Sample records for microwave system operating

  1. Remote measurement of microwave distribution based on optical detection

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ji, Zhong; Ding, Wenzheng; Yang, Sihua

    2016-01-04

    In this letter, we present the development of a remote microwave measurement system. This method employs an arc discharge lamp that serves as an energy converter from microwave to visible light, which can propagate without transmission medium. Observed with a charge coupled device, quantitative microwave power distribution can be achieved when the operators and electronic instruments are in a distance from the high power region in order to reduce the potential risk. We perform the experiments using pulsed microwaves, and the results show that the system response is dependent on the microwave intensity over a certain range. Most importantly, themore » microwave distribution can be monitored in real time by optical observation of the response of a one-dimensional lamp array. The characteristics of low cost, a wide detection bandwidth, remote measurement, and room temperature operation make the system a preferred detector for microwave applications.« less

  2. 47 CFR 101.107 - Frequency tolerance.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... Telecommunication FEDERAL COMMUNICATIONS COMMISSION (CONTINUED) SAFETY AND SPECIAL RADIO SERVICES FIXED MICROWAVE... to private operational fixed point-to-point microwave and stations providing MVDDS. 5 For private operational fixed point-to-point microwave systems, with a channel greater than or equal to 50 KHz bandwidth...

  3. Target detection using microwave irradiances from natural sources: A passive, local and global surveillance system

    NASA Technical Reports Server (NTRS)

    Stacey, J. M.

    1984-01-01

    Detection of metal objects on or near the Earth's surface was investigated using existing, passive, microwave sensors operating from Earth orbit. The range equations are derived from basic microwave principles and theories and the expressions are given explicitly to estimate the signal to noise ratio for detecting metal targets operating as bistatic scatterers. Actual measurements are made on a range of metal objects observed from orbit using existing passive microwave receiving systems. The details of the measurements and the results are tabulated and discussed. The advantages of a passive microwave sensor as it is applied to surveillance of metal objects as viewed from aerial platforms or from orbit, are examined.

  4. 47 CFR 101.107 - Frequency tolerance.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... Telecommunication FEDERAL COMMUNICATIONS COMMISSION (CONTINUED) SAFETY AND SPECIAL RADIO SERVICES FIXED MICROWAVE...-point microwave and stations providing MVDDS. 5 For private operational fixed point-to-point microwave... noted in the table of paragraph (a) of this section. (b) Heterodyne microwave radio systems may be...

  5. 47 CFR 101.107 - Frequency tolerance.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... Telecommunication FEDERAL COMMUNICATIONS COMMISSION (CONTINUED) SAFETY AND SPECIAL RADIO SERVICES FIXED MICROWAVE...-point microwave and stations providing MVDDS. 5 For private operational fixed point-to-point microwave... noted in the table of paragraph (a) of this section. (b) Heterodyne microwave radio systems may be...

  6. 47 CFR 101.107 - Frequency tolerance.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... Telecommunication FEDERAL COMMUNICATIONS COMMISSION (CONTINUED) SAFETY AND SPECIAL RADIO SERVICES FIXED MICROWAVE...-point microwave and stations providing MVDDS. 5 For private operational fixed point-to-point microwave... noted in the table of paragraph (a) of this section. (b) Heterodyne microwave radio systems may be...

  7. Improvements and modifications to the NASA microwave signature acquisition system

    NASA Technical Reports Server (NTRS)

    Jean, B. R.; Newton, R. W.; Warren, G. L.; Clark, B. V.; Zajicek, J. L.

    1978-01-01

    A user oriented description of the modified and upgraded Microwave Signature Acquisition System is provided. The present configuration of the sensor system and its operating characteristics are documented and a step-by-step operating procedure provides instruction for mounting the antenna truss assembly, readying the system for data acquisition, and for controlling the system during the data collection sequence. The resulting data products are also identified.

  8. A Theoretical Study of Microwave Beam Absorption by a Rectenna

    NASA Technical Reports Server (NTRS)

    Ott, J. H.; Rice, J. S.; Thorn, D. C.

    1981-01-01

    The theoretical operational parameters for the workable satellite power system were examined. The system requirements for efficient transmission and reception of an environmentally benign microwave beam were determined.

  9. Two-gigawatt burst-mode operation of the intense microwave prototype (IMP) free-electron laser (FEL) for the microwave tokamak experiment (MTX)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Felker, B.; Allen, S.; Bell, H.

    1993-10-06

    The MTX explored the plasma heating effects of 140 GHz microwaves from both Gyrotrons and from the IMP FEL wiggler. The Gyrotron was long pulse length (0.5 seconds maximum) and the FEL produced short-pulse length, high-peak power, single and burst modes of 140 GHZ microwaves. Full-power operations of the IMP FEL wiggler were commenced in April of 1992 and continued into October of 1992. The Experimental Test Accelerator H (ETA-II) provided a 50-nanosecond, 6-MeV, 2--3 kAmp electron beam that was introduced co-linear into the IMP FEL with a 140 GHz Gyrotron master oscillator (MO). The FEL was able to amplifymore » the MO signal from approximately 7 kW to peaks consistently in the range of 1--2 GW. This microwave pulse was transmitted into the MTX and allowed the exploration of the linear and non-linear effects of short pulse, intense power in the MTX plasma. Single pulses were used to explore and gain operating experience in the parameter space of the IMP FEL, and finally evaluate transmission and absorption in the MTX. Single-pulse operations were repeatable. After the MTX was shut down burst-mode operations were successful at 2 kHz. This paper will describe the IMP FEL, Microwave Transmission System to MTX, the diagnostics used for calorimetric measurements, and the operations of the entire Microwave system. A discussion of correlated and uncorrelated errors that affect FEL performance will be made Linear and non-linear absorption data of the microwaves in the MTX plasma will be presented.« less

  10. A portable high power microwave source with permanent magnets

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Li, Wei; Zhang, Jun; Li, Zhi-qiang

    A high power microwave source with permanent magnets is proposed in this paper. The source has the length 330 mm, maximum diameter 350 mm, and total weight 50 kg, including 25 kg of permanent magnets. 1 GW of microwave power with Gaussian radiation pattern and 24% of microwave power generation efficiency in a pulse duration of 75 ns are obtained in the experiment. Operating frequency of the source is 2.32 GHz. Such a small size, light weight, and highly stable in operation source will be used in portable repetitive high power microwave generation systems.

  11. Noise and correlations in a microwave-mechanical-optical transducer

    NASA Astrophysics Data System (ADS)

    Higginbotham, Andrew P.; Burns, Peter S.; Peterson, Robert W.; Urmey, Maxwell D.; Kampel, Nir S.; Menke, Timothy; Cicak, Katarina; Simmonds, Raymond W.; Regal, Cindy A.; Lehnert, Konrad W.

    Viewed as resources for quantum information processing, microwave and optical fields offer complementary strengths. We simultaneously couple one mode of a micromechanical oscillator to a resonant microwave circuit and a high-finesse optical cavity. In previous work, this system was operated as a classical converter between microwave and optical signals at 4 K, operating with 10% efficiency and 1500 photons of added noise. To improve noise performance, we now operate the converter at 0.1 K. We have observed order-of-magnitude improvement in noise performance, and quantified effects from undesired interactions between the laser and superconducting circuit. Correlations between the microwave and optical fields have also been investigated, serving as a precursor to upcoming quantum operation. We acknowledge support from AFOSR MURI Grant FA9550-15-1-0015 and PFC National Science Foundation Grant 1125844.

  12. Data acquisition system for operational earth observation missions

    NASA Technical Reports Server (NTRS)

    Deerwester, J. M.; Alexander, D.; Arno, R. D.; Edsinger, L. E.; Norman, S. M.; Sinclair, K. F.; Tindle, E. L.; Wood, R. D.

    1972-01-01

    The data acquisition system capabilities expected to be available in the 1980 time period as part of operational Earth observation missions are identified. By data acquisition system is meant the sensor platform (spacecraft or aircraft), the sensors themselves and the communication system. Future capabilities and support requirements are projected for the following sensors: film camera, return beam vidicon, multispectral scanner, infrared scanner, infrared radiometer, microwave scanner, microwave radiometer, coherent side-looking radar, and scatterometer.

  13. Microwave oxidation treatment of sewage sludge.

    PubMed

    Lo, Kwang V; Srinivasan, Asha; Liao, Ping H; Bailey, Sam

    2015-01-01

    Microwave-oxidation treatment of sewage sludge using various oxidants was studied. Two treatment schemes with a combination of hydrogen peroxide and ozone were examined: hydrogen peroxide and ozone were introduced into the sludge simultaneously, followed by microwave heating. The other involved the ozonation first, and then the resulting solution was subjected to microwave and hydrogen peroxide treatment. The set with ozonation followed by hydrogen peroxide plus microwave heating yielded higher soluble materials than those of the set with hydrogen peroxide plus ozone first and then microwave treatment. No settling was observed for all treatments in the batch operation, except ozone/microwave plus hydrogen peroxide set at 120°C. The pilot-scale continuous-flow 915 MHz microwave study has demonstrated that microwave-oxidation process is feasible for real-time industrial application. It would help in providing key data for the design of a full-scale system for treating sewage sludge and the formulation of operational protocols.

  14. An Experiment on Repetitive Pulse Operation of Microwave Rocket

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Oda, Yasuhisa; Shibata, Teppei; Komurasaki, Kimiya

    2008-04-28

    Microwave Rocket was operated with repetitive pulses. The microwave rocket model with forced breathing system was used. The pressure history in the thruster was measured and the thrust impulse was deduced. As a result, the impulse decreased at second pulse and impulses at latter pulses were constant. The dependence of the thrust performance on the partial filling rate of the thruster was compared to the thrust generation model based on the shock wave driven by microwave plasma. The experimental results showed good agreement to the predicted dependency.

  15. A hospital microwave system for library telecommunication.

    PubMed Central

    Hempel, R M; Ward, B A

    1988-01-01

    The medical library of the Olin E. Teague Veterans' Center needed access to an online integrated library system at a site eighty miles away. The center already operated a tower-to-tower microwave for teleconferencing and the library was able to use this as a temporary means of communication with the distant online system. The microwave link performed satisfactorily, leading to consideration of its use for other library applications. PMID:3224225

  16. Mobile system for microwave removal of concrete surfaces

    DOEpatents

    White, Terry L.; Bigelow, Timothy S.; Schaich, Charles R.; Foster, Jr., Don

    1997-01-01

    A method and apparatus for the microwave removal of contaminated concrete surfaces. The apparatus comprises a housing adapted to pass over a support surface. The housing includes a waveguide for directing microwave energy to the surface at an angle maximizing absorption of microwave energy by the surface. The apparatus is further provided with a source of microwave energy operably associated with the waveguide, wherein the microwave energy has a frequency of between about 10.6 GHz and about 24 GHz and acts to remove the uppermost layer from the surface. The apparatus further includes a debris containment assembly comprising a vacuum assembly operably associated with the housing. The vacuum assembly is adapted to remove debris from the area adjacent the surface.

  17. Mobile system for microwave removal of concrete surfaces

    DOEpatents

    White, T.L.; Bigelow, T.S.; Schaich, C.R.; Foster, D. Jr.

    1997-06-03

    A method and apparatus are disclosed for the microwave removal of contaminated concrete surfaces. The apparatus comprises a housing adapted to pass over a support surface. The housing includes a waveguide for directing microwave energy to the surface at an angle maximizing absorption of microwave energy by the surface. The apparatus is further provided with a source of microwave energy operably associated with the waveguide, wherein the microwave energy has a frequency of between about 10.6 GHz and about 24 GHz and acts to remove the uppermost layer from the surface. The apparatus further includes a debris containment assembly comprising a vacuum assembly operably associated with the housing. The vacuum assembly is adapted to remove debris from the area adjacent the surface. 7 figs.

  18. Variable frequency microwave furnace system

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bible, D.W.; Lauf, R.J.

    1994-06-14

    A variable frequency microwave furnace system designed to allow modulation of the frequency of the microwaves introduced into a furnace cavity for testing or other selected applications. The variable frequency microwave furnace system includes a microwave signal generator or microwave voltage-controlled oscillator for generating a low-power microwave signal for input to the microwave furnace. A first amplifier may be provided to amplify the magnitude of the signal output from the microwave signal generator or the microwave voltage-controlled oscillator. A second amplifier is provided for processing the signal output by the first amplifier. The second amplifier outputs the microwave signal inputmore » to the furnace cavity. In the preferred embodiment, the second amplifier is a traveling-wave tube (TWT). A power supply is provided for operation of the second amplifier. A directional coupler is provided for detecting the direction of a signal and further directing the signal depending on the detected direction. A first power meter is provided for measuring the power delivered to the microwave furnace. A second power meter detects the magnitude of reflected power. Reflected power is dissipated in the reflected power load. 5 figs.« less

  19. Variable frequency microwave furnace system

    DOEpatents

    Bible, D.W.; Lauf, R.J.

    1994-06-14

    A variable frequency microwave furnace system designed to allow modulation of the frequency of the microwaves introduced into a furnace cavity for testing or other selected applications. The variable frequency microwave furnace system includes a microwave signal generator or microwave voltage-controlled oscillator for generating a low-power microwave signal for input to the microwave furnace. A first amplifier may be provided to amplify the magnitude of the signal output from the microwave signal generator or the microwave voltage-controlled oscillator. A second amplifier is provided for processing the signal output by the first amplifier. The second amplifier outputs the microwave signal input to the furnace cavity. In the preferred embodiment, the second amplifier is a traveling-wave tube (TWT). A power supply is provided for operation of the second amplifier. A directional coupler is provided for detecting the direction of a signal and further directing the signal depending on the detected direction. A first power meter is provided for measuring the power delivered to the microwave furnace. A second power meter detects the magnitude of reflected power. Reflected power is dissipated in the reflected power load. 5 figs.

  20. Effects of rain and fog on the Shuttle Ku-band microwave scanning beam landing system range and accuracy performance

    NASA Technical Reports Server (NTRS)

    Butler, D.

    1981-01-01

    The microwave Scanning Beam Landing System's (MSBLS) performance in fog and rain was studied. The fog and rain effects on the Shuttle Ku-band system were determined. Specifically, microwave attenuation, beam distortion, and coordinate errors resulting from operation of the MSBLS in poor weather conditions were evaluated. The main physical processes giving rise to microwave attenuation were found to be absorption and scattering by water droplets. The general theory of scattering and absorption used is discussed and a listing of applicable computer programs is provided.

  1. Transportation and operations aspects of space energy systems

    NASA Technical Reports Server (NTRS)

    Woodcock, Gordon R.

    1989-01-01

    A brief comparative analysis was made for three concepts of supplying large-scale electrical energy to Earth from space. The concepts were: (1) mining helium-3 on the Moon and returning it to Earth; (2) constructing solar power satellites in geosynchronous orbit from lunar materials (the energy is beamed by microwave to receivers on Earth); and (3) constructing power collection and beaming systems on the Moon itself and transmitting the energy to Earth by microwave. This analysis concerned mainly space transportation and operations, but each of the systems is briefly characterized to provide a basis for space transportation and operations analysis.

  2. Unpowered wireless ultrasound tomography system

    NASA Astrophysics Data System (ADS)

    Zahedi, Farshad; Huang, Haiying

    2016-04-01

    In this paper, an unpowered wireless ultrasound tomography system is presented. The system consists of two subsystems; the wireless interrogation unit (WIU) and three wireless nodes installed on the structure. Each node is designed to work in generation and sensing modes, but operates at a specific microwave frequency. Wireless transmission of the ultrasound signals between the WIU and the wireless nodes is achieved by converting ultrasound signals to microwave signals and vice versa, using a microwave carrier signal. In the generation mode, both a carrier signal and an ultrasound modulated microwave signal are transmitted to the sensor nodes. Only the node whose operating frequency matches the carrier signal will receive these signals and demodulate them to recover the original ultrasound signal. In the sensing mode, a microwave carrier signal with two different frequency components matching the operating frequencies of the sensor nodes is broadcasted by the WIU. The sensor nodes, in turn, receive the corresponding carrier signals, modulate it with the ultrasound sensing signal, and wirelessly transmit the modulated signal back to the WIU. The demodulation of the sensing signals is performed in the WIU using a digital signal processing. Implementing a software receiver significantly reduces the complexity and the cost of the WIU. A wireless ultrasound tomography system is realized by interchanging the carrier frequencies so that the wireless transducers can take turn to serve as the actuator and sensors.

  3. Variable frequency microwave furnace system

    DOEpatents

    Bible, Don W.; Lauf, Robert J.

    1994-01-01

    A variable frequency microwave furnace system (10) designed to allow modulation of the frequency of the microwaves introduced into a furnace cavity (34) for testing or other selected applications. The variable frequency microwave furnace system (10) includes a microwave signal generator (12) or microwave voltage-controlled oscillator (14) for generating a low-power microwave signal for input to the microwave furnace. A first amplifier (18) may be provided to amplify the magnitude of the signal output from the microwave signal generator (12) or the microwave voltage-controlled oscillator (14). A second amplifier (20) is provided for processing the signal output by the first amplifier (18). The second amplifier (20) outputs the microwave signal input to the furnace cavity (34). In the preferred embodiment, the second amplifier (20) is a traveling-wave tube (TWT). A power supply (22) is provided for operation of the second amplifier (20). A directional coupler (24) is provided for detecting the direction of a signal and further directing the signal depending on the detected direction. A first power meter (30) is provided for measuring the power delivered to the microwave furnace (32). A second power meter (26) detects the magnitude of reflected power. Reflected power is dissipated in the reflected power load (28).

  4. Compact microwave imaging system to measure spatial distribution of plasma density

    NASA Astrophysics Data System (ADS)

    Ito, H.; Oba, R.; Yugami, N.; Nishida, Y.

    2004-10-01

    We have developed an advanced microwave interferometric system operating in the K band (18-27 GHz) with the use of a fan-shaped microwave based on a heterodyne detection system for measuring the spatial distribution of the plasma density. In order to make a simple, low-cost, and compact microwave interferometer with better spatial resolution, a microwave scattering technique by a microstrip antenna array is employed. Experimental results show that the imaging system with the microstrip antenna array can have finer spatial resolution than one with the diode antenna array and reconstruct a good spatially resolved image of the finite size dielectric phantoms placed between the horn antenna and the micro strip antenna array. The precise two-dimensional electron density distribution of the cylindrical plasma produced by an electron cyclotron resonance has been observed. As a result, the present imaging system is more suitable for a two- or three-dimensional display of the objects or stationary plasmas and it is possible to realize a compact microwave imaging system.

  5. Status and Evaluation of Microwave Furnace Capabilities at NASA Glenn Research Center

    NASA Technical Reports Server (NTRS)

    Lizcano, Maricela; Mackey, Jonathan A.

    2014-01-01

    The microwave (MW) furnace is a HY-Tech Microwave Systems, 2 kW 2.45 GHz Single Mode Microwave Applicator operating in continuous wave (CW) with variable power. It is located in Cleveland, Ohio at NASA Glenn Research Center. Until recently, the furnace capabilities had not been fully realized due to unknown failure that subsequently damaged critical furnace components. Although the causes of the problems were unknown, an assessment of the furnace itself indicated operational failure may have been partially caused by power quality. This report summarizes the status of the MW furnace and evaluates its capabilities in materials processing.

  6. SPS microwave health and ecological effects: Program area overview

    NASA Technical Reports Server (NTRS)

    Cahill, D. F.

    1980-01-01

    The potential microwave health and ecological effects due to the operations of the Satellite Power System are discussed. An outline of the research needed to insure public acceptance of the program is presented.

  7. A long-pulse repetitive operation magnetically insulated transmission line oscillator.

    PubMed

    Fan, Yu-Wei; Zhong, Hui-Huang; Zhang, Jian-De; Shu, Ting; Liu, Jin Liang

    2014-05-01

    The improved magnetically insulated transmission line oscillator (MILO) is a gigawatt-class L-band high power microwave tube. It has allowed us to generate 3.1 GW pulse of 40 ns duration in the single-pulse operation and 500 MW pulse of 25 ns duration in the repetition rate operation. However, because of the severe impedance mismatch, the power conversion efficiency is only about 4% in the repetition rate operation. In order to eliminate the impedance mismatch and obtain repetitive long-pulse high-power microwave (HPM), a series of experiments are carried out and the recent progress is presented in this paper. In the single-pulse operation, when the diode voltage is 466 kV and current is 41.6 kA, the radiated microwave power is above 2.2 GW, the pulse duration is above 102 ns, the microwave frequency is about 1.74 GHz, and the power conversion efficiency is about 11.5%. In the repetition rate operation, under the condition of the diode voltage about 400 kV, beam current about 38 kA, the radiated microwave power is about 1.0 GW, the pulse duration is about 85 ns. Moreover, the radiated microwave power and the pulse duration decline little by little when the shot numbers increase gradually. The experimental results show that the impedance matching is a vital factor for HPM systems and one of the major technical challenges is to improve the cathode for the repetition rate operation MILO.

  8. The spurious response of microwave photonic mixer

    NASA Astrophysics Data System (ADS)

    Xiao, Yongchuan; Zhong, Guoshun; Qu, Pengfei; Sun, Lijun

    2018-02-01

    Microwave photonic mixer is a potential solution for wideband information systems due to the ultra-wide operating bandwidth, high LO-to-RF isolation, the intrinsic immunity to electromagnetic interference, and the compatibility with exsiting microwave photonic transmission systems. The spurious response of microwave photonic mixer cascading in series a pair of Mach-Zehnder interferometric intensity modulators has been simulated and analyzed in this paper. The low order spurious products caused by the nonlinearity of modulators are non-negligible, and the proper IF frequency and accurate bias-controlling are of great importance to mitigate the impact of spurious products.

  9. Development of the integrated control system for the microwave ion source of the PEFP 100-MeV proton accelerator

    NASA Astrophysics Data System (ADS)

    Song, Young-Gi; Seol, Kyung-Tae; Jang, Ji-Ho; Kwon, Hyeok-Jung; Cho, Yong-Sub

    2012-07-01

    The Proton Engineering Frontier Project (PEFP) 20-MeV proton linear accelerator is currently operating at the Korea Atomic Energy Research Institute (KAERI). The ion source of the 100-MeV proton linac needs at least a 100-hour operation time. To meet the goal, we have developed a microwave ion source that uses no filament. For the ion source, a remote control system has been developed by using experimental physics and the industrial control system (EPICS) software framework. The control system consists of a versa module europa (VME) and EPICS-based embedded applications running on a VxWorks real-time operating system. The main purpose of the control system is to control and monitor the operational variables of the components remotely and to protect operators from radiation exposure and the components from critical problems during beam extraction. We successfully performed the operation test of the control system to confirm the degree of safety during the hardware performance.

  10. 47 CFR 101.1009 - System operations.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 47 Telecommunication 5 2012-10-01 2012-10-01 false System operations. 101.1009 Section 101.1009 Telecommunication FEDERAL COMMUNICATIONS COMMISSION (CONTINUED) SAFETY AND SPECIAL RADIO SERVICES FIXED MICROWAVE SERVICES Local Multipoint Distribution Service § 101.1009 System operations. (a) The licensee may construct...

  11. 47 CFR 101.1009 - System operations.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 47 Telecommunication 5 2011-10-01 2011-10-01 false System operations. 101.1009 Section 101.1009 Telecommunication FEDERAL COMMUNICATIONS COMMISSION (CONTINUED) SAFETY AND SPECIAL RADIO SERVICES FIXED MICROWAVE SERVICES Local Multipoint Distribution Service § 101.1009 System operations. (a) The licensee may construct...

  12. 47 CFR 101.1009 - System operations.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 47 Telecommunication 5 2013-10-01 2013-10-01 false System operations. 101.1009 Section 101.1009 Telecommunication FEDERAL COMMUNICATIONS COMMISSION (CONTINUED) SAFETY AND SPECIAL RADIO SERVICES FIXED MICROWAVE SERVICES Local Multipoint Distribution Service § 101.1009 System operations. (a) The licensee may construct...

  13. 47 CFR 101.1009 - System operations.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 47 Telecommunication 5 2014-10-01 2014-10-01 false System operations. 101.1009 Section 101.1009 Telecommunication FEDERAL COMMUNICATIONS COMMISSION (CONTINUED) SAFETY AND SPECIAL RADIO SERVICES FIXED MICROWAVE SERVICES Local Multipoint Distribution Service § 101.1009 System operations. (a) The licensee may construct...

  14. 47 CFR 101.1009 - System operations.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 47 Telecommunication 5 2010-10-01 2010-10-01 false System operations. 101.1009 Section 101.1009 Telecommunication FEDERAL COMMUNICATIONS COMMISSION (CONTINUED) SAFETY AND SPECIAL RADIO SERVICES FIXED MICROWAVE SERVICES Local Multipoint Distribution Service § 101.1009 System operations. (a) The licensee may construct...

  15. All solid-state high power microwave source with high repetition frequency.

    PubMed

    Bragg, J-W B; Sullivan, W W; Mauch, D; Neuber, A A; Dickens, J C

    2013-05-01

    An all solid-state, megawatt-class high power microwave system featuring a silicon carbide (SiC) photoconductive semiconductor switch (PCSS) and a ferrimagnetic-based, coaxial nonlinear transmission line (NLTL) is presented. A 1.62 cm(2), 50 kV 4H-SiC PCSS is hard-switched to produce electrical pulses with 7 ns full width-half max (FWHM) pulse widths at 2 ns risetimes in single shot and burst-mode operation. The PCSS resistance drops to sub-ohm when illuminated with approximately 3 mJ of laser energy at 355 nm (tripled Nd:YAG) in a single pulse. Utilizing a fiber optic based optical delivery system, a laser pulse train of four 7 ns (FWHM) signals was generated at 65 MHz repetition frequency. The resulting electrical pulse train from the PCSS closely follows the optical input and is utilized to feed the NLTL generating microwave pulses with a base microwave-frequency of about 2.1 GHz at 65 MHz pulse repetition frequency (prf). Under typical experimental conditions, the NLTL produces sharpened output risetimes of 120 ps and microwave oscillations at 2-4 GHz that are generated due to damped gyromagnetic precession of the ferrimagnetic material's axially pre-biased magnetic moments. The complete system is discussed in detail with its output matched into 50 Ω, and results covering MHz-prf in burst-mode operation as well as frequency agility in single shot operation are discussed.

  16. The Global Precipitation Measurement (GPM) Mission: Overview and U.S. Status

    NASA Technical Reports Server (NTRS)

    Hou, Arthur Y.; Azarbarzin, Ardeshir A.; Kakar, Ramesh K.; Neeck, Steven

    2011-01-01

    The Global Precipitation Measurement (GPM) Mission is an international satellite mission specifically designed to unify and advance precipitation measurements from a constellation of research and operational microwave sensors. Building upon the success of the U.S.-Japan Tropical Rainfall Measuring Mission (TRMM), the National Aeronautics and Space Administration (NASA) of the United States and the Japan Aerospace and Exploration Agency (JAXA) will deploy in 2013 a GPM "Core" satellite carrying a KulKa-band Dual-frequency Precipitation Radar (DPR) and a conical-scanning multi-channel (10-183 GHz) GPM Microwave Imager (GMI) to establish a new reference standard for precipitation measurements from space. The combined active/passive sensor measurements will also be used to provide common database for precipitation retrievals from constellation sensors. For global coverage, GPM relies on existing satellite programs and new mission opportunities from a consortium of partners through bilateral agreements with either NASA or JAXA. Each constellation member may have its unique scientific or operational objectives but contributes microwave observations to GPM for the generation and dissemination of unified global precipitation data products. In addition to the DPR and GMI on the Core Observatory, the baseline GPM constellation consists of the following sensors: (1) Special Sensor Microwave Imager/Sounder (SSMIS) instruments on the U.S. Defense Meteorological Satellite Program (DMSP) satellites, (2) the Advanced Microwave Scanning Radiometer- 2 (AMSR-2) on the GCOM-Wl satellite of JAXA, (3) the Multi-Frequency Microwave Scanning Radiometer (MADRAS) and the multi-channel microwave humidity sounder (SAPHIR) on the French-Indian Megha-Tropiques satellite, (4) the Microwave Humidity Sounder (MHS) on the National Oceanic and Atmospheric Administration (NOAA)-19, (5) MHS instruments on MetOp satellites launched by the European Organisation for the Exploitation of Meteorological Satellites (EUMETSAT), (6) the Advanced Technology Microwave Sounder (ATMS) on the National Polar-orbiting Operational Environmental Satellite System (NPOESS) Preparatory Project (NPP), (7) ATMS instruments on the NOAA-NASA Joint Polar Satellite System (JPSS) satellites, and (8) a microwave imager under planning for the Defense Weather Satellite System (DWSS).

  17. Alignment Measurements of the Microwave Anisotropy Probe (MAP) Instrument in a Thermal/Vacuum Chamber Using Photogrammetry

    NASA Technical Reports Server (NTRS)

    Hill, Michael D.; Herrera, Acey A.; Crane, J. Allen; Packard, Edward A.; Aviado, Carlos; Sampler, Henry P.; Obenschain, Arthur (Technical Monitor)

    2000-01-01

    The Microwave Anisotropy Probe (MAP) Observatory, scheduled for a late 2000 launch, is designed to measure temperature fluctuations (anisotropy) and produce a high sensitivity and high spatial resolution (< 0.3 deg at 90 GHz.) map of the cosmic microwave background (CMB) radiation over the entire sky between 22 and 90 GHz. MAP utilizes back-to-back Gregorian telescopes to focus the microwave signals into 10 differential microwave receivers, via 20 feed horns. Proper alignment of the telescope reflectors and the feed horns at the operating temperature of 90 K is a critical element to ensure mission success. We describe the hardware and methods used to validate the displacement/deformation predictions of the reflectors and the microwave feed horns during thermal/vacuum testing of the reflectors and the microwave instrument. The smallest deformations to be resolved by the measurement system were on the order of +/- 0.030 inches (0.762 mm). Performance of these alignment measurements inside a thermal/vacuum chamber with conventional alignment equipment posed several limitations. A photogrammetry (PG) system was chosen to perform the measurements since it is a non-contact measurement system, the measurements can be made relatively quickly and accurately, and the photogrammetric camera can be operated remotely. The hardware and methods developed to perform the MAP alignment measurements using PG proved to be highly successful. The PG measurements met the desired requirements, enabling the desired deformations to be measured and even resolved to an order of magnitude smaller than the imposed requirements. Viable data were provided to the MAP Project for a full analysis of the on-orbit performance of the Instrument's microwave system.

  18. Design and development of an electrically-controlled beam steering mirror for microwave tomography

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tayebi, A., E-mail: tayebiam@msu.edu; Tang, J.; Paladhi, P. Roy

    2015-03-31

    Microwave tomography has gained significant attention due to its reliability and unhazardous nature in the fields of NDE and medical industry. A new microwave tomography system is presented in this paper, which significantly reduces the design and operational complexities of traditional microwave imaging systems. The major component of the proposed system is a reconfigurable reflectarray antenna which is used for beam steering in order to generate projections from multiple angles. The design, modeling and fabrication of the building block of the antenna, a tunable unit cell, are discussed in this paper. The unit cell is capable of dynamically altering themore » phase of the reflected field which results in beam steering ability of the reflectarray antenna. A tomographically reconstructed image of a dielectric sample using this new microwave tomography system is presented in this work.« less

  19. A microwave plasma torch and its applications

    NASA Astrophysics Data System (ADS)

    Uhm, H. S.; Hong, Y. C.; Shin, D. H.

    2006-05-01

    A portable microwave plasma torch at atmospheric pressure by making use of magnetrons operated at 2.45 GHz and used in a home microwave oven has been developed. This electrodeless torch can be used in various areas including commercial, environmental and military applications. For example, perfluorocompounds (PFCs), which have long lifetimes and serious global warming implications, are widely used during plasma etching and plasma-assisted chamber cleaning processes in chemical vapour deposition systems. The microwave torch effectively eliminates PFCs. Efficient decomposition of toluene gas indicates the effectiveness of volatile organic compound eliminations from industrial emission and the elimination of airborne chemical and biological warfare agents. The microwave torch has been used to synthesize carbon nanotubes in an on-line system, thereby providing the opportunity of mass production of the nanotubes. There are other applications of the microwave plasma torch.

  20. Assessment of the use of space technology in the monitoring of oil spills and ocean pollution: Technical volume. Executive summary

    NASA Technical Reports Server (NTRS)

    Alvarado, U. R. (Editor); Chafaris, G.; Chestek, J.; Contrad, J.; Frippel, G.; Gulatsi, R.; Heath, A.; Hodara, H.; Kritikos, H.; Tamiyasu, K.

    1980-01-01

    The potential of space systems and technology for detecting and monitoring ocean oil spills and waste pollution was assessed as well as the impact of this application on communication and data handling systems. Agencies charged with responsibilities in this area were identified and their measurement requirements were ascertained in order to determine the spatial resolution needed to characterize operational and accidental discharges. Microwave and optical sensors and sensing techniques were evaluated as candidate system elements. Capabilities are described for the following: synthetic aperture radar, microwave scatterometer, passive microwave radiometer, microwave altimeter, electro-optical sensors currently used in airborne detection, existing space-based optical sensors, the thematic mapper, and the pointable optical linear array.

  1. Electronic warfare microwave components

    NASA Astrophysics Data System (ADS)

    Cosby, L. A.

    1984-09-01

    The current and projected state-of-the-art for electronic warfare (EW) microwave components is reviewed, with attention given to microwave components used extensively in EW systems for reconnaissance, threat warning, direction finding, and repeater jamming. It is emphasized that distributed EW systems must be able to operate from manned tactical and strategic platforms, with requirements including remote aerospace and space elements, as well as the need for expandable devices for detection, location, and denial/deception functions. EW coordination, or battle management, across a distributed system is a rapidly emerging requirement that must be integrated into current and projected command-and-control programs.

  2. Portable Wideband Microwave Imaging System for Intracranial Hemorrhage Detection Using Improved Back-projection Algorithm with Model of Effective Head Permittivity

    PubMed Central

    Mobashsher, Ahmed Toaha; Mahmoud, A.; Abbosh, A. M.

    2016-01-01

    Intracranial hemorrhage is a medical emergency that requires rapid detection and medication to restrict any brain damage to minimal. Here, an effective wideband microwave head imaging system for on-the-spot detection of intracranial hemorrhage is presented. The operation of the system relies on the dielectric contrast between healthy brain tissues and a hemorrhage that causes a strong microwave scattering. The system uses a compact sensing antenna, which has an ultra-wideband operation with directional radiation, and a portable, compact microwave transceiver for signal transmission and data acquisition. The collected data is processed to create a clear image of the brain using an improved back projection algorithm, which is based on a novel effective head permittivity model. The system is verified in realistic simulation and experimental environments using anatomically and electrically realistic human head phantoms. Quantitative and qualitative comparisons between the images from the proposed and existing algorithms demonstrate significant improvements in detection and localization accuracy. The radiation and thermal safety of the system are examined and verified. Initial human tests are conducted on healthy subjects with different head sizes. The reconstructed images are statistically analyzed and absence of false positive results indicate the efficacy of the proposed system in future preclinical trials. PMID:26842761

  3. Portable Wideband Microwave Imaging System for Intracranial Hemorrhage Detection Using Improved Back-projection Algorithm with Model of Effective Head Permittivity

    NASA Astrophysics Data System (ADS)

    Mobashsher, Ahmed Toaha; Mahmoud, A.; Abbosh, A. M.

    2016-02-01

    Intracranial hemorrhage is a medical emergency that requires rapid detection and medication to restrict any brain damage to minimal. Here, an effective wideband microwave head imaging system for on-the-spot detection of intracranial hemorrhage is presented. The operation of the system relies on the dielectric contrast between healthy brain tissues and a hemorrhage that causes a strong microwave scattering. The system uses a compact sensing antenna, which has an ultra-wideband operation with directional radiation, and a portable, compact microwave transceiver for signal transmission and data acquisition. The collected data is processed to create a clear image of the brain using an improved back projection algorithm, which is based on a novel effective head permittivity model. The system is verified in realistic simulation and experimental environments using anatomically and electrically realistic human head phantoms. Quantitative and qualitative comparisons between the images from the proposed and existing algorithms demonstrate significant improvements in detection and localization accuracy. The radiation and thermal safety of the system are examined and verified. Initial human tests are conducted on healthy subjects with different head sizes. The reconstructed images are statistically analyzed and absence of false positive results indicate the efficacy of the proposed system in future preclinical trials.

  4. SPS microwave subsystem potential impacts and benefits. [environmental and societal effects of Solar Power System construction and operation

    NASA Technical Reports Server (NTRS)

    Dickinson, R. M.

    1978-01-01

    The paper examines the possible environmental and societal effects of the construction, installation, and operation of the space end and earth end of the microwave power transmission subsystem that delivers satellite power system (SPS) energy (at about 5 GW per beam) to the power grid on earth. The intervening propagation medium near the earth is also considered. Separate consideration is given to the spacecraft transmitting array, propagation in the ionosphere, and the ground-based rectenna. Radio frequency interference aspects are also discussed.

  5. Alignment Measurements of the Microwave Anisotropy Probe (MAP) Instrument in a Thermal/Vacuum Chamber

    NASA Technical Reports Server (NTRS)

    Hill, Michael D.; Herrera, Acey A.; Crane, J. Allen; Packard, Edward A.; Aviado, Carlos; Sampler, Henry P.

    2000-01-01

    The Microwave Anisotropy Probe (MAP) Observatory, scheduled for a fall 2000 launch, is designed to measure temperature fluctuations (anisotropy) and produce a high sensitivity and high spatial resolution (approximately 0.2 degree) map of the cosmic microwave background (CMB) radiation over the entire sky between 22 and 90 GHz. MAP utilizes back-to-back Gregorian telescopes to focus the microwave signals into 10 differential microwave receivers, via 20 feed horns. Proper alignment of the telescope reflectors and the feed horns at the operating temperature of 90 K is a critical element to ensure mission success. We describe the hardware and methods used to validate the displacement/deformation predictions of the reflectors and the microwave feed horns during thermal/vacuum testing of the reflectors and the microwave instrument. The smallest deformation predictions to be measured were on the order of +/- 0.030 inches (+/- 0.762 mm). Performance of these alignment measurements inside a thermal/vacuum chamber with conventional alignment equipment posed several limitations. The most troublesome limitation was the inability to send personnel into the chamber to perform the measurements during the test due to vacuum and the temperature extremes. The photogrammetry (PG) system was chosen to perform the measurements since it is a non- contact measurement system, the measurements can be made relatively quickly and accurately, and the photogrammetric camera can be operated remotely. The hardware and methods developed to perform the MAP alignment measurements using PG proved to be highly successful. The measurements met the desired requirements, for the metal structures enabling the desired distortions to be measured resolving deformations an order of magnitude smaller than the imposed requirements. Viable data were provided to the MAP Project for a full analysis of the on-orbit performance of the Instrument's microwave system.

  6. Satellite Power System (SPS) microwave subsystem impacts and benefits

    NASA Technical Reports Server (NTRS)

    Dickinson, R. M.

    1977-01-01

    The impacts and benefits to society of the microwave subsystem resulting from the developing, construction and operating of a space solar power to earth, electric power delivery system are presented and discussed. The primary benefit (usable energy) is conveyed mainly in the fundamental frequency portion of the RF radiation beam that is intercepted and converted to electric power output. The small fraction of the microwave and other electromagnetic energy that does not end up in the electric utility grid, yields most of the subsystem impacts. The impacts range from harmonics and noise radiated by the transmitting antenna, through potential interference with ionospheric communications and navigation caused by the power beam heating the ionosphere, to the potential large land area requirements for the rectennas and low level microwave radiation around the rectennas. Additional benefits range from a very low level of waste heat liberated and lack of atmospheric emissions including noise while operating to having no residual ionizing radiation from the rectenna when it is deactivated.

  7. Ultra High-Speed Radio Frequency Switch Based on Photonics.

    PubMed

    Ge, Jia; Fok, Mable P

    2015-11-26

    Microwave switches, or Radio Frequency (RF) switches have been intensively used in microwave systems for signal routing. Compared with the fast development of microwave and wireless systems, RF switches have been underdeveloped particularly in terms of switching speed and operating bandwidth. In this paper, we propose a photonics based RF switch that is capable of switching at tens of picoseconds speed, which is hundreds of times faster than any existing RF switch technologies. The high-speed switching property is achieved with the use of a rapidly tunable microwave photonic filter with tens of gigahertz frequency tuning speed, where the tuning mechanism is based on the ultra-fast electro-optics Pockels effect. The RF switch has a wide operation bandwidth of 12 GHz and can go up to 40 GHz, depending on the bandwidth of the modulator used in the scheme. The proposed RF switch can either work as an ON/OFF switch or a two-channel switch, tens of picoseconds switching speed is experimentally observed for both type of switches.

  8. Microwave Tissue Ablation: Biophysics, Technology and Applications

    PubMed Central

    2010-01-01

    Microwave ablation is an emerging treatment option for many cancers, cardiac arrhythmias and other medical conditions. During treatment, microwaves are applied directly to tissues to produce rapid temperature elevations sufficient to produce immediate coagulative necrosis. The engineering design criteria for each application differ, with individual consideration for factors such as desired ablation zone size, treatment duration, and procedural invasiveness. Recent technological developments in applicator cooling, power control and system optimization for specific applications promise to increase the utilization of microwave ablation in the future. This article will review the basic biophysics of microwave tissue heating, provide an overview of the design and operation of current equipment, and outline areas for future research for microwave ablation. PMID:21175404

  9. Design and Analysis of a Hyperspectral Microwave Receiver Subsystem

    NASA Technical Reports Server (NTRS)

    Blackwell, W.; Galbraith, C.; Hancock, T.; Leslie, R.; Osaretin, I.; Shields, M.; Racette, P.; Hillard, L.

    2012-01-01

    Hyperspectral microwave (HM) sounding has been proposed to achieve unprecedented performance. HM operation is achieved using multiple banks of RF spectrometers with large aggregate bandwidth. A principal challenge is Size/Weight/Power scaling. Objectives of this work: 1) Demonstrate ultra-compact (100 cm3) 52-channel IF processor (enabler); 2) Demonstrate a hyperspectral microwave receiver subsystem; and 3) Deliver a flight-ready system to validate HM sounding.

  10. 47 CFR 90.475 - Operation of internal transmitter control systems in specially equipped systems.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... telephone network (PSTN), nor uses dial-up circuits in the PSTN. Licensees with complex communications... access these base stations through the microwave or operational fixed systems from positions in the PSTN... circuit is provided for each mode of transmitter operation (i.e., conventional, dial-up or Internet). (3...

  11. 47 CFR 90.475 - Operation of internal transmitter control systems in specially equipped systems.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... telephone network (PSTN), nor uses dial-up circuits in the PSTN. Licensees with complex communications... access these base stations through the microwave or operational fixed systems from positions in the PSTN... circuit is provided for each mode of transmitter operation (i.e., conventional, dial-up or Internet). (3...

  12. 47 CFR 90.475 - Operation of internal transmitter control systems in specially equipped systems.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... telephone network (PSTN), nor uses dial-up circuits in the PSTN. Licensees with complex communications... access these base stations through the microwave or operational fixed systems from positions in the PSTN... circuit is provided for each mode of transmitter operation (i.e., conventional, dial-up or Internet). (3...

  13. 47 CFR 90.475 - Operation of internal transmitter control systems in specially equipped systems.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... telephone network (PSTN), nor uses dial-up circuits in the PSTN. Licensees with complex communications... access these base stations through the microwave or operational fixed systems from positions in the PSTN... circuit is provided for each mode of transmitter operation (i.e., conventional, dial-up or Internet). (3...

  14. Superconducting Switch for Fast On-Chip Routing of Quantum Microwave Fields

    NASA Astrophysics Data System (ADS)

    Pechal, M.; Besse, J.-C.; Mondal, M.; Oppliger, M.; Gasparinetti, S.; Wallraff, A.

    2016-08-01

    A switch capable of routing microwave signals at cryogenic temperatures is a desirable component for state-of-the-art experiments in many fields of applied physics, including but not limited to quantum-information processing, communication, and basic research in engineered quantum systems. Conventional mechanical switches provide low insertion loss but disturb operation of dilution cryostats and the associated experiments by heat dissipation. Switches based on semiconductors or microelectromechanical systems have a lower thermal budget but are not readily integrated with current superconducting circuits. Here we design and test an on-chip switch built by combining tunable transmission-line resonators with microwave beam splitters. The device is superconducting and as such dissipates a negligible amount of heat. It is compatible with current superconducting circuit fabrication techniques, operates with a bandwidth exceeding 100 MHz, is capable of handling photon fluxes on the order of 1 05 μ s-1 , equivalent to powers exceeding -90 dBm , and can be switched within approximately 6-8 ns. We successfully demonstrate operation of the device in the quantum regime by integrating it on a chip with a single-photon source and using it to route nonclassical itinerant microwave fields at the single-photon level.

  15. Investigation of microwave hologram techniques for application to earth resources

    NASA Technical Reports Server (NTRS)

    Larson, R. W.; Bayma, R. W.; Evans, M. B.; Zelenka, J. S.; Doss, H. W.; Ferris, J. E.

    1974-01-01

    An investigation of microwave hologram techniques for application to earth resources was conducted during the period from June 1971 to November 1972. The objective of this investigation has been to verify the feasibility of an orbital microwave holographic radar experiment. The primary advantage of microwave hologram radar (MHR) over the side-looking airborne radar (SLAR) is that of aspect or viewing angle; the MHR has a viewing angle identical with that of photography and IR systems. The combination of these systems can thus extend the multispectral analysis concept to span optical through microwave wavelengths. Another advantage is the capacity of the MHR system to generate range contours by operating in a two-frequency mode. It should be clear that along-track resolution of an MHR can be comparable with SLAR systems, but cross-track resolution will be approximately an order of magnitude coarser than the range resolution achievable with an arbitrary SLAR system. An advantage of the MHR over the SLAR is that less average transmitter power is required. This reduction in power results from the much larger receiving apertures associated with MHR systems.

  16. The Expected Impacts of NPOESS Microwave and Infrared Sounder Radiances on Operational Numerical Weather Prediction and Data Assimilation Systems

    NASA Astrophysics Data System (ADS)

    Swadley, S. D.; Baker, N.; Derber, J.; Collard, A.; Hilton, F.; Ruston, B.; Bell, W.; Candy, B.; Kleespies, T. J.

    2009-12-01

    The NPOESS atmospheric sounding functionality will be accomplished using two separate sensor suites, the combined infrared (IR) and microwave (MW) sensor suite (CrIMSS), and the Microwave Imager/Sounder (MIS) instrument. CrIMSS consists of the Cross Track Infrared Sounder (CrIS) and the cross track Advanced Technology Microwave Sounder (ATMS), and is scheduled to fly on the NPOESS Preparatory Project (NPP), and NPOESS operational flight units C1 and C3. The MIS is a conical scanning polarimetric imager and sounder patterned after the heritage WindSat, and DMSP Special Sensor Microwave Imagers and Sounders (SSMI and SSMIS), and is scheduled for flight units C2, C3 and C4. ATMS combines the current operational Advanced Microwave Sounding Unit (AMSU) and the Microwave Humidity Sounder (MHS), but with an additional channel in the 51.76 GHz oxygen absorption region and 3 additional channels in the 165.5 and 183 GHz water vapor absorption band. CrIS is a Fourier Transform Spectrometer and will provide 159 shortwave IR channels, 433 mid-range IR channels, and 713 longwave IR channels. The heritage sensors for CrIS are the NASA Advanced Infrared Sounder (AIRS) and the MetOp-A Infrared Atmospheric Sounding Interferometer (IASI). Both AIRS and IASI are high quality, high spectral resolution sounders which represent a significant improvement in the effective vertical resolution over previous IR sounders. This presentation will give an overview of preparations underway for day-1 monitoring of NPP/NPOESS radiances, and subsequent operational radiance assimilation. These preparations capitalize on experience gained during the pre-launch preparations, sensor calibration/validation and operational assimilation for the heritage sensors. One important step is to use pre-flight sensor channel specifications, noise estimates and knowledge of the antenna patterns, to generate and test proxy NPP/NPOESS sensor observations in existing assimilation systems. Other critical factors for successful radiance assimilation include low noise measurements, channel sets that span the vertical space defined within the NWP model, a fast and accurate radiative transfer model, and bias correction schemes designed to remove systematic biases in the departures between the observed versus calculated radiances.

  17. A microwave piezoelectric transducer with a microstrip exciter system

    NASA Astrophysics Data System (ADS)

    Grigor'ev, M. A.; Petrov, V. V.; Tolstikov, A. V.

    1990-12-01

    The paper considers a microwave electroacoustic bulk-wave transducer with a microstrip exciter system. The operation of the device is analyzed on the basis of the dependence of the dimensionless radiation resistance on the phase advance in the piezoelectric. The optimal wave resistance, the area of the piezoelectric element, the length of the short-circuited section, the SWR, and the conversion factor are determined.

  18. A reliable, compact, and repetitive-rate high power microwave generation system.

    PubMed

    Li, Wei; Li, Zhi-qiang; Sun, Xiao-liang; Zhang, Jun

    2015-11-01

    A compact high power microwave (HPM) generation system is described in this paper. The main parts of the HPM system are a Marx generator with a pulse forming line and a magnetron with diffraction output. The total weight and length of the system are 250 kg and 120 cm, respectively. The output microwave power of the HPM system at 550 kV of applied voltage and 0.33 T of magnetic field reaches 1 GW at 2.32 GHz of central frequency with 38 ns of pulse duration, 23% of power conversion efficiency, and Gaussian radiation pattern. In the bursts operation, both time and amplitude jitters are less than 4 ns and lower than 1.5 dB, respectively.

  19. A reliable, compact, and repetitive-rate high power microwave generation system

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Li, Wei; Li, Zhi-qiang; Sun, Xiao-liang

    2015-11-15

    A compact high power microwave (HPM) generation system is described in this paper. The main parts of the HPM system are a Marx generator with a pulse forming line and a magnetron with diffraction output. The total weight and length of the system are 250 kg and 120 cm, respectively. The output microwave power of the HPM system at 550 kV of applied voltage and 0.33 T of magnetic field reaches 1 GW at 2.32 GHz of central frequency with 38 ns of pulse duration, 23% of power conversion efficiency, and Gaussian radiation pattern. In the bursts operation, both timemore » and amplitude jitters are less than 4 ns and lower than 1.5 dB, respectively.« less

  20. Development of a microwave clothes dryer: Interim report 4. Final report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Smith, R.; Lenz, R.

    1996-03-01

    The objective of the project is to investigate the microwave drying of clothes and to produce data that potential manufacturers can use in developing marketable microwave dryers. This is an interim report covering activities in 1994, the fifth year of the project. During 1994, three field test dryers were completed, two residential models and one commercial subscale model. All of these dryers operated at a microwave frequency of 2,450 MHz, which is the frequency of home microwave ovens and ovens used in fastfood outlets. Consequently, magnetron tubes for these high-production items are inexpensive. The residential dryers were tested according tomore » the Department of Energy protocols and were 15% more efficient than a top-of-the-line conventional electric dryer. They were also 14% faster. Extensive testing was done to assure that the hazard-detection (sniffer) system would sense degradation of the lighter and shut down the dryer before a fire could occur. Numerous butane lighters were heated to destruction in a microwave oven to examine their failure modes. Lighters were placed in microwave dryers equipped with hazard-detection systems; these systems always detected incipient problems before any fire hazard could occur.« less

  1. 47 CFR 101.525 - 24 GHz system operations.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 47 Telecommunication 5 2010-10-01 2010-10-01 false 24 GHz system operations. 101.525 Section 101.525 Telecommunication FEDERAL COMMUNICATIONS COMMISSION (CONTINUED) SAFETY AND SPECIAL RADIO SERVICES FIXED MICROWAVE SERVICES 24 GHz Service and Digital Electronic Message Service § 101.525 24 GHz system...

  2. Correlation of scanning microwave interferometry and digital X-ray images for damage detection in ceramic composite armor

    NASA Astrophysics Data System (ADS)

    Schmidt, Karl F.; Goitia, Ryan M.; Ellingson, William A.; Green, William

    2012-05-01

    Application of non-contact, scanning, microwave interferometry for inspection of ceramic-based composite armor facilitates detection of defects which may occur in manufacturing or in service. Non-contact, one-side access permits inspection of panels while on the vehicle. The method was applied as a base line inspection and post-damage inspection of composite ceramic armor containing artificial defects, fiduciaries, and actual damage. Detection, sizing, and depth location capabilities were compared using microwave interferometry system and micro-focus digital x-ray imaging. The data demonstrates corroboration of microwave interference scanning detection of cracks and laminar features. The authors present details of the system operation, descriptions of the test samples used, and recent results obtained.

  3. Microwave scanning beam landing system compatibility and performance: Engineering analyses 75-1 and 75-2. [space shuttle orbiter landing

    NASA Technical Reports Server (NTRS)

    1977-01-01

    The microwave scanning beam landing system (MSBLS) is the primary position sensor of the Orbiter's navigation subsystem during the autoland phase of the flight. Portions of the system are discussed with special emphasis placed on potential problem areas as referenced to the Orbiter's mission. Topics discussed include system compatability, system accuracy, and expected RF signal levels. A block and flow diagram of MSBLS system operation is included with a list of special tests required to determine system performance.

  4. Impact of advanced technology microwave sounder data in the NCMRWF 4D-VAR data assimilation system

    NASA Astrophysics Data System (ADS)

    Rani, S. Indira; Srinivas, D.; Mallick, Swapan; George, John P.

    2016-05-01

    This study demonstrates the added benefits of assimilating the Advanced Technology Microwave Sounder (ATMS) radiances from the Suomi-NPP satellite in the NCMRWF Unified Model (NCUM). ATMS is a cross-track scanning microwave radiometer inherited the legacy of two very successful instrument namely, Advanced Microwave Sounding Unit-A (AMSU-A) and Microwave Humidity Sounder (MHS). ATMS has 22 channels: 11 temperature sounding channels around 50-60 GHz oxygen band and 6 moisture sounding channels around the 183GHz water vapour band in addition to 5 channels sensitive to the surface in clear conditions, or to water vapour, rain, and cloud when conditions are not clear (at 23, 31, 50, 51 and 89 GHz). Before operational assimilation of any new observation by NWP centres it is standard practice to assess data quality with respect to NWP model background (short-forecast) fields. Quality of all channels is estimated against the model background and the biases are computed and compared against that from the similar observations. The impact of the ATMS data on global analyses and forecasts is tested by adding the ATMS data in the NCUM Observation Processing system (OPS) and 4D-Var variational assimilation (VAR) system. This paper also discusses the pre-operational numerical experiments conducted to assess the impact of ATMS radiances in the NCUM assimilation system. It is noted that the performance of ATMS is stable and it contributes to the performance of the model, complimenting observations from other instruments.

  5. 47 CFR 90.475 - Operation of internal transmitter control systems in specially equipped systems.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... systems involving fixed systems whose base stations are controlled by such systems may automatically access these base stations through the microwave or operational fixed systems from positions in the PSTN, so long as the base stations and mobile units meet the requirements of § 90.483 and if a separate...

  6. Reconfigurable microwave photonic in-phase and quadrature detector for frequency agile radar.

    PubMed

    Emami, Hossein; Sarkhosh, Niusha

    2014-06-01

    A microwave photonic in-phase and quadrature detector is conceived and practically demonstrated. The detector has the ability to become electronically reconfigured to operate at any frequency over a wide range. This makes it an excellent candidate for frequency agile radars and other electronic warfare systems based on frequency hopping. The detector exhibits a very low amplitude and phase imbalance, which removes the need for any imbalance compensation technique. The system is designed based on the transversal filtering concept and reconfigurability is achieved via wavelength control in a dispersive fiber. The system operation was demonstrated over a frequency range of 3.5-35 GHz, with a maximum of -32 dB amplitude imbalance.

  7. Microwave system performance for a solar power satellite during startup/shutdown operations

    NASA Technical Reports Server (NTRS)

    Arndt, G. D.; Berlin, L. A.

    1979-01-01

    The paper investigates the system performance and antenna characteristics under startup/shutdown conditions for the high power beam from a solar power satellite. Attention is given to the present microwave system reference configuration together with the dc power distribution system in the solar array and in the antenna. The pattern characteristics for the main beam, sidelobes, and grating lobes are examined for eight types of energizing configurations which include: random sequences, two types of concentric circles, and three types of line strips. In conclusion, it is noted that a proper choice of sequences should not cause environmental problems due to increased microwave radiation levels during the short time periods of energizing and de-energizing the antenna.

  8. Microwave sensing technology issues related to a global change technology architecture trade study

    NASA Technical Reports Server (NTRS)

    Campbell, Thomas G.; Shiue, Jim; Connolly, Denis; Woo, Ken

    1991-01-01

    The objectives are to enable the development of lighter and less power consuming, high resolution microwave sensors which will operate at frequencies from 1 to 200 GHz. These systems will use large aperture antenna systems (both reflector and phased arrays) capable of wide scan angle, high polarization purity, and utilize sidelobe suppression techniques as required. Essentially, the success of this technology program will enable high resolution microwave radiometers from geostationary orbit, lightweight and more efficient radar systems from low Earth orbit, and eliminate mechanical scanning methods to the fullest extent possible; a main source of platform instability in large space systems. The Global Change Technology Initiative (GCTI) will develop technology which will enable the use of satellite systems for Earth observations on a global scale.

  9. Evaluation of microwave cavity gas sensor for in-vessel monitoring of dry cask storage systems

    NASA Astrophysics Data System (ADS)

    Bakhtiari, S.; Gonnot, T.; Elmer, T.; Chien, H.-T.; Engel, D.; Koehl, E.; Heifetz, A.

    2018-04-01

    Results are reported of research activities conducted at Argonne to assess the viability of microwave resonant cavities for extended in-vessel monitoring of dry cask storage system (DCSS) environment. One of the gases of concern to long-term storage in canisters is water vapor, which appears due to evaporation of residual moisture from incompletely dried fuel assembly. Excess moisture could contribute to corrosion and deterioration of components inside the canister, which would in turn compromise maintenance and safe transportation of such systems. Selection of the sensor type in this work was based on a number of factors, including good sensitivity, fast response time, small form factor and ruggedness of the probing element. A critical design constraint was the capability to mount and operate the sensor using the existing canister penetrations-use of existing ports for thermocouple lances. Microwave resonant cavities operating at select resonant frequency matched to the rotational absorption line of the molecule of interest offer the possibility of highly sensitive detection. In this study, two prototype K-band microwave cylindrical cavities operating at TE01n resonant modes around the 22 GHz water absorption line were developed and tested. The sensors employ a single port for excitation and detection and a novel dual-loop inductive coupling for optimized excitation of the resonant modes. Measurement of the loaded and unloaded cavity quality factor was obtained from the S11 parameter. The acquisition and real-time analysis of data was implemented using software based tools developed for this purpose. The results indicate that the microwave humidity sensors developed in this work could be adapted to in-vessel monitoring applications that require few parts-per-million level of sensitivity. The microwave sensing method for detection of water vapor can potentially be extended to detection of radioactive fission gases leaking into the interior of the canister through cracks in fuel cladding.

  10. The Advanced Technology Microwave Sounder (ATMS): First Year On-Orbit

    NASA Technical Reports Server (NTRS)

    Kim, Edward J.

    2012-01-01

    The Advanced Technology Microwave Sounder (ATMS) is a new satellite microwave sounding sensor designed to provide operational weather agencies with atmospheric temperature and moisture profile information for global weather forecasting and climate applications. A TMS will continue the microwave sounding capabilities first provided by its predecessors, the Microwave Sounding Unit (MSU) and Advanced Microwave Sounding Unit (AMSU). The first flight unit was launched a year ago in October, 2011 aboard the Suomi-National Polar-Orbiting Partnership (S-NPP) satellite, part of the new Joint Polar-Orbiting Satellite System (JPSS). Microwave soundings by themselves are the highest-impact input data used by Numerical Weather Prediction models; and A TMS, when combined with the Cross-track Infrared Sounder (CrIS), forms the Cross-track Infrared and Microwave Sounding Suite (CrIMSS). The microwave soundings help meet sounding requirements under cloudy sky conditions and provide key profile information near the surface. ATMS was designed & built by Aerojet Corporation in Azusa, California, (now Northrop Grumman Electronic Systems). It has 22 channels spanning 23-183 GHz, closely following the channel set of the MSU, AMSU-AI/2, AMSU-B, Microwave Humidity Sounder (MHS), and Humidity Sounder for Brazil (HSB). It continues their cross-track scanning geometry, but for the first time, provides Nyquist sample spacing. All this is accomplished with approximately V. the volume, Y, the mass, and Y, the power of the three AMSUs. A description will be given of its performance from its first year of operation as determined by post-launch calibration activities. These activities include radiometric calibration using the on-board warm targets and cold space views, and geolocation determination. Example imagery and zooms of specific weather events will be shown. The second ATMS flight model is currently under construction and planned for launch on the "Jl" satellite of the JPSS program in approximately 2016. Additional units are expected on the J2 and 13 satellites, as well as potentially on future European METOP satellites.

  11. The Looming Potential Gap in Microwave Imagery - How did we get here and what can we do about it?

    NASA Astrophysics Data System (ADS)

    Wilson, W. S.; Gallaher, D. W.

    2017-12-01

    The Air Force's Special Sensor Microwave Imager (SSMI), the Japanese Advanced Microwave Scanning Radiometer (AMSR), and the Navy's Windsat have provided a steady and reliable stream of microwave imagery that has served the Earth science community very well. Derived products include sea ice cover, snow cover on land, all-weather sea surface temperature, columnar water vapor, rain rate, and cloud liquid water. Such products are used both in operational weather forecasting, as well as in establishing and maintaining climate data records. When these sources of microwave imagery each reach the end of their life, there is the potential for a gap in coverage to occur prior to the launch of new Air Force, European and Japanese sources. Additionally, the Chinese and Russians have been flying microwave imagers that might be useful in spanning this potential gap, but users in the U.S. have not assessed the reliability and quality of their data. This presentation will set the stage for the session and provide a context for the individual papers. Two papers will address the needs and associated requirements for microwave imagery, as well as how derived products are currently being used - both for maintaining climate records and for operational use. One or two will address the performance of existing systems that are currently contributing imagery. A half-dozen will address the projected performance of future satellite systems that represent potential sources of imagery. One will address the challenges associated with the use of microwave imagery from different satellites in the maintenance of climate data records. Finally, we will plan to have some remaining time available for a general discussion about how we might work together in the future to minimize prospects for such a potential gap in to recur in the future.

  12. Microwave Power Transmission System Studies. Volume 1: Executive Summary

    NASA Technical Reports Server (NTRS)

    Maynard, O. E.; Brown, W. C.; Edwards, A.; Meltz, G.; Haley, J. T.; Howell, J. M.; Nathan, A.

    1975-01-01

    A study of microwave power generation, transmission, reception and control was conducted as a part of a program to demonstrate the feasibility of power transmission from geosynchronous orbit. A summary is presented of results concerning design approaches, estimated costs (ROM), critical technology, associated ground and orbital test programs with emphasis on dc to rf conversion, transmitting antenna, phase control, mechanical systems, flight operations, ground power receiving-rectifying antenna with systems analysis, and evaluation. Recommendations for early further in-depth studies complementing the technology program are included.

  13. Status of VESAS: a fully-electronic microwave imaging radiometer system

    NASA Astrophysics Data System (ADS)

    Schreiber, Eric; Peichl, Markus; Suess, Helmut

    2010-04-01

    Present applications of microwave remote sensing systems cover a large variety. One utilisation of the frequency range from 1 - 300 GHz is the domain of security and reconnaissance. Examples are the observation of critical infrastructures or the performance of security checks on people in order to detect concealed weapons or explosives, both being frequent threats in our world of growing international terrorism. The imaging capability of concealed objects is one of the main advantages of microwave remote sensing, because of the penetration performance of electromagnetic waves through dielectric materials in this frequency domain. The main physical effects used in passive microwave sensing rely on the naturally generated thermal radiation and the physical properties of matter, the latter being surface characteristics, chemical and physical composition, and the temperature of the material. As a consequence it is possible to discriminate objects having different material characteristics like ceramic weapons or plastic explosives with respect to the human body. Considering the use of microwave imaging with respect to people scanning systems in airports, railway stations, or stadiums, it is advantageous that passively operating devices generate no exposure on the scanned objects like actively operating devices do. For frequently used security gateways it is additionally important to have a high through-put rate in order to minimize the queue time. Consequently fast imaging systems are necessary. In this regard the conceptual idea of a fully-electronic microwave imaging radiometer system is introduced. The two-dimensional scanning mechanism is divided into a frequency scan in one direction and the method of aperture synthesis in the other. The overall goal here is to design a low-cost, fully-electronic imaging system with a frame rate of around one second at Ka band. This frequency domain around a center frequency of 37 GHz offers a well-balanced compromise between the achievable spatial resolution for a given size, and the penetration depth of the electromagnetic wave, which are conflictive requirements.

  14. Analytical evaluation of ILM sensors, volume 1

    NASA Technical Reports Server (NTRS)

    Kirk, R. J.

    1975-01-01

    The functional requirements and operating environment constraints are defined for an independent landing monitor ILM which provides the flight crew with an independent assessment of the operation of the primary automatic landing system. The capabilities of radars, TV, forward looking infrared radiometers, multilateration, microwave radiometers, interferometers, and nuclear sensing concepts to meet the ILM conditions are analyzed. The most critical need for the ILM appears in the landing sequence from 1000 to 2000 meters from threshold through rollout. Of the sensing concepts analyzed, the following show potential of becoming feasible ILM's: redundant microwave landings systems, precision approach radar, airborne triangulation radar, multilateration with radar altimetry, and nuclear sensing.

  15. Book Review

    NASA Astrophysics Data System (ADS)

    Clevers, J. G. P. W.

    2015-02-01

    About thirty years after the previous advanced textbook on Microwave Remote Sensing by Ulaby, Moore and Fung has been published as three separate volumes, now an up-to-date new textbook has been published. The 1000-page book covers theoretical models, system design and operation, and geoscientific applications of active and passive microwave remote sensing systems. It is designed as a textbook at the postgraduate level, as well as a reference for the practicing professional. The book is caught by a thorough introduction into the physics and mathematics of electrical engineering applied to microwave radiation. Here on overview of its chapters with a short description of its focus will be given.

  16. A Microwave Photonic Interference Canceller: Architectures, Systems, and Integration

    NASA Astrophysics Data System (ADS)

    Chang, Matthew P.

    This thesis is a comprehensive portfolio of work on a Microwave Photonic Self-Interference Canceller (MPC), a specialized optical system designed to eliminate interference from radio-frequency (RF) receivers. The novelty and value of the microwave photonic system lies in its ability to operate over bandwidths and frequencies that are orders of magnitude larger than what is possible using existing RF technology. The work begins, in 2012, with a discrete fiber-optic microwave photonic canceller, which prior work had demonstrated as a proof-of-concept, and culminates, in 2017, with the first ever monolithically integrated microwave photonic canceller. With an eye towards practical implementation, the thesis establishes novelty through three major project thrusts. (Fig. 1): (1) Extensive RF and system analysis to develop a full understanding of how, and through what mechanisms, MPCs affect an RF receiver. The first investigations of how a microwave photonic canceller performs in an actual wireless environment and a digital radio are also presented. (2) New architectures to improve the performance and functionality of MPCs, based on the analysis performed in Thrust 1. A novel balanced microwave photonic canceller architecture is developed and experimentally demonstrated. The balanced architecture shows significant improvements in link gain, noise figure, and dynamic range. Its main advantage is its ability to suppress common-mode noise and reduce noise figure by increasing the optical power. (3) Monolithic integration of the microwave photonic canceller into a photonic integrated circuit. This thrust presents the progression of integrating individual discrete devices into their semiconductor equivalent, as well as a full functional and RF analysis of the first ever integrated microwave photonic canceller.

  17. Radar System Characterization Extended to Hardware-in-the-Loop Simulation for the Lab-Volt (Trademark) Training System

    DTIC Science & Technology

    2007-09-01

    devices such as klystrons , magnetrons, and traveling wave tubes. These microwave devices produce high power levels but may have limited bandwidths [20...diagram. The specific arrangement of components within a RADAR transmitter varies with operational specifications. Two options exist to produce high power ...cascading to generate sufficient power [20]. The second option to generate high power levels is to replace RF oscillators and amplifiers with microwave

  18. Monolithic microwave integrated circuit technology for advanced space communication

    NASA Technical Reports Server (NTRS)

    Ponchak, George E.; Romanofsky, Robert R.

    1988-01-01

    Future Space Communications subsystems will utilize GaAs Monolithic Microwave Integrated Circuits (MMIC's) to reduce volume, weight, and cost and to enhance system reliability. Recent advances in GaAs MMIC technology have led to high-performance devices which show promise for insertion into these next generation systems. The status and development of a number of these devices operating from Ku through Ka band will be discussed along with anticipated potential applications.

  19. An explosively driven high-power microwave pulsed power system.

    PubMed

    Elsayed, M A; Neuber, A A; Dickens, J C; Walter, J W; Kristiansen, M; Altgilbers, L L

    2012-02-01

    The increased popularity of high power microwave systems and the various sources to drive them is the motivation behind the work to be presented. A stand-alone, self-contained explosively driven high power microwave pulsed power system has been designed, built, and tested at Texas Tech University's Center for Pulsed Power and Power Electronics. The system integrates four different sub-units that are composed of a battery driven prime power source utilizing capacitive energy storage, a dual stage helical flux compression generator as the main energy amplification device, an integrated power conditioning system with inductive energy storage including a fast opening electro-explosive switch, and a triode reflex geometry virtual cathode oscillator as the microwave radiating source. This system has displayed a measured electrical source power level of over 5 GW and peak radiated microwaves of about 200 MW. It is contained within a 15 cm diameter housing and measures 2 m in length, giving a housing volume of slightly less than 39 l. The system and its sub-components have been extensively studied, both as integrated and individual units, to further expand on components behavior and operation physics. This report will serve as a detailed design overview of each of the four subcomponents and provide detailed analysis of the overall system performance and benchmarks.

  20. An explosively driven high-power microwave pulsed power system

    NASA Astrophysics Data System (ADS)

    Elsayed, M. A.; Neuber, A. A.; Dickens, J. C.; Walter, J. W.; Kristiansen, M.; Altgilbers, L. L.

    2012-02-01

    The increased popularity of high power microwave systems and the various sources to drive them is the motivation behind the work to be presented. A stand-alone, self-contained explosively driven high power microwave pulsed power system has been designed, built, and tested at Texas Tech University's Center for Pulsed Power and Power Electronics. The system integrates four different sub-units that are composed of a battery driven prime power source utilizing capacitive energy storage, a dual stage helical flux compression generator as the main energy amplification device, an integrated power conditioning system with inductive energy storage including a fast opening electro-explosive switch, and a triode reflex geometry virtual cathode oscillator as the microwave radiating source. This system has displayed a measured electrical source power level of over 5 GW and peak radiated microwaves of about 200 MW. It is contained within a 15 cm diameter housing and measures 2 m in length, giving a housing volume of slightly less than 39 l. The system and its sub-components have been extensively studied, both as integrated and individual units, to further expand on components behavior and operation physics. This report will serve as a detailed design overview of each of the four subcomponents and provide detailed analysis of the overall system performance and benchmarks.

  1. Passive Microwave Studies of Atmospheric Precipitation and State

    NASA Technical Reports Server (NTRS)

    Staelin, David H.; Rosenkranz, Philip W.; Shiue, James C. (Technical Monitor)

    2002-01-01

    The principal contributions of this research on novel passive microwave spectral techniques are in the areas of: (1) global precipitation mapping using the opaque spectral bands on research and operational weather satellites, (2) development and analysis of extensive aircraft observational imaging data sets obtained using the MIT instrument NAST-M near 54 and 118 GHz over hurricanes and weather ranging from tropical to polar; simultaneous data from the 8500-channel infrared spectrometer NAST-I was obtained and analyzed separately, (3) estimation of hydrometeor diameters in cell tops using data from aircraft and spacecraft, (4) continued improvement of expressions for atmospheric transmittance at millimeter and sub-millimeter wavelengths, (5) development and airborne use of spectrometers operating near 183- and 425-GHz bands, appropriate to practical systems in geosynchronous orbit, and (6) preliminary studies of the design and performance of future geosynchronous microwave sounders for temperature and humidity profiles and for continuous monitoring of regional precipitation through most clouds. This work was a natural extension of work under NASA Grant NAG5-2545 and its predecessors. This earlier work had developed improved airborne imaging microwave spectrometers and had shown their sensitivity to precipitation altitude and character. They also had prepared the foundations for precipitation estimation using the opaque microwave bands. The field demonstration and improvement of these capabilities was then a central part of the present research reported here, during which period the first AMSU data became available and several hurricanes were overflown by NAST-M, yielding unique data about their microwave signatures. This present work has in turn helped lay the foundation for future progress in incorporating the opaque microwave channels in systems for climatologically precise global precipitation mapping from current and future operational satellites. Extension of these techniques to global snowfall mapping, even over ice and snow, is one such opportunity signaled by this research.

  2. Determining the microwave coupling and operational efficiencies of a microwave plasma assisted chemical vapor deposition reactor under high pressure diamond synthesis operating conditions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nad, Shreya; Department of Physics and Astronomy, Michigan State University, East Lansing, Michigan 48824; Gu, Yajun

    2015-07-15

    The microwave coupling efficiency of the 2.45 GHz, microwave plasma assisted diamond synthesis process is investigated by experimentally measuring the performance of a specific single mode excited, internally tuned microwave plasma reactor. Plasma reactor coupling efficiencies (η) > 90% are achieved over the entire 100–260 Torr pressure range and 1.5–2.4 kW input power diamond synthesis regime. When operating at a specific experimental operating condition, small additional internal tuning adjustments can be made to achieve η > 98%. When the plasma reactor has low empty cavity losses, i.e., the empty cavity quality factor is >1500, then overall microwave discharge coupling efficienciesmore » (η{sub coup}) of >94% can be achieved. A large, safe, and efficient experimental operating regime is identified. Both substrate hot spots and the formation of microwave plasmoids are eliminated when operating within this regime. This investigation suggests that both the reactor design and the reactor process operation must be considered when attempting to lower diamond synthesis electrical energy costs while still enabling a very versatile and flexible operation performance.« less

  3. A Novel Nanoionics-Based Switch for Microwave Applications

    NASA Technical Reports Server (NTRS)

    Nessel, James A.; Lee, Richard Q.; Mueller, Carl H.; Kozicki, Michael N.; Ren, Minghan; Morse, Jacki

    2008-01-01

    This paper reports the development and characterization of a novel switching device for use in microwave systems. The device utilizes a switching mechanism based on nanoionics, in which mobile ions within a solid electrolyte undergo an electrochemical process to form and remove a conductive metallic "bridge" to define the change of state. The nanoionics-based switch has demonstrated an insertion loss of approx.0.5dB, isolation of >30dB, low voltage operation (1V), low power (approx. micro-W) and low energy (approx. nJ) consumption, and excellent linearity up to 6 GHz. The switch requires fewer bias operations (due to non-volatile nature) and has a simple planar geometry allowing for novel device structures and easy integration into microwave power distribution circuits.

  4. Spaceborne receivers: Basic principles

    NASA Technical Reports Server (NTRS)

    Stacey, J. M.

    1984-01-01

    The underlying principles of operation of microwave receivers for space observations of planetary surfaces were examined. The design philosophy of the receiver as it is applied to operate functionally as an efficient receiving system, the principle of operation of the key components of the receiver, and the important differences among receiver types are explained. The operating performance and the sensitivity expectations for both the modulated and total power receiver configurations are outlined. The expressions are derived from first principles and are developed through the important intermediate stages to form practicle and easily applied equations. The transfer of thermodynamic energy from point to point within the receiver is illustrated. The language of microwave receivers is applied statistics.

  5. The MAP Autonomous Mission Control System

    NASA Technical Reports Server (NTRS)

    Breed, Juile; Coyle, Steven; Blahut, Kevin; Dent, Carolyn; Shendock, Robert; Rowe, Roger

    2000-01-01

    The Microwave Anisotropy Probe (MAP) mission is the second mission in NASA's Office of Space Science low-cost, Medium-class Explorers (MIDEX) program. The Explorers Program is designed to accomplish frequent, low cost, high quality space science investigations utilizing innovative, streamlined, efficient management, design and operations approaches. The MAP spacecraft will produce an accurate full-sky map of the cosmic microwave background temperature fluctuations with high sensitivity and angular resolution. The MAP spacecraft is planned for launch in early 2001, and will be staffed by only single-shift operations. During the rest of the time the spacecraft must be operated autonomously, with personnel available only on an on-call basis. Four (4) innovations will work cooperatively to enable a significant reduction in operations costs for the MAP spacecraft. First, the use of a common ground system for Spacecraft Integration and Test (I&T) as well as Operations. Second, the use of Finite State Modeling for intelligent autonomy. Third, the integration of a graphical planning engine to drive the autonomous systems without an intermediate manual step. And fourth, the ability for distributed operations via Web and pager access.

  6. 47 CFR 101.137 - Interconnection of private operational fixed point-to-point microwave stations.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... point-to-point microwave stations. 101.137 Section 101.137 Telecommunication FEDERAL COMMUNICATIONS COMMISSION (CONTINUED) SAFETY AND SPECIAL RADIO SERVICES FIXED MICROWAVE SERVICES Technical Standards § 101.137 Interconnection of private operational fixed point-to-point microwave stations. Private...

  7. 47 CFR 101.137 - Interconnection of private operational fixed point-to-point microwave stations.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... point-to-point microwave stations. 101.137 Section 101.137 Telecommunication FEDERAL COMMUNICATIONS COMMISSION (CONTINUED) SAFETY AND SPECIAL RADIO SERVICES FIXED MICROWAVE SERVICES Technical Standards § 101.137 Interconnection of private operational fixed point-to-point microwave stations. Private...

  8. 47 CFR 101.137 - Interconnection of private operational fixed point-to-point microwave stations.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... point-to-point microwave stations. 101.137 Section 101.137 Telecommunication FEDERAL COMMUNICATIONS COMMISSION (CONTINUED) SAFETY AND SPECIAL RADIO SERVICES FIXED MICROWAVE SERVICES Technical Standards § 101.137 Interconnection of private operational fixed point-to-point microwave stations. Private...

  9. 47 CFR 101.137 - Interconnection of private operational fixed point-to-point microwave stations.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... point-to-point microwave stations. 101.137 Section 101.137 Telecommunication FEDERAL COMMUNICATIONS COMMISSION (CONTINUED) SAFETY AND SPECIAL RADIO SERVICES FIXED MICROWAVE SERVICES Technical Standards § 101.137 Interconnection of private operational fixed point-to-point microwave stations. Private...

  10. 47 CFR 101.137 - Interconnection of private operational fixed point-to-point microwave stations.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... point-to-point microwave stations. 101.137 Section 101.137 Telecommunication FEDERAL COMMUNICATIONS COMMISSION (CONTINUED) SAFETY AND SPECIAL RADIO SERVICES FIXED MICROWAVE SERVICES Technical Standards § 101.137 Interconnection of private operational fixed point-to-point microwave stations. Private...

  11. Detection of the earth with the SETI microwave observing system assumed to be operating out in the Galaxy

    NASA Technical Reports Server (NTRS)

    Billingham, John; Tarter, Jill

    1989-01-01

    The maximum range is calculated at which radar signals from the earth could be detected by a search system similar to the NASA SETI Microwave Observing Project (SETI MOP) assumed to be operating out in the Galaxy. Figures are calculated for the Targeted Search and for the Sky Survey parts of the MOP, both planned to be operating in the 1990s. The probability of detection is calculated for the two most powerful transmitters, the planetary radar at Arecibo (Puerto Rico) and the ballistic missile early warning systems (BMEWSs), assuming that the terrestrial radars are only in the eavesdropping mode. It was found that, for the case of a single transmitter within the maximum range, the highest probability is for the sky survey detecting BMEWSs; this is directly proportional to BMEWS sky coverage and is therefore 0.25.

  12. Phase 2: Array automated assembly task low cost silicon solar array project

    NASA Technical Reports Server (NTRS)

    Jones, G. T.

    1979-01-01

    Several microwave systems for use in solar cell fabrication were developed and experimentally tested. The first system used a standing wave rectangular waveguide horn applicator. Satisfactory results were achieved with this system for impedance matching and wafer surface heating uniformity. The second system utilized a resonant TM sub 011 mode cylindrical cavity but could not be employed due to its poor energy coupling efficiency. The third and fourth microwave systems utilized a circular waveguide operating in the TM sub 01 and TM sub 11 but had problems with impedance matching, efficiency, and field uniformity.

  13. Experiments applications guide: Advanced Communications Technology Satellite (ACTS)

    NASA Technical Reports Server (NTRS)

    1988-01-01

    This applications guide first surveys the capabilities of the Advanced Communication Technology Satellite (ACTS) system (both the flight and ground segments). This overview is followed by a description of the baseband processor (BBP) and microwave switch matrix (MSM) operating modes. Terminals operating with the baseband processor are referred to as low burst rate (LBR); and those operating with the microwave switch matrix, as high burst rate (HBR). Three very small-aperture terminals (VSATs), LBR-1, LBR-2, and HBR, are described for various ACTS operating modes. Also described is the NASA Lewis link evaluation terminal. A section on ACTS experiment opportunities introduces a wide spectrum of network control, telecommunications, system, and scientific experiments. The performance of the VSATs is discussed in detail. This guide is intended as a catalyst to encourage participation by the telecommunications, business, and science communities in a broad spectrum of experiments.

  14. 47 CFR 15.307 - Coordination with fixed microwave service.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 47 Telecommunication 1 2011-10-01 2011-10-01 false Coordination with fixed microwave service. 15... Unlicensed Personal Communications Service Devices § 15.307 Coordination with fixed microwave service. (a... Private Operational-Fixed Microwave Service (OFS) operating under part 101 of this chapter to unlicensed...

  15. 47 CFR 15.307 - Coordination with fixed microwave service.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 47 Telecommunication 1 2010-10-01 2010-10-01 false Coordination with fixed microwave service. 15... Unlicensed Personal Communications Service Devices § 15.307 Coordination with fixed microwave service. (a... Private Operational-Fixed Microwave Service (OFS) operating under part 101 of this chapter to unlicensed...

  16. Effectiveness evaluation of double-layered satellite network with laser and microwave hybrid links based on fuzzy analytic hierarchy process

    NASA Astrophysics Data System (ADS)

    Zhang, Wei; Rao, Qiaomeng

    2018-01-01

    In order to solve the problem of high speed, large capacity and limited spectrum resources of satellite communication network, a double-layered satellite network with global seamless coverage based on laser and microwave hybrid links is proposed in this paper. By analyzing the characteristics of the double-layered satellite network with laser and microwave hybrid links, an effectiveness evaluation index system for the network is established. And then, the fuzzy analytic hierarchy process, which combines the analytic hierarchy process and the fuzzy comprehensive evaluation theory, is used to evaluate the effectiveness of the double-layered satellite network with laser and microwave hybrid links. Furthermore, the evaluation result of the proposed hybrid link network is obtained by simulation. The effectiveness evaluation process of the proposed double-layered satellite network with laser and microwave hybrid links can help to optimize the design of hybrid link double-layered satellite network and improve the operating efficiency of the satellite system.

  17. Upgrade to the control system of the reflectometry diagnostic of ASDEX upgrade

    NASA Astrophysics Data System (ADS)

    Graça, S.; Santos, J.; Manso, M. E.

    2004-10-01

    The broadband frequency modulation-continuous wave microwave/millimeter wave reflectometer of ASDEX upgrade tokamak (Institut für Plasma Physik (IPP), Garching, Germany) developed by Centro de Fusão Nuclear (Lisboa, Portugal) with the collaboration of IPP, is a complex system with 13 channels (O and X modes) and two types of operation modes (swept and fixed frequency). The control system that ensures remote operation of the diagnostic incorporates VME and CAMAC bus based acquisition/timing systems. Microprocessor input/output boards are used to control and monitor the microwave circuitry and associated electronic devices. The implementation of the control system is based on an object-oriented client/server model: a centralized server manages the hardware and receives input from remote clients. Communication is handled through transmission control protocol/internet protocol sockets. Here we describe recent upgrades of the control system aiming to: (i) accommodate new channels; (ii) adapt to the heterogeneity of computing platforms and operating systems; and (iii) overcome remote access restrictions. Platform and operating system independence was achieved by redesigning the graphical user interface in JAVA. As secure shell is the standard remote access protocol adopted in major fusion laboratories, secure shell tunneling was implemented to allow remote operation of the diagnostic through the existing firewalls.

  18. A Microwave Flow Detector for Gradient Elution Liquid Chromatography.

    PubMed

    Ye, Duye; Wang, Weizheng; Moline, David; Islam, Md Saiful; Chen, Feng; Wang, Pingshan

    2017-10-17

    This study presents a microwave flow detector technique for liquid chromatography (LC) application. The detector is based on a tunable microwave interferometer (MIM) with a vector network analyzer (VNA) for signal measurement and a computer for system control. A microstrip-line-based 0.3 μL flow cell is built and incorporated into the MIM. With syringe pump injection, the detector is evaluated by measuring a few common chemicals in DI water at multiple frequencies from 0.98 to 7.09 GHz. Less than 30 ng minimum detectable quantity (MDQ) is demonstrated. An algorithm is provided and used to obtain sample dielectric permittivity at each frequency point. When connected to a commercial HPLC system and injected with a 10 μL aliquot of 10 000 ppm caffeine DI-water solution, the microwave detector yields a signal-to-noise ratio (SNR) up to 10 under isocratic and gradient elution operations. The maximum sampling rate is 20 Hz. The measurements show that MIM tuning, aided by a digital tunable attenuator (DTA), can automatically adjust MIM operation to retain detector sensitivity when mobile phase changes. Furthermore, the detector demonstrates a capability to quantify coeluted vitamin E succinate (VES) and vitamin D 3 (VD 3 ).

  19. 47 CFR 74.635 - Unattended operation.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... stations, and TV microwave booster stations may be operated unattended under the following conditions: (1... persons; (3) TV relay stations, TV STL stations, TV translator relay stations, and TV microwave booster..., an STL station (and any TV microwave booster station) associated with a TV broadcast station operated...

  20. 47 CFR 74.635 - Unattended operation.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... stations, and TV microwave booster stations may be operated unattended under the following conditions: (1... persons; (3) TV relay stations, TV STL stations, TV translator relay stations, and TV microwave booster..., an STL station (and any TV microwave booster station) associated with a TV broadcast station operated...

  1. 47 CFR 74.635 - Unattended operation.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... stations, and TV microwave booster stations may be operated unattended under the following conditions: (1... persons; (3) TV relay stations, TV STL stations, TV translator relay stations, and TV microwave booster..., an STL station (and any TV microwave booster station) associated with a TV broadcast station operated...

  2. 47 CFR 74.635 - Unattended operation.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... stations, and TV microwave booster stations may be operated unattended under the following conditions: (1... persons; (3) TV relay stations, TV STL stations, TV translator relay stations, and TV microwave booster..., an STL station (and any TV microwave booster station) associated with a TV broadcast station operated...

  3. Real-time new satellite product demonstration from microwave sensors and GOES-16 at NRL TC web

    NASA Astrophysics Data System (ADS)

    Cossuth, J.; Richardson, K.; Surratt, M. L.; Bankert, R.

    2017-12-01

    The Naval Research Laboratory (NRL) Tropical Cyclone (TC) satellite webpage (https://www.nrlmry.navy.mil/TC.html) provides demonstration analyses of storm imagery to benefit operational TC forecast centers around the world. With the availability of new spectral information provided by GOES-16 satellite data and recent research into improved visualization methods of microwave data, experimental imagery was operationally tested to visualize the structural changes of TCs during the 2017 hurricane season. This presentation provides an introduction into these innovative satellite analysis methods, NRL's next generation satellite analysis system (the Geolocated Information Processing System, GeoIPSTM), and demonstration the added value of additional spectral frequencies when monitoring storms in near-realtime.

  4. Microwave radiometer studies of atmospheric water over the oceans, volume 2

    NASA Technical Reports Server (NTRS)

    Katsaros, Kristina B.

    1992-01-01

    Since the Seasat carried the Scanning Multichannel Microwave Radiometer (SMMR) into space in July of 1978, shortly followed by the SMMR on Nimbus 7, which operated for almost a decade, a new type of data source on atmospheric water vapor and other meteorological parameters has been available for analysis of weather systems over the ocean. Since 1987, we have had the Scanning Multichannel Microwave/Imager (SSM/I) instrument on Defense Meteorological Satellites providing similar data. We present a collection of our work performed over the last years of the study.

  5. Orbital assembly and maintenance study. Executive summary. [space erectable structures/structural design criteria

    NASA Technical Reports Server (NTRS)

    Gorman, D.; Grant, C.; Kyrias, G.; Lord, C.; Rombach, J. P.; Salis, M.; Skidmore, R.; Thomas, R.

    1975-01-01

    A sound, practical approach for the assembly and maintenance of very large structures in space is presented. The methods and approaches for assembling two large structures are examined. The maintenance objectives include the investigation of methods to maintain five geosynchronous satellites. The two assembly examples are a 200-meter-diameter radio astronomy telescope and a 1,000-meter-diameter microwave power transmission system. The radio astronomy telescope operates at an 8,000-mile altitude and receives RF signals from space. The microwave power transmission system is part of a solar power satellite that will be used to transmit converted solar energy to microwave ground receivers. Illustrations are included.

  6. Cryogenic filters for RFI protection

    NASA Technical Reports Server (NTRS)

    Bautista, J. J.; Petty, S. M.

    1981-01-01

    The increased bandwidth and sensitivity of the DSN maser-based receiver systems along with the increase in worldwide microwave spectrum usage dictated the need for employing additional measures to protect these systems from RFI (radio frequency inerference). Both in-band and out-of-band microwave signals at the input of the Deep Space Network (DSN) traveling wave masers (TWM) can adversely affect the maser performance in a variety of ways. Filters fabricated from superconducting materials operating below their superconducting transition temperature (Tc) possess the most potential for providing the necessary RFI protection without degrading the system performance.

  7. Nanoelectromechanical systems: Nanodevice motion at microwave frequencies

    NASA Astrophysics Data System (ADS)

    Henry Huang, Xue Ming; Zorman, Christian A.; Mehregany, Mehran; Roukes, Michael L.

    2003-01-01

    It has been almost forgotten that the first computers envisaged by Charles Babbage in the early 1800s were mechanical and not electronic, but the development of high-frequency nanoelectromechanical systems is now promising a range of new applications, including sensitive mechanical charge detectors and mechanical devices for high-frequency signal processing, biological imaging and quantum measurement. Here we describe the construction of nanodevices that will operate with fundamental frequencies in the previously inaccessible microwave range (greater than 1 gigahertz). This achievement represents a significant advance in the quest for extremely high-frequency nanoelectromechanical systems.

  8. Fabrication Of High-Tc Superconducting Integrated Circuits

    NASA Technical Reports Server (NTRS)

    Bhasin, Kul B.; Warner, Joseph D.

    1992-01-01

    Microwave ring resonator fabricated to demonstrate process for fabrication of passive integrated circuits containing high-transition-temperature superconductors. Superconductors increase efficiencies of communication systems, particularly microwave communication systems, by reducing ohmic losses and dispersion of signals. Used to reduce sizes and masses and increase aiming accuracies and tracking speeds of millimeter-wavelength, electronically steerable antennas. High-Tc superconductors preferable for such applications because they operate at higher temperatures than low-Tc superconductors do, therefore, refrigeration systems needed to maintain superconductivity designed smaller and lighter and to consume less power.

  9. Microwave systems applications in deep space telecommunications and navigation - Space Exploration Initiative architectures

    NASA Technical Reports Server (NTRS)

    Hall, Justin R.; Hastrup, Rolf C.; Bell, David J.

    1992-01-01

    The general support requirements of a typical SEI mission set, along with the mission operations objectives and related telecommunications, navigation, and information management (TNIM) support infrastructure options are described. Responsive system architectures and designs are proposed, including a Mars orbiting communications relay satellite system and a Mars-centered navigation capability for servicing all Mars missions. With the TNIM architecture as a basis, key elements of the microwave link design are proposed. The needed new technologies which enable these designs are identified, and current maturity is assessed.

  10. Microwave systems applications in deep space telecommunications and navigation - Space Exploration Initiative architectures

    NASA Astrophysics Data System (ADS)

    Hall, Justin R.; Hastrup, Rolf C.; Bell, David J.

    1992-06-01

    The general support requirements of a typical SEI mission set, along with the mission operations objectives and related telecommunications, navigation, and information management (TNIM) support infrastructure options are described. Responsive system architectures and designs are proposed, including a Mars orbiting communications relay satellite system and a Mars-centered navigation capability for servicing all Mars missions. With the TNIM architecture as a basis, key elements of the microwave link design are proposed. The needed new technologies which enable these designs are identified, and current maturity is assessed.

  11. 14 CFR 171.327 - Operational records.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ...) NAVIGATIONAL FACILITIES NON-FEDERAL NAVIGATION FACILITIES Microwave Landing System (MLS) § 171.327 Operational... operational records at the indicated time to the appropriate FAA regional office where the facility is located... facility and two copies must be sent to the appropriate FAA regional office. The owner or his maintenance...

  12. 14 CFR 171.327 - Operational records.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ...) NAVIGATIONAL FACILITIES NON-FEDERAL NAVIGATION FACILITIES Microwave Landing System (MLS) § 171.327 Operational... operational records at the indicated time to the appropriate FAA regional office where the facility is located... facility and two copies must be sent to the appropriate FAA regional office. The owner or his maintenance...

  13. Microwave landing system autoland system analysis

    NASA Technical Reports Server (NTRS)

    Feather, J. B.; Craven, B. K.

    1991-01-01

    The objective was to investigate the ability of present day aircraft equipped with automatic flight control systems to fly advanced Microwave Landing Systems (MLS) approaches. The tactical approach used to achieve this objective included reviewing the design and autoland operation of the MD-80 aircraft, simulating the MLS approaches using a batch computer program, and assessing the performance of the autoland system from computer generated data. The results showed changes were required to present Instrument Landing System (ILS) procedures to accommodate the new MLS curved paths. It was also shown that in some cases, changes to the digital flight guidance systems would be required so that an autoland could be performed.

  14. Brazil upgrades microwave system

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Newman, H.S.; Gomes, H.P.

    1979-02-01

    To provide communications facilities necessary during major construction projects, and for the operation and control of the expanding electric-power network, in 1967 Furnas-Centrais Eletricas SA, Brazil, started installing the first 22 links of its microwave system, from the Botafogo plant in Rio de Janeiro to the Furnas hydro station, and from the Furnas hydro station, southwest, to the Guarulhos plant in Sao Paulo and northwest to the Estreito hydro plant. To accommodate the construction of additional hydroelectric facilities, the second and third microwave-system expansions added nine links from Estreito hydro, northwest, to Marimbondo hydro and 7 links to Itumbiara. Themore » fourth expansion included two links to connect with the Angra dos Reis nuclear generating plant. A modern SCADA system replaced an earlier fault-reporting method, and a means of monitoring performance communications was established.« less

  15. Microwave frequency sensor for detection of biological cells in microfluidic channels.

    PubMed

    Nikolic-Jaric, M; Romanuik, S F; Ferrier, G A; Bridges, G E; Butler, M; Sunley, K; Thomson, D J; Freeman, M R

    2009-08-12

    We present details of an apparatus for capacitive detection of biomaterials in microfluidic channels operating at microwave frequencies where dielectric effects due to interfacial polarization are minimal. A circuit model is presented, which can be used to adapt this detection system for use in other microfluidic applications and to identify ones where it would not be suitable. The detection system is based on a microwave coupled transmission line resonator integrated into an interferometer. At 1.5 GHz the system is capable of detecting changes in capacitance of 650 zF with a 50 Hz bandwidth. This system is well suited to the detection of biomaterials in a variety of suspending fluids, including phosphate-buffered saline. Applications involving both model particles (polystyrene microspheres) and living cells-baker's yeast (Saccharomyces cerevisiae) and Chinese hamster ovary cells-are presented.

  16. Retrieving Atmospheric Temperature and Moisture Profiles from NPP CRIS/ATMS Sensors Using Crimss EDR Algorithm

    NASA Technical Reports Server (NTRS)

    Liu, X.; Kizer, S.; Barnet, C.; Dvakarla, M.; Zhou, D. K.; Larar, A. M.

    2012-01-01

    The Joint Polar Satellite System (JPSS) is a U.S. National Oceanic and Atmospheric Administration (NOAA) mission in collaboration with the U.S. National Aeronautical Space Administration (NASA) and international partners. The NPP Cross-track Infrared Microwave Sounding Suite (CrIMSS) consists of the infrared (IR) Crosstrack Infrared Sounder (CrIS) and the microwave (MW) Advanced Technology Microwave Sounder (ATMS). The CrIS instrument is hyperspectral interferometer, which measures high spectral and spatial resolution upwelling infrared radiances. The ATMS is a 22-channel radiometer similar to Advanced Microwave Sounding Units (AMSU) A and B. It measures top of atmosphere MW upwelling radiation and provides capability of sounding below clouds. The CrIMSS Environmental Data Record (EDR) algorithm provides three EDRs, namely the atmospheric vertical temperature, moisture and pressure profiles (AVTP, AVMP and AVPP, respectively), with the lower tropospheric AVTP and the AVMP being JPSS Key Performance Parameters (KPPs). The operational CrIMSS EDR an algorithm was originally designed to run on large IBM computers with dedicated data management subsystem (DMS). We have ported the operational code to simple Linux systems by replacing DMS with appropriate interfaces. We also changed the interface of the operational code so that we can read data from both the CrIMSS science code and the operational code and be able to compare lookup tables, parameter files, and output results. The detail of the CrIMSS EDR algorithm is described in reference [1]. We will present results of testing the CrIMSS EDR operational algorithm using proxy data generated from the Infrared Atmospheric Sounding Interferometer (IASI) satellite data and from the NPP CrIS/ATMS data.

  17. Multifrequency passive microwave observations of soil moisture in an arid rangeland environment

    NASA Technical Reports Server (NTRS)

    Jackson, T. J.; Schmugge, T. J.; Parry, R.; Kustas, W. P.; Ritchie, J. C.; Shutko, A. M.; Khaldin, A.; Reutov, E.; Novichikhin, E.; Liberman, B.

    1992-01-01

    A cooperative experiment was conducted by teams from the U.S. and U.S.S.R. to evaluate passive microwave instruments and algorithms used to estimate surface soil moisture. Experiments were conducted as part of an interdisciplinary experiment in an arid rangeland watershed located in the southwest United States. Soviet microwave radiometers operating at wavelengths of 2.25, 21 and 27 cm were flown on a U.S. aircraft. Radio frequency interference limited usable data to the 2.25 and 21 cm systems. Data have been calibrated and compared to ground observations of soil moisture. These analyses showed that the 21 cm system could produce reliable and useful soil moisture information and that the 2.25 cm system was of no value for soil moisture estimation in this experiment.

  18. Microwave-emitting rotor, separator apparatus including same, methods of operation and design thereof

    DOEpatents

    Meikrantz, David H.

    2006-12-19

    An apparatus for use in separating, at least in part, a mixture, including at least one chamber and at least one microwave generation device configured for communicating microwave energy into the at least one chamber is disclosed. The rotor assembly may comprise an electric generator for generating electricity for operating the microwave generation device. At least one microwave generation device may be positioned within a tubular interior shaft extending within the rotor assembly. At least a portion of the tubular interior shaft may be substantially transparent to microwave energy. Microwave energy may be emitted in an outward radial direction or toward an anticipated boundary surface defined between a mixture and a separated constituent thereof. A method including flowing a mixture through at least one chamber and communicating microwave energy into the at least one chamber while rotating same is disclosed. Methods of operating a centrifugal separator and design thereof are disclosed.

  19. A near-field scanning microwave microscope based on a superconducting resonator for low power measurements.

    PubMed

    de Graaf, S E; Danilov, A V; Adamyan, A; Kubatkin, S E

    2013-02-01

    We report on the design and performance of a cryogenic (300 mK) near-field scanning microwave microscope. It uses a microwave resonator as the near-field sensor, operating at a frequency of 6 GHz and microwave probing amplitudes down to 100 μV, approaching low enough photon population (N ∼ 1000) of the resonator such that coherent quantum manipulation becomes feasible. The resonator is made out of a miniaturized distributed fractal superconducting circuit that is integrated with the probing tip, micromachined to be compact enough such that it can be mounted directly on a quartz tuning-fork, and used for parallel operation as an atomic force microscope (AFM). The resonator is magnetically coupled to a transmission line for readout, and to achieve enhanced sensitivity we employ a Pound-Drever-Hall measurement scheme to lock to the resonance frequency. We achieve a well localized near-field around the tip such that the microwave resolution is comparable to the AFM resolution, and a capacitive sensitivity down to 6.4 × 10(-20) F/Hz, limited by mechanical noise. We believe that the results presented here are a significant step towards probing quantum systems at the nanoscale using near-field scanning microwave microscopy.

  20. Soliton Microwave Generator

    NASA Astrophysics Data System (ADS)

    Degrassie, J. S.

    1990-12-01

    The Soliton Microwave Generator (SMG) represents a truly new concept in the field of high power microwave (HPM) generation. A nonlinear, dispersive transmission line is used to convert an input voltage pulse into an HPM burst at the output. The system is all solid state and projects to be efficient and reliable. Single module peak powers in excess of 1 GW appear feasible, while combining modular units leads to a 10 GW system projection. This project for the DOE has allowed the first steps necessary in experimentally demonstrating the SMG. The project has ended successfully. A relatively high power lumped circuit SMG operating in the uhf band was designed, fabricated, and tested. The maximum peak output RF power was 16 MW from this line approx. 90 cm in length and 2 sq cm in cross section with a peak power efficiency of roughly 20 percent. Additionally a low power continuous strip-line approach demonstrated microwave generation well into L band, at approx. 2 GHz.

  1. Laboratory evaluation and application of microwave absorption properties under simulated conditions for planetary atmospheres

    NASA Technical Reports Server (NTRS)

    Steffes, Paul G.

    1988-01-01

    Radio absorptivity data for planetary atmospheres obtained from spacecraft radio occultation experiments and earth-based radio astronomical observations can be used to infer abundances of microwave absorbing atmospheric constituents in those atmospheres, as long as reliable information regarding the microwave absorbing properties of potential constituents is available. The key activity for this grant year has continued to be laboratory measurements of the microwave and millimeter-wave properties of the simulated atmospheres of the outer planets and their satellites. A Fabry-Perot spectrometer system capable of operation from 32 to 41 GHz was developed. Initially this spectrometer was used to complete laboratory measurements of the 7.5 to 9.3 mm absorption spectrum of ammonia. Laboratory measurements were begun at wavelengths near 3.2 mm, where a large number of observations of the emission from the outer planets were made. A description of this system is presented.

  2. Solar power satellite system definition study, phase 2. Part 1: Midterm briefing

    NASA Technical Reports Server (NTRS)

    1979-01-01

    An overview of the program plan for the Solar Power Satellite Program is given. Progress in the microwave power transmission system is reported. A description is given of the following: (1) launch and recovery site facilities, systems and operations; (2) cargo packaging; (3) earth-to-LEO cargo transportation operations; (4) LEO-to-GEO cargo transportation operations; (5) personnel transportation operations; (6) space vehicles in-space maintenance operations; and (7) SPS maintenance systems and operations. Other topics discussed include GEO base operations, satellite construction operations, intra-base logistics, and GEO base definition. A research and program plan is presented along with cost estimates.

  3. Current status of the global change observation mission - water SHIZUKU (GCOM-W) and the advanced microwave scanning radiometer 2 (AMSR2) (Conference Presentation)

    NASA Astrophysics Data System (ADS)

    Maeda, Takashi; Kachi, Misako; Kasahara, Marehito

    2016-10-01

    Japan Aerospace Exploration Agency (JAXA) launched the Global Change Observation Mission - Water (GCOM-W) or "SHIZUKU" in 18 May 2012 (JST) from JAXA's Tanegashima Space Center. The GCOM-W satellite joins to NASA's A-train orbit since June 2012, and its observation is ongoing. The GCOM-W satellite carries the Advanced Microwave Scanning Radiometer 2 (AMSR2). The AMSR2 is a multi-frequency, total-power microwave radiometer system with dual polarization channels for all frequency bands, and successor microwave radiometer to the Advanced Microwave Scanning Radiometer for EOS (AMSR-E) loaded on the NASA's Aqua satellite. The AMSR-E kept observation in the slower rotation speed (2 rotations per minute) for cross-calibration with AMSR2 since December 2012, its operation ended in December 2015. The AMSR2 is designed almost similarly as the AMSR-E. The AMSR2 has a conical scanning system with large-size offset parabolic antenna, a feed horn cluster to realize multi-frequency observation, and an external calibration system with two temperature standards. However, some important improvements are made. For example, the main reflector size of the AMSR2 is expanded to 2.0 m to observe the Earth's surface in higher spatial resolution, and 7.3-GHz channel is newly added to detect radio frequency interferences at 6.9 GHz. In this paper, we present a recent topic for the AMSR2 (i.e., RFI detection performances) and the current operation status of the AMSR2.

  4. A device for microwave sintering large ceramic articles

    DOEpatents

    Kimrey, H.D. Jr.

    1987-07-24

    A microwave sintering system is provided for uniform sintering of large and/or irregular shapes ceramic articles at microwave frequencies of at least 28 GHz in the hundreds of kilowatts power range in an untuned cavity. A 28 GHz, 200 kw gyrotron with variable power output is used as the microwave source connected to an untuned microwave cavity formed of an electrically conductive housing. The part to be sintered is placed in the cavity and supported on a removable high temperature table in a central location within the cavity. The part is surrounded by a microwave transparent bulk insulating material to reduce thermal heat loss at the part surfaces and maintain more uniform temperature. The cavity may be operated at a high vacuum to aid in preventing arcing. The system allows controlled increased heating rates of greater than 200/degree/C/min to provide rapid heating of a ceramic part to a selected sintering temperature where it is maintained by regulating the microwave power applied to the part. As a result of rapid heating, the extent on non-isothermal processes such as segregation of impurities to the grain boundaries are minimized and exaggerated grain growth is reduced, thereby strengthening the mechanical properties of the ceramic part being sintered. 1 fig.

  5. Design of pulsed guiding magnetic field for high power microwave generators.

    PubMed

    Ju, J-C; Zhang, H; Zhang, J; Shu, T; Zhong, H-H

    2014-09-01

    In this paper, we present a comprehensive study on designing solenoid together with the corresponding power supply system to excite pulsed magnetic field required for high power microwave generators. Particularly, a solenoid is designed and the excited magnetic field is applied to a Ku-band overmoded Cerenkov generator. It is found in experiment that the electron beam is properly guided by the magnetic field and a 1.1 GW high power microwave is achieved at a central frequency of 13.76 GHz. Pulsed solenoid system has the advantages of compactness and low energy consumption, which are of great interest for repetitive operation. The reported studies and results can be generalized to other applications which require magnetic fields.

  6. Ferrite film growth on semiconductor substrates towards microwave and millimeter wave integrated circuits

    NASA Astrophysics Data System (ADS)

    Chen, Z.; Harris, V. G.

    2012-10-01

    It is widely recognized that as electronic systems' operating frequency shifts to microwave and millimeter wave bands, the integration of ferrite passive devices with semiconductor solid state active devices holds significant advantages in improved miniaturization, bandwidth, speed, power and production costs, among others. Traditionally, ferrites have been employed in discrete bulk form, despite attempts to integrate ferrite as films within microwave integrated circuits. Technical barriers remain centric to the incompatibility between ferrite and semiconductor materials and their processing protocols. In this review, we present past and present efforts at ferrite integration with semiconductor platforms with the aim to identify the most promising paths to realizing the complete integration of on-chip ferrite and semiconductor devices, assemblies and systems.

  7. Fiber-optic delay-line stabilization of heterodyne optical signal generator and method using same

    NASA Technical Reports Server (NTRS)

    Logan, Ronald T. (Inventor)

    1997-01-01

    The present invention is a laser heterodyne frequency generator system with a stabilizer for use in the microwave and millimeter-wave frequency ranges utilizing a photonic mixer as a photonic phase detector in a stable optical fiber delay-line. Phase and frequency fluctuations of the heterodyne laser signal generators are stabilized at microwave and millimeter wave frequencies by a delay line system operating as a frequency discriminator. The present invention is free from amplifier and mixer 1/.function. noise at microwave and millimeter-wave frequencies that typically limit phase noise performance in electronic cavity stabilized electronic oscillators. Thus, 1/.function. noise due to conventional mixers is eliminated and stable optical heterodyne generation of electrical signals is achieved.

  8. Polarization entanglement purification of nonlocal microwave photons based on the cross-Kerr effect in circuit QED

    NASA Astrophysics Data System (ADS)

    Zhang, Hao; Liu, Qian; Xu, Xu-Sheng; Xiong, Jun; Alsaedi, Ahmed; Hayat, Tasawar; Deng, Fu-Guo

    2017-11-01

    Microwave photons have become very important qubits in quantum communication, as the first quantum satellite has been launched successfully. Therefore, it is a necessary and meaningful task for ensuring the high security and efficiency of microwave-based quantum communication in practice. Here, we present an original polarization entanglement purification protocol for nonlocal microwave photons based on the cross-Kerr effect in circuit quantum electrodynamics (QED). Our protocol can solve the problem that the purity of maximally entangled states used for constructing quantum channels will decrease due to decoherence from environment noise. This task is accomplished by means of the polarization parity-check quantum nondemolition (QND) detector, the bit-flipping operation, and the linear microwave elements. The QND detector is composed of several cross-Kerr effect systems which can be realized by coupling two superconducting transmission line resonators to a superconducting molecule with the N -type level structure. We give the applicable experimental parameters of QND measurement system in circuit QED and analyze the fidelities. Our protocol has good applications in long-distance quantum communication assisted by microwave photons in the future, such as satellite quantum communication.

  9. Frequency Distribution in Domestic Microwave Ovens and Its Influence on Heating Pattern.

    PubMed

    Luan, Donglei; Wang, Yifen; Tang, Juming; Jain, Deepali

    2017-02-01

    In this study, snapshots of operating frequency profiles of domestic microwave ovens were collected to reveal the extent of microwave frequency variations under different operation conditions. A computer simulation model was developed based on the finite difference time domain method to analyze the influence of the shifting frequency on heating patterns of foods in a microwave oven. The results showed that the operating frequencies of empty and loaded domestic microwave ovens varied widely even among ovens of the same model purchased on the same date. Each microwave oven had its unique characteristic operating frequencies, which were also affected by the location and shape of the load. The simulated heating patterns of a gellan gel model food when heated on a rotary plate agreed well with the experimental results, which supported the reliability of the developed simulation model. Simulation indicated that the heating patterns of a stationary model food load changed with the varying operating frequency. However, the heating pattern of a rotary model food load was not sensitive to microwave frequencies due to the severe edge heating overshadowing the effects of the frequency variations. © 2016 Institute of Food Technologists®.

  10. Satellite Power Systems /SPS/ - Overview of system studies and critical technology

    NASA Technical Reports Server (NTRS)

    Manson, S. V.

    1980-01-01

    Systems studies and critical technology issues for the development and evaluation of Satellite Power Systems (SPS) for the photovoltaic generation of electrical energy and its transmission to earth are reviewed. Initial concept studies completed in 1976 and system definition studies initiated in the same year have indicated the technical feasibility of SPS and identified challenging issues to be addressed as part of the SPS Concept Development and Evaluation Program. Systems considered in the study include photovoltaic and solar thermal power conversion configurations employing klystron or solid state microwave generators or lasers for power transmission, and power transmission options, system constructability and in-orbit and ground operations. Technology investigations are being performed in the areas of microwave power transmission, structure/controls interactions and the behavior of key materials in the space/SPS environment. Favorable results have been obtained in the areas of microwave phase distribution and phase control, dc-RF conversion, antenna radiating element, and no insurmountable problems have been discovered in any of the investigations to date.

  11. High-power microwave LDMOS transistors for wireless data transmission technologies (Review)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kuznetsov, E. V., E-mail: E.Kouzntsov@tcen.ru; Shemyakin, A. V.

    The fields of the application, structure, fabrication, and packaging technology of high-power microwave LDMOS transistors and the main advantages of these devices were analyzed. Basic physical parameters and some technology factors were matched for optimum device operation. Solid-state microwave electronics has been actively developed for the last 10-15 years. Simultaneously with improvement of old devices, new devices and structures are actively being adopted and developed and new semiconductor materials are being commercialized. Microwave LDMOS technology is in demand in such fields as avionics, civil and military radars, repeaters, base stations of cellular communication systems, television and broadcasting transmitters, and transceiversmore » for high-speed wireless computer networks (promising Wi-Fi and Wi-Max standards).« less

  12. DSS 13 phase 2 pedestal room microwave layout

    NASA Technical Reports Server (NTRS)

    Cwik, T.; Chen, J. C.

    1991-01-01

    The design and predicted performance is described of the microwave layout for three band operation of the beam waveguide antenna Deep Space Station 13. Three pedestal room microwave candidate layout designs were produced for simultaneous X/S and X/Ka band operation. One of the three designs was chosen based on given constraints, and for this design the microwave performance was estimated.

  13. Real-time data acquisition of commercial microwave link networks for hydrometeorological applications

    NASA Astrophysics Data System (ADS)

    Chwala, Christian; Keis, Felix; Kunstmann, Harald

    2016-03-01

    The usage of data from commercial microwave link (CML) networks for scientific purposes is becoming increasingly popular, in particular for rain rate estimation. However, data acquisition and availability is still a crucial problem and limits research possibilities. To overcome this issue, we have developed an open-source data acquisition system based on the Simple Network Management Protocol (SNMP). It is able to record transmitted and received signal levels of a large number of CMLs simultaneously with a temporal resolution of up to 1 s. We operate this system at Ericsson Germany, acquiring data from 450 CMLs with minutely real-time transfer to our database. Our data acquisition system is not limited to a particular CML hardware model or manufacturer, though. We demonstrate this by running the same system for CMLs of a different manufacturer, operated by an alpine ski resort in Germany. There, the data acquisition is running simultaneously for four CMLs with a temporal resolution of 1 s. We present an overview of our system, describe the details of the necessary SNMP requests and show results from its operational application.

  14. Real time data acquisition of commercial microwave link networks for hydrometeorological applications

    NASA Astrophysics Data System (ADS)

    Chwala, C.; Keis, F.; Kunstmann, H.

    2015-11-01

    The usage of data from commercial microwave link (CML) networks for scientific purposes is becoming increasingly popular, in particular for rain rate estimation. However, data acquisition and availability is still a crucial problem and limits research possibilities. To overcome this issue, we have developed an open source data acquisition system based on the Simple Network Management Protocol (SNMP). It is able to record transmitted- and received signal levels of a large number of CMLs simultaneously with a temporal resolution of up to one second. We operate this system at Ericsson Germany, acquiring data from 450 CMLs with minutely real time transfer to our data base. Our data acquisition system is not limited to a particular CML hardware model or manufacturer, though. We demonstrate this by running the same system for CMLs of a different manufacturer, operated by an alpine skiing resort in Germany. There, the data acquisition is running simultaneously for four CMLs with a temporal resolution of one second. We present an overview of our system, describe the details of the necessary SNMP requests and show results from its operational application.

  15. Quantum statistics and squeezing for a microwave-driven interacting magnon system.

    PubMed

    Haghshenasfard, Zahra; Cottam, Michael G

    2017-02-01

    Theoretical studies are reported for the statistical properties of a microwave-driven interacting magnon system. Both the magnetic dipole-dipole and the exchange interactions are included and the theory is developed for the case of parallel pumping allowing for the inclusion of the nonlinear processes due to the four-magnon interactions. The method of second quantization is used to transform the total Hamiltonian from spin operators to boson creation and annihilation operators. By using the coherent magnon state representation we have studied the magnon occupation number and the statistical behavior of the system. In particular, it is shown that the nonlinearities introduced by the parallel pumping field and the four-magnon interactions lead to non-classical quantum statistical properties of the system, such as magnon squeezing. Also control of the collapse-and-revival phenomena for the time evolution of the average magnon number is demonstrated by varying the parallel pumping amplitude and the four-magnon coupling.

  16. Current Operational Use of and Future Needs for Microwave Imagery at NOAA

    NASA Astrophysics Data System (ADS)

    Goldberg, M.; McWilliams, G.; Chang, P.

    2017-12-01

    There are many applications of microwave imagery served by NOAA's operational products and services. They include the use of microwave imagery and derived products for monitoring precipitation, tropical cyclones, sea surface temperature under all weather conditions, wind speed, snow and ice cover, and even soil moisture. All of NOAA's line offices including the National Weather Service, National Ocean Service, National Marine Fisheries Service, and Office of Oceanic and Atmospheric Research rely on microwave imagery. Currently microwave imagery products used by NOAA come from a constellation of satellites that includes Air Force's Special Sensor Microwave Imager Sounder (SSMIS), the Japanese Advanced Microwave Scanning Radiometer (AMSR), the Navy's WindSat, and NASA's Global Precipitation Monitoring (GPM) Microwave Imager (GMI). Follow-on missions for SSMIS are very uncertain, JAXA approval for a follow-on to AMSR2 is still pending, and GMI is a research satellite (lacking high-latitude coverage) with no commitment for operational continuity. Operational continuity refers to a series of satellites, so when one satellite reaches its design life a new satellite is launched. EUMETSAT has made a commitment to fly a microwave imager in the mid-morning orbit. China and Russia have demonstrated on-orbit microwave imagers. Of utmost importance to NOAA, however, is the quality, access, and latency of the data This presentation will focus on NOAA's current requirements for microwave imagery data which, for the most part, are being fulfilled by AMSR2, SSMIS, and WindSat. It will include examples of products and applications of microwave imagery at NOAA. We will also discuss future needs, especially for improved temporal resolution which hopefully can be met by an international constellation of microwave imagers. Finally, we will discuss what we are doing to address the potential gap in imagery.

  17. Operational Implementation of Sea Ice Concentration Estimates from the AMSR2 Sensor

    NASA Technical Reports Server (NTRS)

    Meier, Walter N.; Stewart, J. Scott; Liu, Yinghui; Key, Jeffrey; Miller, Jeffrey A.

    2017-01-01

    An operation implementation of a passive microwave sea ice concentration algorithm to support NOAA's operational mission is presented. The NASA team 2 algorithm, previously developed for the NASA advanced microwave scanning radiometer for the Earth observing system (AMSR-E) product suite, is adapted for operational use with the JAXA AMSR2 sensor through several enhancements. First, the algorithm is modified to process individual swaths and provide concentration from the most recent swaths instead of a 24-hour average. A latency (time since observation) field and a 24-hour concentration range (maximum-minimum) are included to provide indications of data timeliness and variability. Concentration from the Bootstrap algorithm is a secondary field to provide complementary sea ice information. A quality flag is implemented to provide information on interpolation, filtering, and other quality control steps. The AMSR2 concentration fields are compared with a different AMSR2 passive microwave product, and then validated via comparison with sea ice concentration from the Suomi visible and infrared imaging radiometer suite. This validation indicates the AMSR2 concentrations have a bias of 3.9% and an RMSE of 11.0% in the Arctic, and a bias of 4.45% and RMSE of 8.8% in the Antarctic. In most cases, the NOAA operational requirements for accuracy are met. However, in low-concentration regimes, such as during melt and near the ice edge, errors are higher because of the limitations of passive microwave sensors and the algorithm retrieval.

  18. On-site Rapid Diagnosis of Intracranial Hematoma using Portable Multi-slice Microwave Imaging System.

    PubMed

    Mobashsher, Ahmed Toaha; Abbosh, A M

    2016-11-29

    Rapid, on-the-spot diagnostic and monitoring systems are vital for the survival of patients with intracranial hematoma, as their conditions drastically deteriorate with time. To address the limited accessibility, high costs and static structure of currently used MRI and CT scanners, a portable non-invasive multi-slice microwave imaging system is presented for accurate 3D localization of hematoma inside human head. This diagnostic system provides fast data acquisition and imaging compared to the existing systems by means of a compact array of low-profile, unidirectional antennas with wideband operation. The 3D printed low-cost and portable system can be installed in an ambulance for rapid on-site diagnosis by paramedics. In this paper, the multi-slice head imaging system's operating principle is numerically analysed and experimentally validated on realistic head phantoms. Quantitative analyses demonstrate that the multi-slice head imaging system is able to generate better quality reconstructed images providing 70% higher average signal to clutter ratio, 25% enhanced maximum signal to clutter ratio and with around 60% hematoma target localization compared to the previous head imaging systems. Nevertheless, numerical and experimental results demonstrate that previous reported 2D imaging systems are vulnerable to localization error, which is overcome in the presented multi-slice 3D imaging system. The non-ionizing system, which uses safe levels of very low microwave power, is also tested on human subjects. Results of realistic phantom and subjects demonstrate the feasibility of the system in future preclinical trials.

  19. Influence of Plasma Unsteadiness on the Spectrum and Shape of Microwave Pulses in a Plasma Relativistic Microwave Amplifier

    NASA Astrophysics Data System (ADS)

    Kartashov, I. N.; Kuzelev, M. V.; Strelkov, P. S.; Tarakanov, V. P.

    2018-02-01

    Dependence of the shape of a microwave pulse in a plasma relativistic microwave amplifier (PRMA) on the initial plasma electron density in the system is detected experimentally. Depending on the plasma density, fast disruption of amplification, stable operation of the amplifier during the relativistic electron beam (REB) pulse, and its delayed actuation can take place. A reduction in the output signal frequency relative to the input frequency is observed experimentally. The change in the shape of the microwave signal and the reduction in its frequency are explained by a decrease in the plasma density in the system. The dynamics of the plasma density during the REB pulse is determined qualitatively from the experimental data by using the linear theory of a PRMA with a thin-wall hollow electron beam. The processes in a PRMA are analyzed by means of the KARAT particle-in-cell code. It is shown that REB injection is accompanied by an increase in the mean energy of plasma electrons and a significant decrease in their density.

  20. Advanced systems requirements for ocean observations via microwave radiometers

    NASA Technical Reports Server (NTRS)

    Blume, H.-J. C.; Swift, C. T.; Kendall, B. M.

    1978-01-01

    A future microwave spectroradiometer operating in several frequency bands will have the capability to step or sweep frequencies on an adaptable or programmable basis. The on-board adaptable frequency shifting can make the systems immune from radio interference. Programmable frequency sweeping with on-board data inversion by high speed computers would provide for instantaneous synoptic measurements or sea surface temperature and salinity, water surface and volume pollution, ice thickness, ocean surface winds, snow depth, and soil moisture. Large structure satellites will allow an order of magnitude improvement in the present radiometric measurement spacial resolution.

  1. Microwave power transmission system studies. Volume 3, section 8: Mechanical systems and flight operations

    NASA Technical Reports Server (NTRS)

    Maynard, O. E.; Brown, W. C.; Edwards, A.; Haley, J. T.; Meltz, G.; Howell, J. M.; Nathan, A.

    1975-01-01

    The efforts and recommendations associated with preliminary design and concept definition for mechanical systems and flight operations are presented. Technical discussion in the areas of mission analysis, antenna structural concept, configuration analysis, assembly and packaging with associated costs are presented. Technology issues for the control system, structural system, thermal system and assembly including cost and man's role in assembly and maintenance are identified. Background and desired outputs for future efforts are discussed.

  2. Protecting Against Damage from Refraction of High Power Microwaves in the DIII-D Tokamak

    NASA Astrophysics Data System (ADS)

    Lohr, John; Brambila, Rigo; Cengher, Mirela; Chen, Xi; Gorelov, Yuri; Grosnickle, William; Moeller, Charles; Ponce, Dan; Prater, Ron; Torrezan, Antonio; Austin, Max; Doyle, Edward; Hu, Xing; Dormier, Calvin

    2017-07-01

    Several new protective systems are being installed on the DIII D tokamak to increase the safety margins for plasma operations with injected ECH power at densities approaching cutoff. Inadvertent overdense operation has previously resulted in reflection of an rf beam back into a launcher causing extensive arcing and melt damage on one waveguide line. Damage to microwave diagnostics, which are located on the same side of the tokamak as the ECH launchers, also has occurred. Developing a reliable microwave based interlock to protect the many vulnerable systems in DIII-D has proved to be difficult. Therefore, multiple protective steps have been taken to reduce the risk of damage in the future. Among these is a density interlock generated by the plasma control system, with setpoint determined by the ECH operators based on rf beam trajectories and plasma parameters. Also installed are enhanced video monitoring of the launchers, and an ambient light monitor on each of the waveguide systems, along with a Langmuir probe at the mouth of each launcher. Versatile rf monitors, measuring forward and reflected power in addition to the mode content of the rf beams, have been installed as the last miter bends in each waveguide line. As these systems are characterized, they are being incorporated in the interlock chains, which enable the ECH injection permits. The diagnostics most susceptible to damage from the ECH waves have also been fitted with a variety of protective devices including stripline filters, thin resonant notch filters tuned to the 110 GHz injected microwave frequency, blazed grating filters and shutters. Calculations of rf beam trajectories in the plasmas are performed using the TORAY ray tracing code with input from kinetic profile diagnostics. Using these calculations, strike points for refracted beams on the vacuum vessel are calculated, which allows evaluation of the risk of damage to sensitive diagnostics and hardware.

  3. Protecting against damage from refraction of high power microwaves in the DIII-D tokamak

    DOE PAGES

    Lohr, John; Brambila, Rigo; Cengher, Mirela; ...

    2017-07-24

    Here, several new protective systems are being installed on the DIII D tokamak to increase the safety margins for plasma operations with injected ECH power at densities approaching cutoff. Inadvertent overdense operation has previously resulted in reflection of an rf beam back into a launcher causing extensive arcing and melt damage on one waveguide line. Damage to microwave diagnostics, which are located on the same side of the tokamak as the ECH launchers, also has occurred. Developing a reliable microwave based interlock to protect the many vulnerable systems in DIII-D has proved to be difficult. Therefore, multiple protective steps havemore » been taken to reduce the risk of damage in the future. Among these is a density interlock generated by the plasma control system, with setpoint determined by the ECH operators based on rf beam trajectories and plasma parameters. Also installed are enhanced video monitoring of the launchers, and an ambient light monitor on each of the waveguide systems, along with a Langmuir probe at the mouth of each launcher. Versatile rf monitors, measuring forward and reflected power in addition to the mode content of the rf beams, have been installed as the last miter bends in each waveguide line. As these systems are characterized, they are being incorporated in the interlock chains, which enable the ECH injection permits. The diagnostics most susceptible to damage from the ECH waves have also been fitted with a variety of protective devices including stripline filters, thin resonant notch filters tuned to the 110 GHz injected microwave frequency, blazed grating filters and shutters. Calculations of rf beam trajectories in the plasmas are performed using the TORAY ray tracing code with input from kinetic profile diagnostics. Using these calculations, strike points for refracted beams on the vacuum vessel are calculated, which allows evaluation of the risk of damage to sensitive diagnostics and hardware.« less

  4. Protecting against damage from refraction of high power microwaves in the DIII-D tokamak

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lohr, John; Brambila, Rigo; Cengher, Mirela

    Here, several new protective systems are being installed on the DIII D tokamak to increase the safety margins for plasma operations with injected ECH power at densities approaching cutoff. Inadvertent overdense operation has previously resulted in reflection of an rf beam back into a launcher causing extensive arcing and melt damage on one waveguide line. Damage to microwave diagnostics, which are located on the same side of the tokamak as the ECH launchers, also has occurred. Developing a reliable microwave based interlock to protect the many vulnerable systems in DIII-D has proved to be difficult. Therefore, multiple protective steps havemore » been taken to reduce the risk of damage in the future. Among these is a density interlock generated by the plasma control system, with setpoint determined by the ECH operators based on rf beam trajectories and plasma parameters. Also installed are enhanced video monitoring of the launchers, and an ambient light monitor on each of the waveguide systems, along with a Langmuir probe at the mouth of each launcher. Versatile rf monitors, measuring forward and reflected power in addition to the mode content of the rf beams, have been installed as the last miter bends in each waveguide line. As these systems are characterized, they are being incorporated in the interlock chains, which enable the ECH injection permits. The diagnostics most susceptible to damage from the ECH waves have also been fitted with a variety of protective devices including stripline filters, thin resonant notch filters tuned to the 110 GHz injected microwave frequency, blazed grating filters and shutters. Calculations of rf beam trajectories in the plasmas are performed using the TORAY ray tracing code with input from kinetic profile diagnostics. Using these calculations, strike points for refracted beams on the vacuum vessel are calculated, which allows evaluation of the risk of damage to sensitive diagnostics and hardware.« less

  5. Satellite microwave observations of the Utah Great Salt Lake Desert

    NASA Technical Reports Server (NTRS)

    Ulaby, F. T.; Dellwig, L. F.; Schmugge, T.

    1975-01-01

    Microwave data acquired over the Great Salt Lake Desert area by sensors aboard Skylab and Nimbus 5 indicate that the microwave emission and backscatter were strongly influenced by contributions from subsurface layers of sediment saturated with brine. This phenomenon was observed by Skylab's S-194 radiometer operating at 1.4 GHz, S-193 RADSCAT (Radiometer-Scatterometer) operating at 13.9 GHz, and the Nimbus 5 ESMR (Electrically Scanning Microwave Radiometer) operating at 19.35 GHz. The availability of ESMR data over an 18-month period allowed an investigation of temporal variations.

  6. Wearable system-on-a-chip radiometer for remote temperature sensing and its application to the safeguard of emergency operators.

    PubMed

    Fonte, A; Alimenti, F; Zito, D; Neri, B; De Rossi, D; Lanatà, A; Tognetti, A

    2007-01-01

    The remote sensing and the detection of events that may represent a danger for human beings have become more and more important thanks to the latest advances of the technology. A microwave radiometer is a sensor capable to detect a fire or an abnormal increase of the internal temperature of the human body (hyperthermia), or an onset of a cancer, or even meteorological phenomena (forest fires, pollution release, ice formation on road pavement). In this paper, the overview of a wearable low-cost low-power system-on-a-chip (SoaC) 13 GHz passive microwave radiometer in CMOS 90 nm technology is presented. In particular, we focused on its application to the fire detection for civil safeguard. In detail, this sensor has been thought to be inserted into the fireman jacket in order to help the fireman in the detection of a hidden fire behind a door or a wall. The simulation results obtained by Ptolemy system simulation have confirmed the feasibility of such a SoaC microwave radiometer in a low-cost standard silicon technology for temperature remote sensing and, in particular, for its application to the safeguard of emergency operators.

  7. Photogrammetrically Measured Distortions of Composite Structure Microwave Reflectors at -90K

    NASA Technical Reports Server (NTRS)

    Mule, Peter; Hill, Michael D.; Sampler, Henry P.

    2000-01-01

    The Microwave Anisotropy Probe (MAP) Observatory, scheduled for a late 2000 launch, is designed to measure temperature fluctuations (anisotropy) and produce a high sensitivity and high spatial resolution (better than 0.3 deg. at 90 GHz.) map of the Cosmic Microwave Background (CMB) radiation over the entire sky between 22 and 90 GHz. MAP utilizes back-to-back composite Gregorian telescopes supported on a composite truss structure to focus the microwave signals into 10 differential microwave receivers. Proper position and shape of the telescope reflectors at the operating temperature of -90 K is a critical element to ensure mission success. We describe the methods and analysis used to validate the in-flight position and shape predictions for the reflectors based on photogrammetric metrology data taken under vacuum with the reflectors at -90 K. Contour maps showing reflector distortion were generated. The resulting reflector distortion data are shown to be crucial to the analytical assessment of the MAP instrument's microwave system in-flight performance.

  8. Photogrammetrically Measured Distortions of Composite Structure Microwave Reflectors at Approximately 90 K

    NASA Technical Reports Server (NTRS)

    Mule, Peter; Hill, Michael D.; Sampler, Henry P.

    2000-01-01

    The Microwave Anisotropy Probe (MAP) Observatory, scheduled for a fall 2000 launch, is designed to measure temperature fluctuations (anisotropy) and produce a high sensitivity and high spatial resolution (better than 0.3 deg.) map of the cosmic microwave background (CMB) radiation over the entire sky between 22 and 90 GHz. MAP utilizes back-to-back composite Gregorian telescopes supported on a composite truss structure to focus the microwave signals into 10 differential microwave receivers. Proper position and shape of the telescope reflectors at the operating temperature of approximately 90 K is a critical element to ensuring mission success. We describe the methods and analysis used to validate the in-flight position and shape predictions for the reflectors based on photogrammetric (PG) metrology data taken under vacuum with the reflectors at approximately 90 K. Contour maps showing reflector distortion analytical extrapolations were generated. The resulting reflector distortion data are shown to be crucial to the analytical assessment of the MAP instrument's microwave system in-flight performance.

  9. MAS2-8 radar and digital control unit

    NASA Technical Reports Server (NTRS)

    Oberg, J. M.; Ulaby, F. T.

    1974-01-01

    The design of the MAS 2-8 (2 to 8 GHz microwave-active spectrometer), a ground-based sensor system, is presented. A major modification in 1974 to the MAS 2-8, that of a control subsystem to automate the data-taking operation, is the prime focus. The digital control unit automatically changes all system parameters except FM rate and records the return signal on paper tape. The overall system operation and a detailed discussion of the design and operation of the digital control unit are presented.

  10. Combination microwave ovens: an innovative design strategy.

    PubMed

    Tinga, Wayne R; Eke, Ken

    2012-01-01

    Reducing the sensitivity of microwave oven heating and cooking performance to load volume, load placement and load properties has been a long-standing challenge for microwave and microwave-convection oven designers. Conventional design problem and solution methods are reviewed to provide greater insight into the challenge and optimum operation of a microwave oven after which a new strategy is introduced. In this methodology, a special load isolating and energy modulating device called a transducer-exciter is used containing an iris, a launch box, a phase, amplitude and frequency modulator and a coupling plate designed to provide spatially distributed coupling to the oven. This system, when applied to a combined microwave-convection oven, gives astounding performance improvements to all kinds of baked and roasted foods including sensitive items such as cakes and pastries, with the only compromise being a reasonable reduction in the maximum available microwave power. Large and small metal utensils can be used in the oven with minimal or no performance penalty on energy uniformity and cooking results. Cooking times are greatly reduced from those in conventional ovens while maintaining excellent cooking performance.

  11. Optical emission diagnostics of plasmas in chemical vapor deposition of single-crystal diamond

    DOE PAGES

    Hemawan, Kadek W.; Hemley, Russell J.

    2015-08-03

    Here, a key aspect of single crystal diamond growth via microwave plasma chemical vapor deposition is in-process control of the local plasma-substrate environment, that is, plasma gas phase concentrations of activated species at the plasma boundary layer near the substrate surface. Emission spectra of the plasma relative to the diamond substrate inside the microwave plasma reactor chamber have been analyzed via optical emission spectroscopy. The spectra of radical species such as CH, C 2, and H (Balmer series) important for diamond growth were found to be more depndent on operating pressure than on microwave power. Plasma gas temperatures were calculatedmore » from measurements of the C 2 Swan band (d 3Π → a 3Π transition) system. The plasma gas temperature ranges from 2800 to 3400 K depending on the spatial location of the plasma ball, microwave power and operating pressure. Addition of Ar into CH 4 + H 2 plasma input gas mixture has little influence on the Hα, Hβ, and Hγ intensities and single-crystal diamond growth rates.« less

  12. Extending lean operating limit and reducing emissions of methane spark-ignited engines using a microwave-assisted spark plug

    DOE PAGES

    Rapp, Vi H.; DeFilippo, Anthony; Saxena, Samveg; ...

    2012-01-01

    Amore » microwave-assisted spark plug was used to extend the lean operating limit (lean limit) and reduce emissions of an engine burning methane-air. In-cylinder pressure data were collected at normalized air-fuel ratios of λ = 1.46, λ = 1.51, λ = 1.57, λ = 1.68, and λ = 1.75. For each λ , microwave energy (power supplied to the magnetron per engine cycle) was varied from 0 mJ (spark discharge alone) to 1600 mJ. At lean conditions, the results showed adding microwave energy to a standard spark plug discharge increased the number of complete combustion cycles, improving engine stability as compared to spark-only operation. Addition of microwave energy also increased the indicated thermal efficiency by 4% at λ = 1.68. At λ = 1.75, the spark discharge alone was unable to consistently ignite the air-fuel mixture, resulting in frequent misfires. Although microwave energy produced more consistent ignition than spark discharge alone at λ = 1.75, 59% of the cycles only partially burned. Overall, the microwave-assisted spark plug increased engine performance under lean operating conditions (λ = 1.68) but did not affect operation at conditions closer to stoichiometric.« less

  13. Experimental Study of Quantum Graphs with Microwave Networks

    NASA Astrophysics Data System (ADS)

    Fu, Ziyuan; Koch, Trystan; Antonsen, Thomas; Ott, Edward; Anlage, Steven; Wave Chaos Team

    An experimental setup consisting of microwave networks is used to simulate quantum graphs. The networks are constructed from coaxial cables connected by T junctions. The networks are built for operation both at room temperature and superconducting versions that operate at cryogenic temperatures. In the experiments, a phase shifter is connected to one of the network bonds to generate an ensemble of quantum graphs by varying the phase delay. The eigenvalue spectrum is found from S-parameter measurements on one-port graphs. With the experimental data, the nearest-neighbor spacing statistics and the impedance statistics of the graphs are examined. It is also demonstrated that time-reversal invariance for microwave propagation in the graphs can be broken without increasing dissipation significantly by making nodes with circulators. Random matrix theory (RMT) successfully describes universal statistical properties of the system. We acknowledge support under contract AFOSR COE Grant FA9550-15-1-0171.

  14. Results From the First 118 GHz Passive Microwave Observations Over Antarctica

    NASA Astrophysics Data System (ADS)

    McAllister, R.; Gallaher, D. W.; Gasiewski, A. J.; Periasamy, L.; Belter, R.; Hurowitz, M.; Hosack, W.; Sanders, B. T.

    2017-12-01

    Cooperation between the University of Colorado (Center for Environmental Technology, National Snow and Ice Data Center, and Colorado Space Grant Consortium) and the private corporation Orbital Micro Systems (OMS) has resulted in a highly miniturized passive microwave sensor. This sensor was successfully flown over Antarctica in onboard NASA's DC-8 in Operation Ice Bridge (OIB) in October / November of 2016. Data was collected from the "MiniRad" 8 channel miniaturized microwave sensor, which operated as both a sounder and an imager. The non-calibrated observation included both high and low altitude observations over clouds, sea, ice, ice sheets, and mountains as well as terrain around Tierra del Fuego. Sample results and their significance will be discussed. The instrument is in a form factor suitable for deployment in cubesats and will be launched into orbit next year. Commercial deployments by OMS in a constellation configuration will shortly follow.

  15. The Advanced Technology Microwave Sounder (ATMS): A New Operational Sensor Series

    NASA Technical Reports Server (NTRS)

    Kim, Edward; Lyu, Cheng-H Joseph; Leslie, R. Vince; Baker, Neal; Mo, Tsan; Sun, Ninghai; Bi, Li; Anderson, Mike; Landrum, Mike; DeAmici, Giovanni; hide

    2012-01-01

    ATMS is a new satellite microwave sounding sensor designed to provide operational weather agencies with atmospheric temperature and moisture profile information for global weather forecasting and climate applications. ATMS will continue the microwave sounding capabilities first provided by its predecessors, the Microwave Sounding Unit (MSU) and Advanced Microwave Sounding Unit (AMSU). The first ATMS was launched October 28, 2011 on board the Suomi National Polar-orbiting Partnership (S-NPP) satellite. Microwave soundings by themselves are the highest-impact input data used by Numerical Weather Prediction (NWP) models; and ATMS, when combined with the Cross-track Infrared Sounder (CrIS), forms the Cross-track Infrared and Microwave Sounding Suite (CrIMSS). The microwave soundings help meet NWP sounding requirements under cloudy sky conditions and provide key profile information near the surface

  16. In-line Microwave Warmer for Blood and Intravenous Fluids. Phase 2.

    DTIC Science & Technology

    1988-02-15

    occuring in the battlefield often requires restoring normothermia and infusion of fluids, such as saline or blood, into the patient. These two...elevation is required to restore normal body temperature in response to hypothermic cardioplegic arrest induced prior to the operation. 6 1.2 System... Microfiltration Devices," Acta Annaesth Scand, 23:40- 45, 1979. [20] K Linko, K Hynynen, "Erythrocyte Damage Caused by the Haemotherm Microwave Blood Warmer

  17. Crew procedures for microwave landing system operations

    NASA Technical Reports Server (NTRS)

    Summers, Leland G.

    1987-01-01

    The objective of this study was to identify crew procedures involved in Microwave Landing System (MLS) operations and to obtain a preliminary assessment of crew workload. The crew procedures were identified for three different complements of airborne equipment coupled to an autopilot. Using these three equipment complements, crew tasks were identified for MLS approaches and precision departures and compared to an ILS approach and a normal departure. Workload comparisons between the approaches and departures were made by using a task-timeline analysis program that obtained workload indexes, i.e., the radio of time required to complete the tasks to the time available. The results showed an increase in workload for the MLS scenario for one of the equipment complements. However, even this workload was within the capacity of two crew members.

  18. The effect of microwave electromagnetic radiation on organic compounds removal efficiency in a reactor with a biofilm.

    PubMed

    Zielinski, M; Krzemieniewski, M

    2007-01-01

    This article shows the results of research on microwave radiation as a factor affecting organic compounds removal in a reactor with a biofilm. In the experiment a bioreactor was situated inside a microwave tube and there exposed to radiation. Municipal wastes were supplied to the bioreactor from a retention tank, to which they returned having passed through the reactor's packing. The whole system operated in a time cycle comprising a 24-hour detention of the wastewaters supply. The research was based on the specific properties of microwave heating, i.e. their ability to heat only the substances of appropriate dielectric properties. As the reactor was properly constructed and the microwave generator work was synchronised with that of the volumetric pump, microwave energy was directed mostly to the biofilm. It was observed that as a result of microwave radiation the process of organic compounds removal, defined as Chemical Oxygen Demand COD, increased its rate nearly by half. Simultaneously the process efficiency increased by 7.7% at the maximum. While analysing the changes the organic compounds underwent it was revealed that the load in-built in the biomass decreased by over half as a result of microwave radiation input at 2.5 W s(-1), which was optimal under the experimental conditions. Similarly the amount of pollutant remaining in the treated effluent decreased nearly by half, whereas the role of oxidation in removing organic pollutant increased in excess of 25% when compared to the control system.

  19. Hyperspectral Microwave Atmospheric Sounder (HyMas) - New Capability in the CoSMIR-CoSSIR Scanhead

    NASA Technical Reports Server (NTRS)

    Hilliard, L. M.; Racette, P. E.; Blackwell, W.; Galbraith, C.; Thompson, E.

    2015-01-01

    Lincoln Laboratory and NASA's Goddard Space Flight Center have teamed to re-use an existing instrument platform, the CoSMIRCoSSIR system for atmospheric sounding, to develop a new capability in hyperspectral filtering, data collection, and display. The volume of the scanhead accomodated an intermediate frequency processor(IFP), that provides the filtering and digitization of the raw data and the interoperable remote component (IRC) adapted to CoSMIR, CoSSIR, and HyMAS that stores and archives the data with time tagged calibration and navigation data.The first element of the work is the demonstration of a hyperspectral microwave receiver subsystem that was recently shown using a comprehensive simulation study to yield performance that substantially exceeds current state-of-the-art. Hyperspectral microwave sounders with 100 channels offer temperature and humidity sounding improvements similar to those obtained when infrared sensors became hyperspectral, but with the relative insensitivity to clouds that characterizes microwave sensors. Hyperspectral microwave operation is achieved using independent RF antennareceiver arrays that sample the same areavolume of the Earths surfaceatmosphere at slightly different frequencies and therefore synthesize a set of dense, finely spaced vertical weighting functions. The second, enabling element of the proposal is the development of a compact 52-channel Intermediate Frequency processor module. A principal challenge in the development of a hyperspectral microwave system is the size of the IF filter bank required for channelization. Large bandwidths are simultaneously processed, thus complicating the use of digital back-ends with associated high complexities, costs, and power requirements. Our approach involves passive filters implemented using low-temperature co-fired ceramic (LTCC) technology to achieve an ultra-compact module that can be easily integrated with existing RF front-end technology. This IF processor is universally applicable to other microwave sensing missions requiring compact IF spectrometry.The data include 52 operational channels with low IF module volume (100cm3) and mass (300g) and linearity better than 0.3 over a 330K dynamic range.

  20. Space propulsion and power beaming using millimeter systems

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Benford, J.; Dickinson, R.

    1995-11-01

    Past schemes for using beamed microwave power for space propulsion and providing power to space platforms have used microwaves below 10 GHz. Recent expansions of the high power microwave technology domain offer fundamental reassessment of the following missions: (1) location of orbital debris, (2) supplying power to loitering high-altitude airplanes, (3) satellite battery recharging, (4) imaging of asteroids, (5) orbit raising and transfer, (6) interplanetary probe launch to the outer planets and comets, and ultimately (7) launch into Earth orbit. This group of applications may be done by a ground-based system. The system would start small, being built for themore » near Earth missions, and be enlarged incrementally as the technology matures and confidence develops. Of particular interest are sources in the millimeter range where there are low loss atmospheric windows and MJ pulses are available in quasi-CW operation. A development scenario for these missions using millimeter wave technology is described.« less

  1. Method and device for microwave sintering large ceramic articles

    DOEpatents

    Kimrey, Jr., Harold D.

    1990-01-01

    A microwave sintering system and method are provided for extremely uniform sintering of large and/or irregular shaped ceramic articles at microwave frequencies of at least 28 GHz in the hundreds of kilowatts power range in an untuned cavity. A 28 GHz, 200 kw gyrotron with variable power output is used as the microwave source connected to an untuned microwave cavity formed of an electrically conductive housing through an overmoded waveguide arrangement which acts in conjunction with a mode promoter within the cavity to achieve unexpected field uniformity. The part to be sintered is placed in the cavity and supported on a removable high temperature table in a central location within the cavity. The part is surrounded by a microwave transparent bulk insulating material to reduce thermal heat loss at the part surfaces and maintain more uniform temperature. The cavity may be operated at a high vacuum to aid in preventing arcing. The system allows controlled increased heating rates of greater than 200.degree. C./min to provide rapid heating of a ceramic part to a selected sintering temperature where it is maintained by regulating the microwave power applied to the part. As a result of rapid heating, the extent of non-isothermal processes such as segregation of impurities to the grain boundaries are minimized and exaggerated grain growth is reduced, thereby strengthening the mechanical properties of the ceramic part being sintered.

  2. The Role of Combination Techniques in Maximizing the Utility of Precipitation Estimates from Several Multi-Purpose Remote-Sensing Systems

    NASA Technical Reports Server (NTRS)

    Huffman, George J.; Adler, Robert F.; Bolvin, David T.; Curtis, Scott; Einaudi, Franco (Technical Monitor)

    2001-01-01

    Multi-purpose remote-sensing products from various satellites have proved crucial in developing global estimates of precipitation. Examples of these products include low-earth-orbit and geosynchronous-orbit infrared (leo- and geo-IR), Outgoing Longwave Radiation (OLR), Television Infrared Operational Satellite (TIROS) Operational Vertical Sounder (TOVS) data, and passive microwave data such as that from the Special Sensor Microwave/ Imager (SSM/I). Each of these datasets has served as the basis for at least one useful quasi-global precipitation estimation algorithm; however, the quality of estimates varies tremendously among the algorithms for the different climatic regions around the globe.

  3. The Global Precipitation Measurement (GPM) Mission: Overview and U.S. Status

    NASA Technical Reports Server (NTRS)

    Hou, Arthur Y.; Azarbarzin, Ardeshir A.; Kakar, Ramesh K.; Neeck, Steven

    2011-01-01

    The Global Precipitation Measurement (GPM) Mission is an international satellite mission specifically designed to unify and advance precipitation measurements from a constellation of research and operational microwave sensors. The cornerstone of the GPM mission is the deployment of a Core Observatory in a 65 deg non-Sun-synchronous orbit to serve as a physics observatory and a transfer standard for inter-calibration of constellation radiometers. The GPM Core Observatory will carry a Ku/Ka-band Dual-frequency Precipitation Radar (DPR) and a conical-scanning multi-channel (10-183 GHz) GPM Microwave Radiometer (GMI). The first space-borne dual-frequency radar will provide not only measurements of 3-D precipitation structures but also quantitative information on microphysical properties of precipitating particles needed for improving precipitation retrievals from passive microwave sensors. The combined use of DPR and GMI measurements will place greater constraints on radiometer retrievals to improve the accuracy and consistency of precipitation estimates from all constellation radiometers. The GPM constellation is envisioned to comprise five or more conical-scanning microwave radiometers and four or more cross-track microwave sounders on operational satellites. NASA and the Japan Aerospace Exploration Agency (JAXA) plan to launch the GPM Core in July 2013. NASA will provide a second radiometer to be flown on a partner-provided GPM Low-Inclination Observatory (L10) to improve near real-time monitoring of hurricanes and mid-latitude storms. NASA and the Brazilian Space Program (AEB/IPNE) are currently engaged in a one-year study on potential L10 partnership. JAXA will contribute to GPM data from the Global Change Observation Mission-Water (GCOM-W) satellite. Additional partnerships are under development to include microwave radiometers on the French-Indian Megha-Tropiques satellite and U.S. Defense Meteorological Satellite Program (DMSP) satellites, as well as cross-track scanning humidity sounders on operational satellites such as the National Polar-orbiting Operational Environmental Satellite System (NPOESS) Preparatory Project (NPP), POES, the NASA/NOAA Joint Polar Satellite System (JPSS), and EUMETSAT MetOp satellites. Data from Chinese and Russian microwave radiometers may also become available through international collaboration under the auspices of the Committee on Earth Observation Satellites (CEOS) and Group on Earth Observations (GEO). The current generation of global rainfall products combines observations from a network of uncoordinated satellite missions using a variety of merging techniques. Relative to current data products, GPM's "nextgeneration" precipitation products will be characterized by: (1) more accurate instantaneous precipitation estimate (especially for light rain and cold-season solid precipitation), (2) more frequent sampling by an expanded constellation of microwave radiometers including operational humidity sounders over land, (3) intercalibrated microwave brightness temperatures from constellation radiometers within a unified framework, and (4) physical-based precipitation retrievals from constellation radiometers using a common a priori hydrometeor database constrained by combined radar/radiometer measurements provided by the GPM Core Observatory. An overview of the GPM mission concept, the U.S. GPM program status and updates on international science collaborations on GPM will be presented.

  4. Microwave detection of fatigue cracks in specially prepared steel specimens.

    DOT National Transportation Integrated Search

    1998-01-01

    In the aging highway systems the problems of fatigue-induced damage and cracking in metal structures are very severe. Many such systems are operating even beyond their design lifetime, which requires more than the originally prescribed inspection cyc...

  5. Coherent interaction with two-level fluctuators using near field scanning microwave microscopy.

    PubMed

    de Graaf, S E; Danilov, A V; Kubatkin, S E

    2015-11-24

    Near field Scanning Microwave Microscopy (NSMM) is a scanning probe technique that non-invasively can obtain material properties on the nano-scale at microwave frequencies. While focus has been on developing room-temperature systems it was recently shown that this technique can potentially reach the quantum regime, opening up for applications in materials science and device characterization in solid state quantum information processing. In this paper we theoretically investigate this new regime of NSMM. Specifically we show that interaction between a resonant NSMM probe and certain types of two-level systems become possible when the NSMM probe operates in the (sub-) single photon regime, and we expect a high signal-to-noise ratio if operated under the right conditions. This would allow to detect single atomic material defects with energy splittings in the GHz range with nano-scale resolution, provided that individual defects in the material under study are well enough separated. We estimate that this condition is fulfilled for materials with loss tangents below tan δ ∼ 10(-3) which holds for materials used in today's quantum circuits and devices where typically tan δ < 10(-5). We also propose several extensions to a resonant NSMM that could improve sensitivity and functionality also for microscopes operating in a high power regime.

  6. High-performance flexible microwave passives on plastic

    NASA Astrophysics Data System (ADS)

    Ma, Zhenqiang; Seo, Jung-Hun; Cho, Sang June; Zhou, Weidong

    2014-06-01

    We report the demonstration of bendable inductors, capacitors and switches fabricated on a polyethylene terephthalate (PET) substrate that can operate at high microwave frequencies. By employing bendable dielectric and single crystalline semiconductor materials, spiral inductors and metal-insulator-metal (MIM) capacitors with high quality factors and high resonance frequencies and single-pole, single-throw (SPST) switches were archived. The effects of mechanical bending on the performance of inductors, capacitors and switches were also measured and analyzed. We further investigated the highest possible resonance frequencies and quality factors of inductors and capacitors and, high frequency responses and insertion loss. These demonstrations will lead to flexible radio-frequency and microwave systems in the future.

  7. Precipitation Estimation Using Combined Radar/Radiometer Measurements Within the GPM Framework

    NASA Technical Reports Server (NTRS)

    Hou, Arthur

    2012-01-01

    The Global Precipitation Measurement (GPM) Mission is an international satellite mission specifically designed to unify and advance precipitation measurements from a constellation of research and operational microwave sensors. The GPM mission centers upon the deployment of a Core Observatory in a 65o non-Sun-synchronous orbit to serve as a physics observatory and a transfer standard for intersatellite calibration of constellation radiometers. The GPM Core Observatory will carry a Ku/Ka-band Dual-frequency Precipitation Radar (DPR) and a conical-scanning multi-channel (10-183 GHz) GPM Microwave Radiometer (GMI). The DPR will be the first dual-frequency radar in space to provide not only measurements of 3-D precipitation structures but also quantitative information on microphysical properties of precipitating particles needed for improving precipitation retrievals from microwave sensors. The DPR and GMI measurements will together provide a database that relates vertical hydrometeor profiles to multi-frequency microwave radiances over a variety of environmental conditions across the globe. This combined database will be used as a common transfer standard for improving the accuracy and consistency of precipitation retrievals from all constellation radiometers. For global coverage, GPM relies on existing satellite programs and new mission opportunities from a consortium of partners through bilateral agreements with either NASA or JAXA. Each constellation member may have its unique scientific or operational objectives but contributes microwave observations to GPM for the generation and dissemination of unified global precipitation data products. In addition to the DPR and GMI on the Core Observatory, the baseline GPM constellation consists of the following sensors: (1) Special Sensor Microwave Imager/Sounder (SSMIS) instruments on the U.S. Defense Meteorological Satellite Program (DMSP) satellites, (2) the Advanced Microwave Scanning Radiometer-2 (AMSR-2) on the GCOM-W1 satellite of JAXA, (3) the Multi-Frequency Microwave Scanning Radiometer (MADRAS) and the multi-channel microwave humidity sounder (SAPHIR) on the French-Indian Megha- Tropiques satellite, (4) the Microwave Humidity Sounder (MHS) on the National Oceanic and Atmospheric Administration (NOAA)-19, (5) MHS instruments on MetOp satellites launched by the European Organisation for the Exploitation of Meteorological Satellites (EUMETSAT), (6) the Advanced Technology Microwave Sounder (ATMS) on the National Polar-orbiting Operational Environmental Satellite System (NPOESS) Preparatory Project (NPP), and (7) ATMS instruments on the NOAA-NASA Joint Polar Satellite System (JPSS) satellites. Data from Chinese and Russian microwave radiometers may also become available through international collaboration under the auspices of the Committee on Earth Observation Satellites (CEOS) and Group on Earth Observations (GEO). The current generation of global rainfall products combines observations from a network of uncoordinated satellite missions using a variety of merging techniques. GPM will provide next-generation precipitation products characterized by: (1) more accurate instantaneous precipitation estimate (especially for light rain and cold-season solid precipitation), (2) intercalibrated microwave brightness temperatures from constellation radiometers within a consistent framework, and (3) unified precipitation retrievals from constellation radiometers using a common a priori hydrometeor database constrained by combined radar/radiometer measurements provided by the GPM Core Observatory.

  8. An approach of ionic liquids/lithium salts based microwave irradiation pretreatment followed by ultrasound-microwave synergistic extraction for two coumarins preparation from Cortex fraxini.

    PubMed

    Liu, Zaizhi; Gu, Huiyan; Yang, Lei

    2015-10-23

    Ionic liquids/lithium salts solvent system was successfully introduced into the separation technique for the preparation of two coumarins (aesculin and aesculetin) from Cortex fraxini. Ionic liquids/lithium salts based microwave irradiation pretreatment followed by ultrasound-microwave synergy extraction (ILSMP-UMSE) procedure was developed and optimized for the sufficient extraction of these two analytes. Several variables which can potentially influence the extraction yields, including pretreatment time and temperature, [C4mim]Br concentration, LiAc content, ultrasound-microwave synergy extraction (UMSE) time, liquid-solid ratio, and UMSE power were optimized by Plackett-Burman design. Among seven variables, UMSE time, liquid-solid ratio, and UMSE power were the statistically significant variables and these three factors were further optimized by Box-Behnken design to predict optimal extraction conditions and find out operability ranges with maximum extraction yields. Under optimum operating conditions, ILSMP-UMSE showed higher extraction yields of two target compounds than those obtained by reference extraction solvents. Method validation studies also evidenced that ILSMP-UMSE is credible for the preparation of two coumarins from Cortex fraxini. This study is indicative of the proposed procedure that has huge application prospects for the preparation of natural products from plant materials. Copyright © 2015 Elsevier B.V. All rights reserved.

  9. All-optical and broadband microwave fundamental/sub-harmonic I/Q down-converters.

    PubMed

    Gao, Yongsheng; Wen, Aijun; Jiang, Wei; Fan, Yangyu; He, You

    2018-03-19

    Microwave I/Q down-converters are frequently used in image-reject super heterodyne receivers, zero intermediate frequency (zero-IF) receivers, and phase/frequency discriminators. However, due to the electronic bottleneck, conventional microwave I/Q mixers face a serious bandwidth limitation, I/Q imbalance, and even-order distortion. In this paper, photonic microwave fundamental and sub-harmonic I/Q down-converters are presented using a polarization division multiplexing dual-parallel Mach-Zehnder modulator (PDM-DPMZM). Thanks to all-optical manipulation, the proposed system features an ultra-wide operating band (7-40 GHz in the fundamental I/Q down-converter, and 10-40 GHz in the sub-harmonic I/Q down-converter) and an excellent I/Q balance (maximum 0.7 dB power imbalance and 1 degree phase imbalance). The conversion gain, noise figure (NF), even-order distortion, and spurious free dynamic range (SFDR) are also improved by LO power optimization and balanced detection. Using the proposed system, a high image rejection ratio is demonstrated for a super heterodyne receiver, and good EVMs over a wide RF power range is demonstrated for a zero-IF receiver. The proposed broadband photonic microwave fundamental and sub-harmonic I/Q down-converters may find potential applications in multi-band satellite, ultra-wideband radar and frequency-agile electronic warfare systems.

  10. Hand-held microwave search detector

    NASA Astrophysics Data System (ADS)

    Daniels, David J.; Philippakis, Mike

    2005-05-01

    This paper describes the further development of a patented, novel, low cost, microwave search detector using noise radar technology operating in the 27-40GHz range of frequencies, initially reported in SPIE 2004. Initial experiments have shown that plastic explosives, ceramics and plastic material hidden on the body can be detected with the system. This paper considers the basic physics of the technique and reports on the development of a initial prototype system for hand search of suspects and addresses the work carried out on optimisation of PD and FAR. The radar uses a novel lens system and the design and modelling of this for optimum depth of field of focus will be reported.

  11. Testing of a Microwave Blade Tip Clearance Sensor at the NASA Glenn Research Center

    NASA Technical Reports Server (NTRS)

    Woike, Mark R.; Roeder, James W.; Hughes, Christopher E.; Bencic, Timothy J.

    2009-01-01

    The development of new active tip clearance control and structural health monitoring schemes in turbine engines and other types of rotating machinery requires sensors that are highly accurate and can operate in a high-temperature environment. The use of a microwave sensor to acquire blade tip clearance and tip timing measurements is being explored at the NASA Glenn Research Center. The microwave blade tip clearance sensor works on principles that are very similar to a short-range radar system. The sensor sends a continuous microwave signal towards a target and measures the reflected signal. The phase difference of the reflected signal is directly proportional to the distance between the sensor and the target being measured. This type of sensor is beneficial in that it has the ability to operate at extremely high temperatures and is unaffected by contaminants that may be present in turbine engines. The use of microwave sensors for this application is a new concept. Techniques on calibrating the sensors along with installation effects are not well quantified as they are for other sensor technologies. Developing calibration techniques and evaluating installation effects are essential in using these sensors to make tip clearance and tip timing measurements. As a means of better understanding these issues, the microwave sensors were used on a benchtop calibration rig, a large axial vane fan, and a turbofan. Background on the microwave tip clearance sensor, an overview of their calibration, and the results from their use on the axial vane fan and the turbofan will be presented in this paper.

  12. Testing of a Microwave Blade Tip Clearance Sensor at the NASA Glenn Research Center

    NASA Technical Reports Server (NTRS)

    Woike, Mark R.; Roeder, James W.; Hughes, Christopher E.; Bencic, Timothy J.

    2009-01-01

    The development of new active tip clearance control and structural health monitoring schemes in turbine engines and other types of rotating machinery requires sensors that are highly accurate and can operate in a high temperature environment. The use of a microwave sensor to acquire blade tip clearance and tip timing measurements is being explored at the NASA Glenn Research Center. The microwave blade tip clearance sensor works on principles that are very similar to a short range radar system. The sensor sends a continuous microwave signal towards a target and measures the reflected signal. The phase difference of the reflected signal is directly proportional to the distance between the sensor and the target being measured. This type of sensor is beneficial in that it has the ability to operate at extremely high temperatures and is unaffected by contaminants that may be present in turbine engines. The use of microwave sensors for this application is a new concept. Techniques on calibrating the sensors along with installation effects are not well quantified as they are for other sensor technologies. Developing calibration techniques and evaluating installation effects are essential in using these sensors to make tip clearance and tip timing measurements. As a means of better understanding these issues, the microwave sensors were used on a bench top calibration rig, a large axial vane fan, and a turbofan. Background on the microwave tip clearance sensor, an overview of their calibration, and the results from their use on the axial vane fan and the turbofan will be presented in this paper.

  13. Lessons Learned from the Deployment and Integration of a Microwave Sounder Based Tropical Cyclone Intensity and Surface Wind Estimation Algorithm into NOAA/NESDIS Satellite Product Operations

    NASA Astrophysics Data System (ADS)

    Longmore, S. P.; Knaff, J. A.; Schumacher, A.; Dostalek, J.; DeMaria, R.; Chirokova, G.; Demaria, M.; Powell, D. C.; Sigmund, A.; Yu, W.

    2014-12-01

    The Colorado State University (CSU) Cooperative Institute for Research in the Atmosphere (CIRA) has recently deployed a tropical cyclone (TC) intensity and surface wind radii estimation algorithm that utilizes Suomi National Polar-orbiting Partnership (S-NPP) satellite Advanced Technology Microwave Sounder (ATMS) and Advanced Microwave Sounding Unit (AMSU) from the NOAA18, NOAA19 and METOPA polar orbiting satellites for testing, integration and operations for the Product System Development and Implementation (PSDI) projects at NOAA's National Environmental Satellite, Data, and Information Service (NESDIS). This presentation discusses the evolution of the CIRA NPP/AMSU TC algorithms internally at CIRA and its migration and integration into the NOAA Data Exploitation (NDE) development and testing frameworks. The discussion will focus on 1) the development cycle of internal NPP/AMSU TC algorithms components by scientists and software engineers, 2) the exchange of these components into the NPP/AMSU TC software systems using the subversion version control system and other exchange methods, 3) testing, debugging and integration of the NPP/AMSU TC systems both at CIRA/NESDIS and 4) the update cycle of new releases through continuous integration. Lastly, a discussion of the methods that were effective and those that need revision will be detailed for the next iteration of the NPP/AMSU TC system.

  14. Proposed Continental Operations Range. United States Air Force.

    DTIC Science & Technology

    1974-06-01

    when de -ailed plans are formulated to link H/W/D with COR/Nellis with a microwave system. Location of microwave repeaters in US Forest lands will be...be of significance. Supersonic activity is planned to avoid population areas, known structures, and random activities like known archaeological...to Land Use Plans and Policies 1-11 1.4’ Probable Impacts of the Proposed Action 1-13 1.5 Alternatives to the Proposed Action 1-19 1.6 Offsetting

  15. Satellite Power System (SPS). State and local regulations as applied to satellite power system microwave receiving antenna facilities

    NASA Technical Reports Server (NTRS)

    Kotin, A. D.

    1978-01-01

    State and local regulation of power plant construction and operation of solar power satellite (SPS) receiving stations is presented. Each receiving antenna station occupies a land area 100-200 km square, receives microwave transmissions from the solar power satellite, and converts them into electricity for transmission to the power grid. The long lead time associated with the SPS and the changing status of state and local regulation dictated emphasis on: generic classification of the types of regulation, and identification of regulatory vectors which affect rectenna facilities.

  16. 78 FR 6217 - Facilitating the Use of Microwave for Wireless Backhaul and Other Uses and Providing Additional...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-01-30

    ... Broadcast Auxiliary Service and Operational Fixed Microwave Licensees AGENCY: Federal Communications... announces that the Office of Management and Budget (OMB) has approved, for a period of three years, the... Service and Operational Fixed Microwave Licensees. This notice is consistent with the Order, which stated...

  17. 78 FR 7278 - Facilitating the use of Microwave for Wireless Backhaul and Other Uses and Providing Additional...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-02-01

    ... Broadcast Auxiliary Service and Operational Fixed Microwave Licensees AGENCY: Federal Communications... announces that the Office of Management and Budget (OMB) has approved, for a period of three years, the... Broadcast Auxiliary Service and Operational Fixed Microwave Licensees. This notice is consistent with the R...

  18. Non-invasive Continuous Monitoring of Cerebral Edema Using Portable Microwave Based System

    NASA Astrophysics Data System (ADS)

    Jiang, Yuhao; Zhao, Minji; Wang, Huiqian; Li, Guoquan

    2018-01-01

    A portable non-invasive head detecting system based on microwave technology was developed for evaluation of cerebral edema change inside human brain. Real-time monitoring of cerebral edema in the brain helps the clinician to assess medical condition and treatment. In this work, a microwave signal was transmitted and coupled into an open-end circular waveguide sensor, incident on a 3D printed head phantom, and reflected back to receiver. Theoretically, the operation of this instrument depends on the conductivity contrast between cerebral edema and healthy brain tissues. The efficacy of the proposed detecting system is verified using 3D printed anatomically and dielectrically realistic human head phantoms with simulated cerebral edema targets with different size. Changes in the amplitude of time domain result were shown to be induced by the expansion or decrease of the edema volume. The eventual goal of this proposed head evaluating system is use in the hospital as an effective real-time monitoring tool.

  19. Operational profiling of temperature using ground-based microwave radiometry at Payerne: prospects and challenges

    NASA Astrophysics Data System (ADS)

    Löhnert, U.; Maier, O.

    2012-05-01

    The motivation of this study is to verify theoretical expectations placed on ground-based microwave radiometer (MWR) techniques and to confirm whether they are suitable for supporting key missions of national weather services, such as timely and accurate weather advisories and warnings. We evaluate reliability and accuracy of atmospheric temperature profiles retrieved continuously by the microwave profiler system HATPRO (Humidity And Temperature PROfiler) operated at the aerological station of Payerne (MeteoSwiss) in the time period August 2006-December 2009. Assessment is performed by comparing temperatures from the radiometer against temperature measurements from a radiosonde accounting for a total of 2107 quality-controlled all-season cases. In the evaluated time period, the MWR delivered reliable temperature profiles in 86% of all-weather conditions on a temporal resolution of 12-13 min. Random differences between MWR and radiosonde are down to 0.5 K in the lower boundary layer and increase to 1.7 K at 4 km height. The differences observed between MWR and radiosonde in the lower boundary layer are similar to the differences observed between the radiosonde and another in-situ sensor located on a close-by 30 m tower. Temperature retrievals from above 4 km contain less than 5% of the total information content of the measurements, which makes clear that this technique is mainly suited for continuous observations in the boundary layer. Systematic temperature differences are also observed throughout the retrieved profile and can account for up to ±0.5 K. These errors are due to offsets in the measurements of the microwave radiances that have been corrected for in data post-processing and lead to nearly bias-free overall temperature retrievals. Different reasons for the radiance offsets are discussed, but cannot be unambiguously determined retrospectively. Monitoring and, if necessary, corrections for radiance offsets as well as a real-time rigorous automated data quality control are mandatory for microwave profiler systems that are designated for operational temperature profiling. In the analysis of a subset of different atmospheric situations, it is shown that lifted inversions and data quality during precipitation present the largest challenges for operational MWR temperature profiling.

  20. Low-frequency microwave radiometer for N-ROSS

    NASA Astrophysics Data System (ADS)

    Hollinger, J. P.; Lo, R. C.

    1985-04-01

    The all weather, global determination of sea surface temperature (SST) has been identified as a requirement needed to support naval operations. The target SST accuracy is + or - 1.0 K with a surface resolution of 10 km. Investigations of the phenomenology and technology of remote passive microwave sensing of the ocean environment over the past decade have demonstrated that this objective is presently attainable. Preliminary specification and trade off studies were conducted to define the frequency, polarization, scan geometry, antenna size, and other esstential parameters of the low frequency microwave radiometer (LFMR). It will be a dual polarized, dual frequency system at 5.2 and 10.4 GHz using a 4.9 meter deployable mesh surface antenna. It is to be flown on the Navy-Remote Ocean Sensing System (N-ROSS) satellite scheduled to be launched in late 1988.

  1. Low-frequency microwave radiometer for N-ROSS

    NASA Technical Reports Server (NTRS)

    Hollinger, J. P.; Lo, R. C.

    1985-01-01

    The all weather, global determination of sea surface temperature (SST) has been identified as a requirement needed to support naval operations. The target SST accuracy is + or - 1.0 K with a surface resolution of 10 km. Investigations of the phenomenology and technology of remote passive microwave sensing of the ocean environment over the past decade have demonstrated that this objective is presently attainable. Preliminary specification and trade off studies were conducted to define the frequency, polarization, scan geometry, antenna size, and other esstential parameters of the low frequency microwave radiometer (LFMR). It will be a dual polarized, dual frequency system at 5.2 and 10.4 GHz using a 4.9 meter deployable mesh surface antenna. It is to be flown on the Navy-Remote Ocean Sensing System (N-ROSS) satellite scheduled to be launched in late 1988.

  2. Global positioning system supported pilot's display

    NASA Technical Reports Server (NTRS)

    Scott, Marshall M., Jr.; Erdogan, Temel; Schwalb, Andrew P.; Curley, Charles H.

    1991-01-01

    The hardware, software, and operation of the Microwave Scanning Beam Landing System (MSBLS) Flight Inspection System Pilot's Display is discussed. The Pilot's Display is used in conjunction with flight inspection tests that certify the Microwave Scanning Beam Landing System used at Space Shuttle landing facilities throughout the world. The Pilot's Display was developed for the pilot of test aircraft to set up and fly a given test flight path determined by the flight inspection test engineers. This display also aids the aircraft pilot when hazy or cloud cover conditions exist that limit the pilot's visibility of the Shuttle runway during the flight inspection. The aircraft position is calculated using the Global Positioning System and displayed in the cockpit on a graphical display.

  3. Microwave Extraction of Volatiles for Mars Science and ISRU

    NASA Technical Reports Server (NTRS)

    Ethridge, Edwin C.; Kaulker, William F.

    2012-01-01

    The greatest advantage of microwave heating for volatiles extraction is that excavation can be greatly reduced. Surface support operations would be simple consisting of rovers with drilling capability for insertion of microwaves down bore holes to heat at desired depths. The rovers would also provide support to scientific instruments for volatiles analysis and for volatiles collection and storage. The process has the potential for a much lower mass and a less complex system than other in-situ processes. Microwave energy penetrates the surface heating within with subsequent sublimation of water or decomposition of volatile containing minerals. On Mars the volatiles should migrate to the surface to be captured with a cold trap. The water extraction and transport process coupled with atmospheric CO2 collection could readily lead to a propellant production process, H2O + CO2 yields CH4 + O2.

  4. Coaxial microwave electrothermal thruster performance in hydrogen

    NASA Technical Reports Server (NTRS)

    Richardson, W.; Asmussen, J.; Hawley, M.

    1994-01-01

    The microwave electro thermal thruster (MET) is an electric propulsion concept that offers the promise of high performance combined with a long lifetime. A unique feature of this electric propulsion concept is its ability to create a microwave plasma discharge separated or floating away from any electrodes or enclosing walls. This allows propellant temperatures that are higher than those in resistojets and reduces electrode and wall erosion. It has been demonstrated that microwave energy is coupled into discharges very efficiently at high input power levels. As a result of these advantages, the MET concept has been identified as a future high power electric propulsion possibility. Recently, two additional improvements have been made to the coaxial MET. The first was concerned with improving the microwave matching. Previous experiments were conducted with 10-30 percent reflected power when incident power was in excess of 600 W(exp 6). Power was reflected back to the generator because the impedance of the MET did not match the 50 ohm impedance of the microwave circuit. To solve this problem, a double stub tuning system has been inserted between the MET and the microwave power supply. The addition of the double stub tuners reduces the reflected power below 1 percent. The other improvement has prepared the coaxial MET for hydrogen experiments. To operate with hydrogen, the vacuum window which separates the coaxial line from the discharge chamber has been changed from teflon to boron nitride. All the microwave energy delivered to the plasma discharge passes through this vacuum window. This material change had caused problems in the past because of the increased microwave reflection coefficients associated with the electrical properties of boron nitride. However, by making the boron nitride window electrically one-half of a wavelength long, power reflection in the window has been eliminated. This technical note summarizes the experimental performance of the improved coaxial MET when operating in nitrogen, helium, and hydrogen gases.

  5. [Microwave stimulated cell marker analysis. Possibilities for more rapid immune diagnosis].

    PubMed

    Ebener, U; Wehner, S

    1993-01-01

    We describe a successful rapid APAAP-complex technique using innovative application of microwave irradiation (MIWI) on Ficoll separated peripheral blood mononuclear cell smears of healthy donors. The typing with several monoclonal antibodies (MoAbs) against different cell surface antigens is compared with the conventional APAAP procedure. The commercial domestic microwave oven was operated at 2.45 GHz. Fifteen second irradiation at 350 W during all incubation steps, e.g. primary antibody, bridging antibody and APAAP-complexes produced excellent color reactions with Fast Red TR, Fast Blue BB, New Fuchsin or NBT similar with the conventional immunoenzyme procedure. The routinely usage of a Silicon-Chamber-System developed by us is applicable without limitation under microwave conditions. The results till now have shown that the application of microwave-technique (MIWI) eliminated the need for much longer incubation periods without lost of sensitivity. All immunological markers could be detected in the same degree as observed with the conventional method. We could demonstrate that an immunological diagnosis is possible within 30 minutes using air dried smears in an microwave oven.

  6. Design criteria of the bolometer diagnostic for steady-state operation of the W7-X stellaratora)

    NASA Astrophysics Data System (ADS)

    Zhang, D.; Burhenn, R.; Koenig, R.; Giannone, L.; Grodzki, P. A.; Klein, B.; Grosser, K.; Baldzuhn, J.; Ewert, K.; Erckmann, V.; Hirsch, M.; Laqua, H. P.; Oosterbeek, J. W.

    2010-10-01

    A bolometric diagnostic system with features necessary for steady-state operation in the superconducting stellarator W7-X was designed. During a pulse length of 1800 s with an ECRH (electron cyclotron resonance heating) power of 10 MW, the components suffer not only from a large thermal load but also from stray radiation of the nonabsorbed isotropic microwaves. This paper gives an overview of the technical problems encountered during the design work and the solutions to individual problems to meet the special requirements in W7-X, e.g., component thermal protection, detector offset thermal drift suppression, as well as a microwave shielding technique.

  7. Quantitative measurements of nanoscale permittivity and conductivity using tuning-fork-based microwave impedance microscopy

    NASA Astrophysics Data System (ADS)

    Wu, Xiaoyu; Hao, Zhenqi; Wu, Di; Zheng, Lu; Jiang, Zhanzhi; Ganesan, Vishal; Wang, Yayu; Lai, Keji

    2018-04-01

    We report quantitative measurements of nanoscale permittivity and conductivity using tuning-fork (TF) based microwave impedance microscopy (MIM). The system is operated under the driving amplitude modulation mode, which ensures satisfactory feedback stability on samples with rough surfaces. The demodulated MIM signals on a series of bulk dielectrics are in good agreement with results simulated by finite-element analysis. Using the TF-MIM, we have visualized the evolution of nanoscale conductance on back-gated MoS2 field effect transistors, and the results are consistent with the transport data. Our work suggests that quantitative analysis of mesoscopic electrical properties can be achieved by near-field microwave imaging with small distance modulation.

  8. Starship Sails Propelled by Cost-Optimized Directed Energy

    NASA Astrophysics Data System (ADS)

    Benford, J.

    Microwave and laser-propelled sails are a new class of spacecraft using photon acceleration. It is the only method of interstellar flight that has no physics issues. Laboratory demonstrations of basic features of beam-driven propulsion, flight, stability (`beam-riding'), and induced spin, have been completed in the last decade, primarily in the microwave. It offers much lower cost probes after a substantial investment in the launcher. Engineering issues are being addressed by other applications: fusion (microwave, millimeter and laser sources) and astronomy (large aperture antennas). There are many candidate sail materials: carbon nanotubes and microtrusses, beryllium, graphene, etc. For acceleration of a sail, what is the cost-optimum high power system? Here the cost is used to constrain design parameters to estimate system power, aperture and elements of capital and operating cost. From general relations for cost-optimal transmitter aperture and power, system cost scales with kinetic energy and inversely with sail diameter and frequency. So optimal sails will be larger, lower in mass and driven by higher frequency beams. Estimated costs include economies of scale. We present several starship point concepts. Systems based on microwave, millimeter wave and laser technologies are of equal cost at today's costs. The frequency advantage of lasers is cancelled by the high cost of both the laser and the radiating optic. Cost of interstellar sailships is very high, driven by current costs for radiation source, antennas and especially electrical power. The high speeds necessary for fast interstellar missions make the operating cost exceed the capital cost. Such sailcraft will not be flown until the cost of electrical power in space is reduced orders of magnitude below current levels.

  9. Technology for On-Chip Qubit Control with Microfabricated Surface Ion Traps

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Highstrete, Clark; Scott, Sean Michael; Nordquist, Christopher D.

    2013-11-01

    Trapped atomic ions are a leading physical system for quantum information processing. However, scalability and operational fidelity remain limiting technical issues often associated with optical qubit control. One promising approach is to develop on-chip microwave electronic control of ion qubits based on the atomic hyperfine interaction. This project developed expertise and capabilities at Sandia toward on-chip electronic qubit control in a scalable architecture. The project developed a foundation of laboratory capabilities, including trapping the 171Yb + hyperfine ion qubit and developing an experimental microwave coherent control capability. Additionally, the project investigated the integration of microwave device elements with surface ionmore » traps utilizing Sandia’s state-of-the-art MEMS microfabrication processing. This effort culminated in a device design for a multi-purpose ion trap experimental platform for investigating on-chip microwave qubit control, laying the groundwork for further funded R&D to develop on-chip microwave qubit control in an architecture that is suitable to engineering development.« less

  10. Evaluation of Intrinsic Charge Carrier Transport at Insulator-Semiconductor Interfaces Probed by a Non-Contact Microwave-Based Technique

    PubMed Central

    Honsho, Yoshihito; Miyakai, Tomoyo; Sakurai, Tsuneaki; Saeki, Akinori; Seki, Shu

    2013-01-01

    We have successfully designed the geometry of the microwave cavity and the thin metal electrode, achieving resonance of the microwave cavity with the metal-insulator-semiconductor (MIS) device structure. This very simple MIS device operates in the cavity, where charge carriers are injected quantitatively by an applied bias at the insulator-semiconductor interface. The local motion of the charge carriers was clearly probed through the applied external microwave field, also giving the quantitative responses to the injected charge carrier density and charge/discharge characteristics. By means of the present measurement system named field-induced time-resolved microwave conductivity (FI-TRMC), the pentacene thin film in the MIS device allowed the evaluation of the hole and electron mobility at the insulator-semiconductor interface of 6.3 and 0.34 cm2 V−1 s−1, respectively. This is the first report on the direct, intrinsic, non-contact measurement of charge carrier mobility at interfaces that has been fully experimentally verified. PMID:24212382

  11. Helium microwave-induced plasmas for element specific detection in chromatography

    NASA Astrophysics Data System (ADS)

    Long, Gary L.; Ducatte, Gerald R.; Lancaster, Edwin D.

    1994-01-01

    This review addresses the development and use of the microwave-induced plasma (MIP) using optical emission spectrometry for the purpose of element specific detection in chromatography. The plasma source that is the focus of this article is the He-based MIP operated at atmospheric pressure. The forms of chromatography that are covered include gas chromatography, liquid chromatography, and supercritical fluid chromatography. Concepts in plasma cavity design and the chromatograph-plasma interface are discussed along with the application of these hybrid systems to analytical determinations.

  12. A bandwidth compressive modulation system using multi-amplitude minimum shift keying /MAMSK/. [for spacecraft communication

    NASA Technical Reports Server (NTRS)

    Weber, W. J., III; Stanton, P. H.; Sumida, J. T.

    1978-01-01

    A bandwidth compressive modem making use of multi-amplitude minimum shift keying (MAMSK) has been designed and implemented in a laboratory environment at microwave frequencies. This system achieves a substantial bandwidth reduction over binary PSK and operates within 0.5 dB of theoretical performance. A number of easily implemented microwave transmitters have been designed to generate the required set of 16 signals. The receiver has been designed to work at 1 Mbit/s and contains the necessary phase tracking, AGC, and symbol synchronization loops as well as a lock detector, SNR estimator and provisions for differential decoding. This paper describes this entire system and presents the experimental results.

  13. Portable automated imaging in complex ceramics with a microwave interference scanning system

    NASA Astrophysics Data System (ADS)

    Goitia, Ryan M.; Schmidt, Karl F.; Little, Jack R.; Ellingson, William A.; Green, William; Franks, Lisa P.

    2013-01-01

    An improved portable microwave interferometry system has been automated to permit rapid examination of components with minimal operator attendance. Functionalities include stereo and multiplexed, frequency-modulated at multiple frequencies, producing layered volumetric images of complex ceramic structures. The technique has been used to image composite ceramic armor and ceramic matrix composite components, as well as other complex dielectric materials. The system utilizes Evisive Scan microwave interference scanning technique. Validation tests include artificial and in-service damage of ceramic armor, surrogates and ceramic matrix composite samples. Validation techniques include micro-focus x-ray and computed tomography imaging. The microwave interference scanning technique has demonstrated detection of cracks, interior laminar features and variations in material properties such as density. The image yields depth information through phase angle manipulation, and shows extent of feature and relative dielectric property information. It requires access to only one surface, and no coupling medium. Data are not affected by separation of layers of dielectric material, such as outer over-wrap. Test panels were provided by the US Army Research Laboratory, and the US Army Tank Automotive Research, Development and Engineering Center (TARDEC), who with the US Air Force Research Laboratory have supported this work.

  14. Six-Port Based Interferometry for Precise Radar and Sensing Applications.

    PubMed

    Koelpin, Alexander; Lurz, Fabian; Linz, Sarah; Mann, Sebastian; Will, Christoph; Lindner, Stefan

    2016-09-22

    Microwave technology plays a more important role in modern industrial sensing applications. Pushed by the significant progress in monolithic microwave integrated circuit technology over the past decades, complex sensing systems operating in the microwave and even millimeter-wave range are available for reasonable costs combined with exquisite performance. In the context of industrial sensing, this stimulates new approaches for metrology based on microwave technology. An old measurement principle nearly forgotten over the years has recently gained more and more attention in both academia and industry: the six-port interferometer. This paper reviews the basic concept, investigates promising applications in remote, as well as contact-based sensing and compares the system with state-of-the-art metrology. The significant advantages will be discussed just as the limitations of the six-port architecture. Particular attention will be paid to impairment effects and non-ideal behavior, as well as compensation and linearization concepts. It will be shown that in application fields, like remote distance sensing, precise alignment measurements, as well as interferometrically-evaluated mechanical strain analysis, the six-port architecture delivers extraordinary measurement results combined with high measurement data update rates for reasonable system costs. This makes the six-port architecture a promising candidate for industrial metrology.

  15. Design of 2.5 GHz broad bandwidth microwave bandpass filter at operating frequency of 10 GHz using HFSS

    NASA Astrophysics Data System (ADS)

    Jasim, S. E.; Jusoh, M. A.; Mahmud, S. N. S.; Zamani, A. H.

    2018-04-01

    Development of low losses, small size and broad bandwidth microwave bandpass filter operating at higher frequencies is an active area of research. This paper presents a new route used to design and simulate microwave bandpass filter using finite element modelling and realized broad bandwidth, low losses, small dimension microwave bandpass filter operating at 10 GHz frequency using return loss method. The filter circuit has been carried out using Computer Aid Design (CAD), Ansoft HFSS software and designed with four parallel couple line model and small dimension (10 × 10 mm2) using LaAlO3 substrate. The response of the microwave filter circuit showed high return loss -50 dB at operating frequency at 10.4 GHz and broad bandwidth of 2.5 GHz from 9.5 to 12 GHz. The results indicate the filter design and simulation using HFSS is reliable and have the opportunity to transfer from lab potential experiments to the industry.

  16. High Power Microwave Tube Reliability Study

    DTIC Science & Technology

    1976-08-01

    Factors . . . . . ................ 67 1. Environmental Factors . . . . . . . . . a. Ground Fixed ...... .......... 67 b. Ground Mobile ...including cube structure and operating parameters as factors in the models but also environment and aplication . Initially, the tubes to be included in...instLllations. Mobile ground based and seagoing systems have minimum restrictions, spacecraft systems the maximum and airborne system Y 6 .*.. restrictionts

  17. 30 CFR 1220.011 - Schedule of allowable direct and allocable joint costs and credits.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    .... Saltwater disposal wells Volume or wells. Source water wells and supply systems Volume. Roads Wells..., installing, operating, repairing and maintaining communication systems, including radio, microwave facilities... contributions made to obtain information about the structure or other characteristics of the geology underlying...

  18. 30 CFR 1220.011 - Schedule of allowable direct and allocable joint costs and credits.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    .... Saltwater disposal wells Volume or wells. Source water wells and supply systems Volume. Roads Wells..., installing, operating, repairing and maintaining communication systems, including radio, microwave facilities... contributions made to obtain information about the structure or other characteristics of the geology underlying...

  19. 30 CFR 1220.011 - Schedule of allowable direct and allocable joint costs and credits.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... Volume or wells. Source water wells and supply systems Volume. Roads Wells. Production/drilling platform..., installing, operating, repairing and maintaining communication systems, including radio, microwave facilities... contributions made to obtain information about the structure or other characteristics of the geology underlying...

  20. The NPOESS Crosstrack Infrared Sounder (CrIS) and Advanced Technology Microwave Sounder (ATMS) as a Companion to the New Generation AIRS/AMSU and IASI/AMSU Sounder Suites

    NASA Astrophysics Data System (ADS)

    Bingham, G. E.; Pougatchev, N. S.; Zavyalov, V.; Esplin, M.; Blackwell, W. J.; Barnet, C.

    2009-12-01

    The NPOESS Preparatory Project is serving the operations and research community as the bridge mission between the Earth Observing System and the National Polar-orbiting Operational Environmental Satellite System. The Cross-track Infrared Sounder (CrIS), combined with the Advanced Technology Microwave Sounder (ATMS) are the core instruments to provide the key performance temperature and humidity profiles (along with some other atmospheric constituent information). Both the high spectral resolution CrIS and the upgraded microwave sounder (ATMS) will be working in parallel with already orbiting Advanced Atmospheric Infrared Sounder (AIRS/AMSU) on EOS AQUA platform and Infrared Atmospheric Sounding Interferometer (IASI/AMSU) on METOP-A satellite. This presentation will review the CrIS/ATMS capabilities in the context of continuity with the excellent performance records established by AIRS and IASI. The CrIS sensor is in the process of its final calibration and characterization testing and the results and Sensor Data Record process are being validated against this excellent dataset. The comparison between CrIS, AIRS, and IASI will include spectral, spatial, radiometric performance and sounding capability comparisons.

  1. Nonreciprocal Microwave Signal Processing with a Field-Programmable Josephson Amplifier

    NASA Astrophysics Data System (ADS)

    Lecocq, F.; Ranzani, L.; Peterson, G. A.; Cicak, K.; Simmonds, R. W.; Teufel, J. D.; Aumentado, J.

    2017-02-01

    We report on the design and implementation of a field-programmable Josephson amplifier (FPJA)—a compact and lossless superconducting circuit that can be programmed in situ by a set of microwave drives to perform reciprocal and nonreciprocal frequency conversion and amplification. In this work, we demonstrate four modes of operation: frequency conversion (transmission of -0.5 dB, reflection of -30 dB), circulation (transmission of -0.5 dB, reflection of -30 dB, isolation of 30 dB), phase-preserving amplification (gain >20 dB , one photon of added noise) and directional phase-preserving amplification (reflection of -10 dB, forward gain of 18 dB, reverse isolation of 8 dB, one photon of added noise). The system exhibits quantitative agreement with the theoretical prediction. Based on a gradiometric superconducting quantum-interference device with Nb /Al -Al Ox/Nb Josephson junctions, the FPJA is first-order insensitive to flux noise and can be operated without magnetic shielding at low temperature. Owing to its flexible design and compatibility with existing superconducting fabrication techniques, the FPJA offers a straightforward route toward on-chip integration with superconducting quantum circuits such as qubits and microwave optomechanical systems.

  2. A superhigh-frequency optoelectromechanical system based on a slotted photonic crystal cavity

    NASA Astrophysics Data System (ADS)

    Sun, Xiankai; Zhang, Xufeng; Poot, Menno; Xiong, Chi; Tang, Hong X.

    2012-11-01

    We develop an all-integrated optoelectromechanical system that operates in the superhigh frequency band. This system is based on an ultrahigh-Q slotted photonic crystal (PhC) nanocavity formed by two PhC membranes, one of which is patterned with electrode and capacitively driven. The strong simultaneous electromechanical and optomechanical interactions yield efficient electrical excitation and sensitive optical transduction of the bulk acoustic modes of the PhC membrane. These modes are identified up to a frequency of 4.20 GHz, with their mechanical Q factors ranging from 240 to 1730. Directly linking signals in microwave and optical domains, such optoelectromechanical systems will find applications in microwave photonics in addition to those that utilize the electromechanical and optomechanical interactions separately.

  3. Results from phase 1 of the HAYSTAC microwave cavity axion experiment

    NASA Astrophysics Data System (ADS)

    Zhong, L.; Al Kenany, S.; Backes, K. M.; Brubaker, B. M.; Cahn, S. B.; Carosi, G.; Gurevich, Y. V.; Kindel, W. F.; Lamoreaux, S. K.; Lehnert, K. W.; Lewis, S. M.; Malnou, M.; Maruyama, R. H.; Palken, D. A.; Rapidis, N. M.; Root, J. R.; Simanovskaia, M.; Shokair, T. M.; Speller, D. H.; Urdinaran, I.; van Bibber, K. A.

    2018-05-01

    We report on the results from a search for dark matter axions with the HAYSTAC experiment using a microwave cavity detector at frequencies between 5.6 and 5.8 GHz. We exclude axion models with two photon coupling ga γ γ≳2 ×10-14 GeV-1 , a factor of 2.7 above the benchmark KSVZ model over the mass range 23.15

  4. Piezoelectric tunable microwave superconducting cavity

    NASA Astrophysics Data System (ADS)

    Carvalho, N. C.; Fan, Y.; Tobar, M. E.

    2016-09-01

    In the context of engineered quantum systems, there is a demand for superconducting tunable devices, able to operate with high-quality factors at power levels equivalent to only a few photons. In this work, we developed a 3D microwave re-entrant cavity with such characteristics ready to provide a very fine-tuning of a high-Q resonant mode over a large dynamic range. This system has an electronic tuning mechanism based on a mechanically amplified piezoelectric actuator, which controls the resonator dominant mode frequency by changing the cavity narrow gap by very small displacements. Experiments were conducted at room and dilution refrigerator temperatures showing a large dynamic range up to 4 GHz and 1 GHz, respectively, and were compared to a finite element method model simulated data. At elevated microwave power input, nonlinear thermal effects were observed to destroy the superconductivity of the cavity due to the large electric fields generated in the small gap of the re-entrant cavity.

  5. GeoSTAR - A Synthetic Aperture Microwave Sounder for Geostationary Missions

    NASA Technical Reports Server (NTRS)

    Lambrigtsen, Bjorn; Wilson, William; Tanner, Alan; Kangaslahti, Pekka

    2004-01-01

    The Geostationary Synthetic Thinned Aperture Radiometer (GeoSTAR) is a new microwave atmospheric sounder under development. It will bring capabilities similar to those now available on low-earth orbiting environmental satellites to geostationary orbit - where such capabilities have not been available. GeoSTAR will synthesize the multimeter aperture needed to achieve the required spatial resolution, which will overcome the obstacle that has prevented a GEO microwave sounder from being implemented until now. The synthetic aperture approach has until recently not been feasible, due to the high power needed to operate the on-board high-speed massively parallel processing system required for 2D-synthesis, as well as a number of system and calibration obstacles. The development effort under way at JPL, with important contributions from the Goddard Space Flight Center and the University of Michigan, is intended to demonstrate the measurement concept and retire much of the technology risk.

  6. [Atomic/ionic fluorescence in microwave plasma torch discharge with excitation of high current and microsecond pulsed hollow cathode lamp: Ca atomic/ionic fluorescence spectrometry].

    PubMed

    Gong, Zhen-bin; Liang, Feng; Yang, Peng-yuan; Jin, Qin-han; Huang, Ben-li

    2002-02-01

    A system of atomic and ionic fluorescence spectrometry in microwave plasma torch (MPT) discharge excited by high current microsecond pulsed hollow cathode lamp (HCMP HCL) has been developed. The operation conditions for Ca atomic and ionic fluorescence spectrometry have been optimized. Compared with atomic fluorescence spectrometry (AFS) in argon microwave induced plasma (MIP) and MPT with the excitation of direct current and conventional pulsed HCL, the system with HCMP HCL excitation can improve AFS and ionic fluorescence spectrometry (IFS) detection limits in MPT atomizer and ionizer. Detection limits (3 sigma) with HCMP HCL-MPT-AFS/IFS are 10.1 ng.mL-1 for Ca I 422.7 nm, 14.6 ng.mL-1 for Ca II 393.4 nm, and 37.4 ng.mL-1 for Ca II 396.8 nm, respectively.

  7. Handbook for the estimation of microwave propagation effects: Link calculations for earth-space paths (path loss and noise estimation)

    NASA Technical Reports Server (NTRS)

    Crane, R. K.; Blood, D. W.

    1979-01-01

    A single model for a standard of comparison for other models when dealing with rain attenuation problems in system design and experimentation is proposed. Refinements to the Global Rain Production Model are incorporated. Path loss and noise estimation procedures as the basic input to systems design for earth-to-space microwave links operating at frequencies from 1 to 300 GHz are provided. Topics covered include gaseous absorption, attenuation by rain, ionospheric and tropospheric scintillation, low elevation angle effects, radome attenuation, diversity schemes, link calculation, and receiver noise emission by atmospheric gases, rain, and antenna contributions.

  8. Oil pollution signatures by remote sensing.

    NASA Technical Reports Server (NTRS)

    Catoe, C. E.; Mclean, J. T.

    1972-01-01

    Study of the possibility of developing an effective remote sensing system for oil pollution monitoring which would be capable of detecting oil films on water, mapping the areal extent of oil slicks, measuring slick thickness, and identifying the oil types. In the spectral regions considered (ultraviolet, visible, infrared, microwave, and radar), the signatures were sufficiently unique when compared to the background so that it was possible to detect and map oil slicks. Both microwave and radar techniques are capable of operating in adverse weather. Fluorescence techniques show promise in identifying oil types. A multispectral system will be required to detect oil, map its distribution, estimate film thickness, and characterize the oil pollutant.

  9. Online vegetation parameter estimation using passive microwave remote sensing observations

    USDA-ARS?s Scientific Manuscript database

    In adaptive system identification the Kalman filter can be used to identify the coefficient of the observation operator of a linear system. Here the ensemble Kalman filter is tested for adaptive online estimation of the vegetation opacity parameter of a radiative transfer model. A state augmentatio...

  10. 47 CFR 87.171 - Class of station symbols.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... systems AXO—Aeronautical operational fixed DGP—Differential GPS DLT—Aircraft data link land test FA...—Radionavigation land test RLW—Microwave landing system RNV—Radio Navigation Land/DME RPC—Ramp Control TJ—Aircraft earth station in the Aeronautical Mobile-Satellite Service UAT—Universal Access Transceiver [53 FR 28940...

  11. Discrete monotron oscillator having one-half wavelength coaxial resonator with one-quarter wavelength gap spacing

    DOEpatents

    Carlsten, B.E.; Haynes, W.B.

    1998-02-03

    A discrete monotron oscillator for use in a high power microwave device is formed with a microwave oscillator having a half-wavelength resonant coaxial microwave cavity operating in fundamental TEM mode for microwave oscillation with an inner conductor defining a drift tube for propagating an electron beam and an outer conductor coaxial with the inner conductor. The inner conductor defines a modulating gap and an extraction gap downstream of the modulating gap. The modulating gap and the extraction gap connect the coaxial microwave cavity with the drift tube so that energy for the microwave oscillation is extracted from the electron beam at the extraction gap and modulates the electron beam at the modulating gap. For high power operation, an annular electron beam is used. 8 figs.

  12. Discrete monotron oscillator having one-half wavelength coaxial resonator with one-quarter wavelength gap spacing

    DOEpatents

    Carlsten, Bruce E.; Haynes, William B.

    1998-01-01

    A discrete monotron oscillator for use in a high power microwave device is formed with a microwave oscillator having a half-wavelength resonant coaxial microwave cavity operating in fundamental TEM mode for microwave oscillation with an inner conductor defining a drift tube for propagating an electron beam and an outer conductor coaxial with the inner conductor. The inner conductor defines a modulating gap and an extraction gap downstream of the modulating gap. The modulating gap and the extraction gap connect the coaxial microwave cavity with the drift tube so that energy for the microwave oscillation is extracted from the electron beam at the extraction gap and modulates the electron beam at the modulating gap. For high power operation, an annular electron beam is used.

  13. Opto-Electronic Oscillator and its Applications

    NASA Technical Reports Server (NTRS)

    Yao, X. S.; Maleki, L.

    1996-01-01

    We present the theoretical and experimental results of a new class of microwave oscillators called opto-electronic oscillators (OEO). We discuss techniques of achieving high stability single mode operation and demonstrate the applications of OEO in photonic communication systems.

  14. Microwave scanning beam approach and landing system phased array antenna.

    DOT National Transportation Integrated Search

    1971-09-01

    The design, operating instructions, detailed logic circuitry, and antenna test range results for the electronic circular scanning phased array developed at TSC (DOTSCAN) are described. Components developed for this effort are also described, and test...

  15. Hyperspectral Microwave Atmospheric Sounder (HyMAS) - New Capability in the CoSMIR-CoSSIR Scanhead

    NASA Technical Reports Server (NTRS)

    Hilliard, Lawrence; Racette, Paul; Blackwell, William; Galbraith, Christopher; Thompson, Erik

    2015-01-01

    Lincoln Laboratory and NASA's Goddard Space Flight Center have teamed to re-use an existing instrument platform, the CoSMIR/CoSSIR system for atmospheric sounding, to develop a new capability in hyperspectral filtering, data collection, and display. The volume of the scanhead accomodated an intermediate frequency processor(IFP), that provides the filtering and digitization of the raw data and the interoperable remote component (IRC) adapted to CoSMIR, CoSSIR, and HyMAS that stores and archives the data with time tagged calibration and navigation data. The first element of the work is the demonstration of a hyperspectral microwave receiver subsystem that was recently shown using a comprehensive simulation study to yield performance that substantially exceeds current state-of-the-art. Hyperspectral microwave sounders with approximately 100 channels offer temperature and humidity sounding improvements similar to those obtained when infrared sensors became hyperspectral, but with the relative insensitivity to clouds that characterizes microwave sensors. Hyperspectral microwave operation is achieved using independent RF antenna/receiver arrays that sample the same area/volume of the Earth's surface/atmosphere at slightly different frequencies and therefore synthesize a set of dense, finely spaced vertical weighting functions. The second, enabling element of the proposal is the development of a compact 52-channel Intermediate Frequency processor module. A principal challenge in the development of a hyperspectral microwave system is the size of the IF filter bank required for channelization. Large bandwidths are simultaneously processed, thus complicating the use of digital back-ends with associated high complexities, costs, and power requirements. Our approach involves passive filters implemented using low-temperature co-fired ceramic (LTCC) technology to achieve an ultra-compact module that can be easily integrated with existing radio frequency front-end technology. This IF processor is universally applicable to other microwave sensing missions requiring compact IF spectrometry. The data include 52 operational channels with low IF module volume (less than 100 cubic centimeters) and mass (less than 300 grams) and linearity better than 0.3 percent over a 330,000 dynamic range.

  16. High power ferrite microwave switch

    NASA Technical Reports Server (NTRS)

    Bardash, I.; Roschak, N. K.

    1975-01-01

    A high power ferrite microwave switch was developed along with associated electronic driver circuits for operation in a spaceborne high power microwave transmitter in geostationary orbit. Three units were built and tested in a space environment to demonstrate conformance to the required performance characteristics. Each unit consisted of an input magic-tee hybrid, two non-reciprocal latching ferrite phase shifters, an out short-slot 3 db quadrature coupler, a dual driver electronic circuit, and input logic interface circuitry. The basic mode of operation of the high power ferrite microwave switch is identical to that of a four-port, differential phase shift, switchable circulator. By appropriately designing the phase shifters and electronic driver circuits to operate in the flux-transfer magnetization mode, power and temperature insensitive operation was achieved. A list of the realized characteristics of the developed units is given.

  17. Reinventing the Solar Power Satellite

    NASA Technical Reports Server (NTRS)

    Landis, Geoffrey A.

    2002-01-01

    Economy of scale is inherent in the microwave power transmission aperture/spot-size trade-off, resulting in a requirement for large space systems in the existing design concepts. Unfortunately, this large size means that the initial investment required before the first return, and the price of amortization of this initial investment, is a daunting (and perhaps insurmountable) barrier to economic viability. As the growth of ground-based solar power applications will fund the development of the PV technology required for space solar power and will also create the demand for space solar power by manufacturing a ready-made market, space power systems must be designed with an understanding that ground-based solar technologies will be implemented as a precursor to space-based solar. for low initial cost, (3) operation in synergy with ground solar systems, and (4) power production profile tailored to peak rates. A key to simplicity of design is to maximize the integration of the system components. Microwave, millimeter-wave, and laser systems are analyzed. A new solar power satellite design concept with no sun-tracking and no moving parts is proposed to reduce the required cost to initial operational capability.

  18. Delivering Microwave Spectroscopy to the Masses: a Design of a Low-Cost Microwave Spectrometer Operating in the 18-26 GHZ Frequency Range

    NASA Astrophysics Data System (ADS)

    Steber, Amanda; Pate, Brooks

    2014-06-01

    Advances in chip-level microwave technology in the communications field have led to the possibilities of low cost alternatives for current Fourier transform microwave (FTMW) spectrometers. Many of the large, expensive microwave components in a traditional design can now be replaced by robust, mass market monolithic microwave integrated circuits (MMICs). "Spectrometer on a board" designs are now feasible that offer dramatic cost reduction for microwave spectroscopy. These chip-level components can be paired with miniature computers to produce compact instruments that are operable through USB. A FTMW spectrometer design using the key MMIC components that drive cost reduction will be presented. Two dual channel synthesizers (Valon Technology Model 5008), a digital pattern generator (Byte Paradigm Wav Gen Xpress), and a high-speed digitizer/arbitrary waveform generator combination unit (Tie Pie HS-5 530 XM) form the key components of the spectrometer for operation in the 18-26.5 GHz range. The design performance is illustrated using a spectrometer that is being incorporated into a museum display for astrochemistry. For this instrument a user interface, developed in Python, has been developed and will be shown.

  19. A Network of Direct Broadcast Antenna Systems to Provide Real-Time Infrared and Microwave Sounder Data for Numerical Weather Prediction

    NASA Astrophysics Data System (ADS)

    Gumley, L.

    2013-12-01

    The Space Science and Engineering Center at the University of Wisconsin-Madison is creating a network of direct broadcast satellite data reception stations to acquire and process infrared and microwave sounder data in real-time from polar orbiting meteorological satellites and deliver the resulting products to NOAA with low latency for assimilation in NCEP numerical weather prediction models. The network will include 4 antenna sites that will be operated directly by SSEC, including Madison WI, Honolulu HI, Miami FL, and Mayaguez PR. The network will also include partner antenna sites not directly controlled by SSEC, including Corvallis OR, Monterey CA, Suitland MD, Fairbanks AK, and Guam. All of the antenna sites will have a combined X/L-band reception system capable of receiving data via direct broadcast from polar orbiting satellites including Suomi NPP and JPSS-1, Metop-A/B, POES,Terra, and Aqua. Each site will collect raw data from these satellites locally, process it to Level 1 (SDR) and Level 2 (EDR) products, and transmit the products back to SSEC for delivery to NOAA/NCEP. The primary purpose of the antenna systems is to provide real-time infrared and microwave sounder data from Metop and Suomi-NPP to NOAA to support data assimilation for NOAA/NCEP operational numerical weather prediction models. At present, NOAA/NCEP use of advanced infrared (CrIS, IASI, AIRS) and microwave (ATMS, AMSU) sounder data over North America in NWP data assimilation is limited because of the latency of the products in relation to the cutoff times for assimilation runs. This network will deliver infrared and microwave sounder data to NCEP with the lowest latency possible, via the reception and processing of data received via direct broadcast. CIMSS/SSEC is managing the procurement and installation of the antenna systems at the two new sites, and will operate the stations remotely. NOAA will establish the reception priorities (Metop and SNPP will be at the highest priority) and SSEC will set the reception schedule to acquire data from these satellites, and any other satellites at lower priority as determined jointly by NOAA, CIMSS/SSEC, and the antenna site hosts. SSEC is providing a product generation server at each site (where applicable) as part of the installed hardware to create satellite products in real-time. The host locations will provide the necessary network resources to enable infrared sounder (CrIS, IASI, and AIRS) and microwave sounder (ATMS and AMSU) data to be sent back to SSEC (and hence to NOAA/NCEP) with low latency (< 15 minutes). This presentation will described how the network realizes the goal of providing data to end users within 15 minutes of observation, and will give examples of the positive impact already observed on NCEP forecast model skill from assimilating real-time infrared and microwave sounder data in the NAM regional domain.

  20. Innovative Inverted Magnetron Experiments and Theory

    DTIC Science & Technology

    2015-06-01

    and characterized the Recirculating Planar Magnetron (RPM), a new type of High Power Microwave (HPM) device. Researchers have simulated the operation... power extraction is desired. In simulation, the RPM-CACE was up to 70% efficient, producing peak microwave powers of 420 MW. 15. SUBJECT TERMS High ...type of High Power Microwave (HPM) device. Using HFSS, MAGIC, and ICEPIC, researchers have simulated the operation of the device in both a

  1. Review of operational aspects of initial experiments utilizing the U.S. MLS. [microwave landing system effectiveness

    NASA Technical Reports Server (NTRS)

    Walsh, T. M.; Morello, S. A.; Reeder, J. P.

    1976-01-01

    An exercise to support the Federal Aviation Administration in demonstrating the U.S. candidate for an international microwave landing system (MLS) was conducted by NASA. During this demonstration the MLS was utilized to provide the TCV Boeing 737 research airplane with guidance for automatic control during transition from conventional RNAV to MLS RNAV in curved, descending flight; flare; touchdown; and roll-out. Flight profiles, system configuration, displays, and operating procedures used in the demonstration are described, and preliminary results of flight data analysis are discussed. Recent experiences with manually controlled flight in the NAFEC MLS environment are also discussed. The demonstration shows that in automatic three-dimensional flight, the volumetric signal coverage of the MLS can be exploited to enable a commercial carrier class airplane to perform complex curved, descending paths with precision turns into short final approaches terminating in landing and roll-out, even when subjected to strong and gusty tail and cross wind components and severe wind shear.

  2. A review of research and development on the microwave-plasma electrothermal rocket

    NASA Technical Reports Server (NTRS)

    Hawley, Martin C.; Asmussen, Jes; Filpus, John W.; Frasch, Lydell L.; Whitehair, Stanley; Morin, T. J.; Chapman, R.

    1987-01-01

    The microwave-plasma electrothermal rocket (MWPETR) shows promise for spacecraft propulsion and maneuvering, without some of the drawbacks of competitive electric propulsion systems. In the MWPETR, the electric power is first converted to microwave-frequency radiation. In a specially-designed microwave cavity system, the electromagnetic energy of the radiation is transferred to the electrons in a plasma sustained in the working fluid. The resulting high-energy electrons transfer their energy to the atoms and molecules of the working fluid by collisions. The working fluid, thus heated, expands through a nozzle to generate thrust. In the MWPETR, no electrodes are in contact with the working fluid, the energy is transferred into the working fluid by nonthermal mechanisms, and the main requirement for the materials of construction is that the walls of the plasma chamber be insulating and transparent to microwave radiation at operating conditions. In this survey of work on the MWPETR, several experimental configurations are described and compared. Diagnostic methods used in the study are described and compared, including titration, spectroscopy, calorimetry, electric field measurements, gas-dynamic methods, and thrust measurements. Measured and estimated performance efficiencies are reported. Results of computer modeling of the plasma and of the gas flowing from the plasma are summarized.

  3. Optical detectors for GaAs MMIC integration: Technology assessment

    NASA Technical Reports Server (NTRS)

    Claspy, P. C.; Bhasin, K. B.

    1989-01-01

    Fiber optic links are being considered to transmit digital and analog signals in phased array antenna feed networks in space communications systems. The radiating elements in these arrays will be GaAs monolithic microwave integrated circuits (MMIC's) in numbers ranging from a few hundred to several thousand. If such optical interconnects are to be practical it appears essential that the associated components, including detectors, be monolithically integrated on the same chip as the microwave circuitry. The general issue of monolithic integration of microwave and optoelectronic components is addressed from the point of view of fabrication technology and compatibility. Particular attention is given to the fabrication technology of various types of GaAs optical detectors that are designed to operate at a wavelength of 830 nm.

  4. Low frequency microwave radiometer for N-ROSS

    NASA Astrophysics Data System (ADS)

    Hollinger, J. P.; Lo, R. C.

    1984-01-01

    The all weather, global determination of sea surface temperature (SST) has been identified as a requirement needed to support naval operations.The target SST accuracy is + or 1.0 K with a surface resolution of 10 km. Investigations of the phenomenology and technology of remote passive microwave sensing of the ocean environment over the past decade have demonstrated that this objective is presently attainable. Preliminary specification and trade off studies were conducted to define the frequency, polarization, scan geometry, antenna size, and other essential parameters of the low frequency microwave radiometer (LFMR). It will be a meter deployable mesh surface antenna. It is to be flown on the Navy-Remote Ocean Sensing System (N-ROSS) satellite scheduled to be launched in late 1988.

  5. Quantitative measurements of nanoscale permittivity and conductivity using tuning-fork-based microwave impedance microscopy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wu, Xiaoyu; Hao, Zhenqi; Wu, Di

    Here, we report quantitative measurements of nanoscale permittivity and conductivity using tuning-fork (TF) based microwave impedance microscopy (MIM). The system is operated under the driving amplitude modulation mode, which ensures satisfactory feedback stability on samples with rough surfaces. The demodulated MIM signals on a series of bulk dielectrics are in good agreement with results simulated by finite-element analysis. Using the TF-MIM, we have visualized the evolution of nanoscale conductance on back-gated MoS 2 field effect transistors, and the results are consistent with the transport data. Our work suggests that quantitative analysis of mesoscopic electrical properties can be achieved by near-fieldmore » microwave imaging with small distance modulation.« less

  6. Quantitative measurements of nanoscale permittivity and conductivity using tuning-fork-based microwave impedance microscopy

    DOE PAGES

    Wu, Xiaoyu; Hao, Zhenqi; Wu, Di; ...

    2018-04-01

    Here, we report quantitative measurements of nanoscale permittivity and conductivity using tuning-fork (TF) based microwave impedance microscopy (MIM). The system is operated under the driving amplitude modulation mode, which ensures satisfactory feedback stability on samples with rough surfaces. The demodulated MIM signals on a series of bulk dielectrics are in good agreement with results simulated by finite-element analysis. Using the TF-MIM, we have visualized the evolution of nanoscale conductance on back-gated MoS 2 field effect transistors, and the results are consistent with the transport data. Our work suggests that quantitative analysis of mesoscopic electrical properties can be achieved by near-fieldmore » microwave imaging with small distance modulation.« less

  7. Microwave-Assisted Ignition for Improved Internal Combustion Engine Efficiency

    NASA Astrophysics Data System (ADS)

    DeFilippo, Anthony Cesar

    The ever-present need for reducing greenhouse gas emissions associated with transportation motivates this investigation of a novel ignition technology for internal combustion engine applications. Advanced engines can achieve higher efficiencies and reduced emissions by operating in regimes with diluted fuel-air mixtures and higher compression ratios, but the range of stable engine operation is constrained by combustion initiation and flame propagation when dilution levels are high. An advanced ignition technology that reliably extends the operating range of internal combustion engines will aid practical implementation of the next generation of high-efficiency engines. This dissertation contributes to next-generation ignition technology advancement by experimentally analyzing a prototype technology as well as developing a numerical model for the chemical processes governing microwave-assisted ignition. The microwave-assisted spark plug under development by Imagineering, Inc. of Japan has previously been shown to expand the stable operating range of gasoline-fueled engines through plasma-assisted combustion, but the factors limiting its operation were not well characterized. The present experimental study has two main goals. The first goal is to investigate the capability of the microwave-assisted spark plug towards expanding the stable operating range of wet-ethanol-fueled engines. The stability range is investigated by examining the coefficient of variation of indicated mean effective pressure as a metric for instability, and indicated specific ethanol consumption as a metric for efficiency. The second goal is to examine the factors affecting the extent to which microwaves enhance ignition processes. The factors impacting microwave enhancement of ignition processes are individually examined, using flame development behavior as a key metric in determining microwave effectiveness. Further development of practical combustion applications implementing microwave-assisted spark technology will benefit from predictive models which include the plasma processes governing the observed combustion enhancement. This dissertation documents the development of a chemical kinetic mechanism for the plasma-assisted combustion processes relevant to microwave-assisted spark ignition. The mechanism includes an existing mechanism for gas-phase methane oxidation, supplemented with electron impact reactions, cation and anion chemical reactions, and reactions involving vibrationally-excited and electronically-excited species. Calculations using the presently-developed numerical model explain experimentally-observed trends, highlighting the relative importance of pressure, temperature, and mixture composition in determining the effectiveness of microwave-assisted ignition enhancement.

  8. Development of Long-Pulse Heating and Current Drive Actuators and Operational Techniques Compatible with a High-Z Divertor and First Wall

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wang, Guiding

    Accurate measurement of the edge electron density profile is essential to optimizing antenna coupling and assessment of impurity contamination in studying long-pulse plasma heating and current drive in fusion devices. Measurement of the edge density profile has been demonstrated on the US fusion devices such as C-Mod, DIII-D, and TFTR amongst many devices, and has been used for RF loading and impurity modeling calculations for many years. University of Science and Technology of China (USTC) has recently installed a density profile reflectometer system on the EAST fusion device at the Institute of Plasma Physics, Chinese Academy of Sciences in Chinamore » based on the University of California Los Angeles (UCLA)-designed reflectometer system on the DIII-D fusion device at General Atomics Company in San Diego, California. UCLA has been working with USTC to optimize the existing microwave antenna, waveguide system, microwave electronics, and data analysis to produce reliable edge density profiles. During the past budget year, progress has been made in all three major areas: effort to achieve reliable system operations under various EAST operational conditions, effort to optimize system performance, and effort to provide quality density profiles into EAST’s database routinely.« less

  9. Efficient Energy-Storage Concept

    NASA Technical Reports Server (NTRS)

    Brantley, L. W. J.; Rupp, C.

    1982-01-01

    Space-platform energy-storage and attitude-stabilization system utilizes variable moment of inertia of two masses attached to ends of retractable cable. System would be brought to its initial operating speed by gravity-gradient pumping. When fully developed, concept could be part of an orbiting solar-energy collection system. Energy would be temporarily stored in system then transmitted to Earth by microwaves or other method.

  10. Microwave Soil Moisture Retrieval Under Trees

    NASA Technical Reports Server (NTRS)

    O'Neill, P.; Lang, R.; Kurum, M.; Joseph, A.; Jackson, T.; Cosh, M.

    2008-01-01

    Soil moisture is recognized as an important component of the water, energy, and carbon cycles at the interface between the Earth's surface and atmosphere. Current baseline soil moisture retrieval algorithms for microwave space missions have been developed and validated only over grasslands, agricultural crops, and generally light to moderate vegetation. Tree areas have commonly been excluded from operational soil moisture retrieval plans due to the large expected impact of trees on masking the microwave response to the underlying soil moisture. Our understanding of the microwave properties of trees of various sizes and their effect on soil moisture retrieval algorithms at L band is presently limited, although research efforts are ongoing in Europe, the United States, and elsewhere to remedy this situation. As part of this research, a coordinated sequence of field measurements involving the ComRAD (for Combined Radar/Radiometer) active/passive microwave truck instrument system has been undertaken. Jointly developed and operated by NASA Goddard Space Flight Center and George Washington University, ComRAD consists of dual-polarized 1.4 GHz total-power radiometers (LH, LV) and a quad-polarized 1.25 GHz L band radar sharing a single parabolic dish antenna with a novel broadband stacked patch dual-polarized feed, a quad-polarized 4.75 GHz C band radar, and a single channel 10 GHz XHH radar. The instruments are deployed on a mobile truck with an 19-m hydraulic boom and share common control software; real-time calibrated signals, and the capability for automated data collection for unattended operation. Most microwave soil moisture retrieval algorithms developed for use at L band frequencies are based on the tau-omega model, a simplified zero-order radiative transfer approach where scattering is largely ignored and vegetation canopies are generally treated as a bulk attenuating layer. In this approach, vegetation effects are parameterized by tau and omega, the microwave vegetation opacity and single scattering albedo. One goal of our current research is to determine whether the tau-omega model can work for tree canopies given the increased scatter from trees compared to grasses and crops, and. if so, what are effective values for tau and omega for trees.

  11. A New Operational Snow Retrieval Algorithm Applied to Historical AMSR-E Brightness Temperatures

    NASA Technical Reports Server (NTRS)

    Tedesco, Marco; Jeyaratnam, Jeyavinoth

    2016-01-01

    Snow is a key element of the water and energy cycles and the knowledge of spatio-temporal distribution of snow depth and snow water equivalent (SWE) is fundamental for hydrological and climatological applications. SWE and snow depth estimates can be obtained from spaceborne microwave brightness temperatures at global scale and high temporal resolution (daily). In this regard, the data recorded by the Advanced Microwave Scanning Radiometer-Earth Orbiting System (EOS) (AMSR-E) onboard the National Aeronautics and Space Administration's (NASA) AQUA spacecraft have been used to generate operational estimates of SWE and snow depth, complementing estimates generated with other microwave sensors flying on other platforms. In this study, we report the results concerning the development and assessment of a new operational algorithm applied to historical AMSR-E data. The new algorithm here proposed makes use of climatological data, electromagnetic modeling and artificial neural networks for estimating snow depth as well as a spatio-temporal dynamic density scheme to convert snow depth to SWE. The outputs of the new algorithm are compared with those of the current AMSR-E operational algorithm as well as in-situ measurements and other operational snow products, specifically the Canadian Meteorological Center (CMC) and GlobSnow datasets. Our results show that the AMSR-E algorithm here proposed generally performs better than the operational one and addresses some major issues identified in the spatial distribution of snow depth fields associated with the evolution of effective grain size.

  12. The Telecommunications and Data Acquisition Report

    NASA Technical Reports Server (NTRS)

    Posner, E. C. (Editor)

    1987-01-01

    This quarterly publication (July-September 1987) provides archival reports on developments in programs managed by JPL's Office of Telecommunications and Data Acquisition (TDA). In space communications, radio navigation, radio science, and ground-based radio astronomy, it reports on activities of the Deep Space Network (DSN) and its associated Ground Communications Facility (GCF) in planning, in supporting research and technology, in implementation, and in operations. This work is performed for NASA's Office of Space Tracking and Data Systems (OSTDS). In geodynamics, the publication reports on the application of radio interferometry at microwave frequencies for geodynamic measurements. In the Search for Extraterrestrial Intelligence (SETI), it reports on implementation and operations for searching the microwave spectrum. The latter two programs are performed for NASA's Office of Space Science and Applications (OSSA).

  13. The Telecommunications and Data Acquisition Report

    NASA Technical Reports Server (NTRS)

    Posner, E. C. (Editor)

    1986-01-01

    This quarterly publication (July-Sept. 1986) provides archival reports on developments in programs managed by JPL's Office of Telecommunications and Data Acquisition (TDA). In space communications, radio navigation, radio science, and ground-based radio astronomy, it reports on activities of the Deep Space Network (DSN) and its associated Ground Communications Facility (GCF) in planning, in supporting research and technology, in implementation, and in operations. This work is performed for NASA's Office of Space Tracking and Data Systems (OSTDS). In geodynamics, the publication reports on the application of radio interferometry at microwave frequencies for geodynamic measurements. In the search for extraterrestrial intelligence (SETI), it reports on implementation and operations for searching the microwave spectrum. The latter two programs are performed for NASA's Office of Space Science and Applications (OSSA).

  14. Advanced Concepts in Josephson Junction Reflection Amplifiers

    NASA Astrophysics Data System (ADS)

    Lähteenmäki, Pasi; Vesterinen, Visa; Hassel, Juha; Paraoanu, G. S.; Seppä, Heikki; Hakonen, Pertti

    2014-06-01

    Low-noise amplification at microwave frequencies has become increasingly important for the research related to superconducting qubits and nanoelectromechanical systems. The fundamental limit of added noise by a phase-preserving amplifier is the standard quantum limit, often expressed as noise temperature . Towards the goal of the quantum limit, we have developed an amplifier based on intrinsic negative resistance of a selectively damped Josephson junction. Here we present measurement results on previously proposed wide-band microwave amplification and discuss the challenges for improvements on the existing designs. We have also studied flux-pumped metamaterial-based parametric amplifiers, whose operating frequency can be widely tuned by external DC-flux, and demonstrate operation at pumping, in contrast to the typical metamaterial amplifiers pumped via signal lines at.

  15. Microwave ice accretion meter

    NASA Technical Reports Server (NTRS)

    Magenheim, Bertram (Inventor); Rocks, James K. (Inventor)

    1984-01-01

    A system for indicating ice thickness and rate of ice thickness growth on surfaces is disclosed. The region to be monitored for ice accretion is provided with a resonant surface waveguide which is mounted flush, below the surface being monitored. A controlled oscillator provides microwave energy via a feed point at a controllable frequency. A detector is coupled to the surface waveguide and is responsive to electrical energy. A measuring device indicates the frequency deviation of the controlled oscillator from a quiescent frequency. A control means is provided to control the frequency of oscillation of the controlled oscillator. In a first, open-loop embodiment, the control means is a shaft operated by an operator. In a second, closed-loop embodiment, the control means is a processor which effects automatic control.

  16. Blood-brain barrier alteration after microwave-induced hyperthermia is purely a thermal effect: I. Temperature and power measurements

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Moriyama, E.; Salcman, M.; Broadwell, R.D.

    The effect of microwave-induced hyperthermia on the blood-brain barrier was studied in 21 Sprague-Dawley rats. Under sodium pentobarbital anesthesia, animals were place in a stereotactic frame, and an interstitial microwave antenna operating at 2450 MHz was inserted in a bony groove drilled parallel to the sagittal suture. Some antennae were equipped with an external cooling jacket. Temperature measurements were made lateral to the antenna by fluoroptical thermometry, and power was calculated from the time-temperature profile. Five minutes prior to termination of microwave irradiation, horseradish peroxidase (1 mg/20 g body weight) was injected intravenously. Extravasation of horseradish peroxidase was observed inmore » brain tissue heated above 44.3 degrees C for 30 minutes and at 42.5 degrees C for 60 minutes. Microwave irradiation failed to open the blood-brain barrier when brain temperatures were sustained below 40.3 degrees C by the cooling system. Extravasation of blood-borne peroxidase occurred at sites of maximal temperature elevation, even when these did not coincide with the site of maximum power density. The data suggest that microwave-induced hyperthermia is an effective means for opening the blood-brain barrier and that the mechanism is not related to the nonthermal effect of microwaves.« less

  17. The Monitoring System of the Operating State of the Gear Wheels of the Torque Multiplier of the Desalination Plant Steam Generator

    NASA Astrophysics Data System (ADS)

    Danilin, A. I.; Neverov, V. V.; Danilin, S. A.; Shimanov, A. A.; Tsapkova, A. B.

    2018-01-01

    The article describes a noncontact operational control method based on the processing of a microwave signal reflected from the controlled teeth of the wheel. In this paper describes the influence of wear patterns on the characteristic information parameters of the analyzed signals. The block diagram in section 3 shows the experimental system for monitoring the operating state of the gear wheels of the steam compressor torque multiplier. The design of the primary converter is briefly described.

  18. Functional design for operational earth resources ground data processing

    NASA Technical Reports Server (NTRS)

    Baldwin, C. J. (Principal Investigator); Bradford, L. H.; Hutson, D. E.; Jugle, D. R.

    1972-01-01

    The author has identified the following significant results. Study emphasis was on developing a unified concept for the required ground system, capable of handling data from all viable acquisition platforms and sensor groupings envisaged as supporting operational earth survey programs. The platforms considered include both manned and unmanned spacecraft in near earth orbit, and continued use of low and high altitude aircraft. The sensor systems include both imaging and nonimaging devices, operated both passively and actively, from the ultraviolet to the microwave regions of the electromagnetic spectrum.

  19. Physics of the Microwave Oven

    ERIC Educational Resources Information Center

    Vollmer, Michael

    2004-01-01

    This is the first of two articles about the physics of microwave ovens. This article deals with the generation of microwaves in the oven and includes the operation of the magnetrons, waveguides and standing waves in resonant cavities. It then considers the absorption of microwaves by foods, discussing the dielectric relaxation of water,…

  20. Three-Dimensional Microwave Imaging for Indoor Environments

    NASA Astrophysics Data System (ADS)

    Scott, Simon

    Microwave imaging involves the use of antenna arrays, operating at microwave and millimeter-wave frequencies, for capturing images of real-world objects. Typically, one or more antennas in the array illuminate the scene with a radio-frequency (RF) signal. Part of this signal reflects back to the other antennas, which record both the amplitude and phase of the reflected signal. These reflected RF signals are then processed to form an image of the scene. This work focuses on using planar antenna arrays, operating between 17 and 26 GHz, to capture three-dimensional images of people and other objects inside a room. Such an imaging system enables applications such as indoor positioning and tracking, health monitoring and hand gesture recognition. Microwave imaging techniques based on beamforming cannot be used for indoor imaging, as most objects lie within the array near-field. Therefore, the range-migration algorithm (RMA) is used instead, as it compensates for the curvature of the reflected wavefronts, hence enabling near-field imaging. It is also based on fast-Fourier transforms and is therefore computationally efficient. A number of novel RMA variants were developed to support a wider variety of antenna array configurations, as well as to generate 3-D velocity maps of objects moving around a room. The choice of antenna array configuration, microwave transceiver components and transmit power has a significant effect on both the energy consumed by the imaging system and the quality of the resulting images. A generic microwave imaging testbed was therefore built to characterize the effect of these antenna array parameters on image quality in the 20 GHz band. All variants of the RMA were compared and found to produce good quality three-dimensional images with transmit power levels as low as 1 muW. With an array size of 80x80 antennas, most of the imaging algorithms were able to image objects at 0.5 m range with 12.5 mm resolution, although some were only able to achieve 20 mm resolution. Increasing the size of the antenna array further results in a proportional improvement in image resolution and image SNR, until the resolution reaches the half-wavelength limit. While microwave imaging is not a new technology, it has seen little commercial success due to the cost and power consumption of the large number of antennas and radio transceivers required to build such a system. The cost and power consumption can be reduced by using low-power and low-cost components in both the transmit and receive RF chains, even if these components have poor noise figures. Alternatively, the cost and power consumption can be reduced by decreasing the number of antennas in the array, while keeping the aperture constant. This reduction in antenna count is achieved by randomly depopulating the array, resulting in a sparse antenna array. A novel compressive sensing algorithm, coupled with the wavelet transform, is used to process the samples collected by the sparse array and form a 3-D image of the scene. This algorithm works well for antenna arrays that are up to 96% sparse, equating to a 25 times reduction in the number of required antennas. For microwave imaging to be useful, it needs to capture images of the scene in real time. The architecture of a system capable of capturing real-time 3-D microwave images is therefore designed. The system consists of a modular antenna array, constructed by plugging RF daughtercards into a carrier board. Each daughtercard is a self-contained radio system, containing an antenna, RF transceiver baseband signal chain, and analog-to-digital converters. A small number of daughtercards have been built, and proven to be suitable for real-time microwave imaging. By arranging these daughtercards in different ways, any antenna array pattern can be built. This architecture allows real-time microwave imaging systems to be rapidly prototyped, while still being able to generate images at video frame rates.

  1. Spaceborne SAR and sea ice

    NASA Technical Reports Server (NTRS)

    Weeks, W. F.

    1983-01-01

    A number of remote sensing systems deployed in satellites to view the Earth which are successful in gathering data on the behavior of the world's snow and ice covers are described. Considering sea ice which covers over 10% of the world ocean, systems that have proven capable to collect useful data include those operating in the visible, near-infrared, infrared, and microwave frequency ranges. The microwave systems have the essential advantage in observing the ice under all weather and lighting conditions. Without this capability data are lost during the long polar night and during times of storm passage, periods when ice activity can be intense. The margins of the ice pack, a region of particular interest, is shrouded in cloud between 80 and 90% of the time.

  2. A bolometric millimeter-wave system for observations of anisotropy in the cosmic microwave background radiation on medium angular scales

    NASA Technical Reports Server (NTRS)

    Fischer, M. L.; Alsop, D. C.; Cheng, E. S.; Clapp, A. C.; Cottingham, D. A.; Gundersen, J. O.; Koch, T. C.; Kreysa, E.; Meinhold, P. R.; Lange, A. E.

    1992-01-01

    The performance of a bolometric system designed to measure the anisotropy of the cosmic microwave background (CMB) radiation on angular scales from 0.3 to 3 deg is presented. The system represents a collaborative effort combining a low-background 1-m diameter balloon-borne telescope with new multimode feed optics, a beam modulation mechanism with high stability, and a four-channel bolometric receiver with passbands centered near frequencies of 3, 6, 9, and 12/cm (90, 180, 270, and 360 GHz). The telescope has been flown three times with the bolometric receiver and has demonstrated detector noise limited performance capable of reaching sensitivity levels of about 0.00001 with detectors operated at 0.3 K.

  3. Radiated microwave power transmission system efficiency measurements

    NASA Technical Reports Server (NTRS)

    Dickinson, R. M.; Brown, W. C.

    1975-01-01

    The measured and calculated results from determining the operating efficiencies of a laboratory version of a system for transporting electric power from one point to another via a wireless free space radiated microwave beam are reported. The system's overall end-to-end efficiency as well as intermediated conversion efficiencies were measured. The maximum achieved end-to-end dc-to-ac system efficiency was 54.18% with a probable error of + or - 0.94%. The dc-to-RF conversion efficiency was measured to be 68.87% + or - 1.0% and the RF-to-dc conversion efficiency was 78.67 + or - 1.1%. Under these conditions a dc power of 495.62 + or - 3.57 W was received with a free space transmitter antenna receiver antenna separation of 170.2 cm (67 in).

  4. Unpowered wireless generation and sensing of ultrasound

    NASA Astrophysics Data System (ADS)

    Huang, Haiying

    2013-04-01

    This paper presents a wireless ultrasound pitch-catch system that demonstrates the wireless generation and sensing of ultrasounds based on the principle of frequency conversion. The wireless ultrasound pitch-catch system consists of a wireless interrogator and two wireless ultrasound transducers. The wireless interrogator generates an ultrasound-modulated signal and a carrier signal, both at the microwave frequency, and transmits these two signals to the wireless ultrasound actuator using a pair of antennas. Upon receiving these two signals, the wireless ultrasound actuator recovers the ultrasound excitation signal using a passive mixer and then supplies it to a piezoelectric wafer sensor for ultrasound generation in the structure. For wireless ultrasound sensing, the frequency conversion process is reversed. The ultrasound sensing signal is up-converted to a microwave signal by the wireless ultrasound sensor and is recovered at the wireless interrogator using a homodyne receiver. To differentiate the wireless actuator from the wireless sensor, each wireless transducer is equipped with a narrowband microwave filter so that it only responds to the carrier frequency that matches the filter's operation bandwidth. The principle of operation of the wireless pitch-catch system, the hardware implementation, and the associated data processing algorithm to recover the ultrasound signal from the wirelessly received signal are described. The wirelessly acquired ultrasound signal is compared with those acquired using wired connection in both time and frequency domain.

  5. A review of applications of microwave radiometry to oceanography

    NASA Technical Reports Server (NTRS)

    Wilheit, T. T., Jr.

    1977-01-01

    The emissivity of sea ice and atmospheric precipitation was investigated. Using the above physics, the data from the Electrically Scanning Microwave Radiometers (ESMR's) on the Nimbus-5 and Nimbus-6 satellites operating at wavelengths of 1.55 cm and 8mm, respectively, can be interpreted in terms of rain rate, ice coverage, and first year versus multi-year ice determination. The rain rate data is being used to establish a climatology of rainfall over the oceans. Both ice and rain data sets have been generated for the Global Atmospheric Research Project Data Systems Test.

  6. Superconducting Microwave Multivibrator Produced by Coherent Feedback

    NASA Astrophysics Data System (ADS)

    Kerckhoff, Joseph; Lehnert, K. W.

    2012-10-01

    We investigate a nonlinear coherent feedback circuit constructed from preexisting superconducting microwave devices. The network exhibits emergent bistable and astable states, and we demonstrate its operation as a latch and the frequency locking of its oscillations. While the network is tedious to model by hand, our observations agree quite well with the semiclassical dynamical model produced by a new software package (N. Tezak , arXiv:1111.3081v1 [Phil. Trans. R. Soc. A (to be published)]) that systematically interpreted an idealized schematic of the system as a quantum optic feedback network.

  7. DOE Office of Scientific and Technical Information (OSTI.GOV)

    McAllister, R.S.

    Contents: Visual Acquisition Functions in Operational Environments; Investigation of Causes of Military Aircraft Accidents Involving Pilot Vertigo/Disorientation; Long Term Pulmonary Effects of Repeated Use of 100% Oxygen; Effects of Microwave Radiation on Naval Personnel; Effects of Extremely Low Frequency Radiation on Man; Behavioral Characteristics of Monkeys and Rats Irradiated with Microwaves; Evaluation of the Squirrel Monkey (Saimiri sciureus) as an Experimental Animal Model for Dysbaric Osteonecrosis; Oculovestibular Effects on Visual Performance in Moving Military Systems; Chronic Exposure of Mammals to Non-ionizing Electric and Magnetic Fields--Physiological and Psychophysiological Effects; and Open Literature Publications by Staff Members.

  8. Ultracompact/ultralow power electron cyclotron resonance ion source for multipurpose applications.

    PubMed

    Sortais, P; Lamy, T; Médard, J; Angot, J; Latrasse, L; Thuillier, T

    2010-02-01

    In order to drastically reduce the power consumption of a microwave ion source, we have studied some specific discharge cavity geometries in order to reduce the operating point below 1 W of microwave power (at 2.45 GHz). We show that it is possible to drive an electron cyclotron resonance ion source with a transmitter technology similar to those used for cellular phones. By the reduction in the size and of the required microwave power, we have developed a new type of ultralow cost ion sources. This microwave discharge system (called COMIC, for COmpact MIcrowave and Coaxial) can be used as a source of light, plasma or ions. We will show geometries of conductive cavities where it is possible, in a 20 mm diameter chamber, to reduce the ignition of the plasma below 100 mW and define typical operating points around 5 W. Inside a simple vacuum chamber it is easy to place the source and its extraction system anywhere and fully under vacuum. In that case, current densities from 0.1 to 10 mA/cm(2) (Ar, extraction 4 mm, 1 mAe, 20 kV) have been observed. Preliminary measurements and calculations show the possibility, with a two electrodes system, to extract beams within a low emittance. The first application for these ion sources is the ion injection for charge breeding, surface analyzing system and surface treatment. For this purpose, a very small extraction hole is used (typically 3/10 mm for a 3 microA extracted current with 2 W of HF power). Mass spectrum and emittance measurements will be presented. In these conditions, values down to 1 pi mm mrad at 15 kV (1sigma) are observed, thus very close to the ones currently observed for a surface ionization source. A major interest of this approach is the possibility to connect together several COMIC devices. We will introduce some new on-going developments such as sources for high voltage implantation platforms, fully quartz radioactive ion source at ISOLDE or large plasma generators for plasma immersion, broad or ribbon beams generation.

  9. 14 CFR 171.303 - Definitions.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... FACILITIES NON-FEDERAL NAVIGATION FACILITIES Microwave Landing System (MLS) § 171.303 Definitions. As used in... operation of the landing guidance system. Beam center means the midpoint between the -3 dB points on the... main lobe measured at the -3 dB points and defined in angular units on the boresight, in the horizontal...

  10. 14 CFR 171.303 - Definitions.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... FACILITIES NON-FEDERAL NAVIGATION FACILITIES Microwave Landing System (MLS) § 171.303 Definitions. As used in... operation of the landing guidance system. Beam center means the midpoint between the -3 dB points on the... main lobe measured at the -3 dB points and defined in angular units on the boresight, in the horizontal...

  11. 14 CFR 171.303 - Definitions.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... FACILITIES NON-FEDERAL NAVIGATION FACILITIES Microwave Landing System (MLS) § 171.303 Definitions. As used in... operation of the landing guidance system. Beam center means the midpoint between the -3 dB points on the... main lobe measured at the -3 dB points and defined in angular units on the boresight, in the horizontal...

  12. 14 CFR 171.303 - Definitions.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... FACILITIES NON-FEDERAL NAVIGATION FACILITIES Microwave Landing System (MLS) § 171.303 Definitions. As used in... operation of the landing guidance system. Beam center means the midpoint between the -3 dB points on the... main lobe measured at the -3 dB points and defined in angular units on the boresight, in the horizontal...

  13. 14 CFR 171.303 - Definitions.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... FACILITIES NON-FEDERAL NAVIGATION FACILITIES Microwave Landing System (MLS) § 171.303 Definitions. As used in... operation of the landing guidance system. Beam center means the midpoint between the -3 dB points on the... main lobe measured at the -3 dB points and defined in angular units on the boresight, in the horizontal...

  14. Real time data acquisition of a countrywide commercial microwave link network

    NASA Astrophysics Data System (ADS)

    Chwala, Christian; Keis, Felix; Kunstmann, Harald

    2015-04-01

    Research in recent years has shown that data from commercial microwave link networks can provide very valuable precipitation information. Since these networks comprise the backbone of the cell phone network, they provide countrywide coverage. However acquiring the necessary data from the network operators is still difficult. Data is usually made available for researchers with a large time delay and often at irregular basis. This of course hinders the exploitation of commercial microwave link data in operational applications like QPE forecasts running at national meteorological services. To overcome this, we have developed a custom software in joint cooperation with our industry partner Ericsson. The software is installed on a dedicated server at Ericsson and is capable of acquiring data from the countrywide microwave link network in Germany. In its current first operational testing phase, data from several hundred microwave links in southern Germany is recorded. All data is instantaneously sent to our server where it is stored and organized in an emerging database. Time resolution for the Ericsson data is one minute. The custom acquisition software, however, is capable of processing higher sampling rates. Additionally we acquire and manage 1 Hz data from four microwave links operated by the skiing resort in Garmisch-Partenkirchen. We will present the concept of the data acquisition and show details of the custom-built software. Additionally we will showcase the accessibility and basic processing of real time microwave link data via our database web frontend.

  15. Parity-time–symmetric optoelectronic oscillator

    PubMed Central

    2018-01-01

    An optoelectronic oscillator (OEO) is a hybrid microwave and photonic system incorporating an amplified positive feedback loop to enable microwave oscillation to generate a high-frequency and low–phase noise microwave signal. The low phase noise is ensured by the high Q factor of the feedback loop enabled by the use of a long and low-loss optical fiber. However, an OEO with a long fiber loop would have a small free spectral range, leading to a large number of closely spaced oscillation modes. To ensure single-mode oscillation, an ultranarrowband optical filter must be used, but such an optical filter is hard to implement and the stability is poor. Here, we use a novel concept to achieve single-mode oscillation without using an ultranarrowband optical filter. The single-mode operation is achieved based on parity-time (PT) symmetry by using two identical feedback loops, with one having a gain and the other having a loss of the same magnitude. The operation is analyzed theoretically and verified by an experiment. Stable single-mode oscillation at an ultralow phase noise is achieved without the use of an ultranarrowband optical filter. The use of PT symmetry in an OEO overcomes the long-existing mode-selection challenge that would greatly simplify the implementation of OEOs for ultralow–phase noise microwave generation. PMID:29888325

  16. The Global Precipitation Measurement (GPM) Microwave Imager (GMI): Instrument Overview and Early On-Orbit Performance

    NASA Technical Reports Server (NTRS)

    Draper, David W.; Newell, David A.; Wentz, Frank J.; Krimchansky, Sergey; Jackson, Gail

    2015-01-01

    The Global Precipitation Measurement (GPM) mission is an international satellite mission that uses measurements from an advanced radar/radiometer system on a core observatory as reference standards to unify and advance precipitation estimates made by a constellation of research and operational microwave sensors. The GPM core observatory was launched on February 27, 2014 at 18:37 UT in a 65? inclination nonsun-synchronous orbit. GPM focuses on precipitation as a key component of the Earth's water and energy cycle, and has the capability to provide near-real-time observations for tracking severe weather events, monitoring freshwater resources, and other societal applications. The GPM microwave imager (GMI) on the core observatory provides the direct link to the constellation radiometer sensors, which fly mainly in polar orbits. The GMI sensitivity, accuracy, and stability play a crucial role in unifying the measurements from the GPM constellation of satellites. The instrument has exhibited highly stable operations through the duration of the calibration/validation period. This paper provides an overview of the GMI instrument and a report of early on-orbit commissioning activities. It discusses the on-orbit radiometric sensitivity, absolute calibration accuracy, and stability for each radiometric channel. Index Terms-Calibration accuracy, passive microwave remote sensing, radiometric sensitivity.

  17. Six-Port Based Interferometry for Precise Radar and Sensing Applications

    PubMed Central

    Koelpin, Alexander; Lurz, Fabian; Linz, Sarah; Mann, Sebastian; Will, Christoph; Lindner, Stefan

    2016-01-01

    Microwave technology plays a more important role in modern industrial sensing applications. Pushed by the significant progress in monolithic microwave integrated circuit technology over the past decades, complex sensing systems operating in the microwave and even millimeter-wave range are available for reasonable costs combined with exquisite performance. In the context of industrial sensing, this stimulates new approaches for metrology based on microwave technology. An old measurement principle nearly forgotten over the years has recently gained more and more attention in both academia and industry: the six-port interferometer. This paper reviews the basic concept, investigates promising applications in remote, as well as contact-based sensing and compares the system with state-of-the-art metrology. The significant advantages will be discussed just as the limitations of the six-port architecture. Particular attention will be paid to impairment effects and non-ideal behavior, as well as compensation and linearization concepts. It will be shown that in application fields, like remote distance sensing, precise alignment measurements, as well as interferometrically-evaluated mechanical strain analysis, the six-port architecture delivers extraordinary measurement results combined with high measurement data update rates for reasonable system costs. This makes the six-port architecture a promising candidate for industrial metrology. PMID:27669246

  18. EOS MLS Lessons Learned: Design Ideas for Safer and Lower Cost Operations

    NASA Technical Reports Server (NTRS)

    Miller, Dominick

    2012-01-01

    The Earth Observing System (EOS) Microwave Limb Sounder (MLS) is a complex instrument with a front end computer and 32 subsystem computers. MLS is one of four instruments on NASA's EOS Aura spacecraft With almost 8 years in orbit, MLS has a few lessons learned which can be applied during the design phase of future instruments to effect better longevity, more robust operations and a significant cost benefit during operations phase.

  19. Addendum to Site Assessment and Feasibility of a New Operations Base on the Greenland Ice Sheet: Addendum to Preliminary Report

    DTIC Science & Technology

    2015-11-01

    National Guard PLR Division of Polar Programs SMM /I Special Sensor Microwave/Imager SMMR Scanning Multi-channel Microwave Radiometer ERDC/CRREL...and the Special Sensor Microwave/Imager ( SMM /I). The satellite-based technique uses a difference in the passive microwave brightness temperatures

  20. Hypergolic Propellant Destruction Evaluation Cost Benefit Analysis

    NASA Technical Reports Server (NTRS)

    Kessel, Kurt

    2010-01-01

    At space vehicle launch sites such as Vandenberg Air Force Base (VAFB), Cape Canaveral Air Force Station (CCAFS) and Kennedy Space Center (KSC), toxic vapors and hazardous liquid wastes result from the handling of commodities (hypergolic fuels and oxidizers), most notably from transfer operations where fuel and oxidizer are transferred from bulk storage tanks or transfer tankers to space launch vehicles. During commodity transfer at CCAFS and KSC, wet chemical scrubbers (typically containing four scrubbing towers) are used to neutralize fuel saturated vapors from vent systems on tanks and tanker trailers. For fuel vapors, a citric acid solution is used to scrub out most of the hydrazine. Operation of both the hypergolic fuel and oxidizer vapor scrubbers generates waste scrubber liquor. Currently, scrubber liquor from the fuel vapor scrubber is considered non-hazardous. The scrubber liquor is defined as spent citric acid scrubber solution; the solution contains complexed hydrazine I methylhydrazine and is used to neutralize nonspecification hypergolic fuel generated by CCAFS and KSC. This project is a collaborative effort between Air Force Space Command (AFSPC), Space and Missile Center (SMC), the CCAFS, and National Aeronautics and Space Administration (NASA) to evaluate microwave destruction technology for the treatment of non-specification hypergolic fuel generated at CCAFS and KSC. The project will capitalize on knowledge gained from microwave treatment work being accomplished by AFSPC and SMC at V AFB. This report focuses on the costs associated with the current non-specification hypergolic fuel neutralization process (Section 2.0) as well as the estimated costs of operating a mobile microwave unit to treat non-specification hypergolic fuel (Section 3.0), and compares the costs for each (Section 4.0).The purpose of this document is to assess the costs associated with waste hypergolic fuel. This document will report the costs associated with the current fuel neutralization process and also examine the costs of an alternative technology, microwave destruction of waste hypergolic fuel. The microwave destruction system is being designed as a mobile unit to treat non-specification hypergolic fuel at CCAFS and KSC.

  1. A microwave field-driven transistor-like skyrmionic device with the microwave current-assisted skyrmion creation

    NASA Astrophysics Data System (ADS)

    Xia, Jing; Huang, Yangqi; Zhang, Xichao; Kang, Wang; Zheng, Chentian; Liu, Xiaoxi; Zhao, Weisheng; Zhou, Yan

    2017-10-01

    Magnetic skyrmion is a topologically protected domain-wall structure at nanoscale, which could serve as a basic building block for advanced spintronic devices. Here, we propose a microwave field-driven skyrmionic device with the transistor-like function, where the motion of a skyrmion in a voltage-gated ferromagnetic nanotrack is studied by micromagnetic simulations. It is demonstrated that the microwave field can drive the motion of a skyrmion by exciting the propagating spin waves, and the skyrmion motion can be governed by a gate voltage. We also investigate the microwave current-assisted creation of a skyrmion to facilitate the operation of the transistor-like skyrmionic device on the source terminal. It is found that the microwave current with an appropriate frequency can reduce the threshold current density required for the creation of a skyrmion from the ferromagnetic background. The proposed transistor-like skyrmionic device operated with the microwave field and current could be useful for building future skyrmion-based circuits.

  2. Two-Band, Low-Loss Microwave Window

    NASA Technical Reports Server (NTRS)

    Britcliffe, Michael; Franco, Manuel

    2007-01-01

    A window for a high-sensitivity microwave receiving system allows microwave radiation to pass through to a cryogenically cooled microwave feed system in a vacuum chamber, while keeping ambient air out of the chamber and helping to keep the interior of the chamber cold. The microwave feed system comprises a feed horn and a low-noise amplifier, both of which are required to be cooled to a temperature of 15 K during operation. The window is designed to exhibit very little microwave attenuation in two frequency bands: 8 to 9 GHz and 30 to 40 GHz. The window is 15 cm in diameter. It includes three layers (see figure): 1) The outer layer is made of a poly(tetrafluoroethylene) film 0.025 mm thick. This layer serves primarily to reflect and absorb solar ultraviolet radiation to prolong the life of the underlying main window layer, which is made of a polyimide that becomes weakened when exposed to ultraviolet. The poly(tetrafluoroethylene) layer also protects the main window layer against abrasion. Moreover, the inherent hydrophobicity of poly(tetrafluoroethylene) helps to prevent the highly undesirable accumulation of water on the outer surface. 2) The polyimide main window layer is 0.08 mm thick. This layer provides the vacuum seal for the window. 3) A 20-mm-thick layer of ethylene/ propylene copolymer foam underlies the main polyimide window layer. This foam layer acts partly as a thermal insulator: it limits radiational heating of the microwave feed horn and, concomitantly, limits radiational cooling of the window. This layer has high compressive strength and provides some mechanical support for the main window layer, reducing the strength required of the main window layer. The ethylene/propylene copolymer foam layer is attached to an aluminum window ring by means of epoxy. The outer poly(tetrafluoroethylene) film and the main polyimide window layer are sandwiched together and pressed against the window ring by use of a bolted clamp ring. The window has been found to introduce a microwave loss of only about 0.4 percent. The contribution of the window to the noise temperature of the microwave feed system has been found to be less than 1 K at 32 GHz and 0.2 K at 8.4 GHz.

  3. Microwave induced plasma for solid fuels and waste processing: A review on affecting factors and performance criteria.

    PubMed

    Ho, Guan Sem; Faizal, Hasan Mohd; Ani, Farid Nasir

    2017-11-01

    High temperature thermal plasma has a major drawback which consumes high energy. Therefore, non-thermal plasma which uses comparatively lower energy, for instance, microwave plasma is more attractive to be applied in gasification process. Microwave-induced plasma gasification also carries the advantages in terms of simplicity, compactness, lightweight, uniform heating and the ability to operate under atmospheric pressure that gains attention from researchers. The present paper synthesizes the current knowledge available for microwave plasma gasification on solid fuels and waste, specifically on affecting parameters and their performance. The review starts with a brief outline on microwave plasma setup in general, and followed by the effect of various operating parameters on resulting output. Operating parameters including fuel characteristics, fuel injection position, microwave power, addition of steam, oxygen/fuel ratio and plasma working gas flow rate are discussed along with several performance criteria such as resulting syngas composition, efficiency, carbon conversion, and hydrogen production rate. Based on the present review, fuel retention time is found to be the key parameter that influences the gasification performance. Therefore, emphasis on retention time is necessary in order to improve the performance of microwave plasma gasification of solid fuels and wastes. Copyright © 2017 Elsevier Ltd. All rights reserved.

  4. Advanced microwave radiometer antenna system study

    NASA Technical Reports Server (NTRS)

    Kummer, W. H.; Villeneuve, A. T.; Seaton, A. F.

    1976-01-01

    The practicability of a multi-frequency antenna for spaceborne microwave radiometers was considered in detail. The program consisted of a comparative study of various antenna systems, both mechanically and electronically scanned, in relation to specified design goals and desired system performance. The study involved several distinct tasks: definition of candidate antennas that are lightweight and that, at the specified frequencies of 5, 10, 18, 22, and 36 GHz, can provide conical scanning, dual linear polarization, and simultaneous multiple frequency operation; examination of various feed systems and phase-shifting techniques; detailed analysis of several key performance parameters such as beam efficiency, sidelobe level, and antenna beam footprint size; and conception of an antenna/feed system that could meet the design goals. Candidate antennas examined include phased arrays, lenses, and optical reflector systems. Mechanical, electrical, and performance characteristics of the various systems were tabulated for ease of comparison.

  5. Distributed data transmitter

    DOEpatents

    Brown, Kenneth Dewayne [Grain Valley, MO; Dunson, David [Kansas City, MO

    2006-08-08

    A distributed data transmitter (DTXR) which is an adaptive data communication microwave transmitter having a distributable architecture of modular components, and which incorporates both digital and microwave technology to provide substantial improvements in physical and operational flexibility. The DTXR has application in, for example, remote data acquisition involving the transmission of telemetry data across a wireless link, wherein the DTXR is integrated into and utilizes available space within a system (e.g., a flight vehicle). In a preferred embodiment, the DTXR broadly comprises a plurality of input interfaces; a data modulator; a power amplifier; and a power converter, all of which are modularly separate and distinct so as to be substantially independently physically distributable and positionable throughout the system wherever sufficient space is available.

  6. Distributed data transmitter

    DOEpatents

    Brown, Kenneth Dewayne [Grain Valley, MO; Dunson, David [Kansas City, MO

    2008-06-03

    A distributed data transmitter (DTXR) which is an adaptive data communication microwave transmitter having a distributable architecture of modular components, and which incorporates both digital and microwave technology to provide substantial improvements in physical and operational flexibility. The DTXR has application in, for example, remote data acquisition involving the transmission of telemetry data across a wireless link, wherein the DTXR is integrated into and utilizes available space within a system (e.g., a flight vehicle). In a preferred embodiment, the DTXR broadly comprises a plurality of input interfaces; a data modulator; a power amplifier; and a power converter, all of which are modularly separate and distinct so as to be substantially independently physically distributable and positionable throughout the system wherever sufficient space is available.

  7. Schenberg microwave cabling seismic isolation.

    NASA Astrophysics Data System (ADS)

    Bortoli, F. S.; Frajuca, C.; Aguiar, O. D.

    2018-02-01

    SCHENBERG is a resonant-mass gravitational wave detector with a frequency about 3.2 kHz. Its spherical antenna, weighing 1.15 metric ton, is connected to the external world by a system which must attenuate seismic noise. When a gravitational wave passes the antenna vibrates, its motion is monitored by transducers. These parametric transducers uses microwaves carried by coaxial cables that are also connected to the external world, they also carry seismic noise. In this analysis the system was modeled using finite element method. This work shows that the addition of masses along these cables can decrease this noise, so that this noise is below the thermal noise of the detector when operating at 50 mK.

  8. High power microwave components for space communications satellite

    NASA Technical Reports Server (NTRS)

    Jankowski, H.; Geia, A.

    1972-01-01

    Analyzed, developed, and tested were high power microwave components for communications satellites systems. Included were waveguide and flange configurations with venting, a harmonic filter, forward and reverse power monitors, electrical fault sensors, and a diplexer for two channel simultaneous transmission. The assembly of 8.36 GHz components was bench tested, and then operated for 60 hours at 3.5 kW CW in a high vacuum. The diplexer was omitted from this test pending a modification of its end irises. An RF leakage test showed only that care is required at flange junctions; all other components were RF tight. Designs were extrapolated for 12 GHz and 2.64 GHz high power satellite systems.

  9. Advanced Transport Operating Systems Program

    NASA Technical Reports Server (NTRS)

    White, John J.

    1990-01-01

    NASA-Langley's Advanced Transport Operating Systems Program employs a heavily instrumented, B 737-100 as its Transport Systems Research Vehicle (TRSV). The TRSV has been used during the demonstration trials of the Time Reference Scanning Beam Microwave Landing System (TRSB MLS), the '4D flight-management' concept, ATC data links, and airborne windshear sensors. The credibility obtainable from successful flight test experiments is often a critical factor in the granting of substantial commitments for commercial implementation by the FAA and industry. In the case of the TRSB MLS, flight test demonstrations were decisive to its selection as the standard landing system by the ICAO.

  10. Variable frequency microwave heating apparatus

    DOEpatents

    Bible, Don W.; Lauf, Robert J.; Johnson, Arvid C.; Thigpen, Larry T.

    1999-01-01

    A variable frequency microwave heating apparatus (10) designed to allow modulation of the frequency of the microwaves introduced into a multi-mode microwave cavity (34) for testing or other selected applications. The variable frequency microwave heating apparatus (10) includes a microwave signal generator (12) and a high-power microwave amplifier (20) or a high-power microwave oscillator (14). A power supply (22) is provided for operation of the high-power microwave oscillator (14) or microwave amplifier (20). A directional coupler (24) is provided for detecting the direction and amplitude of signals incident upon and reflected from the microwave cavity (34). A first power meter (30) is provided for measuring the power delivered to the microwave furnace (32). A second power meter (26) detects the magnitude of reflected power. Reflected power is dissipated in the reflected power load (28).

  11. Synergistic estimation of surface parameters from jointly using optical and microwave observations in EOLDAS

    NASA Astrophysics Data System (ADS)

    Timmermans, Joris; Gomez-Dans, Jose; Lewis, Philip; Loew, Alexander; Schlenz, Florian

    2017-04-01

    The large amount of remote sensing data nowadays available provides a huge potential for monitoring crop development, drought conditions and water efficiency. This potential however not been realized yet because algorithms for land surface parameter retrieval mostly use data from only a single sensor. Consequently products that combine different low-level observations from different sensors are hard to find. The lack of synergistic retrieval is caused because it is easier to focus on single sensor types/footprints and temporal observation times, than to find a way to compensate for differences. Different sensor types (microwave/optical) require different radiative transfer (RT) models and also require consistency between the models to have any impact on the retrieval of soil moisture by a microwave instrument. Varying spatial footprints require first proper collocation of the data before one can scale between different resolutions. Considering these problems, merging optical and microwave observations have not been performed yet. The goal of this research was to investigate the potential of integrating optical and microwave RT models within the Earth Observation Land Data Assimilation System (EOLDAS) synergistically to derive biophysical parameters. This system uses a Bayesian data assimilation approach together with observation operators such as the PROSAIL model to estimate land surface parameters. For the purpose of enabling the system to integrate passive microwave radiation (from an ELBARRA II passive microwave radiometer), the Community Microwave Emission Model (CMEM) RT-model, was integrated within the EOLDAS system. In order to quantify the potential, a variety of land surface parameters was chosen to be retrieved from the system, in particular variables that a) impact only optical RT (such as leaf water content and leaf dry matter), b) only impact the microwave RT (such as soil moisture and soil temperature), and c) Leaf Area Index (LAI) that impacts both optical and microwave RT. The results show a high potential when both optical and microwave are used independently. Using only RapidEye only with SAIL RT model, LAI was estimated with R=0.68 with p=0.09, although estimating leaf water content and dry matter showed lower correlations |R|<0.4. The results for retrieving soil temperature and leaf area index retrievals using only (passive microwave) Elbarra-II observations were good with respectively R=[0.85, 0.79], P=[0.0, 0.0], when focusing on dry-spells (of at least 9 days) only the results respectively [R=0.73, and P=0.0], and R=0.89 and R=0.77 for respectively the trend and anomalies. Synergistically using optical and microwave shows also a good potential. This scenario shows that absolute errors improved (with RMSE=1.22 and S=0.89), but with degrading correlations (R=0.59 and P=0.04); the sparse optical observations only improved part of the temporal domain. However in general the synergistic retrieval showed good potential; microwave data provides better information concerning the overall trend of the retrieved LAI due to the regular acquisitions, while optical data provides better information concerning the absolute values of the LAI.

  12. Satellite Power Systems (SPS): Concept development and evaluation program: Preliminary assessment

    NASA Technical Reports Server (NTRS)

    1979-01-01

    A preliminary assessment of a potential Satellite Power System (SPS) is provided. The assessment includes discussion of technical and economic feasibility; the effects of microwave power transmission beams on biological, ecological, and electromagnetic systems; the impact of SPS construction, deployment, and operations on the biosphere and on society; and the merits of SPS compared to other future energy alternatives.

  13. The commercial clothes dryer market: Market structure and opportunities for microwave dryers. Final report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Leon, G.; McNulty, S.

    1995-08-01

    EPRI`s prototype commercial microwave clothes dryer offers significant benefits over conventional dryers, including faster drying at lower temperatures, less damage to fabrics, and possible drying of some dry-clean-only fabrics. With the technical challenges overcome, EPRI sponsored the microwave dryer project to gauge the likely market response to this new drying technology and to determine the best marketing approach for commercial microwave dryers. This market assessment provides information about the dryer features required in various commercial market segments as well as guidance in choosing the segments and subsegments most likely to accept microwave clothes dryers. At present, the market segments mostmore » amenable to microwave dryer technology include the coin-operated, medium, and large dryer owners. Promising subsegments include the apartment coin-operated market and businesses that have capacity constraints, low fuel cost sensitivity, or extremely low dryer usage.« less

  14. Establishment of quality, reliability and design standards for low, medium, and high power microwave hybrid microcircuits

    NASA Technical Reports Server (NTRS)

    Robinson, E. A.

    1973-01-01

    Quality, reliability, and design standards for microwave hybrid microcircuits were established. The MSFC Standard 85M03926 for hybrid microcircuits was reviewed and modifications were generated for use with microwave hybrid microcircuits. The results for reliability tests of microwave thin film capacitors, transistors, and microwave circuits are presented. Twenty-two microwave receivers were tested for 13,500 unit hours. The result of 111,121 module burn-in and operating hours for an integrated solid state transceiver module is reported.

  15. The Global Precipitation Measurement (GPM) Mission: Overview and U.S. Science Status

    NASA Astrophysics Data System (ADS)

    Hou, Arthur Y.; Skofronick-Jackson, Gail; Stocker, Erich F.

    2013-04-01

    The Global Precipitation Measurement (GPM) Mission is a satellite mission specifically designed to unify and advance precipitation measurements from a constellation of research and operational microwave sensors provided by a consortium of international partners. NASA and JAXA will deploy a Core Observatory in 2014 to serve as a reference satellite for precipitation measurements by the constellation sensors. The GPM Core Observatory will carry a Ku/Ka-band Dual-frequency Precipitation Radar (DPR) and a conical-scanning multi-channel (10-183 GHz) GPM Microwave Radiometer (GMI). The DPR, the first dual-frequency radar in space, will provide not only measurements of 3-D precipitation structures but also quantitative information on microphysical properties of precipitating particles. The DPR and GMI measurements will together provide a database that relates vertical hydrometeor profiles to multi-frequency microwave radiances over a variety of environmental conditions across the globe. This combined database will serve as a common transfer standard for improving the accuracy and consistency of precipitation retrievals from all constellation radiometers. In addition to the Core Observatory, the GPM constellation consists of (1) Special Sensor Microwave Imager/Sounder (SSMIS) instruments on the U.S. Defense Meteorological Satellite Program (DMSP) satellites, (2) the Advanced Microwave Scanning Radiometer-2 (AMSR-2) on the GCOM-W1 satellite of JAXA, (3) the Multi-Frequency Microwave Scanning Radiometer (MADRAS) and the multi-channel microwave humidity sounder (SAPHIR) on the French-Indian Megha-Tropiques satellite, (4) the Microwave Humidity Sounder (MHS) on the National Oceanic and Atmospheric Administration (NOAA) Polar Orbiting Environmental Satellites (POES), (5) MHS instruments on MetOp satellites launched by the European Organisation for the Exploitation of Meteorological Satellites (EUMETSAT), (6) the Advanced Technology Microwave Sounder (ATMS) on the National Polar-orbiting Operational Environmental Satellite System (NPOESS) Preparatory Project (NPP), and (7) ATMS instruments on the NOAA-NASA Joint Polar Satellite System (JPSS) satellites. Each constellation member may have its unique scientific or operational objectives but contributes microwave observations to GPM for the generation and dissemination of unified global precipitation data products. Currently global rainfall products combine observations from a network of uncoordinated satellite missions using a variety of merging techniques. GPM is designed to provide the next-generation of precipitation products characterized by: (1) more accurate instantaneous precipitation estimate (especially for light rain and cold-season solid precipitation), (2) intercalibrated microwave brightness temperatures from constellation radiometers within a consistent framework, and (3) unified precipitation retrievals from constellation radiometers using a common a priori hydrometeor database consistent with combined radar/radiometer measurements by the GPM Core Observatory. As a science mission with integrated applications goals, GPM will advance the understanding of global water cycle variability in a changing climate by offering insights into 3-dimensional structures of hurricanes and midlatitude storms, microphysical properties of precipitating particles, and latent heat associated with precipitation processes. The GPM Mission will also make data available in near realtime (within 3 hours of observations) for societal applications ranging from position fixes of storm centers, numerical weather prediction, flood forecasting, freshwater management, landslide warning, crop prediction, to tracking of water-borne diseases. This presentation will give an overview of the GPM mission and its development status approximately one-year prior to launch.

  16. Design and operational experience of a microwave cavity axion detector for the 20 – 100 μ eV range

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Al Kenany, S.; Anil, M. A.; Backes, K. M.

    We describe a dark matter axion detector designed, constructed, and operated both as an innovation platform for new cavity and amplifier technologies and as a data pathfinder in the 5-25 GHz range (~20-100 eV). The platform is small but flexible to facilitate the development of new microwave cavity and amplifier concepts in an operational environment. The experiment has recently completed its first data production; it is the first microwave cavity axion search to deploy a Josephson parametric amplifier and a dilution refrigerator to achieve near-quantum limited performance.

  17. Design and operational experience of a microwave cavity axion detector for the 20 – 100 μ eV range

    DOE PAGES

    Al Kenany, S.; Anil, M. A.; Backes, K. M.; ...

    2017-02-09

    We describe a dark matter axion detector designed, constructed, and operated both as an innovation platform for new cavity and amplifier technologies and as a data pathfinder in the 5-25 GHz range (~20-100 eV). The platform is small but flexible to facilitate the development of new microwave cavity and amplifier concepts in an operational environment. The experiment has recently completed its first data production; it is the first microwave cavity axion search to deploy a Josephson parametric amplifier and a dilution refrigerator to achieve near-quantum limited performance.

  18. GEO/SAMS - The Geostationary Synthetic Aperture Microwave Sounder

    NASA Technical Reports Server (NTRS)

    Lambrigtsen, Bjorn H.

    2008-01-01

    The National Oceanic and Atmospheric Administration (NOAA) has for many years operated two weather satellite systems, the Polar-orbiting Operational Environmental Satellite system (POES), using low-earth orbiting (LEO) satellites, and the Geostationary Operational Environmental Satellite system (GOES), using geostationary earth orbiting (GEO) satellites. (Similar systems are also operated by other nations.) The POES satellites have been equipped with both infrared (IR) and microwave (MW) atmospheric sounders, which makes it possible to determine the vertical distribution of temperature and humidity in the troposphere even under cloudy conditions. Such satellite observations have had a significant impact on weather forecasting accuracy, especially in regions where in situ observations are sparse. In contrast, the GOES satellites have only been equipped with IR sounders, since it has not been feasible to build a large enough antenna to achieve sufficient spatial resolution for a MW sounder in GEO. As a result, GOES soundings can only be obtained in cloud free areas and in the less important upper atmosphere, above the cloud tops. This has hindered the effective use of GOES data in numerical weather prediction. Full sounding capabilities with the GOES system is highly desirable because of the advantageous spatial and temporal coverage that is possible from GEO. While POES satellites provide coverage in relatively narrow swaths, and with a revisit time of 12-24 hours or more, GOES satellites can provide continuous hemispheric coverage, making it possible to monitor highly dynamic phenomena such as hurricanes.

  19. K-Band Substrate Integrated Waveguide (SIW) Coupler

    NASA Astrophysics Data System (ADS)

    Khalid, N.; Ibrahim, S. Z.; Hoon, W. F.

    2018-03-01

    This paper presents a designed coupler by using substrate Roger RO4003. The four port network coupler operates at (18-26 GHz) and designed by using substrate integrated waveguide (SIW) method. Substrate Integrated Waveguide (SIW) are high performance broadband interconnects with excellent immunity to electromagnetic interference and suitable in microwave and millimetre-wave electronics applications, as well as wideband systems. The designs of the coupler are investigated using CST Microwave Studio simulation tool. These proposed couplers are capable of covering the frequency range and provide better performance of scattering parameter (S-parameter). This technology is successfully approached for millimetre-wave and microwave applications. Designs and results are presented and discussed in this paper. The overall simulated percentage bandwidth of the proposed coupler is covered from 18 to 26 GHz with percentage bandwidth of 36.36%.

  20. Free radical propulsion concept

    NASA Technical Reports Server (NTRS)

    Hawkins, C. E.; Nakanishi, S.

    1981-01-01

    A free radical propulsion concept utilizing the recombination energy of dissociated low molecular weight gases to produce thrust was examined. The concept offered promise of a propulsion system operating at a theoretical impulse, with hydrogen, as high as 2200 seconds at high thrust to power ratio, thus filling the gas existing between chemical and electrostatic propulsion capabilities. Microwave energy used to dissociate a continuously flowing gas was transferred to the propellant via three body recombination for conversion to propellant kinetic energy. Power absorption by the microwave plasma discharge was in excess of 90 percent over a broad range of pressures. Gas temperatures inferred from gas dynamic equations showed much higher temperatures from microwave heating than from electrothermal heating. Spectroscopic analysis appeared to corroborate the inferred temperatures of one of the gases tested.

  1. A kilo-pixel imaging system for future space based far-infrared observatories using microwave kinetic inductance detectors

    NASA Astrophysics Data System (ADS)

    Baselmans, J. J. A.; Bueno, J.; Yates, S. J. C.; Yurduseven, O.; Llombart, N.; Karatsu, K.; Baryshev, A. M.; Ferrari, L.; Endo, A.; Thoen, D. J.; de Visser, P. J.; Janssen, R. M. J.; Murugesan, V.; Driessen, E. F. C.; Coiffard, G.; Martin-Pintado, J.; Hargrave, P.; Griffin, M.

    2017-05-01

    Aims: Future astrophysics and cosmic microwave background space missions operating in the far-infrared to millimetre part of the spectrum will require very large arrays of ultra-sensitive detectors in combination with high multiplexing factors and efficient low-noise and low-power readout systems. We have developed a demonstrator system suitable for such applications. Methods: The system combines a 961 pixel imaging array based upon Microwave Kinetic Inductance Detectors (MKIDs) with a readout system capable of reading out all pixels simultaneously with only one readout cable pair and a single cryogenic amplifier. We evaluate, in a representative environment, the system performance in terms of sensitivity, dynamic range, optical efficiency, cosmic ray rejection, pixel-pixel crosstalk and overall yield at an observation centre frequency of 850 GHz and 20% fractional bandwidth. Results: The overall system has an excellent sensitivity, with an average detector sensitivity < NEPdet> =3×10-19 WHz measured using a thermal calibration source. At a loading power per pixel of 50 fW we demonstrate white, photon noise limited detector noise down to 300 mHz. The dynamic range would allow the detection of 1 Jy bright sources within the field of view without tuning the readout of the detectors. The expected dead time due to cosmic ray interactions, when operated in an L2 or a similar far-Earth orbit, is found to be <4%. Additionally, the achieved pixel yield is 83% and the crosstalk between the pixels is <-30 dB. Conclusions: This demonstrates that MKID technology can provide multiplexing ratios on the order of a 1000 with state-of-the-art single pixel performance, and that the technology is now mature enough to be considered for future space based observatories and experiments.

  2. Prospects for altimetry and scatterometry in the 90's. [satellite oceanography

    NASA Technical Reports Server (NTRS)

    Townsend, W. F.

    1985-01-01

    Current NASA plans for altimetry and scatterometry of the oceans using spaceborne instrumentation are outlined. The data of interest covers geostrophic and wind-driven circulation, heat content, the horizontal heat flux of the ocean, and the interactions between atmosphere and ocean and ocean and climate. A proposed TOPEX satellite is to be launched in 1991, carrying a radar altimeter to measure the ocean surface topography. Employing dual-wavelength operation would furnish ionospheric correction data. Multibeam instruments could also be flown on the multiple-instrument polar orbiting platforms comprising the Earth Observation System. A microwave radar scatterometer, which functions on the basis of Bragg scattering of microwave energy off of wavelets, would operate at various view angles and furnish wind speeds accurate to 1.5 m/sec and directions accurate to 20 deg.

  3. The Development of an Information System Master Plan for the Pacific Missile Range Facility, Barking Sands, Hawaii

    DTIC Science & Technology

    1992-03-01

    sites and support facilities are located on the islands of Niihau and Oahu. Figure 1 depicts the overall layout of PMRF. [Ref. 4: p. 2] In addition...the HIANG facility at Kokee: • a wideband microwave system serving Niihau Island remotely controls operation of the AN/APS-134 surveillance radar, and...provides relay of digitized radar data, control data and voice between the remotely operated, unmanned radar on Niihau Island and Barking Sands

  4. Microwave ablation at 10.0 GHz achieves comparable ablation zones to 1.9 GHz in ex vivo bovine liver.

    PubMed

    Luyen, Hung; Gao, Fuqiang; Hagness, Susan C; Behdad, Nader

    2014-06-01

    We demonstrate the feasibility of using high-frequency microwaves for tissue ablation by comparing the performance of a 10 GHz microwave ablation system with that of a 1.9 GHz system. Two sets of floating sleeve dipole antennas operating at these frequencies were designed and fabricated for use in ex vivo experiments with bovine livers. Combined electromagnetic and transient thermal simulations were conducted to analyze the performance of these antennas. Subsequently, a total of 16 ablation experiments (eight at 1.9 GHz and eight at 10.0 GHz) were conducted at a power level of 42 W for either 5 or 10 min. In all cases, the 1.9 and 10 GHz experiments resulted in comparable ablation zone dimensions. Temperature monitoring probes revealed faster heating rates in the immediate vicinity of the 10.0 GHz antenna compared to the 1.9 GHz antenna, along with a slightly delayed onset of heating farther from the 10 GHz antenna, suggesting that heat conduction plays a greater role at higher microwave frequencies in achieving a comparably sized ablation zone. The results obtained from these experiments agree very well with the combined electromagnetic/thermal simulation results. These simulations and experiments show that using lower frequency microwaves does not offer any significant advantages, in terms of the achievable ablation zones, over using higher frequency microwaves. Indeed, it is demonstrated that high-frequency microwave antennas may be used to create reasonably large ablation zones. Higher frequencies offer the advantage of smaller antenna size, which is expected to lead to less invasive interstitial devices and may possibly lead to the development of more compact multielement arrays with heating properties not available from single-element antennas.

  5. DOE Office of Scientific and Technical Information (OSTI.GOV)

    White, T.L.; Foster, D. Jr.; Wilson, C.T.

    The authors report on the results of the second phase of a four-phase program at Oak Ridge National Laboratory to develop a system to decontaminate concrete using microwave energy. The microwave energy is directed at the concrete surface through the use of an optimized wave guide antenna, or applicator, and this energy rapidly heats the free water present in the interstitial spaces of the concrete matrix. The resulting steam pressure causes the surface to burst in much the same way popcorn pops in a home microwave oven. Each steam explosion removes several square centimeters of concrete surface that are collectedmore » by a highly integrated wave guide and vacuum system. The authors call this process the microwave concrete decontamination, or MCD, process. In the first phase of the program the principle of microwaves concrete removal concrete surfaces was demonstrated. In these experiments, concrete slabs were placed on a translator and moved beneath a stationary microwave system. The second phase demonstrated the ability to mobilize the technology to remove the surfaces from concrete floors. Area and volume concrete removal rates of 10.4 cm{sup 2}/s and 4.9 cm{sup 3}/S, respectively, at 18 GHz were demonstrated. These rates are more than double those obtained in Phase 1 of the program. Deeper contamination can be removed by using a longer residence time under the applicator to create multiple explosions in the same area or by taking multiple passes over previously removed areas. Both techniques have been successfully demonstrated. Small test sections of painted and oil-soaked concrete have also been removed in a single pass. Concrete with embedded metal anchors on the surface has also been removed, although with some increased variability of removal depth. Microwave leakage should not pose any operational hazard to personnel, since the observed leakage was much less than the regulatory standard.« less

  6. Performance of an on-chip superconducting circulator for quantum microwave systems

    NASA Astrophysics Data System (ADS)

    Chapman, Benjamin; Rosenthal, Eric; Moores, Bradley; Kerckhoff, Joseph; Mates, J. A. B.; Hilton, G. C.; Vale, L. R.; Ullom, J. N.; LalumíEre, Kevin; Blais, Alexandre; Lehnert, K. W.

    Microwave circulators enforce a single propagation direction for signals in an electrical network. Unfortunately, commercial circulators are bulky, lossy, and cannot be integrated close to superconducting circuits because they require strong ( kOe) magnetic fields produced by permanent magnets. Here we report on the performance of an on-chip, active circulator for superconducting microwave circuits, which uses no permanent magnets. Non-reciprocity is achieved by actively modulating reactive elements around 100 MHz, giving roughly a factor of 50 in the separation between signal and control frequencies, which facilitates filtering. The circulator's active components are dynamically tunable inductors constructed with arrays of dc-SQUIDs in series. Array inductance is tuned by varying the magnetic flux through the SQUIDs with fields weaker than 1 Oe. Although the instantaneous bandwidth of the device is narrow, the operation frequency is tunable between 4 and 8 GHz. This presentation will describe the device's theory of operation and compare its measured performance to design goals. This work is supported by the ARO under contract W911NF-14-1-0079 and the National Science Foundation under Grant Number 1125844.

  7. Transmitter switch for high-power microwave output

    NASA Technical Reports Server (NTRS)

    Wiggins, C. P.; Leu, R. K.

    1975-01-01

    Combiner system can be used for combining output powers of two transmitters or for switching from one to the other. This can be done when pair of transmitters operate on same frequency and carriers are phase coherent as by excitation from single exciter.

  8. 18 CFR 367.9310 - Account 931, Rents.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... NATURAL GAS ACT UNIFORM SYSTEM OF ACCOUNTS FOR CENTRALIZED SERVICE COMPANIES SUBJECT TO THE PROVISIONS OF..., including taxes, paid for the property of others used, occupied or operated in connection with service... structure, office furniture, fixtures, computers, data processing equipment, microwave and telecommunication...

  9. 18 CFR 367.9310 - Account 931, Rents.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... NATURAL GAS ACT UNIFORM SYSTEM OF ACCOUNTS FOR CENTRALIZED SERVICE COMPANIES SUBJECT TO THE PROVISIONS OF..., including taxes, paid for the property of others used, occupied or operated in connection with service... structure, office furniture, fixtures, computers, data processing equipment, microwave and telecommunication...

  10. 18 CFR 367.9310 - Account 931, Rents.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... NATURAL GAS ACT UNIFORM SYSTEM OF ACCOUNTS FOR CENTRALIZED SERVICE COMPANIES SUBJECT TO THE PROVISIONS OF..., including taxes, paid for the property of others used, occupied or operated in connection with service... structure, office furniture, fixtures, computers, data processing equipment, microwave and telecommunication...

  11. 18 CFR 367.9310 - Account 931, Rents.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... NATURAL GAS ACT UNIFORM SYSTEM OF ACCOUNTS FOR CENTRALIZED SERVICE COMPANIES SUBJECT TO THE PROVISIONS OF..., including taxes, paid for the property of others used, occupied or operated in connection with service... structure, office furniture, fixtures, computers, data processing equipment, microwave and telecommunication...

  12. 18 CFR 367.9310 - Account 931, Rents.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... NATURAL GAS ACT UNIFORM SYSTEM OF ACCOUNTS FOR CENTRALIZED SERVICE COMPANIES SUBJECT TO THE PROVISIONS OF..., including taxes, paid for the property of others used, occupied or operated in connection with service... structure, office furniture, fixtures, computers, data processing equipment, microwave and telecommunication...

  13. An SSM/I radiometer simulator for studies of microwave emission from soil. [Special Sensor Microwave/Imager

    NASA Technical Reports Server (NTRS)

    Galantowicz, J. F.; England, A. W.

    1992-01-01

    A ground-based simulator of the defense meterological satellite program special sensor microwave/imager (DMSP SSM/I) is described, and its integration with micrometeorological instrumentation for an investigation of microwave emission from moist and frozen soils is discussed. The simulator consists of three single polarization radiometers which are capable of both Dicke radiometer and total power radiometer modes of operation. The radiometers are designed for untended operation through a local computer and a daily telephone link to a laboratory. The functional characteristics of the radiometers are described, together with their field deployment configuration and an example of performance parameters.

  14. Bidirectional microwave-mechanical-optical transducer in a dilution refrigerator

    NASA Astrophysics Data System (ADS)

    Burns, Peter S.; Higginbotham, Andrew P.; Peterson, Robert W.; Urmey, Maxwell D.; Kampel, Nir S.; Menke, Timothy; Cicak, Katarina; Simmonds, Raymond. W.; Regal, Cindy A.; Lehnert, Konrad W.

    Transferring quantum states between microwave and optical networks would be a powerful resource for quantum communication and computation. Our approach is to simultaneously couple one mode of a micromechanical oscillator to a resonant microwave circuit and a high-finesse optical cavity. Building on previous work demonstrating bidirectional and efficient classical conversion at 4 K, a new microwave-to-optical transducer is operated at 0.1 K and preparations are underway to operate it in the quantum regime. To improve transfer efficiency, we characterize and implement wireless microwave access to the converter chip. Transfer efficiency of the device is measured, and loss in the LC circuit due to laser light is characterized. We acknowledge support from AFOSR MURI Grant FA9550-15-1-0015 and PFC National Science Foundation Grant 1125844.

  15. Plasma reactor waste management systems

    NASA Technical Reports Server (NTRS)

    Ness, Robert O., Jr.; Rindt, John R.; Ness, Sumitra R.

    1992-01-01

    The University of North Dakota is developing a plasma reactor system for use in closed-loop processing that includes biological, materials, manufacturing, and waste processing. Direct-current, high-frequency, or microwave discharges will be used to produce plasmas for the treatment of materials. The plasma reactors offer several advantages over other systems, including low operating temperatures, low operating pressures, mechanical simplicity, and relatively safe operation. Human fecal material, sunflowers, oats, soybeans, and plastic were oxidized in a batch plasma reactor. Over 98 percent of the organic material was converted to gaseous products. The solids were then analyzed and a large amount of water and acid-soluble materials were detected. These materials could possibly be used as nutrients for biological systems.

  16. Measurement system of correlation functions of microwave single photon source in real time

    NASA Astrophysics Data System (ADS)

    Korenkov, A.; Dmitriev, A.; Astafiev, O.

    2018-02-01

    Several quantum setups, such as quantum key distribution networks[1] and quantum simulators (e.g. boson sampling), by their design rely on single photon sources (SPSs). These quantum setups were demonstrated to operate in optical frequency domain. However, following the steady advances in circuit quantum electrodynamics, a proposal has been made recently[2] to demonstrate boson sampling with microwave photons. This in turn requires the development of reliable microwave SPS. It's one of the most important characteristics are the first-order and the second-order correlation functions g1 and g2. The measurement technique of g1 and g2 is significantly different from that in the optical domain [3],[4] because of the current unavailability of microwave single-photon detectors. In particular, due to high levels of noise present in the system a substantial amount of statistics in needed to be acquired. This work presents a platform for measurement of g1 and g2 that processes the incoming data in real time, maximizing the efficiency of data acquisition. The use of field-programmable gate array (FPGA) electronics, common in similar experiments[3] but complex in programming, is avoided; instead, the calculations are performed on a standard desktop computer. The platform is used to perform the measurements of the first-order and the second-order correlation functions of the microwave SPS.

  17. Radiometric correction of atmospheric path length fluctuations in interferometric experiments. [in radio astronomy

    NASA Technical Reports Server (NTRS)

    Resch, G. M.; Hogg, D. E.; Napier, P. J.

    1984-01-01

    To support very long baseline interferometric experiments, a system has been developed for estimating atmospheric water vapor path delay. The system consists of dual microwave radiometers, one operating at 20.7 GHz and the other at 31.4 GHz. The measured atmospheric brightness temperatures at these two frequencies yield the estimate of the precipitable water present in both vapor and droplets. To determine the accuracy of the system, a series of observations were undertaken, comparing the outputs of two water vapor radiometers with the phase variation observed with two connected elements of the very large array (VLA). The results show that: (1) water vapor fluctuations dominate the residual VLA phase and (2) the microwave radiometers can measure and correct these effects. The rms phase error after correction is typically 15 deg at a wavelength of 6 cm, corresponding to an uncertainty in the path delay of 0.25 cm. The residual uncertainty is consistent with the stability of the microwave radiometer but is still considerably larger than the stability of the VLA. The technique is less successful under conditions of heavy cloud.

  18. Waveguide transition with vacuum window for multiband dynamic nuclear polarization systems

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rybalko, Oleksandr; Bowen, Sean; Zhurbenko, Vitaliy

    2016-05-15

    A low loss waveguide transition section and oversized microwave vacuum window covering several frequency bands (94 GHz, 140 GHz, 188 GHz) is presented. The transition is compact and was optimized for multiband Dynamic Nuclear Polarization (DNP) systems in a full-wave simulator. The window is more broadband than commercially available windows, which are usually optimized for single band operation. It is demonstrated that high-density polyethylene with urethane adhesive can be used as a low loss microwave vacuum window in multiband DNP systems. The overall assembly performance and dimensions are found using full-wave simulations. The practical aspects of the window implementation inmore » the waveguide are discussed. To verify the design and simulation results, the window is tested experimentally at the three frequencies of interest.« less

  19. Nonreciprocal Gain in Non-Hermitian Time-Floquet Systems

    NASA Astrophysics Data System (ADS)

    Koutserimpas, Theodoros T.; Fleury, Romain

    2018-02-01

    We explore the unconventional wave scattering properties of non-Hermitian systems in which amplification or damping are induced by time-periodic modulation. These non-Hermitian time-Floquet systems are capable of nonreciprocal operations in the frequency domain, which can be exploited to induce novel physical phenomena such as unidirectional wave amplification and perfect nonreciprocal response with zero or even negative insertion losses. This unique behavior is obtained by imparting a specific low-frequency time-periodic modulation to the complex coupling between lossless resonators, promoting only upward frequency conversion, and leading to nonreciprocal parametric gain. We provide a full-wave demonstration of our findings in a one-way microwave amplifier, and establish the potential of non-Hermitian time-Floquet devices for insertion-loss free microwave isolation and unidirectional parametric amplification.

  20. Design studies of large aperture, high-resolution Earth science microwave radiometers compatible with small launch vehicles

    NASA Technical Reports Server (NTRS)

    Schroeder, Lyle C.; Bailey, M. C.; Harrington, Richard F.; Kendall, Bruce M.; Campbell, Thomas G.

    1994-01-01

    High-spatial-resolution microwave radiometer sensing from space with reasonable swath widths and revisit times favors large aperture systems. However, with traditional precision antenna design, the size and weight requirements for such systems are in conflict with the need to emphasize small launch vehicles. This paper describes tradeoffs between the science requirements, basic operational parameters, and expected sensor performance for selected satellite radiometer concepts utilizing novel lightweight compactly packaged real apertures. Antenna, feed, and radiometer subsystem design and calibration are presented. Preliminary results show that novel lightweight real aperture coupled with state-of-the-art radiometer designs are compatible with small launch systems, and hold promise for high-resolution earth science measurements of sea ice, precipitation, soil moisture, sea surface temperature, and ocean wind speeds.

  1. Preliminary experimental investigation of a complex dual-band high power microwave source

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhang, Xiaoping, E-mail: zhangxiaoping@nudt.edu.cn; Li, Yangmei; Li, Zhiqiang

    2015-10-15

    In order to promote the power conversion efficiency of a magnetically insulated transmission line oscillator (MILO) and obtain microwaves in dual bands, an axially extracted C-band virtual cathode oscillator (VCO) with multiple resonant cavities is introduced to partially utilize the load current of an S-band MILO. The formed novel dual-band high power microwave source called MILO and VCO is investigated with simulation and experimentally. A dual-band radiation antenna is designed to effectively radiate microwaves generated by the MILO and the VCO, respectively, while avoiding them being influenced by the microwave reflection and diffraction. The preliminary experimental results measured by themore » dual-band diagnostic system show that both the MILO and the VCO operate normally under repeated shots. A microwave of 2.1 GHz, 1.70 GW is generated from the MILO and a 0.37 GW microwave at frequencies of 4.1 GHz and 3.8 GHz is generated from the VCO under the condition of about 440 kV and 35 kA. Compared with a single MILO (10.6%), a MILO and VCO achieves higher total power and efficiency (13.4%) in both S and C bands, indicating that the load current of the MILO partially couples into the beam-wave interaction in the VCO and then contributes to the output microwaves. However, more works are needed regarding the spectrum purification of the VCO and promotion of the output power of both the MILO and the VCO.« less

  2. Preliminary experimental investigation of a complex dual-band high power microwave source.

    PubMed

    Zhang, Xiaoping; Li, Yangmei; Li, Zhiqiang; Zhong, Huihuang; Qian, Baoliang

    2015-10-01

    In order to promote the power conversion efficiency of a magnetically insulated transmission line oscillator (MILO) and obtain microwaves in dual bands, an axially extracted C-band virtual cathode oscillator (VCO) with multiple resonant cavities is introduced to partially utilize the load current of an S-band MILO. The formed novel dual-band high power microwave source called MILO and VCO is investigated with simulation and experimentally. A dual-band radiation antenna is designed to effectively radiate microwaves generated by the MILO and the VCO, respectively, while avoiding them being influenced by the microwave reflection and diffraction. The preliminary experimental results measured by the dual-band diagnostic system show that both the MILO and the VCO operate normally under repeated shots. A microwave of 2.1 GHz, 1.70 GW is generated from the MILO and a 0.37 GW microwave at frequencies of 4.1 GHz and 3.8 GHz is generated from the VCO under the condition of about 440 kV and 35 kA. Compared with a single MILO (10.6%), a MILO and VCO achieves higher total power and efficiency (13.4%) in both S and C bands, indicating that the load current of the MILO partially couples into the beam-wave interaction in the VCO and then contributes to the output microwaves. However, more works are needed regarding the spectrum purification of the VCO and promotion of the output power of both the MILO and the VCO.

  3. Optimization and Performance parameters for adsorption of Cr6+ by microwave assisted carbon from Sterculia foetida shells

    NASA Astrophysics Data System (ADS)

    Gnanasundaram, N.; Loganathan, M.; Singh, A.

    2017-06-01

    Modeling of adsorption of Cr6+ on to activated carbon prepared from Sterculia foetida dried seed shells under different drying techniques namely sun, oven, and microwave drying (450W, 600W, 900W power). Optimization of process parameters such as pH, adsorbent dosage (g/ml), temperature (°C), contact time (min) were evaluated using Central Composite Rotatable Design (CCRD) of Response Surface Methodology (RSM). For batch adsorption studies at pH 3, adsorbent dosage of 1.5 g/ml, temperature 35°C and contact time 90 min were found to be optimum for the system under consideration and Microwave Activated Carbonized Sterculia foetida (MACSF) at 450W was found to be best suited for the adsorption of Cr+6 ions. The system was found to follow Langmuir type monolayer adsorption for the given operational parameters. SEM analysis was used to study the surface morphology of the carbon samples and the effect of pretreatment on carbonization.

  4. Selection of Lipases for the Synthesis of Biodiesel from Jatropha Oil and the Potential of Microwave Irradiation to Enhance the Reaction Rate

    PubMed Central

    2016-01-01

    The present study deals with the enzymatic synthesis of biodiesel by transesterification of Jatropha oil (Jatropha curcas L.) with ethanol in a solvent-free system. Seven commercial lipase preparations immobilized by covalent attachment on epoxy-polysiloxane-polyvinyl alcohol composite (epoxy-SiO2-PVA) were tested as biocatalysts. Among them, immobilized lipases from Pseudomonas fluorescens (lipase AK) and Burkholderia cepacia (lipase PS) were the most active biocatalysts in biodiesel synthesis, reaching ethyl ester yields (FAEE) of 91.1 and 98.3% at 72 h of reaction, respectively. The latter biocatalyst exhibited similar performance compared to Novozym® 435. Purified biodiesel was characterized by different techniques. Transesterification reaction carried out under microwave irradiation exhibited higher yield and productivity than conventional heating. The operational stability of immobilized lipase PS was determined in repeated batch runs under conventional and microwave heating systems, revealing half-life times of 430.4 h and 23.5 h, respectively. PMID:27868060

  5. Wilkinson Microwave Anisotropy Probe (WMAP) Battery Operations Problem Resolution Team (PRT)

    NASA Technical Reports Server (NTRS)

    Keys, Denney J.

    2010-01-01

    The NASA Technical Discipline Fellow for Electrical Power, was requested to form a Problem Resolution Team (PRT) to help assess the health of the flight battery that is currently operating aboard NASA's Wilkinson Microwave Anisotropy Probe (WMAP) and provide recommendations for battery operations to mitigate the risk of impacting science operations for the rest of the mission. This report contains the outcome of the PRT's assessment.

  6. Quantitative Imaging of Microwave Electric Fields through Near-Field Scanning Microwave Microscopy

    NASA Astrophysics Data System (ADS)

    Dutta, S. K.; Vlahacos, C. P.; Steinhauer, D. E.; Thanawalla, A.; Feenstra, B. J.; Wellstood, F. C.; Anlage, Steven M.; Newman, H. S.

    1998-03-01

    The ability to non-destructively image electric field patterns generated by operating microwave devices (e.g. filters, antennas, circulators, etc.) would greatly aid in the design and testing of these structures. Such detailed information can be used to reconcile discrepancies between simulated behavior and experimental data (such as scattering parameters). The near-field scanning microwave microscope we present uses a coaxial probe to provide a simple, broadband method of imaging electric fields.(S. M. Anlage, et al.) IEEE Trans. Appl. Supercond. 7, 3686 (1997).^,(See http://www.csr.umd.edu/research/hifreq/micr_microscopy.html) The signal that is measured is related to the incident electric flux normal to the face of the center conductor of the probe, allowing different components of the field to be measured by orienting the probe appropriately. By using a simple model of the system, we can also convert raw data to absolute electric field. Detailed images of standing waves on copper microstrip will be shown and compared to theory.

  7. On-chip microwave circulators using quantum Hall plasmonics

    NASA Astrophysics Data System (ADS)

    Mahoney, Alice; Colless, James; Pauka, Sebastian; Hornibrook, John; Doherty, Andrew; Reilly, David; Peeters, Lucas; Fox, Eli; Goldhaber-Gordon, David; Kou, Xuefeng; Pan, Lei; Wang, Kang; Watson, John; Gardner, Geoffrey; Manfra, Michael

    Circulators are directional circuit elements integral to technologies including radar systems, microwave communication transceivers and the readout of quantum information devices. Their non-reciprocity commonly arises from the interference of microwaves over the centimetre-scale of the signal wavelength in the presence of bulky magnetic media that breaks time-reversal symmetry. We present a completely passive on-chip microwave circulator with size 1/1000th the wavelength by exploiting the chiral, `slow-light' response of a GaAs/AlGaAs 2-dimensional electron gas in the quantum Hall regime. Further, by implementing this circulator design on a thin film of a magnetic topological insulator (Cr0.12(Bi0.26Sb0.62)2Te3), we show that similar non-reciprocity can be achieved at zero magnetic field. This additional mode of operation serves as a non-invasive probe of edge states in the quantum anomalous Hall effect, while also extending the possibility for integration with superconducting devices.

  8. Solid-state dynamic nuclear polarization at 263 GHz: spectrometer design and experimental results†

    PubMed Central

    Rosay, Melanie; Tometich, Leo; Pawsey, Shane; Bader, Reto; Schauwecker, Robert; Blank, Monica; Borchard, Philipp M.; Cauffman, Stephen R.; Felch, Kevin L.; Weber, Ralph T.; Temkin, Richard J.; Griffin, Robert G.; Maas, Werner E.

    2015-01-01

    Dynamic Nuclear Polarization (DNP) experiments transfer polarization from electron spins to nuclear spins with microwave irradiation of the electron spins for enhanced sensitivity in nuclear magnetic resonance (NMR) spectroscopy. Design and testing of a spectrometer for magic angle spinning (MAS) DNP experiments at 263 GHz microwave frequency, 400 MHz 1H frequency is described. Microwaves are generated by a novel continuous-wave gyrotron, transmitted to the NMR probe via a transmission line, and irradiated on a 3.2 mm rotor for MAS DNP experiments. DNP signal enhancements of up to 80 have been measured at 95 K on urea and proline in water–glycerol with the biradical polarizing agent TOTAPOL. We characterize the experimental parameters affecting the DNP efficiency: the magnetic field dependence, temperature dependence and polarization build-up times, microwave power dependence, sample heating effects, and spinning frequency dependence of the DNP signal enhancement. Stable system operation, including DNP performance, is also demonstrated over a 36 h period. PMID:20449524

  9. Digital communications: Microwave applications

    NASA Astrophysics Data System (ADS)

    Feher, K.

    Transmission concepts and techniques of digital systems are presented; and practical state-of-the-art implementation of digital communications systems by line-of-sight microwaves is described. Particular consideration is given to statistical methods in digital transmission systems analysis, digital modulation methods, microwave amplifiers, system gain, m-ary and QAM microwave systems, correlative techniques and applications to digital radio systems, hybrid systems, digital microwave systems design, diversity and protection switching techniques, measurement techniques, and research and development trends and unsolved problems.

  10. 47 CFR 74.635 - Unattended operation.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... Stations § 74.635 Unattended operation. (a) TV relay stations, TV translator relay stations, TV STL... persons; (3) TV relay stations, TV STL stations, TV translator relay stations, and TV microwave booster... control point. Additionally, a TV translator relay station (and any associated TV microwave booster...

  11. Microwave heat treating of manufactured components

    DOEpatents

    Ripley, Edward B.

    2007-01-09

    An apparatus for heat treating manufactured components using microwave energy and microwave susceptor material. Heat treating medium such as eutectic salts may be employed. A fluidized bed introduces process gases which may include carburizing or nitriding gases. The process may be operated in a batch mode or continuous process mode. A microwave heating probe may be used to restart a frozen eutectic salt bath.

  12. An Overview of the Naval Research Laboratory Ocean Surface Flux (NFLUX) System

    NASA Astrophysics Data System (ADS)

    May, J. C.; Rowley, C. D.; Barron, C. N.

    2016-02-01

    The Naval Research Laboratory (NRL) ocean surface flux (NFLUX) system is an end-to-end data processing and assimilation system used to provide near-real time satellite-based surface heat flux fields over the global ocean. Swath-level air temperature (TA), specific humidity (QA), and wind speed (WS) estimates are produced using multiple polynomial regression algorithms with inputs from satellite sensor data records from the Special Sensor Microwave Imager/Sounder, the Advanced Microwave Sounding Unit-A, the Advanced Technology Microwave Sounder, and the Advanced Microwave Scanning Radiometer-2 sensors. Swath-level WS estimates are also retrieved from satellite environmental data records from WindSat, the MetOp scatterometers, and the Oceansat scatterometer. Swath-level solar and longwave radiative flux estimates are produced utilizing the Rapid Radiative Transfer Model for Global Circulation Models (RRTMG). Primary inputs to the RRTMG include temperature and moisture profiles and cloud liquid and ice water paths from the Microwave Integrated Retrieval System. All swath-level satellite estimates undergo an automated quality control process and are then assimilated with atmospheric model forecasts to produce 3-hourly gridded analysis fields. The turbulent heat flux fields, latent and sensible heat flux, are determined from the Coupled Ocean-Atmosphere Response Experiment (COARE) 3.0 bulk algorithms using inputs of TA, QA, WS, and a sea surface temperature model field. Quality-controlled in situ observations over a one-year time period from May 2013 through April 2014 form the reference for validating ocean surface state parameter and heat flux fields. The NFLUX fields are evaluated alongside the Navy's operational global atmospheric model, the Navy Global Environmental Model (NAVGEM). NFLUX is shown to have smaller biases and lower or similar root mean square errors compared to NAVGEM.

  13. 47 CFR 101.1 - Scope and authority.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... Telecommunication FEDERAL COMMUNICATIONS COMMISSION (CONTINUED) SAFETY AND SPECIAL RADIO SERVICES FIXED MICROWAVE... applications for radio station licenses in the fixed microwave services. (b) The purpose of the rules in this..., microwave operations that require transmitting facilities on land or in specified offshore coastal areas...

  14. 47 CFR 101.101 - Frequency availability.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... Telecommunication FEDERAL COMMUNICATIONS COMMISSION (CONTINUED) SAFETY AND SPECIAL RADIO SERVICES FIXED MICROWAVE...—(Part 78) CC: Common Carrier Fixed Point-to-Point Microwave Service—(Part 101, Subparts C & I) DBS... Distribution Service—(Part 21) OFS: Private Operational Fixed Point-to-Point Microwave Service—(Part 101...

  15. 47 CFR 101.101 - Frequency availability.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... Telecommunication FEDERAL COMMUNICATIONS COMMISSION (CONTINUED) SAFETY AND SPECIAL RADIO SERVICES FIXED MICROWAVE...—(Part 78) CC: Common Carrier Fixed Point-to-Point Microwave Service—(Part 101, Subparts C & I) DBS... Distribution Service—(Part 21) OFS: Private Operational Fixed Point-to-Point Microwave Service—(Part 101...

  16. 47 CFR 101.1 - Scope and authority.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... Telecommunication FEDERAL COMMUNICATIONS COMMISSION (CONTINUED) SAFETY AND SPECIAL RADIO SERVICES FIXED MICROWAVE... applications for radio station licenses in the fixed microwave services. (b) The purpose of the rules in this..., microwave operations that require transmitting facilities on land or in specified offshore coastal areas...

  17. 47 CFR 101.21 - Technical content of applications.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... SERVICES FIXED MICROWAVE SERVICES Applications and Licenses General Filing Requirements § 101.21 Technical... Private Operational Fixed Point-to-Point Microwave Service and the Common Carrier Fixed Point-to-Point Microwave Service must include the following information: Applicant's name and address. Transmitting station...

  18. 47 CFR 101.21 - Technical content of applications.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... SERVICES FIXED MICROWAVE SERVICES Applications and Licenses General Filing Requirements § 101.21 Technical... Private Operational Fixed Point-to-Point Microwave Service and the Common Carrier Fixed Point-to-Point Microwave Service must include the following information: Applicant's name and address. Transmitting station...

  19. 47 CFR 101.1 - Scope and authority.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... Telecommunication FEDERAL COMMUNICATIONS COMMISSION (CONTINUED) SAFETY AND SPECIAL RADIO SERVICES FIXED MICROWAVE... applications for radio station licenses in the fixed microwave services. (b) The purpose of the rules in this..., microwave operations that require transmitting facilities on land or in specified offshore coastal areas...

  20. 47 CFR 101.1 - Scope and authority.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... Telecommunication FEDERAL COMMUNICATIONS COMMISSION (CONTINUED) SAFETY AND SPECIAL RADIO SERVICES FIXED MICROWAVE... applications for radio station licenses in the fixed microwave services. (b) The purpose of the rules in this..., microwave operations that require transmitting facilities on land or in specified offshore coastal areas...

  1. 47 CFR 101.101 - Frequency availability.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... Telecommunication FEDERAL COMMUNICATIONS COMMISSION (CONTINUED) SAFETY AND SPECIAL RADIO SERVICES FIXED MICROWAVE...—(Part 78) CC: Common Carrier Fixed Point-to-Point Microwave Service—(Part 101, Subparts C & I) DBS... Distribution Service—(Part 21) OFS: Private Operational Fixed Point-to-Point Microwave Service—(Part 101...

  2. 47 CFR 101.1 - Scope and authority.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... Telecommunication FEDERAL COMMUNICATIONS COMMISSION (CONTINUED) SAFETY AND SPECIAL RADIO SERVICES FIXED MICROWAVE... applications for radio station licenses in the fixed microwave services. (b) The purpose of the rules in this..., microwave operations that require transmitting facilities on land or in specified offshore coastal areas...

  3. Electron cyclotron resonance plasma production by using pulse mode microwaves and dependences of ion beam current and plasma parameters on the pulse condition

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kiriyama, Ryutaro; Takenaka, Tomoya; Kurisu, Yousuke

    2012-02-15

    We measure the ion beam current and the plasma parameters by using the pulse mode microwave operation in the first stage of a tandem type ECRIS. The time averaged extracted ion beam current in the pulse mode operation is larger than that of the cw mode operation with the same averaged microwave power. The electron density n{sub e} in the pulse mode is higher and the electron temperature T{sub e} is lower than those of the cw mode operation. These plasma parameters are considered to cause in the increase of the ion beam current and are suitable to produce molecularmore » or cluster ions.« less

  4. Pre-Launch Characterization of the Advanced Technology Microwave Sounder (ATMS) on the Joint Polar Satellite System-1 Satellite (JPSS-1)

    NASA Astrophysics Data System (ADS)

    Kim, Edward; Leslie, Vince; Lyu, Joseph; Smith, Craig; McCormick, Lisa; Anderson, Kent

    2016-04-01

    The Advanced Technology Microwave Sounder (ATMS) is the newest generation of microwave sounder in the international fleet of polar-orbiting weather satellites, replacing the Advanced Microwave Sounding Unit (AMSU) which first entered service in 1998. The first ATMS was launched aboard the Suomi NPP (S-NPP) satellite in late 2011. The second ATMS is manifested on the Joint Polar Satellite System-1 Satellite (JPSS-1). ATMS provides 22 channels of temperature and humidity sounding observations over a frequency range from 23 to 183 GHz. These microwave soundings provide the highest impact data ingested by operational Numerical Weather Prediction (NWP) models, and are the most critical of the polar-orbiting satellite observations, particularly because microwave sensing can penetrate clouds. This paper will present performance characterizations from pre-launch calibration measurements of the JPSS-1 ATMS just completed in December, 2015. The measurements were conducted in a thermal vacuum chamber with blackbody targets simulating cold space, ambient, and a variable Earth scene. They represent the best opportunity for calibration characterization of the instrument since the environment can be carefully controlled. We will present characterizations of the sensitivity (NEDT), accuracy, nonlinearity, noise spectral characteristics, gain stability, repeatability, and inter-channel correlation. An estimate of expected "striping" will be presented, and a discussion of reflector emissivity effects will also be provided. Comparisons will be made with the S-NPP flight unit. Finally, we will describe planned on-orbit characterizations - such as pitch and roll maneuvers - that will further improve both the measurement quality and the understanding of various error contributions.

  5. Printed Antennas Made Reconfigurable by Use of MEMS Switches

    NASA Technical Reports Server (NTRS)

    Simons, Rainee N.

    2005-01-01

    A class of reconfigurable microwave antennas now undergoing development comprise fairly conventional printed-circuit feed elements and radiating patches integrated with novel switches containing actuators of the microelectromechanical systems (MEMS) type. In comparison with solid-state electronic control devices incorporated into some prior printed microwave antennas, the MEMS-based switches in these antennas impose lower insertion losses and consume less power. Because the radio-frequency responses of the MEMS switches are more nearly linear, they introduce less signal distortion. In addition, construction and operation are simplified because only a single DC bias line is needed to control each MEMS actuator.

  6. Micromechanical Switches on GaAs for Microwave Applications

    NASA Technical Reports Server (NTRS)

    Randall, John N.; Goldsmith, Chuck; Denniston, David; Lin, Tsen-Hwang

    1995-01-01

    In this presentation, we describe the fabrication of micro-electro-mechanical system (MEMS) devices, in particular, of low-frequency multi-element electrical switches using SiO2 cantilevers. The switches discussed are related to micromechanical membrane structures used to perform switching of optical signals on silicon substrates. These switches use a thin metal membrane which is actuated by an electrostatic potential, causing the switch to make or break contact. The advantages include: superior isolation, high power handling capabilities, high radiation hardening, very low power operations, and the ability to integrate onto GaAs monolithic microwave integrated circuit (MMIC) chips.

  7. A Robust, Microwave Rain Gauge

    NASA Astrophysics Data System (ADS)

    Mansheim, T. J.; Niemeier, J. J.; Kruger, A.

    2008-12-01

    Researchers at The University of Iowa have developed an all-electronic rain gauge that uses microwave sensors operating at either 10 GHz or 23 GHz, and measures the Doppler shift caused by falling raindrops. It is straightforward to interface these sensors with conventional data loggers, or integrate them into a wireless sensor network. A disadvantage of these microwave rain gauges is that they consume significant power when they are operating. However, this may be partially negated by using data loggers' or sensors networks' sleep-wake-sleep mechanism. Advantages of the microwave rain gauges are that one can make them very robust, they cannot clog, they don't have mechanical parts that wear out, and they don't have to be perfectly level. Prototype microwave rain gauges were collocated with tipping-bucket rain gauges, and data were collected for two seasons. At higher rain rates, microwave rain gauge measurements compare well with tipping-bucket measurements. At lower rain rates, the microwave rain gauges provide more detailed information than tipping buckets, which quantize measurement typically in 1 tip per 0.01 inch, or 1 tip per mm of rainfall.

  8. NOAA Interest in Small Satellite Solutions for Mitigation of Data Gaps

    NASA Astrophysics Data System (ADS)

    Caulfield, M.; Tewey, K.; John, P.

    2016-12-01

    The National Oceanic and Atmospheric Administration (NOAA) is undertaking a strategy to achieve satellite constellation robustness by 2023 to maintain continuity of polar satellite observations, which are central to NOAA's weather forecast capability. NOAA's plans include mitigation activities in the event of a loss of polar observations. In 2017, NOAA will begin development of the Earth Observing Nanosatellite - Microwave (EON-MW). EON-MW is a miniature microwave sounder that approximates the atmospheric profiling capabilities of the Advanced Technology Microwave Sounder (ATMS) instrument on the NOAA Joint Polar Satellite System (JPSS). NOAA is collaborating with the Massachusetts Institute of Technology's Lincoln Laboratory (MIT / LL) on EON-MW, which includes 2 years of risk reduction efforts to further define the EON-MW mission and identify and manage key technical risks. These studies will refine designs and evaluate system trades for operational earth observations from a U-class satellite platform, as well as examine microwave sensor concepts and investigated payload architecture to support microwave frequencies for atmospheric remote sensing. Similar to EON-MW, NOAA is also investigating the potential to mitigate against the loss of the JPSS Cross Track Infrared Sounder (CrIS) data with a CubeSat based mid-wave Infrared sounder. NOAA is collaborating with the Jet Propulsion Laboratory (JPL) to design the Earth Observation Nanosatellite-Infrared (EON-IR). EON-IR will leverage the NASA-JPL CubSat based infrared sounder CubSat Infrared Atmospheric Sounder (CIRAS) mission. In FY 2015 NOAA funded a study to analyze the feasibility of meeting the essential requirements of the CrIS from a CubeSat platform and began exploring the basic design of the EON-IR payload and bus. NOAA will continue to study EON-IR in 2016 by examining ways to modify the CIRAS design to better meet NOAA's observational and operational needs. These modifications will aim to increase mission reliability and increase spatial and spectral resolution.

  9. DSN G/T(sub op) and telecommunications system performance

    NASA Technical Reports Server (NTRS)

    Stelzried, C.; Clauss, R.; Rafferty, W.; Petty, S.

    1992-01-01

    Provided here is an intersystem comparison of present and evolving Deep Space Network (DSN) microwave receiving systems. Comparisons of the receiving systems are based on the widely used G/T sub op figure of merit, which is defined as antenna gain divided by operating system noise temperature. In 10 years, it is expected that the DSN 32 GHz microwave receiving system will improve the G/T sub op performance over the current 8.4 GHz system by 8.3 dB. To compare future telecommunications system end-to-end performance, both the receiving systems' G/T sub op and spacecraft transmit parameters are used. Improving the 32 GHz spacecraft transmitter system is shown to increase the end-to-end telecommunications system performance an additional 3.2 dB, for a net improvement of 11.5 dB. These values are without a planet in the field of view (FOV). A Saturn mission is used for an example calculation to indicate the degradation in performance with a planet in the field of view.

  10. Coupled microwave ECR and radio-frequency plasma source for plasma processing

    DOEpatents

    Tsai, Chin-Chi; Haselton, Halsey H.

    1994-01-01

    In a dual plasma device, the first plasma is a microwave discharge having its own means of plasma initiation and control. The microwave discharge operates at electron cyclotron resonance (ECR), and generates a uniform plasma over a large area of about 1000 cm.sup.2 at low pressures below 0.1 mtorr. The ECR microwave plasma initiates the second plasma, a radio frequency (RF) plasma maintained between parallel plates. The ECR microwave plasma acts as a source of charged particles, supplying copious amounts of a desired charged excited species in uniform manner to the RF plasma. The parallel plate portion of the apparatus includes a magnetic filter with static magnetic field structure that aids the formation of ECR zones in the two plasma regions, and also assists in the RF plasma also operating at electron cyclotron resonance.

  11. Coupled microwave ECR and radio-frequency plasma source for plasma processing

    DOEpatents

    Tsai, C.C.; Haselton, H.H.

    1994-03-08

    In a dual plasma device, the first plasma is a microwave discharge having its own means of plasma initiation and control. The microwave discharge operates at electron cyclotron resonance (ECR), and generates a uniform plasma over a large area of about 1000 cm[sup 2] at low pressures below 0.1 mtorr. The ECR microwave plasma initiates the second plasma, a radio frequency (RF) plasma maintained between parallel plates. The ECR microwave plasma acts as a source of charged particles, supplying copious amounts of a desired charged excited species in uniform manner to the RF plasma. The parallel plate portion of the apparatus includes a magnetic filter with static magnetic field structure that aids the formation of ECR zones in the two plasma regions, and also assists in the RF plasma also operating at electron cyclotron resonance. 4 figures.

  12. Review of Microwave Photonics Technique to Generate the Microwave Signal by Using Photonics Technology

    NASA Astrophysics Data System (ADS)

    Raghuwanshi, Sanjeev Kumar; Srivastav, Akash

    2017-12-01

    Microwave photonics system provides high bandwidth capabilities of fiber optic systems and also contains the ability to provide interconnect transmission properties, which are virtually independent of length. The low-loss wide bandwidth capability of optoelectronic systems makes them attractive for the transmission and processing of microwave signals, while the development of high-capacity optical communication systems has required the use of microwave techniques in optical transmitters and receivers. These two strands have led to the development of the research area of microwave photonics. So, we can considered microwave photonics as the field that studies the interaction between microwave and optical waves for applications such as communications, radars, sensors and instrumentations. In this paper we have thoroughly reviewed the microwave generation techniques by using photonics technology.

  13. 47 CFR 101.133 - Limitations on use of transmitters.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... SERVICES FIXED MICROWAVE SERVICES Technical Standards § 101.133 Limitations on use of transmitters. (a...) Private operational fixed point-to-point microwave stations authorized in this service may communicate...-point microwave licenses may use the same transmitting equipment under the following terms and...

  14. 47 CFR 101.21 - Technical content of applications.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... SERVICES FIXED MICROWAVE SERVICES Applications and Licenses General Filing Requirements § 101.21 Technical...) [Reserved] (e) Each application in the Private Operational Fixed Point-to-Point Microwave Service and the Common Carrier Fixed Point-to-Point Microwave Service must include the following information: Applicant's...

  15. 47 CFR 101.5 - Station authorization required.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... SERVICES FIXED MICROWAVE SERVICES Applications and Licenses General Filing Requirements § 101.5 Station... stations authorized under subpart H (Private Operational Fixed Point-to-Point Microwave Service), subpart I (Common Carrier Fixed Point-to-Point Microwave Service), and subpart L of this part (Local Multipoint...

  16. 47 CFR 101.5 - Station authorization required.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... SERVICES FIXED MICROWAVE SERVICES Applications and Licenses General Filing Requirements § 101.5 Station... stations authorized under subpart H (Private Operational Fixed Point-to-Point Microwave Service), subpart I (Common Carrier Fixed Point-to-Point Microwave Service), and subpart L of this part (Local Multipoint...

  17. 47 CFR 101.133 - Limitations on use of transmitters.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... SERVICES FIXED MICROWAVE SERVICES Technical Standards § 101.133 Limitations on use of transmitters. (a...) Private operational fixed point-to-point microwave stations authorized in this service may communicate...-point microwave licenses may use the same transmitting equipment under the following terms and...

  18. 47 CFR 101.21 - Technical content of applications.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... SERVICES FIXED MICROWAVE SERVICES Applications and Licenses General Filing Requirements § 101.21 Technical...) [Reserved] (e) Each application in the Private Operational Fixed Point-to-Point Microwave Service and the Common Carrier Fixed Point-to-Point Microwave Service must include the following information: Applicant's...

  19. 47 CFR 101.133 - Limitations on use of transmitters.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... SERVICES FIXED MICROWAVE SERVICES Technical Standards § 101.133 Limitations on use of transmitters. (a...) Private operational fixed point-to-point microwave stations authorized in this service may communicate...-point microwave licenses may use the same transmitting equipment under the following terms and...

  20. 47 CFR 101.21 - Technical content of applications.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... SERVICES FIXED MICROWAVE SERVICES Applications and Licenses General Filing Requirements § 101.21 Technical...) [Reserved] (e) Each application in the Private Operational Fixed Point-to-Point Microwave Service and the Common Carrier Fixed Point-to-Point Microwave Service must include the following information: Applicant's...

  1. 47 CFR 101.133 - Limitations on use of transmitters.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... SERVICES FIXED MICROWAVE SERVICES Technical Standards § 101.133 Limitations on use of transmitters. (a...) Private operational fixed point-to-point microwave stations authorized in this service may communicate...-point microwave licenses may use the same transmitting equipment under the following terms and...

  2. 47 CFR 101.5 - Station authorization required.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... SERVICES FIXED MICROWAVE SERVICES Applications and Licenses General Filing Requirements § 101.5 Station... stations authorized under subpart H (Private Operational Fixed Point-to-Point Microwave Service), subpart I (Common Carrier Fixed Point-to-Point Microwave Service), and subpart L of this part (Local Multipoint...

  3. 47 CFR 101.133 - Limitations on use of transmitters.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... SERVICES FIXED MICROWAVE SERVICES Technical Standards § 101.133 Limitations on use of transmitters. (a...) Private operational fixed point-to-point microwave stations authorized in this service may communicate...-point microwave licenses may use the same transmitting equipment under the following terms and...

  4. 47 CFR 101.5 - Station authorization required.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... SERVICES FIXED MICROWAVE SERVICES Applications and Licenses General Filing Requirements § 101.5 Station... stations authorized under subpart H (Private Operational Fixed Point-to-Point Microwave Service), subpart I (Common Carrier Fixed Point-to-Point Microwave Service), and subpart L of this part (Local Multipoint...

  5. 47 CFR 101.5 - Station authorization required.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... SERVICES FIXED MICROWAVE SERVICES Applications and Licenses General Filing Requirements § 101.5 Station... stations authorized under subpart H (Private Operational Fixed Point-to-Point Microwave Service), subpart I (Common Carrier Fixed Point-to-Point Microwave Service), and subpart L of this part (Local Multipoint...

  6. Optimization of optical systems.

    PubMed

    Champagne, E B

    1966-11-01

    The power signal-to-noise ratios for coherent and noncoherent optical detection are presented, with the expression for noncoherent detection being examined in detail. It is found that for the long range optical system to compete with its microwave counterpart it is necessary to optimize the optical system. The optical system may be optimized by using coherent detection, or noncoherent detection if the signal is the dominate noise factor. A design procedure is presented which, in principle, always allows one to obtain signal shot-noise limited operation with noncoherent detection if pulsed operation is used. The technique should make reasonable extremely long range, high data rate systems of relatively simple design.

  7. Millimeter-wave irradiation heating for operation of doped CeO2 electrolyte-supported single solid oxide fuel cell

    NASA Astrophysics Data System (ADS)

    Che Abdullah, Salmie Suhana Binti; Teranishi, Takashi; Hayashi, Hidetaka; Kishimoto, Akira

    2018-01-01

    High operation temperature of solid oxide fuel cell (SOFC) results in high cell and operation cost, time consuming and fast cell degradation. Developing high performance SOFC that operates at lower temperature is required. Here we demonstrate 24 GHz microwave as a rapid heating source to replace conventional heating method for SOFC operation using 20 mol% Sm doped CeO2 electrolyte-supported single cell. The tested cell shows improvement of 62% in maximum power density at 630 °C under microwave heating. This improvement governs by bulk conductivity of the electrolyte. Investigation of ionic transference number reveals that the value is unchanged under microwave irradiation, confirming the charge carrier is dominated by oxygen ion species. This work shows a potential new concept of high performance as well as cost and energy effective SOFC.

  8. Multi-Band Miniaturized Patch Antennas for a Compact, Shielded Microwave Breast Imaging Array.

    PubMed

    Aguilar, Suzette M; Al-Joumayly, Mudar A; Burfeindt, Matthew J; Behdad, Nader; Hagness, Susan C

    2013-12-18

    We present a comprehensive study of a class of multi-band miniaturized patch antennas designed for use in a 3D enclosed sensor array for microwave breast imaging. Miniaturization and multi-band operation are achieved by loading the antenna with non-radiating slots at strategic locations along the patch. This results in symmetric radiation patterns and similar radiation characteristics at all frequencies of operation. Prototypes were fabricated and tested in a biocompatible immersion medium. Excellent agreement was obtained between simulations and measurements. The trade-off between miniaturization and radiation efficiency within this class of patch antennas is explored via a numerical analysis of the effects of the location and number of slots, as well as the thickness and permittivity of the dielectric substrate, on the resonant frequencies and gain. Additionally, we compare 3D quantitative microwave breast imaging performance achieved with two different enclosed arrays of slot-loaded miniaturized patch antennas. Simulated array measurements were obtained for a 3D anatomically realistic numerical breast phantom. The reconstructed breast images generated from miniaturized patch array data suggest that, for the realistic noise power levels assumed in this study, the variations in gain observed across this class of multi-band patch antennas do not significantly impact the overall image quality. We conclude that these miniaturized antennas are promising candidates as compact array elements for shielded, multi-frequency microwave breast imaging systems.

  9. Identification of atmospheric fronts over the ocean with microwave measurements of water vapor and rain

    NASA Technical Reports Server (NTRS)

    Katsaros, Kristina B.; Bhatti, Iftekhar; Mcmurdie, Lynn A.; Patty, Grant W.

    1989-01-01

    This paper describes some basic research techniques and algorithms developed to diagnose fronts in cyclonic storms over the ocean with data from satellite-borne microwave radiometers. Methods are developed for flagging strong gradients in integrated atmospheric water vapor and the presence of rain by using data from the SSMR on board the polar orbiting Seasat and Nimbus-7 satellites. Examination of 65 frontal systems showed that the water vapor gradient flag correctly identified 86 percent of the fronts, while the precipitation flagged 91 percent. The two types of flags emphasize different portions of the cyclone and are therefore complementary. Ultimately, these techniques are intended for operational use with data from the Special Sensor Microwave Imager which was launched in June 1987 on a satellite in the Defense Meteorological Satellite Program (DMSP).

  10. Microwave integrated circuits for space applications

    NASA Technical Reports Server (NTRS)

    Leonard, Regis F.; Romanofsky, Robert R.

    1991-01-01

    Monolithic microwave integrated circuits (MMIC), which incorporate all the elements of a microwave circuit on a single semiconductor substrate, offer the potential for drastic reductions in circuit weight and volume and increased reliability, all of which make many new concepts in electronic circuitry for space applications feasible, including phased array antennas. NASA has undertaken an extensive program aimed at development of MMICs for space applications. The first such circuits targeted for development were an extension of work in hybrid (discrete component) technology in support of the Advanced Communication Technology Satellite (ACTS). It focused on power amplifiers, receivers, and switches at ACTS frequencies. More recent work, however, focused on frequencies appropriate for other NASA programs and emphasizes advanced materials in an effort to enhance efficiency, power handling capability, and frequency of operation or noise figure to meet the requirements of space systems.

  11. Microwave Atmospheric-Pressure Sensor

    NASA Technical Reports Server (NTRS)

    Flower, D. A.; Peckham, G. E.; Bradford, W. J.

    1986-01-01

    Report describes tests of microwave pressure sounder (MPS) for use in satellite measurements of atmospheric pressure. MPS is multifrequency radar operating between 25 and 80 GHz. Determines signal absorption over vertical path through atmosphere by measuring strength of echoes from ocean surface. MPS operates with cloud cover, and suitable for use on current meteorological satellites.

  12. Harmonic distortion in microwave photonic filters.

    PubMed

    Rius, Manuel; Mora, José; Bolea, Mario; Capmany, José

    2012-04-09

    We present a theoretical and experimental analysis of nonlinear microwave photonic filters. Far from the conventional condition of low modulation index commonly used to neglect high-order terms, we have analyzed the harmonic distortion involved in microwave photonic structures with periodic and non-periodic frequency responses. We show that it is possible to design microwave photonic filters with reduced harmonic distortion and high linearity even under large signal operation.

  13. Apparatus with moderating material for microwave heat treatment of manufactured components

    DOEpatents

    Ripley, Edward B [Knoxville, TN

    2011-05-10

    An apparatus for heat treating manufactured components using microwave energy and microwave susceptor material. Heat treating medium such as eutectic salts may be employed. A fluidized bed introduces process gases which may include carburizing or nitriding gases The process may be operated in a batch mode or continuous process mode. A microwave heating probe may be used to restart a frozen eutectic salt bath.

  14. Apparatus for microwave heat treatment of manufactured components

    DOEpatents

    Babcock & Wilcox Technical Services Y-12, LLC

    2008-04-15

    An apparatus for heat treating manufactured components using microwave energy and microwave susceptor material. Heat treating medium such as eutectic salts may be employed. A fluidized bed introduces process gases which may include carburizing or nitriding gases. The process may be operated in a batch mode or continuous process mode. A microwave heating probe may be used to restart a frozen eutectic salt bath.

  15. Methods for microwave heat treatment of manufactured components

    DOEpatents

    Ripley, Edward B.

    2010-08-03

    An apparatus for heat treating manufactured components using microwave energy and microwave susceptor material. Heat treating medium such as eutectic salts may be employed. A fluidized bed introduces process gases which may include carburizing or nitriding gases. The process may be operated in a batch mode or continuous process mode. A microwave heating probe may be used to restart a frozen eutectic salt bath.

  16. Microwave-Assisted Curing of Silicon Carbide-Reinforced Epoxy Composites: Role of Dielectric Properties

    NASA Astrophysics Data System (ADS)

    Pal, Ranu; Akhtar, M. J.; Kar, Kamal K.

    2018-05-01

    In this work, the dielectric properties of epoxy-based composites are significantly improved with the help of the silicon carbide (SiC) filler at an operating frequency of 2.45 GHz to make them ideal candidates for microwave curing. The improvement is due to enhancement of the interfacial polarization because of the presence of the SiC filler. The dielectric properties are measured using the microwave cavity perturbation method. The cavity structure is simulated using the COMSOL@Multiphysics software to verify the measured data in terms of the resonant frequency. Finally, all the SiC-based composites including the neat epoxy resin are heated in the 2.45 GHz microwave oven at 300 W for 20 min. The thermal and mechanical properties of all the cured composites are measured, and the data are compared with their room temperature pre-cured counterparts. The dielectric properties of composite samples using SiC as a reinforcing agent in the epoxy are found to be substantially improved compared with those of the pure epoxy sample, which actually leads to better curing of these composite using the 2.45 GHz microwave system.

  17. Microwave SQUID Multiplexer Demonstration for Cosmic Microwave Background Imagers.

    PubMed

    Dober, B; Becker, D T; Bennett, D A; Bryan, S A; Duff, S M; Gard, J D; Hays-Wehle, J P; Hilton, G C; Hubmayr, J; Mates, J A B; Reintsema, C D; Vale, L R; Ullom, J N

    2017-12-01

    Key performance characteristics are demonstrated for the microwave SQUID multiplexer (µmux) coupled to transition edge sensor (TES) bolometers that have been optimized for cosmic microwave background (CMB) observations. In a 64-channel demonstration, we show that the µmux produces a white, input referred current noise level of [Formula: see text] at -77 dB microwave probe tone power, which is well below expected fundamental detector and photon noise sources for a ground-based CMB-optimized bolometer. Operated with negligible photon loading, we measure [Formula: see text] in the TES-coupled channels biased at 65% of the sensor normal resistance. This noise level is consistent with that predicted from bolometer thermal fluctuation (i.e. phonon) noise. Furthermore, the power spectral density is white over a range of frequencies down to ~ 100 mHz, which enables CMB mapping on large angular scales that constrain the physics of inflation. Additionally, we report cross-talk measurements that indicate a level below 0.3%, which is less than the level of cross-talk from multiplexed readout systems in deployed CMB imagers. These measurements demonstrate the µmux as a viable readout technique for future CMB imaging instruments.

  18. Development of a microwave clothes dryer

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kesselring, J.P.; Smith, R.D.

    1996-01-01

    A laboratory test model of a microwave clothes dryer was constructed and tested over a wide range of test variables, including number of magnetrons and use of auxiliary heat. The tests identified three distinct operating modes: cool drying, which uses only microwave energy and drying occurs at less than 105 F; fast drying, where microwave drying is superimposed on conventional drying; and efficient drying, where the use of microwave energy with waste heat recovery from the power supply results in significant efficiency improvements compared to conventional dryers.

  19. Novel wideband microwave polarization network using a fully-reconfigurable photonic waveguide interleaver with a two-ring resonator-assisted asymmetric Mach-Zehnder structure.

    PubMed

    Zhuang, Leimeng; Beeker, Willem; Leinse, Arne; Heideman, René; van Dijk, Paulus; Roeloffzen, Chris

    2013-02-11

    We propose and demonstrate a novel wideband microwave photonic polarization network for dual linear-polarized antennas. The polarization network is based on a waveguide-implemented fully-reconfigurable optical interleaver using a two-ring resonator-assisted asymmetric Mach-Zehnder structure. For microwave photonic signal processing, this structure is able to serve as a wideband 2 × 2 RF coupler with reconfigurable complex coefficients, and therefore can be used as a polarization network for wideband antennas. Such a device can equip the antennas with not only the polarization rotation capability for linear-polarization signals but also the capability to operate with and tune between two opposite circular polarizations. Operating together with a particular modulation scheme, the device is also able to serve for simultaneous feeding of dual-polarization signals. These photonic-implemented RF functionalities can be applied to wideband antenna systems to perform agile polarization manipulations and tracking operations. An example of such a interleaver has been realized in TriPleX waveguide technology, which was designed with a free spectral range of 20 GHz and a mask footprint of smaller than 1 × 1 cm. Using the realized device, the reconfigurable complex coefficients of the polarization network were demonstrated with a continuous bandwidth from 2 to 8 GHz and an in-band phase ripple of smaller than 5 degree. The waveguide structure of the device allows it to be further integrated with other functional building blocks of a photonic integrated circuit to realize on-chip, complex microwave photonic processors. Of particular interest, it can be included in an optical beamformer for phased array antennas, so that simultaneous wideband beam and polarization trackings can be achieved photonically. To our knowledge, this is the first-time on-chip demonstration of an integrated microwave photonic polarization network for dual linear-polarized antennas.

  20. Quiet Short-Haul Research Airplane (QSRA) model select panel functional description

    NASA Technical Reports Server (NTRS)

    Watson, D. M.

    1982-01-01

    The QSRA, when equipped with programmable color cathode ray tube displays, a head up display, a general purpose digital computer and a microwave landing system receiver, will provide a capability to do handling qualities studies and terminal area operating systems experiments as well as to enhance an experimenter's ability to obtain repeatable aircraft performance data. The operating systems experiments include the capability to generate minimum fuel approach and departure paths and to conduct precision approaches to a STOLport runway. The mode select panel is designed to provide both the flexibility needed for a variety of flight test experiments and the minimum workload operation required by pilots flying into congested terminal traffic areas.

  1. Evaluation of dispersive Bragg gratings (BG) structures for the processing of RF signals with large time delays and bandwidths

    NASA Astrophysics Data System (ADS)

    Kaba, M.; Zhou, F. C.; Lim, A.; Decoster, D.; Huignard, J.-P.; Tonda, S.; Dolfi, D.; Chazelas, J.

    2007-11-01

    The applications of microwave optoelectronics are extremely large since they extend from the Radio-over-Fibre to the Homeland security and defence systems. Then, the improved maturity of the optoelectronic components operating up to 40GHz permit to consider new optical processing functions (filtering, beamforming, ...) which can operate over very wideband microwave analogue signals. Specific performances are required which imply optical delay lines able to exhibit large Time-Bandwidth product values. It is proposed to evaluate slow light approach through highly dispersive structures based on either uniform or chirped Bragg Gratings. Therefore, we highlight the impact of the major parameters of such structures: index modulation depth, grating length, grating period, chirp coefficient and demonstrate the high potentiality of Bragg Grating for Large RF signals bandwidth processing under slow-light propagation.

  2. [Studies on the general properties of a novel microwave plasma enhanced glow discharge source].

    PubMed

    Li, Y; Du, Z; Duan, Y; Zhang, H; Jin, Q; Liu, H

    1998-04-01

    This paper introduced a novel microwave plasma enhanced glow descharge source, the structure design and operation were decribed, and the mutual effects of the main characters, such as pressure, current, voltage, microwave power and sputtering rates were also investigated in details.

  3. Achievable flatness in a large microwave power transmitting antenna

    NASA Technical Reports Server (NTRS)

    Ried, R. C.

    1980-01-01

    A dual reference SPS system with pseudoisotropic graphite composite as a representative dimensionally stable composite was studied. The loads, accelerations, thermal environments, temperatures and distortions were calculated for a variety of operational SPS conditions along with statistical considerations of material properties, manufacturing tolerances, measurement accuracy and the resulting loss of sight (LOS) and local slope distributions. A LOS error and a subarray rms slope error of two arc minutes can be achieved with a passive system. Results show that existing materials measurement, manufacturing, assembly and alignment techniques can be used to build the microwave power transmission system antenna structure. Manufacturing tolerance can be critical to rms slope error. The slope error budget can be met with a passive system. Structural joints without free play are essential in the assembly of the large truss structure. Variations in material properties, particularly for coefficient of thermal expansion from part to part, is more significant than actual value.

  4. IEEE 1988 International Symposium on Electromagnetic Compatibility, Seattle, WA, Aug. 2-4, 1988, Record

    NASA Astrophysics Data System (ADS)

    Various papers on electromagnetic compatibility are presented. Some of the optics considered include: field-to-wire coupling 1 to 18 GHz, SHF/EHF field-to-wire coupling model, numerical method for the analysis of coupling to thin wire structures, spread-spectrum system with an adaptive array for combating interference, technique to select the optimum modulation indices for suppression of undesired signals for simultaneous range and data operations, development of a MHz RF leak detector technique for aircraft harness surveillance, and performance of standard aperture shielding techniques at microwave frequncies. Also discussed are: spectrum efficiency of spread-spectrum systems, control of power supply ripple produced sidebands in microwave transistor amplifiers, an intership SATCOM versus radar electromagnetic interference prediction model, considerations in the design of a broadband E-field sensing system, unique bonding methods for spacecraft, and review of EMC practice for launch vehicle systems.

  5. Testing of CMA-2000 Microwave Landing System (MLS) airborne receiver

    NASA Astrophysics Data System (ADS)

    Labreche, L.; Murfin, A. J.

    1989-09-01

    Microwave landing system (MLS) is a precision approach and landing guidance system which provides position information and various air to ground data. Position information is provided on a wide coverage sector and is determined by an azimuth angle measurement, an elevation angle measurement, and a range measurement. MLS performance standards and testing of the MLS airborne receiver is mainly governed by Technical Standard Order TSO-C104 issued by the Federal Aviation Administration. This TSO defines detailed test procedures for use in determining the required performance under standard and stressed conditions. It also imposes disciplines on software development and testing procedures. Testing performed on the CMA-2000 MLS receiver and methods used in its validation are described. A computer automated test system has been developed to test for compliance with RTCA/DO-177 Minimum Operation Performance Standards. Extensive software verification and traceability tests designed to ensure compliance with RTCA/DO-178 are outlined.

  6. Electromagnetic Performances Analysis of an Ultra-wideband and Flexible Material Antenna in Microwave Breast Imaging: To Implement A Wearable Medical Bra.

    PubMed

    Rahman, Ashiqur; Islam, Mohammad Tariqul; Singh, Mandeep Jit; Kibria, Salehin; Akhtaruzzaman, Md

    2016-12-23

    In this paper, we report a compact and ultra-wide band antenna on a flexible substrate using the 5-(4-(perfluorohexyl)phenyl)thiophene-2-carbaldehyde compound for microwave imaging. In contrast to other microwave based imaging systems, such as an array of 16 antennas, we proposed a bi-static radar based imaging system consisting of two omnidirectional antennas, which reduces complexity and the overall dimension. The proposed compact antennas are 20 × 14 mm 2 and designed for operating at frequencies from 4 to 6 GHz. To allow for implantation into a bra, the electromagnetic performances of the antennas must be considered in bending conditions. In comparison with the recently reported flexible antennas, we demonstrated both electromagnetic performance and imaging reconstruction for bending conditions. For the proof of concept, the electromagnetic performances both at flat and bending conditions have been verified using a homogeneous multilayer model of the human breast phantom. Our results demonstrate that the antenna, even at bending conditions, exhibits an excellent omni-directional radiation pattern with an average efficiency above 70% and average gain above 1 dBi, within the operational frequency band. The comprehensive aim of the realized antenna is to design a biodegradable and wearable antenna-based bra for early breast cancer detection in the future.

  7. Electromagnetic Performances Analysis of an Ultra-wideband and Flexible Material Antenna in Microwave Breast Imaging: To Implement A Wearable Medical Bra

    NASA Astrophysics Data System (ADS)

    Rahman, Ashiqur; Islam, Mohammad Tariqul; Singh, Mandeep Jit; Kibria, Salehin; Akhtaruzzaman, Md.

    2016-12-01

    In this paper, we report a compact and ultra-wide band antenna on a flexible substrate using the 5-(4-(perfluorohexyl)phenyl)thiophene-2-carbaldehyde compound for microwave imaging. In contrast to other microwave based imaging systems, such as an array of 16 antennas, we proposed a bi-static radar based imaging system consisting of two omnidirectional antennas, which reduces complexity and the overall dimension. The proposed compact antennas are 20 × 14 mm2 and designed for operating at frequencies from 4 to 6 GHz. To allow for implantation into a bra, the electromagnetic performances of the antennas must be considered in bending conditions. In comparison with the recently reported flexible antennas, we demonstrated both electromagnetic performance and imaging reconstruction for bending conditions. For the proof of concept, the electromagnetic performances both at flat and bending conditions have been verified using a homogeneous multilayer model of the human breast phantom. Our results demonstrate that the antenna, even at bending conditions, exhibits an excellent omni-directional radiation pattern with an average efficiency above 70% and average gain above 1 dBi, within the operational frequency band. The comprehensive aim of the realized antenna is to design a biodegradable and wearable antenna-based bra for early breast cancer detection in the future.

  8. Global Precipitation Measurement (GPM) Mission: Overview and Status

    NASA Technical Reports Server (NTRS)

    Hou, Arthur Y.

    2012-01-01

    The Global Precipitation Measurement (GPM) Mission is an international satellite mission specifically designed to unify and advance precipitation measurements from a constellation of research and operational microwave sensors. NASA and JAXA will deploy a Core Observatory in 2014 to serve as a reference satellite to unify precipitation measurements from the constellation of sensors. The GPM Core Observatory will carry a Ku/Ka-band Dual-frequency Precipitation Radar (DPR) and a conical-scanning multi-channel (10-183 GHz) GPM Microwave Radiometer (GMI). The DPR will be the first dual-frequency radar in space to provide not only measurements of 3-D precipitation structures but also quantitative information on microphysical properties of precipitating particles. The DPR and GMI measurements will together provide a database that relates vertical hydrometeor profiles to multi-frequency microwave radiances over a variety of environmental conditions across the globe. This combined database will be used as a common transfer standard for improving the accuracy and consistency of precipitation retrievals from all constellation radiometers. For global coverage, GPM relies on existing satellite programs and new mission opportunities from a consortium of partners through bilateral agreements with either NASA or JAXA. Each constellation member may have its unique scientific or operational objectives but contributes microwave observations to GPM for the generation and dissemination of unified global precipitation data products. In addition to the DPR and GMI on the Core Observatory, the baseline GPM constellation consists of the following sensors: (1) Special Sensor Microwave Imager/Sounder (SSMIS) instruments on the U.S. Defense Meteorological Satellite Program (DMSP) satellites, (2) the Advanced Microwave Scanning Radiometer-2 (AMSR-2) on the GCOM-W1 satellite of JAXA, (3) the Multi-Frequency Microwave Scanning Radiometer (MADRAS) and the multi-channel microwave humidity sounder (SAPHIR) on the French-Indian MeghaTropiques satellite, (4) the Microwave Humidity Sounder (MHS) on the National Oceanic and Atmospheric Administration (NOAA)-19, (5) MHS instruments on MetOp satellites launched by the European Organization for the Exploitation of Meteorological Satellites (EUMETSAT), (6) the Advanced Technology Microwave Sounder (ATMS) on the National Polar-orbiting Operational Environmental Satellite System (NPOESS) Preparatory Project (NPP), and (7) ATMS instruments on the NOAA-NASA Joint Polar Satellite System (JPSS) satellites. Data from Chinese and Russian microwave radiometers may also become available through international collaboration under the auspices of the Committee on Earth Observation Satellites (CEOS) and Group on Earth Observations (GEO). The current generation of global rainfall products combines observations from a network of uncoordinated satellite missions using a variety of merging techniques. GPM will provide "next-generation" precipitation products characterized by: (1) more accurate instantaneous precipitation estimate (especially for light rain and cold-season solid precipitation), (2) intercalibrated microwave brightness temperatures from constellation radiometers within a consistent framework, and (3) unified precipitation retrievals from constellation radiometers using a common a priori hydrometeor database constrained by combined radar/radiometer measurements provided by the GPM Core Observatory. GPM is a science mission with integrated applications goals. GPM will provide a key measurement to improve understanding of global water cycle variability and freshwater availability in a changing climate. The DPR and GMI measurements will offer insights into 3-dimensional structures of hurricanes and midlatitude storms, microphysical properties of precipitating particles, and latent heat associated with precipitation processes. The GPM mission will also make data available in near realtime (within 3 hours of observations) forocietal applications ranging from position fixes of storm centers, numerical weather prediction, flood forecasting, freshwater management, landslide warning, crop prediction, to tracking of water-borne diseases. An overview of the GPM mission design, retrieval strategy, ground validation activities, and international science collaboration will be presented.

  9. Feasibility study of ferromagnetic/ferroelectric films for enhanced microwave devices

    NASA Technical Reports Server (NTRS)

    Ijiri, Yumi

    2005-01-01

    This report summarizes exploratory work conducted to assess the feasibility of ferromagnetic/ferroelectric films for next-generation microwave devices. From literature review, it is established that while an increasing number of ferroelectric/ferromagnetic composites are being investigated, a number have transition temperatures that are too low and structures that are not robust enough for low cost, room temperature antenna arrays. On the other hand, several promising systems are identified, including the multiferroic BiFeO3 and a composite system of Ba/SrTiO3 and a related perovskite manganite. It is suggested that when the NASA pulsed laser deposition chamber is fully operational, thin films of these systems be investigated. In preparation for such work, we have reconfirmed several structural features of an existing Ba/SrTiO3 film using the x-ray diffractometer at Oberlin College.

  10. A bolometric millimeter-wave system for observations of anisotropy in the cosmic microwave background radiation on medium angular scales

    NASA Technical Reports Server (NTRS)

    Fischer, M. L.; Alsop, D. C.; Cheng, E. S.; Clapp, A. C.; Cottingham, D. A.; Gundersen, J. O.; Koch, T. C.; Kreysa, E.; Meinhold, P. R.; Lange, A. E.

    1992-01-01

    We report the performance of a bolometric system designed to measure the anisotropy of the cosmic microwave background (CMB) radiation on angular scales from 0 deg 3 min to 3 deg. The system represents a collaborative effort combining a low-background 1 m diameter balloon-borne telescope with new multimode feed optics, a beam modulation mechanism with high stability, and a four-channel bolometric receiver with passbands centered near frequencies of 3 (90), 6 (180), 9 (270), and 12 (360) cm(exp -1) (GHz). The telescope was flown three times with the bolometric receiver and has demonstrated detector noise limited performance capable of reaching sensitivity levels of Delta(T)/T(sub CMB) is approximately equal to 10(exp -5) with detectors operated at T = 0.3 K.

  11. Detection of the Earth with the SETI microwave observing system assumed to be operating out in the galaxy

    NASA Technical Reports Server (NTRS)

    Billingham, J.; Tarter, J.

    1992-01-01

    This paper estimates the maximum range at which radar signals from the Earth could be detected by a search system similar to the NASA Search for Extraterrestrial Intelligence Microwave Observing Project (SETI MOP) assumed to be operating out in the galaxy. Figures are calculated for the Targeted Search, and for the Sky Survey parts of the MOP, both operating, as currently planned, in the second half of the decade of the 1990s. Only the most powerful terrestrial transmitters are considered, namely, the planetary radar at Arecibo in Puerto Rico, and the ballistic missile early warning systems (BMEWS). In each case the probabilities of detection over the life of the MOP are also calculated. The calculation assumes that we are only in the eavesdropping mode. Transmissions intended to be detected by SETI systems are likely to be much stronger and would of course be found with higher probability to a greater range. Also, it is assumed that the transmitting civilization is at the same level of technological evolution as ours on Earth. This is very improbable. If we were to detect another technological civilization, it would, on statistical grounds, be much older than we are and might well have much more powerful transmitters. Both factors would make detection by the NASA MOP a much more likely outcome.

  12. Detection of the Earth with the SETI microwave observing system assumed to be operating out in the galaxy.

    PubMed

    Billingham, J; Tarter, J

    1992-01-01

    This paper estimates the maximum range at which radar signals from the Earth could be detected by a search system similar to the NASA Search for Extraterrestrial Intelligence Microwave Observing Project (SETI MOP) assumed to be operating out in the galaxy. Figures are calculated for the Targeted Search, and for the Sky Survey parts of the MOP, both operating, as currently planned, in the second half of the decade of the 1990s. Only the most powerful terrestrial transmitters are considered, namely, the planetary radar at Arecibo in Puerto Rico, and the ballistic missile early warning systems (BMEWS). In each case the probabilities of detection over the life of the MOP are also calculated. The calculation assumes that we are only in the eavesdropping mode. Transmissions intended to be detected by SETI systems are likely to be much stronger and would of course be found with higher probability to a greater range. Also, it is assumed that the transmitting civilization is at the same level of technological evolution as ours on Earth. This is very improbable. If we were to detect another technological civilization, it would, on statistical grounds, be much older than we are and might well have much more powerful transmitters. Both factors would make detection by the NASA MOP a much more likely outcome.

  13. Rectenna System Design. [energy conversion solar power satellites

    NASA Technical Reports Server (NTRS)

    Woodcock, G. R.; Andryczyk, R. W.

    1980-01-01

    The fundamental processes involved in the operation of the rectenna system designed for the solar power satellite system are described. The basic design choices are presented based on the desired microwave rf field concentration prior to rectification and based on the ground clearance requirements for the rectenna structure. A nonconcentrating inclined planar panel with a 2 meter minimum clearance configuration is selected as a representative of the typical rectenna.

  14. Digital Microwave System Design Guide.

    DTIC Science & Technology

    1984-02-01

    traffic analysis is a continuous effort, setting parameters for subsequent stages of expansion after the system design is finished. 2.1.3 Quality of...operational structure of the user for whom he is providing service. 2.2.3 Quality of Service. In digital communications, the basic performance parameter ...the basic interpretation of system performance is measured in terms of a single parameter , throughput. Throughput can be defined as the number of

  15. Passive Microwave Remote Sensing of Soil Moisture

    NASA Technical Reports Server (NTRS)

    Njoku, Eni G.; Entekhabi, Dara

    1996-01-01

    Microwave remote sensing provides a unique capability for direct observation of soil moisture. Remote measurements from space afford the possibility of obtaining frequent, global sampling of soil moisture over a large fraction of the Earth's land surface. Microwave measurements have the benefit of being largely unaffected by cloud cover and variable surface solar illumination, but accurate soil moisture estimates are limited to regions that have either bare soil or low to moderate amounts of vegetation cover. A particular advantage of passive microwave sensors is that in the absence of significant vegetation cover soil moisture is the dominant effect on the received signal. The spatial resolutions of passive Microwave soil moisture sensors currently considered for space operation are in the range 10-20 km. The most useful frequency range for soil moisture sensing is 1-5 GHz. System design considerations include optimum choice of frequencies, polarizations, and scanning configurations, based on trade-offs between requirements for high vegetation penetration capability, freedom from electromagnetic interference, manageable antenna size and complexity, and the requirement that a sufficient number of information channels be available to correct for perturbing geophysical effects. This paper outlines the basic principles of the passive microwave technique for soil moisture sensing, and reviews briefly the status of current retrieval methods. Particularly promising are methods for optimally assimilating passive microwave data into hydrologic models. Further studies are needed to investigate the effects on microwave observations of within-footprint spatial heterogeneity of vegetation cover and subsurface soil characteristics, and to assess the limitations imposed by heterogeneity on the retrievability of large-scale soil moisture information from remote observations.

  16. Electron cyclotron resonance plasma reactor for production of carbon stripper foil

    NASA Astrophysics Data System (ADS)

    Faith Romero, Camille; Kanamori, Keita; Kinsho, Michikazu; Yoshimoto, Masahiro; Wada, Motoi

    2018-01-01

    A graphite antenna for the production of carbon-containing hydrogen plasmas is being developed to prepare impurity-free charge exchange foils for high-energy synchrotrons. Microwave power at 2.45 GHz frequency drives a coaxial structure antenna with a 12-mm-diameter central graphite cylinder and a tapered surrounding cylinder serving as the ground electrode. The antenna was placed in a linear magnetic field to investigate how it performs under an electron cyclotron resonance (ECR) condition. A clear resonance phenomenon was observed in plasma luminosity, microwave power absorption, and microwave power reflection when the induction current used to produce a linear magnetic field was changed. The antenna realized the best microwave coupling to the plasma with the ECR zone formed 5 mm from the end of the center electrode. The antenna realized stable operation for more than 5 h with 100 W input microwave power and with operating hydrogen pressure from 0.5 to 50 Pa.

  17. Quality factors in beef, pork, and lamb cooked by microwaves.

    PubMed

    Korschgen, B M; Baldwin, R E; Snider, S

    1976-12-01

    Three cooking treatments were applied to the longissimus muscle of beef and of pork and to deboned leg of lamb. Cooking treatments included: Intermittent energy application (3-min. cycle) with a microwave range operated at 220V and intermittent energy application (6-min. cycle) with a microwave range operated at 115V. Control roasts were cooked in a conventional gas oven (163+/-3 degrees C.). Cooking was adjusted so that roasts achieved an internal temperature of 70 degrees C. when cut for analyses. Cooking losses were significantly greater for microwave than for conventionally cooked beef. However, microwave cooking resulted in beef, pork, and lamb roasts with flavor of interior portions similar to those prepared conventionally. Flavor differences in samples from the edge of the slices of lamb and of pork and tenderness of lamb appeared to be related to cooking method. For these attributes, meat cooked conventionally was superior. In contrast, patterns in significant differences in tenderness and juiciness of beef and of pork were not consistent and were not related solely to method of cookery. Neither creatine nor creatinine was a good index of flavor of meat cooked by these methods. Aside from the time-saving aspect of microwave heating, there was no major advantage of one method of cooking over another. Thus, either high- or low- powered microwave equipment, operated at 2450 MHz, can be used satisfactorily for cooking tender cuts of beef, pork, and lamb.

  18. Microwave Anisotrophy Probe Launch and Early Operations

    NASA Technical Reports Server (NTRS)

    ODonnell, James R., Jr.; Andrews, Stephen F.; Starin, Scott R.; Ward, David K.; Bauer, Frank H. (Technical Monitor)

    2002-01-01

    The Microwave Anisotropy Probe (MAP), a follow-on to the Differential Microwave Radiometer (DMR) instrument on the Cosmic Background Explorer (COBE), was launched from the Kennedy Space Center at 19:46:46 UTC on June 30, 2001. The powered flight and separation from the Delta II appeared to go as designed, with the launch placing MAP well within sigma launch dispersion and with less than 7 Nms of tip-off momentum. Because of this relatively low momentum, MAP was able to acquire the sun within only 15 minutes with a battery state of charge of 94%. After MAP's successful launch, a six week period of in-orbit checkout and orbit maneuvers followed. The dual purpose of the in-orbit checkout period was to validate the correct performance of all of MAP's systems and, from the attitude control system (ACS) point of view, to calibrate the performance of the spacecraft ACS sensors and actuators to maximize system performance. In addition to the checkout activities performed by the MAP team, the other critical activity taking place during the first six weeks after launch were a series of orbit maneuvers necessary to get the spacecraft from its launch orbit out to its desired orbit about L2, the second Earth-Sun Lagrange point. As MAP continues its standard operations, its ACS design is meeting all of its requirements to successfully complete the mission. This paper will describe the launch and early operations summarized above in greater detail, and show the performance of the attitude control and attitude determination system versus its requirements. Additionally, some of the unexpected events that occurred during this period will be discussed, including two events which dropped the spacecraft into its Safehold Mode and the presence of an "anomalous force" observed during each of the perigee orbit maneuvers that had the potential to cause these critical maneuvers to be prematurely aborted.

  19. Global precipitation measurement (GPM)

    NASA Astrophysics Data System (ADS)

    Neeck, Steven P.; Flaming, Gilbert M.; Adams, W. James; Smith, Eric A.

    2001-12-01

    The National Aeronautics and Space Administration (NASA) is studying options for future space-based missions for the EOS Follow-on Era (post 2003), building upon the measurements made by Pre-EOS and EOS First Series Missions. One mission under consideration is the Global Precipitation Measurement (GPM), a cooperative venture of NASA, Japan, and other international partners. GPM will capitalize on the experience of the highly successful Tropical Rainfall Measurement Mission (TRMM). Its goal is to extend the measurement of rainfall to high latitudes with high temporal frequency, providing a global data set every three hours. A reference concept has been developed consisting of an improved TRMM-like primary satellite with precipitation radar and microwave radiometer to make detailed and accurate estimates of the precipitation structure and a constellation of small satellites flying compact microwave radiometers to provide the required temporal sampling of highly variable precipitation systems. Considering that DMSP spacecraft equipped with SSMIS microwave radiometers, successor NPOESS spacecraft equipped with CMIS microwave radiometers, and other relevant international systems are expected to be in operation during the timeframe of the reference concept, the total number of small satellites required to complete the constellation will be reduced. A nominal plan is to begin implementation in FY'03 with launches in 2007. NASA is presently engaged in advanced mission studies and advanced instrument technology development related to the mission.

  20. ACTS Aeronautical Terminal Experiment (AERO-X)

    NASA Technical Reports Server (NTRS)

    1995-01-01

    During the summer of 1994, the performance of an experimental mobile satellite communication system was demonstrated. Using the Advanced Communications Technology Satellite (ACTS) and the ACTS Mobile Terminal (AMT), the system demonstrated an active Monolithic Microwave Integrated Circuit (MMIC) phased-array antenna system. The antenna system was installed onboard one of NASA Lewis Research Center's research aircraft, a Learjet Model 25. It proved the viability of in-flight satellite communications services via small, flush, mountable electronic phased-array antennas. The overall system setup for the ACTS Aeronautical Terminal Experiment (AERO-X) is illustrated. The Link Evaluation Terminal (LET) at Lewis in Cleveland, Ohio, interfaced with fixed-AMT equipment, providing a seamless connection with the Public Service Telephone Network. As the Learjet was flown over several major cities across the U.S., this demonstration system allowed passengers onboard to make telephone calls as if they were using a cellular system. ACTS was operated in its microwave switch matrix mode with a spot beam for the Learjet and another spot beam dedicated to the LET.

  1. Effects of low-dose microwave on healing of fractures with titanium alloy internal fixation: an experimental study in a rabbit model.

    PubMed

    Ye, Dongmei; Xu, Yiming; Zhang, Han; Fu, Tengfei; Jiang, Lan; Bai, Yuehong

    2013-01-01

    Microwave is a method for improving fracture repair. However, one of the contraindications for microwave treatment listed in the literature is surgically implanted metal plates in the treatment field. The reason is that the reflection of electromagnetic waves and the eddy current stimulated by microwave would increase the temperature of magnetic implants and cause heat damage in tissues. Comparing with traditional medical stainless steel, titanium alloy is a kind of medical implants with low magnetic permeability and electric conductivity. But the effects of microwave treatment on fracture with titanium alloy internal fixation in vivo were not reported. The aim of this article was to evaluate the security and effects of microwave on healing of a fracture with titanium alloy internal fixation. Titanium alloy internal fixation systems were implanted in New Zealand rabbits with a 3.0 mm bone defect in the middle of femur. We applied a 30-day microwave treatment (2,450MHz, 25W, 10 min per day) to the fracture 3 days after operation. Temperature changes of muscle tissues around implants were measured during the irradiation. Normalized radiographic density of the fracture gap was measured on the 10th day and 30th day of the microwave treatment. All of the animals were killed after 10 and 30 days microwave treatment with histologic and histomorphometric examinations performed on the harvested tissues. The temperatures did not increase significantly in animals with titanium alloy implants. The security of microwave treatment was also supported by histology of muscles, nerve and bone around the implants. Radiographic assessment, histologic and histomorphometric examinations revealed significant improvement in the healing bone. Our results suggest that, in the healing of fracture with titanium alloy internal fixation, a low dose of microwave treatment may be a promising method.

  2. Effects of Low-Dose Microwave on Healing of Fractures with Titanium Alloy Internal Fixation: An Experimental Study in a Rabbit Model

    PubMed Central

    Zhang, Han; Fu, Tengfei; Jiang, Lan; Bai, Yuehong

    2013-01-01

    Background Microwave is a method for improving fracture repair. However, one of the contraindications for microwave treatment listed in the literature is surgically implanted metal plates in the treatment field. The reason is that the reflection of electromagnetic waves and the eddy current stimulated by microwave would increase the temperature of magnetic implants and cause heat damage in tissues. Comparing with traditional medical stainless steel, titanium alloy is a kind of medical implants with low magnetic permeability and electric conductivity. But the effects of microwave treatment on fracture with titanium alloy internal fixation in vivo were not reported. The aim of this article was to evaluate the security and effects of microwave on healing of a fracture with titanium alloy internal fixation. Methods Titanium alloy internal fixation systems were implanted in New Zealand rabbits with a 3.0 mm bone defect in the middle of femur. We applied a 30-day microwave treatment (2,450MHz, 25W, 10 min per day) to the fracture 3 days after operation. Temperature changes of muscle tissues around implants were measured during the irradiation. Normalized radiographic density of the fracture gap was measured on the 10th day and 30th day of the microwave treatment. All of the animals were killed after 10 and 30 days microwave treatment with histologic and histomorphometric examinations performed on the harvested tissues. Findings The temperatures did not increase significantly in animals with titanium alloy implants. The security of microwave treatment was also supported by histology of muscles, nerve and bone around the implants. Radiographic assessment, histologic and histomorphometric examinations revealed significant improvement in the healing bone. Conclusion Our results suggest that, in the healing of fracture with titanium alloy internal fixation, a low dose of microwave treatment may be a promising method. PMID:24086626

  3. The use of satellites in environmental monitoring of coastal waters

    NASA Technical Reports Server (NTRS)

    Philpot, W.; Klemas, V.

    1979-01-01

    The feasibility of using satellites in an operational system for monitoring the type, concentration, location, drift, and dispersion of pollutants in coastal waters is evaluated. Visible, microwave, and thermal infrared sensing are considered. Targets to be detected include photosynthetic pigments, iron acid waste, and sewage sludge.

  4. Army Distance Learning: Potential for Reducing Shortages in Army Enlisted Occupations.

    ERIC Educational Resources Information Center

    Shanley, Michael G.; Leonard, Henry A.; Winkler, John D.

    The potential of distance learning (DL) to expedite the U.S. Army's efforts to redress personnel shortages in Army enlisted occupations was studied by evaluating how DL-based training strategies might affect skill shortages in the following occupations: helicopter repairer; electronic switching system operator; microwave systems…

  5. 47 CFR 101.107 - Frequency tolerance.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ..., this tolerance will govern the marketing of LTTS equipment and the issuance of all such authorizations... stations providing MVDDS. 5 For private operational fixed point-to-point microwave systems, with a channel... address remote stations with channels greater than 12.5 KHz bandwidth, ±0.0005%. 6 For stations authorized...

  6. Operating a Microwave Radiation Detection Monitor. Module 10. Vocational Education Training in Environmental Health Sciences.

    ERIC Educational Resources Information Center

    Consumer Dynamics Inc., Rockville, MD.

    This module, one of 25 on vocational education training for careers in environmental health occupations, contains self-instructional materials on operating a microwave radiation detection monitor. Following guidelines for students and instructors and an introduction that explains what the student will learn are three lessons: (1) testing the…

  7. The Telecommunications and Data Acquisition Report

    NASA Technical Reports Server (NTRS)

    Posner, Edward C. (Editor)

    1992-01-01

    This quarterly publication provides archival reports on developments in programs managed by JPL's Telecommunications and Data Acquisition (TDA) Office. In the Search for Extraterrestrial Intelligence (SETI), the TDA Progress Report reports on implementation and operations for searching the microwave spectrum. In solar system radar, it reports on the uses of the Goldstone Solar System Radar for scientific exploration of the planets, their rings and satellites, asteroids, and comets. In radio astronomy, the areas of support include spectroscopy, very long baseline interferometry, and astrometry. These three programs are performed for NASA's Office of Space Science and Applications (OSSA) with the Office of Space Operations for funding DSN operational support.

  8. Microwave-to-Optical Conversion in WGM Resonators

    NASA Technical Reports Server (NTRS)

    Savchenkov, Anatoliy; Strekalov, Dmitry; Yu, Nan; Matsko, Andrey; Maleki, Lute

    2008-01-01

    Microwave-to-optical frequency converters based on whispering-gallery-mode (WGM) resonators have been proposed as mixers for the input ends of microwave receivers in which, downstream of the input ends, signals would be processed photonically. A frequency converter as proposed (see figure) would exploit the nonlinearity of the electromagnetic response of a WGM resonator made of LiNbO3 or another suitable ferroelectric material. Up-conversion would take place by three-wave mixing in the resonator. The WGM resonator would be de - signed and fabricated to obtain (1) resonance at both the microwave and the optical operating frequencies and (2) phase matching among the input and output microwave and optical signals as described in the immediately preceding article. Because the resonator would be all dielectric there would be no metal electrodes signal losses would be very low and, consequently, the resonance quality factors (Q values) of the microwave and optical fields would be very large. The long lifetimes associated with the large Q values would enable attainment of high efficiency of nonlinear interaction with low saturation power. It is anticipated that efficiency would be especially well enhanced by the combination of optical and microwave resonances in operation at input signal frequencies between 90 and 300 GHz.

  9. The effect of cavity tuning on oxygen beam currents of an A-ECR type 14 GHz electron cyclotron resonance ion source

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tarvainen, O., E-mail: olli.tarvainen@jyu.fi; Orpana, J.; Kronholm, R.

    2016-09-15

    The efficiency of the microwave-plasma coupling plays a significant role in the production of highly charged ion beams with electron cyclotron resonance ion sources (ECRISs). The coupling properties are affected by the mechanical design of the ion source plasma chamber and microwave launching system, as well as damping of the microwave electric field by the plasma. Several experiments attempting to optimize the microwave-plasma coupling characteristics by fine-tuning the frequency of the injected microwaves have been conducted with varying degrees of success. The inherent difficulty in interpretation of the frequency tuning results is that the effects of microwave coupling system andmore » the cavity behavior of the plasma chamber cannot be separated. A preferable approach to study the effect of the cavity properties of the plasma chamber on extracted beam currents is to adjust the cavity dimensions. The results of such cavity tuning experiments conducted with the JYFL 14 GHz ECRIS are reported here. The cavity properties were adjusted by inserting a conducting tuner rod axially into the plasma chamber. The extracted beam currents of oxygen charge states O{sup 3+}–O{sup 7+} were recorded at various tuner positions and frequencies in the range of 14.00–14.15 GHz. It was observed that the tuner position affects the beam currents of high charge state ions up to several tens of percent. In particular, it was found that at some tuner position / frequency combinations the plasma exhibited “mode-hopping” between two operating regimes. The results improve the understanding of the role of plasma chamber cavity properties on ECRIS performances.« less

  10. Frequency-tuned microwave photon counter based on a superconductive quantum interferometer

    NASA Astrophysics Data System (ADS)

    Shnyrkov, V. I.; Yangcao, Wu; Soroka, A. A.; Turutanov, O. G.; Lyakhno, V. Yu.

    2018-03-01

    Various types of single-photon counters operating in infrared, ultraviolet, and optical wavelength ranges are successfully used to study electromagnetic fields, analyze radiation sources, and solve problems in quantum informatics. However, their operating principles become ineffective at millimeter band, S-band, and ultra-high frequency bands of wavelengths due to the decrease in quantum energy by 4-5 orders of magnitude. Josephson circuits with discrete Hamiltonians and qubits are a good foundation for the construction of single-photon counters at these frequencies. This paper presents a frequency-tuned microwave photon counter based on a single-junction superconducting quantum interferometer and flux qutrit. The control pulse converts the interferometer into a two-level system for resonance absorption of photons. Decay of the photon-induced excited state changes the magnetic flux in the interferometer, which is measured by a SQUID magnetometer. Schemes for recording the magnetic flux using a DC SQUID or ideal parametric detector, based on a qutrit with high-frequency excitation, are discussed. It is shown that the counter consisting of an interferometer with a Josephson junction and a parametric detector demonstrates high performance and is capable of detecting single photons in a microwave band.

  11. Novel microwave photonic fractional Hilbert transformer using a ring resonator-based optical all-pass filter.

    PubMed

    Zhuang, Leimeng; Khan, Muhammad Rezaul; Beeker, Willem; Leinse, Arne; Heideman, René; Roeloffzen, Chris

    2012-11-19

    We propose and demonstrate a novel wideband microwave photonic fractional Hilbert transformer implemented using a ring resonator-based optical all-pass filter. The full programmability of the ring resonator allows variable and arbitrary fractional order of the Hilbert transformer. The performance analysis in both frequency and time domain validates that the proposed implementation provides a good approximation to an ideal fractional Hilbert transformer. This is also experimentally verified by an electrical S21 response characterization performed on a waveguide realization of a ring resonator. The waveguide-based structure allows the proposed Hilbert transformer to be integrated together with other building blocks on a photonic integrated circuit to create various system-level functionalities for on-chip microwave photonic signal processors. As an example, a circuit consisting of a splitter and a ring resonator has been realized which can perform on-chip phase control of microwave signals generated by means of optical heterodyning, and simultaneous generation of in-phase and quadrature microwave signals for a wide frequency range. For these functionalities, this simple and on-chip solution is considered to be practical, particularly when operating together with a dual-frequency laser. To our best knowledge, this is the first-time on-chip demonstration where ring resonators are employed to perform phase control functionalities for optical generation of microwave signals by means of optical heterodyning.

  12. Long fiber Bragg grating sensor interrogation using discrete-time microwave photonic filtering techniques.

    PubMed

    Ricchiuti, Amelia Lavinia; Barrera, David; Sales, Salvador; Thevenaz, Luc; Capmany, José

    2013-11-18

    A novel technique for interrogating photonic sensors based on long fiber Bragg gratings (FBGs) is presented and experimentally demonstrated, dedicated to detect the presence and the precise location of several spot events. The principle of operation is based on a technique used to analyze microwave photonics (MWP) filters. The long FBGs are used as quasi-distributed sensors. Several hot-spots can be detected along the FBG with a spatial accuracy under 0.5 mm using a modulator and a photo-detector (PD) with a modest bandwidth of less than 1 GHz. The proposed interrogation system is intrinsically robust against environmental changes.

  13. Highly chirped single-bandpass microwave photonic filter with reconfiguration capabilities.

    PubMed

    Bolea, Mario; Mora, José; Ortega, Beatriz; Capmany, José

    2011-02-28

    We propose a novel photonic structure to implement a chirped single-bandpass microwave photonic filter based on the amplitude modulation of a broadband optical signal transmitted by a non-linear dispersive element and an interferometric system prior to balanced photodetection. A full reconfigurability of the filter is achieved since amplitude and phase responses can be independently controlled. We have experimentally demonstrated chirp values up to tens of ns/GHz, which is, as far as we know, one order of magnitude better than others achieved by electrical approaches and furthermore, without restrictions in terms of frequency tuning since a frequency operation range up to 40 GHz has been experimentally demonstrated.

  14. Thin film resonator technology.

    PubMed

    Lakin, Kenneth M

    2005-05-01

    Advances in wireless systems have placed increased demands on high performance frequency control devices for operation into the microwave range. With spectrum crowding, high bandwidth requirements, miniaturization, and low cost requirements as a background, the thin film resonator technology has evolved into the mainstream of applications. This technology has been under development for over 40 years in one form or another, but it required significant advances in integrated circuit processing to reach microwave frequencies and practical manufacturing for high-volume applications. This paper will survey the development of the thin film resonator technology and describe the core elements that give rise to resonators and filters for today's high performance wireless applications.

  15. Low-noise correlation measurements based on software-defined-radio receivers and cooled microwave amplifiers.

    PubMed

    Nieminen, Teemu; Lähteenmäki, Pasi; Tan, Zhenbing; Cox, Daniel; Hakonen, Pertti J

    2016-11-01

    We present a microwave correlation measurement system based on two low-cost USB-connected software defined radio dongles modified to operate as coherent receivers by using a common local oscillator. Existing software is used to obtain I/Q samples from both dongles simultaneously at a software tunable frequency. To achieve low noise, we introduce an easy low-noise solution for cryogenic amplification at 600-900 MHz based on single discrete HEMT with 21 dB gain and 7 K noise temperature. In addition, we discuss the quantization effects in a digital correlation measurement and determination of optimal integration time by applying Allan deviation analysis.

  16. Microwave and Man—The Direct and Indirect Hazards, and the Precautions

    PubMed Central

    Merckel, Charles

    1972-01-01

    Microwave-radar is a form of electromagnetic energy with potential hazards to human health and safety. Its lethal and non-lethal harmful effects have been demonstrated in experimental animals. Lethal effects upon humans from exposure to microwave have not been proved. Alleged non-lethal effects have been limited primarily to cataractogenesis. Increasing use of microwave commercially in communications and domestically, as in micro-ovens, increases the hazard of exposure to microwave. Increasing use of devices which are at risk from microwave, such as implanted cardiac pacemakers and metal surgical appliances and electronic monitoring devices in operating rooms and clinics, present increasing environmental hazards. PMID:5039801

  17. Comparative of signal processing techniques for micro-Doppler signature extraction with automotive radar systems

    NASA Astrophysics Data System (ADS)

    Rodriguez-Hervas, Berta; Maile, Michael; Flores, Benjamin C.

    2014-05-01

    In recent years, the automotive industry has experienced an evolution toward more powerful driver assistance systems that provide enhanced vehicle safety. These systems typically operate in the optical and microwave regions of the electromagnetic spectrum and have demonstrated high efficiency in collision and risk avoidance. Microwave radar systems are particularly relevant due to their operational robustness under adverse weather or illumination conditions. Our objective is to study different signal processing techniques suitable for extraction of accurate micro-Doppler signatures of slow moving objects in dense urban environments. Selection of the appropriate signal processing technique is crucial for the extraction of accurate micro-Doppler signatures that will lead to better results in a radar classifier system. For this purpose, we perform simulations of typical radar detection responses in common driving situations and conduct the analysis with several signal processing algorithms, including short time Fourier Transform, continuous wavelet or Kernel based analysis methods. We take into account factors such as the relative movement between the host vehicle and the target, and the non-stationary nature of the target's movement. A comparison of results reveals that short time Fourier Transform would be the best approach for detection and tracking purposes, while the continuous wavelet would be the best suited for classification purposes.

  18. Assimilation of a knowledge base and physical models to reduce errors in passive-microwave classifications of sea ice

    NASA Technical Reports Server (NTRS)

    Maslanik, J. A.; Key, J.

    1992-01-01

    An expert system framework has been developed to classify sea ice types using satellite passive microwave data, an operational classification algorithm, spatial and temporal information, ice types estimated from a dynamic-thermodynamic model, output from a neural network that detects the onset of melt, and knowledge about season and region. The rule base imposes boundary conditions upon the ice classification, modifies parameters in the ice algorithm, determines a `confidence' measure for the classified data, and under certain conditions, replaces the algorithm output with model output. Results demonstrate the potential power of such a system for minimizing overall error in the classification and for providing non-expert data users with a means of assessing the usefulness of the classification results for their applications.

  19. Sea-surface temperature and salinity mapping from remote microwave radiometric measurements of brightness temperature

    NASA Technical Reports Server (NTRS)

    Hans-Juergen, C. B.; Kendall, B. M.; Fedors, J. C.

    1977-01-01

    A technique to measure remotely sea surface temperature and salinity was demonstrated with a dual frequency microwave radiometer system. Accuracies in temperature of 1 C and in salinity of part thousand for salinity greater than 5 parts per thousand were attained after correcting for the influence of extraterrestrial background radiation, atmospheric radiation and attenuation, sea-surface roughness, and antenna beamwidth. The radiometers, operating at 1.43 and 2.65 GHz, comprise a third-generation system using null balancing and feedback noise injection. Flight measurements from an aircraft at an altitude of 1.4 km over the lower Chesapeake Bay and coastal areas of the Atlantic Ocean resulted in contour maps of sea-surface temperature and salinity with a spatial resolution of 0.5 km.

  20. Pre-Launch Radiometric Performance Characterization of the Advanced Technology Microwave Sounder on the Joint Polar Satellite System-1 Satellite

    NASA Technical Reports Server (NTRS)

    Smith, Craig K.; Kim, Edward; Leslie, R. Vincent; Lyu, Joseph; McCormick, Lisa M.; Anderson, Kent

    2017-01-01

    The Advanced Technology Microwave Sounder (ATMS) is a space-based, cross-track radiometer for operational atmospheric temperature and humidity sounding, utilizing 22 channels over a frequency range from 23 to 183 gigahertz. The ATMS for the Joint Polar Satellite System-1 has undergone two rounds of re-work in 2014-2015 and 2016, following performance issues discovered during and following thermal vacuum chamber (TVAC) testing at the instrument and observatory level. Final shelf-level testing, including measurement of pass band characteristics and spectral response functions, was completed in December 2016. Final instrument-level TVAC testing and calibration occurred during February 2017. Here we will describe the instrument-level TVAC calibration process, and illustrate with results from the final TVAC calibration effort.

  1. [Atomic/ionic fluorescence in microwave plasma torch discharge excited by high current microsecond pulsed hollow cathode lamp-europium atomic/ionic fluorescence spectrometry].

    PubMed

    Gong, Z; Liang, F; Yang, P; Jin, Q; Huang, B

    1999-06-01

    Eu atomic and ionic fluorescence spectrometry in microwave plasma torch discharge excited by high current microsecond pulsed hollow cathode lamp (HCMP HCL-MPT AFS/IFS) was studied. Operating conditions were optimized. The best detection limits for AFS and IFS obtained with a desolvated ultrasonic nebulization system were 42.0 ng/mL for Eu I 462.7 nm and 21.8 ng/mL for Eu II 381.97 nm, respectively, both were better than those given by the instruction manual of a Baird ICP AFS-2000 spectrometer using pneumatic concentric nebulizer with desolvation for AFS, but were significantly higher than those obtained by using the Baird spectrometer with a mini-monochromator and a ultrasonic nebulzer system.

  2. Single- and dual-carrier microwave noise abatement in the deep space network. [microwave antennas

    NASA Technical Reports Server (NTRS)

    Bathker, D. A.; Brown, D. W.; Petty, S. M.

    1975-01-01

    The NASA/JPL Deep Space Network (DSN) microwave ground antenna systems are presented which simultaneously uplink very high power S-band signals while receiving very low level S- and X-band downlinks. Tertiary mechanisms associated with elements give rise to self-interference in the forms of broadband noise burst and coherent intermodulation products. A long-term program to reduce or eliminate both forms of interference is described in detail. Two DSN antennas were subjected to extensive interference testing and practical cleanup program; the initial performance, modification details, and final performance achieved at several planned stages are discussed. Test equipment and field procedures found useful in locating interference sources are discussed. Practices deemed necessary for interference-free operations in the DSN are described. Much of the specific information given is expected to be easily generalized for application in a variety of similar installations. Recommendations for future investigations and individual element design are given.

  3. In-line moisture monitoring in fluidized bed granulation using a novel multi-resonance microwave sensor.

    PubMed

    Peters, Johanna; Bartscher, Kathrin; Döscher, Claas; Taute, Wolfgang; Höft, Michael; Knöchel, Reinhard; Breitkreutz, Jörg

    2017-08-01

    Microwave resonance technology (MRT) is known as a process analytical technology (PAT) tool for moisture measurements in fluid-bed granulation. It offers a great potential for wet granulation processes even where the suitability of near-infrared (NIR) spectroscopy is limited, e.g. colored granules, large variations in bulk density. However, previous sensor systems operating around a single resonance frequency showed limitations above approx. 7.5% granule moisture. This paper describes the application of a novel sensor working with four resonance frequencies. In-line data of all four resonance frequencies were collected and further processed. Based on calculation of density-independent microwave moisture values multiple linear regression (MLR) models using Karl-Fischer titration (KF) as well as loss on drying (LOD) as reference methods were build. Rapid, reliable in-process moisture control (RMSEP≤0.5%) even at higher moisture contents was achieved. Copyright © 2017 Elsevier B.V. All rights reserved.

  4. 21 CFR 1030.10 - Microwave ovens.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... interlock on a fully assembled microwave oven shall not be operable by any part of the human body, or any... 21 Food and Drugs 8 2011-04-01 2011-04-01 false Microwave ovens. 1030.10 Section 1030.10 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) RADIOLOGICAL...

  5. 21 CFR 1030.10 - Microwave ovens.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... interlock on a fully assembled microwave oven shall not be operable by any part of the human body, or any... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Microwave ovens. 1030.10 Section 1030.10 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) RADIOLOGICAL...

  6. 77 FR 65381 - Information Collection(s) Being Submitted for Review and Approval to the Office of Management and...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-10-26

    ... Terrestrial Microwave Fixed Radio Service. Form Number: N/A. Type of Review: Revision of a currently approved... increase in burden hours is due to FS operators compliance with the Rural Microwave Flexibility Policy... Microwave Flexibility Policy directing the Commission's Wireless Telecommunications Bureau to favorably...

  7. 76 FR 65970 - Facilitating the use of Microwave for Wireless Backhaul and Other Uses and Providing Additional...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-10-25

    ... FEDERAL COMMUNICATIONS COMMISSION 47 CFR Part 101 [WT Docket No. 10-153; RM-11602; DA 11-1674] Facilitating the use of Microwave for Wireless Backhaul and Other Uses and Providing Additional Flexibility To Broadcast Auxiliary Service and Operational Fixed Microwave Licensees AGENCY: Federal Communications...

  8. Assimilation of Feng-Yun-3B satellite microwave humidity sounder data over land

    NASA Astrophysics Data System (ADS)

    Chen, Keyi; Bormann, Niels; English, Stephen; Zhu, Jiang

    2018-03-01

    The ECMWF has been assimilating Feng-Yun-3B (FY-3B) satellite microwave humidity sounder (MWHS) data over ocean in an operational forecasting system since 24 September 2014. It is more difficult, however, to assimilate microwave observations over land and sea ice than over the open ocean due to higher uncertainties in land surface temperature, surface emissivity and less effective cloud screening. We compare approaches in which the emissivity is retrieved dynamically from MWHS channel 1 [150 GHz (vertical polarization)] with the use of an evolving emissivity atlas from 89 GHz observations from the MWHS onboard NOAA and EUMETSAT satellites. The assimilation of the additional data over land improves the fit of short-range forecasts to other observations, notably ATMS (Advanced Technology Microwave Sounder) humidity channels, and the forecast impacts are mainly neutral to slightly positive over the first five days. The forecast impacts are better in boreal summer and the Southern Hemisphere. These results suggest that the techniques tested allow for effective assimilation of MWHS/FY-3B data over land.

  9. Conformational effects on the torsional barriers in m-methylanisole studied by microwave spectroscopy

    NASA Astrophysics Data System (ADS)

    Ferres, Lynn; Stahl, Wolfgang; Nguyen, Ha Vinh Lam

    2018-03-01

    The microwave spectrum of m-methylanisole (also known as 3-methylanisole, or 3-methoxytoluene) was measured using a pulsed molecular jet Fourier transform microwave spectrometer operating in the frequency range of 2-26.5 GHz. Quantum chemical calculations predicted two conformers with the methoxy group in trans or cis position related to the ring methyl group, both of which were assigned in the experimental spectrum. Due to the internal rotation of the ring methyl group, all rotational transitions introduced large A-E splittings up to several GHz, which were analyzed with a newly developed program, called aixPAM, working in the principal axis system. There are significant differences in the V3 potential barriers of 55.7693(90) cm-1 and 36.6342(84) cm-1 determined by fitting 223 and 320 torsional components of the cis and the trans conformer, respectively. These values were compared with those found in other m-substituted toluenes as well as in o- and p-methylanisole. A comparison between the aixPAM and the XIAM code (using a combined axis system) was also performed.

  10. Directional spectra of ocean waves from microwave backscatter: A physical optics solution with application to the short-pulse and two-frequency measurement techniques

    NASA Technical Reports Server (NTRS)

    Jackson, F. C.

    1979-01-01

    Two simple microwave radar techniques that are potentially capable of providing routine satellite measurements of the directional spectrum of ocean waves were developed. One technique, the short pulse technique, makes use of very short pulses to resolve ocean surface wave contrast features in the range direction; the other technique, the two frequency correlation technique makes use of coherency in the transmitted waveform to detect the large ocean wave contrast modulation as a beat or mixing frequency in the power backscattered at two closely separated microwave frequencies. A frequency domain analysis of the short pulse and two frequency systems shows that the two measurement systems are essentially duals; they each operate on the generalized (three frequency) fourth-order statistical moment of the surface transfer function in different, but symmetrical ways, and they both measure the same directional contrast modulation spectrum. A three dimensional physical optics solution for the fourth-order moment was obtained for backscatter in the near vertical, specular regime, assuming Gaussian surface statistics.

  11. Free radical propulsion concept

    NASA Technical Reports Server (NTRS)

    Hawkins, C. E.; Nakanishi, S.

    1981-01-01

    The concept of a free radical propulsion system, utilizing the recombination energy of dissociated low molecular weight gases to produce thrust, is analyzed. The system, operating at a theoretical impulse with hydrogen, as high as 2200 seconds at high thrust to power ratio, is hypothesized to bridge the gap between chemical and electrostatic propulsion capabilities. A comparative methodology is outlined by which characteristics of chemical and electric propulsion for orbit raising mission can be investigated. It is noted that free radicals proposed in rockets previously met with difficulty and complexity in terms of storage requirements; the present study proposes to eliminate the storage requirements by using electric energy to achieve a continuous-flow product of free radicals which are recombined to produce a high velocity propellant. Microwave energy used to dissociate a continuously flowing gas is transferred to the propellant via three-body-recombination for conversion to propellant kinetic energy. Microwave plasma discharge was found in excess of 90 percent over a broad range of pressure in preliminary experiments, and microwave heating compared to electrothermal heating showed much higher temperatures in gasdynamic equations.

  12. Microwave Radiometers for Fire Detection in Trains: Theory and Feasibility Study.

    PubMed

    Alimenti, Federico; Roselli, Luca; Bonafoni, Stefania

    2016-06-17

    This paper introduces the theory of fire detection in moving vehicles by microwave radiometers. The system analysis is discussed and a feasibility study is illustrated on the basis of two implementation hypotheses. The basic idea is to have a fixed radiometer and to look inside the glass windows of the wagon when it passes in front of the instrument antenna. The proposed sensor uses a three-pixel multi-beam configuration that allows an image to be formed by the movement of the train itself. Each pixel is constituted by a direct amplification microwave receiver operating at 31.4 GHz. At this frequency, the antenna can be a 34 cm offset parabolic dish, whereas a 1 K brightness temperature resolution is achievable with an overall system noise figure of 6 dB, an observation bandwidth of 2 GHz and an integration time of 1 ms. The effect of the detector noise is also investigated and several implementation hypotheses are discussed. The presented study is important since it could be applied to the automatic fire alarm in trains and moving vehicles with dielectric wall/windows.

  13. Microwave Radiometers for Fire Detection in Trains: Theory and Feasibility Study †

    PubMed Central

    Alimenti, Federico; Roselli, Luca; Bonafoni, Stefania

    2016-01-01

    This paper introduces the theory of fire detection in moving vehicles by microwave radiometers. The system analysis is discussed and a feasibility study is illustrated on the basis of two implementation hypotheses. The basic idea is to have a fixed radiometer and to look inside the glass windows of the wagon when it passes in front of the instrument antenna. The proposed sensor uses a three-pixel multi-beam configuration that allows an image to be formed by the movement of the train itself. Each pixel is constituted by a direct amplification microwave receiver operating at 31.4 GHz. At this frequency, the antenna can be a 34 cm offset parabolic dish, whereas a 1 K brightness temperature resolution is achievable with an overall system noise figure of 6 dB, an observation bandwidth of 2 GHz and an integration time of 1 ms. The effect of the detector noise is also investigated and several implementation hypotheses are discussed. The presented study is important since it could be applied to the automatic fire alarm in trains and moving vehicles with dielectric wall/windows. PMID:27322280

  14. Apparatus and method for microwave processing of materials

    DOEpatents

    Johnson, A.C.; Lauf, R.J.; Bible, D.W.; Markunas, R.J.

    1996-05-28

    Disclosed is a variable frequency microwave heating apparatus designed to allow modulation of the frequency of the microwaves introduced into a furnace cavity for testing or other selected applications. The variable frequency heating apparatus is used in the method of the present invention to monitor the resonant processing frequency within the furnace cavity depending upon the material, including the state thereof, from which the workpiece is fabricated. The variable frequency microwave heating apparatus includes a microwave signal generator and a high-power microwave amplifier or a microwave voltage-controlled oscillator. A power supply is provided for operation of the high-power microwave oscillator or microwave amplifier. A directional coupler is provided for detecting the direction and amplitude of signals incident upon and reflected from the microwave cavity. A first power meter is provided for measuring the power delivered to the microwave furnace. A second power meter detects the magnitude of reflected power. Reflected power is dissipated in the reflected power load. 10 figs.

  15. AC Josephson effect applications in microwave systems

    NASA Astrophysics Data System (ADS)

    Larkin, Serguey Y.

    1996-12-01

    A complication of the tasks solving by the modem radliolocation, radionavigation and communication systems connected with the demand promotion to the resolution and accuracy of coordinates definition and increase in the volumes of transmitted information in satellite communication systems has resulted in boisterous mastering of millimeter wave bands. Success in microwave technology reached in 80' allowed such leading instrument developing companies as Hewlett Packard; EIP, lB millimeter etc. to set up an output of mm- and submm-wave bands devices and systems. It has streamlined Scientific Technological Progress in several spheres, since millimeter, through infra-red frequency range was closed to researchers for a long period of time because of the absence of necessary equipment. At present microwave devices of the short-wave part of mm- wave band and of submm- wave bands are used not only in radiolocation and communications. Unique diagnostic systems based on the analysis of the radiation parameters of different microwave sources were created. They have their application in medicine, thermonuclear energetics, radioastronomy, biology, nuclear physics, the physics of the solid state body, geology, etc. The above circumstances caused the beginning of the measuring microwave technology researches in 60 to 600 GHz frequency range: generators, power and frequency meters, spectrum analyzers. The task of working out equipment and techniques of the effective control as well as frequency and intensity measurements of the microwave signals in the investigated range is of the special interest. Here are some examples. The creation of a thermonuclear reactor in ITER project is considered to be the project of the century in the energetics sphere. One of the basic engineering tasks in the course of project realization is the creation of the diagnostic equipment realizing in real time spectrum analysis of thermonuclear plasma radiation at the so called cyclotron hannonics. Such analysis allow to get the picture of temperature distribution along the plasma cord diameter in accordance with dynamics of thermonuclear process development. Modem raclioastronomic research gives scientists the unique information on the world tructure. It is also necessary to analyze Space microwave radiation providing exclusive sensitivity of the equipment. In both cases equipment is required to be superwide band, to have high sensitivity and ability to operate at more than 300 GHz frequencies. Today all these requirements are met by the devices using the ac Josephson effect. The Josephson junctions are used as an active transforming element in such devices. At the end of 20 century the sphere of their utilization embraces medicine, communications, radiophysics, space exploration, ecology, military use, etc. The State Research Center "Fonon" ( SRC "Fonon") of the State Committee on Science and Technology of Ukraine was founded in 1991. The main aim of its creation was to concentrate the scientific and financial efforts for development and production of unique devices based on the results of fundamental study in physics of high T superconductivity. First of all we were interested in technological research on the obtaining of low impedance Josephson junctions out of the High T thin films. Using such junctions in combination with our original techniques developed in our Center we have succeed in creating the following new generation equipment: industrial set-up of the frequency meter in the range of 60 ... 600 GHz; experimental set-up of the spectrum analyzer operating in the range of 50 250 GHz; experimental model of radiometric receiver in 180...260 GHz range. All the above devices are based on the using ac Josephson effect for the receiving and processing mm- and submm- microwave signals.

  16. Novel microwave readout for phase qubits

    NASA Astrophysics Data System (ADS)

    Kumar, Shwetank; Steffen, Matthias; Rothwell, Mary-Beth; Rozen, James; Keefe, George; Ketchen, Mark

    2010-03-01

    We present a novel microwave based readout for a phase qubit which circumvents loss mechanisms that have been shown to impact qubit coherence times. Additionally, this new technique facilitates multiplexing of qubits thereby reducing the number of cryogenic wires required for operating the qubits. The basic operation of the circuit will be discussed and compared with experimental data.

  17. Power-Efficient, High-Current-Density, Long-Life Thermionic Cathode Developed for Microwave Amplifier Applications

    NASA Technical Reports Server (NTRS)

    Wintucky, Edwin G.

    2002-01-01

    A power-efficient, miniature, easily manufactured, reservoir-type barium-dispenser thermionic cathode has been developed that offers the significant advantages of simultaneous high electron-emission current density (>2 A/sq cm) and very long life (>100,000 hr of continuous operation) when compared with the commonly used impregnated-type barium-dispenser cathodes. Important applications of this cathode are a wide variety of microwave and millimeter-wave vacuum electronic devices, where high output power and reliability (long life) are essential. We also expect it to enable the practical development of higher purveyance electron guns for lower voltage and more reliable device operation. The low cathode heater power and reduced size and mass are expected to be particularly beneficial in traveling-wave-tube amplifiers (TWTA's) for space communications, where future NASA mission requirements include smaller onboard spacecraft systems, higher data transmission rates (high frequency and output power) and greater electrical efficiency.

  18. Airborne laser sensors and integrated systems

    NASA Astrophysics Data System (ADS)

    Sabatini, Roberto; Richardson, Mark A.; Gardi, Alessandro; Ramasamy, Subramanian

    2015-11-01

    The underlying principles and technologies enabling the design and operation of airborne laser sensors are introduced and a detailed review of state-of-the-art avionic systems for civil and military applications is presented. Airborne lasers including Light Detection and Ranging (LIDAR), Laser Range Finders (LRF), and Laser Weapon Systems (LWS) are extensively used today and new promising technologies are being explored. Most laser systems are active devices that operate in a manner very similar to microwave radars but at much higher frequencies (e.g., LIDAR and LRF). Other devices (e.g., laser target designators and beam-riders) are used to precisely direct Laser Guided Weapons (LGW) against ground targets. The integration of both functions is often encountered in modern military avionics navigation-attack systems. The beneficial effects of airborne lasers including the use of smaller components and remarkable angular resolution have resulted in a host of manned and unmanned aircraft applications. On the other hand, laser sensors performance are much more sensitive to the vagaries of the atmosphere and are thus generally restricted to shorter ranges than microwave systems. Hence it is of paramount importance to analyse the performance of laser sensors and systems in various weather and environmental conditions. Additionally, it is important to define airborne laser safety criteria, since several systems currently in service operate in the near infrared with considerable risk for the naked human eye. Therefore, appropriate methods for predicting and evaluating the performance of infrared laser sensors/systems are presented, taking into account laser safety issues. For aircraft experimental activities with laser systems, it is essential to define test requirements taking into account the specific conditions for operational employment of the systems in the intended scenarios and to verify the performance in realistic environments at the test ranges. To support the development of such requirements, useful guidelines are provided for test and evaluation of airborne laser systems including laboratory, ground and flight test activities.

  19. Novel Planar and Integrated Microwave Antennas

    NASA Technical Reports Server (NTRS)

    Saed, Mohammad A.

    2000-01-01

    This project dealt with design, analysis, and testing of new types of planar and integrated antennas operating in the microwave frequency range. The following was accomplished during this project period:

  20. Multiplexing of Hot-Electron Nanobolometers Using Microwave SQUIDs

    NASA Technical Reports Server (NTRS)

    Karasik, Boris S.; Day, Peter K.; Kawamura, Jonathan H.; Bumble, Bruce; LeDuc, Henry G.

    2009-01-01

    We have obtained the first data on the multiplexed operation of titanium hot-electron bolometers (HEB). Because of their low thermal conductance and small electron heat capacity nanobolometers are particularly interesting as sensors for far-infrared spectroscopy and mid- and near-IR calorimetry. However, the short time constant of these devices (approximately microseconds at 300-400 mK) makes time domain or audio-frequency domain multiplexing impractical. The Microwave SQUID (MSQUID) approach pursued in this work uses dc SQUIDs coupled to X-band microresonators which are, in turn, coupled to a transmission line. We used a 4-element array of Ti HEBs operated at 415 mK in a He3 dewar with an optical fiber access. The microwave signal exhibited 10-MHz wide resonances at individual MSQUD frequencies between 9 GHz and 10 GHz. The resonance depth is modulated by the current through the bolometer via a change of the SQUID flux state. The transmitted signal was amplified by a cryogenic amplifier and downconverted to baseband using an IQ mixer. A 1-dB per ??/2 responsivity was sufficient for keeping the system noise at the level of 2 pA/Hz1/2. This is more than an order of magnitude smaller than phonon noise in the HEB. The devices were able to detect single near- IR photons (1550 nm) with a time constant of 3.5 ?s. Follow-on work will scale the array to larger size and will address the microwave frequency signal generation and processing using a digital transceiver.

  1. Continuity of Climate Data Records derived from Microwave Observations

    NASA Astrophysics Data System (ADS)

    Mears, C. A.; Wentz, F. J.; Brewer, M.; Meissner, T.; Ricciardulli, L.

    2017-12-01

    Remote Sensing Systems (www.remss.com) has been producing and distributing microwave climate data products from microwave imagers (SSMI, TMI, AMSR, WindSat, GMI, Aquarius, SMAP) over the global oceans since the launch of the first SSMI in 1987. Interest in these data products has been significant as researchers around the world have downloaded the approximate equivalent of 1 million satellite years of processed data. Users, including NASA, NOAA, US National Laboratories, US Navy, UK Met, ECMWF, JAXA, JMA, CMC, the Australian Bureau of Meteorology, as well as many hundreds of other agencies and universities routinely access these microwave data products. The quality of these data records has increased as more observations have become available and inter-calibration techniques have improved. The impending end of missions for WindSat, AMSR-2, and the remaining SSMIs will have significant impact on the quality and continuity of long term microwave climate data records. In addition to the problem of reduced numbers of observations, there is a real danger of losing overlapping observations. Simultaneous operation of satellites, especially when the observations are at similar local crossing times, provides a significant benefit in the effort to inter-calibrate satellites to yield accurate and stable long-term records. The end of WindSat and AMSR-2 will leave us without microwave SSTs in cold water, as there will be no microwave imagers with C-band channels. Microwave SSTs have a crucial advantage over IR SSTs, which is not able to measure SST in clouds or if aerosols are present. The gap in ocean wind vectors will be somewhat mitigated as the European ASCAT C-band scatterometer mission on MetOp is continuing. Nonetheless, the anticipated cease of several microwave satellite radiometers retrieving ocean winds in the coming years will lead to a significant gap in temporal coverage. Atmospheric water vapor, cloud liquid water, and rain rate are all important climate variables whose long-term records will inevitably degrade as the microwave imagery constellation fades.

  2. Implementation of the Land, Atmosphere Near Real-Time Capability for EOS (LANCE)

    NASA Technical Reports Server (NTRS)

    Michael, Karen; Murphy, Kevin; Lowe, Dawn; Masuoka, Edward; Vollmer, Bruce; Tilmes, Curt; Teague, Michael; Ye, Gang; Maiden, Martha; Goodman, H. Michael; hide

    2010-01-01

    The past decade has seen a rapid increase in availability and usage of near real-time data from satellite sensors. Applications have demonstrated the utility of timely data in a number of areas ranging from numerical weather prediction and forecasting, to monitoring of natural hazards, disaster relief, agriculture and homeland security. As applications mature, the need to transition from prototypes to operational capabilities presents an opportunity to improve current near real-time systems and inform future capabilities. This paper presents NASA s effort to implement a near real-time capability for land and atmosphere data acquired by the Moderate Resolution Imaging Spectroradiometer (MODIS), Atmospheric Infrared Sounder (AIRS), Advanced Microwave Scanning Radiometer - Earth Observing System (AMSR-E), Microwave Limb Sounder (MLS) and Ozone Monitoring Instrument (OMI) instruments on the Terra, Aqua, and Aura satellites. Index Terms- Real time systems, Satellite applications

  3. Characterization of the supersonic flowing microwave discharge using two dimensional plasma tomography

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nikolic, M.; Samolov, A.; Popovic, S.

    2013-03-14

    A tomographic numerical method based on the two-dimensional Radon formula for a cylindrical cavity has been employed for obtaining spatial distributions of the argon excited levels. The spectroscopy measurements were taken at different positions and directions to observe populations of excited species in the plasmoid region and the corresponding excitation temperatures. Excited argon states are concentrated near the tube walls, thus, confirming the assumption that the post discharge plasma is dominantly sustained by travelling surface wave. An automated optical measurement system has been developed for reconstruction of local plasma parameters of the plasmoid structure formed in an argon supersonic flowingmore » microwave discharge. The system carries out angle and distance measurements using a rotating, flat mirror, as well as two high precision stepper motors operated by a microcontroller-based system and several sensors for precise feedback control.« less

  4. The National Polar-orbiting Operational Environmental Satellite System

    NASA Astrophysics Data System (ADS)

    Hoffman, C. W.; Mango, S.; Schneider, S.; Duda, J.; Haas, J.; Bloom, H.

    2005-12-01

    Over the last decade, the tri-agency Integrated Program Office (IPO), comprised of the National Oceanic and Atmospheric Administration (NOAA), the Department of Defense (DoD), and the National Aeronautics and Space Administration (NASA), has been managing the development of the National Polar-orbiting Operational Environmental Satellite System (NPOESS). Once operational later this decade, NPOESS will replace NOAA's Polar-orbiting Operational Environmental Satellites (POES) and DoD's Defense Meteorological Satellite Program (DMSP) systems. The IPO, through its Acquisition and Operations contractor, Northrop Grumman, will launch NPOESS spacecraft into three orbital planes to provide a single, national system capable of satisfying both civil and national security requirements for space-based, remotely sensed environmental data. With the development of NPOESS, we are evolving the existing 'weather' satellites into integrated environmental observing systems by expanding our capabilities to observe, assess, and predict the total Earth system - ocean, atmosphere, land, and the space environment. NPOESS will transform today's short-term, space-based ocean research missions into a sustained, operational ocean remote sensing observation program. Ocean measurements comprise one-fourth of the 55 user-validated requirements for geophysical measurements that will be made by NPOESS sensors. In 1997, the IPO initiated a robust sensor risk reduction effort for early development of the critical sensor suites and algorithms necessary to support NPOESS. In 2001, preliminary design efforts were completed for the last of five critical imaging/sounding instruments for NPOESS. Ocean requirements have directly and substantially 'driven' the design of three NPOESS sensors: the Visible/Infrared Imager Radiometer Suite (VIIRS); the Conical-scanning Microwave Imager/Sounder (CMIS); and the Altimeter. With these instruments, NPOESS will deliver higher resolution (spatial and temporal) and more accurate measurements of sea surface temperature (SST), ocean surface wind vectors/stress, ocean color and suspended matter, sea ice (edge motion, age, surface temperature, thickness), oceanic heat flux, significant wave height, and sea surface topography. Infrared and microwave measurements of sea surface temperature from VIIRS and CMIS, respectively, will be combined to produce 'all weather' SST products. VIIRS imagery and altimeter measurements will be used to derive ocean circulation parameters to meet monitoring requirements for both operational and research purposes. The advanced technology visible, infrared, and microwave imagers and sounders that will fly on NPOESS will deliver higher spatial and temporal resolution oceanic, atmospheric, terrestrial, climatic, and solar-geophysical data, enabling more accurate short-term weather forecasts and severe storm warnings and improved real-time monitoring of coastal and open ocean phenomena. NPOESS will also provide continuity of critical data for monitoring, understanding, and predicting climate change and assessing the impacts of climate change on seasonal and longer time scales. The NPOESS team is well along the path to creating a high performance, polar-orbiting satellite system that will be more responsive to user requirements, deliver more capability at less cost, and provide sustained, space-based measurements as a cornerstone of an Integrated Global Observing System.

  5. Can Real-Time Data Also Be Climate Quality?

    NASA Astrophysics Data System (ADS)

    Brewer, M.; Wentz, F. J.

    2015-12-01

    GMI, AMSR-2 and WindSat herald a new era of highly accurate and timely microwave data products. Traditionally, there has been a large divide between real-time and re-analysis data products. What if these completely separate processing systems could be merged? Through advanced modeling and physically based algorithms, Remote Sensing Systems (RSS) has narrowed the gap between real-time and research-quality. Satellite microwave ocean products have proven useful for a wide array of timely Earth science applications. Through cloud SST capabilities have enormously benefited tropical cyclone forecasting and day to day fisheries management, to name a few. Oceanic wind vectors enhance operational safety of shipping and recreational boating. Atmospheric rivers are of import to many human endeavors, as are cloud cover and knowledge of precipitation events. Some activities benefit from both climate and real-time operational data used in conjunction. RSS has been consistently improving microwave Earth Science Data Records (ESDRs) for several decades, while making near real-time data publicly available for semi-operational use. These data streams have often been produced in 2 stages: near real-time, followed by research quality final files. Over the years, we have seen this time delay shrink from months or weeks to mere hours. As well, we have seen the quality of near real-time data improve to the point where the distinction starts to blur. We continue to work towards better and faster RFI filtering, adaptive algorithms and improved real-time validation statistics for earlier detection of problems. Can it be possible to produce climate quality data in real-time, and what would the advantages be? We will try to answer these questions…

  6. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Curto, Sergio; Taj-Eldin, Mohammed; Fairchild, Dillon

    Purpose: The relationship between microwave ablation system operating frequency and ablation performance is not currently well understood. The objective of this study was to comparatively assess the differences in microwave ablation at 915 MHz and 2.45 GHz. Methods: Analytical expressions for electromagnetic radiation from point sources were used to compare power deposition at the two frequencies of interest. A 3D electromagnetic-thermal bioheat transfer solver was implemented with the finite element method to characterize power deposition and thermal ablation with asymmetrical insulated dipole antennas (single-antenna and dual-antenna synchronous arrays). Simulation results were validated against experiments in ex vivo tissue. Results: Theoretical,more » computational, and experimental results indicated greater power deposition and larger diameter ablation zones when using a single insulated microwave antenna at 2.45 GHz; experimentally, 32 ± 4.1 mm and 36.3 ± 1.0 mm for 5 and 10 min, respectively, at 2.45 GHz, compared to 24 ± 1.7 mm and 29.5 ± 0.6 mm at 915 MHz, with 30 W forward power at the antenna input port. In experiments, faster heating was observed at locations 5 mm (0.91 vs 0.49 °C/s) and 10 mm (0.28 vs 0.15 °C/s) from the antenna operating at 2.45 GHz. Larger ablation zones were observed with dual-antenna arrays at 2.45 GHz; however, the differences were less pronounced than for single antennas. Conclusions: Single- and dual-antenna arrays systems operating at 2.45 GHz yield larger ablation zone due to greater power deposition in proximity to the antenna, as well as greater role of thermal conduction.« less

  7. Feasibility and systems definition study for Microwave Multi-Application Payload (MMAP)

    NASA Technical Reports Server (NTRS)

    Horton, J. B.; Allen, C. C.; Massaro, M. J.; Zemany, J. L.; Murrell, J. W.; Stanhouse, R. W.; Condon, G. P.; Stone, R. F.; Swana, J.; Afifi, M.

    1977-01-01

    Work completed on three Shuttle/Spacelab experiments is examined: the Adaptive Multibeam Phased Array Antenna (AMPA) Experiment, Electromagnetic Environment Experiment (EEE) and Millimeter Wave Communications Experiment (MWCE). Results included the definition of operating modes, sequence of operation, radii of operation about several ground stations, signal format, foot prints of typical orbits and preliminary definition of ground and user terminals. Conceptual hardware designs, Spacelab interfaces, data handling methods, experiment testing and verification studies were included. The MWCE-MOD I was defined conceptually for a steerable high gain antenna.

  8. An occultation satellite system for determining pressure levels in the atmosphere

    NASA Technical Reports Server (NTRS)

    Morrison, A. R.; Vngar, S. G.; Lusignan, B. B.

    1974-01-01

    A two-satellite microwave occultation system is described that will fix, as an absolute function of altitude, the pressure-temperature profile generated by a passive infrared sounder. The 300 mb pressure level is determined to within 24 m rms, assuming the temperture errors produced by the infrared sensor are not greater than 2 K rms. Error caused by water vapor in the radio path is corrected by climatological adjustments. A ground test of the proposed system is described. A microwave signal propagating between two mountain tops was found to be subject to periods of intense fading. Computer analysis of the raypath between the transmitting and receiving stations indicates that multipath and defocusing were responsible for this fading. It is unlikely that an operational pressure-reference-level system will be subject to the deep fades observed in the ground test, because the phenomena are associated with lower altitudes than the closest approach altitude of an occultation-system raypath.

  9. A Novel 24 GHz One-Shot, Rapid and Portable Microwave Imaging System

    NASA Technical Reports Server (NTRS)

    Ghasr, M. T.; Abou-Khousa, M. A.; Kharkovsky, S.; Zoughi, R.; Pommerenke, D.

    2008-01-01

    Development of microwave and millimeter wave imaging systems has received significant attention in the past decade. Signals at these frequencies penetrate inside of dielectric materials and have relatively small wavelengths. Thus. imaging systems at these frequencies can produce images of the dielectric and geometrical distributions of objects. Although there are many different approaches for imaging at these frequencies. they each have their respective advantageous and limiting features (hardware. reconstruction algorithms). One method involves electronically scanning a given spatial domain while recording the coherent scattered field distribution from an object. Consequently. different reconstruction or imaging techniques may be used to produce an image (dielectric distribution and geometrical features) of the object. The ability to perform this accuratev and fast can lead to the development of a rapid imaging system that can be used in the same manner as a video camera. This paper describes the design of such a system. operating at 2-1 GHz. using modulated scatterer technique applied to 30 resonant slots in a prescribed measurement domain.

  10. Wireless microwave acoustic sensor system for condition monitoring in power plant environments

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pereira da Cunha, Mauricio

    This project successfully demonstrated novel wireless microwave acoustic temperature and pressure sensors that can be embedded into equipment and structures located in fossil fuel power plant environments to monitor the condition of components such as steam headers, re-heat lines, water walls, burner tubes, and power turbines. The wireless microwave acoustic sensor technology researched and developed through a collaborative partnership between the University of Maine and Environetix Technologies Corporation can provide a revolutionary impact in the power industry since it is anticipated that the wireless sensors will deliver reliable real-time sensing information in harsh power plant conditions that involve temperatures upmore » to 1100oC and pressures up to 750 psi. The work involved the research and development of novel high temperature harsh environment thin film electrodes, piezoelectric smart microwave acoustic sensing elements, sensor encapsulation materials that were engineered to function over long times up to 1100oC, and a radio-frequency (RF) wireless interrogation electronics unit that are located both inside and outside the high temperature harsh environment. The UMaine / Environetix team have interacted with diverse power plant facilities, and identified as a testbed a local power generation facility, which burns municipal solid waste (MSW), the Penobscot Energy Recovery Company (PERC), Orrington, Maine. In this facility Environetix / UMaine successfully implemented and tested multiple wireless temperature sensor systems within the harsh-environment of the economizer chamber and at the boiler tubes, transferring the developed technology to the power plant environment to perform real-time sensor monitoring experiments under typical operating conditions, as initially targeted in the project. The wireless microwave acoustic sensor technology developed under this project for power plant applications offers several significant advantages including wireless, battery-free, maintenance-free operation, and operation in the harsh-environment of power plant equipment up to about 1100 oC. Their small size and configuration allows flexible sensor placement and embedding of multiple sensor arrays into a variety of components within power systems that can be interrogated by a single RF unit. The outcomes of this project and technological transfer respond to a DOE analysis need, which indicated that if one percent efficiency in coal burning is achieved, an additional 2 gigawatt-hours of energy per year is generated and the resulting coal cost savings is $300 million per year, also accompanied by a reduction of more than 10 million metric tons of CO2 per year emitted into the atmosphere. Therefore, the developed harsh environment wireless microwave acoustic sensor technology and the technological transfer achievements that resulted from the execution of this project have significant impact for power plant equipment and systems and are well-positioned to contribute to the cost reduction in power generation, the increase in power plant efficiency, the improvement in maintenance, the reduction in down-time, and the decrease in environmental pollution. The technology is also in a position to be extended to address other types of high-temperature harsh-environment power plant and energy sector sensing needs.« less

  11. ICC '86; Proceedings of the International Conference on Communications, Toronto, Canada, June 22-25, 1986, Conference Record. Volumes 1, 2, & 3

    NASA Astrophysics Data System (ADS)

    Papers are presented on ISDN, mobile radio systems and techniques for digital connectivity, centralized and distributed algorithms in computer networks, communications networks, quality assurance and impact on cost, adaptive filters in communications, the spread spectrum, signal processing, video communication techniques, and digital satellite services. Topics discussed include performance evaluation issues for integrated protocols, packet network operations, the computer network theory and multiple-access, microwave single sideband systems, switching architectures, fiber optic systems, wireless local communications, modulation, coding, and synchronization, remote switching, software quality, transmission, and expert systems in network operations. Consideration is given to wide area networks, image and speech processing, office communications application protocols, multimedia systems, customer-controlled network operations, digital radio systems, channel modeling and signal processing in digital communications, earth station/on-board modems, computer communications system performance evaluation, source encoding, compression, and quantization, and adaptive communications systems.

  12. Microwave SQUID multiplexer demonstration for cosmic microwave background imagers

    NASA Astrophysics Data System (ADS)

    Dober, B.; Becker, D. T.; Bennett, D. A.; Bryan, S. A.; Duff, S. M.; Gard, J. D.; Hays-Wehle, J. P.; Hilton, G. C.; Hubmayr, J.; Mates, J. A. B.; Reintsema, C. D.; Vale, L. R.; Ullom, J. N.

    2017-12-01

    Key performance characteristics are demonstrated for the microwave superconducting quantum interference device (SQUID) multiplexer (μmux) coupled to transition edge sensor (TES) bolometers that have been optimized for cosmic microwave background (CMB) observations. In a 64-channel demonstration, we show that the μmux produces a white, input referred current noise level of 29 pA/ √{H z } at a microwave probe tone power of -77 dB, which is well below the expected fundamental detector and photon noise sources for a ground-based CMB-optimized bolometer. Operated with negligible photon loading, we measure 98 pA/ √{H z } in the TES-coupled channels biased at 65% of the sensor normal resistance. This noise level is consistent with that predicted from bolometer thermal fluctuation (i.e., phonon) noise. Furthermore, the power spectral density is white over a range of frequencies down to ˜100 mHz, which enables CMB mapping on large angular scales that constrain the physics of inflation. Additionally, we report cross-talk measurements that indicate a level below 0.3%, which is less than the level of cross-talk from multiplexed readout systems in deployed CMB imagers. These measurements demonstrate the μmux as a viable readout technique for future CMB imaging instruments.

  13. Fault tolerance analysis and applications to microwave modules and MMIC's

    NASA Astrophysics Data System (ADS)

    Boggan, Garry H.

    A project whose objective was to provide an overview of built-in-test (BIT) considerations applicable to microwave systems, modules, and MMICs (monolithic microwave integrated circuits) is discussed. Available analytical techniques and software for assessing system failure characteristics were researched, and the resulting investigation provides a review of two techniques which have applicability to microwave systems design. A system-level approach to fault tolerance and redundancy management is presented in its relationship to the subsystem/element design. An overview of the microwave BIT focus from the Air Force Integrated Diagnostics program is presented. The technical reports prepared by the GIMADS team were reviewed for applicability to microwave modules and components. A review of MIMIC (millimeter and microwave integrated circuit) program activities relative to BIT/BITE is given.

  14. Feasibility Study of Cargo Airship Transportation Systems Powered by New Green Energy Technologies

    NASA Technical Reports Server (NTRS)

    Skuza, Jonathan R.; Park, Yeonjoon; Kim, Hyun Jung; Seaman, Shane T.; King, Glen C.; Choi, Sang H.; Song, Kyo D.; Yoon, Hargsoon; Lee, Kunik

    2014-01-01

    The development of transportation systems that use new and sustainable energy technologies is of utmost importance due to the possible future shortfalls that current transportation modes will encounter because of increased volume and costs. The introduction and further research and development of new transportation and energy systems by materials researchers at the National Aeronautics and Space Administration (NASA) Langley Research Center (LaRC) and the Department of Transportation are discussed in this Technical Memorandum. In this preliminary study, airship concepts were assessed for cargo transportation using various green energy technologies capable of 24-hour operation (i.e., night and day). Two prototype airships were successfully constructed and tested at LaRC to demonstrate their feasibility: one with commercially available solar cells for operation during the daytime and one with microwave rectennas (i.e., rectifying antennas) developed in-house for night-time operation. The test results indicate the feasibility of a cargo transportation airship powered by new green energy sources and wireless power technology. Future applications will exploit new green energy sources that use materials and devices recently developed or are in the process of being developed at LaRC. These include quantum well SiGe solar cells; low, mid-, and high temperature thermoelectric modules; and wireless microwave and optical rectenna devices. This study examines the need and development of new energy sources for transportation, including the current status of research, materials, and potential applications.

  15. Abatement of Perfluorinated Compounds Using Cylindrical Microwave Plasma Source at Low Pressure

    NASA Astrophysics Data System (ADS)

    Kim, Seong Bong; Park, S.; Park, Y.; Youn, S.; Yoo, S. J.

    2016-10-01

    Microwave plasma source with a cylindrical cavity has been proposed to abate the perfluorinated compounds (PFCs). This plasma source was designed to generate microwave plasma with the cylindrical shape and to be easily installed in existing exhaust line. The microwave frequency is 2.45 GHz and the operating pressure range is 0.1 Torr to 0.3 Torr. The plasma characteristic of the cylindrical microwave plasma source was measured using the optical spectrometer, and tunable diode laser absorption spectroscopy (TDLAS). The destruction and removal efficiency (DRE) of CF4 and CHF3 were measured by a quadrupole mass spectroscopy (QMS) with the various operation conditions. The effect of the addition of the oxygen gas were tested and also the correlation between the plasma parameters and the DRE are presented in this study. This work was supported by R&D Program of ``Plasma Advanced Technology for Agriculture and Food (Plasma Farming)'' through the National Fusion Research Institute of Korea (NFRI) funded by the Government funds.

  16. Optically Transparent Microwave Polarizer Based On Quasi-Metallic Graphene.

    PubMed

    Grande, Marco; Bianco, Giuseppe Valerio; Vincenti, Maria Antonietta; de Ceglia, Domenico; Capezzuto, Pio; Scalora, Michael; D'Orazio, Antonella; Bruno, Giovanni

    2015-11-25

    In this paper, we report on the engineering and the realization of optically transparent graphene-based microwave devices using Chemical Vapour Deposition (CVD) graphene whose sheet resistance may be tailored down to values below 30 Ω/sq. In particular, we show that the process was successfully used to realize and characterize a simple, optically transparent graphene-based wire-grid polarizer at microwave frequencies (X band). The availability of graphene operating in a quasi-metallic region may allow the integration of graphene layers in several microwave components, thus leading to the realization of fully transparent (and flexible) microwave devices.

  17. Optically Transparent Microwave Polarizer Based On Quasi-Metallic Graphene

    PubMed Central

    Grande, Marco; Bianco, Giuseppe Valerio; Vincenti, Maria Antonietta; de Ceglia, Domenico; Capezzuto, Pio; Scalora, Michael; D’Orazio, Antonella; Bruno, Giovanni

    2015-01-01

    In this paper, we report on the engineering and the realization of optically transparent graphene-based microwave devices using Chemical Vapour Deposition (CVD) graphene whose sheet resistance may be tailored down to values below 30 Ω/sq. In particular, we show that the process was successfully used to realize and characterize a simple, optically transparent graphene-based wire-grid polarizer at microwave frequencies (X band). The availability of graphene operating in a quasi-metallic region may allow the integration of graphene layers in several microwave components, thus leading to the realization of fully transparent (and flexible) microwave devices. PMID:26603112

  18. Microwave. Instructor's Edition. Louisiana Vocational-Technical Education.

    ERIC Educational Resources Information Center

    Blanton, William

    This publication contains related study assignments and job sheets for a course in microwave technology. The course is organized into 12 units covering the following topics: introduction to microwave, microwave systems, microwave oscillators, microwave modulators, microwave transmission lines, transmission lines, detectors and mixers, microwave…

  19. Recent developments in high efficient freeze-drying of fruits and vegetables assisted by microwave: A review.

    PubMed

    Fan, Kai; Zhang, Min; Mujumdar, Arun S

    2018-01-10

    Microwave heating has been applied in the drying of high-value solids as it affords a number of advantages, including shorter drying time and better product quality. Freeze-drying at cryogenic temperature and extremely low pressure provides the advantage of high product quality, but at very high capital and operating costs due partly to very long drying time. Freeze-drying coupled with a microwave heat source speeds up the drying rate and yields good quality products provided the operating unit is designed and operated to achieve the potential for an absence of hot spot developments. This review is a survey of recent developments in the modeling and experimental results on microwave-assisted freeze-drying (MFD) over the past decade. Owing to the high costs involved, so far all applications are limited to small-scale operations for the drying of high-value foods such as fruits and vegetables. In order to promote industrial-scale applications for a broader range of products further research and development efforts are needed to offset the current limitations of the process. The needs and opportunities for future research and developments are outlined.

  20. Tissue shrinkage in microwave ablation of liver: an ex vivo predictive model.

    PubMed

    Amabile, Claudio; Farina, Laura; Lopresto, Vanni; Pinto, Rosanna; Cassarino, Simone; Tosoratti, Nevio; Goldberg, S Nahum; Cavagnaro, Marta

    2017-02-01

    The aim of this study was to develop a predictive model of the shrinkage of liver tissues in microwave ablation. Thirty-seven cuboid specimens of ex vivo bovine liver of size ranging from 2 cm to 8 cm were heated exploiting different techniques: 1) using a microwave oven (2.45 GHz) operated at 420 W, 500 W and 700 W for 8 to 20 min, achieving complete carbonisation of the specimens, 2) using a radiofrequency ablation apparatus (450 kHz) operated at 70 W for a time ranging from 6 to 7.5 min obtaining white coagulation of the specimens, and 3) using a microwave (2.45 GHz) ablation apparatus operated at 60 W for 10 min. Measurements of specimen dimensions, carbonised and coagulated regions were performed using a ruler with an accuracy of 1 mm. Based on the results of the first two experiments a predictive model for the contraction of liver tissue from microwave ablation was constructed and compared to the result of the third experiment. For carbonised tissue, a linear contraction of 31 ± 6% was obtained independently of the heating source, power and operation time. Radiofrequency experiments determined that the average percentage linear contraction of white coagulated tissue was 12 ± 5%. The average accuracy of our model was determined to be 3 mm (5%). The proposed model allows the prediction of the shrinkage of liver tissues upon microwave ablation given the extension of the carbonised and coagulated zones. This may be useful in helping to predict whether sufficient tissue volume is ablated in clinical practice.

  1. Solar Electricity

    NASA Technical Reports Server (NTRS)

    1988-01-01

    ARCO Solar manufactures PV Systems tailored to a broad variety of applications. PV arrays are routinely used at remote communications installations to operate large microwave repeaters, TV and radio repeaters rural telephone, and small telemetry systems that monitor environmental conditions. Also used to power agricultural water pumping systems, to provide electricity for isolated villages and medical clinics, for corrosion protection for pipelines and bridges, to power railroad signals, air/sea navigational aids, and for many types of military systems. ARCO is now moving into large scale generation for utilities.

  2. Continuous country-wide rainfall observation using a large network of commercial microwave links: Challenges, solutions and applications

    NASA Astrophysics Data System (ADS)

    Chwala, Christian; Boose, Yvonne; Smiatek, Gerhard; Kunstmann, Harald

    2017-04-01

    Commercial microwave link (CML) networks have proven to be a valuable source for rainfall information over the last years. However, up to now, analysis of CML data was always limited to certain snapshots of data for historic periods due to limited data access. With the real-time availability of CML data in Germany (Chwala et al. 2016) this situation has improved significantly. We are continuously acquiring and processing data from 3000 CMLs in Germany in near real-time with one minute temporal resolution. Currently the data acquisition system is extended to 10000 CMLs so that the whole of Germany is covered and a continuous country-wide rainfall product can be provided. In this contribution we will elaborate on the challenges and solutions regarding data acquisition, data management and robust processing. We will present the details of our data acquisition system that we run operationally at the network of the CML operator Ericsson Germany to solve the problem of limited data availability. Furthermore we will explain the implementation of our data base, its web-frontend for easy data access and present our data processing algorithms. Finally we will showcase an application of our data in hydrological modeling and its potential usage to improve radar QPE. Bibliography: Chwala, C., Keis, F., and Kunstmann, H.: Real-time data acquisition of commercial microwave link networks for hydrometeorological applications, Atmos. Meas. Tech., 9, 991-999, doi:10.5194/amt-9-991-2016, 2016

  3. T/R Multi-Chip MMIC Modules for 150 GHz

    NASA Technical Reports Server (NTRS)

    Samoska, Lorene A.; Pukala, David M.; Soria, Mary M.; Sadowy, Gregory A.

    2009-01-01

    Modules containing multiple monolithic microwave integrated-circuit (MMIC) chips have been built as prototypes of transmitting/receiving (T/R) modules for millimeter-wavelength radar systems, including phased-array radar systems to be used for diverse purposes that could include guidance and avoidance of hazards for landing spacecraft, imaging systems for detecting hidden weapons, and hazard-avoidance systems for automobiles. Whereas prior landing radar systems have operated at frequencies around 35 GHz, the integrated circuits in this module operate in a frequency band centered at about 150 GHz. The higher frequency (and, hence, shorter wavelength), is expected to make it possible to obtain finer spatial resolution while also using smaller antennas and thereby reducing the sizes and masses of the affected systems.

  4. Systems and methods for remote long standoff biometric identification using microwave cardiac signals

    NASA Technical Reports Server (NTRS)

    McGrath, William R. (Inventor); Talukder, Ashit (Inventor)

    2012-01-01

    Systems and methods for remote, long standoff biometric identification using microwave cardiac signals are provided. In one embodiment, the invention relates to a method for remote biometric identification using microwave cardiac signals, the method including generating and directing first microwave energy in a direction of a person, receiving microwave energy reflected from the person, the reflected microwave energy indicative of cardiac characteristics of the person, segmenting a signal indicative of the reflected microwave energy into a waveform including a plurality of heart beats, identifying patterns in the microwave heart beats waveform, and identifying the person based on the identified patterns and a stored microwave heart beats waveform.

  5. Performance evaluation of a high-pressure microwave-assisted flow digestion system for juice and milk sample preparation.

    PubMed

    Marques, Thiago L; Wiltsche, Helmar; Nóbrega, Joaquim A; Winkler, Monika; Knapp, Günter

    2017-07-01

    Acid digestion is usually required for metal determination in food samples. However, this step is usually performed in batch mode which is time consuming, labor intensive, and may lead to sample contamination. Flow digestion can overcome these limitations. In this work, the performance of a high-pressure microwave-assisted flow digestion system with a large volume reactor was evaluated for liquid samples high in sugar and fat (fruit juice and milk). The digestions were carried out in a coiled perfluoroalkoxy (PFA) tube reactor (13.5 mL) installed inside an autoclave pressurized with 40 bar nitrogen. The system was operated at 500 W microwave power and 5.0 mL min -1 carrier flow rate. Digestion conditions were optimized with phenylalanine, as this substance is known to be difficult to digest completely. The combinations of HCl or H 2 O 2 with HNO 3 increased the digestion efficiency of phenylalanine, and the residual carbon content (RCC) was around 50% when 6.0% V/V HCl or H 2 O 2 was used in combination with 32% V/V HNO 3 . Juice samples were digested with 3.7 mol L -1 HNO 3 and 0.3 mol L -1 HCl, and the RCC was 16 and 29% for apple and mango juices, respectively. Concentrated HNO 3 (10.5 mol L -1 ) was successfully applied for digesting milk samples, and the RCCs were 23 and 25% for partially skimmed and whole milk, respectively. Accuracy and precision of the flow digestion procedure were compared with reference digestions using batch mode closed vessel microwave-assisted digestion and no statistically significant differences were encountered at the 95% confidence level. Graphical abstract Application of a high-pressure microwave-assisted flow digestion system for fruit juice and milk sample preparation.

  6. Millimeter-Wave GaN MMIC Integration with Additive Manufacturing

    NASA Astrophysics Data System (ADS)

    Coffey, Michael

    This thesis addresses the analysis, design, integration and test of microwave and millimeter-wave monolithic microwave integrated circuits (MMIC or MMICs). Recent and ongoing progress in semiconductor device fabrication and MMIC processing technology has pushed the upper limit in MMIC frequencies from millimeter-wave (30-300 GHz) to terahertz (300-3000 GHz). MMIC components operating at these frequencies will be used to improve the sensitivity and performance of radiometers, receivers for communication systems, passive remote sensing systems, transceivers for radar instruments and radio astronomy systems. However, a serious hurdle in the utilization of these MMIC components, and a main topic presented in this thesis, is the development and reliable fabrication of practical packaging techniques. The focus of this thesis is the investigation of first, the design and analysis of microwave and millimeter-wave GaN MMICs and second, the integration of those MMICs into usable waveguide components. The analysis, design and testing of various X-band (8-12 GHz) thru H-band (170-260 GHz) GaN MMIC power amplifier (PA or PAs), including a V-band (40-75 GHz) voltage controlled oscillator, is the majority of this work. Several PA designs utilizing high-efficiency techniques are analyzed, designed and tested. These examples include a 2nd harmonic injection amplifier, a Class-E amplifier fabricated with a GaN-on-SiC 300 GHz fT process, and an example of the applicability of supply-modulation with a Doherty power amplifier, all operating at 10 GHz. Two H-band GaN MMIC PAs are designed, one with integrated CPW-to-waveguide transitions for integration. The analysis of PA stability is especially important for wideband, high- fT devices and a new way of analyzing stability is explored and experimentally validated. Last, the challenges of integrating MMICs operating at millimeter-wave frequencies are discussed and assemblies using additive and traditional manufacturing are demonstrated.

  7. A space-to-space microwave wireless power transmission experiential mission using small satellites

    NASA Astrophysics Data System (ADS)

    Bergsrud, Corey; Straub, Jeremy

    2014-10-01

    A space solar microwave power transfer system (SSMPTS) may represent a paradigm shift to how space missions in Earth orbit are designed. A SSMPTS may allow a smaller receiving surface to be utilized on the receiving craft due to the higher-density power transfer (compared to direct solar flux) from a SSMPTS supplier craft; the receiving system is also more efficient and requires less mass and volume. The SSMPTS approach also increases mission lifetime, as antenna systems do not degrade nearly as quickly as solar panels. The SSMPTS supplier craft (instead) can be replaced as its solar panels degrade, a mechanism for replacing panels can be utilized or the SSMPTS can be maneuvered closer to a subset of consumer spacecraft. SSMPTS can also be utilized to supply power to spacecraft in eclipse and to supply variable amounts of power, based on current mission needs, to power the craft or augment other power systems. A minimal level of orbital demonstrations of SSP technologies have occurred. A mission is planned to demonstrate and characterize the efficacy of space-to-space microwave wireless power transfer. This paper presents an overview of this prospective mission. It then discusses the spacecraft system (comprised of an ESPA/SmallSat-class spacecraft and a 1-U CubeSat), launch options, mission operations and the process of evaluating mission outcomes.

  8. 77 FR 69586 - Petition for Reconsideration of Action in Rulemaking Proceeding

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-11-20

    ... to Facilitate the Use of Microwave for Wireless Backhaul and Other Uses and to Provide Additional Flexibility to Broadcast Auxiliary Services and Operational Fixed Microwave Licenses, Petition for...

  9. New design and operating techniques and requirements for improved aircraft terminal area operations

    NASA Technical Reports Server (NTRS)

    Reeder, J. P.; Taylor, R. T.; Walsh, T. M.

    1974-01-01

    Current aircraft operating problems that must be alleviated for future high-density terminal areas are safety, dependence on weather, congestion, energy conservation, noise, and atmospheric pollution. The Microwave Landing System (MLS) under development by FAA provides increased capabilities over the current ILS. The development of the airborne system's capability to take maximum advantage of the MLS capabilities in order to solve terminal area problems are discussed. A major limiting factor in longitudinal spacing for capacity increase is the trailing vortex hazard. Promising methods for causing early dissipation of the vortices were explored. Flight procedures for avoiding the hazard were investigated. Terminal configured vehicles and their flight test development are discussed.

  10. The Telecommunications and Data Acquisition Report

    NASA Technical Reports Server (NTRS)

    Posner, Edward C. (Editor)

    1992-01-01

    Archival reports on developments in programs managed by the Jet Propulsion Laboratory's (JPL's) Office of Telecommunications and Data Acquisition (TDA) are published in the TDA Progress Report. In the search for extraterrestrial intelligence (SETI), the TDA Progress Report reports on implementation and operations for searching the microwave spectrum. In solar system radar, it reports on the uses of the Goldstone Solar System Radar for scientific exploration of the planets, their rings and satellites, asteroids, and comets. In radio astronomy, the areas of support include spectroscopy, very long baseline interferometry, and astrometry. These three programs are performed for NASA's Office of Space Science and Applications (OSSA), with the Office of Space Operations funding DSN operational support.

  11. Solar power satellite system definition study, volume 4, phase 2

    NASA Technical Reports Server (NTRS)

    1979-01-01

    Results of an overall evaluation of the solar power satellite concept are reported. Specific topics covered include: solid state sandwich configuration; parametric development of reliability design; power distribution system for solid state solar power satellites; multibeam transmission; GEO base system configuration; suppression of the heavy lift launch vehicle trajectory; conceptual design of an offshore space center facility; solar power satellite development and operations scenario; and microwave power transmission technology, advancement, development, and facility requirements.

  12. Three-dimensional laser microvision.

    PubMed

    Shimotahira, H; Iizuka, K; Chu, S C; Wah, C; Costen, F; Yoshikuni, Y

    2001-04-10

    A three-dimensional (3-D) optical imaging system offering high resolution in all three dimensions, requiring minimum manipulation and capable of real-time operation, is presented. The system derives its capabilities from use of the superstructure grating laser source in the implementation of a laser step frequency radar for depth information acquisition. A synthetic aperture radar technique was also used to further enhance its lateral resolution as well as extend the depth of focus. High-speed operation was made possible by a dual computer system consisting of a host and a remote microcomputer supported by a dual-channel Small Computer System Interface parallel data transfer system. The system is capable of operating near real time. The 3-D display of a tunneling diode, a microwave integrated circuit, and a see-through image taken by the system operating near real time are included. The depth resolution is 40 mum; lateral resolution with a synthetic aperture approach is a fraction of a micrometer and that without it is approximately 10 mum.

  13. NASA SPoRT JPSS PG Activities in Alaska

    NASA Technical Reports Server (NTRS)

    Berndt, Emily; Molthan, Andrew; Fuell, Kevin; McGrath, Kevin; Smith, Matt; LaFontaine, Frank; Leroy, Anita; White, Kris

    2018-01-01

    SPoRT (NASA's Short-term Prediction Research and Transition Center) has collaboratively worked with Alaska WFOs (Weather Forecast Offices) to introduce RGB (Red/Green/Blue false color image) imagery to prepare for NOAA-20 (National Oceanic and Atmospheric Administration, JPSS (Joint Polar Satellite System) series-20 satellite) VIIRS (Visible Infrared Imaging Radiometer Suite) and improve forecasting aviation-related hazards. Last R2O/O2R (Research-to-Operations/Operations-to-Research) steps include incorporating NOAA-20 VIIRS in RGB suite and fully transitioning client-side RGB processing to GINA (Geographic Information Network of Alaska) and Alaska Region. Alaska Region WFOs have been part of the successful R2O/O2R story to assess the use of NESDIS (National Environmental Satellite, Data, and Information Service) Snowfall Rate product in operations. SPoRT introduced passive microwave rain rate and IMERG (Integrated Multi-satellitE Retrievals for GPM (Global Precipitation Measurement)) (IMERG) to Alaska WFOs for use in radar-void areas and assessing flooding potential. SPoRT has been part of the multi-organization collaborative effort to introduce Gridded NUCAPS (NOAA Unique CrIS/ATMS (Crosstrack Infrared Sounder/Advanced Technology Microwave Sounder) Processing System) to the Anchorage CWSU (Center Weather Service Unit) to assess Cold Air Aloft events, [and as part of NOAA's PG (Product Generation) effort].

  14. Operations and Data Processing for the Planck Low-Frequency Instrument: Design Strategies and Practical Experience

    NASA Astrophysics Data System (ADS)

    Pasian, F.; Zacchei, A.; Frailis, M.; Galeotta, S.; Maris, M.; Tavagnacco, D.; Vuerli, C.; Tuerler, M.; Rohlfs, R.; Morisset, N.; Meharga, M.; Ensslin, T. A.; Knoche, J.; Gregorio, A.; Maino, D.; Mennella, A.; Tomasi, M.; Cuttaia, F.; Morgante, G.; Terenzi, L.; Maggio, G.; Gasparo, F.; Franceschi, E.

    2012-09-01

    Planck is an ESA mission launched in May 2009, which is mapping the microwave sky in nine frequencies and accurately measuring the anisotropies of the Cosmic Microwave Background (CMB) with its complement of two instruments (HFI and LFI), covering respectively the far infrared and the radio domains. The operations and data processing of the Planck instruments are carried out by Data Processing Centers, one for each instrument. The DPCs need to support both a day-by-day quasi-real-time calibration workflow and high-throughput pipelines for a high-volume data flow. The LFI DPC has been designed to be a centralized facility built by geographically distributed institutions, in a funding scenario based on multiple funding agencies and, in most cases, on a fixed budget in the presence of launch delays. A strategy for managing effectively the distributed and collaborative software development and maintenance has been developed, based on the use of open source and off-the-shelf software, and on the reuse of systems developed ad-hoc for other missions. Product and quality assurance has been supported throughout development, integration and testing. The effectiveness of the design choices has been proven by the readiness of the system at launch time and by the extremely smooth operations phase.

  15. Review on Photonic Generation of Chirp Arbitrary Microwave Waveforms for Remote Sensing Application

    NASA Astrophysics Data System (ADS)

    Raghuwanshi, Sanjeev Kumar; Srivastav, Akash; Athokpam, Bidhanshel Singh

    2017-12-01

    A novel technique to generate an arbitrary chirped waveform by harnessing features of lithium niobate (LiNb O_3) Mach-Zehnder modulator is proposed and demonstrated. The most important application of chirped microwave waveform is that, it improves the range resolution of radar. Microwave photonics system provides high bandwidth capabilities of fiber-optic systems and also contains the ability to provide interconnect transmission properties, which are virtually independent of length. The low-loss wide bandwidth capability of optoelectronic systems makes them attractive for the transmission and processing of microwave signals, while the development of high-capacity optical communication systems has required the use of microwave techniques in optical transmitters and receivers. These two strands have led to the development of the research area of microwave photonics. So, it should be consider that microwave photonics as the field that studies the interaction between microwave and optical waves for applications such as communications, radars, sensors and instrumentations. In this paper, we have thoroughly reviewed the arbitrary chirped microwave generation techniques by using photonics technology.

  16. Measurements of beam current density and proton fraction of a permanent-magnet microwave ion source.

    PubMed

    Waldmann, Ole; Ludewigt, Bernhard

    2011-11-01

    A permanent-magnet microwave ion source has been built for use in a high-yield, compact neutron generator. The source has been designed to produce up to 100 mA of deuterium and tritium ions. The electron-cyclotron resonance condition is met at a microwave frequency of 2.45 GHz and a magnetic field strength of 87.5 mT. The source operates at a low hydrogen gas pressure of about 0.15 Pa. Hydrogen beams with a current density of 40 mA/cm(2) have been extracted at a microwave power of 450 W. The dependence of the extracted proton beam fraction on wall materials and operating parameters was measured and found to vary from 45% for steel to 95% for boron nitride as a wall liner material. © 2011 American Institute of Physics

  17. Apparatus and method for microwave processing of materials

    DOEpatents

    Johnson, Arvid C.; Lauf, Robert J.; Bible, Don W.; Markunas, Robert J.

    1996-01-01

    A variable frequency microwave heating apparatus (10) designed to allow modulation of the frequency of the microwaves introduced into a furnace cavity (34) for testing or other selected applications. The variable frequency heating apparatus (10) is used in the method of the present invention to monitor the resonant processing frequency within the furnace cavity (34) depending upon the material, including the state thereof, from which the workpiece (36) is fabricated. The variable frequency microwave heating apparatus (10) includes a microwave signal generator (12) and a high-power microwave amplifier (20) or a microwave voltage-controlled oscillator (14). A power supply (22) is provided for operation of the high-power microwave oscillator (14) or microwave amplifier (20). A directional coupler (24) is provided for detecting the direction and amplitude of signals incident upon and reflected from the microwave cavity (34). A first power meter (30) is provided for measuring the power delivered to the microwave furnace (32). A second power meter (26) detects the magnitude of reflected power. Reflected power is dissipated in the reflected power load (28).

  18. Future superconductivity applications in space - A review

    NASA Astrophysics Data System (ADS)

    Krishen, Kumar; Ignatiev, Alex

    High temperature superconductor (HISC) materials and devices can provide immediate applications for many space missions. The in-space thermal environment provides an opportunity to develop, test, and apply this technology to enhance performance and reliability for many applications of crucial importance to NASA. Specifically, the technology development areas include: (1) high current power transmission, (2) microwave components, devices, and antennas, (3) microwave, optical, and infrared sensors, (4) signal processors, (5) submillimeter wave components and systems, (6) ultra stable space clocks, (7) electromagnetic launch systems, and (8) accelerometers and position sensors for flight operations. HTSC is expected to impact NASA's Lunar Bases, Mars exploration, Mission to Earth, and Planetary exploration programs providing enabling and cost-effect technology. A review of the space applications of the HTSC technology is presented. Problem areas in technology development needing special attention are identified.

  19. Metasurface with Reconfigurable Reflection Phase for High-Power Microwave Applications (Briefing Charts)

    DTIC Science & Technology

    2014-06-25

    Metasurfaces with Reconfigurable Reflection Phase for High-Power Microwave Applications Kenneth L. Morgan, Clinton P. Scarborough, Micah D...TITLE AND SUBTITLE Metasurface with Reconfigurable Reflection Phase for High- Power Microwave Applications 5a. CONTRACT NUMBER 5b...Examples that demonstrate theoretical methods for extending the operating power levels of metasurface reflectarrays have been given •The proposed

  20. Microwave heating apparatus and method

    DOEpatents

    Johnson, Andrew J.; Petersen, Robert D.; Swanson, Stephen D.

    1990-01-01

    An apparatus is provided for heating and melting materials using microwave energy, and for permitting them to solidify. The apparatus includes a microwave energy source, a resonant cavity having an opening in its floor, a microwave energy choke encompassing the opening in the floor of the cavity, a metal container to hold the materials to be heated and melted, a turntable, and a lift-table. During operation, the combined action of the turntable and the lift-table position the metal container so that the top of the container is level with the floor of the cavity, is in substantial registration with the floor opening, and is encompassed by the microwave energy choke; thus, during operation, the interior of the container defines part of the resonant cavity. Additionally, a screw feeder, extending into the cavity and sheltered from microwave energy by a conveyor choke, may convey the materials to be heated to the container. Also, preferably, the floor of the resonant cavity may include perforatins, so that the offgases and dust generated in the apparatus may be removed from the resonant cavity by pulling outside air between the container choke and the exterior wall of the container into the resonant cavity and out from the cavity through the perforations.

  1. Device for timing and power level setting for microwave applications

    NASA Astrophysics Data System (ADS)

    Ursu, M.-P.; Buidoş, T.

    2016-08-01

    Nowadays, the microwaves are widely used for various technological processes. The microwaves are emitted by magnetrons, which have strict requirements concerning power supplies for anode and filament cathodes, intensity of magnetic field, cooling and electromagnetic shielding. The magnetrons do not tolerate any alteration of their required voltages, currents and magnetic fields, which means that their output microwave power is fixed, so the only way to alter the power level is to use time-division, by turning the magnetron on and off by repetitive time patterns. In order to attain accurate and reproducible results, as well as correct and safe operation of the microwave device, all these requirements must be fulfilled. Safe, correct and reproducible operation of the microwave appliance can be achieved by means of a specially built electronic device, which ensures accurate and reproducible exposure times, interlocking of the commands and automatic switch off when abnormal operating conditions occur. This driving device, designed and realized during the completion of Mr.Ursu's doctoral thesis, consists of a quartz time-base, several programmable frequency and duration dividers, LED displays, sensors and interlocking gates. The active and passive electronic components are placed on custom-made PCB's, designed and made by means of computer-aided applications and machines. The driving commands of the electronic device are delivered to the magnetron power supplies by means of optic zero-passing relays. The inputs of the electronic driving device can sense the status of the microwave appliance. The user is able to enter the total exposure time, the division factor that sets the output power level and, as a novelty, the clock frequency of the time divider.

  2. Evaluation of a microwave high-power reception-conversion array for wireless power transmission

    NASA Technical Reports Server (NTRS)

    Dickinson, R. M.

    1975-01-01

    Initial performance tests of a 24-sq m area array of rectenna elements are presented. The array is used as the receiving portion of a wireless microwave power transmission engineering verification test system. The transmitting antenna was located at a range of 1.54 km. Output dc voltage and power, input RF power, efficiency, and operating temperatures were obtained for a variety of dc load and RF incident power levels at 2388 MHz. Incident peak RF intensities of up to 170 mW/sq cm yielded up to 30.4 kW of dc output power. The highest derived collection-conversion efficiency of the array was greater than 80 percent.

  3. Improved apparatus for trapped radical and other studies down to 1.5 K. [microwave cavity cryogenic equipment for electron paramagnetic resonance experiments

    NASA Technical Reports Server (NTRS)

    Woollam, J. A.; Sugawara, K.

    1978-01-01

    A Dewar system and associated equipment for electron paramagnetic resonance (EPR) studies of trapped free radicals and other optical or irradiation experiments are described. The apparatus is capable of reaching a temperature of 1.5 K and transporting on the order of 20 W per K temperature gradient; its principal advantages are for use at pumped cryogen temperatures and for experiments with large heat inputs. Two versions of the apparatus are discussed, one of which is designed for EPR in a rectangular cavity operating in a TE(102) mode and another in which EPR is performed in a cylindrical microwave cavity.

  4. DARKNESS: A Microwave Kinetic Inductance Detector Integral Field Spectrograph for High-contrast Astronomy

    NASA Astrophysics Data System (ADS)

    Meeker, Seth R.; Mazin, Benjamin A.; Walter, Alex B.; Strader, Paschal; Fruitwala, Neelay; Bockstiegel, Clint; Szypryt, Paul; Ulbricht, Gerhard; Coiffard, Grégoire; Bumble, Bruce; Cancelo, Gustavo; Zmuda, Ted; Treptow, Ken; Wilcer, Neal; Collura, Giulia; Dodkins, Rupert; Lipartito, Isabel; Zobrist, Nicholas; Bottom, Michael; Shelton, J. Chris; Mawet, Dimitri; van Eyken, Julian C.; Vasisht, Gautam; Serabyn, Eugene

    2018-06-01

    We present DARKNESS (the DARK-speckle Near-infrared Energy-resolving Superconducting Spectrophotometer), the first of several planned integral field spectrographs to use optical/near-infrared Microwave Kinetic Inductance Detectors (MKIDs) for high-contrast imaging. The photon counting and simultaneous low-resolution spectroscopy provided by MKIDs will enable real-time speckle control techniques and post-processing speckle suppression at frame rates capable of resolving the atmospheric speckles that currently limit high-contrast imaging from the ground. DARKNESS is now operational behind the PALM-3000 extreme adaptive optics system and the Stellar Double Coronagraph at Palomar Observatory. Here, we describe the motivation, design, and characterization of the instrument, early on-sky results, and future prospects.

  5. Note: Easy-to-maintain electron cyclotron resonance (ECR) plasma sputtering apparatus featuring hybrid waveguide and coaxial cables for microwave delivery

    NASA Astrophysics Data System (ADS)

    Akazawa, Housei

    2016-06-01

    The branched-waveguide electron cyclotron resonance plasma sputtering apparatus places quartz windows for transmitting microwaves into the plasma source not in the line of sight of the target. However, the quartz windows must be replaced after some time of operation. For maintenance, the loop waveguide branching from the T-junction must be dismounted and re-assembled accurately, which is a time-consuming job. We investigated substituting the waveguide branches with two sets of coaxial cables and waveguide/coaxial cable converters to simplify assembly as far as connection and disconnection go. The resulting hybrid system worked well for the purposes of plasma generation and film deposition.

  6. Note: Easy-to-maintain electron cyclotron resonance (ECR) plasma sputtering apparatus featuring hybrid waveguide and coaxial cables for microwave delivery.

    PubMed

    Akazawa, Housei

    2016-06-01

    The branched-waveguide electron cyclotron resonance plasma sputtering apparatus places quartz windows for transmitting microwaves into the plasma source not in the line of sight of the target. However, the quartz windows must be replaced after some time of operation. For maintenance, the loop waveguide branching from the T-junction must be dismounted and re-assembled accurately, which is a time-consuming job. We investigated substituting the waveguide branches with two sets of coaxial cables and waveguide/coaxial cable converters to simplify assembly as far as connection and disconnection go. The resulting hybrid system worked well for the purposes of plasma generation and film deposition.

  7. Measurements of complex impedance in microwave high power systems with a new bluetooth integrated circuit.

    PubMed

    Roussy, Georges; Dichtel, Bernard; Chaabane, Haykel

    2003-01-01

    By using a new integrated circuit, which is marketed for bluetooth applications, it is possible to simplify the method of measuring the complex impedance, complex reflection coefficient and complex transmission coefficient in an industrial microwave setup. The Analog Devices circuit AD 8302, which measures gain and phase up to 2.7 GHz, operates with variable level input signals and is less sensitive to both amplitude and frequency fluctuations of the industrial magnetrons than are mixers and AM crystal detectors. Therefore, accurate gain and phase measurements can be performed with low stability generators. A mechanical setup with an AD 8302 is described; the calibration procedure and its performance are presented.

  8. Single qubit operations using microwave hyperbolic secant pulses

    NASA Astrophysics Data System (ADS)

    Ku, H. S.; Long, J. L.; Wu, X.; Bal, M.; Lake, R. E.; Barnes, Edwin; Economou, Sophia E.; Pappas, D. P.

    2017-10-01

    It has been known since the early days of quantum mechanics that hyperbolic secant pulses possess the unique property that they can perform full-cycle Rabi oscillations on two-level quantum systems independently of the pulse detuning. More recently, it was realized that they induce detuning-controlled phases without changing state populations. Here, we experimentally demonstrate the properties of hyperbolic secant pulses on superconducting transmon qubits and contrast them with the more commonly used Gaussian and square waves. We further show that these properties can be exploited to implement phase gates, nominally without exiting the computational subspace. This enables us to demonstrate a microwave-driven Z rotation with a single control parameter, the detuning.

  9. Note: Easy-to-maintain electron cyclotron resonance (ECR) plasma sputtering apparatus featuring hybrid waveguide and coaxial cables for microwave delivery

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Akazawa, Housei, E-mail: akazawa.housei@lab.ntt.co.jp

    2016-06-15

    The branched-waveguide electron cyclotron resonance plasma sputtering apparatus places quartz windows for transmitting microwaves into the plasma source not in the line of sight of the target. However, the quartz windows must be replaced after some time of operation. For maintenance, the loop waveguide branching from the T-junction must be dismounted and re-assembled accurately, which is a time-consuming job. We investigated substituting the waveguide branches with two sets of coaxial cables and waveguide/coaxial cable converters to simplify assembly as far as connection and disconnection go. The resulting hybrid system worked well for the purposes of plasma generation and film deposition.

  10. Microwave power amplifiers based on AlGaN/GaN transistors with a two-dimensional electron gas

    NASA Astrophysics Data System (ADS)

    Vendik, O. G.; Vendik, I. B.; Tural'chuk, P. A.; Parnes, Ya. M.; Parnes, M. D.

    2016-11-01

    A technique for synthesis of microwave power amplifiers based on transistors with a AlGaN/GaN heterojunction is discussed. Special focus is on the development of a technique for synthesis of transformation circuits of the power amplifier to increase efficiency with a retained high output power. The use of independent matching at the harmonic frequencies and fundamental frequency makes it possible to control the attainable efficiency in a wide frequency band along with the total suppression of harmonics beyond the operational band. Microwave power amplifiers for operation at 4 and 9 GHz have been developed and experimentally investigated.

  11. Lightning control system using high power microwave FEL

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Shiho, M.; Watanbe, A.; Kawasaki, S.

    A research project for developing a thunder lightning control system using an induction linac based high power microwave free electron laser (FEL) started at JAERI The system will produce weakly ionized plasma rod in the atmosphere by high power microwaves and control a lightning path, away from , e. g., nuclear power stations and rocket launchers. It has been known that about MW/cm{sup 2} power density is enough for the atmospheric breakdown in the microwave region, and which means high power microwave FEL with GW level output power is feasible for atmospheric breakdown, and accordingly is feasible for thunder lightningmore » control tool with making a conductive plasma channel in the atmosphere. From the microwave attenuation consideration in the atmosphere, FEL of 35GHz(0.13dB/km), 90GHz(0.35dB/km), 140GHz(1.7dB/km), and of 270 GHz(4.5dB/km) are the best candidates for the system. Comparing with other proposed lightning control system using visible or ultraviolet laser, the system using microwave has an advantage that microwave suffers smaller attenuation by rain or snow which always exist in the real atmospheric circumstances when lightning occurs.« less

  12. Military microwaves '84; Proceedings of the Conference, London, England, October 24-26, 1984

    NASA Astrophysics Data System (ADS)

    The present conference on microwave frequency electronic warfare and military sensor equipment developments consider radar warning receivers, optical frequency spread spectrum systems, mobile digital communications troposcatter effects, wideband bulk encryption, long range air defense radars (such as the AR320, W-2000 and Martello), multistatic radars, and multimode airborne and interceptor radars. IR system and subsystem component topics encompass thermal imaging and active IR countermeasures, class 1 modules, and diamond coatings, while additional radar-related topics include radar clutter in airborne maritime reconnaissance systems, microstrip antennas with dual polarization capability, the synthesis of shaped beam antenna patterns, planar phased arrays, radar signal processing, radar cross section measurement techniques, and radar imaging and pattern analysis. Attention is also given to optical control and signal processing, mm-wave control technology and EW systems, W-band operations, planar mm-wave arrays, mm-wave monolithic solid state components, mm-wave sensor technology, GaAs monolithic ICs, and dielectric resonator and wideband tunable oscillators.

  13. Tandem microwave waste remediation and decontamination system

    DOEpatents

    Wicks, George G.; Clark, David E.; Schulz, Rebecca L.

    1999-01-01

    The invention discloses a tandem microwave system consisting of a primary chamber in which microwave energy is used for the controlled combustion of materials. A second chamber is used to further treat the off-gases from the primary chamber by passage through a susceptor matrix subjected to additional microwave energy. The direct microwave radiation and elevated temperatures provide for significant reductions in the qualitative and quantitative emissions of the treated off gases. The tandem microwave system can be utilized for disinfecting wastes, sterilizing materials, and/or modifying the form of wastes to solidify organic or inorganic materials. The simple design allows on-site treatment of waste by small volume waste generators.

  14. The impact of microwave stray radiation to in-vessel diagnostic components

    NASA Astrophysics Data System (ADS)

    Hirsch, M.; Laqua, H. P.; Hathiramani, D.; Oosterbeek, J.; Baldzuhn, J.; Biedermann, C.; v d Brand, H.; Cardella, A.; Erckmann, V.; Jimenez, R.; König, R.; Köppen, M.; Parquay, S.; Zhang, D.; W7-X Team

    2014-08-01

    Microwave stray radiation resulting from unabsorbed multiple reflected ECRH / ECCD beams may cause severe heating of microwave absorbing in-vessel components such as gaskets, bellows, windows, ceramics and cable insulations. In view of long-pulse operation of WENDELSTEIN-7X the MIcrowave STray RAdiation Launch facility, MISTRAL, allows to test in-vessel components in the environment of isotropic 140 GHz microwave radiation at power load of up to 50 kW/m2 over 30 min. The results show that both, sufficient microwave shielding measures and cooling of all components are mandatory. If shielding/cooling measures of in-vessel diagnostic components are not efficient enough, the level of stray radiation may be (locally) reduced by dedicated absorbing ceramic coatings on cooled structures.

  15. Microwave Treatment of Prostate Cancer and Hyperplasia

    NASA Technical Reports Server (NTRS)

    Arndt, G. Dickey; Ngo, Phong; Carl, J. R.; Raffoul, George

    2005-01-01

    Microwave ablation in the form of microwave energy applied to a heart muscle by a coaxial catheter inserted in a vein in the groin area can be used to heat and kill diseased heart cells. A microwave catheter has been developed to provide deep myocardial ablation to treat ventricular tachycardia by restoring appropriate electrical activity within the heart and eliminating irregular heartbeats. The resulting microwave catheter design, which is now being developed for commercial use in treating ventricular tachycardia, can be modified to treat prostate cancer and benign prostatic hyperplasia (BPH). Inasmuch as the occurrence of BPH is increasing currently 350,000 operations per year are performed in the United States alone to treat this condition this microwave catheter has significant commercial potential.

  16. The electromagnetic wave energy effect(s) in microwave-assisted organic syntheses (MAOS).

    PubMed

    Horikoshi, Satoshi; Watanabe, Tomoki; Narita, Atsushi; Suzuki, Yumiko; Serpone, Nick

    2018-03-26

    Organic reactions driven by microwaves have been subjected for several years to some enigmatic phenomenon referred to as the microwave effect, an effect often mentioned in microwave chemistry but seldom understood. We identify this microwave effect as an electromagnetic wave effect that influences many chemical reactions. In this article, we demonstrate its existence using three different types of microwave generators with dissimilar oscillation characteristics. We show that this effect is operative in photocatalyzed TiO 2 reactions; it negatively influences electro-conductive catalyzed reactions, and yet has but a negligible effect on organic syntheses. The relationship between this electromagnetic wave effect and chemical reactions is elucidated from such energetic considerations as the photon energy and the reactions' activation energies.

  17. An inter-sensor comparison of the microwave signatures of Arctic sea ice

    NASA Technical Reports Server (NTRS)

    Onstott, R. G.

    1986-01-01

    Active and passive microwave and physical properties of Arctic sea ice in the marginal ice zone were measured during the summer. Results of an intercomparison of data acquired by an aircraft synthetic aperture radar, a passive microwave imager and a helicopter-mounted scatterometer indicate that early-to-mid summer sea ice microwave signatures are dominated by snowpack characteristics. Measurements show that the greatest contrast between thin first-year and multiyear sea ice occurs when operating actively between 5 and 10 GHz. Significant information about the state of melt of snow and ice is contained in the active and passive microwave signatures.

  18. Microwave remote sensing: Active and passive. Volume 1 - Microwave remote sensing fundamentals and radiometry

    NASA Technical Reports Server (NTRS)

    Ulaby, F. T.; Moore, R. K.; Fung, A. K.

    1981-01-01

    The three components of microwave remote sensing (sensor-scene interaction, sensor design, and measurement techniques), and the applications to geoscience are examined. The history of active and passive microwave sensing is reviewed, along with fundamental principles of electromagnetic wave propagation, antennas, and microwave interaction with atmospheric constituents. Radiometric concepts are reviewed, particularly for measurement problems for atmospheric and terrestrial sources of natural radiation. Particular attention is given to the emission by atmospheric gases, clouds, and rain as described by the radiative transfer function. Finally, the operation and performance characteristics of radiometer receivers are discussed, particularly for measurement precision, calibration techniques, and imaging considerations.

  19. Design, construction and long life endurance testing of cathode assemblies for use in microwave high-power transmitting tubes

    NASA Technical Reports Server (NTRS)

    Gorshe, R.

    1982-01-01

    The ability of state of the art cathode types to produce current densities of 2A/sq cm, respectively, over a minimum designed life of 30,000 hours of continuous operation without failures was demonstrated. The performance of the state of the art cathode types was evaluated by endurance testing while operating under identical electrical geometrical, and vacuum conditions that realistically duplicate the operating conditions present in a transmitter tube. Although there has been considerable life testing done on high current density types of cathodes, these have beem primarily limited to diodes. A diode and high power microwave tube are grossly different devices. A comparison of these two devices is provided. A diode and high power microwave tube are quite different; one could therefore assume different internal environments, especially in the cathode region. Therefore, in order to establish life capabilities of the cathodes just mentioned, they should be tested in a vehicle which has an internal environment similar to that of a high power microwave tube.

  20. Millimeter-wave imaging of magnetic fusion plasmas: technology innovations advancing physics understanding

    NASA Astrophysics Data System (ADS)

    Wang, Y.; Tobias, B.; Chang, Y.-T.; Yu, J.-H.; Li, M.; Hu, F.; Chen, M.; Mamidanna, M.; Phan, T.; Pham, A.-V.; Gu, J.; Liu, X.; Zhu, Y.; Domier, C. W.; Shi, L.; Valeo, E.; Kramer, G. J.; Kuwahara, D.; Nagayama, Y.; Mase, A.; Luhmann, N. C., Jr.

    2017-07-01

    Electron cyclotron emission (ECE) imaging is a passive radiometric technique that measures electron temperature fluctuations; and microwave imaging reflectometry (MIR) is an active radar imaging technique that measures electron density fluctuations. Microwave imaging diagnostic instruments employing these techniques have made important contributions to fusion science and have been adopted at major fusion facilities worldwide including DIII-D, EAST, ASDEX Upgrade, HL-2A, KSTAR, LHD, and J-TEXT. In this paper, we describe the development status of three major technological advancements: custom mm-wave integrated circuits (ICs), digital beamforming (DBF), and synthetic diagnostic modeling (SDM). These have the potential to greatly advance microwave fusion plasma imaging, enabling compact and low-noise transceiver systems with real-time, fast tracking ability to address critical fusion physics issues, including ELM suppression and disruptions in the ITER baseline scenario, naturally ELM-free states such as QH-mode, and energetic particle confinement (i.e. Alfvén eigenmode stability) in high-performance regimes that include steady-state and advanced tokamak scenarios. Furthermore, these systems are fully compatible with today’s most challenging non-inductive heating and current drive systems and capable of operating in harsh environments, making them the ideal approach for diagnosing long-pulse and steady-state tokamaks.

  1. Microwave ablation devices for interventional oncology.

    PubMed

    Ward, Robert C; Healey, Terrance T; Dupuy, Damian E

    2013-03-01

    Microwave ablation is one of the several options in the ablation armamentarium for the treatment of malignancy, offering several potential benefits when compared with other ablation, radiation, surgical and medical treatment modalities. The basic microwave system consists of the generator, power distribution system and antennas. Often under image (computed tomography or ultrasound) guidance, a needle-like antenna is inserted percutaneously into the tumor, where local microwave electromagnetic radiation is emitted from the probe's active tip, producing frictional tissue heating, capable of causing cell death by coagulation necrosis. Half of the microwave ablation systems use a 915 MHz generator and the other half use a 2450 MHz generator. To date, there are no completed clinical trials comparing microwave devices head-to-head. Prospective comparisons of microwave technology with other treatment alternatives, as well as head-to-head comparison with each microwave device, is needed if this promising field will garner more widespread support and use in the oncology community.

  2. Continuous-Flow System Produces Medical-Grade Water

    NASA Technical Reports Server (NTRS)

    Akse, James R.; Dahl, Roger W.; Wheeler, Richard R.

    2009-01-01

    A continuous-flow system utilizes microwave heating to sterilize water and to thermally inactivate endotoxins produced in the sterilization process. The system is designed for use in converting potable water to medical-grade water. Systems like this one could be used for efficient, small-scale production of medical- grade water in laboratories, clinics, and hospitals. This system could be adapted to use in selective sterilization of connections in ultra-pure-water-producing equipment and other equipment into which intrusion by microorganisms cannot be tolerated. Lightweight, port - able systems based on the design of this system could be rapidly deployed to remote locations (e.g., military field hospitals) or in response to emergencies in which the normal infrastructure for providing medical-grade water is disrupted. Larger systems based on the design of this system could be useful for industrial production of medical-grade water. The basic microwave-heating principle of this system is the same as that of a microwave oven: An item to be heated, made of a lossy dielectric material (in this case, flowing water) is irradiated with microwaves in a multimode microwave cavity. The heating is rapid and efficient because it results from absorption of microwave power throughout the volume of the lossy dielectric material. In this system, a copper tube having a length of 49.5 cm and a diameter of 2.25 cm serves as both the microwave cavity and the sterilization chamber. Microwave power is fed via a coaxial cable to an antenna mounted inside the tube at mid-length (see figure). Efficient power transfer occurs due to the shift in wavelength associated with the high permittivity of water combined with the strong coupling of 2.45-GHz microwaves with rotational-vibrational transitions of the dipolar water molecule.

  3. High yield neutron generators using the DD reaction

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Vainionpaa, J. H.; Harris, J. L.; Piestrup, M. A.

    2013-04-19

    A product line of high yield neutron generators has been developed at Adelphi technology inc. The generators use the D-D fusion reaction and are driven by an ion beam supplied by a microwave ion source. Yields of up to 5 Multiplication-Sign 10{sup 9} n/s have been achieved, which are comparable to those obtained using the more efficient D-T reaction. The microwave-driven plasma uses the electron cyclotron resonance (ECR) to produce a high plasma density for high current and high atomic ion species. These generators have an actively pumped vacuum system that allows operation at reduced pressure in the target chamber,more » increasing the overall system reliability. Since no radioactive tritium is used, the generators can be easily serviced, and components can be easily replaced, providing essentially an unlimited lifetime. Fast neutron source size can be adjusted by selecting the aperture and target geometries according to customer specifications. Pulsed and continuous operation has been demonstrated. Minimum pulse lengths of 50 {mu}s have been achieved. Since the generators are easily serviceable, they offer a long lifetime neutron generator for laboratories and commercial systems requiring continuous operation. Several of the generators have been enclosed in radiation shielding/moderator structures designed for customer specifications. These generators have been proven to be useful for prompt gamma neutron activation analysis (PGNAA), neutron activation analysis (NAA) and fast neutron radiography. Thus these generators make excellent fast, epithermal and thermal neutron sources for laboratories and industrial applications that require neutrons with safe operation, small footprint, low cost and small regulatory burden.« less

  4. High yield neutron generators using the DD reaction

    NASA Astrophysics Data System (ADS)

    Vainionpaa, J. H.; Harris, J. L.; Piestrup, M. A.; Gary, C. K.; Williams, D. L.; Apodaca, M. D.; Cremer, J. T.; Ji, Qing; Ludewigt, B. A.; Jones, G.

    2013-04-01

    A product line of high yield neutron generators has been developed at Adelphi technology inc. The generators use the D-D fusion reaction and are driven by an ion beam supplied by a microwave ion source. Yields of up to 5 × 109 n/s have been achieved, which are comparable to those obtained using the more efficient D-T reaction. The microwave-driven plasma uses the electron cyclotron resonance (ECR) to produce a high plasma density for high current and high atomic ion species. These generators have an actively pumped vacuum system that allows operation at reduced pressure in the target chamber, increasing the overall system reliability. Since no radioactive tritium is used, the generators can be easily serviced, and components can be easily replaced, providing essentially an unlimited lifetime. Fast neutron source size can be adjusted by selecting the aperture and target geometries according to customer specifications. Pulsed and continuous operation has been demonstrated. Minimum pulse lengths of 50 μs have been achieved. Since the generators are easily serviceable, they offer a long lifetime neutron generator for laboratories and commercial systems requiring continuous operation. Several of the generators have been enclosed in radiation shielding/moderator structures designed for customer specifications. These generators have been proven to be useful for prompt gamma neutron activation analysis (PGNAA), neutron activation analysis (NAA) and fast neutron radiography. Thus these generators make excellent fast, epithermal and thermal neutron sources for laboratories and industrial applications that require neutrons with safe operation, small footprint, low cost and small regulatory burden.

  5. Beam extraction and high stability operation of high current electron cyclotron resonance proton ion source.

    PubMed

    Roychowdhury, P; Mishra, L; Kewlani, H; Patil, D S; Mittal, K C

    2014-03-01

    A high current electron cyclotron resonance proton ion source is designed and developed for the low energy high intensity proton accelerator at Bhabha Atomic Research Centre. The plasma discharge in the ion source is stabilized by minimizing the reflected microwave power using four stub auto tuner and magnetic field. The optimization of extraction geometry is performed using PBGUNS code by varying the aperture, shape, accelerating gap, and the potential on the electrodes. While operating the source, it was found that the two layered microwave window (6 mm quartz plate and 2 mm boron nitride plate) was damaged (a fine hole was drilled) by the back-streaming electrons after continuous operation of the source for 3 h at beam current of 20-40 mA. The microwave window was then shifted from the line of sight of the back-streaming electrons and located after the water-cooled H-plane bend. In this configuration the stable operation of the high current ion source for several hours is achieved. The ion beam is extracted from the source by biasing plasma electrode, puller electrode, and ground electrode to +10 to +50 kV, -2 to -4 kV, and 0 kV, respectively. The total ion beam current of 30-40 mA is recorded on Faraday cup at 40 keV of beam energy at 600-1000 W of microwave power, 800-1000 G axial magnetic field and (1.2-3.9) × 10(-3) mbar of neutral hydrogen gas pressure in the plasma chamber. The dependence of beam current on extraction voltage, microwave power, and gas pressure is investigated in the range of operation of the ion source.

  6. Five-band microwave radiometer system for noninvasive brain temperature measurement in newborn babies: Phantom experiment and confidence interval

    NASA Astrophysics Data System (ADS)

    Sugiura, T.; Hirata, H.; Hand, J. W.; van Leeuwen, J. M. J.; Mizushina, S.

    2011-10-01

    Clinical trials of hypothermic brain treatment for newborn babies are currently hindered by the difficulty in measuring deep brain temperatures. As one of the possible methods for noninvasive and continuous temperature monitoring that is completely passive and inherently safe is passive microwave radiometry (MWR). We have developed a five-band microwave radiometer system with a single dual-polarized, rectangular waveguide antenna operating within the 1-4 GHz range and a method for retrieving the temperature profile from five radiometric brightness temperatures. This paper addresses (1) the temperature calibration for five microwave receivers, (2) the measurement experiment using a phantom model that mimics the temperature profile in a newborn baby, and (3) the feasibility for noninvasive monitoring of deep brain temperatures. Temperature resolutions were 0.103, 0.129, 0.138, 0.105 and 0.111 K for 1.2, 1.65, 2.3, 3.0 and 3.6 GHz receivers, respectively. The precision of temperature estimation (2σ confidence interval) was about 0.7°C at a 5-cm depth from the phantom surface. Accuracy, which is the difference between the estimated temperature using this system and the measured temperature by a thermocouple at a depth of 5 cm, was about 2°C. The current result is not satisfactory for clinical application because the clinical requirement for accuracy must be better than 1°C for both precision and accuracy at a depth of 5 cm. Since a couple of possible causes for this inaccuracy have been identified, we believe that the system can take a step closer to the clinical application of MWR for hypothermic rescue treatment.

  7. The mechanism and realization of a band-agile coaxial relativistic backward-wave oscillator

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ge, Xingjun; Zhang, Jun; Zhong, Huihuang

    2014-11-03

    The mechanism and realization of a band-agile coaxial relativistic backward-wave oscillator (RBWO) are presented. The operation frequency tuning can be easily achieved by merely altering the inner-conductor length. The key effects of the inner-conductor length contributing to the mechanical frequency tunability are investigated theoretically and experimentally. There is a specific inner-conductor length where the operation frequency can jump from one mode to another mode, which belongs to a different operation band. In addition, the operation frequency is tunable within each operation band. During simulation, the L-band microwave with a frequency of 1.61 GHz is radiated when the inner-conductor length ismore » 39 cm. Meanwhile, the S-band microwave with a frequency of 2.32 GHz is radiated when the inner-conductor length is 5 cm. The frequency adjustment bandwidths of L-band and S-band are about 8.5% and 2%, respectively. Moreover, the online mechanical tunability process is described in detail. In the initial experiment, the generated microwave frequencies remain approximately 1.59 GHz and 2.35 GHz when the inner-conductor lengths are 39 cm and 5 cm. In brief, this technical route of the band-agile coaxial RBWO is feasible and provides a guide to design other types of band-agile high power microwaves sources.« less

  8. Sea wind parameters retrieval using Y-configured Doppler navigation system data. Performance and accuracy

    NASA Astrophysics Data System (ADS)

    Khachaturian, A. B.; Nekrasov, A. V.; Bogachev, M. I.

    2018-05-01

    The authors report the results of the computer simulations of the performance and accuracy of the sea wind speed and direction retrieval. The analyzed measurements over the sea surface are made by the airborne microwave Doppler navigation system (DNS) with three Y-configured beams operated as a scatterometer enhancing its functionality. Single- and double-stage wind measurement procedures are proposed and recommendations for their implementation are described.

  9. A study of microwave downcoverters operating in the K sub u band

    NASA Technical Reports Server (NTRS)

    Fellers, R. G.; Simpson, T. L.; Tseng, B.

    1982-01-01

    A computer program for parametric amplifier design is developed with special emphasis on practical design considerations for microwave integrated circuit degenerate amplifiers. Precision measurement techniques are developed to obtain a more realistic varactor equivalent circuit. The existing theory of a parametric amplifier is modified to include the equivalent circuit, and microwave properties, such as loss characteristics and circuit discontinuities are investigated.

  10. Experimental Demonstration of Microwave Signal/Electric Thruster Plasma Interaction Effects

    NASA Technical Reports Server (NTRS)

    Zaman, Afroz J.; Lambert, Kevin M.; Curran, Frank M.

    1995-01-01

    An experiment was designed and conducted in the Electric Propulsion Laboratory of NASA Lewis Research Center to assess the impact of ion thruster exhaust plasma plume on electromagnetic signal propagation. A microwave transmission experiment was set up inside the propulsion test bed using a pair of broadband horn antennas and a 30 cm 2.3 kW ion thruster. Frequency of signal propagation covered from 6.5 to 18 GHz range. The stainless steel test bed when enclosed can be depressurized to simulate a near vacuum environment. A pulsed CW system with gating hardware was utilized to eliminate multiple chamber reflections from the test signal. Microwave signal was transmitted and received between the two hours when the thruster was operating at a given power level in such a way that the signal propagation path crossed directly through the plume volume. Signal attenuation and phase shift due to the plume was measured for the entire frequency band. Results for this worst case configuration simulation indicate that the effects of the ion thruster plume on microwave signals is a negligible attenuation (within 0.15 dB) and a small phase shift (within 8 deg.). This paper describes the detailed experiment and presents some of the results.

  11. Microwave Irradiation on Graphene Dispersed Within Polymeric Matrices

    NASA Astrophysics Data System (ADS)

    Cisneros, Jorge; Yust, Brian; Chipara, Mircea

    Graphene is a two dimensional nanomaterial with high thermal and electric conductivity and Young modulus. These features make graphene an ideal reinforcement for polymeric matrices. However, the mechanical features of polymer-carbon nanostructured composites are limited by the dispersion of the filler and by the delamination or microcracks initiated at the interface between the polymeric matrix and nanofiller. This last weakness can be addressed by improving the interface via chemical and physical methods. Microwave heating of graphite is a very efficient approach if the polymeric matrix does not also have a strong absorption. During the irradiation, the nanofiller is preferentially heated; the local melting of the polymer at the interface improves the interface by filling the microcracks and delaminations. Nanocomposites of polystyrene-poly(ethylene-ran-butylene)-polystyrene loaded by various amounts of graphene ranging from 0 % to 20 % wt. have been prepared by solution mixing using chloroform as solvent. The as obtained nanocomposites have been subjected to microwave irradiation in an Anton Paar Monowave 300 system operating at 75 W, for various irradiation times 5, 10, 15, 30, 45, and 60 minutes. The effect of microwave irradiation has been studied by Raman spectroscopy.

  12. Microwave produced plasma in a Toroidal Device

    NASA Astrophysics Data System (ADS)

    Singh, A. K.; Edwards, W. F.; Held, E. D.

    2010-11-01

    A currentless toroidal plasma device exhibits a large range of interesting basic plasma physics phenomena. Such a device is not in equilibrium in a strict magneto hydrodynamic sense. There are many sources of free energy in the form of gradients in plasma density, temperature, the background magnetic field and the curvature of the magnetic field. These free energy sources excite waves and instabilities which have been the focus of studies in several devices in last two decades. A full understanding of these simple plasmas is far from complete. At Utah State University we have recently designed and installed a microwave plasma generation system on a small tokamak borrowed from the University of Saskatchewan, Saskatoon, Canada. Microwaves are generated at 2.45 GHz in a pulsed dc mode using a magnetron from a commercial kitchen microwave oven. The device is equipped with horizontal and vertical magnetic fields and a transformer to impose a toroidal electric field for current drive. Plasmas can be obtained over a wide range of pressure with and without magnetic fields. We present some preliminary measurements of plasma density and potential profiles. Measurements of plasma temperature at different operating conditions are also presented.

  13. Microwave amplification with nanomechanical resonators.

    PubMed

    Massel, F; Heikkilä, T T; Pirkkalainen, J-M; Cho, S U; Saloniemi, H; Hakonen, P J; Sillanpää, M A

    2011-12-14

    The sensitive measurement of electrical signals is at the heart of modern technology. According to the principles of quantum mechanics, any detector or amplifier necessarily adds a certain amount of noise to the signal, equal to at least the noise added by quantum fluctuations. This quantum limit of added noise has nearly been reached in superconducting devices that take advantage of nonlinearities in Josephson junctions. Here we introduce the concept of the amplification of microwave signals using mechanical oscillation, which seems likely to enable quantum-limited operation. We drive a nanomechanical resonator with a radiation pressure force, and provide an experimental demonstration and an analytical description of how a signal input to a microwave cavity induces coherent stimulated emission and, consequently, signal amplification. This generic scheme, which is based on two linear oscillators, has the advantage of being conceptually and practically simpler than the Josephson junction devices. In our device, we achieve signal amplification of 25 decibels with the addition of 20 quanta of noise, which is consistent with the expected amount of added noise. The generality of the model allows for realization in other physical systems as well, and we anticipate that near-quantum-limited mechanical microwave amplification will soon be feasible in various applications involving integrated electrical circuits.

  14. Investigation of a Photovoltaic/Battery Hybrid System for Powering the High Arctic Data Communications System

    DTIC Science & Technology

    1989-08-01

    installation of amp-hour meters. 3. Evaluation of th6 low temperature performanceof Willard DH-5 pure lead batteries. b. Evaluation of the low...was abnormallyI low. This is seen in Table 7 which compares the solar radiation data received during this three year period with the 30 year averages...operational hour. This can be compared with a requirement for powering the microwave repeaters of about 2Ah/hour assuming a system voltage of 15V

  15. The Telecommunications and Data Acquisition Report

    NASA Technical Reports Server (NTRS)

    Posner, E. C. (Editor)

    1984-01-01

    This publication provides reports on work performed for the Office of Space Tracking and Data Systems (OSTDS). It reports on the activities of the deep space network (DSN) and the Ground Communications Facility (GCF). Topics discussed on the operation of the DSN include: (1) spacecraft-ground communications; (2) station control and system technology; and (3) capabilities for new projects for systems implementation. The GCF compatibility with packets and data compression is discussed. In geodynamics, the publication reports on the application of radio interferometry at microwave frequencies for geodynamic measurements.

  16. Antimatter applied for Earth protection from asteroid collision

    NASA Technical Reports Server (NTRS)

    Satori, Shin; Kuninaka, Hitoshi; Kuriki, Kyoichi

    1990-01-01

    An Earth protection system against asteroids and meteorites in colliding orbit is proposed. The system consists of detection and deorbiting systems. Analyses are given for the resolution of microwave optics, the detectability of radar, the orbital plan of intercepting operation, and the antimatter mass require for totally or partially blasting the asteroid. Antimatter of 1 kg is required for deorbiting an asteroid 200 m in diameter. An experimental simulation of antimatter cooling and storage is planned. The facility under construction is discussed.

  17. New Yumurtalik to Kirikkale crude-oil pipeline would boost Turkish industrial area

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Simonnet, G.

    1982-12-13

    Plans for a crude oil pipeline linking the 101 cm (40 in.) Iraq to Turkey pipeline terminal located in Yumurtalik to the site of a future refinery to be situated near Ankara are described. Designed for fully unattended operation, the ''brain'' of the system will be a telecom/telecontrol telemetry system. Support for data information exchanged between the master and local outstations will be a microwave radio carrier system, also permitting the transfer of telephone and telegraph traffic as well as facsimiles.

  18. Assimilating All-Sky GPM Microwave Imager(GMI) Radiance Data in NASA GEOS-5 System for Global Cloud and Precipitation Analyses

    NASA Astrophysics Data System (ADS)

    Kim, M. J.; Jin, J.; McCarty, W.; Todling, R.; Holdaway, D. R.; Gelaro, R.

    2014-12-01

    The NASA Global Modeling and Assimilation Office (GMAO) works to maximize the impact of satellite observations in the analysis and prediction of climate and weather through integrated Earth system modeling and data assimilation. To achieve this goal, the GMAO undertakes model and assimilation development, generates products to support NASA instrument teams and the NASA Earth science program. Currently Atmospheric Data Assimilation System (ADAS) in the Goddard Earth Observing System Model, Version 5(GEOS-5) system combines millions of observations and short-term forecasts to determine the best estimate, or analysis, of the instantaneous atmospheric state. However, ADAS has been geared towards utilization of observations in clear sky conditions and the majority of satellite channel data affected by clouds are discarded. Microwave imager data from satellites can be a significant source of information for clouds and precipitation but the data are presently underutilized, as only surface rain rates from the Tropical Rainfall Measurement Mission (TRMM) Microwave Imager (TMI) are assimilated with small weight assigned in the analysis process. As clouds and precipitation often occur in regions with high forecast sensitivity, improvements in the temperature, moisture, wind and cloud analysis of these regions are likely to contribute to significant gains in numerical weather prediction accuracy. This presentation is intended to give an overview of GMAO's recent progress in assimilating the all-sky GPM Microwave Imager (GMI) radiance data in GEOS-5 system. This includes development of various new components to assimilate cloud and precipitation affected data in addition to data in clear sky condition. New observation operators, quality controls, moisture control variables, observation and background error models, and a methodology to incorporate the linearlized moisture physics in the assimilation system are described. In addition preliminary results showing impacts of assimilating all-sky GMI data on GEOS-5 forecasts are discussed.

  19. Widely Tunable On-Chip Microwave Circulator for Superconducting Quantum Circuits

    NASA Astrophysics Data System (ADS)

    Chapman, Benjamin J.; Rosenthal, Eric I.; Kerckhoff, Joseph; Moores, Bradley A.; Vale, Leila R.; Mates, J. A. B.; Hilton, Gene C.; Lalumière, Kevin; Blais, Alexandre; Lehnert, K. W.

    2017-10-01

    We report on the design and performance of an on-chip microwave circulator with a widely (GHz) tunable operation frequency. Nonreciprocity is created with a combination of frequency conversion and delay, and requires neither permanent magnets nor microwave bias tones, allowing on-chip integration with other superconducting circuits without the need for high-bandwidth control lines. Isolation in the device exceeds 20 dB over a bandwidth of tens of MHz, and its insertion loss is small, reaching as low as 0.9 dB at select operation frequencies. Furthermore, the device is linear with respect to input power for signal powers up to hundreds of fW (≈103 circulating photons), and the direction of circulation can be dynamically reconfigured. We demonstrate its operation at a selection of frequencies between 4 and 6 GHz.

  20. Integrated approach using multi-platform sensors for enhanced high-resolution daily ice cover product

    NASA Astrophysics Data System (ADS)

    Bonev, George; Gladkova, Irina; Grossberg, Michael; Romanov, Peter; Helfrich, Sean

    2016-09-01

    The ultimate objective of this work is to improve characterization of the ice cover distribution in the polar areas, to improve sea ice mapping and to develop a new automated real-time high spatial resolution multi-sensor ice extent and ice edge product for use in operational applications. Despite a large number of currently available automated satellite-based sea ice extent datasets, analysts at the National Ice Center tend to rely on original satellite imagery (provided by satellite optical, passive microwave and active microwave sensors) mainly because the automated products derived from satellite optical data have gaps in the area coverage due to clouds and darkness, passive microwave products have poor spatial resolution, automated ice identifications based on radar data are not quite reliable due to a considerable difficulty in discriminating between the ice cover and rough ice-free ocean surface due to winds. We have developed a multisensor algorithm that first extracts maximum information on the sea ice cover from imaging instruments VIIRS and MODIS, including regions covered by thin, semitransparent clouds, then supplements the output by the microwave measurements and finally aggregates the results into a cloud gap free daily product. This ability to identify ice cover underneath thin clouds, which is usually masked out by traditional cloud detection algorithms, allows for expansion of the effective coverage of the sea ice maps and thus more accurate and detailed delineation of the ice edge. We have also developed a web-based monitoring system that allows comparison of our daily ice extent product with the several other independent operational daily products.

Top