is subjected to cold isostatic pressing to form a joint having good handling strength. Then the composite structure is subjected to pressureless sintering to form the final strong bond. Optionally, after the sintering the structure is subjected to hot isostatic pressing to further improve the joint and densify the structure. The result is a composite structure in which the joint is almost indistinguishable from the silicon carbide pieces which it joins.

  13. Influence factors of the inter-nanowire thermal contact resistance in the stacked nanowires

    NASA Astrophysics Data System (ADS)

    Wu, Dongxu; Huang, Congliang; Zhong, Jinxin; Lin, Zizhen

    2018-05-01

    The inter-nanowire thermal contact resistance is important for tuning the thermal conductivity of a nanocomposite for thermoelectric applications. In this paper, the stacked copper nanowires are applied for studying the thermal contact resistance. The stacked copper nanowires are firstly made by the cold-pressing method, and then the nanowire stacks are treated by sintering treatment. With the effect of the volumetric fraction of nanowires in the stack and the influence of the sintering-temperature on the thermal contact resistance discussed, results show that: The thermal conductivity of the 150-nm copper nanowires can be enlarged almost 2 times with the volumetric fraction increased from 32 to 56% because of the enlarged contact-area and contact number of a copper nanowire. When the sintering temperature increases from 293 to 673 K, the thermal conductivity of the stacked 300-nm nanowires could be enlarged almost 2.5 times by the sintering treatment, because of the improved lattice property of the contact zone. In conclusion, application of a high volumetric fraction or/and a sintering-treatment are effectivity to tune the inter-nanowire thermal contact resistance, and thus to tailor the thermal conductivity of a nanowire network or stack.

  14. Laser Sintering Technology and Balling Phenomenon.

    PubMed

    Oyar, Perihan

    2018-02-01

    The aim of this review was to evaluate the balling phenomenon which occurs typically in Selective Laser Sintering (SLS). The balling phenomenon is a typical SLS defect, and observed in laser sintered powder, significantly reduces the quality of SLS, and hinders the further development of SLS Technology. Electronic database searches were performed using Google Scholar. The keywords "laser sintering, selective laser sintering, direct metal laser melting, and balling phenomenon" were searched in title/abstract of publications, limited to December 31, 2016. The inclusion criteria were SLS, balling phenomenon, some alloys (such as Cr-Co, iron, stainless steel, and Cu-based alloys) mechanical properties, microstructure and bond strength between metal-ceramic crown, laboratory studies, full text, and in English language. A total of 100 articles were found the initial search and yielded a total of 50 studies, 30 of which did not fulfill the inclusion criteria and were therefore excluded. In addition, 20 studies were found by screening the reference list of all included publications. Finally, 40 studies were selected for this review. The method in question is regulated by powder material characteristics and the conditions of laser processing. The procedure of formation, affecting factors, and the mechanism of the balling effect are very complex.

  15. Effect of addition of nanoparticle TiO 2/SiO 2 on the superconducting properties of MgB 2

    NASA Astrophysics Data System (ADS)

    Zhang, Y.; Zhou, S. H.; Wang, X. L.; Dou, S. X.

    2008-09-01

    In this paper, bulk MgB 2 was prepared by doping with nanoparticle TiO 2 surface-modified by 5-10% SiO 2. The doping ratio of TiO 2/SiO 2 to MgB 2 was 0, 5, 10, and 15 wt%. The sintering temperature varied from 650 °C to 950 °C. Quantitative X-ray diffraction (XRD) analysis was performed to obtain the lattice constants and the weight fraction of impurities using the Rietveld method. It was found that the critical temperature ( Tc) increases with the lattice constants. The critical current density ( Jc) is affected by the doping ratio and the sintering temperature. The Jc exhibited the highest value at the doping ratio of 10 wt% for 5 K and 20 K and at the doping ratio of 5 wt% for 30 K, when the sintering temperature was fixed at 750 °C. When the doping ratio was fixed at 5 wt%, the samples with the sintering temperature of 750 °C had the best Jc for 5 K and 20 K, while the sample with the sintering temperature of 850 °C exhibited the highest Jc at 30 K.

  16. Mechanical characterization and durability of sintered porous transport layers for polymer electrolyte membrane electrolysis

    NASA Astrophysics Data System (ADS)

    Borgardt, Elena; Panchenko, Olha; Hackemüller, Franz Josef; Giffin, Jürgen; Bram, Martin; Müller, Martin; Lehnert, Werner; Stolten, Detlef

    2018-01-01

    Differential pressure electrolysis offers the potential for more efficient hydrogen compression. Due to the differential pressures acting within the electrolytic cell, the porous transport layer (PTL) is subjected to high stress. For safety reasons, the PTL's mechanical stability must be ensured. However, the requirements for high porosity and low thickness stand in contrast to that for mechanical stability. Porous transport layers for polymer electrolyte membrane (PEM) electrolysis are typically prepared by means of the thermal sintering of titanium powder. Thus far, the factors that influence the mechanical strength of the sintered bodies and how all requirements can be simultaneously fulfilled have not been investigated. Here, the static and dynamic mechanical properties of thin sintered titanium sheets are investigated ex-situ via tensile tests and periodic loading in a test cell, respectively. In order for a sintered PTL with a thickness of 500 μm and porosities above 25% to be able to withstand 50 bar differential pressure in the cell, the maximum flow field width should be limited to 3 mm. Thus, a method was developed to test the suitability of PTL materials for use in electrolysis for various differential pressures and flow field widths.

  17. The effects of composition and sintering temperature on the silica foam fabricated by slurry method

    NASA Astrophysics Data System (ADS)

    Baharom, Syazwani; Ahmad, Sufizar; Taib, Hariati; Muda, Rizamarhaiza

    2016-07-01

    Reticulated ceramic or open pore ceramic foam is a well-known material which exhibits extremely high porosities, with a significant degree of interconnectivity that makes them desirable in a wide range of applications. There were broad types of ceramic foam fabrication method such as polymeric sponge method, direct foaming, and starch consolidation. In this study, the slurry method has been chosen to fabricate Silica (SiO2) foam. In this process, Polyurethane (PU) foam template was dipped into ceramic slurry and followed by drying and sintering to obtain foam which contains porosity in the range of 50% to 70%. The compositions of SiO2 were varied starting from 55 wt.%, 60 wt.%, 65 wt.% and 70 wt.%. The samples of SiO2 that have been dipped and dried were sintered at 900°C, 1000°C, 1100°C, and 1250°C. The sintered SiO2 ceramic foam samples were characterized to observe their morphology, and physical properties. Thus, the microstructure of the SiO2 ceramic foams samples was examined by Scanning Electron Microscopy (SEM), and Electron Dispersive Spectroscopy (EDS). Meanwhile, the physical properties of the SiO2 ceramic foam samples such as the total porosity (%) and bulk density were determined using Archimedes method. It was found that the density of ceramic foam produced was in the range of 0.25 g/cm3 up to 0.75 g/cm3, whereas the level of porosity percentage was in the range of 61.81% to 82.18% with the size of open pore or window cells were in between 141 µm up to 626 µm.

  18. The effects of composition and sintering temperature on the silica foam fabricated by slurry method

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Baharom, Syazwani, E-mail: hd140001@siswa.uthm.edu.my; Ahmad, Sufizar, E-mail: sufizar@uthm.edu.my; Taib, Hariati, E-mail: hariati@uthm.edu.my

    Reticulated ceramic or open pore ceramic foam is a well-known material which exhibits extremely high porosities, with a significant degree of interconnectivity that makes them desirable in a wide range of applications. There were broad types of ceramic foam fabrication method such as polymeric sponge method, direct foaming, and starch consolidation. In this study, the slurry method has been chosen to fabricate Silica (SiO{sub 2}) foam. In this process, Polyurethane (PU) foam template was dipped into ceramic slurry and followed by drying and sintering to obtain foam which contains porosity in the range of 50% to 70%. The compositions ofmore » SiO{sub 2} were varied starting from 55 wt.%, 60 wt.%, 65 wt.% and 70 wt.%. The samples of SiO{sub 2} that have been dipped and dried were sintered at 900°C, 1000°C, 1100°C, and 1250°C. The sintered SiO{sub 2} ceramic foam samples were characterized to observe their morphology, and physical properties. Thus, the microstructure of the SiO{sub 2} ceramic foams samples was examined by Scanning Electron Microscopy (SEM), and Electron Dispersive Spectroscopy (EDS). Meanwhile, the physical properties of the SiO{sub 2} ceramic foam samples such as the total porosity (%) and bulk density were determined using Archimedes method. It was found that the density of ceramic foam produced was in the range of 0.25 g/cm{sup 3} up to 0.75 g/cm{sup 3}, whereas the level of porosity percentage was in the range of 61.81% to 82.18% with the size of open pore or window cells were in between 141 µm up to 626 µm.« less

  19. Microwave processing heats up

    USDA-ARS?s Scientific Manuscript database

    Microwaves are a common appliance in many households. In the United States microwave heating is the third most popular domestic heating method food foods. Microwave heating is also a commercial food processing technology that has been applied for cooking, drying, and tempering foods. It's use in ...

  20. Method of forming a relatively stable slip of silicon metal particles and yttrium containing particles

    DOEpatents

    Dickie, Ray A.; Mangels, John A.

    1984-01-01

    The method concerns forming a relatively stable slip of silicon metal particles and yttrium containing particles. In one embodiment, a casting slip of silicon metal particles is formed in water. Particles of a yttrium containing sintering aid are added to the casting slip. The yttrium containing sintering aid is a compound which has at least some solubility in water to form Y.sup.+3 ions which have a high potential for totally flocculating the silicon metal particles into a semiporous solid. A small amount of a fluoride salt is added to the casting slip which contains the yttrium containing sintering aid. The fluoride salt is one which will produce fluoride anions when dissolved in water. The small amount of the fluoride anions produced are effective to suppress the flocculation of the silicon metal particles by the Y.sup.+3 ions so that all particles remain in suspension in the casting slip and the casting slip has both an increased shelf life and can be used to cast articles having a relatively thick cross-section. The pH of the casting slip is maintained in a range from 7.5 to 9. Preferably, the fluoride salt used is one which is based on a monovalent cation such as sodium or ammonia. The steps of adding the yttrium containing sintering aid and the fluoride salt may be interchanged if desired, and the salt may be added to a solution containing the sintering aid prior to addition of the silicon metal particles.

  1. Effects of Microwave Radiation on Oil Recovery

    NASA Astrophysics Data System (ADS)

    Esmaeili, Abdollah

    2011-12-01

    A variety of oil recovery methods have been developed and applied to mature and depleted reservoirs in order to improve the efficiency. Microwave radiation oil recovery method is a relatively new method and has been of great interest in the recent years. Crude oil is typically co-mingled with suspended solids and water. To increase oil recovery, it is necessary to remove these components. The separation of oil from water and solids using gravitational settling methods is typically incomplete. Oil-in-water and oil-water-solid emulsions can be demulsified and separated into their individual layers by microwave radiation. The data also show that microwave separation is faster than gravity separation and can be faster than conventional heating at many conditions. After separation of emulsion into water and oil layers, water can be discharged and oil is collected. High-frequency microwave recycling process can recover oil and gases from oil shale, residual oil, drill cuttings, tar sands oil, contaminated dredge/sediments, tires and plastics with significantly greater yields and lower costs than are available utilizing existing known technologies. This process is environmentally friendly, fuel-generating recycler to reduce waste, cut emissions, and save energy. This paper presents a critical review of Microwave radiation method for oil recovery.

  2. Injection molding of silicon carbide capable of being sintered without pressure

    NASA Technical Reports Server (NTRS)

    Muller-Zell, A.; Schwarzmeier, R.

    1984-01-01

    The most suitable SiC mass for injection molding of SiC articles (for subsequent pressureless sintering) consisted of beta SiC 84, a wax mixture 8, and polyethylene or polystyrene 8 parts. The most effective method for adding the binders was by dissolving them in a solvent and subsequent evaporation. The sequence of component addition was significant, and all parameters were optimized together rather than individually.

  3. Reliability analysis of structural ceramic components using a three-parameter Weibull distribution

    NASA Technical Reports Server (NTRS)

    Duffy, Stephen F.; Powers, Lynn M.; Starlinger, Alois

    1992-01-01

    Described here are nonlinear regression estimators for the three-Weibull distribution. Issues relating to the bias and invariance associated with these estimators are examined numerically using Monte Carlo simulation methods. The estimators were used to extract parameters from sintered silicon nitride failure data. A reliability analysis was performed on a turbopump blade utilizing the three-parameter Weibull distribution and the estimates from the sintered silicon nitride data.

  4. Method of nitriding refractory metal articles

    DOEpatents

    Tiegs, Terry N.; Holcombe, Cressie E.; Dykes, Norman L.; Omatete, Ogbemi O.; Young, Albert C.

    1994-01-01

    A method of nitriding a refractory-nitride forming metal or metalloid articles and composite articles. A consolidated metal or metalloid article or composite is placed inside a microwave oven and nitrogen containing gas is introduced into the microwave oven. The metal or metalloid article or composite is heated to a temperature sufficient to react the metal or metalloid with the nitrogen by applying a microwave energy within the microwave oven. The metal or metalloid article or composite is maintained at that temperature for a period of time sufficient to convert the article of metal or metalloid or composite to an article or composite of refractory nitride. In addition, a method of applying a coating, such as a coating of an oxide, a carbide, or a carbo-nitride, to an article of metal or metalloid by microwave heating.

  5. Method of nitriding refractory metal articles

    DOEpatents

    Tiegs, T.N.; Holcombe, C.E.; Dykes, N.L.; Omatete, O.O.; Young, A.C.

    1994-03-15

    A method of nitriding a refractory-nitride forming metal or metalloid articles and composite articles. A consolidated metal or metalloid article or composite is placed inside a microwave oven and nitrogen containing gas is introduced into the microwave oven. The metal or metalloid article or composite is heated to a temperature sufficient to react the metal or metalloid with the nitrogen by applying a microwave energy within the microwave oven. The metal or metalloid article or composite is maintained at that temperature for a period of time sufficient to convert the article of metal or metalloid or composite to an article or composite of refractory nitride. In addition, a method of applying a coating, such as a coating of an oxide, a carbide, or a carbo-nitride, to an article of metal or metalloid by microwave heating.

  6. Preparation of Silica Nanoparticles Through Microwave-assisted Acid-catalysis

    PubMed Central

    Lovingood, Derek D.; Owens, Jeffrey R.; Seeber, Michael; Kornev, Konstantin G.; Luzinov, Igor

    2013-01-01

    Microwave-assisted synthetic techniques were used to quickly and reproducibly produce silica nanoparticle sols using an acid catalyst with nanoparticle diameters ranging from 30-250 nm by varying the reaction conditions. Through the selection of a microwave compatible solvent, silicic acid precursor, catalyst, and microwave irradiation time, these microwave-assisted methods were capable of overcoming the previously reported shortcomings associated with synthesis of silica nanoparticles using microwave reactors. The siloxane precursor was hydrolyzed using the acid catalyst, HCl. Acetone, a low-tan δ solvent, mediates the condensation reactions and has minimal interaction with the electromagnetic field. Condensation reactions begin when the silicic acid precursor couples with the microwave radiation, leading to silica nanoparticle sol formation. The silica nanoparticles were characterized by dynamic light scattering data and scanning electron microscopy, which show the materials' morphology and size to be dependent on the reaction conditions. Microwave-assisted reactions produce silica nanoparticles with roughened textured surfaces that are atypical for silica sols produced by Stöber's methods, which have smooth surfaces. PMID:24379052

  7. Effects of different drying methods on the product quality and volatile compounds of whole shiitake mushrooms.

    PubMed

    Tian, Yuting; Zhao, Yingting; Huang, Jijun; Zeng, Hongliang; Zheng, Baodong

    2016-04-15

    Various drying methods play important roles in the preservation of foods. However, how the different drying methods affect the quality of some foods is not clear. This paper evaluates the effects of hot air, vacuum, microwave, and microwave vacuum drying techniques on important qualities and volatile compounds of whole shiitake (Lentinus edodes) mushrooms. These four drying methods resulted in a significantly (p<0.05) increase in the content of total free amino acids and the relative content of sulfur compounds of dried products. Microwave vacuum drying helped to maintain larger amounts of taste-active amino acids, and improved nutrient retention and color attributes. Furthermore, the uniform honeycomb network created by microwave vacuum drying along with a less collapsed structure of dried samples can be used to explain the observed high rehydration ratio. Therefore, microwave vacuum drying should be a potential method for obtaining high-quality dried mushrooms. Copyright © 2015 Elsevier Ltd. All rights reserved.

  8. Study of the optimisation of puffing characteristics of potato cubes by spouted bed drying enhanced with microwave.

    PubMed

    Yan, Wei-qiang; Zhang, Min; Huang, Lue-lue; Tang, Juming; Mujumdar, Arun S; Sun, Jin-cai

    2010-06-01

    In commercial deep-fat frying of potato chips, the oil content of the final products ranges from 35 to 45 g 100 g(-1) (wet basis). High-temperature frying may cause the formation of acrylamide, making the products unhealthy to the consumer. The aim of this research was to explore a new method, spouted bed microwave drying, to produce healthier puffed snack potato cubes as possible alternatives to oil-fried potato chips. The influence of drying conditions of the spouted bed microwave drying on puffing characteristics of potato cubes were studied and compared with the direct microwave and hot air drying method. Tandem combination drying of microwave-enhanced spouted bed drying (MWSB) could achieve a good expansion ratio, breaking force and rehydration ratio. The puffing characteristics of potato cubes were significantly affected (P < 0.05) by moisture content before starting microwave power in spouted bed microwave drying, by microwave (MW) power, and by the original size of potato cubes. The optimum processing parameters were the moisture content at the start of microwave power (60%), the size of potato cubes (10-12 mm), and microwave power (2-2.5 W g(-1)) Copyright (c) 2010 Society of Chemical Industry.

  9. Microwave mediated synthesis of ZnS spherical nanoparticles for IR optical ceramics

    NASA Astrophysics Data System (ADS)

    Ravichandran, D.; Wharton, T.; Devan, B.; Korenstein, R.; Tustison, R.; Komarneni, S.

    2011-06-01

    The existing material choice for long-wave infrared (LWIR) and semi-active laser domes is multispectral zinc sulfide (ZnS), made by chemical vapor deposition. An alternative route to make more erosion-resistant ZnS could be through hot pressing ZnS nanoparticles into small-grain material. We have attempted to produce ZnS nanoparticles both by microwave and microwave-hydrothermal methods. Microwave route produced ultrahigh purity, homogeneous, well dispersed, and uniformly spherical ZnS nanoparticles. Microwave-hydrothermal route produced equiaxed cubic-faceted nanoparticles. The powder X-ray diffraction patterns of ZnS shows the presence of broad reflections corresponding to the (1 1 1), (2 2 0), and (3 1 1) planes of the cubic crystalline ZnS material. The domain size of the particles estimated from the Debye-Scherrer formula for the main reflection (111) gives a value of 2.9 and 2.5 for the microwave and microwave-hydrothermal methods respectively.

  10. Method for fabricating ceramic filaments and high density tape casting method

    NASA Technical Reports Server (NTRS)

    Collins, Jr., Earl R. (Inventor)

    1990-01-01

    An apparatus and method is disclosed for fabricating mats of ceramic material comprising preparing a slurry of ceramic particles in a binder/solvent, charging the slurry into a vessel, forcing the slurry from the vessel into spinneret nozzles, discharging the slurry from the nozzles into the path of airjets to enhance the sinuous character of the slurry exudate and to dry it, collecting the filaments on a moving belt so that the filaments overlap each other thereby forming a mat, curing the binder therein, compressing and sintering the mat to form a sintered mat, and crushing the sintered mat to produce filament shaped fragments. A process is also disclosed for producing a tape of densely packed, bonded ceramic particles comprising forming a slurry of ceramic particles and a binder/solvent, applying the slurry to a rotating internal molding surface, applying a large centrifugal force to the slurry to compress it and force excess binder/solvent from the particles, evaporating solvent and curing the binder thereby forming layers of bonded ceramic particles and cured binder, and separating the binder layer from the layer of particles. Multilayers of ceramic particles are cast in an analogous manner on top of previously formed layers. When all of the desired layers have been cast the tape is fired to produce a sintered tape. For example, a three-layer tape is produced having outer layers of highly compressed filament shaped fragments of strontium doped lanthanum (LSM) particles and a center layer of yttria stabilized zicronia (YSZ) particles.

  11. Detection of contraband using microwave radiation

    DOEpatents

    Toth, Richard P.; Loubriel, Guillermo M.; Bacon, Larry D.; Watson, Robert D.

    2002-01-01

    The present invention relates to a method and system for using microwave radiation to detect contraband hidden inside of a non-metallic container, such as a pneumatic vehicle tire. The method relies on the attenuation, retardation, time delay, or phase shift of microwave radiation as it passes through the container plus the contraband. The method is non-invasive, non-destructive, low power, and does not require physical contact with the container.

  12. A comparison of techniques for preparing fish fillet for ICP-AES multielemental analysis and the microwave digestion of whole fish.

    PubMed

    Moeller, A; Ambrose, R F; Que Hee, S S

    2001-01-01

    Four catfish fillet homogenate treatments before multielemental metal analysis by simultaneous inductively coupled plasma/atomic emission spectroscopy were compared in triplicate. These treatments were: nitric acid wet-ashing by Parr bomb digestion; nitric acid wet-ashing by microwave digestion; tetramethylammonium hydroxide/nitric acid wet digestion; and dry-ashing. The tetramethylammonium hydroxide/nitric acid method was imprecise (coefficients of variation > 20%). The dry-ashing method was fast and sensitive but had low recoveries of 50% for spiked Pb and Al and was not as precise as the Parr bomb or microwave treatments. The Parr bomb method was the most precise method but was less sensitive than the microwave method which had nearly the same precision. The microwave method was then adapted to homogenates of small whole fish < or = 3 cm in length. The whole fish homogenate required more vigorous digestion conditions, and addition of more acid after the evaporative step because of the presence of less oxidizable and acid-soluble components than fillet. The whole fish homogenate was also more heterogeneous than catfish fillet. A quality assurance protocol to demonstrate homogenate uniformity is essential. The use of a non-specialized microwave oven system allowed precise results for fillet and whole fish homogenates.

  13. A novel in situ synthesis of SiBCN-Zr composites prepared by a sol-gel process and spark plasma sintering.

    PubMed

    Miao, Yang; Yang, Zhihua; Liang, Bin; Li, Quan; Chen, Qingqing; Jia, Dechang; Cheng, Yi-Bing; Zhou, Yu

    2016-08-09

    In the work reported here, SiBCN amorphous powders were first prepared by a mechanical alloying technique, employing cubic silicon, graphite and hexagonal boron nitride powders as raw materials. Zirconia was then introduced via sol-gel methods. The resulting powder composite was then consolidated via SPS sintering. The SPS sintering sample was evaluated using XRD, SEM and TEM. XRD reveals a chemical transformation wherein amorphous BN(C) and ZrO2 form the primary ZrC and ZrB2 phases after SPS processing along with SiC and BN(C). Thereafter ZrC reacts with BN(C) completely to form ZrB2. The reaction starts at the temperature of 1500 °C and is complete at the temperature of 1900 °C. The fracture toughness of the sintered composites reaches 4.9 ± 0.2 MPa m(1/2) due to the presence of the laminated structure of the BN(C) phase.

  14. Grain refinement in heavy rare earth element-free sintered Nd–Fe–B magnets by addition of a small amount of molybdenum

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kim, Jin Woo; Lee, Won Suk; Byun, Jong Min

    2015-05-07

    We employed a modified refractory-metal-addition method to achieve higher coercivity and remanence in heavy rare earth element (HREE)-free Nd–Fe–B sintered magnets. This process involved inducing the formation of a homogeneous secondary phase at the grain boundaries during sintering, making it possible to control the intergrain diffusion by adding small amounts of Mo, a refractory metal. To control the microstructure of the secondary phase effectively, a metal organic compound of the refractory metal was coated on the surfaces of the particles of an HREE-free Nd–Fe–B powder. The average grain size after this process was 5.60 μm, which was approximately 1.8 μm smaller thanmore » that of the HREE-free sintered Nd–Fe–B magnets (7.4 μm). The coercivity of the magnets prepared through this process could be increased from 11.88 kOe to 13.91 kOe without decreasing their remanence.« less

  15. Copper-polydopamine composite derived from bioinspired polymer coating

    DOE PAGES

    Zhao, Yao; Wang, Hsin; Qian, Bosen; ...

    2018-04-01

    Metal matrix composites with nanocarbon phases, such carbon nanotube (CNT) and graphene, have shown potentials to achieve improved mechanical, thermal, and electrical properties. However, incorporation of these nanocarbons into the metal matrix usually involves complicated processes. Here, this study explored a new processing method to fabricate copper (Cu) matrix composite by coating Cu powder particles with nanometer-thick polydopamine (PDA) thin films and sintering of the powder compacts. For sintering temperatures between 300°C and 750°C, the Cu-PDA composite samples showed higher electrical conductivity and thermal conductivity than the uncoated Cu samples, which is likely related to the higher mass densities ofmore » the composite samples. After being sintered at 950°C, the thermal conductivity of the Cu-PDA sample was approximately 12% higher than the Cu sample, while the electrical conductivity did not show significant difference. On the other hand, Knoop micro-hardness values were comparable between the Cu-PDA and Cu samples sintered at the same temperatures.« less

  16. Fabrication of Li2TiO3 pebbles using PVA-boric acid reaction for solid breeding materials

    NASA Astrophysics Data System (ADS)

    Park, Yi-Hyun; Cho, Seungyon; Ahn, Mu-Young

    2014-12-01

    Lithium metatitanate (Li2TiO3) is a candidate breeding material of the Helium Cooled Ceramic Reflector (HCCR) Test Blanket Module (TBM). The breeding material is used in pebble-bed form to reduce the uncertainty of the interface thermal conductance. In this study, Li2TiO3 pebbles were successfully fabricated by the slurry droplet wetting method using the cross-linking reaction between polyvinyl alcohol (PVA) and boric acid. The effects of fabrication parameters on the shaping of Li2TiO3 green body were investigated. In addition, the basic characteristics of the sintered pebble were also evaluated. The shape of Li2TiO3 green bodies was affected by slurry viscosity, PVA content and boric acid content. The grain size and average crush load of sintered Li2TiO3 pebble were controlled by the sintering time. The boron was completely removed during the final sintering process.

  17. Improved silicon nitride for advanced heat engines

    NASA Technical Reports Server (NTRS)

    Yeh, H. C.; Wimmer, J. M.; Huang, H. H.; Rorabaugh, M. E.; Schienle, J.; Styhr, K. H.

    1985-01-01

    The AiResearch Casting Company baseline silicon nitride (92 percent GTE SN-502 Si sub 3 N sub 4 plus 6 percent Y sub 2 O sub 3 plus 2 percent Al sub 2 O sub 3) was characterized with methods that included chemical analysis, oxygen content determination, electrophoresis, particle size distribution analysis, surface area determination, and analysis of the degree of agglomeration and maximum particle size of elutriated powder. Test bars were injection molded and processed through sintering at 0.68 MPa (100 psi) of nitrogen. The as-sintered test bars were evaluated by X-ray phase analysis, room and elevated temperature modulus of rupture strength, Weibull modulus, stress rupture, strength after oxidation, fracture origins, microstructure, and density from quantities of samples sufficiently large to generate statistically valid results. A series of small test matrices were conducted to study the effects and interactions of processing parameters which included raw materials, binder systems, binder removal cycles, injection molding temperatures, particle size distribution, sintering additives, and sintering cycle parameters.

  18. Effects of Sintering and Extrusion on the Microstructures and Mechanical Properties of a SiC/Al-Cu Composite

    NASA Astrophysics Data System (ADS)

    Sun, Chao; Shen, Rujuan; Song, Min

    2012-03-01

    This article studied the effects of sintering and extrusion on the microstructures and mechanical properties of SiC particle reinforced Al-Cu alloy composite produced by powder metallurgy method. It has been shown that both extrusion and increasing sintering temperature can significantly improve the strength and plasticity of the composite. The extrusion and increase of the sintering temperature can break up the oxide coating on the matrix powder surfaces, decrease the number of pores, accelerate the elements' diffusion and increase the density and particle interfacial bonding strength, thus significantly improve the mechanical properties of the composite. The strength and hardness of the composite increase and the elongation decreases with increasing the aging time at under-aged stage, while the strength and hardness start to decrease and the elongation starts to increase with increasing the aging time at over-aged stage due to the formation and growth of the secondary strengthening precipitates in the Al-Cu matrix.

  19. Thermomechanical Modeling of Sintered Silver - A Fracture Mechanics-based Approach: Extended Abstract: Preprint

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Paret, Paul P; DeVoto, Douglas J; Narumanchi, Sreekant V

    Sintered silver has proven to be a promising candidate for use as a die-attach and substrate-attach material in automotive power electronics components. It holds promise of greater reliability than lead-based and lead-free solders, especially at higher temperatures (less than 200 degrees Celcius). Accurate predictive lifetime models of sintered silver need to be developed and its failure mechanisms thoroughly characterized before it can be deployed as a die-attach or substrate-attach material in wide-bandgap device-based packages. We present a finite element method (FEM) modeling methodology that can offer greater accuracy in predicting the failure of sintered silver under accelerated thermal cycling. Amore » fracture mechanics-based approach is adopted in the FEM model, and J-integral/thermal cycle values are computed. In this paper, we outline the procedures for obtaining the J-integral/thermal cycle values in a computational model and report on the possible advantage of using these values as modeling parameters in a predictive lifetime model.« less

  20. Copper-polydopamine composite derived from bioinspired polymer coating

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhao, Yao; Wang, Hsin; Qian, Bosen

    Metal matrix composites with nanocarbon phases, such carbon nanotube (CNT) and graphene, have shown potentials to achieve improved mechanical, thermal, and electrical properties. However, incorporation of these nanocarbons into the metal matrix usually involves complicated processes. Here, this study explored a new processing method to fabricate copper (Cu) matrix composite by coating Cu powder particles with nanometer-thick polydopamine (PDA) thin films and sintering of the powder compacts. For sintering temperatures between 300°C and 750°C, the Cu-PDA composite samples showed higher electrical conductivity and thermal conductivity than the uncoated Cu samples, which is likely related to the higher mass densities ofmore » the composite samples. After being sintered at 950°C, the thermal conductivity of the Cu-PDA sample was approximately 12% higher than the Cu sample, while the electrical conductivity did not show significant difference. On the other hand, Knoop micro-hardness values were comparable between the Cu-PDA and Cu samples sintered at the same temperatures.« less

Top