Sample records for microwave sources based

  1. Production of large resonant plasma volumes in microwave electron cyclotron resonance ion sources

    DOEpatents

    Alton, Gerald D.

    1998-01-01

    Microwave injection methods for enhancing the performance of existing electron cyclotron resonance (ECR) ion sources. The methods are based on the use of high-power diverse frequency microwaves, including variable-frequency, multiple-discrete-frequency, and broadband microwaves. The methods effect large resonant "volume" ECR regions in the ion sources. The creation of these large ECR plasma volumes permits coupling of more microwave power into the plasma, resulting in the heating of a much larger electron population to higher energies, the effect of which is to produce higher charge state distributions and much higher intensities within a particular charge state than possible in present ECR ion sources.

  2. Production of large resonant plasma volumes in microwave electron cyclotron resonance ion sources

    DOEpatents

    Alton, G.D.

    1998-11-24

    Microwave injection methods are disclosed for enhancing the performance of existing electron cyclotron resonance (ECR) ion sources. The methods are based on the use of high-power diverse frequency microwaves, including variable-frequency, multiple-discrete-frequency, and broadband microwaves. The methods effect large resonant ``volume`` ECR regions in the ion sources. The creation of these large ECR plasma volumes permits coupling of more microwave power into the plasma, resulting in the heating of a much larger electron population to higher energies, the effect of which is to produce higher charge state distributions and much higher intensities within a particular charge state than possible in present ECR ion sources. 5 figs.

  3. Power combination of two phase-locked high power microwave beams from a new coaxial microwave source based on dual beams

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Li, Yangmei; Zhang, Xiaoping, E-mail: plinafly@163.com; Zhang, Jiande

    2014-10-15

    The new coaxial high power microwave source based on dual beams has demonstrated two phase-locked output microwave beams generated by its two sub-sources. In order to achieve a single higher output power, we present a three-port waveguide-based power combiner to combine the two microwave beams. Particle-in-cell simulation results show that when the diode voltage is 675 kV and the guiding magnetic field is 0.8 T, a combined microwave with an average power of about 4.0 GW and a frequency of 9.74 GHz is generated; the corresponding power conversion efficiency is 29%. The combination effect of the combiner is further validated in the diodemore » voltage range from 675 kV to 755 kV as well as in the pulse regime. The simulations indicate that the maximum surface axial electric field strength of the electrodynamic structure is 720 kV/cm, which is relatively low corresponding to an output power of 4.0 GW. The stable combined output suggests the probability of long-pulse operation for the combined source.« less

  4. Physical Foundations of Plasma Microwave Sources Based on Anomalous Doppler Effect

    DTIC Science & Technology

    2007-09-17

    International Science and Technology Center ( ISTC ), Moscow. ISTC Project A-1512p Physical Foundations of Plasma Microwave Sources Based on Anomalous...07 – 31-Aug-07 5a. CONTRACT NUMBER ISTC Registration No: A-1512p 5b. GRANT NUMBER 4. TITLE AND SUBTITLE Physical foundations of plasma microwave... ISTC 05-7008 12. DISTRIBUTION/AVAILABILITY STATEMENT Approved for public release; distribution is unlimited. 13. SUPPLEMENTARY NOTES

  5. Electro-optically tunable microwave source based on composite-cavity microchip laser.

    PubMed

    Qiao, Yunfei; Zheng, Shilie; Chi, Hao; Jin, Xiaofeng; Zhang, Xianmin

    2012-12-17

    A compact and electric tuning microwave source based on a diode-pumped composite Nd:YAG-LiNbO(3) cavity microchip laser is demonstrated. The electro-optical element introduces an electric tuning intra-cavity birefringence which causes a tunable frequency difference between two spilt orthogonal polarization states of a longitude mode. Thus a continuously tunable microwave signal with frequency up to 14.12 GHz can be easily generated by beating the two polarization modes on a high speed photodetector.

  6. In vivo microwave-based thermoacoustic tomography of rats (Conference Presentation)

    NASA Astrophysics Data System (ADS)

    Lin, Li; Zhou, Yong; Wang, Lihong V.

    2016-03-01

    Microwave-based thermoacoustic tomography (TAT), based on the measurement of ultrasonic waves induced by microwave pulses, can reveal tissue dielectric properties that may be closely related to the physiological and pathological status of the tissues. Using microwaves as the excitation source improved imaging depth because of their deep penetration into biological tissues. We demonstrate, for the first time, in vivo microwave-based thermoacoustic imaging in rats. The transducer is rotated around the rat in a full circle, providing a full two-dimensional view. Instead of a flat ultrasonic transducer, we used a virtual line detector based on a cylindrically focused transducer. A 3 GHz microwave source with 0.6 µs pulse width and an electromagnetically shielded transducer with 2.25 MHz central frequency provided clear cross-sectional images of the rat's body. The high imaging contrast, based on the tissue's rate of absorption, and the ultrasonically defined spatial resolution combine to reveal the spine, kidney, muscle, and other deeply seated anatomical features in the rat's abdominal cavity. This non-invasive and non-ionizing imaging modality achieved an imaging depth beyond 6 cm in the rat's tissue. Cancer diagnosis based on information about tissue properties from microwave band TAT can potentially be more accurate than has previously been achievable.

  7. Fully reconfigurable photonic microwave transversal filter based on digital micromirror device and continuous-wave, incoherent supercontinuum source.

    PubMed

    Lee, Ju Han; Chang, You Min; Han, Young-Geun; Lee, Sang Bae; Chung, Hae Yang

    2007-08-01

    The combined use of a programmable, digital micromirror device (DMD) and an ultrabroadband, cw, incoherent supercontinuum (SC) source is experimentally demonstrated to fully explore various aspects on the reconfiguration of a microwave filter transfer function by creating a range of multiwavelength optical filter shapes. Owing to both the unique characteristic of the DMD that an arbitrary optical filter shape can be readily produced and the ultrabroad bandwidth of the cw SC source that is 3 times larger than that of Er-amplified spontaneous emission, a multiwavelength optical beam pattern can be generated with a large number of wavelength filter taps apodized by an arbitrary amplitude window. Therefore various types of high-quality microwave filter can be readily achieved through the spectrum slicing-based photonic microwave transversal filter scheme. The experimental demonstration is performed in three aspects: the tuning of a filter resonance bandwidth at a fixed resonance frequency, filter resonance frequency tuning at a fixed resonance frequency, and flexible microwave filter shape reconstruction.

  8. Advanced RF and microwave functions based on an integrated optical frequency comb source.

    PubMed

    Xu, Xingyuan; Wu, Jiayang; Nguyen, Thach G; Shoeiby, Mehrdad; Chu, Sai T; Little, Brent E; Morandotti, Roberto; Mitchell, Arnan; Moss, David J

    2018-02-05

    We demonstrate advanced transversal radio frequency (RF) and microwave functions based on a Kerr optical comb source generated by an integrated micro-ring resonator. We achieve extremely high performance for an optical true time delay aimed at tunable phased array antenna applications, as well as reconfigurable microwave photonic filters. Our results agree well with theory. We show that our true time delay would yield a phased array antenna with features that include high angular resolution and a wide range of beam steering angles, while the microwave photonic filters feature high Q factors, wideband tunability, and highly reconfigurable filtering shapes. These results show that our approach is a competitive solution to implementing reconfigurable, high performance and potentially low cost RF and microwave signal processing functions for applications including radar and communication systems.

  9. Microwave photonic filters using low-cost sources featuring tunability, reconfigurability and negative coefficients.

    PubMed

    Capmany, José; Mora, José; Ortega, Beatriz; Pastor, Daniel

    2005-03-07

    We propose and experimentally demonstrate two configurations of photonic filters for the processing of microwave signals featuring tunability, reconfigurability and negative coefficients based on the use of low cost optical sources. The first option is a low power configuration based on spectral slicing of a broadband source. The second is a high power configuration based on fixed lasers. Tunability, reconfigurability and negative coefficients are achieved by means of a MEMS cross-connect, a variable optical attenuator array and simple 2x2 switches respectively.

  10. Microwave implementation of two-source energy balance approach for estimating evapotranspiration

    USDA-ARS?s Scientific Manuscript database

    A newly developed microwave (MW) land surface temperature (LST) product is used to effectively substitute thermal infrared (TIR) based LST in the two-source energy balance approach (TSEB) for estimating ET from space. This TSEB land surface scheme, used in the Atmosphere Land Exchange Inverse (ALEXI...

  11. A smart repetitive-rate wideband high power microwave source

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Li, Wei; Zhang, Jun; Qian, Bao-liang

    2016-01-15

    A smart repetitive-rate wideband High Power Microwave (HPM) source based on the A6 Magnetron with Diffraction Output is described in this paper. The length of the HPM source is 30 cm and its weight is 35 kg. Computer simulations show that the source can produce microwave with central frequency of 1.91 GHz and bandwidth of about 11%. Experimental measurements show that the output microwave power from the source reaches in maximum 110 MW when the input electric power from the pulsed driver is ∼500 MW, which gives the power conversion efficiency 22%. Central frequency of the output HPM in the experiment is 1.94 GHz withmore » the bandwidth ranging from 1.82 GHz to 2.02 GHz. The jitter of the output HPM power is lower than 3 dB when the source operates in the repetition mode with 50 Hz rate.« less

  12. Microwave-driven ultraviolet light sources

    DOEpatents

    Manos, Dennis M.; Diggs, Jessie; Ametepe, Joseph D.

    2002-01-29

    A microwave-driven ultraviolet (UV) light source is provided. The light source comprises an over-moded microwave cavity having at least one discharge bulb disposed within the microwave cavity. At least one magnetron probe is coupled directly to the microwave cavity.

  13. Application of microwave energy in the control of DPM, oxides of nitrogen and VOC emissions

    NASA Astrophysics Data System (ADS)

    Pallavkar, Sameer M.

    The emissions of DPM (diesel particulate matter), NOx (oxides of nitrogen), and toxic VOCs (volatile organic compounds) from diesel engine exhaust gases and other sources such as chemical process industry and manufacturing industry have been a great environmental and health concern. Most control technologies for these emissions require elevated temperatures. The use of microwave energy as a source of heat energy, however, has not been fully explored. In this study, the microwave energy was used as the energy source in three separate emission control processes, namely, the regeneration of diesel particulate filter (DPF) for DPM control, the NOx reduction using a platinum catalyst, and the VOC destruction involving a ceramic based material. The study has demonstrated that microwave heating is an effective method in providing heat for the studied processes. The control efficiencies associated with the microwave-assisted processes have been observed to be high and acceptable. Further research, however, is required for the commercial use of these technologies.

  14. Studies on the coupling transformer to improve the performance of microwave ion source.

    PubMed

    Misra, Anuraag; Pandit, V S

    2014-06-01

    A 2.45 GHz microwave ion source has been developed and installed at the Variable Energy Cyclotron Centre to produce high intensity proton beam. It is operational and has already produced more than 12 mA of proton beam with just 350 W of microwave power. In order to optimize the coupling of microwave power to the plasma, a maximally flat matching transformer has been used. In this paper, we first describe an analytical method to design the matching transformer and then present the results of rigorous simulation performed using ANSYS HFSS code to understand the effect of different parameters on the transformed impedance and reflection and transmission coefficients. Based on the simulation results, we have chosen two different coupling transformers which are double ridged waveguides with ridge widths of 24 mm and 48 mm. We have fabricated these transformers and performed experiments to study the influence of these transformers on the coupling of microwave to plasma and extracted beam current from the ion source.

  15. Studies on the coupling transformer to improve the performance of microwave ion source

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Misra, Anuraag, E-mail: pandit@vecc.gov.in, E-mail: vspandit12@gmail.com, E-mail: anuraag@vecc.gov.in; Pandit, V. S., E-mail: pandit@vecc.gov.in, E-mail: vspandit12@gmail.com, E-mail: anuraag@vecc.gov.in

    A 2.45 GHz microwave ion source has been developed and installed at the Variable Energy Cyclotron Centre to produce high intensity proton beam. It is operational and has already produced more than 12 mA of proton beam with just 350 W of microwave power. In order to optimize the coupling of microwave power to the plasma, a maximally flat matching transformer has been used. In this paper, we first describe an analytical method to design the matching transformer and then present the results of rigorous simulation performed using ANSYS HFSS code to understand the effect of different parameters on themore » transformed impedance and reflection and transmission coefficients. Based on the simulation results, we have chosen two different coupling transformers which are double ridged waveguides with ridge widths of 24 mm and 48 mm. We have fabricated these transformers and performed experiments to study the influence of these transformers on the coupling of microwave to plasma and extracted beam current from the ion source.« less

  16. Dynamic evolution of the source volumes of gradual and impulsive solar flare emissions

    NASA Technical Reports Server (NTRS)

    Bruner, M. E.; Crannell, C. J.; Goetz, F.; Magun, A.; Mckenzie, D. L.

    1987-01-01

    This study compares flare source volumes inferred from impulsive hard X-rays and microwaves with those derived from density sensitive soft X-ray line ratios in the O VII spectrum. The data for this study were obtained with the SMM Hard X-Ray Burst Spectrometer, Earth-based radio observatories, and the SOLEX-B spectrometer on the P78-1 satellite. Data were available for the flares of 1980 April 8, 1980 May 9, and 1981 February 26. The hard X-ray/microwave source volume is determined under the assumption that the same electron temperature or power law index characterizes both the source of hard X-rays and the source of microwaves. The O VII line ratios yield the density and volume of the 2 X 10 to the 6th K plasma. For all three flares, the O VII source volume is found to be smallest at the beginning of the flare, near the time when the impulsive hard X-ray/microwave volume reaches its first maximum. At this time, the O VII volume is three to four orders of magnitude smaller than that inferred from the hard X-ray/microwave analysis. Subsequently, the O VII source volume increases by one or two orders of magnitude then remains almost constant until the end of the flare when it apparently increases again.

  17. Microwave thawing apparatus and method

    DOEpatents

    Fathi, Zakaryae; Lauf, Robert J.; McMillan, April D.

    2004-06-01

    An apparatus for thawing a frozen material includes: a microwave energy source; a microwave applicator which defines a cavity for applying microwave energy from the microwave source to a material to be thawed; and a shielded region which is shielded from the microwave source, the shielded region in fluid communication with the cavity so that thawed material may flow from the cavity into the shielded region.

  18. APPLICATIONS OF LASERS AND OTHER TOPICS IN QUANTUM ELECTRONICS: Laser system based on a commercial microwave oscillator with time compression of a microwave pump pulse

    NASA Astrophysics Data System (ADS)

    Arteev, M. S.; Vaulin, V. A.; Slinko, V. N.; Chumerin, P. Yu; Yushkov, Yu G.

    1992-06-01

    An analysis is made of the possibility of using a commercial microsecond microwave oscillator, supplemented by a device for time compression of microwave pulses, in pumping of industrial lasers with a high efficiency of conversion of the pump source energy into laser radiation. The results are reported of preliminary experiments on the commissioning of an excimer XeCl laser.

  19. Microwave ion source

    DOEpatents

    Leung, Ka-Ngo; Reijonen, Jani; Thomae, Rainer W.

    2005-07-26

    A compact microwave ion source has a permanent magnet dipole field, a microwave launcher, and an extractor parallel to the source axis. The dipole field is in the form of a ring. The microwaves are launched from the middle of the dipole ring using a coaxial waveguide. Electrons are heated using ECR in the magnetic field. The ions are extracted from the side of the source from the middle of the dipole perpendicular to the source axis. The plasma density can be increased by boosting the microwave ion source by the addition of an RF antenna. Higher charge states can be achieved by increasing the microwave frequency. A xenon source with a magnetic pinch can be used to produce intense EUV radiation.

  20. Stabilizing an optoelectronic microwave oscillator with photonic filters

    NASA Technical Reports Server (NTRS)

    Strekalov, D.; Aveline, D.; Yu, N.; Thompson, R.; Matsko, A. B.; Maleki, L.

    2003-01-01

    This paper compares methods of active stabilization of an optoelectronic microwave oscillator (OEO) based on insertion of a source of optical group delay into an OEO loop. The performance of an OEO stabilized with either a high- optical cavity or an atomic cell is analyzed. We show that the elements play a role of narrow-band microwave filters improving an OEO stability.

  1. Microwave-excited ultrasound and thermoacoustic dual imaging

    NASA Astrophysics Data System (ADS)

    Ding, Wenzheng; Ji, Zhong; Xing, Da

    2017-05-01

    We designed a microwave-excited ultrasound (MUI) and thermoacoustic dual imaging system. Under the pulsed microwave excitation, the piezoelectric transducer used for thermoacoustic signal detection will also emit a highly directional ultrasonic beam based on the inverse piezoelectric effect. With this beam, the ultrasonic transmitter circuitry of the traditional ultrasound imaging (TUI) system can be replaced by a microwave source. In other words, TUI can be fully integrated into the thermoacoustic imaging system by sharing the microwave excitation source and the transducer. Moreover, the signals of the two imaging modalities do not interfere with each other due to the existence of the sound path difference, so that MUI can be performed simultaneously with microwave-induced thermoacoustic imaging. In the study, the performance characteristics and imaging capabilities of this hybrid system are demonstrated. The results indicate that our design provides one easy method for low-cost platform integration and has the potential to offer a clinically useful dual-modality tool for the detection of accurate diseases.

  2. Ultralow-threshold cascaded Brillouin microlaser for tunable microwave generation.

    PubMed

    Guo, Changlei; Che, Kaijun; Cai, Zhiping; Liu, Shuai; Gu, Guoqiang; Chu, Chengxu; Zhang, Pan; Fu, Hongyan; Luo, Zhengqian; Xu, Huiying

    2015-11-01

    We experimentally demonstrate an ultralow-threshold cascaded Brillouin microlaser for tunable microwave generation in a high-Q silica microsphere resonator. The threshold of the Brillouin microlaser is as low as 8 μW, which is close to the theoretical prediction. Moreover, the fifth-order Stokes line with a frequency shift up to 55 GHz is achieved with a coupled pump power of less than 0.6 mW. Benefiting from resonant wavelength shifts driven by thermal dynamics in the microsphere, we further realized tunable microwave signals with tuning ranges of 40 MHz at an 11 GHz band and 20 MHz at a 22 GHz band. To the best of our knowledge, it was the first attempt for tunable microwave source based on the whispering-gallery-mode Brillouin microlaser. Such a tunable microwave source from a cascaded Brillouin microlaser could find significant applications in aerospace, communication engineering, and metrology.

  3. Recent Improvements in AMSR2 Ground-Based RFI Filtering

    NASA Astrophysics Data System (ADS)

    Scott, J. P.; Gentemann, C. L.; Wentz, F. J.

    2015-12-01

    Passive satellite radiometer measurements in the microwave frequencies (6-89 GHz) are useful in providing geophysical retrievals of sea surface temperature (SST), atmospheric water vapor, wind speed, rain rate, and more. However, radio frequency interference (RFI) is one of the fastest growing sources of error in these retrievals. RFI can originate from broadcasting satellites, as well as from ground-based instrumentation that makes use of the microwave range. The microwave channel bandwidths used by passive satellite radiometers are often wider than the protected bands allocated for this type of remote sensing, a common practice in microwave radiometer design used to reduce the effect of instrument noise in the observed signal. However, broad channel bandwidths allow greater opportunity for RFI to affect these observations and retrievals. For ground-based RFI, a signal is broadcast directly into the atmosphere which may interfere with the radiometer - its antenna, cold mirror, hot load or the internal workings of the radiometer itself. It is relatively easy to identify and flag RFI from large sources, but more difficult to do so from small, sporadic sources. Ground-based RFI has high spatial and temporal variability, requiring constant, automated detection and removal to avoid spurious trends leaching into the geophysical retrievals. Ascension Island in the South Atlantic Ocean has been one of these notorious ground-based RFI sources, affecting many microwave radiometers, including the AMSR2 radiometer onboard JAXA's GCOM-W1 satellite. Ascension Island RFI mainly affects AMSR2's lower frequency channels (6.9, 7.3, and 10.65 GHz) over a broad spatial region in the South Atlantic Ocean, which makes it challenging to detect and flag this RFI using conventional channel and geophysical retrieval differencing techniques. The authors have developed a new method of using the radiometer's earth counts and hot counts, for the affected channels, to detect an Ascension Island RFI event and flag the data efficiently and accurately, thereby reducing false detections and optimizing retrieval quality and data preservation.

  4. Fiber Reinforced Polyester Resins Polymerized by Microwave Source

    NASA Astrophysics Data System (ADS)

    Visco, A. M.; Calabrese, L.; Cianciafara, P.; Bonaccorsi, L.; Proverbio, E.

    2007-12-01

    Polyester resin based composite materials are widely used in the manufacture of fiberglass boats. Production time of fiberglass laminate components could be strongly reduced by using an intense energy source as well as microwaves. In this work a polyester resin was used with 2% by weight of catalyst and reinforced with chopped or woven glass fabric. Pure resin and composite samples were cured by microwaves exposition for different radiation times. A three point bending test was performed on all the cured samples by using an universal testing machine and the resulting fracture surfaces were observed by means of scanning electron microscopy (SEM). The results of mechanical and microscopy analyses evidenced that microwave activation lowers curing time of the composite while good mechanical properties were retained. Microwaves exposition time is crucial for mechanical performance of the composite. It was evidenced that short exposition times suffice for resin activation while long exposure times cause fast cross linking and premature matrix fracture. Furthermore high-radiation times induce bubbles growth or defects nucleation within the sample, decreasing composite performance. On the basis of such results microwave curing activation of polyester resin based composites could be proposed as a valid alternative method for faster processing of laminated materials employed for large-scale applications.

  5. Volcanic eruption source parameters from active and passive microwave sensors

    NASA Astrophysics Data System (ADS)

    Montopoli, Mario; Marzano, Frank S.; Cimini, Domenico; Mereu, Luigi

    2016-04-01

    It is well known, in the volcanology community, that precise information of the source parameters characterising an eruption are of predominant interest for the initialization of the Volcanic Transport and Dispersion Models (VTDM). Source parameters of main interest would be the top altitude of the volcanic plume, the flux of the mass ejected at the emission source, which is strictly related to the cloud top altitude, the distribution of volcanic mass concentration along the vertical column as well as the duration of the eruption and the erupted volume. Usually, the combination of a-posteriori field and numerical studies allow constraining the eruption source parameters for a given volcanic event thus making possible the forecast of ash dispersion and deposition from future volcanic eruptions. So far, remote sensors working at visible and infrared channels (cameras and radiometers) have been mainly used to detect, track and provide estimates of the concentration content and the prevailing size of the particles propagating within the ash clouds up to several thousand of kilometres far from the source as well as track back, a-posteriori, the accuracy of the VATDM outputs thus testing the initial choice made for the source parameters. Acoustic wave (infrasound) and microwave fixed scan radar (voldorad) were also used to infer source parameters. In this work we want to put our attention on the role of sensors operating at microwave wavelengths as complementary tools for the real time estimations of source parameters. Microwaves can benefit of the operability during night and day and a relatively negligible sensitivity to the presence of clouds (non precipitating weather clouds) at the cost of a limited coverage and larger spatial resolution when compared with infrared sensors. Thanks to the aforementioned advantages, the products from microwaves sensors are expected to be sensible mostly to the whole path traversed along the tephra cloud making microwaves particularly appealing for estimates close to the volcano emission source. Near the source the cloud optical thickness is expected to be large enough to induce saturation effects at the infrared sensor receiver thus vanishing the brightness temperature difference methods for the ash cloud identification. In the light of the introduction above, some case studies at Eyjafjallajökull 2010 (Iceland), Etna (Italy) and Calbuco (Cile), on 5-10 May 2010, 23rd Nov., 2013 and 23 Apr., 2015, respectively, are analysed in terms of source parameter estimates (manly the cloud top and mass flax rate) from ground based microwave weather radar (9.6 GHz) and satellite Low Earth Orbit microwave radiometers (50 - 183 GH). A special highlight will be given to the advantages and limitations of microwave-related products with respect to more conventional tools.

  6. A portable high power microwave source with permanent magnets

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Li, Wei; Zhang, Jun; Li, Zhi-qiang

    A high power microwave source with permanent magnets is proposed in this paper. The source has the length 330 mm, maximum diameter 350 mm, and total weight 50 kg, including 25 kg of permanent magnets. 1 GW of microwave power with Gaussian radiation pattern and 24% of microwave power generation efficiency in a pulse duration of 75 ns are obtained in the experiment. Operating frequency of the source is 2.32 GHz. Such a small size, light weight, and highly stable in operation source will be used in portable repetitive high power microwave generation systems.

  7. Coherence-length-gated distributed optical fiber sensing based on microwave-photonic interferometry.

    PubMed

    Hua, Liwei; Song, Yang; Cheng, Baokai; Zhu, Wenge; Zhang, Qi; Xiao, Hai

    2017-12-11

    This paper presents a new optical fiber distributed sensing concept based on coherent microwave-photonics interferometry (CMPI), which uses a microwave modulated coherent light source to interrogate cascaded interferometers for distributed measurement. By scanning the microwave frequencies, the complex microwave spectrum is obtained and converted to time domain signals at known locations by complex Fourier transform. The amplitudes of these time domain pulses are a function of the optical path differences (OPDs) of the distributed interferometers. Cascaded fiber Fabry-Perot interferometers (FPIs) fabricated by femtosecond laser micromachining were used to demonstrate the concept. The experimental results indicated that the strain measurement resolution can be better than 0.6 µε using a FPI with a cavity length of 1.5 cm. Further improvement of the strain resolution to the nε level is achievable by increasing the cavity length of the FPI to over 1m. The tradeoff between the sensitivity and dynamic range was also analyzed in detail. To minimize the optical power instability (either from the light source or the fiber loss) induced errors, a single reflector was added in front of an individual FPI as an optical power reference for the purpose of compensation.

  8. Microwave-Induced Inactivation of DNA-Based Hybrid Catalyst in Asymmetric Catalysis

    PubMed Central

    Zhao, Hua; Shen, Kai

    2015-01-01

    DNA-based hybrid catalysts have gained strong interests in asymmetric reactions. However, to maintain the high enantioselectivity, these reactions are usually conducted at relatively low temperatures (e.g. < 5 °C) for 2–3 days. Aiming to improve the reaction’s turnover rate, we evaluated microwave irradiation with simultaneous cooling as potential energy source since this method has been widely used to accelerate various chemical and enzymatic reactions. However, our data indicated that microwave irradiation induced an inactivation of DNA-based hybrid catalyst even at low temperatures (such as 5 °C). Circular dichroism (CD) spectra and gel electrophoresis of DNA suggest that microwave exposure degrades DNA molecules and disrupts DNA double-stranded structures, causing changes of DNA–metal ligand binding properties and thus poor DNA catalytic performance. PMID:26712696

  9. A microwave imaging-based 3D localization algorithm for an in-body RF source as in wireless capsule endoscopes.

    PubMed

    Chandra, Rohit; Balasingham, Ilangko

    2015-01-01

    A microwave imaging-based technique for 3D localization of an in-body RF source is presented. Such a technique can be useful for localization of an RF source as in wireless capsule endoscopes for positioning of any abnormality in the gastrointestinal tract. Microwave imaging is used to determine the dielectric properties (relative permittivity and conductivity) of the tissues that are required for a precise localization. A 2D microwave imaging algorithm is used for determination of the dielectric properties. Calibration method is developed for removing any error due to the used 2D imaging algorithm on the imaging data of a 3D body. The developed method is tested on a simple 3D heterogeneous phantom through finite-difference-time-domain simulations. Additive white Gaussian noise at the signal-to-noise ratio of 30 dB is added to the simulated data to make them more realistic. The developed calibration method improves the imaging and the localization accuracy. Statistics on the localization accuracy are generated by randomly placing the RF source at various positions inside the small intestine of the phantom. The cumulative distribution function of the localization error is plotted. In 90% of the cases, the localization accuracy was found within 1.67 cm, showing the capability of the developed method for 3D localization.

  10. Calibration of Passive Microwave Polarimeters that Use Hybrid Coupler-Based Correlators

    NASA Technical Reports Server (NTRS)

    Piepmeier, J. R.

    2003-01-01

    Four calibration algorithms are studied for microwave polarimeters that use hybrid coupler-based correlators: 1) conventional two-look of hot and cold sources, 2) three looks of hot and cold source combinations, 3) two-look with correlated source, and 4) four-look combining methods 2 and 3. The systematic errors are found to depend on the polarimeter component parameters and accuracy of calibration noise temperatures. A case study radiometer in four different remote sensing scenarios was considered in light of these results. Applications for Ocean surface salinity, Ocean surface winds, and soil moisture were found to be sensitive to different systematic errors. Finally, a standard uncertainty analysis was performed on the four-look calibration algorithm, which was found to be most sensitive to the correlated calibration source.

  11. Tunable and reconfigurable microwave filter by use of a Bragg-grating-based acousto-optic superlattice modulator.

    PubMed

    Delgado-Pinar, M; Mora, J; Díez, A; Andrés, M V; Ortega, B; Capmany, J

    2005-01-01

    We present an all-optical novel configuration for implementing multitap transversal filters by use of a broadband source sliced by fiber Bragg grating arrays generated by propagating an acoustic wave along a strong uniform fiber Bragg grating. The tunability and reconfigurability of the microwave filter are demonstrated.

  12. Development of CVD Diamond for Industrial Applications Final Report CRADA No. TC-2047-02

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Caplan, M.; Olstad, R.; Jory, H.

    2017-09-08

    This project was a collaborative effort to develop and demonstrate a new millimeter microwave assisted chemical vapor deposition(CVD) process for manufacturing large diamond disks with greatly reduced processing times and costs from those now available. In the CVD process, carbon based gases (methane) and hydrogen are dissociated into plasma using microwave discharge and then deposited layer by layer as polycrystalline diamond onto a substrate. The available low frequency (2.45GHz) microwave sources used elsewhere (De Beers) result in low density plasmas and low deposition rates: 4 inch diamond disks take 6-8 weeks to process. The new system developed in this projectmore » uses a high frequency 30GHz Gyrotron as the microwave source and a quasi-optical CVD chamber resulting in a much higher density plasma which greatly reduced the diamond processing times (1-2 weeks)« less

  13. Studies on the effect of the axial magnetic field on the x-ray bremsstrahlung in a 2.45 GHz permanent magnet microwave ion source.

    PubMed

    Kumar, Narender; Rodrigues, G; Lakshmy, P S; Baskaran, R; Mathur, Y; Ahuja, R; Kanjilal, D

    2014-02-01

    A compact microwave ion source has been designed and developed for operation at a frequency of 2.45 GHz. The axial magnetic field is based on two permanent magnet rings, operating in the "off-resonance" mode and is tunable by moving the permanent magnets. In order to understand the electron energy distribution function, x-ray bremsstrahlung has been measured in the axial direction. Simulation studies on the x-ray bremsstrahlung have been carried out to compare with the experimental results. The effect of the axial magnetic field with respect to the microwave launching position and the position of the extraction electrode on the x-ray bremsstrahlung have been studied.

  14. Source analysis of spaceborne microwave radiometer interference over land

    NASA Astrophysics Data System (ADS)

    Guan, Li; Zhang, Sibo

    2016-03-01

    Satellite microwave thermal emissions mixed with signals from active sensors are referred to as radiofrequency interference (RFI). Based on Advanced Microwave Scanning Radiometer-Earth Observing System (AMSR-E) observations from June 1 to 16, 2011, RFI over Europe was identified and analyzed using the modified principal component analysis algorithm in this paper. The X band AMSR-E measurements in England and Italy are mostly affected by the stable, persistent, active microwave transmitters on the surface, while the RFI source of other European countries is the interference of the reflected geostationary TV satellite downlink signals to the measurements of spaceborne microwave radiometers. The locations and intensities of the RFI induced by the geostationary TV and communication satellites changed with time within the observed period. The observations of spaceborne microwave radiometers in ascending portions of orbits are usually interfered with over European land, while no RFI was detected in descending passes. The RFI locations and intensities from the reflection of downlink radiation are highly dependent upon the relative geometry between the geostationary satellite and the measuring passive sensor. Only these fields of view of a spaceborne instrument whose scan azimuths are close to the azimuth relative to the geostationary satellite are likely to be affected by RFI.

  15. Nonlinear dispersion-based incoherent photonic processing for microwave pulse generation with full reconfigurability.

    PubMed

    Bolea, Mario; Mora, José; Ortega, Beatriz; Capmany, José

    2012-03-12

    A novel all-optical technique based on the incoherent processing of optical signals using high-order dispersive elements is analyzed for microwave arbitrary pulse generation. We show an approach which allows a full reconfigurability of a pulse in terms of chirp, envelope and central frequency by the proper control of the second-order dispersion and the incoherent optical source power distribution, achieving large values of time-bandwidth product.

  16. High temperature acoustic and hybrid microwave/acoustic levitators for materials processing

    NASA Technical Reports Server (NTRS)

    Barmatz, Martin

    1990-01-01

    The physical acoustics group at the Jet Propulsion Laboratory developed a single mode acoustic levitator technique for advanced containerless materials processing. The technique was successfully demonstrated in ground based studies to temperatures of about 1000 C in a uniform temperature furnace environment and to temperatures of about 1500 C using laser beams to locally heat the sample. Researchers are evaluating microwaves as a more efficient means than lasers for locally heating a positioned sample. Recent tests of a prototype single mode hybrid microwave/acoustic levitator successfully demonstrated the feasibility of using microwave power as a heating source. The potential advantages of combining acoustic positioning forces and microwave heating for containerless processing investigations are presented in outline form.

  17. Measurement of microwave radiation from electron beam in the atmosphere

    NASA Astrophysics Data System (ADS)

    Ohta, I. S.; Akimune, H.; Fukushima, M.; Ikeda, D.; Inome, Y.; Matthews, J. N.; Ogio, S.; Sagawa, H.; Sako, T.; Shibata, T.; Yamamoto, T.

    2016-02-01

    We report the use of an electron light source (ELS) located at the Telescope Array Observatory in Utah, USA, to measure the isotropic microwave radiation from air showers. To simulate extensive air showers, the ELS emits an electron beam into the atmosphere and a parabola antenna system for the satellite communication is used to measure the microwave radiation from the electron beam. Based on this measurement, an upper limit on the intensity of a 12.5 GHz microwave radiation at 0.5 m from a 1018 eV air shower was estimated to be 3.96×10-16 W m-2 Hz-1 with a 95% confidence level.

  18. The effect of microwave power on the production of biodiesel from nyamplung

    NASA Astrophysics Data System (ADS)

    Qadariyah, L.; Mujaddid, F.; Raka; Dhonny, S. B.; Mahfud, M.

    2017-12-01

    Today, energy needs in Indonesia still rely on fossil energy sources that its availability in the world is increasingly depleted. Therefore, the research for alternative energy of petroleum must be developed, one of them is biodiesel. The use of microwave as energy source of biodiesel production can speed up the reaction time. So the microwave is considered more efficient. Seeds of nyamplung has an oil content of 71.4% (w/w) by weight. With the oil content of the nyamplung seeds has great potential when used as a raw material for biodiesel production. The aim of this research to study the effect of microwave power on the production of biodisel from nyamplung oil. Microwave power affects density, viscosity and yield of the product. The used of alkali catalyst, with higher the power, the lower the density and viscosity of the resulting product, but the resulting yield is 300 W. The power of more than 300 W is the opposite, resulting in the production of biodiesel using the optimum base catalyst at 300 W power.

  19. Portable microwave instrument for non-destructive evaluation of structural characteristics

    DOEpatents

    Bible, Don W.; Crutcher, Richard I.; Sohns, Carl W.; Maddox, Stephen R.

    1995-01-01

    A portable microwave instrument for evaluating characteristics of a structural member includes a source of microwave energy, a transmitter coupled to the source of microwave energy for transmitting a microwave signal at the structural member, and a receiver positioned on the same side of the structural member as the transmitter and being disposed to receive a microwave signal reflected by the structural member. A phase angle difference is determined between the transmitted microwave signal and the received microwave signal using a signal splitter and a balanced mixer. The difference in phase angle varies in accordance with differences in size, shape and locations of constituent materials within the structural member.

  20. Portable microwave instrument for non-destructive evaluation of structural characteristics

    DOEpatents

    Bible, D.W.; Crutcher, R.I.; Sohns, C.W.; Maddox, S.R.

    1995-01-24

    A portable microwave instrument for evaluating characteristics of a structural member includes a source of microwave energy, a transmitter coupled to the source of microwave energy for transmitting a microwave signal at the structural member, and a receiver positioned on the same side of the structural member as the transmitter and being disposed to receive a microwave signal reflected by the structural member. A phase angle difference is determined between the transmitted microwave signal and the received microwave signal using a signal splitter and a balanced mixer. The difference in phase angle varies in accordance with differences in size, shape and locations of constituent materials within the structural member. 6 figures.

  1. Frequency stabilization of an optically pumped far-infrared laser to the harmonic of a microwave synthesizer.

    PubMed

    Danylov, A A; Light, A R; Waldman, J; Erickson, N

    2015-12-10

    Measurements of the frequency stability of a far-infrared molecular laser have been made by mixing the harmonic of an ultrastable microwave source with a portion of the laser output signal in a terahertz (THz) Schottky diode balanced mixer. A 3 GHz difference-frequency signal was used in a frequency discriminator circuit to lock the laser to the microwave source. Comparisons of the short- and long-term laser frequency stability under free-running and locked conditions show a significant improvement with locking. Short-term frequency jitter was reduced by an order of magnitude, from approximately 40 to 4 kHz, and long-term drift was reduced by more than three orders of magnitude, from approximately 250 kHz to 80 Hz. The results, enabled by the efficient Schottky diode balanced mixer downconverter, demonstrate that ultrastable microwave-based frequency stabilization of THz optically pumped lasers (OPLs) will now be possible at frequencies extending well above 4.0 THz.

  2. Electromagnetic optimisation of a 2.45 GHz microwave plasma source operated at atmospheric pressure and designed for hydrogen production

    NASA Astrophysics Data System (ADS)

    Miotk, R.; Jasiński, M.; Mizeraczyk, J.

    2018-03-01

    This paper presents the partial electromagnetic optimisation of a 2.45 GHz cylindrical-type microwave plasma source (MPS) operated at atmospheric pressure. The presented device is designed for hydrogen production from liquid fuels, e.g. hydrocarbons and alcohols. Due to industrial requirements regarding low costs for hydrogen produced in this way, previous testing indicated that improvements were required to the electromagnetic performance of the MPS. The MPS has a duct discontinuity region, which is a result of the cylindrical structure located within the device. The microwave plasma is generated in this discontinuity region. Rigorous analysis of the region requires solving a set of Maxwell equations, which is burdensome for complicated structures. Furthermore, the presence of the microwave plasma increases the complexity of this task. To avoid calculating the complex Maxwell equations, we suggest the use of the equivalent circuit method. This work is based upon the idea of using a Weissfloch circuit to characterize the area of the duct discontinuity and the plasma. The resulting MPS equivalent circuit allowed the calculation of a capacitive metallic diaphragm, through which an improvement in the electromagnetic performance of the plasma source was obtained.

  3. Signatures of Hong-Ou-Mandel interference at microwave frequencies

    NASA Astrophysics Data System (ADS)

    Woolley, M. J.; Lang, C.; Eichler, C.; Wallraff, A.; Blais, A.

    2013-10-01

    Two-photon quantum interference at a beam splitter, commonly known as Hong-Ou-Mandel interference, is a fundamental demonstration of the quantum mechanical nature of electromagnetic fields and a key component of various quantum information processing protocols. The phenomenon was recently demonstrated with microwave-frequency photons by Lang et al (2013 Nature Phys. 9 345-8). This experiment employed circuit QED systems as sources of microwave photons, and was based on the measurement of second-order cross-correlation and auto-correlation functions of the microwave fields at the outputs of the beam splitter using linear detectors. Here we present the calculation of these correlation functions for the cases of inputs corresponding to: (i) trains of pulsed Gaussian or Lorentzian single microwave photons and (ii) resonant fluorescent microwave fields from continuously driven circuit QED systems. In both cases, the signature of two-photon quantum interference is a suppression of the second-order cross-correlation function for small delays. The experiment described in Lang et al (2013) was performed with trains of Lorentzian single photons, and very good agreement with experimental data is obtained. The results are relevant not only to interference experiments using circuit QED systems, but any such setup with highly controllable sources and time-resolved detection.

  4. A microwave field-driven transistor-like skyrmionic device with the microwave current-assisted skyrmion creation

    NASA Astrophysics Data System (ADS)

    Xia, Jing; Huang, Yangqi; Zhang, Xichao; Kang, Wang; Zheng, Chentian; Liu, Xiaoxi; Zhao, Weisheng; Zhou, Yan

    2017-10-01

    Magnetic skyrmion is a topologically protected domain-wall structure at nanoscale, which could serve as a basic building block for advanced spintronic devices. Here, we propose a microwave field-driven skyrmionic device with the transistor-like function, where the motion of a skyrmion in a voltage-gated ferromagnetic nanotrack is studied by micromagnetic simulations. It is demonstrated that the microwave field can drive the motion of a skyrmion by exciting the propagating spin waves, and the skyrmion motion can be governed by a gate voltage. We also investigate the microwave current-assisted creation of a skyrmion to facilitate the operation of the transistor-like skyrmionic device on the source terminal. It is found that the microwave current with an appropriate frequency can reduce the threshold current density required for the creation of a skyrmion from the ferromagnetic background. The proposed transistor-like skyrmionic device operated with the microwave field and current could be useful for building future skyrmion-based circuits.

  5. Slit shaped microwave induced atmospheric pressure plasma based on a parallel plate transmission line resonator

    NASA Astrophysics Data System (ADS)

    Kang, S. K.; Seo, Y. S.; Lee, H. Wk; Aman-ur-Rehman; Kim, G. C.; Lee, J. K.

    2011-11-01

    A new type of microwave-excited atmospheric pressure plasma source, based on the principle of parallel plate transmission line resonator, is developed for the treatment of large areas in biomedical applications such as skin treatment and wound healing. A stable plasma of 20 mm width is sustained by a small microwave power source operated at a frequency of 700 MHz and a gas flow rate of 0.9 slm. Plasma impedance and plasma density of this plasma source are estimated by fitting the calculated reflection coefficient to the measured one. The estimated plasma impedance shows a decreasing trend while estimated plasma density shows an increasing trend with the increase in the input power. Plasma uniformity is confirmed by temperature and optical emission distribution measurements. Plasma temperature is sustained at less than 40 °C and abundant amounts of reactive species, which are important agents for bacteria inactivation, are detected over the entire plasma region. Large area treatment ability of this newly developed device is verified through bacteria inactivation experiment using E. coli. Sterilization experiment shows a large bacterial killing mark of 25 mm for a plasma treatment time of 10 s.

  6. A Permanent-Magnet Microwave Ion Source For A Compact High-Yield Neutron Generator

    NASA Astrophysics Data System (ADS)

    Waldmann, O.; Ludewigt, B.

    2011-06-01

    We present recent work on the development of a microwave ion source that will be used in a high-yield compact neutron generator for active interrogation applications. The sealed tube generator will be capable of producing high neutron yields, 5×1011 n/s for D-T and ˜1×1010 n/s for D-D reactions, while remaining transportable. We constructed a microwave ion source (2.45 GHz) with permanent magnets to provide the magnetic field strength of 87.5 mT necessary for satisfying the electron cyclotron resonance (ECR) condition. Microwave ion sources can produce high extracted beam currents at the low gas pressures required for sealed tube operation and at lower power levels than previously used RF-driven ion sources. A 100 mA deuterium/tritium beam will be extracted through a large slit (60×6 mm2) to spread the beam power over a larger target area. This paper describes the design of the permanent-magnet microwave ion source and discusses the impact of the magnetic field design on the source performance. The required equivalent proton beam current density of 40 mA/cm2 was extracted at a moderate microwave power of 400 W with an optimized magnetic field.

  7. White noise of Nb-based microwave superconducting quantum interference device multiplexers with NbN coplanar resonators for readout of transition edge sensors

    NASA Astrophysics Data System (ADS)

    Kohjiro, Satoshi; Hirayama, Fuminori; Yamamori, Hirotake; Nagasawa, Shuichi; Fukuda, Daiji; Hidaka, Mutsuo

    2014-06-01

    White noise of dissipationless microwave radio frequency superconducting quantum interference device (RF-SQUID) multiplexers has been experimentally studied to evaluate their readout performance for transition edge sensor (TES) photon counters ranging from near infrared to gamma ray. The characterization has been carried out at 4 K, first to avoid the low-frequency fluctuations present at around 0.1 K, and second, for a feasibility study of readout operation at 4 K for extended applications. To increase the resonant Q at 4 K and maintain low noise SQUID operation, multiplexer chips consisting of niobium nitride (NbN)-based coplanar-waveguide resonators and niobium (Nb)-based RF-SQUIDs have been developed. This hybrid multiplexer exhibited 1 × 104 ≤ Q ≤ 2 × 104 and the square root of spectral density of current noise referred to the SQUID input √SI = 31 pA/√Hz. The former and the latter are factor-of-five and seven improvements from our previous results on Nb-based resonators, respectively. Two-directional readout on the complex plane of the transmission component of scattering matrix S21 enables us to distinguish the flux noise from noise originating from other sources, such as the cryogenic high electron mobility transistor (HEMT) amplifier. Systematic noise measurements with various microwave readout powers PMR make it possible to distinguish the contribution of noise sources within the system as follows: (1) The achieved √SI is dominated by the Nyquist noise from a resistor at 4 K in parallel to the SQUID input coil which is present to prevent microwave leakage to the TES. (2) The next dominant source is either the HEMT-amplifier noise (for small values of PMR) or the quantization noise due to the resolution of 300-K electronics (for large values of PMR). By a decrease of these noise levels to a degree that is achievable by current technology, we predict that the microwave RF-SQUID multiplexer can exhibit √SI ≤ 5 pA/√Hz, i.e., close to √SI of state-of-the-art DC-SQUID-based multiplexers.

  8. Comparative efficacy of microwave, visible light and ultrasound irradiation for green synthesis of dihydropyrimidinones in fruit juice medium

    NASA Astrophysics Data System (ADS)

    Pramanik, Tanay; Padan, Simarjit Kaur; Gupta, Richa; Bedi, Pooja; Singh, Gurinderpal

    2017-07-01

    Dihydropyrimidinones (DHPM) were synthesized via multi component condensation reaction employing urea, ethyl acetoacetate and aromatic aldehydes as reactants. Apple, pomegranate, grape juice were used individually as biodegradable, eco friendly, and green reaction medium whereas microwave, visible light and ultrasound irradiation were applied individually as green source of energy for carrying out the aforesaid reactions. It was observed that the reactions under microwave irradiation were taking minimum time to go for completion whereas the reactions under ultrasound and visible light irradiation were taking approximately same time duration to form products. This is the first of its kind study where the three different reaction methodologies based on three different sources of green energies were compared with each other for their effectiveness and efficiency towards multi component condensation reactions.

  9. High brightness microwave lamp

    DOEpatents

    Kirkpatrick, Douglas A.; Dolan, James T.; MacLennan, Donald A.; Turner, Brian P.; Simpson, James E.

    2003-09-09

    An electrodeless microwave discharge lamp includes a source of microwave energy, a microwave cavity, a structure configured to transmit the microwave energy from the source to the microwave cavity, a bulb disposed within the microwave cavity, the bulb including a discharge forming fill which emits light when excited by the microwave energy, and a reflector disposed within the microwave cavity, wherein the reflector defines a reflective cavity which encompasses the bulb within its volume and has an inside surface area which is sufficiently less than an inside surface area of the microwave cavity. A portion of the reflector may define a light emitting aperture which extends from a position closely spaced to the bulb to a light transmissive end of the microwave cavity. Preferably, at least a portion of the reflector is spaced from a wall of the microwave cavity. The lamp may be substantially sealed from environmental contamination. The cavity may include a dielectric material is a sufficient amount to require a reduction in the size of the cavity to support the desired resonant mode.

  10. Evaluation of monthly rainfall estimates derived from the special sensor microwave/imager (SSM/I) over the tropical Pacific

    NASA Technical Reports Server (NTRS)

    Berg, Wesley; Avery, Susan K.

    1995-01-01

    Estimates of monthly rainfall have been computed over the tropical Pacific using passive microwave satellite observations from the special sensor microwave/imager (SSM/I) for the period from July 1987 through December 1990. These monthly estimates are calibrated using data from a network of Pacific atoll rain gauges in order to account for systematic biases and are then compared with several visible and infrared satellite-based rainfall estimation techniques for the purpose of evaluating the performance of the microwave-based estimates. Although several key differences among the various techniques are observed, the general features of the monthly rainfall time series agree very well. Finally, the significant error sources contributing to uncertainties in the monthly estimates are examined and an estimate of the total error is produced. The sampling error characteristics are investigated using data from two SSM/I sensors and a detailed analysis of the characteristics of the diurnal cycle of rainfall over the oceans and its contribution to sampling errors in the monthly SSM/I estimates is made using geosynchronous satellite data. Based on the analysis of the sampling and other error sources the total error was estimated to be of the order of 30 to 50% of the monthly rainfall for estimates averaged over 2.5 deg x 2.5 deg latitude/longitude boxes, with a contribution due to diurnal variability of the order of 10%.

  11. Investigation of a large power water-cooled microwave resonance window for application with the ECR ion source

    NASA Astrophysics Data System (ADS)

    Guo, Guo; Guo, Junwei; Niu, Xinjian; Liu, Yinghui; Wang, Hui; Wei, Yanyu

    2017-06-01

    A large power water-cooled microwave resonance window used for the electron cyclotron resonance (ECR) ion source is investigated in this paper. The microwave characteristic simulation, thermal analysis, and structure design are deeply and successively carried out before fabrication. After the machining and welding of the components, the window is cold and hot tested. The application results demonstrate that when the input power is 2000 W, the reflected power is only 5 W. The vacuum is below 10-10 Pa, and the high power microwave operation can last 30 h continuously and reliably, which indicates that the design and assembling can achieve the high efficiency of the microwave transmission. Finally, the performance of the ECR ion source is enhanced by the improvement of the injected microwave power to the ECR plasma.

  12. Microwave switching power divider. [antenna feeds

    NASA Technical Reports Server (NTRS)

    Stockton, R. J.; Johnson, R. W. (Inventor)

    1981-01-01

    A pair of parallel, spaced-apart circular ground planes define a microwave cavity with multi-port microwave power distributing switching circuitry formed on opposite sides of a thin circular dielectric substrate disposed between the ground planes. The power distributing circuitry includes a conductive disk located at the center of the substrate and connected to a source of microwave energy. A high speed, low insertion loss switching diode and a dc blocking capacitor are connected in series between the outer end of a transmission line and an output port. A high impedance, microwave blocking dc bias choke is connected between each switching diode and a source of switching current. The switching source forward biases the diodes to couple microwave energy from the conductive disk to selected output ports and, to associated antenna elements connected to the output ports to form a synthesized antenna pattern.

  13. [Studies on the general properties of a novel microwave plasma enhanced glow discharge source].

    PubMed

    Li, Y; Du, Z; Duan, Y; Zhang, H; Jin, Q; Liu, H

    1998-04-01

    This paper introduced a novel microwave plasma enhanced glow descharge source, the structure design and operation were decribed, and the mutual effects of the main characters, such as pressure, current, voltage, microwave power and sputtering rates were also investigated in details.

  14. Observational clues to the energy release process in impulsive solar bursts

    NASA Technical Reports Server (NTRS)

    Batchelor, David

    1990-01-01

    The nature of the energy release process that produces impulsive bursts of hard X-rays and microwaves during solar flares is discussed, based on new evidence obtained using the method of Crannell et al. (1978). It is shown that the hard X-ray spectral index gamma is negatively correlated with the microwave peak frequency, suggesting a common source for the microwaves and X-rays. The thermal and nonthermal models are compared. It is found that the most straightforward explanations for burst time behavior are shock-wave particle acceleration in the nonthermal model and thermal conduction fronts in the thermal model.

  15. Experimental study on an S-band near-field microwave magnetron power transmission system on hundred-watt level

    NASA Astrophysics Data System (ADS)

    Zhang, Biao; Jiang, Wan; Yang, Yang; Yu, Chengyang; Huang, Kama; Liu, Changjun

    2015-11-01

    A multi-magnetron microwave source, a metamaterial transmitting antenna, and a large power rectenna array are presented to build a near-field 2.45 GHz microwave power transmission system. The square 1 m2 rectenna array consists of sixteen rectennas with 2048 Schottky diodes for large power microwave rectifying. It receives microwave power and converts them into DC power. The design, structure, and measured performance of a unit rectenna as well as the entail rectenna array are presented in detail. The multi-magnetron microwave power source switches between half and full output power levels, i.e. the half-wave and full-wave modes. The transmission antenna is formed by a double-layer metallic hole array, which is applied to combine the output power of each magnetron. The rectenna array DC output power reaches 67.3 W on a 1.2 Ω DC load at a distance of 5.5 m from the transmission antenna. DC output power is affected by the distance, DC load, and the mode of microwave power source. It shows that conventional low power Schottky diodes can be applied to a microwave power transmission system with simple magnetrons to realise large power microwave rectifying.

  16. Development of a tactical high-power microwave source using the Plasma Electron Microwave Source (PEMS) concept

    NASA Astrophysics Data System (ADS)

    Dandl, R. A.; Guest, G. E.; Jory, H. R.

    1990-12-01

    The AMPHED facility was used to perform feasibility experiments to explore the generation of high-power microwave pulses from energy stored in a magnetic mirror plasma. The facility uses an open-ended magnetic mirror driven by pulsed or cw c- and x-band sources. Microwave horns were constructed to couple in the frequency range of 2.4 to 4 GHz to whistler waves in the plasma. Spontaneous bursts of microwave radiation in the range of 3 to 5 GHz were observed in the experiments. But the power levels were lower than expected for the whistler wave interaction. It is probable that the hot-electron energy densities achieved were not high enough to approach the threshold of the desired interaction.

  17. Investigations on the effect of frequency and noise in a localization technique based on microwave imaging for an in-body RF source

    NASA Astrophysics Data System (ADS)

    Chandra, Rohit; Balasingham, Ilangko

    2015-05-01

    Localization of a wireless capsule endoscope finds many clinical applications from diagnostics to therapy. There are potentially two approaches of the electromagnetic waves based localization: a) signal propagation model based localization using a priori information about the persons dielectric channels, and b) recently developed microwave imaging based localization without using any a priori information about the persons dielectric channels. In this paper, we study the second approach in terms of a variety of frequencies and signal-to-noise ratios for localization accuracy. To this end, we select a 2-D anatomically realistic numerical phantom for microwave imaging at different frequencies. The selected frequencies are 13:56 MHz, 431:5 MHz, 920 MHz, and 2380 MHz that are typically considered for medical applications. Microwave imaging of a phantom will provide us with an electromagnetic model with electrical properties (relative permittivity and conductivity) of the internal parts of the body and can be useful as a foundation for localization of an in-body RF source. Low frequency imaging at 13:56 MHz provides a low resolution image with high contrast in the dielectric properties. However, at high frequencies, the imaging algorithm is able to image only the outer boundaries of the tissues due to low penetration depth as higher frequency means higher attenuation. Furthermore, recently developed localization method based on microwave imaging is used for estimating the localization accuracy at different frequencies and signal-to-noise ratios. Statistical evaluation of the localization error is performed using the cumulative distribution function (CDF). Based on our results, we conclude that the localization accuracy is minimally affected by the frequency or the noise. However, the choice of the frequency will become critical if the purpose of the method is to image the internal parts of the body for tumor and/or cancer detection.

  18. Effect of transverse nonuniformity of the rf field on the efficiency of microwave sources driven by linear electron beams

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nusinovich, G.S.; Sinitsyn, O.V.

    This paper contains a simple analytical theory that allows one to evaluate the effect of transverse nonuniformity of the rf field on the interaction efficiency in various microwave sources driven by linear electron beams. The theory is, first, applied to the systems where the beams of cylindrical symmetry interact with rf fields of microwave circuits having Cartesian geometry. Also, various kinds of microwave devices driven by sheet electron beams (orotrons, clinotrons) are considered. The theory can be used for evaluating the efficiency of novel sources of coherent terahertz radiation.

  19. Development of a long-slot microwave plasma source.

    PubMed

    Kuwata, Y; Kasuya, T; Miyamoto, N; Wada, M

    2016-02-01

    A 20 cm long 10 cm wide microwave plasma source was realized by inserting two 20 cm long 1.5 mm diameter rod antennas into the plasma. Plasma luminous distributions around the antennas were changed by magnetic field arrangement created by permanent magnets attached to the source. The distributions appeared homogeneous in one direction along the antenna when the spacing between the antenna and the source wall was 7.5 mm for the input microwave frequency of 2.45 GHz. Plasma density and temperature at a plane 20 cm downstream from the microwave shield were measured by a Langmuir probe array at 150 W microwave power input. The measured electron density and temperature varied over space from 3.0 × 10(9) cm(-3) to 5.8 × 10(9) cm(-3), and from 1.1 eV to 2.1 eV, respectively.

  20. The low-cost microwave plasma sources for science and industry applications

    NASA Astrophysics Data System (ADS)

    Tikhonov, V. N.; Aleshin, S. N.; Ivanov, I. A.; Tikhonov, A. V.

    2017-11-01

    Microwave plasma torches proposed in the world market are built according to a scheme that can be called classical: power supply - magnetron head - microwave isolator with water load - reflected power meter - matching device - actual plasma torch - sliding short circuit. The total cost of devices from this list with a microwave generator of 3 kW in the performance, for example, of SAIREM (France), is about 17,000 €. We have changed the classical scheme of the microwave plasmathrone and optimised design of the waveguide channel. As a result, we can supply simple and reliable sources of microwave plasma (complete with our low-budget microwave generator up to 3 kW and a simple plasmathrone of atmospheric pressure) at a price from 3,000 €.

  1. Electromagnetic energy and food processing.

    PubMed

    Mudgett, R

    1988-01-01

    The use of electromagnetic energy in food processing is reviewed with respect to food safety, nutritional quality, and organoleptic quality. The effects of nonionizing radiation sources such as microwave and radio-frequency energy and ionizing radiation sources, e.g. radioactive cobalt-60 and caesium-137, on the inactivation of microbes and nutrients are compared with those of conventional heating processes both in terms of their kinetic behavior and their mechanisms of interaction with foods. The kinetics of microwave and conventional thermal inactivation are considered for a generalized nth-order model based on time and temperature conditions. However, thermal inactivation effects are often modeled by 1st-order kinetics. Microbial and nutrient inactivation by ionizing sources are considered for a 1st-order model based on radiation dose. Both thermal and radiation resistance concepts are reviewed and some typical values of radiation resistance are given for sensitive vegetative bacterial cells, yeasts, and molds and for resistant bacterial spores and viruses. Nonionizing microwave energy sources are increasingly used in home and industrial food processing and are well-accepted by the American public. But, despite recent Food and Drug Administration approval of low and intermediate ionizing radiation dose levels for grains and other plants products and the fact that irradiated foods are sold in more than 20 countries of the world, public fears in the U.S. about nuclear energy may limit the role of ionizing radiation in food processing and preservation and may also limit the use of nuclear fuels as an alternate source of electrical energy.

  2. Microwave Synthesis and Characterization of Waste Soybean Oil-Based Gemini Imidazolinium Surfactants with Carbonate Linkage

    NASA Astrophysics Data System (ADS)

    Tripathy, Divya Bajpai; Mishra, Anuradha

    Gemini surfactants are presently gaining attention due to their unusual self-assembling characteristics and incomparable interfacial activity. Current research work involves the cost-effective microwave (MW) synthesis of waste soybean oil-based gemini imidazolinium surfactants (GIS) having a carbonate linkage in its spacer moiety. Structural characterizations of the materials have been done using FT-IR, 1H-NMR and 13C-NMR. Using indigenous and natural material as base and MW as energy source for synthesizing the GIS with easily degradable chemical moiety make them to be labeled as green surfactants.

  3. High Power Microwaves on the Future Battlefield: Implications for U.S. Defense

    DTIC Science & Technology

    2010-02-17

    Group, 2007), Chapters 7-10, and Steven H. Gold, Gregory S . Nusinovich, “Review of High - Power Microwave Source Research,” Review of Scientific...Edl Schamiloglu. High Power Microwaves. 2nd ed. Boca Raton, FL: CRC Press, Taylor and Francis Group, 2007. Bertin, Michael S . “Critical Directed...Gold, Steven H., Gregory S . Nusinovich. “Review of High - Power Microwave Source Research.” Review of Scientific Instruments 68, no. 11 (November

  4. Microcomb-Based True-Time-Delay Network for Microwave Beamforming With Arbitrary Beam Pattern Control

    NASA Astrophysics Data System (ADS)

    Xue, Xiaoxiao; Xuan, Yi; Bao, Chengying; Li, Shangyuan; Zheng, Xiaoping; Zhou, Bingkun; Qi, Minghao; Weiner, Andrew M.

    2018-06-01

    Microwave phased array antennas (PAAs) are very attractive to defense applications and high-speed wireless communications for their abilities of fast beam scanning and complex beam pattern control. However, traditional PAAs based on phase shifters suffer from the beam-squint problem and have limited bandwidths. True-time-delay (TTD) beamforming based on low-loss photonic delay lines can solve this problem. But it is still quite challenging to build large-scale photonic TTD beamformers due to their high hardware complexity. In this paper, we demonstrate a photonic TTD beamforming network based on a miniature microresonator frequency comb (microcomb) source and dispersive time delay. A method incorporating optical phase modulation and programmable spectral shaping is proposed for positive and negative apodization weighting to achieve arbitrary microwave beam pattern control. The experimentally demonstrated TTD beamforming network can support a PAA with 21 elements. The microwave frequency range is $\\mathbf{8\\sim20\\ {GHz}}$, and the beam scanning range is $\\mathbf{\\pm 60.2^\\circ}$. Detailed measurements of the microwave amplitudes and phases are performed. The beamforming performances of Gaussian, rectangular beams and beam notch steering are evaluated through simulations by assuming a uniform radiating antenna array. The scheme can potentially support larger PAAs with hundreds of elements by increasing the number of comb lines with broadband microcomb generation.

  5. Glow plasma trigger for electron cyclotron resonance ion sources.

    PubMed

    Vodopianov, A V; Golubev, S V; Izotov, I V; Nikolaev, A G; Oks, E M; Savkin, K P; Yushkov, G Yu

    2010-02-01

    Electron cyclotron resonance ion sources (ECRISs) are particularly useful for nuclear, atomic, and high energy physics, as unique high current generators of multicharged ion beams. Plasmas of gas discharges in an open magnetic trap heated by pulsed (100 micros and longer) high power (100 kW and higher) high-frequency (greater than 37.5 GHz) microwaves of gyrotrons is promising in the field of research in the development of electron cyclotron resonance sources for high charge state ion beams. Reaching high ion charge states requires a decrease in gas pressure in the magnetic trap, but this method leads to increases in time, in which the microwave discharge develops. The gas breakdown and microwave discharge duration becomes greater than or equal to the microwave pulse duration when the pressure is decreased. This makes reaching the critical plasma density initiate an electron cyclotron resonance (ECR) discharge during pulse of microwave gyrotron radiation with gas pressure lower than a certain threshold. In order to reduce losses of microwave power, it is necessary to shorten the time of development of the ECR discharge. For fast triggering of ECR discharge under low pressure in an ECRIS, we initially propose to fill the magnetic trap with the plasmas of auxiliary pulsed discharges in crossed ExB fields. The glow plasma trigger of ECR based on a Penning or magnetron discharge has made it possible not only to fill the trap with plasma with density of 10(12) cm(-3), required for a rapid increase in plasma density and finally for ECR discharge ignition, but also to initially heat the plasma electrons to T(e) approximately = 20 eV.

  6. Ultra-stable microwave generation with a diode-pumped solid-state laser in the 1.5-μm range

    NASA Astrophysics Data System (ADS)

    Dolgovskiy, Vladimir; Schilt, Stéphane; Bucalovic, Nikola; Di Domenico, Gianni; Grop, Serge; Dubois, Benoît; Giordano, Vincent; Südmeyer, Thomas

    2014-09-01

    We demonstrate the first ultra-stable microwave generation based on a 1.5-μm diode-pumped solid-state laser (DPSSL) frequency comb. Our system relies on optical-to-microwave frequency division from a planar-waveguide external cavity laser referenced to an ultra-stable Fabry-Perot cavity. The evaluation of the microwave signal at ~10 GHz uses the transportable ultra-low-instability signal source ULISS®, which employs a cryo-cooled sapphire oscillator. With the DPSSL comb, we measured -125 dBc/Hz phase noise at 1 kHz offset frequency, likely limited by the photo-detection shot-noise or by the noise floor of the reference cryo-cooled sapphire oscillator. For comparison, we also generated low-noise microwave using a commercial Er:fiber comb stabilized in similar conditions and observed >20 dB lower phase noise in the microwave generated from the DPSSL comb. Our results confirm the high potential of the DPSSL technology for low-noise comb applications.

  7. A terahertz-vibration to terahertz-radiation converter based on gold nanoobjects: a feasibility study.

    PubMed

    Moldosanov, Kamil; Postnikov, Andrei

    2016-01-01

    The need for practical and adaptable terahertz sources is apparent in the areas of application such as early cancer diagnostics, nondestructive inspection of pharmaceutical tablets, visualization of concealed objects. We outline the operation principle and suggest the design of a simple appliance for generating terahertz radiation by a system of nanoobjects - gold nanobars (GNBs) or nanorings (GNRs) - irradiated by microwaves. Our estimations confirm a feasibility of the idea that GNBs and GNRs irradiated by microwaves could become terahertz emitters with photon energies within the full width at half maximum of the longitudinal acoustic phononic DOS of gold (ca. 16-19 meV, i.e., 3.9-4.6 THz). A scheme of the terahertz radiation source is suggested based on the domestic microwave oven irradiating a substrate with multiple deposited GNBs or GNRs. The size of a nanoobject for optimal conversion is estimated to be approx. 3 nm (thickness) by approx. 100 nm (length of GNB, or along the GNR). This detailed prediction is open to experimental verification. An impact is expected onto further studies of interplay between atomic vibrations and electromagnetic waves in nanoobjects.

  8. Filterless low-phase-noise frequency-quadrupled microwave generation based on a multimode optoelectronic oscillator

    NASA Astrophysics Data System (ADS)

    Teng, Yichao; Zhang, Pin; Zhang, Baofu; Chen, Yiwang

    2018-02-01

    A scheme to realize low-phase-noise frequency-quadrupled microwave generation without any filter is demonstrated. In this scheme, a multimode optoelectronic oscillator is mainly contributed by dual-parallel Mach-Zehnder modulators, fiber, photodetector, and microwave amplifier. The local source signal is modulated by a child MZM (MZMa), which is worked at maximum transmission point. Through properly adjusting the bias voltages of the other child MZM (MZMb) and the parent MZM (MZMc), optical carrier is effectively suppressed and second sidebands are retained, then the survived optical signal is fed back to the photodetector and MZMb to form an optoelectronic hybrid resonator and realize frequency-quadrupled signal generation. Due to the high Q-factor and mode selection effect of the optoelectronic hybrid resonator, compared with the source signal, the generated frequency-quadrupled signal has a lower phase noise. The approach has verified by experiments, and 18, 22, and 26 GHz frequency-quadrupled signal are generated by 4.5, 5.5, and 6.5 GHz local source signals. Compared with 4.5 GHz source signal, the phase noise of generated 18 GHz signal at 10 kHz frequency offset has 26.5 dB reduction.

  9. New class of optoelectronic oscillators (OEO) for microwave signal generation and processing

    NASA Astrophysics Data System (ADS)

    Maleki, Lute; Yao, X. S.

    1996-11-01

    A new class of oscillators based on photonic devices is presented. These opto-electronic oscillators (OEO's) generate microwave oscillation by converting continuous energy from a light source using a feedback circuit which includes a delay element, an electro-optic switch, and a photodetector. Different configurations of OEO's are presented, each of which may be applied to a particular application requiring ultra-high performance, or low cost and small size.

  10. Development of a Multi-Point Microwave Interferometry (MPMI) Method

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Specht, Paul Elliott; Cooper, Marcia A.; Jilek, Brook Anton

    2015-09-01

    A multi-point microwave interferometer (MPMI) concept was developed for non-invasively tracking a shock, reaction, or detonation front in energetic media. Initially, a single-point, heterodyne microwave interferometry capability was established. The design, construction, and verification of the single-point interferometer provided a knowledge base for the creation of the MPMI concept. The MPMI concept uses an electro-optic (EO) crystal to impart a time-varying phase lag onto a laser at the microwave frequency. Polarization optics converts this phase lag into an amplitude modulation, which is analyzed in a heterodyne interfer- ometer to detect Doppler shifts in the microwave frequency. A version of themore » MPMI was constructed to experimentally measure the frequency of a microwave source through the EO modulation of a laser. The successful extraction of the microwave frequency proved the underlying physical concept of the MPMI design, and highlighted the challenges associated with the longer microwave wavelength. The frequency measurements made with the current equipment contained too much uncertainty for an accurate velocity measurement. Potential alterations to the current construction are presented to improve the quality of the measured signal and enable multiple accurate velocity measurements.« less

  11. Fire detection behind a wall by using microwave techniques

    NASA Astrophysics Data System (ADS)

    Alkurt, Fatih Özkan; Baǧmancı, Mehmet; Karaaslan, Muharrem; Bakır, Mehmet; Altıntaş, Olcay; Karadaǧ, Faruk; Akgöl, Oǧuzhan; Ünal, Emin

    2018-02-01

    In this work, detection of the fire location behind a wall by using microwave techniques is illustrated. According to Planck's Law, Blackbody emits electromagnetic radiation in the microwave region of the electromagnetic spectrum. This emitted waves penetrates all materials except that metals. These radiated waves can be detected by using directional and high gain antennas. The proposed antenna consists of a simple microstrip patch antenna and a 2×2 microstrip patch antenna array. FIT based simulation results show that 2×2 array antenna can absorb emitted power from a fire source which is located behind a wall. This contribution can be inspirational for further works.

  12. Comparative study of x ray and microwave emissions during solar flares

    NASA Technical Reports Server (NTRS)

    Winglee, Robert M.

    1993-01-01

    The work supported by the grant consisted of two projects. The first project involved making detailed case studies of two flares using SMM data in conjunction with ground based observations. The first flare occurred at 1454 UT on June 20, 1989 and involved the eruption of a prominence near the limb. In the study we used data from many wavelength regimes including the radio, H-alpha, hard X-rays, and soft X-rays. We used a full gyrosynchrotron code to model the apparent presence of a 1.4 GHz source early in the flare that was in the form of a large coronal loop. The model results lead us to conclude that the initial acceleration occurs in small, dense loops which also produced the flare's hard X-ray emission. We also found evidence that a source at 1.4 GHz later in the event was due to second harmonic plasma emission. This source was adjacent to a leg of the prominence and comes from a dense column of material in the magnetic structure supporting the prominence. Finally, we investigated a source of microwaves and soft X-rays, occurring approximately 10 min after the hard X-ray peak, and calculate a lower limit for the density of the source. The second flare that was studied occurred at 2156 UT on June 20, 1989 and was observed with the VLA and the Owens Valley Radio Observatory (OVRO) Frequency Agile Array. We have developed a gyrosynchrotron model of the sources at flare peak using a new gyrosynchrotron approximation which is valid at very low harmonics of the gyrofrequency. We found that the accelerated particle densities of the sources decreased much more with radius from the source center than had been supposed in previous work, while the magnetic field varied less. We also used the available data to analyze a highly polarized source which appeared late in the flare. The second project involved compiling a statistical base for the relative timing of the hard X-ray peak, the turbulent and blue-shift velocities inferred from soft X-ray line emissions observed by SMM and the microwave peak as determined from ground-based observations. This timing was then used to aid the testing of newly developed global models for flares that incorporate the global magnetic topology as well as the electron dynamics that are responsible for the hard X-rays and microwaves.

  13. Efficient quantum microwave-to-optical conversion using electro-optic nanophotonic coupled resonators

    NASA Astrophysics Data System (ADS)

    Soltani, Mohammad; Zhang, Mian; Ryan, Colm; Ribeill, Guilhem J.; Wang, Cheng; Loncar, Marko

    2017-10-01

    We propose a low-noise, triply resonant, electro-optic (EO) scheme for quantum microwave-to-optical conversion based on coupled nanophotonics resonators integrated with a superconducting qubit. Our optical system features a split resonance—a doublet—with a tunable frequency splitting that matches the microwave resonance frequency of the superconducting qubit. This is in contrast to conventional approaches, where large optical resonators with free-spectral range comparable to the qubit microwave frequency are used. In our system, EO mixing between the optical pump coupled into the low-frequency doublet mode and a resonance microwave photon results in an up-converted optical photon on resonance with high-frequency doublet mode. Importantly, the down-conversion process, which is the source of noise, is suppressed in our scheme as the coupled-resonator system does not support modes at that frequency. Our device has at least an order of magnitude smaller footprint than conventional devices, resulting in large overlap between optical and microwave fields and a large photon conversion rate (g /2 π ) in the range of ˜5 -15 kHz. Owing to a large g factor and doubly resonant nature of our device, microwave-to-optical frequency conversion can be achieved with optical pump powers in the range of tens of microwatts, even with moderate values for optical Q (˜106 ) and microwave Q (˜104 ). The performance metrics of our device, with substantial improvement over the previous EO-based approaches, promise a scalable quantum microwave-to-optical conversion and networking of superconducting processors via optical fiber communication.

  14. Abatement of Perfluorinated Compounds Using Cylindrical Microwave Plasma Source at Low Pressure

    NASA Astrophysics Data System (ADS)

    Kim, Seong Bong; Park, S.; Park, Y.; Youn, S.; Yoo, S. J.

    2016-10-01

    Microwave plasma source with a cylindrical cavity has been proposed to abate the perfluorinated compounds (PFCs). This plasma source was designed to generate microwave plasma with the cylindrical shape and to be easily installed in existing exhaust line. The microwave frequency is 2.45 GHz and the operating pressure range is 0.1 Torr to 0.3 Torr. The plasma characteristic of the cylindrical microwave plasma source was measured using the optical spectrometer, and tunable diode laser absorption spectroscopy (TDLAS). The destruction and removal efficiency (DRE) of CF4 and CHF3 were measured by a quadrupole mass spectroscopy (QMS) with the various operation conditions. The effect of the addition of the oxygen gas were tested and also the correlation between the plasma parameters and the DRE are presented in this study. This work was supported by R&D Program of ``Plasma Advanced Technology for Agriculture and Food (Plasma Farming)'' through the National Fusion Research Institute of Korea (NFRI) funded by the Government funds.

  15. Method and apparatus for measuring butterfat and protein content using microwave absorption techniques

    DOEpatents

    Fryer, Michael O.; Hills, Andrea J.; Morrison, John L.

    2000-01-01

    A self calibrating method and apparatus for measuring butterfat and protein content based on measuring the microwave absorption of a sample of milk at several microwave frequencies. A microwave energy source injects microwave energy into the resonant cavity for absorption and reflection by the sample undergoing evaluation. A sample tube is centrally located in the resonant cavity passing therethrough and exposing the sample to the microwave energy. A portion of the energy is absorbed by the sample while another portion of the microwave energy is reflected back to an evaluation device such as a network analyzer. The frequency at which the reflected radiation is at a minimum within the cavity is combined with the scatter coefficient S.sub.11 as well as a phase change to calculate the butterfat content in the sample. The protein located within the sample may also be calculated in a likewise manner using the frequency, S.sub.11 and phase variables. A differential technique using a second resonant cavity containing a reference standard as a sample will normalize the measurements from the unknown sample and thus be self-calibrating. A shuttered mechanism will switch the microwave excitation between the unknown and the reference cavities. An integrated apparatus for measuring the butterfat content in milk using microwave absorption techniques is also presented.

  16. Radio Source Contributions to the Microwave Sky

    NASA Astrophysics Data System (ADS)

    Boughn, S. P.; Partridge, R. B.

    2008-03-01

    Cross-correlations of the Wilkinson Microwave Anisotropy Probe (WMAP) full sky K-, Ka-, Q-, V-, and W-band maps with the 1.4 GHz NVSS source count map and the HEAO I A2 2-10 keV full sky X-ray flux map are used to constrain rms fluctuations due to unresolved microwave sources in the WMAP frequency range. In the Q band (40.7 GHz), a lower limit, taking account of only those fluctuations correlated with the 1.4 GHz radio source counts and X-ray flux, corresponds to an rms Rayleigh-Jeans temperature of ˜2 μK for a solid angle of 1 deg2 assuming that the cross-correlations are dominated by clustering, and ˜1 μK if dominated by Poisson fluctuations. The correlated fluctuations at the other bands are consistent with a β = -2.1 ± 0.4 frequency spectrum. If microwave sources are distributed similarly in redshift to the radio and X-ray sources and are similarly clustered, then the implied total rms microwave fluctuations correspond to ˜5 μK. While this value should be considered no more than a plausible estimate, it is similar to that implied by the excess, small angular scale fluctuations observed in the Q band by WMAP and is consistent with estimates made by extrapolating low-frequency source counts.

  17. The Telecommunications and Data Acquisition

    NASA Technical Reports Server (NTRS)

    Renzetti, N. A. (Editor)

    1981-01-01

    Progress in the development and operations of the Deep Space Network is reported including developments in Earth based radio technology as applied to other research programs. These programs include application of radio interferometry at microwave frequencies to geodetic measurements and geodynamics, use of deep space stations individually and in pairs as an interferometer by radio astronomers for astrophysics research by direct observations of radio sources, and radio search for extraterrestrial intelligence in the microwave region of the electromagnetic spectrum.

  18. Solar Rotation Stereoscopy in Microwaves

    NASA Astrophysics Data System (ADS)

    Aschwanden, Markus J.; Lim, Jeremy; Gary, Dale E.; Klimchuk, James A.

    1995-11-01

    We present here the first stereoscopic altitude measurements of active region sources observed at microwave frequencies (10-14 GHz The active region NOAA 7128 was observed with the Owens Valley Radio Observatory (OVRO) on 1992 April 13, 14, 15, and 16 as it passed through the central meridian. From white-light data of the underlying sunspot we determined the rotation rate of the active region, which was found to have a relative motion of dL/dt = +0°.240 day-1 with respect to the standard photospheric differential rotation rate. Based on this rotation rate we determine for the microwave sources stereoscopic altitudes of 3.3-11.0 Mm above the photosphere. The altitude spectrum h(v) of the right circular polarization (RCP) main source shows a discontinuity at 12 GHz and can be satisfactorily fitted with a dipole model with a transition from the second to the third harmonic level at 12 GHz. The dominance of the third harmonic for frequencies above 12 GHz occurs because the second harmonic level drops below the transition region, at a height of 2.6±0.6 Mm according to the microwave data. The altitude spectrum h(v) serves also to invert the temperature profile T(h) from the optically thick parts of the radio brightness temperature spectrum TB(ν[h]). The microwave emission in both circular polarizations can be modeled with gyroresonance emission, with x-mode for RCP and o-mode in LCP, with the same harmonics at each frequency, but different emission angles in both modes. The contributions from free-free emission are negligible in both polarizations, based on the peak emission measure of EM ≍ 6 × 1028 cm-5 observed in soft X-rays by Yohkoh/SXT. This study demonstrates that the height dependence of the coronal magnetic field B(h) and the plasma temperature T(h) in an active region can be inverted from the stereoscopic altitude spectra h(v) and the observed brightness temperature spectra TB(ν).

  19. A Cherenkov-emission Microwave Source*

    NASA Astrophysics Data System (ADS)

    Lai, C. H.; Yoshii, J.; Katsouleas, T.; Hairapetian1, G.; Joshi, C.; Mori, W.

    1996-11-01

    In an unmagnetized plasma, there is no Cherenkov emission because the phase velocity vf of light is greater than c. In a magnetized plasma, the situation is completely changed. There is a rich variety of plasma modes with phase velocities vf 2 c which can couple to a fast particle. In the magnetized plasma, a fast particle, a particle beam, or even a short laser pulse excites a Cherenkov wake that has both electrostatic and electromagnetic components. Preliminary simulations indicate that at the vacuum/plasma boundary, the wake couples to a vacuum microwave with an amplitude equal to the electromagnetic component in the plasma. For a weakly magnetized plasma, the amplitude of the out-coupled radiation is approximately wc/wp times the amplitude of the wake excited in the plasma by the beam, and the frequency is approximately wp. Since plasma wakes as high as a few GeV/m are produced in current experiments, the potential for a high-power (i.e., GWatt) coherent microwave to THz source exists. In this talk, a brief overview of the scaling laws will be presented, followed by 1-D and 2-D PIC simulations. Prospects for a tuneable microwave source experiment based on this mechanism at the UCLA plasma wakefield accelerator facility will be discussed. *Work supported by AFOSR Grant #F4 96200-95-0248 and DOE Grant # DE-FG03-92ER40745. 1Now at Hughes Research Laboratories, Malibu, CA 90265

  20. Measurements of beam current density and proton fraction of a permanent-magnet microwave ion source.

    PubMed

    Waldmann, Ole; Ludewigt, Bernhard

    2011-11-01

    A permanent-magnet microwave ion source has been built for use in a high-yield, compact neutron generator. The source has been designed to produce up to 100 mA of deuterium and tritium ions. The electron-cyclotron resonance condition is met at a microwave frequency of 2.45 GHz and a magnetic field strength of 87.5 mT. The source operates at a low hydrogen gas pressure of about 0.15 Pa. Hydrogen beams with a current density of 40 mA/cm(2) have been extracted at a microwave power of 450 W. The dependence of the extracted proton beam fraction on wall materials and operating parameters was measured and found to vary from 45% for steel to 95% for boron nitride as a wall liner material. © 2011 American Institute of Physics

  1. Double-coronal X-Ray and Microwave Sources Associated with a Magnetic Breakout Solar Eruption

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chen, Yao; Wu, Zhao; Zhao, Di

    Double-coronal hard X-ray (HXR) sources are believed to be critical observational evidence of bi-directional energy release through magnetic reconnection in large-scale current sheets in solar flares. Here, we present a study on double-coronal sources observed in both HXR and microwave regimes, revealing new characteristics distinct from earlier reports. This event is associated with a footpoint-occulted X1.3-class flare (2014 April 25, starting at 00:17 UT) and a coronal mass ejection that were likely triggered by the magnetic breakout process, with the lower source extending upward from the top of the partially occulted flare loops and the upper source co-incident with rapidlymore » squeezing-in side lobes (at a speed of ∼250 km s{sup −1} on both sides). The upper source can be identified at energies as high as 70–100 keV. The X-ray upper source is characterized by flux curves that differ from those of the lower source, a weak energy dependence of projected centroid altitude above 20 keV, a shorter duration, and an HXR photon spectrum slightly harder than those of the lower source. In addition, the microwave emission at 34 GHz also exhibits a similar double-source structure and the microwave spectra at both sources are in line with gyrosynchrotron emission given by non-thermal energetic electrons. These observations, especially the co-incidence of the very-fast squeezing-in motion of side lobes and the upper source, indicate that the upper source is associated with (and possibly caused by) this fast motion of arcades. This sheds new light on the origin of the corona double-source structure observed in both HXRs and microwaves.« less

  2. Error analysis for the ground-based microwave ozone measurements during STOIC

    NASA Technical Reports Server (NTRS)

    Connor, Brian J.; Parrish, Alan; Tsou, Jung-Jung; McCormick, M. Patrick

    1995-01-01

    We present a formal error analysis and characterization of the microwave measurements made during the Stratospheric Ozone Intercomparison Campaign (STOIC). The most important error sources are found to be determination of the tropospheric opacity, the pressure-broadening coefficient of the observed line, and systematic variations in instrument response as a function of frequency ('baseline'). Net precision is 4-6% between 55 and 0.2 mbar, while accuracy is 6-10%. Resolution is 8-10 km below 3 mbar and increases to 17km at 0.2 mbar. We show the 'blind' microwave measurements from STOIC and make limited comparisons to other measurements. We use the averaging kernels of the microwave measurement to eliminate resolution and a priori effects from a comparison to SAGE 2. The STOIC results and comparisons are broadly consistent with the formal analysis.

  3. Estimation of Radiofrequency Power Leakage from Microwave Ovens for Dosimetric Assessment at Nonionizing Radiation Exposure Levels

    PubMed Central

    Lopez-Iturri, Peio; de Miguel-Bilbao, Silvia; Aguirre, Erik; Azpilicueta, Leire; Falcone, Francisco; Ramos, Victoria

    2015-01-01

    The electromagnetic field leakage levels of nonionizing radiation from a microwave oven have been estimated within a complex indoor scenario. By employing a hybrid simulation technique, based on coupling full wave simulation with an in-house developed deterministic 3D ray launching code, estimations of the observed electric field values can be obtained for the complete indoor scenario. The microwave oven can be modeled as a time- and frequency-dependent radiating source, in which leakage, basically from the microwave oven door, is propagated along the complete indoor scenario interacting with all of the elements present in it. This method can be of aid in order to assess the impact of such devices on expected exposure levels, allowing adequate minimization strategies such as optimal location to be applied. PMID:25705676

  4. Microwave quantum illumination.

    PubMed

    Barzanjeh, Shabir; Guha, Saikat; Weedbrook, Christian; Vitali, David; Shapiro, Jeffrey H; Pirandola, Stefano

    2015-02-27

    Quantum illumination is a quantum-optical sensing technique in which an entangled source is exploited to improve the detection of a low-reflectivity object that is immersed in a bright thermal background. Here, we describe and analyze a system for applying this technique at microwave frequencies, a more appropriate spectral region for target detection than the optical, due to the naturally occurring bright thermal background in the microwave regime. We use an electro-optomechanical converter to entangle microwave signal and optical idler fields, with the former being sent to probe the target region and the latter being retained at the source. The microwave radiation collected from the target region is then phase conjugated and upconverted into an optical field that is combined with the retained idler in a joint-detection quantum measurement. The error probability of this microwave quantum-illumination system, or quantum radar, is shown to be superior to that of any classical microwave radar of equal transmitted energy.

  5. Generation of high charge state metal ion beams by electron cyclotron resonance heating of vacuum arc plasma in cusp trap.

    PubMed

    Nikolaev, A G; Savkin, K P; Oks, E M; Vizir, A V; Yushkov, G Yu; Vodopyanov, A V; Izotov, I V; Mansfeld, D A

    2012-02-01

    A method for generating high charge state heavy metal ion beams based on high power microwave heating of vacuum arc plasma confined in a magnetic trap under electron cyclotron resonance conditions has been developed. A feature of the work described here is the use of a cusp magnetic field with inherent "minimum-B" structure as the confinement geometry, as opposed to a simple mirror device as we have reported on previously. The cusp configuration has been successfully used for microwave heating of gas discharge plasma and extraction from the plasma of highly charged, high current, gaseous ion beams. Now we use the trap for heavy metal ion beam generation. Two different approaches were used for injecting the vacuum arc metal plasma into the trap--axial injection from a miniature arc source located on-axis near the microwave window, and radial injection from sources mounted radially at the midplane of the trap. Here, we describe preliminary results of heating vacuum arc plasma in a cusp magnetic trap by pulsed (400 μs) high power (up to 100 kW) microwave radiation at 37.5 GHz for the generation of highly charged heavy metal ion beams.

  6. Photonic microwave signals with zeptosecond-level absolute timing noise

    NASA Astrophysics Data System (ADS)

    Xie, Xiaopeng; Bouchand, Romain; Nicolodi, Daniele; Giunta, Michele; Hänsel, Wolfgang; Lezius, Matthias; Joshi, Abhay; Datta, Shubhashish; Alexandre, Christophe; Lours, Michel; Tremblin, Pierre-Alain; Santarelli, Giorgio; Holzwarth, Ronald; Le Coq, Yann

    2017-01-01

    Photonic synthesis of radiofrequency (RF) waveforms revived the quest for unrivalled microwave purity because of its ability to convey the benefits of optics to the microwave world. In this work, we perform a high-fidelity transfer of frequency stability between an optical reference and a microwave signal via a low-noise fibre-based frequency comb and cutting-edge photodetection techniques. We demonstrate the generation of the purest microwave signal with a fractional frequency stability below 6.5 × 10-16 at 1 s and a timing noise floor below 41 zs Hz-1/2 (phase noise below -173 dBc Hz-1 for a 12 GHz carrier). This outperforms existing sources and promises a new era for state-of-the-art microwave generation. The characterization is achieved through a heterodyne cross-correlation scheme with the lowermost detection noise. This unprecedented level of purity can impact domains such as radar systems, telecommunications and time-frequency metrology. The measurement methods developed here can benefit the characterization of a broad range of signals.

  7. Helium microwave-induced plasmas for element specific detection in chromatography

    NASA Astrophysics Data System (ADS)

    Long, Gary L.; Ducatte, Gerald R.; Lancaster, Edwin D.

    1994-01-01

    This review addresses the development and use of the microwave-induced plasma (MIP) using optical emission spectrometry for the purpose of element specific detection in chromatography. The plasma source that is the focus of this article is the He-based MIP operated at atmospheric pressure. The forms of chromatography that are covered include gas chromatography, liquid chromatography, and supercritical fluid chromatography. Concepts in plasma cavity design and the chromatograph-plasma interface are discussed along with the application of these hybrid systems to analytical determinations.

  8. Coupled microwave/photoassisted methods for environmental remediation.

    PubMed

    Horikoshi, Satoshi; Serpone, Nick

    2014-11-05

    The microwave-induced acceleration of photocatalytic reactions was discovered serendipitously in the late 1990s. The activity of photocatalysts is enhanced significantly by both microwave radiation and UV light. Particularly relevant, other than as a heat source, was the enigmatic phenomenon of the non-thermal effect(s) of the microwave radiation that facilitated photocatalyzed reactions, as evidenced when examining various model contaminants in aqueous media. Results led to an examination of the possible mechanism(s) of the microwave effect(s). In the present article we contend that the microwaves' non-thermal effect(s) is an important factor in the enhancement of TiO2-photoassisted reactions involving the decomposition of organic pollutants in model wastewaters by an integrated (coupled) microwave-/UV-illumination method (UV/MW). Moreover, such coupling of no less than two irradiation methods led to the fabrication and ultimate investigation of microwave discharged electrodeless lamps (MDELs) as optimal light sources; their use is also described. The review focuses on the enhanced activity of photocatalytic reactions when subjected to microwave radiation and concentrates on the authors' research of the past few years.

  9. Asymmetric Shock Wave Generation in a Microwave Rocket Using a Magnetic Field

    NASA Astrophysics Data System (ADS)

    Takahashi, Masayuki

    2017-10-01

    A plasma pattern is reproduced by coupling simulations between a particle-in- cell with Monte Carlo collisions model and a finite-difference time-domain simulation for an electromagnetic wave propagation when an external magnetic field is applied to the breakdown volume inside a microwave-rocket nozzle. The propagation speed and energy-absorption rate of the plasma are estimated based on the breakdown simulation, and these are utilized to reproduce shock wave propagation, which provides impulsive thrust for the microwave rocket. The shock wave propagation is numerically reproduced by solving the compressible Euler equation with an energy source of the microwave heating. The shock wave is asymmetrically generated inside the nozzle when the electron cyclotron resonance region has a lateral offset, which generates lateral and angular impulses for postural control of the vehicle. It is possible to develop an integrated device to maintain beaming ight of the microwave rocket, achieving both axial thrust improvement and postural control, by controlling the spatial distribution of the external magnetic field.

  10. High-peak-power microwave pulses: effects on heart rate and blood pressure in unanesthetized rats.

    PubMed

    Jauchem, J R; Frei, M R

    1995-10-01

    Exposure sources capable of generating high-peak-power microwave pulses, with relatively short pulse widths, have recently been developed. Studies of the effect of these sources on the cardiovascular systems of animals have not been reported previously. We exposed 14 unanesthetized male Sprague-Dawley rats to 10 high-peak-power microwave pulses generated by a transformer-energized megawatt pulsed output (TEMPO) microwave source, at frequencies ranging from 1.2-1.8 GHz. Peak power densities were as high as 51.6 kW/cm2. At 14 d prior to irradiation, the animals were implanted with chronic aortic cannulae. With appropriate shielding of the transducer, blood pressure recordings were obtained during microwave pulsing. In a preliminary series of exposures at 1.7-1.8 GHz (peak power density 3.3-6.5 kW/cm2), an immediate but transient increase in mean arterial blood pressure (significant) and decrease in heart rate (non-significant) were observed. A loud noise was associated with each pulse produced by the TEMPO; this factor was subsequently attenuated. In a second series of exposures at 1.2-1.4 GHz (peak power density 14.6-51.6 kW/cm2), there were no significant changes in mean arterial blood pressure or heart rate during microwave exposure. The earlier significant increase in blood pressure that occurred during microwave exposure appeared to be related to the sharp noise produced by the TEMPO source. After appropriate sound attenuation, there were no significant effects of exposure to the microwave pulses.

  11. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Atrio-Barandela, F.; Kashlinsky, A., E-mail: atrio@usal.es, E-mail: Alexander.Kashlinsky@nasa.gov

    The epoch of first star formation and the state of the intergalactic medium (IGM) at that time are not directly observable with current telescopes. The radiation from those early sources is now part of the cosmic infrared background (CIB) and, as these sources ionize the gas around them, the IGM plasma would produce faint temperature anisotropies in the cosmic microwave background (CMB) via the thermal Sunyaev-Zeldovich (TSZ) effect. While these TSZ anisotropies are too faint to be detected, we show that the cross-correlation of maps of source-subtracted CIB fluctuations from Euclid, with suitably constructed microwave maps at different frequencies, canmore » probe the physical state of the gas during reionization and test/constrain models of the early CIB sources. We identify the frequency-combined, CMB-subtracted microwave maps from space- and ground-based instruments to show that they can be cross-correlated with the forthcoming all-sky Euclid CIB maps to detect the cross-power at scales ∼5'-60' with signal-to-noise ratios (S/Ns) of up to S/N ∼ 4-8 depending on the contribution to the Thomson optical depth during those pre-reionization epochs (Δτ ≅ 0.05) and the temperature of the IGM (up to ∼10{sup 4} K). Such a measurement would offer a new window to explore the emergence and physical properties of these first light sources.« less

  12. Microwave frequency sweep interferometer for plasma density measurements in ECR ion sources: Design and preliminary results

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Torrisi, Giuseppe; University Mediterranea of Reggio Calabria, Reggio Calabria; Mascali, David

    2016-02-15

    The Electron Cyclotron Resonance Ion Sources (ECRISs) development is strictly related to the availability of new diagnostic tools, as the existing ones are not adequate to such compact machines and to their plasma characteristics. Microwave interferometry is a non-invasive method for plasma diagnostics and represents the best candidate for plasma density measurement in hostile environment. Interferometry in ECRISs is a challenging task mainly due to their compact size. The typical density of ECR plasmas is in the range 10{sup 11}–10{sup 13} cm{sup −3} and it needs a probing beam wavelength of the order of few centimetres, comparable to the chambermore » radius. The paper describes the design of a microwave interferometer developed at the LNS-INFN laboratories based on the so-called “frequency sweep” method to filter out the multipath contribution in the detected signals. The measurement technique and the preliminary results (calibration) obtained during the experimental tests will be presented.« less

  13. Microwave power transmission system studies. Volume 4: Sections 9 through 14 with appendices. [ground tests and antenna design

    NASA Technical Reports Server (NTRS)

    Maynard, O. E.; Brown, W. C.; Edwards, A.; Haley, J. T.; Meltz, G.; Howell, J. M.; Nathan, A.

    1975-01-01

    The microwave rectifier technology, approaches to the receiving antenna, topology of rectenna circuits, assembly and construction, ROM cost estimates are discussed. Analyses and cost estimates for the equipment required to transmit the ground power to an external user. Noise and harmonic considerations are presented for both the amplitron and klystron and interference limits are identified and evaluated. The risk assessment discussion is discussed wherein technology risks are rated and ranked with regard to their importance in impacting the microwave power transmission system. The system analyses and evaluation are included of parametric studies of system relationships pertaining to geometry, materials, specific cost, specific weight, efficiency, converter packing, frequency selection, power distribution, power density, power output magnitude, power source, transportation and assembly. Capital costs per kW and energy costs as a function of rate of return, power source and transportation costs as well as build cycle time are presented. The critical technology and ground test program are discussed along with ROM costs and schedule. The orbital test program with associated critical technology and ground based program based on full implementation of the defined objectives is discussed.

  14. Thermoacoustic Emission Induced by Deeply-Penetrating Radiation and its Application to Biomedical Imaging.

    NASA Astrophysics Data System (ADS)

    Liew, Soo Chin

    Thermoacoustic emissions induced by 2450 MHz microwave pulses in water, tissue-simulating phantoms and dog kidneys have been detected. The analytic signal magnitude has been employed in generating 'A-mode' images with excellent depth resolution. Thermoacoustic emissions have also been detected from the dose-gradient at the beam edges of a 4 MeV x-ray beam in water. These results establish the feasibility of employing thermoacoustic signals in generating diagnostic images, and in locating x-ray beam edges during radiation therapy. A theoretical model for thermoacoustic imaging using a directional transducer has been developed, which may be used in the design of future thermoacoustic imaging system, and in facilitating comparisons with other types of imaging systems. A method of characterizing biological tissues has been proposed, which relates the power spectrum of the detected thermoacoustic signals to the autocorrelation function of the thermoacoustic source distribution in the tissues. The temperature dependence of acoustic signals induced by microwave pulses in water has been investigated. The signal amplitudes vary with temperature as the thermal expansion of water, except near 4^circ C. The signal waveforms show a gradual phase change as the temperature changes from below 4^ circ to above 4^circ C. This anomaly is due to the presence of a nonthermal component detected near 4^circC, whose waveform is similar to the derivative of the room temperature signal. The results are compared to a model based on a nonequilibrium relaxation mechanism proposed by Pierce and Hsieh. The relaxation time was found to be (0.20 +/- 0.02) ns and (0.13 +/- 0.02) ns for 200 ns and 400 ns microwave pulse widths, respectively. A microwave-induced thermoacoustic source capable of launching large aperture, unipolar ultrasonic plane wave pulses in water has been constructed. This source consists of a thin water layer trapped between two dielectric media. Due to the large mismatch in the dielectric constants, the incident microwaves undergo multiple reflections between the dielectric boundaries trapping the water, resulting in an enhanced specific microwave absorption in the thin water layer. This source may be useful in ultrasonic scattering and attenuation experiments.

  15. Generating single microwave photons in a circuit.

    PubMed

    Houck, A A; Schuster, D I; Gambetta, J M; Schreier, J A; Johnson, B R; Chow, J M; Frunzio, L; Majer, J; Devoret, M H; Girvin, S M; Schoelkopf, R J

    2007-09-20

    Microwaves have widespread use in classical communication technologies, from long-distance broadcasts to short-distance signals within a computer chip. Like all forms of light, microwaves, even those guided by the wires of an integrated circuit, consist of discrete photons. To enable quantum communication between distant parts of a quantum computer, the signals must also be quantum, consisting of single photons, for example. However, conventional sources can generate only classical light, not single photons. One way to realize a single-photon source is to collect the fluorescence of a single atom. Early experiments measured the quantum nature of continuous radiation, and further advances allowed triggered sources of photons on demand. To allow efficient photon collection, emitters are typically placed inside optical or microwave cavities, but these sources are difficult to employ for quantum communication on wires within an integrated circuit. Here we demonstrate an on-chip, on-demand single-photon source, where the microwave photons are injected into a wire with high efficiency and spectral purity. This is accomplished in a circuit quantum electrodynamics architecture, with a microwave transmission line cavity that enhances the spontaneous emission of a single superconducting qubit. When the qubit spontaneously emits, the generated photon acts as a flying qubit, transmitting the quantum information across a chip. We perform tomography of both the qubit and the emitted photons, clearly showing that both the quantum phase and amplitude are transferred during the emission. Both the average power and voltage of the photon source are characterized to verify performance of the system. This single-photon source is an important addition to a rapidly growing toolbox for quantum optics on a chip.

  16. Features of Microwave Radiation and Magnetographic Characteristics of Solar Active Region NOAA 12242 Before the X1.8 Flare on December 20, 2014

    NASA Astrophysics Data System (ADS)

    Abramov-Maximov, V. E.; Borovik, V. N.; Opeikina, L. V.; Tlatov, A. G.; Yasnov, L. V.

    2017-12-01

    This paper continues the cycle of authors' works on the detection of precursors of large flares (M5 and higher classes) in active regions (ARs) of the Sun by their microwave radiation and magnetographic characteristics. Generalization of the detected precursors of strong flares can be used to develop methods for their prediction. This paper presents an analysis of the development of NOAA AR 12242, in which an X1.8 flare occurred on December 20, 2014. The analysis is based on regular multiazimuth and multiwavelength observations with the RATAN-600 radio telescope in the range 1.65-10 cm with intensity and circular polarization analysis and data from the Solar Dynamics Observatory (SDO). It was found that a new component appeared in the AR microwave radiation two days before the X-flare. It became dominant in the AR the day before the flare and significantly decreased after the flare. The use of multiazimuth observations from RATAN-600 and observations at 1.76 cm from the Nobeyama Radioheliograph made it possible to identify the radio source that appeared before the X-flare with the site of the closest convergence of opposite polarity fields near the neutral line in the AR. It was established that the X-flare occurred 20 h after the total gradient of the magnetic field of the entire region calculated from SDO/HMI data reached its maximum value. Analysis of the evolution of the microwave source that appeared before the X-flare in AR 12242 and comparison of its parameters with the parameters of other components of the AR microwave radiation showed that the new source can be classified as neutral line associated sources (NLSs), which were repeatedly detected by the RATAN-600 and other radio telescopes 1-3 days before the large flares.

  17. Advanced RF Sources Based on Novel Nonlinear Transmission Lines

    DTIC Science & Technology

    2015-01-26

    microwave (HPM) sources. It is also critical to thin film devices and integrated circuits, carbon nanotube based cathodes and interconnects, field emitters ... line model (TLM) in Fig. 6b. Our model is compared with TLM, shown in Fig. 7a. When the interface resistance rc is small, TLM becomes inaccurate...due to current crowding. Fig. 6. (a) Electrical contact including specific interfacial resistivity ρc, and (b) its transmission line model

  18. All solid-state high power microwave source with high repetition frequency.

    PubMed

    Bragg, J-W B; Sullivan, W W; Mauch, D; Neuber, A A; Dickens, J C

    2013-05-01

    An all solid-state, megawatt-class high power microwave system featuring a silicon carbide (SiC) photoconductive semiconductor switch (PCSS) and a ferrimagnetic-based, coaxial nonlinear transmission line (NLTL) is presented. A 1.62 cm(2), 50 kV 4H-SiC PCSS is hard-switched to produce electrical pulses with 7 ns full width-half max (FWHM) pulse widths at 2 ns risetimes in single shot and burst-mode operation. The PCSS resistance drops to sub-ohm when illuminated with approximately 3 mJ of laser energy at 355 nm (tripled Nd:YAG) in a single pulse. Utilizing a fiber optic based optical delivery system, a laser pulse train of four 7 ns (FWHM) signals was generated at 65 MHz repetition frequency. The resulting electrical pulse train from the PCSS closely follows the optical input and is utilized to feed the NLTL generating microwave pulses with a base microwave-frequency of about 2.1 GHz at 65 MHz pulse repetition frequency (prf). Under typical experimental conditions, the NLTL produces sharpened output risetimes of 120 ps and microwave oscillations at 2-4 GHz that are generated due to damped gyromagnetic precession of the ferrimagnetic material's axially pre-biased magnetic moments. The complete system is discussed in detail with its output matched into 50 Ω, and results covering MHz-prf in burst-mode operation as well as frequency agility in single shot operation are discussed.

  19. Continuous, real time microwave plasma element sensor

    DOEpatents

    Woskov, Paul P.; Smatlak, Donna L.; Cohn, Daniel R.; Wittle, J. Kenneth; Titus, Charles H.; Surma, Jeffrey E.

    1995-01-01

    Microwave-induced plasma for continuous, real time trace element monitoring under harsh and variable conditions. The sensor includes a source of high power microwave energy and a shorted waveguide made of a microwave conductive, refractory material communicating with the source of the microwave energy to generate a plasma. The high power waveguide is constructed to be robust in a hot, hostile environment. It includes an aperture for the passage of gases to be analyzed and a spectrometer is connected to receive light from the plasma. Provision is made for real time in situ calibration. The spectrometer disperses the light, which is then analyzed by a computer. The sensor is capable of making continuous, real time quantitative measurements of desired elements, such as the heavy metals lead and mercury.

  20. Demodulation of an optical fiber MEMS pressure sensor based on single bandpass microwave photonic filter.

    PubMed

    Wang, Yiping; Ni, Xiaoqi; Wang, Ming; Cui, Yifeng; Shi, Qingyun

    2017-01-23

    In this paper, a demodulation method for optic fiber micro-electromechanical systems (MEMS) extrinsic Fabry-Perot interferometer (EFPI) pressure sensor exploiting microwave photonics filter technique is firstly proposed and experimentally demonstrated. A single bandpass microwave photonic filter (MPF) which mainly consists of a spectrum-sliced light source, a pressurized optical fiber MEMS EFPI, a phase modulator (PM) and a length of dispersion compensating fiber (DCF) is demonstrated. The frequency response of the filter with respect to the pressure is studied. By detecting the resonance frequency shifts of the MPF, the pressure can be determined. The theoretical and experimental results show that the proposed EFPI pressure demodulation method has a higher resolution and higher speed than traditional methods based on optical spectrum analysis. The sensitivity of the sensor is measured to be as high as 86 MHz/MPa in the range of 0-4Mpa. Moreover, the sensitivity can be easily adjusted.

  1. Point-like neutron source based on high-current electron cyclotron resonance ion source with powerful millimeter wave plasma heating

    NASA Astrophysics Data System (ADS)

    Golubev, S. V.; Skalyga, V. A.; Izotov, I. V.; Sidorov, A. V.

    2018-01-01

    A possibility of an intense deuterium ion beam creation for a compact powerful point-like neutron source is discussed. The fusion takes place due to bombardment of deuterium (or tritium) loaded target by high-current focused deuterium ion beam with energy of 100 keV. The ways of high-current and low emittance ion beam formation from the plasma of quasi-gasdynamic ion source of a new generation based on an electron cyclotron resonance discharge in an open magnetic trap sustained by powerful microwave radiation are investigated.

  2. Generation of tunable laser sidebands in the far-infrared region

    NASA Technical Reports Server (NTRS)

    Farhoomand, J.; Frerking, M. A.; Pickett, H. M.; Blake, G. A.

    1985-01-01

    In recent years, several techniques have been developed for the generation of tunable coherent radiation at submillimeter and far-infrared (FIR) wavelengths. The harmonic generation of conventional microwave sources has made it possible to produce spectrometers capable of continuous operation to above 1000 GHz. However, the sensitivity of such instruments drops rapidly with frequency. For this reason, a great deal of attention is given to laser-based methods, which could cover the entire FIR region. Tunable FIR radiation (approximately 100 nW) has been produced by mixing FIR molecular lasers and conventional microwave sources in both open and closed mixer mounts. The present investigation is concerned with improvements in this approach. These improvements provide approximately thirty times more output power than previous results.

  3. Microwave Oven Experiments with Metals and Light Sources

    ERIC Educational Resources Information Center

    Vollmer, Michael; Mollmann, Klaus-Peter; Karstadt, Detlef

    2004-01-01

    "Don't put metal objects in the microwave" is common safety advice. But why? Here we describe demonstration experiments involving placing household metallic objects in a microwave oven. These allow a better understanding of the interaction of microwaves with materials. Light bulbs and discharge lamps can also be used in instructive demonstrations.

  4. Multi-Frequency Microwaves Plasma Production for Active Profile Control of Ion Beams on a Large Bore ECR Ion Source with Permanent Magnets

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sakamoto, Naoki; Kato, Yushi; Kiriyama, Ryutaro

    2011-01-07

    A new concept on magnetic field of plasma production and confinement by using permanent magnets, i.e. cylindrically comb-shaped magnets, has been proposed to enhance efficiency of an electron cyclotron resonance (ECR) plasma for broad and dense ion beam source under the low pressure and also the low microwave power. The resonance zones corresponding to the fundamental ECR for 2.45 GHz and 11-13 GHz frequency are constructed at different positions. The profiles of the plasma parameters in the ECR ion source are different from each frequency of microwave. Large bore extractor is set at the opposite side against the microwave feeds.more » It is found that differences of their profiles also appear at those of ion beam profiles. We conducted to launch simultaneously multiplex frequency microwaves controlled individually, and tried to control the profiles of the plasma parameters and then those of extracted ion beam.« less

  5. A Cherenkov-emission Microwave Source.*

    NASA Astrophysics Data System (ADS)

    Lai, C. H.; Yoshii, J.; Katsouleas, T.; Hairapetian, G.; Joshi, C.; Mori, W.

    1996-11-01

    In an unmagnetized plasma, there is no Cherenkov emission because the phase velocity ν_φ of light is greater than c. In a magnetized plasma, the situation is completely changed. There is a rich variety of plasma modes with phase velocities ν_φ <= c which can couple to a fast particle. In the magnetized plasma, a fast particle, a particle beam, or even a short laser pulse excites a Cherenkov wake that has both electrostatic and electromagnetic components. Preliminary simulations indicate that at the vacuum/plasma boundary, the wake couples to a vacuum microwave with an amplitude equal to the electromagnetic component in the plasma. For a weakly magnetized plasma, the amplitude of the out-coupled radiation is approximately ωc / ωp times the amplitude of the wake excited in the plasma by the beam, and the frequency is approximately ω_p. Since plasma wakes as high as a few GeV/m are produced in current experiments, the potential for a high-power (i.e., GWatt) coherent microwave to THz source exists. In this talk, a brief overview of the scaling laws will be presented, followed by 1-D and 2-D PIC simulations. Prospects for a tuneable microwave source experiment based on this mechanism at the UCLA plasma wakefield accelerator facility will be discussed. Work supported by AFOSR Grant #F4 96200-95-0248 and DOE Grant # DE-FG03-92ER40745. ^1Now at Hughes Research Laboratories, Malibu, CA 90265.

  6. [Optimization of measurement methods for a multi-frequency electromagnetic field from mobile phone base station using broadband EMF meter].

    PubMed

    Bieńkowski, Paweł; Cała, Paweł; Zubrzak, Bartłomiej

    2015-01-01

    This paper presents the characteristics of the mobile phone base station (BS) as an electromagnetic field (EMF) source. The most common system configurations with their construction are described. The parameters of radiated EMF in the context of the access to methods and other parameters of the radio transmission are discussed. Attention was also paid to antennas that are used in this technology. The influence of individual components of a multi-frequency EMF, most commonly found in the BS surroundings, on the resultant EMF strength value indicated by popular broadband EMF meters was analyzed. The examples of metrological characteristics of the most common EMF probes and 2 measurement scenarios of the multisystem base station, with and without microwave relays, are shown. The presented method for measuring the multi-frequency EMF using 2 broadband probes allows for the significant minimization of measurement uncertainty. Equations and formulas that can be used to calculate the actual EMF intensity from multi-frequency sources are shown. They have been verified in the laboratory conditions on a specific standard setup as well as in real conditions in a survey of the existing base station with microwave relays. Presented measurement methodology of multi-frequency EMF from BS with microwave relays, validated both in laboratory and real conditions. It has been proven that the described measurement methodology is the optimal approach to the evaluation of EMF exposure in BS surrounding. Alternative approaches with much greater uncertainty (precaution method) or more complex measuring procedure (sources exclusion method) are also presented). This work is available in Open Access model and licensed under a CC BY-NC 3.0 PL license.

  7. Microfabricated ion frequency standard

    DOEpatents

    Schwindt, Peter; Biedermann, Grant; Blain, Matthew G.; Stick, Daniel L.; Serkland, Darwin K.; Olsson, III, Roy H.

    2010-12-28

    A microfabricated ion frequency standard (i.e. an ion clock) is disclosed with a permanently-sealed vacuum package containing a source of ytterbium (Yb) ions and an octupole ion trap. The source of Yb ions is a micro-hotplate which generates Yb atoms which are then ionized by a ultraviolet light-emitting diode or a field-emission electron source. The octupole ion trap, which confines the Yb ions, is formed from suspended electrodes on a number of stacked-up substrates. A microwave source excites a ground-state transition frequency of the Yb ions, with a frequency-doubled vertical-external-cavity laser (VECSEL) then exciting the Yb ions up to an excited state to produce fluorescent light which is used to tune the microwave source to the ground-state transition frequency, with the microwave source providing a precise frequency output for the ion clock.

  8. White noise of Nb-based microwave superconducting quantum interference device multiplexers with NbN coplanar resonators for readout of transition edge sensors

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kohjiro, Satoshi; Hirayama, Fuminori; Yamamori, Hirotake

    2014-06-14

    White noise of dissipationless microwave radio frequency superconducting quantum interference device (RF-SQUID) multiplexers has been experimentally studied to evaluate their readout performance for transition edge sensor (TES) photon counters ranging from near infrared to gamma ray. The characterization has been carried out at 4 K, first to avoid the low-frequency fluctuations present at around 0.1 K, and second, for a feasibility study of readout operation at 4 K for extended applications. To increase the resonant Q at 4 K and maintain low noise SQUID operation, multiplexer chips consisting of niobium nitride (NbN)-based coplanar-waveguide resonators and niobium (Nb)-based RF-SQUIDs have been developed. This hybrid multiplexermore » exhibited 1 × 10{sup 4} ≤ Q ≤ 2 × 10{sup 4} and the square root of spectral density of current noise referred to the SQUID input √S{sub I} = 31 pA/√Hz. The former and the latter are factor-of-five and seven improvements from our previous results on Nb-based resonators, respectively. Two-directional readout on the complex plane of the transmission component of scattering matrix S{sub 21} enables us to distinguish the flux noise from noise originating from other sources, such as the cryogenic high electron mobility transistor (HEMT) amplifier. Systematic noise measurements with various microwave readout powers P{sub MR} make it possible to distinguish the contribution of noise sources within the system as follows: (1) The achieved √S{sub I} is dominated by the Nyquist noise from a resistor at 4 K in parallel to the SQUID input coil which is present to prevent microwave leakage to the TES. (2) The next dominant source is either the HEMT-amplifier noise (for small values of P{sub MR}) or the quantization noise due to the resolution of 300-K electronics (for large values of P{sub MR}). By a decrease of these noise levels to a degree that is achievable by current technology, we predict that the microwave RF-SQUID multiplexer can exhibit √S{sub I} ≤ 5 pA/√Hz, i.e., close to √S{sub I} of state-of-the-art DC-SQUID-based multiplexers.« less

  9. Microwave off-gas treatment apparatus and process

    DOEpatents

    Schulz, Rebecca L.; Clark, David E.; Wicks, George G.

    2003-01-01

    The invention discloses a microwave off-gas system in which microwave energy is used to treat gaseous waste. A treatment chamber is used to remediate off-gases from an emission source by passing the off-gases through a susceptor matrix, the matrix being exposed to microwave radiation. The microwave radiation and elevated temperatures within the combustion chamber provide for significant reductions in the qualitative and quantitative emissions of the gas waste stream.

  10. Continuous microwave regeneration apparatus for absorption media

    DOEpatents

    Smith, Douglas D.

    1999-01-01

    A method and apparatus for continuously drying and regenerating ceramic beads for use in process gas moisture drying operations such as glove boxes. A microwave energy source is coupled to a process chamber to internally heat the ceramic beads and vaporize moisture contained therein. In a preferred embodiment, the moisture laden ceramic beads are conveyed toward the microwave source by a screw mechanism. The regenerated beads flow down outside of the screw mechanism and are available to absorb additional moisture.

  11. Development of the integrated control system for the microwave ion source of the PEFP 100-MeV proton accelerator

    NASA Astrophysics Data System (ADS)

    Song, Young-Gi; Seol, Kyung-Tae; Jang, Ji-Ho; Kwon, Hyeok-Jung; Cho, Yong-Sub

    2012-07-01

    The Proton Engineering Frontier Project (PEFP) 20-MeV proton linear accelerator is currently operating at the Korea Atomic Energy Research Institute (KAERI). The ion source of the 100-MeV proton linac needs at least a 100-hour operation time. To meet the goal, we have developed a microwave ion source that uses no filament. For the ion source, a remote control system has been developed by using experimental physics and the industrial control system (EPICS) software framework. The control system consists of a versa module europa (VME) and EPICS-based embedded applications running on a VxWorks real-time operating system. The main purpose of the control system is to control and monitor the operational variables of the components remotely and to protect operators from radiation exposure and the components from critical problems during beam extraction. We successfully performed the operation test of the control system to confirm the degree of safety during the hardware performance.

  12. Continuous, real time microwave plasma element sensor

    DOEpatents

    Woskov, P.P.; Smatlak, D.L.; Cohn, D.R.; Wittle, J.K.; Titus, C.H.; Surma, J.E.

    1995-12-26

    Microwave-induced plasma is described for continuous, real time trace element monitoring under harsh and variable conditions. The sensor includes a source of high power microwave energy and a shorted waveguide made of a microwave conductive, refractory material communicating with the source of the microwave energy to generate a plasma. The high power waveguide is constructed to be robust in a hot, hostile environment. It includes an aperture for the passage of gases to be analyzed and a spectrometer is connected to receive light from the plasma. Provision is made for real time in situ calibration. The spectrometer disperses the light, which is then analyzed by a computer. The sensor is capable of making continuous, real time quantitative measurements of desired elements, such as the heavy metals lead and mercury. 3 figs.

  13. Frequency scaling with miniature COmpact MIcrowave and Coaxial ion sources

    NASA Astrophysics Data System (ADS)

    Sortais, Pascal; André, Thomas; Angot, Julien; Bouat, Sophie; Jacob, Josua; Lamy, Thierry; Sole, Patrick

    2014-02-01

    We will present recent basic developments about possible extension of the COMIC (for COmpact MIcrowave and Coaxial) devices up to 5.8 GHz in place of the present 2.45 GHz operation [P. Sortais, T. Lamy, J. Médard, J. Angot, L. Latrasse, and T. Thuillier, Rev. Sci. Instrum. 81, 02B314 (2010)]. New applications associating multiple COMIC devices for thin film deposition will be described and we will explain why an increase of the current density delivered by each individual ion source could lead to the increase of the deposition rate. For this purpose, we will present results of about two devices working at 5.8 GHz. The first one is a tiny ion source, the world smallest microwave ion source, exactly similar to COMIC but operating at 5.8 GHz with a quarter wave cavity structure and a few watts microwave power consumption. We will show that the frequency scaling effect is effective inside such small machines. The second one is a more ambitious ion source designed around a three quarter wave structure that works with a few tens of watts at 5.8 GHz.

  14. Figures of merit for self-beating filtered microwave photonic systems.

    PubMed

    Pérez, Daniel; Gasulla, Ivana; Capmany, José; Fandiño, Javier S; Muñoz, Pascual; Alavi, Hossein

    2016-05-02

    We present a model to compute the figures of merit of self-beating Microwave Photonic systems, a novel class of systems that work on a self-homodyne fashion by sharing the same laser source for information bearing and local oscillator tasks. General and simplified expressions are given and, as an example, we have considered their application to the design of a tunable RF MWP BS/UE front end for band selection, based on a Chebyshev Type-II optical filter. The applicability and usefulness of the model are also discussed.

  15. Microwave assisted synthesis of cyclic carbonates from olefins with sodium bicarbonates as the C1 source.

    PubMed

    Yang, Xiaoqing; Wu, Jie; Mao, Xianwen; Jamison, Timothy F; Hatton, T Alan

    2014-03-25

    An effective transformation of alkenes into cyclic carbonates has been achieved using NaHCO3 as the C1 source in acetone-water under microwave heating, with selectivities and yields significantly surpassing those obtained using conventional heating.

  16. Beam current enhancement of microwave plasma ion source utilizing double-port rectangular cavity resonator

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lee, Yuna; Park, Yeong-Shin; Jo, Jong-Gab

    2012-02-15

    Microwave plasma ion source with rectangular cavity resonator has been examined to improve ion beam current by changing wave launcher type from single-port to double-port. The cavity resonators with double-port and single-port wave launchers are designed to get resonance effect at TE-103 mode and TE-102 mode, respectively. In order to confirm that the cavities are acting as resonator, the microwave power for breakdown is measured and compared with the E-field strength estimated from the HFSS (High Frequency Structure Simulator) simulation. Langmuir probe measurements show that double-port cavity enhances central density of plasma ion source by modifying non-uniform plasma density profilemore » of the single-port cavity. Correspondingly, beam current from the plasma ion source utilizing the double-port resonator is measured to be higher than that utilizing single-port resonator. Moreover, the enhancement in plasma density and ion beam current utilizing the double-port resonator is more pronounced as higher microwave power applied to the plasma ion source. Therefore, the rectangular cavity resonator utilizing the double-port is expected to enhance the performance of plasma ion source in terms of ion beam extraction.« less

  17. Beam current enhancement of microwave plasma ion source utilizing double-port rectangular cavity resonator.

    PubMed

    Lee, Yuna; Park, Yeong-Shin; Jo, Jong-Gab; Yang, J J; Hwang, Y S

    2012-02-01

    Microwave plasma ion source with rectangular cavity resonator has been examined to improve ion beam current by changing wave launcher type from single-port to double-port. The cavity resonators with double-port and single-port wave launchers are designed to get resonance effect at TE-103 mode and TE-102 mode, respectively. In order to confirm that the cavities are acting as resonator, the microwave power for breakdown is measured and compared with the E-field strength estimated from the HFSS (High Frequency Structure Simulator) simulation. Langmuir probe measurements show that double-port cavity enhances central density of plasma ion source by modifying non-uniform plasma density profile of the single-port cavity. Correspondingly, beam current from the plasma ion source utilizing the double-port resonator is measured to be higher than that utilizing single-port resonator. Moreover, the enhancement in plasma density and ion beam current utilizing the double-port resonator is more pronounced as higher microwave power applied to the plasma ion source. Therefore, the rectangular cavity resonator utilizing the double-port is expected to enhance the performance of plasma ion source in terms of ion beam extraction.

  18. Power combination of a self-coherent high power microwave source

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yan, Xiaolu, E-mail: yanxl-dut@163.com; Zhang, Xiaoping; Li, Yangmei

    2015-09-15

    In our previous work, generating two phase-locked high power microwaves (HPMs) in a single self-coherent HPM device has been demonstrated. In this paper, after optimizing the structure of the previous self-coherent source, we design a power combiner with a folded phase-adjustment waveguide to realize power combination between its two sub-sources. Further particle-in-cell simulation of the combined source shows that when the diode voltage is 687 kV and the axial magnetic field is 0.8 T, a combined output microwave with 3.59 GW and 9.72 GHz is generated. The impedance of the combined device is 36 Ω and the total power conversion efficiency is 28%.

  19. Microwave Heating of Synthetic Skin Samples for Potential Treatment of Gout Using the Metal-Assisted and Microwave-Accelerated Decrystallization Technique

    PubMed Central

    2016-01-01

    Physical stability of synthetic skin samples during their exposure to microwave heating was investigated to demonstrate the use of the metal-assisted and microwave-accelerated decrystallization (MAMAD) technique for potential biomedical applications. In this regard, optical microscopy and temperature measurements were employed for the qualitative and quantitative assessment of damage to synthetic skin samples during 20 s intermittent microwave heating using a monomode microwave source (at 8 GHz, 2–20 W) up to 120 s. The extent of damage to synthetic skin samples, assessed by the change in the surface area of skin samples, was negligible for microwave power of ≤7 W and more extensive damage (>50%) to skin samples occurred when exposed to >7 W at initial temperature range of 20–39 °C. The initial temperature of synthetic skin samples significantly affected the extent of change in temperature of synthetic skin samples during their exposure to microwave heating. The proof of principle use of the MAMAD technique was demonstrated for the decrystallization of a model biological crystal (l-alanine) placed under synthetic skin samples in the presence of gold nanoparticles. Our results showed that the size (initial size ∼850 μm) of l-alanine crystals can be reduced up to 60% in 120 s without damage to synthetic skin samples using the MAMAD technique. Finite-difference time-domain-based simulations of the electric field distribution of an 8 GHz monomode microwave radiation showed that synthetic skin samples are predicted to absorb ∼92.2% of the microwave radiation. PMID:27917407

  20. Microwave Dielectric Heating of Drops in Microfluidic Devices†

    PubMed Central

    Issadore, David; Humphry, Katherine J.; Brown, Keith A.; Sandberg, Lori; Weitz, David; Westervelt, Robert M.

    2010-01-01

    We present a technique to locally and rapidly heat water drops in microfluidic devices with microwave dielectric heating. Water absorbs microwave power more efficiently than polymers, glass, and oils due to its permanent molecular dipole moment that has a large dielectric loss at GHz frequencies. The relevant heat capacity of the system is a single thermally isolated picoliter drop of water and this enables very fast thermal cycling. We demonstrate microwave dielectric heating in a microfluidic device that integrates a flow-focusing drop maker, drop splitters, and metal electrodes to locally deliver microwave power from an inexpensive, commercially available 3.0 GHz source and amplifier. The temperature of the drops is measured by observing the temperature dependent fluorescence intensity of cadmium selenide nanocrystals suspended in the water drops. We demonstrate characteristic heating times as short as 15 ms to steady-state temperatures as large as 30°C above the base temperature of the microfluidic device. Many common biological and chemical applications require rapid and local control of temperature, such as PCR amplification of DNA, and can benefit from this new technique. PMID:19495453

  1. Microwave Interferometric Density Measurements of a Pulsed Helicon Source

    NASA Astrophysics Data System (ADS)

    Scime, Ethan; Scime, Earl; Thompson, Derek

    2017-10-01

    The intense rf environment of a helicon plasma source is problematic for electrostatic probe measurements of plasma density, particularly at low neutral pressures. Here we present measurements of the line-integrated plasma density in a helicon plasma source using a multi-frequency (20-40 GHz) microwave interferometer. The design of the diagnostic and the data acquisition system are presented, as well as a comparison to density profiles obtained with a moveable electrostatic probe. A parametric fit to the probe profile measurements is used to determine the peak density from the microwave density measurements. This work supported by U.S. National Science Foundation Grant No. PHY-1360278.

  2. Relation between metric and decametric noise storm sources and microwave S-component emissions

    NASA Technical Reports Server (NTRS)

    Sakurai, K.

    1974-01-01

    Various activities are reported by taking into account the properties of the active region and its relationship to low frequency burst emissions observed by the IMP-6 satellite. The relation of metric noise continuum storms (200 MHz) with the S-component of microwave emissions (2800 MHz) are examined. Taking the results analyzed, a model on the growth of radio noise continuum sources in metric and decametric frequencies and its relation to microwave and other solar active phenomena are considered.

  3. Theoretical scaling law of coronal magnetic field and electron power-law index in solar microwave burst sources

    NASA Astrophysics Data System (ADS)

    Huang, Y.; Song, Q. W.; Tan, B. L.

    2018-04-01

    It is first proposed a theoretical scaling law respectively for the coronal magnetic field strength B and electron power-law index δ versus frequency and coronal height in solar microwave burst sources. Based on the non-thermal gyro-synchrotron radiation model (Ramaty in Astrophys. J. 158:753, 1969), B and δ are uniquely solved by the observable optically-thin spectral index and turnover (peak) frequency, the other parameters (plasma density, temperature, view angle, low and high energy cutoffs, etc.) are relatively insensitive to the calculations, thus taken as some typical values. Both of B and δ increase with increasing of radio frequency but with decreasing of coronal height above photosphere, and well satisfy a square or cubic logarithmic fitting.

  4. Beam extraction and high stability operation of high current electron cyclotron resonance proton ion source.

    PubMed

    Roychowdhury, P; Mishra, L; Kewlani, H; Patil, D S; Mittal, K C

    2014-03-01

    A high current electron cyclotron resonance proton ion source is designed and developed for the low energy high intensity proton accelerator at Bhabha Atomic Research Centre. The plasma discharge in the ion source is stabilized by minimizing the reflected microwave power using four stub auto tuner and magnetic field. The optimization of extraction geometry is performed using PBGUNS code by varying the aperture, shape, accelerating gap, and the potential on the electrodes. While operating the source, it was found that the two layered microwave window (6 mm quartz plate and 2 mm boron nitride plate) was damaged (a fine hole was drilled) by the back-streaming electrons after continuous operation of the source for 3 h at beam current of 20-40 mA. The microwave window was then shifted from the line of sight of the back-streaming electrons and located after the water-cooled H-plane bend. In this configuration the stable operation of the high current ion source for several hours is achieved. The ion beam is extracted from the source by biasing plasma electrode, puller electrode, and ground electrode to +10 to +50 kV, -2 to -4 kV, and 0 kV, respectively. The total ion beam current of 30-40 mA is recorded on Faraday cup at 40 keV of beam energy at 600-1000 W of microwave power, 800-1000 G axial magnetic field and (1.2-3.9) × 10(-3) mbar of neutral hydrogen gas pressure in the plasma chamber. The dependence of beam current on extraction voltage, microwave power, and gas pressure is investigated in the range of operation of the ion source.

  5. Coupled microwave ECR and radio-frequency plasma source for plasma processing

    DOEpatents

    Tsai, Chin-Chi; Haselton, Halsey H.

    1994-01-01

    In a dual plasma device, the first plasma is a microwave discharge having its own means of plasma initiation and control. The microwave discharge operates at electron cyclotron resonance (ECR), and generates a uniform plasma over a large area of about 1000 cm.sup.2 at low pressures below 0.1 mtorr. The ECR microwave plasma initiates the second plasma, a radio frequency (RF) plasma maintained between parallel plates. The ECR microwave plasma acts as a source of charged particles, supplying copious amounts of a desired charged excited species in uniform manner to the RF plasma. The parallel plate portion of the apparatus includes a magnetic filter with static magnetic field structure that aids the formation of ECR zones in the two plasma regions, and also assists in the RF plasma also operating at electron cyclotron resonance.

  6. Coupled microwave ECR and radio-frequency plasma source for plasma processing

    DOEpatents

    Tsai, C.C.; Haselton, H.H.

    1994-03-08

    In a dual plasma device, the first plasma is a microwave discharge having its own means of plasma initiation and control. The microwave discharge operates at electron cyclotron resonance (ECR), and generates a uniform plasma over a large area of about 1000 cm[sup 2] at low pressures below 0.1 mtorr. The ECR microwave plasma initiates the second plasma, a radio frequency (RF) plasma maintained between parallel plates. The ECR microwave plasma acts as a source of charged particles, supplying copious amounts of a desired charged excited species in uniform manner to the RF plasma. The parallel plate portion of the apparatus includes a magnetic filter with static magnetic field structure that aids the formation of ECR zones in the two plasma regions, and also assists in the RF plasma also operating at electron cyclotron resonance. 4 figures.

  7. Electro-optic modulation of a laser at microwave frequencies for interferometric purposes

    NASA Astrophysics Data System (ADS)

    Specht, Paul E.; Jilek, Brook A.

    2017-02-01

    A multi-point microwave interferometer (MPMI) concept was previously proposed by the authors for spatially-resolved, non-invasive tracking of a shock, reaction, or detonation front in energetic media [P. Specht et al., AIP Conf. Proc. 1793, 160010 (2017).]. The advantage of the MPMI concept over current microwave interferometry techniques is its detection of Doppler shifted microwave signals through electro-optic (EO) modulation of a laser. Since EO modulation preserves spatial variations in the Doppler shift, collecting the EO modulated laser light into a fiber array for recording with an optical heterodyne interferometer yields spatially-resolved velocity information. This work demonstrates the underlying physical principle of the MPMI diagnostic: the monitoring of a microwave signal with nanosecond temporal resolution using an optical heterodyne interferometer. For this purpose, the MPMI concept was simplified to a single-point construction using two tunable 1550 nm lasers and a 35.2 GHz microwave source. A (110) ZnTe crystal imparted the microwave frequency onto a laser, which was combined with a reference laser for determination of the microwave frequency in an optical heterodyne interferometer. A single, characteristic frequency associated with the microwave source was identified in all experiments, providing a means to monitor a microwave signal on nanosecond time scales. Lastly, areas for improving the frequency resolution of this technique are discussed, focusing on increasing the phase-modulated signal strength.

  8. Electro-optic modulation of a laser at microwave frequencies for interferometric purposes.

    PubMed

    Specht, Paul E; Jilek, Brook A

    2017-02-01

    A multi-point microwave interferometer (MPMI) concept was previously proposed by the authors for spatially-resolved, non-invasive tracking of a shock, reaction, or detonation front in energetic media [P. Specht et al., AIP Conf. Proc. 1793, 160010 (2017).]. The advantage of the MPMI concept over current microwave interferometry techniques is its detection of Doppler shifted microwave signals through electro-optic (EO) modulation of a laser. Since EO modulation preserves spatial variations in the Doppler shift, collecting the EO modulated laser light into a fiber array for recording with an optical heterodyne interferometer yields spatially-resolved velocity information. This work demonstrates the underlying physical principle of the MPMI diagnostic: the monitoring of a microwave signal with nanosecond temporal resolution using an optical heterodyne interferometer. For this purpose, the MPMI concept was simplified to a single-point construction using two tunable 1550 nm lasers and a 35.2 GHz microwave source. A (110) ZnTe crystal imparted the microwave frequency onto a laser, which was combined with a reference laser for determination of the microwave frequency in an optical heterodyne interferometer. A single, characteristic frequency associated with the microwave source was identified in all experiments, providing a means to monitor a microwave signal on nanosecond time scales. Lastly, areas for improving the frequency resolution of this technique are discussed, focusing on increasing the phase-modulated signal strength.

  9. Simulation of transvertron high power microwave sources

    NASA Astrophysics Data System (ADS)

    Sullivan, Donald J.; Walsh, John E.; Arman, M. Joseph; Godfrey, Brendan B.

    1989-07-01

    The transvertron oscillator or amplifier is a new and efficient type of intense relativistic electron-beam-driven microwave radiation source. In the m = 0 axisymmetric version, it consists of single or multiple cylindrical cavities driven at one of the TM(0np) resonances by a high-voltage, low-impedance electron beam. There is no applied magnetic field, and the oscillatory transverse motion acquired by the axially-injected electron beam is an essential part of the drive mechanism. The transvertron theory was systematically tested for a wide range of parameters and two possible applications. The simulations were designed to verify the theoretical predictions, assess the transvertron as a possible source of intense microwave radiation, and study its potential as a microwave amplifier. Numerical results agree well in all regards with the analytical theory. Simulations were carried out in two dimensions using CCUBE, with the exception of radial loading cases, where the three-dimensional code SOS was required.

  10. Experimental investigation of microwave interaction with magnetoplasma in miniature multipolar configuration using impedance measurements

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dey, Indranuj, E-mail: indranuj@aees.kyushu-u.ac.jp; Toyoda, Yuji; Yamamoto, Naoji

    2014-09-15

    A miniature microwave plasma source employing both radial and axial magnetic fields for plasma confinement has been developed for micro-propulsion applications. Plasma is initiated by launching microwaves via a short monopole antenna to circumvent geometrical cutoff limitations. The amplitude and phase of the forward and reflected microwave power is measured to obtain the complex reflection coefficient from which the equivalent impedance of the plasma source is determined. Effect of critical plasma density condition is reflected in the measurements and provides insight into the working of the miniature plasma source. A basic impedance calculation model is developed to help in understandingmore » the experimental observations. From experiment and theory, it is seen that the equivalent impedance magnitude is controlled by the coaxial discharge boundary conditions, and the phase is influenced primarily by the plasma immersed antenna impedance.« less

  11. Plasma-based wakefield accelerators as sources of axion-like particles

    NASA Astrophysics Data System (ADS)

    Burton, David A.; Noble, Adam

    2018-03-01

    We estimate the average flux density of minimally-coupled axion-like particles (ALPs) generated by a laser-driven plasma wakefield propagating along a constant strong magnetic field. Our calculations suggest that a terrestrial source based on this approach could generate a pulse of ALPs whose flux density is comparable to that of solar ALPs at Earth. This mechanism is optimal for ALPs with mass in the range of interest of contemporary experiments designed to detect dark matter using microwave cavities.

  12. Bias-field controlled phasing and power combination of gyromagnetic nonlinear transmission lines

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Reale, D. V., E-mail: david.reale@ttu.edu; Bragg, J.-W. B.; Gonsalves, N. R.

    2014-05-15

    Gyromagnetic Nonlinear Transmission Lines (NLTLs) generate microwaves through the damped gyromagnetic precession of the magnetic moments in ferrimagnetic material, and are thus utilized as compact, solid-state, frequency agile, high power microwave (HPM) sources. The output frequency of a NLTL can be adjusted by control of the externally applied bias field and incident voltage pulse without physical alteration to the structure of the device. This property provides a frequency tuning capability not seen in many conventional e-beam based HPM sources. The NLTLs developed and tested are mesoband sources capable of generating MW power levels in the L, S, and C bandsmore » of the microwave spectrum. For an individual NLTL the output power at a given frequency is determined by several factors including the intrinsic properties of the ferrimagnetic material and the transmission line structure. Hence, if higher power levels are to be achieved, it is necessary to combine the outputs of multiple NLTLs. This can be accomplished in free space using antennas or in a transmission line via a power combiner. Using a bias-field controlled delay, a transient, high voltage, coaxial, three port, power combiner was designed and tested. Experimental results are compared with the results of a transient COMSOL simulation to evaluate combiner performance.« less

  13. Bias-field controlled phasing and power combination of gyromagnetic nonlinear transmission lines.

    PubMed

    Reale, D V; Bragg, J-W B; Gonsalves, N R; Johnson, J M; Neuber, A A; Dickens, J C; Mankowski, J J

    2014-05-01

    Gyromagnetic Nonlinear Transmission Lines (NLTLs) generate microwaves through the damped gyromagnetic precession of the magnetic moments in ferrimagnetic material, and are thus utilized as compact, solid-state, frequency agile, high power microwave (HPM) sources. The output frequency of a NLTL can be adjusted by control of the externally applied bias field and incident voltage pulse without physical alteration to the structure of the device. This property provides a frequency tuning capability not seen in many conventional e-beam based HPM sources. The NLTLs developed and tested are mesoband sources capable of generating MW power levels in the L, S, and C bands of the microwave spectrum. For an individual NLTL the output power at a given frequency is determined by several factors including the intrinsic properties of the ferrimagnetic material and the transmission line structure. Hence, if higher power levels are to be achieved, it is necessary to combine the outputs of multiple NLTLs. This can be accomplished in free space using antennas or in a transmission line via a power combiner. Using a bias-field controlled delay, a transient, high voltage, coaxial, three port, power combiner was designed and tested. Experimental results are compared with the results of a transient COMSOL simulation to evaluate combiner performance.

  14. On the relation between the peak frequency and the corresponding rise time of solar microwave impulsive bursts and the height dependence of magnetic fields

    NASA Astrophysics Data System (ADS)

    Zhao, Ren-Yang; Magun, Andreas; Schanda, Erwin

    1990-12-01

    Results are reported from a correlation analysis for 57 microwave impulsive bursts observed at six frequencies. A regression line between the peak frequency and the corresponding rise time of microwave impulsive bursts is obtained, with a correlation coefficient of -0.43. This can be explained in the frame of a thermal model. The magnetic field decrease with height has to be much slower than in a dipole field in order to explain the weak dependence of f(p) on t(r). This decrease of magnetic field with height in burst sources is based on the relationship between f(p) and t(r) found by assuming a thermal flare model with a collisionless conduction front.

  15. Wireless chemical sensor system based on electromagnetically energy-harvesting metamaterials (Conference Presentation)

    NASA Astrophysics Data System (ADS)

    Lee, Wonwoo; Jung, Yonghee; Jung, Hyunseung; Lee, Hojin

    2017-02-01

    In the past decade, there have been many studies on metamaterial based chemical and biological sensors due to their exotic resonance properties in microwave ranges. However, in spite of their non-destructive and highly sensitive properties, they have suffered from the use of bulky and expensive external measurement systems like a network analyzer for measuring resonance properties in the microwave regime. In this study, to increase accessibility of the metamaterial-based sensors, we propose a novel wireless chemical sensor system based on energy harvesting metamaterials at the microwave frequencies. The proposed metamaterial chemical sensor consists of a single split ring resonator and rectifier circuit to harvest the energy at the specific frequency, so that the chemical composition of the specific solution can be distinguished by the proposed metamaterial sensor by using the resonance property between the source antenna and the metamaterial which induces the variation in the energy harvesting rate of our sensor system. In our experimental setup, we used a 2.4 GHz Wi-Fi system as a source antenna. To verify the chemical sensitivity of the proposed sensor intuitively, we adopted a light emitting diode as an indicator of which luminescence is proportional to the energy harvesting rate determined by the ratio of ethanol and water in their binary mixture. With these results, it can be expected that our metamaterial-based wireless sensor can pave the way to the miniaturized wireless sensor systems and can be applied to not only for the chemical fluidic sensors but also for other dynamic environment sensing systems.

  16. An explosively driven high-power microwave pulsed power system.

    PubMed

    Elsayed, M A; Neuber, A A; Dickens, J C; Walter, J W; Kristiansen, M; Altgilbers, L L

    2012-02-01

    The increased popularity of high power microwave systems and the various sources to drive them is the motivation behind the work to be presented. A stand-alone, self-contained explosively driven high power microwave pulsed power system has been designed, built, and tested at Texas Tech University's Center for Pulsed Power and Power Electronics. The system integrates four different sub-units that are composed of a battery driven prime power source utilizing capacitive energy storage, a dual stage helical flux compression generator as the main energy amplification device, an integrated power conditioning system with inductive energy storage including a fast opening electro-explosive switch, and a triode reflex geometry virtual cathode oscillator as the microwave radiating source. This system has displayed a measured electrical source power level of over 5 GW and peak radiated microwaves of about 200 MW. It is contained within a 15 cm diameter housing and measures 2 m in length, giving a housing volume of slightly less than 39 l. The system and its sub-components have been extensively studied, both as integrated and individual units, to further expand on components behavior and operation physics. This report will serve as a detailed design overview of each of the four subcomponents and provide detailed analysis of the overall system performance and benchmarks.

  17. An explosively driven high-power microwave pulsed power system

    NASA Astrophysics Data System (ADS)

    Elsayed, M. A.; Neuber, A. A.; Dickens, J. C.; Walter, J. W.; Kristiansen, M.; Altgilbers, L. L.

    2012-02-01

    The increased popularity of high power microwave systems and the various sources to drive them is the motivation behind the work to be presented. A stand-alone, self-contained explosively driven high power microwave pulsed power system has been designed, built, and tested at Texas Tech University's Center for Pulsed Power and Power Electronics. The system integrates four different sub-units that are composed of a battery driven prime power source utilizing capacitive energy storage, a dual stage helical flux compression generator as the main energy amplification device, an integrated power conditioning system with inductive energy storage including a fast opening electro-explosive switch, and a triode reflex geometry virtual cathode oscillator as the microwave radiating source. This system has displayed a measured electrical source power level of over 5 GW and peak radiated microwaves of about 200 MW. It is contained within a 15 cm diameter housing and measures 2 m in length, giving a housing volume of slightly less than 39 l. The system and its sub-components have been extensively studied, both as integrated and individual units, to further expand on components behavior and operation physics. This report will serve as a detailed design overview of each of the four subcomponents and provide detailed analysis of the overall system performance and benchmarks.

  18. Ignition methods and apparatus using microwave energy

    DOEpatents

    DeFreitas, Dennis Michael; Migliori, Albert

    1997-01-01

    An ignition apparatus for a combustor includes a microwave energy source that emits microwave energy into the combustor at a frequency within a resonant response of the combustor, the combustor functioning as a resonant cavity for the microwave energy so that a plasma is produced that ignites a combustible mixture therein. The plasma preferably is a non-contact plasma produced in free space within the resonant cavity spaced away from with the cavity wall structure and spaced from the microwave emitter.

  19. Examining Dense Data Usage near the Regions with Severe Storms in All-Sky Microwave Radiance Data Assimilation and Impacts on GEOS Hurricane Analyses

    NASA Technical Reports Server (NTRS)

    Kim, Min-Jeong; Jin, Jianjun; McCarty, Will; El Akkraoui, Amal; Todling, Ricardo; Gelaro, Ron

    2018-01-01

    Many numerical weather prediction (NWP) centers assimilate radiances affected by clouds and precipitation from microwave sensors, with the expectation that these data can provide critical constraints on meteorological parameters in dynamically sensitive regions to make significant impacts on forecast accuracy for precipitation. The Global Modeling and Assimilation Office (GMAO) at NASA Goddard Space Flight Center assimilates all-sky microwave radiance data from various microwave sensors such as all-sky GPM Microwave Imager (GMI) radiance in the Goddard Earth Observing System (GEOS) atmospheric data assimilation system (ADAS), which includes the GEOS atmospheric model, the Gridpoint Statistical Interpolation (GSI) atmospheric analysis system, and the Goddard Aerosol Assimilation System (GAAS). So far, most of NWP centers apply same large data thinning distances, that are used in clear-sky radiance data to avoid correlated observation errors, to all-sky microwave radiance data. For example, NASA GMAO is applying 145 km thinning distances for most of satellite radiance data including microwave radiance data in which all-sky approach is implemented. Even with these coarse observation data usage in all-sky assimilation approach, noticeable positive impacts from all-sky microwave data on hurricane track forecasts were identified in GEOS-5 system. The motivation of this study is based on the dynamic thinning distance method developed in our all-sky framework to use of denser data in cloudy and precipitating regions due to relatively small spatial correlations of observation errors. To investigate the benefits of all-sky microwave radiance on hurricane forecasts, several hurricane cases selected between 2016-2017 are examined. The dynamic thinning distance method is utilized in our all-sky approach to understand the sources and mechanisms to explain the benefits of all-sky microwave radiance data from various microwave radiance sensors like Advanced Microwave Sounder Unit (AMSU-A), Microwave Humidity Sounder (MHS), and GMI on GEOS-5 analyses and forecasts of various hurricanes.

  20. Process intensification of biodiesel production by using microwave and ionic liquids as catalyst

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Handayani, Prima Astuti; Chemical Engineering Program, Faculty of Engineering, Semarang State University; Abdullah

    The energy crisis pushes the development and intensification of biodiesel production process. Biodiesel is produced by transesterification of vegetable oils or animal fats and conventionally produced by using acid/base catalyst. However, the conventional method requires longer processing time and obtains lower yield of biodiesel. The microwave has been intensively used to accelerate production process and ionic liquids has been introduced as source of catalyst. This paper discusses the overview of the development of biodiesel production through innovation using microwave irradiation and ionic liquids catalyst to increase the yield of biodiesel. The potential microwave to reduce the processing time will bemore » discussed and compared with other energy power, while the ionic liquids as a new generation of catalysts in the chemical industry will be also discussed for its use. The ionic liquids has potential to enhance the economic and environmental aspects because it has a low corrosion effect, can be recycled, and low waste form.« less

  1. Process intensification of biodiesel production by using microwave and ionic liquids as catalyst

    NASA Astrophysics Data System (ADS)

    Handayani, Prima Astuti; Abdullah, dan Hadiyanto

    2015-12-01

    The energy crisis pushes the development and intensification of biodiesel production process. Biodiesel is produced by transesterification of vegetable oils or animal fats and conventionally produced by using acid/base catalyst. However, the conventional method requires longer processing time and obtains lower yield of biodiesel. The microwave has been intensively used to accelerate production process and ionic liquids has been introduced as source of catalyst. This paper discusses the overview of the development of biodiesel production through innovation using microwave irradiation and ionic liquids catalyst to increase the yield of biodiesel. The potential microwave to reduce the processing time will be discussed and compared with other energy power, while the ionic liquids as a new generation of catalysts in the chemical industry will be also discussed for its use. The ionic liquids has potential to enhance the economic and environmental aspects because it has a low corrosion effect, can be recycled, and low waste form.

  2. Non-equilibrium mechanisms of light in the microwave region

    NASA Astrophysics Data System (ADS)

    Mortenson, Juliana H. J.

    2011-09-01

    Quantum mechanics and quantum chemistry have taught for more than 100 years that "photons" associated with microwaves cannot exert photochemical effects because their "photon energies" are smaller than chemical bond energies. Those quantum theories have been strongly contradicted within the last few decades by physical experiments demonstrating non-equilibrium, photochemical and photomaterial activity by microwaves. Reactions among scientists to these real physical models and proofs have varied from disbelief and denial, to acceptance of the real physical phenomena and demands for revisions to quantum theory. At the previous "Nature of Light" meeting, an advance in the foundations of quantum mechanics was presented. Those discoveries have revealed the source of these conflicts between quantum theory and microwave experiments. Critical variables and constants were missing from quantum theory due to a minor mathematical inadvertence in Planck's original quantum work. As a result, erroneous concepts were formed nearly a century ago regarding the energetics and mechanisms of lower frequency light, such as in the microwave region. The new discoveries have revealed that the traditional concept of "photons" mistakenly attributed elementary particle status to what is actually an arbitrarily time-based collection of sub-photonic, elementary particles. In a mathematical dimensional sense, those time-based energy measurements cannot be mathematically equivalent to bond energies as historically believed. Only an "isolated quantity of energy", as De Broglie referred to it, can be equivalent to bond energy. With the aid of the new variables and constants, the non-equilibrium mechanisms of light in the microwave region can now be described. They include resonant absorption, splitting frequency stimulation leading to electronic excitation, and resonant acoustic transduction. Numerous practical engineering applications can be envisioned for non-equilibrium microwaves.

  3. Nist Microwave Blackbody: The Design, Testing, and Verification of a Conical Brightness Temperature Source

    NASA Astrophysics Data System (ADS)

    Houtz, Derek Anderson

    Microwave radiometers allow remote sensing of earth and atmospheric temperatures from space, anytime, anywhere, through clouds, and in the dark. Data from microwave radiometers are high-impact operational inputs to weather forecasts, and are used to provide a vast array of climate data products including land and sea surface temperatures, soil moisture, ocean salinity, cloud precipitation and moisture height profiles, and even wind speed and direction, to name a few. Space-borne microwave radiometers have a major weakness when it comes to long-term climate trends due to their lack of traceability. Because there is no standard, or absolute reference, for microwave brightness temperature, nationally or internationally, individual instruments must each rely on their own internal calibration source to set an absolute reference to the fundamental unit of Kelvin. This causes each subsequent instrument to have a calibration offset and there is no 'true' reference. The work introduced in this thesis addresses this vacancy by proposing and introducing a NIST microwave brightness temperature source that may act as the primary reference. The NIST standard will allow pre-launch calibration of radiometers across a broad range of remote sensing pertinent frequencies between 18 GHz and 220 GHz. The blackbody will be capable of reaching temperatures ranging between liquid nitrogen boiling at approximately 77 K and warm-target temperature of 350 K. The brightness temperature of the source has associated standard uncertainty ranging as a function of frequency between 0.084 K and 0.111 K. The standard can be transferred to the calibration source in the instrument, providing traceability of all subsequent measurements back to the primary standard. The development of the NIST standard source involved predicting and measuring its brightness temperature, and minimizing the associated uncertainty of this quantity. Uniform and constant physical temperature along with well characterized and maximized emissivity are fundamental to a well characterized blackbody. The chosen geometry is a microwave absorber coated copper cone. Electromagnetic and thermal simulations are introduced to optimize the design. Experimental verifications of the simulated quantities confirm the predicted performance of the blackbody.

  4. Beam measurement of the high frequency impedance sources with long bunches in the CERN Super Proton Synchrotron

    NASA Astrophysics Data System (ADS)

    Lasheen, A.; Argyropoulos, T.; Bohl, T.; Esteban Müller, J. F.; Timko, H.; Shaposhnikova, E.

    2018-03-01

    Microwave instability in the Super Proton Synchrotron (SPS) at CERN is one of the main limitations to reach the requirements for the High Luminosity-LHC project (increased beam intensity by a factor 2). To identify the impedance source responsible of the instability, beam measurements were carried out to probe the SPS impedance. The method presented in this paper relies on measurements of the unstable spectra of single bunches, injected in the SPS with the rf voltage switched off. The modulation of the bunch profile gives information about the main impedance sources driving microwave instability, and is compared to particle simulations using the SPS impedance model to identify the most important contributions. This allowed us to identify the vacuum flanges as the main impedance source for microwave instability in the SPS, and to evaluate possible missing impedance sources.

  5. A Microwave Driven Ion Source for Continuous-Flow AMS (Abstract)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wills, J.; Schneider, R.J.; Reden, K.F. von

    2005-03-15

    A microwave-driven, gas-fed ion source originally developed as a high-current positive ion injector for a Tandem accelerator at Chalk River has been the subject of a three-year development program at the Woods Hole Oceanographic Institution NOSAMS facility. Off-line tests have demonstrated positive carbon currents of 1 mA and negative carbon currents of 80 {mu}A from CO2 gas feed. This source and a magnesium charge-exchange canal were coupled to the recombinator of the NOSAMS Tandetron for on-line tests, with the source fed with reference gasses and a combustion device.The promising results obtained have prompted the redesign of the microwave source formore » use as an on-line, continuous-flow injector for a new AMS facility under construction at NOSAMS. The new design is optimized for best transmission of the extracted positive-ion beam through the charge-exchange canal and for reliable operation at 40 kV extraction voltage. Other goals of the re-design include improved lifetime of the microwave window and the elimination of dead volumes in the plasma generator that increase sample hold-up time.This talk will include a summary of results obtained to date at NOSAMS with the Chalk River source and a detailed description of the new design.« less

  6. Computational studies for a multiple-frequency electron cyclotron resonance ion source (abstract)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Alton, G.D.

    1996-03-01

    The number density of electrons, the energy (electron temperature), and energy distribution are three of the fundamental properties which govern the performance of electron cyclotron resonance (ECR) ion sources in terms of their capability to produce high charge state ions. The maximum electron energy is affected by several processes including the ability of the plasma to absorb power. In principle, the performances of an ECR ion source can be realized by increasing the physical size of the ECR zone in relation to the total plasma volume. The ECR zones can be increased either in the spatial or frequency domains inmore » any ECR ion source based on B-minimum plasma confinement principles. The former technique requires the design of a carefully tailored magnetic field geometry so that the central region of the plasma volume is a large, uniformly distributed plasma volume which surrounds the axis of symmetry, as proposed in Ref. . Present art forms of the ECR source utilize single frequency microwave power supplies to maintain the plasma discharge; because the magnetic field distribution continually changes in this source design, the ECR zones are relegated to thin {open_quote}{open_quote}surfaces{close_quote}{close_quote} which surround the axis of symmetry. As a consequence of the small ECR zone in relation to the total plasma volume, the probability for stochastic heating of the electrons is quite low, thereby compromising the source performance. This handicap can be overcome by use of broadband, multiple frequency microwave power as evidenced by the enhanced performances of the CAPRICE and AECR ion sources when two frequency microwave power was utilized. We have used particle-in-cell codes to simulate the magnetic field distributions in these sources and to demonstrate the advantages of using multiple, discrete frequencies over single frequencies to power conventional ECR ion sources. (Abstract Truncated)« less

  7. Computer-Generated Microwave Holograms.

    ERIC Educational Resources Information Center

    Leming, Charles W.; Hastings, Orestes Patterson, III

    1980-01-01

    Described is the phasor method of superposition of waves. The intensity pattern from a system of microwave sources is calculated point by point on a plane corresponding to a film emulsion, and then printed and directly converted to a hologram for 3-cm microwaves. Calculations, construction, and viewing of holograms are included. (Author/DS)

  8. Microwave-assisted liquefaction of wood with polyhydric alcohols and its application in preparation of polyurethane (PU) foams

    Treesearch

    Hui Pan; Zhifeng Zheng; Chung Y. Hse

    2011-01-01

    Microwave radiation was used as the heating source in southern pine wood liquefaction with PEG/glycerin binary solvent. It was found that microwave heating was more efficient than conventional oil bath heating for wood liquefaction. The wood residue content of the H2SO4 catalyzed liquefied wood dropped to zero within 5 min with microwave heating. The resulting...

  9. Microwave-assisted liquefaction of wood with polyhydric alcohols and its application in preparation of polyurethane (PU) foams

    Treesearch

    Hui Pan; Zhifeng Zheng; Chung-Yun Hse

    2012-01-01

    Microwave radiation was used as the heating source in southern pine wood liquefaction with PEG/ glycerin binary solvent. It was found that microwave heating was more efficient than conventional oil bath heating for wood liquefaction. The wood residue content of the H2SO4 catalyzed liquefied wood dropped to zero within 5 min with microwave heating. The resulting...

  10. Superconducting ECR ion source: From 24-28 GHz SECRAL to 45 GHz fourth generation ECR

    NASA Astrophysics Data System (ADS)

    Zhao, H. W.; Sun, L. T.; Guo, J. W.; Zhang, W. H.; Lu, W.; Wu, W.; Wu, B. M.; Sabbi, G.; Juchno, M.; Hafalia, A.; Ravaioli, E.; Xie, D. Z.

    2018-05-01

    The development of superconducting ECR source with higher magnetic fields and higher microwave frequency is the most straight forward path to achieve higher beam intensity and higher charge state performance. SECRAL, a superconducting third generation ECR ion source, is designed for 24-28 GHz microwave frequency operation with an innovative magnet configuration of sextupole coils located outside the three solenoids. SECRAL at 24 GHz has already produced a number of record beam intensities, such as 40Ar12+ 1.4 emA, 129Xe26+ 1.1 emA, 129Xe30+ 0.36 emA, and 209Bi31+ 0.68 emA. SECRAL-II, an upgraded version of SECRAL, was built successfully in less than 3 years and has recently been commissioned at full power of a 28 GHz gyrotron and three-frequency heating (28 + 45 + 18 GHz). New record beam intensities for highly charged ion production have been achieved, such as 620 eμA 40Ar16+, 15 eμA 40Ar18+, 146 eμA 86Kr28+, 0.5 eμA 86Kr33+, 53 eμA 129Xe38+, and 17 eμA 129Xe42+. Recent beam test results at SECRAL and SECRAL II have demonstrated that the production of more intense highly charged heavy ion beams needs higher microwave power and higher frequency, as the scaling law predicted. A 45 GHz superconducting ECR ion source FECR (a first fourth generation ECR ion source) is being built at IMP. FECR will be the world's first Nb3Sn superconducting-magnet-based ECR ion source with 6.5 T axial mirror field, 3.5 T sextupole field on the plasma chamber inner wall, and 20 kW at a 45 GHz microwave coupling system. This paper will focus on SECRAL performance studies at 24-28 GHz and technical design of 45 GHz FECR, which demonstrates a technical path for highly charged ion beam production from 24 to 28 GHz SECRAL to 45 GHz FECR.

  11. First results from the new RIKEN superconducting electron cyclotron resonance ion source (invited).

    PubMed

    Nakagawa, T; Higurashi, Y; Ohnishi, J; Aihara, T; Tamura, M; Uchiyama, A; Okuno, H; Kusaka, K; Kidera, M; Ikezawa, E; Fujimaki, M; Sato, Y; Watanabe, Y; Komiyama, M; Kase, M; Goto, A; Kamigaito, O; Yano, Y

    2010-02-01

    The next generation heavy ion accelerator facility, such as the RIKEN radio isotope (RI) beam factory, requires an intense beam of high charged heavy ions. In the past decade, performance of the electron cyclotron resonance (ECR) ion sources has been dramatically improved with increasing the magnetic field and rf frequency to enhance the density and confinement time of plasma. Furthermore, the effects of the key parameters (magnetic field configuration, gas pressure, etc.) on the ECR plasma have been revealed. Such basic studies give us how to optimize the ion source structure. Based on these studies and modern superconducting (SC) technology, we successfully constructed the new 28 GHz SC-ECRIS, which has a flexible magnetic field configuration to enlarge the ECR zone and to optimize the field gradient at ECR point. Using it, we investigated the effect of ECR zone size, magnetic field configuration, and biased disk on the beam intensity of the highly charged heavy ions with 18 GHz microwaves. In this article, we present the structure of the ion source and first experimental results with 18 GHz microwave in detail.

  12. The Looming Potential Gap in Microwave Imagery - How did we get here and what can we do about it?

    NASA Astrophysics Data System (ADS)

    Wilson, W. S.; Gallaher, D. W.

    2017-12-01

    The Air Force's Special Sensor Microwave Imager (SSMI), the Japanese Advanced Microwave Scanning Radiometer (AMSR), and the Navy's Windsat have provided a steady and reliable stream of microwave imagery that has served the Earth science community very well. Derived products include sea ice cover, snow cover on land, all-weather sea surface temperature, columnar water vapor, rain rate, and cloud liquid water. Such products are used both in operational weather forecasting, as well as in establishing and maintaining climate data records. When these sources of microwave imagery each reach the end of their life, there is the potential for a gap in coverage to occur prior to the launch of new Air Force, European and Japanese sources. Additionally, the Chinese and Russians have been flying microwave imagers that might be useful in spanning this potential gap, but users in the U.S. have not assessed the reliability and quality of their data. This presentation will set the stage for the session and provide a context for the individual papers. Two papers will address the needs and associated requirements for microwave imagery, as well as how derived products are currently being used - both for maintaining climate records and for operational use. One or two will address the performance of existing systems that are currently contributing imagery. A half-dozen will address the projected performance of future satellite systems that represent potential sources of imagery. One will address the challenges associated with the use of microwave imagery from different satellites in the maintenance of climate data records. Finally, we will plan to have some remaining time available for a general discussion about how we might work together in the future to minimize prospects for such a potential gap in to recur in the future.

  13. The AMSR2 Satellite-based Microwave Snow Algorithm (SMSA) to estimate regional to global snow depth and snow water equivalent

    NASA Astrophysics Data System (ADS)

    Kelly, R. E. J.; Saberi, N.; Li, Q.

    2017-12-01

    With moderate to high spatial resolution (<1 km) regional to global snow water equivalent (SWE) observation approaches yet to be fully scoped and developed, the long-term satellite passive microwave record remains an important tool for cryosphere-climate diagnostics. A new satellite microwave remote sensing approach is described for estimating snow depth (SD) and snow water equivalent (SWE). The algorithm, called the Satellite-based Microwave Snow Algorithm (SMSA), uses Advanced Microwave Scanning Radiometer - 2 (AMSR2) observations aboard the Global Change Observation Mission - Water mission launched by the Japan Aerospace Exploration Agency in 2012. The approach is unique since it leverages observed brightness temperatures (Tb) with static ancillary data to parameterize a physically-based retrieval without requiring parameter constraints from in situ snow depth observations or historical snow depth climatology. After screening snow from non-snow surface targets (water bodies [including freeze/thaw state], rainfall, high altitude plateau regions [e.g. Tibetan plateau]), moderate and shallow snow depths are estimated by minimizing the difference between Dense Media Radiative Transfer model estimates (Tsang et al., 2000; Picard et al., 2011) and AMSR2 Tb observations to retrieve SWE and SD. Parameterization of the model combines a parsimonious snow grain size and density approach originally developed by Kelly et al. (2003). Evaluation of the SMSA performance is achieved using in situ snow depth data from a variety of standard and experiment data sources. Results presented from winter seasons 2012-13 to 2016-17 illustrate the improved performance of the new approach in comparison with the baseline AMSR2 algorithm estimates and approach the performance of the model assimilation-based approach of GlobSnow. Given the variation in estimation power of SWE by different land surface/climate models and selected satellite-derived passive microwave approaches, SMSA provides SWE estimates that are independent of real or near real-time in situ and model data.

  14. On the relation between the peak frequency and the corresponding rise time of solar microwave impulsive bursts and the height dependence of magnetic fields

    NASA Astrophysics Data System (ADS)

    Ren-Yang, Zhao; Magun, Andreas; Schanda, Erwin

    1990-12-01

    In the present paper we report the results of a correlation analysis for 57 microwave impulsive bursts observed at six frequencies in which we have obtained a regression line between the peak frequency and the corresponding rise time of microwave impulsive bursts: {ie361-01} (with a correlation coefficient of - 0.43). This can be explained in the frame of a thermal model. The magnetic field decrease with height has to be much slower than in a dipole field in order to explain the weak dependence of f p on t r . This decrease of magnetic field with height in burst sources is based on the relationship between f p and t r found by assuming a thermal flare model with a collisionless conduction front.

  15. Microwave SQUID Multiplexer Demonstration for Cosmic Microwave Background Imagers.

    PubMed

    Dober, B; Becker, D T; Bennett, D A; Bryan, S A; Duff, S M; Gard, J D; Hays-Wehle, J P; Hilton, G C; Hubmayr, J; Mates, J A B; Reintsema, C D; Vale, L R; Ullom, J N

    2017-12-01

    Key performance characteristics are demonstrated for the microwave SQUID multiplexer (µmux) coupled to transition edge sensor (TES) bolometers that have been optimized for cosmic microwave background (CMB) observations. In a 64-channel demonstration, we show that the µmux produces a white, input referred current noise level of [Formula: see text] at -77 dB microwave probe tone power, which is well below expected fundamental detector and photon noise sources for a ground-based CMB-optimized bolometer. Operated with negligible photon loading, we measure [Formula: see text] in the TES-coupled channels biased at 65% of the sensor normal resistance. This noise level is consistent with that predicted from bolometer thermal fluctuation (i.e. phonon) noise. Furthermore, the power spectral density is white over a range of frequencies down to ~ 100 mHz, which enables CMB mapping on large angular scales that constrain the physics of inflation. Additionally, we report cross-talk measurements that indicate a level below 0.3%, which is less than the level of cross-talk from multiplexed readout systems in deployed CMB imagers. These measurements demonstrate the µmux as a viable readout technique for future CMB imaging instruments.

  16. Bio-based rigid polyurethane foam from liquefied products of wood in the presence of polyhydric alcohols

    Treesearch

    Zhifeng Zheng; Hui Pan; Yuanbo Huang; Chung Y. Hse

    2011-01-01

    Rigid polyurethane foams were prepared from the liquefied wood polyols, which was obtained by the liquefaction of southern pine wood in the presence of polyhydric alcohols with sulfuric acid catalyst by using microwave-assistant as an energy source. The properties of liquefied biomass-based polyols and the rigid polyurethane foams were investigated. The results...

  17. a Low-Cost Chirped-Pulse Fourier Transform Microwave Spectrometer for Undergraduate Physical Chemistry Lab

    NASA Astrophysics Data System (ADS)

    Carroll, Brandon; Finneran, Ian; Blake, Geoffrey

    2014-06-01

    We present the design and construction of a simple and low-cost waveguide chirped pulse Fourier transform microwave (CP-FTMW) spectrometer suitable for gas-phase rotational spectroscopy experiments in undergraduate physical chemistry labs as well as graduate level research. The spectrometer operates with modest bandwidth, using phased locked loop (PLL) microwave sources and a direct digital synthesis (DDS) chirp source, making it an affordable for undergraduate labs. The performance of the instrument is benchmarked by acquiring the pure rotational spectrum of the J = 1 - 0 transition OCS and its isotopologues from 11-12.5 GHz.

  18. Magnetic Tunnel Junction-Based On-Chip Microwave Phase and Spectrum Analyzer

    NASA Technical Reports Server (NTRS)

    Fan, Xin; Chen, Yunpeng; Xie, Yunsong; Kolodzey, James; Wilson, Jeffrey D.; Simons, Rainee N.; Xiao, John Q.

    2014-01-01

    A magnetic tunnel junction (MTJ)-based microwave detector is proposed and investigated. When the MTJ is excited by microwave magnetic fields, the relative angle between the free layer and pinned layer alternates, giving rise to an average resistance change. By measuring the average resistance change, the MTJ can be utilized as a microwave power sensor. Due to the nature of ferromagnetic resonance, the frequency of an incident microwave is directly determined. In addition, by integrating a mixer circuit, the MTJ-based microwave detector can also determine the relative phase between two microwave signals. Thus, the MTJ-based microwave detector can be used as an on-chip microwave phase and spectrum analyzer.

  19. New method of a "point-like" neutron source creation based on sharp focusing of high-current deuteron beam onto deuterium-saturated target for neutron tomography

    NASA Astrophysics Data System (ADS)

    Golubev, S.; Skalyga, V.; Izotov, I.; Sidorov, A.

    2017-02-01

    A possibility of a compact powerful point-like neutron source creation is discussed. Neutron yield of the source based on deuterium-deuterium (D-D) reaction is estimated at the level of 1011 s-1 (1013 s-1 for deuterium-tritium reaction). The fusion takes place due to bombardment of deuterium- (or tritium) loaded target by high-current focused deuterium ion beam with energy of 100 keV. The ion beam is formed by means of high-current quasi-gasdynamic ion source of a new generation based on an electron cyclotron resonance (ECR) discharge in an open magnetic trap sustained by powerful microwave radiation. The prospects of proposed generator for neutron tomography are discussed. Suggested method is compared to the point-like neutron sources based on a spark produced by powerful femtosecond laser pulses.

  20. Microwave Assisted Helicon Plasmas

    NASA Astrophysics Data System (ADS)

    McKee, John; Caron, David; Jemiolo, Andrew; Scime, Earl

    2017-10-01

    The use of two (or more) rf sources at different frequencies is a common technique in the plasma processing industry to control ion energy characteristics separately from plasma generation. A similar approach is presented here with the focus on modifying the electron population in argon and helium plasmas. The plasma is generated by a helicon source at a frequency f0 = 13.56 MHz. Microwaves of frequency f1 = 2.45 GHz are then injected into the helicon source chamber perpendicular to the background magnetic field. The microwaves damp on the electrons via X-mode Electron Cyclotron Heating (ECH) at the upper hybrid resonance, providing additional energy input into the electrons. The effects of this secondary-source heating on electron density, temperature, and energy distribution function are examined and compared to helicon-only single source plasmas as well as numeric models suggesting that the heating is not evenly distributed. Optical Emission Spectroscopy (OES) is used to examine the impact of the energetic tail of the electron distribution on ion and neutral species via collisional excitation. Large enhancements of neutral spectral lines are observed in both Ar and He. While small enhancement of ion lines is seen in Ar, ion lines not normally present in He are observed during microwave injection. U.S. National Science Foundation Grant No. PHY-1360278.

  1. GaAs Monolithic Microwave Subsystem Technology Base

    DTIC Science & Technology

    1980-01-01

    To provide a captive source of reliable, high-quality GaAs substrates, a new crystal growth and substrate preparation facility which utilizes a high...Symp. GaAs and Related Compounds, Inst. Phys. Conf. Ser. 24, 6. 20. Wood, Woodcock and Harris (1978) GaAs and Related Compounds, Inst. Phys. Conf

  2. SMOS soil moisture validation with U.S. in situ newworks

    USDA-ARS?s Scientific Manuscript database

    Estimation of soil moisture at large scale has been performed using several satellite-based passive microwave sensors using a variety of retrieval methods. The most recent source of soil moisture is the European Space Agency Soil Moisture and Ocean Salinity (SMOS) mission. Since it is a new sensor u...

  3. Fast transmethylation of serum lipids using microwave irradiation.

    PubMed

    Lin, Yu Hong; Loewke, James D; Hyun, Duk Y; Leazer, Jay; Hibbeln, Joseph R

    2012-11-01

    Microwave irradiation as the energy source for one-step direct transesterification of fatty acids in human serum lipids was examined in a solvent system of methanol: hexane: acetyl chloride based on a Lepage & Roy assay. Innovative and explosion proof single-mode or multimode microwave accelerated reaction system was employed. Recoveries were calculated as the percentage of fatty acid concentrations measured by microwave assay to those by the reference method of the Lepage & Roy assay that utilized conductive heating at 100 °C for 60 min. Under conditions of 100 °C for 1 min in Single-mode (S4-100 × 1), or 125 °C for 5 min in Multimode (M5-125 × 5), the recoveries were 100-103 % for the total fatty acids and 96-106 % for each categorized fatty acid, including saturates, monounsaturates, n-6 PUFA, and n-3 PUFA. For individual PUFA, the mean recoveries were 102-105 % for 18:2n-6 and 18:3n-3; 99, 109, and 95 % for 20:4n-6, 20:5n-3, and 22:6n-3, respectively. Thus, fatty acid concentrations determined by microwave fatty acid assay were accurate to those results by the reference method, when the microwave conditions were optimal. In summary, the microwave irradiation could replace conductive heating in one-step direct transesterification, and reduce the duration from 60 min to 5 min or less. This methodology may be applied in both the absolute and relative quantification of serum total fatty acids.

  4. Fast Transmethylation of Serum Lipids using Microwave Irradiation

    PubMed Central

    Lin, Yu Hong; Loewke, James D.; Hyun, Duk Y.; Leazer, Jay; Hibbeln, Joseph R.

    2012-01-01

    Microwave irradiation as the energy source for one–step direct transesterification of fatty acids in human serum lipids was examined in solvent system of methanol: hexane: acetyl chloride based on Lepage & Roy assay. Innovative and explosion proof single–mode or multimode microwave accelerate reaction system was employed. Recoveries were calculated as the percentage of fatty acid concentrations measured by microwave assay to those by reference method Lepage & Roy assay that utilized conductive heating at 100 °C for 60 min. At conditions of 100 °C for 1 min in Single–mode (S4–100×1), or 125 °C for 5 min in Multimode (M5–125×5), the recoveries were 100–103% for the total fatty acids and 96–106% for each categorized fatty acid, including saturates, monounsaturates, n-6 PUFA, and n-3 PUFA. For individual PUFA, the mean recoveries were 102–105% for 18:2n-6 and 18:3n-3; 99, 109, and 95% for 20:4n-6, 20:5n-3, and 22:6n-3, respectively. Thus, fatty acid concentrations determined by microwave fatty acid assay were accurate to those results by the reference method, when the microwave conditions were optimal. In summary, the microwave irradiation could replace conductive heating in one–step direct transesterification, and reduce duration from 60 min to 5 min or less. This methodology may be applied in both the absolute and relative quantification of serum total fatty acids. PMID:23015312

  5. Ultra-Rapid Crystallization of L-alanine Using Monomode Microwaves, Indium Tin Oxide and Metal-Assisted and Microwave-Accelerated Evaporative Crystallization.

    PubMed

    Lansiquot, Carisse; Boone-Kukoyi, Zainab; Shortt, Raquel; Thompson, Nishone; Ajifa, Hillary; Kioko, Bridgit; Constance, Edward Ned; Clement, Travis; Ozturk, Birol; Aslan, Kadir

    2017-01-01

    The use of indium tin oxide (ITO) and focused monomode microwave heating for the ultra-rapid crystallization of L-alanine (a model amino acid) is reported. Commercially available ITO dots (< 5 mm) attached to blank poly(methyl)methacrylate (PMMA, 5 cm in diameter with 21-well silicon isolators: referred to as the iCrystal plates) were found to withstand prolonged microwave heating during crystallization experiments. Crystallization of L-alanine was performed at room temperature (a control experiment), with the use of two microwave sources: a 2.45 GHz conventional microwave (900 W, power level 1, a control experiment) and 8 GHz (20 W) solid state, monomode microwave source with an applicator tip that focuses the microwave field to a 5-mm cavity. Initial appearance of L-alanine crystals and on iCrystal plates with ITO dots took 47 ± 2.9 min, 12 ± 7.6 min and 1.5 ± 0.5 min at room temperature, using a conventional microwave and focused monomode microwave heating, respectively. Complete evaporation of the solvent using the focused microwaves was achieved in 3.2 ± 0.5 min, which is ~52-fold and ~172-fold faster than that observed at room temperature and using conventional microwave heating, respectively. The size and number of L-alanine crystals was dependent on the type of the 21-well iCrystal plates and the microwave heating method: 33 crystals of 585 ± 137 μm in size at room temperature > 37 crystals of 542 ± 100 μm in size with conventional microwave heating > 331 crystals of 311 ± 190 μm in size with focused monomode microwave. FTIR, optical microscopy and powder X-ray diffraction analysis showed that the chemical composition and crystallinity of the L-alanine crystals did not change when exposed to microwave heating and ITO surfaces. In addition, theoretical simulations for the binding of L-alanine molecules to ITO and other metals showed the predicted nature of hydrogen bonds formed between L-alanine and these surfaces.

  6. Ultra-Rapid Crystallization of L-alanine Using Monomode Microwaves, Indium Tin Oxide and Metal-Assisted and Microwave-Accelerated Evaporative Crystallization

    PubMed Central

    Lansiquot, Carisse; Boone-Kukoyi, Zainab; Shortt, Raquel; Thompson, Nishone; Ajifa, Hillary; Kioko, Bridgit; Constance, Edward Ned; Clement, Travis; Ozturk, Birol; Aslan, Kadir

    2018-01-01

    The use of indium tin oxide (ITO) and focused monomode microwave heating for the ultra-rapid crystallization of L-alanine (a model amino acid) is reported. Commercially available ITO dots (< 5 mm) attached to blank poly(methyl)methacrylate (PMMA, 5 cm in diameter with 21-well silicon isolators: referred to as the iCrystal plates) were found to withstand prolonged microwave heating during crystallization experiments. Crystallization of L-alanine was performed at room temperature (a control experiment), with the use of two microwave sources: a 2.45 GHz conventional microwave (900 W, power level 1, a control experiment) and 8 GHz (20 W) solid state, monomode microwave source with an applicator tip that focuses the microwave field to a 5-mm cavity. Initial appearance of L-alanine crystals and on iCrystal plates with ITO dots took 47 ± 2.9 min, 12 ± 7.6 min and 1.5 ± 0.5 min at room temperature, using a conventional microwave and focused monomode microwave heating, respectively. Complete evaporation of the solvent using the focused microwaves was achieved in 3.2 ± 0.5 min, which is ~52-fold and ~172-fold faster than that observed at room temperature and using conventional microwave heating, respectively. The size and number of L-alanine crystals was dependent on the type of the 21-well iCrystal plates and the microwave heating method: 33 crystals of 585 ± 137 μm in size at room temperature > 37 crystals of 542 ± 100 μm in size with conventional microwave heating > 331 crystals of 311 ± 190 μm in size with focused monomode microwave. FTIR, optical microscopy and powder X-ray diffraction analysis showed that the chemical composition and crystallinity of the L-alanine crystals did not change when exposed to microwave heating and ITO surfaces. In addition, theoretical simulations for the binding of L-alanine molecules to ITO and other metals showed the predicted nature of hydrogen bonds formed between L-alanine and these surfaces. PMID:29657884

  7. A Brief Review on Metamaterial-Based Vacuum Electronics for Terahertz and Microwave Science and Technology

    NASA Astrophysics Data System (ADS)

    Matsui, Tatsunosuke

    2017-09-01

    Metamaterials, which enable us to realize novel physical effects that cannot be achieved using natural materials, have been extensively studied in recent years and significant progress has been made, especially in the field of optics. This game-changing concept has also initiated a rich variety of research activity in vacuum electronics. Here we review the recent development of metamaterial-based vacuum electronics for terahertz (THz) and microwave science and technology. The reversed Cherenkov radiation (RCR) in double-negative (DNG) metamaterials predicted by Veselago back in the 1960s has been experimentally verified in the microwave frequency range by utilizing specially designed DNG metamaterials. The interaction of an electron beam (e-beam) with DNG metamaterials may lead to the realization of novel applications such as microwave and THz radiation sources, accelerators, and even the visualization of invisibility cloaks. Smith-Purcell radiation (SPR) has recently received renewed interest owing to the development of metamaterials and the concept of spoof surface plasmon polaritons, as discussed in this review, and recent results on e-beam-induced directional and wide-band THz radiation with sharp multiple peaks from a graded grating, as well as directional and monochromatic special SPR and their possible application to THz orotron devices, are also reviewed.

  8. An RFI Detection Algorithm for Microwave Radiometers Using Sparse Component Analysis

    NASA Technical Reports Server (NTRS)

    Mohammed-Tano, Priscilla N.; Korde-Patel, Asmita; Gholian, Armen; Piepmeier, Jeffrey R.; Schoenwald, Adam; Bradley, Damon

    2017-01-01

    Radio Frequency Interference (RFI) is a threat to passive microwave measurements and if undetected, can corrupt science retrievals. The sparse component analysis (SCA) for blind source separation has been investigated to detect RFI in microwave radiometer data. Various techniques using SCA have been simulated to determine detection performance with continuous wave (CW) RFI.

  9. Ultracompact/ultralow power electron cyclotron resonance ion source for multipurpose applications.

    PubMed

    Sortais, P; Lamy, T; Médard, J; Angot, J; Latrasse, L; Thuillier, T

    2010-02-01

    In order to drastically reduce the power consumption of a microwave ion source, we have studied some specific discharge cavity geometries in order to reduce the operating point below 1 W of microwave power (at 2.45 GHz). We show that it is possible to drive an electron cyclotron resonance ion source with a transmitter technology similar to those used for cellular phones. By the reduction in the size and of the required microwave power, we have developed a new type of ultralow cost ion sources. This microwave discharge system (called COMIC, for COmpact MIcrowave and Coaxial) can be used as a source of light, plasma or ions. We will show geometries of conductive cavities where it is possible, in a 20 mm diameter chamber, to reduce the ignition of the plasma below 100 mW and define typical operating points around 5 W. Inside a simple vacuum chamber it is easy to place the source and its extraction system anywhere and fully under vacuum. In that case, current densities from 0.1 to 10 mA/cm(2) (Ar, extraction 4 mm, 1 mAe, 20 kV) have been observed. Preliminary measurements and calculations show the possibility, with a two electrodes system, to extract beams within a low emittance. The first application for these ion sources is the ion injection for charge breeding, surface analyzing system and surface treatment. For this purpose, a very small extraction hole is used (typically 3/10 mm for a 3 microA extracted current with 2 W of HF power). Mass spectrum and emittance measurements will be presented. In these conditions, values down to 1 pi mm mrad at 15 kV (1sigma) are observed, thus very close to the ones currently observed for a surface ionization source. A major interest of this approach is the possibility to connect together several COMIC devices. We will introduce some new on-going developments such as sources for high voltage implantation platforms, fully quartz radioactive ion source at ISOLDE or large plasma generators for plasma immersion, broad or ribbon beams generation.

  10. Recent Improvements in Retrieving Near-Surface Air Temperature and Humidity Using Microwave Remote Sensing

    NASA Technical Reports Server (NTRS)

    Roberts, J. Brent

    2010-01-01

    Detailed studies of the energy and water cycles require accurate estimation of the turbulent fluxes of moisture and heat across the atmosphere-ocean interface at regional to basin scale. Providing estimates of these latent and sensible heat fluxes over the global ocean necessitates the use of satellite or reanalysis-based estimates of near surface variables. Recent studies have shown that errors in the surface (10 meter)estimates of humidity and temperature are currently the largest sources of uncertainty in the production of turbulent fluxes from satellite observations. Therefore, emphasis has been placed on reducing the systematic errors in the retrieval of these parameters from microwave radiometers. This study discusses recent improvements in the retrieval of air temperature and humidity through improvements in the choice of algorithms (linear vs. nonlinear) and the choice of microwave sensors. Particular focus is placed on improvements using a neural network approach with a single sensor (Special Sensor Microwave/Imager) and the use of combined sensors from the NASA AQUA satellite platform. The latter algorithm utilizes the unique sampling available on AQUA from the Advanced Microwave Scanning Radiometer (AMSR-E) and the Advanced Microwave Sounding Unit (AMSU-A). Current estimates of uncertainty in the near-surface humidity and temperature from single and multi-sensor approaches are discussed and used to estimate errors in the turbulent fluxes.

  11. Monitoring of "all-weather" evapotranspiration using optical and passive microwave remote sensing imagery over the River Source Region in Southwest China

    NASA Astrophysics Data System (ADS)

    Ma, Y.; Liu, S.

    2017-12-01

    Accurate estimation of surface evapotranspiration (ET) with high quality is one of the biggest obstacles for routine applications of remote sensing in eco-hydrological studies and water resource management at basin scale. However, many aspects urgently need to deeply research, such as the applicability of the ET models, the parameterization schemes optimization at the regional scale, the temporal upscaling, the selecting and developing of the spatiotemporal data fusion method and ground-based validation over heterogeneous land surfaces. This project is based on the theoretically robust surface energy balance system (SEBS) model, which the model mechanism need further investigation, including the applicability and the influencing factors, such as local environment, and heterogeneity of the landscape, for improving estimation accuracy. Due to technical and budget limitations, so far, optical remote sensing data is missing due to frequent cloud contamination and other poor atmospheric conditions in Southwest China. Here, a multi-source remote sensing data fusion method (ESTARFM: Enhanced Spatial and Temporal Adaptive Reflectance Fusion Model) method will be proposed through blending multi-source remote sensing data acquired by optical, and passive microwave remote sensors on board polar satellite platforms. The accurate "all-weather" ET estimation will be carried out for daily ET of the River Source Region in Southwest China, and then the remotely sensed ET results are overlapped with the footprint-weighted images of EC (eddy correlation) for ground-based validation.

  12. Microwave heating of aqueous samples on a micro-optical-electro-mechanical system

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Beer, Neil Reginald

    2016-04-12

    Apparatus for heating a sample includes a microchip; a microchannel flow channel in the microchip, the microchannel flow channel containing the sample; a microwave source that directs microwaves onto the sample for heating the sample; a wall section of the microchannel flow channel that receives the microwaves and enables the microwaves to pass through wall section of the microchannel flow channel, the wall section the microchannel flow channel being made of a material that is not appreciably heated by the microwaves; a carrier fluid within the microchannel flow channel for moving the sample in the microchannel flow channel, the carriermore » fluid being made of a material that is not appreciably heated by the microwaves; wherein the microwaves pass through wall section of the microchannel flow channel and heat the sample.« less

  13. Microwave heating of aqueous samples on a micro-optical-electro-mechanical system

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Beer, Neil Reginald

    Apparatus for heating a sample includes a microchip; a microchannel flow channel in the microchip, the microchannel flow channel containing the sample; a microwave source that directs microwaves onto the sample for heating the sample; a wall section of the microchannel flow channel that receives the microwaves and enables the microwaves to pass through wall section of the microchannel flow channel, the wall section the microchannel flow channel being made of a material that is not appreciably heated by the microwaves; a carrier fluid within the microchannel flow channel for moving the sample in the microchannel flow channel, the carriermore » fluid being made of a material that is not appreciably heated by the microwaves; wherein the microwaves pass through wall section of the microchannel flow channel and heat the sample.« less

  14. Comparison between off-resonance and electron Bernstein waves heating regime in a microwave discharge ion source

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Castro, G.; Di Giugno, R.; Miracoli, R.

    2012-02-15

    A microwave discharge ion source (MDIS) operating at the Laboratori Nazionali del Sud of INFN, Catania has been used to compare the traditional electron cyclotron resonance (ECR) heating with an innovative mechanisms of plasma ignition based on the electrostatic Bernstein waves (EBW). EBW are obtained via the inner plasma electromagnetic-to-electrostatic wave conversion and they are absorbed by the plasma at cyclotron resonance harmonics. The heating of plasma by means of EBW at particular frequencies enabled us to reach densities much larger than the cutoff ones. Evidences of EBW generation and absorption together with X-ray emissions due to high energy electronsmore » will be shown. A characterization of the discharge heating process in MDISs as a generalization of the ECR heating mechanism by means of ray tracing will be shown in order to highlight the fundamental physical differences between ECR and EBW heating.« less

  15. Dual comb generation from a mode-locked fiber laser with orthogonally polarized interlaced pulses.

    PubMed

    Akosman, Ahmet E; Sander, Michelle Y

    2017-08-07

    Ultra-high precision dual-comb spectroscopy traditionally requires two mode-locked, fully stabilized lasers with complex feedback electronics. We present a novel mode-locked operation regime in a thulium-holmium co-doped fiber laser, a frequency-halved state with orthogonally polarized interlaced pulses, for dual comb generation from a single source. In a linear fiber laser cavity, an ultrafast pulse train composed of co-generated, equal intensity and orthogonally polarized consecutive pulses at half of the fundamental repetition rate is demonstrated based on vector solitons. Upon optical interference of the orthogonally polarized pulse trains, two stable microwave RF beat combs are formed, effectively down-converting the optical properties into the microwave regime. These co-generated, dual polarization interlaced pulse trains, from one all-fiber laser configuration with common mode suppression, thus provide an attractive compact source for dual-comb spectroscopy, optical metrology and polarization entanglement measurements.

  16. Measuring Radiofrequency and Microwave Radiation from Varying Signal Strengths

    NASA Technical Reports Server (NTRS)

    Davis, Bette; Gaul, W. C.

    2007-01-01

    This viewgraph presentation discusses the process of measuring radiofrequency and microwave radiation from various signal strengths. The topics include: 1) Limits and Guidelines; 2) Typical Variable Standard (IEEE) Frequency Dependent; 3) FCC Standard 47 CFR 1.1310; 4) Compliance Follows Unity Rule; 5) Multiple Sources Contribute; 6) Types of RF Signals; 7) Interfering Radiations; 8) Different Frequencies Different Powers; 9) Power Summing - Peak Power; 10) Contribution from Various Single Sources; 11) Total Power from Multiple Sources; 12) Are You Out of Compliance?; and 13) In Compliance.

  17. Space propulsion and power beaming using millimeter systems

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Benford, J.; Dickinson, R.

    1995-11-01

    Past schemes for using beamed microwave power for space propulsion and providing power to space platforms have used microwaves below 10 GHz. Recent expansions of the high power microwave technology domain offer fundamental reassessment of the following missions: (1) location of orbital debris, (2) supplying power to loitering high-altitude airplanes, (3) satellite battery recharging, (4) imaging of asteroids, (5) orbit raising and transfer, (6) interplanetary probe launch to the outer planets and comets, and ultimately (7) launch into Earth orbit. This group of applications may be done by a ground-based system. The system would start small, being built for themore » near Earth missions, and be enlarged incrementally as the technology matures and confidence develops. Of particular interest are sources in the millimeter range where there are low loss atmospheric windows and MJ pulses are available in quasi-CW operation. A development scenario for these missions using millimeter wave technology is described.« less

  18. Computer modeling of electromagnetic and thermal effects in microwave soft tissue ablation (Invited Paper)

    NASA Astrophysics Data System (ADS)

    Cronin, Nigel J.; Clegg, Peter J.

    2005-04-01

    Microwave Endometrial Ablation (MEA) is a technique that can be used for the treatment of abnormal uterine bleeding. The procedure involves sweeping a specially designed microwave applicator throughout the uterine cavity to achieve an ideally uniform depth of tissue necrosis of between 5 and 6mm. We have performed a computer analysis of the MEA procedure in which finite element analysis was used to determine the SAR pattern around the applicator. This was followed by a Green Function based solution of the Bioheat equation to determine the resulting induced temperatures. The method developed is applicable to situations involving a moving microwave source, as used in MEA. The validity of the simulation was verified by measurements in a tissue phantom material using a purpose built applicator and a calibrated pulling device. From the calculated temperatures the depth of necrosis was assessed through integration of the resulting rates of cell death estimated using the Arrhenius equation. The Arrhenius parameters used were derived from published data on BHK cells. Good agreement was seen between the calculated depths of cell necrosis and those found in human in-vivo testing.

  19. Chemical vapor infiltration using microwave energy

    DOEpatents

    Devlin, David J.; Currier, Robert P.; Laia, Jr., Joseph R.; Barbero, Robert S.

    1993-01-01

    A method for producing reinforced ceramic composite articles by means of chemical vapor infiltration and deposition in which an inverted temperature gradient is utilized. Microwave energy is the source of heat for the process.

  20. The advanced thermionic converter with microwave power as an auxiliary ionization source

    NASA Technical Reports Server (NTRS)

    Manikopoulos, C. N.; Hatziprocopiou, M.; Chiu, H. S.; Shaw, D. T.

    1978-01-01

    In the search for auxiliary sources of ionization for the advanced thermionic converter plasma, as required for terrestial applications, the use of externally applied microwave power is considered. The present work is part of the advanced model thermionic converter development research currently performed at the laboratory for Power and Environmental Studies at SUNY Buffalo. Microwave power in the frequency range 1-3 GHz is used to externally pump a thermionic converter and the results are compared to the theoretical model proposed by Lam (1976) in describing the thermionic converter plasma. The electron temperature of the plasma is found to be raised considerably by effective microwave heating which results in the disappearance of the double sheath ordinarily erected in front of the emitter. The experimental data agree satisfactorily with theory in the low current region.

  1. Microwave-assisted preparation of carbon nanofiber-functionalized graphite felts as electrodes for polymer-based redox-flow batteries

    NASA Astrophysics Data System (ADS)

    Schwenke, A. M.; Janoschka, T.; Stolze, C.; Martin, N.; Hoeppener, S.; Schubert, U. S.

    2016-12-01

    A simple and fast microwave-assisted protocol to functionalize commercially available graphite felts (GFs) with carbon nanofibers (CNFs) for the application as electrode materials in redox-flow batteries (RFB) is demonstrated. As catalyst for the CNF synthesis nickel acetate is applied and ethanol serves as the carbon source. By the in-situ growth of CNFs, the active surface of the electrodes is increased by a factor of 50, which is determined by the electrochemical double layer capacities of the obtained materials. Furthermore, the morphology of the CNF-coating is investigated by scanning electron microscopy. Subsequently, the functionalized electrodes are applied in a polymer-based redox-flow battery (pRFB) using a TEMPO- and a viologen polymer as active materials. Due to the increased surface area as compared to an untreated graphite felt electrode, the current rating is improved by about 45% at 80 mA cm-2 and, furthermore, a decrease in overpotentials is observed. Thus, using this microwave-assisted synthesis approach, CNF-functionalized composite electrodes are prepared with a very simple protocol suitable for real life applications and an improvement of the overall performance of the polymer-based redox-flow battery is demonstrated.

  2. Frequency-tuned microwave photon counter based on a superconductive quantum interferometer

    NASA Astrophysics Data System (ADS)

    Shnyrkov, V. I.; Yangcao, Wu; Soroka, A. A.; Turutanov, O. G.; Lyakhno, V. Yu.

    2018-03-01

    Various types of single-photon counters operating in infrared, ultraviolet, and optical wavelength ranges are successfully used to study electromagnetic fields, analyze radiation sources, and solve problems in quantum informatics. However, their operating principles become ineffective at millimeter band, S-band, and ultra-high frequency bands of wavelengths due to the decrease in quantum energy by 4-5 orders of magnitude. Josephson circuits with discrete Hamiltonians and qubits are a good foundation for the construction of single-photon counters at these frequencies. This paper presents a frequency-tuned microwave photon counter based on a single-junction superconducting quantum interferometer and flux qutrit. The control pulse converts the interferometer into a two-level system for resonance absorption of photons. Decay of the photon-induced excited state changes the magnetic flux in the interferometer, which is measured by a SQUID magnetometer. Schemes for recording the magnetic flux using a DC SQUID or ideal parametric detector, based on a qutrit with high-frequency excitation, are discussed. It is shown that the counter consisting of an interferometer with a Josephson junction and a parametric detector demonstrates high performance and is capable of detecting single photons in a microwave band.

  3. Field emission from bias-grown diamond thin films in a microwave plasma

    DOEpatents

    Gruen, Dieter M.; Krauss, Alan R.; Ding, Ming Q.; Auciello, Orlando

    2002-01-01

    A method of producing diamond or diamond like films in which a negative bias is established on a substrate with an electrically conductive surface in a microwave plasma chemical vapor deposition system. The atmosphere that is subjected to microwave energy includes a source of carbon, nitrogen and hydrogen. The negative bias is maintained on the substrate through both the nucleation and growth phase of the film until the film is continuous. Biases between -100V and -200 are preferred. Carbon sources may be one or more of CH.sub.4, C.sub.2 H.sub.2 other hydrocarbons and fullerenes.

  4. Magnetic Tunnel Junction-Based On-Chip Microwave Phase and Spectrum Analyzer

    NASA Technical Reports Server (NTRS)

    Fan, Xin; Chen, Yunpeng; Xie, Yunsong; Kolodzey, James; Wilson, Jeffrey D.; Simons, Rainee N.; Xiao, John Q.

    2014-01-01

    A magnetic tunnel junction (MTJ)-based microwave detector is proposed and investigated. When the MTJ is excited by microwave magnetic fields, the relative angle between the free layer and pinned layer alternates, giving rise to an average resistance change. By measuring the average resistance change, the MTJ can be utilized as a microwave power sensor. Due to the nature of ferromagnetic resonance, the frequency of an incident microwave is directly determined. In addition, by integrating a mixer circuit, the MTJ-based microwave detector can also determine the relative phase between two microwave signals. Thus, the MTJbased microwave detector can be used as an on-chip microwave phase and spectrum analyzer.

  5. Unprecedented long-term frequency stability with a microwave resonator oscillator.

    PubMed

    Grop, Serge; Schafer, Wolfgang; Bourgeois, Pierre-Yves; Kersale, Yann; Oxborrow, Mark; Rubiola, Enrico; Giordano, Vincent

    2011-08-01

    This article reports on the long-term frequency stability characterization of a new type of cryogenic sapphire oscillator using an autonomous pulse-tube cryocooler as its cold source. This new design enables a relative frequency stability of better than 4.5 x 10(-15) over one day of integration. To the best of our knowledge, this represents the best long-term frequency stability ever obtained with a signal source based on a macroscopic resonator.

  6. Optically coupled methods for microwave impedance microscopy

    NASA Astrophysics Data System (ADS)

    Johnston, Scott R.; Ma, Eric Yue; Shen, Zhi-Xun

    2018-04-01

    Scanning Microwave Impedance Microscopy (MIM) measurement of photoconductivity with 50 nm resolution is demonstrated using a modulated optical source. The use of a modulated source allows for the measurement of photoconductivity in a single scan without a reference region on the sample, as well as removing most topographical artifacts and enhancing signal to noise as compared with unmodulated measurement. A broadband light source with a tunable monochrometer is then used to measure energy resolved photoconductivity with the same methodology. Finally, a pulsed optical source is used to measure local photo-carrier lifetimes via MIM, using the same 50 nm resolution tip.

  7. Terrain clutter simulation using physics-based scattering model and digital terrain profile data

    NASA Astrophysics Data System (ADS)

    Park, James; Johnson, Joel T.; Ding, Kung-Hau; Kim, Kristopher; Tenbarge, Joseph

    2015-05-01

    Localization of a wireless capsule endoscope finds many clinical applications from diagnostics to therapy. There are potentially two approaches of the electromagnetic waves based localization: a) signal propagation model based localization using a priori information about the persons dielectric channels, and b) recently developed microwave imaging based localization without using any a priori information about the persons dielectric channels. In this paper, we study the second approach in terms of a variety of frequencies and signal-to-noise ratios for localization accuracy. To this end, we select a 2-D anatomically realistic numerical phantom for microwave imaging at different frequencies. The selected frequencies are 13:56 MHz, 431:5 MHz, 920 MHz, and 2380 MHz that are typically considered for medical applications. Microwave imaging of a phantom will provide us with an electromagnetic model with electrical properties (relative permittivity and conductivity) of the internal parts of the body and can be useful as a foundation for localization of an in-body RF source. Low frequency imaging at 13:56 MHz provides a low resolution image with high contrast in the dielectric properties. However, at high frequencies, the imaging algorithm is able to image only the outer boundaries of the tissues due to low penetration depth as higher frequency means higher attenuation. Furthermore, recently developed localization method based on microwave imaging is used for estimating the localization accuracy at different frequencies and signal-to-noise ratios. Statistical evaluation of the localization error is performed using the cumulative distribution function (CDF). Based on our results, we conclude that the localization accuracy is minimally affected by the frequency or the noise. However, the choice of the frequency will become critical if the purpose of the method is to image the internal parts of the body for tumor and/or cancer detection.

  8. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Seidfaraji, Hamide, E-mail: hsfaraji@unm.edu; Fuks, Mikhail I.; Christodoulou, Christos

    Most dangerous explosive materials, both toxic and radioactive, contain nitrogen salts with resonant absorption lines in the frequency range 0.3-10 THz. Therefore, there has been growing interest in remotely detecting such materials by observing the spectrum of reflected signals when the suspicious material is interrogated by THz radiation. Practical portable THz sources available today generate only 20–40 mW output power. This power level is too low to interrogate suspicious material from a safe distance, especially if the material is concealed. Hence, there is a need for sources that can provide greater power in the THz spectrum. Generating and extracting highmore » output power from THz sources is complicated and inefficient. The efficiency of vacuum electronic microwave sources is very low when scaled to the THz range and THz sources based on scaling down semiconductor laser sources have low efficiency as well, resulting in the well known “THz gap.” The reason for such low efficiencies for both source types is material losses in the THz band. In this article an efficient power combiner is described that is based on scaling to higher frequencies a microwave combiner that increases the output power in the THz range of interest in simulation studies. The proposed power combiner not only combines the THz power output from several sources, but can also form a Gaussian wavebeam output. A minimum conversion efficiency of 89% with cophased inputs in a lossy copper power combiner and maximum efficiency of 100% in a Perfect Electric Conductor (PEC)-made power combiner were achieved in simulations. Also, it is shown that the TE{sub 01} output mode is a reasonable option for THz applications due to the fact that conductive loss decreases for this mode as frequency increases.« less

  9. 78 FR 7939 - Energy Conservation Program: Test Procedures for Microwave Ovens (Active Mode)

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-02-04

    ...The U.S. Department of Energy (DOE) proposes to revise its test procedures for microwave ovens established under the Energy Policy and Conservation Act. The proposed amendments would add provisions for measuring the active mode energy use for microwave ovens, including both microwave-only ovens and convection microwave ovens. Specifically, DOE is proposing provisions for measuring the energy use of the microwave-only cooking mode for both microwave-only ovens and convection microwave ovens based on the testing methods in the latest draft version of the International Electrotechnical Commission Standard 60705, ``Household microwave ovens--Methods for measuring performance.'' DOE is proposing provisions for measuring the energy use of the convection-only cooking mode for convection microwave ovens based on the DOE test procedure for conventional ovens in our regulations. DOE is also proposing to calculate the energy use of the convection-microwave cooking mode for convection microwave ovens by apportioning the microwave-only mode and convection-only mode energy consumption measurements based on typical consumer use.

  10. A Blackbody Microwave Source for CMB Polarimeter Development

    NASA Astrophysics Data System (ADS)

    Lindman, Alec

    2014-03-01

    I present an evolved design for a thermally isolated blackbody source operating at 90 GHz and 120 GHz, frequencies of interest to Cosmic Microwave Background measurements. The NASA GSFC Experimental Cosmology lab is developing transition edge sensor bolometers for the CLASS and PIPER missions to measure CMB polarization; the source described here is for use in an existing 150 mK test package to quantify the detectors' properties. The design is optimized to minimize heat loading into the ADR and cryocoolers by employing a Kevlar kinematic suspension and additional thermal breaks. The blackbody light is coupled to a detector by means of an electroformed waveguide, which is mated to the source by an ultraprecise ring-centered flange design; this precision is critical to maintain the vacuum gap between the heated source and the cold waveguide, which is an order of magnitude smaller than the allowable misalignment of the standard military-spec microwave flange design. The source will provide at least 50% better thermal isolation than the existing 40 GHz source, as well as a smaller thermal time constant to enable faster measurement cycles. Special thanks to Dr. David Chuss at GSFC, and the Society of Physics Students.

  11. Effects of cooking methods on phenolic compounds in xoconostle (Opuntia joconostle).

    PubMed

    Cortez-García, Rosa María; Ortiz-Moreno, Alicia; Zepeda-Vallejo, Luis Gerardo; Necoechea-Mondragón, Hugo

    2015-03-01

    Xoconostle, the acidic cactus pear fruit of Opuntia joconostle of the Cactaceae family, is the source of several phytochemicals, such as betalain pigments and numerous phenolic compounds. The aim of the present study was to analyze the effect of four cooking procedures (i.e., boiling, grilling, steaming and microwaving) on the total phenolic content (TPC) and antioxidant activity (measured by ABTS, DPPH, reducing power, and BCBA) of xoconostle. In addition, HPLC-DAD analyses were performed to identify and quantify individual phenolic compounds. After microwaving and steaming xoconostle, the TPC remained the same that in fresh samples, whereas both grilling and boiling produced a significant, 20% reduction (p ≤ 0.05). Total flavonoids remained unchanged in boiled and grilled xoconostle, but steaming and microwaving increased the flavonoid content by 13 and 20%, respectively. Steaming and microwaving did not produce significant changes in the antioxidant activity of xoconostle, whereas boiling and grilling result in significant decreases. The phenolic acids identified in xoconostle fruits were gallic, vanillic, 4-hydroxybenzoic, syringic, ferulic and protocatechuic acids; the flavonoids identified were epicatechin, catechin, rutin, quercitrin, quercetin and kaempferol. Based on the results, steaming and microwaving are the most suitable methods for retaining the highest level of phenolic compounds and flavonoids in xoconostle.

  12. Microwave SQUID multiplexer demonstration for cosmic microwave background imagers

    NASA Astrophysics Data System (ADS)

    Dober, B.; Becker, D. T.; Bennett, D. A.; Bryan, S. A.; Duff, S. M.; Gard, J. D.; Hays-Wehle, J. P.; Hilton, G. C.; Hubmayr, J.; Mates, J. A. B.; Reintsema, C. D.; Vale, L. R.; Ullom, J. N.

    2017-12-01

    Key performance characteristics are demonstrated for the microwave superconducting quantum interference device (SQUID) multiplexer (μmux) coupled to transition edge sensor (TES) bolometers that have been optimized for cosmic microwave background (CMB) observations. In a 64-channel demonstration, we show that the μmux produces a white, input referred current noise level of 29 pA/ √{H z } at a microwave probe tone power of -77 dB, which is well below the expected fundamental detector and photon noise sources for a ground-based CMB-optimized bolometer. Operated with negligible photon loading, we measure 98 pA/ √{H z } in the TES-coupled channels biased at 65% of the sensor normal resistance. This noise level is consistent with that predicted from bolometer thermal fluctuation (i.e., phonon) noise. Furthermore, the power spectral density is white over a range of frequencies down to ˜100 mHz, which enables CMB mapping on large angular scales that constrain the physics of inflation. Additionally, we report cross-talk measurements that indicate a level below 0.3%, which is less than the level of cross-talk from multiplexed readout systems in deployed CMB imagers. These measurements demonstrate the μmux as a viable readout technique for future CMB imaging instruments.

  13. Preliminary experimental investigation of a complex dual-band high power microwave source

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhang, Xiaoping, E-mail: zhangxiaoping@nudt.edu.cn; Li, Yangmei; Li, Zhiqiang

    2015-10-15

    In order to promote the power conversion efficiency of a magnetically insulated transmission line oscillator (MILO) and obtain microwaves in dual bands, an axially extracted C-band virtual cathode oscillator (VCO) with multiple resonant cavities is introduced to partially utilize the load current of an S-band MILO. The formed novel dual-band high power microwave source called MILO and VCO is investigated with simulation and experimentally. A dual-band radiation antenna is designed to effectively radiate microwaves generated by the MILO and the VCO, respectively, while avoiding them being influenced by the microwave reflection and diffraction. The preliminary experimental results measured by themore » dual-band diagnostic system show that both the MILO and the VCO operate normally under repeated shots. A microwave of 2.1 GHz, 1.70 GW is generated from the MILO and a 0.37 GW microwave at frequencies of 4.1 GHz and 3.8 GHz is generated from the VCO under the condition of about 440 kV and 35 kA. Compared with a single MILO (10.6%), a MILO and VCO achieves higher total power and efficiency (13.4%) in both S and C bands, indicating that the load current of the MILO partially couples into the beam-wave interaction in the VCO and then contributes to the output microwaves. However, more works are needed regarding the spectrum purification of the VCO and promotion of the output power of both the MILO and the VCO.« less

  14. Preliminary experimental investigation of a complex dual-band high power microwave source.

    PubMed

    Zhang, Xiaoping; Li, Yangmei; Li, Zhiqiang; Zhong, Huihuang; Qian, Baoliang

    2015-10-01

    In order to promote the power conversion efficiency of a magnetically insulated transmission line oscillator (MILO) and obtain microwaves in dual bands, an axially extracted C-band virtual cathode oscillator (VCO) with multiple resonant cavities is introduced to partially utilize the load current of an S-band MILO. The formed novel dual-band high power microwave source called MILO and VCO is investigated with simulation and experimentally. A dual-band radiation antenna is designed to effectively radiate microwaves generated by the MILO and the VCO, respectively, while avoiding them being influenced by the microwave reflection and diffraction. The preliminary experimental results measured by the dual-band diagnostic system show that both the MILO and the VCO operate normally under repeated shots. A microwave of 2.1 GHz, 1.70 GW is generated from the MILO and a 0.37 GW microwave at frequencies of 4.1 GHz and 3.8 GHz is generated from the VCO under the condition of about 440 kV and 35 kA. Compared with a single MILO (10.6%), a MILO and VCO achieves higher total power and efficiency (13.4%) in both S and C bands, indicating that the load current of the MILO partially couples into the beam-wave interaction in the VCO and then contributes to the output microwaves. However, more works are needed regarding the spectrum purification of the VCO and promotion of the output power of both the MILO and the VCO.

  15. Plasma heating and current drive using intense, pulsed microwaves

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cohen, B.I.; Cohen, R.H.; Nevins, W.M.

    1988-01-01

    The use of powerful new microwave sources, e.g., free-electron lasers and relativistic gyrotrons, provide unique opportunities for novel heating and current-drive schemes in the electron-cyclotron and lower-hybrid ranges of frequencies. These high-power, pulsed sources have a number of technical advantages over conventional, low-intensity sources; and their use can lead to improved current-drive efficiencies and better penetration into a reactor-grade plasma in specific cases. The Microwave Tokamak Experiment at Lawrence Livermore National Laboratory will provide a test for some of these new heating and current-drive schemes. This paper reports theoretical progress both in modeling absorption and current drive for intense pulsesmore » and in analyzing some of the possible complications that may arise, e.g., parametric instabilities and nonlinear self-focusing. 22 refs., 9 figs., 1 tab.« less

  16. A Preliminary Detection of Arcminute Scale Cosmic Microwave Background Anisotropy with the BIMA Array

    NASA Technical Reports Server (NTRS)

    Dawson, K. S.; Holzapfel, W. L.; Carlstrom, J. E.; Joy, M.; LaRoque, S. J.; Reese, E. D.; Rose, M. Franklin (Technical Monitor)

    2001-01-01

    We have used the Berkeley-Illinois-Maryland-Association (BIMA) array outfitted with sensitive cm-wave receivers to expand our search for minute scale anisotropy of the Cosmic Microwave Background (CMB). The interferometer was placed in a compact configuration to obtain high brightness sensitivity on arcminute scales over its 6.6' FWHM field of view. The sensitivity of this experiment to flat band power peaks at a multipole of 1 = 5530 which corresponds to an angular scale of -2'. We present the analysis of a total of 470 hours of on-source integration time on eleven independent fields which were selected based on their low IR contrast and lack of bright radio sources. Applying a Bayesian analysis to the visibility data, we find CMB anisotropy flat band power Q_flat = 6.1(+2.8/-4.8) microKelvin at 68% confidence. The confidence of a nonzero signal is 76% and we find an upper limit of Q_flat < 12.4 microKelvin at 95% confidence. We have supplemented our BIMA observations with concurrent observations at 4.8 GHz with the VLA to search for and remove point sources. We find the point sources make an insignificant contribution to the observed anisotropy.

  17. Mobile system for microwave removal of concrete surfaces

    DOEpatents

    White, Terry L.; Bigelow, Timothy S.; Schaich, Charles R.; Foster, Jr., Don

    1997-01-01

    A method and apparatus for the microwave removal of contaminated concrete surfaces. The apparatus comprises a housing adapted to pass over a support surface. The housing includes a waveguide for directing microwave energy to the surface at an angle maximizing absorption of microwave energy by the surface. The apparatus is further provided with a source of microwave energy operably associated with the waveguide, wherein the microwave energy has a frequency of between about 10.6 GHz and about 24 GHz and acts to remove the uppermost layer from the surface. The apparatus further includes a debris containment assembly comprising a vacuum assembly operably associated with the housing. The vacuum assembly is adapted to remove debris from the area adjacent the surface.

  18. Mobile system for microwave removal of concrete surfaces

    DOEpatents

    White, T.L.; Bigelow, T.S.; Schaich, C.R.; Foster, D. Jr.

    1997-06-03

    A method and apparatus are disclosed for the microwave removal of contaminated concrete surfaces. The apparatus comprises a housing adapted to pass over a support surface. The housing includes a waveguide for directing microwave energy to the surface at an angle maximizing absorption of microwave energy by the surface. The apparatus is further provided with a source of microwave energy operably associated with the waveguide, wherein the microwave energy has a frequency of between about 10.6 GHz and about 24 GHz and acts to remove the uppermost layer from the surface. The apparatus further includes a debris containment assembly comprising a vacuum assembly operably associated with the housing. The vacuum assembly is adapted to remove debris from the area adjacent the surface. 7 figs.

  19. Microwave remote sensing: Active and passive. Volume 1 - Microwave remote sensing fundamentals and radiometry

    NASA Technical Reports Server (NTRS)

    Ulaby, F. T.; Moore, R. K.; Fung, A. K.

    1981-01-01

    The three components of microwave remote sensing (sensor-scene interaction, sensor design, and measurement techniques), and the applications to geoscience are examined. The history of active and passive microwave sensing is reviewed, along with fundamental principles of electromagnetic wave propagation, antennas, and microwave interaction with atmospheric constituents. Radiometric concepts are reviewed, particularly for measurement problems for atmospheric and terrestrial sources of natural radiation. Particular attention is given to the emission by atmospheric gases, clouds, and rain as described by the radiative transfer function. Finally, the operation and performance characteristics of radiometer receivers are discussed, particularly for measurement precision, calibration techniques, and imaging considerations.

  20. A Parallel, High-Fidelity Radar Model

    DTIC Science & Technology

    2010-09-01

    THIS PAGE unclassified Standard Form 298 (Rev. 8-98) Prescribed by ANSI Std Z39-18 . TCMB is the temperature due to the cosmic microwave background ...per unit area, per unit frequency. In the microwave regime, this is usually given the name brightness temperature, . There are various sources...which contribute to the brightness temperature. They include external sources outside of the earth’s atmosphere (e.g. cosmic or galactic noise

  1. Microwave imaging of a solar limb flare - Comparison of spectra and spatial geometry with hard X-rays

    NASA Technical Reports Server (NTRS)

    Schmahl, E. J.; Kundu, M. R.; Dennis, B. R.

    1985-01-01

    A solar limb flare was mapped using the Very Large Array (VLA) together with hard X-ray (HXR) spectral and spatial observations of the Solar Maximum Mission satellite. Microwave flux records from 2.8 to 19.6 GHz were instrumental in determining the burst spectrum, which has a maximum at 10 GHz. The flux spectrum and area of the burst sources were used to determine the number of electrons producing gyrosynchrotron emission, magnetic field strength, and the energy distribution of gyrosynchrotron-emitting electrons. Applying the thick target model to the HXR spectrum, the number of high energy electrons responsible for the X-ray bursts was found to be 10 to the 36th, and the electron energy distribution was approximately E exp -5, significantly different from the parameters derived from the microwave observations. The HXR imaging observations exhibit some similiarities in size and structure o the first two burst sources mapped with the VLA. However, during the initial burst, the HXR source was single and lower in the corona than the double 6 cm source. The observations are explained in terms of a single loop with an isotropic high-energy electron distribution which produced the microwaves, and a larger beamed component which produced the HXR at the feet of the loop.

  2. Single-Shot Quantum Nondemolition Detection of Individual Itinerant Microwave Photons

    NASA Astrophysics Data System (ADS)

    Besse, Jean-Claude; Gasparinetti, Simone; Collodo, Michele C.; Walter, Theo; Kurpiers, Philipp; Pechal, Marek; Eichler, Christopher; Wallraff, Andreas

    2018-04-01

    Single-photon detection is an essential component in many experiments in quantum optics, but it remains challenging in the microwave domain. We realize a quantum nondemolition detector for propagating microwave photons and characterize its performance using a single-photon source. To this aim, we implement a cavity-assisted conditional phase gate between the incoming photon and a superconducting artificial atom. By reading out the state of this atom in a single shot, we reach an external (internal) photon-detection fidelity of 50% (71%), limited by transmission efficiency between the source and the detector (75%) and the coherence properties of the qubit. By characterizing the coherence and average number of photons in the field reflected off the detector, we demonstrate its quantum nondemolition nature. We envisage applications in generating heralded remote entanglement between qubits and for realizing logic gates between propagating microwave photons.

  3. VizieR Online Data Catalog: Planck Catalog of Compact Sources Release 1 (Planck, 2013)

    NASA Astrophysics Data System (ADS)

    Planck Collaboration

    2013-03-01

    Planck is a European Space Agency (ESA) mission, with significant contributions from the U.S. National Aeronautics and Space Agency (NASA). It is the third generation of space-based cosmic microwave background experiments, after the Cosmic Background Explorer (COBE) and the Wilkinson Microwave Anisotropy Probe (WMAP). Planck was launched on 14 May 2009 on an Ariane 5 rocket from Kourou, French Guiana. Following a cruise to the Earth-Sun L2 Lagrange point, cooling and in orbit checkout, Planck initiated the First Light Survey on 13 August 2009. Since then, Planck has been continuously measuring the intensity of the sky over a range of frequencies from 30 to 857GHz (wavelengths of 1cm to 350μm) with spatial resolutions ranging from about 33' to 5' respectively. The Low Frequency Instrument (LFI) on Planck provides temperature and polarization information using radiometers which operate between 30 and 70GHz. The High Frequency Instrument (HFI) uses pairs of polarization-sensitive bolometers at each of four frequencies between 100 and 353GHz but does not measure polarization information in the two upper HFI bands at 545 and 857GHz. The lowest frequencies overlap with WMAP, and the highest frequencies extend far into the submillimeter in order to improve separation between Galactic foregrounds and the cosmic microwave background (CMB). By extending to wavelengths longer than those at which the Infrared Astronomical Satellite (IRAS) operated, Planck is providing an unprecedented window into dust emission at far-infrared and submillimeter wavelengths. The PCCS (Planck Catalog of Compact Sources) is the list of sources detected in the first 15 months of Planck "nominal" mission. It consists of nine single-frequency catalogues of compact sources, both Galactic and extragalactic, detected over the entire sky. The PCCS covers the frequency range 30-857 GHz with higher sensitivity (it is 90% complete at 180mJy in the best channel) and better angular resolution than previous all-sky surveys in the microwave band. By construction its reliability is >80% and more than 65% of the sources have been detected at least in two contiguous Planck channels. Many of the Planck PCCS sources can be associated with stars with dust shells, stellar cores, radio galaxies, blazars, infrared luminous galaxies and Galactic interstellar medium features. (12 data files).

  4. Global mapping of sea-ice production from the satellite microwaves

    NASA Astrophysics Data System (ADS)

    Ohshima, K. I.; Nihashi, S.; Iwamoto, K.; Tamaru, N.; Nakata, K.; Tamura, T.

    2016-12-01

    Global overturning circulation is driven by density differences. Saline water rejected by sea-ice production in coastal polynyas is the main source of dense water, and thus sea-ice production is a key factor in the overturning circulation. However, until recently sea-ice production and its interannual variability have not been well understood due to difficulties of in situ observation. The most effective means of detection of thin-ice area and estimation of sea-ice production on large scales is satellite remote sensing using passive microwave sensors, specifically the Special Sensor Microwave/Imager and Advanced Microwave Scanning Radiometer. This is based upon their ability to gain complete polar coverage on a daily basis irrespective of clouds and darkness. We have estimated sea-ice production globally based on heat flux calculations using the satellite-derived thin ice thickness data. The mapping demonstrates that ice production rate is high in Antarctic coastal polynyas, in contrast to Arctic coastal polynyas. This is consistent with the formation of Antarctic Bottom Water (AABW). The Ross Ice Shelf polynya has by far the highest ice production in the Southern Hemisphere. The mapping has revealed that the Cape Darnley polynya is the second highest production area, leading to the discovery of the missing (fourth) source of AABW in this region. In the region off the Mertz Glacier Tongue, sea-ice production decreased by as much as 40 %, due to the glacier calving in early 2010, resulting in a significant decrease in AABW production. The Okhotsk Northwestern polynya exhibits the highest ice production in the Northern Hemisphere, and the resultant dense water formation leads to overturning in the North Pacific. Estimates of its ice production show a significant decrease over the past 30-50 years, likely causing the weakening of the North Pacific overturning. The mapping also provides surface boundary conditions and validation data of heat- and salt-flux associated with sea-ice formation/melting for various ocean and coupled models. Improvement of thin ice microwave algorithm including the comparison with the polynya mooring data is now being made for higher accuracy estimate of sea-ice production.

  5. Design and Development of the SMAP Microwave Radiometer Electronics

    NASA Technical Reports Server (NTRS)

    Piepmeier, Jeffrey R.; Medeiros, James J.; Horgan, Kevin A.; Brambora, Clifford K.; Estep, Robert H.

    2014-01-01

    The SMAP microwave radiometer will measure land surface brightness temperature at L-band (1413 MHz) in the presence of radio frequency interference (RFI) for soil moisture remote sensing. The radiometer design was driven by the requirements to incorporate internal calibration, to operate synchronously with the SMAP radar, and to mitigate the deleterious effects of RFI. The system design includes a highly linear super-heterodyne microwave receiver with internal reference loads and noise sources for calibration and an innovative digital signal processor and detection system. The front-end comprises a coaxial cable-based feed network, with a pair of diplexers and a coupled noise source, and radiometer front-end (RFE) box. Internal calibration is provided by reference switches and a common noise source inside the RFE. The RF back-end (RBE) downconverts the 1413 MHz channel to an intermediate frequency (IF) of 120 MHz. The IF signals are then sampled and quantized by high-speed analog-to-digital converters in the radiometer digital electronics (RDE) box. The RBE local oscillator and RDE sampling clocks are phase-locked to a common reference to ensure coherency between the signals. The RDE performs additional filtering, sub-band channelization, cross-correlation for measuring third and fourth Stokes parameters, and detection and integration of the first four raw moments of the signals. These data are packetized and sent to the ground for calibration and further processing. Here we discuss the novel features of the radiometer hardware particularly those influenced by the need to mitigate RFI.

  6. High Pressure Microwave Powered UV Light Sources

    NASA Astrophysics Data System (ADS)

    Cekic, M.; Frank, J. D.; Popovic, S.; Wood, C. H.

    1997-10-01

    Industrial microwave powered (*electrodeless*) light sources have been limited to quiescent pressures of 300 Torr of buffer gas and metal- halide fills. Recently developed multi-atmospheric electronegative bu lb fills (noble gas-halide excimers, metal halide) require electric field s for ionization that are often large multiples of the breakdown voltage for air. For these fills an auxiliary ignition system is necessary. The most successful scheme utilizes a high voltage pulse power supply and a novel field emission source. Acting together they create localized condition of pressure reduction and high free electron density. This allows the normal microwave fields to drive this small region into avalanche, ignite the bulb, and heat the plasma to it's operating poin t Standard diagnostic techniques of high density discharges are inapplicable to the excimer bulbs, because of the ionic molecular exci ted state structure and absence of self-absorption. The method for temperature determination is based on the equilibrium population of certain vibrational levels of excimer ionic excited states. Electron d ensity was determined from the measurements of Stark profiles of H_β radiation from a small amount of hydrogen mixed with noble gas and halogens. At the present time, high pressure (Te 0.5eV, ne 3 x 10^17 cm-3) production bulbs produce over 900W of radiation in a 30nm band, centered at 30nm. Similarly, these prototypes when loaded with metal-halide bulb fills produce 1 kW of radiation in 30nm wide bands, centered about the wavelength of interest.

  7. High power microwave source development

    NASA Astrophysics Data System (ADS)

    Benford, James N.; Miller, Gabriel; Potter, Seth; Ashby, Steve; Smith, Richard R.

    1995-05-01

    The requirements of this project have been to: (1) improve and expand the sources available in the facility for testing purposes and (2) perform specific tasks under direction of the Defense Nuclear Agency about the applications of high power microwaves (HPM). In this project the HPM application was power beaming. The requirements of this program were met in the following way: (1) We demonstrated that a compact linear induction accelerator can drive HPM sources at repetition rates in excess of 100 HZ at peak microwave powers of a GW. This was done for the relativistic magnetron. Since the conclusion of this contract such specifications have also been demonstrated for the relativistic klystron under Ballistic Missile Defense Organization funding. (2) We demonstrated an L band relativistic magnetron. This device has been used both on our single pulse machines, CAMEL and CAMEL X, and the repetitive system CLIA. (3) We demonstrated that phase locking of sources together in large numbers is a feasible technology and showed the generation of multigigawatt S-band radiation in an array of relativistic magnetrons.

  8. Back-bombardment compensation in microwave thermionic electron guns

    NASA Astrophysics Data System (ADS)

    Kowalczyk, Jeremy M. D.; Madey, John M. J.

    2014-12-01

    The development of capable, reliable, and cost-effective compact electron beam sources remains a long-standing objective of the efforts to develop the accelerator systems needed for on-site research and industrial applications ranging from electron beam welding to high performance x-ray and gamma ray light sources for element-resolved microanalysis and national security. The need in these applications for simplicity, reliability, and low cost has emphasized solutions compatible with the use of the long established and commercially available pulsed microwave rf sources and L-, S- or X-band linear accelerators. Thermionic microwave electron guns have proven to be one successful approach to the development of the electron sources for these systems providing high macropulse average current beams with picosecond pulse lengths and good emittance out to macropulse lengths of 4-5 microseconds. But longer macropulse lengths are now needed for use in inverse-Compton x-ray sources and other emerging applications. We describe in this paper our approach to extending the usable macropulse current and pulse length of these guns through the use of thermal diffusion to compensate for the increase in cathode surface temperature due to back-bombardment.

  9. Development of a miniature microwave electron cyclotron resonance plasma ion thruster for exospheric micro-propulsion

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dey, Indranuj, E-mail: indranuj@aees.kyushu-u.ac.jp; Toyoda, Yuji; Yamamoto, Naoji

    A miniature microwave electron cyclotron resonance plasma source [(discharge diameter)/(microwave cutoff diameter) < 0.3] has been developed at Kyushu University to be used as an ion thruster in micro-propulsion applications in the exosphere. The discharge source uses both radial and axial magnetostatic field confinement to facilitate electron cyclotron resonance and increase the electron dwell time in the volume, thereby enhancing plasma production efficiency. Performance of the ion thruster is studied at 3 microwave frequencies (1.2 GHz, 1.6 GHz, and 2.45 GHz), for low input powers (<15 W) and small xenon mass flow rates (<40 μg/s), by experimentally measuring the extractedmore » ion beam current through a potential difference of ≅1200 V. The discharge geometry is found to operate most efficiently at an input microwave frequency of 1.6 GHz. At this frequency, for an input power of 8 W, and propellant (xenon) mass flow rate of 21 μg/s, 13.7 mA of ion beam current is obtained, equivalent to an calculated thrust of 0.74 mN.« less

  10. Observation of microwave absorption and emission from incoherent electron tunneling through a normal-metal-insulator-superconductor junction.

    PubMed

    Masuda, Shumpei; Tan, Kuan Y; Partanen, Matti; Lake, Russell E; Govenius, Joonas; Silveri, Matti; Grabert, Hermann; Möttönen, Mikko

    2018-03-02

    We experimentally study nanoscale normal-metal-insulator-superconductor junctions coupled to a superconducting microwave resonator. We observe that bias-voltage-controllable single-electron tunneling through the junctions gives rise to a direct conversion between the electrostatic energy and that of microwave photons. The measured power spectral density of the microwave radiation emitted by the resonator exceeds at high bias voltages that of an equivalent single-mode radiation source at 2.5 K although the phonon and electron reservoirs are at subkelvin temperatures. Measurements of the generated power quantitatively agree with a theoretical model in a wide range of bias voltages. Thus, we have developed a microwave source which is compatible with low-temperature electronics and offers convenient in-situ electrical control of the incoherent photon emission rate with a predetermined frequency, without relying on intrinsic voltage fluctuations of heated normal-metal components or suffering from unwanted losses in room temperature cables. Importantly, our observation of negative generated power at relatively low bias voltages provides a novel type of verification of the working principles of the recently discovered quantum-circuit refrigerator.

  11. Microwave-Assisted Hydrolysis of Chitosan from Shrimp Shell Waste for Glucosammine Hydrochlorid Production

    NASA Astrophysics Data System (ADS)

    Zaeni, Ahmad; Safitri, Endang; Fuadah, Badrotul; Nyoman Sudiana, I.

    2017-05-01

    Chitin is the most widespread renewable natural sources following cellulose as the main source of chitosan. Chitin is isolated from crustacean waste and shrimp shells. Chitosan is derived from chitin throuhgt demineralisation, deproteination, decolorisation and deacetylation process using chemicals such as sodium hydroxide, hydrogen chloride and acetone. Glucosamine hydrochloride (GlcN-Cl) can be produced by hydrolysis of chitosan by using hydrogen chloride. During deacetylation and hydrolysis the solution is heated by hotplate or furnace. In this paper we use microwave instead of hotplate for production chitosan and GlcN-Cl. The research investigates effect of microwaves to amount of rendemen and their property. The chitosan was characterized its moisture content, solubility, and degree of deacetylation (DDA). Whereas the glucosammine hydrochloride characterized its functional groups using FTIR and crystallization by using X-Ray Difraction (XRD). The experimental results show that the use of microwave energy on deacetilation of chitosan and hydrolisis processes can decrease time consuming and reactant concentration during production. the DDA value obtained was very high from 70 to 85%. The results also show that microwaves meet chitosan and GlcN-Cl standards.

  12. Breakdown simulations in a focused microwave beam within the simplified model

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Semenov, V. E.; Rakova, E. I.; Glyavin, M. Yu.

    2016-07-15

    The simplified model is proposed to simulate numerically air breakdown in a focused microwave beam. The model is 1D from the mathematical point of view, but it takes into account the spatial non-uniformity of microwave field amplitude along the beam axis. The simulations are completed for different frequencies and different focal lengths of microwave beams. The results demonstrate complicated regimes of the breakdown evolution which represents a series of repeated ionization waves. These waves start at the focal point and propagate towards incident microwave radiation. The ionization wave parameters vary during propagation. At relatively low frequencies, the propagation regime ofmore » subsequent waves can also change qualitatively. Each next ionization wave is less pronounced than the previous one, and the breakdown evolution approaches the steady state with relatively small plasma density. The ionization wave parameters are sensitive to the weak source of external ionization, but the steady state is independent on such a source. As the beam focal length decreases, the stationary plasma density increases and the onset of the steady state occurs faster.« less

  13. Electron beam collector for a microwave power tube

    DOEpatents

    Dandl, Raphael A.

    1980-01-01

    This invention relates to a cylindrical, electron beam collector that efficiently couples the microwave energy out of a high power microwave source while stopping the attendant electron beam. The interior end walls of the collector are a pair of facing parabolic mirrors and the microwave energy from an input horn is radiated between the two mirrors and reassembled at the entrance to the output waveguide where the transmitted mode is reconstructed. The mode transmission through the collector of the present invention has an efficiency of at least 94%.

  14. Fundamentals of dielectric properties measurements and agricultural applications.

    PubMed

    Nelson, Stuart O

    2010-01-01

    Dielectrics and dielectric properties are defined generally and dielectric measurement methods and equipment are described for various frequency ranges from audio frequencies through microwave frequencies. These include impedance and admittance bridges, resonant frequency, transmission-line, and free-space methods in the frequency domain and time-domain and broadband techniques. Many references are cited describing methods in detail and giving sources of dielectric properties data. Finally a few applications for such data are presented and sources of tabulated and dielectric properties data bases are identified.

  15. Impact of High Power Interference Sources in Planning and Deployment of Wireless Sensor Networks and Devices in the 2.4 GHz Frequency Band in Heterogeneous Environments

    PubMed Central

    Iturri, Peio López; Nazábal, Juan Antonio; Azpilicueta, Leire; Rodriguez, Pablo; Beruete, Miguel; Fernández-Valdivielso, Carlos; Falcone, Francisco

    2012-01-01

    In this work, the impact of radiofrequency radiation leakage from microwave ovens and its effect on 802.15.4 ZigBee-compliant wireless sensor networks operating in the 2.4 GHz Industrial Scientific Medical (ISM) band is analyzed. By means of a novel radioplanning approach, based on electromagnetic field simulation of a microwave oven and determination of equivalent radiation sources applied to an in-house developed 3D ray launching algorithm, estimation of the microwave oven's power leakage is obtained for the complete volume of an indoor scenario. The magnitude and the variable nature of the interference is analyzed and the impact in the radio link quality in operating wireless sensors is estimated and compared with radio channel measurements as well as packet measurements. The measurement results reveal the importance of selecting an adequate 802.15.4 channel, as well as the Wireless Sensor Network deployment strategy within this type of environment, in order to optimize energy consumption and increase the overall network performance. The proposed method enables one to estimate potential interference effects in devices operating within the 2.4 GHz band in the complete scenario, prior to wireless sensor network deployment, which can aid in achieving the most optimal network topology. PMID:23202228

  16. Spontaneous Raman scattering as a high resolution XUV radiation source

    NASA Technical Reports Server (NTRS)

    Rothenberg, J. E.; Young, J. F.; Harris, S. E.

    1983-01-01

    A type of high resolution XUV radiation source is described which is based upon spontaneous anti-Stokes scattering of tunable incident laser radiation from atoms excited to metastable levels. The theory of the source is summarized and two sets of experiments using He (1s2s)(1)S atoms, produced in a cw hollow cathode and in a pulsed high power microwave discharge, are discussed. The radiation source is used to examine transitions originating from the 3p(6) shell of potassium. The observed features include four previously unreported absorption lines and several sharp interferences of closely spaced autoionizing lines. A source linewidth of about 1.9 cm(-1) at 185,000 cm(-1) is demonstrated.

  17. Microwave discharge electrodeless lamps (MDEL). Part VII. Photo-isomerization of trans-urocanic acid in aqueous media driven by UV light from a novel Hg-free Dewar-like microwave discharge thermally-insulated electrodeless lamp (MDTIEL). Performance evaluation.

    PubMed

    Horikoshi, Satoshi; Sato, Tatsuro; Sakamoto, Kazutami; Abe, Masahiko; Serpone, Nick

    2011-07-01

    A novel mercury-free Dewar-like (double-walled structure) microwave discharge thermally-insulated electrodeless lamp (MDTIEL) was fabricated and its performance evaluated using the photo-isomerization of trans-urocanic acid (trans-UA) in aqueous media as a test process driven by the emitted UV light when ignited with microwave radiation. The photo-isomerization processes trans-UA → cis-UA and cis-UA → trans-UA were re-visited using light emitted from a conventional high-pressure Hg light source and examined for the influence of UV light irradiance and solution temperature; the temperature dependence of the trans → cis process displayed a negative activation energy, E(a) = -1.3 cal mol(-1). To control the photo-isomerization of urocanic acid from the heat usually dissipated by a microwave discharge electrodeless lamp (single-walled MDEL), it was necessary to suppress the microwave-initiated heat. For comparison, the gas-fill in the MDEL lamp, which typically consists of a mixture of Hg and Ar, was changed to the more eco-friendly N(2) gas in the novel MDTIEL device. The dynamics of the photo-isomerization of urocanic acid driven by the UV wavelengths of the N(2)-MDTIEL light source were compared to those from the more conventional single-walled N(2)-MDEL and Hg/Ar-MDEL light sources, and with those from the Hg lamp used to irradiate, via a fiber optic, the photoreactor located in the wave-guide of the microwave apparatus. The heating efficiency of a solution with the double-walled N(2)-MDTIEL was compared to the efficiency from the single-walled N(2)-MDEL device. Advantages of N(2)-MDTIEL are described from a comparison of the dynamics of the trans-UA → cis-UA process on the basis of unit surface area of the lamp and unit power consumption. The considerably lower temperature on the external surface of the N(2)-MDTIEL light source should make it attractive in carrying out photochemical reactions that may be heat-sensitive such as the photothermochromic urocanic acid system.

  18. Widely tunable quantum cascade laser-based terahertz source.

    PubMed

    Danylov, Andriy A; Light, Alexander R; Waldman, Jerry; Erickson, Neal; Qian, Xifeng

    2014-07-10

    A compact, tunable, ultranarrowband terahertz source, Δν∼1  MHz, is demonstrated by upconversion of a 2.324 THz, free-running quantum cascade laser with a THz Schottky-diode-balanced mixer using a swept, synthesized microwave source to drive the nonlinearity. Continuously tunable radiation of 1 μW power is demonstrated in two frequency regions: ν(Laser) ± 0 to 50 GHz and ν(Laser) ± 70 to 115 GHz. The sideband spectra were characterized with a Fourier-transform spectrometer, and the radiation was tuned through CO, HDO, and D2O rotational transitions.

  19. Fundamental Materials Studies for Advanced High Power Microwave and Terahertz Vacuum Electronic Radiation Sources

    DTIC Science & Technology

    2014-12-10

    AFRL-OSR-VA-TR-2014-0359 Fundamental Materials Studies for Advanced High Power Microwave and Terahertz John Booske UNIVERSITY OF WISCONSIN SYSTEM...12-2014 Final Technical Performance Report October 1, 2011 - September 30, 2014 Fundamental Materials Studies for Advanced High Power Microwave and...emission-barrier scandate cathodes and identify related, alternative cathode materials systems for advanced vacuum electronic cathodes for high power THz

  20. Microwave radiometer studies of atmospheric water over the oceans, volume 1

    NASA Technical Reports Server (NTRS)

    Katsaros, Kristina B.

    1992-01-01

    Since Seasat carried the Scanning Multichannel Microwave Radiometer (SMMR) into space, shortly followed by the SMMR on Nimbus 7, a new type of data source on atmospheric water vapor and other meteorological parameters has been available for analysis of weather systems over the ocean. Since 1987, the Scanning Multichannel Microwave/Imager (SMM/I) has provided similar data. A collection of work using this data is presented.

  1. Electrical circuit modeling and analysis of microwave acoustic interaction with biological tissues.

    PubMed

    Gao, Fei; Zheng, Qian; Zheng, Yuanjin

    2014-05-01

    Numerical study of microwave imaging and microwave-induced thermoacoustic imaging utilizes finite difference time domain (FDTD) analysis for simulation of microwave and acoustic interaction with biological tissues, which is time consuming due to complex grid-segmentation and numerous calculations, not straightforward due to no analytical solution and physical explanation, and incompatible with hardware development requiring circuit simulator such as SPICE. In this paper, instead of conventional FDTD numerical simulation, an equivalent electrical circuit model is proposed to model the microwave acoustic interaction with biological tissues for fast simulation and quantitative analysis in both one and two dimensions (2D). The equivalent circuit of ideal point-like tissue for microwave-acoustic interaction is proposed including transmission line, voltage-controlled current source, envelop detector, and resistor-inductor-capacitor (RLC) network, to model the microwave scattering, thermal expansion, and acoustic generation. Based on which, two-port network of the point-like tissue is built and characterized using pseudo S-parameters and transducer gain. Two dimensional circuit network including acoustic scatterer and acoustic channel is also constructed to model the 2D spatial information and acoustic scattering effect in heterogeneous medium. Both FDTD simulation, circuit simulation, and experimental measurement are performed to compare the results in terms of time domain, frequency domain, and pseudo S-parameters characterization. 2D circuit network simulation is also performed under different scenarios including different sizes of tumors and the effect of acoustic scatterer. The proposed circuit model of microwave acoustic interaction with biological tissue could give good agreement with FDTD simulated and experimental measured results. The pseudo S-parameters and characteristic gain could globally evaluate the performance of tumor detection. The 2D circuit network enables the potential to combine the quasi-numerical simulation and circuit simulation in a uniform simulator for codesign and simulation of a microwave acoustic imaging system, bridging bioeffect study and hardware development seamlessly.

  2. Feasibility and Performance of the Microwave Thermal Rocket Launcher

    NASA Astrophysics Data System (ADS)

    Parkin, Kevin L. G.; Culick, Fred E. C.

    2004-03-01

    Beamed-energy launch concepts employing a microwave thermal thruster are feasible in principle, and microwave sources of sufficient power to launch tons into LEO already exist. Microwave thermal thrusters operate on an analogous principle to nuclear thermal thrusters, which have experimentally demonstrated specific impulses exceeding 850 seconds. Assuming such performance, simple application of the rocket equation suggests that payload fractions of 10% are possible for a single stage to orbit (SSTO) microwave thermal rocket. We present an SSTO concept employing a scaled X-33 aeroshell. The flat aeroshell underside is covered by a thin-layer microwave absorbent heat-exchanger that forms part of the thruster. During ascent, the heat-exchanger faces the microwave beam. A simple ascent trajectory analysis incorporating X-33 aerodynamic data predicts a 10% payload fraction for a 1 ton craft of this type. In contrast, the Saturn V had 3 non-reusable stages and achieved a payload fraction of 4%.

  3. Phenomenology of microwave coupling, part 1

    NASA Astrophysics Data System (ADS)

    King, R. J.; Breakall, J. K.; Hudson, H. G.; Morrison, J. J.; McGevna, V. G.; Kunz, K. S.; Ludwigsen, A. P.; Gnade, D. K.

    1984-11-01

    Advances in the development of high power microwave sources have increased the potential for future deployment of microwave weapons. A key ingredient in being able to predict the vulnerability of military systems to such threats involves understanding the phenomenology of how electromagnetic energy couples into cavity like objects, or the so called back door coupling. A similar but much longer standing problem is that of nuclear electromagnetic pulses (EMP) in which the frequencies extend up to several hundreds of MHz. However, compared to EMP coupling, microwave coupling is distinctively different because the wavelength is comparable to the size of the ports of entry. Coupling paths can be highly resonant at certain microwave frequencies, making the shielding against microwave threats difficult. The initial efforts at Lawrence Livermore National Laboratory to study the phenomenology of back door coupling at the low microwave frequencies (up to 2.5 GHz) are summarized.

  4. A container for heat treating materials in microwave ovens

    DOEpatents

    Holcombe, C.E.; Dykes, N.L.; Kimrey, H.D. Jr.; Mills, J.E.

    1988-01-26

    The efficiency of a microwave oven of a conventional two-source configuration and energy level is increased by providing the oven with a container for housing a refractory material to be treated. The container is formed to top and bottom walls transparent to microwaves while the sidewalls, in a circular configuration, are formed of a nonmetallic material opaque to microwave radiation for reflecting the radiation penetrating the top and bottom walls radially inwardly into the center of the container wherein a casket of heat-insulating material is provided for housing the material to be heat treated. The reflection of the microwave radiation from the sidewalls increases the concentration of the microwaves upon the material being heat treated while the concentration of the microwaves upon the material being heat treated while the casket retains the heat to permit the heating of the material to a substantially higher temperature than achievable in the oven without the container.

  5. Target detection using microwave irradiances from natural sources: A passive, local and global surveillance system

    NASA Technical Reports Server (NTRS)

    Stacey, J. M.

    1984-01-01

    Detection of metal objects on or near the Earth's surface was investigated using existing, passive, microwave sensors operating from Earth orbit. The range equations are derived from basic microwave principles and theories and the expressions are given explicitly to estimate the signal to noise ratio for detecting metal targets operating as bistatic scatterers. Actual measurements are made on a range of metal objects observed from orbit using existing passive microwave receiving systems. The details of the measurements and the results are tabulated and discussed. The advantages of a passive microwave sensor as it is applied to surveillance of metal objects as viewed from aerial platforms or from orbit, are examined.

  6. CHEMICAL SYNTHESES IN AQUEOUS MEDIA USING MICROWAVES

    EPA Science Inventory

    The development of efficient, selective and eco-friendly synthetic methods has remained a major focus of our research group. Microwave (MW) irradiation as alternative energy source in conjunction with water as reaction media has proven to be a successful 'greener' chemical appro...

  7. A kilo-pixel imaging system for future space based far-infrared observatories using microwave kinetic inductance detectors

    NASA Astrophysics Data System (ADS)

    Baselmans, J. J. A.; Bueno, J.; Yates, S. J. C.; Yurduseven, O.; Llombart, N.; Karatsu, K.; Baryshev, A. M.; Ferrari, L.; Endo, A.; Thoen, D. J.; de Visser, P. J.; Janssen, R. M. J.; Murugesan, V.; Driessen, E. F. C.; Coiffard, G.; Martin-Pintado, J.; Hargrave, P.; Griffin, M.

    2017-05-01

    Aims: Future astrophysics and cosmic microwave background space missions operating in the far-infrared to millimetre part of the spectrum will require very large arrays of ultra-sensitive detectors in combination with high multiplexing factors and efficient low-noise and low-power readout systems. We have developed a demonstrator system suitable for such applications. Methods: The system combines a 961 pixel imaging array based upon Microwave Kinetic Inductance Detectors (MKIDs) with a readout system capable of reading out all pixels simultaneously with only one readout cable pair and a single cryogenic amplifier. We evaluate, in a representative environment, the system performance in terms of sensitivity, dynamic range, optical efficiency, cosmic ray rejection, pixel-pixel crosstalk and overall yield at an observation centre frequency of 850 GHz and 20% fractional bandwidth. Results: The overall system has an excellent sensitivity, with an average detector sensitivity < NEPdet> =3×10-19 WHz measured using a thermal calibration source. At a loading power per pixel of 50 fW we demonstrate white, photon noise limited detector noise down to 300 mHz. The dynamic range would allow the detection of 1 Jy bright sources within the field of view without tuning the readout of the detectors. The expected dead time due to cosmic ray interactions, when operated in an L2 or a similar far-Earth orbit, is found to be <4%. Additionally, the achieved pixel yield is 83% and the crosstalk between the pixels is <-30 dB. Conclusions: This demonstrates that MKID technology can provide multiplexing ratios on the order of a 1000 with state-of-the-art single pixel performance, and that the technology is now mature enough to be considered for future space based observatories and experiments.

  8. CANCELLED Microwave Ion Source and Beam Injection for anAccelerator-Driven Neut ron Source

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Vainionpaa, J.H.; Gough, R.; Hoff, M.

    2007-02-27

    An over-dense microwave driven ion source capable of producing deuterium (or hydrogen) beams at 100-200 mA/cm{sup 2} and with atomic fraction > 90% was designed and tested with an electrostatic low energy beam transport section (LEBT). This ion source was incorporated into the design of an Accelerator Driven Neutron Source (ADNS). The other key components in the ADNS include a 6 MeV RFQ accelerator, a beam bending and scanning system, and a deuterium gas target. In this design a 40 mA D{sup +} beam is produced from a 6 mm diameter aperture using a 60 kV extraction voltage. The LEBTmore » section consists of 5 electrodes arranged to form 2 Einzel lenses that focus the beam into the RFQ entrance. To create the ECR condition, 2 induction coils are used to create {approx} 875 Gauss on axis inside the source chamber. To prevent HV breakdown in the LEBT a magnetic field clamp is necessary to minimize the field in this region. Matching of the microwave power from the waveguide to the plasma is done by an autotuner. They observed significant improvement of the beam quality after installing a boron nitride liner inside the ion source. The measured emittance data are compared with PBGUNS simulations.« less

  9. Superconducting Switch for Fast On-Chip Routing of Quantum Microwave Fields

    NASA Astrophysics Data System (ADS)

    Pechal, M.; Besse, J.-C.; Mondal, M.; Oppliger, M.; Gasparinetti, S.; Wallraff, A.

    2016-08-01

    A switch capable of routing microwave signals at cryogenic temperatures is a desirable component for state-of-the-art experiments in many fields of applied physics, including but not limited to quantum-information processing, communication, and basic research in engineered quantum systems. Conventional mechanical switches provide low insertion loss but disturb operation of dilution cryostats and the associated experiments by heat dissipation. Switches based on semiconductors or microelectromechanical systems have a lower thermal budget but are not readily integrated with current superconducting circuits. Here we design and test an on-chip switch built by combining tunable transmission-line resonators with microwave beam splitters. The device is superconducting and as such dissipates a negligible amount of heat. It is compatible with current superconducting circuit fabrication techniques, operates with a bandwidth exceeding 100 MHz, is capable of handling photon fluxes on the order of 1 05 μ s-1 , equivalent to powers exceeding -90 dBm , and can be switched within approximately 6-8 ns. We successfully demonstrate operation of the device in the quantum regime by integrating it on a chip with a single-photon source and using it to route nonclassical itinerant microwave fields at the single-photon level.

  10. The effect of power intensity properties of microwave modified oil palm trunk lumber

    NASA Astrophysics Data System (ADS)

    Izzati Ibrahim, Anis; Salim, Nurjannah; Roslan, Rasidi; Ashry Jusoh, Mohammad; Hashim, Rokiah

    2018-04-01

    In the decade, oil palm (Elaeis guineensis) in Malaysia is one of the conventional sources that will be rising, and the rate of biomass will considerably increase in yet to come. Presently, oil palm biomass is going through research and development and appears to be the most sustainable alternative. Investigations on oil palm biomass have been conducted to support in draw out waste of oil palm and in the meantime can help economic yield to the country. This study was expected to estimate the effect of power intensity properties of microwave modified oil palm trunk lumber. Microwave treatment of oil palm trunk samples was set of connections by using a microwave operating at 2.45 GHz with the liberated process input power intensity (600-1000W) were studied under the given condition. Impact and compression of the samples were tested. The analysis of properties of the fresh material and dry samples was employed by scanning electron microscopy. Oven drying technique also was involved as a comparison of the conventional drying process in this research. Based on the outcomes of this study, both drying methods improved the characteristics of the specimens.

  11. Microwave-Driven Multifunctional Capability of Membrane Structures

    NASA Technical Reports Server (NTRS)

    Choi, Sang H.; Chu, Sang-Hyong; Song, Kyo D.; King, Glen C.

    2002-01-01

    A large, ultra lightweight space structure, such as solar sails and Gossamer spacecrafts, requires a distributed power source to alleviate wire networks, unlike the localized on-board power infrastructures typically found in most small spacecrafts. The concept of microwave-driven multifunctional capability for membrane structures is envisioned as the best option to alleviate the complexity associated with hard-wired control circuitry and on-board power infrastructures. A rectenna array based on a patch configuration for high voltage output was developed to drive membrane actuators, sensors, probes, or other devices. Networked patch rectenna array receives and converts microwave power into a DC power for an array of smart actuators. To use microwave power effectively, the concept of a power allocation and distribution (PAD) circuit is adopted for networking a rectenna/actuator patch array. The use of patch rectennas adds a significant amount of rigidity to membrane flexibility and they are relatively heavy. A dipole rectenna array (DRA) appears to be ideal for thin-film membrane structures, since DRA is flexible and light. Preliminary design and fabrication of PAD circuitry that consists of a few nodal elements were made for laboratory testing. The networked actuators were tested to correlate the network coupling effect, power allocation and distribution, and response time.

  12. Design and analysis of 30 nm T-gate InAlN/GaN HEMT with AlGaN back-barrier for high power microwave applications

    NASA Astrophysics Data System (ADS)

    Murugapandiyan, P.; Ravimaran, S.; William, J.; Meenakshi Sundaram, K.

    2017-11-01

    In this article, we present the DC and microwave characteristics of a novel 30 nm T-gate InAlN/AlN/GaN HEMT with AlGaN back-barrier. The device structure is simulated by using Synopsys Sentaurus TCAD Drift-Diffusion transport model at room temperature. The device features are heavily doped (n++ GaN) source/drain regions with Si3N4 passivated device surface for reducing the contact resistances and gate capacitances of the device, which uplift the microwave characteristics of the HEMTs. 30 nm gate length D-mode (E-mode) HEMT exhibited a peak drain current density Idmax of 2.3 (2.42) A/mm, transconductance gm of 1.24(1.65) S/mm, current gain cut-off frequency ft of 262 (246) GHz, power gain cut-off frequency fmax of 246(290) GHz and the three terminal off-state breakdown voltage VBR of 40(38) V. The preeminent microwave characteristics with the higher breakdown voltage of the proposed GaN-based HEMT are the expected to be the most optimistic applicant for future high power millimeter wave applications.

  13. 47 CFR 74.701 - Definitions.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... television program signals and program signals obtained via video recordings (tapes and discs), microwave... television (DTV) reception to the general public and, subject to a minimum video program service requirement... obtained via video recordings (tapes and discs), microwave, common carrier circuits, or other sources. (m...

  14. 47 CFR 74.701 - Definitions.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... television program signals and program signals obtained via video recordings (tapes and discs), microwave... television (DTV) reception to the general public and, subject to a minimum video program service requirement... obtained via video recordings (tapes and discs), microwave, common carrier circuits, or other sources. (m...

  15. 47 CFR 74.701 - Definitions.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... television program signals and program signals obtained via video recordings (tapes and discs), microwave... television (DTV) reception to the general public and, subject to a minimum video program service requirement... obtained via video recordings (tapes and discs), microwave, common carrier circuits, or other sources. (m...

  16. 47 CFR 74.701 - Definitions.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... television program signals and program signals obtained via video recordings (tapes and discs), microwave... television (DTV) reception to the general public and, subject to a minimum video program service requirement... obtained via video recordings (tapes and discs), microwave, common carrier circuits, or other sources. (m...

  17. 47 CFR 74.701 - Definitions.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... television program signals and program signals obtained via video recordings (tapes and discs), microwave... television (DTV) reception to the general public and, subject to a minimum video program service requirement... obtained via video recordings (tapes and discs), microwave, common carrier circuits, or other sources. (m...

  18. New Magnetic Materials and Phenomena for Radar and Microwave Signal Processing Devices - Bulk and Thin Film Ferrites and Metallic Films

    DTIC Science & Technology

    2009-02-15

    Magnon scattered light generally experiences a 90° rotation in polarization from the incident beam. The wave- vector selective BLS measurements...filters, phase locked microwave pulse sources, microwave and millimeter wave devices such as isolators, circulators, phase shifters, secure signal...Wave vector selective Brillouin light scattering measurements and analysis, " C. L. Ordofiez-Romero, B. A. Kalinikos, P. Krivosik, Wei Tong, P

  19. Simulation of the electromagnetic field in a cylindrical cavity of an ECR ions source

    NASA Astrophysics Data System (ADS)

    Estupiñán, A.; Orozco, E. A.; Dugar-Zhabon, V. D.; Murillo Acevedo, M. T.

    2017-12-01

    Now there are numerous sources for multicharged ions production, each being designed for certain science or technological objectives. Electron cyclotron resonance ion sources (ECRIS) are best suited for designing heavy ion accelerators of very high energies, because they can generate multicharged ion beams at relatively great intensities. In these sources, plasma heating and its confinement are effected predominantly in minimum-B magnetic traps, this type of magnetic trap consist of two current coils used for the longitudinal magnetic confinement and a hexapole system around the cavity to generate a transversal confinement of the plasma. In an ECRIS, the electron cyclotron frequency and the microwave frequency are maintained equal on a quasi-ellipsoidal surface localized in the trap volume. It is crucial to heat electrons to energies sufficient to ionize K- and L-levels of heavy atoms. In this work, we present the preliminary numerical results concerning the space distribution of TE 111 microwave field in a cylindrical cavity. The 3D microwave field is calculated by solving the Maxwell equations through the Yee’s method. The magnetic field of minimum-B configuration is determined using the Biot-Savart law. The parameters of the magnetic system are that which guarantee the ECR surface location in a zone of a reasonably high microwave tension. Additionally, the accuracy of electric and magnetic fields calculations are checked.

  20. Assessment of the Barren Ground Caribou Die-off During Winter 2015-2016 Using Passive Microwave Observations

    NASA Astrophysics Data System (ADS)

    Dolant, C.; Montpetit, B.; Langlois, A.; Brucker, L.; Zolina, O.; Johnson, C. A.; Royer, A.; Smith, P.

    2018-05-01

    In summer 2016, more than 50 Arctic Barren Ground caribous were found dead on Prince Charles Island (Nunavut, Canada), a species recently classified as threatened. Neither predator nor sign of diseases was observed and reported. The main hypothesis is that caribous were not able to access food due to a very dense snow surface, created by a strong storm system in spring. Using satellite microwave data, a significant increase in brightness temperature polarization ratio at 19 and 37 GHz was observed in spring 2016 (60% higher than previous two winter seasons). Based on microwave radiative transfer simulations, such anomaly can be explained with a very dense snow surface. This is consistent with the succession of storms and strong winds highlighted in ERA-Interim over Prince Charles Island in spring 2016. Using several sources of data, this study shows that changes in snow conditions explain the caribou die-off due to restricted foraging.

  1. The Anisotropy of the Microwave Background to l = 3500: Deep Field Observations with the Cosmic Background Imager

    NASA Technical Reports Server (NTRS)

    Mason, B. S.; Pearson, T. J.; Readhead, A. C. S.; Shepherd, M. C.; Sievers, J.; Udomprasert, P. S.; Cartwright, J. K.; Farmer, A. J.; Padin, S.; Myers, S. T.; hide

    2002-01-01

    We report measurements of anisotropy in the cosmic microwave background radiation over the multipole range l approximately 200 (right arrow) 3500 with the Cosmic Background Imager based on deep observations of three fields. These results confirm the drop in power with increasing l first reported in earlier measurements with this instrument, and extend the observations of this decline in power out to l approximately 2000. The decline in power is consistent with the predicted damping of primary anisotropies. At larger multipoles, l = 2000-3500, the power is 3.1 sigma greater than standard models for intrinsic microwave background anisotropy in this multipole range, and 3.5 sigma greater than zero. This excess power is not consistent with expected levels of residual radio source contamination but, for sigma 8 is approximately greater than 1, is consistent with predicted levels due to a secondary Sunyaev-Zeldovich anisotropy. Further observations are necessary to confirm the level of this excess and, if confirmed, determine its origin.

  2. Magnetic nano-oscillator driven by pure spin current.

    PubMed

    Demidov, Vladislav E; Urazhdin, Sergei; Ulrichs, Henning; Tiberkevich, Vasyl; Slavin, Andrei; Baither, Dietmar; Schmitz, Guido; Demokritov, Sergej O

    2012-12-01

    With the advent of pure-spin-current sources, spin-based electronic (spintronic) devices no longer require electrical charge transfer, opening new possibilities for both conducting and insulating spintronic systems. Pure spin currents have been used to suppress noise caused by thermal fluctuations in magnetic nanodevices, amplify propagating magnetization waves, and to reduce the dynamic damping in magnetic films. However, generation of coherent auto-oscillations by pure spin currents has not been achieved so far. Here we demonstrate the generation of single-mode coherent auto-oscillations in a device that combines local injection of a pure spin current with enhanced spin-wave radiation losses. Counterintuitively, radiation losses enable excitation of auto-oscillation, suppressing the nonlinear processes that prevent auto-oscillation by redistributing the energy between different modes. Our devices exhibit auto-oscillations at moderate current densities, at a microwave frequency tunable over a wide range. These findings suggest a new route for the implementation of nanoscale microwave sources for next-generation integrated electronics.

  3. The effect of cavity tuning on oxygen beam currents of an A-ECR type 14 GHz electron cyclotron resonance ion source

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tarvainen, O., E-mail: olli.tarvainen@jyu.fi; Orpana, J.; Kronholm, R.

    2016-09-15

    The efficiency of the microwave-plasma coupling plays a significant role in the production of highly charged ion beams with electron cyclotron resonance ion sources (ECRISs). The coupling properties are affected by the mechanical design of the ion source plasma chamber and microwave launching system, as well as damping of the microwave electric field by the plasma. Several experiments attempting to optimize the microwave-plasma coupling characteristics by fine-tuning the frequency of the injected microwaves have been conducted with varying degrees of success. The inherent difficulty in interpretation of the frequency tuning results is that the effects of microwave coupling system andmore » the cavity behavior of the plasma chamber cannot be separated. A preferable approach to study the effect of the cavity properties of the plasma chamber on extracted beam currents is to adjust the cavity dimensions. The results of such cavity tuning experiments conducted with the JYFL 14 GHz ECRIS are reported here. The cavity properties were adjusted by inserting a conducting tuner rod axially into the plasma chamber. The extracted beam currents of oxygen charge states O{sup 3+}–O{sup 7+} were recorded at various tuner positions and frequencies in the range of 14.00–14.15 GHz. It was observed that the tuner position affects the beam currents of high charge state ions up to several tens of percent. In particular, it was found that at some tuner position / frequency combinations the plasma exhibited “mode-hopping” between two operating regimes. The results improve the understanding of the role of plasma chamber cavity properties on ECRIS performances.« less

  4. Container for heat treating materials in microwave ovens

    DOEpatents

    Holcombe, Cressie E.; Dykes, Norman L.; Kimrey, Jr., Harold D.; Mills, James E.

    1989-01-01

    The efficiency of a microwave oven of a conventional two-source configuration and energy level is increased by providing the oven with a container for housing a refractory material to be treated. The container is formed of top and bottom walls transparent to microwaves while the sidewalls, in a circular configuration, are formed of a nonmetallic material opaque to microwave radiation reflecting the radiation penetrating the top and bottom walls radially inwardly into the center of the container wherein a casket of heat-insulating material is provided for housing the material to be heat treated. The reflection of the microwave radiation from the sidewalls increases the concentration of the microwaves upon the material being heat treated while the casket retains the heat to permit the heating of the material to a substantially higher temperature than achieveable in the oven without the container.

  5. High-order UWB pulses scheme to generate multilevel modulation formats based on incoherent optical sources.

    PubMed

    Bolea, Mario; Mora, José; Ortega, Beatriz; Capmany, José

    2013-11-18

    We present a high-order UWB pulses generator based on a microwave photonic filter which provides a set of positive and negative samples by using the slicing of an incoherent optical source and the phase inversion in a Mach-Zehnder modulator. The simple scalability and high reconfigurability of the system permit a better accomplishment of the FCC requirements. Moreover, the proposed scheme permits an easy adaptation to pulse amplitude modulation, bi phase modulation, pulse shape modulation and pulse position modulation. The flexibility of the scheme for being adaptable to multilevel modulation formats permits to increase the transmission bit rate by using hybrid modulation formats.

  6. Phased-array sources based on nonlinear metamaterial nanocavities

    PubMed Central

    Wolf, Omri; Campione, Salvatore; Benz, Alexander; Ravikumar, Arvind P.; Liu, Sheng; Luk, Ting S.; Kadlec, Emil A.; Shaner, Eric A.; Klem, John F.; Sinclair, Michael B.; Brener, Igal

    2015-01-01

    Coherent superposition of light from subwavelength sources is an attractive prospect for the manipulation of the direction, shape and polarization of optical beams. This phenomenon constitutes the basis of phased arrays, commonly used at microwave and radio frequencies. Here we propose a new concept for phased-array sources at infrared frequencies based on metamaterial nanocavities coupled to a highly nonlinear semiconductor heterostructure. Optical pumping of the nanocavity induces a localized, phase-locked, nonlinear resonant polarization that acts as a source feed for a higher-order resonance of the nanocavity. Varying the nanocavity design enables the production of beams with arbitrary shape and polarization. As an example, we demonstrate two second harmonic phased-array sources that perform two optical functions at the second harmonic wavelength (∼5 μm): a beam splitter and a polarizing beam splitter. Proper design of the nanocavity and nonlinear heterostructure will enable such phased arrays to span most of the infrared spectrum. PMID:26126879

  7. Measurements of Transatmospheric Attenuation Statistics at the Microwave Frequencies : 15, 19, and 34 GHz

    DOT National Transportation Integrated Search

    1971-06-01

    Attenuation statistics resulting from a twelve month observation program are presented. The sun is used as a source of microwave radiation. The dynamic range of atmospheric attenuation measurement capability is in excess of 30 dB. Solar radiation cha...

  8. High power microwave source with a three dimensional printed metamaterial slow-wave structure.

    PubMed

    French, David M; Shiffler, Don

    2016-05-01

    For over the last decade, the concept of metamaterials has led to new approaches for considering the interaction of radiation with complex structures. However, practical manifestations of such a device operating at high power densities have proven difficult to achieve due to the resonant nature of metamaterials and the resultant high electric fields, which place severe constraints on manufacturing the slow wave structures. In this paper, we describe the first experimental manifestation of a high power microwave device utilizing a metallic slow wave structure (metamaterial-like) fabricated using additive manufacturing. The feasibility of utilizing additive manufacturing as a technique for building these relatively complicated structures has thus been demonstrated. The MW class microwave source operates in the C-band and shows frequency tunablility with electron beam voltage. The basic electromagnetic characteristics of this device, the construction using additive manufacturing, and the basic performance as a microwave oscillator are considered. Due to the tunable nature of the device, it shows promise not only as an oscillator but also as a microwave amplifier. Therefore, the dispersive characteristics and a discussion of the anticipated gain is included as it relates to an amplifier configuration.

  9. High power microwave source with a three dimensional printed metamaterial slow-wave structure

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    French, David M.; Shiffler, Don

    2016-05-15

    For over the last decade, the concept of metamaterials has led to new approaches for considering the interaction of radiation with complex structures. However, practical manifestations of such a device operating at high power densities have proven difficult to achieve due to the resonant nature of metamaterials and the resultant high electric fields, which place severe constraints on manufacturing the slow wave structures. In this paper, we describe the first experimental manifestation of a high power microwave device utilizing a metallic slow wave structure (metamaterial-like) fabricated using additive manufacturing. The feasibility of utilizing additive manufacturing as a technique for buildingmore » these relatively complicated structures has thus been demonstrated. The MW class microwave source operates in the C-band and shows frequency tunablility with electron beam voltage. The basic electromagnetic characteristics of this device, the construction using additive manufacturing, and the basic performance as a microwave oscillator are considered. Due to the tunable nature of the device, it shows promise not only as an oscillator but also as a microwave amplifier. Therefore, the dispersive characteristics and a discussion of the anticipated gain is included as it relates to an amplifier configuration.« less

  10. Status of experiments at LLNL on high-power X-band microwave generators

    NASA Astrophysics Data System (ADS)

    Houck, Timothy L.; Westenskow, Glen A.

    1994-05-01

    The Microwave Source Facility at the Lawrence Livermore National Laboratory (LLNL) is studying the application of induction accelerator technology to high-power microwave generators suitable for linear collider power sources. We report on the results of two experiments, both using the Choppertron's 11.4 GHz modulator and a 5-MeV, 1-kA induction beam. The first experimental configuration has a single traveling-wave output structure designed to produce in excess of 300 MW in a single fundamental waveguide. This output structure consists of 12 individual cells, the first two incorporating de-Q-ing circuits to dampen higher order resonant modes. The second experiment studies the feasibility of enhancing beam to microwave power conversion by accelerating a modulated beam with induction cells. Referred to as the `reacceleration experiment,' this experiment consists of three traveling-wave output structures designed to produce about 125 MW per output and two induction cells located between the outputs. Status of current and planned experiments are presented.

  11. Modelling of low-temperature/large-area distributed antenna array microwave-plasma reactor used for nanocrystalline diamond deposition

    NASA Astrophysics Data System (ADS)

    Bénédic, Fabien; Baudrillart, Benoit; Achard, Jocelyn

    2018-02-01

    In this paper we investigate a distributed antenna array Plasma Enhanced Chemical Vapor Deposition system, composed of 16 microwave plasma sources arranged in a 2D matrix, which enables the growth of 4-in. diamond films at low pressure and low substrate temperature by using H2/CH4/CO2 gas chemistry. A self-consistent two-dimensional plasma model developed for hydrogen discharges is used to study the discharge behavior. Especially, the gas temperature is estimated close to 350 K at a position corresponding to the substrate location during the growth, which is suitable for low temperature deposition. Multi-source discharge modeling evidences that the uniformity of the plasma sheet formed by the individual plasmas ignited around each elementary microwave source strongly depends on the distance to the antennas. The radial profile of the film thickness homogeneity may be thus linked to the local variations of species density. Contribution to the topical issue "Plasma Sources and Plasma Processes (PSPP)", edited by Luis Lemos Alves, Thierry Belmonte and Tibeinea Minea.

  12. Energy issues in microwave food processing: A review of developments and the enabling potentials of solid-state power delivery.

    PubMed

    Atuonwu, J C; Tassou, S A

    2018-01-23

    The enormous magnitude and variety of microwave applications in household, commercial and industrial food processing creates a strong motivation for improving the energy efficiency and hence, sustainability of the process. This review critically assesses key energy issues associated with microwave food processing, focusing on previous energy performance studies, energy performance metrics, standards and regulations. Factors affecting energy-efficiency are categorised into source, load and source-load matching factors. This highlights the need for highly-flexible and controllable power sources capable of receiving real-time feedback on load properties, and effecting rapid control actions to minimise reflections, heating non-uniformities and other imperfections that lead to energy losses. A case is made for the use of solid-state amplifiers as alternatives to conventional power sources, magnetrons. By a full-scale techno-economic analysis, including energy aspects, it is shown that the use of solid-state amplifiers as replacements to magnetrons is promising, not only from an energy and overall technical perspective, but also in terms of economics.

  13. Injection of auxiliary electrons for increasing the plasma density in highly charged and high intensity ion sources.

    PubMed

    Odorici, F; Malferrari, L; Montanari, A; Rizzoli, R; Mascali, D; Castro, G; Celona, L; Gammino, S; Neri, L

    2016-02-01

    Different electron guns based on cold- or hot-cathode technologies have been developed since 2009 at INFN for operating within ECR plasma chambers as sources of auxiliary electrons, with the aim of boosting the source performances by means of a higher plasma lifetime and density. Their application to microwave discharge ion sources, where plasma is not confined, has required an improvement of the gun design, in order to "screen" the cathode from the plasma particles. Experimental tests carried out on a plasma reactor show a boost of the plasma density, ranging from 10% to 90% when the electron guns are used, as explained by plasma diffusion models.

  14. The 26 December 2001 Solar Event Responsible for GLE63. I. Observations of a Major Long-Duration Flare with the Siberian Solar Radio Telescope

    NASA Astrophysics Data System (ADS)

    Grechnev, V. V.; Kochanov, A. A.

    2016-12-01

    Ground level enhancements (GLEs) of cosmic-ray intensity occur, on average, once a year. Because they are rare, studying the solar sources of GLEs is especially important to approach understanding their origin. The SOL2001-12-26 eruptive-flare event responsible for GLE63 seems to be challenging in some aspects. Deficient observations limited our understanding of it. Analysis of additional observations found for this event provided new results that shed light on the flare configuration and evolution. This article addresses the observations of this flare with the Siberian Solar Radio Telescope (SSRT). Taking advantage of its instrumental characteristics, we analyze the detailed SSRT observations of a major long-duration flare at 5.7 GHz without cleaning the images. The analysis confirms that the source of GLE63 was associated with an event in active region 9742 that comprised two flares. The first flare (04:30 - 05:03 UT) reached a GOES importance of about M1.6. Two microwave sources were observed, whose brightness temperatures at 5.7 GHz exceeded 10 MK. The main flare, up to an importance of M7.1, started at 05:04 UT and occurred in strong magnetic fields. The observed microwave sources reached a brightness temperature of about 250 MK. They were not static. After appearing on the weaker-field periphery of the active region, the microwave sources moved toward each other nearly along the magnetic neutral line, approaching the stronger-field core of the active region, and then moved away from the neutral line like expanding ribbons. These motions rule out an association of the non-thermal microwave sources with a single flaring loop.

  15. Applications of power beaming from space-based nuclear power stations. [Laser beaming to airplanes; microwave beaming to ground

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Powell, J.R.; Botts, T.E.; Hertzberg, A.

    1981-01-01

    Power beaming from space-based reactor systems is examined using an advanced compact, lightweight Rotating Bed Reactor (RBR). Closed Brayton power conversion efficiencies in the range of 30 to 40% can be achieved with turbines, with reactor exit temperatures on the order of 2000/sup 0/K and a liquid drop radiator to reject heat at temperatures of approx. 500/sup 0/K. Higher RBR coolant temperatures (up to approx. 3000/sup 0/K) are possible, but gains in power conversion efficiency are minimal, due to lower expander efficiency (e.g., a MHD generator). Two power beaming applications are examined - laser beaming to airplanes and microwave beamingmore » to fixed ground receivers. Use of the RBR greatly reduces system weight and cost, as compared to solar power sources. Payback times are a few years at present prices for power and airplane fuel.« less

  16. The implications of the COBE diffuse microwave radiation results for cosmic strings

    NASA Technical Reports Server (NTRS)

    Bennett, David P.; Stebbins, Albert; Bouchet, Francois R.

    1992-01-01

    We compare the anisotropies in the cosmic microwave background radiation measured by the COBE experiment to those predicted by cosmic string theories. We use an analytic model for the Delta T/T power spectrum that is based on our previous numerical simulations of strings, under the assumption that cosmic strings are the sole source of the measured anisotropy. This implies a value for the string mass per unit length of 1.5 +/- 0.5 x 10 exp -6 C-squared/G. This is within the range of values required for cosmic strings to successfully seed the formation of large-scale structures in the universe. These results clearly encourage further studies of Delta T/T and large-scale structure in the cosmic string model.

  17. Profiles of ion beams and plasma parameters on a multi-frequencies microwaves large bore electron cyclotron resonance ion source with permanent magnets

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kato, Yushi; Sakamoto, Naoki; Kiriyama, Ryutaro

    2012-02-15

    In order to contribute to various applications of plasma and beams based on an electron cyclotron resonance, a new concept on magnetic field with all magnets on plasma production and confinement has been proposed with enhanced efficiency for broad and dense ion beam. The magnetic field configuration consists of a pair of comb-shaped magnet surrounding plasma chamber cylindrically. Resonance zones corresponding for 2.45 GHz and 11-13 GHz frequencies are positioned at spatially different positions. We launch simultaneously multiplex frequencies microwaves operated individually, try to control profiles of the plasma parameters and the extracted ion beams, and to measure them inmore » detail.« less

  18. Microwave, irrigated, pulsed, or conventional radiofrequency energy source: which energy source for which catheter ablation?

    PubMed

    Erdogan, Ali; Grumbrecht, Stephan; Neumann, Thomas; Neuzner, Joerg; Pitschner, Heinz F

    2003-01-01

    The aim of the study was to compare the diameter of endomyocardial lesions induced with the delivery of microwave, cooled, or pulsed energy versus conventional RF energy. In vitro tests were performed in fresh endomyocardial preparations of pig hearts in a 10-L bath of NaCl 0.9% solution at 37 degrees C and constant 1.5 L/min flow. Ablation 7 Fr catheters with 4-mm tip electrodes were used, except for the delivery of microwave energy. Energy delivery time was set to 60 s/50 W in all experiments. Cooled energy delivery was performed with a closed irrigation catheter. Pulsed energy delivery was performed using a special controller with a duty-cycle of 5 ms. Microwave energy was delivered with a 2.5-GHz generator and 10-mm antenna. Electrode temperature and impedance were measured simultaneously. After ablation, lesion length, width, and depth were measured with microcalipers, and volume calculated by a formula for ellipsoid bodies. Each energy delivery mode was tested in ten experiments. The deepest lesions were created with cooled energy delivery, and the largest volume by microwave energy delivery. Pulsed RF produced significantly deeper lesions than conventional RF energy delivery. Cooled or pulsed RF energy delivery created deeper transmural lesions than conventional RF. To create linear lesions at anatomically complex sites (isthmus), microwave energy seemed superior by rapidly creating deep and long lesions.

  19. Magnetic Structure of a Composite Solar Microwave Burst

    NASA Astrophysics Data System (ADS)

    Lee, Jeongwoo; White, Stephen M.; Liu, Chang; Kliem, Bernhard; Masuda, Satoshi

    2018-03-01

    A composite flare consisting of an impulsive flare SOL2015-06-21T01:42 (GOES class M2.0) and a more gradual, long-duration flare SOL2015-06-21T02:36 (M2.6) from NOAA Active Region 12371, is studied using observations with the Nobeyama Radioheliograph (NoRH) and the Solar Dynamics Observatory (SDO). While composite flares are defined by their characteristic time profiles, in this paper we present imaging observations that demonstrate the spatial relationship of the two flares and allow us to address the nature of the evolution of a composite event. The NoRH maps show that the first flare is confined not only in time, but also in space, as evidenced by the stagnation of ribbon separation and the stationarity of the microwave source. The NoRH also detected another microwave source during the second flare, emerging from a different location where thermal plasma is so depleted that accelerated electrons could survive longer against Coulomb collisional loss. The AIA 131 Å images show that a sigmoidal EUV hot channel developed after the first flare and erupted before the second flare. We suggest that this eruption removed the high-lying flux to let the separatrix dome underneath reconnect with neighboring flux and the second microwave burst follow. This scenario explains how the first microwave burst is related to the much-delayed second microwave burst in this composite event.

  20. A single chip 2 Gbit/s clock recovery subsystem for digital communications

    NASA Astrophysics Data System (ADS)

    Hickling, Ronald M.

    A self-contained clock recovery/data resynchronizer phase locked loop (PLL) for use in microwave and fiber optic digital communications has been fabricated using GaAs integrated circuit technology. The IC contains the analog and digital components for the PLL: an edge-triggered phase detector based on a 1.2 GHz phase/frequency comparator, an op amp for creating the loop filter, and a VCO based on a differential source-coupled pair amplifier.

  1. Stable integrated hyper-parametric oscillator based on coupled optical microcavities.

    PubMed

    Armaroli, Andrea; Feron, Patrice; Dumeige, Yannick

    2015-12-01

    We propose a flexible scheme based on three coupled optical microcavities that permits us to achieve stable oscillations in the microwave range, the frequency of which depends only on the cavity coupling rates. We find that the different dynamical regimes (soft and hard excitation) affect the oscillation intensity, but not their periods. This configuration may permit us to implement compact hyper-parametric sources on an integrated optical circuit with interesting applications in communications, sensing, and metrology.

  2. Microwave disinfection of maxillary and mandibular denture bases contaminated with Candida Albican.

    PubMed

    Bamigboye, S A; Dosumu, O O; Ajayi, D M

    2015-09-01

    Oral environment is not sterile, and dentures worn by the patients can be infected and therefore needs disinfection. Solution disinfectants such as sodium hypochlorite and glutaraldehyde can be used but they have side effects. Microwave disinfection method is more recent, however, there are conflicting reports at the moment on the appropriate power and time regimen for disinfection of denture. To determine the power and time regimen at which the disinfection of dentures can be achieved using microwave. Forty-five acrylic denture bases were fabricated for each of the jaws and infected with solution of a stock Candida albicans and 30 infected bases were employed as control. These were placed in normal saline and then subjected to different microwave power and time regimen. Aliquots from these post-microwave solution were titrated against sabauraud agar which was subsequently incubated at 37 degrees C for 48 hours. The agar were examined for candida growth. The denture bases subjected to microwave disinfection at 350W showed Candida growth after microwave treatment irrespective of the time employed. Conversely, those microwaved at 650W and 690W for four and six minutes showed no microbial growth. The microwave regimen of 650W at 4 and 6 minutes completely disinfected the denture bases. Disinfection at higher microwave energy should be done with caution as distortion of the denture may occur.

  3. Development of ROACH firmware for microwave multiplexed X-ray TES microcalorimeters

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Madden, T. J.; Cecil, T. W.; Gades, L. M.

    We are developing room temperature electronics based upon the ROACH platform for reading out microwave multiplexed X-ray TES. ROACH is an open-source hardware and software platform featuring a large Xilinx Field Programmable Gate Array (FPGA), Power PC processor, several 10GB Ethernet SFP+ interfaces, and a collection of daughter boards for analog signal generation and acquisition. The combination of a ROACH board, ADC/DAC conversion daughter boards, and hardware for RF mixing allows for the generation and capture of multiple RF tones for reading out microwave multiplexed x-ray TES microcalorimeters. The FPGA is used to generate multiple tones in base band, frommore » 10MHz to 250MHz, which are subsequently mixed to RF in the multiple GHz range and sent through the microwave multiplexer. The tones are generated in the FPGA by storing a large lookup table in Quad Data Rate (QDR) SRAM modules and playing out the waveform to a DAC board. Once the signal has been modulated to RF, passed through the microwave multiplexer, and has been modulated back to base band, the signal is digitized by an ADC board. The tones are modulated to 0Hz by using a FPGA circuit consisting of a polyphase filter bank, several Xilinx FFT blocks, Xilinx CORDIC blocks (for converting to magnitude and phase), and special phase accumulator circuit for mixing to exactly 0Hz. Upwards of 256 channels can be simultaneously captured and written into a bank of 256 First-In-First-Out (FIFO) memories, with each FIFO corresponding to a channel. Individual channel data can be further processed in the FPGA before being streamed through a 10GB Ethernet fiber-optic interface to a Linux system. The Linux system runs software written in Python and QT C++ for controlling the ROACH system, capturing data, and processing data.« less

  4. An Algorithm to Generate Deep-Layer Temperatures from Microwave Satellite Observations for the Purpose of Monitoring Climate Change. Revised

    NASA Technical Reports Server (NTRS)

    Goldberg, Mitchell D.; Fleming, Henry E.

    1994-01-01

    An algorithm for generating deep-layer mean temperatures from satellite-observed microwave observations is presented. Unlike traditional temperature retrieval methods, this algorithm does not require a first guess temperature of the ambient atmosphere. By eliminating the first guess a potentially systematic source of error has been removed. The algorithm is expected to yield long-term records that are suitable for detecting small changes in climate. The atmospheric contribution to the deep-layer mean temperature is given by the averaging kernel. The algorithm computes the coefficients that will best approximate a desired averaging kernel from a linear combination of the satellite radiometer's weighting functions. The coefficients are then applied to the measurements to yield the deep-layer mean temperature. Three constraints were used in deriving the algorithm: (1) the sum of the coefficients must be one, (2) the noise of the product is minimized, and (3) the shape of the approximated averaging kernel is well-behaved. Note that a trade-off between constraints 2 and 3 is unavoidable. The algorithm can also be used to combine measurements from a future sensor (i.e., the 20-channel Advanced Microwave Sounding Unit (AMSU)) to yield the same averaging kernel as that based on an earlier sensor (i.e., the 4-channel Microwave Sounding Unit (MSU)). This will allow a time series of deep-layer mean temperatures based on MSU measurements to be continued with AMSU measurements. The AMSU is expected to replace the MSU in 1996.

  5. Multifrequency observations of a solar microwave burst with two-dimensional spatial resolution

    NASA Technical Reports Server (NTRS)

    Gary, Dale E.; Hurford, G. J.

    1990-01-01

    Frequency-agile interferometry observations using three baselines and the technique of frequency synthesis were used to obtain two-dimensional positions of multiple microwave sources at several frequency ranges in a solar flare. Source size and brightness temperature spectra were obtained near the peak of the burst. The size spectrum shows that the source size decreases rapidly with increasing frequency, but the brightness temperature spectrum can be well-fitted by gyrosynchrotron emission from a nonthermal distribution of electrons with power-law index of 4.8. The spatial structure of the burst showed several characteristics in common with primary/secondary bursts discussed by Nakajima et al. (1985). A source of coherent plasma emission at low frequencies is found near the secondary gyrosynchrotron source, associated with the leader spots of the active region.

  6. Hydrothermal microwave processing of microalgae as a pre-treatment and extraction technique for bio-fuels and bio-products.

    PubMed

    Biller, Patrick; Friedman, Cerri; Ross, Andrew B

    2013-05-01

    Microalgae are regarded as a promising source of lipids for bio-diesel production and bio-products. The current paper investigates the processing of microalgal slurries under controlled microwave irradiation. Microwave power was applied to reach temperatures of 80, 100, 120 and 140 °C at a constant residence time of 12 min. Microwave irradiation led to disruption of the algal cell walls which facilitated lipid extraction. The influence of inorganic material on microwave heating was assessed for three strains including, Nannochloropsis occulata, Chlorogloeopsis fritschii and Pseudochoricystis ellipsoidea. Mass balances were calculated and showed that the amount of carbon, nitrogen and total mass recovered in the residue was highly dependent on process conditions and algae strain. Hydrothermal microwave processing (HMP) was found to be an effective pre-treatment for hydrothermal liquefaction and extraction of lipids and phytochemicals. Copyright © 2013 Elsevier Ltd. All rights reserved.

  7. Kilometric shock-associated events and microwave bursts

    NASA Technical Reports Server (NTRS)

    Kundu, M. R.; Macdowall, R. J.; Stone, R. G.

    1990-01-01

    The peak times of impulsive microwaves bursts are compared with those of shock-associated (SA) kilometric radio events. The first peaks in these two frequency regimes are usually well-correlated in time, but the last peaks of the SA events observed at 1 MHz occur an average of 20 min after the last impulsive microwave peaks. In some cases, the SA events overlap in time with the post-burst increases of microwave bursts; sometimes there is general correspondence in their intensity time profiles. These observations suggest that the earlier components of the SA events are usually caused by electrons accelerated in or near the microwave source region. The possibility that the later components of some SA events could be associated with nonthermal electrons responsible for microwave post-burst increases, although they have traditionally been attributed to electrons accelerated at type II burst producing shocks in the upper corona is discussed.

  8. Insensitive detonator apparatus for initiating large failure diameter explosives

    DOEpatents

    Perry, III, William Leroy

    2015-07-28

    A munition according to a preferred embodiment can include a detonator system having a detonator that is selectively coupled to a microwave source that functions to selectively prime, activate, initiate, and/or sensitize an insensitive explosive material for detonation. The preferred detonator can include an explosive cavity having a barrier within which an insensitive explosive material is disposed and a waveguide coupled to the explosive cavity. The preferred system can further include a microwave source coupled to the waveguide such that microwaves enter the explosive cavity and impinge on the insensitive explosive material to sensitize the explosive material for detonation. In use the preferred embodiments permit the deployment and use of munitions that are maintained in an insensitive state until the actual time of use, thereby substantially preventing unauthorized or unintended detonation thereof.

  9. Method and apparatus for melting metals

    DOEpatents

    Moore, Alan F.; Schechter, Donald E.; Morrow, Marvin Stanley

    2006-03-14

    A method and apparatus for melting metals uses microwave energy as the primary source of heat. The metal or mixture of metals are placed in a ceramic crucible which couples, at least partially, with the microwaves to be used. The crucible is encased in a ceramic casket for insulation and placed within a microwave chamber. The chamber may be evacuated and refilled to exclude oxygen. After melting, the crucible may be removed for pouring or poured within the chamber by dripping or running into a heated mold within the chamber. Apparent coupling of the microwaves with softened or molten metal produces high temperatures with great energy savings.

  10. Starship Sails Propelled by Cost-Optimized Directed Energy

    NASA Astrophysics Data System (ADS)

    Benford, J.

    Microwave and laser-propelled sails are a new class of spacecraft using photon acceleration. It is the only method of interstellar flight that has no physics issues. Laboratory demonstrations of basic features of beam-driven propulsion, flight, stability (`beam-riding'), and induced spin, have been completed in the last decade, primarily in the microwave. It offers much lower cost probes after a substantial investment in the launcher. Engineering issues are being addressed by other applications: fusion (microwave, millimeter and laser sources) and astronomy (large aperture antennas). There are many candidate sail materials: carbon nanotubes and microtrusses, beryllium, graphene, etc. For acceleration of a sail, what is the cost-optimum high power system? Here the cost is used to constrain design parameters to estimate system power, aperture and elements of capital and operating cost. From general relations for cost-optimal transmitter aperture and power, system cost scales with kinetic energy and inversely with sail diameter and frequency. So optimal sails will be larger, lower in mass and driven by higher frequency beams. Estimated costs include economies of scale. We present several starship point concepts. Systems based on microwave, millimeter wave and laser technologies are of equal cost at today's costs. The frequency advantage of lasers is cancelled by the high cost of both the laser and the radiating optic. Cost of interstellar sailships is very high, driven by current costs for radiation source, antennas and especially electrical power. The high speeds necessary for fast interstellar missions make the operating cost exceed the capital cost. Such sailcraft will not be flown until the cost of electrical power in space is reduced orders of magnitude below current levels.

  11. Opto-electronic microwave oscillator

    NASA Astrophysics Data System (ADS)

    Yao, X. Steve; Maleki, Lute

    1996-12-01

    Photonic applications are important in RF communication systems to enhance many functions including remote transfer of antenna signals, carrier frequency up or down conversion, antenna beam steering, and signal filtering. Many of these functions require reference frequency oscillators. However, traditional microwave oscillators cannot meet all the requirements of photonic communication systems that need high frequency and low phase noise signal generation. Because photonic systems involve signals in both optical and electrical domains, an ideal signal source should be able to provide electrical and optical signals. In addition, it should be possible to synchronize or control the signal source by both electrical and optical means. We present such a source1-2 that converts continuous light energy into stable and spectrally pure microwave signals. This Opto-Electronic Oscillator, OEO, consists of a pump laser and a feedback circuit including an intensity modulator, an optical fiber delay line, a photodetector, an amplifier, and a filter, as shown in Figure 1a. Its oscillation frequency, limited only by the speed of the modulator, can be up to 75 GHz.

  12. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Matsubara, Y.; Tahara, H.; Nogawa, S.

    A new type of electron source for ion sources, which serves as a cathode has been developed. In this cathode, a high-density microwave plasma is produced under the electron-cyclotron-resonance (ECR) condition, and a high electron current of several amperes can be extracted from it. The structure of this microwave plasma (MP) cathode is very simple and compact. A rod antenna connected to a coaxial line for introducing the microwave power (2.45 GHz) and a rare-earth metal permanent magnet for producing the ECR condition are major components. Since there is no filament in this MP cathode, it has a longer lifetimemore » than the equivalent thermionic filament electron emitter. It offers a great advantage to the operation with reactive as well as inert gases. This MP cathode has been adapted in Kaufman-type ion source and have successfully obtained an argon ion-beam current of 110 mA and an oxygen ion-beam current of 43 mA in 25 mm diameter.« less

  13. Microwave implementation of two-source energy balance approach for estimating evapotranspiration

    NASA Astrophysics Data System (ADS)

    Holmes, Thomas R. H.; Hain, Christopher R.; Crow, Wade T.; Anderson, Martha C.; Kustas, William P.

    2018-02-01

    A newly developed microwave (MW) land surface temperature (LST) product is used to substitute thermal infrared (TIR)-based LST in the Atmosphere-Land Exchange Inverse (ALEXI) modeling framework for estimating evapotranspiration (ET) from space. ALEXI implements a two-source energy balance (TSEB) land surface scheme in a time-differential approach, designed to minimize sensitivity to absolute biases in input records of LST through the analysis of the rate of temperature change in the morning. Thermal infrared retrievals of the diurnal LST curve, traditionally from geostationary platforms, are hindered by cloud cover, reducing model coverage on any given day. This study tests the utility of diurnal temperature information retrieved from a constellation of satellites with microwave radiometers that together provide six to eight observations of Ka-band brightness temperature per location per day. This represents the first ever attempt at a global implementation of ALEXI with MW-based LST and is intended as the first step towards providing all-weather capability to the ALEXI framework. The analysis is based on 9-year-long, global records of ALEXI ET generated using both MW- and TIR-based diurnal LST information as input. In this study, the MW-LST (MW-based LST) sampling is restricted to the same clear-sky days as in the IR-based implementation to be able to analyze the impact of changing the LST dataset separately from the impact of sampling all-sky conditions. The results show that long-term bulk ET estimates from both LST sources agree well, with a spatial correlation of 92 % for total ET in the Europe-Africa domain and agreement in seasonal (3-month) totals of 83-97 % depending on the time of year. Most importantly, the ALEXI-MW (MW-based ALEXI) also matches ALEXI-IR (IR-based ALEXI) very closely in terms of 3-month inter-annual anomalies, demonstrating its ability to capture the development and extent of drought conditions. Weekly ET output from the two parallel ALEXI implementations is further compared to a common ground measured reference provided by the Fluxnet consortium. Overall, the two model implementations generate similar performance metrics (correlation and RMSE) for all but the most challenging sites in terms of spatial heterogeneity and level of aridity. It is concluded that a constellation of MW satellites can effectively be used to provide LST for estimating ET through ALEXI, which is an important step towards all-sky satellite-based retrieval of ET using an energy balance framework.

  14. Observation of valley-selective microwave transport in photonic crystals

    NASA Astrophysics Data System (ADS)

    Ye, Liping; Yang, Yuting; Hong Hang, Zhi; Qiu, Chunyin; Liu, Zhengyou

    2017-12-01

    Recently, the discrete valley degree of freedom has attracted extensive attention in condensed matter physics. Here, we present an experimental observation of the intriguing valley transport for microwaves in photonic crystals, including the bulk valley transport and the valley-projected edge modes along the interface separating different photonic insulating phases. For both cases, valley-selective excitations are realized by a point-like chiral source located at proper locations inside the samples. Our results are promising for exploring unprecedented routes to manipulate microwaves.

  15. Frequency swept microwaves for hyperfine decoupling and time domain dynamic nuclear polarization

    PubMed Central

    Hoff, Daniel E.M.; Albert, Brice J.; Saliba, Edward P.; Scott, Faith J.; Choi, Eric J.; Mardini, Michael; Barnes, Alexander B.

    2015-01-01

    Hyperfine decoupling and pulsed dynamic nuclear polarization (DNP) are promising techniques to improve high field DNP NMR. We explore experimental and theoretical considerations to implement them with magic angle spinning (MAS). Microwave field simulations using the high frequency structural simulator (HFSS) software suite are performed to characterize the inhomogeneous phase independent microwave field throughout a 198 GHz MAS DNP probe. Our calculations show that a microwave power input of 17 W is required to generate an average EPR nutation frequency of 0.84 MHz. We also present a detailed calculation of microwave heating from the HFSS parameters and find that 7.1% of the incident microwave power contributes to dielectric sample heating. Voltage tunable gyrotron oscillators are proposed as a class of frequency agile microwave sources to generate microwave frequency sweeps required for the frequency modulated cross effect, electron spin inversions, and hyperfine decoupling. Electron spin inversions of stable organic radicals are simulated with SPINEVOLUTION using the inhomogeneous microwave fields calculated by HFSS. We calculate an electron spin inversion efficiency of 56% at a spinning frequency of 5 kHz. Finally, we demonstrate gyrotron acceleration potentials required to generate swept microwave frequency profiles for the frequency modulated cross effect and electron spin inversions. PMID:26482131

  16. Frequency swept microwaves for hyperfine decoupling and time domain dynamic nuclear polarization.

    PubMed

    Hoff, Daniel E M; Albert, Brice J; Saliba, Edward P; Scott, Faith J; Choi, Eric J; Mardini, Michael; Barnes, Alexander B

    2015-11-01

    Hyperfine decoupling and pulsed dynamic nuclear polarization (DNP) are promising techniques to improve high field DNP NMR. We explore experimental and theoretical considerations to implement them with magic angle spinning (MAS). Microwave field simulations using the high frequency structural simulator (HFSS) software suite are performed to characterize the inhomogeneous phase independent microwave field throughout a 198GHz MAS DNP probe. Our calculations show that a microwave power input of 17W is required to generate an average EPR nutation frequency of 0.84MHz. We also present a detailed calculation of microwave heating from the HFSS parameters and find that 7.1% of the incident microwave power contributes to dielectric sample heating. Voltage tunable gyrotron oscillators are proposed as a class of frequency agile microwave sources to generate microwave frequency sweeps required for the frequency modulated cross effect, electron spin inversions, and hyperfine decoupling. Electron spin inversions of stable organic radicals are simulated with SPINEVOLUTION using the inhomogeneous microwave fields calculated by HFSS. We calculate an electron spin inversion efficiency of 56% at a spinning frequency of 5kHz. Finally, we demonstrate gyrotron acceleration potentials required to generate swept microwave frequency profiles for the frequency modulated cross effect and electron spin inversions. Copyright © 2015 Elsevier Inc. All rights reserved.

  17. Addendum to Site Assessment and Feasibility of a New Operations Base on the Greenland Ice Sheet: Addendum to Preliminary Report

    DTIC Science & Technology

    2015-11-01

    National Guard PLR Division of Polar Programs SMM /I Special Sensor Microwave/Imager SMMR Scanning Multi-channel Microwave Radiometer ERDC/CRREL...and the Special Sensor Microwave/Imager ( SMM /I). The satellite-based technique uses a difference in the passive microwave brightness temperatures

  18. TOPEX/POSEIDON microwave radiometer performance and in-flight calibration

    NASA Technical Reports Server (NTRS)

    Ruf, C. S.; Keihm, Stephen J.; Subramanya, B.; Janssen, Michael A.

    1994-01-01

    Results of the in-flight calibration and performance evaluation campaign for the TOPEX/POSEIDON microwave radiometer (TMR) are presented. Intercomparisons are made between TMR and various sources of ground truth, including ground-based microwave water vapor radiometers, radiosondes, global climatological models, special sensor microwave imager data over the Amazon rain forest, and models of clear, calm, subpolar ocean regions. After correction for preflight errors in the processing of thermal/vacuum data, relative channel offsets in the open ocean TMR brightness temperatures were noted at the approximately = 1 K level for the three TMR frequencies. Larger absolute offsets of 6-9 K over the rain forest indicated a approximately = 5% gain error in the three channel calibrations. This was corrected by adjusting the antenna pattern correction (APC) algorithm. AS 10% scale error in the TMR path delay estimates, relative to coincident radiosondes, was corrected in part by the APC adjustment and in part by a 5% modification to the value assumed for the 22.235 FGHz water vapor line strength in the path delay retrieval algorithm. After all in-flight corrections to the calibration, TMR global retrieval accuracy for the wet tropospheric range correction is estimated at 1.1 cm root mean square (RMS) with consistent peformance under clear, cloudy, and windy conditions.

  19. Mecanismes physiques et fondements theoriques de la recuperation d'energie micro-ondes ambiante pour les dispositifs sans fil a faible consommation

    NASA Astrophysics Data System (ADS)

    Petzl Lorenz, Carlos Henrique

    Powering low consumption and low duty cycle devices and circuits using Ambient Microwave Energy Harvesting (AMEH) has been the subject of several investigations in recent years. The interest for this research topic has been promoted mainly by various and new applications driven mainly by the Internet of things, Building Automation and new developments in devices for the Body Area Networks. A common characteristic among several of these applications is the need for a wireless source which does not require regular maintenance, and has a small size and low weight. Batteries are often too cumbersome and require a maintenance plan to recharge or replace them, which is not always possible. A new source of energy is thus necessary. Ambient energy harvesting is proposed as an alternative source of power to these low power consumption devices and circuits. This M.A.Sc. work is developed to explore the microwave ambient energy harvesting using diode rectifier circuits. A mathematical model is first developed to explain the mechanisms that contribute to the process of recovery of microwave energy in the range of power found in the ambient microwave energy harvesting applications. An evaluation of this model is made using simulation results and then measurements results from three prototypes developed under this M.A.Sc. program. The results show an excellent agreement between the three methods. The developed model includes losses in the parasitic components of the non-linear element used for the rectification of energy as well as the impedance matching network insertion losses. Based on this model, two possible ways of improving the efficiency of ambient microwave power rectifiers at the power levels found in the AMEH are explored. In this work, it is considered that the AMEH takes place within the range of powers with a peak value of -30 dBm, however at average power levels well below this threshold. First, a cooperative hybrid circuit of ambient energy harvesting is presented where collected microwave and mechanical energies are converted in a cooperative manner through a single nonlinear component. Theory, simulations and measurements show that the total power recovered by the proposed scheme can provide up to twice the efficiency of a circuit combining the output of two independent harvesters. Then, a work demonstrating for the first time that the limitations of a Schottky diode harvester can be overcome by using backward tunnel diodes is presented. It is shown that the limitation reached by the Schottky diodes half a century ago can be overcome thanks to a higher current responsivity obtained through tunneling transport. The measured power recovery efficiency was equal to 18.2% when a -30 dBm signal at 2.4 GHz was applied to the input of the microwave energy harvesting circuit. The efficiency of conversion for a similar circuit using Schottky diodes, which is presented in the first chapter together with the mathematical model, does not exceed 11% at the same input power level and similar frequency. On the date of publication of the articles presented in this thesis, the highest published microwave power conversion efficiency was close to 5% for input power levels equal to -30 dBm and frequency close to 2 GHz. Finally, an application of microwave power transfer is presented. A rectenna operating at 94 GHz is built and measured, an energy conversion efficiency equal to 37.7% was obtained for an input power equal to 3 dBm. This rectenna is proposed as an alternative power source for microrobots, which may not use batteries due to their small size and light weight.

  20. Infrastructure for the design and fabrication of MEMS for RF/microwave and millimeter wave applications

    NASA Astrophysics Data System (ADS)

    Nerguizian, Vahe; Rafaf, Mustapha

    2004-08-01

    This article describes and provides valuable information for companies and universities with strategies to start fabricating MEMS for RF/Microwave and millimeter wave applications. The present work shows the infrastructure developed for RF/Microwave and millimeter wave MEMS platforms, which helps the identification, evaluation and selection of design tools and fabrication foundries taking into account packaging and testing. The selected and implemented simple infrastructure models, based on surface and bulk micromachining, yield inexpensive and innovative approaches for distributed choices of MEMS operating tools. With different educational or industrial institution needs, these models may be modified for specific resource changes using a careful analyzed iteration process. The inputs of the project are evaluation selection criteria and information sources such as financial, technical, availability, accessibility, simplicity, versatility and practical considerations. The outputs of the project are the selection of different MEMS design tools or software (solid modeling, electrostatic/electromagnetic and others, compatible with existing standard RF/Microwave design tools) and different MEMS manufacturing foundries. Typical RF/Microwave and millimeter wave MEMS solutions are introduced on the platform during the evaluation and development phases of the project for the validation of realistic results and operational decision making choices. The encountered challenges during the investigation and the development steps are identified and the dynamic behavior of the infrastructure is emphasized. The inputs (resources) and the outputs (demonstrated solutions) are presented in tables and flow chart mode diagrams.

  1. Liquid fuel reforming using microwave plasma at atmospheric pressure

    NASA Astrophysics Data System (ADS)

    Miotk, Robert; Hrycak, Bartosz; Czylkowski, Dariusz; Dors, Miroslaw; Jasinski, Mariusz; Mizeraczyk, Jerzy

    2016-06-01

    Hydrogen is expected to be one of the most promising energy carriers. Due to the growing interest in hydrogen production technologies, in this paper we present the results of experimental investigations of thermal decomposition and dry reforming of two alcohols (ethanol and isopropanol) in the waveguide-supplied metal-cylinder-based nozzleless microwave (915 MHz) plasma source (MPS). The hydrogen production experiments were preceded by electrodynamics properties investigations of the used MPS and plasma spectroscopic diagnostics. All experimental tests were performed with the working gas (nitrogen or carbon dioxide) flow rate ranging from 1200 to 3900 normal litres per hour and an absorbed microwave power up to 5 kW. The alcohols were introduced into the plasma using an induction heating vaporizer. The ethanol thermal decomposition resulted in hydrogen selectivity up to 100%. The hydrogen production rate was up to 1150 NL(H2) h-1 and the energy yield was 267 NL(H2) kWh-1 of absorbed microwave energy. Due to intense soot production, the thermal decomposition process was not appropriate for isopropanol conversion. Considering the dry reforming process, using isopropanol was more efficient in hydrogen production than ethanol. The rate and energy yield of hydrogen production were up to 1116 NL(H2) h-1 and 223 NL(H2) kWh-1 of microwave energy used, respectively. However, the hydrogen selectivity was no greater than 37%. Selected results given by the experiment were compared with the results of numerical modeling.

  2. Combining Passive Microwave Sounders with CYGNSS information for improved retrievals: Observations during Hurricane Harvey

    NASA Astrophysics Data System (ADS)

    Schreier, M. M.

    2017-12-01

    The launch of CYGNSS (Cyclone Global Navigation Satellite System) has added an interesting component to satellite observations: it can provide wind speeds in the tropical area with a high repetition rate. Passive microwave sounders that are overpassing the same region can benefit from this information, when it comes to the retrieval of temperature or water profiles: the uncertainty about wind speeds has a strong impact on emissivity and reflectivity calculations with respect to surface temperature. This has strong influences on the uncertainty of retrieval of temperature and water content, especially under extreme weather conditions. Adding CYGNSS information to the retrieval can help to reduce errors and provide a significantly better sounder retrieval. Based on observations during Hurricane Harvey, we want to show the impact of CYGNSS data on the retrieval of passive microwave sensors. We will show examples on the impact on the retrieval from polar orbiting instruments, like the Advanced Technology Microwave Sounder (ATMS) and AMSU-A/B on NOAA-18 and 19. In addition we will also show the impact on retrievals from HAMSR (High Altitude MMIC Sounding Radiometer), which was flying on the Global Hawk during the EPOCH campaign. We will compare the results with other observations and estimate the impact of additional CYGNSS information on the microwave retrieval, especially on the impact in error and uncertainty reduction. We think, that a synergetic use of these different data sources could significantly help to produce better assimilation products for forecast assimilation.

  3. Coupled Optoelectronic Oscillators:. Application to Low-Jitter Pulse Generation

    NASA Astrophysics Data System (ADS)

    Yu, N.; Tu, M.; Maleki, L.

    2002-04-01

    Actively mode-locked Erbium-doped fiber lasers (EDFL) have been studied for generating stable ultra-fast pulses (< 2 ps) at high repetition rates (> 5 GHz) [1,2]. These devices can be compact and environmentally stable, quite suitable for fiber-based high-data-rate communications and optical ultra-fast analog-to-digital conversions (ADC) [3]. The pulse-to-pulse jitter of an EDFL-based pulse generator will be ultimately limited by the phase noise of the mode-locking microwave source (typically electronic frequency synthesizers). On the other hand, opto-electronic oscillators (OEO) using fibers have been demonstrated to generate ultra-low phase noise microwaves at 10 GHz and higher [4]. The overall phase noise of an OEO can be much lower than commercially available synthesizers at the offset-frequency range above 100 Hz. Clearly, ultra-low jitter pulses can be generated by taking advantage of the low phase noise of OEOs. In this paper, we report the progress in developing a new low-jitter pulse generator by combing the two technologies. In our approach, the optical oscillator (mode-locked EDFL) and the microwave oscillator (OEO) are coupled through a common Mach-Zehnder (MZ) modulator, thus named coupled opto-electronic oscillator (COEO) [5]. Based on the results of previous OEO study, we can expect a 10 GHz pulse train with jitters less than 10 fs.

  4. Low-Temperature Dynamic Nuclear Polarization at 9.4 Tesla With a 30 Milliwatt Microwave Source

    PubMed Central

    Thurber, Kent R.; Yau, Wai-Ming; Tycko, Robert

    2010-01-01

    Dynamic nuclear polarization (DNP) can provide large signal enhancements in nuclear magnetic resonance (NMR) by transfer of polarization from electron spins to nuclear spins. We discuss several aspects of DNP experiments at 9.4 Tesla (400 MHz resonant frequency for 1H, 264 GHz for electron spins in organic radicals) in the 7–80 K temperature range, using a 30 mW, frequency-tunable microwave source and a quasi-optical microwave bridge for polarization control and low-loss microwave transmission. In experiments on frozen glycerol/water doped with nitroxide radicals, DNP signal enhancements up to a factor of 80 are observed (relative to 1H NMR signals with thermal equilibrium spin polarization). The largest sensitivity enhancements are observed with a new triradical dopant, DOTOPA-TEMPO. Field modulation with a 10 G root-mean-squared amplitude during DNP increases the nuclear spin polarizations by up to 135%. Dependencies of 1H NMR signal amplitudes, nuclear spin relaxation times, and DNP build-up times on the dopant and its concentration, temperature, microwave power, and modulation frequency are reported and discussed. The benefits of low-temperature DNP can be dramatic: the 1H spin polarization is increased approximately 1000-fold at 7 K with DNP, relative to thermal polarization at 80 K. PMID:20392658

  5. Microwave plasma monitoring system for the elemental composition analysis of high temperature process streams

    DOEpatents

    Woskov, Paul P.; Cohn, Daniel R.; Titus, Charles H.; Surma, Jeffrey E.

    1997-01-01

    Microwave-induced plasma for continuous, real time trace element monitoring under harsh and variable conditions. The sensor includes a source of high power microwave energy and a shorted waveguide made of a microwave conductive, high temperature capability refractory material communicating with the source of the microwave energy to generate a plasma. The high power waveguide is constructed to be robust in a hot, hostile environment. It includes an aperture for the passage of gases to be analyzed and a spectrometer is connected to receive light from the plasma. Provision is made for real time in situ calibration. The spectrometer disperses the light, which is then analyzed by a computer. The sensor is capable of making continuous, real time quantitative measurements of desired elements, such as the heavy metals lead and mercury. The invention may be incorporated into a high temperature process device and implemented in situ for example, such as with a DC graphite electrode plasma arc furnace. The invention further provides a system for the elemental analysis of process streams by removing particulate and/or droplet samples therefrom and entraining such samples in the gas flow which passes through the plasma flame. Introduction of and entraining samples in the gas flow may be facilitated by a suction pump, regulating gas flow, gravity or combinations thereof.

  6. Optically Transparent Microwave Polarizer Based On Quasi-Metallic Graphene.

    PubMed

    Grande, Marco; Bianco, Giuseppe Valerio; Vincenti, Maria Antonietta; de Ceglia, Domenico; Capezzuto, Pio; Scalora, Michael; D'Orazio, Antonella; Bruno, Giovanni

    2015-11-25

    In this paper, we report on the engineering and the realization of optically transparent graphene-based microwave devices using Chemical Vapour Deposition (CVD) graphene whose sheet resistance may be tailored down to values below 30 Ω/sq. In particular, we show that the process was successfully used to realize and characterize a simple, optically transparent graphene-based wire-grid polarizer at microwave frequencies (X band). The availability of graphene operating in a quasi-metallic region may allow the integration of graphene layers in several microwave components, thus leading to the realization of fully transparent (and flexible) microwave devices.

  7. Optically Transparent Microwave Polarizer Based On Quasi-Metallic Graphene

    PubMed Central

    Grande, Marco; Bianco, Giuseppe Valerio; Vincenti, Maria Antonietta; de Ceglia, Domenico; Capezzuto, Pio; Scalora, Michael; D’Orazio, Antonella; Bruno, Giovanni

    2015-01-01

    In this paper, we report on the engineering and the realization of optically transparent graphene-based microwave devices using Chemical Vapour Deposition (CVD) graphene whose sheet resistance may be tailored down to values below 30 Ω/sq. In particular, we show that the process was successfully used to realize and characterize a simple, optically transparent graphene-based wire-grid polarizer at microwave frequencies (X band). The availability of graphene operating in a quasi-metallic region may allow the integration of graphene layers in several microwave components, thus leading to the realization of fully transparent (and flexible) microwave devices. PMID:26603112

  8. A time domain based method for the accurate measurement of Q-factor and resonance frequency of microwave resonators

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gyüre, B.; Márkus, B. G.; Bernáth, B.

    2015-09-15

    We present a novel method to determine the resonant frequency and quality factor of microwave resonators which is faster, more stable, and conceptually simpler than the yet existing techniques. The microwave resonator is pumped with the microwave radiation at a frequency away from its resonance. It then emits an exponentially decaying radiation at its eigen-frequency when the excitation is rapidly switched off. The emitted microwave signal is down-converted with a microwave mixer, digitized, and its Fourier transformation (FT) directly yields the resonance curve in a single shot. Being a FT based method, this technique possesses the Fellgett (multiplex) and Connesmore » (accuracy) advantages and it conceptually mimics that of pulsed nuclear magnetic resonance. We also establish a novel benchmark to compare accuracy of the different approaches of microwave resonator measurements. This shows that the present method has similar accuracy to the existing ones, which are based on sweeping or modulating the frequency of the microwave radiation.« less

  9. A flexible telecom satellite repeater based on microwave photonic technologies

    NASA Astrophysics Data System (ADS)

    Sotom, Michel; Benazet, Benoît; Maignan, Michel

    2017-11-01

    Future telecom satellite based on geo-stationary Earth orbit (GEO) will require advanced payloads in Kaband so as to receive, route and re-transmit hundreds of microwave channels over multiple antenna beams. We report on the proof-of-concept demonstration of a analogue repeater making use of microwave photonic technologies for supporting broadband, transparent, and flexible cross-connectivity. It has microwave input and output sections, and features a photonic core for LO distribution, frequency down-conversion, and cross-connection of RF channels. With benefits such as transparency to RF frequency, infinite RF isolation, mass and volume savings, such a microwave photonic cross-connect would compare favourably with microwave implementations, and based on optical MEMS switches could grow up to large port counts.

  10. Fast Determination of Ingredients in Solid Pharmaceuticals by Microwave-Enhanced In-Source Decay of Microwave Plasma Torch Mass Spectrometry.

    PubMed

    Su, Rui; Wang, Xinchen; Hou, Changming; Yang, Meiling; Huang, Keke; Chen, Huanwen

    2017-09-01

    Rapid qualitative and quantitative analysis of solid samples (e.g., pharmaceutical preparations) by using a small and low-resolution mass spectrometer without MS/MS function is still a challenge in ambient pressure ionization mass spectrometric analysis. Herein, a practically efficient method termed microwave-enhanced in-source decay (MEISD) using microwave plasma torch desorption ionization coupled with time-of-flight mass spectrometry (MPTDI-TOF MS) was developed for fast analysis of pharmaceutical tablets using a miniature TOF mass spectrometer without tandem mass function. The intensity of ISD fragmentation was evaluated under different microwave power values. Several factors, including desorption distance and time that might affect the signal intensity and fragmentation, were systematically investigated. It was observed that both the protonated molecular ions and major fragment ions from the active ingredients in tablets could be found in the full-scan mass spectra in positive ion mode, which were comparable to those obtained by a commercial LTQ-XL ion trap mass spectrometer. The structures of the ingredients could be elucidated in detail using the MEISD method, which promotes our understanding of the desorption/ionization processes in microwave plasma torch (MPT). Quantitative analysis of 10 tablets was achieved by full-scan MPTDI-TOF MS with low limit of detection (LOD, 0.763 mg/g), acceptable relative standard deviation (RSD < 7.33%, n =10), and 10 s for each tablet, showing promising applications in high throughput screening of counterfeit drugs. Graphical Abstract ᅟ.

  11. Fast Determination of Ingredients in Solid Pharmaceuticals by Microwave-Enhanced In-Source Decay of Microwave Plasma Torch Mass Spectrometry

    NASA Astrophysics Data System (ADS)

    Su, Rui; Wang, Xinchen; Hou, Changming; Yang, Meiling; Huang, Keke; Chen, Huanwen

    2017-09-01

    Rapid qualitative and quantitative analysis of solid samples (e.g., pharmaceutical preparations) by using a small and low-resolution mass spectrometer without MS/MS function is still a challenge in ambient pressure ionization mass spectrometric analysis. Herein, a practically efficient method termed microwave-enhanced in-source decay (MEISD) using microwave plasma torch desorption ionization coupled with time-of-flight mass spectrometry (MPTDI-TOF MS) was developed for fast analysis of pharmaceutical tablets using a miniature TOF mass spectrometer without tandem mass function. The intensity of ISD fragmentation was evaluated under different microwave power values. Several factors, including desorption distance and time that might affect the signal intensity and fragmentation, were systematically investigated. It was observed that both the protonated molecular ions and major fragment ions from the active ingredients in tablets could be found in the full-scan mass spectra in positive ion mode, which were comparable to those obtained by a commercial LTQ-XL ion trap mass spectrometer. The structures of the ingredients could be elucidated in detail using the MEISD method, which promotes our understanding of the desorption/ionization processes in microwave plasma torch (MPT). Quantitative analysis of 10 tablets was achieved by full-scan MPTDI-TOF MS with low limit of detection (LOD, 0.763 mg/g), acceptable relative standard deviation (RSD < 7.33%, n =10), and 10 s for each tablet, showing promising applications in high throughput screening of counterfeit drugs. [Figure not available: see fulltext.

  12. Injection of auxiliary electrons for increasing the plasma density in highly charged and high intensity ion sources

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Odorici, F., E-mail: fabrizio.odorici@bo.infn.it; Malferrari, L.; Montanari, A.

    Different electron guns based on cold- or hot-cathode technologies have been developed since 2009 at INFN for operating within ECR plasma chambers as sources of auxiliary electrons, with the aim of boosting the source performances by means of a higher plasma lifetime and density. Their application to microwave discharge ion sources, where plasma is not confined, has required an improvement of the gun design, in order to “screen” the cathode from the plasma particles. Experimental tests carried out on a plasma reactor show a boost of the plasma density, ranging from 10% to 90% when the electron guns are used,more » as explained by plasma diffusion models.« less

  13. Experimental Analysis of Pseudospark Sourced Electron Beam

    NASA Astrophysics Data System (ADS)

    Kumar, Niraj; Pal, U. N.; Verma, D. K.; Prajapati, J.; Kumar, M.; Meena, B. L.; Tyagi, M. S.; Srivastava, V.

    2011-12-01

    The pseudospark (PS) discharge has been shown to be a promising source of high brightness, high intensity electron beam pulses. The PS discharge sourced electron beam has potential applications in plasma filled microwave sources where normal material cathode cannot be used. Analysis of the electron beam profile has been done experimentally for different applied voltages. The investigation has been carried out at different axial and radial location inside the drift space in argon atmosphere. This paper represents experimentally found axial and radial variation of the beam current inside the drift tube of PS discharge based plasma cathode electron (PCE) gun. With the help of current density estimation the focusing and defocusing point of electron beam in axial direction can be analyzed.

  14. Aperture synthesis for microwave radiometers in space

    NASA Technical Reports Server (NTRS)

    Levine, D. M.; Good, J. C.

    1983-01-01

    A technique is described for obtaining passive microwave measurements from space with high spatial resolution for remote sensing applications. The technique involves measuring the product of the signal from pairs of antennas at many different antenna spacings, thereby mapping the correlation function of antenna voltage. The intensity of radiation at the source can be obtained from the Fourier transform of this correlation function. Theory is presented to show how the technique can be applied to large extended sources such as the Earth when observed from space. Details are presented for a system with uniformly spaced measurements.

  15. Optical fibre sensors for the monitoring of a microwave plasma UV lamp and ozone generation system

    NASA Astrophysics Data System (ADS)

    O'Keeffe, S.; Ortoneda, M.; Cullen, J. D.; Shaw, A.; Fitzpatrick, C.; Lewis, E.; Phipps, D. A.; Al-Shamma'a, A. I.

    2008-09-01

    The food industry is keen to have new techniques that improve the safety and shelf life of food products without the use of preservatives. The use of UV light and ozone (O3) gas are becoming increasingly popular as methods to decontaminate food and thus extending its shelf life. A microwave radiation device that is a novel source of both germicidal UV and O3 suitable for the food industry has been developed, which offers speed, cost and energy benefits over existing sources. With this system comes the need to monitor a number of conditions, primarily UV intensity and ozone gas concentrations. An optical fibre sensor system is being developed to analyse these properties, in order to control and optimise the outputs of the microwave plasma UV lamp.

  16. 2.32 THz quantum cascade laser frequency-locked to the harmonic of a microwave synthesizer source.

    PubMed

    Danylov, Andriy A; Light, Alexander R; Waldman, Jerry; Erickson, Neal R; Qian, Xifeng; Goodhue, William D

    2012-12-03

    Frequency stabilization of a THz quantum cascade laser (QCL) to the harmonic of a microwave source has been accomplished using a Schottky diode waveguide mixer designed for harmonic mixing. The 2.32 THz, 1.0 milliwatt CW QCL is coupled into the signal port of the mixer and a 110 GHz signal, derived from a harmonic of a microwave synthesizer, is coupled into the IF port. The difference frequency between the 21st harmonic of 110 GHz and the QCL is used in a discriminator to adjust the QCL bias current to stabilize the frequency. The short-term frequency jitter is reduced from 550 kHz to 4.5 kHz (FWHM) and the long-term frequency drift is eliminated. This performance is compared to that of several other THz QCL frequency stabilization techniques.

  17. Munitions having an insensitive detonator system for initiating large failure diameter explosives

    DOEpatents

    Perry, III, William Leroy

    2015-08-04

    A munition according to a preferred embodiment can include a detonator system having a detonator that is selectively coupled to a microwave source that functions to selectively prime, activate, initiate, and/or sensitize an insensitive explosive material for detonation. The preferred detonator can include an explosive cavity having a barrier within which an insensitive explosive material is disposed and a waveguide coupled to the explosive cavity. The preferred system can further include a microwave source coupled to the waveguide such that microwaves enter the explosive cavity and impinge on the insensitive explosive material to sensitize the explosive material for detonation. In use the preferred embodiments permit the deployment and use of munitions that are maintained in an insensitive state until the actual time of use, thereby substantially preventing unauthorized or unintended detonation thereof.

  18. Formaldehyde monitor for automobile exhausts

    NASA Technical Reports Server (NTRS)

    Easley, W. C.

    1973-01-01

    Device makes use of microwave spectral absorption in low-Q resonant Stark cell, and indications are that ultimate sensitivity of instrument is within 100 parts per billion of formaldehyde. Microwave source is very small and requires only six-volt dc bias for operation. Coarse tuning is accomplished mechanically and fine tuning by adjusting dc-bias voltage.

  19. Schottky Barrier Height Tuning via the Dopant Segregation Technique through Low-Temperature Microwave Annealing.

    PubMed

    Fu, Chaochao; Zhou, Xiangbiao; Wang, Yan; Xu, Peng; Xu, Ming; Wu, Dongping; Luo, Jun; Zhao, Chao; Zhang, Shi-Li

    2016-04-27

    The Schottky junction source/drain structure has great potential to replace the traditional p/n junction source/drain structure of the future ultra-scaled metal-oxide-semiconductor field effect transistors (MOSFETs), as it can form ultimately shallow junctions. However, the effective Schottky barrier height (SBH) of the Schottky junction needs to be tuned to be lower than 100 meV in order to obtain a high driving current. In this paper, microwave annealing is employed to modify the effective SBH of NiSi on Si via boron or arsenic dopant segregation. The barrier height decreased from 0.4-0.7 eV to 0.2-0.1 eV for both conduction polarities by annealing below 400 °C. Compared with the required temperature in traditional rapid thermal annealing, the temperature demanded in microwave annealing is ~60 °C lower, and the mechanisms of this observation are briefly discussed. Microwave annealing is hence of high interest to future semiconductor processing owing to its unique capability of forming the metal/semiconductor contact at a remarkably lower temperature.

  20. Schottky Barrier Height Tuning via the Dopant Segregation Technique through Low-Temperature Microwave Annealing

    PubMed Central

    Fu, Chaochao; Zhou, Xiangbiao; Wang, Yan; Xu, Peng; Xu, Ming; Wu, Dongping; Luo, Jun; Zhao, Chao; Zhang, Shi-Li

    2016-01-01

    The Schottky junction source/drain structure has great potential to replace the traditional p/n junction source/drain structure of the future ultra-scaled metal-oxide-semiconductor field effect transistors (MOSFETs), as it can form ultimately shallow junctions. However, the effective Schottky barrier height (SBH) of the Schottky junction needs to be tuned to be lower than 100 meV in order to obtain a high driving current. In this paper, microwave annealing is employed to modify the effective SBH of NiSi on Si via boron or arsenic dopant segregation. The barrier height decreased from 0.4–0.7 eV to 0.2–0.1 eV for both conduction polarities by annealing below 400 °C. Compared with the required temperature in traditional rapid thermal annealing, the temperature demanded in microwave annealing is ~60 °C lower, and the mechanisms of this observation are briefly discussed. Microwave annealing is hence of high interest to future semiconductor processing owing to its unique capability of forming the metal/semiconductor contact at a remarkably lower temperature. PMID:28773440

  1. Microwave-to-optical frequency conversion using a cesium atom coupled to a superconducting resonator

    NASA Astrophysics Data System (ADS)

    Gard, Bryan T.; Jacobs, Kurt; McDermott, R.; Saffman, M.

    2017-07-01

    A candidate for converting quantum information from microwave to optical frequencies is the use of a single atom that interacts with a superconducting microwave resonator on one hand and an optical cavity on the other. The large electric dipole moments and microwave transition frequencies possessed by Rydberg states allow them to couple strongly to superconducting devices. Lasers can then be used to connect a Rydberg transition to an optical transition to realize the conversion. Since the fundamental source of noise in this process is spontaneous emission from the atomic levels, the resulting control problem involves choosing the pulse shapes of the driving lasers so as to maximize the transfer rate while minimizing this loss. Here we consider the concrete example of a cesium atom, along with two specific choices for the levels to be used in the conversion cycle. Under the assumption that spontaneous emission is the only significant source of errors, we use numerical optimization to determine the likely rates for reliable quantum communication that could be achieved with this device. These rates are on the order of a few megaqubits per second.

  2. a Chirped Pulse Fourier Transform Microwave Cp-Ftmw Spectrometer with Laser Ablation Source to Search for Actinide-Containing Molecules and Noble Metal Clusters

    NASA Astrophysics Data System (ADS)

    Marshall, Frank E.; Gillcrist, David Joseph; Persinger, Thomas D.; Moon, Nicole; Grubbs, G. S., II

    2016-06-01

    Microwave spectroscopic techniques have traditionally been part of the foundation of molecular structure and this conference. Instrumental developments by Brooks Pate and sourcing developments by Steve Cooke on these instruments have allowed for the dawning of a new era in modern microwave spectroscopic techniques. With these advances and the growth of powerful computational approaches, microwave spectroscopists can now search for molecules and/or cluster systems of actinide and noble metal-containing species with increasing certainty in molecular assignment even with the difficulties presented with spin-orbit coupling and relativistic effects. Spectrometer and ablation design will be presented along with any preliminary results on actinide-containing molecules or noble metal clusters or interactions. G. G. Brown, B. C. Dian, K. O. Douglass, S. M. Geyer, S. T. Shipman, B. H. Pate, Rev. Sci. Instrum. 79 (2008) 053103-1 - 053103-13 G. S. Grubbs II, C. T. Dewberry, K. C. Etchison, K. E. Kerr, S. A. Cooke, Rev. Sci. Instrum. 78 (2007) 096106-1 - 096106-3

  3. Tissue shrinkage in microwave ablation of liver: an ex vivo predictive model.

    PubMed

    Amabile, Claudio; Farina, Laura; Lopresto, Vanni; Pinto, Rosanna; Cassarino, Simone; Tosoratti, Nevio; Goldberg, S Nahum; Cavagnaro, Marta

    2017-02-01

    The aim of this study was to develop a predictive model of the shrinkage of liver tissues in microwave ablation. Thirty-seven cuboid specimens of ex vivo bovine liver of size ranging from 2 cm to 8 cm were heated exploiting different techniques: 1) using a microwave oven (2.45 GHz) operated at 420 W, 500 W and 700 W for 8 to 20 min, achieving complete carbonisation of the specimens, 2) using a radiofrequency ablation apparatus (450 kHz) operated at 70 W for a time ranging from 6 to 7.5 min obtaining white coagulation of the specimens, and 3) using a microwave (2.45 GHz) ablation apparatus operated at 60 W for 10 min. Measurements of specimen dimensions, carbonised and coagulated regions were performed using a ruler with an accuracy of 1 mm. Based on the results of the first two experiments a predictive model for the contraction of liver tissue from microwave ablation was constructed and compared to the result of the third experiment. For carbonised tissue, a linear contraction of 31 ± 6% was obtained independently of the heating source, power and operation time. Radiofrequency experiments determined that the average percentage linear contraction of white coagulated tissue was 12 ± 5%. The average accuracy of our model was determined to be 3 mm (5%). The proposed model allows the prediction of the shrinkage of liver tissues upon microwave ablation given the extension of the carbonised and coagulated zones. This may be useful in helping to predict whether sufficient tissue volume is ablated in clinical practice.

  4. How to Ignite an Atmospheric Pressure Microwave Plasma Torch without Any Additional Igniters

    PubMed Central

    Leins, Martina; Gaiser, Sandra; Schulz, Andreas; Walker, Matthias; Schumacher, Uwe; Hirth, Thomas

    2015-01-01

    This movie shows how an atmospheric pressure plasma torch can be ignited by microwave power with no additional igniters. After ignition of the plasma, a stable and continuous operation of the plasma is possible and the plasma torch can be used for many different applications. On one hand, the hot (3,600 K gas temperature) plasma can be used for chemical processes and on the other hand the cold afterglow (temperatures down to almost RT) can be applied for surface processes. For example chemical syntheses are interesting volume processes. Here the microwave plasma torch can be used for the decomposition of waste gases which are harmful and contribute to the global warming but are needed as etching gases in growing industry sectors like the semiconductor branch. Another application is the dissociation of CO2. Surplus electrical energy from renewable energy sources can be used to dissociate CO2 to CO and O2. The CO can be further processed to gaseous or liquid higher hydrocarbons thereby providing chemical storage of the energy, synthetic fuels or platform chemicals for the chemical industry. Applications of the afterglow of the plasma torch are the treatment of surfaces to increase the adhesion of lacquer, glue or paint, and the sterilization or decontamination of different kind of surfaces. The movie will explain how to ignite the plasma solely by microwave power without any additional igniters, e.g., electric sparks. The microwave plasma torch is based on a combination of two resonators — a coaxial one which provides the ignition of the plasma and a cylindrical one which guarantees a continuous and stable operation of the plasma after ignition. The plasma can be operated in a long microwave transparent tube for volume processes or shaped by orifices for surface treatment purposes. PMID:25938699

  5. Observational Study of Particle Acceleration in the 2006 December 13 Flare

    NASA Astrophysics Data System (ADS)

    Minoshima, T.; Morimoto, T.; Kawate, T.; Imada, S.; Koshiishi, H.; Masuda, S.; Kubo, M.; Inoue, S.; Isobe, H.; Krucker, S.; Yokoyama, T.

    2008-12-01

    We study the particle acceleration in a flare on 2006 December 13, by using the Hinode, RHESSI, Nobeyama Radio Polarimeters (NoRP) and Nobeyama Radioheliograph (NoRH) observations. For technical reasons, both RHESSI and NoRH have a problem in imaging in this flare. Since we have succeeded in solving the problem, it is now possible to discuss the particle acceleration mechanism from an image analysis. This flare shows very long-lasting (1 hour) non-thermal emissions, consisting of many spikes. We focus on the second major spike at 02:29 UT, because the RHESSI image is available only in this period. The RHESSI 35-100 keV HXR image shows double sources located at the footpoints of the western soft X-ray (SXR) loop seen by the Hinode/XRT. The non-linear force-free (NLFF) modeling based on a magnetogram data by Inoue et al. shows the NLFF to potential magnetic transition of the loop, which would induce the electric field and then accelerate particles. Overlaying the HXR image on the photospheric three-dimensional magnetic field map taken by the Hinode Spectro-Polarimeter, we find that the HXR sources are located at the region where the horizontal magnetic fields invert. The NoRH 34 GHz microwave images show the loop structure connecting the HXR sources. The microwave peaks do not located at the top of the loop but between the loop top and the footpoints. The NoRP microwave spectrum shows the soft-hard-soft pattern in the period, same as the HXR spectrum (Ning 2008). From these observational results we suggest that the electrons were accelerated parallel to the magnetic field line near the magnetic separatrix.

  6. Microwave Power Combiners for Signals of Arbitrary Amplitude

    NASA Technical Reports Server (NTRS)

    Conroy, Bruce; Hoppe, Daniel

    2009-01-01

    Schemes for combining power from coherent microwave sources of arbitrary (unequal or equal) amplitude have been proposed. Most prior microwave-power-combining schemes are limited to sources of equal amplitude. The basic principle of the schemes now proposed is to use quasi-optical components to manipulate the polarizations and phases of two arbitrary-amplitude input signals in such a way as to combine them into one output signal having a specified, fixed polarization. To combine power from more than two sources, one could use multiple powercombining stages based on this principle, feeding the outputs of lower-power stages as inputs to higher-power stages. Quasi-optical components suitable for implementing these schemes include grids of parallel wires, vane polarizers, and a variety of waveguide structures. For the sake of brevity, the remainder of this article illustrates the basic principle by focusing on one scheme in which a wire grid and two vane polarizers would be used. Wire grids are the key quasi-optical elements in many prior equal-power combiners. In somewhat oversimplified terms, a wire grid reflects an incident beam having an electric field parallel to the wires and passes an incident beam having an electric field perpendicular to the wires. In a typical prior equal-power combining scheme, one provides for two properly phased, equal-amplitude signals having mutually perpendicular linear polarizations to impinge from two mutually perpendicular directions on a wire grid in a plane oriented at an angle of 45 with respect to both beam axes. The wires in the grid are oriented to pass one of the incident beams straight through onto the output path and to reflect the other incident beam onto the output path along with the first-mentioned beam.

  7. Nanosecond time-resolved characterization of a pentacene-based room-temperature MASER

    PubMed Central

    Salvadori, Enrico; Breeze, Jonathan D.; Tan, Ke-Jie; Sathian, Juna; Richards, Benjamin; Fung, Mei Wai; Wolfowicz, Gary; Oxborrow, Mark; Alford, Neil McN.; Kay, Christopher W. M.

    2017-01-01

    The performance of a room temperature, zero-field MASER operating at 1.45 GHz has been examined. Nanosecond laser pulses, which are essentially instantaneous on the timescale of the spin dynamics, allow the visible-to-microwave conversion efficiency and temporal response of the MASER to be measured as a function of excitation energy. It is observed that the timing and amplitude of the MASER output pulse are correlated with the laser excitation energy: at higher laser energy, the microwave pulses have larger amplitude and appear after shorter delay than those recorded at lower laser energy. Seeding experiments demonstrate that the output variation may be stabilized by an external source and establish the minimum seeding power required. The dynamics of the MASER emission may be modeled by a pair of first order, non-linear differential equations, derived from the Lotka-Volterra model (Predator-Prey), where by the microwave mode of the resonator is the predator and the spin polarization in the triplet state of pentacene is the prey. Simulations allowed the Einstein coefficient of stimulated emission, the spin-lattice relaxation and the number of triplets contributing to the MASER emission to be estimated. These are essential parameters for the rational improvement of a MASER based on a spin-polarized triplet molecule. PMID:28169331

  8. Emitron: microwave diode

    DOEpatents

    Craig, G.D.; Pettibone, J.S.; Drobot, A.T.

    1982-05-06

    The invention comprises a new class of device, driven by electron or other charged particle flow, for producing coherent microwaves by utilizing the interaction of electromagnetic waves with electron flow in diodes not requiring an external magnetic field. Anode and cathode surfaces are electrically charged with respect to one another by electron flow, for example caused by a Marx bank voltage source or by other charged particle flow, for example by a high energy charged particle beam. This produces an electric field which stimulates an emitted electron beam to flow in the anode-cathode region. The emitted electrons are accelerated by the electric field and coherent microwaves are produced by the three dimensional spatial and temporal interaction of the accelerated electrons with geometrically allowed microwave modes which results in the bunching of the electrons and the pumping of at least one dominant microwave mode.

  9. Modern Microwave and Millimeter-Wave Power Electronics

    NASA Astrophysics Data System (ADS)

    Barker, Robert J.; Luhmann, Neville C.; Booske, John H.; Nusinovich, Gregory S.

    2005-04-01

    A comprehensive study of microwave vacuum electronic devices and their current and future applications While both vacuum and solid-state electronics continue to evolve and provide unique solutions, emerging commercial and military applications that call for higher power and higher frequencies to accommodate massive volumes of transmitted data are the natural domain of vacuum electronics technology. Modern Microwave and Millimeter-Wave Power Electronics provides systems designers, engineers, and researchers-especially those with primarily solid-state training-with a thoroughly up-to-date survey of the rich field of microwave vacuum electronic device (MVED) technology. This book familiarizes the R&D and academic communities with the capabilities and limitations of MVED and highlights the exciting scientific breakthroughs of the past decade that are dramatically increasing the compactness, efficiency, cost-effectiveness, and reliability of this entire class of devices. This comprehensive text explores a wide range of topics: * Traveling-wave tubes, which form the backbone of satellite and airborne communications, as well as of military electronic countermeasures systems * Microfabricated MVEDs and advanced electron beam sources * Klystrons, gyro-amplifiers, and crossed-field devices * "Virtual prototyping" of MVEDs via advanced 3-D computational models * High-Power Microwave (HPM) sources * Next-generation microwave structures and circuits * How to achieve linear amplification * Advanced materials technologies for MVEDs * A Web site appendix providing a step-by-step walk-through of a typical MVED design process Concluding with an in-depth examination of emerging applications and future possibilities for MVEDs, Modern Microwave and Millimeter-Wave Power Electronics ensures that systems designers and engineers understand and utilize the significant potential of this mature, yet continually developing technology. SPECIAL NOTE: All of the editors' royalties realized from the sale of this book will fund the future research and publication activities of graduate students in the vacuum electronics field.

  10. High-resolution photon spectroscopy with a microwave-multiplexed 4-pixel transition edge sensor array

    NASA Astrophysics Data System (ADS)

    Guss, Paul; Rabin, Michael; Croce, Mark; Hoteling, Nathan; Schwellenbach, David; Kruschwitz, Craig; Mocko, Veronika; Mukhopadhyay, Sanjoy

    2017-09-01

    We demonstrate very high-resolution photon spectroscopy with a microwave-multiplexed 4-pixel transition edge sensor (TES) array. The readout circuit consists of superconducting microwave resonators coupled to radio frequency superconducting-quantum-interference devices (RF-SQUIDs) and transduces changes in input current to changes in phase of a microwave signal. We used a flux-ramp modulation to linearize the response and avoid low-frequency noise. The result is a very high-resolution photon spectroscopy with a microwave-multiplexed 4-pixel transition edge sensor array. We performed and validated a small-scale demonstration and test of all the components of our concept system, which encompassed microcalorimetry, microwave multiplexing, RF-SQUIDs, and software-defined radio (SDR). We shall display data we acquired in the first simultaneous combination of all key innovations in a 4-pixel demonstration, including microcalorimetry, microwave multiplexing, RF-SQUIDs, and SDR. We present the energy spectrum of a gadolinium-153 (153Gd) source we measured using our 4-pixel TES array and the RF-SQUID multiplexer. For each pixel, one can observe the two 97.4 and 103.2 keV photopeaks. We measured the 153Gd photon source with an achieved energy resolution of 70 eV, full width half maximum (FWHM) at 100 keV, and an equivalent readout system noise of 90 pA/pHz at the TES. This demonstration establishes a path for the readout of cryogenic x-ray and gamma ray sensor arrays with more elements and spectral resolving powers. We believe this project has improved capabilities and substantively advanced the science useful for missions such as nuclear forensics, emergency response, and treaty verification through the explored TES developments.

  11. Application of BiFeO3-based on nickel foam composites with a highly efficient catalytic activity and easily recyclable in Fenton-like process under microwave irradiation

    NASA Astrophysics Data System (ADS)

    Li, Shuo; Zhang, Guangshan; Zheng, Heshan; Zheng, Yongjie; Wang, Peng

    2018-05-01

    In this study, BiFeO3 (BFO) powders decorated on nickel foam (NF) with a high catalytic activity are prepared via a one-step microwave-assisted hydrothermal method. The factors that influence the degradation of bisphenol A (BPA) with BFO/NFs as catalysts are optimized to improve the catalytic activity in a microwave-enhanced Fenton-like process. BFO/NF exhibit a superior catalytic activity with a high BPA removal ratio (98.4%) and TOC removal ratio (69.5%) within 5 min. Results indicate that NF significantly affect the improvement of the catalytic activity of BFO because it served as a source of hydroxyl radicals (•OH) during degradation. The amount of •OH generated by BFO/NF is approximately 1.65-fold higher than that by pure BFO. After six reaction cycles, the stability and reusability of •OH remain high. These findings provide new insights into the synthesis of composites on heterogeneous catalysts with high efficiency and easy recyclability for water treatment applications.

  12. Dielectric Characterization of PCL-Based Thermoplastic Materials for Microwave Diagnostic and Therapeutic Applications

    PubMed Central

    Aguilar, Suzette M.; Shea, Jacob D.; Al-Joumayly, Mudar A.; Van Veen, Barry D.; Behdad, Nader; Hagness, Susan C.

    2011-01-01

    We propose the use of a polycaprolactone (PCL)-based thermoplastic mesh as a tissue-immobilization interface for microwave imaging and microwave hyperthermia treatment. An investigation of the dielectric properties of two PCL-based thermoplastic materials in the frequency range of 0.5 – 3.5 GHz is presented. The frequency-dependent dielectric constant and effective conductivity of the PCL-based thermoplastics are characterized using measurements of microstrip transmission lines fabricated on substrates comprised of the thermoplastic meshes. We also examine the impact of the presence of a PCL-based thermoplastic mesh on microwave breast imaging. We use a numerical test bed comprised of a previously reported three-dimensional anatomically realistic breast phantom and a multi-frequency microwave inverse scattering algorithm. We demonstrate that the PCL-based thermoplastic material and the assumed biocompatible medium of vegetable oil are sufficiently well matched such that the PCL layer may be neglected by the imaging solution without sacrificing imaging quality. Our results suggest that PCL-based thermoplastics are promising materials as tissue immobilization structures for microwave diagnostic and therapeutic applications. PMID:21622068

  13. On-chip dual-comb source for spectroscopy.

    PubMed

    Dutt, Avik; Joshi, Chaitanya; Ji, Xingchen; Cardenas, Jaime; Okawachi, Yoshitomo; Luke, Kevin; Gaeta, Alexander L; Lipson, Michal

    2018-03-01

    Dual-comb spectroscopy is a powerful technique for real-time, broadband optical sampling of molecular spectra, which requires no moving components. Recent developments with microresonator-based platforms have enabled frequency combs at the chip scale. However, the need to precisely match the resonance wavelengths of distinct high quality-factor microcavities has hindered the development of on-chip dual combs. We report the simultaneous generation of two microresonator combs on the same chip from a single laser, drastically reducing experimental complexity. We demonstrate broadband optical spectra spanning 51 THz and low-noise operation of both combs by deterministically tuning into soliton mode-locked states using integrated microheaters, resulting in narrow (<10 kHz) microwave beat notes. We further use one comb as a reference to probe the formation dynamics of the other comb, thus introducing a technique to investigate comb evolution without auxiliary lasers or microwave oscillators. We demonstrate high signal-to-noise ratio absorption spectroscopy spanning 170 nm using the dual-comb source over a 20-μs acquisition time. Our device paves the way for compact and robust spectrometers at nanosecond time scales enabled by large beat-note spacings (>1 GHz).

  14. Microwave radiometer studies of atmospheric water over the oceans, volume 2

    NASA Technical Reports Server (NTRS)

    Katsaros, Kristina B.

    1992-01-01

    Since the Seasat carried the Scanning Multichannel Microwave Radiometer (SMMR) into space in July of 1978, shortly followed by the SMMR on Nimbus 7, which operated for almost a decade, a new type of data source on atmospheric water vapor and other meteorological parameters has been available for analysis of weather systems over the ocean. Since 1987, we have had the Scanning Multichannel Microwave/Imager (SSM/I) instrument on Defense Meteorological Satellites providing similar data. We present a collection of our work performed over the last years of the study.

  15. One-step microwave synthesis of photoluminescent carbon nanoparticles from sodium dextran sulfate water solution

    NASA Astrophysics Data System (ADS)

    Kokorina, Alina A.; Goryacheva, Irina Y.; Sapelkin, Andrei V.; Sukhorukov, Gleb B.

    2018-04-01

    Photoluminescent (PL) carbon nanoparticles (CNPs) have been synthesized by one-step microwave irradiation from water solution of sodium dextran sulfate (DSS) as the sole carbon source. Microwave (MW) method is very simple and cheap and it provides fast synthesis of CNPs. We have varied synthesis time for obtaining high luminescent CNPs. The synthesized CNPs exhibit excitation-dependent photoluminescent. Final CNPs water solution has a blue- green luminescence. CNPs have low cytotoxicity, good photostability and can be potentially suitable candidates for bioimaging, analysis or analytical tests.

  16. Applications of life cycle assessment and cost analysis in health care waste management

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Soares, Sebastiao Roberto, E-mail: soares@ens.ufsc.br; Finotti, Alexandra Rodrigues, E-mail: finotti@ens.ufsc.br; Prudencio da Silva, Vamilson, E-mail: vamilson@epagri.sc.gov.br

    Highlights: Black-Right-Pointing-Pointer Three Health Care Waste (HCW) scenarios were assessed through environmental and cost analysis. Black-Right-Pointing-Pointer HCW treatment using microwave oven had the lowest environmental impacts and costs in comparison with autoclave and lime. Black-Right-Pointing-Pointer Lime had the worst environmental and economic results for HCW treatment, in comparison with autoclave and microwave. - Abstract: The establishment of rules to manage Health Care Waste (HCW) is a challenge for the public sector. Regulatory agencies must ensure the safety of waste management alternatives for two very different profiles of generators: (1) hospitals, which concentrate the production of HCW and (2) small establishments, such as clinics, pharmacies and other sources, that generate dispersed quantities of HCW and are scattered throughout the city. To assist in developing sector regulations for the small generators, we evaluated three management scenarios using decision-making tools. They consisted of a disinfection technique (microwave, autoclave and lime) followed by landfilling, where transportation was also included. The microwave, autoclave and lime techniques were tested at the laboratory to establish the operating parameters to ensure their efficiency in disinfection. Using a life cycle assessment (LCA) and cost analysis, the decision-making tools aimed to determine the technique with the best environmental performance. This consisted of evaluating the eco-efficiency of each scenario. Based on the life cycle assessment, microwaving had the lowest environmental impact (12.64 Pt) followed by autoclaving (48.46 Pt). The cost analyses indicated values of USmore » $$ 0.12 kg{sup -1} for the waste treated with microwaves, US$$ 1.10 kg{sup -1} for the waste treated by the autoclave and US$ 1.53 kg{sup -1} for the waste treated with lime. The microwave disinfection presented the best eco-efficiency performance among those studied and provided a feasible alternative to subsidize the formulation of the policy for small generators of HCW.« less

  17. Heating of tissues by microwaves: a model analysis.

    PubMed

    Foster, K R; Lozano-Nieto, A; Riu, P J; Ely, T S

    1998-01-01

    We consider the thermal response times for heating of tissue subject to nonionizing (microwave or infrared) radiation. The analysis is based on a dimensionless form of the bioheat equation. The thermal response is governed by two time constants: one (tau1) pertains to heat convection by blood flow, and is of the order of 20-30 min for physiologically normal perfusion rates; the second (tau2) characterizes heat conduction and varies as the square of a distance that characterizes the spatial extent of the heating. Two idealized cases are examined. The first is a tissue block with an insulated surface, subject to irradiation with an exponentially decreasing specific absorption rate, which models a large surface area of tissue exposed to microwaves. The second is a hemispherical region of tissue exposed at a spatially uniform specific absorption rate, which models localized exposure. In both cases, the steady-state temperature increase can be written as the product of the incident power density and an effective time constant tau(eff), which is defined for each geometry as an appropriate function of tau1 and tau2. In appropriate limits of the ratio of these time constants, the local temperature rise is dominated by conductive or convective heat transport. Predictions of the block model agree well with recent data for the thresholds for perception of warmth or pain from exposure to microwave energy. Using these concepts, we developed a thermal averaging time that might be used in standards for human exposure to microwave radiation, to limit the temperature rise in tissue from radiation by pulsed sources. We compare the ANSI exposure standards for microwaves and infrared laser radiation with respect to the maximal increase in tissue temperature that would be allowed at the maximal permissible exposures. A historical appendix presents the origin of the 6-min averaging time used in the microwave standard.

  18. Global relation between microwave satellite vegetation products and vegetation productivity

    NASA Astrophysics Data System (ADS)

    Teubner, Irene E.; Forkel, Matthias; Jung, Martin; Miralles, Diego G.; Dorigo, Wouter A.

    2017-04-01

    The occurrence of unfavourable environmental conditions like droughts commonly reduces the photosynthetic activity of ecosystems and, hence, their potential to take up carbon from the atmosphere. Ecosystem photosynthetic activity is commonly determined using remote sensing observations in the optical domain, which however have limitations particularly in regions of frequent cloud cover, e.g. the tropics. In this study, we explore the potential of vegetation optical depth (VOD) from microwave satellite observations as an alternative source for assessing vegetation productivity. VOD serves as an estimate for vegetation density and water content, which has an impact on plant physiological processes and hence should potentially provide a link to gross primary production (GPP). However, to date, it is unclear how microwave-retrieved VOD data and GPP data are related. We compare seasonal dynamics and anomalies of VOD retrievals from different satellite sensors and microwave frequencies with site level and global GPP estimates. We use VOD observations from active (ASCAT) and passive microwave sensors (AMSR-E, SMOS). We include eddy covariance measurements from the FLUXNET2015 dataset to assess the VOD products at site level. For a global scale analysis, we use the solar-induced chlorophyll fluorescence (SIF) observations from GOME-2 as a proxy for GPP and the FLUXCOM GPP product, which presents an upscaling of site measurements based on remote sensing data. Our results demonstrate that in general a good agreement between VOD and GPP or SIF exists. However, the strength of these relations depends on the microwave frequency, land cover type, and the time within the growing season. Correlations between anomalies of VOD and GPP or SIF support the assumption that microwave-derived VOD can be used to monitor vegetation productivity dynamics. The study is performed as part of the EOWAVE project funded by the Vienna University of Technology (http://eowave.geo.tuwien.ac.at/) and the STR3S project funded by the Belgian Science Policy Office (BELSPO) as part of the STEREO III programme.

  19. Development of an intravascular heating source using an MR imaging guidewire.

    PubMed

    Qiu, Bensheng; Yeung, Christopher J; Du, Xiangying; Atalar, Ergin; Yang, Xiaoming

    2002-12-01

    To develop a novel endovascular heating source using a magnetic resonance (MR) imaging guidewire (MRIG) to deliver controlled microwave energy into the target vessel for thermal enhancement of vascular gene transfection. A 0.032-inch MRIG was connected to a 2.45-GHz microwave generator. We 1) calculated the microwave power loss along the MRIG, 2) simulated the power distribution around the MRIG, 3) measured the temperature increase vs. input power with the MRIG, and 4) evaluated the thermal effect on the balloon-compressed/microwave-heated aorta of six living rabbits. In addition, during balloon inflation, we also simultaneously generated high-resolution MR images of the aortic wall. The power loss was calculated to be 3.9 dB along the MRIG. The simulation-predicted power distribution pattern was cylindrically symmetric, analogous to the geometry of vessels. Under balloon compression, the vessel wall could be locally heated at 41 degrees C with no thermal damage apparent on histology. This study demonstrates the possibility of using the MRIG as a multifunctional device, not only as a receiver antenna to generate intravascular high-resolution MR images of atherosclerotic plaques and as a conventional guidewire to guide endovascular interventions during MR imaging, but also as a potential intravascular heating source to produce local heat for thermal enhancement of vascular gene transfection. Copyright 2002 Wiley-Liss, Inc.

  20. High-Frequency, 6.2 Angstrom pN Heterojunction Diodes

    DTIC Science & Technology

    2012-01-01

    this paper were grown by solid- source molecular beam epitaxy (MBE). Here, the use of a lower- case letter (p) for the narrow bandgap layer and upper...electron and hole mobilities. High electron mobil- ity transistors ( HEMTs ) fabricated from these materials have shown good operating characteristics [1,2...Furthermore, the first monolithic microwave integrated circuits (MMICs) fabricated using 6.1 Å based HEMTs have been demonstrated [3]. New mate- rials

  1. Coconut coir pith lignin: A physicochemical and thermal characterization.

    PubMed

    Asoka Panamgama, L; Peramune, P R U S K

    2018-07-01

    The structural and thermal features of coconut coir pith lignin, isolated by three different extraction protocols incorporating two different energy supply sources, were characterized by different analytical tools. The three different chemical extraction protocols were alkaline - 7.5% (w/v) NaOH, organosolv - 85% (v/v) formic and acetic acids at 7:3 (v/v) ratio and polyethylene glycol (PEG): water ratio at 80:20wt%. The two sources of energy were thermal or microwave. Raw lignins were modified by epichlorohydrin to enhance reactivity, and the characteristics of raw and modified lignins were comparatively analysed. Using the thermal energy source, the alkaline and organosolv processes obtained the highest and lowest lignin yields of 26.4±1.5wt% and 3.4±0.2wt%, respectively, as shown by wet chemical analysis. Specific functional group analysis by Fourier transform infrared spectra (FTIR) revealed that significantly different amounts of hydroxyl and carbonyl groups exist in alkaline, organosolv and PEG lignins. Thermogravimetric analysis (TGA) illustrated that the lowest degradation onset temperature was recorded for organosolv lignin, and the overall order was organosolv

  2. Phased-array sources based on nonlinear metamaterial nanocavities

    DOE PAGES

    Wolf, Omri; Campione, Salvatore; Benz, Alexander; ...

    2015-07-01

    Coherent superposition of light from subwavelength sources is an attractive prospect for the manipulation of the direction, shape and polarization of optical beams. This phenomenon constitutes the basis of phased arrays, commonly used at microwave and radio frequencies. Here we propose a new concept for phased-array sources at infrared frequencies based on metamaterial nanocavities coupled to a highly nonlinear semiconductor heterostructure. Optical pumping of the nanocavity induces a localized, phase-locked, nonlinear resonant polarization that acts as a source feed for a higher-order resonance of the nanocavity. Varying the nanocavity design enables the production of beams with arbitrary shape and polarization.more » As an example, we demonstrate two second harmonic phased-array sources that perform two optical functions at the second harmonic wavelength (~5 μm): a beam splitter and a polarizing beam splitter. As a result, proper design of the nanocavity and nonlinear heterostructure will enable such phased arrays to span most of the infrared spectrum.« less

  3. PASOTRON high-energy microwave source

    NASA Astrophysics Data System (ADS)

    Goebel, Dan M.; Schumacher, Robert W.; Butler, Jennifer M.; Hyman, Jay, Jr.; Santoru, Joseph; Watkins, Ron M.; Harvey, Robin J.; Dolezal, Franklin A.; Eisenhart, Robert L.; Schneider, Authur J.

    1992-04-01

    A unique, high-energy microwave source, called PASOTRON (Plasma-Assisted Slow-wave Oscillator), has been developed. The PASOTRON utilizes a long-pulse E-gun and plasma- filled slow-wave structure (SWS) to produce high-energy pulses from a simple, lightweight device that utilizes no externally produced magnetic fields. Long pulses are obtained from a novel E-gun that employs a low-pressure glow discharge to provide a stable, high current- density electron source. The electron accelerator consists of a high-perveance, multi-aperture array. The E-beam is operated in the ion-focused regime where the plasma filling the SWS space-charge neutralizes the beam, and the self-pinch force compresses the beamlets and increases the beam current density. A scale-model PASOTRON, operating as a backward- wave oscillator in C-band with a 100-kV E-beam, has produced output powers in the 3 to 5 MW range and pulse lengths of over 100 microsecond(s) ec, corresponding to an integrated energy per pulse of up to 500 J. The E-beam to microwave-radiation power conversion efficiency is about 20%.

  4. Theoretical investigation of the microwave electron gun

    NASA Astrophysics Data System (ADS)

    Gao, J.

    1990-12-01

    In this article the microwave electron gun (rf gun) is investigated theoretically in a general way. After a brief review of the sources of emittance growth in a cavity, the optimization criteria are given and optimized electric field distributions on the axes of the cavities are found, from which cavities for a rf gun can be designed.

  5. Millimeter wave generation by relativistic electron beams and microwave-plasma interaction

    NASA Astrophysics Data System (ADS)

    Kuo, Spencer

    1990-12-01

    The design and operation of a compact, high power, millimeter wave source (cusptron) has been completed and proven successful. Extensive theoretical analysis of cusptron beam and rf dynamics has been carried out and published. Theory agrees beautifully with experiment. Microwave Bragg scattering due to been achieved by using expanding plasmas to upshift rf signal frequencies.

  6. New design for a microwave discharge lamp.

    PubMed

    Glangetas, A

    1980-03-01

    A simple discharge lamp with a microwave cavity fitting inside provides an intense source of VUV resonance radiation for photochemical work inside a vacuum chamber. Good coupling and minimum reabsorption result in better efficiency ( greater, similar1%) and more intense output power (up to 2.5x10(16) quanta s(-1)) than have been achieved previously.

  7. Enhanced Microwave Hyperthermia of Cancer Cells with Fullerene.

    PubMed

    Sun, Mingrui; Kiourti, Asimina; Wang, Hai; Zhao, Shuting; Zhao, Gang; Lu, Xiongbin; Volakis, John L; He, Xiaoming

    2016-07-05

    Hyperthermia generated with various energy sources including microwave has been widely studied for cancer treatment. However, the potential damage due to nontargeted heating of normal tissue is a major hurdle to its widespread application. Fullerene is a potential agent for improving cancer therapy with microwave hyperthermia but is limited by its poor solubility in water for biomedical applications. Here we report a combination therapy for enhanced cancer cell destruction by combining microwave heating with C60-PCNPs consisting of fullerene (C60) encapsulated in Pluronic F127-chitosan nanoparticles (PCNPs) with high water solubility. A cell culture dish integrated with an antenna was fabricated to generate microwave (2.7 GHz) for heating PC-3 human prostate cancer cells either with or without the C60-PCNPs. The cell viability data show that the C60-PCNPs alone have minimal cytotoxicity. The combination of microwave heating and C60-PCNPs is significantly more effective than the microwave heating alone in killing the cancer cells (7.5 versus 42.2% cell survival). Moreover, the combination of microwave heating and C60-PCNPs is significantly more destructive to the cancer cells than the combination of simple water-bath heating (with a similar thermal history to microwave heating) and C60-PCNPs (7.5 versus 32.5% survival) because the C60 in the many nanoparticles taken up by the cells can absorb the microwave energy and convert it into heat to enhance heating inside the cells under microwave irradiation. These data suggest the great potential of targeted heating via fullerene for enhanced cancer treatment by microwave hyperthermia.

  8. Electrode structure of a compact microwave driven capacitively coupled atomic beam source

    NASA Astrophysics Data System (ADS)

    Shimabukuro, Yuji; Takahashi, Hidenori; Wada, Motoi

    2018-01-01

    A compact magnetic field free atomic beam source was designed, assembled and tested the performance to produce hydrogen and nitrogen atoms. A forced air-cooled solid-state microwave power supply at 2.45 GHz frequency drives the source up to 100 W through a coaxial transmission cable coupled to a triple stub tuner for realizing a proper matching condition to the discharge load. The discharge structure of the source affected the range of operation pressure, and the pressure was reduced by four orders of magnitude through improving the electrode geometry to enhance the local electric field intensity. Optical emission spectra of the produced plasmas indicate production of hydrogen and nitrogen atoms, while the flux intensity of excited nitrogen atoms monitored by a surface ionization type detector showed the signal level close to a source developed for molecular beam epitaxy applications with 500 W RF power.

  9. Hg-201 (+) CO-Magnetometer for HG-199(+) Trapped Ion Space Atomic Clocks

    NASA Technical Reports Server (NTRS)

    Burt, Eric A. (Inventor); Taghavi, Shervin (Inventor); Tjoelker, Robert L. (Inventor)

    2011-01-01

    Local magnetic field strength in a trapped ion atomic clock is measured in real time, with high accuracy and without degrading clock performance, and the measurement is used to compensate for ambient magnetic field perturbations. First and second isotopes of an element are co-located within the linear ion trap. The first isotope has a resonant microwave transition between two hyperfine energy states, and the second isotope has a resonant Zeeman transition. Optical sources emit ultraviolet light that optically pump both isotopes. A microwave radiation source simultaneously emits microwave fields resonant with the first isotope's clock transition and the second isotope's Zeeman transition, and an optical detector measures the fluorescence from optically pumping both isotopes. The second isotope's Zeeman transition provides the measure of magnetic field strength, and the measurement is used to compensate the first isotope's clock transition or to adjust the applied C-field to reduce the effects of ambient magnetic field perturbations.

  10. A nonequilibrium model for a moderate pressure hydrogen microwave discharge plasma

    NASA Technical Reports Server (NTRS)

    Scott, Carl D.

    1993-01-01

    This document describes a simple nonequilibrium energy exchange and chemical reaction model to be used in a computational fluid dynamics calculation for a hydrogen plasma excited by microwaves. The model takes into account the exchange between the electrons and excited states of molecular and atomic hydrogen. Specifically, electron-translation, electron-vibration, translation-vibration, ionization, and dissociation are included. The model assumes three temperatures, translational/rotational, vibrational, and electron, each describing a Boltzmann distribution for its respective energy mode. The energy from the microwave source is coupled to the energy equation via a source term that depends on an effective electric field which must be calculated outside the present model. This electric field must be found by coupling the results of the fluid dynamics and kinetics solution with a solution to Maxwell's equations that includes the effects of the plasma permittivity. The solution to Maxwell's equations is not within the scope of this present paper.

  11. Large area plasma source

    NASA Technical Reports Server (NTRS)

    Foster, John (Inventor); Patterson, Michael (Inventor)

    2008-01-01

    An all permanent magnet Electron Cyclotron Resonance, large diameter (e.g., 40 cm) plasma source suitable for ion/plasma processing or electric propulsion, is capable of producing uniform ion current densities at its exit plane at very low power (e.g., below 200 W), and is electrodeless to avoid sputtering or contamination issues. Microwave input power is efficiently coupled with an ionizing gas without using a dielectric microwave window and without developing a throat plasma by providing a ferromagnetic cylindrical chamber wall with a conical end narrowing to an axial entrance hole for microwaves supplied on-axis from an open-ended waveguide. Permanent magnet rings are attached inside the wall with alternating polarities against the wall. An entrance magnet ring surrounding the entrance hole has a ferromagnetic pole piece that extends into the chamber from the entrance hole to a continuing second face that extends radially across an inner pole of the entrance magnet ring.

  12. Microwave emission from the coronae of late-type dwarf stars

    NASA Technical Reports Server (NTRS)

    Linsky, J. L.; Gary, D. E.

    1983-01-01

    VLA microwave observations of 14 late-type dwarf and subgiant stars and binary systems are examined. In this extensive set of observations, four sources at 6 cm (Chi-1 Ori, UV Cet, YY Gem, and Wolf 630AB) were detected and low upper limits for the remaining stars were found. The microwave luminosities of the nondetected F-K dwarfs are as small as 0.01 those of the dMe stars. The detected emission is slowly variable in all cases and is consistent with gyroresonant emission from thermal electrons spiraling in magnetic fields of about 300 gauss if the source sizes are as large as R/R(asterisk) = 3-4. This would correspond to magnetic fields that are probably in the range 0.001-0.0001 gauss at the photospheric level. An alternative mechanism is gyrosynchrotron emission from a relatively small number of electrons with effective temperature.

  13. Structural characteristics of pumpkin pectin extracted by microwave heating.

    PubMed

    Yoo, Sang-Ho; Lee, Byeong-Hoo; Lee, Heungsook; Lee, Suyong; Bae, In Young; Lee, Hyeon Gyu; Fishman, Marshall L; Chau, Hoa K; Savary, Brett J; Hotchkiss, Arland T

    2012-11-01

    To improve extraction yield of pumpkin pectin, microwave heating was adopted in this study. Using hot acid extraction, pumpkin pectin yield decreased from 5.7% to 1.0% as pH increased from pH 1.0 to 2.0. At pH 2.5, no pectin was recovered from pumpkin flesh powder. After a pretreatment at pH 1.0 and 25 °C for 1 h, pumpkin powder was microwave-extracted at 120 °C for 3 min resulting in 10.5% of pectin yield. However, premicrowave treatment at 60 °C for 20 min did not improve extraction yield. When microwave heating at 80 °C for 10 min was applied after premicrowave treatment, final pectin yield increased to 11.3%. When pH was adjusted to 2.0, the yield dropped to 7.7% under the same extraction conditions. Molecular shape and properties as well as chemical composition of pumpkin pectin were significantly affected depending on extraction methods. Galacturonic acid content (51% to 58%) of pumpkin pectin was lower than that detected in commercial acid-extracted citrus pectin, while higher content of neutral sugars and acetyl esters existed in pumpkin pectin structure. Molecular weight (M(w) ) and intrinsic viscosity (η(w) ) determined for microwave-extracted pumpkin pectins were substantially lower than acid-extracted pectin, whereas polydispersity was greater. However, microwave-extracted pectin at pH 2.0 had more than 5 times greater M(w) than did the pectin extracted at pH 1.0. The η(w) of microwave-extracted pectin produced at pH 2.0 was almost twice that of other microwave-extracted pectins, which were comparable to that of acid-extracted pectin. These results indicate that extraction yield of pumpkin pectin would be improved by microwave extraction and different pectin structure and properties can be obtained compared to acid extraction. Pumpkin is a promising alternative source for pectin material. Pumpkin pectin has a unique chemical structure and physical properties, presumably providing different functional properties compared to conventional commercial pectin sources. Depending on the conditions to produce pumpkin pectin, diverse molecular structures can be obtained and utilized in various food applications. © 2012 Institute of Food Technologists®

  14. Extremely Coherent Microwave Emission from Spin Torque Oscillator Stabilized by Phase Locked Loop

    PubMed Central

    Tamaru, Shingo; Kubota, Hitoshi; Yakushiji, Kay; Yuasa, Shinji; Fukushima, Akio

    2015-01-01

    Spin torque oscillator (STO) has been attracting a great deal of attention as a candidate for the next generation microwave signal sources for various modern electronics systems since its advent. However, the phase noise of STOs under free running oscillation is still too large to be used in practical microwave applications, thus an industrially viable means to stabilize its oscillation has been strongly sought. Here we demonstrate implementation of a phase locked loop using a STO as a voltage controlled oscillator (VCO) that generates a 7.344 GHz microwave signal stabilized by a 153 MHz reference signal. Spectrum measurement showed successful phase locking of the microwave signal to the reference signal, characterized by an extremely narrow oscillation peak with a linewidth of less than the measurement limit of 1 Hz. This demonstration should be a major breakthrough toward various practical applications of STOs. PMID:26658880

  15. A microwave applicator for uniform irradiation by circularly polarized waves in an anechoic chamber

    NASA Astrophysics Data System (ADS)

    Chiang, W. Y.; Wu, M. H.; Wu, K. L.; Lin, M. H.; Teng, H. H.; Tsai, Y. F.; Ko, C. C.; Yang, E. C.; Jiang, J. A.; Barnett, L. R.; Chu, K. R.

    2014-08-01

    Microwave applicators are widely employed for materials heating in scientific research and industrial applications, such as food processing, wood drying, ceramic sintering, chemical synthesis, waste treatment, and insect control. For the majority of microwave applicators, materials are heated in the standing waves of a resonant cavity, which can be highly efficient in energy consumption, but often lacks the field uniformity and controllability required for a scientific study. Here, we report a microwave applicator for rapid heating of small samples by highly uniform irradiation. It features an anechoic chamber, a 24-GHz microwave source, and a linear-to-circular polarization converter. With a rather low energy efficiency, such an applicator functions mainly as a research tool. This paper discusses the significance of its special features and describes the structure, in situ diagnostic tools, calculated and measured field patterns, and a preliminary heating test of the overall system.

  16. Mechanism of microwave sterilization in the dry state.

    PubMed Central

    Jeng, D K; Kaczmarek, K A; Woodworth, A G; Balasky, G

    1987-01-01

    With an automated computerized temperature control and a specialized temperature measurement system, dry spores of Bacillus subtilis subsp. niger were treated with heat simultaneously in a convection dry-heat oven and a microwave oven. The temperature of the microwave oven was monitored such that the temperature profiles of the spore samples in both heat sources were nearly identical. Under these experimental conditions, we unequivocally demonstrated that the mechanism of sporicidal action of the microwaves was caused solely by thermal effects. Nonthermal effects were not significant in a dry microwave sterilization process. Both heating systems showed that a dwelling time of more than 45 min was required to sterilize 10(5) inoculated spores in dry glass vials at 137 degrees C. The D values of both heating systems were 88, 14, and 7 min at 117, 130, and 137 degrees C, respectively. The Z value was estimated to be 18 degrees C. PMID:3118807

  17. Smelting Magnesium Metal using a Microwave Pidgeon Method

    PubMed Central

    Wada, Yuji; Fujii, Satoshi; Suzuki, Eiichi; Maitani, Masato M.; Tsubaki, Shuntaro; Chonan, Satoshi; Fukui, Miho; Inazu, Naomi

    2017-01-01

    Magnesium (Mg) is a lightweight metal with applications in transportation and sustainable battery technologies, but its current production through ore reduction using the conventional Pidgeon process emits large amounts of CO2 and particulate matter (PM2.5). In this work, a novel Pidgeon process driven by microwaves has been developed to produce Mg metal with less energy consumption and no direct CO2 emission. An antenna structure consisting of dolomite as the Mg source and a ferrosilicon antenna as the reducing material was used to confine microwave energy emitted from a magnetron installed in a microwave oven to produce a practical amount of pure Mg metal. This microwave Pidgeon process with an antenna configuration made it possible to produce Mg with an energy consumption of 58.6 GJ/t, corresponding to a 68.6% reduction when compared to the conventional method. PMID:28401910

  18. A microwave applicator for uniform irradiation by circularly polarized waves in an anechoic chamber.

    PubMed

    Chiang, W Y; Wu, M H; Wu, K L; Lin, M H; Teng, H H; Tsai, Y F; Ko, C C; Yang, E C; Jiang, J A; Barnett, L R; Chu, K R

    2014-08-01

    Microwave applicators are widely employed for materials heating in scientific research and industrial applications, such as food processing, wood drying, ceramic sintering, chemical synthesis, waste treatment, and insect control. For the majority of microwave applicators, materials are heated in the standing waves of a resonant cavity, which can be highly efficient in energy consumption, but often lacks the field uniformity and controllability required for a scientific study. Here, we report a microwave applicator for rapid heating of small samples by highly uniform irradiation. It features an anechoic chamber, a 24-GHz microwave source, and a linear-to-circular polarization converter. With a rather low energy efficiency, such an applicator functions mainly as a research tool. This paper discusses the significance of its special features and describes the structure, in situ diagnostic tools, calculated and measured field patterns, and a preliminary heating test of the overall system.

  19. Microwave and continuous flow technologies in drug discovery.

    PubMed

    Sadler, Sara; Moeller, Alexander R; Jones, Graham B

    2012-12-01

    Microwave and continuous flow microreactors have become mainstream heating sources in contemporary pharmaceutical company laboratories. Such technologies will continue to benefit from design and engineering improvements, and now play a key role in the drug discovery process. The authors review the applications of flow- and microwave-mediated heating in library, combinatorial, solid-phase, metal-assisted, and protein chemistries. Additionally, the authors provide a description of the combination of microwave and continuous flow platforms, with applications in the preparation of radiopharmaceuticals and in drug candidate development. Literature reviewed is chiefly 2000 - 2012, plus key citations from earlier reports. With the advent of microwave irradiation, reactions that normally took days to complete can now be performed in a matter of minutes. Coupled with the introduction of continuous flow microreactors, pharmaceutical companies have an easy way to improve the greenness and efficiency of many synthetic operations. The combined force of these technologies offers the potential to revolutionize discovery and manufacturing processes.

  20. Experimental study of microwave-induced thermoacoustic imaging

    NASA Astrophysics Data System (ADS)

    Jacobs, Ryan T.

    Microwave-Induced Thermoacoustic Imaging (TAI) is a noninvasive hybrid modality which improves contrast by using thermoelastic wave generation induced by microwave absorption. Ultrasonography is widely used in medical practice as a low-cost alternative and supplement to magnetic resonance imaging (MRI). Although ultrasonography has relatively high image resolution (depending on the ultrasonic wavelength at diagnostic frequencies), it suffers from low image contrast of soft tissues. In this work samples are irradiated with sub-microsecond electromagnetic pulses inducing acoustic waves in the sample that are then detected with an unfocused transducer. The advantage of this hybrid modality is the ability to take advantage of the microwave absorption coefficients which provide high contrast in tissue samples. This in combination with the superior spatial resolution of ultrasound waves is important to providing a low-cost alternative to MRI and early breast cancer detection methods. This work describes the implementation of a thermoacoustic experiment using a 5 kW peak power microwave source.

  1. Ball-in-ball ZrO2 nanostructure for simultaneous CT imaging and highly efficient synergic microwave ablation and tri-stimuli-responsive chemotherapy of tumors.

    PubMed

    Long, Dan; Niu, Meng; Tan, Longfei; Fu, Changhui; Ren, Xiangling; Xu, Ke; Zhong, Hongshan; Wang, Jingzhuo; Li, Laifeng; Meng, Xianwei

    2017-06-29

    Combined thermo-chemotherapy displays outstanding synergically therapeutic efficiency when compared with standalone thermotherapy and chemotherapy. Herein, we developed a smart tri-stimuli-responsive drug delivery system involving X@BB-ZrO 2 NPs (X represents loaded IL, DOX, keratin and tetradecanol) based on novel ball-in-ball-structured ZrO 2 nanoparticles (BB-ZrO 2 NPs). The microwave energy conversion efficiency of BB-ZrO 2 NPs was 41.2% higher than that of traditional single-layer NPs due to the cooperative action of self-reflection and spatial confinement effect of the special two-layer hollow nanostructure. The tri-stimuli-responsive controlled release strategy indicate that integrated pH, redox and microwaves in single NPs based on keratin and tetradecanol could effectively enhance the specific controlled release of DOX. The release of DOX was only 8.1% in PBS with pH = 7.2 and GSH = 20 μM. However, the release could reach about 50% at the tumor site (pH = 5.5, GSH = 13 mM) under microwave ablation. The as-made X@BB-ZrO 2 NPs exhibited perfect synergic therapy effect of chemotherapy and microwave ablation both in subcutaneous tumors (H22 tumor-bearing mice) and deep tumors (liver transplantation VX2 tumor-bearing rabbit model). There was no recurrence and death in the X@BB-ZrO 2 + MW group during the therapy of subcutaneous tumors even on the 42 nd day. The growth rates in the deep tumor of the control, MW and X@BB-ZrO 2 + MW groups were 290.1%, 14.1% and -42% 6 days after ablation, respectively. Dual-source CT was used to monitor the metabolism behavior of the as-made BB-ZrO 2 NPs and traditional CT was utilized to monitor the tumor growth in rabbits. Frozen section examination and ICP results indicated the precise control of drug delivery and enhanced cytotoxicity by the tri-stimuli-responsive controlled release strategy. The ball-in-ball ZrO 2 NPs with high microwave energy conversion efficiency were first developed for synergic microwave ablation and tri-stimuli-responsive chemotherapy, which may have potential applications in clinic.

  2. Advanced oxidation process using hydrogen peroxide/microwave system for solubilization of phosphate.

    PubMed

    Liao, Ping Huang; Wong, Wayne T; Lo, Kwang Victor

    2005-01-01

    An advanced oxidation process (AOP) combining hydrogen peroxide and microwave heating was used for the solubilization of phosphate from secondary municipal sludge from an enhanced biological phosphorus removal process. The microwave irradiation is used as a generator agent of oxidizing radicals as well as a heating source in the process. This AOP process could facilitate the release of a large amount of the sludge-bound phosphorus from the sewage sludge. More than 84% of the total phosphorous could be released at a microwave heating time of 5 min at 170 degrees C. This innovative process has the potential of being applied to simple sludge treatment processes in domestic wastewater treatment and to the recovery of phosphorus from the wastewater.

  3. Microwave responses of the western North Atlantic

    NASA Technical Reports Server (NTRS)

    Stacey, J. M.; Girard, M. A.

    1985-01-01

    Features and objects in the Western North Atlantic Ocean - the Eastern Seaboard of the United States - are observed from Earth orbit by passive microwaves. The intensities of their radiated flux signatures are measured and displayed in color as a microwave flux image. The features of flux emitting objects such as the course of the Gulf Stream and the occurrence of cold eddies near the Gulf Stream are identified by contoured patterns of relative flux intensities. The flux signatures of ships and their wakes are displayed and discussed. Metal data buoys and aircraft are detected. Signal to clutter ratios and probabilities of detection are computed from their measured irradiances. Theoretical models and the range equations that explain passive microwave detection using the irradiances of natural sources are summarized.

  4. Photoluminescence study of carbon dots from ginger and galangal herbs using microwave technique

    NASA Astrophysics Data System (ADS)

    Isnaeni; Rahmawati, I.; Intan, R.; Zakaria, M.

    2018-03-01

    Carbon dots are new type of fluorescent nanoparticle that can be synthesis easily from natural sources. We have synthesized carbon dots from ginger and galangal herbs using microwave technique and studied their optical properties. We synthesized colloidal carbon dots in water solvent by varying microwave processing time. UV-Vis absorbance, photoluminescence, time-resolved photoluminescence, and transmission electron microscope were utilized to study properties of carbon dots. We found that microwave processing time significantly affect optical properties of synthesized carbon dots. UV-Vis absorbance spectra and time-resolved photoluminescence results show that luminescent of carbon dots is dominated by recombination process from n-π* surface energy level. With further development, these carbon dots are potential for several applications.

  5. Photonic-assisted microwave signal multiplication and modulation using a silicon Mach–Zehnder modulator

    PubMed Central

    Long, Yun; Zhou, Linjie; Wang, Jian

    2016-01-01

    Photonic generation of microwave signal is obviously attractive for many prominent advantages, such as large bandwidth, low loss, and immunity to electromagnetic interference. Based on a single integrated silicon Mach–Zehnder modulator (MZM), we propose and experimentally demonstrate a simple and compact photonic scheme to enable frequency-multiplicated microwave signal. Using the fabricated integrated MZM, we also demonstrate the feasibility of microwave amplitude-shift keying (ASK) modulation based on integrated photonic approach. In proof-of-concept experiments, 2-GHz frequency-doubled microwave signal is generated using a 1-GHz driving signal. 750-MHz/1-GHz frequency-tripled/quadrupled microwave signals are obtained with a driving signal of 250 MHz. In addition, a 50-Mb/s binary amplitude coded 1-GHz microwave signal is also successfully generated. PMID:26832305

  6. A New Automated Microwave Heating Process for Cooking and Pasteurization of Microwaveable Foods Containing Raw Meats

    USDA-ARS?s Scientific Manuscript database

    A new microwave heating process was developed for cooking microwaveable foods containing raw meats. A commercially available inverter-based microwave oven was modified for pasteurization of mechanically tenderized beef, inoculated with Escherichia coli O157:H7 (~ 5 log cfu/g) and packaged in a 12 o...

  7. Optically transparent microwave screens based on engineered graphene layers.

    PubMed

    Grande, M; Bianco, G V; Vincenti, M A; de Ceglia, D; Capezzuto, P; Petruzzelli, V; Scalora, M; Bruno, G; D'Orazio, A

    2016-10-03

    We propose an innovative approach for the realization of a microwave absorber fully transparent in the optical regime. This device is based on the Salisbury screen configuration, which consists of a lossless spacer, sandwiched between two graphene sheets whose sheet resistances are different and properly engineered. Experimental results show that it is possible to achieve near-perfect electromagnetic absorption in the microwave X-band. These findings are fully supported by an analytical approach based on an equivalent circuital model. Engineering and integration of graphene sheets could facilitate the realization of innovative microwave absorbers with additional electromagnetic and optical functionalities that could circumvent some of the major limitations of opaque microwave absorbers.

  8. Inter-Sensor Comparison of Microwave Land Surface Emissivity Products to Improve Precipitation Retrievals

    NASA Astrophysics Data System (ADS)

    Norouzi, H.; Temimi, M.; Turk, J.; Prigent, C.; Furuzawa, F.; Tian, Y.

    2013-12-01

    Microwave land surface emissivity acts as the background signal to estimate rain rate, cloud liquid water, and total precipitable water. Therefore, its accuracy can directly affect the uncertainty of such measurements. Over land, unlike over oceans, the microwave emissivity is relatively high and and varies significantly as surface conditions and land cover change. Lack of ground truth measurement of microwave emissivity especially on global scale has made the uncertainty analysis of this parameter very challenging. The present study investigates the consistency among the existing global land emissivity estimates from different microwave sensors. The products are determined from various sensors and frequencies ranging from 7 to 90 GHz. The selected emissivity products in this study are from the Advanced Microwave Scanning Radiometer for EOS (AMSR-E) by NOAA - Cooperative remote Sensing and Science and Technology Center (CREST), the Special Sensor Microwave Imager (SSM/I) by The Centre National de la Recherche Scientifique (CNRS) in France, TRMM Microwave Imager (TMI) by Nagoya University, Japan, and WindSat by NASA Jet Propulsion Laboratory (JPL). The emissivity estimates are based on different algorithms and ancillary data sets. This work investigates the difference among these emissivity products from 2003 to 2008 dynamically and spectrally. The similarities and discrepancies of the retrievals are studied at different land cover types. The mean relative difference (MRD) and other statistical parameters are calculated temporally for all five years of the study. Some inherent discrepancies between the selected products can be attributed to the difference in geometry in terms of incident angle, spectral response, and the foot print size which can affect the estimations. The results reveal that in lower frequencies (=<19 GHz) ancillary data especially skin temperature data set is the major source of difference in emissivity retrievals, while in higher frequencies (>19 GHz) the residuals of atmospheric effect on the signal cause inconsistency among the products. The time series and correlation between emissivity maps were analyzed over different land classes to assess the consistency of emissivity variations with geophysical variable such as soil moisture, precipitation, and vegetation.

  9. Modeling and prediction of extraction profile for microwave-assisted extraction based on absorbed microwave energy.

    PubMed

    Chan, Chung-Hung; Yusoff, Rozita; Ngoh, Gek-Cheng

    2013-09-01

    A modeling technique based on absorbed microwave energy was proposed to model microwave-assisted extraction (MAE) of antioxidant compounds from cocoa (Theobroma cacao L.) leaves. By adapting suitable extraction model at the basis of microwave energy absorbed during extraction, the model can be developed to predict extraction profile of MAE at various microwave irradiation power (100-600 W) and solvent loading (100-300 ml). Verification with experimental data confirmed that the prediction was accurate in capturing the extraction profile of MAE (R-square value greater than 0.87). Besides, the predicted yields from the model showed good agreement with the experimental results with less than 10% deviation observed. Furthermore, suitable extraction times to ensure high extraction yield at various MAE conditions can be estimated based on absorbed microwave energy. The estimation is feasible as more than 85% of active compounds can be extracted when compared with the conventional extraction technique. Copyright © 2013 Elsevier Ltd. All rights reserved.

  10. Multi-wave band SMM-VLA observations of an M2 flare and an associated coronal mass ejection

    NASA Technical Reports Server (NTRS)

    Willson, Robert F.; Lang, Kenneth R.; Schmelz, Joan T.; Gonzalez, Raymond D.; Smith, Kermit L.

    1991-01-01

    Results are presented of observations of an M2 flare and an associated coronal mass ejection CME by instruments on the SMM as well as by the VLA and other ground-based observatories on September 30, 1988. The multiwave band data show a gradual slowly changing event which lasted several hours. The microwave burst emission was found to originate in compact moderately circularly polarized sources located near the sites of bright H-alpha and soft X-ray emission. These data are combined with estimates of an electron temperature of 1.5 x 10 to the 7th K and an emission measure of about 2.0 x 10 to the 49th/cu cm obtained from Ca XIX and Fe XXV spectra to show that the microwave emission can be attributed to thermal gyrosynchrotron radiation in regions where the magnetic field strength is 425-650 G. The CME acceleration at low altitudes is measured on the basis of ground- and space-based coronagraphs.

  11. Microwave sintering of sol-gel derived abrasive grain

    DOEpatents

    Plovnick, Ross; Celikkaya, Ahmet; Blake, Rodger D.

    1997-01-01

    A method is provided for making microwave-sintered, free flowing alpha alumina-based ceramic abrasive grain, under conditions effective to couple microwaves with calcined alpha alumina-based abrasive gain precursor and sinter it at a temperature of at least about 1150.degree. C.

  12. Cd–cysteine precursor nanowire templated microwave-assisted transformation route to CdS nanotubes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Liu, Xiao-Lin, E-mail: liu_x_l@sina.cn; Zhu, Ying-Jie; Zhang, Qian

    2012-12-15

    Graphical abstract: Cadmium sulfide polycrystalline nanotubes have been successfully synthesized by microwave-assisted transformation method using Cd–cysteine precursor nanowires as the source material and template in ethylene glycol at 160 °C or ethanol at 60 °C. Display Omitted Highlights: ► Cd–cysteine precursor nanowires were successfully synthesized in alkaline solution. ► CdS nanotubes were prepared by templated microwave-assisted transformation method. ► CdS nanotubes can well duplicate the size and morphology of precursor nanowires. ► This method has the advantages of the simplicity and low cost. -- Abstract: We report the Cd–cysteine precursor nanowire templated microwave-assisted transformation route to CdS nanotubes. In thismore » method, the Cd–cysteine precursor nanowires are synthesized using CdCl{sub 2}·2.5H{sub 2}O, L-cysteine and ethanolamine in water at room temperature. The Cd–cysteine precursor nanowires are used as the source material and template for the subsequent preparation of CdS nanotubes by a microwave-assisted transformation method using ethylene glycol or ethanol as the solvent. This method has the advantages of the simplicity and low cost, and may be extended to the synthesis of nanotubes of other compounds. The products are characterized by X-ray powder diffraction (XRD), scanning electron microscopy (SEM) and transmission electron microscopy (TEM).« less

  13. Measurement system of correlation functions of microwave single photon source in real time

    NASA Astrophysics Data System (ADS)

    Korenkov, A.; Dmitriev, A.; Astafiev, O.

    2018-02-01

    Several quantum setups, such as quantum key distribution networks[1] and quantum simulators (e.g. boson sampling), by their design rely on single photon sources (SPSs). These quantum setups were demonstrated to operate in optical frequency domain. However, following the steady advances in circuit quantum electrodynamics, a proposal has been made recently[2] to demonstrate boson sampling with microwave photons. This in turn requires the development of reliable microwave SPS. It's one of the most important characteristics are the first-order and the second-order correlation functions g1 and g2. The measurement technique of g1 and g2 is significantly different from that in the optical domain [3],[4] because of the current unavailability of microwave single-photon detectors. In particular, due to high levels of noise present in the system a substantial amount of statistics in needed to be acquired. This work presents a platform for measurement of g1 and g2 that processes the incoming data in real time, maximizing the efficiency of data acquisition. The use of field-programmable gate array (FPGA) electronics, common in similar experiments[3] but complex in programming, is avoided; instead, the calculations are performed on a standard desktop computer. The platform is used to perform the measurements of the first-order and the second-order correlation functions of the microwave SPS.

  14. Low-temperature dynamic nuclear polarization at 9.4 T with a 30 mW microwave source.

    PubMed

    Thurber, Kent R; Yau, Wai-Ming; Tycko, Robert

    2010-06-01

    Dynamic nuclear polarization (DNP) can provide large signal enhancements in nuclear magnetic resonance (NMR) by transfer of polarization from electron spins to nuclear spins. We discuss several aspects of DNP experiments at 9.4 T (400 MHz resonant frequency for (1)H, 264 GHz for electron spins in organic radicals) in the 7-80K temperature range, using a 30 mW, frequency-tunable microwave source and a quasi-optical microwave bridge for polarization control and low-loss microwave transmission. In experiments on frozen glycerol/water doped with nitroxide radicals, DNP signal enhancements up to a factor of 80 are observed (relative to (1)H NMR signals with thermal equilibrium spin polarization). The largest sensitivity enhancements are observed with a new triradical dopant, DOTOPA-TEMPO. Field modulation with a 10 G root-mean-squared amplitude during DNP increases the nuclear spin polarizations by up to 135%. Dependencies of (1)H NMR signal amplitudes, nuclear spin relaxation times, and DNP build-up times on the dopant and its concentration, temperature, microwave power, and modulation frequency are reported and discussed. The benefits of low-temperature DNP can be dramatic: the (1)H spin polarization is increased approximately 1000-fold at 7 K with DNP, relative to thermal polarization at 80K. (c) 2010 Elsevier Inc. All rights reserved.

  15. Solid-state synthesis of YAG powders through microwave coupling of oxide/carbon particulate mixtures

    DOE PAGES

    Wildfire, Christina; Sabolsky, Edward M.; Spencer, Michael J.; ...

    2017-06-14

    The rapid synthesis of yttrium aluminum garnet (Y 3Al 15O 12, YAG) powder was investigated through the use of microwave irradiation of the oxide precursor system. For this investigation, an external hybrid heating source was not used. Instead, the rapid heating of the precursor materials (yttria and alumina powders, which are typically transparent to 2.45 GHz microwaves) was initiated by mixing an intrinsic absorbing material (carbon) into the original oxide precursors. The effect of the carbon characteristics, such as carbon source, concentration, particle size, and agglomerate microstructure were evaluated on the efficiency of coupling and resultant oxide reaction. The microwavemore » power was varied to optimize the YAG conversion and eliminate intermediate phase formation. Interactions between the conductive carbon particles and the dielectric oxides within the microwave exposure produced local arching and micro-plasma formation within the powder bed, resulting in the rapid formation of the refractory YAG composition. This optimal conduction led to temperatures of 1000°C that could be achieved in less than 5 min resulting in the formation of > 90 vol% YAG. The understanding of a conductor/dielectric particulate system here, provided insight into possible application of similar systems where microwave irradiation could be used for enhanced solid-state formation, local melting events, and gas phase reactions with a composite powder media.« less

  16. Comparison of Conventional and Microwave Treatment on Soymilk for Inactivation of Trypsin Inhibitors and In Vitro Protein Digestibility

    PubMed Central

    Vagadia, Brinda Harish; Raghavan, Vijaya

    2018-01-01

    Soymilk is lower in calories compared to cow’s milk, since it is derived from a plant source (no cholesterol) and is an excellent source of protein. Despite the beneficial factors, soymilk is considered as one of the most controversial foods in the world. It contains serine protease inhibitors which lower its nutritional value and digestibility. Processing techniques for the elimination of trypsin inhibitors and lipoxygenase, which have shorter processing time and lower production costs are required for the large-scale manufacturing of soymilk. In this study, the suitable conditions of time and temperature are optimized during microwave processing to obtain soymilk with maximum digestibility with inactivation of trypsin inhibitors, in comparison to the conventional thermal treatment. The microwave processing conditions at a frequency of 2.45 GHz and temperatures of 70 °C, 85 °C and 100 °C for 2, 5 and 8 min were investigated and were compared to conventional thermal treatments at the same temperature for 10, 20 and 30 min. Response surface methodology is used to design and optimize the experimental conditions. Thermal processing was able to increase digestibility by 7% (microwave) and 11% (conventional) compared to control, while trypsin inhibitor activity reduced to 1% in microwave processing and 3% in conventional thermal treatment when compared to 10% in raw soybean. PMID:29316679

  17. Coaxial-type water load for measuring high voltage, high current and short pulse of a compact Marx system for a high power microwave source

    NASA Astrophysics Data System (ADS)

    Han, Jaeeun; Kim, Jung-ho; Park, Sang-duck; Yoon, Moohyun; Park, Soo Yong; Choi, Do Won; Shin, Jin Woo; So, Joon Ho

    2009-11-01

    A coaxial-type water load was used to measure the voltage output from a Marx generator for a high power microwave source. This output had a rise time of 20 ns, a pulse duration of a few hundred ns, and an amplitude up to 500 kV. The design of the coaxial water load showed that it is an ideal resistive divider and can also accurately measure a short pulse. Experiments were performed to test the performance of the Marx generator with the calibrated coaxial water load.

  18. Simultaneous multi-frequency imaging observations of solar microwave bursts

    NASA Technical Reports Server (NTRS)

    Kundu, M. R.; White, S. M.; Schmahl, E. J.

    1989-01-01

    The results of simultaneous two-frequency imaging observations of solar microwave bursts with the Very Large Array are reviewed. Simultaneous 2 and 6 cm observations have been made of bursts which are optically thin at both frequencies, or optically thick at the lower frequency. In the latter case, the source structure may differ at the two frequencies, but the two sources usually seem to be related. However, this is not always true of simultaneous 6 and 20 cm observations. The results have implications for the analysis of nonimaging radio data of solar and stellar flares.

  19. Autonomous and driven dynamics of spin torque nano-oscillators

    NASA Astrophysics Data System (ADS)

    Urazhdin, Sergei

    2012-02-01

    Understanding the dynamical properties of autonomous spin torque nano-oscillators (STNO) and their response to external perturbations is important for their applications as nanoscale microwave sources. We used spectroscopic measurements to study the dynamical characteristics of nanopillar- and point contact-based STNOs incorporating a microstrip in close proximity to the active magnetic layer. By applying microwave current at frequency fext to the microstrip, we were able to generate large microwave fields of more than 30 Oe rms at the location of STNO. We demonstrate that for a wide range of fext, STNO exhibits multiple synchronization regimes with integer and non-integer rational ratios between fext and the oscillation frequency f. We show that the synchronization ranges are determined by the symmetry of the oscillation orbit and the orientation of the driving field relative to the symmetry axis of the orbit. We observe synchronization hysteresis, i.e. a dependence of the synchronization limits on the dynamical history caused by the nonlinearity of STNO. We also show that the oscillation can be parametrically excited in the subcritical regime of STNO by a microwave field at twice the frequency of the oscillation. By measuring the threshold and the frequency range of parametric excitation, we determine damping, spin-polarization efficiency, and coupling to the microwave signal. In addition, by measuring the frequency range of parametric synchronization in the auto-oscillation regime, we determine the dynamic nonlinearity of the nanomagnet. Thus, analysis of the driven oscillations provides complete information about the dynamical characteristics of STNO. Finally, we discuss several unusual dynamical behaviors of STNO caused by their strong nonlinearity.

  20. Influence of frequency tuning and double-frequency heating on ions extracted from an electron cyclotron resonance ion source

    NASA Astrophysics Data System (ADS)

    Maimone, F.; Celona, L.; Lang, R.; Mäder, J.; Roßbach, J.; Spädtke, P.; Tinschert, K.

    2011-12-01

    The electromagnetic field within the plasma chamber of an electron cyclotron resonance ion source (ECRIS) and the properties of the plasma waves affect the plasma properties and ion beam production. We have experimentally investigated the "frequency tuning effect" and "double frequency heating" on the CAPRICE ECRIS device. A traveling wave tube amplifier, two microwave sweep generators, and a dedicated experimental set-up were used to carry out experiments in the 12.5-16.5 GHz frequency range. During the frequency sweeps the evolution of the intensity and shape of the extracted argon beam were measured together with the microwave reflection coefficient. A range of different ion source parameter settings was used. Here we describe these experiments and the resultant improved understanding of these operational modes of the ECR ion source.

  1. Influence of frequency tuning and double-frequency heating on ions extracted from an electron cyclotron resonance ion source.

    PubMed

    Maimone, F; Celona, L; Lang, R; Mäder, J; Rossbach, J; Spädtke, P; Tinschert, K

    2011-12-01

    The electromagnetic field within the plasma chamber of an electron cyclotron resonance ion source (ECRIS) and the properties of the plasma waves affect the plasma properties and ion beam production. We have experimentally investigated the "frequency tuning effect" and "double frequency heating" on the CAPRICE ECRIS device. A traveling wave tube amplifier, two microwave sweep generators, and a dedicated experimental set-up were used to carry out experiments in the 12.5-16.5 GHz frequency range. During the frequency sweeps the evolution of the intensity and shape of the extracted argon beam were measured together with the microwave reflection coefficient. A range of different ion source parameter settings was used. Here we describe these experiments and the resultant improved understanding of these operational modes of the ECR ion source.

  2. Characterization of canopy dew formation in tropical forests using active microwave remote sensing

    NASA Astrophysics Data System (ADS)

    Gerlein-Safdi, C.; Frolking, S. E.; Caylor, K. K.

    2016-12-01

    Dew deposition in a closed canopy is thought to be greatest on top of the canopy, since a clear view of the sky increases condensation. In tropical forests, these same leaves are also subject to direct sunlight and high transpiration rates. Dew deposition can offset some of the water stress through foliar uptake of the dew droplets, or transpiration suppression from the energy dissipation associated with dew evaporation. However, the long-term trends of dew formation and their global patterns have received little attention, despite the wide acknowledgement that non-meteoric water can be a key source of water for many species, especially in tropical ecosystems. As such, accumulated and future effects of climate change on non-meteoric water occurrence remain an under-appreciated and unquantified factor in determining the risks that tropical ecosystems face. In this presentation, we simulate the effects of a wet canopy on satellite-based microwave backscatter by modifying the Michigan Microwave Canopy Scattering Model to account for the presence of dew droplets. We apply this model to estimate the canopy water storage derived from the SeaWinds Scatterometer aboard the QuikSCAT satellite by comparing the 6AM and 6PM microwave retrievals. We examine dew frequency and amount in tropical forests in South America, Africa and South-East Asia. Using the 10 years of available data, we investigate trends in dew formation in these three areas and speculate on the potential impact of the observed changes on dew-dependent tropical ecosystems.Finally, we compare our results to locally measured and modeled leaf wetness data. With multiple recently-launched instruments providing new data, strong correlations between satellite-based canopy water storage and in-situ data indicate the possibility of novel applications of microwave backscatter datasets in closed canopies ecosystems, such as the estimation of canopy interception or leaf-water content.

  3. Characterization of microwave plasma CVD of diamond by mass analysis and optical emission spectroscopy

    NASA Astrophysics Data System (ADS)

    Weimer, Wayne A.; Johnson, Curtis E.

    1990-12-01

    A microwave plasma enhanced chemical vapor deposition system is characterized using optical emission spectroscopy and mass spectrometry. CH4 CH2 CH4 and CO were used as carbon source gases. The effects of 02 addition to the feed gas is examined. Emission from CH in the plasma is observed and CH4 is a stable reaction product for all carbon source gases used. 02 is fully consumed and converted to H20 and CO. Emission from C is observed for all hydrocarbon gases when 02 is added but is absent when CO is the carbon source gas. Addition of 02 also dramatically affects the relative amount of reaction products as the carbon in the system is converted to CO. 1.

  4. Marine aerosol source regions to Prince of Wales Icefield, Ellesmere Island, and influence from the tropical Pacific, 1979-2001

    NASA Astrophysics Data System (ADS)

    Criscitiello, Alison S.; Marshall, Shawn J.; Evans, Matthew J.; Kinnard, Christophe; Norman, Ann-Lise; Sharp, Martin J.

    2016-08-01

    Using a coastal ice core collected from Prince of Wales (POW) Icefield on Ellesmere Island, we investigate source regions of sea ice-modulated chemical species (methanesulfonic acid (MSA) and chloride (Cl-)) to POW Icefield and the influence of large-scale atmospheric variability on the transport of these marine aerosols (1979-2001). Our key findings are (1) MSA in the POW Icefield core is derived primarily from productivity in the sea ice zone of Baffin Bay and the Labrador Sea, with influence from waters within the North Water (NOW) polynya, (2) sea ice formation processes within the NOW polynya may be a significant source of sea-salt aerosols to the POW core site, in addition to offshore open water source regions primarily in Hudson Bay, and (3) the tropical Pacific influences the source and transport of marine aerosols to POW Icefield through its remote control on regional winds and sea ice variability. Regression analyses during times of MSA deposition reveal sea level pressure (SLP) anomalies favorable for opening of the NOW polynya and subsequent oceanic dimethyl sulfide production. Regression analyses during times of Cl- deposition reveal SLP anomalies that indicate a broader oceanic region of sea-salt sources to the core site. These results are supported by Scanning Multichannel Microwave Radiometer- and Special Sensor Microwave/Imager-based sea ice reconstructions and air mass transport density analyses and suggest that the marine biogenic record may capture local polynya variability, while sea-salt transport to the site from larger offshore source regions in Baffin Bay is likely. Regression analyses show a link to tropical dynamics via an atmospheric Rossby wave.

  5. Development of fire-resistant, low smoke generating, thermally stable end items for commercial aircraft and spacecraft using a basic polyimide resin

    NASA Technical Reports Server (NTRS)

    Gagliani, J.; Lee, R.; Sorathia, U. A.; Wilcoxson, A. L.

    1980-01-01

    A terpolyimide precursor was developed which can be foamed by microwave methods and yields foams possessing the best seating properties. A continuous process, based on spray drying techniques, permits production of polyimide powder precursors in large quantities. The constrained rise foaming process permits fabrication of rigid foam panels with improved mechanical properties and almost unlimited density characteristics. Polyimide foam core rigid panels were produced by this technique with woven fiberglass fabric bonded to each side of the panel in a one step microwave process. The fire resistance of polyimide foams was significantly improved by the addition of ceramic fibers to the powder precursors. Foams produced from these compositions are flexible, possess good acoustical attenuation and meet the minimum burnthrough requirements when impinged by high flux flame sources.

  6. Electric-field assisted spin torque nano-oscillator and binary frequency shift keying modulation

    NASA Astrophysics Data System (ADS)

    Zhang, Xiangli; Chen, Hao-Hsuan; Zhang, Zongzhi; Liu, Yaowen

    2018-04-01

    Electric-controlled magnetization precession introduces technologically relevant possibility for developing spin torque nano-oscillators (STNO) with potential applications in microwave emission. Using the perpendicularly magnetized magnetic tunnel junction (MTJ), we show that the magnetization oscillation frequency can be tuned by the co-action of electric field and spin polarized current. The dynamical phase diagram of MTJ-based STNO is analytically predicted through coordinate transformation from the laboratory frame to the rotation frame, by which the nonstationary out-of-plane magnetization precession process is therefore transformed into the stationary process in the rotation frame. Furthermore, using this STNO as a microwave source, we numerically demonstrate that the bit signal can be transmitted by a binary frequency shift keying (BFSK) modulation technique. The BFSK scheme shows good modulation features with no transient state.

  7. Nonuniformity of Temperatures in Microwave Steam Heating of Lobster Tail.

    PubMed

    Fleischman, Gregory J

    2016-11-01

    The biennial Conference for Food Protection provides a formal process for all interested parties to influence food safety guidance. At a recent conference, an issue was raised culminating in a formal request to the U.S. Food and Drug Administration to change its Food Code recommendation for safe cooking of seafood using microwave energy when steaming was also employed. The request was to treat microwave steam cooked seafood as a conventionally cooked raw animal product rather than a microwave cooked product, for which the safe cooking recommendation is more extensive owing to the complex temperature distributions in microwave heating. The request was motivated by a literature study that revealed a more uniform temperature distribution in microwave steam cooked whole lobster. In that study, single-point temperatures were recorded in various sections of the whole lobster, but only one temperature was recorded in the tail, although the large size of the tail could translate to multiple hot and cold points. The present study was conducted to examine lobster tail specifically, measuring temperatures at multiple points during microwave steam cooking. Large temperature differences, greater than 60°C at times, were found throughout the heating period. To compensate for such differences, the Food Code recommends a more extensive level of cooking when microwave energy, rather than conventional heat sources, is used. Therefore, a change in the Food Code regarding microwave steam heating cannot be recommended.

  8. Electromagnetic Design and Performance of a Conical Microwave Blackbody Target for Radiometer Calibration

    NASA Astrophysics Data System (ADS)

    Houtz, Derek A.; Emery, William; Gu, Dazhen; Jacob, Karl; Murk, Axel; Walker, David K.; Wylde, Richard J.

    2017-08-01

    A conical cavity has been designed and fabricated for use as a broadband passive microwave calibration source, or blackbody, at the National Institute of Standards and Technology. The blackbody will be used as a national primary standard for brightness temperature and will allow for the prelaunch calibration of spaceborne radiometers and calibration of ground-based systems to provide traceability among radiometric data. The conical geometry provides performance independent of polarization, minimizing reflections, and standing waves, thus having a high microwave emissivity. The conical blackbody has advantages over typical pyramidal array geometries, including reduced temperature gradients and excellent broadband electromagnetic performance over more than a frequency decade. The blackbody is designed for use between 18 and 230 GHz, at temperatures between 80 and 350 K, and is vacuum compatible. To approximate theoretical blackbody behavior, the design maximizes emissivity and thus minimizes reflectivity. A newly developed microwave absorber is demonstrated that uses cryogenically compatible, thermally conductive two-part epoxy with magnetic carbonyl iron (CBI) powder loading. We measured the complex permittivity and permeability properties for different CBI-loading percentages; the conical absorber is then designed and optimized with geometric optics and finite-element modeling, and finally, the reflectivity of the resulting fabricated structure is measured. We demonstrated normal incidence reflectivity considerably below -40 dB at all relevant remote sensing frequencies.

  9. [Level of microwave radiation from mobile phone base stations built in residential districts].

    PubMed

    Hu, Ji; Lu, Yiyang; Zhang, Huacheng; Xie, Hebing; Yang, Xinwen

    2009-11-01

    To investigate the condition of microwave radiation pollution from mobile phone base station built in populated area. Random selected 18 residential districts where had base station and 10 residential districts where had no base stations. A TES-92 electromagnetic radiation monitor were used to measure the intensity of microwave radiation in external and internal living environment. The intensities of microwave radiation in the exposure residential districts were more higher than those of the control residential districts (p < 0.05). There was a intensity peak at about 10 m from the station, it would gradually weaken with the increase of the distance. The level of microwave radiation in antenna main lobe region is not certainly more higher than the side lobe direction, and the side lobe direction also is not more lower. At the same district, where there were two base stations, the electromagnetic field nestification would take place in someplace. The intensities of microwave radiation outside the exposure windows in the resident room not only changed with distance but also with the height of the floor. The intensities of microwave radiation inside the aluminum alloys security net were more lower than those of outside the aluminum alloys security net (p < 0.05), but the inside or outside of glass-window appears almost no change (p > 0.05). Although all the measure dates on the ground around the base station could be below the primary standard in "environment electromagnetic wave hygienic standard" (GB9175-88), there were still a minorities of windows which exposed to the base station were higher, and the outside or inside of a few window was even higher beyond the primary safe level defined standard. The aluminum alloys security net can partly shield the microwave radiation from the mobile phone base station.

  10. Phenomenology of microwave coupling. Part I

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    King, R.J.; Breakall, J.K.; Hudson, H.G.

    Recent advances in the development of high power microwave sources have increased the potential for future deployment of microwave weapons. A key ingredient in being able to predict the vulnerability of military systems to such threats involves understanding the phenomenology of how electromagnetic energy couples into cavity-like objects, or the so-called back-door coupling. A similar but much longer standing problem is that of nuclear electromagnetic pulses (EMP) in which the frequencies extend up to several hundreds of MHz. However, compared to EMP coupling, microwave coupling (from 1 GHz to above 40 GHz) is distinctively different because the wavelength is comparablemore » to the size of the ports of entry (apertures, seams, cracks, protruding connectors, etc.). These ports of entry and the interior configuration of a vulnerable system are no longer below cutoff, and can permit significant penetration of the microwave energy into susceptible electronic systems. In fact, these coupling paths can be highly resonant at certain microwave frequencies, making the shielding against microwave threats difficult. This report summarizes the initial efforts at Lawrence Livermore National Laboratory to study the phenomenology of back door coupling at the low microwave frequencies (up to 2.5 GHz). These studies were limited to 2.5 GHz because the limitations of the Electromagnetic Transient Range Facility.« less

  11. High Resolution Freeze and Thaw States Detection Using Combination of Sentinel 1A SAR and Passive Microwave Measurements

    NASA Astrophysics Data System (ADS)

    Azarderakhsh, M.; McDonald, K. C.; Norouzi, H.; Rebolledo, M. A.; Prakash, S.

    2017-12-01

    The freeze and thaw (FT) cycles in high-latitude regions have great impact on many biogeochemical transitions, hydrology and ecosystem especially in wetland areas. Passive and active microwave remote sensing data from satellite observations have been deployed in the past to define the status of the surface in terms of freeze and thaw. While many progresses have been made in this field, the limitations attached to such observations have hindered our ability to fully predict the change of surface state in the scale that is appropriate for the aforementioned applications. The transition between freeze and thaw states may occur frequently (even within a day) especially during shifts from cold to warm seasons and vice versa. Passive microwave sensors have different acquisition times, and data fusion of these sensors may provide a complete diurnal variation estimate of FT states. However, the coarse spatial resolution of these measurements may undermine their applicability. However, active microwave backscatter measurements from sensors such as Sentinel 1A and the Advanced Land Observing Satellite Phased Array L-Band SAR (ALOS PALSAR) can deliver high resolution information about wetlands and FT status. In this project, Synthetic Aperture Radar (SAR) c-band backscatter data from Sentinel 1 from April 2014 to June 2017 are deployed to detect high resolution freeze/thaw states and wetland areas. The contrasts between frozen and thawed seasons are used to define FT states after performing required radiometric corrections and calibrations. A method based on phase changes in polarized images is developed for different land cover types to maximize the accuracy of the detections. The aggregated (up-scaled) estimates from active measurements are compared to passive microwave-based FT product. The results of this method reveal that the estimates are relatively in good agreement with SNOw TELemetry (SNOTEL) ground measurements. Finally, a downscaling method is tried to link passive emissivity-based FT product to high resolution active FT estimates to increase the temporal frequency of the high-resolution Sentinel data. The results of this study contribute to better understanding sources of positive carbon and methane (CH4) feedback to the atmosphere.

  12. Experimental validation of a transformation optics based lens for beam steering

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yi, Jianjia; Burokur, Shah Nawaz, E-mail: shah-nawaz.burokur@u-psud.fr; Lustrac, André de

    2015-10-12

    A transformation optics based lens for beam control is experimentally realized and measured at microwave frequencies. Laplace's equation is adopted to construct the mapping between the virtual and physical spaces. The metamaterial-based lens prototype is designed using electric LC resonators. A planar microstrip antenna source is used as transverse electric polarized wave launcher for the lens. Both the far field radiation patterns and the near-field distributions have been measured to experimentally demonstrate the beam steering properties. Measurements agree quantitatively and qualitatively with numerical simulations, and a non-narrow frequency bandwidth operation is observed.

  13. Air Force Technical Objective Document, FY89.

    DTIC Science & Technology

    1988-04-01

    threat warning; multimegawatt stand-off jammers; a family of new, broadband , active decoy expendables; E4? subsystems and EW suites for Military...and monolithic integrated circuits. (3) Microwave TWTs Develop microwave tube technology and selected thermionic power sources and amplifiers for ECM...Improved design reliability and multiple application of tube technology are stressed. Improve Traveling Wave Tube ( TWT ) reliability by instrumenting a TWT

  14. Improved Design/Reduction of Manufacturing Costs of Space-Traveling Wave Tiube Amplifiers Final Report CRADA No. TC-0461-93

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Shang, C. C.; Drasco, M.

    The purpose of the CRADA was to develop new microwave codes for analyzing both slow-,vave structures and beam-wave interactions of traveling wave tube amplifiers (TWTA), the microwave power source for satellite and radar communication systems. The scope of work also included testing and improving power modules through measurements and simulation.

  15. Novel edible oil sources: Microwave heating and chemical properties.

    PubMed

    Hashemi, Seyed Mohammad Bagher; Mousavi Khaneghah, Amin; Koubaa, Mohamed; Lopez-Cervantes, Jaime; Yousefabad, Seyed Hossein Asadi; Hosseini, Seyedeh Fatemeh; Karimi, Masoumeh; Motazedian, Azam; Asadifard, Samira

    2017-02-01

    The aim of this work was to investigate the effect of various microwave heating times (1, 3, 5, 10, and 15min) on the chemical properties of novel edible oil sources, including Mashhadi melon (Cucumis melo var. Iranians cv. Mashhadi), Iranian watermelon (Citrullus lanatus cv. Fire Fon), pumpkin (Cucurbita pepo subsp. pepo var. Styriaca), and yellow apple (Malus domestica cv. Golden Delicious) seed oils. The evaluated parameters were peroxide value (PV), conjugated diene (CD) and triene (CT) values, carbonyl value (CV), p-anisidine value (AnV), oil stability index (OSI), radical scavenging activity (RSA), total tocopherols, total phenolics, as well as chlorophyll and carotenoid contents. Results showed that extended microwave heating involves decreased quality of the seed oils, mainly due to the formation of primary and secondary oxidation products. Microwave heating time also affects the total contents of chlorophylls, carotenoids, phenolics and tocopherols, which clearly decrease by increasing the exposure time. The order of oxidative stability of the analyzed edible oils was pumpkin>Mashhadi melon>Iranian watermelon>yellow apple. The obtained results demonstrated the promising potential of these novel edible oils for different food applications. Copyright © 2016 Elsevier Ltd. All rights reserved.

  16. Microwave produced plasma in a Toroidal Device

    NASA Astrophysics Data System (ADS)

    Singh, A. K.; Edwards, W. F.; Held, E. D.

    2010-11-01

    A currentless toroidal plasma device exhibits a large range of interesting basic plasma physics phenomena. Such a device is not in equilibrium in a strict magneto hydrodynamic sense. There are many sources of free energy in the form of gradients in plasma density, temperature, the background magnetic field and the curvature of the magnetic field. These free energy sources excite waves and instabilities which have been the focus of studies in several devices in last two decades. A full understanding of these simple plasmas is far from complete. At Utah State University we have recently designed and installed a microwave plasma generation system on a small tokamak borrowed from the University of Saskatchewan, Saskatoon, Canada. Microwaves are generated at 2.45 GHz in a pulsed dc mode using a magnetron from a commercial kitchen microwave oven. The device is equipped with horizontal and vertical magnetic fields and a transformer to impose a toroidal electric field for current drive. Plasmas can be obtained over a wide range of pressure with and without magnetic fields. We present some preliminary measurements of plasma density and potential profiles. Measurements of plasma temperature at different operating conditions are also presented.

  17. Adaption of a microwave plasma source for low temperature diamond deposition

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ulczynski, M.; Reinhard, D.K.; Asmussen, J.

    1996-12-31

    This report describes the adaption of a microwave plasma reactor for low temperature diamond deposition. The reactor is of a resonant cavity design. Three approaches have been taken to establish plasma conditions for diamond deposition on substrates which are in the range of 450 C to 550 C. In the first, the substrate is heated only by the plasma and the source is operated at pressures on the order of 10 torr, such that the volumetric power density is sufficiently low to achieve these temperatures. In the second, the plasma pressure and microwave input power were reduced and a substratemore » heater was used to maintain the desired deposition temperatures. In the third approach, the plasma pressure and microwave power were increased and a substrate cooler was used to keep the substrate temperature in the desired range. Reactor performance and deposition results will be described for the three configurations. For the plasma heated substrate assembly, substrate dimensions were up to 10 cm diameter. For the heated and cooled substrate assemblies, substrate dimensions were up to 7.5 cm diameter. Deposition results on a variety of substrates will be reported including low-temperature substrates such as borosilicate glass.« less

  18. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sudiana, I. Nyoman, E-mail: sudiana75@yahoo.com; Ngkoimani, La Ode; Usman, Ida

    Microwave sintering of materials has attracted much research interest because of its significant advantages (e.g. reduced sintering temperatures and soaking times) over the conventional heating. Most researchers compared processes that occurred during the microwave and conventional heating at the same temperature and time. The enhancements found in the former method are indicated as a 'non-thermal effect' which is usually used for explaining the phenomena in microwave processing. Numerous recent studies have been focused on the effect to elucidate the microwave interaction mechanism with materials. Moreover, recent progress on microwave sources such as gyrotrons has opened the possibility for processing materialsmore » by using a higher microwave frequency. Therefore, the technology is expected to exhibit a stronger non-thermal effect. This paper presents results from a series of experiments to study the non-thermal effect on microwave sintered alumina. Sintering by using a wide rage of microwave frequencies up to 300 GHz as well as a conventional furnace was carried out. The linear shrinkages of samples for each sintering method were measured. Pores and grains taken from scanning electron microstructure (SEM) images of cut surfaces were also examined. The results of a comparative study of the shrinkages and microstructure evolutions of the sintered samples under annealing in microwave heating systems and in an electric furnace were analyzed. A notably different behavior of the shrinkages and microstructures of alumina after being annealed was found. The results suggested that microwave radiations provided an additional force for mass transports. The results also indicated that the sintering process depended on microwave frequencies.« less

  19. (DCT) A Reconfigurable RF Photonics Unit Cell For Integrated Circuits

    DTIC Science & Technology

    2012-08-10

    Public Release In this work, the integration of a Quantum Dot Mode Locked Laser , that acts as a microwave and millimeter wave source, with a wideband...antenna is presented. Two aspects of research are discussed. The first aspect deals with a Mode Locked Laser (MLL) based on quantum dot (QD...designed antennas were integrated with laser chips using the lithographic method. The challenges of designing this wideband antenna that can operate

  20. Improvement of microwave feeding on a large bore ECRIS with permanent magnets by using coaxial semi-dipole antenna

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kurisu, Yosuke; Sakamoto, Naoki; Kiriyama, Ryutaro

    2012-11-06

    We are constructing a tandem type electron cyclotron resonance (ECR) ion source (ECRIS). The first stage of this ECRIS has a large-bore with cylindrically comb-shaped permanent magnets. 2.45GHz and 11-13GHz microwaves can be supplied individually and simultaneously to the plasma chamber. For 2.45GHz, a coaxial semi-dipole antenna is used to feed the microwaves. In previous experiments, there were two problems encountered when running the 2.45GHz microwaves. High incident power was necessary to keep ECR discharge at low operating pressure because of high reflected microwave power. The surface of a support insulator between the inner and the outer electrodes of coaxialmore » semi-dipole antenna was easily metalized by sputtering of the metal wall inside the chamber. The purpose of this study was to solve these problems. Performing several simulation experiments supports the hypothesis that the position of the support insulator is significant for microwave power efficiency. The end result was the ability to sustain ECR discharges at extremely low incident microwave power, several tens of watts, by optimized matching of the position and shape of the insulator.« less

  1. Microwave and hard X-ray emissions during the impulsive phase of solar flares: Nonthermal electron spectrum and time delay

    NASA Technical Reports Server (NTRS)

    Gu, Ye-Ming; Li, Chung-Sheng

    1986-01-01

    On the basis of the summing-up and analysis of the observations and theories about the impulsive microwave and hard X-ray bursts, the correlations between these two kinds of emissions were investigated. It is shown that it is only possible to explain the optically-thin microwave spectrum and its relations with the hard X-ray spectrum by means of the nonthermal source model. A simple nonthermal trap model in the mildly-relativistic case can consistently explain the main characteristics of the spectrum and the relative time delays.

  2. Quantum information transfer and entanglement with SQUID qubits in cavity QED: a dark-state scheme with tolerance for nonuniform device parameter.

    PubMed

    Yang, Chui-Ping; Chu, Shih-I; Han, Siyuan

    2004-03-19

    We investigate the experimental feasibility of realizing quantum information transfer (QIT) and entanglement with SQUID qubits in a microwave cavity via dark states. Realistic system parameters are presented. Our results show that QIT and entanglement with two-SQUID qubits can be achieved with a high fidelity. The present scheme is tolerant to device parameter nonuniformity. We also show that the strong coupling limit can be achieved with SQUID qubits in a microwave cavity. Thus, cavity-SQUID systems provide a new way for production of nonclassical microwave source and quantum communication.

  3. Application of the Markov Chain Monte Carlo method for snow water equivalent retrieval based on passive microwave measurements

    NASA Astrophysics Data System (ADS)

    Pan, J.; Durand, M. T.; Vanderjagt, B. J.

    2015-12-01

    Markov Chain Monte Carlo (MCMC) method is a retrieval algorithm based on Bayes' rule, which starts from an initial state of snow/soil parameters, and updates it to a series of new states by comparing the posterior probability of simulated snow microwave signals before and after each time of random walk. It is a realization of the Bayes' rule, which gives an approximation to the probability of the snow/soil parameters in condition of the measured microwave TB signals at different bands. Although this method could solve all snow parameters including depth, density, snow grain size and temperature at the same time, it still needs prior information of these parameters for posterior probability calculation. How the priors will influence the SWE retrieval is a big concern. Therefore, in this paper at first, a sensitivity test will be carried out to study how accurate the snow emission models and how explicit the snow priors need to be to maintain the SWE error within certain amount. The synthetic TB simulated from the measured snow properties plus a 2-K observation error will be used for this purpose. It aims to provide a guidance on the MCMC application under different circumstances. Later, the method will be used for the snowpits at different sites, including Sodankyla, Finland, Churchill, Canada and Colorado, USA, using the measured TB from ground-based radiometers at different bands. Based on the previous work, the error in these practical cases will be studied, and the error sources will be separated and quantified.

  4. Progress towards a microwave-based high-fidelity Toffoli gate with superconducting qubits

    NASA Astrophysics Data System (ADS)

    Rigetti, Chad; Chow, Jerry; Corcoles, Antonio; Rozen, Jim; Keefe, George; Rothwell, Mary Beth; Rohrs, Jack; Borstelmann, Mark; Divincenzo, David; Ketchen, Mark; Steffen, Matthias

    2011-03-01

    We describe recent progress at IBM towards a microwave-based implementation of the Toffoli gate using three capacitively shunted flux qubits dispersively coupled to a resonator. We discuss the device architecture and the microwave protocol, along with expected limits to gate fidelity and scaling.

  5. The experimental study of the effect of microwave on the physical properties of multi-walled carbon nanotubes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Haque, A.K.M. Mahmudul; Oh, Geum Seok; Kim, Taeoh

    Highlights: • We study the microwave effect on the multi-walled carbon nanotubes (MWCNTs). • We examine the non uniform heating effect on the physical structure of MWCNTs. • We examine the purification of MWCNTs by microwave. • We analyze the thermal characteristics of microwave treated MWCNTs. - Abstract: This paper reports the effect of microwave on the physical properties of multi-walled carbon nanotubes (MWCNTs) where different power levels of microwave were applied on MWCNTs in order to apprehend the effect of microwave on MWCNTs distinctly. A low energy ball milling in aqueous circumstance was also applied on both MWCNTs andmore » microwave treated MWCNTs. Temperature profile, morphological analysis by field emission scanning electron microscopy (FESEM), defect analysis by Raman spectroscopy, thermal conductivity, thermal diffusivity as well as heat transfer coefficient enhancement ratio were studied which expose some strong witnesses of the effect of microwave on the both purification and dispersion properties of MWCNTs in base fluid distilled water. The highest thermal conductivity enhancement (6.06% at 40 °C) of MWCNTs based nanofluid is achieved by five minutes microwave treatment as well as wet grinding at 500 rpm for two hours.« less

  6. Development of low fat potato chips through microwave processing.

    PubMed

    Joshi, A; Rudra, S G; Sagar, V R; Raigond, P; Dutt, S; Singh, B; Singh, B P

    2016-08-01

    Since snacks high in fats are known to be a significant source of fat and energy intake, these have been put in high dietary restraint category. Therefore, an attempt was made to process potato chips through microwave processing without incorporation of any oil in potato chips. Microwave processing of potato chips was done using microwave power varying from 180 to 600 W using constant sample size. Among eleven different drying models, Parabolic model was found to be the best fit through non-linear regression analysis to illustrate drying kinetics of potato chips. The structural, textural and colour attributes of microwaved potato chips were similar to commercial fried potato chips. It was found that at 600 W after 2.5-3.0 min of processing, potato chips gained the fracturability and crispiness index as that of commercial fried chips. Microwave processing was found suitable for processing of potato chips with low fat content (~3.09 vs 35.5 % in commercial preparation) and with acceptable sensory scores (≥7.6 on 9.0 point on hedonic scale vs 8.0 of control preparation).

  7. Microwave generation in an electro-absorption modulator integrated with a DFB laser subject to optical injection.

    PubMed

    Zhu, Ning Hua; Zhang, Hong Guang; Man, Jiang Wei; Zhu, Hong Liang; Ke, Jian Hong; Liu, Yu; Wang, Xin; Yuan, Hai Qing; Xie, Liang; Wang, Wei

    2009-11-23

    This paper presents a new technique to generate microwave signal using an electro-absorption modulator (EAM) integrated with a distributed feedback (DFB) laser subject to optical injection. Experiments show that the frequency of the generated microwave can be tuned by changing the wavelength of the external laser or adjusting the bias voltage of the EAM. The frequency response of the EAM is studied and found to be unsmooth due to packaging parasitic effects and four-wave mixing effect occurring in the active layer of the DFB laser. It is also demonstrated that an EA modulator integrated in between two DFB lasers can be used instead of the EML under optical injection. This integrated chip can be used to realize a monolithically integrated tunable microwave source.

  8. Vortices at Microwave Frequencies

    NASA Astrophysics Data System (ADS)

    Silva, Enrico; Pompeo, Nicola; Dobrovolskiy, Oleksandr V.

    2017-11-01

    The behavior of vortices at microwave frequencies is an extremely useful source of information on the microscopic parameters that enter the description of the vortex dynamics. This feature has acquired particular relevance since the discovery of unusual superconductors, such as cuprates. Microwave investigation then extended its field of application to many families of superconductors, including the artificially nanostructured materials. It is then important to understand the basics of the physics of vortices moving at high frequency, as well as to understand what information the experiments can yield (and what they can not). The aim of this brief review is to introduce the readers to some basic aspects of the physics of vortices under a microwave electromagnetic field, and to guide them to an understanding of the experiment, also by means of the illustration of some relevant results.

  9. Systems and methods for remote long standoff biometric identification using microwave cardiac signals

    NASA Technical Reports Server (NTRS)

    McGrath, William R. (Inventor); Talukder, Ashit (Inventor)

    2012-01-01

    Systems and methods for remote, long standoff biometric identification using microwave cardiac signals are provided. In one embodiment, the invention relates to a method for remote biometric identification using microwave cardiac signals, the method including generating and directing first microwave energy in a direction of a person, receiving microwave energy reflected from the person, the reflected microwave energy indicative of cardiac characteristics of the person, segmenting a signal indicative of the reflected microwave energy into a waveform including a plurality of heart beats, identifying patterns in the microwave heart beats waveform, and identifying the person based on the identified patterns and a stored microwave heart beats waveform.

  10. Ground-Based Calibration Of A Microwave Landing System

    NASA Technical Reports Server (NTRS)

    Kiriazes, John J.; Scott, Marshall M., Jr.; Willis, Alfred D.; Erdogan, Temel; Reyes, Rolando

    1996-01-01

    System of microwave instrumentation and data-processing equipment developed to enable ground-based calibration of microwave scanning-beam landing system (MSBLS) at distances of about 500 to 1,000 ft from MSBLS transmitting antenna. Ensures accuracy of MSBLS near touchdown point, without having to resort to expense and complex logistics of aircraft-based testing. Modified versions prove useful in calibrating aircraft instrument landing systems.

  11. A Common Calibration Source Framework for Fully-Polarimetric and Interferometric Radiometers

    NASA Technical Reports Server (NTRS)

    Kim, Edward J.; Davis, Brynmor; Piepmeier, Jeff; Zukor, Dorothy J. (Technical Monitor)

    2000-01-01

    Two types of microwave radiometry--synthetic thinned array radiometry (STAR) and fully-polarimetric (FP) radiometry--have received increasing attention during the last several years. STAR radiometers offer a technological solution to achieving high spatial resolution imaging from orbit without requiring a filled aperture or a moving antenna, and FP radiometers measure extra polarization state information upon which entirely new or more robust geophysical retrieval algorithms can be based. Radiometer configurations used for both STAR and FP instruments share one fundamental feature that distinguishes them from more 'standard' radiometers, namely, they measure correlations between pairs of microwave signals. The calibration requirements for correlation radiometers are broader than those for standard radiometers. Quantities of interest include total powers, complex correlation coefficients, various offsets, and possible nonlinearities. A candidate for an ideal calibration source would be one that injects test signals with precisely controllable correlation coefficients and absolute powers simultaneously into a pair of receivers, permitting all of these calibration quantities to be measured. The complex nature of correlation radiometer calibration, coupled with certain inherent similarities between STAR and FP instruments, suggests significant leverage in addressing both problems together. Recognizing this, a project was recently begun at NASA Goddard Space Flight Center to develop a compact low-power subsystem for spaceflight STAR or FP receiver calibration. We present a common theoretical framework for the design of signals for a controlled correlation calibration source. A statistical model is described, along with temporal and spectral constraints on such signals. Finally, a method for realizing these signals is demonstrated using a Matlab-based implementation.

  12. Nested-cone transformer antenna

    DOEpatents

    Ekdahl, C.A.

    1991-05-28

    A plurality of conical transmission lines are concentrically nested to form an output antenna for pulsed-power, radio-frequency, and microwave sources. The diverging conical conductors enable a high power input density across a bulk dielectric to be reduced below a breakdown power density at the antenna interface with the transmitting medium. The plurality of cones maintain a spacing between conductors which minimizes the generation of high order modes between the conductors. Further, the power input feeds are isolated at the input while enabling the output electromagnetic waves to add at the transmission interface. Thus, very large power signals from a pulse rf, or microwave source can be radiated. 6 figures.

  13. Nested-cone transformer antenna

    DOEpatents

    Ekdahl, Carl A.

    1991-01-01

    A plurality of conical transmission lines are concentrically nested to form n output antenna for pulsed-power, radio-frequency, and microwave sources. The diverging conical conductors enable a high power input density across a bulk dielectric to be reduced below a breakdown power density at the antenna interface with the transmitting medium. The plurality of cones maintain a spacing between conductors which minimizes the generation of high order modes between the conductors. Further, the power input feeds are isolated at the input while enabling the output electromagnetic waves to add at the transmission interface. Thus, very large power signals from a pulse rf, or microwave source can be radiated.

  14. Microwave-assisted generation of standard gas mixtures.

    PubMed

    Xiong, Guohua; Pawliszyn, Janusz

    2002-05-15

    Microwave heating was employed for preparation of the standard gas of volatile organic compounds (VOCs) and semivolatile organic compounds (semi-VOCs) by using a 1000 W commercial domestic microwave oven and 1 L gas-sampling bulbs. The VOCs investigated were benzene, chloroform, 1,3-dichlorobenzene, tetrachloroethylene, toluene, and 1,1,2-trichloroethane, and the semi-VOCs used were the polychlorinated biphenyls (PCBs) PCB 1016 and PCB 1248. Since these weakly or nonpolar molecules are very poor absorbers of microwave energy, an appropriate amount of water was introduced to accept microwave radiation and act as the thermal source to accelerate their evaporation. The glass bulb may also contribute thermal energy to the VOCs/semi-VOCs by accepting microwave energy to a small degree. For 0.5 microL of liquid VOCs on 10 mg of glass wool, it was shown that 15 microL of H2O and 60 s of microwave heating yielded a very efficient evaporation [97.2-106.4%, compared with a classic method (Muller, L; Gorecki, T.; Pawliszyn, J. Fresenius' J. Anal. Chem. 1999, 364, 610-616)]. For 1 microL of PCB solution (1000 microg/mL in hexane), 15 microL of H2O and 90 s of microwave heating also provided a complete evaporation. The addition of water was particularly significant for microwave-assisted evaporation of PCBs because semi-VOCs are much more difficult to evaporate than VOCs. This developed microwave technique proved to be quite simple, powerful, rapid, accurate, and safe for the preparation of VOC/semi-VOC standard gas. Solid- phase microextraction combined with gas chromatography was used for the gas analysis.

  15. Investigation of a metallic photonic crystal high power microwave mode converter

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wang, Dong, E-mail: mr20001@sina.com; Qin, Fen; Xu, Sha

    2015-02-15

    It is demonstrated that an L band metallic photonic crystal TEM-TE{sub 11} mode converter is suitable for narrow band high power microwave application. The proposed mode converter is realized by partially filling metallic photonic crystals along azimuthal direction in a coaxial transmission line for phase-shifting. A three rows structure is designed and simulated by commercial software CST Microwave Studio. Simulation results show that its conversion efficiency is 99% at the center frequency 1.58 GHz. Over the frequency range of 1.56-1.625 GHz, the conversion efficiency exceeds 90 %, with a corresponding bandwidth of 4.1 %. This mode converter has a gigawattmore » level power handling capability which is suitable for narrow band high power microwave application. Using magnetically insulated transmission line oscillator(MILO) as a high power microwave source, particle-in-cell simulation is carried out to test the performance of the mode converter. The expected TE{sub 11} mode microwave output is obtained and the MILO works well. Mode conversion performance of the converter is tested by far-field measurement method. And the experimental result confirms the validity of our design. Then, high power microwave experiment is carried out on a Marx-driven Blumlein water line pulsed power accelerator. Microwave frequency, radiated pattern and power are measured in the far-field region and the results agree well with simulation results. The experiment also reveals that no microwave breakdown or pulse shortening took place in the experimental setup.« less

  16. Application of Terrestrial Microwave Remote Sensing to Agricultural Drought Monitoring

    NASA Astrophysics Data System (ADS)

    Crow, W. T.; Bolten, J. D.

    2014-12-01

    Root-zone soil moisture information is a valuable diagnostic for detecting the onset and severity of agricultural drought. Current attempts to globally monitor root-zone soil moisture are generally based on the application of soil water balance models driven by observed meteorological variables. Such systems, however, are prone to random error associated with: incorrect process model physics, poor parameter choices and noisy meteorological inputs. The presentation will describe attempts to remediate these sources of error via the assimilation of remotely-sensed surface soil moisture retrievals from satellite-based passive microwave sensors into a global soil water balance model. Results demonstrate the ability of satellite-based soil moisture retrieval products to significantly improve the global characterization of root-zone soil moisture - particularly in data-poor regions lacking adequate ground-based rain gage instrumentation. This success has lead to an on-going effort to implement an operational land data assimilation system at the United States Department of Agriculture's Foreign Agricultural Service (USDA FAS) to globally monitor variations in root-zone soil moisture availability via the integration of satellite-based precipitation and soil moisture information. Prospects for improving the performance of the USDA FAS system via the simultaneous assimilation of both passive and active-based soil moisture retrievals derived from the upcoming NASA Soil Moisture Active/Passive mission will also be discussed.

  17. Design of a compact, permanent magnet electron cyclotron resonance ion source for proton and H2(+) beam production.

    PubMed

    Jia, Xianlu; Zhang, Tianjue; Luo, Shan; Wang, Chuan; Zheng, Xia; Yin, Zhiguo; Zhong, Junqing; Wu, Longcheng; Qin, Jiuchang

    2010-02-01

    A 2.45 GHz microwave ion source was developed at China Institute of Atomic Energy (CIAE) for proton beam production of over 60 mA [B.-Q. Cui, Y.-W. Bao, L.-Q. Li, W.-S. Jiang, and R.-W. Wang, Proceedings of the High Current Electron Cyclotron Resonance (ECR) Ion Source for Proton Accelerator, APAC-2001, 2001 (unpublished)]. For various proton beam applications, another 2.45 GHz microwave ion source with a compact structure is designed and will be built at CIAE as well for high current proton beam production. It is also considered to be used for the test of H(2)(+) beam, which could be injected into the central region model cyclotron at CIAE, and accelerated to 5 MeV before extraction by stripping. The required ECR magnetic field is supplied by all the permanent magnets rather than electrical solenoids and six poles. The magnetic field distribution provided by this permanent magnets configuration is a large and uniformly volume of ECR zone, with central magnetic field of a magnitude of approximately 875 Gs [T. Taylor and J. S. C. Wills, Nucl. Instrum. Methods Phys. Res. A 309, 37 (1991)]. The field adjustment at the extraction end can be implemented by moving the position of the magnet blocks. The results of plasma, coupling with 2.45 GHz microwave in the ECR zone inside the ion source are simulated by particle-in-cell code to optimize the density by adjusting the magnetic field distribution. The design configuration of the ion source will be summarized in the paper.

  18. Plasma Physics Challenges of MM-to-THz and High Power Microwave Generation

    NASA Astrophysics Data System (ADS)

    Booske, John

    2007-11-01

    Homeland security and military defense technology considerations have stimulated intense interest in mobile, high power sources of millimeter-wave to terahertz regime electromagnetic radiation, from 0.1 to 10 THz. While sources at the low frequency end, i.e., the gyrotron, have been deployed or are being tested for diverse applications such as WARLOC radar and active denial systems, the challenges for higher frequency sources have yet to be completely met for applications including noninvasive sensing of concealed weapons and dangerous agents, high-data-rate communications, and high resolution spectroscopy and atmospheric sensing. The compact size requirements for many of these high frequency sources requires miniscule, micro-fabricated slow wave circuits with high rf ohmic losses. This necessitates electron beams with not only very small transverse dimensions but also very high current density for adequate gain. Thus, the emerging family of mm-to-THz e-beam-driven vacuum electronics devices share many of the same plasma physics challenges that currently confront ``classic'' high power microwave (HPM) generators [1] including bright electron sources, intense beam transport, energetic electron interaction with surfaces and rf air breakdown at output windows. Multidimensional theoretical and computational models are especially important for understanding and addressing these challenges. The contemporary plasma physics issues, recent achievements, as well as the opportunities and outlook on THz and HPM will be addressed. [1] R.J. Barker, J.H. Booske, N.C. Luhmann, and G.S. Nusinovich, Modern Microwave and Millimeter-Wave Power Electronics (IEEE/Wiley, 2005).

  19. Spin Coherence in Silicon-based Quantum Structures and Devices

    DTIC Science & Technology

    2017-08-31

    Using electron spin resonance (ESR) to measure the den- sity of shallow traps, we find that the two sets of devices are nearly identical , indicating...experiments which cannot utilize a clock transition or a field-cancelling decoherence-free subspace. Our approach was to lock the microwave source driving...the electron spins to a strong nuclear spin signal. In our initial experiments we locked to the proton signal in a water cell. However, the noise in

  20. Microwave-Accelerated Method for Ultra-Rapid Extraction of Neisseria gonorrhoeae DNA for Downstream Detection

    PubMed Central

    Melendez, Johan H.; Santaus, Tonya M.; Brinsley, Gregory; Kiang, Daniel; Mali, Buddha; Hardick, Justin; Gaydos, Charlotte A.; Geddes, Chris D.

    2016-01-01

    Nucleic acid-based detection of gonorrhea infections typically require a two-step process involving isolation of the nucleic acid, followed by the detection of the genomic target often involving PCR-based approaches. In an effort to improve on current detection approaches, we have developed a unique two-step microwave-accelerated approach for rapid extraction and detection of Neisseria gonorrhoeae (GC) DNA. Our approach is based on the use of highly-focused microwave radiation to rapidly lyse bacterial cells, release, and subsequently fragment microbial DNA. The DNA target is then detected by a process known as microwave-accelerated metal-enhanced fluorescence (MAMEF), an ultra-sensitive direct DNA detection analytical technique. In the present study, we show that highly focused microwaves at 2.45 GHz, using 12.3 mm gold film equilateral triangles, are able to rapidly lyse both bacteria cells and fragment DNA in a time- and microwave power-dependent manner. Detection of the extracted DNA can be performed by MAMEF, without the need for DNA amplification in less than 10 minutes total time or by other PCR-based approaches. Collectively, the use of a microwave-accelerated method for the release and detection of DNA represents a significant step forward towards the development of a point-of-care (POC) platform for detection of gonorrhea infections. PMID:27325503

  1. Gold Nanoparticle Microwave Synthesis

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Krantz, Kelsie E.; Christian, Jonathan H.; Coopersmith, Kaitlin

    At the nanometer scale, numerous compounds display different properties than those found in bulk material that can prove useful in areas such as medicinal chemistry. Gold nanoparticles, for example, display promise in newly developed hyperthermia therapies for cancer treatment. Currently, gold nanoparticle synthesis is performed via the hot injection technique which has large variability in final particle size and a longer reaction time. One underdeveloped area by which these particles could be produced is through microwave synthesis. To initiate heating, microwaves agitate polar molecules creating a vibration that gives off the heat energy needed. Previous studies have used microwaves formore » gold nanoparticle synthesis; however, polar solvents were used that partially absorbed incident microwaves, leading to partial thermal heating of the sample rather than taking full advantage of the microwave to solely heat the gold nanoparticle precursors in a non-polar solution. Through this project, microwaves were utilized as the sole heat source, and non-polar solvents were used to explore the effects of microwave heating only as pertains to the precursor material. Our findings show that the use of non-polar solvents allows for more rapid heating as compared to polar solvents, and a reduction in reaction time from 10 minutes to 1 minute; this maximizes the efficiency of the reaction, and allows for reproducibility in the size/shape of the fabricated nanoparticles.« less

  2. TEMPORAL AND SPATIAL ANALYSES OF SPECTRAL INDICES OF NONTHERMAL EMISSIONS DERIVED FROM HARD X-RAYS AND MICROWAVES

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Asai, Ayumi; Kiyohara, Junko; Takasaki, Hiroyuki

    2013-02-15

    We studied electron spectral indices of nonthermal emissions seen in hard X-rays (HXRs) and microwaves. We analyzed 12 flares observed by the Hard X-Ray Telescope aboard Yohkoh, Nobeyama Radio Polarimeters, and the Nobeyama Radioheliograph (NoRH), and compared the spectral indices derived from total fluxes of HXRs and microwaves. Except for four events, which have very soft HXR spectra suffering from the thermal component, these flares show a gap {Delta}{delta} between the electron spectral indices derived from HXRs {delta} {sub X} and those from microwaves {delta}{sub {mu}} ({Delta}{delta} = {delta} {sub X} - {delta}{sub {mu}}) of about 1.6. Furthermore, from themore » start to the peak times of the HXR bursts, the time profiles of the HXR spectral index {delta} {sub X} evolve synchronously with those of the microwave spectral index {delta}{sub {mu}}, keeping the constant gap. We also examined the spatially resolved distribution of the microwave spectral index by using NoRH data. The microwave spectral index {delta}{sub {mu}} tends to be larger, which means a softer spectrum, at HXR footpoint sources with stronger magnetic field than that at the loop tops. These results suggest that the electron spectra are bent at around several hundreds of keV, and become harder at the higher energy range that contributes the microwave gyrosynchrotron emission.« less

  3. The relationship between NMDA receptors and microwave-induced learning and memory impairment: a long-term observation on Wistar rats.

    PubMed

    Wang, Hui; Peng, Ruiyun; Zhao, Li; Wang, Shuiming; Gao, Yabing; Wang, Lifeng; Zuo, Hongyan; Dong, Ji; Xu, Xinping; Zhou, Hongmei; Su, Zhentao

    2015-03-01

    Abstract Purpose: To investigate whether high power microwave could cause continuous disorders to learning and memory in Wistar rats and to explore the underlying mechanisms. Eighty Wistar rats were exposed to a 2.856 GHz pulsed microwave source at a power density of 0 mW/cm(2) and 50 mW/cm(2) microwave for 6 min. The spatial memory ability, the structure of the hippocampus, contents of amino acids neurotransmitters in hippocampus and the expression of N-methyl-D-aspartic acid receptors (NMDAR) subunit 1, 2A and 2B (NR1, NR2A and NR2B) were detected at 1, 3, 6, 9, 12 and 18 months after microwave exposure. Our results showed that the microwave-exposed rats showed consistent deficiencies in spatial learning and memory. The level of amino acid neurotransmitters also decreased after microwave radiation. The ratio of glutamate (Glu) and gammaaminobutyric acid (GABA) significantly decreased at 6 months. Besides, the hippocampus showed varying degrees of degeneration of neurons, increased postsynaptic density and blurred synaptic clefts in the exposure group. The NR1 and NR2B expression showed a significant decrease, especially the NR2B expression. This study indicated that the content of amino acids neurotransmitters, the expression of NMDAR subunits and the variation of hippocampal structure might contribute to the long-term cognitive impairment after microwave exposure.

  4. Temperature peaking at beginning of breakdown in 2.45 GHz pulsed off-resonance electron cyclotron resonance ion source hydrogen plasma

    NASA Astrophysics Data System (ADS)

    Cortázar, O. D.; Megía-Macías, A.; Vizcaíno-de-Julián, A.

    2012-10-01

    An experimental study of temperature and density evolution during breakdown in off-resonance ECR hydrogen plasma is presented. Under square 2.45 GHz microwave excitation pulses with a frequency of 50 Hz and relative high microwave power, unexpected transient temperature peaks that reach 18 eV during 20 μs are reported at very beginning of plasma breakdown. Decays of such peaks reach final stable temperatures of 5 eV at flat top microwave excitation pulse. Evidence of interplay between incoming power and duty cycle giving different kind of plasma parameters evolutions engaged to microwave coupling times is observed. Under relative high power conditions where short microwave coupling times are recorded, high temperature peaks are measured. However, for lower incoming powers and longer coupling times, temperature evolves gradually to a higher final temperature without peaking. On the other hand, the early instant where temperature peaks are observed also suggest a possible connection with preglow processes during breakdown in ECRIS plasmas.

  5. Hyperenergetic manned aerospacecraft propelled by intense pulsed microwave power beam

    NASA Astrophysics Data System (ADS)

    Myrabo, Leik N.

    1995-09-01

    The objective of this research was to exploit wireless power transmission (microwave/millimeter)--to lower manned space transportation costs by two or three orders of magnitude. Concepts have been developed for lightweight, mass-producible, beam-propelled aerospacecraft called Lightcraft. The vehicles are designed for a 'mass-poor, energy-rich' (i.e. hyper-energentic flight infrastructure which utilizes remote microwave power stations to build an energy-beam highway to space. Although growth in laser power levels has lagged behind expectations, microwave and millimeter-wave source technology now exists for rapid scaling to the megawatt and gigawatt time-average power levels. The design exercise focused on the engine, structure, and receptive optics requirements for a 15 meter diameter, 5 person Earth- to-moon aerospacecraft. Key elements in the airbreathing accelerator propulsion system are: a) a 'flight-weight' 35GHz rectenna electric powerplant, b) microwave-induced 'Air Spike' and perimeter air-plasma generators, and c) MagnetoHydroDynamic-Fanjet engine with its superconducting magnets and external electrodes.

  6. On-chip dual-comb source for spectroscopy

    PubMed Central

    Dutt, Avik; Joshi, Chaitanya; Ji, Xingchen; Cardenas, Jaime; Okawachi, Yoshitomo; Luke, Kevin; Gaeta, Alexander L.; Lipson, Michal

    2018-01-01

    Dual-comb spectroscopy is a powerful technique for real-time, broadband optical sampling of molecular spectra, which requires no moving components. Recent developments with microresonator-based platforms have enabled frequency combs at the chip scale. However, the need to precisely match the resonance wavelengths of distinct high quality-factor microcavities has hindered the development of on-chip dual combs. We report the simultaneous generation of two microresonator combs on the same chip from a single laser, drastically reducing experimental complexity. We demonstrate broadband optical spectra spanning 51 THz and low-noise operation of both combs by deterministically tuning into soliton mode-locked states using integrated microheaters, resulting in narrow (<10 kHz) microwave beat notes. We further use one comb as a reference to probe the formation dynamics of the other comb, thus introducing a technique to investigate comb evolution without auxiliary lasers or microwave oscillators. We demonstrate high signal-to-noise ratio absorption spectroscopy spanning 170 nm using the dual-comb source over a 20-μs acquisition time. Our device paves the way for compact and robust spectrometers at nanosecond time scales enabled by large beat-note spacings (>1 GHz). PMID:29511733

  7. Tunable short-wavelength spin wave excitation from pinned magnetic domain walls

    PubMed Central

    Van de Wiele, Ben; Hämäläinen, Sampo J.; Baláž, Pavel; Montoncello, Federico; van Dijken, Sebastiaan

    2016-01-01

    Miniaturization of magnonic devices for wave-like computing requires emission of short-wavelength spin waves, a key feature that cannot be achieved with microwave antennas. In this paper, we propose a tunable source of short-wavelength spin waves based on highly localized and strongly pinned magnetic domain walls in ferroelectric-ferromagnetic bilayers. When driven into oscillation by a microwave spin-polarized current, the magnetic domain walls emit spin waves with the same frequency as the excitation current. The amplitude of the emitted spin waves and the range of attainable excitation frequencies depend on the availability of domain wall resonance modes. In this respect, pinned domain walls in magnetic nanowires are particularly attractive. In this geometry, spin wave confinement perpendicular to the nanowire axis produces a multitude of domain wall resonances enabling efficient spin wave emission at frequencies up to 100 GHz and wavelengths down to 20 nm. At high frequency, the emission of spin waves in magnetic nanowires becomes monochromatic. Moreover, pinning of magnetic domain wall oscillators onto the same ferroelectric domain boundary in parallel nanowires guarantees good coherency between spin wave sources, which opens perspectives towards the realization of Mach-Zehnder type logic devices and sensors. PMID:26883893

  8. VUV Emission of Microwave Driven Argon Plasma Source

    NASA Astrophysics Data System (ADS)

    Henriques, Julio; Espinho, Susana; Felizardo, Edgar; Tatarova, Elena; Dias, Francisco; Ferreira, Carlos

    2013-09-01

    An experimental and kinetic modeling investigation of a low-pressure (0.1-1.2 mbar), surface wave (2.45 GHz) induced Ar plasma as a source vacuum ultraviolet (VUV) light is presented, using visible and VUV optical spectroscopy. The electron density and the relative VUV emission intensities of excited Ar atoms (at 104.8 nm and 106.6 nm) and ions (at 92.0 nm and 93.2 nm) were determined as a function of the microwave power and pressure. The experimental results were analyzed using a 2D self-consistent theoretical model based on a set of coupled equations including the electron Boltzmann equation, the rate balance equations for the most important electronic excited species and for charged particles, the gas thermal balance equation, and the wave electrodynamics. The principal collisional and radiative processes for neutral Ar(3p54s) and Ar(3p54p) and ionized Ar(3s3p6 2S1/2) levels are accounted for. Model predictions are in good agreement with the experimental measurements. This study was funded by the Foundation for Science and Technology, Portuguese Ministry of Education and Science, under the research contract PTDC/FIS/108411/2008.

  9. A vacuum-sealed, gigawatt-class, repetitively pulsed high-power microwave source

    NASA Astrophysics Data System (ADS)

    Xun, Tao; Fan, Yu-wei; Yang, Han-wu; Zhang, Zi-cheng; Chen, Dong-qun; Zhang, Jian-de

    2017-06-01

    A compact L-band sealed-tube magnetically insulated transmission line oscillator (MILO) has been developed that does not require bulky external vacuum pump for repetitive operations. This device with a ceramic insulated vacuum interface, a carbon fiber array cathode, and non-evaporable getters has a base vacuum pressure in the low 10-6 Pa range. A dynamic 3-D Monte-Carlo model for the molecular flow movement and collision was setup for the MILO chamber. The pulse desorption, gas evolution, and pressure distribution were exactly simulated. In the 5 Hz repetition rate experiments, using a 600 kV diode voltage and 48 kA beam current, the average radiated microwave power for 25 shots is about 3.4 GW in 45 ns pulse duration. The maximum equilibrium pressure is below 4.0 × 10-2 Pa, and no pulse shortening limitations are observed during the repetitive test in the sealed-tube condition.

  10. Improved Satellite Estimation of Near-Surface Humidity Using Vertical Water Vapor Profile Information

    NASA Astrophysics Data System (ADS)

    Tomita, H.; Hihara, T.; Kubota, M.

    2018-01-01

    Near-surface air-specific humidity is a key variable in the estimation of air-sea latent heat flux and evaporation from the ocean surface. An accurate estimation over the global ocean is required for studies on global climate, air-sea interactions, and water cycles. Current remote sensing techniques are problematic and a major source of errors for flux and evaporation. Here we propose a new method to estimate surface humidity using satellite microwave radiometer instruments, based on a new finding about the relationship between multichannel brightness temperatures measured by satellite sensors, surface humidity, and vertical moisture structure. Satellite estimations using the new method were compared with in situ observations to evaluate this method, confirming that it could significantly improve satellite estimations with high impact on satellite estimation of latent heat flux. We recommend the adoption of this method for any satellite microwave radiometer observations.

  11. ELBARA II, an L-band radiometer system for soil moisture research.

    PubMed

    Schwank, Mike; Wiesmann, Andreas; Werner, Charles; Mätzler, Christian; Weber, Daniel; Murk, Axel; Völksch, Ingo; Wegmüller, Urs

    2010-01-01

    L-band (1-2 GHz) microwave radiometry is a remote sensing technique that can be used to monitor soil moisture, and is deployed in the Soil Moisture and Ocean Salinity (SMOS) Mission of the European Space Agency (ESA). Performing ground-based radiometer campaigns before launch, during the commissioning phase and during the operative SMOS mission is important for validating the satellite data and for the further improvement of the radiative transfer models used in the soil-moisture retrieval algorithms. To address these needs, three identical L-band radiometer systems were ordered by ESA. They rely on the proven architecture of the ETH L-Band radiometer for soil moisture research (ELBARA) with major improvements in the microwave electronics, the internal calibration sources, the data acquisition, the user interface, and the mechanics. The purpose of this paper is to describe the design of the instruments and the main characteristics that are relevant for the user.

  12. Experimental demonstration of a Ku-band radial-line relativistic klystron oscillator based on transition radiation

    NASA Astrophysics Data System (ADS)

    Dang, Fangchao; Zhang, Xiaoping; Zhang, Jun; Ju, Jinchuan; Zhong, Huihuang

    2017-03-01

    We report on a radial-line relativistic klystron oscillator (RL-RKO), which is physically designed to generate gigawatt-level high power microwaves (HPMs) at Ku-band. The 3π/4 mode of a four-gap buncher is selected to highly modulate the radially propagating intense relativistic electron beam (IREB). A three-gap extractor operating at the π mode is employed to extract the radio-frequency energy efficiently. The Ku-band RL-RKO is investigated experimentally on an intense-current electron beam accelerator. The radially propagating IREB is well focused with an axial-width of 2 mm by a radial magnetic field of 0.4 T. Microwaves with a frequency of 14.86 GHz and a power of 1.5 GW are generated, corresponding to an efficiency of 24%, which indicates a significant advance for the research of radial-line HPM sources.

  13. ELBARA II, an L-Band Radiometer System for Soil Moisture Research

    PubMed Central

    Schwank, Mike; Wiesmann, Andreas; Werner, Charles; Mätzler, Christian; Weber, Daniel; Murk, Axel; Völksch, Ingo; Wegmüller, Urs

    2010-01-01

    L-band (1–2 GHz) microwave radiometry is a remote sensing technique that can be used to monitor soil moisture, and is deployed in the Soil Moisture and Ocean Salinity (SMOS) Mission of the European Space Agency (ESA). Performing ground-based radiometer campaigns before launch, during the commissioning phase and during the operative SMOS mission is important for validating the satellite data and for the further improvement of the radiative transfer models used in the soil-moisture retrieval algorithms. To address these needs, three identical L-band radiometer systems were ordered by ESA. They rely on the proven architecture of the ETH L-Band radiometer for soil moisture research (ELBARA) with major improvements in the microwave electronics, the internal calibration sources, the data acquisition, the user interface, and the mechanics. The purpose of this paper is to describe the design of the instruments and the main characteristics that are relevant for the user. PMID:22315556

  14. α-Fe2O3 nanosheet-assembled hierarchical hollow mesoporous microspheres: Microwave-assisted solvothermal synthesis and application in photocatalysis.

    PubMed

    Sun, Tuan-Wei; Zhu, Ying-Jie; Qi, Chao; Ding, Guan-Jun; Chen, Feng; Wu, Jin

    2016-02-01

    α-Fe2O3 nanosheet-assembled hierarchical hollow mesoporous microspheres (HHMSs) were prepared by thermal transformation of nanosheet-assembled hierarchical hollow mesoporous microspheres of a precursor. The precursor was rapidly synthesized using FeCl3·6H2O as the iron source, ethanolamine (EA) as the alkali source, and ethylene glycol (EG) as the solvent by the microwave-assisted solvothermal method. The samples were characterized by X-ray powder diffraction (XRD), thermogravimetric (TG) analysis, Fourier transform infrared (FTIR) spectroscopy, scanning electron microscopy (SEM), transmission electron microscopy (TEM) and nitrogen adsorption-desorption isotherm. The effects of the microwave solvothermal temperature and EA amount on the morphology of the precursor were investigated. The as-prepared α-Fe2O3 HHMSs exhibit a good photocatalytic activity for the degradation of salicylic acid, and are promising for the application in wastewater treatment. Copyright © 2015 Elsevier Inc. All rights reserved.

  15. Microwave plasma generation of arsine from hydrogen and solid arsenic

    NASA Astrophysics Data System (ADS)

    Omstead, Thomas R.; Annapragada, Ananth V.; Jensen, Klavs F.

    1990-12-01

    The generation of arsine from the reactions of hydrogen and elemental arsenic in a microwave plasma reactor is described. The arsenic is evaporated from a solid source upstream and carried into the microwave plasma region by a mixture of hydrogen and argon. Stable reaction products, arsine and diarsine are observed by molecular beam sampled mass spectroscopy along with partially hydrogenated species (e.g., AsH and AsH2). The effect of composition and flow rate of the argon/hydrogen carrier gas mixture on the amount of arsine generated is investigated. The arsine production reaches a maximum for an argon-to-hydrogen ratio of unity indicating that metastable argon species act as energy transfer intermediates in the overall reaction. The generation of arsine and diarsine from easily handled solid arsenic by this technique makes it attractive as a possible arsenic source for the growth of compound semiconductors by low-pressure metalorganic chemical vapor deposition.

  16. Tests of positive ion beams from a microwave ion source for AMS

    NASA Astrophysics Data System (ADS)

    Schneider, R. J.; von Reden, K. F.; Hayes, J. M.; Wills, J. S. C.; Kern, W. G. E.; Kim, S.-W.

    2000-10-01

    A test facility has been constructed to evaluate high-current positive ion beams from small gaseous samples for AMS applications. The major components include a compact permanent magnet microwave ion source built at the AECL Chalk River Laboratory and now on loan from the University of Toronto, and a double-focusing spectrometer magnet on loan from Argonne National Laboratory. Samples are introduced by means of a silica capillary injection system. Loop injection into a carrier gas provides a stable feed for the microwave driven plasma. The magnetic analysis system is utilized to isolate carbon ions derived from CO 2 samples from other products of the plasma discharge, including argon ions of the carrier gas. With a smaller discharge chamber, we hope to exceed a conversion efficiency of 14% for carbon ions produced per atom, which we reported at AMS-7. The next step will be to construct an efficient charge-exchange cell, to produce negative ions for injection into the WHOI recombinator injector.

  17. Design definition of a microwave power reception and conversion system for use on a high altitude powered platform

    NASA Technical Reports Server (NTRS)

    Brown, W. C.

    1981-01-01

    The design definition of a microwave power reception and conversion system for use on high altitude powered platform is presented. The study includes an initial design, construction and test effort on a thin film, printed circuit rectenna. A study of a low altitude demonstration of an airborne rectenna was made starting with the assumption that a fifty foot mechanically steerable parabolic reflector at the Wallops Flight Center would be retrofitted with a low microwave power source consisting of a five kilowatt commercially available magnetron and that a small blimp would be used to support the rectenna.

  18. Broadband microwave spectroscopy in Corbino geometry at 3He temperatures

    NASA Astrophysics Data System (ADS)

    Steinberg, Katrin; Scheffler, Marc; Dressel, Martin

    2012-02-01

    A broadband microwave spectrometer has been constructed to determine the complex conductivity of thin metal films at frequencies from 45 MHz to 20 GHz working in the temperature range from 0.45 K to 2 K (in a 3He cryostat). The setup follows the Corbino approach: a vector network analyzer measures the complex reflection coefficient of a microwave signal hitting the sample as termination of a coaxial transmission line. As the calibration of the setup limits the achievable resolution, we discuss the sources of error hampering different types of calibration. Test measurements of the complex conductivity of a heavy-fermion material demonstrate the applicability of the calibration procedures.

  19. Microwave oscillator with reduced phase noise by negative feedback incorporating microwave signals with suppressed carrier

    NASA Technical Reports Server (NTRS)

    Dick, G. J.; Saunders, J.

    1989-01-01

    Oscillator configurations which reduce the effect of 1/f noise sources for both direct feedback and stabilized local oscillator (STALO) circuits are developed and analyzed. By appropriate use of carrier suppression, a small signal is generated which suffers no loss of loop phase information or signal-to-noise ratio. This small signal can be amplified without degradation by multiplicative amplifier noise, and can be detected without saturation of the detector. Together with recent advances in microwave resonator Qs, these circuit improvements will make possible lower phase noise than can be presently achieved without the use of cryogenic devices.

  20. Microwave signatures of ice hydrometeors from ground-based observations above Summit, Greenland

    DOE PAGES

    Pettersen, Claire; Bennartz, Ralf; Kulie, Mark S.; ...

    2016-04-15

    Multi-instrument, ground-based measurements provide unique and comprehensive data sets of the atmosphere for a specific location over long periods of time and resulting data compliment past and existing global satellite observations. Our paper explores the effect of ice hydrometeors on ground-based, high-frequency passive microwave measurements and attempts to isolate an ice signature for summer seasons at Summit, Greenland, from 2010 to 2013. Furthermore, data from a combination of passive microwave, cloud radar, radiosonde, and ceilometer were examined to isolate the ice signature at microwave wavelengths. By limiting the study to a cloud liquid water path of 40 g m -2more » or less, the cloud radar can identify cases where the precipitation was dominated by ice. These cases were examined using liquid water and gas microwave absorption models, and brightness temperatures were calculated for the high-frequency microwave channels: 90, 150, and 225GHz. By comparing the measured brightness temperatures from the microwave radiometers and the calculated brightness temperature using only gas and liquid contributions, any residual brightness temperature difference is due to emission and scattering of microwave radiation from the ice hydrometeors in the column. The ice signature in the 90, 150, and 225 GHz channels for the Summit Station summer months was isolated. Then, this measured ice signature was compared to an equivalent brightness temperature difference calculated with a radiative transfer model including microwave single-scattering properties for several ice habits. Furthermore, initial model results compare well against the 4 years of summer season isolated ice signature in the high-frequency microwave channels.« less

  1. Beamed Energy Propulsion: Research Status And Needs--Part 1

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Birkan, Mitat

    One promising solution to the operationally responsive space is the application of remote electromagnetic energy to propel a launch vehicle into orbit. With beamed energy propulsion, one can leave the power source stationary on the ground or space, and direct heat propellant on the spacecraft with a beam from a fixed station. This permits the spacecraft to leave its power source at home, saving significant amounts of mass, greatly improving performance. This concept, which removes the mass penalty of carrying the propulsion energy source on board the vehicle, was first proposed by Arthur Kantrowitz in 1972; he invoked an extremelymore » powerful ground based laser. The same year Michael Minovich suggested a conceptually similar 'in-space' laser rocket system utilizing a remote laser power station. In the late 1980's, Air Force Office of Scientific Research (AFOSR) funded continuous, double pulse laser and microwave propulsion while Strategic Defense Initiative Office (SDIO) funded ablative laser rocket propulsion. Currently AFOSR has been funding the concept initiated by Leik Myrabo, repetitively pulsed laser propulsion, which has been universally perceived, arguably, to be the closest for mid-term applications. This 2-part paper examines the investment strategies in beamed energy propulsion and technical challenges to be overcome. Part 1 presents a world-wide review of beamed energy propulsion research, including both laser and microwave arenas.« less

  2. A device for microwave sintering large ceramic articles

    DOEpatents

    Kimrey, H.D. Jr.

    1987-07-24

    A microwave sintering system is provided for uniform sintering of large and/or irregular shapes ceramic articles at microwave frequencies of at least 28 GHz in the hundreds of kilowatts power range in an untuned cavity. A 28 GHz, 200 kw gyrotron with variable power output is used as the microwave source connected to an untuned microwave cavity formed of an electrically conductive housing. The part to be sintered is placed in the cavity and supported on a removable high temperature table in a central location within the cavity. The part is surrounded by a microwave transparent bulk insulating material to reduce thermal heat loss at the part surfaces and maintain more uniform temperature. The cavity may be operated at a high vacuum to aid in preventing arcing. The system allows controlled increased heating rates of greater than 200/degree/C/min to provide rapid heating of a ceramic part to a selected sintering temperature where it is maintained by regulating the microwave power applied to the part. As a result of rapid heating, the extent on non-isothermal processes such as segregation of impurities to the grain boundaries are minimized and exaggerated grain growth is reduced, thereby strengthening the mechanical properties of the ceramic part being sintered. 1 fig.

  3. Practical application of a bidirectional microwave photonic filter: simultaneous transmission of analog TV signals

    NASA Astrophysics Data System (ADS)

    Correa-Mena, Ana Gabriela; Zaldívar-Huerta, Ignacio E.; Abril García, Jose Humberto; García-Juárez, Alejandro; Vera-Marquina, Alicia

    2016-10-01

    A practical application of a bidirectional microwave photonic filter (MPF) to transmit simultaneous analog TV signals coded on microwave carriers is experimentally demonstrated. The frequency response of the bidirectional MPF is obtained by the interaction of an externally modulated multimode laser diode emitting at 1.55 μm associated to the free-spectral range of the optical source, the chromatic dispersion parameter of the optical fiber, as well as the length of the optical link. The filtered microwave bandpass window generated around 2 GHz is used as electrical carrier in order to simultaneously transmit TV signals of 67.25 and 61.25 MHz in both directions. The obtained signal-to-noise ratios for the transmitted signals of 67.25 and 61.25 MHz are 37.62 and 44.77 dB, respectively.

  4. Mechanisms of high-gradient microwave breakdown on metal surfaces in high power microwave source

    NASA Astrophysics Data System (ADS)

    Xie, Jialing; Chen, Changhua; Chang, Chao; Wu, Cheng; Huo, Yankun

    2017-12-01

    A breakdown cavity was designed to study the high-gradient microwave breakdown on a metal surface. The breakdown cavity can be distinguished into an electron emission boundary and a bombardment boundary as there is an evident difference in amplitude of the electric field between the two planes in the cavity. Breakdown tracks on the cavity were studied with an electron scanning microscope. The tracks on the electron emission boundary with the higher electric field were eroded; a component analysis indicates that these tracks contain an emission boundary material. On the bombardment boundary with a lower electric field, two kinds of tracks exist: an erosion track containing a bombardment boundary material and a sputtered track containing an emission boundary material. From these tracks, the mechanisms of high-gradient microwave breakdown on a metal surface have been analyzed.

  5. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wildfire, Christina; Sabolsky, Edward M.; Spencer, Michael J.

    The rapid synthesis of yttrium aluminum garnet (Y 3Al 15O 12, YAG) powder was investigated through the use of microwave irradiation of the oxide precursor system. For this investigation, an external hybrid heating source was not used. Instead, the rapid heating of the precursor materials (yttria and alumina powders, which are typically transparent to 2.45 GHz microwaves) was initiated by mixing an intrinsic absorbing material (carbon) into the original oxide precursors. The effect of the carbon characteristics, such as carbon source, concentration, particle size, and agglomerate microstructure were evaluated on the efficiency of coupling and resultant oxide reaction. The microwavemore » power was varied to optimize the YAG conversion and eliminate intermediate phase formation. Interactions between the conductive carbon particles and the dielectric oxides within the microwave exposure produced local arching and micro-plasma formation within the powder bed, resulting in the rapid formation of the refractory YAG composition. This optimal conduction led to temperatures of 1000°C that could be achieved in less than 5 min resulting in the formation of > 90 vol% YAG. The understanding of a conductor/dielectric particulate system here, provided insight into possible application of similar systems where microwave irradiation could be used for enhanced solid-state formation, local melting events, and gas phase reactions with a composite powder media.« less

  6. Effect of Zn doping on the microwave absorption of BFO multiferroic materials

    NASA Astrophysics Data System (ADS)

    Bi, S.; Li, J.; Mei, B.; Su, X. J.; Ying, C. Z.; Li, P. H.

    2018-01-01

    The microwave absorbing materials were firstly used in the Second World War. And the BiFeO3 (BFO) based microwave absorbers have been widely applied into the microwave absorbing area due to its possession of excellent electromagnetic properties. Various methods have been conducted to improve the microwave absorption performance of the BFO based materials. In the work, the sol-gel method were used to prepare the BFO, and the Zn were doped into the BFO to prepare the Bi1-xZnxFeO3 nanoparticles. The X-ray diffraction, scanning electron microscope, and vector network analysis (VNA) were conducted to characterize the microstructure and electromagnetic properties of the as-prepared samples. The results indicate that the Bi1-xZnxFeO3 nanoparticles were successfully gained and the as-prepared samples possess excellent microwave absorption properties.

  7. An Evaluation of Antarctica as a Calibration Target for Passive Microwave Satellite Missions with Climate Data Record Applications

    NASA Technical Reports Server (NTRS)

    Kim, Edward

    2011-01-01

    Passive microwave remote sensing at L-band (1.4 GHz) is sensitive to soil moisture and sea surface salinity, both important climate variables. Science studies involving these variables can now take advantage of new satellite L-band observations. The first mission with regular global passive microwave observations at L-band is the European Space Agency's Soil Moisture and Ocean Salinity (SMOS), launched November, 2009. A second mission, NASA's Aquarius, was launched June, 201 I. A third mission, NASA's Soil Moisture Active Passive (SMAP) is scheduled to launch in 2014. Together, these three missions may provide a decade-long data record-provided that they are intercalibrated. The intercalibration is best performed at the radiance (brightness temperature) level, and Antarctica is proving to be a key calibration target. However, Antarctica has thus far not been fully characterized as a potential target. This paper will present evaluations of Antarctica as a microwave calibration target for the above satellite missions. Preliminary analyses have identified likely target areas, such as the vicinity of Dome-C and larger areas within East Antarctica. Physical sources of temporal and spatial variability of polar firn are key to assessing calibration uncertainty. These sources include spatial variability of accumulation rate, compaction, surface characteristics (dunes, micro-topography), wind patterns, and vertical profiles of density and temperature. Using primarily SMOS data, variability is being empirically characterized and attempts are being made to attribute observed variability to physical sources. One expected outcome of these studies is the potential discovery of techniques for remotely sensing--over all of Antarctica-parameters such as surface temperature.

  8. An Evaluation of Antarctica as a Calibration Target for Passive Microwave Satellite Missions

    NASA Technical Reports Server (NTRS)

    Kim, Edward

    2012-01-01

    Passive microwave remote sensing at L-band (1.4 GHz) is sensitive to soil moisture and sea surface salinity, both important climate variables. Science studies involving these variables can now take advantage of new satellite L-band observations. The first mission with regular global passive microwave observations at L-band is the European Space Agency's Soil Moisture and Ocean Salinity (SMOS), launched November, 2009. A second mission, NASA's Aquarius, was launched June, 201l. A third mission, NASA's Soil Moisture Active Passive (SMAP) is scheduled to launch in 2014. Together, these three missions may provide a decade-long data record -- provided that they are intercalibrated. The intercalibration is best performed at the radiance (brightness temperature) level, and Antarctica is proving to be a key calibration target. However, Antarctica has thus far not been fully characterized as a potential target. This paper will present evaluations of Antarctica as a microwave calibration target for the above satellite missions. Preliminary analyses have identified likely target areas, such as the vicinity of Dome-C and larger areas within East Antarctica. Physical sources of temporal and spatial variability of polar firn are key to assessing calibration uncertainty. These sources include spatial variability of accumulation rate, compaction, surface characteristics (dunes, micro-topography), wind patterns, and vertical profiles of density and temperature. Using primarily SMOS data, variability is being empirically characterized and attempts are being made to attribute observed variability to physical sources. One expected outcome of these studies is the potential discovery of techniques for remotely sensing--over all of Antarctica--parameters such as surface temperature.

  9. Microwave plasma chemical synthesis of nanocrystalline carbon film structures and study their properties

    NASA Astrophysics Data System (ADS)

    Bushuev, N.; Yafarov, R.; Timoshenkov, V.; Orlov, S.; Starykh, D.

    2015-08-01

    The self-organization effect of diamond nanocrystals in polymer-graphite and carbon films is detected. The carbon materials deposition was carried from ethanol vapors out at low pressure using a highly non-equilibrium microwave plasma. Deposition processes of carbon film structures (diamond, graphite, graphene) is defined. Deposition processes of nanocrystalline structures containing diamond and graphite phases in different volume ratios is identified. The solid film was obtained under different conditions of microwave plasma chemical synthesis. We investigated the electrical properties of the nanocrystalline carbon films and identified it's from various factors. Influence of diamond-graphite film deposition mode in non-equilibrium microwave plasma at low pressure on emission characteristics was established. This effect is justified using the cluster model of the structure of amorphous carbon. It was shown that the reduction of bound hydrogen in carbon structures leads to a decrease in the threshold electric field of emission from 20-30 V/m to 5 V/m. Reducing the operating voltage field emission can improve mechanical stability of the synthesized film diamond-graphite emitters. Current density emission at least 20 A/cm2 was obtained. Nanocrystalline carbon film materials can be used to create a variety of functional elements in micro- and nanoelectronics and photonics such as cold electron source for emission in vacuum devices, photonic devices, cathodoluminescent flat display, highly efficient white light sources. The obtained graphene carbon net structure (with a net size about 6 μm) may be used for the manufacture of large-area transparent electrode for solar cells and cathodoluminescent light sources

  10. National University Consortium on Microwave Research (NUCOMR)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Barker, R.J.; Agee, F.J.

    1995-11-01

    This paper introduces a new cooperative research program of national scale that is focused on crucial research issues in the development of high energy microwave sources. These have many applications in the DOD and industry. The Air Force Office of Scientific Research (AFOSR), in cooperation with the Phillips Laboratory, the Naval Research Laboratory, and the Army Research Laboratory, has established a tri-service research consortium to investigate novel high energy microwave sources. To facilitate the rapid transition of research results into the industrial community, formal collaborative subcontracts are already in-place with James Benford at Physics International, Carter Armstrong at Northrop, andmore » Glen Huffman at Varian Associates. Although this new program officially only came into existence in mid-March of this year, it builds on over a decade of microwave research efforts funded by the plasma physics office at AFOSR. It also is synergistic with the ongoing Tri-Service Vacuum Electronics Initiative led by Robert Parker of NRL as well as with the AFOSR`s and Rome Laboratory`s long-standing Advanced Thermionic Research Initiative (ATRI). An overview will be given of the broad spectrum of research objectives encompassed by NUCOMR. Areas of collaboration and technology transfer will be highlighted. The areas in which the three university consortia will conduct research are described, and the connectivity to industry and to the DOD laboratories are discussed. There are a number of critical technical barriers to reaching the desired goals for high power and high energy sources. These are discussed and the planned focus of research to resolve them is also presented.« less

  11. Microwave plasma source for neutral-beam injection systems

    NASA Astrophysics Data System (ADS)

    1981-08-01

    The overall program is described and the technical and programmatic reasons for the decision to pursue both the RFI and ECH sources into the current hydrogen test stage is discussed. The general characteristics of plasma sources in the parameter regime of interest for neutral beam applications are considered. The operational characteristics, advantages and potential problems of RFI and ECH sources are discussed.

  12. Microwave vision for robots

    NASA Technical Reports Server (NTRS)

    Lewandowski, Leon; Struckman, Keith

    1994-01-01

    Microwave Vision (MV), a concept originally developed in 1985, could play a significant role in the solution to robotic vision problems. Originally our Microwave Vision concept was based on a pattern matching approach employing computer based stored replica correlation processing. Artificial Neural Network (ANN) processor technology offers an attractive alternative to the correlation processing approach, namely the ability to learn and to adapt to changing environments. This paper describes the Microwave Vision concept, some initial ANN-MV experiments, and the design of an ANN-MV system that has led to a second patent disclosure in the robotic vision field.

  13. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Akdoğan, Ender, E-mail: ender.akdogan@tpe.gov.tr; Çiftçi, Muharrem, E-mail: muharrem-ciftci@windowslive.com

    This article is based on the master thesis [4] related to our invention which was published in World Intellectual Property Organization (WO/2011/048506) as a microwave water heater. In the project, a prototype was produced to use microwave in industrial heating. In order to produce the prototype, the most appropriate material kind for microwave-water experiments was determined by a new energy loss rate calculation technique. This new energy loss calculation is a determinative factor for material permeability at microwave frequency band (1-100 GHz). This experimental series aim to investigate the rationality of using microwave in heating industry. Theoretically, heating water by microwavemore » (with steady frequency 2.45 GHz) is analyzed from sub-molecular to Classical Mechanic results of heating. In the study, we examined Quantum Mechanical base of heating water by microwave experiments. As a result, we derived a Semi-Quantum Mechanical equation for microwave-water interactions and thus, Wien displacement law can be derived to verify experimental observations by this equation.« less

  14. Microwave or autoclave treatments destroy the infectivity of infectious bronchitis virus and avian pneumovirus but allow detection by reverse transcriptase-polymerase chain reaction.

    PubMed

    Elhafi, G; Naylor, C J; Savage, C E; Jones, R C

    2004-06-01

    A method is described for enabling safe transit of denatured virus samples for polymerase chain reaction (PCR) identification without the risk of unwanted viable viruses. Cotton swabs dipped in avian infectious bronchitis virus (IBV) or avian pneumovirus (APV) were allowed to dry. Newcastle disease virus and avian influenza viruses were used as controls. Autoclaving and microwave treatment for as little as 20 sec destroyed the infectivity of all four viruses. However, both IBV and APV could be detected by reverse transcriptase (RT)-PCR after autoclaving and as long as 5 min microwave treatment (Newcastle disease virus and avian influenza viruses were not tested). Double microwave treatment of IBV and APV with an interval of 2 to 7 days between was tested. After the second treatment, RT-PCR products were readily detected in all samples. Swabs from the tracheas and cloacas of chicks infected with IBV shown to contain infectious virus were microwaved. Swabs from both sources were positive by RT-PCR. Microwave treatment appears to be a satisfactory method of inactivating virus while preserving nucleic acid for PCR identification.

  15. Exploring microwave resonant multi-point ignition using high-speed schlieren imaging

    NASA Astrophysics Data System (ADS)

    Liu, Cheng; Zhang, Guixin; Xie, Hong; Deng, Lei; Wang, Zhi

    2018-03-01

    Microwave plasma offers a potential method to achieve rapid combustion in a high-speed combustor. In this paper, microwave resonant multi-point ignition and its control method have been studied via high-speed schlieren imaging. The experiment was conducted with the microwave resonant ignition system and the schlieren optical system. The microwave pulse in 2.45 GHz with 2 ms width and 3 kW peak power was employed as an ignition energy source to produce initial flame kernels in the combustion chamber. A reflective schlieren method was designed to illustrate the flame development process with a high-speed camera. The bottom of the combustion chamber was made of a quartz glass coated with indium tin oxide, which ensures sufficient microwave reflection and light penetration. Ignition experiments were conducted at 2 bars of stoichiometric methane-air mixtures. Schlieren images show that flame kernels were generated at more than one location simultaneously and flame propagated with different speeds in different flame kernels. Ignition kernels were discussed in three types according to their appearances. Pressure curves and combustion duration also show that multi-point ignition plays a significant role in accelerating combustion.

  16. Entanglement transfer from microwaves to diamond NV centers

    NASA Astrophysics Data System (ADS)

    Gomez, Angela V.; Rodriguez, Ferney J.; Quiroga, Luis

    2014-03-01

    Strong candidates to create quantum entangled states in solid-state environments are the nitrogen-vacancy (NV) defect centers in diamond. By the combination of radiation from different wavelength (optical, microwave and radio-frequency), several protocols have been proposed to create entangled states of different NVs. Recently, experimental sources of non-classical microwave radiation have been successfully realized. Here, we consider the entanglement transfer from spatially separated two-mode microwave squeezed (entangled) photons to a pair of NV centers by exploiting the fact that the spin triplet ground state of a NV has a natural splitting with a frequency on the order of GHz (microwave range). We first demonstrate that the transfer process in the simplest case of a single pair of spatially separated NVs is feasible. Moreover, we proceed to extend the previous results to more realistic scenarios where 13C nuclear spin baths surrounding each NV are included, quantifying the degradation of the entanglement transfer by the dephasing/dissipation effects produced by the nuclear baths. Finally, we address the issue of assessing the possibility of entanglement transfer from the squeezed microwave light to two nuclear spins closely linked to different NV center electrons. Facultad de Ciencias Uniandes.

  17. Microwave heating apparatus and method

    DOEpatents

    Johnson, Andrew J.; Petersen, Robert D.; Swanson, Stephen D.

    1990-01-01

    An apparatus is provided for heating and melting materials using microwave energy, and for permitting them to solidify. The apparatus includes a microwave energy source, a resonant cavity having an opening in its floor, a microwave energy choke encompassing the opening in the floor of the cavity, a metal container to hold the materials to be heated and melted, a turntable, and a lift-table. During operation, the combined action of the turntable and the lift-table position the metal container so that the top of the container is level with the floor of the cavity, is in substantial registration with the floor opening, and is encompassed by the microwave energy choke; thus, during operation, the interior of the container defines part of the resonant cavity. Additionally, a screw feeder, extending into the cavity and sheltered from microwave energy by a conveyor choke, may convey the materials to be heated to the container. Also, preferably, the floor of the resonant cavity may include perforatins, so that the offgases and dust generated in the apparatus may be removed from the resonant cavity by pulling outside air between the container choke and the exterior wall of the container into the resonant cavity and out from the cavity through the perforations.

  18. Effect of ionic liquid properties on lipase stabilization under microwave irradiation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhao, Hua; Baker, Gary A; Song, Zhiyan

    2009-01-01

    Ionic liquids (ILs) as neoteric solvents and microwave irradiation as alternative energy source are becoming two important tools for many enzymatic reactions. However, it is not well understood what properties of ILs govern the enzyme stabilization, and whether the microwave irradiation could activate enzymes in ILs. To tackle these two important issues, the synthetic activities of immobilized Candida antarctica lipase B (Novozyme 435) were examined in more than twenty ILs through microwave heating. Under microwave irradiation, enhanced enzyme activities were observed when the enzyme was surrounded by a layer of water molecules. However, such enhancement diminished when the reaction systemmore » was dried. To understand the effect of IL properties, the enzyme activities under microwave irradiation were correlated with the viscosity, polarity and hydrophobicity (log P) of ILs, respectively. The initial reaction rates bear no direct relationship with the viscosity and polarity (in terms of dielectric constant and EN T ) of ILs, but have a loose correlation (a bell curve) with log P values. The enzyme stabilization by ILs was explained from aspects of hydrogen-bond basicity of anions, dissolution of the enzyme, ionic association strength of anions, and substrate ground-state stabilization by ILs.« less

  19. Exploring microwave resonant multi-point ignition using high-speed schlieren imaging.

    PubMed

    Liu, Cheng; Zhang, Guixin; Xie, Hong; Deng, Lei; Wang, Zhi

    2018-03-01

    Microwave plasma offers a potential method to achieve rapid combustion in a high-speed combustor. In this paper, microwave resonant multi-point ignition and its control method have been studied via high-speed schlieren imaging. The experiment was conducted with the microwave resonant ignition system and the schlieren optical system. The microwave pulse in 2.45 GHz with 2 ms width and 3 kW peak power was employed as an ignition energy source to produce initial flame kernels in the combustion chamber. A reflective schlieren method was designed to illustrate the flame development process with a high-speed camera. The bottom of the combustion chamber was made of a quartz glass coated with indium tin oxide, which ensures sufficient microwave reflection and light penetration. Ignition experiments were conducted at 2 bars of stoichiometric methane-air mixtures. Schlieren images show that flame kernels were generated at more than one location simultaneously and flame propagated with different speeds in different flame kernels. Ignition kernels were discussed in three types according to their appearances. Pressure curves and combustion duration also show that multi-point ignition plays a significant role in accelerating combustion.

  20. Free Electron coherent sources: From microwave to X-rays

    NASA Astrophysics Data System (ADS)

    Dattoli, Giuseppe; Di Palma, Emanuele; Pagnutti, Simonetta; Sabia, Elio

    2018-04-01

    The term Free Electron Laser (FEL) will be used, in this paper, to indicate a wide collection of devices aimed at providing coherent electromagnetic radiation from a beam of "free" electrons, unbound at the atomic or molecular states. This article reviews the similarities that link different sources of coherent radiation across the electromagnetic spectrum from microwaves to X-rays, and compares the analogies with conventional laser sources. We explore developing a point of view that allows a unified analytical treatment of these devices, by the introduction of appropriate global variables (e.g. gain, saturation intensity, inhomogeneous broadening parameters, longitudinal mode coupling strength), yielding a very effective way for the determination of the relevant design parameters. The paper looks also at more speculative aspects of FEL physics, which may address the relevance of quantum effects in the lasing process.

  1. Evaluation and Application of Satellite-Based Latent Heating Profile Estimation Methods

    NASA Technical Reports Server (NTRS)

    Olson, William S.; Grecu, Mircea; Yang, Song; Tao, Wei-Kuo

    2004-01-01

    In recent years, methods for estimating atmospheric latent heating vertical structure from both passive and active microwave remote sensing have matured to the point where quantitative evaluation of these methods is the next logical step. Two approaches for heating algorithm evaluation are proposed: First, application of heating algorithms to synthetic data, based upon cloud-resolving model simulations, can be used to test the internal consistency of heating estimates in the absence of systematic errors in physical assumptions. Second, comparisons of satellite-retrieved vertical heating structures to independent ground-based estimates, such as rawinsonde-derived analyses of heating, provide an additional test. The two approaches are complementary, since systematic errors in heating indicated by the second approach may be confirmed by the first. A passive microwave and combined passive/active microwave heating retrieval algorithm are evaluated using the described approaches. In general, the passive microwave algorithm heating profile estimates are subject to biases due to the limited vertical heating structure information contained in the passive microwave observations. These biases may be partly overcome by including more environment-specific a priori information into the algorithm s database of candidate solution profiles. The combined passive/active microwave algorithm utilizes the much higher-resolution vertical structure information provided by spaceborne radar data to produce less biased estimates; however, the global spatio-temporal sampling by spaceborne radar is limited. In the present study, the passive/active microwave algorithm is used to construct a more physically-consistent and environment-specific set of candidate solution profiles for the passive microwave algorithm and to help evaluate errors in the passive algorithm s heating estimates. Although satellite estimates of latent heating are based upon instantaneous, footprint- scale data, suppression of random errors requires averaging to at least half-degree resolution. Analysis of mesoscale and larger space-time scale phenomena based upon passive and passive/active microwave heating estimates from TRMM, SSMI, and AMSR data will be presented at the conference.

  2. Real time data acquisition of commercial microwave link networks for hydrometeorological applications

    NASA Astrophysics Data System (ADS)

    Chwala, C.; Keis, F.; Kunstmann, H.

    2015-11-01

    The usage of data from commercial microwave link (CML) networks for scientific purposes is becoming increasingly popular, in particular for rain rate estimation. However, data acquisition and availability is still a crucial problem and limits research possibilities. To overcome this issue, we have developed an open source data acquisition system based on the Simple Network Management Protocol (SNMP). It is able to record transmitted- and received signal levels of a large number of CMLs simultaneously with a temporal resolution of up to one second. We operate this system at Ericsson Germany, acquiring data from 450 CMLs with minutely real time transfer to our data base. Our data acquisition system is not limited to a particular CML hardware model or manufacturer, though. We demonstrate this by running the same system for CMLs of a different manufacturer, operated by an alpine skiing resort in Germany. There, the data acquisition is running simultaneously for four CMLs with a temporal resolution of one second. We present an overview of our system, describe the details of the necessary SNMP requests and show results from its operational application.

  3. An analysis of errors in special sensor microwave imager evaporation estimates over the global oceans

    NASA Technical Reports Server (NTRS)

    Esbensen, S. K.; Chelton, D. B.; Vickers, D.; Sun, J.

    1993-01-01

    The method proposed by Liu (1984) is used to estimate monthly averaged evaporation over the global oceans from 1 yr of special sensor microwave imager (SDSM/I) data. Intercomparisons involving SSM/I and in situ data are made over a wide range of oceanic conditions during August 1987 and February 1988 to determine the source of errors in the evaporation estimates. The most significant spatially coherent evaporation errors are found to come from estimates of near-surface specific humidity, q. Systematic discrepancies of over 2 g/kg are found in the tropics, as well as in the middle and high latitudes. The q errors are partitioned into contributions from the parameterization of q in terms of the columnar water vapor, i.e., the Liu q/W relationship, and from the retrieval algorithm for W. The effects of W retrieval errors are found to be smaller over most of the global oceans and due primarily to the implicitly assumed vertical structures of temperature and specific humidity on which the physically based SSM/I retrievals of W are based.

  4. Microwave-accelerated method for ultra-rapid extraction of Neisseria gonorrhoeae DNA for downstream detection.

    PubMed

    Melendez, Johan H; Santaus, Tonya M; Brinsley, Gregory; Kiang, Daniel; Mali, Buddha; Hardick, Justin; Gaydos, Charlotte A; Geddes, Chris D

    2016-10-01

    Nucleic acid-based detection of gonorrhea infections typically require a two-step process involving isolation of the nucleic acid, followed by detection of the genomic target often involving polymerase chain reaction (PCR)-based approaches. In an effort to improve on current detection approaches, we have developed a unique two-step microwave-accelerated approach for rapid extraction and detection of Neisseria gonorrhoeae (gonorrhea, GC) DNA. Our approach is based on the use of highly focused microwave radiation to rapidly lyse bacterial cells, release, and subsequently fragment microbial DNA. The DNA target is then detected by a process known as microwave-accelerated metal-enhanced fluorescence (MAMEF), an ultra-sensitive direct DNA detection analytical technique. In the current study, we show that highly focused microwaves at 2.45 GHz, using 12.3-mm gold film equilateral triangles, are able to rapidly lyse both bacteria cells and fragment DNA in a time- and microwave power-dependent manner. Detection of the extracted DNA can be performed by MAMEF, without the need for DNA amplification, in less than 10 min total time or by other PCR-based approaches. Collectively, the use of a microwave-accelerated method for the release and detection of DNA represents a significant step forward toward the development of a point-of-care (POC) platform for detection of gonorrhea infections. Copyright © 2016 Elsevier Inc. All rights reserved.

  5. Results of RIKEN superconducting electron cyclotron resonance ion source with 28 GHz.

    PubMed

    Higurashi, Y; Ohnishi, J; Nakagawa, T; Haba, H; Tamura, M; Aihara, T; Fujimaki, M; Komiyama, M; Uchiyama, A; Kamigaito, O

    2012-02-01

    We measured the beam intensity of highly charged heavy ions and x-ray heat load for RIKEN superconducting electron cyclotron resonance ion source with 28 GHz microwaves under the various conditions. The beam intensity of Xe(20+) became maximum at B(min) ∼ 0.65 T, which was ∼65% of the magnetic field strength of electron cyclotron resonance (B(ECR)) for 28 GHz microwaves. We observed that the heat load of x-ray increased with decreasing gas pressure and field gradient at resonance zone. It seems that the beam intensity of highly charged heavy ions with 28 GHz is higher than that with 18 GHz at same RF power.

  6. Characteristics of a four element gyromagnetic nonlinear transmission line array high power microwave source.

    PubMed

    Johnson, J M; Reale, D V; Krile, J T; Garcia, R S; Cravey, W H; Neuber, A A; Dickens, J C; Mankowski, J J

    2016-05-01

    In this paper, a solid-state four element array gyromagnetic nonlinear transmission line high power microwave system is presented as well as a detailed description of its subsystems and general output capabilities. This frequency agile S-band source is easily adjusted from 2-4 GHz by way of a DC driven biasing magnetic field and is capable of generating electric fields of 7.8 kV/m at 10 m correlating to 4.2 MW of RF power with pulse repetition frequencies up to 1 kHz. Beam steering of the array at angles of ±16.7° is also demonstrated, and the associated general radiation pattern is detailed.

  7. Characteristics of a four element gyromagnetic nonlinear transmission line array high power microwave source

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Johnson, J. M., E-mail: jared.johnson@ttu.edu; Reale, D. V.; Garcia, R. S.

    2016-05-15

    In this paper, a solid-state four element array gyromagnetic nonlinear transmission line high power microwave system is presented as well as a detailed description of its subsystems and general output capabilities. This frequency agile S-band source is easily adjusted from 2-4 GHz by way of a DC driven biasing magnetic field and is capable of generating electric fields of 7.8 kV/m at 10 m correlating to 4.2 MW of RF power with pulse repetition frequencies up to 1 kHz. Beam steering of the array at angles of ±16.7° is also demonstrated, and the associated general radiation pattern is detailed.

  8. A Simulated Annealing Algorithm for the Optimization of Multistage Depressed Collector Efficiency

    NASA Technical Reports Server (NTRS)

    Vaden, Karl R.; Wilson, Jeffrey D.; Bulson, Brian A.

    2002-01-01

    The microwave traveling wave tube amplifier (TWTA) is widely used as a high-power transmitting source for space and airborne communications. One critical factor in designing a TWTA is the overall efficiency. However, overall efficiency is highly dependent upon collector efficiency; so collector design is critical to the performance of a TWTA. Therefore, NASA Glenn Research Center has developed an optimization algorithm based on Simulated Annealing to quickly design highly efficient multi-stage depressed collectors (MDC).

  9. A W-band sixth-harmonic magnetron-type slotted peniotron

    NASA Astrophysics Data System (ADS)

    Hu, Biao; Li, Jiayin; Wu, Xinhui; Li, Tianming; Li, Hao; Wang, Haiyang; Zhao, Xiaoyun

    2013-04-01

    This paper has numerically investigated operating characteristics of a w-band six-harmonic magnetron-type slotted peniotron with 7 vanes. With the new structure design, a high efficiency of 40% w-band 30 kW medium power microwave source has been achieved and the mode competition can be somewhat suppressed. The main advantage of such a peniotron, based on a permanent magnet, is that it can have much more compact size and lower cost, and its operation gap can be greatly reduced.

  10. A Comparative Study of Three Different Chemical Vapor Deposition Techniques of Carbon Nanotube Growth on Diamond Films

    DTIC Science & Technology

    2012-11-01

    microwave plasma-enhanced CVD (MPE-CVD) with presputtered metal catalyst, and floating catalyst thermal CVD (FCT-CVD) with xylene and ferrocene liquid...processes with nickel and iron catalysts, respectively. For the FCT-CVD approach, ferrocene is used as an iron source to promoteCNT growth. Based on...furnace is ramped up to the growth temperature of 750∘C. Ferrocene was dissolved into a xylene solvent in a 0.008 : 1molar volume ratio.The xylene

  11. A microcontroller-based microwave free-space measurement system for permittivity determination of lossy liquid materials.

    PubMed

    Hasar, U C

    2009-05-01

    A microcontroller-based noncontact and nondestructive microwave free-space measurement system for real-time and dynamic determination of complex permittivity of lossy liquid materials has been proposed. The system is comprised of two main sections--microwave and electronic. While the microwave section provides for measuring only the amplitudes of reflection coefficients, the electronic section processes these data and determines the complex permittivity using a general purpose microcontroller. The proposed method eliminates elaborate liquid sample holder preparation and only requires microwave components to perform reflection measurements from one side of the holder. In addition, it explicitly determines the permittivity of lossy liquid samples from reflection measurements at different frequencies without any knowledge on sample thickness. In order to reduce systematic errors in the system, we propose a simple calibration technique, which employs simple and readily available standards. The measurement system can be a good candidate for industrial-based applications.

  12. A Microwave Thermostatic Reactor for Processing Liquid Materials Based on a Heat-Exchanger.

    PubMed

    Zhou, Yongqiang; Zhang, Chun; Xie, Tian; Hong, Tao; Zhu, Huacheng; Yang, Yang; Liu, Changjun; Huang, Kama

    2017-10-08

    Microwaves have been widely used in the treatment of different materials. However, the existing adjustable power thermostatic reactors cannot be used to analyze materials characteristics under microwave effects. In this paper, a microwave thermostatic chemical reactor for processing liquid materials is proposed, by controlling the velocity of coolant based on PLC (programmable logic controller) in different liquid under different constant electric field intensity. A nonpolar coolant (Polydimethylsiloxane), which is completely microwave transparent, is employed to cool the liquid materials. Experiments are performed to measure the liquid temperature using optical fibers, the results show that the precision of temperature control is at the range of ±0.5 °C. Compared with the adjustable power thermostatic control system, the effect of electric field changes on material properties are avoided and it also can be used to detect the properties of liquid materials and special microwave effects.

  13. A Microwave Thermostatic Reactor for Processing Liquid Materials Based on a Heat-Exchanger

    PubMed Central

    Zhou, Yongqiang; Zhang, Chun; Xie, Tian; Hong, Tao; Yang, Yang; Liu, Changjun; Huang, Kama

    2017-01-01

    Microwaves have been widely used in the treatment of different materials. However, the existing adjustable power thermostatic reactors cannot be used to analyze materials characteristics under microwave effects. In this paper, a microwave thermostatic chemical reactor for processing liquid materials is proposed, by controlling the velocity of coolant based on PLC (programmable logic controller) in different liquid under different constant electric field intensity. A nonpolar coolant (Polydimethylsiloxane), which is completely microwave transparent, is employed to cool the liquid materials. Experiments are performed to measure the liquid temperature using optical fibers, the results show that the precision of temperature control is at the range of ±0.5 °C. Compared with the adjustable power thermostatic control system, the effect of electric field changes on material properties are avoided and it also can be used to detect the properties of liquid materials and special microwave effects. PMID:28991195

  14. Mapping rice extent map with crop intensity in south China through integration of optical and microwave images based on google earth engine

    NASA Astrophysics Data System (ADS)

    Zhang, X.; Wu, B.; Zhang, M.; Zeng, H.

    2017-12-01

    Rice is one of the main staple foods in East Asia and Southeast Asia, which has occupied more than half of the world's population with 11% of cultivated land. Study on rice can provide direct or indirect information on food security and water source management. Remote sensing has proven to be the most effective method to monitoring the cropland in large scale by using temporary and spectral information. There are two main kinds of satellite have been used to mapping rice including microwave and optical. Rice, as the main crop of paddy fields, the main feature different from other crops is flooding phenomenon at planning stage (Figure 1). Microwave satellites can penetrate through clouds and efficiency on monitoring flooding phenomenon. Meanwhile, the vegetation index based on optical satellite can well distinguish rice from other vegetation. Google Earth Engine is a cloud-based platform that makes it easy to access high-performance computing resources for processing very large geospatial datasets. Google has collected large number of remote sensing satellite data around the world, which providing researchers with the possibility of doing application by using multi-source remote sensing data in a large area. In this work, we map rice planting area in south China through integration of Landsat-8 OLI, Sentienl-2, and Sentinel-1 Synthetic Aperture Radar (SAR) images. The flowchart is shown in figure 2. First, a threshold method the VH polarized backscatter from SAR sensor and vegetation index including normalized difference vegetation index (NDVI) and enhanced vegetation index (EVI) from optical sensor were used the classify the rice extent map. The forest and water surface extent map provided by earth engine were used to mask forest and water. To overcome the problem of the "salt and pepper effect" by Pixel-based classification when the spatial resolution increased, we segment the optical image and use the pixel- based classification results to merge the object-oriented segmentation data, and finally get the rice extent map. At last, by using the time series analysis, the peak count was obtained for each rice area to ensure the crop intensity. In this work, the rice ground point from a GVG crowdsourcing smartphone and rice area statistical results from National Bureau of Statistics were used to validate and evaluate our result.

  15. On-chip microwave signal generation based on a silicon microring modulator.

    PubMed

    Shao, Haifeng; Yu, Hui; Li, Xia; Li, Yan; Jiang, Jianfei; Wei, Huan; Wang, Gencheng; Dai, Tingge; Chen, Qimei; Yang, Jianyi; Jiang, Xiaoqing

    2015-07-15

    A photonic-assisted microwave signal generator based on a silicon microring modulator is demonstrated. The microring cavity incorporates an embedded PN junction that enables a microwave signal to modulate the lightwave circling inside. The DC component of the modulated light is trapped in the cavity, while the high-order sideband components are able to exit the cavity and then generate microwave signals at new frequencies in a photodetector. In our proof-of-concept experiment, a 10 GHz microwave signal is converted to a 20 GHz signal in the optical domain with an electrical harmonic suppression ratio of 22 dB. An analytic model is also established to explain the operation mechanism, which agrees well with the measured data.

  16. Generation of surface-wave microwave microplasmas in hollow-core photonic crystal fiber based on a split-ring resonator.

    PubMed

    Vial, Florian; Gadonna, Katell; Debord, Benoît; Delahaye, Frédéric; Amrani, Foued; Leroy, Olivier; Gérôme, Frédéric; Benabid, Fetah

    2016-05-15

    We report on a new and highly compact scheme for the generation and sustainment of microwave-driven plasmas inside the core of an inhibited coupling Kagome hollow-core photonic crystal fiber. The microwave plasma generator consists of a split-ring resonator that efficiently couples the microwave field into the gas-filled fiber. This coupling induces the concomitant generation of a microwave surface wave at the fiber core surround and a stable plasma column confined in the fiber core. The scheme allowed the generation of several centimeters long argon microplasma columns with a very low excitation power threshold. This result represents an important step toward highly compact plasma lasers or plasma-based photonic components.

  17. Miniature modular microwave end-to-end receiver

    NASA Technical Reports Server (NTRS)

    Sukamto, Lin M. (Inventor); Cooley, Thomas W. (Inventor); Janssen, Michael A. (Inventor); Parks, Gary S. (Inventor)

    1993-01-01

    An end-to-end microwave receiver system contained in a single miniature hybrid package mounted on a single heatsink is presented. It includes an input end connected to a microwave receiver antenna and an output end which produces a digital count proportional to the amplitude of a signal of a selected microwave frequency band received at the antenna and corresponding to one of the water vapor absorption lines near frequencies of 20 GHz or 30 GHz. The hybrid package is on the order of several centimeters in length and a few centimeters in height and width. The package includes an L-shaped carrier having a base surface, a vertical wall extending up from the base surface and forming a corner therewith, and connection pins extending through the vertical wall. Modular blocks rest on the base surface against the vertical wall and support microwave monolithic integrated circuits on top surfaces thereof connected to the external connection pins. The modular blocks lie end-to-end on the base surface so as to be modularly removable by sliding along the base surface beneath the external connection pins away from the vertical wall.

  18. Advances in Assimilation of Satellite-Based Passive Microwave Observations for Soil-Moisture Estimation

    NASA Technical Reports Server (NTRS)

    De Lannoy, Gabrielle J. M.; Pauwels, Valentijn; Reichle, Rolf H.; Draper, Clara; Koster, Randy; Liu, Qing

    2012-01-01

    Satellite-based microwave measurements have long shown potential to provide global information about soil moisture. The European Space Agency (ESA) Soil Moisture and Ocean Salinity (SMOS, [1]) mission as well as the future National Aeronautics and Space Administration (NASA) Soil Moisture Active and Passive (SMAP, [2]) mission measure passive microwave emission at L-band frequencies, at a relatively coarse (40 km) spatial resolution. In addition, SMAP will measure active microwave signals at a higher spatial resolution (3 km). These new L-band missions have a greater sensing depth (of -5cm) compared with past and present C- and X-band microwave sensors. ESA currently also disseminates retrievals of SMOS surface soil moisture that are derived from SMOS brightness temperature observations and ancillary data. In this research, we address two major challenges with the assimilation of recent/future satellite-based microwave measurements: (i) assimilation of soil moisture retrievals versus brightness temperatures for surface and root-zone soil moisture estimation and (ii) scale-mismatches between satellite observations, models and in situ validation data.

  19. Microwave Brightness Temperature and Its Relation to Atmospheric General Circulation Features

    DTIC Science & Technology

    1989-05-17

    absolute temperature. Molecules may absorb electromagnetic radiation and transition to a higher energy level, or emit radiation and transition to a lower...Walker, 1970). In the microwave region, thermal emission is the only 10 source of radiation and is dependent on the absolute temperature of the...substance as determined by the Planck function. The relationship between absolute temperature and radiation emitted is given by Planck’s Law for a

  20. Microwave Imaging with Infrared 2-D Lock-in Amplifier

    NASA Astrophysics Data System (ADS)

    Chiyo, Noritaka; Arai, Mizuki; Tanaka, Yasuhiro; Nishikata, Atsuhiro; Maeno, Takashi

    We have developed a 3-D electromagnetic field measurement system using 2-D lock-in amplifier. This system uses an amplitude modulated electromagnetic wave source to heat a resistive screen. A very small change of temperature on a screen illuminated with the modulated electromagnetic wave is measured using an infrared thermograph camera. In this paper, we attempted to apply our system to microwave imaging. By placing conductor patches in front of the resistive screen and illuminating with microwave, the shape of each conductor was clearly observed as the temperature difference image of the screen. In this way, the conductor pattern inside the non-contact type IC card could be visualized. Moreover, we could observe the temperature difference image reflecting the shape of a Konnyaku (a gelatinous food made from devil's-tonge starch) or a dried fishbone, both as non-conducting material resembling human body. These results proved that our method is applicable to microwave see-through imaging.

  1. Relationship between Intensity of Fullerene-Mass Spectrum and Carbon Vibrational Temperature in Microwave-Helium Plasmas

    NASA Astrophysics Data System (ADS)

    Ueda, Kengo; Kuwahara, Kiyoshi; Fujiyama, Hiroshi

    1999-07-01

    Soot containing fullerenes, such as C60 and C70, was synthesized with He plasmas generated in a quartz tube by microwave-glow discharge. A reticulated vitreous carbon (RVC) heated by the microwave He plasmas with an electric field of TE10 mode was used as the carbon source. Swan bands of C2 molecules were observed during the synthesis by optical emission spectroscopy (OES) in order to investigate the effect of the vibrational temperature of C2 molecules on the formation of the fullerenes. The soot deposited on the quartz tube was analyzed by laser desorption time-of-flight mass-spectroscopy (LD-TOF-MS). The intensities of the mass spectra of fullerenes were confirmed to be maximum for the conditions as follows: the absorbed microwave power Pab=200 W and the He gas pressure P=100 Torr, while the C2 vibrational temperature was approximately 7000 K.

  2. Simulation of the Microwave Emission of Multi-layered Snowpacks Using the Dense Media Radiative Transfer Theory: the DMRT-ML Model

    NASA Technical Reports Server (NTRS)

    Picard, G.; Brucker, Ludovic; Roy, A.; Dupont, F.; Fily, M.; Royer, A.; Harlow, C.

    2013-01-01

    DMRT-ML is a physically based numerical model designed to compute the thermal microwave emission of a given snowpack. Its main application is the simulation of brightness temperatures at frequencies in the range 1-200 GHz similar to those acquired routinely by spacebased microwave radiometers. The model is based on the Dense Media Radiative Transfer (DMRT) theory for the computation of the snow scattering and extinction coefficients and on the Discrete Ordinate Method (DISORT) to numerically solve the radiative transfer equation. The snowpack is modeled as a stack of multiple horizontal snow layers and an optional underlying interface representing the soil or the bottom ice. The model handles both dry and wet snow conditions. Such a general design allows the model to account for a wide range of snow conditions. Hitherto, the model has been used to simulate the thermal emission of the deep firn on ice sheets, shallow snowpacks overlying soil in Arctic and Alpine regions, and overlying ice on the large icesheet margins and glaciers. DMRT-ML has thus been validated in three very different conditions: Antarctica, Barnes Ice Cap (Canada) and Canadian tundra. It has been recently used in conjunction with inverse methods to retrieve snow grain size from remote sensing data. The model is written in Fortran90 and available to the snow remote sensing community as an open-source software. A convenient user interface is provided in Python.

  3. HERMA-Heartbeat Microwave Authentication

    NASA Technical Reports Server (NTRS)

    Haque, Salman-ul Mohammed (Inventor); Chow, Edward (Inventor); McKee, Michael Ray (Inventor); Tkacenko, Andre (Inventor); Lux, James Paul (Inventor)

    2018-01-01

    Systems and methods for identifying and/or authenticating individuals utilizing microwave sensing modules are disclosed. A HEaRtbeat Microwave Authentication (HERMA) system can enable the active identification and/or authentication of a user by analyzing reflected RF signals that contain a person's unique characteristics related to their heartbeats. An illumination signal is transmitted towards a person where a reflected signal captures the motion of the skin and tissue (i.e. displacement) due to the person's heartbeats. The HERMA system can utilize existing transmitters in a mobile device (e.g. Wi-Fi, Bluetooth, Cellphone signals) as the illumination source with at least one external receive antenna. The received reflected signals can be pre-processed and analyzed to identify and/or authenticate a user.

  4. High resolution spectroscopy in the microwave and far infrared

    NASA Technical Reports Server (NTRS)

    Pickett, Herbert M.

    1990-01-01

    High resolution rotational spectroscopy has long been central to remote sensing techniques in atmospheric sciences and astronomy. As such, laboratory measurements must supply the required data to make direct interpretation of data for instruments which sense atmospheres using rotational spectra. Spectral measurements in the microwave and far infrared regions are also very powerful tools when combined with infrared measurements for characterizing the rotational structure of vibrational spectra. In the past decade new techniques were developed which have pushed high resolution spectroscopy into the wavelength region between 25 micrometers and 2 mm. Techniques to be described include: (1) harmonic generation of microwave sources, (2) infrared laser difference frequency generation, (3) laser sideband generation, and (4) ultrahigh resolution interferometers.

  5. Enhanced hemispheric-scale snow mapping through the blending of optical and microwave satellite data

    NASA Astrophysics Data System (ADS)

    Armstrong, R. L.; Brodzik, M. J.; Savoie, M.; Knowles, K.

    2003-04-01

    Snow cover is an important variable for climate and hydrologic models due to its effects on energy and moisture budgets. Seasonal snow can cover more than 50% of the Northern Hemisphere land surface during the winter resulting in snow cover being the land surface characteristic responsible for the largest annual and interannual differences in albedo. Passive microwave satellite remote sensing can augment measurements based on visible satellite data alone because of the ability to acquire data through most clouds or during darkness as well as to provide a measure of snow depth or water equivalent. Global snow cover fluctuation can now be monitored over a 24 year period using passive microwave data (Scanning Multichannel Microwave Radiometer (SMMR) 1978-1987 and Special Sensor Microwave/Imager (SSM/I), 1987-present). Evaluation of snow extent derived from passive microwave algorithms is presented through comparison with the NOAA Northern Hemisphere weekly snow extent data. For the period 1978 to 2002, both passive microwave and visible data sets show a similar pattern of inter-annual variability, although the maximum snow extents derived from the microwave data are consistently less than those provided by the visible satellite data and the visible data typically show higher monthly variability. Decadal trends and their significance are compared for the two data types. During shallow snow conditions of the early winter season microwave data consistently indicate less snow-covered area than the visible data. This underestimate of snow extent results from the fact that shallow snow cover (less than about 5.0 cm) does not provide a scattering signal of sufficient strength to be detected by the algorithms. As the snow cover continues to build during the months of January through March, as well as throughout the melt season, agreement between the two data types continually improves. This occurs because as the snow becomes deeper and the layered structure more complex, the negative spectral gradient driving the passive microwave algorithm is enhanced. Because the current generation of microwave snow algorithms is unable to consistently detect shallow and intermittent snow, we combine visible satellite data with the microwave data in a single blended product to overcome this problem. For the period 1978 to 2002 we combine data from the NOAA weekly snow charts with passive microwave data from the SMMR and SSM/I brightness temperature record. For the current and future time period we blend MODIS and AMSR-E data sets, both of which have greatly enhanced spatial resolution compared to the earlier data sources. Because it is not possible to determine snow depth or snow water equivalent from visible data, the regions where only the NOAA or MODIS data indicate snow are defined as "shallow snow". However, because our current blended product is being developed in the 25 km EASE-Grid and the MODIS data being used are in the Climate Modelers Grid (CMG) at approximately 5 km (0.05 deg.) the blended product also includes percent snow cover over the larger grid cell. A prototype version of the blended MODIS/AMSR-E product will be available in near real-time from NSIDC during the 2002-2003 winter season.

  6. Microwave Assisted Grafting of Gums and Extraction of Natural Materials.

    PubMed

    Singh, Inderbir; Rani, Priya; Kumar, Pradeep

    2017-01-01

    Microwave assisted modification of polymers has become an established technique for modifying the functionality of polymers. Microwave irradiation reduces reaction time as well as the use of toxic solvents with enhanced sensitivity and yields of quality products. In this review article instrumentation and basic principles of microwave activation have been discussed. Microwave assisted grafting of natural gums, characterization of grafted polymers and their toxicological parameters have also been listed. Pharmaceutical applications viz. drug release retardant, mucoahesion and tablet superdisintegrant potential of microwave assisted gums has also been discussed. An overview of microwave assisted extraction of plant based natural materials has also been presented. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.

  7. DSS 13 phase 2 pedestal room microwave layout

    NASA Technical Reports Server (NTRS)

    Cwik, T.; Chen, J. C.

    1991-01-01

    The design and predicted performance is described of the microwave layout for three band operation of the beam waveguide antenna Deep Space Station 13. Three pedestal room microwave candidate layout designs were produced for simultaneous X/S and X/Ka band operation. One of the three designs was chosen based on given constraints, and for this design the microwave performance was estimated.

  8. 1997 Technology Applications Report,

    DTIC Science & Technology

    1997-01-01

    handle high -power loads at microwave radio frequencies , microwave vacuum tubes remain the chosen technology to amplify high power. Aria Microwave...structure called the active RF cavity amplifier (ARFCA). With this design , the amplifier handles high -power loads at radio and microwave frequencies ...developed this technology using BMDO-funded modeling methods designed to simulate the dynamics of large space-based structures. Because it increases

  9. Anisotropic Dielectric Properties of Carbon Fiber Reinforced Polymer Composites during Microwave Curing

    NASA Astrophysics Data System (ADS)

    Zhang, Linglin; Li, Yingguang; Zhou, Jing

    2018-01-01

    Microwave cuing technology is a promising alternative to conventional autoclave curing technology in high efficient and energy saving processing of polymer composites. Dielectric properties of composites are key parameters related to the energy conversion efficiency during the microwave curing process. However, existing methods of dielectric measurement cannot be applied to the microwave curing process. This paper presented an offline test method to solve this problem. Firstly, a kinetics model of the polymer composites under microwave curing was established based on differential scanning calorimetry to describe the whole curing process. Then several specially designed samples of different feature cure degrees were prepared and used to reflect the dielectric properties of the composite during microwave curing. It was demonstrated to be a feasible plan for both test accuracy and efficiency through extensive experimental research. Based on this method, the anisotropic complex permittivity of a carbon fiber/epoxy composite during microwave curing was accurately determined. Statistical results indicated that both the dielectric constant and dielectric loss of the composite increased at the initial curing stage, peaked at the maximum reaction rate point and decreased finally during the microwave curing process. Corresponding mechanism has also been systematically investigated in this work.

  10. Application of Atmospheric-Pressure Microwave Line Plasma for Low Temperature Process

    NASA Astrophysics Data System (ADS)

    Suzuki, Haruka; Nakano, Suguru; Itoh, Hitoshi; Sekine, Makoto; Hori, Masaru; Toyoda, Hirotaka

    2015-09-01

    Atmospheric pressure (AP) plasmas have been given much attention because of its high cost benefit and a variety of possibilities for industrial applications. In various kinds of plasma production technique, pulsed-microwave discharge plasma using slot antenna is attractive due to its ability of high-density and stable plasma production. In this plasma source, however, size of the plasma has been limited up to a few cm in length due to standing wave inside a waveguide. To solve this, we have proposed a newly-developed AP microwave plasma source that utilizes not standing wave but travelling wave. By using this plasma source, spatially-uniform AP line plasma with 40 cm in length was realized by pure helium discharge in 60 cm slot and with nitrogen gas additive of 1%. Furthermore, gas temperature as low as 400 K was realized in this device. In this study, as an example of low temperature processes, hydrophilic treatment of PET films was performed. Processing speed increased with pulse frequency and a water contact angle of ~20° was easily obtained within 5 s with no thermal damage to the substrate. To evaluate treatment-uniformity of long line length, PET films were treated by 90 cm slot-antenna plasma and uniform treatment performance was confirmed.

  11. Frequency-stabilization of mode-locked laser-based photonic microwave oscillator

    NASA Technical Reports Server (NTRS)

    Yu, Nan; Tu, Meirong; Salik, Ertan; Maleki, Lute

    2005-01-01

    In this paper, we will describe our recent phase-noise measurements of photonic microwave oscillators. We will aslo discuss our investigation of the frequency stability link between the optical and microwave frequencies in the coupled oscillator.

  12. Test Operations Procedure (TOP) 01-2-624 High Power Microwave (HPM) Testing

    DTIC Science & Technology

    2015-07-06

    Requests _____ The proposed frequency list for the HPM facility is listed below. Source Primary Frequencies (MHz) Alternate Frequencies (MHz) NBTS...during testing. The proposed frequency list for the HPM facility is listed below. Source Primary Frequencies (MHz) Alternate Frequencies (MHz

  13. Method and device for microwave sintering large ceramic articles

    DOEpatents

    Kimrey, Jr., Harold D.

    1990-01-01

    A microwave sintering system and method are provided for extremely uniform sintering of large and/or irregular shaped ceramic articles at microwave frequencies of at least 28 GHz in the hundreds of kilowatts power range in an untuned cavity. A 28 GHz, 200 kw gyrotron with variable power output is used as the microwave source connected to an untuned microwave cavity formed of an electrically conductive housing through an overmoded waveguide arrangement which acts in conjunction with a mode promoter within the cavity to achieve unexpected field uniformity. The part to be sintered is placed in the cavity and supported on a removable high temperature table in a central location within the cavity. The part is surrounded by a microwave transparent bulk insulating material to reduce thermal heat loss at the part surfaces and maintain more uniform temperature. The cavity may be operated at a high vacuum to aid in preventing arcing. The system allows controlled increased heating rates of greater than 200.degree. C./min to provide rapid heating of a ceramic part to a selected sintering temperature where it is maintained by regulating the microwave power applied to the part. As a result of rapid heating, the extent of non-isothermal processes such as segregation of impurities to the grain boundaries are minimized and exaggerated grain growth is reduced, thereby strengthening the mechanical properties of the ceramic part being sintered.

  14. Microwave ovens and food safety: preparation of Not-Ready-to-Eat products in standard and smart ovens.

    PubMed

    Schiffmann, Robert F

    2013-01-01

    The introduction of several Not-Ready-to-Eat (NRTE) products, beginning in 2007, has resulted in several recalls and has caused serious concerns about their safe-cooking in microwave ovens. These products are not fully-thermally processed prior to sale but depend upon the consumer to finish cooking them to the safe minimum temperatures, defined by the USDA, in order to destroy any sources of foodborne illnesses. While microwave ovens are a primary means of this finish-cooking step, they are known to cook foods unevenly in terms of temperature distribution, especially from a frozen state, and this may cause parts of the food to be below the required safe-temperature. Hence there are concerns regarding how reliably microwave ovens can provide the minimum required safe temperatures in order to avoid the possibility of foodborne illnesses. To determine this, temperature profiling tests were preformed upon three frozen NRTE entrées, heating them in eight new brand-name 1100-watt and 1200-watt microwave ovens in order to evaluate how well the minimum temperatures were reached throughout the products. By comparison, these same tests were repeated using three "smart" microwave ovens in which internal computer-control makes them user-independent. In addition, a comparison was also made of the microwave output power claimed by the manufacturers of these ovens to that determined using the IEC procedures.

  15. Microwave Triggered Laser Ionization of Air

    NASA Astrophysics Data System (ADS)

    Vadiee, Ehsan; Prasad, Sarita; Jerald Buchenauer, C.; Schamiloglu, Edl

    2012-10-01

    The goal of this work is to study the evolution and dynamics of plasma expansion when a high power microwave (HPM) pulse is overlapped in time and space on a very small, localized region of plasma formed by a high energy laser pulse. The pulsed Nd:YAG laser (8 ns, 600mJ, repetition rate 10 Hz) is focused to generate plasma filaments in air with electron density of 10^17/cm^3. When irradiated with a high power microwave pulse these electrons would gain enough kinetic energy and further escalate avalanche ionization of air due to elastic electron-neutral collisions thereby causing an increased volumetric discharge region. An X-band relativistic backward wave oscillator(RBWO) at the Pulsed Power,Beams and Microwaves laboratory at UNM is constructed as the microwave source. The RBWO produces a microwave pulse of maximum power 400 MW, frequency of 10.1 GHz, and energy of 6.8 Joules. Special care is being given to synchronize the RBWO and the pulsed laser system in order to achieve a high degree of spatial and temporal overlap. A photodiode and a microwave waveguide detector will be used to ensure the overlap. Also, a new shadowgraph technique with a nanosecond time resolution will be used to detect changes in the shock wave fronts when the HPM signal overlaps the laser pulse in time and space.

  16. Development of dual-polarization LEKIDs for CMB observations

    NASA Astrophysics Data System (ADS)

    McCarrick, Heather; Abitbol, Maximilian H.; Ade, Peter A. R.; Barry, Peter; Bryan, Sean; Che, George; Day, Peter; Doyle, Simon; Flanigan, Daniel; Johnson, Bradley R.; Jones, Glenn; LeDuc, Henry G.; Limon, Michele; Mauskopf, Philip; Miller, Amber; Tucker, Carole; Zmuidzinas, Jonas

    2016-07-01

    We discuss the design considerations and initial measurements from arrays of dual-polarization, lumped-element kinetic inductance detectors (LEKIDs) nominally designed for cosmic microwave background (CMB) studies. The detectors are horn-coupled, and each array element contains two single-polarization LEKIDs, which are made from thin-film aluminum and optimized for a single spectral band centered on 150 GHz. We are developing two array architectures, one based on 160 micron thick silicon wafers and the other based on silicon-on-insulator (SOI) wafers with a 30 micron thick device layer. The 20-element test arrays (40 LEKIDs) are characterized with both a linearly-polarized electronic millimeter wave source and a thermal source. We present initial measurements including the noise spectra, noise-equivalent temperature, and responsivity. We discuss future testing and further design optimizations to be implemented.

  17. Large-Area Permanent-Magnet ECR Plasma Source

    NASA Technical Reports Server (NTRS)

    Foster, John E.

    2007-01-01

    A 40-cm-diameter plasma device has been developed as a source of ions for material-processing and ion-thruster applications. Like the device described in the immediately preceding article, this device utilizes electron cyclotron resonance (ECR) excited by microwave power in a magnetic field to generate a plasma in an electrodeless (noncontact) manner and without need for an electrically insulating, microwave-transmissive window at the source. Hence, this device offers the same advantages of electrodeless, windowless design - low contamination and long operational life. The device generates a uniform, high-density plasma capable of sustaining uniform ion-current densities at its exit plane while operating at low pressure [<10(exp -4) torr (less than about 1.3 10(exp -2) Pa)] and input power <200 W at a frequency of 2.45 GHz. Though the prototype model operates at 2.45 GHz, operation at higher frequencies can be achieved by straightforward modification to the input microwave waveguide. Higher frequency operation may be desirable in those applications that require even higher background plasma densities. In the design of this ECR plasma source, there are no cumbersome, power-hungry electromagnets. The magnetic field in this device is generated by a permanent-magnet circuit that is optimized to generate resonance surfaces. The microwave power is injected on the centerline of the device. The resulting discharge plasma jumps into a "high mode" when the input power rises above 150 W. This mode is associated with elevated plasma density and high uniformity. The large area and uniformity of the plasma and the low operating pressure are well suited for such material-processing applications as etching and deposition on large silicon wafers. The high exit-plane ion-current density makes it possible to attain a high rate of etching or deposition. The plasma potential is <3 V low enough that there is little likelihood of sputtering, which, in plasma processing, is undesired because it is associated with erosion and contamination. The electron temperature is low and does not vary appreciably with power.

  18. Surface Soil Moisture Estimates Across China Based on Multi-satellite Observations and A Soil Moisture Model

    NASA Astrophysics Data System (ADS)

    Zhang, Ke; Yang, Tao; Ye, Jinyin; Li, Zhijia; Yu, Zhongbo

    2017-04-01

    Soil moisture is a key variable that regulates exchanges of water and energy between land surface and atmosphere. Soil moisture retrievals based on microwave satellite remote sensing have made it possible to estimate global surface (up to about 10 cm in depth) soil moisture routinely. Although there are many satellites operating, including NASA's Soil Moisture Acitive Passive mission (SMAP), ESA's Soil Moisture and Ocean Salinity mission (SMOS), JAXA's Advanced Microwave Scanning Radiometer 2 mission (AMSR2), and China's Fengyun (FY) missions, key differences exist between different satellite-based soil moisture products. In this study, we applied a single-channel soil moisture retrieval model forced by multiple sources of satellite brightness temperature observations to estimate consistent daily surface soil moisture across China at a spatial resolution of 25 km. By utilizing observations from multiple satellites, we are able to estimate daily soil moisture across the whole domain of China. We further developed a daily soil moisture accounting model and applied it to downscale the 25-km satellite-based soil moisture to 5 km. By comparing our estimated soil moisture with observations from a dense observation network implemented in Anhui Province, China, our estimated soil moisture results show a reasonably good agreement with the observations (RMSE < 0.1 and r > 0.8).

  19. Dual frequency comb metrology with one fiber laser

    NASA Astrophysics Data System (ADS)

    Zhao, Xin; Takeshi, Yasui; Zheng, Zheng

    2016-11-01

    Optical metrology techniques based on dual optical frequency combs have emerged as a hotly studied area targeting a wide range of applications from optical spectroscopy to microwave and terahertz frequency measurement. Generating two sets of high-quality comb lines with slightly different comb-tooth spacings with high mutual coherence and stability is the key to most of the dual-comb schemes. The complexity and costs of such laser sources and the associated control systems to lock the two frequency combs hinder the wider adoption of such techniques. Here we demonstrate a very simple and rather different approach to tackle such a challenge. By employing novel laser cavity designs in a mode-locked fiber laser, a simple fiber laser setup could emit dual-comb pulse output with high stability and good coherence between the pulse trains. Based on such lasers, comb-tooth-resolved dual-comb optical spectroscopy is demonstrated. Picometer spectral resolving capability could be realized with a fiber-optic setup and a low-cost data acquisition system and standard algorithms. Besides, the frequency of microwave signals over a large range can be determined based on a simple setup. Our results show the capability of such single-fiber-laser-based dual-comb scheme to reduce the complexity and cost of dual-comb systems with excellent quality for different dual-comb applications.

  20. Comparison of drying characteristic and uniformity of banana cubes dried by pulse-spouted microwave vacuum drying, freeze drying and microwave freeze drying.

    PubMed

    Jiang, Hao; Zhang, Min; Mujumdar, Arun S; Lim, Rui-Xin

    2014-07-01

    To overcome the flaws of high energy consumption of freeze drying (FD) and the non-uniform drying of microwave freeze drying (MFD), pulse-spouted microwave vacuum drying (PSMVD) was developed. The results showed that the drying time can be dramatically shortened if microwave was used as the heating source. In this experiment, both MFD and PSMVD could shorten drying time by 50% as compared to the FD process. Depending on the heating method, MFD and PSMVD dried banana cubes showed trends of expansion while FD dried samples demonstrated trends of shrinkage. Shrinkage also brought intensive structure and highest fracturability of all three samples dried by different methods. The residual ascorbic acid content of PSMVD dried samples can be as high as in FD dried samples, which were superior to MFD dried samples. The tests confirmed that PSMVD could bring about better drying uniformity than MFD. Besides, compared with traditional MFD, PSMVD can provide better extrinsic feature, and can bring about improved nutritional features because of the higher residual ascorbic acid content. © 2013 Society of Chemical Industry.

  1. [Study on the Emission Spectrum of Hydrogen Production with Microwave Discharge Plasma in Ethanol Solution].

    PubMed

    Sun, Bing; Wang, Bo; Zhu, Xiao-mei; Yan, Zhi-yu; Liu, Yong-jun; Liu, Hui

    2016-03-01

    Hydrogen is regarded as a kind of clean energy with high caloricity and non-pollution, which has been studied by many experts and scholars home and abroad. Microwave discharge plasma shows light future in the area of hydrogen production from ethanol solution, providing a new way to produce hydrogen. In order to further improve the technology and analyze the mechanism of hydrogen production with microwave discharge in liquid, emission spectrum of hydrogen production by microwave discharge plasma in ethanol solution was being studied. In this paper, plasma was generated on the top of electrode by 2.45 GHz microwave, and the spectral characteristics of hydrogen production from ethanol by microwave discharge in liquid were being studied using emission spectrometer. The results showed that a large number of H, O, OH, CH, C2 and other active particles could be produced in the process of hydrogen production from ethanol by microwave discharge in liquid. The emission spectrum intensity of OH, H, O radicals generated from ethanol is far more than that generated from pure water. Bond of O-H split by more high-energy particles from water molecule was more difficult than that from ethanol molecule, so in the process of hydrogen production by microwave discharge plasma in ethanol solution; the main source of hydrogen was the dehydrogenation and restructuring of ethanol molecules instead of water decomposition. Under the definite external pressure and temperature, the emission spectrum intensity of OH, H, O radicals increased with the increase of microwave power markedly, but the emission spectrum intensity of CH, C2 active particles had the tendency to decrease with the increase of microwave power. It indicated that the number of high energy electrons and active particles high energy electron energy increased as the increase of microwave power, so more CH, C2 active particles were split more thoroughly.

  2. Review on Microwave-Matter Interaction Fundamentals and Efficient Microwave-Associated Heating Strategies

    PubMed Central

    Sun, Jing; Wang, Wenlong; Yue, Qinyan

    2016-01-01

    Microwave heating is rapidly emerging as an effective and efficient tool in various technological and scientific fields. A comprehensive understanding of the fundamentals of microwave–matter interactions is the precondition for better utilization of microwave technology. However, microwave heating is usually only known as dielectric heating, and the contribution of the magnetic field component of microwaves is often ignored, which, in fact, contributes greatly to microwave heating of some aqueous electrolyte solutions, magnetic dielectric materials and certain conductive powder materials, etc. This paper focuses on this point and presents a careful review of microwave heating mechanisms in a comprehensive manner. Moreover, in addition to the acknowledged conventional microwave heating mechanisms, the special interaction mechanisms between microwave and metal-based materials are attracting increasing interest for a variety of metallurgical, plasma and discharge applications, and therefore are reviewed particularly regarding the aspects of the reflection, heating and discharge effects. Finally, several distinct strategies to improve microwave energy utilization efficiencies are proposed and discussed with the aim of tackling the energy-efficiency-related issues arising from the application of microwave heating. This work can present a strategic guideline for the developed understanding and utilization of the microwave heating technology. PMID:28773355

  3. Slot-Antenna/Permanent-Magnet Device for Generating Plasma

    NASA Technical Reports Server (NTRS)

    Foster, John E.

    2007-01-01

    A device that includes a rectangular-waveguide/slot-antenna structure and permanent magnets has been devised as a means of generating a substantially uniform plasma over a relatively large area, using relatively low input power and a low gas flow rate. The device utilizes electron cyclotron resonance (ECR) excited by microwave power to efficiently generate plasma in a manner that is completely electrodeless in the sense that, in principle, there is no electrical contact between the plasma and the antenna. Plasmas generated by devices like this one are suitable for use as sources of ions and/or electrons for diverse material-processing applications (e.g., etching or deposition) and for ion thrusters. The absence of plasma/electrode contact essentially prevents plasma-induced erosion of the antenna, thereby also helping to minimize contamination of the plasma and of objects exposed to the plasma. Consequently, the operational lifetime of the rectangular-waveguide/ slot-antenna structure is long and the lifetime of the plasma source is limited by the lifetime of the associated charged-particle-extraction grid (if used) or the lifetime of the microwave power source. The device includes a series of matched radiating slot pairs that are distributed along the length of a plasma-source discharge chamber (see figure). This arrangement enables the production of plasma in a distributed fashion, thereby giving rise to a uniform plasma profile. A uniform plasma profile is necessary for uniformity in any electron- or ion-extraction electrostatic optics. The slotted configuration of the waveguide/ antenna structure makes the device scalable to larger areas and higher powers. All that is needed for scaling up is the attachment of additional matched radiating slots along the length of the discharge chamber. If it is desired to make the power per slot remain constant in scaling up, then the input microwave power must be increased accordingly. Unlike in prior ECR microwave plasma-generating devices, there is no need for an insulating window on the antenna. Such windows are sources of contamination and gradually become ineffective as they become coated with erosion products over time. These characteristics relegate prior ECR microwave plasma-generating devices to non-ion beam, non-deposition plasma applications. In contrast, the lack of need for an insulating window in the present device makes it possible to use the device in both ion-beam (including deposition) and electron-beam applications. The device is designed so that ECR takes place above each slot and the gradient of the magnetic field at each slot is enough to prevent backflow of plasma.

  4. Performance evaluation of a conformal thermal monitoring sheet (TMS) sensor array for measurement of surface temperature distributions during superficial hyperthermia treatments

    PubMed Central

    Arunachalam, K.; Maccarini, P.; Juang, T.; Gaeta, C.; Stauffer, P. R.

    2009-01-01

    Purpose This paper presents a novel conformal thermal monitoring sheet sensor array with differential thermal sensitivity for measuring temperature distributions over large surface areas. Performance of the sensor array is evaluated in terms of thermal accuracy, mechanical stability and conformity to contoured surfaces, probe self heating under irradiation from microwave and ultrasound hyperthermia sources, and electromagnetic field perturbation. Materials and Methods A prototype TMS with 4×4 array of fiberoptic sensors embedded between two flexible and thermally conducting polyimide films was developed as an alternative to the standard 1-2 mm diameter plastic catheter based probes used in clinical hyperthermia. Computed tomography images and bending tests were performed to evaluate the conformability and mechanical stability respectively. Irradiation and thermal barrier tests were conducted and thermal response of the prototype was compared with round cross-sectional clinical probes. Results Bending and conformity tests demonstrated higher flexibility, dimensional stability and close conformity to human torso. Minimal perturbation of microwave fields and low probe self heating was observed when irradiated with 915MHz microwave and 3.4MHz ultrasound sources. The transient and steady state thermal responses of the TMS array were superior compared to the clinical probes. Conclusions A conformal TMS sensor array with improved thermal sensitivity and dimensional stability was investigated for real-time skin temperature monitoring. This fixed-geometry, body-conforming array of thermal sensors allows fast and accurate characterization of two-dimensional temperature distributions over large surface areas. The prototype TMS demonstrates significant advantages over clinical probes for characterizing skin temperature distributions during hyperthermia treatments of superficial tissue disease. PMID:18465416

  5. Quality assessment of dried okara as a source of production of gluten-free flour.

    PubMed

    Ostermann-Porcel, María V; Rinaldoni, Ana N; Rodriguez-Furlán, Laura T; Campderrós, Mercedes E

    2017-07-01

    Okara is a by-product of soymilk and of tofu elaboration that is rich in protein, fiber and vegetable oils as a source of gluten-free flour. In order to take advantage of the nutritional characteristics of okara and to be able to determine an appropriate drying methodology, microwave, rotary dryer and freeze-drying were assessed. Furthermore, flour with an enzymatic treatment was characterized as well as its functional, physicochemical, and textural properties. The results showed that the physiochemical characteristics of the flour were affected by the drying process, reaching adequate water content, and high protein and fiber content. The freeze-drying process produced clearer flours with porous structure and high water absorption capacity, and with a higher protein denaturation. Okara dried by microwave and rotary dryer exhibited a denser structure with similar functional properties and improved textural characteristics such as firmness and consistency. The microwave-produced flour was darker due to the non-enzymatic browning reactions. The enzymatic treatment employed improved the consistency of the flour. It was possible to choose the drying process to be applied according to the feasible use of the flour, intended to preserve the favorable nutritional aspects of the okara flour. Based on the results, it can be affirmed that the physicochemical properties and attributes of okara are influenced by the drying process employed. Okara dried by freeze-drying resulted in a better product because it had a low final moisture content and the highest whiteness index. The flour presented a porous structure with high solubility, which is an indicator of potential applications in foods developments. © 2016 Society of Chemical Industry. © 2016 Society of Chemical Industry.

  6. Comparative evaluation of surface porosities in conventional heat polymerized acrylic resin cured by water bath and microwave energy with microwavable acrylic resin cured by microwave energy

    PubMed Central

    Singh, Sunint; Palaskar, Jayant N.; Mittal, Sanjeev

    2013-01-01

    Background: Conventional heat cure poly methyl methacrylate (PMMA) is the most commonly used denture base resin despite having some short comings. Lengthy polymerization time being one of them and in order to overcome this fact microwave curing method was recommended. Unavailability of specially designed microwavable acrylic resin made it unpopular. Therefore, in this study, conventional heat cure PMMA was polymerized by microwave energy. Aim and Objectives: This study was designed to evaluate the surface porosities in PMMA cured by conventional water bath and microwave energy and compare it with microwavable acrylic resin cured by microwave energy. Materials and Methods: Wax samples were obtained by pouring molten wax into a metal mold of 25 mm × 12 mm × 3 mm dimensions. These samples were divided into three groups namely C, CM, and M. Group C denotes conventional heat cure PMMA cured by water bath method, CM denotes conventional heat cure PMMA cured by microwave energy, M denotes specially designed microwavable acrylic denture base resin cured by microwave energy. After polymerization, each sample was scanned in three pre-marked areas for surface porosities using the optical microscope. As per the literature available, this instrument is being used for the first time to measure the porosity in acrylic resin. It is a reliable method of measuring area of surface pores. Portion of the sample being scanned is displayed on the computer and with the help of software area of each pore was measured and data were analyzed. Results: Conventional heat cure PMMA samples cured by microwave energy showed maximum porosities than the samples cured by conventional water bath method and microwavable acrylic resin cured by microwave energy. Higher percentage of porosities was statistically significant, but well within the range to be clinically acceptable. Conclusion: Within the limitations of this in-vitro study, conventional heat cure PMMA can be cured by microwave energy without compromising on its property such as surface porosity. PMID:24015000

  7. High power microwave hazard facing smart ammunitions

    NASA Astrophysics Data System (ADS)

    Bohl, J.

    1995-03-01

    The battle field of the present and even more the one in future will be characterized by the use of weapon systems with a high degree of electronics, computers, and sensors, designed and built to keep not only the man out of the loop. But the higher the technology used for smart weapon systems, the more these systems are endangered by numerous sources of hazard. One of those sources is the threat caused by induced or natural electromagnetic fields. These threat factors can be generated by natural, civil and military environment. In principle there are two main applications which must be considered in military applications: Firstly, weapon systems, that is, high power microwave sources as well as intelligent electromagnetic radiation systems to defeat ammunition on the battle field and secondly, the hardening of the own smart ammunition systems and missiles against the interference sources created by the different types of electromagnetic fields. This report will discuss the possible electromagnetic coupling effects on smart ammunition and missiles and their typical interference caused on the electronics and sensor level. Real time 6-DOF simulations show the flight mission which may be compromised depending on the coupled electromagnetic fields. The German MOD has established a research program where smart ammunitions with different seeker systems are investigated in respect of the coupling effects on smart ammunition caused by high power microwaves. This program considers all available resources and know how in Germany. The systems are investigated by analytical, numerical, and experimental methods with passive and activated missiles.

  8. Energetic electrons in impulsive solar flares

    NASA Technical Reports Server (NTRS)

    Batchelor, D. A.

    1984-01-01

    A new analysis was made of a thermal flare model proposed by Brown, Melrose, and Spicer (1979) and Smith and Lilliequist (1979). They assumed the source of impulsive hard X-rays to be a plasma at a temperature of order 10 to the 8th power K, initially located at the apex of a coronal arch, and confined by ion-acoustic turbulence in a collisionless conduction front. Such a source would expand at approximately the ion-sound speed, C sub S = square root of (k T sub e/m sub i), until it filled the arch. Brown, Melrose, and Spicer and Smith and Brown (1980) argued that the source assumed in this model would not explain the simultaneous impulsive microwave emission. In contrast, the new results presented herein suggest that this model leads to the development of a quasi-Maxwellian distribution of electrons that explains both the hard X-ray and microwave emissions. This implies that the source sizes can be determined from observations of the optically-thick portions of microwave spectra and the temperatures obtained from associated hard X-ray observations. In this model, the burst emission would rise to a maximum in a time, t sub r, approximately equal to L/c sub s, where L is the half-length of the arch. New observations of these impulsive flare emissions were analyzed herein to test this prediction of the model. Observations made with the Solar Maximum Mission spacecraft and the Bern Radio Observatory are in good agreement with the model.

  9. Comparison of global cloud liquid water path derived from microwave measurements with CERES-MODIS

    NASA Astrophysics Data System (ADS)

    Yi, Y.; Minnis, P.; Huang, J.; Lin, B.; Ayers, K.; Sun-Mack, S.; Fan, A.

    Cloud liquid water path LWP is a crucial parameter for climate studies due to the link that it provides between the atmospheric hydrological and radiative budgets Satellite-based visible infrared techniques such as the Visible Infrared Solar Split-Window Technique VISST can retrieve LWP for water clouds assumes single-layer over a variety of surfaces If the water clouds are overlapped by ice clouds the LWP of the underlying clouds can not be retrieved by such techniques However microwave techniques may be used to retrieve the LWP underneath ice clouds due to the microwave s insensitivity to cloud ice particles LWP is typically retrieved from satellite-observed microwave radiances only over ocean due to variations of land surface temperature and emissivity Recently Deeter and Vivekanandan 2006 developed a new technique for retrieving LWP over land In order to overcome the sensitivity to land surface temperature and emissivity their technique is based on a parameterization of microwave polarization-difference signals In this study a similar regression-based technique for retrieving LWP over land and ocean using Advanced Microwave Scanning Radiometer - EOS AMSR-E measurements is developed Furthermore the microwave surface emissivities are also derived using clear-sky fields of view based on the Clouds and Earth s Radiant Energy System Moderate-resolution Imaging Spectroradiometer CERES-MODIS cloud mask These emissivities are used in an alternate form of the technique The results are evaluated using independent measurements such

  10. High efficiency FET microwave detector design

    NASA Astrophysics Data System (ADS)

    Luglio, Juan; Ishii, Thomas Koryu

    1990-12-01

    The work is based on an assumption that very little microwave power would be consumed at a negatively biased gate of a microwave FET, yet significant detected signals would be obtained at the drain if the bias is given. By analyzing a Taylor-series expansion of the drain-current equation in the vicinity of a fixed gate-bias voltage, the bias voltage is found to maximize the second derivative of the drain current, the gate-bias voltage characteristic curve for the maximum detected drain current under a given fixed drain-bias voltage. Based on these findings, a high-efficiency microwave detector is designed, fabricated, and tested at 8.6 GHz, and it is shown that the audio power over absorbed microwave power ratio of the detector is 135 percent due to the positive gain.

  11. Solar radio continuum storms and a breathing magnetic field model

    NASA Technical Reports Server (NTRS)

    1975-01-01

    Radio noise continuum emissions observed in metric and decametric wave frequencies are, in general, associated with actively varying sunspot groups accompanied by the S-component of microwave radio emissions. These continuum emission sources, often called type I storm sources, are often associated with type III burst storm activity from metric to hectometric wave frequencies. This storm activity is, therefore, closely connected with the development of these continuum emission sources. It is shown that the S-component emission in microwave frequencies generally precedes, by several days, the emission of these noise continuum storms of lower frequencies. In order for these storms to develop, the growth of sunspot groups into complex types is very important in addition to the increase of the average magnetic field intensity and area of these groups. After giving a review on the theory of these noise continuum storm emissions, a model is briefly considered to explain the relation of the emissions to the storms.

  12. Enhanced catalytic activity without the use of an external light source using microwave-synthesized CuO nanopetals

    PubMed Central

    Bajaj, Sonal; Nayak, Arpan Kumar; Pradhan, Debabrata; Tekade, Pradip

    2017-01-01

    We report enhanced catalytic activity of CuO nanopetals synthesized by microwave-assisted wet chemical synthesis. The catalytic reaction of CuO nanopetals and H2O2 was studied with the application of external light source and also under dark conditions for the degradation of the hazardous dye methylene blue. The CuO nanopetals showed significant catalytic activity for the fast degradation of methylene blue and rhodamine B (RhB) under dark conditions, without the application of an external light source. This increased catalytic activity was attributed to the co-operative role of H2O2 and the large specific surface area (≈40 m2·g−1) of the nanopetals. We propose a detail mechanism for this fast degradation. A separate study of the effect of different H2O2 concentrations for the degradation of methylene blue under dark conditions is also illustrated. PMID:28685117

  13. Solar burst precursors and energy build-up at microwave wavelengths

    NASA Technical Reports Server (NTRS)

    Lang, Kenneth R.; Wilson, Robert F.

    1986-01-01

    We summarize high-resolution microwave observations (VLA) of heating and magnetic triggering in coronal loops. Magnetic changes that precede solar eruptions on time scales of tens of minutes involve primarily emerging coronal loops and the interaction of two or more loops. Thermal cyclotron lines have been detected in coronal loops, suggesting the presence of hot current sheets that enhance emission from relatively thin layers of enhanced temperature and constant magnetic field. These current sheets may play a role in the excitation of solar bursts. A filament-associated source with a high brightness temperature and steep radiation spectrum occurs above a region of apparently weak photospheric field. This source might be attributed to currents that enhance coronal magnetic fields. Compact (phi=5 sec) transient sources with lifetimes of 30 to 60 minutes have also been detected in regions of apparently weak photospheric field. We conclude by comparing VLA observations of coronal loops with simultaneous SMM-XRP observations.

  14. Solar burst precursors and energy build-up at microwave wavelengths

    NASA Astrophysics Data System (ADS)

    Lang, Kenneth R.; Wilson, Robert F.

    We summarize high-resolution microwave observations (VLA) of heating and magnetic triggering in coronal loops. Magnetic changes that precede solar eruptions on time scales of tens of minutes involve primarily emerging coronal loops and the interaction of two or more loops. Thermal cyclotron lines have been detected in coronal loops, suggesting the presence of hot current sheets that enhance emission from relatively thin layers of enhanced temperature and constant magnetic field. These current sheets may play a role in the excitation of solar bursts. A filament-associated source with a high brightness temperature and steep radiation spectrum occurs above a region of apparently weak photospheric field. This source might be attributed to currents that enhance coronal magnetic fields. Compact (phi=5 sec) transient sources with lifetimes of 30 to 60 minutes have also been detected in regions of apparently weak photospheric field. We conclude by comparing VLA observations of coronal loops with simultaneous SMM-XRP observations.

  15. Verification of a New NOAA/NSIDC Passive Microwave Sea-Ice Concentration Climate Record

    NASA Technical Reports Server (NTRS)

    Meier, Walter N.; Peng, Ge; Scott, Donna J.; Savoie, Matt H.

    2014-01-01

    A new satellite-based passive microwave sea-ice concentration product developed for the National Oceanic and Atmospheric Administration (NOAA)Climate Data Record (CDR) programme is evaluated via comparison with other passive microwave-derived estimates. The new product leverages two well-established concentration algorithms, known as the NASA Team and Bootstrap, both developed at and produced by the National Aeronautics and Space Administration (NASA) Goddard Space Flight Center (GSFC). The sea ice estimates compare well with similar GSFC products while also fulfilling all NOAA CDR initial operation capability (IOC) requirements, including (1) self describing file format, (2) ISO 19115-2 compliant collection-level metadata,(3) Climate and Forecast (CF) compliant file-level metadata, (4) grid-cell level metadata (data quality fields), (5) fully automated and reproducible processing and (6) open online access to full documentation with version control, including source code and an algorithm theoretical basic document. The primary limitations of the GSFC products are lack of metadata and use of untracked manual corrections to the output fields. Smaller differences occur from minor variations in processing methods by the National Snow and Ice Data Center (for the CDR fields) and NASA (for the GSFC fields). The CDR concentrations do have some differences from the constituent GSFC concentrations, but trends and variability are not substantially different.

  16. Some Rare Earth Elements Analysis by Microwave Plasma Torch Coupled with the Linear Ion Trap Mass Spectrometry

    PubMed Central

    Xiong, Xiaohong; Jiang, Tao; Qi, Wenhao; Zuo, Jun; Yang, Meiling; Fei, Qiang; Xiao, Saijin; Yu, Aimin; Zhu, Zhiqiang; Chen, Huanwen

    2015-01-01

    A sensitive mass spectrometric analysis method based on the microwave plasma technique is developed for the fast detection of trace rare earth elements (REEs) in aqueous solution. The plasma was produced from a microwave plasma torch (MPT) under atmospheric pressure and was used as ambient ion source of a linear ion trap mass spectrometer (LTQ). Water samples were directly pneumatically nebulized to flow into the plasma through the central tube of MPT. For some REEs, the generated composite ions were detected in both positive and negative ion modes and further characterized in tandem mass spectrometry. Under the optimized conditions, the limit of detection (LOD) was at the level 0.1 ng/mL using MS2 procedure in negative mode. A single REE analysis can be completed within 2~3 minutes with the relative standard deviation ranging between 2.4% and 21.2% (six repeated measurements) for the 5 experimental runs. Moreover, the recovery rates of these REEs are between the range of 97.6%–122.1%. Two real samples have also been analyzed, including well and orange juice. These experimental data demonstrated that this method is a useful tool for the field analysis of REEs in water and can be used as an alternative supplement of ICP-MS. PMID:26421013

  17. A Long-Term and Reproducible Passive Microwave Sea Ice Concentration Data Record for Climate Studies and Monitoring

    NASA Technical Reports Server (NTRS)

    Peng, G.; Meier, W. N.; Scott, D. J.; Savoie, M. H.

    2013-01-01

    A long-term, consistent, and reproducible satellite-based passive microwave sea ice concentration climate data record (CDR) is available for climate studies, monitoring, and model validation with an initial operation capability (IOC). The daily and monthly sea ice concentration data are on the National Snow and Ice Data Center (NSIDC) polar stereographic grid with nominal 25 km × 25 km grid cells in both the Southern and Northern Hemisphere polar regions from 9 July 1987 to 31 December 2007. The data files are available in the NetCDF data format at http://nsidc.org/data/g02202.html and archived by the National Climatic Data Center (NCDC) of the National Oceanic and Atmospheric Administration (NOAA) under the satellite climate data record program (http://www.ncdc.noaa.gov/cdr/operationalcdrs.html). The description and basic characteristics of the NOAA/NSIDC passive microwave sea ice concentration CDR are presented here. The CDR provides similar spatial and temporal variability as the heritage products to the user communities with the additional documentation, traceability, and reproducibility that meet current standards and guidelines for climate data records. The data set, along with detailed data processing steps and error source information, can be found at http://dx.doi.org/10.7265/N5B56GN3.

  18. Advancement of highly charged ion beam production by superconducting ECR ion source SECRAL (invited)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sun, L., E-mail: sunlt@impcas.ac.cn; Lu, W.; Zhang, W. H.

    2016-02-15

    At Institute of Modern Physics (IMP), Chinese Academy of Sciences (CAS), the superconducting Electron Cyclotron Resonance (ECR) ion source SECRAL (Superconducting ECR ion source with Advanced design in Lanzhou) has been put into operation for about 10 years now. It has been the main working horse to deliver intense highly charged heavy ion beams for the accelerators. Since its first plasma at 18 GHz, R&D work towards more intense highly charged ion beam production as well as the beam quality investigation has never been stopped. When SECRAL was upgraded to its typical operation frequency 24 GHz, it had already showedmore » its promising capacity of very intense highly charged ion beam production. And it has also provided the strong experimental support for the so called scaling laws of microwave frequency effect. However, compared to the microwave power heating efficiency at 18 GHz, 24 GHz microwave heating does not show the ω{sup 2} scale at the same power level, which indicates that microwave power coupling at gyrotron frequency needs better understanding. In this paper, after a review of the operation status of SECRAL with regard to the beam availability and stability, the recent study of the extracted ion beam transverse coupling issues will be discussed, and the test results of the both TE{sub 01} and HE{sub 11} modes will be presented. A general comparison of the performance working with the two injection modes will be given, and a preliminary analysis will be introduced. The latest results of the production of very intense highly charged ion beams, such as 1.42 emA Ar{sup 12+}, 0.92 emA Xe{sup 27+}, and so on, will be presented.« less

  19. Extreme ultraviolet spectroscopy of low pressure helium microwave driven discharges

    NASA Astrophysics Data System (ADS)

    Espinho, Susana; Felizardo, Edgar; Tatarova, Elena; Alves, Luis Lemos

    2016-09-01

    Surface wave driven discharges are reliable plasma sources that can produce high levels of vacuum and extreme ultraviolet radiation (VUV and EUV). The richness of the emission spectrum makes this type of discharge a possible alternative source in EUV/VUV radiation assisted applications. However, due to challenging experimental requirements, publications concerning EUV radiation emitted by microwave plasmas are scarce and a deeper understanding of the main mechanisms governing the emission of radiation in this spectral range is required. To this end, the EUV radiation emitted by helium microwave driven plasmas operating at 2.45 GHz has been studied for low pressure conditions. Spectral lines from excited helium atoms and ions were detected via emission spectroscopy in the EUV/VUV regions. Novel data concerning the spectral lines observed in the 23 - 33 nm wavelength range and their intensity behaviour with variation of the discharge operational conditions are presented. The intensity of all the spectral emissions strongly increases with the microwave power delivered to the plasma up to 400 W. Furthermore, the intensity of all the ion spectral emissions in the EUV range decreases by nearly one order of magnitude as the pressure was raised from 0.2 to 0.5 mbar. Work funded by FCT - Fundacao para a Ciencia e a Tecnologia, under Project UID/FIS/50010/2013 and grant SFRH/BD/52412/2013 (PD-F APPLAuSE).

  20. In-liquid Plasma. A stable light source for advanced oxidation processes in environmental remediation

    NASA Astrophysics Data System (ADS)

    Tsuchida, Akihiro; Shimamura, Takeshi; Sawada, Seiya; Sato, Susumu; Serpone, Nick; Horikoshi, Satoshi

    2018-06-01

    A microwave-inspired device that generates stable in-liquid plasma (LP) in aqueous media and emits narrow light emission lines at 280-320 nm, 660 nm and 780 nm is examined as a light source capable of driving photochemical reactions and advanced oxidation processes in wastewater treatments. The microwave-driven lighting efficiency was improved by decompressing the inside of the reaction vessel, which resulted in lowering the incident power of the microwaves and suppressed the deterioration of the microwave irradiation antenna. This protocol made it possible to generate continuous stable plasma in water. Evaluation of the LP device was carried out by revisiting the decomposition of 1,4-dioxane in aqueous media against the use of such other conventional water treatment processes as (i) UV irradiation alone, (ii) TiO2-assisted photocatalysis with UV irradiation (UV/TiO2), (iii) oxidation with sodium hypochlorite (NaClO), and (iv) UV-assisted decomposition in the presence of NaClO (UV/NaClO). The in-liquid plasma technique proved superior to these four other methods. The influence of pH on the LP protocol was ascertained through experiments in acidified (HCl and H2SO4) and alkaline (NaOH and KOH) aqueous media. Except for H2SO4, decomposition of 1,4-dioxane was enhanced in both acidic and alkaline media.

Top