Science.gov

Sample records for microwave tissue coagulator

  1. Theoretical analysis of the light interaction with coagulated tissue

    NASA Astrophysics Data System (ADS)

    Jerath, Maya R.; Welch, Ashley J.

    1992-08-01

    During laser treatment, coagulation affects the optical properties of the tissue. In particular, the formation of a white lesion increases the scattering coefficient significantly. This change in the optical properties in turn affects the laser light distribution in the tissue. For example, what is the effect of the white lesion formed during photocoagulation of the retina upon reflection and fluence rate? This problem was simulated on a model medium consisting of a thin absorbing black paint layer covered with a 1 cm thick layer of fresh egg white. The egg white layer was subdivided into coagulated (white) and uncoagulated (clear) layers. The optical properties of coagulated and uncoagulated egg white were determined. These values were used to model light distribution in the medium for varying thicknesses of the coagulated egg white layer using the one dimensional Adding Doubling method. Our results show that the fluence reaching the paint layer increase until the coagulated layer reaches 100 micrometers , after which it falls off exponentially. It was also found that the total reflected light increases almost linearly at first as the coagulated layer thickens, and then begins to level off to an R(infinity ) at a coagulation thickness of 2 mm. Experimental measurements of reflection from a lesion with a CCD camera confirm the computed trends. These results provide a theoretical foundation for control of lesion thickness using reflectance images.

  2. Microwave-acoustic phasoscopy for tissue characterization

    NASA Astrophysics Data System (ADS)

    Gao, Fei; Zheng, Yuanjin; Wang, Dongfang

    2012-07-01

    In this letter, we present a method named microwave-acoustic phasoscopy (MAPC) by collecting both scattered microwave energy and microwave-induced thermoacoustic wave energy for tissue characterization. Different from conventional amplitude and spectrum analysis, we propose to evaluate the microwave-acoustic phase for tissue characterization. Theoretical analysis and experiment verification are performed to show a good agreement. Four different biological tissues are well differentiated in phase region using the proposed MAPC. This attempt of exploring intrinsic relationship between scattered microwave and induced thermoacoustic signals simultaneously provides phase contrast for tissue characterization, showing significant potential in developing phase-contrast imaging prototype based on MAPC theory.

  3. Role of adipose tissue in haemostasis, coagulation and fibrinolysis.

    PubMed

    Faber, D R; de Groot, Ph G; Visseren, F L J

    2009-09-01

    Obesity is associated with an increased incidence of insulin resistance (IR), type 2 diabetes mellitus and cardiovascular diseases. The increased risk for cardiovascular diseases could partly be caused by a prothrombotic state that exists because of abdominal obesity. Adipose tissue induces thrombocyte activation by the production of adipose tissue-derived hormones, often called adipokines, of which some such as leptin and adiponectin have been shown to directly interfere with platelet function. Increased adipose tissue mass induces IR and systemic low-grade inflammation, also affecting platelet function. It has been demonstrated that adipose tissue directly impairs fibrinolysis by the production of plasminogen activator inhibitor-1 and possibly thrombin-activatable fibrinolysis inhibitor. Adipose tissue may contribute to enhanced coagulation by direct tissue factor production, but hypercoagulability is likely to be primarily caused by affecting hepatic synthesis of the coagulation factors fibrinogen, factor VII, factor VIII and tissue factor, by releasing free fatty acids and pro-inflammatory cytokines (tumour necrosis factor-alpha, interleukin-1beta and interleukin-6) into the portal circulation and by inducing hepatic IR. Adipose tissue dysfunction could thus play a causal role in the prothrombotic state observed in obesity, by directly and indirectly affecting haemostasis, coagulation and fibrinolysis. PMID:19460118

  4. Monitoring of tissue coagulation during thermotherapy using optoacoustic technique

    NASA Astrophysics Data System (ADS)

    Larin, Kirill V.; Larina, Irina V.; Esenaliev, Rinat O.

    2005-08-01

    In this paper we have applied the laser optoacoustic technique for real time noninvasive monitoring of thermal damage in tissues. Changes in tissue optical properties during coagulation were detected by measuring and analysing amplitude and temporal characteristics of optoacoustic signals. Coagulation of liver, myocardium and prostate was induced by interstitial continuous wave Nd : YAG laser irradiation of the samples or by conductive heating. Real time detection of thermally-induced changes in optical properties was performed with sensitive wide-band acoustic transducers. Combination of optoacoustic and diffuse reflectance technique was applied for determination of tissue optical properties: effective attenuation, total diffuse reflectance, reduced scattering coefficient and absorption coefficient. The optical properties did not change up to temperature of coagulation (about 53°C) and sharply increased during heating up to 70°C. Monitoring of the expansion of interstitial coagulation front within freshly excised canine tissues was performed in real time with spatial resolution of about 0.6 mm. The results of our study suggest that this technique can potentially be used for real time precise thermotherapy of malignant and benign lesions at depths of the order of the centimetre.

  5. Effects of microwave radiation on living tissues

    SciTech Connect

    Surrell, J.A.; Alexander, R.C.; Cohle, S.D.; Lovell, F.R. Jr.; Wehrenberg, R.A.

    1987-08-01

    Prompted by an alleged case of child abuse resulting from microwave oven burns and the discovery of one other case, an animal model was chosen to explore microwave burn characteristics upon living, perfusing tissue. Anesthetized piglets were exposed to radiation from a standard household microwave oven for varying lengths of time, sufficient to result in full-thickness skin and visceral burns. Characteristic burn patterns were grossly identified. Biopsies studied with both light and electron microscopy demonstrated a pattern of relative layered tissue sparing. Layered tissue sparing is characterized by burned skin and muscle, with relatively unburned subcutaneous fat between these two layers. These findings have important forensic and patient care implications.

  6. Microwave thermal radiation effects on skin tissues

    NASA Astrophysics Data System (ADS)

    Yoon, Hargsoon; Song, Kyo D.; Lee, Uhn; Choi, Sang H.

    2012-10-01

    Microwave/RF energy has been used for wireless power transmission including many therapeutic applications, such as transurethral microwave therapy (TUMT). For safe uses of RF power, it is important to know how to deliver microwave energy on focused area and control the temperature changes not to drastically increase on adjacent areas. Graphical analysis of thermal loading factor is important to understand how to achieve effective transmission of microwave through the tissue. The loss mechanism while transmission often appears as thermal effects due to absorption of microwave, especially for materials such as human skin, muscles, and other organic parts including brain. In this paper, microwave thermal effects are investigated to measure temperatures, penetration depth through animal skins in terms of input power and various frequencies. This result will be compare with the case of human applications.

  7. Dose control for noncontact laser coagulation of tissue

    NASA Astrophysics Data System (ADS)

    Roggan, Andre; Albrecht, Hansjoerg; Bocher, Thomas; Rygiel, Reiner; Winter, Harald; Mueller, Gerhard J.

    1995-01-01

    Nd:YAG lasers emitting at 1064 nm are often used for coagulation of tissue in a non-contact mode, i.e. the treatment of verrucae, endometriosis, tumor coagulation and hemostasis. During this process an uncontrolled temperature rise of the irradiated area leads to vaporization and, finally, to a carbonization of the tissue surface. To prevent this, a dose controlled system was developed using an on-line regulation of the output laser power. The change of the backscattered intensity (remission) of the primary beam was used as a dose dependent feedback parameter. Its dependence on the temperature was determined with a double integrating sphere system and Monte-Carlo simulations. The remission of the tissue was calculated in slab geometry from diffusion theory and Monte-Carlo simulations. The laser control was realized with a PD-circuit and an A/D-converter, enabling the direct connection to the internal bus of the laser system. Preliminary studies with various tissues revealed the practicability of the system.

  8. Tissue Factor, Blood Coagulation, and Beyond: An Overview

    PubMed Central

    Chu, Arthur J.

    2011-01-01

    Emerging evidence shows a broad spectrum of biological functions of tissue factor (TF). TF classical role in initiating the extrinsic blood coagulation and its direct thrombotic action in close relation to cardiovascular risks have long been established. TF overexpression/hypercoagulability often observed in many clinical conditions certainly expands its role in proinflammation, diabetes, obesity, cardiovascular diseases, angiogenesis, tumor metastasis, wound repairs, embryonic development, cell adhesion/migration, innate immunity, infection, pregnancy loss, and many others. This paper broadly covers seminal observations to discuss TF pathogenic roles in relation to diverse disease development or manifestation. Biochemically, extracellular TF signaling interfaced through protease-activated receptors (PARs) elicits cellular activation and inflammatory responses. TF diverse biological roles are associated with either coagulation-dependent or noncoagulation-mediated actions. Apparently, TF hypercoagulability refuels a coagulation-inflammation-thrombosis circuit in “autocrine” or “paracrine” fashions, which triggers a wide spectrum of pathophysiology. Accordingly, TF suppression, anticoagulation, PAR blockade, or general anti-inflammation offers an array of therapeutical benefits for easing diverse pathological conditions. PMID:21941675

  9. Laser probes for noninvasive coagulation of subsurface tissues

    NASA Astrophysics Data System (ADS)

    Chung, Chia-Chun; Permpongkosol, Sompol; Varkarakis, Ioannis M.; Lima, Guilherme; Franco, Nicholas; Hayman, Michael H.; Nicol, Theresa; Fried, Nathaniel M.

    2006-02-01

    Previous ex vivo tissue studies utilizing deep laser heating combined with contact cooling of the tissue surface produced noninvasive thermal destruction of subsurface tissue structures in skin and liver samples. This study describes the design and preliminary in vivo testing of two integrated laser/cooling probes for simultaneous Nd:YAG laser irradiation and sapphire contact cooling of liver and skin tissues in an in vivo, acute porcine model for potential use in laparoscopic and endoscopic surgery. Nd:YAG laser radiation with a wavelength of 1.06 μm, power of 20 W, 7.5-mm-diameter spot, 500-ms pulse length, and repetition rate of 0.625 Hz, was delivered to the tissue with a total irradiation time of 16 s. The tissue surface was continuously cooled with a sapphire plate maintained at -5 °C, and with pre- and post-ablation cooling times measuring 120 s and 30 s, resulting in a total operation time of 166 s per a lesion. Thermal lesions were created in liver and skin at a 1-mm depth below the tissue surface and with a 3-4 mm diameter. The laser parameters and lesion dimensions were comparable to previous ex vivo tissue studies. Preliminary in vivo animal studies demonstrate noninvasive creation of subsurface thermal lesions in tissue using Nd:YAG laser irradiation in conjunction with sapphire contact cooling. Chronic wound healing studies will be necessary to optimize the laser and cooling parameters. Potential clinical applications include endoscopic laser treatment of female stress urinary incontinence and thermal coagulation of early stage bladder tumors.

  10. Microwave Tissue Soldering for Immediate Wound Closure

    NASA Technical Reports Server (NTRS)

    Arndt, G. Dickey; Ngo, Phong H.; Plan, Chau T.; Byerly, Diane; Dusl, John; Sognier, Marguerite A.

    2011-01-01

    A novel approach for the immediate sealing of traumatic wounds is under development. A portable microwave generator and handheld antenna are used to seal wounds, binding the edges of the wound together using a biodegradable protein sealant or solder. This method could be used for repairing wounds in emergency settings, by restoring the wound surface to its original strength within minutes. This technique could also be utilized for surgical purposes involving solid visceral organs (i.e., liver, spleen, and kidney) that currently do not respond well to ordinary surgical procedures. A miniaturized microwave generator and a handheld antenna are used to deliver microwave energy to the protein solder, which is applied to the wound. The antenna can be of several alternative designs optimized for placement either in contact with or proximity to the protein solder covering the wound. In either case, optimization of the design includes the matching of impedances to maximize the energy delivered to the protein solder and wound at a chosen frequency. For certain applications, an antenna could be designed that would emit power only when it is in direct contact with the wound. The optimum frequency or frequencies for a specific application would depend on the required depth of penetration of the microwave energy. In fact, a computational simulation for each specific application could be performed, which would then match the characteristics of the antenna with the protein solder and tissue to best effect wound closure. An additional area of interest with potential benefit that remains to be validated is whether microwave energy can effectively kill bacteria in and around the wound. Thus, this may be an efficient method for simultaneously sterilizing and closing wounds. Using microwave energy to seal wounds has a number of advantages over lasers, which are currently in experimental use in some hospitals. Laser tissue welding is unsuitable for emergency use because its large, bulky

  11. The histological features of microwave coagulation therapy: an assessment of a new applicator design

    PubMed Central

    Swift, Benjamin; Strickland, Andrew; West, Kevin; Clegg, Peter; Cronin, Nigel; Lloyd, David

    2003-01-01

    Microwave ablation of tumours within the liver may become an adjunct or alternative to resection in patients with primary or secondary cancers. This technique combines the benefits of a large, localized coagulative effect with a single insertion of the applicator, in a significantly shorter time than comparable treatments. A new range of microwave applicators were developed and tested in animal models and both ex-vivo and in-vivo specimens of human liver at resection. At laparotomy, the applicator tip was inserted into normal liver parenchyma and tumours, with each specimen subjected to irradiation for 180 s or more and at varying power outputs. On sectioning an area of spherical blanching was observed around the applicator cavity. Microscopically a zone of coagulative necrosis was seen adjacent to the site of probe insertion. Damage to blood vessels and bile ducts occurred distal to the probe cavity suggesting the passage of heated fluid, a finding that was diminished by temporary occlusion of the hepatic vasculature (a Pringle manoeuvre). Ultra-structural damage was confirmed within the burn zone and selected liver enzymes were shown to be functioning beyond this region. We suggest this indicates the surrounding liver parenchyma is functioning normally and therefore the volume of microwave-induced damage is controllable. We are confident that the new applicator design will allow the effective treatment of larger tumours in a safe and controlled manner with a single application of energy. PMID:12694484

  12. Sequential coagulation factor VIIa domain binding to tissue factor

    SciTech Connect

    Oesterlund, Maria; Persson, Egon; Freskgard, Per-Ola . E-mail: msv@ifm.liu.se

    2005-12-02

    Vessel wall tissue factor (TF) is exposed to blood upon vascular damage which enables association with factor VIIa (FVIIa). This leads to initiation of the blood coagulation cascade through localization and allosteric induction of FVIIa procoagulant activity. To examine the docking pathway of the FVIIa-TF complex, various residues in the extracellular part of TF (sTF) that are known to interact with FVIIa were replaced with cysteines labelled with a fluorescent probe. By using stopped-flow fluorescence kinetic measurements in combination with surface plasmon resonance analysis, we studied the association of the resulting sTF variants with FVIIa. We found the docking trajectory to be a sequence of events in which the protease domain of FVIIa initiates contact with sTF. Thereafter, the two proteins are tethered via the first epidermal growth factor-like and finally the {gamma}-carboxyglutamic acid (Gla) domain. The two labelled sTF residues interacting with the protease domain of FVIIa bind or become eventually ordered at different rates, revealing kinetic details pertinent to the allosteric activation of FVIIa by sTF. Moreover, when the Gla domain of FVIIa is removed the difference in the rate of association for the remaining domains is much more pronounced.

  13. Structural Biology Of Factor VIIa/Tissue Factor Initiated Coagulation

    PubMed Central

    Vadivel, Kanagasabai; Paul Bajaj, S.

    2012-01-01

    Factor VII (FVII) consists of an N-terminal gamma-carboxyglutamic acid domain followed by two epidermal growth factor-like (EGF1 and EGF2) domains and the C-terminal protease domain. Activation of FVII results in a two-chain FVIIa molecule consisting of a light chain (Gla-EGF1-EGF2 domains) and a heavy chain (protease domain) held together by a single disulfide bond. During coagulation, the complex of tissue factor (TF, a transmembrane glycoprotein) and FVIIa activates factor IX (FIX) and factor X (FX). FVIIa is structurally “zymogen-like” and when bound to TF, it is more “active enzyme-like.” FIX and FX share structural homology with FVII. Three structural biology aspects of FVIIa/TF are presented in this review. One, regions in soluble TF (sTF) that interact with FVIIa as well as mapping of Ca2+, Mg2+, Na+ and Zn2+ sites in FVIIa and their functions; two, modeled interactive regions of Gla and EGF1 domains of FXa and FIXa with FVIIa/sTF; and three, incompletely formed oxyanion hole in FVIIa/sTF and its induction by substrate/inhibitor. Finally, an overview of the recognition elements in TF pathway inhibitor is provided. PMID:22652793

  14. Hepatocyte tissue factor activates the coagulation cascade in mice

    PubMed Central

    Sullivan, Bradley P.; Kopec, Anna K.; Joshi, Nikita; Cline, Holly; Brown, Juliette A.; Bishop, Stephanie C.; Kassel, Karen M.; Rockwell, Cheryl; Mackman, Nigel

    2013-01-01

    In this study, we characterized tissue factor (TF) expression in mouse hepatocytes (HPCs) and evaluated its role in mouse models of HPC transplantation and acetaminophen (APAP) overdose. TF expression was significantly reduced in isolated HPCs and liver homogenates from TFflox/flox/albumin-Cre mice (HPCΔTF mice) compared with TFflox/flox mice (control mice). Isolated mouse HPCs expressed low levels of TF that clotted factor VII-deficient human plasma. In addition, HPC TF initiated factor Xa generation without exogenous factor VIIa, and TF activity was increased dramatically after cell lysis. Treatment of HPCs with an inhibitory TF antibody or a cell-impermeable lysine-conjugating reagent prior to lysis substantially reduced TF activity, suggesting that TF was mainly present on the cell surface. Thrombin generation was dramatically reduced in APAP-treated HPCΔTF mice compared with APAP-treated control mice. In addition, thrombin generation was dependent on donor HPC TF expression in a model of HPC transplantation. These results suggest that mouse HPCs constitutively express cell surface TF that mediates activation of coagulation during hepatocellular injury. PMID:23305736

  15. Microwave Tissue Soldering for Immediate Wound Closure

    NASA Technical Reports Server (NTRS)

    Arndt, G. Dickey; Ngo, Phong H.; Phan, Chau T.; Byerly, Diane; Dusl, John; Sognier, Marguerite A.; Carl, James

    2011-01-01

    A novel approach for the immediate sealing of traumatic wounds is under development. A portable microwave generator and handheld antenna are used to seal wounds, binding the edges of the wound together using a biodegradable protein sealant or solder. This method could be used for repairing wounds in emergency settings by restoring the wound surface to its original strength within minutes. This technique could also be utilized for surgical purposes involving solid visceral organs (i.e., liver, spleen, and kidney) that currently do not respond well to ordinary surgical procedures. A miniaturized microwave generator and a handheld antenna are used to deliver microwave energy to the protein solder, which is applied to the wound. The antenna can be of several alternative designs optimized for placement either in contact with or in proximity to the protein solder covering the wound. In either case, optimization of the design includes the matching of impedances to maximize the energy delivered to the protein solder and wound at a chosen frequency. For certain applications, an antenna could be designed that would emit power only when it is in direct contact with the wound. The optimum frequency or frequencies for a specific application would depend on the required depth of penetration of the microwave energy. In fact, a computational simulation for each specific application could be performed, which would then match the characteristics of the antenna with the protein solder and tissue to best effect wound closure. An additional area of interest with potential benefit that remains to be validated is whether microwave energy can effectively kill bacteria in and around the wound. Thus, this may be an efficient method for simultaneously sterilizing and closing wounds.

  16. Microwave soft tissue ablation (Invited Paper)

    NASA Astrophysics Data System (ADS)

    Clegg, Peter J.; Cronin, Nigel J.

    2005-04-01

    Microsulis, in conjunction with the University of Bath have developed a set of novel microwave applicators for the ablation of soft tissues. These interstitial applicators have been designed for use in open surgical, laparoscopic and percutaneous settings and range in diameter from 2.4 to 7 mm. A 20 mm diameter flat faced interface applicator was developed as an adjunct to the open surgical interstitial applicator and has been applied to the treatment of surface breaking lesions in hepatobiliary surgery. Taken as a complete tool set the applicators are capable of treating a wide range of conditions in a safe and efficacious manner. The modality employs a radiated electromagnetic field at the allocated medical frequency of 2.45 GHz and powers between 30 and 150 Watts. Computer simulations, bench testing, safety and efficacy testing, ex-vivo and in-vivo work plus clinical trials have demonstrated that these systems are capable of generating large volumes of ablation in short times with favourable ablation geometries. Clinical studies have shown very low complication rates with minimal local recurrence. It is considered that this modality offers major advantages over currently marketed products. The technique is considered to be particularly safe as it is quick and there is no passage of current obviating the requirement for grounding pads. Since the microwave field operates primarily on water and all soft tissues with the exception of fat are made up of approximately 70% water the heating pattern is highly predictable making repeatability a key factor for this modality.

  17. Microwave imaging of tissue blood content changes.

    PubMed

    Hawley, M S; Broquetas, A; Jofre, L; Bolomey, J C; Gaboriaud, G

    1991-05-01

    Active microwave imaging gives information on the dielectric properties of of the body, allowing the collection of data that are distinct from, but complementary to, those available from other imaging methods based on different radiations. Two types of microwave imaging systems have been developed. The first is a planar system that irradiates the object with a plane wave and collects scattered phase and amplitude data at 1024 points on a parallel plane. The data can be reconstructed using a back propagation technique to give an image of the object. The second type of system is a tomographic scanner, consisting of a multiplexed 64-element circular array of waveguides. The waveguides are electronically scanned, alternately as sources and receivers, to give a complete scan of the object with no mechanical movement. A tomographic 'slice' of the object is reconstructed using spectral domain interpolation. Both systems work at 2.45 GHz with an incident power less than 1 mW cm-2 at the object and require a coupling medium (usually water) between the object and the source/receiver. Imaging parameters are appropriate for clinical use: a spatial resolution of 1 cm, measurement time of a few seconds and contrast resolution of around 1%. The effects of changes in perfusion on images of isolated animal organs are presented. Images have also been obtained, with both systems, of the internal dielectric structure of the forearm and of variations in dielectric properties due to changes of tissue blood content effected by application and release of tourniquets to the upper arm. Results show that these changes are well demonstrated by microwave imaging, and possible clinical applications are discussed. PMID:1870328

  18. Matriptase activation connects tissue factor-dependent coagulation initiation to epithelial proteolysis and signaling.

    PubMed

    Le Gall, Sylvain M; Szabo, Roman; Lee, Melody; Kirchhofer, Daniel; Craik, Charles S; Bugge, Thomas H; Camerer, Eric

    2016-06-23

    The coagulation cascade is designed to sense tissue injury by physical separation of the membrane-anchored cofactor tissue factor (TF) from inactive precursors of coagulation proteases circulating in plasma. Once TF on epithelial and other extravascular cells is exposed to plasma, sequential activation of coagulation proteases coordinates hemostasis and contributes to host defense and tissue repair. Membrane-anchored serine proteases (MASPs) play critical roles in the development and homeostasis of epithelial barrier tissues; how MASPs are activated in mature epithelia is unknown. We here report that proteases of the extrinsic pathway of blood coagulation transactivate the MASP matriptase, thus connecting coagulation initiation to epithelial proteolysis and signaling. Exposure of TF-expressing cells to factors (F) VIIa and Xa triggered the conversion of latent pro-matriptase to an active protease, which in turn cleaved the pericellular substrates protease-activated receptor-2 (PAR2) and pro-urokinase. An activation pathway-selective PAR2 mutant resistant to direct cleavage by TF:FVIIa and FXa was activated by these proteases when cells co-expressed pro-matriptase, and matriptase transactivation was necessary for efficient cleavage and activation of wild-type PAR2 by physiological concentrations of TF:FVIIa and FXa. The coagulation initiation complex induced rapid and prolonged enhancement of the barrier function of epithelial monolayers that was dependent on matriptase transactivation and PAR2 signaling. These observations suggest that the coagulation cascade engages matriptase to help coordinate epithelial defense and repair programs after injury or infection, and that matriptase may contribute to TF-driven pathogenesis in cancer and inflammation. PMID:27114461

  19. Microwave non-contact imaging of subcutaneous human body tissues.

    PubMed

    Kletsov, Andrey; Chernokalov, Alexander; Khripkov, Alexander; Cho, Jaegeol; Druchinin, Sergey

    2015-10-01

    A small-size microwave sensor is developed for non-contact imaging of a human body structure in 2D, enabling fitness and health monitoring using mobile devices. A method for human body tissue structure imaging is developed and experimentally validated. Subcutaneous fat tissue reconstruction depth of up to 70 mm and maximum fat thickness measurement error below 2 mm are demonstrated by measurements with a human body phantom and human subjects. Electrically small antennas are developed for integration of the microwave sensor into a mobile device. Usability of the developed microwave sensor for fitness applications, healthcare, and body weight management is demonstrated.

  20. Microwave non-contact imaging of subcutaneous human body tissues

    PubMed Central

    Chernokalov, Alexander; Khripkov, Alexander; Cho, Jaegeol; Druchinin, Sergey

    2015-01-01

    A small-size microwave sensor is developed for non-contact imaging of a human body structure in 2D, enabling fitness and health monitoring using mobile devices. A method for human body tissue structure imaging is developed and experimentally validated. Subcutaneous fat tissue reconstruction depth of up to 70 mm and maximum fat thickness measurement error below 2 mm are demonstrated by measurements with a human body phantom and human subjects. Electrically small antennas are developed for integration of the microwave sensor into a mobile device. Usability of the developed microwave sensor for fitness applications, healthcare, and body weight management is demonstrated. PMID:26609415

  1. Laser tissue coagulation and concurrent optical coherence tomography through a double-clad fiber coupler.

    PubMed

    Beaudette, Kathy; Baac, Hyoung Won; Madore, Wendy-Julie; Villiger, Martin; Godbout, Nicolas; Bouma, Brett E; Boudoux, Caroline

    2015-04-01

    Double-clad fiber (DCF) is herein used in conjunction with a double-clad fiber coupler (DCFC) to enable simultaneous and co-registered optical coherence tomography (OCT) and laser tissue coagulation. The DCF allows a single channel fiber-optic probe to be shared: i.e. the core propagating the OCT signal while the inner cladding delivers the coagulation laser light. We herein present a novel DCFC designed and built to combine both signals within a DCF (>90% of single-mode transmission; >65% multimode coupling). Potential OCT imaging degradation mechanisms are also investigated and solutions to mitigate them are presented. The combined DCFC-based system was used to induce coagulation of an ex vivo swine esophagus allowing a real-time assessment of thermal dynamic processes. We therefore demonstrate a DCFC-based system combining OCT imaging with laser coagulation through a single fiber, thus enabling both modalities to be performed simultaneously and in a co-registered manner. Such a system enables endoscopic image-guided laser marking of superficial epithelial tissues or laser thermal therapy of epithelial lesions in pathologies such as Barrett's esophagus.

  2. Nonchemical dehydration of fixed tissue combining microwaves and vacuum.

    PubMed

    Kok, L P; Boon, M E

    1994-03-01

    A novel histoprocessing method for paraffin and plastic sections is presented in which dehydration of fixed tissue blocks is achieved within 5 minutes by microwaving under vacuum. Exploiting the decrease in boiling temperature under vacuum, we succeed in evaporating liquid molecules in the tissues at physiological temperatures. In this microwave-vacuum dehydration method, the fixed tissue does not come in contact with ethyl alcohol. For the paraffin method, the nonchemically dehydrated tissue is directly placed in the intermedium isopropanol prior to embedding. For the resin method, it is directly placed in the monomer solution. With this method, microscopical imaging can be brought closer to the in-vivo situation as is illustrated in liver and kidney sections. In principle, this microwave-vacuum dehydration method can also be used for ultrastructural studies.

  3. Sepsis-induced coagulation in the baboon lung is associated with decreased tissue factor pathway inhibitor.

    PubMed

    Tang, Haiwang; Ivanciu, Lacramioara; Popescu, Narcis; Peer, Glenn; Hack, Erik; Lupu, Cristina; Taylor, Fletcher B; Lupu, Florea

    2007-09-01

    Increased tissue factor (TF)-dependent procoagulant activity in sepsis may be partly due to decreased expression or function of tissue factor pathway inhibitor (TFPI). To test this hypothesis, baboons were infused with live Escherichia coli and sacrificed after 2, 8, or 24 hours. Confocal and electron microscopy revealed increased leukocyte infiltration and fibrin deposition in the intravascular and interstitial compartments. Large amounts of TF were detected by immunostaining in leukocytes and platelet-rich microthrombi. TF induction was documented by quantitative reverse transcriptase-polymerase chain reaction, enzyme-linked immunosorbent assay, and coagulation assays. Lung-associated TFPI antigen and mRNA decreased during sepsis, and TFPI activity diminished abruptly at 2 hours. Blocking antibodies against TFPI increased fibrin deposition in septic baboon lungs, suggesting that TF-dependent coagulation might be aggravated by reduced endothelial TFPI. Decreased TFPI activity coincided with the release of tissue plasminogen activator and the peak of plasmin generation, suggesting that TFPI could undergo proteolytic inactivation by plasmin. Enhanced plasmin produced in septic baboons by infusion of blocking antibodies against plasminogen activator inhibitor-1 led to decreased lung-associated TFPI and unforeseen massive fibrin deposition. We conclude that activation of TF-driven coagulation not adequately countered by TFPI may underlie the widespread thrombotic complications of sepsis.

  4. Cardiac tissue ablation with catheter-based microwave heating.

    PubMed

    Rappaport, C

    2004-11-01

    The common condition of atrial fibrillation is often treated by cutting diseased cardiac tissue to disrupt abnormal electrical conduction pathways. Heating abnormal tissue with electromagnetic power provides a minimally invasive surgical alternative to treat these cardiac arrhythmias. Radio frequency ablation has become the method of choice of many physicians. Recently, microwave power has also been shown to have great therapeutic benefit in medical treatment requiring precise heating of biological tissue. Since microwave power tends to be deposited throughout the volume of biological media, microwave heating offers advantages over other heating modalities that tend to heat primarily the contacting surface. It is also possible to heat a deeper volume of tissue with more precise control using microwaves than with purely thermal conduction or RF electrode heating. Microwave Cardiac Ablation (MCA) is used to treat heart tissue that allows abnormal electrical conduction by heating it to the point of inactivation. Microwave antennas that fit within catheter systems can be positioned close to diseased tissue. Specialized antenna designs that unfurl from the catheter within the heart can then radiate specifically shaped fields, which overcome problems such as excessive surface heating at the contact point. The state of the art in MCA is reviewed in this paper and a novel catheter-based unfurling wide aperture antenna is described. This antenna consists of the centre conductor of a coaxial line, shaped into a spiral and insulated from blood and tissue by a non-conductive fluid filled balloon. Initially stretched straight inside a catheter for transluminal guiding, once in place at the cardiac target, the coiled spiral antenna is advanced into the inflated balloon. Power is applied in the range of 50-150 W at the reserved industrial, scientific and medical (ISM) frequency of 915 MHz for 30-90 s to create an irreversible lesion. The antenna is then retracted back into the

  5. Physiological levels of blood coagulation factors IX and X control coagulation kinetics in an in vitro model of circulating tissue factor

    NASA Astrophysics Data System (ADS)

    Tormoen, Garth W.; Khader, Ayesha; Gruber, András; McCarty, Owen J. T.

    2013-06-01

    Thrombosis significantly contributes to cancer morbidity and mortality. The mechanism behind thrombosis in cancer may be circulating tissue factor (TF), as levels of circulating TF are associated with thrombosis. However, circulating TF antigen level alone has failed to predict thrombosis in patients with cancer. We hypothesize that coagulation factor levels regulate the kinetics of circulating TF-induced thrombosis. Coagulation kinetics were measured as a function of individual coagulation factor levels and TF particle concentration. Clotting times increased when pooled plasma was mixed at or above a ratio of 4:6 with PBS. Clotting times increased when pooled plasma was mixed at or above a ratio of 8:2 with factor VII-depleted plasma, 7:3 with factor IX- or factor X-depleted plasmas, or 2:8 with factor II-, V- or VIII-depleted plasmas. Addition of coagulation factors VII, X, IX, V and II to depleted plasmas shortened clotting and enzyme initiation times, and increased enzyme generation rates in a concentration-dependent manner. Only additions of factors IX and X from low-normal to high-normal levels shortened clotting times and increased enzyme generation rates. Our results demonstrate that coagulation kinetics for TF particles are controlled by factor IX and X levels within the normal physiological range. We hypothesize that individual patient factor IX and X levels may be prognostic for susceptibility to circulating TF-induced thrombosis.

  6. Physiological levels of blood coagulation factors IX and X control coagulation kinetics in an in vitro model of circulating tissue factor

    PubMed Central

    Tormoen, Garth W.; Khader, Ayesha; Gruber, András; McCarty, Owen J.T.

    2013-01-01

    Thrombosis significantly contributes to cancer morbidity and mortality. The mechanism behind thrombosis in cancer may be circulating tissue factor (TF), as levels of circulating TF are associated with thrombosis. However, circulating TF antigen level alone has failed to predict thrombosis in patients with cancer. We hypothesize that coagulation factor levels regulate the kinetics of circulating TF-induced thrombosis. Coagulation kinetics were measured as a function of individual coagulation factor levels and TF particle concentration. Clotting times increased when pooled plasma was mixed at or above a ratio of 4:6 with PBS. Clotting times increased when pooled plasma was mixed at or above a ratio of 8:2 with factor VII-depleted plasma, 7:3 with factor IX- or factor X-depleted plasmas, or 2:8 with factor II-, V- or VIII-depleted plasmas. Addition of coagulation factors VII, X, IX, V and II to depleted plasmas shortened clotting and enzyme initiation times, and increased enzyme generation rates in a concentration-dependent manner. Only additions of factors IX and X from low-normal to high-normal levels shortened clotting times and increased enzyme generation rates. Our results demonstrate that coagulation kinetics for TF particles are controlled by factor IX and X levels within the normal physiological range. We hypothesize that individual patient factor IX and X levels may be prognostic for susceptibility to circulating TF-induced thrombosis. PMID:23585459

  7. Markers of Endothelial Dysfunction, Coagulation and Tissue Fibrosis Independently Predict Venous Thromboembolism in HIV

    PubMed Central

    MUSSELWHITE, Laura W.; SHEIKH, Virginia; NORTON, Thomas D.; RUPERT, Adam; PORTER, Brian O.; PENZAK, Scott R.; SKINNER, Jeff; MICAN, JoAnn M.; HADIGAN, Colleen; SERETI, Irini

    2015-01-01

    Objective HIV infection is associated with coagulation abnormalities and significantly increased risk of venous thrombosis. It has been shown that higher plasma levels of coagulation and inflammatory biomarkers predicted mortality in HIV. We investigated the relationship between venous thrombosis and HIV-related characteristics, traditional risk factors of hypercoagulability and pre-event levels of biomarkers. Design A retrospective case-control study of 23 HIV-infected individuals who experienced an incident venous thromboembolic (VTE) event while enrolled in National Institutes of Health studies from 1995–2010 and 69 age and sex-matched HIV-infected individuals without known VTE. Methods Biomarkers of inflammation, endothelial dysfunction, coagulation, tissue fibrosis, and cytomegalovirus (CMV) reactivation were assessed by ELISA-based assays and PCR using plasma obtained prior to the event. Results VTE events were related to nadir CD4 count, lifetime history of multiple opportunistic infections, CMV disease, CMV viremia, immunological AIDS, active infection and provocation (i.e. recent hospitalization, surgery or trauma). VTE events were independently associated with increased plasma levels of P-selectin, P=0.002; D-dimer, P=0.01; and hyaluronic acid, P=0.009 in a multivariate analysis. No significant differences in antiretroviral or interleukin 2 exposures, plasma HIV viremia, or other traditional risk factors were observed. Conclusion Severe immunodeficiency, active infection and provocation are associated with venous thromboembolic disease in HIV. Biomarkers of endothelial dysfunction, coagulation and tissue fibrosis may help identify HIV-infected patients at elevated risk of VTE. PMID:21412059

  8. Methods and apparatus for microwave tissue welding for wound closure

    NASA Technical Reports Server (NTRS)

    Arndt, G. Dickey (Inventor); Ngo, Phong H. (Inventor); Phan, Chau T. (Inventor); Byerly, Diane L. (Inventor); Dusl, John R. (Inventor); Sognier, Marguerite A. (Inventor); Carl, James R. (Inventor)

    2013-01-01

    Methods and apparatus for joining biological tissue together are provided. In at least one specific embodiment, a method for joining biological tissue together can include applying a biological solder on a wound. A barrier layer can be disposed on the biological solder. An antenna can be located in proximate spatial relationship to the barrier layer. An impedance of the antenna can be matched to an impedance of the wound. Microwaves from a signal generator can be transmitted through the antenna to weld two or more biological tissue pieces of the wound together. A power of the microwaves can be adjusted by a control circuit disposed between the antenna and the signal generator. The heating profile within the tissue may be adjusted and controlled by the placement of metallic microspheres in or around the wound.

  9. Microwave Ablation Compared with Radiofrequency Ablation for Breast Tissue in an Ex Vivo Bovine Udder Model

    SciTech Connect

    Tanaka, Toshihiro; Westphal, Saskia; Isfort, Peter; Braunschweig, Till; Penzkofer, Tobias Bruners, Philipp; Kichikawa, Kimihiko; Schmitz-Rode, Thomas Mahnken, Andreas H.

    2012-08-15

    Purpose: To compare the effectiveness of microwave (MW) ablation with radiofrequency (RF) ablation for treating breast tissue in a nonperfused ex vivo model of healthy bovine udder tissue. Materials and Methods: MW ablations were performed at power outputs of 25W, 35W, and 45W using a 915-MHz frequency generator and a 2-cm active tip antenna. RF ablations were performed with a bipolar RF system with 2- and 3-cm active tip electrodes. Tissue temperatures were continuously monitored during ablation. Results: The mean short-axis diameters of the coagulation zones were 1.34 {+-} 0.14, 1.45 {+-} 0.13, and 1.74 {+-} 0.11 cm for MW ablation at outputs of 25W, 35W, and 45W. For RF ablation, the corresponding values were 1.16 {+-} 0.09 and 1.26 {+-} 0.14 cm with electrodes having 2- and 3-cm active tips, respectively. The mean coagulation volumes were 2.27 {+-} 0.65, 2.85 {+-} 0.72, and 4.45 {+-} 0.47 cm{sup 3} for MW ablation at outputs of 25W, 35W, and 45W and 1.18 {+-} 0.30 and 2.29 {+-} 0.55 cm{sup 3} got RF ablation with 2- and 3-cm electrodes, respectively. MW ablations at 35W and 45W achieved significantly longer short-axis diameters than RF ablations (P < 0.05). The highest tissue temperature was achieved with MW ablation at 45W (P < 0.05). On histological examination, the extent of the ablation zone in MW ablations was less affected by tissue heterogeneity than that in RF ablations. Conclusion: MW ablation appears to be advantageous with respect to the volume of ablation and the shape of the margin of necrosis compared with RF ablation in an ex vivo bovine udder.

  10. Inflammation and the coagulation system in tuberculosis: Tissue Factor leads the dance.

    PubMed

    Caccamo, Nadia; Dieli, Francesco

    2016-02-01

    Mycobacterium tuberculosis, the causative agent of tuberculosis, drives the formation of granulomas, structures in which both immune cells and the bacterial pathogen cohabit. The most abundant cells in granulomas are macrophages, which contribute as both cells with bactericidal activity and as targets for M. tuberculosis infection and proliferation during the entire course of infection. The mechanisms and factors involved in the regulation and control of macrophage microenvironment-specific polarization and plasticity are not well understood, as some granulomas are able to control bacteria growth and others fail to do so, permitting bacterial spread. In this issue of the European Journal of Immunology, Venkatasubramanian et al. [Eur. J. Immunol. 2016. 46: 464-479] show that mice lacking the tissue factor gene in myeloid cells have augmented M. tuberculosis growth and increased inflammation in the lungs. This suggests that tissue factor, an initiator of coagulation, is important for the generation of fibrin, which supports granuloma formation. This article demonstrates for the first time the involvement of tissue factor in inducing effective immunity against M. tuberculosis, and sheds new lights on the complex interplay between host inflammatory response, the coagulation system, and the control of M. tuberculosis infection. PMID:26763085

  11. Laser-induced heat diffusion limited tissue coagulation as a laser therapy mode

    NASA Astrophysics Data System (ADS)

    Lubashevsky, Ihor A.; Priezzhev, Alexander V.; Gafiychuk, Vasyl V.

    2000-11-01

    Previously we have developed a free boundary model for local thermal coagulation induced by laser light absorption when the tissue region affected directly by laser light is sufficiently small and heat diffusion into the surrounding tissue governs the necrosis growth. In the present paper keeping in mind the obtained results we state the point of view on the necrosis formation under these conditions as the basis of an individual laser therapy mode exhibiting specific properties. In particular, roughly speaking, the size of the resulting necrosis domain is determined by the physical characteristics of the tissue and its response to local heating, and by the applicator form rather than the treatment duration and the irradiation power.

  12. Laser-induced heat diffusion limited tissue coagulation as a laser therapy mode

    NASA Astrophysics Data System (ADS)

    Lubashevsky, Ihor A.; Priezzhev, Alexander V.; Gafiychuk, Vasyl V.

    2000-06-01

    Previously we have developed a free boundary model for local thermal coagulation induced by laser light absorption when the tissue region affected directly by laser light is sufficiently small and heat diffusion into the surrounding tissue governs the necrosis growth. In the present paper keeping in mind the obtained results we state the point of view on the necrosis formation under these conditions as the basis of an individual layer therapy mode exhibiting specific properties. In particular, roughly speaking, the size of the resulting necrosis domain is determined by the physical characteristics of the tissue and its response to local heating, and by the applicator form rather than the treatment duration and the irradiation power.

  13. Killing of Mycobacterium tuberculosis in tissue by microwaves with simultaneous tissue fixation.

    PubMed

    Douglas-Jones, A G; Duddridge, L R; Jenkins, P A

    1990-03-01

    Guinea-pig liver heavily infected with M. tuberculosis has been sterilised by exposure to microwaves in a standard commercially available domestic oven. Subsequent histology showed good tissue preservation and organisms of normal morphology were identified by Ziehl Neelsen staining. The findings allow the safe use of frozen sections for diagnosis in tissue containing M. tuberculosis. PMID:2115218

  14. Coagulation factor V mediates inhibition of tissue factor signaling by activated protein C in mice.

    PubMed

    Liang, Hai Po H; Kerschen, Edward J; Basu, Sreemanti; Hernandez, Irene; Zogg, Mark; Jia, Shuang; Hessner, Martin J; Toso, Raffaella; Rezaie, Alireza R; Fernández, José A; Camire, Rodney M; Ruf, Wolfram; Griffin, John H; Weiler, Hartmut

    2015-11-19

    The key effector molecule of the natural protein C pathway, activated protein C (aPC), exerts pleiotropic effects on coagulation, fibrinolysis, and inflammation. Coagulation-independent cell signaling by aPC appears to be the predominant mechanism underlying its highly reproducible therapeutic efficacy in most animal models of injury and infection. In this study, using a mouse model of Staphylococcus aureus sepsis, we demonstrate marked disease stage-specific effects of the anticoagulant and cell signaling functions of aPC. aPC resistance of factor (f)V due to the R506Q Leiden mutation protected against detrimental anticoagulant effects of aPC therapy but also abrogated the anti-inflammatory and mortality-reducing effects of the signaling-selective 5A-aPC variant that has minimal anticoagulant function. We found that procofactor V (cleaved by aPC at R506) and protein S were necessary cofactors for the aPC-mediated inhibition of inflammatory tissue-factor signaling. The anti-inflammatory cofactor function of fV involved the same structural features that govern its cofactor function for the anticoagulant effects of aPC, yet its anti-inflammatory activities did not involve proteolysis of activated coagulation factors Va and VIIIa. These findings reveal a novel biological function and mechanism of the protein C pathway in which protein S and the aPC-cleaved form of fV are cofactors for anti-inflammatory cell signaling by aPC in the context of endotoxemia and infection.

  15. High-energy pulsed Raman fiber laser for biological tissue coagulation

    PubMed Central

    Baac, Hyoung Won; Uribe-Patarroyo, Néstor; Bouma, Brett E.

    2014-01-01

    We demonstrate a high-energy pulsed Raman fiber laser (RFL) with an emission wavelength of 1.44 μm, corresponding to an absorption peak of water. Microsecond pulses with >20 mJ/pulse and >40 W peak power were generated, well above the threshold for tissue coagulation and ablation. Here, we focus on the optical characterization and optimization of high-energy and high-power RFLs excited by an ytterbium fiber laser, comparing three configurations that use different Raman gain fibers, but all of which were prepared with a one-side opened, free-run mode without output mirrors. We show that the free-run configuration can generate sufficiently high energy without requiring a closed cavity design. Experimental RFL characteristics corresponded well with numerical simulations. We discuss the Stokes beam generation process in our system and loss mechanisms mainly associated with fiber Bragg gratings. PMID:24664059

  16. Tissue factor pathway inhibitor dose-dependently inhibits coagulation activation without influencing the fibrinolytic and cytokine response during human endotoxemia.

    PubMed

    de Jonge, E; Dekkers, P E; Creasey, A A; Hack, C E; Paulson, S K; Karim, A; Kesecioglu, J; Levi, M; van Deventer, S J; van Der Poll, T

    2000-02-15

    Inhibition of the tissue factor pathway has been shown to attenuate the activation of coagulation and to prevent death in a gram-negative bacteremia primate model of sepsis. It has been suggested that tissue factor influences inflammatory cascades other than the coagulation system. The authors sought to determine the effects of 2 different doses of recombinant tissue factor pathway inhibitor (TFPI) on endotoxin-induced coagulant, fibrinolytic, and cytokine responses in healthy humans. Two groups, each consisting of 8 healthy men, were studied in a double-blind, randomized, placebo-controlled crossover study. Subjects were studied on 2 different occasions. They received a bolus intravenous injection of 4 ng/kg endotoxin, which was followed by a 6-hour continuous infusion of TFPI or placebo. Eight subjects received 0.05 mg/kg per hour TFPI after a bolus of 0.0125 mg/kg (low-dose group), and 8 subjects received 0.2 mg/kg per hour after a bolus of 0.05 mg/kg (high-dose group). Endotoxin injection induced the activation of coagulation, the activation and subsequent inhibition of fibrinolysis, and the release of proinflammatory and antiinflammatory cytokines. TFPI infusion induced a dose-dependent attenuation of thrombin generation, as measured by plasma F1 + 2 and thrombin-antithrombin complexes, with a complete blockade of coagulation activation after high-dose TFPI. Endotoxin-induced changes in the fibrinolytic system and cytokine levels were not altered by either low-dose or high-dose TFPI. The authors concluded that TFPI effectively and dose-dependently attenuates the endotoxin-induced coagulation activation in humans without influencing the fibrinolytic and cytokine response. (Blood. 2000;95:1124-1129)

  17. Microwave-heating-coupled photoacoustic radar for tissue diagnostic imaging

    NASA Astrophysics Data System (ADS)

    Wang, Wei; Mandelis, Andreas

    2016-06-01

    An investigation of microwave (MW) heating effects on biotissue for enhancing photoacoustic radar (PAR) signals was conducted. Localized tissue heating generated by MWs was used to improve PAR imaging depth and signal-to-noise ratio (SNR). Elevated temperatures were measured with thermocouples in ex vivo bovine muscle. The measured temperature rise on the heated spot surface by MWs was in agreement with theoretical predictions. The study showed localized MW heating can increase the photoacoustic imaging depth by 11%, and the SNR by 5% in ex vivo bovine muscle.

  18. Silicon micromachined ultrasonic scalpel for the dissection and coagulation of tissue.

    PubMed

    Lockhart, R; Friedrich, F; Briand, D; Margairaz, P; Sandoz, J-P; Brossard, J; Keppner, H; Olson, W; Dietz, T; Tardy, Y; Meyer, H; Stadelmann, P; Robert, C; Boegli, A; Farine, P-A; de Rooij, N F; Burger, J

    2015-08-01

    This work presents a planar, longitudinal mode ultrasonic scalpel microfabricated from monocrystalline silicon wafers. Silicon was selected as the material for the ultrasonic horn due to its high speed of sound and thermal conductivity as well as its low density compared to commonly used titanium based alloys. Combined with a relatively high Young's modulus, a lighter, more efficient design for the ultrasonic scalpel can be implemented which, due to silicon batch manufacturing, can be fabricated at a lower cost. Transverse displacement of the piezoelectric actuators is coupled into the planar silicon structure and amplified by its horn-like geometry. Using finite element modeling and experimental displacement and velocity data as well as cutting tests, key design parameters have been identified that directly influence the power efficiency and robustness of the device as well as its ease of controllability when driven in resonance. Designs in which the full- and half-wave transverse modes of the transducer are matched or not matched to the natural frequencies of the piezoelectric actuators have been evaluated. The performance of the Si micromachined scalpels has been found to be comparable to existing commercial titanium based ultrasonic scalpels used in surgical operations for efficient dissection of tissue as well as coaptation and coagulation of tissue for hemostasis. Tip displacements (peak-to-peak) of the scalpels in the range of 10-50 μm with velocities ranging from 4 to 11 m/s have been achieved. The frequency of operation is in the range of 50-100 kHz depending on the transverse operating mode and the length of the scalpel. The cutting ability of the micromachined scalpels has been successfully demonstrated on chicken tissue.

  19. Optical properties of normal and thermally coagulated chicken liver tissue measured ex-vivo with diffuse reflectance

    NASA Astrophysics Data System (ADS)

    Hafeez-Ullah; Atif, M.; Firdous, S.; Mehmood, M. S.; Hamza, M. Y.; Imran, M.; Hussain, G.; Ikram, M.

    2011-02-01

    The purpose of the present study is to determine the optical properties of normal and thermally coagulated chicken liver at 720, 740, 770, 810, 825 and 840 nm wavelengths of laser irradiation. So, we were able to evaluate these optical properties (absorption and scattering coefficients) with ex-vivo study using Kubelka Munk Model (KMM) from the radial dependence of the diffuse reflectance with femtosecond pulsed laser in near IR region. These coefficients were significantly increased with coagulation. The penetration depths of the diffused light have been reported to a maximum value of 8.12 ± 0.36 mm in normal liver and 2.49 ± 0.17 mm in coagulated liver at 840 nm showing increasing behavior towards IR region. The Monte Carlo simulation was used to check the theoretical validation of measured optical properties of the tissue that showed a good match with our experimental results. We believe that these differences in optical properties will be helpful for the understanding arid optimal use of laser applications in medicine and differential diagnosis of tissues by using different optical methods. Especially for the investigation of biological tissue for photodynamic therapy (PDT), the knowledge of the specific optical properties and their thermo-induced changes is important.

  20. Infrared fiber optic temperature monitoring of biological tissues heated in a microwave oven

    NASA Astrophysics Data System (ADS)

    Belotserkovsky, Edward; Ashkenasy, Y.; Shenfeld, Ofer; Drizlikh, S.; Zur, Albert; Katzir, Abraham

    1993-05-01

    The heating of tissue by microwave radiation has attained a place of importance in various medical fields such as the treatment of malignancies, urinary retention and hypothermia. Accurate temperature measurements in these treated tissues is important for treatment planning and for the control of the heating process. It is also important to be able to measure spacial temperature distribution in the tissues because they are heated in a non uniform way by the microwave radiation. Fiber optic radiometry makes possible accurate temperature measurement in the presence of microwave radiation and does not require contact with the tissue. Using a IR silver halide fiber optic radiometric temperature sensor we obtained accurate temperature measurements of tissues heated by microwave, enabling us to control the heating process in all regions of the tissue. We also performed temperature mapping of the heated tissues and demonstrated the non-uniform temperature distributions in them.

  1. Optical properties of selected native and coagulated human brain tissues in vitro in the visible and near infrared spectral range

    NASA Astrophysics Data System (ADS)

    Yaroslavsky, A. N.; Schulze, P. C.; Yaroslavsky, I. V.; Schober, R.; Ulrich, F.; Schwarzmaier, H.-J.

    2002-06-01

    Medical laser applications require knowledge about the optical properties of target tissue. In this study, the optical properties of selected native and coagulated human brain structures were determined in vitro in the spectral range between 360 and 1100 nm. The tissues investigated included white brain matter, grey brain matter, cerebellum and brainstem tissues (pons, thalamus). In addition, the optical properties of two human tumours (meningioma, astrocytoma WHO grade II) were determined. Diffuse reflectance, total transmittance and collimated transmittance of the samples were measured using an integrating-sphere technique. From these experimental data, the absorption coefficients, the scattering coefficients and the anisotropy factors of the samples were determined employing an inverse Monte Carlo technique. The tissues investigated differed from each other predominantly in their scattering properties. Thermal coagulation reduced the optical penetration depth substantially. The highest penetration depths for all tissues investigated were found in the wavelength range between 1000 and 1100 nm. A comparison with data from the literature revealed the importance of the employed tissue preparation technique and the impact of the theoretical model used to extract the optical coefficients from the measured quantities.

  2. Radiofrequency and microwave ablation in combination with transarterial chemoembolization induce equivalent histopathologic coagulation necrosis in hepatocellular carcinoma patients bridged to liver transplantation

    PubMed Central

    Ginsburg, Michael; Ahmed, Osman; Doshi, Taral; Hart, John; Te, Helen; Van Ha, Thuong Gustav

    2016-01-01

    Background Bridging therapy plays an increasingly important role in the management of patients with hepatocellular carcinoma (HCC) awaiting liver transplantation (LT). Combination therapy with drug-eluting bead transarterial chemoembolization (DEB-TACE) and percutaneous thermal ablation, such as radiofrequency ablation (RFA) or microwave ablation (MWA), has shown success at prolonging survival and bridging patients to LT. However, few studies have evaluated the two combination therapy regimens head-to-head at a single institution, and fewer have compared histopathology. This retrospective study compares tumor coagulation on explanted livers in patients with HCC treated with DEB-TACE sequentially combined with RFA versus MWA. Methods From 2005 to 2015, 42 sequential patients underwent combination therapy prior to LT by Milan criteria, with 11 patients (11 tumors; mean, 2.9 cm; range, 1.8–4.3 cm) in the DEB-TACE/RFA cohort and 31 patients (40 tumors; mean, 2.4 cm; range, 1.1–5.4 cm) in the DEB-TACE/MWA cohort. The mean TACE procedures in the RFA and MWA cohorts were 1.3 (range, 1–2) and 1.3 (range, 1–3), respectively. The mean thermal ablations in the RFA and MWA cohorts were 1.2 (range, 1–2) and 1.3 (range, 1–3), respectively. Tumor coagulation was evaluated on explanted livers. Results Mean tumor coagulation in the RFA and MWA cohorts were 88.9% (range, 0–100%) and 90.5% (range, 30–100%), respectively (P=0.82). Rates of complete tumor coagulation in the RFA and MWA cohorts were 45% and 53%, respectively (P=0.74). No difference in tumor coagulation was found between the cohorts when separating tumors <3 cm (P=0.21) and >3 cm (P=0.09). Among all 51 tumors, the 36 in complete response (CR) on imaging at LT demonstrated mean tumor coagulation of 95.8%. No correlation was found between tumor coagulation and initial tumor size or time interval to LT. No tumor seeding was seen along the ablation tracts. Conclusions RFA and MWA in sequential combination

  3. Tissue factor is induced by interleukin-33 in human endothelial cells: a new link between coagulation and inflammation.

    PubMed

    Stojkovic, Stefan; Kaun, Christoph; Basilio, Jose; Rauscher, Sabine; Hell, Lena; Krychtiuk, Konstantin A; Bonstingl, Cornelia; de Martin, Rainer; Gröger, Marion; Ay, Cihan; Holnthoner, Wolfgang; Eppel, Wolfgang; Neumayer, Christoph; Huk, Ihor; Huber, Kurt; Demyanets, Svitlana; Wojta, Johann

    2016-01-01

    Tissue factor (TF) is the primary trigger of coagulation. Elevated levels of TF are found in atherosclerotic plaques, and TF leads to thrombus formation when released upon plaque rupture. Interleukin (IL)-33 was previously shown to induce angiogenesis and inflammatory activation of endothelial cells (ECs). Here, we investigated the impact of IL-33 on TF in human ECs, as a possible new link between inflammation and coagulation. IL-33 induced TF mRNA and protein in human umbilical vein ECs and coronary artery ECs. IL-33-induced TF expression was ST2- and NF-κB-dependent, but IL-1-independent. IL-33 also increased cell surface TF activity in ECs and TF activity in ECs-derived microparticles. IL-33-treated ECs reduced coagulation time of whole blood and plasma but not of factor VII-deficient plasma. In human carotid atherosclerotic plaques (n = 57), TF mRNA positively correlated with IL-33 mRNA expression (r = 0.691, p < 0.001). In this tissue, IL-33 and TF protein was detected in ECs and smooth muscle cells by immunofluorescence. Furthermore, IL-33 and TF protein co-localized at the site of clot formation within microvessels in plaques of patients with symptomatic carotid stenosis. Through induction of TF in ECs, IL-33 could enhance their thrombotic capacity and thereby might impact on thrombus formation in the setting of atherosclerosis. PMID:27142573

  4. Tissue factor is induced by interleukin-33 in human endothelial cells: a new link between coagulation and inflammation

    PubMed Central

    Stojkovic, Stefan; Kaun, Christoph; Basilio, Jose; Rauscher, Sabine; Hell, Lena; Krychtiuk, Konstantin A.; Bonstingl, Cornelia; de Martin, Rainer; Gröger, Marion; Ay, Cihan; Holnthoner, Wolfgang; Eppel, Wolfgang; Neumayer, Christoph; Huk, Ihor; Huber, Kurt; Demyanets, Svitlana; Wojta, Johann

    2016-01-01

    Tissue factor (TF) is the primary trigger of coagulation. Elevated levels of TF are found in atherosclerotic plaques, and TF leads to thrombus formation when released upon plaque rupture. Interleukin (IL)-33 was previously shown to induce angiogenesis and inflammatory activation of endothelial cells (ECs). Here, we investigated the impact of IL-33 on TF in human ECs, as a possible new link between inflammation and coagulation. IL-33 induced TF mRNA and protein in human umbilical vein ECs and coronary artery ECs. IL-33-induced TF expression was ST2- and NF-κB-dependent, but IL-1-independent. IL-33 also increased cell surface TF activity in ECs and TF activity in ECs-derived microparticles. IL-33-treated ECs reduced coagulation time of whole blood and plasma but not of factor VII-deficient plasma. In human carotid atherosclerotic plaques (n = 57), TF mRNA positively correlated with IL-33 mRNA expression (r = 0.691, p < 0.001). In this tissue, IL-33 and TF protein was detected in ECs and smooth muscle cells by immunofluorescence. Furthermore, IL-33 and TF protein co-localized at the site of clot formation within microvessels in plaques of patients with symptomatic carotid stenosis. Through induction of TF in ECs, IL-33 could enhance their thrombotic capacity and thereby might impact on thrombus formation in the setting of atherosclerosis. PMID:27142573

  5. Monocyte tissue factor–dependent activation of coagulation in hypercholesterolemic mice and monkeys is inhibited by simvastatin

    PubMed Central

    Owens, A. Phillip; Passam, Freda H.; Antoniak, Silvio; Marshall, Stephanie M.; McDaniel, Allison L.; Rudel, Lawrence; Williams, Julie C.; Hubbard, Brian K.; Dutton, Julie-Ann; Wang, Jianguo; Tobias, Peter S.; Curtiss, Linda K.; Daugherty, Alan; Kirchhofer, Daniel; Luyendyk, James P.; Moriarty, Patrick M.; Nagarajan, Shanmugam; Furie, Barbara C.; Furie, Bruce; Johns, Douglas G.; Temel, Ryan E.; Mackman, Nigel

    2012-01-01

    Hypercholesterolemia is a major risk factor for atherosclerosis. It also is associated with platelet hyperactivity, which increases morbidity and mortality from cardiovascular disease. However, the mechanisms by which hypercholesterolemia produces a procoagulant state remain undefined. Atherosclerosis is associated with accumulation of oxidized lipoproteins within atherosclerotic lesions. Small quantities of oxidized lipoproteins are also present in the circulation of patients with coronary artery disease. We therefore hypothesized that hypercholesterolemia leads to elevated levels of oxidized LDL (oxLDL) in plasma and that this induces expression of the procoagulant protein tissue factor (TF) in monocytes. In support of this hypothesis, we report here that oxLDL induced TF expression in human monocytic cells and monocytes. In addition, patients with familial hypercholesterolemia had elevated levels of plasma microparticle (MP) TF activity. Furthermore, a high-fat diet induced a time-dependent increase in plasma MP TF activity and activation of coagulation in both LDL receptor–deficient mice and African green monkeys. Genetic deficiency of TF in bone marrow cells reduced coagulation in hypercholesterolemic mice, consistent with a major role for monocyte-derived TF in the activation of coagulation. Similarly, a deficiency of either TLR4 or TLR6 reduced levels of MP TF activity. Simvastatin treatment of hypercholesterolemic mice and monkeys reduced oxLDL, monocyte TF expression, MP TF activity, activation of coagulation, and inflammation, without affecting total cholesterol levels. Our results suggest that the prothrombotic state associated with hypercholesterolemia is caused by oxLDL-mediated induction of TF expression in monocytes via engagement of a TLR4/TLR6 complex. PMID:22214850

  6. The Role of Putative Phosphatidylserine-Interactive Residues of Tissue Factor on Its Coagulant Activity at the Cell Surface

    PubMed Central

    Ansari, Shabbir A.; Pendurthi, Usha R.; Sen, Prosenjit; Rao, L. Vijaya Mohan

    2016-01-01

    Exposure of phosphatidylserine (PS) on the outer leaflet of the cell membrane is thought to play a critical role in tissue factor (TF) decryption. Recent molecular dynamics simulation studies suggested that the TF ectodomain may directly interact with PS. To investigate the potential role of TF direct interaction with the cell surface phospholipids on basal TF activity and the enhanced TF activity following the decryption, one or all of the putative PS-interactive residues in the TF ectodomain were mutated and tested for their coagulant activity in cell systems. Out of the 9 selected TF mutants, five of them -TFS160A, TFS161A, TFS162A, TFK165A, and TFD180A- exhibited a similar TF coagulant activity to that of the wild-type TF. The specific activity of three mutants, TFK159A, TFS163A, and TFK166A, was reduced substantially. Mutation of the glycine residue at the position 164 markedly abrogated the TF coagulant activity, resulting in ~90% inhibition. Mutation of all nine lipid binding residues together did not further decrease the activity of TF compared to TFG164A. A similar fold increase in TF activity was observed in wild-type TF and all TF mutants following the treatment of THP-1 cells with either calcium ionomycin or HgCl2, two agents that are commonly used to decrypt TF. Overall, our data show that a few select TF residues that are implicated in interacting with PS contribute to the TF coagulant activity at the cell surface. However, our data also indicate that TF regions outside of the putative lipid binding region may also contribute to PS-dependent decryption of TF. PMID:27348126

  7. Notes on the application of microwaves for antigen retrieval in paraffin and plastic tissue sections.

    PubMed

    Suurmeijer, A J; Boon, M E

    1993-01-01

    In formalin-fixed, paraffin-embedded tissue enhanced or de novo immunostaining can be obtained by microwave boiling of sections in a metal salt or buffer solution. In this paper this new technique is reviewed and important factors influencing final results are discussed. Microwave antigen retrieval can also be applied for immunohistochemistry on plastic GMA sections. Here the action of the microwave method is probably mainly due to breaking the bonds between GMA and proteins prohibiting immunostaining. The microwave methods do not require trypsin treatment.

  8. EXTRACTION OF ORGANIC CONTAMINANTS FROM MARINE SEDIMENTS AND TISSUES USING MICROWAVE ENERGY

    EPA Science Inventory

    In this study, we compared microwave solvent extraction (MSE) to conventional methods for extracting organic contaminants from marine sediments and tissues with high and varying moisture content. The organic contaminants measured were polychlorinated biphenyl (PCB) congeners, chl...

  9. Automatic Multiple-Needle Surgical Planning of Robotic-Assisted Microwave Coagulation in Large Liver Tumor Therapy.

    PubMed

    Liu, Shaoli; Xia, Zeyang; Liu, Jianhua; Xu, Jing; Ren, He; Lu, Tong; Yang, Xiangdong

    2016-01-01

    The "robotic-assisted liver tumor coagulation therapy" (RALTCT) system is a promising candidate for large liver tumor treatment in terms of accuracy and speed. A prerequisite for effective therapy is accurate surgical planning. However, it is difficult for the surgeon to perform surgical planning manually due to the difficulties associated with robot-assisted large liver tumor therapy. These main difficulties include the following aspects: (1) multiple needles are needed to destroy the entire tumor, (2) the insertion trajectories of the needles should avoid the ribs, blood vessels, and other tissues and organs in the abdominal cavity, (3) the placement of multiple needles should avoid interference with each other, (4) an inserted needle will cause some deformation of liver, which will result in changes in subsequently inserted needles' operating environment, and (5) the multiple needle-insertion trajectories should be consistent with the needle-driven robot's movement characteristics. Thus, an effective multiple-needle surgical planning procedure is needed. To overcome these problems, we present an automatic multiple-needle surgical planning of optimal insertion trajectories to the targets, based on a mathematical description of all relevant structure surfaces. The method determines the analytical expression of boundaries of every needle "collision-free reachable workspace" (CFRW), which are the feasible insertion zones based on several constraints. Then, the optimal needle insertion trajectory within the optimization criteria will be chosen in the needle CFRW automatically. Also, the results can be visualized with our navigation system. In the simulation experiment, three needle-insertion trajectories were obtained successfully. In the in vitro experiment, the robot successfully achieved insertion of multiple needles. The proposed automatic multiple-needle surgical planning can improve the efficiency and safety of robot-assisted large liver tumor therapy

  10. Automatic Multiple-Needle Surgical Planning of Robotic-Assisted Microwave Coagulation in Large Liver Tumor Therapy

    PubMed Central

    Liu, Shaoli; Xia, Zeyang; Liu, Jianhua; Xu, Jing; Ren, He; Lu, Tong; Yang, Xiangdong

    2016-01-01

    The “robotic-assisted liver tumor coagulation therapy” (RALTCT) system is a promising candidate for large liver tumor treatment in terms of accuracy and speed. A prerequisite for effective therapy is accurate surgical planning. However, it is difficult for the surgeon to perform surgical planning manually due to the difficulties associated with robot-assisted large liver tumor therapy. These main difficulties include the following aspects: (1) multiple needles are needed to destroy the entire tumor, (2) the insertion trajectories of the needles should avoid the ribs, blood vessels, and other tissues and organs in the abdominal cavity, (3) the placement of multiple needles should avoid interference with each other, (4) an inserted needle will cause some deformation of liver, which will result in changes in subsequently inserted needles’ operating environment, and (5) the multiple needle-insertion trajectories should be consistent with the needle-driven robot’s movement characteristics. Thus, an effective multiple-needle surgical planning procedure is needed. To overcome these problems, we present an automatic multiple-needle surgical planning of optimal insertion trajectories to the targets, based on a mathematical description of all relevant structure surfaces. The method determines the analytical expression of boundaries of every needle “collision-free reachable workspace” (CFRW), which are the feasible insertion zones based on several constraints. Then, the optimal needle insertion trajectory within the optimization criteria will be chosen in the needle CFRW automatically. Also, the results can be visualized with our navigation system. In the simulation experiment, three needle-insertion trajectories were obtained successfully. In the in vitro experiment, the robot successfully achieved insertion of multiple needles. The proposed automatic multiple-needle surgical planning can improve the efficiency and safety of robot-assisted large liver tumor

  11. Silver halide fiber optic radiometry for temperature monitoring and control of tissues heated by microwave

    NASA Astrophysics Data System (ADS)

    Shenfeld, Ofer; Belotserkovsky, Edward; Goldwasser, Benad; Zur, Albert; Katzir, Abraham

    1993-02-01

    The heating of tissue by microwave radiation has attained a place of importance in various medical fields, such as the treatment of malignancies, urinary retention, and hypothermia. Accurate temperature measurements in these treated tissues is important for treatment planning and for the control of the heating process. It is also important to be able to measure spacial temperature distribution in the tissues because they are heated in a nonuniform way by the microwave radiation. Conventional temperature sensors used today are inaccurate in the presence of microwave radiation and require contact with the heated tissue. Fiber optic radiometry makes it possible to measure temperatures accurately in the presence of microwave radiation and does not require contact with the tissue. Accurate temperature measurements of tissues heated by microwave was obtained using a silver halide optic radiometer, enabling control of the heating process in other regions of the tissue samples. Temperature mappings of the heated tissues were performed and the nonuniform temperature distributions in these tissues was demonstrated.

  12. A comparative study of tissue factor and kaolin on blood coagulation assays using rotational thromboelastometry and thromboelastography.

    PubMed

    Peng, Henry T; Grodecki, Richard; Rizoli, Sandro; Shek, Pang N

    2016-01-01

    Rotational thromboelastometry (ROTEM) and thromboelastography (TEG) have been increasingly used to diagnose acute coagulopathy and guide blood transfusion. The tests are routinely performed using different triggering activators such as tissue factor and kaolin, which activate different pathways yielding different results. To optimize the global blood coagulation assays using ROTEM and TEG, we conducted a comparative study on the activation methods employing tissue factor and kaolin at different concentrations as well as standard reagents as recommended by the manufacturer of each device. Key parameter values were obtained at various assay conditions to evaluate and compare coagulation and fibrinolysis profiles of citrated whole blood collected from healthy volunteers. It was found that tissue factor reduced ROTEM clotting time and TEG R, and increased ROTEM clot formation time and TEG K in a concentration-dependent manner. In addition, tissue factor affected ROTEM alpha angle, and maximum clot firmness, especially in the absence of kaolin activation, whereas both ROTEM and TEG clot lysis (LI30, CL30, and LY30) remained unaffected. Moreover, kaolin reduced ROTEM clotting time and TEG R and K, but to a lesser extent than tissue factor, in-tem and ex-tem. Correlations in all corresponding parameters between ROTEM and TEG were observed, when the same activators were used in the assays compared with lesser correlations between standard kaolin TEG and ROTEM (INTEM/EXTEM). The two types of viscoelastic point-of-care devices provide different results, depending on the triggering reagent used to perform the assay. Optimal assay condition was obtained to reduce assay time and improve assay accuracy.

  13. Optical properties measurement of laser coagulated tissues with double integrating sphere and inverse Monte Carlo technique in the wavelength range from 350 to 2100 nm

    NASA Astrophysics Data System (ADS)

    Honda, Norihiro; Nanjo, Takuya; Ishii, Katsunori; Awazu, Kunio

    2012-03-01

    In laser medicine, the accurate knowledge about the optical properties (absorption coefficient; μa, scattering coefficient; μs, anisotropy factor; g) of laser irradiated tissues is important for the prediction of light propagation in tissues, since the efficacy of laser treatment depends on the photon propagation within the irradiated tissues. Thus, it is likely that the optical properties of tissues at near-ultraviolet, visible and near-infrared wavelengths will be more important due to more biomedical applications of lasers will be developed. For improvement of the laser induced thermotherapy, the optical property change during laser treatment should be considered in the wide wavelength range. For estimation of the optical properties of the biological tissues, the optical properties measurement system with a double integrating sphere setup and an inverse Monte Carlo technique was developed. The optical properties of chicken muscle tissue were measured in the native state and after laser coagulation using the optical properties measurement system in the wavelength range from 350 to 2100 nm. A CO2 laser was used for laser coagulation. After laser coagulation, the reduced scattering coefficient of the tissue increased. And, the optical penetration depth decreased. For improvement of the treatment depth during laser coagulation, a quantitative procedure using the treated tissue optical properties for determination of the irradiation power density following light penetration decrease might be important in clinic.

  14. Laser-tissue interaction of a continuous-wave 2-μm, 3-μm cascade oscillation fiber laser: sharp incision with controlled coagulation layer thickness

    NASA Astrophysics Data System (ADS)

    Arai, Tsunenori; Sumiyoshi, Tetsumi; Naruse, Kyota; Ishihara, Miya; Sato, Shunichi; Kikuchi, Makoto; Kasamatsu, Tadashi; Sekita, Hitoshi; Obara, Minoru

    2000-06-01

    We studied coagulation layer controlled incision with newly developed continuous wave 2 micrometer, 3 micrometer cascade oscillation fiber laser in vitro. Since this laser device simultaneously oscillates 2 micrometer and 3 micrometer radiation, we could change tissue interaction by arranging power ratio of 2 micrometer to 3 micrometer radiation. About one watt of total irradiation power with various power ratios was focused to extracted fresh porcine myocardium or anesthetized rabbit on an automatic moving stage to obtain line incision. Macro photograph and microscopic histology were used to observe tissue interaction phenomenon. The incised specimen showed that precise cutting groove with thin coagulation layer was attained by a 3 micrometer based radiation, meanwhile addition of 2 micrometer radiation to 3 micrometer radiation made coagulation layer thicker. A heat conduction simulator using finite-element method was used to qualitatively explain obtained coagulation layer thickness. This precise incision with controllable side coagulation layer may effective to control bleeding during incision, for instance, for skin, liver, and kidney incisions. Pure continuous wave radiation of 2 micrometer and 3 micrometer may eliminate stress wave induced tissue damage which is frequently found in Ho:YAG and/or Er:YAG tissue interactions. Moreover, sapphire fiber might offer flexible power delivery to this new laser to establish endoscopic application and/or to improved beam handling.

  15. Platelet-Derived Short-Chain Polyphosphates Enhance the Inactivation of Tissue Factor Pathway Inhibitor by Activated Coagulation Factor XI

    PubMed Central

    Puy, Cristina; Tucker, Erik I.; Ivanov, Ivan S.; Gailani, David; Smith, Stephanie A.; Morrissey, James H.; Gruber, András; McCarty, Owen J. T.

    2016-01-01

    Introduction Factor (F) XI supports both normal human hemostasis and pathological thrombosis. Activated FXI (FXIa) promotes thrombin generation by enzymatic activation of FXI, FIX, FX, and FV, and inactivation of alpha tissue factor pathway inhibitor (TFPIα), in vitro. Some of these reactions are now known to be enhanced by short-chain polyphosphates (SCP) derived from activated platelets. These SCPs act as a cofactor for the activation of FXI and FV by thrombin and FXIa, respectively. Since SCPs have been shown to inhibit the anticoagulant function of TFPIα, we herein investigated whether SCPs could serve as cofactors for the proteolytic inactivation of TFPIα by FXIa, further promoting the efficiency of the extrinsic pathway of coagulation to generate thrombin. Methods and Results Purified soluble SCP was prepared by size-fractionation of sodium polyphosphate. TFPIα proteolysis was analyzed by western blot. TFPIα activity was measured as inhibition of FX activation and activity in coagulation and chromogenic assays. SCPs significantly accelerated the rate of inactivation of TFPIα by FXIa in both purified systems and in recalcified plasma. Moreover, platelet-derived SCP accelerated the rate of inactivation of platelet-derived TFPIα by FXIa. TFPIα activity was not affected by SCP in recalcified FXI-depleted plasma. Conclusions Our data suggest that SCP is a cofactor for TFPIα inactivation by FXIa, thus, expanding the range of hemostatic FXIa substrates that may be affected by the cofactor functions of platelet-derived SCP. PMID:27764259

  16. Thermal coagulation-induced changes of the optical properties of normal and adenomatous human colon tissues in vitro in the spectral range 400 1100 nm

    NASA Astrophysics Data System (ADS)

    Ao, Huilan; Xing, Da; Wei, Huajiang; Gu, Huaimin; Wu, Guoyong; Lu, Jianjun

    2008-04-01

    The absorption coefficients, the reduced scattering coefficients and the optical penetration depths for native and coagulated human normal and adenomatous colon tissues in vitro were determined over the range of 400-1100 nm using a spectrophotometer with an internal integrating sphere system, and the inverse adding-doubling method was applied to calculate the tissue optical properties from diffuse reflectance and total transmittance measurements. The experimental results showed that in the range of 400-1100 nm there were larger absorption coefficients (P < 0.01) and smaller reduced scattering coefficients (P < 0.01) for adenomatous colon tissues than for normal colon tissues, and there were smaller optical penetration depths for adenomatous colon tissues than for normal colon tissues, especially in the near-infrared wavelength. Thermal coagulation induced significant increase of the absorption coefficients and reduced scattering coefficients for the normal and adenomatous colon tissues, and significantly reduced decrease of the optical penetration depths for the normal and adenomatous colon tissues. The smaller optical penetration depth for coagulated adenomatous colon tissues is a disadvantage for laser-induced thermotherapy (LITT) and photodynamic therapy (PDT). It is necessary to adjust the application parameters of lasers to achieve optimal therapy.

  17. Positive feedback loops for factor V and factor VII activation supply sensitivity to local surface tissue factor density during blood coagulation.

    PubMed

    Balandina, A N; Shibeko, A M; Kireev, D A; Novikova, A A; Shmirev, I I; Panteleev, M A; Ataullakhanov, F I

    2011-10-19

    Blood coagulation is triggered not only by surface tissue factor (TF) density but also by surface TF distribution. We investigated recognition of surface TF distribution patterns during blood coagulation and identified the underlying molecular mechanisms. For these investigations, we employed 1), an in vitro reaction-diffusion experimental model of coagulation; and 2), numerical simulations using a mathematical model of coagulation in a three-dimensional space. When TF was uniformly immobilized over the activating surface, the clotting initiation time in normal plasma increased from 4 min to >120 min, with a decrease in TF density from 100 to 0.7 pmol/m(2). In contrast, surface-immobilized fibroblasts initiated clotting within 3-7 min, independently of fibroblast quantity and despite a change in average surface TF density from 0.5 to 130 pmol/m(2). Experiments using factor V-, VII-, and VIII-deficient plasma and computer simulations demonstrated that different responses to these two TF distributions are caused by two positive feedback loops in the blood coagulation network: activation of the TF-VII complex by factor Xa, and activation of factor V by thrombin. This finding suggests a new role for these reactions: to supply sensitivity to local TF density during blood coagulation.

  18. Inhibition of endotoxin-induced activation of coagulation and fibrinolysis by pentoxifylline or by a monoclonal anti-tissue factor antibody in chimpanzees.

    PubMed

    Levi, M; ten Cate, H; Bauer, K A; van der Poll, T; Edgington, T S; Büller, H R; van Deventer, S J; Hack, C E; ten Cate, J W; Rosenberg, R D

    1994-01-01

    Knowledge of the pathogenetic mechanisms responsible for the activation of the coagulation system associated with endotoxemia is important for the development of improved modalities for prevention and treatment. We analyzed the appearance in plasma of TNF, IL-6, and indices of coagulation and fibrinolytic system activation in normal chimpanzees after intravenous infusion of endotoxin. Endotoxin infusion elicited reproducible and dose-dependent elevations in serum TNF and IL-6, as well as marked increases in thrombin generation in vivo as measured by immunoassays for prothrombin activation fragment F1 + 2, thrombin-antithrombin III complexes, and fibrinopeptide A. Activation of the fibrinolytic mechanism was monitored with assays for plasminogen activator activity and plasmin-alpha 2-antiplasmin complexes. To potentially intervene in the molecular pathways elicited by endotoxin, pentoxifylline, an agent that interrupts "immediate early" gene activation by monocytes, or a potent monoclonal antibody that neutralizes tissue factor-mediated initiation of coagulation, were infused shortly before endotoxin. Pentoxifylline markedly inhibited increases in the levels of TNF and IL-6, as well as the effects on coagulation and fibrinolysis. In contrast, the monoclonal antibody to tissue factor completely abrogated the augmentation in thrombin generation, but had no effect on cytokine levels or fibrinolysis. We conclude that the endotoxin-induced activation of coagulation appears to be mediated by the tissue factor-dependent pathway, the fibrinolytic response triggered by endotoxin is not dependent on the generation of thrombin, and that the release of cytokines may be important in mediating the activation of both the coagulation and the fibrinolytic mechanisms in vivo.

  19. Coagulation studies.

    PubMed

    Hazelzet, J A; Hack, C E; de Groot, R

    2001-01-01

    Disseminated intravascular coagulation (DIC) is a complex acquired, coagulopathy resulting from excessive thrombin formation. Abnormal tissue factor (TF) expression is a major mechanism initiating DIC in many disorders, including obstetric complications, sepsis, cancer, and trauma. Numerous laboratory tests are available to monitor DIC, but most patients can be adequately managed using only routine hemostasis screening tests, and assays for fibrinogen and D-dimers. Treatment of DIC should focus on reversing the underlying disorder that initiated the coagulopathy. Novel treatments are being investigated for the treatment of DIC; many of these experimental modalities target the excessive TF activity that characterizes DIC.

  20. Moojenactivase, a novel pro-coagulant PIIId metalloprotease isolated from Bothrops moojeni snake venom, activates coagulation factors II and X and induces tissue factor up-regulation in leukocytes.

    PubMed

    Sartim, Marco A; Costa, Tassia R; Laure, Helen J; Espíndola, Milena S; Frantz, Fabiani G; Sorgi, Carlos A; Cintra, Adélia C O; Arantes, Eliane C; Faccioli, Lucia H; Rosa, José C; Sampaio, Suely V

    2016-05-01

    Coagulopathies following snakebite are triggered by pro-coagulant venom toxins, in which metalloproteases play a major role in envenomation-induced coagulation disorders by acting on coagulation cascade, platelet function and fibrinolysis. Considering this relevance, here we describe the isolation and biochemical characterization of moojenactivase (MooA), a metalloprotease from Bothrops moojeni snake venom, and investigate its involvement in hemostasis in vitro. MooA is a glycoprotein of 85,746.22 Da, member of the PIIId group of snake venom metalloproteases, composed of three linked disulfide-bonded chains: an N-glycosylated heavy chain, and two light chains. The venom protease induced human plasma clotting in vitro by activating on both blood coagulation factors II (prothrombin) and X, which in turn generated α-thrombin and factor Xa, respectively. Additionally, MooA induced expression of tissue factor (TF) on the membrane surface of peripheral blood mononuclear cells (PBMC), which led these cells to adopt pro-coagulant characteristics. MooA was also shown to be involved with production of the inflammatory mediators TNF-α, IL-8 and MCP-1, suggesting an association between MooA pro-inflammatory stimulation of PBMC and TF up-regulation. We also observed aggregation of washed platelets when in presence of MooA; however, the protease had no effect on fibrinolysis. Our findings show that MooA is a novel hemostatically active metalloprotease, which may lead to the development of coagulopathies during B. moojeni envenomation. Moreover, the metalloprotease may contribute to the development of new diagnostic tools and pharmacological approaches applied to hemostatic disorders. PMID:26026608

  1. Thrombin generation and fibrin clot formation under hypothermic conditions: an in vitro evaluation of tissue factor initiated whole blood coagulation

    PubMed Central

    Whelihan, Matthew F.; Kiankhooy, Armin; Brummel-Ziedins, Kathleen

    2015-01-01

    Background Despite trauma-induced hypothermic coagulopathy being familiar in the clinical setting, empirical experimentation concerning this phenomenon is lacking. In this study we investigated the effects of hypothermia on thrombin generation, clot formation and global hemostatic functions in an in vitro environment using a whole blood model and thromboelastography (TEG) which can recapitulate hypothermia. Methods Blood was collected from healthy individuals through venipuncture and treated with corn trypsin inhibitor, to block the contact pathway. Coagulation was initiated with 5pM tissue factor at temperatures 37°C, 32°C, and 27°C. Reactions were quenched over time with soluble and insoluble components of each time point analyzed for thrombin generation, fibrinogen consumption, factor (f)XIII activation and fibrin deposition. Global coagulation potential was evaluated through TEG. Results Data showed that thrombin generation in samples at 37°C and 32°C had comparable rates while 27°C had a much lower rate (39.2 ± 1.1 and 43 ± 2.4 nM/min vs 28.6 ± 4.4 nM/min, respectively). Fibrinogen consumption and fXIII activation were highest at 37°C followed by 32°C and 27°C (13.8 ± 2.9 percent/min vs 7.8 ± 1.8 percent/min, respectively). Fibrin formation as seen through clot weights also followed this trend. TEG data showed clot formation was fastest in samples at 37°C and lowest at 27°C. Maximum clot strength was similar for each temperature. Also, percent lysis of clots was highest at 37°C followed by 32°C and then 27°C. Conclusions Induced hypothermic conditions directly affect the rate of thrombin generation and clot formation while global clot stability remains intact. PMID:24331944

  2. A method for deriving the coagulation boundary of liver tissue using a relational model of viscoelasticity and temperature in radio frequency ablation.

    PubMed

    Lu, Xiaowei; Tsukune, Mariko; Watanabe, Hiroki; Yamazaki, Nozomu; Isobe, Yosuke; Kobayashi, Yo; Miyashita, Tomoyuki; Fujie, Masakatsu G

    2012-01-01

    Recently radiofrequency (RF) ablation has become increasingly important in treating liver cancers. RF ablation is ordinarily conducted using elastographic imaging to monitor the ablation procedure and the temperature of the electrode needle is displayed on the RF generator. However, the coagulation boundary of liver tissue in RF ablation is unclear and unconfident. This can lead to both excessive and insufficient RF ablation thereby diminishing the advantages of the procedure. In the present study, we developed a method for determining the coagulation boundary of liver tissue in RF ablation. To investigate this boundary we used the mechanical characteristics of biochemical components as an indicator of coagulation to produce a relational model for viscoelasticity and temperature. This paper presents the data acquisition procedures for the viscoelasticity characteristics and the analytical method used for the coagulation model. We employed a rheometer to measure the viscoelastic characteristics of liver tissue. To determine the model functional relationship between viscoelasticity and temperature, we used a least-square method and the minimum root mean square error was calculated to optimize the model functional relations. The functional relation between temperature and viscoelasticity was linear and non-linear in different temperature regions. The boundary between linear and non-linear functional relation was 58.0°C. PMID:23365863

  3. Microwave radiometry in living tissue: what does it measure?

    PubMed

    Cheever, E A; Foster, K R

    1992-06-01

    The sensitivity of microwave radiometry for detecting subcutaneous targets was studied both experimentally and theoretically. The radiometer used a dielectric loaded rectangular waveguide antenna in contact with a lossy dielectric medium. A cylindrical target with dielectric properties and/or temperature different from that of the surrounding medium was located beneath this surface. For most of the studies, the target and the surrounding medium were maintained at constant, but unequal, temperatures (i.e., heat conduction effects were insignificant). The received radiometric signal was calculated as the location and dielectric properties of the target were varied. Finally, the radiometer signal was calculated for the situation with the target maintained at constant temperature but with the surrounding medium modeled by the bioheat equation. Experimental studies were performed using a radiometer operating at 4.7 GHz. The target was a thin walled tube through which a temperature controlled liquid was circulated, located in a temperature controlled fluid tank. The results indicate that microwave radiometry (as used in this study) responds to the temperature averaged over the field pattern of the antenna with very strong weighting of regions near the surface. A simple quasi-static analysis provides a good indication of the sensitivity of the technique for detecting cylindrical targets whose dielectric properties are different from those of the surrounding medium. A simple estimate of thermal conduction around the target suggest that thermal effects greatly increase the apparent size of the target.

  4. Microwave irradiation increases recovery of neuropeptides from brain tissues

    SciTech Connect

    Theodorsson, E.; Stenfors, C.; Mathe, A.A. )

    1990-11-01

    The effect of focused high energy microwave treatment (MW) on brain concentrations and molecular forms of substance P, neurokinin A, neuropeptide Y, neurotensin, galanin and calcitonin gene-related peptide was investigated. Groups of rats were treated as follows: (1) MW, storage for 60 min at 22 degrees C, (2) Decapitation, storage for 60 min at 22 degrees C, (3) Decapitation, storage for 60 min at 22 degrees C, MW treatment, (4) MW, decapitation, storage for 2 min at 22 degrees C and 5. Decapitation, storage for 2 min at 22 degrees C. Peptide concentrations were in all instances highest in the MW sacrificed groups. MW increased the concentration of intact peptides by rapid inhibition of peptidase activity and increase in peptide solubility/extractability.

  5. Microwave radiometry in living tissue: What does it measure

    SciTech Connect

    Cheever, E.A. ); Foster, K.R. )

    1992-06-01

    The sensitivity of microwave radiometry for detecting subcutaneous targets was studied both experimentally and theoretically. The radiometer used a dielectric loaded rectangular waveguide antenna in contact with lossy dielectric medium. A cylindrical target with dielectric properties and/or temperature different from that of the surrounding medium were maintained at constant, but unequal, temperatures. The received radiometric signal was calculated as the location and dielectric properties of the target were varied. Finally, the radiometer signal was calculated for the situation with the target maintained at constant temperature but with the surrounding medium modeled by the bioheat equation. Experimental studies were performed using a radiometer operating at 4.7 GHz. The target was a thin walled tube through which a temperature controlled liquid was circulated, located in a temperature controlled fluid tank.

  6. Changes in backscatter of liver tissue due to thermal coagulation induced by focused ultrasound.

    PubMed

    Shishitani, Takashi; Matsuzawa, Ryo; Yoshizawa, Shin; Umemura, Shin-ichiro

    2013-08-01

    Ultrasonic imaging has advantages in its self-consistency in guiding and monitoring ultrasonic treatment such as high-intensity focused ultrasound (HIFU) treatment. Changes in ultrasonic backscatter of tissues due to HIFU treatment have been observed, but their mechanism is still under discussion. In this paper, ultrasonic backscatter of excised and degassed porcine liver tissue was observed before and after HIFU exposure using a diagnostic scanner, and its acoustic impedance was mapped using an ultrasonic microscope. The histology of its pathological specimen was also observed using an optical microscope. The observed decrease in backscatter intensity due to HIFU exposure was consistent with a spatial Fourier analysis of the histology, which also showed changes due to the exposure. The observed increase in acoustic impedance due to the exposure was also consistent with the histological change assuming that the increase was primarily caused by the increase in the concentration of hepatic cells.

  7. Immunocytochemistry of formalin-fixed human brain tissues: microwave irradiation of free-floating sections.

    PubMed

    Shiurba, R A; Spooner, E T; Ishiguro, K; Takahashi, M; Yoshida, R; Wheelock, T R; Imahori, K; Cataldo, A M; Nixon, R A

    1998-01-01

    Formalin fixation, the chemical process in which formaldehyde binds to cells and tissues, is widely used to preserve human brain specimens from autolytic decomposition. Ultrastructure of cellular and mitochondrial membranes is markedly altered by vesiculation, but this does not interfere with diagnostic evaluation of neurohistology by light microscopy. Serious difficulties are encountered, however, when immunocytochemical staining is attempted. Antigens that are immunoreactive in unfixed frozen sections and protein extracts appear to be concealed or destroyed in formalin-fixed tissues. In dilute aqueous solution, formaldehyde is in equilibrium with methylene glycol and its polymeric hydrates, the balance by far in favor of methylene glyco. Carbonylic formaldehyde is a reactive electrophilic species well known for crosslinking functional groups in tissue proteins, nucleic acids, and polysaccharides. Some of its methylene crosslinks are readily hydrolyzed. Others are stable and irreversible. During immunostaining reactions, intra- and inter-molecular links between macromolecules limit antibody permeation of tissue sections, alter protein secondary structure, and reduce accessibility of antigenic determinants . Accordingly, immunoreactivity is diminished for many antigens. Tissues are rapidly penetrated by methylene glycol, but formaldehyde binding to cellular constituents is relatively slow, increasing progressively until equilibrium is reached. In addition, prolonged storage in formalin may result in acidification of human brain specimens. Low pH favors dissociation of methylene glycol into formaldehyde, further reducing both classical staining and antigen detectability. Various procedures have been devised to counter the antigen masking effects of formaldehyde. Examples include pretreatment of tissue sections with proteases, formic acid, or ultrasound. Recently, heating of mounted sections in ionic salt solution by microwave energy was found to restore many

  8. Ultrawideband temperature-dependent dielectric properties of animal liver tissue in the microwave frequency range.

    PubMed

    Lazebnik, Mariya; Converse, Mark C; Booske, John H; Hagness, Susan C

    2006-04-01

    The development of ultrawideband (UWB) microwave diagnostic and therapeutic technologies, such as UWB microwave breast cancer detection and hyperthermia treatment, is facilitated by accurate knowledge of the temperature- and frequency-dependent dielectric properties of biological tissues. To this end, we characterize the temperature-dependent dielectric properties of a representative tissue type-animal liver-from 0.5 to 20 GHz. Since discrete-frequency linear temperature coefficients are impractical and inappropriate for applications spanning wide frequency and temperature ranges, we propose a novel and compact data representation technique. A single-pole Cole-Cole model is used to fit the dielectric properties data as a function of frequency, and a second-order polynomial is used to fit the Cole-Cole parameters as a function of temperature. This approach permits rapid estimation of tissue dielectric properties at any temperature and frequency.

  9. Ultrasound for noninvasive control of laser-induced tissue heating and coagulation

    NASA Astrophysics Data System (ADS)

    Kleffner, Bernhard; Kriegerowski, Martin; Oltrup, Theo; Bende, Thomas; Jean, Benedikt J.

    1996-05-01

    The application of lasers to achieve localized thermal tissue damage is a common technique in minimally invasive surgery. Currently, there is no control during these treatments. In glaucoma therapy the laser energy applied and the beam direction are estimated prior to treatment, according to clinical experience and anatomic norm values. This lack of on-line control may limit success and lead to side effects. Precision and efficiency of treatment could be improved markedly by analysis of spatially resolved, temperature-dependent data obtained by Ultrasound Reflectometry. Thermally induced changes, as well as their localization were detected qualitatively in B-scan. Quantification was achieved by integration of high frequency RF-signals with the following resolution: spatial 50 micrometers , temporal 200 microsecond(s) , temperature 0.5 degree(s). The presented method is suitable for a non-invasive on-line therapy control.

  10. I. Microwave Apparatus for Exposing Tissue and the Effect of the Radiation on Skin Respiration

    PubMed Central

    Lawrence, J. C.

    1968-01-01

    An apparatus was designed which enabled small pieces of skin to be exposed to a uniform field of microwaves at χ-band (8,730 MHz). This was used to investigate the effect of these microwaves at selected energy levels on the metabolism of skin. It was shown that skin cultured in vitro exhibited a graded response to microwave energy, and a doseresponse curve was constructed from this data. The ED50 of this curve was 4,740 mW./sq. cm. applied for 1 second. Microscopical examination of three-day cultures of skin showed that histological abnormalities occurred if the specimens were exposed to intensities of microwaves causing more than 30% respiratory damage. The energy level at the ED30 was 2,880 mW./sq. cm. applied for 1 second. Results were consistent with the hypothesis that tissue damage caused by irradiation with microwaves was due to the energy absorbed by the specimen being converted to heat. PMID:5663427

  11. Modeling microwave electromagnetic field absorption in muscle tissues

    NASA Astrophysics Data System (ADS)

    Felbacq, D.; Clerjon, S.; Damez, J. L.; Zolla, F.

    2002-07-01

    Absorption of electromagnetic energy in human tissues is an important issue with respect to the safety of low-level exposure. Simulation is a way to a better understanding of electromagnetic dosimetry. This letter presents a comparison between results obtained from a numerical simulation and experimental data of absorbed energy by a muscle. Simulation was done using a bidimensional double-scale homogenization scheme leading to the effective permittivity tensor. Experimental measurements were performed at 10 GHz on bovine muscle, 30 hours after slaughter, thanks to the open-ended rectangular waveguide method. Results show a good agreement between measurements and simulated data.

  12. [Investigation on the impact of hot temperature methods of the tissue dissection and coagulation on parenchymatous organs in experiment].

    PubMed

    Sukhin, I A; Khudets'kyĭ, I Iu; Kachan, S H; Bilylovets', O M

    2013-01-01

    There are adduced the results of experimental operations on mongrel rabbits with dissection and coagulation of the liver and the spleen, using highly temperature coagulation apparatuses of various kinds. There was established, that while application of various highly temperature technologies a typical process occurs, consisting of the heat spreading inside the organ. The temperature raising grade depends on the method and duration of the impact.

  13. Microwave Radar Imaging of Heterogeneous Breast Tissue Integrating A Priori Information

    PubMed Central

    Kelly, Thomas N.; Sarafianou, Mantalena; Craddock, Ian J.

    2014-01-01

    Conventional radar-based image reconstruction techniques fail when they are applied to heterogeneous breast tissue, since the underlying in-breast relative permittivity is unknown or assumed to be constant. This results in a systematic error during the process of image formation. A recent trend in microwave biomedical imaging is to extract the relative permittivity from the object under test to improve the image reconstruction quality and thereby to enhance the diagnostic assessment. In this paper, we present a novel radar-based methodology for microwave breast cancer detection in heterogeneous breast tissue integrating a 3D map of relative permittivity as a priori information. This leads to a novel image reconstruction formulation where the delay-and-sum focusing takes place in time rather than range domain. Results are shown for a heterogeneous dense (class-4) and a scattered fibroglandular (class-2) numerical breast phantom using Bristol's 31-element array configuration. PMID:25435861

  14. Airway tissue factor-dependent coagulation activity in response to sulfur mustard analog 2-chloroethyl ethyl sulfide

    PubMed Central

    Rancourt, Raymond C.; Veress, Livia A.; Guo, XiaoLing; Jones, Tara N.; Hendry-Hofer, Tara B.

    2012-01-01

    Acute lung injury is a principal cause of morbidity and mortality in response to mustard gas (SM) inhalation. Obstructive, fibrin-containing airway casts have recently been reported in a rat inhalation model employing the SM analog 2-chloroethyl ethyl sulfide (CEES). The present study was designed to identify the mechanism(s) causing activation of the coagulation cascade after CEES-induced airway injury. Here we report that CEES inhalation elevates tissue factor (TF) activity and numbers of detached epithelial cells present in lavage fluid (BALF) from rats after exposure (18 h). In vitro studies using 16HBE cells, or with rat BALF, indicated that detached epithelial cells could convert factor X (FX) to the active form FXa when incubated with factor VII and could elicit rapid clotting of plasma. In addition, immunocytochemical analysis demonstrated elevated cell surface (TF) expression on CEES-exposed 16HBE cells as a function of time. However, total cell TF expression did not increase. Since membrane surfaces bearing TF are important determinants of clot initiation, anticoagulants directed against these entities were tested for ability to limit plasma clotting or FX activation capacity of BALF or culture media. Addition of tifacogin, a TF pathway inhibitor, effectively blocked either activity, demonstrating that the procoagulant actions of CEES were TF pathway dependent. Lactadherin, a protein capable of competing with clotting factors for phospholipid-binding sites, was partially effective in limiting these procoagulant actions. These findings indicate that TF pathway inhibition could be an effective strategy to prevent airway obstruction after SM or CEES inhalation. PMID:21964405

  15. Minimum wound size for clotting: flowing blood coagulates on a single collagen fiber presenting tissue factor and von Willebrand factor.

    PubMed

    Zhu, Shu; Tomaiuolo, Maurizio; Diamond, Scott L

    2016-08-01

    It is unknown if a lower size limit exists for human blood coagulation under flow over physiological vessel wall triggers as small as a single collagen fiber. Prior determinations of the smallest sized surface stimuli necessary for clotting of human blood, defined as the patch size threshold, have not deployed whole blood, hemodynamic flow, and platelet adhesive stimuli. For whole blood perfused in microfluidic devices, we report that steady venous flow (wall shear rate, 100 s(-1)) was sufficient to drive platelet deposition on 20 micron long zones of collagen fibers or on a single fiber. With tissue factor (TF)-coated collagen, flowing blood generated robust platelet deposits, platelet-localized thrombin, and fibrin on a single collagen fiber, thus demonstrating the absence of a physiological patch size threshold under venous flow. In contrast, at arterial wall shear rate (1000 s(-1)) with TF present, essentially no platelet or fibrin deposition occurred on 20 micron collagen zones or on a single collagen fiber, demonstrating a patch threshold, which was overcome by pre-coating the collagen with von Willebrand factor (vWF). For venous flows, human blood can clot on one of the smallest biological units of a single collagen fiber presenting TF. For arterial flows, vWF together with TF allows human blood to generate thrombin and fibrin on a patch stimulus as limited as a single collagen fiber. vWF-dependent platelet adhesion represents a particle-based sensing mechanism of micron-scale stimuli that then allows amplification of the molecular components of TF-driven thrombin and fibrin production under arterial flow. PMID:27339024

  16. Minimum wound size for clotting: flowing blood coagulates on a single collagen fiber presenting tissue factor and von Willebrand factor.

    PubMed

    Zhu, Shu; Tomaiuolo, Maurizio; Diamond, Scott L

    2016-08-01

    It is unknown if a lower size limit exists for human blood coagulation under flow over physiological vessel wall triggers as small as a single collagen fiber. Prior determinations of the smallest sized surface stimuli necessary for clotting of human blood, defined as the patch size threshold, have not deployed whole blood, hemodynamic flow, and platelet adhesive stimuli. For whole blood perfused in microfluidic devices, we report that steady venous flow (wall shear rate, 100 s(-1)) was sufficient to drive platelet deposition on 20 micron long zones of collagen fibers or on a single fiber. With tissue factor (TF)-coated collagen, flowing blood generated robust platelet deposits, platelet-localized thrombin, and fibrin on a single collagen fiber, thus demonstrating the absence of a physiological patch size threshold under venous flow. In contrast, at arterial wall shear rate (1000 s(-1)) with TF present, essentially no platelet or fibrin deposition occurred on 20 micron collagen zones or on a single collagen fiber, demonstrating a patch threshold, which was overcome by pre-coating the collagen with von Willebrand factor (vWF). For venous flows, human blood can clot on one of the smallest biological units of a single collagen fiber presenting TF. For arterial flows, vWF together with TF allows human blood to generate thrombin and fibrin on a patch stimulus as limited as a single collagen fiber. vWF-dependent platelet adhesion represents a particle-based sensing mechanism of micron-scale stimuli that then allows amplification of the molecular components of TF-driven thrombin and fibrin production under arterial flow.

  17. [The epididymal adipose tissue of mice after nanosecond pulse-periodic microwave irradiation].

    PubMed

    Kereya, A V; Bolshakov, M A; Zharkova, L P; Ivanov, V V; Knyazeva, I R; Kutenkov, O P; Rostov, V V; Semjonova, Yu N

    2014-01-01

    The effect of pulse-periodic microwave radiation (PPMR) of the pulse repetition frequency of 8-25 pulseper second, the peak power density of 1500 W/cm2 on the epididymal adipose tissue of micewas investigated. The effect was assessed by the changes in the fat mass and size of the irradiated adipocytes. It was found that the fat mass and size distribution of adipocytes are affected by irradiation. The effects depend on the pulse repetition frequency and intensity of exposure.

  18. Dual-sided electrosurgery handpiece for simultaneous tissue cutting and coagulation: first report on a conceptual design validated by an animal experiment

    PubMed Central

    Tawfik, Hatem A; Fouad, Yousef A; Hafez, Rashad

    2015-01-01

    Objective To introduce and evaluate the safety of a novel dual-sided electrosurgery handpiece design for simultaneous tissue cutting and coagulation. Methods We designed a prototype double-sided handpiece allowing automatic switching between two electrodes with a simple handpiece flip. The concept of the system as a surgical instrument was assessed by an animal experiment. Results The skin of 15 Wistar albino white rats could be successfully incised and coagulated using both ends of the handpiece, thereby confirming the prospects and clinical applications of the system. Conclusion The dual-sided electrosurgery handpiece is a simple and safe alternative to the traditional electrosurgery pencil, allowing the simultaneous use of two electrodes without the hassle of frequent electrode replacement. PMID:26316827

  19. Is there any information on micro-structure in microwave tomography of bone tissue?

    PubMed

    Irastorza, R M; Carlevaro, C M; Vericat, F

    2013-08-01

    In this work, two-dimensional simulations of the microwave dielectric properties of models with ellipses and realistic models of trabecular bone tissue are performed. In these simulations, finite difference time domain methodology has been applied to simulate two-phase structures containing inclusions. The results presented here show that the micro-structure is an important factor in the effective dielectric properties of trabecular bone. We consider the feasibility of using the dielectric behaviour of bone tissue to be an indicator of bone health. The frequency used was 950 MHz. It was found that the dielectric properties can be used as an estimate of the degree of anisotropy of the micro-structure of the trabecular tissue. Conductivity appears to be the most sensitive parameter in this respect. Models with ellipse shaped-inclusions are also tested to study their application to modelling bone tissue. Models with ellipses that had an aspect ratio of a/b=1.5 showed relatively good agreement when compared with realistic models of bone tissue. According to the results presented here, the anisotropy of trabecular bone must be accounted for when measuring its dielectric properties using microwave imaging.

  20. Electromagnetic spectroscopy of normal breast tissue specimens obtained from reduction surgeries: comparison of optical and microwave properties.

    PubMed

    Lazebnik, Mariya; Zhu, Changfang; Palmer, Gregory M; Harter, Josephine; Sewall, Sarah; Ramanujam, Nirmala; Hagness, Susan C

    2008-10-01

    Techniques utilizing electromagnetic energy at microwave and optical frequencies have been shown to be promising for breast cancer detection and diagnosis. Since different biophysical mechanisms are exploited at these frequencies to discriminate between healthy and diseased tissue, combining these two modalities may result in a more powerful approach for breast cancer detection and diagnosis. Toward this end, we performed microwave dielectric spectroscopy and optical diffuse reflectance spectroscopy measurements at the same sites on freshly excised normal breast tissues obtained from reduction surgeries at the University of Wisconsin Hospital, using microwave and optical probes with very similar sensing volumes. We found that the microwave dielectric constant and effective conductivity are correlated with tissue composition across the entire measurement frequency range (|r| approximately 0.5-0.6, p<0.01) and that the optical absorption coefficient at 460 nm and optical scattering coefficient are correlated with tissue composition (|r| approximately 0.4-0.6, p<0.02). Finally, we found that the optical absorption coefficient at 460 nm is correlated with the microwave dielectric constant and effective conductivity (r=-0.55, p<0.01). Our results suggest that combining optical and microwave modalities for analyzing breast tissue samples may serve as a crosscheck and provide complementary information about tissue composition.

  1. Average Dielectric Property Analysis of Complex Breast Tissue with Microwave Transmission Measurements

    PubMed Central

    Garrett, John D.; Fear, Elise C.

    2015-01-01

    Prior information about the average dielectric properties of breast tissue can be implemented in microwave breast imaging techniques to improve the results. Rapidly providing this information relies on acquiring a limited number of measurements and processing these measurement with efficient algorithms. Previously, systems were developed to measure the transmission of microwave signals through breast tissue, and simplifications were applied to estimate the average properties. These methods provided reasonable estimates, but they were sensitive to multipath. In this paper, a new technique to analyze the average properties of breast tissues while addressing multipath is presented. Three steps are used to process transmission measurements. First, the effects of multipath were removed. In cases where multipath is present, multiple peaks were observed in the time domain. A Tukey window was used to time-gate a single peak and, therefore, select a single path through the breast. Second, the antenna response was deconvolved from the transmission coefficient to isolate the response from the tissue in the breast interior. The antenna response was determined through simulations. Finally, the complex permittivity was estimated using an iterative approach. This technique was validated using simulated and physical homogeneous breast models and tested with results taken from a recent patient study. PMID:25585106

  2. Average dielectric property analysis of complex breast tissue with microwave transmission measurements.

    PubMed

    Garrett, John D; Fear, Elise C

    2015-01-01

    Prior information about the average dielectric properties of breast tissue can be implemented in microwave breast imaging techniques to improve the results. Rapidly providing this information relies on acquiring a limited number of measurements and processing these measurement with efficient algorithms. Previously, systems were developed to measure the transmission of microwave signals through breast tissue, and simplifications were applied to estimate the average properties. These methods provided reasonable estimates, but they were sensitive to multipath. In this paper, a new technique to analyze the average properties of breast tissues while addressing multipath is presented. Three steps are used to process transmission measurements. First, the effects of multipath were removed. In cases where multipath is present, multiple peaks were observed in the time domain. A Tukey window was used to time-gate a single peak and, therefore, select a single path through the breast. Second, the antenna response was deconvolved from the transmission coefficient to isolate the response from the tissue in the breast interior. The antenna response was determined through simulations. Finally, the complex permittivity was estimated using an iterative approach. This technique was validated using simulated and physical homogeneous breast models and tested with results taken from a recent patient study.

  3. Planar Microwave Sensor for Theranostic Therapy of Organic Tissue Based on Oval Split Ring Resonators

    PubMed Central

    Reimann, Carolin; Puentes, Margarita; Maasch, Matthias; Hübner, Frank; Bazrafshan, Babak; Vogl, Thomas J.; Damm, Christian; Jakoby, Rolf

    2016-01-01

    Microwave sensors in medical environments play a significant role due to the contact-less and non-invasive sensing mechanism to determine dielectric properties of tissue. In this work, a theranostic sensor based on Split Ring Resonators (SRRs) is presented that provides two operation modes to detect and treat tumor cells, exemplary in the liver. For the detection mode, resonance frequency changes due to abnormalities are evaluated, and in the treatment mode, microwave ablation is performed. The planar sensor structure can be integrated into a needle like a surgery tool that evokes challenges concerning size limitations and biocompatibility. To meet the size requirements and provide a reasonable operating frequency, properties of oval shaped SRRs are investigated. By elongating the radius of the SRR in one direction, the resonance frequency can be decreased significantly compared to circular SRR by a factor of two below 12 GHz. In order to validate the detection and treatment characteristics of the sensor, full wave simulations and measurements are examined. Clear resonance shifts are detected for loading the sensor structures with phantoms mimicking healthy and malignant tissue. For treatment mode evaluation, ex vivo beef liver tissue was ablated leading to a lesion zone 1.2 cm × 1 cm × 0.3 cm with a three minute exposure of maximum 2.1 W. PMID:27618050

  4. Planar Microwave Sensor for Theranostic Therapy of Organic Tissue Based on Oval Split Ring Resonators.

    PubMed

    Reimann, Carolin; Puentes, Margarita; Maasch, Matthias; Hübner, Frank; Bazrafshan, Babak; Vogl, Thomas J; Damm, Christian; Jakoby, Rolf

    2016-01-01

    Microwave sensors in medical environments play a significant role due to the contact-less and non-invasive sensing mechanism to determine dielectric properties of tissue. In this work, a theranostic sensor based on Split Ring Resonators (SRRs) is presented that provides two operation modes to detect and treat tumor cells, exemplary in the liver. For the detection mode, resonance frequency changes due to abnormalities are evaluated, and in the treatment mode, microwave ablation is performed. The planar sensor structure can be integrated into a needle like a surgery tool that evokes challenges concerning size limitations and biocompatibility. To meet the size requirements and provide a reasonable operating frequency, properties of oval shaped SRRs are investigated. By elongating the radius of the SRR in one direction, the resonance frequency can be decreased significantly compared to circular SRR by a factor of two below 12 GHz. In order to validate the detection and treatment characteristics of the sensor, full wave simulations and measurements are examined. Clear resonance shifts are detected for loading the sensor structures with phantoms mimicking healthy and malignant tissue. For treatment mode evaluation, ex vivo beef liver tissue was ablated leading to a lesion zone 1.2 cm × 1 cm × 0.3 cm with a three minute exposure of maximum 2.1 W. PMID:27618050

  5. Planar Microwave Sensor for Theranostic Therapy of Organic Tissue Based on Oval Split Ring Resonators.

    PubMed

    Reimann, Carolin; Puentes, Margarita; Maasch, Matthias; Hübner, Frank; Bazrafshan, Babak; Vogl, Thomas J; Damm, Christian; Jakoby, Rolf

    2016-09-08

    Microwave sensors in medical environments play a significant role due to the contact-less and non-invasive sensing mechanism to determine dielectric properties of tissue. In this work, a theranostic sensor based on Split Ring Resonators (SRRs) is presented that provides two operation modes to detect and treat tumor cells, exemplary in the liver. For the detection mode, resonance frequency changes due to abnormalities are evaluated, and in the treatment mode, microwave ablation is performed. The planar sensor structure can be integrated into a needle like a surgery tool that evokes challenges concerning size limitations and biocompatibility. To meet the size requirements and provide a reasonable operating frequency, properties of oval shaped SRRs are investigated. By elongating the radius of the SRR in one direction, the resonance frequency can be decreased significantly compared to circular SRR by a factor of two below 12 GHz. In order to validate the detection and treatment characteristics of the sensor, full wave simulations and measurements are examined. Clear resonance shifts are detected for loading the sensor structures with phantoms mimicking healthy and malignant tissue. For treatment mode evaluation, ex vivo beef liver tissue was ablated leading to a lesion zone 1.2 cm × 1 cm × 0.3 cm with a three minute exposure of maximum 2.1 W.

  6. Disseminated intravascular coagulation in sepsis.

    PubMed

    Zeerleder, Sacha; Hack, C Erik; Wuillemin, Walter A

    2005-10-01

    Disseminated intravascular coagulation is a frequent complication of sepsis. Coagulation activation, inhibition of fibrinolysis, and consumption of coagulation inhibitors lead to a procoagulant state resulting in inadequate fibrin removal and fibrin deposition in the microvasculature. As a consequence, microvascular thrombosis contributes to promotion of organ dysfunction. Recently, three randomized, double-blind, placebo-controlled trials investigated the efficacy of antithrombin, activated protein C (APC), and tissue factor pathway inhibitor, respectively, in sepsis patients. A significant reduction in mortality was demonstrated in the APC trial. In this article, we first discuss the physiology of coagulation and fibrinolysis activation. Then, the pathophysiology of coagulation activation, consumption of coagulation inhibitors, and the inhibition of fibrinolysis leading to a procoagulant state are described in more detail. Moreover, therapeutic concepts as well as the three randomized, double-blind, placebo-controlled studies are discussed.

  7. Numerical simulation of the effect of superparamagnetic nanoparticles on microwave rewarming of cryopreserved tissues.

    PubMed

    Wang, Tao; Zhao, Gang; Liang, Xin M; Xu, Yunpeng; Li, Yang; Tang, Heyu; Jiang, Rui; Gao, Dayong

    2014-04-01

    In this study, the microwave rewarming process of cryopreserved samples with embedded superparamagnetic (SPM) nanoparticles was numerically simulated. The Finite Element Method (FEM) was used to calculate the coupling of the electromagnetic field and the temperature field in a microwave rewarming system composed of a cylindrical resonant cavity, an antenna source, and a frozen sample phantom with temperature-dependent properties. The heat generated by the sample and the nanoparticles inside the electromagnetic field of the microwave cavity was calculated. The dielectric properties of the biological tissues were approximated using the Debye model, which is applicable at different temperatures. The numerical results showed that, during the rewarming process of the sample phantom without nanoparticles, the rewarming rate was 29.45°C/min and the maximum temperature gradient in the sample was 3.58°C/mm. If nanoparticles were embedded in the sample, and the cavity power was unchanged, the rewarming rate was 47.76°C/min and the maximum temperature gradient in the sample was 1.64°C/mm. In the presence of SPM nanoparticles, the rewarming rate and the maximum temperature gradient were able to reach 20.73°C/min and 0.68°C/mm at the end of the rewarming under the optimized cavity power setting, respectively. The ability to change these temperature behaviors may prevent devitrification and would greatly diminish thermal stress during the rewarming process. The results indicate that the rewarming rate and the uniformity of temperature distribution are increased by nanoparticles. This could be because nanoparticles generated heat in the sample homogeneously and the time-dependent parameters of the sample improved after nanoparticles were homogeneously embedded within it. We were thus able to estimate the positive effect of SPM nanoparticles on microwave rewarming of cryopreserved samples.

  8. Multimode near-field microwave monitoring of free water content of skin and imaging of tissue.

    PubMed

    Lofland, S E; Mazzatenta, J D; Croman, J; Tyagi, S D

    2007-03-01

    We have used the near-field scanning microwave microscopy (NSMM) technique in the 1-10 GHz range to monitor the free water content of skin. The water content is interpreted from the measured dielectric properties of the epidermis. The finger skin was first hydrated by soaking in water at 37 degrees C for 30 min followed by monitoring of water content as the free water evaporated under ambient conditions. The same technique has also been employed to image a 1 cm x 1 cm sample of chicken skin. It has been shown that variations exist in the resonant frequencies and quality factors of tissue under varying physical parameters. The samples analysed were as-received and thermally dehydrated or damaged chicken tissue samples. We contrast between the dielectric properties with the optical images. We also discuss possible application of our imaging technique in clinical monitoring of the wound healing process.

  9. Changes of amino acid gradients in brain tissues induced by microwave irradiation and other means

    SciTech Connect

    Baxter, C.F.; Parsons, J.E.; Oh, C.C.; Wasterlain, C.G.; Baldwin, R.A. )

    1989-09-01

    Focused microwave irradiation to the head (FMI) has been used extensively by neurochemists for rapid inactivation of enzymatic activity in brain tissues and the preservation, for in vitro analysis, of in vivo substrate concentrations. Periodically the suitability of this technique for regional studies has been questioned. Evidence has now been obtained, on the basis of altered concentration gradients for GABA and taurine from the Substantia Nigra (SN) to an Adjacent Dorsal Area (ADJ), that FMI not only inactivates enzymes, but also facilitates rapid diffusion of small molecules from areas of high concentrations to adjacent areas of lower concentration. To a lesser extent, the implantation of plastic injection cannulas also decreased these concentration gradients. These results offer clear evidence that FMI is ill suited and unreliable for studies designed to map and compare the in vivo regional concentrations of diffusible organic molecules (such as amino acids) in brain tissues. Any invasive technique that compromises membrane barriers is likely to produce smaller similar effects.

  10. Three-Dimensional Near-Field Microwave Holography for Tissue Imaging

    PubMed Central

    Amineh, Reza K.; Khalatpour, Ali; Xu, Haohan; Baskharoun, Yona; Nikolova, Natalia K.

    2012-01-01

    This paper reports the progress toward a fast and reliable microwave imaging setup for tissue imaging exploiting near-field holographic reconstruction. The setup consists of two wideband TEM horn antennas aligned along each other's boresight and performing a rectangular aperture raster scan. The tissue sensing is performed without coupling liquids. At each scanning position, wideband data is acquired. Then, novel holographic imaging algorithms are implemented to provide three-dimensional images of the inspected domain. In these new algorithms, the required incident field and Green's function are obtained from numerical simulations. They replace the plane (or spherical) wave assumption in the previous holographic methods and enable accurate near-field imaging results. Here, we prove that both the incident field and Green's function can be obtained from a single numerical simulation. This eliminates the need for optimization-based deblurring which was previously employed to remove the effect of realistic non-point-wise antennas. PMID:22550472

  11. Multimode near-field microwave monitoring of free water content of skin and imaging of tissue

    NASA Astrophysics Data System (ADS)

    Lofland, S. E.; Mazzatenta, J. D.; Croman, J.; Tyagi, S. D.

    2007-03-01

    We have used the near-field scanning microwave microscopy (NSMM) technique in the 1-10 GHz range to monitor the free water content of skin. The water content is interpreted from the measured dielectric properties of the epidermis. The finger skin was first hydrated by soaking in water at 37 °C for 30 min followed by monitoring of water content as the free water evaporated under ambient conditions. The same technique has also been employed to image a 1 cm × 1 cm sample of chicken skin. It has been shown that variations exist in the resonant frequencies and quality factors of tissue under varying physical parameters. The samples analysed were as-received and thermally dehydrated or damaged chicken tissue samples. We contrast between the dielectric properties with the optical images. We also discuss possible application of our imaging technique in clinical monitoring of the wound healing process.

  12. Effect of microwaves at X-band on guinea-pig skin in tissue culture: 3. Effect of pulsed microwaves on skin respiration and biochemistry

    PubMed Central

    Carney, S. A.; Lawrence, J. C.; Ricketts, C. R.

    1970-01-01

    Carney, S. A., Lawrence, J. C., and Ricketts, C. R. (1970).Brit. J. industr. Med.,27, 72-76. Effect of microwaves at X-band on guinea-pig skin in tissue culture. 3. Effect of pulsed microwaves on skin respiration and biochemistry. Small pieces of guinea-pig skin were exposed to known power densities of pulsed microwaves at X-band (9·6 GHz). The pulse duration was 0·25 microsecond and the pulse repetition frequency 4 KHz. The peak power was thus 1,000 times the mean power. Otherwise conditions were closely comparable with those of previous experiments using continuous microwaves. After exposure the skin was maintained on a nutrient medium in vitro. The respiration of the skin and the uptake of 35S-sulphate, 32P-phosphate, and 14C-L-proline into skin constituents were reduced by exposure. The reduction was very similar to that observed after exposure to the same mean power density of continuous microwaves. The effects are believed to be attributable to heating of the skin. PMID:5418922

  13. CT imaging during microwave ablation: Analysis of spatial and temporal tissue contraction

    SciTech Connect

    Liu, Dong; Brace, Christopher L.

    2014-11-01

    Purpose: To analyze the spatial distribution and temporal development of liver tissue contraction during high-temperature ablation by using intraprocedural computed tomography (CT) imaging. Methods: A total of 46 aluminum fiducial markers were positioned in a 60 × 45 mm grid, in a single plane, around a microwave ablation antenna in each of six ex vivo bovine liver samples. Ablations were performed for 10 min at 100 W. CT data of the liver sample were acquired every 30 s during ablation. Fiducial motion between acquisitions was tracked in postprocessing and used to calculate measures of tissue contraction and contraction rates. The spatial distribution and temporal evolution of contraction were analyzed. Results: Fiducial displacement indicated that the zone measured postablation was 8.2 ± 1.8 mm (∼20%) smaller in the radial direction and 7.1 ± 1.0 mm (∼10%) shorter in the longitudinal direction than the preablation tissue dimension. Therefore, the total ablation volume was reduced from its preablation value by approximately 45%. Very little longitudinal contraction was noted in the distal portion of the ablation zone. Central tissues contracted more than 60%, which was near an estimated limit of ∼70% based on initial water content. More peripheral tissues contracted only 15% in any direction. Contraction rates peaked during the first 60 s of heating with a roughly exponential decay over time. Conclusions: Ablation zones measured posttreatment are significantly smaller than the pretreatment tissue dimensions. Tissue contraction is spatially dependent, with the greatest effect occurring in the central ablation zone. Contraction rate peaks early and decays over time.

  14. Design and realisation of tissue-equivalent dielectric simulators for dosimetric studies on microwave antennas for interstitial ablation.

    PubMed

    Lopresto, V; Pinto, R; Lodato, R; Lovisolo, G A; Cavagnaro, M

    2012-07-01

    Thermal ablation therapies, based on electromagnetic field sources (interstitial or intracavitary antennas) at radio and microwave frequencies, are increasingly used in medicine due to their proven efficacy in the treatment of many diseases (tumours, stenosis, etc). Such techniques need standardized procedures, still not completely consolidated, as to analyze the behaviour of antennas for treatment optimisation. Several tissue-equivalent dielectric simulators (also named phantoms) have been developed to represent human head tissues, and extensively used in the analysis of human exposure to the electromagnetic emissions from hand-held devices; yet, very few studies have considered other tissues, as those met in ablation therapies. The objective of this study was to develop phantoms of liver and kidney tissue to experimentally characterise interstitial microwave antennas in reference conditions. Phantom properties depend on the simulated target tissue (liver or kidney) and the considered frequency (2.45 GHz in this work), addressing the need for a transparent liquid to easily control the positioning of the probe with respect to the antenna under test. An experimental set-up was also developed and used to characterise microwave ablation antenna performances. Finally, a comparison between measurements and numerical simulations was performed for the cross-validation of the experimental set-up and the numerical model. The obtained results highlight the fundamental role played by dielectric simulators in the development of microwave ablation devices, representing the first step towards the definition of a procedure for the ablation treatment planning.

  15. The Eph Tyrosine Kinase Receptors EphB2 and EphA2 Are Novel Proteolytic Substrates of Tissue Factor/Coagulation Factor VIIa*

    PubMed Central

    Eriksson, Oskar; Ramström, Margareta; Hörnaeus, Katarina; Bergquist, Jonas; Mokhtari, Dariush; Siegbahn, Agneta

    2014-01-01

    Tissue factor (TF) binds the serine protease factor VIIa (FVIIa) to form a proteolytically active complex that can trigger coagulation or activate cell signaling. Here we addressed the involvement of tyrosine kinase receptors (RTKs) in TF/FVIIa signaling by antibody array analysis and subsequently found that EphB2 and EphA2 of the Eph RTK family were cleaved in their ectodomains by TF/FVIIa. We used N-terminal Edman sequencing and LC-MS/MS analysis to characterize the cleaved Eph isoforms and identified a key arginine residue at the cleavage site, in agreement with the tryptic serine protease activity of FVIIa. Protease-activated receptor 2 (PAR2) signaling and downstream coagulation activity was non-essential in this context, in further support of a direct cleavage by TF/FVIIa. EphB2 was cleaved by FVIIa concentrations in the subnanomolar range in a number of TF expressing cell types, indicating that the active cellular pool of TF was involved. FVIIa caused potentiation of cell repulsion by the EphB2 ligand ephrin-B1, demonstrating a novel proteolytical event to control Eph-mediated cell segregation. These results define Eph RTKs as novel proteolytical targets of TF/FVIIa and provide new insights into how TF/FVIIa regulates cellular functions independently of PAR2. PMID:25281742

  16. Microwaves and tea: new tools to process plant tissue for transmission electron microscopy.

    PubMed

    Carpentier, Anaïs; Abreu, Susana; Trichet, Michael; Satiat-Jeunemaitre, Béatrice

    2012-07-01

    Optimizing sample processing, reducing the duration of the preparation of specimen, and adjusting procedures to adhere to new health and safety regulations, are the current challenges of plant electron microscopists. To address these issues, plant processing protocols for TEM, combining the use of polyphenolic compounds as substitute for uranyl acetate with microwave technology are being developed. In the present work, we optimized microwave-assisted processing of different types of plant tissue for ultrastuctural and immunocytochemical studies. We also explored Oolong tea extract as alternative for uranyl acetate for the staining of plant samples. We obtained excellent preservation of cell ultrastructure when samples were embedded in epoxy resin, and of cell antigenicity, when embedded in LR-White resin. Furthermore, Oolong tea extract successfully replaced uranyl acetate as a counterstain on ultrathin sections, and for in block staining. These novel protocols reduce the time spent at the bench, and improve safety conditions for the investigator. The preservation of the cell components when following these approaches is of high quality. Altogether, they offer significant simplification of the procedures required for electron microscopy of plant ultrastructure.

  17. Detection of vesicoureteral reflux using microwave radiometry-system characterization with tissue phantoms.

    PubMed

    Arunachalam, Kavitha; Maccarini, Paolo; De Luca, Valeria; Tognolatti, Piero; Bardati, Fernando; Snow, Brent; Stauffer, Paul

    2011-06-01

    Microwave (MW) radiometry is proposed for passive monitoring of kidney temperature to detect vesicoureteral reflux (VUR) of urine that is externally heated by a MW hyperthermia device and thereafter reflows from the bladder to kidneys during reflux. Here, we characterize in tissue-mimicking phantoms the performance of a 1.375 GHz radiometry system connected to an electromagnetically (EM) shielded microstrip log spiral antenna optimized for VUR detection. Phantom EM properties are characterized using a coaxial dielectric probe and network analyzer (NA). Power reflection and receive patterns of the antenna are measured in layered tissue phantom. Receiver spectral measurements are used to assess EM shielding provided by a metal cup surrounding the antenna. Radiometer and fiberoptic temperature data are recorded for varying volumes (10-30 mL) and temperaturesg (40-46°C) of the urine phantom at 35 mm depth surrounded by 36.5°C muscle phantom. Directional receive pattern with about 5% power spectral density at 35 mm target depth and better than -10 dB return loss from tissue load are measured for the antenna. Antenna measurements demonstrate no deterioration in power reception and effective EM shielding in the presence of the metal cup. Radiometry power measurements are in excellent agreement with the temperature of the kidney phantom. Laboratory testing of the radiometry system in temperature-controlled phantoms supports the feasibility of passive kidney thermometry for VUR detection. PMID:21257366

  18. Coagulation inhibitors in inflammation.

    PubMed

    Esmon, C T

    2005-04-01

    Coagulation is triggered by inflammatory mediators in a number of ways. However, to prevent unwanted clot formation, several natural anticoagulant mechanisms exist, such as the antithrombin-heparin mechanism, the tissue factor pathway inhibitor mechanism and the protein C anticoagulant pathway. This review examines the ways in which these pathways are down-regulated by inflammation, thus limiting clot formation and decreasing the natural anti-inflammatory mechanisms that these pathways possess. PMID:15787615

  19. Dual-mode antenna design for microwave heating and noninvasive thermometry of superficial tissue disease.

    PubMed

    Jacobsen, S; Stauffer, P R; Neuman, D G

    2000-11-01

    Hyperthermia therapy of superficial skin disease has proven clinically useful, but current heating equipment is somewhat clumsy and technically inadequate for many patients. The present effort describes a dual-purpose, conformal microwave applicator that is fabricated from thin, flexible, multilayer printed circuit board (PCB) material to facilitate heating of surface areas overlaying contoured anatomy. Preliminary studies document the feasibility of combining Archimedean spiral microstrip antennas, located concentrically within the central region of square dual concentric conductor (DCC) annular slot antennas. The motivation is to achieve homogeneous tissue heating simultaneously with noninvasive thermometry by radiometric sensing of blackbody radiation from the target tissue under the applicator. Results demonstrate that the two antennas have complimentary regions of influence. The DCC ring antenna structure produces a peripherally enhanced power deposition pattern with peaks in the outer corners of the aperture and a broad minimum around 50% of maximum centrally. In contrast, the Archimedean spiral radiates (or receives) energy predominantly along the boresight axis of the spiral, thus confining the region of influence to tissue located within the central broad minimum of the DCC pattern. Analysis of the temperature-dependent radiometer signal (brightness temperature) showed linear correlation of radiometer output with test load temperature using either the spiral or DCC structure as the receive antenna. The radiometric performance of the broadband Archimedean antenna was superior compared to the DCC, providing improved temperature resolution (0.1 degree C-0.2 degree C) and signal sensitivity (0.3 degree C-0.8 degree C/degree C) at all four 500 MHz integration bandwidths tested within the frequency range from 1.2 to 3.0 GHz. PMID:11077744

  20. Dual-mode antenna design for microwave heating and noninvasive thermometry of superficial tissue disease.

    PubMed

    Jacobsen, S; Stauffer, P R; Neuman, D G

    2000-11-01

    Hyperthermia therapy of superficial skin disease has proven clinically useful, but current heating equipment is somewhat clumsy and technically inadequate for many patients. The present effort describes a dual-purpose, conformal microwave applicator that is fabricated from thin, flexible, multilayer printed circuit board (PCB) material to facilitate heating of surface areas overlaying contoured anatomy. Preliminary studies document the feasibility of combining Archimedean spiral microstrip antennas, located concentrically within the central region of square dual concentric conductor (DCC) annular slot antennas. The motivation is to achieve homogeneous tissue heating simultaneously with noninvasive thermometry by radiometric sensing of blackbody radiation from the target tissue under the applicator. Results demonstrate that the two antennas have complimentary regions of influence. The DCC ring antenna structure produces a peripherally enhanced power deposition pattern with peaks in the outer corners of the aperture and a broad minimum around 50% of maximum centrally. In contrast, the Archimedean spiral radiates (or receives) energy predominantly along the boresight axis of the spiral, thus confining the region of influence to tissue located within the central broad minimum of the DCC pattern. Analysis of the temperature-dependent radiometer signal (brightness temperature) showed linear correlation of radiometer output with test load temperature using either the spiral or DCC structure as the receive antenna. The radiometric performance of the broadband Archimedean antenna was superior compared to the DCC, providing improved temperature resolution (0.1 degree C-0.2 degree C) and signal sensitivity (0.3 degree C-0.8 degree C/degree C) at all four 500 MHz integration bandwidths tested within the frequency range from 1.2 to 3.0 GHz.

  1. Microwave Therapy for Bone Tumors

    NASA Astrophysics Data System (ADS)

    Takakuda, Kazuo; Inaoka, Shuken; Saito, Hirokazu; Hassan, Moinuddin; Koyama, Yoshikazu; Kuroda, Hiroshi; Kanaya, Tomohiro; Kosaka, Toshifumi; Tanaka, Shigeo; Miyairi, Hiroo; Shinomiya, Kenichi

    In vivo microwave treatments for bone tumor are designed, which enable us to conserve the activity and functionality of the matrix of living tissues. This treatment is composed of two steps. In the first step, the tumor was coagulated by the application of microwaves emitted from the antenna inserted into the tumor tissue, and then removed. In the second step, the surrounding tissue suspected to be invaded with transformed cells was covered with hydro gels and heated similarly. The tissue itself was heated by the conduction from the gels. The tissue temperature should be kept at 60°C for 30 minutes. This treatment should kill the whole cells within the tissues, but the mechanical strength and the biochemical activity of the matrix should be left intact. The matrix preserves the mechanical functions and ensures the maximum regeneration ability of the tissue. In this study, various hydro gels were examined and the most promising one was selected. Animal experiments were carried out and successful heating verified the applicability of the treatment.

  2. An improved cryofixation method: cryoquenching of small tissue blocks during microwave irradiation.

    PubMed

    Hanyu, Y; Ichikawa, M; Matsumoto, G

    1992-02-01

    The metal contact method of rapid freezing is greatly improved by irradiating the specimen with microwaves at 2.45 GHz for a short period of time (50 ms), while pushing the specimen onto the surface of the copper block cooled by liquid N2. The microwave irradiation, together with two technical improvements (a light-mass plunger and a recently developed beta-gel shock absorber) for preventing bounce, produces a good freezing zone for squid retina, with high reproducibility for each experimental trial, extending from the contact surface to a depth of about 15 microns, which is comparable to the depth obtained by the metal contact method using liquid He in the absence of microwave irradiation. A good freezing zone was also experimentally demonstrated in specimens of rat liver and heart muscle. Microwave irradiation does not have appreciable effects on the ultrastructure of squid retina. The mechanism underlying the improvement in the rapid freezing under the microwave irradiation is discussed.

  3. The effects of danaparoid, dalteparin and heparin on tissue factor-induced experimental disseminated intravascular coagulation and bleeding time in the rat.

    PubMed

    Miyake, Y; Yokota, K; Fujishima, Y; Sukamoto, T

    2001-07-01

    Danaparoid and heparin, on the basis of anti-activated factor X (anti-FXa) activity, were equipotent in accelerating the rate of interaction of FXa and antithrombin III. In rat tissue factor-induced disseminated intravascular coagulation (DIC) models, an intravenous administration of danaparoid inhibited the decrease in plasma fibrinogen and platelet counts and the increase in serum fibrinogen degradation products. Expressed on the basis of anti-FXa activity, these effects were comparable with those of dalteparin and heparin. In rat mesenteric small artery and vein, less bleeding was observed after intravenous administration of danaparoid than after dalteparin or heparin. Danaparoid did not affect adenosine diphosphate- or collagen-induced platelet aggregation, and showed weaker inhibitory effects on aggregation induced by thrombin, or collagen + thrombin, than did dalteparin or heparin. These findings suggest that danaparoid may be useful for the prevention of DIC and has less tendency to cause bleeding than dalteparin or heparin, probably as a result of its weaker ability to inhibit platelet aggregation. PMID:11505077

  4. Thermal Ablation of Lung Tissue: In Vivo Experimental Comparison of Microwave and Radiofrequency

    SciTech Connect

    Crocetti, Laura Bozzi, Elena; Faviana, Pinuccia; Cioni, Dania; Della Pina, Clotilde; Sbrana, Alberto; Fontanini, Gabriella; Lencioni, Riccardo

    2010-08-15

    This study was designed to compare feasibility, safety, and effectiveness of microwave (MW) ablation versus radiofrequency (RF) ablation of lung tissue in a rabbit model. Twenty New Zealand White rabbits were submitted to MW (n = 10, group A) or RF ablation (n = 10, group B). The procedures were performed with a prototype MW ablation device with a 1.6-cm radiating section antenna (Valleylab MW Ablation System) and with a 2-cm exposed-tip RF electrode (Cool-tip RF Ablation System). At immediate computed tomography increase in density, maximum diameters (D1-D3) of ablation zones were measured and ablation volume was calculated. Histopathologic assessment was performed 3 and 7 days after the procedure. Technical success was achieved in nine of 10 rabbits in each group. One death occurred in group B. Complications included pneumothorax (group A, n = 4; group B, n = 4), abscess (group A, n = 1; group B, n = 1), and thoracic wall burn (group A, n = 4). No significant differences were demonstrated in attenuation increase (P = 0.73), dimensions (P = 0.28, 0.86, 0.06, respectively, comparing D1-D3) and volume (P = 0.17). At histopathology, ablation zones were similar, with septal necrosis, edema, hemorrhage, and peripheral lymphocytic infiltrate. Complete thrombosis of more than 90% of vessels up to 2 mm in diameter was depicted at the periphery of the ablation zone in group A specimens. In group B specimens, complete thrombosis was depicted in 20% of vessels. Feasibility and safety of MW and RF ablation are similar in a lung rabbit model. MW ablation produces a greater damage to peripheral small vessels inducing thrombosis.

  5. Inherited disorders of blood coagulation.

    PubMed

    Lippi, Giuseppe; Franchini, Massimo; Montagnana, Martina; Favaloro, Emmanuel J

    2012-08-01

    Hemostasis is traditionally defined as a physiological response to blood vessel injury and bleeding, which entails a co-ordinated process involving the blood vessel, platelets, and blood clotting proteins (i.e. coagulation factors). Hemostasis can be divided into primary and secondary components. The former rapidly initiates after endothelial damage and is characterized by vascular contraction, platelet adhesion, and formation of a soft aggregate plug. The latter is initiated following the release of tissue factor and involves a complex sequence of events known as the blood coagulation cascade, encompassing serial steps where each coagulation factor activates another in a chain reaction that culminates in the conversion of fibrinogen to fibrin. Patients carrying abnormalities of the coagulation cascade (i.e. deficiencies of coagulation factors) have an increased bleeding tendency, where the clinical severity is mostly dependent upon the type and the plasma level of the factor affected. These disorders also impose a heavy medical and economic burden on individual patients and society in general. The aim of this article is to provide a general overview on the pathophysiology, clinics, diagnostics, and therapy of inherited disorders of coagulation factors.

  6. [Effects of microwave radiation on the content of five elements in mice bone tissue].

    PubMed

    Ren, D; Yang, W; Zeng, G

    2001-07-01

    Mice were radiated with 2450 MHz, 10 mW/cm2 microwave for 12 days, 1.5 h/day. After microwave radiation, compared with the normal control, the content of calcium and zinc in mice bone were significantly decreased (P < 0.05) copper, iron and manganese decreased, appulsively After Libido, a composed traditional herb medicine, and asshide asafetida were supplied seperatively, the content of calcium and trace element zinc in mice bone increased (P < 0.05). It is concluded that Libido was effective on the resistance of mice to microwave radiation. The toxicity of organotin compounds and the current pollution status. PMID:12561512

  7. Pathological changes in the sinoatrial node tissues of rats caused by pulsed microwave exposure.

    PubMed

    Liu, Yan Qing; Gao, Ya Bing; Dong, Ji; Yao, Bin Wei; Zhao, Li; Peng, Rui Yun

    2015-01-01

    To observe microwave induced dynamic pathological changes in the sinus nodes, wistar rats were exposed to 0, 5, 10, 50 mW/cm2 microwave. In 10 and 50 mW/cm2 groups, disorganized sinoatrial node cells, cell swelling, cytoplasmic condensation, nuclear pyknosis, and anachromasis, swollen, and empty mitochondria, and blurred and focally dissolved myofibrils could be detected from 1 to 28 d, while reduced parenchymal cells, increased collagen fibers, and extracellular matrix remodeling of interstitial cells were observed from 6 to 12 months. In conclusion, 10 and 50 mW/cm2 microwave could cause structural damages in the sinoatrial node and extracellular matrix remodeling in rats.

  8. Disseminated intravascular coagulation.

    PubMed

    Gando, Satoshi; Levi, Marcel; Toh, Cheng-Hock

    2016-01-01

    Disseminated intravascular coagulation (DIC) is an acquired syndrome characterized by widespread intravascular activation of coagulation that can be caused by infectious insults (such as sepsis) and non-infectious insults (such as trauma). The main pathophysiological mechanisms of DIC are inflammatory cytokine-initiated activation of tissue factor-dependent coagulation, insufficient control of anticoagulant pathways and plasminogen activator inhibitor 1-mediated suppression of fibrinolysis. Together, these changes give rise to endothelial dysfunction and microvascular thrombosis, which can cause organ dysfunction and seriously affect patient prognosis. Recent observations have pointed to an important role for extracellular DNA and DNA-binding proteins, such as histones, in the pathogenesis of DIC. The International Society on Thrombosis and Haemostasis (ISTH) established a DIC diagnostic scoring system consisting of global haemostatic test parameters. This scoring system has now been well validated in diverse clinical settings. The theoretical cornerstone of DIC management is the specific and vigorous treatment of the underlying conditions, and DIC should be simultaneously managed to improve patient outcomes. The ISTH guidance for the treatment of DIC recommends treatment strategies that are based on current evidence. In this Primer, we provide an updated overview of the pathophysiology, diagnosis and management of DIC and discuss the future directions of basic and clinical research in this field. PMID:27250996

  9. Coagulation in patients with severe sepsis.

    PubMed

    Levi, Marcel; Poll, Tom van der

    2015-02-01

    In the majority of patients with severe sepsis, systemic activation of coagulation is present. Increasing evidence points to an extensive cross-talk between coagulation and inflammation that may play an important role in the pathogenesis of sepsis. Inflammation not only leads to activation of coagulation, but coagulation also considerably affects inflammatory activity. Molecular pathways that contribute to inflammation-induced activation of coagulation have been precisely identified. Proinflammatory cytokines and other mediators are capable of activating the coagulation system and downregulating important physiological anticoagulant pathways. Activation of the coagulation system and ensuing thrombin generation is dependent on expression of tissue factor on activated mononuclear cells and endothelial cells, and is insufficiently counteracted by TFPI. Simultaneously, endothelial-bound anticoagulant mechanism, in particular the protein C system, is shutoff by proinflammatory cytokines. In addition, fibrin removal is severely inhibited, because of inactivation of the fibrinolytic system, caused by an upregulation of its main inhibitor, plasminogen activator inhibitor type 1 (PAI-1). Increased fibrin formation and impaired removal lead to (micro)vascular thrombosis, which may result in tissue ischemia and subsequent organ damage. The cornerstone of the management of coagulation in sepsis is the specific and vigorous treatment of the underlying disorder. Strategies aimed at the inhibition of coagulation activation may theoretically be justified and have been found beneficial in experimental and initial clinical studies. Heparin may be an effective anticoagulant approach and alternative strategies comprise restoration of physiological anticoagulant pathways. PMID:25590524

  10. Toward Carbon-Nanotube-Based Theranostic Agents for Microwave Detection and Treatment of Breast Cancer: Enhanced Dielectric and Heating Response of Tissue-Mimicking Materials

    PubMed Central

    Mashal, Alireza; Sitharaman, Balaji; Li, Xu; Avti, Pramod; Sahakian, Alan V.; Booske, John H.; Hagness, Susan C.

    2010-01-01

    The experimental results reported in this letter suggest that single-walled carbon nanotubes (SWCNTs) have the potential to enhance dielectric contrast between malignant and normal tissue for microwave detection of breast cancer and facilitate selective heating of malignant tissue for microwave hyperthermia treatment of breast cancer. In this study, we constructed tissue-mimicking materials with varying concentrations of SWCNTs and characterized their dielectric properties and heating response. At SWCNT concentrations of less than 0.5% by weight, we observed significant increases in the relative permittivity and effective conductivity. In microwave heating experiments, we observed significantly greater temperature increases in mixtures containing SWCNTs. These temperature increases scaled linearly with the effective conductivity of the mixtures. This work is a first step towards the development of functionalized, tumor-targeting SWCNTs as theranostic (integrated therapeutic and diagnostic) agents for microwave breast cancer detection and treatment. PMID:20176534

  11. A large-scale study of the ultrawideband microwave dielectric properties of normal, benign and malignant breast tissues obtained from cancer surgeries

    NASA Astrophysics Data System (ADS)

    Lazebnik, Mariya; Popovic, Dijana; McCartney, Leah; Watkins, Cynthia B.; Lindstrom, Mary J.; Harter, Josephine; Sewall, Sarah; Ogilvie, Travis; Magliocco, Anthony; Breslin, Tara M.; Temple, Walley; Mew, Daphne; Booske, John H.; Okoniewski, Michal; Hagness, Susan C.

    2007-10-01

    The development of microwave breast cancer detection and treatment techniques has been driven by reports of substantial contrast in the dielectric properties of malignant and normal breast tissues. However, definitive knowledge of the dielectric properties of normal and diseased breast tissues at microwave frequencies has been limited by gaps and discrepancies across previously published studies. To address these issues, we conducted a large-scale study to experimentally determine the ultrawideband microwave dielectric properties of a variety of normal, malignant and benign breast tissues, measured from 0.5 to 20 GHz using a precision open-ended coaxial probe. Previously, we reported the dielectric properties of normal breast tissue samples obtained from reduction surgeries. Here, we report the dielectric properties of normal (adipose, glandular and fibroconnective), malignant (invasive and non-invasive ductal and lobular carcinomas) and benign (fibroadenomas and cysts) breast tissue samples obtained from cancer surgeries. We fit a one-pole Cole-Cole model to the complex permittivity data set of each characterized sample. Our analyses show that the contrast in the microwave-frequency dielectric properties between malignant and normal adipose-dominated tissues in the breast is considerable, as large as 10:1, while the contrast in the microwave-frequency dielectric properties between malignant and normal glandular/fibroconnective tissues in the breast is no more than about 10%.

  12. Optimization of microwave-assisted extraction for six inorganic and organic arsenic species in chicken tissues using response surface methodology.

    PubMed

    Zhang, Wenfeng; Hu, Yuanan; Cheng, Hefa

    2015-09-01

    Response surface methodology was applied to optimize the parameters for microwave-assisted extraction of six major inorganic and organic arsenic species (As(III), As(V), dimethyl arsenic acid, monomethyl arsenic acid, p-arsanilic acid, and roxarsone) from chicken tissues, followed by detection using a high-performance liquid chromatography with inductively coupled mass spectrometry detection method, which allows the simultaneous analysis of both inorganic and organic arsenic species in the extract in a single run. Effects of extraction medium, solution pH, liquid-to-solid ratio, and the temperature and time of microwave-assisted extraction on the extraction of the targeted arsenic species were studied. The optimum microwave-assisted extraction conditions were: 100 mg of chicken tissue, extracted by 5 mL of 22% v/v methanol, 90 mmol/L (NH4 )2 HPO4 , and 0.07% v/v trifluoroacetic acid (with pH adjusted to 10.0 by ammonium hydroxide solution), ramping for 10 min to 71°C, and holding for 11 min. The method has good extraction performance for total arsenic in the spiked and nonspiked chicken tissues (104.0 ± 13.8% and 91.6 ± 7.8%, respectively), except for the ones with arsenic contents close to the quantitation limits. Limits of quantitation (S/N = 10) for As(III), As(V), dimethyl arsenic acid, monomethyl arsenic acid, p-arsanilic acid, and roxarsone in chicken tissues using this method were 0.012, 0.058, 0.039, 0.061, 0.102, and 0.240 mg/kg (dry weight), respectively.

  13. Micro-quantity tissue digestion for metal measurements by use of a microwave acid-digestion bomb.

    PubMed

    Nicholson, J R; Savory, M G; Savory, J; Wills, M R

    1989-03-01

    We describe a simple and convenient method for processing small amounts of tissue samples for trace-metal measurements by atomic absorption spectrometry, by use of a modified Parr microwave digestion bomb. Digestion proceeds rapidly (less than or equal to 90 s) in a sealed Teflon-lined vessel that eliminates contamination or loss from volatilization. Small quantities of tissue (5-100 mg dry weight) are digested in high-purity nitric acid, yielding concentrations of analyte that can be measured directly without further sample manipulation. We analyzed National Institute of Standards and Technology bovine liver Standard Reference Material to verify the accuracy of the technique. We assessed the applicability of the technique to analysis for aluminum in bone by comparison with a dry ashing procedure. PMID:2537690

  14. Micro-quantity tissue digestion for metal measurements by use of a microwave acid-digestion bomb.

    PubMed

    Nicholson, J R; Savory, M G; Savory, J; Wills, M R

    1989-03-01

    We describe a simple and convenient method for processing small amounts of tissue samples for trace-metal measurements by atomic absorption spectrometry, by use of a modified Parr microwave digestion bomb. Digestion proceeds rapidly (less than or equal to 90 s) in a sealed Teflon-lined vessel that eliminates contamination or loss from volatilization. Small quantities of tissue (5-100 mg dry weight) are digested in high-purity nitric acid, yielding concentrations of analyte that can be measured directly without further sample manipulation. We analyzed National Institute of Standards and Technology bovine liver Standard Reference Material to verify the accuracy of the technique. We assessed the applicability of the technique to analysis for aluminum in bone by comparison with a dry ashing procedure.

  15. Helical antenna arrays for interstitial microwave thermal therapy for prostate cancer: tissue phantom testing and simulations for treatment

    NASA Astrophysics Data System (ADS)

    Sherar, Michael D.; Gladman, Aviv S.; Davidson, Sean R. H.; Trachtenberg, John; Gertner, Mark R.

    2001-07-01

    Interstitial microwave therapy is an experimental treatment for prostate cancer. The objective of this work was to measure the power deposition (specific absorption rate, SAR) patterns of helical microwave antennae both individually and in array patterns that would be useful for clinical treatment protocols. Commercial helical antenna 3D SAR patterns were measured in muscle equivalent phantoms using a thermographic technique. Two array patterns were tested: a `square' and a `crescent' array, both surrounding the urethra. To assess the feasibility of pre-treatment planning, the measured SAR patterns were input to a treatment planning computer simulation program based on a series of trans-rectal ultrasound images from a prostate cancer patient. The simulation solved the Pennes linear bioheat heat transfer equation in prostate tissue, with the aim of achieving a target of 55 °C at the prostate periphery while not allowing normal surrounding tissues (bladder, urethra, rectum) to rise above 42 °C. These criteria could not be met with the square array but they could be met with the crescent array, provided that the prostate was first dissected away from the rectum. This can be done with a procedure such as `hydrodissection', where sterile saline is injected to separate the prostate and rectum. The results of these SAR measurements and heat transfer simulations indicate that arrays of helical antennae could be used for safe and effective thermal therapy for prostate cancer.

  16. Application of microwave-assisted micro-solid-phase extraction for determination of parabens in human ovarian cancer tissues.

    PubMed

    Sajid, Muhammad; Basheer, Chanbasha; Narasimhan, Kothandaraman; Choolani, Mahesh; Lee, Hian Kee

    2015-09-01

    Parabens (alkyl esters of p-hydroxybenzoic acid) are widely used as preservatives in food, cosmetics and pharmaceutical products. However, weak estrogenicity of some parabens has been reported in several studies, which provided the impetus for this work. Here, a simple and efficient analytical method for quantifying parabens in cancer tissues has been developed. This technique involves the simultaneous use of microwave-assisted solvent extraction (MASE) and micro-solid phase extraction (μ-SPE), in tandem with high performance liquid chromatography (HPLC/UV) analysis for the determination of parabens. The pollutants studied included four parabens (methyl, ethyl, propyl and butyl parabens). Optimization of the experimental parameters for MASE and μ-SPE was performed. Good relative standard deviation (%RSD) ranged from 0.09 to 2.81% and high enrichment factors (27-314) were obtained. Coefficients of determination (r(2)) up to 0.9962 were obtained across a concentration range of 5.0-200ngg(-1). The method detection limits for parabens ranged from 0.005 to 0.0244ngg(-1). The procedure was initially tested on prawn samples to demonstrate its feasibility on a complex biological matrix. Preliminary studies on human ovarian cancer (OC) tissues showed presence of parabens. Higher levels of parabens were detected in malignant ovarian tumor tissues compared to benign tumor tissue samples.

  17. Evolution of the complex permittivity of biological tissue at microwaves ranges: correlation study with burn depth.

    PubMed

    Matthieu, Brusson; Jerome, Rossignol; Stephane, Binczak; Gabriel, Laurent

    2014-01-01

    The evolution of the muscle tissue's complex permittivity represents a growing interest in terms of characterization in medicine and biology. The influence of a burned part on the permittivity is not very developed. In this work, an estimation of the complex permittivity of biological tissues is performed as a function of the depth of burn tissues. The sensor, an open-ended coaxial probe, is placed directly against each sample. The evolution of the complex permittivity is studied for two measurements conditions (in the air and in a physiological solution). A correlation study is attempted with the depth of burn tissue.

  18. Changes in the dielectric properties of rat tissue as a function of age at microwave frequencies

    NASA Astrophysics Data System (ADS)

    Peyman, A.; Rezazadeh, A. A.; Gabriel, C.

    2001-06-01

    The dielectric properties of ten rat tissues at six different ages were measured at 37 °C in the frequency range of 130 MHz to 10 GHz using an open-ended coaxial probe and a computer controlled network analyser. The results show a general decrease of the dielectric properties with age. The trend is more apparent for brain, skull and skin tissues and less noticeable for abdominal tissues. The variation in the dielectric properties with age is due to the changes in the water content and the organic composition of tissues. The percentage decrease in the dielectric properties of certain tissues in the 30 to 70 day old rats at cellular phone frequencies have been tabulated. These data provide an important input in the provision of rigorous dosimetry in lifetime-exposure animal experiments. The results provide some insight into possible differences in the assessment of exposure for children and adults.

  19. Dual mode microwave tool for dielectric analysis and thermal ablation treatment of organic tissue.

    PubMed

    Puentes, Margarita; Bashir, Fahed; Schüssler, Martin; Jakoby, Rolf

    2012-01-01

    A dual mode tool design to analyze organic tissue and locally perform thermal ablation treatment is presented. The tool is made of an array of split-ring resonators. It can operate on a sensing mode to track the relative dielectric changes from the organic tissue and on a treatment mode to perform thermal ablation at different input powers. The measurements were done with phantoms of human tissue. The tool is able to focus a hot spot of approximately 0.2mm with a temperature of 109 °C at an input power of 10W.

  20. Dual mode microwave tool for dielectric analysis and thermal ablation treatment of organic tissue.

    PubMed

    Puentes, Margarita; Bashir, Fahed; Schüssler, Martin; Jakoby, Rolf

    2012-01-01

    A dual mode tool design to analyze organic tissue and locally perform thermal ablation treatment is presented. The tool is made of an array of split-ring resonators. It can operate on a sensing mode to track the relative dielectric changes from the organic tissue and on a treatment mode to perform thermal ablation at different input powers. The measurements were done with phantoms of human tissue. The tool is able to focus a hot spot of approximately 0.2mm with a temperature of 109 °C at an input power of 10W. PMID:23366811

  1. Stable microwave radiometry system for long term monitoring of deep tissue temperature

    NASA Astrophysics Data System (ADS)

    Stauffer, Paul R.; Rodriques, Dario B.; Salahi, Sara; Topsakal, Erdem; Oliveira, Tiago R.; Prakash, Aniruddh; D'Isidoro, Fabio; Reudink, Douglas; Snow, Brent W.; Maccarini, Paolo F.

    2013-02-01

    Background: There are numerous clinical applications for non-invasive monitoring of deep tissue temperature. We present the design and experimental performance of a miniature radiometric thermometry system for measuring volume average temperature of tissue regions located up to 5cm deep in the body. Methods: We constructed a miniature sensor consisting of EMI-shielded log spiral microstrip antenna with high gain onaxis and integrated high-sensitivity 1.35GHz total power radiometer with 500 MHz bandwidth. We tested performance of the radiometry system in both simulated and experimental multilayer phantom models of several intended clinical measurement sites: i) brown adipose tissue (BAT) depots within 2cm of the skin surface, ii) 3-5cm deep kidney, and iii) human brain underlying intact scalp and skull. The physical models included layers of circulating tissue-mimicking liquids controlled at different temperatures to characterize our ability to quantify small changes in target temperature at depth under normothermic surface tissues. Results: We report SAR patterns that characterize the sense region of a 2.6cm diameter receive antenna, and radiometric power measurements as a function of deep tissue temperature that quantify radiometer sensitivity. The data demonstrate: i) our ability to accurately track temperature rise in realistic tissue targets such as urine refluxed from prewarmed bladder into kidney, and 10°C drop in brain temperature underlying normothermic scalp and skull, and ii) long term accuracy and stability of +0.4°C over 4.5 hours as needed for monitoring core body temperature over extended surgery or monitoring effects of brown fat metabolism over an extended sleep/wake cycle. Conclusions: A non-invasive sensor consisting of 2.6cm diameter receive antenna and integral 1.35GHz total power radiometer has demonstrated sufficient sensitivity to track clinically significant changes in temperature of deep tissue targets underlying normothermic surface

  2. Microwave distillation-solid phase adsorbent trapping device for the determination of off-flavors, geosmin and methylisoborneol, in catfish tissue below their rejection levels

    SciTech Connect

    Conte, E.D.; Shen, C.Y.; Miller, D.W.; Perschbacher, P.W.

    1996-08-01

    Described is a rapid microwave-mediated steam distillation device for determining two predominant off-flavor compounds, geosmin and methylisoborneol, in catfish tissue. A microwave on-time of 10 min is needed to efficiently remove these off-flavor compounds from the sample matrix and trap them on a solid phase adsorbent. A minimal amount of organic solvent is used to elute the trapped compounds. The extract is then analyzed by gas chromatography with ion trap detection in the selective ion storage mode. Detection limits in the sub-parts-per-billion range are obtained with this method. 11 refs., 5 figs., 1 tab.

  3. Numerical 3D modeling of heat transfer in human tissues for microwave radiometry monitoring of brown fat metabolism

    PubMed Central

    Rodrigues, Dario B.; Maccarini, Paolo F.; Salahi, Sara; Colebeck, Erin; Topsakal, Erdem; Pereira, Pedro J. S.; Limão-Vieira, Paulo; Stauffer, Paul R.

    2013-01-01

    Background Brown adipose tissue (BAT) plays an important role in whole body metabolism and could potentially mediate weight gain and insulin sensitivity. Although some imaging techniques allow BAT detection, there are currently no viable methods for continuous acquisition of BAT energy expenditure. We present a non-invasive technique for long term monitoring of BAT metabolism using microwave radiometry. Methods A multilayer 3D computational model was created in HFSS™ with 1.5 mm skin, 3–10 mm subcutaneous fat, 200 mm muscle and a BAT region (2–6 cm3) located between fat and muscle. Based on this model, a log-spiral antenna was designed and optimized to maximize reception of thermal emissions from the target (BAT). The power absorption patterns calculated in HFSS™ were combined with simulated thermal distributions computed in COMSOL® to predict radiometric signal measured from an ultra-low-noise microwave radiometer. The power received by the antenna was characterized as a function of different levels of BAT metabolism under cold and noradrenergic stimulation. Results The optimized frequency band was 1.5–2.2 GHz, with averaged antenna efficiency of 19%. The simulated power received by the radiometric antenna increased 2–9 mdBm (noradrenergic stimulus) and 4–15 mdBm (cold stimulus) corresponding to increased 15-fold BAT metabolism. Conclusions Results demonstrated the ability to detect thermal radiation from small volumes (2–6 cm3) of BAT located up to 12 mm deep and to monitor small changes (0.5 °C) in BAT metabolism. As such, the developed miniature radiometric antenna sensor appears suitable for non-invasive long term monitoring of BAT metabolism. PMID:24244831

  4. Microwave-assisted fibrous decoration of mPE surface utilizing Aloe vera extract for tissue engineering applications

    PubMed Central

    Balaji, Arunpandian; Jaganathan, Saravana Kumar; Supriyanto, Eko; Muhamad, Ida Idayu; Khudzari, Ahmad Zahran Md

    2015-01-01

    Developing multifaceted, biocompatible, artificial implants for tissue engineering is a growing field of research. In recent times, several works have been reported about the utilization of biomolecules in combination with synthetic materials to achieve this process. Accordingly, in this study, the ability of an extract obtained from Aloe vera, a commonly used medicinal plant in influencing the biocompatibility of artificial material, is scrutinized using metallocene polyethylene (mPE). The process of coating dense fibrous Aloe vera extract on the surface of mPE was carried out using microwaves. Then, several physicochemical and blood compatibility characterization experiments were performed to disclose the effects of corresponding surface modification. The Fourier transform infrared spectrum showed characteristic vibrations of several active constituents available in Aloe vera and exhibited peak shifts at far infrared regions due to aloe-based mineral deposition. Meanwhile, the contact angle analysis demonstrated a drastic increase in wettability of coated samples, which confirmed the presence of active components on glazed mPE surface. Moreover, the bio-mimic structure of Aloe vera fibers and the influence of microwaves in enhancing the coating characteristics were also meticulously displayed through scanning electron microscopy micrographs and Hirox 3D images. The existence of nanoscale roughness was interpreted through high-resolution profiles obtained from atomic force microscopy. And the extent of variations in irregularities was delineated by measuring average roughness. Aloe vera-induced enrichment in the hemocompatible properties of mPE was established by carrying out in vitro tests such as activated partial thromboplastin time, prothrombin time, platelet adhesion, and hemolysis assay. In conclusion, the Aloe vera-glazed mPE substrate was inferred to attain desirable properties required for multifaceted biomedical implants. PMID:26425089

  5. Microwave-assisted fibrous decoration of mPE surface utilizing Aloe vera extract for tissue engineering applications.

    PubMed

    Balaji, Arunpandian; Jaganathan, Saravana Kumar; Supriyanto, Eko; Muhamad, Ida Idayu; Khudzari, Ahmad Zahran Md

    2015-01-01

    Developing multifaceted, biocompatible, artificial implants for tissue engineering is a growing field of research. In recent times, several works have been reported about the utilization of biomolecules in combination with synthetic materials to achieve this process. Accordingly, in this study, the ability of an extract obtained from Aloe vera, a commonly used medicinal plant in influencing the biocompatibility of artificial material, is scrutinized using metallocene polyethylene (mPE). The process of coating dense fibrous Aloe vera extract on the surface of mPE was carried out using microwaves. Then, several physicochemical and blood compatibility characterization experiments were performed to disclose the effects of corresponding surface modification. The Fourier transform infrared spectrum showed characteristic vibrations of several active constituents available in Aloe vera and exhibited peak shifts at far infrared regions due to aloe-based mineral deposition. Meanwhile, the contact angle analysis demonstrated a drastic increase in wettability of coated samples, which confirmed the presence of active components on glazed mPE surface. Moreover, the bio-mimic structure of Aloe vera fibers and the influence of microwaves in enhancing the coating characteristics were also meticulously displayed through scanning electron microscopy micrographs and Hirox 3D images. The existence of nanoscale roughness was interpreted through high-resolution profiles obtained from atomic force microscopy. And the extent of variations in irregularities was delineated by measuring average roughness. Aloe vera-induced enrichment in the hemocompatible properties of mPE was established by carrying out in vitro tests such as activated partial thromboplastin time, prothrombin time, platelet adhesion, and hemolysis assay. In conclusion, the Aloe vera-glazed mPE substrate was inferred to attain desirable properties required for multifaceted biomedical implants.

  6. Numerical 3D modeling of heat transfer in human tissues for microwave radiometry monitoring of brown fat metabolism

    NASA Astrophysics Data System (ADS)

    Rodrigues, Dario B.; Maccarini, Paolo F.; Salahi, Sara; Colebeck, Erin; Topsakal, Erdem; Pereira, Pedro J. S.; Limão-Vieira, Paulo; Stauffer, Paul R.

    2013-02-01

    Background: Brown adipose tissue (BAT) plays an important role in whole body metabolism and could potentially mediate weight gain and insulin sensitivity. Although some imaging techniques allow BAT detection, there are currently no viable methods for continuous acquisition of BAT energy expenditure. We present a non-invasive technique for long term monitoring of BAT metabolism using microwave radiometry. Methods: A multilayer 3D computational model was created in HFSSTM with 1.5 mm skin, 3-10 mm subcutaneous fat, 200 mm muscle and a BAT region (2-6 cm3) located between fat and muscle. Based on this model, a log-spiral antenna was designed and optimized to maximize reception of thermal emissions from the target (BAT). The power absorption patterns calculated in HFSSTM were combined with simulated thermal distributions computed in COMSOL® to predict radiometric signal measured from an ultra-low-noise microwave radiometer. The power received by the antenna was characterized as a function of different levels of BAT metabolism under cold and noradrenergic stimulation. Results: The optimized frequency band was 1.5-2.2 GHz, with averaged antenna efficiency of 19%. The simulated power received by the radiometric antenna increased 2-9 mdBm (noradrenergic stimulus) and 4-15 mdBm (cold stimulus) corresponding to increased 15-fold BAT metabolism. Conclusions: Results demonstrated the ability to detect thermal radiation from small volumes (2-6 cm3) of BAT located up to 12 mm deep and to monitor small changes (0.5 °C) in BAT metabolism. As such, the developed miniature radiometric antenna sensor appears suitable for non-invasive long term monitoring of BAT metabolism.

  7. [Determination of trace element silver in animal serum, tissues and organs by microwave digestion-ICP-MS].

    PubMed

    Yuan, Jun-Jie; Xie, You-Zhuan; Han, Chen; Sun, Wei; Zhang, Kai; Zhao, Jie; Lu, Xiao; Lu, Jian-Xi; Ren, Wei

    2014-09-01

    Nowadays, the silver is widely used in the biological field and its biological safety catches great attention. It is important to know the distribution of silver ions within the biological organism and the toxic threshold concentration in the tissue. Therefore, a highly sensitive method for measurement of trace amount of silver ion in the medical biological samples is needed. With its high sensitivity for detection of metal ions, inductively coupled plasma mass spectrometry (ICP-MS) method is well suited for quantification of trace amount of silver ion in such samples, but method development is still in its infancy. Consequently, a simple and convenient method for determination of trace amount of silver in the animal serum, tissues or organs was developed, in which the samples were subjected to the microwave digestion, followed by the ICP-MS analysis. To begin with, the samples of serum, muscle, bone marrow, bone, heart, liver, spleen, and kidney were sequently processed in 5 mL of HNO3 and 2 mL of H2O2 solution. Then the samples were completely digested by microwave with the power of 2 000 watts. The temperature was raised gradually by 3-step program. Moreover, the data achieved were reproducible and the method was time saving and especially for large amounts of sample processing. Then the digested solutions were diluted to constant volume. Finally, the concentration of 107Ag in the samples was analyzed by the method of ICP-MS under the optimized conditions. Element yttrium (Y) was used as the internal standard to compensate for matrix suppression effect and improve the accuracy of measurement. For one thing, the analytical results showed that the detection limit of the trace element 107Ag was 0.98 μg · kg(-1), and furthermore, the correlation coefficient of standard curve was 0.999 9. For another thing, the recovery rate of the silver element ranged from 98% to 107%, which was calculated according to measured quantity before adding standard, adding standard and

  8. Low dose of continuous – wave microwave irradiation did not cause temperature increase in muscles tissue adjacent to titanium alloy implants – an animal study

    PubMed Central

    2013-01-01

    Background Research studies on the influence of radiofrequency electromagnetic radiation on implants in vitro have failed to investigate temperature changes in the tissues adjacent to the implants under microwave therapy. We therefore, used a rabbit model in an effort to determine the impact of microwave therapy on temperature changes in tissues adjacent to the titanium alloy implants and the safety profile thereof. Methods Titanium alloy internal fixation plates were implanted in New Zealand rabbits in the middle of femur. Microwave therapy was performed by a 2450 MHz microwave generator 3 days after the surgery. Temperature changes of muscles adjacent to the implants were recorded under exposure to dose-gradient microwave radiation from 20w to 60w. Results Significant difference between control and microwave treatment group at peak temperatures (Tpeak) and temperature gap (Tgap= Tpeak-Tvally) were observed in deep muscles (Tpeak, 41.63 ± 0.21°C vs. 44.40 ± 0.17°C, P < 0.01; Tgap, 5.33 ± 0.21°C vs. 8.10 ± 0.36°C, P < 0.01) and superficial muscles (Tpeak, 41.53 ± 0.15°C vs. 42.03 ± 0.23°C, P = 0.04; Tgap, 5.23 ± 0.21°C vs. 5.80 ± 0.17°C, P = 0.013) under 60 w, and deep muscles (Tpeak, 40.93 ± 0.25°C vs. 41.87 ± 0.23°C, P = 0.01; Tgap, 4.73 ± 0.20°C vs. 5.63 ± 0.35°C, P = 0.037) under 50w, but not under 20, 30 and 40w. Conclusion Our results suggest that low-dose (20w-40w) continuous-wave microwave irradiation delivered by a 2450 MHz microwave generator might be a promising treatment for patients with titanium alloy internal fixation, as it did not raise temperature in muscle tissues adjacent to the titanium alloy implant. PMID:24365389

  9. Incidental bronchial injury by soft coagulation.

    PubMed

    Shibano, Tomoki; Endo, Shunsuke; Otani, Shinichi; Nakano, Tomoyuki

    2015-08-01

    Soft coagulation is a hemostat system of electrosurgical units, which automatically regulates its output voltage below 200 V, to avoid excessive output that causes carbonization of the target tissue. However, this new minimally invasive technology still has the potential risk of tissue damage during surgery. We encountered three patients with bronchial injury caused by the above system; one of whom had bronchopleural fistula. This is believed to be the first report emphasizing the adverse effects of the soft coagulation system in thoracic surgery, giving a warning to the application of this convenient device. PMID:26380775

  10. A microwave antigen retrieval method using two heating steps for enhanced immunostaining on aldehyde-fixed paraffin-embedded tissue sections.

    PubMed

    Gu, Ling; Cong, Jing; Zhang, Jie; Tian, Ying-Ying; Zhai, Xiao-Yue

    2016-06-01

    Antigen retrieval is an immunohistochemical procedure that results in better exposure of target antigens in aldehyde-fixed, paraffin-embedded tissue sections to antibodies. However, the commercially recommended or conventional protocols for antigen retrieval do not always succeed in expressing the target antigen. Here, an improved method was developed for antigen retrieval from aldehyde-fixed, paraffin-embedded histological sections. Proliferating cell nuclear antigen (PCNA), tight junction proteins Claudin-2 and Claudin-7, and water channel aquaporins in kidney tissue were selected as test antigens. Typically, PCNA and Claudin-2 and Claudin-7 show negative, weak, or nonspecific immunoreactions with conventional antigen retrieval methods using microwave heating. In the present study, microwave heating was performed twice with an interval of 30 min between the two steps to allow the buffer solution to cool. Sodium citrate buffer (10 mM sodium citrate, pH 6.0) was used for PCNA, and Tris-EDTA buffer (10 mM Tris, 1 mM EDTA, pH 9.0) was used for the Claudins. Compared with conventionally prepared tissues, the tissues exhibited both enhanced and specific immunostaining, and well-preserved morphology. In conclusion, the conventional protocol could be supplemented with a second microwave heating step to improve the expression of antigens that do not respond well to the conventional method. PMID:27002723

  11. Blood coagulation in falciparum malaria--a review.

    PubMed

    Ghosh, Kanjaksha; Shetty, Shrimati

    2008-03-01

    Falciparum malaria infection influences blood coagulation by various interacting pathobiological mechanisms, the most important being the overwhelming response of the host to sepsis resulting in a cytokine storm. In addition, the parasite infects the red cells leading to changes in the red cell phospholipid composition which supports blood coagulation. Red cells infected with Plasmodium falciparum also adhere to deeper tissue capillary endothelium leading to profound damage to endothelial cells leading to further activation. This results in widespread consumption of platelets and activation of blood coagulation which at times culminates in a clinically and pathologically detectable disseminated intravascular coagulation (DIC). Monocyte-macrophage system also gets activated in this infection compounding the hypercoagulable state. Heavy parasitaemia leading to occlusion of hepatic microcirculation leads to abnormalities in synthesis and secretion of coagulation factors and their inhibitors. Drugs used in the treatment for falciparum malaria can cause thrombocytopaenia, bone marrow suppression and haemolytic anaemia, all of which can interfere indirectly with blood coagulation. Microparticle formation from platelets, red cells and macrophages also causes widespread activation of blood coagulation, and this recently observed mechanism is the focus of intense research in many other inflammatory and neoplastic conditions where there is activation of blood coagulation system. Thus, in severe falciparum malaria, there is activation of blood coagulation system along with thrombocytopaenia, even before widespread DIC and coagulation failure occur.

  12. Coagulation, Protease Activated Receptors and Viral Myocarditis

    PubMed Central

    Antoniak, Silvio; Mackman, Nigel

    2013-01-01

    The coagulation protease cascade plays an essential role in hemostasis. In addition, a clot contributes to host defense by limiting the spread of pathogens. Coagulation proteases induce intracellular signaling by cleavage of cell surface receptors called protease-activated receptors (PARs). These receptors allow cells to sense changes in the extracellular environment, such as infection. Viruses activate the coagulation cascade by inducing tissue factor expression and by disrupting the endothelium. Virus infection of the heart can cause myocarditis, cardiac remodeling and heart failure. Recent studies using a mouse model have shown that tissue factor, thrombin and PAR-1 signaling all positively regulate the innate immune during viral myocarditis. In contrast, PAR-2 signaling was found to inhibit interferon-β expression and the innate immune response. These observations suggest that anticoagulants may impair the innate immune response to viral infection and that inhibition of PAR-2 may be a new target to reduce viral myocarditis.. PMID:24203054

  13. 21 CFR 878.4400 - Electrosurgical cutting and coagulation device and accessories.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 8 2012-04-01 2012-04-01 false Electrosurgical cutting and coagulation device and....4400 Electrosurgical cutting and coagulation device and accessories. (a) Identification. An electrosurgical cutting and coagulation device and accessories is a device intended to remove tissue and...

  14. 21 CFR 878.4400 - Electrosurgical cutting and coagulation device and accessories.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Electrosurgical cutting and coagulation device and....4400 Electrosurgical cutting and coagulation device and accessories. (a) Identification. An electrosurgical cutting and coagulation device and accessories is a device intended to remove tissue and...

  15. 21 CFR 878.4400 - Electrosurgical cutting and coagulation device and accessories.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 8 2013-04-01 2013-04-01 false Electrosurgical cutting and coagulation device and....4400 Electrosurgical cutting and coagulation device and accessories. (a) Identification. An electrosurgical cutting and coagulation device and accessories is a device intended to remove tissue and...

  16. 21 CFR 878.4400 - Electrosurgical cutting and coagulation device and accessories.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 8 2011-04-01 2011-04-01 false Electrosurgical cutting and coagulation device and....4400 Electrosurgical cutting and coagulation device and accessories. (a) Identification. An electrosurgical cutting and coagulation device and accessories is a device intended to remove tissue and...

  17. 21 CFR 878.4400 - Electrosurgical cutting and coagulation device and accessories.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 8 2014-04-01 2014-04-01 false Electrosurgical cutting and coagulation device and....4400 Electrosurgical cutting and coagulation device and accessories. (a) Identification. An electrosurgical cutting and coagulation device and accessories is a device intended to remove tissue and...

  18. Ovarian cancer, the coagulation pathway, and inflammation

    PubMed Central

    Wang, Xipeng; Wang, Ena; Kavanagh, John J; Freedman, Ralph S

    2005-01-01

    Epithelial ovarian cancer (EOC) represents the most frequent cause of death in the United States from a cancer involving the female genital tract. Contributing to the overall poor outcome in EOC patients, are the metastases to the peritoneum and stroma that are common in this cancer. In one study, cDNA microarray analysis was performed on fresh tissue to profile gene expression in patients with EOC. This study showed a number of genes with significantly altered expression in the pelvic peritoneum and stroma, and in the vicinity of EOC implants. These genes included those encoding coagulation factors and regulatory proteins in the coagulation cascade and genes encoding proteins associated with inflammatory responses. In addition to promoting the formation of blood clots, coagulation factors exhibit many other biologic functions as well as tumorigenic functions, the later including tumor cell proliferation, angiogenesis, invasion, and metastasis. Coagulation pathway proteins involved in tumorigenesis consist of factor II (thrombin), thrombin receptor (protease-activated receptors), factor III (tissue factor), factor VII, factor X and factor I (fibrinogen), and fibrin and factor XIII. In a recent study we conducted, we found that factor XII, factor XI, and several coagulation regulatory proteins, including heparin cofactor-II and epithelial protein C receptor (EPCR), were also upregulated in the peritoneum of EOC. In this review, we summarize evidence in support of a role for these factors in promoting tumor cell progression and the formation of ascites. We also discuss the different roles of coagulation factor pathways in the tumor and peritumoral microenvironments as they relate to angiogenesis, proliferation, invasion, and metastasis. . Since inflammatory responses are another characteristic of the peritoneum in EOC, we also discuss the linkage between the coagulation cascade and the cytokines/chemokines involved in inflammation. Interleukin-8, which is considered

  19. Ovarian cancer, the coagulation pathway, and inflammation.

    PubMed

    Wang, Xipeng; Wang, Ena; Kavanagh, John J; Freedman, Ralph S

    2005-06-21

    Epithelial ovarian cancer (EOC) represents the most frequent cause of death in the United States from a cancer involving the female genital tract. Contributing to the overall poor outcome in EOC patients, are the metastases to the peritoneum and stroma that are common in this cancer. In one study, cDNA microarray analysis was performed on fresh tissue to profile gene expression in patients with EOC. This study showed a number of genes with significantly altered expression in the pelvic peritoneum and stroma, and in the vicinity of EOC implants. These genes included those encoding coagulation factors and regulatory proteins in the coagulation cascade and genes encoding proteins associated with inflammatory responses. In addition to promoting the formation of blood clots, coagulation factors exhibit many other biologic functions as well as tumorigenic functions, the later including tumor cell proliferation, angiogenesis, invasion, and metastasis. Coagulation pathway proteins involved in tumorigenesis consist of factor II (thrombin), thrombin receptor (protease-activated receptors), factor III (tissue factor), factor VII, factor X and factor I (fibrinogen), and fibrin and factor XIII. In a recent study we conducted, we found that factor XII, factor XI, and several coagulation regulatory proteins, including heparin cofactor-II and epithelial protein C receptor (EPCR), were also upregulated in the peritoneum of EOC. In this review, we summarize evidence in support of a role for these factors in promoting tumor cell progression and the formation of ascites. We also discuss the different roles of coagulation factor pathways in the tumor and peritumoral microenvironments as they relate to angiogenesis, proliferation, invasion, and metastasis. Since inflammatory responses are another characteristic of the peritoneum in EOC, we also discuss the linkage between the coagulation cascade and the cytokines/chemokines involved in inflammation. Interleukin-8, which is considered an

  20. Activation of blood coagulation in autoimmune skin disorders.

    PubMed

    Cugno, Massimo; Tedeschi, Alberto; Crosti, Carlo; Marzano, Angelo V

    2009-09-01

    The immune system and blood coagulation are simultaneously activated in several inflammatory systemic disorders, such as lupus erythematosus, rheumatoid arthritis and inflammatory bowel diseases. Proinflammatory cytokines, such as IL-6 and TNF-alpha, induce the expression of tissue factor, the main initiator of blood coagulation. Activated proteases of coagulation in turn act on protease-activated receptors, inducing the expression of various proinflammatory cytokines. This cross-talk between inflammation and coagulation amplifies and maintains the activation of both systems. This review focuses on three skin disorders: chronic urticaria (CU), which is considered autoimmune in approximately 50% of cases, bullous pemphigoid (BP), which is the prototype of autoimmune blistering disease, and psoriasis, which is an immune-mediated dermatitis. In CU, the activation of coagulation, which is due to the involvement of eosinophils and tissue factor pathways with the generation of thrombin, has local implications by increasing dermal vascular permeability. Preliminary data indicate that anticoagulant treatment with heparin and warfarin may be effective in reducing the symptoms of this disorder. In BP, the activation of coagulation seems to have both local and systemic implications. Locally, eosinophils and thrombin participate in bulla formation and tissue damage; systemically, the activation of coagulation may explain the increased thrombotic risk observed in these patients. In psoriasis, the activation of coagulation seems to be mainly systemic, potentially contributing to the increased cardiovascular risk associated with this disease. PMID:20477646

  1. Dust coagulation in ISM

    NASA Technical Reports Server (NTRS)

    Chokshi, Arati; Tielens, Alexander G. G. M.; Hollenbach, David

    1989-01-01

    Coagulation is an important mechanism in the growth of interstellar and interplanetary dust particles. The microphysics of the coagulation process was theoretically analyzed as a function of the physical properties of the coagulating grains, i.e., their size, relative velocities, temperature, elastic properties, and the van der Waal interaction. Numerical calculations of collisions between linear chains provide the wave energy in individual particles and the spectrum of the mechanical vibrations set up in colliding particles. Sticking probabilities are then calculated using simple estimates for elastic deformation energies and for the attenuation of the wave energy due to absorption and scattering processes.

  2. Coagulation Changes during Presyncope and Recovery

    PubMed Central

    Cvirn, Gerhard; Schlagenhauf, Axel; Leschnik, Bettina; Koestenberger, Martin; Roessler, Andreas; Jantscher, Andreas; Vrecko, Karoline; Juergens, Guenther; Hinghofer-Szalkay, Helmut; Goswami, Nandu

    2012-01-01

    Orthostatic stress activates the coagulation system. The extent of coagulation activation with full orthostatic load leading to presyncope is unknown. We examined in 7 healthy males whether presyncope, using a combination of head up tilt (HUT) and lower body negative pressure (LBNP), leads to coagulation changes as well as in the return to baseline during recovery. Coagulation responses (whole blood thrombelastometry, whole blood platelet aggregation, endogenous thrombin potential, markers of endothelial activation and thrombin generation), blood cell counts and plasma mass density (for volume changes) were measured before, during, and 20 min after the orthostatic stress. Maximum orthostatic load led to a 25% plasma volume loss. Blood cell counts, prothrombin levels, thrombin peak, endogenous thrombin potential, and tissue factor pathway inhibitor levels increased during the protocol, commensurable with hemoconcentration. The markers of endothelial activation (tissue factor, tissue plasminogen activator), and thrombin generation (F1+2, prothrombin fragments 1 and 2, and TAT, thrombin-antithrombin complex) increased to an extent far beyond the hemoconcentration effect. During recovery, the markers of endothelial activation returned to initial supine values, but F1+2 and TAT remained elevated, suggestive of increased coagulability. Our findings of increased coagulability at 20 min of recovery from presyncope may have greater clinical significance than short-term procoagulant changes observed during standing. While our experiments were conducted in healthy subjects, the observed hypercoagulability during graded orthostatic challenge, at presyncope and in recovery may be an important risk factor particularly for patients already at high risk for thromboembolic events (e.g. those with coronary heart disease, atherosclerosis or hypertensives). PMID:22876309

  3. Immunohistochemical detection of the androgen receptor with monoclonal antibody F39.4 in routinely processed, paraffin-embedded human tissues after microwave pre-treatment.

    PubMed

    Janssen, P J; Brinkmann, A O; Boersma, W J; Van der Kwast, T H

    1994-08-01

    We describe the immunohistochemical detection of the human androgen receptor (AR) in routinely processed, paraffin-embedded tissue with the monoclonal antibody (MAb) F39.4. Deparaffinized sections were heated in a microwave oven for antigen retrieval. A panel of human male- and female-derived tissues was investigated. We observed a nuclear staining pattern consistent with previous results on frozen sections. Moreover, we studied the possibility of detecting AR in prolonged formalin-fixed tissue and in paraffin-embedded archival material. After prolonged fixation times or long-term storage of paraffin-embedded tissue, the staining intensity for the AR did not deteriorate. Blocking experiments with the specific synthetic peptides demonstrated the specificity of this technique. We conclude that this method is specific, allows retrospective AR studies, and offers optimally preserved morphology.

  4. The Mechanisms of Coagulation.

    ERIC Educational Resources Information Center

    Kurtz, Richard; Jesty, Jolyon

    1994-01-01

    Several topics such as heart disease, strokes, biochemical reactions, blood components, and genetics can be related to blood clotting. Introduces a simple, safe and inexpensive hands-on demonstration using bovine (cattle) blood plasma of normal and abnormal coagulation. (ZWH)

  5. Disseminated intravascular coagulation (DIC)

    MedlinePlus

    Levi M. Disseminated intravascular coagulation. In: Hoffman R, Benz EJ Jr, Silberstein LE, et al, eds. Hematology: Basic Principles and Practice . 6th ed. Philadelphia, PA: Elsevier Saunders; 2013:chap ...

  6. [Pitfall in coagulation tests].

    PubMed

    Gähler, Anita; Wuillemin, Walter A

    2013-08-01

    Coagulation assays are prone to pre-analytical problems and results may be influenced by varying clinical and pharmaceutical aspects. Particularly anticoagulants interact with coagulation testing in many ways. Thromboplastin time will be prolonged dose-dependently in patients taking vitamin K antagonists; moreover the new oral anticoagulants have been shown to have variable impact on the results of the thromboplastin time as well as on other coagulation tests, depending on the mechanism of action of these new drugs as well as on the mechanism of the coagulation test. When measuring anti-Xa activity it should be realised that all drugs with anti-Xa activity will influence the result, which means not only heparins but also the new anti-Xa inhibitors. Respective calibration curves are an indispensable condition to provide the clinician with valuable results. On the other hand this implies that the laboratory knows which anticoagulant is given to the patient. This is an example among others that clinical aspects are important to know for proper interpretation of the results of coagulation testing. Other examples are e. g. bleeding disorders, actual bleeding status or thromboembolic events. Several cases are discussed which exemplify possible pitfalls in the interpretation of coagulation testing.

  7. Diagnosis and treatment of disseminated intravascular coagulation.

    PubMed

    Levi, M

    2014-06-01

    Disseminated intravascular coagulation (DIC) is a condition in which systemic activation of coagulation without a specific localization occurs, resulting in extensive formation of intravascular fibrin, particularly in small and midsize vessels. Disseminated intravascular coagulation may lead to several altered coagulation parameters, including a low platelet count, abnormal global clotting assays, low levels of physiological anticoagulant proteases, or increased fibrin degradation products. Also, more complex assays for activation of coagulation factors or pathways may indicate involvement of these molecules in DIC. None of these tests alone, however, can accurately ascertain or rebuff a diagnosis of DIC. Nonetheless, a combination of readily available routine assays may be instrumental in establishing a diagnosis of DIC and can also be useful to point to a subset of patients with DIC that may need definite, often costly, interventions in the hemostatic system. Current insights on relevant etiological pathways that may contribute to the occurrence of DIC have led to innovative therapeutic and adjunctive approaches to patient with DIC. Management options directed at the amelioration of hemostatic activation may tentatively be indicated and were found to be advantageous in experimental and clinical investigations. These treatments encompass elimination of tissue factor-mediated thrombin generation or restitution of normal anticoagulant function.

  8. Disseminated intravascular coagulation in burn injury.

    PubMed

    Lippi, Giuseppe; Ippolito, Luigi; Cervellin, Gianfranco

    2010-06-01

    Disseminated intravascular coagulation (DIC) is a complex and multifaceted disorder characterized by the activation of coagulation and fibrinolytic pathways, consumption of coagulation factors, and depletion of coagulation regulatory proteins. The introduction into the circulation of cellular debris characterized by strong thromboplastic activity due to tissue factor exposition or release (in or from burned tissues), which can thereby activate extrinsic pathway of coagulation system and trigger massive thrombin generation when present in sufficient concentration, represents the most plausible biological explanation to support the development of intravascular coagulation in patients with burn injury. Severe burns left untreated might also lead to an immunological and inflammatory response (activation of the complement cascade), which can amplify fibrinolysis and blood clotting. Overall, the real prevalence of DIC in patients with burns is as yet unclear. Postmortem, retrospective, and even longitudinal investigations are in fact biased by several factors, such as the objective difficulty to establish whether DIC might have occurred as a primary complication of burns or rather as a consequence of other superimposed pathologies (e.g., sepsis, multiple organ failure), the different diagnostic criteria for assessing DIC, and the heterogeneity of the patient samples studied. Nevertheless, the current scientific evidence is consistent with the hypothesis that biochemical changes suggestive for DIC (hypercoagulability, hypo- and hyperfibrinolysis) are commonplace in patients with burn trauma, and their severity increases exponentially with the severity of injury. Overt DIC seems to occur especially in critically ill burn patients or in those with severe burns (up to third degree) and large involvement of body surface area, in whom an appropriate therapy might be effective to prevent the otherwise fulminant course. Although early prophylaxis with antithrombin concentrates

  9. Interpreting coagulation assays.

    PubMed

    Green, David

    2010-09-01

    The interpretation of coagulation assays requires knowledge of the principal clotting pathways. The activated partial thromboplastin time is sensitive to all hemostatic factors except FVII, whereas the prothrombin time reflects levels of prothrombin and FV, FVII, and FX. Using the two tests in concert is helpful in identifying hemophilia, the coagulopathy of liver disease, and disseminated intravascular coagulation. In addition, the activated partial thromboplastin time and prothrombin time are used for monitoring anticoagulant therapy with heparin and warfarin, respectively. Measurement of D-dimer is informative in patients suspected of having thrombotic disorders and determining the risk of thrombosis recurrence. Mixing tests distinguish clotting factor deficiencies from circulating anticoagulants such as heparin, the lupus anticoagulant, and antibodies directed against specific clotting factors. The modified Bethesda assay detects and provides an indication of the strength of FVIII inhibitors. However, interpreting the results of coagulation assays is not always straightforward, and expert consultation is occasionally required to resolve difficult clinical situations. PMID:20855988

  10. Partial microwave-assisted wet digestion of animal tissue using a baby-bottle sterilizer for analyte determination by inductively coupled plasma optical emission spectrometry

    NASA Astrophysics Data System (ADS)

    Matos, Wladiana O.; Menezes, Eveline A.; Gonzalez, Mário H.; Costa, Letícia M.; Trevizan, Lilian C.; Nogueira, Ana Rita A.

    2009-06-01

    A procedure for partial digestion of bovine tissue is proposed using polytetrafluoroethylene (PTFE) micro-vessels inside a baby-bottle sterilizer under microwave radiation for multi-element determination by inductively coupled plasma optical emission spectrometry (ICP OES). Samples were directly weighed in laboratory-made polytetrafluoroethylene vessels. Nitric acid and hydrogen peroxide were added to the uncovered vessels, which were positioned inside the baby-bottle sterilizer, containing 500 mL of water. The hydrogen peroxide volume was fixed at 100 µL. The system was placed in a domestic microwave oven and partial digestion was carried out for the determination of Ca, Cu, Fe, Mg, Mn and Zn by inductively coupled plasma optical emission spectrometry. The single-vessel approach was used in the entire procedure, to minimize contamination in trace analysis. Better recoveries and lower residual carbon content (RCC) levels were obtained under the conditions established through a 2 4-1 fractional factorial design: 650 W microwave power, 7 min digestion time, 50 µL nitric acid and 50 mg sample mass. The digestion efficiency was ascertained according to the residual carbon content determined by inductively coupled plasma optical emission spectrometry. The accuracy of the proposed procedure was checked against two certified reference materials.

  11. Numerical study of the effect of blood vessel on the microwave ablation shape.

    PubMed

    Nie, Xiaohui; Nan, Qun; Guo, Xuemei; Tian, Zhen

    2015-01-01

    The existence of large blood vessels seriously impacts the results of microwave ablation on heat transfer of surrounding tissue, and the research of influences about large blood vessels could be essential and significant. The temperature distribution in the tissue was analyzed with a microwave heating source by finite element method. The model, where the blood vessel is parallel to antenna, has different distances from antenna to blood vessel. As distance was greater than 20mm, the effect of blood vessel that was parallel to antenna was ignored and the ablation area was elliptical-like. When distance was less than 10mm, the part of asymmetrical coagulated area was on the right side of blood vessel. Therefore, the temperature contour by different conditions could provide numerical references, which is whether to block blood vessel or not, to achieve the aim of guiding the clinical practice, according to the locations of tumor and blood vessel. PMID:26406011

  12. Finite-element analysis and in vitro experiments of placement configurations using triple antennas in microwave hepatic ablation.

    PubMed

    Phasukkit, Pattarapong; Tungjitkusolmun, Supan; Sangworasil, Manas

    2009-11-01

    This study presents analyses of triple-antenna configurations and designs for microwave (MW) hepatic ablation using 3-D finite-element (FE) analyses verified by in vitro experiments. Treatment of hepatic cancer often requires removal or destruction of large volume lesions. Using multiple antennas offers a potential solution for creating ablation zones with larger dimensions, as well as varied geometrical shapes. We performed both 3-D FE analyses and in vitro experiments using three identical open-tip MW antennas simultaneously, placing them in three types of configurations-"linear array," "triangular," and "T-shaped" arrangements. We compared coagulation volumes created, as well as temperature distribution characteristics, from the three-antenna arrangements after power delivery of 50 W for 60 s. We also performed additional tests using nonidentical antennas (open tip, slot, and slot with insulating jacket) for the three configurations. The results illustrate that arranging antennas in the "T-shaped" pattern destroyed more unwanted tissues than those found when using "linear array" and "triangular" arrangements, with maximum coagulation width and depth of 46 and 81 mm, respectively, and coagulation volume of 30.7 cm(3) . In addition, using nonidentical triple antennas caused variations in coagulation zone characteristics, and thus, the technique could be applied to treatment situations where nonsymmetric coagulation zones are required. PMID:19628446

  13. Finite-element analysis and in vitro experiments of placement configurations using triple antennas in microwave hepatic ablation.

    PubMed

    Phasukkit, Pattarapong; Tungjitkusolmun, Supan; Sangworasil, Manas

    2009-11-01

    This study presents analyses of triple-antenna configurations and designs for microwave (MW) hepatic ablation using 3-D finite-element (FE) analyses verified by in vitro experiments. Treatment of hepatic cancer often requires removal or destruction of large volume lesions. Using multiple antennas offers a potential solution for creating ablation zones with larger dimensions, as well as varied geometrical shapes. We performed both 3-D FE analyses and in vitro experiments using three identical open-tip MW antennas simultaneously, placing them in three types of configurations-"linear array," "triangular," and "T-shaped" arrangements. We compared coagulation volumes created, as well as temperature distribution characteristics, from the three-antenna arrangements after power delivery of 50 W for 60 s. We also performed additional tests using nonidentical antennas (open tip, slot, and slot with insulating jacket) for the three configurations. The results illustrate that arranging antennas in the "T-shaped" pattern destroyed more unwanted tissues than those found when using "linear array" and "triangular" arrangements, with maximum coagulation width and depth of 46 and 81 mm, respectively, and coagulation volume of 30.7 cm(3) . In addition, using nonidentical triple antennas caused variations in coagulation zone characteristics, and thus, the technique could be applied to treatment situations where nonsymmetric coagulation zones are required.

  14. Tailor-made biopolymers porous scaffold fabrication for tissue engineering: application of radiant energy in the form of microwave under vacuum.

    PubMed

    Jaya, S; Durance, T D

    2008-01-01

    Many methods are available for developing three-dimensional porous scaffolds using various polymeric materials for tissue-engineering applications. Each has its own advantages and disadvantages. Some of the available methods and their limitations were discussed briefly. This paper focuses on the scope of novel technology called radiant energy application under vacuum for the fabrication of three-dimensional porous scaffolds for tissue engineering applications. Radiant energy application in the form of microwave under vacuum has been shown to develop and maintain the porous structure in fruits and vegetables after dehydration, which produced the microstructure similar to the freeze dried materials. Same principle of applying radiant energy under vacuum was used on the biopolymeric gels to create tailor-made, porous scaffolds for biomedical purposes. It has many advantages over the other existing methods of scaffold fabrication. This paper also reviews the scaffolds design recently fabricated by the authors using radiant energy under vacuum.

  15. p53 immunolabeling in archival paraffin-embedded tissues: optimal protocol based on microwave heating for eight antibodies on lung carcinomas.

    PubMed

    Tenaud, C; Negoescu, A; Labat-Moleur, F; Legros, Y; Soussi, T; Brambilla, E

    1994-10-01

    The prognostic value of p53 gene mutations is dealt with by several recent reports. However, retrospective assessment of p53 tumor status on archived samples has been prevented by p53 epitope alteration during routine fixation and embedding procedures. This study aimed at establishing a reproducible low-cost protocol to retrieve not only N-terminal, but also midregion and C-terminal, epitopes, with special attention to possible artifacts induced by epitope retrieval procedures. Using microwave heating, we compared the epitope retrieval efficiency of five solutions with eight commercial antibodies on 21 lung carcinomas for which frozen tissue and samples fixed with formalin and Bouin's liquid were available. All eight epitopes were retrieved, citrate buffer proving efficient for seven. PAb 240 epitope was restored by target unmasking fluid only. No false positivity was observed. Fixation-induced loss of p53 immunoreactivity was minimal for formalin (two of 10 tumors for one antibody each), more significant for Bouin (six of 10 tumors for one to five antibodies). On the other hand, staining intensity was maintained or even improved, and nonspecific staining reduced, through fixation. We conclude that p53 stabilization can be detected on routinely processed archival tumor samples with a reliability similar to that of frozen tissue by means of a microwave-based procedure and a panel of at least three antibodies, with epitopes on the N-terminal, C-terminal, and midpart of the molecule.

  16. Dynamic microwave-assisted extraction coupled with salting-out liquid-liquid extraction for determination of steroid hormones in fish tissues.

    PubMed

    Wang, Hui; Zhou, Xiuqing; Zhang, Yiqun; Chen, Haiyan; Li, Guijie; Xu, Yang; Zhao, Qi; Song, Weitao; Jin, Haiyan; Ding, Lan

    2012-10-17

    In this work, a simple and fast sample pretreatment method was proposed for determination of steroid hormones in fish tissues by coupling dynamic microwave-assisted extraction with salting-out liquid-liquid extraction. The steroid hormones were successively extracted with acetonitrile and water under the action of microwave energy. Subsequently, the extract was separated into an acetonitrile phase and an aqueous phase with ammonium acetate. The acetonitrile phase containing the target analytes was concentrated and determined by LC-MS/MS. The limits of detection for the steroid hormones were in the range of 0.03-0.15 ng g(-1). This method was successfully applied to analyze seven kinds of fish tissues, and the recoveries of the steroid hormones for the spiked samples were in the range of 75.3 ± 4.9% to 95.4 ± 6.2%. Compared with the traditional method, the proposed method could reduce the consumption of the organic solvent, shorten the sample preparation time, and increase the sample throughput.

  17. Novel microwave applicators for thermal therapy, ablation, and hemostasis

    NASA Astrophysics Data System (ADS)

    Ryan, Thomas P.; Clegg, Peter

    2009-02-01

    Microwave applicators are becoming more prevalent in cancer ablation therapy due to factors of penetration, high power, and shortened treatment time. These applicators create the largest zones of necrosis of available energy sources. Progress has been made both with interstitial applicators for surgical, laparoscopic, or radiological approaches, as well as surface applicators that provide hemostasis or precoagulation prior to resection. Most commonly, the applicators operate at 915 MHz or 2450 MHz, and are well matched to tissue. Surgical applicators are as large as 5.6 mm and have the capability to operate at 100-200 W. With smaller applicators, internal cooling may be required to avoid heating sensitive skin surfaces if used percutaneously or laparoscopically. With the interstitial applicators, animal studies have shown a strong relationship between power and ablation volume, including reaching a steady-state plateau in performance based more on power level and less on time. As shown in-vivo, MW surface applicators are very efficient in surface coagulation for hemostasis or precoagulation and in the treatment of surface breaking lesions. These applicators are also capable of deep penetration as applied from the surface. Characteristic treatment times for interstitial applicators are four minutes and for surface applicators, one minute or less is sufficient. Examples will be shown of multi-organ results with surface coagulation using high-power microwaves. Finally, future trends will be discussed that include treatment planning, multiple applicators, and navigation.

  18. [Effects of Interaction of Ozonation and Coagulation on Coagulation Results].

    PubMed

    Liu, Hai-long; Guo, Xue-feng; Wang, Min-hui; Jiao, Ru-yuan; Shi, Jian

    2015-09-01

    Two strategies, ozonation-coagulation combination (OCC, ozone and coagulant dosed at meantime) and preozonation coagulation (PC, coagulant dosed after ozone died away) were used to treat synthesized water. Different effects of oxidation and coagulation, disinfection by-products formation potentials (DBPFP) in the same water were detected in order to study the influence of interaction of ozonation and coagulation (IOC) on treated water characteristics. Results show that there are remarkable differences between OCC and PC. IOC effects take place during OCC process, which results in variations of the distribution of hydrolyzed species of coagulant. And this is an important reason which impairs efficiency of coagulation. Turbidity after OCC was higher than that of PC. One of the main reasons is that ozone reduced the content of Alb species which was built during coagulant hydrolyzation. Cl-DBPFP in OCC outlet water were lower than those in PC because oxidized destruction of DBP precursors were enhanced by catalyzed ozonation by AlCl3 along with its other hydrolyzed species. Removals of MCAA and CF formation potentials by OCC were significantly higher than those by PC, MCAAFP were 5. 6 µg . L-1 and 16. 9 µg . L-1 respectively, and CFFP were 12. 5 µg . L-1 and 24. 1 µg . L-1 respectively. Coagulation results and DBP formations are significantly affected by interaction of ozonation and coagulation; and it should be a noticeable point of water safety if ozonation and coagulation are employed together. Thus times and spots between ozone and coagulant should be defined clearly in correlational researches and water treatment application. PMID:26717689

  19. Cole-Cole parameters for the dielectric properties of porcine tissues as a function of age at microwave frequencies.

    PubMed

    Peyman, A; Gabriel, C

    2010-08-01

    We have applied the Cole-Cole expression to the dielectric properties of tissues in the frequency range 0.4-10 GHz. The data underpinning the model relate to pig tissue as a function of age. Altogether, we provide the Cole-Cole parameters for 14 tissue types at three developmental stages.

  20. p53, Rb and bcl-2 expression during the cell cycle: a study in phytohaemagglutinin stimulated lymphocytes and microwave irradiated lymphoid tissue sections.

    PubMed Central

    Mateo, M S; Sanchez-Beato, M; Martinez, J C; Orfao, A; Orradre, J L; Piris, M A

    1995-01-01

    AIMS--To determine the expression of p53, Rb, and bcl-2 during the cell cycle in stimulated peripheral blood lymphocytes (PBLs) and microwave heated reactive lymphoid tissue sections. METHODS--The expression of p53, Rb and bcl-2 proteins in paraffin wax embedded tonsil tissue sections was detected by immunohistochemistry using an (APAAP) technique following microwave irradiation. Flow cytometric analysis as performed on phytohaemagglutinin (PHA) stimulated PBLs, with simultaneous S fraction determination. RESULTS--Expression of p53 protein was detected in reactive tonsil germinal centre cells, in some suprabasal cells in the surface and cryptic epithelium, and in some endothelial cells. Analysis of p53 in PHA stimulated PBLs revealed expression of p53 by non-tumoral activated lymphocytes. Rb protein expression was increased in PHA stimulated PBLs and was usually detected in most germinal centre B cells, in isolated paracortical cells, in a fraction of endothelial cells, and in most epithelial suprabasal cells. Expression of bcl-2 in stimulated lymphocytes was inversely correlated with proliferation. This confirms findings in reactive tonsil tissue samples, where proliferating cells located in the germinal centres and paracortical area are mostly bcl-2 negative. CONCLUSIONS--Expression of these three oncogenic and tumour suppressor proteins varies during the cell cycle in non-tumoral cells. Consequently, tumoral growth fraction must be taken into account when analysing dysregulation of these three genes in lymphomas and other tumours. The p53 protein may be detected in benign conditions, as its expression is not synonymous with malignancy or mutation of the p53 gene. Images PMID:7745116

  1. Asthma and coagulation.

    PubMed

    de Boer, J Daan; Majoor, Christof J; van 't Veer, Cornelis; Bel, Elisabeth H D; van der Poll, Tom

    2012-04-01

    Asthma is a chronic airway disease characterized by paroxysmal airflow obstruction evoked by irritative stimuli on a background of allergic lung inflammation. Currently, there is no cure for asthma, only symptomatic treatment. In recent years, our understanding of the involvement of coagulation and anticoagulant pathways, the fibrinolytic system, and platelets in the pathophysiology of asthma has increased considerably. Asthma is associated with a procoagulant state in the bronchoalveolar space, further aggravated by impaired local activities of the anticoagulant protein C system and fibrinolysis. Protease-activated receptors have been implicated as the molecular link between coagulation and allergic inflammation in asthma. This review summarizes current knowledge of the impact of the disturbed hemostatic balance in the lungs on asthma severity and manifestations and identifies new possible targets for asthma treatment.

  2. Coagulation in Liver Disease.

    PubMed

    Hoffman, Maureane

    2015-07-01

    The liver plays a key role in hemostasis as the site of synthesis of many of the proteins involved in the coagulation, antithrombotic and fibrinolytic systems that interact to both establish hemostasis, and preventing thrombosis. The common laboratory tests, prothrombin time (PT) and activated partial thromboplastin time (aPTT), evolved from studies of plasma clotting in test tubes. Such studies laid the basis for the coagulation cascade model of hemostasis. However, thought has evolved to place a greater emphasis on the active roles of cells in localizing and regulating hemostasis. The PT and aPTT do not reflect the roles of cellular elements in hemostasis, nor do they reflect the crucial roles of antithrombotic and fibrinolytic systems. Thus, though the PT may indeed reflect the synthetic capacity of the liver, it does not accurately reflect the risk of bleeding or thrombosis in patients with liver failure.

  3. Asthma and coagulation.

    PubMed

    de Boer, J Daan; Majoor, Christof J; van 't Veer, Cornelis; Bel, Elisabeth H D; van der Poll, Tom

    2012-04-01

    Asthma is a chronic airway disease characterized by paroxysmal airflow obstruction evoked by irritative stimuli on a background of allergic lung inflammation. Currently, there is no cure for asthma, only symptomatic treatment. In recent years, our understanding of the involvement of coagulation and anticoagulant pathways, the fibrinolytic system, and platelets in the pathophysiology of asthma has increased considerably. Asthma is associated with a procoagulant state in the bronchoalveolar space, further aggravated by impaired local activities of the anticoagulant protein C system and fibrinolysis. Protease-activated receptors have been implicated as the molecular link between coagulation and allergic inflammation in asthma. This review summarizes current knowledge of the impact of the disturbed hemostatic balance in the lungs on asthma severity and manifestations and identifies new possible targets for asthma treatment. PMID:22262775

  4. Electrosurgical device for both mechanical cutting and coagulation of bleeding

    DOEpatents

    Doss, James D.; McCabe, Charles W.

    1987-01-01

    Bipolar electrical coagulation of tissue using radio-frequency energy is combined with the functions of conventional surgical pressure tissue cutting instruments without significant modification thereof in a single instrument with the result that a surgeon can perform both procedures without having to redirect his attention from the area of the surgery.

  5. Electrosurgical device for both mechanical cutting and coagulation of bleeding

    DOEpatents

    Doss, J.D.; McCabe, C.W.

    1985-02-08

    Bipolar electrical coagulation of tissue using radiofrequency energy is combined with the functions of conventional surgical pressure tissue cutting instruments without significant modification thereof in a single instrument with the result that a surgeon can perform both procedures without having to redirect his attention from the area of the surgery. 4 figs.

  6. Advances in Oral Coagulants

    PubMed Central

    2013-01-01

    This article reviews current and future treatment practices concerning oral anticoagulants. In the second decade of the 21st millennium clinicians can finally treat thrombotic disease with long-awaited new oral anticoagulant medications. In addition, improvements have been made in managing warfarin, the traditional but far from obsolete medication. The first part of this review will cover current advances with warfarin treatment. The second portion will discuss specific active coagulation factor inhibitors, the new oral anticoagulants.

  7. [Samples in Coagulation Test].

    PubMed

    Komiyama, Yutaka

    2015-12-01

    An understanding and ability to develop a strategy to prevent pre-analytical errors of laboratory tests in the hemostasis area are two of the most important skills of medical technologists and related doctors. Recently, the working group for standardization of sampling in coagulation tests is working towards a consensus. This article reviews a summary of the consensus: (1) The anticoagulant for coagulation tests is 3.13-3.2% sodium citrate at a ratio of 1:9 to whole blood and the accuracy of the ratio is within 10%. (2) Blood sampling is achieved with the use of a 21-23G needle and coagulation. Blood sampling can be achieved by both a syringe and vacuum tube system. After taking blood, laboratory tests such as of the prothrombin time (PT) and activated partial thromboplastin time (APTT) should be completed within one hour and the storage temperature should be at room temperature, not ice-cold conditions. 3) To prepare a plasma sample, citrated blood is centrifuged at 1,500 x g for 15 min at room temperature to minimize the remaining platelets in plasma (below 10,000/microL at least).

  8. Overview of the coagulation system

    PubMed Central

    Palta, Sanjeev; Saroa, Richa; Palta, Anshu

    2014-01-01

    Coagulation is a dynamic process and the understanding of the blood coagulation system has evolved over the recent years in anaesthetic practice. Although the traditional classification of the coagulation system into extrinsic and intrinsic pathway is still valid, the newer insights into coagulation provide more authentic description of the same. Normal coagulation pathway represents a balance between the pro coagulant pathway that is responsible for clot formation and the mechanisms that inhibit the same beyond the injury site. Imbalance of the coagulation system may occur in the perioperative period or during critical illness, which may be secondary to numerous factors leading to a tendency of either thrombosis or bleeding. A systematic search of literature on PubMed with MeSH terms ‘coagulation system, haemostasis and anaesthesia revealed twenty eight related clinical trials and review articles in last 10 years. Since the balance of the coagulation system may tilt towards bleeding and thrombosis in many situations, it is mandatory for the clinicians to understand physiologic basis of haemostasis in order to diagnose and manage the abnormalities of the coagulation process and to interpret the diagnostic tests done for the same. PMID:25535411

  9. A short contemporary history of disseminated intravascular coagulation.

    PubMed

    Levi, Marcel; van der Poll, Tom

    2014-11-01

    Disseminated intravascular coagulation (DIC) is a syndrome characterized by systemic intravascular activation of coagulation, leading to a widespread deposition of fibrin in the circulation. There is ample experimental and pathological evidence that the fibrin deposition contributes to multiple organ failure. The massive and ongoing activation of coagulation may result in depletion of platelets and coagulation factors, which may cause bleeding (consumption coagulopathy). The syndrome of DIC is well known in the medical literature for centuries, although a more precise description of the underlying mechanisms had to await the 20th century. Initial ideas on a role of the contact activation system as the primary trigger for the systemic activation of coagulation as well as a presumed hyperfibrinolytic response in DIC have been found to be misconceptions. Experimental and clinical evidence now indicate that the initiation of coagulation in DIC is caused by tissue factor expression, which in combination with downregulated physiological anticoagulant pathways and impaired fibrinolysis leads to widespread fibrin deposition. In addition, an extensive bidirectional interaction between coagulation and inflammation may further contribute to the pathogenesis of DIC.

  10. Microwave-assisted enzymatic hydrolysis followed by extraction with restricted access nanocomposites for rapid analysis of glucocorticoids residues in liver tissue.

    PubMed

    Feng, Jianan; Liu, Xiaodan; Li, Yan; Duan, Gengli

    2016-10-01

    We developed a novel, simple and fast method for the determination of glucocorticoids residues in liver tissue by combining microwave-assisted enzymatic hydrolysis and restricted access matrix dispersive solid phase extraction (RAM-dSPE) followed with liquid chromatography-tandem mass spectrometry (LC-MS/MS) analysis. Firstly, microwave-assisted enzymatic hydrolysis was introduced in order to obtain a maximum amount of unconjugated parent drug in a short time (8s), while the traditional method commonly needs 4-12h. Secondly, further cleanup was carried out by RAM-dSPE based on the graphene@mSiO2-C8 nanomaterials which were synthesized by coating mesoporous silica onto hydrophilic graphene nano-sheets through a surfactant-mediated co-condensation sol-gel process. The enzymatic hydrolysis influencing factors (pH of the buffer, microwave radiation power, incubation time) and the experimental conditions of RAM-dSPE (sorbents amount, type and volume of the elution solvent, adsorption and desorption time) were optimized. Three glucocorticoids (prednisolone (PREL), betamethasone (BE) and dexamethasone (DE)) were selected as models to evaluate the feasibility of the method. According to the results, the developed method provided low detection limit (S/N=3) of 0.01-0.05μgkg(-1) and good linearity range of 0.25-800μgkg(-1) (R(2)>0.996) for glucocorticoids. The limit of quantification (S/N=10) range from 0.03 to 0.19μgkg(-1). Compared with other traditional methods, the developed method could provide similar or even better results in a greatly reduced analysis time. PMID:27474293

  11. Analysis of dextromethorphan and dextrorphan in decomposed skeletal tissues by microwave assisted extraction, microplate solid-phase extraction and gas chromatography- mass spectrometry (MAE-MPSPE-GCMS).

    PubMed

    Fraser, Candice D; Cornthwaite, Heather M; Watterson, James H

    2015-08-01

    Analysis of decomposed skeletal tissues for dextromethorphan (DXM) and dextrorphan (DXT) using microwave assisted extraction (MAE), microplate solid-phase extraction (MPSPE) and gas chromatography-mass spectrometry (GC-MS) is described. Rats (n = 3) received 100 mg/kg DXM (i.p.) and were euthanized by CO2 asphyxiation roughly 20 min post-dose. Remains decomposed to skeleton outdoors and vertebral bones were recovered, cleaned, and pulverized. Pulverized bone underwent MAE using methanol as an extraction solvent in a closed microwave system, followed by MPSPE and GC-MS. Analyte stability under MAE conditions was assessed and found to be stable for at least 60 min irradiation time. The majority (>90%) of each analyte was recovered after 15 min. The MPSPE-GCMS method was fit to a quadratic response (R(2)  > 0.99), over the concentration range 10-10 000 ng⋅mL(-1) , with coefficients of variation <20% in triplicate analysis. The MPSPE-GCMS method displayed a limit of detection of 10 ng⋅mL(-1) for both analytes. Following MAE for 60 min (80 °C, 1200 W), MPSPE-GCMS analysis of vertebral bone of DXM-exposed rats detected both analytes in all samples (DXM: 0.9-1.5 µg⋅g(-1) ; DXT: 0.5-1.8 µg⋅g(-1) ). PMID:25487525

  12. Quantification of Paraquat, MPTP, and MPP+ in brain tissue using microwave-assisted solvent extraction (MASE) and high performance liquid chromatography-mass spectrometry

    PubMed Central

    Winnik, Bozena; Barr, Dana B.; Thiruchelvam, Mona; Montesano, M. Angela; Richfield, Eric K.; Buckley, Brian

    2014-01-01

    Animal models, consistent with the hypothesis of direct interaction of paraquat (PQ) and 1-Methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) with specific areas of the central nervous system have been developed to study Parkinson’s disease (PD) in mice. These models have necessitated the creation of an analytical method for unambiguous identification and quantitation of PQ and structurally similar MPTP and 1-Methyl-4-phenylpyridinium ion (MPP+) in brain tissue. A method for determination of these compounds was developed using microwave-assisted solvent extraction (MASE) and liquid chromatography-mass spectrometry. Extraction solvent and microwave conditions such as power and time were optimized to produce recoveries of 90% for PQ 78% for MPTP and 97% for its metabolite MPP+. The chromatographic separation was performed on a C8, column and detection was carried out using an ion trap as an analyzer with electrospray ionization. Mass spectrometer parameters such as heated capillary temperature, spray voltage, capillary voltage and others were also optimized for each analyte. Analysis was done in Selective Ion Monitoring (SIM) mode using 186 m/z for PQ, m/z 174 for MPTP, and m/z 170 for MPP+. The method detection limit for paraquat in matrix was 100 pg and 40 pg for MPTP and 20 pg MPP+. PMID:19618168

  13. Bio-responsive polymer hydrogels homeostatically regulate blood coagulation.

    PubMed

    Maitz, Manfred F; Freudenberg, Uwe; Tsurkan, Mikhail V; Fischer, Marion; Beyrich, Theresa; Werner, Carsten

    2013-01-01

    Bio-responsive polymer architectures can empower medical therapies by engaging molecular feedback-response mechanisms resembling the homeostatic adaptation of living tissues to varying environmental constraints. Here we show that a blood coagulation-responsive hydrogel system can deliver heparin in amounts triggered by the environmental levels of thrombin, the key enzyme of the coagulation cascade, which--in turn--becomes inactivated due to released heparin. The bio-responsive hydrogel quantitatively quenches blood coagulation over several hours in the presence of pro-coagulant stimuli and during repeated incubation with fresh, non-anticoagulated blood. These features enable the introduced material to provide sustainable, autoregulated anticoagulation, addressing a key challenge of many medical therapies. Beyond that, the explored concept may facilitate the development of materials that allow the effective and controlled application of drugs and biomolecules.

  14. [Current views of activating and regulatory mechanisms of blood coagulation].

    PubMed

    Osaki, Tsukasa; Ichinose, Akitada

    2014-07-01

    Coagulation factors play essential roles in not only hemostasis but also thrombosis. The coagulation reaction consists of a stepwise sequence of proteolytic reactions of the coagulation factors, and is generally divided into two pathways, a tissue factor(TF)-dependent "extrinsic pathway" and a contact factor-dependent "intrinsic pathway". The extrinsic pathway is responsible for the initiation of the clotting reaction, while the intrinsic pathway most likely amplifies it. Elevated levels of various coagulation factors such as TF, factor VIII and prothrombin have been linked to an increased thrombotic risk. To prevent thrombus formation, endothelial cells express several receptors and activators for anticoagulant factors such as antithrombin, TF-pathway inhibitor, protein C and protein S. Defects in this anticoagulant system also increase the risk of thrombosis.

  15. Cross Talk Pathways Between Coagulation and Inflammation.

    PubMed

    Foley, Jonathan H; Conway, Edward M

    2016-04-29

    Anatomic pathology studies performed over 150 years ago revealed that excessive activation of coagulation occurs in the setting of inflammation. However, it has taken over a century since these seminal observations were made to delineate the molecular mechanisms by which these systems interact and the extent to which they participate in the pathogenesis of multiple diseases. There is, in fact, extensive cross talk between coagulation and inflammation, whereby activation of one system may amplify activation of the other, a situation that, if unopposed, may result in tissue damage or even multiorgan failure. Characterizing the common triggers and pathways are key for the strategic design of effective therapeutic interventions. In this review, we highlight some of the key molecular interactions, some of which are already showing promise as therapeutic targets for inflammatory and thrombotic disorders. PMID:27126649

  16. Arsenic removal by coagulation

    SciTech Connect

    Scott, K.N.; Green, J.F.; Do, H.D.; McLean, S.J.

    1995-04-01

    This study evaluated the removal of naturally occurring arsenic in a full-scale (106-mgd) conventional treatment plant. When the source water was treated with 3--10 mg/L of ferric chloride or 6, 10, or 20 mg/L of alum, arsenic removal was 81--96% (ferric chloride) and 23--71% (alum). Metal concentrations in the sludge produced during this study were below the state`s current hazardous waste levels at all coagulant dosages. No operational difficulties were encountered.

  17. Thermophoretically Dominated Aerosol Coagulation

    NASA Astrophysics Data System (ADS)

    Rosner, Daniel E.; Arias-Zugasti, Manuel

    2011-01-01

    A theory of aerosol coagulation due to size-dependent thermophoresis is presented. This previously overlooked effect is important when local temperature gradients are large, the sol population is composed of particles of much greater thermal conductivity than the carrier gas, with mean diameters much greater than the prevailing gas mean free path, and an adequate “spread” in sizes (as in metallurgical mists or fumes). We illustrate this via a population-balance analysis of the evolution of an initially log-normal distribution when this mechanism dominates ordinary Brownian diffusion.

  18. How Is Disseminated Intravascular Coagulation Treated?

    MedlinePlus

    ... the NHLBI on Twitter. How Is Disseminated Intravascular Coagulation Treated? Treatment for disseminated intravascular coagulation (DIC) depends ... and treat the underlying cause. Acute Disseminated Intravascular Coagulation People who have acute DIC may have severe ...

  19. Histology assessment of bipolar coagulation and argon plasma coagulation on digestive tract

    PubMed Central

    Garrido, Teresa; Baba, Elisa R; Wodak, Stephanie; Sakai, Paulo; Cecconello, Ivan; Maluf-Filho, Fauze

    2014-01-01

    AIM: To analyze the effect of bipolar electrocoagulation and argon plasma coagulation on fresh specimens of gastrointestinal tract. METHODS: An experimental evaluation was performed at Hospital das Clinicas of the University of São Paulo, on 31 fresh surgical specimens using argon plasma coagulation and bipolar electrocoagulation at different time intervals. The depth of tissue damage was histopathologically analyzed by single senior pathologist unaware of the coagulation method and power setting applied. To analyze the results, the mucosa was divided in superficial mucosa (epithelial layer of the esophagus and superficial portion of the glandular layer of the stomach and colon) intermediate mucosa (until the lamina propria of the esophagus and until the bottom of the glandular layer of the stomach and colon) and muscularis mucosa. Necrosis involvement of the layers was compared in several combinations of power and time interval. RESULTS: Involvement of the intermediate mucosa of the stomach and of the muscularis mucosa of the three organs was more frequent when higher amounts of energy were used with argon plasma. In the esophagus and in the colon, injury of the intermediate mucosa was frequent, even when small amounts of energy were used. The use of bipolar electrocoagulation resulted in more frequent involvement of the intermediate mucosa and of the muscularis mucosa of the esophagus and of the colon when higher amounts of energy were used. In the stomach, these involvements were rare. The risk of injury of the muscularis propria was significant only in the colon when argon plasma coagulation was employed. CONCLUSION: Tissue damage after argon plasma coagulation is deeper than bipolar electrocoagulation. Both of them depend on the amount of energy used. PMID:25031789

  20. Coagulation disorders in septic shock.

    PubMed

    Thijs, L G; de Boer, J P; de Groot, M C; Hack, C E

    1993-01-01

    Abnormalities in coagulation and fibrinolysis are frequently observed in septic shock. The most pronounced clinical manifestation is disseminated intravascular coagulation. Recent studies in human volunteers and animal models have clarified the early dynamics and route of activation of both coagulation and fibrinolytic pathways. In healthy subjects subjected to a low dose of either endotoxin or TNF an imbalance in the procoagulant and the fibrinolytic mechanisms is apparent, resulting in a procoagulant state. Also in patients with septic shock a dynamic process of coagulation and fibrinolysis is ongoing with evidence of impaired fibrinolysis. These abnormalities have prognostic significance; the extent of disturbances of coagulation and fibrinolysis is related to the development of multiple organ failure and death.

  1. Perioperative pharmacology: blood coagulation modifiers.

    PubMed

    Hicks, Rodney W; Wanzer, Linda J; Goeckner, Bradlee

    2011-06-01

    Blood coagulation is the process that results in the formation of a blood clot to stop bleeding from a damaged blood vessel. Various pharmacologic agents can affect the coagulation process. The American College of Chest Physicians' evidence-based practice guidelines for perioperative management of antithrombotic therapy provide guidance for anticoagulant or antiplatelet therapy and bridge therapy. Perioperative nurses must understand the pharmacologic principles of the most common blood coagulation modifiers related to perioperative use. The perioperative nurse's responsibilities regarding administration of blood coagulation modifiers include reviewing the patient's pertinent laboratory results (eg, prothrombin time, partial thromboplastin time, international normalized ratio), recognizing the underlying conditions that require blood coagulation therapy, and documenting all pertinent information. Perioperative nurses also should participate in development of detailed storage and retrieval policies related to heparin.

  2. Dielectric properties of porcine cerebrospinal tissues at microwave frequencies: in vivo, in vitro and systematic variation with age

    NASA Astrophysics Data System (ADS)

    Peyman, A.; Holden, S. J.; Watts, S.; Perrott, R.; Gabriel, C.

    2007-04-01

    The dielectric properties of pig cerebrospinal tissues were measured in vivo and in vitro, in the frequency range of 50 MHz-20 GHz. The total combined measurement uncertainty was calculated at each frequency point and is reported over representative frequency regions. Comparisons were made for each tissue between the two sets of data and with the literature of the past decade. The in vitro study was extended to include tissue from pigs weighing approximately 10, 50 and 250 kg to re-visit the question of the variation of dielectric properties with age. White matter and spinal chord showed significant variation as function of animal age, no age-related variations were recorded for grey matter.

  3. Activation of blood coagulation in cancer: implications for tumour progression.

    PubMed

    Lima, Luize G; Monteiro, Robson Q

    2013-09-04

    Several studies have suggested a role for blood coagulation proteins in tumour progression. Herein, we discuss (1) the activation of the blood clotting cascade in the tumour microenvironment and its impact on primary tumour growth; (2) the intravascular activation of blood coagulation and its impact on tumour metastasis and cancer-associated thrombosis; and (3) antitumour therapies that target blood-coagulation-associated proteins. Expression levels of the clotting initiator protein TF (tissue factor) have been correlated with tumour cell aggressiveness. Simultaneous TF expression and PS (phosphatidylserine) exposure by tumour cells promote the extravascular activation of blood coagulation. The generation of blood coagulation enzymes in the tumour microenvironment may trigger the activation of PARs (protease-activated receptors). In particular, PAR1 and PAR2 have been associated with many aspects of tumour biology. The procoagulant activity of circulating tumour cells favours metastasis, whereas the release of TF-bearing MVs (microvesicles) into the circulation has been correlated with cancer-associated thrombosis. Given the role of coagulation proteins in tumour progression, it has been proposed that they could be targets for the development of new antitumour therapies.

  4. Activation of blood coagulation in cancer: implications for tumour progression

    PubMed Central

    Lima, Luize G.; Monteiro, Robson Q.

    2013-01-01

    Several studies have suggested a role for blood coagulation proteins in tumour progression. Herein, we discuss (1) the activation of the blood clotting cascade in the tumour microenvironment and its impact on primary tumour growth; (2) the intravascular activation of blood coagulation and its impact on tumour metastasis and cancer-associated thrombosis; and (3) antitumour therapies that target blood-coagulation-associated proteins. Expression levels of the clotting initiator protein TF (tissue factor) have been correlated with tumour cell aggressiveness. Simultaneous TF expression and PS (phosphatidylserine) exposure by tumour cells promote the extravascular activation of blood coagulation. The generation of blood coagulation enzymes in the tumour microenvironment may trigger the activation of PARs (protease-activated receptors). In particular, PAR1 and PAR2 have been associated with many aspects of tumour biology. The procoagulant activity of circulating tumour cells favours metastasis, whereas the release of TF-bearing MVs (microvesicles) into the circulation has been correlated with cancer-associated thrombosis. Given the role of coagulation proteins in tumour progression, it has been proposed that they could be targets for the development of new antitumour therapies. PMID:23889169

  5. Heparanase—A Link between Coagulation, Angiogenesis, and Cancer

    PubMed Central

    Nadir, Yona; Brenner, Benjamin

    2012-01-01

    Heparanase that was cloned from and is abundant in the placenta is implicated in cell invasion, tumor metastasis, and angiogenesis. Recently we have demonstrated that heparanase may also affect the hemostatic system in a non-enzymatic manner. Heparanase was shown to up-regulate tissue factor (TF) expression and interact with tissue factor pathway inhibitor (TFPI) on the cell surface, leading to dissociation of TFPI from the cell membrane of endothelial and tumor cells, resulting in increased cell surface coagulation activity. More recently, we have shown that heparanase directly enhances TF activity, resulting in increased factor Xa production and activation of the coagulation system. Data indicate increased levels and possible involvement of heparanase in vascular complications in pregnancy. Taking into account the prometastatic and proangiogenic functions of heparanase, overexpression in human malignancies, and abundance in platelets and placenta, its involvement in the coagulation machinery is an intriguing novel arena for further research. PMID:23908827

  6. Spatial localization of bacteria controls coagulation of human blood by 'quorum acting'.

    PubMed

    Kastrup, Christian J; Boedicker, James Q; Pomerantsev, Andrei P; Moayeri, Mahtab; Bian, Yao; Pompano, Rebecca R; Kline, Timothy R; Sylvestre, Patricia; Shen, Feng; Leppla, Stephen H; Tang, Wei-Jen; Ismagilov, Rustem F

    2008-12-01

    Blood coagulation often accompanies bacterial infections and sepsis and is generally accepted as a consequence of immune responses. Though many bacterial species can directly activate individual coagulation factors, they have not been shown to directly initiate the coagulation cascade that precedes clot formation. Here we demonstrated, using microfluidics and surface patterning, that the spatial localization of bacteria substantially affects coagulation of human and mouse blood and plasma. Bacillus cereus and Bacillus anthracis, the anthrax-causing pathogen, directly initiated coagulation of blood in minutes when bacterial cells were clustered. Coagulation of human blood by B. anthracis required secreted zinc metalloprotease InhA1, which activated prothrombin and factor X directly (not via factor XII or tissue factor pathways). We refer to this mechanism as 'quorum acting' to distinguish it from quorum sensing--it does not require a change in gene expression, it can be rapid and it can be independent of bacterium-to-bacterium communication.

  7. Microwave Ablation Using Four-Tine Antenna: Effects of Blood Flow Velocity, Vessel Location, and Total Displacement on Porous Hepatic Cancer Tissue

    PubMed Central

    Chaichanyut, Montree

    2016-01-01

    This research is concerned with microwave ablation analyses using a 2.45 GHz four-tine (4T) antenna for hepatic cancer tissue. In the study, three-dimensional finite-element models were utilized to examine the tissue temperature distributions during and after MW ablation. A preliminary study was first carried out with regard to the specific absorption rates along the 4T antenna insertion depths and the temperature distributions inside the solid and porous liver models with either 3 cm-in-diameter tumor or 5 cm-in-diameter tumor. Based on the preliminary results, the porous models were further examined for the effect of varying blood flow velocities (0–200 cm/s) with a 1 cm-in-diameter blood vessel next to the antenna and also for the effect of vessel-antenna locations (0, 0.8, and 1.3 cm) with a constant blood flow velocity of 16.7 cm/s. All scenarios were simulated under temperature-controlled mode (90°C). The findings revealed that the blood flow velocity and vessel location influence the ablation effectiveness and that increased blood flow inhibits heat transfer to the vessel wall. At the nearest and farthest vessel-antenna locations (0 and 1.3 cm), approximately 90.3% and 99.55% of the cancer cells were eradicated except for the areas adjacent to the vessel. In addition, total tissue thermal displacement is 5.9 mm which is 6.59% of the total length of the overall model.

  8. Microwave Ablation Using Four-Tine Antenna: Effects of Blood Flow Velocity, Vessel Location, and Total Displacement on Porous Hepatic Cancer Tissue.

    PubMed

    Chaichanyut, Montree; Tungjitkusolmun, Supan

    2016-01-01

    This research is concerned with microwave ablation analyses using a 2.45 GHz four-tine (4T) antenna for hepatic cancer tissue. In the study, three-dimensional finite-element models were utilized to examine the tissue temperature distributions during and after MW ablation. A preliminary study was first carried out with regard to the specific absorption rates along the 4T antenna insertion depths and the temperature distributions inside the solid and porous liver models with either 3 cm-in-diameter tumor or 5 cm-in-diameter tumor. Based on the preliminary results, the porous models were further examined for the effect of varying blood flow velocities (0-200 cm/s) with a 1 cm-in-diameter blood vessel next to the antenna and also for the effect of vessel-antenna locations (0, 0.8, and 1.3 cm) with a constant blood flow velocity of 16.7 cm/s. All scenarios were simulated under temperature-controlled mode (90°C). The findings revealed that the blood flow velocity and vessel location influence the ablation effectiveness and that increased blood flow inhibits heat transfer to the vessel wall. At the nearest and farthest vessel-antenna locations (0 and 1.3 cm), approximately 90.3% and 99.55% of the cancer cells were eradicated except for the areas adjacent to the vessel. In addition, total tissue thermal displacement is 5.9 mm which is 6.59% of the total length of the overall model. PMID:27642364

  9. Microwave Ablation Using Four-Tine Antenna: Effects of Blood Flow Velocity, Vessel Location, and Total Displacement on Porous Hepatic Cancer Tissue

    PubMed Central

    Chaichanyut, Montree

    2016-01-01

    This research is concerned with microwave ablation analyses using a 2.45 GHz four-tine (4T) antenna for hepatic cancer tissue. In the study, three-dimensional finite-element models were utilized to examine the tissue temperature distributions during and after MW ablation. A preliminary study was first carried out with regard to the specific absorption rates along the 4T antenna insertion depths and the temperature distributions inside the solid and porous liver models with either 3 cm-in-diameter tumor or 5 cm-in-diameter tumor. Based on the preliminary results, the porous models were further examined for the effect of varying blood flow velocities (0–200 cm/s) with a 1 cm-in-diameter blood vessel next to the antenna and also for the effect of vessel-antenna locations (0, 0.8, and 1.3 cm) with a constant blood flow velocity of 16.7 cm/s. All scenarios were simulated under temperature-controlled mode (90°C). The findings revealed that the blood flow velocity and vessel location influence the ablation effectiveness and that increased blood flow inhibits heat transfer to the vessel wall. At the nearest and farthest vessel-antenna locations (0 and 1.3 cm), approximately 90.3% and 99.55% of the cancer cells were eradicated except for the areas adjacent to the vessel. In addition, total tissue thermal displacement is 5.9 mm which is 6.59% of the total length of the overall model. PMID:27642364

  10. Thermophoretically modified aerosol brownian coagulation.

    PubMed

    Arias-Zugasti, Manuel; Rosner, Daniel E

    2011-08-01

    A theory of aerosol coagulation rates resulting from continuum-regime brownian coagulation in the presence of size-dependent particle thermophoresis is developed and explored here. We are motivated by a wide variety of applications in which particle brownian coagulation occurs in a nonisothermal gas where differential thermophoretic drift contributes to, but does not dominate, the encounter frequency between suspended spherical particles (e.g., mist droplets) of different sizes. We employ a Smoluchowski-like population-balance to demonstrate the relative roles of brownian diffusion and thermophoresis in shaping the short and long time (asymptotic or "coagulation-aged") mist-droplet size distribution (DSD) function. To carry out these combined-mechanism DSD-evolution calculations we developed a rational "coupled" coagulation rate constant (allowing for simultaneous brownian diffusion and relative thermophoretic drift) rather than simply adding the relevant individual coagulation "kernels." Dimensionless criteria are provided to facilitate precluding other coagulation mechanisms not considered here (such as simultaneous sedimentation or Marangoni-flow-induced mist-droplet phoresis) and potential complications not included in the present model [as finite-rate coalescence, initial departures from the continuum (Stokes drag-) limit, and even dense (nonideal) vapor effects]. PMID:21928988

  11. Thermophoretically modified aerosol brownian coagulation.

    PubMed

    Arias-Zugasti, Manuel; Rosner, Daniel E

    2011-08-01

    A theory of aerosol coagulation rates resulting from continuum-regime brownian coagulation in the presence of size-dependent particle thermophoresis is developed and explored here. We are motivated by a wide variety of applications in which particle brownian coagulation occurs in a nonisothermal gas where differential thermophoretic drift contributes to, but does not dominate, the encounter frequency between suspended spherical particles (e.g., mist droplets) of different sizes. We employ a Smoluchowski-like population-balance to demonstrate the relative roles of brownian diffusion and thermophoresis in shaping the short and long time (asymptotic or "coagulation-aged") mist-droplet size distribution (DSD) function. To carry out these combined-mechanism DSD-evolution calculations we developed a rational "coupled" coagulation rate constant (allowing for simultaneous brownian diffusion and relative thermophoretic drift) rather than simply adding the relevant individual coagulation "kernels." Dimensionless criteria are provided to facilitate precluding other coagulation mechanisms not considered here (such as simultaneous sedimentation or Marangoni-flow-induced mist-droplet phoresis) and potential complications not included in the present model [as finite-rate coalescence, initial departures from the continuum (Stokes drag-) limit, and even dense (nonideal) vapor effects].

  12. Chronic urticaria and coagulation: pathophysiological and clinical aspects.

    PubMed

    Tedeschi, A; Kolkhir, P; Asero, R; Pogorelov, D; Olisova, O; Kochergin, N; Cugno, M

    2014-06-01

    Chronic urticaria (CU) is a widespread skin disease, characterized by the recurrence of transient wheals and itch for more than 6 weeks. Besides autoimmune mechanisms, coagulation factors, in particular tissue factor and thrombin, might also participate in the disease pathophysiology. Tissue factor expressed by eosinophils can induce activation of blood coagulation generating thrombin which in turn can increase vascular permeability both directly, acting on endothelial cells, and indirectly, inducing degranulation of mast cells with release of histamine, as demonstrated in experimental models. D-dimer, a fibrin degradation product, generated following activation of the coagulation cascade and fibrinolysis, has been found to be increased during urticaria exacerbations; moreover, it has been proposed as a biomarker of severity and resistance to H1-antihistamines in CU patients. The possible role of coagulation in CU is also supported by case reports, case series and a small controlled study showing the efficacy of anticoagulant therapy in this disease. The purpose of this review was to summarize the available data on the possible contribution of coagulation to the pathophysiology of CU focusing on clinical aspects and possible future therapeutic developments. PMID:24673528

  13. Thymoquinone Modulates Blood Coagulation in Vitro via Its Effects on Inflammatory and Coagulation Pathways

    PubMed Central

    Muralidharan-Chari, Vandhana; Kim, Jaehan; Abuawad, Ahlam; Naeem, Mubeena; Cui, Huadong; Mousa, Shaker A.

    2016-01-01

    Thymoquinone (THQ) is a major component of black seeds. Given that both THQ and black seeds exhibit anti-cancer and anti-inflammatory activities, we hypothesized that THQ will affect cancer-associated thrombosis (CAT), which is primarily triggered by tissue factor (TF) and inflammation. The effect of both black seed-extracted and purchased (“pure”) THQ on normal blood coagulation was tested with in vitro thromboelastography (TEG) and activated partial thromboplastin time (aPTT) coagulation assays. The effect of pure THQ on CAT was tested with aPTT assay using pancreatic cancer cell lines that are either positive or negative for TF, and with TEG assay using lipopolysaccharide as an inflammatory trigger. Additionally, the direct effect of THQ on the inactivation of factors IIa and Xa was assessed. Since TNF-α facilitates crosstalk between inflammation and thrombosis by triggering the NF-κB pathway, we tested THQ’s ability to interfere with this communication with a luciferase assay. Both extracted and pure THQ had minimal effects on normal blood coagulation. Pure THQ reversed CAT initiated by both TF and inflammation to basal levels (p < 0.001). Mechanistically, while THQ had minimal to no effect on factor IIa and Xa inactivation, it strongly reduced the effects of TNF-α on NF-κB elements (p < 0.001). THQ has a minimal effect on basal coagulation and can reverse CAT in vitro, possibly by interfering with the crosstalk between inflammation and coagulation. This study suggests the utility of THQ as a preventative anticoagulant and/or as a supplement to existing chemotherapies and anticoagulant therapies. PMID:27043539

  14. Thymoquinone Modulates Blood Coagulation in Vitro via Its Effects on Inflammatory and Coagulation Pathways.

    PubMed

    Muralidharan-Chari, Vandhana; Kim, Jaehan; Abuawad, Ahlam; Naeem, Mubeena; Cui, Huadong; Mousa, Shaker A

    2016-01-01

    Thymoquinone (THQ) is a major component of black seeds. Given that both THQ and black seeds exhibit anti-cancer and anti-inflammatory activities, we hypothesized that THQ will affect cancer-associated thrombosis (CAT), which is primarily triggered by tissue factor (TF) and inflammation. The effect of both black seed-extracted and purchased ("pure") THQ on normal blood coagulation was tested with in vitro thromboelastography (TEG) and activated partial thromboplastin time (aPTT) coagulation assays. The effect of pure THQ on CAT was tested with aPTT assay using pancreatic cancer cell lines that are either positive or negative for TF, and with TEG assay using lipopolysaccharide as an inflammatory trigger. Additionally, the direct effect of THQ on the inactivation of factors IIa and Xa was assessed. Since TNF-α facilitates crosstalk between inflammation and thrombosis by triggering the NF-κB pathway, we tested THQ's ability to interfere with this communication with a luciferase assay. Both extracted and pure THQ had minimal effects on normal blood coagulation. Pure THQ reversed CAT initiated by both TF and inflammation to basal levels (p < 0.001). Mechanistically, while THQ had minimal to no effect on factor IIa and Xa inactivation, it strongly reduced the effects of TNF-α on NF-κB elements (p < 0.001). THQ has a minimal effect on basal coagulation and can reverse CAT in vitro, possibly by interfering with the crosstalk between inflammation and coagulation. This study suggests the utility of THQ as a preventative anticoagulant and/or as a supplement to existing chemotherapies and anticoagulant therapies. PMID:27043539

  15. 21 CFR 864.5400 - Coagulation instrument.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 8 2014-04-01 2014-04-01 false Coagulation instrument. 864.5400 Section 864.5400....5400 Coagulation instrument. (a) Identification. A coagulation instrument is an automated or semiautomated device used to determine the onset of clot formation for in vitro coagulation studies....

  16. 21 CFR 864.5400 - Coagulation instrument.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 8 2011-04-01 2011-04-01 false Coagulation instrument. 864.5400 Section 864.5400....5400 Coagulation instrument. (a) Identification. A coagulation instrument is an automated or semiautomated device used to determine the onset of clot formation for in vitro coagulation studies....

  17. 21 CFR 864.5400 - Coagulation instrument.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Coagulation instrument. 864.5400 Section 864.5400....5400 Coagulation instrument. (a) Identification. A coagulation instrument is an automated or semiautomated device used to determine the onset of clot formation for in vitro coagulation studies....

  18. 21 CFR 864.5400 - Coagulation instrument.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 8 2012-04-01 2012-04-01 false Coagulation instrument. 864.5400 Section 864.5400....5400 Coagulation instrument. (a) Identification. A coagulation instrument is an automated or semiautomated device used to determine the onset of clot formation for in vitro coagulation studies....

  19. 21 CFR 864.5400 - Coagulation instrument.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 8 2013-04-01 2013-04-01 false Coagulation instrument. 864.5400 Section 864.5400....5400 Coagulation instrument. (a) Identification. A coagulation instrument is an automated or semiautomated device used to determine the onset of clot formation for in vitro coagulation studies....

  20. Ultrasonic detection of photothermal interaction of lasers with tissue using a pulsed Doppler system

    NASA Astrophysics Data System (ADS)

    Ying, Hao; Azeemi, Aamer; Hartley, Craig J.; Motamedi, Massoud; Bell, Brent A.; Rastegar, Sohi; Sheppard, L. C.

    1995-05-01

    Thermal therapy using various heating sources such as lasers or microwaves to destroy benign and malignant lesions has recently gained widespread acceptance. However, the accurate prediction of thermal damage in tissue according to theoretical or computer modeling is difficult and unreliable due to target variability with respect to physical properties, geometry, and blood perfusion. Thus, one of the major obstacles to application of thermal therapies has been the lack of a noninvasive, real-time method that could determine the extent and geometry of treated tissue. To evaluate the effects of laser heating on tissue, we have developed an analog-digital hybrid Doppler ultrasound system to measure the phase and amplitude of ultrasonic echoes returned from the heated tissue. The system consists of an eight-gate pulsed Doppler detector, a 16-channel 12-bit A/D converter, and a signal analysis and visualization software package. In vitro studies using canine liver showed two distinct types of modulation of the echoes along the ultrasound beam path during laser irradiation using an 810 nm diode laser. Type 1 signals showed a small and slow variation in amplitude and phase, and were attributed to tissue coagulation. Type 1 signals showed a small and slow variation in amplitude and phase, and were attributed to tissue coagulation. Type 2 signals showed large and rapid variations in amplitude and phase which usually appeared after tissue surface explosion and were indicative of tissue ablation. We hypothesize that the observed phase changes in type 1 signals are due to thermal effects within the tissue consistent with tissue expansion and contraction while the phase changes in type 2 signals are likely due to formation and motion of gas bubbles in the tissue. A further development of the Doppler ultrasound technique could lead to the generation of feedback information needed for monitoring and automatic control of thermal treatment using various heating modalities such as

  1. EXTRINSIC COAGULATION BLOCKADE ATTENUATES LUNG INJURY AND PROINFLAMMATORY CYTOKINE RELEASE AFTER INTRATRACHEAL LIPOPOLYSACCHARIDE

    EPA Science Inventory

    Initiation of coagulation by tissue factor (TF) is a potentially powerful regulator of local inflammatory responses. We hypothesized that blockade of TF-factor VIIa (FVIIa) complex would decrease lung inflammation and proinflammatory cytokine release after tracheal instillation o...

  2. [Proteins influencing the blood coagulation].

    PubMed

    Alberio, Lorenzo

    2011-11-01

    This review describes some natural proteins, which can be employed, either as factor concentrates derived from human plasma or as recombinant drug, to modulate the coagulation system. I will address some biochemical characteristics and the physiological role of von Willebrand factor, the coagulation factors of the extrinsic and intrinsic pathways, and the physiological anticoagulant protein C. In addition, I will detail the pharmacological compounds, which are available for influencing or substituting the coagulation proteins: desmopressin (DDAVP), single coagulation factor concentrates, prothrombin complex concentrates, and protein C concentrate. In particular, I will address some treatment topics of general medical interest, such as the treatment of massive bleeding, the correction of the coagulopathy induced by vitamin K-antagonists in patients with cerebral haemorrhage, and of the coagulopathy of meningococcemia. Finally, I will describe some properties and practical clinical applications of the recombinant anticoagulans lepirudin and bivalirudin, which are derived from hirudin, the natural anticoagulant of the medical leech.

  3. Disorders of coagulation in pregnancy.

    PubMed

    Katz, D; Beilin, Y

    2015-12-01

    The process of haemostasis is complex and is further complicated in the parturient because of the physiological changes of pregnancy. Understanding these changes and the impact that they have on the safety profile of the anaesthetic options for labour and delivery is crucial to any anaesthetist caring for the parturient. This article analyses current theories on coagulation and reviews the physiological changes to coagulation that occur during pregnancy and the best methods with which to evaluate coagulation. Finally, we examine some of the more common disorders of coagulation that occur during pregnancy, including von Willebrand disease, common factor deficiencies, platelet disorders, the parturient on anticoagulants, and the more rare acute fatty liver of pregnancy, with a focus on their implications for neuraxial anaesthesia.

  4. Obstetrical disseminated intravascular coagulation score.

    PubMed

    Kobayashi, Takao

    2014-06-01

    Obstetrical disseminated intravascular coagulation (DIC) is usually a very acute, serious complication of pregnancy. The obstetrical DIC score helps with making a prompt diagnosis and starting treatment early. This DIC score, in which higher scores are given for clinical parameters rather than for laboratory parameters, has three components: (i) the underlying diseases; (ii) the clinical symptoms; and (iii) the laboratory findings (coagulation tests). It is justifiably appropriate to initiate therapy for DIC when the obstetrical DIC score reaches 8 points or more before obtaining the results of coagulation tests. Improvement of blood coagulation tests and clinical symptoms are essential to the efficacy evaluation for treatment after a diagnosis of obstetrical DIC. Therefore, the efficacy evaluation criteria for obstetrical DIC are also defined to enable follow-up of the clinical efficacy of DIC therapy.

  5. Microwave drilling of bones.

    PubMed

    Eshet, Yael; Mann, Ronit Rachel; Anaton, Abby; Yacoby, Tomer; Gefen, Amit; Jerby, Eli

    2006-06-01

    This paper presents a feasibility study of drilling in fresh wet bone tissue in vitro using the microwave drill method [Jerby et al, 2002], toward testing its applicability in orthopaedic surgery. The microwave drill uses a near-field focused energy (typically, power under approximately 200 W at 2.45-GHz frequency) in order to penetrate bone in a drilling speed of approximately 1 mm/s. The effect of microwave drilling on mechanical properties of whole ovine tibial and chicken femoral bones drilled in vitro was studied using three-point-bending strength and fatigue tests. Properties were compared to those of geometrically similar bones that were equivalently drilled using the currently accepted mechanical rotary drilling method. Strength of mid-shaft, elastic moduli, and cycles to failure in fatigue were statistically indistinguishable between specimen groups assigned for microwave and mechanical drilling. Carbonized margins around the microwave-drilled hole were approximately 15% the hole diameter. Optical and scanning electron microscopy studies showed that the microwave drill produces substantially smoother holes in cortical bone than those produced by a mechanical drill. The hot spot produced by the microwave drill has the potential for overcoming two major problems presently associated with mechanical drilling in cortical and trabecular bone during orthopaedic surgeries: formation of debris and rupture of bone vasculature during drilling.

  6. Coagulation and Autoimmunity in Scleroderma Interstitial Lung Disease

    PubMed Central

    Ludwicka-Bradley, Anna; Silver, Richard M.; Bogatkevich, Galina S.

    2010-01-01

    Objectives Interstitial lung disease in systemic sclerosis (SSc-ILD) is often an irreversible and progressive fibrosing process that now is the leading cause of scleroderma-related deaths. In this review we present our current understanding of the role played by coagulation and particularly by thrombin in autoimmune-mediated tissue injury and fibrosis, mainly as it relates to SSc-ILD. Methods We used PubMed to search for articles published up to October 2010 for keywords referring to autoimmunity, coagulation, pulmonary fibrosis, and scleroderma. Results SSc-ILD is an autoimmune disease associated with lymphocyte activation and release of various cytokines and growth factors. The production of autoantibodies is a central feature in SSc. Activation of the coagulation cascade with release of thrombin is 1 of the earliest events following tissue injury. Thrombin contributes to autoimmune responses by activating of pathogenic Th2 lymphocyte profile in SSc. Thrombin also modulates tissue repair responses, stimulates transformation of epithelial cells, endothelial cells, and fibroblasts into myofibroblast phenotype, and induces secretion of several pro-immune and profibrotic factors, which serve as antigens for pathogenic autoantibodies production in SSc-ILD. Conclusions The identification of links between autoimmunity and coagulation would provide new insights into the pathogenesis of pulmonary fibrosis associated with autoimmune diseases and further acknowledge the importance of thrombin in the development of SSc-ILD. PMID:21168185

  7. Microwave diagnostics of atmospheric plasmas

    NASA Astrophysics Data System (ADS)

    Scott, David

    Plasma treatment of biological tissues has tremendous potential due to the wide range of applications. Most plasmas have gas temperatures which greatly exceed room temperature. These are often utilized in electro-surgery for cutting and coagulating tissue. Another type of plasma, referred to as cold atmospheric plasma, or CAP, is characterized by heavy particle temperatures which are at or near room temperature. Due to this lack of thermal effect, CAP may provide less invasive medical procedures. Additionally, CAP have been demonstrated to be effective at targeting cancer cells while minimizing damage to the surrounding tissue. A recently fabricated Microwave Electron Density Device (MEDD) utilizes microwave scattering on small atmospheric plasmas to determine the electron plasma density. The MEDD can be utilized on plasmas which range from a fraction of a millimeter to several centimeters at atmospheric pressure when traditional methods cannot be applied. Microwave interferometry fails due to the small size of the plasma relative to the microwave wavelength which leads to diffraction and negligible phase change; electrostatic probes introduce very strong perturbation and are associated with difficulties of application in strongly-collisional atmospheric conditions; and laser Thomson scattering is not sensitive enough to measure plasma densities less than 1012 cm-3. The first part of this dissertation provides an overview of two types of small atmospheric plasma objects namely CAPs and plasmas utilized in the electro-surgery. It then goes on to describe the fabrication, testing and calibration of the MEDD facility. The second part of this dissertation is focused on the application of the MEDD and other diagnostic techniques to both plasma objects. A series of plasma images that illustrate the temporal evolution of a discharge created by an argon electrosurgical device operating in the coagulation mode and its behavior was analyzed. The discharge of the argon

  8. Microwave Ovens

    MedlinePlus

    ... Required Reports for the Microwave Oven Manufacturers or Industry Exemption from Certain Reporting and Recordkeeping Requirements for ... Microwave Ovens (PDF) (PDF - 2.5MB) FDA eSubmitter Industry Guidance - Documents of Interest Notifications to Industry (PDF ...

  9. Principles of dielectric blood coagulometry as a comprehensive coagulation test.

    PubMed

    Hayashi, Yoshihito; Brun, Marc-Aurèle; Machida, Kenzo; Nagasawa, Masayuki

    2015-10-01

    Dielectric blood coagulometry (DBCM) is intended to support hemostasis management by providing comprehensive information on blood coagulation from automated, time-dependent measurements of whole blood dielectric spectra. We discuss the relationship between the series of blood coagulation reactions, especially the aggregation and deformation of erythrocytes, and the dielectric response with the help of clot structure electron microscope observations. Dielectric response to the spontaneous coagulation after recalcification presented three distinct phases that correspond to (P1) rouleau formation before the onset of clotting, (P2) erythrocyte aggregation and reconstitution of aggregates accompanying early fibrin formation, and (P3) erythrocyte shape transformation and/or structure changes within aggregates after the stable fibrin network is formed and platelet contraction occurs. Disappearance of the second phase was observed upon addition of tissue factor and ellagic acid for activation of extrinsic and intrinsic pathways, respectively, which is attributable to accelerated thrombin generation. A series of control experiments revealed that the amplitude and/or quickness of dielectric response reflect platelet function, fibrin polymerization, fibrinolysis activity, and heparin activity. Therefore, DBCM sensitively measures blood coagulation via erythrocytes aggregation and shape changes and their impact on the dielectric permittivity, making possible the development of the battery of assays needed for comprehensive coagulation testing.

  10. Principles of dielectric blood coagulometry as a comprehensive coagulation test.

    PubMed

    Hayashi, Yoshihito; Brun, Marc-Aurèle; Machida, Kenzo; Nagasawa, Masayuki

    2015-10-01

    Dielectric blood coagulometry (DBCM) is intended to support hemostasis management by providing comprehensive information on blood coagulation from automated, time-dependent measurements of whole blood dielectric spectra. We discuss the relationship between the series of blood coagulation reactions, especially the aggregation and deformation of erythrocytes, and the dielectric response with the help of clot structure electron microscope observations. Dielectric response to the spontaneous coagulation after recalcification presented three distinct phases that correspond to (P1) rouleau formation before the onset of clotting, (P2) erythrocyte aggregation and reconstitution of aggregates accompanying early fibrin formation, and (P3) erythrocyte shape transformation and/or structure changes within aggregates after the stable fibrin network is formed and platelet contraction occurs. Disappearance of the second phase was observed upon addition of tissue factor and ellagic acid for activation of extrinsic and intrinsic pathways, respectively, which is attributable to accelerated thrombin generation. A series of control experiments revealed that the amplitude and/or quickness of dielectric response reflect platelet function, fibrin polymerization, fibrinolysis activity, and heparin activity. Therefore, DBCM sensitively measures blood coagulation via erythrocytes aggregation and shape changes and their impact on the dielectric permittivity, making possible the development of the battery of assays needed for comprehensive coagulation testing. PMID:26368847

  11. [Coagulation disorders in the intensive care station].

    PubMed

    Hart, C; Spannagl, M

    2014-05-01

    Coagulation disorders are frequently encountered in the intensive care unit (ICU) and are challenging due to a variety of potential etiologies. Critically ill patients with coagulation abnormalities may present with an increased risk of bleeding, show coagulation activation resulting in thromboembolism, or have no specific symptoms. Hemostatic abnormalities observed in ICU patients range from isolated thrombocytopenia or prolonged global clotting tests to complex and life-threatening coagulation defects. Successful management of coagulation disorders requires prompt and accurate identification of the underlying cause. This review describes the most frequently occurring diagnoses found in intensive care patients with thrombocytopenia and coagulation test abnormalities and summarizes appropriate diagnostic interventions and current approaches to differential diagnosis.

  12. Platelets and coagulation in infection

    PubMed Central

    Davis, Rachelle P; Miller-Dorey, Sarah; Jenne, Craig N

    2016-01-01

    Disseminated intravascular coagulation (DIC) is a frequent complication in sepsis that is associated with worse outcomes and higher mortality in patients. In addition to the uncontrolled generation of thrombi throughout the patient's vasculature, DIC often consumes large quantities of clotting factors leaving the patient susceptible to hemorrhaging. Owing to these complications, patients often receive anticoagulants to treat the uncontrolled clotting, often with mixed outcomes. This lack of success with the current array of anticoagulants can be partly explained by the fact that during sepsis clotting is often initiated by the immune system. Systemic inflammation has the capacity to activate and amplify coagulation and, as such, potential therapies for the treatment of sepsis-associated DIC need to address the interaction between inflammation and coagulation. Recent studies have suggested that platelets and neutrophil extracellular traps (NETs) are the key mediators of infection-induced coagulation. This review explores current anticoagulant therapies and discusses the development of future therapies to target platelet and NET-mediated coagulation. PMID:27525062

  13. Fibrinolysis in disseminated intravascular coagulation.

    PubMed

    Hack, C E

    2001-12-01

    Studies in experimental models for sepsis, the most common cause of disseminated intravascular coagulation (DIC), have put forward the concept of a procoagulant state that is characterized by thrombin generation exceeding that of plasmin. Convincing evidence indicates that this imbalance between coagulation and fibrinolysis is due to increased levels of plasminogen activator inhibitor type 1 (PAI-1). Levels of this fibrinolysis inhibitor indeed correlate with outcome and severity of multiple organ failure in patients with sepsis, as well as in patients with DIC from other causes. Hence we suggest that PAI-1 constitutes an important target for therapy in patients with DIC.

  14. Polystyrene nanoparticles affecting blood coagulation.

    PubMed

    Oslakovic, Cecilia; Cedervall, Tommy; Linse, Sara; Dahlbäck, Björn

    2012-08-01

    The association of nanoparticles (NPs) with blood coagulation proteins may influence the natural balance between pro- and anticoagulant pathways. We investigated whether polystyrene NPs, when added to human plasma, affected the generation of thrombin in plasma. Amine-modified NPs were found to decrease the thrombin formation due to binding of factors VII and IX to the NPs, which resulted in depletion of the respective protein in solution. In contrast, carboxyl-modified NPs were able to act as a surface for activation of the intrinsic pathway of blood coagulation in plasma. These results highlight the influence of NPs on a biologically important pathway.

  15. Depinning as a coagulation process

    NASA Astrophysics Data System (ADS)

    İşeri, M.; Kaspar, D.; Mungan, M.

    2016-08-01

    We consider a one-dimensional model that describes the depinning of an elastic string of particles in a strongly pinning, phase-disordered periodic environment under a slowly increasing force. The evolution towards depinning occurs by the triggering of avalanches in regions of activity which are at first isolated, but later grow and merge. For large system sizes the dynamically critical behavior is dominated by the coagulation of these active regions. Our analysis and numerical simulations show that the evolution of the sizes of active regions is well described by a Smoluchowski coagulation equation, allowing us to predict correlation lengths and avalanche sizes in terms of certain moments of the size distribution.

  16. Enhanced coagulation for arsenic removal

    SciTech Connect

    Cheng, R.C.; Liang, S.; Wang, H.C.; Beuhler, M.D. )

    1994-09-01

    The possible use of enhanced coagulation for arsenic removal was examined at the facilities of a California utility in 1992 and 1993. The tests were conducted at bench, pilot, and demonstration scales, with two source waters. Alum and ferric chloride, with cationic polymer, were investigated at various influence arsenic concentrations. The investigators concluded that for the source waters tested, enhanced coagulation could be effective for arsenic removal and that less ferric chloride than alum, on a weight basis, is needed to achieve the same removal.

  17. Microwave Treatment for Cardiac Arrhythmias

    NASA Technical Reports Server (NTRS)

    Arndt, G. Dickey (Inventor); Carl, James R. (Inventor); Raffoul, George W. (Inventor); Pacifico, Antonio (Inventor)

    1999-01-01

    Method and apparatus are provided for propagating microwave energy into heart tissues to produce a desired temperature profile therein at tissue depths sufficient for thermally ablating arrhythmogenic cardiac tissue to treat ventricular tachycardia and other arrhythmias while preventing excessive heating of surrounding tissues, organs, and blood. A wide bandwidth double-disk antenna is effective for this purpose over a bandwidth of about six gigahertz. A computer simulation provides initial screening capabilities for an antenna such as antenna, frequency, power level, and power application duration. The simulation also allows optimization of techniques for specific patients or conditions. In operation, microwave energy between about 1 Gigahertz and 12 Gigahertz is applied to monopole microwave radiator having a surface wave limiter. A test setup provides physical testing of microwave radiators to determine the temperature profile created in actual heart tissue or ersatz heart tissue. Saline solution pumped over the heart tissue with a peristaltic pump simulates blood flow. Optical temperature sensors disposed at various tissue depths within the heart tissue detect the temperature profile without creating any electromagnetic interference. The method may be used to produce a desired temperature profile in other body tissues reachable by catheter such as tumors and the like.

  18. Transcatheter Antenna For Microwave Treatment

    NASA Technical Reports Server (NTRS)

    Arndt, G. Dickey (Inventor); Carl, James R. (Inventor); Raffoul, George W. (Inventor); Karasack, Vincent G. (Inventor); Pacifico, Antonio (Inventor); Pieper, Carl F. (Inventor)

    2000-01-01

    Method and apparatus are provided for propagating microwave energy into heart tissues to produce a desired temperature profile therein at tissue depths sufficient for thermally ablating arrhythmogenic cardiac tissue to treat ventricular tachycardia and other arrhythmias while preventing excessive heating of surrounding tissues, organs, and blood. A wide bandwidth double-disk antenna is effective for this purpose over a bandwidth of about six gigahertz. A computer simulation provides initial screening capabilities for an antenna such as antenna, frequency, power level, and power application duration. The simulation also allows optimization of techniques for specific patients or conditions. In operation, microwave energy between about 1 Gigahertz and 12 Gigahertz is applied to monopole microwave radiation having a surface wave limiter. A test setup provides physical testing of microwave radiators to determine the temperature profile created in actual heart tissue or ersatz heart tissue. Saline solution pumped over the heart tissue with a peristaltic pump simulates blood flow. Optical temperature sensors disposed at various tissue depths within the heart tissue detect the temperature profile without creating any electromagnetic interference. The method may he used to produce a desired temperature profile in other body tissues reachable by catheter such as tumors and the like.

  19. THE PREPARATION OF COMPLETELY COAGULATED HEMOGLOBIN

    PubMed Central

    Anson, M. L.; Mirsky, A. E.

    1929-01-01

    As a preliminary to the study of the reversal of the coagulation of hemoglobin several methods are described for the preparation of completely denatured and coagulated hemoglobin and the evidence is given that hemoglobin is a typical coagulable protein. PMID:19872511

  20. Altered coagulability: an aid to selective breast biopsy.

    PubMed Central

    Spillert, C. R.; Passannante, M. R.; Salzer-Pagan, J. E.; Lazaro, E. J.

    1993-01-01

    Difficulty in discriminating nonadvanced breast cancer from benign breast disease results in many cancer negative biopsies. Development of a test to better differentiate between these two entities to reduce the number of cancer negative biopsies was the purpose of this blind study. The clue that prompted the development of this test resides in the state of hypercoagulability in cancer. Hypercoagulability can be measured by assessing tissue factor-mediated altered coagulability. The amount of tissue factor release is contingent on prior activation of the monocyte (the only blood cell that generates tissue factor) in vivo. PMID:8478968

  1. Microwave detector

    DOEpatents

    Meldner, Heiner W.; Cusson, Ronald Y.; Johnson, Ray M.

    1986-01-01

    A microwave detector (10) is provided for measuring the envelope shape of a microwave pulse comprised of high-frequency oscillations. A biased ferrite (26, 28) produces a magnetization field flux that links a B-dot loop (16, 20). The magnetic field of the microwave pulse participates in the formation of the magnetization field flux. High-frequency insensitive means (18, 22) are provided for measuring electric voltage or current induced in the B-dot loop. The recorded output of the detector is proportional to the time derivative of the square of the envelope shape of the microwave pulse.

  2. Microwave detector

    DOEpatents

    Meldner, H.W.; Cusson, R.Y.; Johnson, R.M.

    1985-02-08

    A microwave detector is provided for measuring the envelope shape of a microwave pulse comprised of high-frequency oscillations. A biased ferrite produces a magnetization field flux that links a B-dot loop. The magnetic field of the microwave pulse participates in the formation of the magnetization field flux. High-frequency insensitive means are provided for measuring electric voltage or current induced in the B-dot loop. The recorded output of the detector is proportional to the time derivative of the square of the envelope shape of the microwave pulse.

  3. Theoretical Modeling for Hepatic Microwave Ablation

    PubMed Central

    Prakash, Punit

    2010-01-01

    Thermal tissue ablation is an interventional procedure increasingly being used for treatment of diverse medical conditions. Microwave ablation is emerging as an attractive modality for thermal therapy of large soft tissue targets in short periods of time, making it particularly suitable for ablation of hepatic and other tumors. Theoretical models of the ablation process are a powerful tool for predicting the temperature profile in tissue and resultant tissue damage created by ablation devices. These models play an important role in the design and optimization of devices for microwave tissue ablation. Furthermore, they are a useful tool for exploring and planning treatment delivery strategies. This review describes the status of theoretical models developed for microwave tissue ablation. It also reviews current challenges, research trends and progress towards development of accurate models for high temperature microwave tissue ablation. PMID:20309393

  4. Involvement of coagulation and hemostasis in inflammatory bowel diseases.

    PubMed

    Stadnicki, Antoni

    2012-09-01

    Inflammatory bowel diseases (IBD), Crohn's disease and ulcerative colitis (UC) are idiopathic, intestinal and systemic inflammatory disorders which are immunologically mediated with the activation of plasma proteolytic cascades. The activation of coagulation in IBD is related to the activity and colonic extension of the disease, but may still be persistent in a quiescent stage. Factor XIII seems to be as much a coagulation factor as a connective tissue factor which may contribute to intestinal healing. Fibrinolytic capacity is reduced in systemic circulation of IBD patients. Platelets activation is a feature of IBD which contributes to a pathogenic inflammatory sequel. There is evidence that coagulation activation may in turn mediate and amplify inflammatory cascades in IBD, especially via activating PARs related pathways. The etiology of thromboembolism in IBD seems to be multifactorial but is largely attributable to the coagulation activation and platelet aggregation during systemic inflammation. Thromboembolic (TE) complications in both Crohn's disease and UC appear to have at least 3-4 fold increased risk of developing compared to control patients. Currently, no single TE laboratory marker has a predictive value, but a recently developed endogenous thrombin potential test may have a potentially predicative value in IBD. At present, no interaction between IBD and inherited factors of thrombophilia has been found. An efficacy of heparin treatment in UC is still controversial, although heparin is safe in UC flare. Prophylactic anticoagulation against TE is currently not fully defined, however, high - risk patients should be considered for using a moderate dose of heparin. PMID:22272910

  5. Optical coherence tomography-guided laser microsurgery for blood coagulation with continuous-wave laser diode

    PubMed Central

    Chang, Feng-Yu; Tsai, Meng-Tsan; Wang, Zu-Yi; Chi, Chun-Kai; Lee, Cheng-Kuang; Yang, Chih-Hsun; Chan, Ming-Che; Lee, Ya-Ju

    2015-01-01

    Blood coagulation is the clotting and subsequent dissolution of the clot following repair to the damaged tissue. However, inducing blood coagulation is difficult for some patients with homeostasis dysfunction or during surgery. In this study, we proposed a method to develop an integrated system that combines optical coherence tomography (OCT) and laser microsurgery for blood coagulation. Also, an algorithm for positioning of the treatment location from OCT images was developed. With OCT scanning, 2D/3D OCT images and angiography of tissue can be obtained simultaneously, enabling to noninvasively reconstruct the morphological and microvascular structures for real-time monitoring of changes in biological tissues during laser microsurgery. Instead of high-cost pulsed lasers, continuous-wave laser diodes (CW-LDs) with the central wavelengths of 450 nm and 532 nm are used for blood coagulation, corresponding to higher absorption coefficients of oxyhemoglobin and deoxyhemoglobin. Experimental results showed that the location of laser exposure can be accurately controlled with the proposed approach of imaging-based feedback positioning. Moreover, blood coagulation can be efficiently induced by CW-LDs and the coagulation process can be monitored in real-time with OCT. This technology enables to potentially provide accurate positioning for laser microsurgery and control the laser exposure to avoid extra damage by real-time OCT imaging. PMID:26568136

  6. Optical coherence tomography-guided laser microsurgery for blood coagulation with continuous-wave laser diode

    NASA Astrophysics Data System (ADS)

    Chang, Feng-Yu; Tsai, Meng-Tsan; Wang, Zu-Yi; Chi, Chun-Kai; Lee, Cheng-Kuang; Yang, Chih-Hsun; Chan, Ming-Che; Lee, Ya-Ju

    2015-11-01

    Blood coagulation is the clotting and subsequent dissolution of the clot following repair to the damaged tissue. However, inducing blood coagulation is difficult for some patients with homeostasis dysfunction or during surgery. In this study, we proposed a method to develop an integrated system that combines optical coherence tomography (OCT) and laser microsurgery for blood coagulation. Also, an algorithm for positioning of the treatment location from OCT images was developed. With OCT scanning, 2D/3D OCT images and angiography of tissue can be obtained simultaneously, enabling to noninvasively reconstruct the morphological and microvascular structures for real-time monitoring of changes in biological tissues during laser microsurgery. Instead of high-cost pulsed lasers, continuous-wave laser diodes (CW-LDs) with the central wavelengths of 450 nm and 532 nm are used for blood coagulation, corresponding to higher absorption coefficients of oxyhemoglobin and deoxyhemoglobin. Experimental results showed that the location of laser exposure can be accurately controlled with the proposed approach of imaging-based feedback positioning. Moreover, blood coagulation can be efficiently induced by CW-LDs and the coagulation process can be monitored in real-time with OCT. This technology enables to potentially provide accurate positioning for laser microsurgery and control the laser exposure to avoid extra damage by real-time OCT imaging.

  7. Optical coherence tomography-guided laser microsurgery for blood coagulation with continuous-wave laser diode.

    PubMed

    Chang, Feng-Yu; Tsai, Meng-Tsan; Wang, Zu-Yi; Chi, Chun-Kai; Lee, Cheng-Kuang; Yang, Chih-Hsun; Chan, Ming-Che; Lee, Ya-Ju

    2015-11-16

    Blood coagulation is the clotting and subsequent dissolution of the clot following repair to the damaged tissue. However, inducing blood coagulation is difficult for some patients with homeostasis dysfunction or during surgery. In this study, we proposed a method to develop an integrated system that combines optical coherence tomography (OCT) and laser microsurgery for blood coagulation. Also, an algorithm for positioning of the treatment location from OCT images was developed. With OCT scanning, 2D/3D OCT images and angiography of tissue can be obtained simultaneously, enabling to noninvasively reconstruct the morphological and microvascular structures for real-time monitoring of changes in biological tissues during laser microsurgery. Instead of high-cost pulsed lasers, continuous-wave laser diodes (CW-LDs) with the central wavelengths of 450 nm and 532 nm are used for blood coagulation, corresponding to higher absorption coefficients of oxyhemoglobin and deoxyhemoglobin. Experimental results showed that the location of laser exposure can be accurately controlled with the proposed approach of imaging-based feedback positioning. Moreover, blood coagulation can be efficiently induced by CW-LDs and the coagulation process can be monitored in real-time with OCT. This technology enables to potentially provide accurate positioning for laser microsurgery and control the laser exposure to avoid extra damage by real-time OCT imaging.

  8. [The use of the contact periodic-pulse laser and microwave scalpels in liver surgery].

    PubMed

    Movchun, A A; Timoshin, A D; Zhidkov, I L; Got'e, S V; Filonenko, A A; Kocharian, E Z; Litvinov, Iu O

    1992-01-01

    In use of the laser (CPPLS) and microwave (MWS) scalpels, the reliability of arrest of bleeding and bile leakage has been proved not only at studies on the intact liver but on the models of jaundice with impaired coagulative blood properties as well. After hepatic resection by means of CPPLS and MWS, the impairement in its functional state lasts for a short time. In use of CPPLS, disturbance in tissue blood flow is less than in use of MWS. Healing of the wounds inflicted by CPPLS and MWS occurs in absence of pronounced exudative and inflammatory reactions. In a wound inflicted by a laser scalpel, the necrotic layer is not pronounced. It is expedient to use the CPPLS and MWS in patients with hepatic masses in technically difficult cholecystectomy as they contribute to decrease in intraoperative blood loss and prevention of the development of complications after the operation.

  9. Treatment of Disseminated Intravascular Coagulation.

    PubMed

    Makruasi, Nisa

    2015-11-01

    Disseminated intravascular coagulation (DIC) is a syndrome characterized by systemic activation of blood coagulation, generation of thrombin, and leading to disturbance of the microvasculature. In this article, definition and diagnostic criteria of DIC depend on the International Society of Thrombosis and Haemostasis (ISTH). There is no gold standard for diagnosis of DIC, only low quality evidence is used in general practice. Many diagnostic tests and repeated measurement are required. For the treatment of DIC, there is no good quality evidence. The most important treatment for DIC is the specific treatment of the conditions associated DIC. Platelets and/or plasma transfusion may be also necessary if indicated. Nevertheless, there is no gold standard for diagnosis and treatment of DIC, we use only low quality evidence in general practice.

  10. International reference standards in coagulation.

    PubMed

    Raut, Sanj; Hubbard, Anthony R

    2010-07-01

    Measurement of coagulation factor activity using absolute physico-chemical techniques is not possible and estimation therefore relies on comparative bioassay relative to a reference standard with a known or assigned potency. However the inherent variability of locally prepared and calibrated reference standards can give rise to poor agreement between laboratories and methods. Harmonisation of measurement between laboratories at the international level relies on the availability of a common source of calibration for local reference standards and this is provided by the World Health Organization (WHO) International Standards which define the International Unit for the analyte. This article describes the principles, practices and problems of biological standardisation and the development and use of reference standards for assays of coagulation factors, with particular emphasis on WHO International Standards for both concentrates and plasma.

  11. Native and microwaved bean and pea starch preparations: physiological effects on the intestinal ecosystem, caecal tissue and serum lipids in rats.

    PubMed

    Krupa-Kozak, Urszula; Juśkiewicz, Jerzy; Wronkowska, Małgorzata; Soral-Smietana, Maria; Zduńczyk, Zenon

    2010-04-01

    Dietary beans and peas provide fibre, resistant starch and other nutrients that are often lacking in the human diet. The influence of native starches of beans and peas (and microwaved preparations) on N utilisation, biochemical indices in blood serum and caecal ecosystem state (SCFA, bacterial enzymes, micro-organisms) was studied in vivo. The native pea starch contained more resistant starch compared with its bean counterpart (31 v. 17 %); however, processing decreased these amounts to 25 v. 10 %. N digestibility was found to decrease considerably in all experimental groups. A considerable reduction was observed in glucose and total cholesterol concentration in rat blood serum as a result of feeding both dietary legume starch preparations under microwave treatment. This indicates that starch of bean origin activated glycolytic bacterial enzymes; however, all the analysed starches were found to reduce the activity of beta-glucuronidase. In addition, both dietary bean starches significantly induced the formation of SCFA in the caecal digesta. As compared with the control group, a significant decrease in the pH of caecal and colonic digesta was demonstrated for both bean starch preparations. In comparison with the diet with native pea starch, its microwaved preparation reduced the concentrations of acetic, butyric and propionic acids among caecal SCFA and increased the pH of caecal and colonic digesta. The atherogenic index was significantly lower in rats fed microwaved pea starch. All investigated starch preparations increased the population of Bifidobacterium spp. in caecal digesta, but were also good substrates for opportunistic Enterococcus or Escherichia coli.

  12. Coagulation Changes During Graded Orhostatic Stress and Recovery

    NASA Astrophysics Data System (ADS)

    Goswami, Nandu; Cvirn, Gerhard; Schlagenhauf, Aaxel; Leschnik, Bettina; Koestenberger, Martin; Roessler, Andreas; Jantscher, Andreas; Waha, James Elvis; Wolf, Sabine; Vrecko, Karoline; Juergens, Guenther; Hinghofer-Szalkay, Helmut

    2013-02-01

    Background: Orthostatic stress has been introduced as a novel paradigm for activating the coagulation system. We examined whether graded orthostatic stress (using head up tilt, HUT + lower body negative pressure, LBNP) until presyncope leads to anti / pro-coagulatory changes and how rapidly they return to baseline during recovery. Methodology: Eight male subjects were enrolled in this study. Presyncopal runs were carried out using HUT + LBNP. At minute zero, the tilt table was brought from 0° (supine) to 70 ° head-up position for 4 min, after which pressure in the LBNP chamber was reduced to -15, -30, and -45 mm Hg every 4 min. At presyncope, the subjects were returned to supine position. Coagulatory responses and plasma mass density (for volume changes) were measured before, during and 20 min after the orthostatic stress. Whole blood coagulation was examined by means of thrombelastometry. Platelet aggregation in whole blood was examined by using impedance aggregometry. Thrombin generation parameters, prothrombin levels, and markers of endothelial activation were measured in plasma samples. Results: At presyncope, plasma volume was 20 % below the initial supine value. Blood cell counts, prothrombin levels, thrombin peak, endogenous thrombin potential (ETP), and tissue factor pathway inhibitor (TFPI) levels increased during the protocol, commensurate with hemoconcentration. The markers of endothelial activation (tissue factor, TF, tissue plasminogen activator, t-PA) and the markers of thrombin generation (Prothrombin fragments 1 and 2, F1+2, and thrombin-antithrombin complex, TAT) increased significantly. During recovery, all the coagulation parameters returned to initial supine values except F1 +2 and TAT. Conclusion: Head-up tilt/LBNP leads to activation of the coagulation system. Some of the markers of thrombin formation are still at higher than supine levels during recovery.

  13. Interleukin 12 induces activation of fibrinolysis and coagulation in humans.

    PubMed

    Portielje, J E; Kruit, W H; Eerenberg, A J; Schuler, M; Sparreboom, A; Lamers, C H; Bolhuis, R L; Stoter, G; Huber, C; Hack, C

    2001-02-01

    Interleukin 12 (IL-12) has potential efficacy in malignant, infectious and allergic diseases. Its side-effects include activation of coagulation and fibrinolysis, as documented in chimpanzees. We assessed the coagulative and fibrinolytic response in 18 patients with renal cell carcinoma after subcutaneous injection of 0.5 microg/kg recombinant human IL-12. IL-12 induced a fibrinolytic response in 17 patients (94%): plasmin-alpha2-anti-plasmin complexes (PAPc) increased from 11.8 +/- 6.6 nmol/l (mean +/- SD) to a maximum of 18.8 +/- 7.4 nmol/l at 72 h. Baseline levels of tissue plasminogen activator (tPA) and plasminogen-activator inhibitor-I (PAI) were elevated in eight and 14 patients respectively. tPA increased from 12.6 +/- 5.2 ng/ml to a maximum of 19.0 +/- 6.7 ng/ml at 72 h. PAI decreased from 111 +/- 69 ng/ml to a minimum of 65 +/- 53 ng/ml at 8 h, thereafter remaining below baseline. Elevation of PAPc correlated with elevation of tPA and reduction of PAI. A coagulative response occurred in nine patients (50%): thrombin-anti-thrombin III complexes increased from 29 +/- 53 ng/ml to a maximum of 460 +/- 322 ng/ml at 12 h. Patients with and without a coagulative response had similar levels of recombinant human IL-12, interferon-gamma or tumour necrosis factor-alpha. We conclude that IL-12 can activate both fibrinolysis and coagulation in a significant proportion of patients with cancer. The time-frame and sequence of these activation processes differ from those known for other cytokines.

  14. Molecular intercommunication between the complement and coagulation systems.

    PubMed

    Amara, Umme; Flierl, Michael A; Rittirsch, Daniel; Klos, Andreas; Chen, Hui; Acker, Barbara; Brückner, Uwe B; Nilsson, Bo; Gebhard, Florian; Lambris, John D; Huber-Lang, Markus

    2010-11-01

    The complement system as well as the coagulation system has fundamental clinical implications in the context of life-threatening tissue injury and inflammation. Associations between both cascades have been proposed, but the precise molecular mechanisms remain unknown. The current study reports multiple links for various factors of the coagulation and fibrinolysis cascades with the central complement components C3 and C5 in vitro and ex vivo. Thrombin, human coagulation factors (F) XIa, Xa, and IXa, and plasmin were all found to effectively cleave C3 and C5. Mass spectrometric analyses identified the cleavage products as C3a and C5a, displaying identical molecular weights as the native anaphylatoxins C3a and C5a. Cleavage products also exhibited robust chemoattraction of human mast cells and neutrophils, respectively. Enzymatic activity for C3 cleavage by the investigated clotting and fibrinolysis factors is defined in the following order: FXa > plasmin > thrombin > FIXa > FXIa > control. Furthermore, FXa-induced cleavage of C3 was significantly suppressed in the presence of the selective FXa inhibitors fondaparinux and enoxaparin in a concentration-dependent manner. Addition of FXa to human serum or plasma activated complement ex vivo, represented by the generation of C3a, C5a, and the terminal complement complex, and decreased complement hemolytic serum activity that defines exact serum concentration that results in complement-mediated lysis of 50% of sensitized sheep erythrocytes. Furthermore, in plasma from patients with multiple injuries (n = 12), a very early appearance and correlation of coagulation (thrombin-antithrombin complexes) and the complement activation product C5a was found. The present data suggest that coagulation/fibrinolysis proteases may act as natural C3 and C5 convertases, generating biologically active anaphylatoxins, linking both cascades via multiple direct interactions in terms of a complex serine protease system.

  15. Transcatheter Microwave Antenna

    NASA Technical Reports Server (NTRS)

    Arndt, Dickey G. (Inventor); Carl, James R. (Inventor); Ngo, Phong (Inventor); Raffoul, George W. (Inventor)

    2001-01-01

    A method, simulation, and apparatus are provided that are highly suitable for treatment of benign prostatic hyperplasia (BPH). A catheter is disclosed that includes a small diameter disk loaded monopole antenna surrounded by fusion material having a high heat of fusion and a melting point preferably at or near body temperature. Microwaves from the antenna heat prostatic tissue to promote necrosing of the prostatic tissue that relieves the pressure of the prostatic tissue against the urethra as the body reabsorbs the necrosed or dead tissue. The fusion material keeps the urethra cool by means of the heat of fusion of the fusion material. This prevents damage to the urethra while the prostatic tissue is necrosed. A computer simulation is provided that can be used to predict the resulting temperature profile produced in the prostatic tissue. By changing the various control features of the catheter and method of applying microwave energy a temperature profile can be predicted and produced that is similar to the temperature profile desired for the particular patient.

  16. Microwave detector

    SciTech Connect

    Meldner, H.W.; Cusson, R.Y.; Johnson, R.M.

    1986-12-02

    A detector is described for measuring the envelope shape of a microwave pulse comprised of high-frequency oscillations, the detector comprising: a B-dot loop linking the magnetic field of the microwave pulse; a biased ferrite, that produces a magnetization field flux that links the B-dot loop. The ferrite is positioned within the B-dot loop so that the magnetic field of the microwave pulse interacts with the ferrite and thereby participates in the formation of the magnetization field flux; and high-frequency insensitive means for measuring electric voltage or current induced in the B-dot loop.

  17. Comparison of coagulation performance and floc properties using a novel zirconium coagulant against traditional ferric and alum coagulants.

    PubMed

    Jarvis, Peter; Sharp, Emma; Pidou, Marc; Molinder, Roger; Parsons, Simon A; Jefferson, Bruce

    2012-09-01

    Coagulation in drinking water treatment has relied upon iron (Fe) and aluminium (Al) salts throughout the last century to provide the bulk removal of contaminants from source waters containing natural organic matter (NOM). However, there is now a need for improved treatment of these waters as their quality deteriorates and water quality standards become more difficult to achieve. Alternative coagulant chemicals offer a simple and inexpensive way of doing this. In this work a novel zirconium (Zr) coagulant was compared against traditional Fe and Al coagulants. The Zr coagulant was able to provide between 46 and 150% lower dissolved organic carbon (DOC) residual in comparison to the best traditional coagulant (Fe). In addition floc properties were significantly improved with larger and stronger flocs forming when the Zr coagulant was used with the median floc sizes being 930 μm for Zr; 710 μm for Fe and 450 μm for Al. In pilot scale experiments, a similar improved NOM and particle removal was observed. The results show that when optimised for combined DOC removal and low residual turbidity, the Zr coagulant out-performed the other coagulants tested at both bench and pilot scale.

  18. [Cellular model of blood coagulation process].

    PubMed

    Bijak, Michał; Rzeźnicka, Paulina; Saluk, Joanna; Nowak, Paweł

    2015-07-01

    Blood coagulation is a process which main objective is the prevention of blood loss when the integrity of the blood vessel is damaged. Over the years, have been presented a number of concepts characterizing the mechanism of thrombus formation. Since the 60s of last century was current cascade model of the coagulation wherein forming of the fibrin clot is determined by two pathways called extrinsic and intrinsic pathways. In the nineties of the last century Monroe and Hoffman presented his concept of blood coagulation process which complement the currently valid model of cells participation especially of blood platelets which aim is to provide a negatively charged phospholipid surface and thereby allow the coagulation enzymatic complexes formation. Developed conception they called cellular model of coagulation. The aim of this work was to present in details of this blood coagulation, including descriptions of its various phases.

  19. [Monitoring of blood coagulation in perioperative care].

    PubMed

    Ishii, Hisanari

    2012-01-01

    Coagulation disorders often occur perioperatively and monitoring of blood coagulation should be fast and adequate to treat these disorders to protect patients from massive bleeding. Control of hemostasis is one of the main issues in major surgeries. Coagulation test results from a central laboratory may delay making such a perioperative decision. Recently, point-of-care monitoring (POCM), which is able to examine coagulation disorder in an operation theater with short waiting time, has become important. Both prothrombin time (PT) and activated clotting time (ACT) are very useful and popular, but also criticized because they can be monitored only until fibrin formation. On the other hand, viscoelastic monitorings of whole blood, are able to estimate fibrin formation, clot fixation, platelet function and fibrinolysis. In this review article, among variable perioperative POCMs of blood coagulation, three thromboelastographic monitorings, such as TEG ROTEM, and Sonoclot as well as PT and ACT, are described along with their utilities and limits to examine perioperative coagulation.

  20. Thromboelastometry (TEM) findings in disseminated intravascular coagulation in a pig model of endotoxinemia.

    PubMed

    Schöchl, Herbert; Solomon, Cristina; Schulz, Arthur; Voelckel, Wolfgang; Hanke, Alexander; Van Griensven, Martijn; Redl, Heinz; Bahrami, Soheyl

    2011-01-01

    Standard coagulation tests have a low specificity and sensitivity for diagnosing disseminated intravascular coagulation. The aim of this study was to determine whether whole blood thromboelastometry (TEM) detects lipopolysaccharide (LPS)-induced changes in coagulation. Blood samples from 10 pigs were drawn at baseline, before and at the end of LPS infusion and 2, 3, 4 and 5 h after the start of endotoxinemia. Simultaneous to TEM, standard coagulation tests and extended coagulation analysis including tissue plasminogen activator (t-PA) and plasminogen activator inhibitor 1 (PAI-1) were performed. Endotoxinemia resulted in a significant acceleration of the nonactivated TEM (NATEM) clotting time 2 h after the end of LPS infusion; in contrast, the changes in international normalized ratio and activated partial thromboplastin time suggested delayed initiation of coagulation. NATEM maximum clot firmness (MCF) and fibrin-based thromboelastometry test (FIBTEM)-MCF decreased significantly from baseline until the last time point (from 64.6 ± 7.8 and 35.1 ± 12.8 mm to 52.8 ± 4.6 and 21.4 ± 11.8 mm, respectively; P = 0.01 for both parameters). A sharp, transient increase of t-PA had no effect on maximum lysis in the NATEM test. PAI-1 increased significantly 3 h after the start of LPS infusion, paralleled by a decrease in maximum lysis. In conclusion, TEM was superior to standard coagulation tests in reflecting initial activation of coagulation during endotoxinemia. TEM further suggested consumption of coagulation substrate; at the same time, inhibition of plasminogen activation was accompanied by improved clot stability. Further investigations are necessary to establish the clinical relevance of these findings.

  1. Microwave generator

    DOEpatents

    Kwan, T.J.T.; Snell, C.M.

    1987-03-31

    A microwave generator is provided for generating microwaves substantially from virtual cathode oscillation. Electrons are emitted from a cathode and accelerated to an anode which is spaced apart from the cathode. The anode has an annular slit there through effective to form the virtual cathode. The anode is at least one range thickness relative to electrons reflecting from the virtual cathode. A magnet is provided to produce an optimum magnetic field having the field strength effective to form an annular beam from the emitted electrons in substantial alignment with the annular anode slit. The magnetic field, however, does permit the reflected electrons to axially diverge from the annular beam. The reflected electrons are absorbed by the anode in returning to the real cathode, such that substantially no reflexing electrons occur. The resulting microwaves are produced with a single dominant mode and are substantially monochromatic relative to conventional virtual cathode microwave generators. 6 figs.

  2. Platelets, coagulation and fibrinolysis in breast cancer progression

    PubMed Central

    2013-01-01

    The progression of breast cancer from early-stage to metastatic disease results from a series of events during which malignant cells invade and travel within the bloodstream to distant sites, leading to a clonogenic accumulation of tumor cells in non-breast tissue. While mechanistically complex, an emerging literature supports hemostatic elements as an important patient factor that facilitates the metastatic potential of breast cancer. Hemostatic elements involved include platelets, coagulation, and fibrinolysis. Key steps in breast tumor progression, including cellular transformation, proliferation, tumor cell survival, and angiogenesis, can be mediated by components of the hemostatic system. Thus, the hemostatic system provides potential targets for novel therapeutic approaches to breast cancer therapy with drugs in current use and in development. The present article provides a comprehensive overview of the evidence and mechanisms supporting the roles played by platelets, coagulation activation, and the fibrinolytic system in breast cancer progression. PMID:23905544

  3. The dirty side of the intrinsic pathway of coagulation.

    PubMed

    Cooley, Brian C

    2016-09-01

    Whereas the extrinsic pathway of coagulation seals off bleeding at the cut tissue edges, it is proposed that the intrinsic pathway exploits the dirt from the skin surface to generate an outer coagulum of the oozing blood. Activated Factor XII (FXIIa) in this outer cap generates Factor XIa, which triggers clotting, and kallikrein that feeds back to form more FXIIa to promote the process. This dirty-wound hypothesis of coagulation function by the intrinsic pathway is supported by the use of dirt-based compounds in activated partial thromboplastin time assays as well as the evolutionary record where marine life that do not have skin-adherent dirt lack Factor XII, including marine mammals that have returned to sea life. PMID:27373598

  4. Microwave annealing

    NASA Astrophysics Data System (ADS)

    Lee, Yao-Jen; Cho, T.-C.; Chuang, S.-S.; Hsueh, F.-K.; Lu, Y.-L.; Sung, P.-J.; Chen, S.-J.; Lo, C.-H.; Lai, C.-H.; Current, Michael I.; Tseng, T.-Y.; Chao, T.-S.; Yang, F.-L.

    2012-11-01

    Microwave annealing of dopants in Si has been reported to produce highly activated junctions at temperatures far below those needed for comparable results using conventional thermal processes. However the details of the kinetics and mechanisms for microwave annealing are far from well understood. Comparisons between MWA and RTA of dopants in implanted Si has been investigated to produce highly activated junctions. First, As, 31P, and BF 2 implants in Si substrate were annealed by MWA at temperatures below 550 °C.

  5. Native and microwaved bean and pea starch preparations: physiological effects on the intestinal ecosystem, caecal tissue and serum lipids in rats.

    PubMed

    Krupa-Kozak, Urszula; Juśkiewicz, Jerzy; Wronkowska, Małgorzata; Soral-Smietana, Maria; Zduńczyk, Zenon

    2010-04-01

    Dietary beans and peas provide fibre, resistant starch and other nutrients that are often lacking in the human diet. The influence of native starches of beans and peas (and microwaved preparations) on N utilisation, biochemical indices in blood serum and caecal ecosystem state (SCFA, bacterial enzymes, micro-organisms) was studied in vivo. The native pea starch contained more resistant starch compared with its bean counterpart (31 v. 17 %); however, processing decreased these amounts to 25 v. 10 %. N digestibility was found to decrease considerably in all experimental groups. A considerable reduction was observed in glucose and total cholesterol concentration in rat blood serum as a result of feeding both dietary legume starch preparations under microwave treatment. This indicates that starch of bean origin activated glycolytic bacterial enzymes; however, all the analysed starches were found to reduce the activity of beta-glucuronidase. In addition, both dietary bean starches significantly induced the formation of SCFA in the caecal digesta. As compared with the control group, a significant decrease in the pH of caecal and colonic digesta was demonstrated for both bean starch preparations. In comparison with the diet with native pea starch, its microwaved preparation reduced the concentrations of acetic, butyric and propionic acids among caecal SCFA and increased the pH of caecal and colonic digesta. The atherogenic index was significantly lower in rats fed microwaved pea starch. All investigated starch preparations increased the population of Bifidobacterium spp. in caecal digesta, but were also good substrates for opportunistic Enterococcus or Escherichia coli. PMID:20028602

  6. The role of coagulation/fibrinolysis during Streptococcus pyogenes infection.

    PubMed

    Loof, Torsten G; Deicke, Christin; Medina, Eva

    2014-01-01

    The hemostatic system comprises platelet aggregation, coagulation and fibrinolysis and is a host defense mechanism that protects the integrity of the vascular system after tissue injury. During bacterial infections, the coagulation system cooperates with the inflammatory system to eliminate the invading pathogens. However, pathogenic bacteria have frequently evolved mechanisms to exploit the hemostatic system components for their own benefit. Streptococcus pyogenes, also known as Group A Streptococcus, provides a remarkable example of the extraordinary capacity of pathogens to exploit the host hemostatic system to support microbial survival and dissemination. The coagulation cascade comprises the contact system (also known as the intrinsic pathway) and the tissue factor pathway (also known as the extrinsic pathway), both leading to fibrin formation. During the early phase of S. pyogenes infection, the activation of the contact system eventually leads to bacterial entrapment within a fibrin clot, where S. pyogenes is immobilized and killed. However, entrapped S. pyogenes can circumvent the antimicrobial effect of the clot by sequestering host plasminogen on the bacterial cell surface that, after conversion into its active proteolytic form, plasmin, degrades the fibrin network and facilitates the liberation of S. pyogenes from the clot. Furthermore, the surface-localized fibrinolytic activity also cleaves a variety of extracellular matrix proteins, thereby enabling S. pyogenes to migrate across barriers and disseminate within the host. This review summarizes the knowledge gained during the last two decades on the role of coagulation/fibrinolysis in host defense against S. pyogenes as well as the strategies developed by this pathogen to evade and exploit these host mechanisms for its own benefit.

  7. Interconnections between autophagy and the coagulation cascade in hepatocellular carcinoma

    PubMed Central

    Chen, K-D; Wang, C-C; Tsai, M-C; Wu, C-H; Yang, H-J; Chen, L-Y; Nakano, T; Goto, S; Huang, K-T; Hu, T-H; Chen, C-L; Lin, C-C

    2014-01-01

    Autophagy has an important role in tumor biology of hepatocellular carcinoma (HCC). Recent studies demonstrated that tissue factor (TF) combined with coagulation factor VII (FVII) has a pathological role by activating a G-protein-coupled receptor called protease-activated receptor 2 (PAR2) for tumor growth. The present study aimed to investigate the interactions of autophagy and the coagulation cascade in HCC. Seventy HCC patients who underwent curative liver resection were recruited. Immunohistochemical staining and western blotting were performed to determine TF, FVII, PAR2 and light chain 3 (LC3A/B) expressions in tumors and their contiguous normal regions. We found that the levels of autophagic marker LC3A/B-II and coagulation proteins (TF, FVII and PAR2) were inversely correlated in human HCC tissues. Treatments with TF, FVII or PAR2 agonist downregulated LC3A/B-II with an increased level of mTOR in Hep3B cells; in contrast, knockdown of TF, FVII or PAR2 increased LC3A/B. Furthermore, mTOR silencing restored the impaired expression of LC3A/B-II in TF-, FVII- or PAR2-treated Hep3B cells and activated autophagy. Last, as an in vivo correlate, we administered TF, FVII or PAR2 agonist in a NOD/severe combined immunodeficiency xenograft model and showed decreased LC3A/B protein levels in HepG2 tumors with treatments. Overall, our present study demonstrated that TF, FVII and PAR2 regulated autophagy mainly via mTOR signaling. The interaction of coagulation and autophagic pathways may provide potential targets for further therapeutic application in HCC. PMID:24853422

  8. Coagulative and ablative characteristics of a novel diode laser system (1470nm) for endonasal applications

    NASA Astrophysics Data System (ADS)

    Betz, C. S.; Havel, M.; Janda, P.; Leunig, A.; Sroka, R.

    2008-02-01

    Introduction: Being practical, efficient and inexpensive, fibre guided diode laser systems are preferable over others for endonasal applications. A new medical 1470 nm diode laser system is expected to offer good ablative and coagulative tissue effects. Methods: The new 1470 nm diode laser system was compared to a conventional 940 nm system with regards to laser tissue effects (ablation, coagulation, carbonization zones) in an ex vivo setup using fresh liver and muscle tissue. The laser fibres were fixed to a computer controlled stepper motor, and the light was applied using comparable power settings and a reproducible procedure under constant conditions. Clinical efficacy and postoperative morbidity was evaluated in two groups of 10 patients undergoing laser coagulation therapy of hyperplastic nasal turbinates. Results: In the experimental setup, the 1470 nm laser diode system proved to be more efficient in inducing tissue effects with an energy factor of 2-3 for highly perfused hepatic tissue to 30 for muscular tissue. In the clinical case series, the higher efficacy of the 1470 nm diode laser system led to reduced energy settings as compared to the conventional system with comparable clinical results. Postoperative crusting was less pronounced in the 1470 nm laser group. Conclusion: The 1470 nm diode laser system offers a highly efficient alternative to conventional diode laser systems for the coagulation of hyperplastic nasal turbinates. According to the experimental results it can be furthermore expected that it disposes of an excellent surgical potential with regards to its cutting abilities.

  9. Microwave furnace having microwave compatible dilatometer

    DOEpatents

    Kimrey, Jr., Harold D.; Janney, Mark A.; Ferber, Mattison K.

    1992-01-01

    An apparatus for measuring and monitoring a change in the dimension of a sample being heated by microwave energy is described. The apparatus comprises a microwave heating device for heating a sample by microwave energy, a microwave compatible dilatometer for measuring and monitoring a change in the dimension of the sample being heated by microwave energy without leaking microwaves out of the microwave heating device, and a temperature determination device for measuring and monitoring the temperature of the sample being heated by microwave energy.

  10. Microwave furnace having microwave compatible dilatometer

    DOEpatents

    Kimrey, H.D. Jr.; Janney, M.A.; Ferber, M.K.

    1992-03-24

    An apparatus for measuring and monitoring a change in the dimension of a sample being heated by microwave energy is described. The apparatus comprises a microwave heating device for heating a sample by microwave energy, a microwave compatible dilatometer for measuring and monitoring a change in the dimension of the sample being heated by microwave energy without leaking microwaves out of the microwave heating device, and a temperature determination device for measuring and monitoring the temperature of the sample being heated by microwave energy. 2 figs.

  11. [Enzymatic activity of some tissues and blood serum from animals and humans exposed to microwaves and hypothesis on the possible role of free radical processes in the nonlinear effects and modification of emotional behavior of animals].

    PubMed

    Akoev, I G; Pashovkina, M S; Dolgacheva, L P; Semenova, T P; Kalmykov, V L

    2002-01-01

    The dependence of activities of actomyosin ATPase, alkaline phosphatase, aspartataminotranspherase, monoaminoxidase and that of affective rat behavior on frequency of modulation of microwaves (0.8-10 microW/cm2) was explored at short-time actions. Series of nonlinear phenomenons, inexplicable from positions of the energy approaches are revealed, The working hypothesis explaining opportunity of high performance of weak and super-weak microwaves and other revealed phenomena by resonance interaction of such electromagnetic radiofrequency radiation with paramagnetic molecules of biological tissues was proposed. This resonance interaction activate free radicals and initiate auto-supporting and auto-intensifying of chain chemical reactions. The spontaneous autocatalytic oxidation of catecholamines enlarges a common pool of free radicals, capable to participate in such enhanced generating. The protective role of monoaminoxidase is postulated. Monoaminoxidase is basically located on an outer surface of mitochondrias and it is deaminating monoamines. The deaminating prevents penetration of catecholamines inside of mitochondrias and their quinoid oxidation there with formation of free-radical semi-quinons, capable to destroy system of ATP synthesis. These inferences are obliquely confirmed by the experimentally revealed correlation between activity of monoaminoxidase and integrative activity of the rat brain. PMID:12125273

  12. Textile wastewater purification through natural coagulants

    NASA Astrophysics Data System (ADS)

    Beltrán-Heredia, J.; Sánchez-Martín, J.; Rodríguez-Sánchez, M. T.

    2011-09-01

    A new coagulant obtained through polymerization of Acacia mearnsii de Wild tannin extract has been characterized in the removal of two dangerous dye pollutants: Alizarin Violet 3R and Palatine Fast Black WAN. This coagulant is lab-synthesized according to the etherification of tannins with glycidyltrimethylammonium chloride and formaldehyde and its performance in dye removal in terms of efficiency was high. Reasonably low coagulant dosages (ca. 50 mg L-1) reaches high capacity levels (around 0.8 for Alizarin Violet 3R and 1.6 for Palatine Fast Black WAN mg dye mg-1 of coagulant) and pH and temperature are not extremely affecting variables. The systems coagulant dyes were successfully modeled by applying the Langmuir hypothesis. q max and b parameters were obtained with an adjusted correlation factor ( r 2) above 0.8.

  13. A microwave powered injectable neural stimulator.

    PubMed

    Towe, Bruce C; Larson, Patrick J; Gulick, Daniel W

    2012-01-01

    An unexpectedly simple implantable device that can achieve wireless neurostimulation consists of a short 1 cm long dipole platinum wire antenna, a Schottky diode, and a pulsed microwave transmitter. Fabricated into a 1 cm long by polyimide tubing, the implant can have a sub-millimeter diameter form factor suited to introduction into tissue by injection. Experiments that chronically implant the device next to a rat sciatic nerve show that a 915 MHz microwave transmitter emitting an average power of 0.5 watts has an ability to stimulate motor events when spaced up to 7 cm from the body surface. Tissue models consisting of saline filled tanks show the possibility of delivering milliampere pulsed current to neurosimulators though 5 centimeters or more of tissue. Such a neurostimulation system driven by microwave energy is limited in functional tissue depth by microwave SAR exposure. This report discusses some of the advantages and limitations of such a neurostimulation approach. PMID:23367052

  14. Derangements of coagulation and fibrinolysis in critically ill patients with sepsis and septic shock.

    PubMed

    Vervloet, M G; Thijs, L G; Hack, C E

    1998-01-01

    In patients with sepsis and septic shock, both coagulation and fibrinolysis are activated frequently leading to the syndrome of diffuse intravascular coagulation (DIC). The different mechanisms leading to abnormalities in coagulation and fibrinolysis are discussed in detail. The coagulation and fibrinolytic system appear to be influenced by the septic process largely independently, leading to a procoagulant imbalance between these systems. Coagulation is initiated by mediator-induced expression of tissue factor and is associated with consumption of the natural coagulation inhibitors antithrombin III, protein C, and protein S. As a result, high plasma levels of thrombin-antithrombin complex (TAT) can be found. The effects on fibrinolysis are dominated by (highly) increased levels of plasminogen activator inhibitor type 1 (PAI-1), leading to inadequate fibrinolysis. Although levels of plasminogen activator antigen are increased, its activity is almost completely inhibited by PAI-1. The resulting effects predispose to a procoagulant state, with widespread fibrin deposition, which may be an important mechanism contributing to multiple organ failure. A thorough understanding of the pathophysiological mechanisms underlying the DIC-syndrome is a prerequisite for a rational approach and future therapy for this severe complication of sepsis.

  15. A loop of coagulation factor VIIa influencing macromolecular substrate specificity.

    PubMed

    Bjelke, Jais R; Persson, Egon; Rasmussen, Hanne B; Kragelund, Birthe B; Olsen, Ole H

    2007-01-01

    Coagulation factor VIIa (FVIIa) belongs to a family of proteases being part of the stepwise, self-amplifying blood coagulation cascade. To investigate the impact of the mutation Met(298{156})Lys in FVIIa, we replaced the Gly(283{140})-Met(298{156}) loop with the corresponding loop of factor Xa. The resulting variant exhibited increased intrinsic activity, concurrent with maturation of the active site, a less accessible N-terminus, and, interestingly, an altered macromolecular substrate specificity reflected in an increased ability to cleave factor IX (FIX) and a decreased rate of FX activation compared to that of wild-type FVIIa. In complex with tissue factor, activation of FIX, but not of FX, returned to normal. Deconvolution of the loop graft in order to identify important side chain substitutions resulted in the mutant Val(158{21})Asp/Leu(287{144})Thr/Ala(294{152})Ser/Glu(296{154}) Ile/Met(298{156})Lys-FVIIa with almost the same activity and specificity profile. We conclude that a lysine residue in position 298{156} of FVIIa requires a hydrophilic environment to be fully accommodated. This position appears critical for substrate specificity among the proteases of the blood coagulation cascade due to its prominent position in the macromolecular exosite and possibly via its interaction with the corresponding position in the substrate (i.e. FIX or FX). PMID:17182039

  16. Interstitial laser coagulation therapy for benign prostatic hyperplasia

    NASA Astrophysics Data System (ADS)

    McNicholas, Thomas A.; Alsudani, Mohammed

    1996-05-01

    Alternatives to the side-firing laser method include controlled destruction of prostatic adenoma by an atraumatic saline cooled laser fiber introduced endoscopically into the prostate under visual and transrectal ultrasound (TRUS) control. Laser light produces intense heating and interstitial laser coagulation (ILC) occurs with characteristic TRUS changes which are used to control the volume of tissue destruction. The prostatic urethral lining is preserved which may reduce laser side effects). Thirty-six men with symptomatic BPH were treated by ILC between April 1994 and September 1995. All were discharged home on the first post-operative day and reviewed periodically to 12 months post-treatment with measurement of IPSS, flow rate (FR), residual volume, complications, potency and TRUS. Seventeen men (47%) voided immediately, 15 (42%) performed intermittent self-catheterization (ISC) for 3.5 days (2 - 5). Four men (11%) required catheterization for 1/52. Thirty-five men tolerated the treatment well, requiring only mild oral analgesia. One man developed dysuria and required early transurethral resection revealing a large volume of coagulative necrosis. Improvement in symptoms and flow rate developed from 1 - 30 days later. There were no significant complications. Hyperechoic and cystic zones developed at the ILC site which persisted to 12 months. This clinical study indicates the feasibility and safety of intense heating by ILC with visible and ultrasound control to coagulate the adenoma while preserving the urethra. Changes are easily seen on TRUS, symptomatic improvement is good and there have been minimal urethral symptoms or complications.

  17. Microwave dissolution of plant tissue and the subsequent determination of trace lanthanide and actinide elements by inductively coupled plasma-mass spectrometry

    SciTech Connect

    Alvarado, J.S.; Neal, T.J.; Smith, L.L.; Erickson, M.D.

    1997-08-01

    Recently there has been much concern with the ability of plants to uptake heavy metals from their surroundings. With the development of instrumental techniques with low detection limits such as inductively coupled plasma-mass spectrometry (ICP-MS), attention is shifting toward achieving faster and more elegant ways of oxidizing the organic material inherent in environmental samples. Closed-vessel microwave dissolution was compared with conventional methods for the determination of concentrations of cerium, samarium, europium, terbium, uranium and thorium in a series of samples from the National Institute of Standards and Technology and from fields in Idaho. The ICP-MS technique exhibited detection limits in parts-per-trillion and linear calibration plots over three orders of magnitude for the elements under study. The results obtained by using nitric acid and hydrogen peroxide in a microwave digestion system for the analysis of reference materials showed close agreement with the accepted values. These values were compared with results obtained from dry- and wet-ashing procedures. The findings from an experiment comparing radiometric techniques for the determination of actinide elements to ICP-MS are reported.

  18. 1984 IEEE MTT-S international microwave symposium digest

    SciTech Connect

    Not Available

    1984-01-01

    This book presents the papers given at a symposium which considered the use of microwave radiation in medical applications. Topics covered at the symposium included a three-band microwave radiometer for noninvasive temperature measurement, microwave and infrared thermograms of hot spots in tissue, injection locked magnetrons, medical microwave thermography, specific absorption rate distribution in a model of man, monitoring changes in tumor blood flow, a slot antenna radiating in muscle, and a microstrip spiral antenna for local hyperthermia.

  19. Active microwaves

    NASA Technical Reports Server (NTRS)

    Evans, D.; Vidal-Madjar, D.

    1994-01-01

    Research on the use of active microwaves in remote sensing, presented during plenary and poster sessions, is summarized. The main highlights are: calibration techniques are well understood; innovative modeling approaches have been developed which increase active microwave applications (segmentation prior to model inversion, use of ERS-1 scatterometer, simulations); polarization angle and frequency diversity improves characterization of ice sheets, vegetation, and determination of soil moisture (X band sensor study); SAR (Synthetic Aperture Radar) interferometry potential is emerging; use of multiple sensors/extended spectral signatures is important (increase emphasis).

  20. Blood coagulation reactions on nanoscale membrane surfaces

    NASA Astrophysics Data System (ADS)

    Pureza, Vincent S.

    Blood coagulation requires the assembly of several membrane-bound protein complexes composed of regulatory and catalytic subunits. The biomembranes involved in these reactions not only provide a platform for these procoagulant proteins, but can also affect their function. Increased exposure of acidic phospholipids on the outer leaflet of the plasma membrane can dramatically modulate the catalytic efficiencies of such membrane-bound enzymes. Under physiologic conditions, however, these phospholipids spontaneously cluster into a patchwork of membrane microdomains upon which membrane binding proteins may preferentially assemble. As a result, the membrane composition surrounding these proteins is largely unknown. Through the development and use of a nanometer-scale bilayer system that provides rigorous control of the phospholipid membrane environment, I investigated the role of phosphatidylserine, an acidic phospholipid, in the direct vicinity (within nanometers) of two critical membrane-bound procoagulant protein complexes and their respective natural substrates. Here, I present how the assembly and function of the tissue factor˙factor VIIa and factor Va˙factor Xa complexes, the first and final cofactor˙enzyme complexes of the blood clotting cascade, respectively, are mediated by changes in their immediate phospholipid environments.

  1. Inflammation and coagulation in urticaria and angioedema.

    PubMed

    Cugno, Massimo; Asero, Riccardo; Tedeschi, Alberto; Lazzari, Riccardo; Marzano, Angelo V

    2012-09-01

    Urticaria is a skin disease characterised by short-lived surface swellings of the dermis (wheals) frequently accompanied by itching. It is classified as acute or chronic depending on whether the wheal recurrence occurs for less or more than six weeks. Acute urticaria is often due to a hypersensitivity reaction, whereas about 50% of the cases of chronic urticaria are regarded as autoimmune. Urticaria may occur alone or in association with a deeper swelling (angioedema) involving the subcutaneous and/or submucosal tissues, and last from hours to a few days. Angioedema can also develop alone, and may be idiopathic or be caused by allergies, inherited or acquired deficiencies of C1-inhibitor protein, or adverse drug reactions. An interplay between inflammation and coagulation has been proposed as a pathomechanism in urticaria and urticaria-associated angioedema (in which histamine and thrombin are involved), as well as in angioedema due to C1-inhibitor deficiency, which involves various biological systems. An increase in the plasma markers of thrombin generation, fibrinolysis and inflammation has been documented during exacerbations of urticaria and angioedema, with the marker levels decreasing to normal during remission. However, the hypercoagulable state in chronic urticaria and angioedema has not been reported to be associated with any increased risk of thrombosis, although there have been a number of reports of cardiovascular events occurring during episodes of acute urticaria. These observations have provided the rationale for the clinical evaluation of anticoagulant and antifibrinolytic drugs, the efficacy of which has sometimes been demonstrated.

  2. Hybrid retinal tracking and coagulation system

    NASA Astrophysics Data System (ADS)

    Wright, Cameron H. G.; Oberg, Erik D.; Barrett, Steven F.

    1998-06-01

    Laser photocoagulation is used extensively by ophthalmologists to treat retinal disorders such as diabetic retinopathy and retinal breaks and tears. Currently, the procedure is performed manually and suffers from several drawbacks: it often requires many clinical visits, it is very tedious for both patient and physician, the laser pointing accuracy and safety margin are limited by a combination of the physician's manual dexterity and the patient's ability to hold their eye still, and there is a wide variability in retinal tissue absorption parameters. A computer-assisted hybrid system is under development that will rapidly and safely place multiple therapeutic lesions at desired locations on the retina in a matter of seconds. In the past, one of the main obstacles to such a system has been the ability to track the retina and compensate for any movement with sufficient speed during photocoagulation. Two different tracking modalities (digital image-based tracking and analog confocal tracking) were designed and tested in vivo on pigmented rabbits. These two systems are being seamlessly combined into a hybrid system which provides real-time, motion stabilized lesion placement for typical irradiation times (100 ms). This paper will detail the operation of the hybrid system and efforts toward controlling the depth of coagulation on the retinal surface.

  3. Influence of Blood Lipids on Global Coagulation Test Results

    PubMed Central

    Kim, Jung-Ah; Kim, Ji-Eun; Song, Sang Hoon

    2015-01-01

    Background High levels of blood lipids have been associated with high levels of coagulation factors. We investigated whether blood lipids influence the results of global coagulation tests, including prothrombin time (PT), activated partial thromboplastin time (aPTT), and thrombin generation assay (TGA). Methods PT, aPTT, and TGA, along with procoagulant and anticoagulant factors, were measured in 488 normal individuals. Vitamin K status was assessed with prothrombin-induced by vitamin K absence-II (PIVKA-II). Results The procoagulant factors II, VII, IX, X, and XI and anticoagulant factors protein C and protein S showed significant correlations with triglyceride, and the procoagulant factors II, V, VII, IX, X, XI, and XII and anticoagulant factors antithrombin and protein C correlated with total cholesterol. There were no correlations of blood lipid levels with PIVKA-II levels. Subjects with high triglyceride levels (≥200 mg/dL) showed shorter PT values than those with lower triglyceride levels. However, aPTT value was not changed in terms of blood lipid levels. In both 1 and 5 pM tissue factor-induced TGAs, subjects in the high-triglyceride or high-cholesterol groups (≥240 mg/dL) had high levels of lag time, time-to-peak, and endogenous thrombin potential. Total cholesterol was a significant determinant of PT and TGA values. Conclusion High blood lipids were related with increased coagulation activity in a normal population. Our findings are expected to help interpret the global coagulation test results in individuals with high lipid levels. PMID:25553275

  4. Enhanced coagulation for high alkalinity and micro-polluted water: the third way through coagulant optimization.

    PubMed

    Yan, Mingquan; Wang, Dongsheng; Qu, Jiuhui; Ni, Jinren; Chow, Christopher W K

    2008-04-01

    Conventional coagulation is not an effective treatment option to remove natural organic matter (NOM) in water with high alkalinity/pH. For this type of water, enhanced coagulation is currently proposed as one of the available treatment options and is implemented by acidifying the raw water and applying increased doses of hydrolyzing coagulants. Both of these methods have some disadvantages such as increasing the corrosive tendency of water and increasing cost of treatment. In this paper, an improved version of enhanced coagulation through coagulant optimization to treat this kind of water is demonstrated. A novel coagulant, a composite polyaluminum chloride (HPAC), was developed with both the advantages of polyaluminum chloride (PACl) and the additive coagulant aids: PACl contains significant amounts of highly charged and stable polynuclear aluminum hydrolysis products, which is less affected by the pH of the raw water than traditional coagulants (alum and ferric salts); the additives can enhance both the charge neutralization and bridging abilities of PACl. HPAC exhibited 30% more efficiency than alum and ferric salts in dissolved organic carbon (DOC) removal and was very effective in turbidity removal. This result was confirmed by pilot-scale testing, where particles and organic matter were removed synergistically with HPAC as coagulant by sequential water treatment steps including pre-ozonation, coagulation, flotation and sand filtration.

  5. Microwave Treatment for Cardiac Arrhythmias

    NASA Technical Reports Server (NTRS)

    Hernandez-Moya, Sonia

    2009-01-01

    NASA seeks to transfer the NASA developed microwave ablation technology, designed for the treatment of ventricular tachycardia (irregular heart beat), to industry. After a heart attack, many cells surrounding the resulting scar continue to live but are abnormal electrically; they may conduct impulses unusually slowly or fire when they would typically be silent. These diseased areas might disturb smooth signaling by forming a reentrant circuit in the muscle. The objective of microwave ablation is to heat and kill these diseased cells to restore appropriate electrical activity in the heart. This technology is a method and apparatus that provides for propagating microwave energy into heart tissues to produce a desired temperature profile therein at tissue depths sufficient for thermally ablating arrhythmogenic cardiac tissue while preventing excessive heating of surrounding tissues, organs, and blood. A wide bandwidth double-disk antenna is effective for this purpose over a bandwidth of about six gigahertz. A computer simulation provides initial screening capabilities for an antenna such as antenna, frequency, power level, and power application duration. The simulation also allows optimization of techniques for specific patients or conditions. In comparison with other methods that involve direct-current pulses or radio frequencies below 1 GHz, this method may prove more effective in treating ventricular tachycardia. This is because the present method provides for greater control of the location, cross-sectional area, and depth of a lesion via selection of the location and design of the antenna and the choice of microwave power and frequency.

  6. Coagulation abnormalities in the cirrhotic patient.

    PubMed

    Muciño-Bermejo, Jimena; Carrillo-Esper, Raúl; Uribe, Misael; Méndez-Sánchez, Nahum

    2013-01-01

    The clotting process is a dynamic array of multiple processes which can be described in four phases: platelet plug initiation and formation, clotting process propagation by the coagulation cascade, clotting termination by antithrombotic mechanisms and clot removal by fibrinolysis. The liver plays a central role in each of these phases of clotting process, as it synthesizes the majority of coagulation factors and proteins involved in fibrinolysis as well as thrombopoeitin, which is responsible for platelet production from megakaryocytes. Many pathological processes associated with cirrhosis, such as portal hypertension and endothelial dysfunction, as well as co-morbid conditions, may also alter the coagulation process. Consequently, patients with liver disease have a disturbed balance of procoagulant and anti-coagulant factors which deviates from the normal coagulation cascade. This situation poses an additional problem in the diagnostic and therapeutic approach to this group of patients, since traditional coagulation test may not be reliable for assessing bleeding or thrombotic risk and traditional transfusional strategies may not be applicable in cirrhotic patients. In this article, we review the pathophysiological bases of coagulation abnormalities, in cirrhotic patients, the diagnostic therapeutic strategies to be followed and its impact on the clinical outcome in the cirrhotic patient.

  7. Transfusion and coagulation management in liver transplantation

    PubMed Central

    Clevenger, Ben; Mallett, Susan V

    2014-01-01

    There is wide variation in the management of coagulation and blood transfusion practice in liver transplantation. The use of blood products intraoperatively is declining and transfusion free transplantations take place ever more frequently. Allogenic blood products have been shown to increase morbidity and mortality. Primary haemostasis, coagulation and fibrinolysis are altered by liver disease. This, combined with intraoperative disturbances of coagulation, increases the risk of bleeding. Meanwhile, the rebalancing of coagulation homeostasis can put patients at risk of hypercoagulability and thrombosis. The application of the principles of patient blood management to transplantation can reduce the risk of transfusion. This includes: preoperative recognition and treatment of anaemia, reduction of perioperative blood loss and the use of restrictive haemoglobin based transfusion triggers. The use of point of care coagulation monitoring using whole blood viscoelastic testing provides a picture of the complete coagulation process by which to guide and direct coagulation management. Pharmacological methods to reduce blood loss include the use of anti-fibrinolytic drugs to reduce fibrinolysis, and rarely, the use of recombinant factor VIIa. Factor concentrates are increasingly used; fibrinogen concentrates to improve clot strength and stability, and prothrombin complex concentrates to improve thrombin generation. Non-pharmacological methods to reduce blood loss include surgical utilisation of the piggyback technique and maintenance of a low central venous pressure. The use of intraoperative cell salvage and normovolaemic haemodilution reduces allogenic blood transfusion. Further research into methods of decreasing blood loss and alternatives to blood transfusion remains necessary to continue to improve outcomes after transplantation. PMID:24876736

  8. Development of the selective coagulation process

    SciTech Connect

    Yoon, R.H.; Luttrell, G.H.

    1991-01-01

    Recent studies have resulted in the development of a novel agglomeration process for upgrading ultrafine coal. This process, which is known as selective hydrophobic coagulation (SHC), is based on the new finding that hydrophobic coal particles can be selectively coagulated in the presence of dispersed mineral matter. The driving force for the coagulation is believed to be due to the structural arrangement of water molecules near the coal surface. In most cases, simple pH control is all that is required to (1) induce the coagulation of the coal particles and (2) effectively disperse the particles of mineral matter. During the past quarter, several important aspects of the SHC process were examined. Direct measurements of the surface forces which control the selective coagulation process were conducted using a Mark 4 surface force apparatus. These preliminary measurements have provided irrefutable evidence for the existence of the hydrophobic force. Key expressions have been presented for a population balance model describing the hydrophobic coagulation process. In order to validate this model, experimental measurements of the size distributions of coal coagulation have been initiated. The liberation characteristics of samples obtained from the Elkhorn No. 3 and Pittsburgh No. 8 coal seams were determined using a SEM-IPS image processing system. Mixing studies were carried out to determine the effects of mixer-impeller configurations on the coagula size distributions. Bench-scale continuous testing has also been initiated during the past quarter using a rotating drum screen and sedimentation tank. 25 figs., 8 tabs.

  9. Directional microwave applicator and methods

    NASA Technical Reports Server (NTRS)

    Fink, Patrick W. (Inventor); Lin, Greg Y. (Inventor); Chu, Andrew W. (Inventor); Dobbins, Justin A. (Inventor); Arndt, G. Dickey (Inventor); Ngo, Phong H. (Inventor)

    2008-01-01

    A miniature microwave antenna is disclosed which may be utilized for biomedical applications such as, for example, radiation induced hyperthermia through catheter systems. One feature of the antenna is that it possesses azimuthal directionality despite its small size. This directionality permits targeting of certain tissues while limiting thermal exposure of adjacent tissue. One embodiment has an outer diameter of about 0.095'' (2.4 mm) but the design permits for smaller diameters.

  10. Evaluation of microwave digestion and solvent extraction for the determination of trace amounts of selenium in feeds and plant and animal tissues by electrothermal atomic absorption spectrometry.

    PubMed

    Hocquellet, P; Candillier, M P

    1991-05-01

    A sensitive method for the accurate determination of Se in agricultural products at sub-ppm levels is described. The proposed procedure involves the wet oxidation of samples by using a mixture of nitric, sulphuric and perchloric acids, co-extraction of Se and added Pd with diethylammonium N,N-diethyldithiocarbamate in chloroform, and electrothermal atomic absorption spectrometric determination of Se in the organic extract. Atomization and extraction conditions are discussed. Special attention is given to the wet oxidation step, and its advantages in speed and simplicity over conventional heating have been evaluated using an automated microwave digestion system. The results reported, obtained from several reference materials, confirm the accuracy of the method with which a detection limit of 0.002 micrograms g-1 of Se can be achieved. PMID:1877754

  11. Acute Disseminated Intravascular Coagulation in Neuroendocrine Carcinoma

    PubMed Central

    Teh, Ru-Wen; Tsoi, Daphne T.

    2012-01-01

    Malignancy is a common cause of disseminated intravascular coagulation and usually presents as a chronic disorder in solid organ tumours. We present a rare case of recurrent acute disseminated intravascular coagulation in neuroendocrine carcinoma after manipulation, firstly, by core biopsy and, later, by cytotoxic therapy causing a release of procoagulants and cytokines from lysed tumour cells. This is reminiscent of tumour lysis syndrome where massive quantities of intracellular electrolytes and nucleic acid are released, causing acute metabolic imbalance and renal failure. This case highlights the potential complication of acute disseminated intravascular coagulation after trauma to malignant cells. PMID:23139666

  12. In Vivo Simulator for Microwave Treatment

    NASA Technical Reports Server (NTRS)

    Arndt, G. Dickey (Inventor); Carl, James R. (Inventor); Raffoul, George W. (Inventor); Karasack, Vincent G. (Inventor); Pacifico, Antonio (Inventor); Pieper, Carl F. (Inventor)

    2001-01-01

    Method and apparatus are provided for propagating microwave energy into heart tissues to produce a desired temperature profile therein at tissue depths sufficient for thermally ablating arrhythmogenic cardiac tissue to treat ventricular tachycardia and other arrhythmias while preventing excessive heating of surrounding tissues, organs, and blood. A wide bandwidth double-disk antenna is effective for this purpose over a bandwidth of about 6 GHz. A computer simulation provides initial screening capabilities for an antenna such as antenna. frequency, power level, and power application duration. The simulation also allows optimization of techniques for specific patients or conditions. In operation, microwave energy between about 1 GHz and 12 GHz is applied to monopole microwave radiator having a surface wave limiter. A test setup provides physical testing of microwave radiators to determine the temperature profile created in actual heart tissue or ersatz heart tissue. Saline solution pumped over the heart tissue with a peristaltic pump simulates blood flow. Optical temperature sensors disposed at various tissue depths within the heart tissue detect the temperature profile without creating any electromagnetic interference. The method may be used to produce a desired temperature profile in other body tissues reachable by catheter such as tumors and the like.

  13. Effects of Al-coagulant sludge characteristics on the efficiency of coagulants recovery by acidification.

    PubMed

    Chen, Yi-Jui; Wang, Wen-May; Wei, Ming-Jun; Chen, Jiann-Long; He, Ju-Liang; Chiang, Kung-Yuh; Wu, Chih-Chao

    2012-12-01

    This study evaluated the effects of Al-coagulant sludge characteristics on the efficiency ofcoagulant recovery by acidification with H2SO4. Two sludge characteristics were studied: types of coagulant and textures of the suspended solid in raw water. The coagulant types are aluminium sulphate and polyaluminium chloride (PACl); the textures of the suspended solid are sand-based and clay-based. Efficiency of aluminium recovery at a pH of 2 was compared for different sludges obtained from water treatment plants in Taiwan. The results showed that efficiency of aluminium recovery from sludge containing clayey particles was higher than that from sludge containing sandy particles. As for the effect of coagulant types, the aluminium recovery efficiency for sludge using PACl ranged between 77% and 100%, whereas it ranged between 65% and 72% for sludge using aluminium sulphate as the coagulant. This means using PACl as the coagulant could result in higher recovery efficiency of coagulant and be beneficial for water treatment plants where renewable materials and waste reduction as the factors for making decisions regarding plant operations. However, other metals, such as manganese, could be released with aluminium during the acidification process and limit the use of the recovered coagulants. It is suggested that the recovered coagulants be used in wastewater treatment processes.

  14. Ferric coagulant recovered from coagulation sludge and its recycle in chemically enhanced primary treatment.

    PubMed

    Xu, G R; Yan, Z C; Wang, N; Li, G B

    2009-01-01

    An investigation was conducted to study the feasibility of ferric coagulant recovery from chemical sludge and its recycle in chemically enhanced primary treatment (CEPT) to make the process more cost-effective, as well as reduce sludge volume. The optimum conditions and efficiency of the acidification for ferric coagulant recovery from coagulation sludge were investigated. Experimental results showed that the recovered coagulants can be used in CEPT and the pollutants removal efficiency is similar to that of fresh coagulant, and for some aspects the effect of recovered coagulants is better than that of fresh ones, such as turbidity removal. Although some substances will be enriched during recycle, they have little effect on treated wastewater quality. Acidification condition also had significant influence on reduction of sludge volume. The efficiency of coagulant recovery had a linear relationship with sludge reduction. Experiments verify that it would be a sustainable and cost-effective way to recover ferric coagulant from coagulation sludge in water treatment and chemical wastewater treatment, and then recycle it to CEPT, as well as reduce sludge volume.

  15. [New oral anticoagulants - influence on coagulation tests].

    PubMed

    Simeon, L; Nagler, M; Wuillemin, W A

    2014-01-01

    The new oral anticoagulants (NOACs) represent alternative antithrombotic agents for prophylaxis and therapy of thromboembolic diseases. They act either by inhibition of the clotting factor Xa or IIa (thrombin). As a consequence, they influence several coagulation assays (for example prothrombin time, activated partial thromboplastin time). Because of the short half-life of these new agents, these changes show great variations in the course of 24 hours. Furthermore, there are significant differences of laboratory results depending on the used reagents. We explain the influence of apixaban, rivaroxaban (factor Xa inhibitors) and dabigatran (thrombin inhibitor) on the most commonly used coagulation assays. Besides we show that this influence depends on the way of action of the drug as well as on the principle of the coagulation assay. Being aware of this relationships helps to interpret the results of coagulation assays under influence of NOACs correctly.

  16. Toward a better understanding of coagulation for dissolved organic nitrogen using polymeric zinc-iron-phosphate coagulant.

    PubMed

    Zhu, Guocheng; Wang, Qian; Yin, Jun; Li, Zhongwu; Zhang, Peng; Ren, Bozhi; Fan, Gongduan; Wan, Peng

    2016-09-01

    The increase of agricultural related activities and the lack of effective waste control has led to an increase of organic nitrogen in water. The development of coagulants to effectively remove dissolved organic nitrogen (DON) is a high priority in the water treatment industry. We developed a polymeric zinc-iron-phosphate (ZnFeP) coagulant and investigated its coagulation effect on DON removal. Optimum coagulant for coagulation for DON and TDN removals was characterized by the dense convex-concave packing structure differing from other zinc-based coagulant, polycrystalline structure and high content colloidal species, which could account up to 87% of the total colloidal species. Coagulation experiments showed the DON removal rate to vary greatly depending on principal components and their interaction with metals, phosphate and hydroxyl. DON removal efficiency increased with the increase of colloidal species. The coagulation was also dependent on coagulant dosage and water quality parameters: Coagulation efficiency increased with coagulant dosage in the investigated range of 1-16 mg/l, and a pH of 6 was found to be superior for the coagulation. DON removal efficiency was also higher than and linearly correlated with total dissolved nitrogen (TDN) removal, which implies that an effective coagulation for TDN is also effective for DON. The findings in this study indicate that coagulation of DON is largely influenced by coagulant composition and species. We also found the removal of DON by our newly developed polymeric ZnFeP coagulant to be effective. PMID:27192355

  17. Characterization and literature review of bowel perforation injuring using argon beam coagulation

    NASA Astrophysics Data System (ADS)

    Barnes, Kelli S.; Merchel, Renée. A.; Taylor, Kenneth D.

    2015-03-01

    INTRODUCTION: Argon Beam Coagulation (ABC®) technology is used in conjunction with the ConMed ABCFlex® Probe to provide non-contact hemostasis, coagulation, and tissue devitalization during endoscopic procedures. ABC provides a superficial tissue effect; however, there is a risk of bowel perforation. To better understand the settings that lead to perforation, this study reviews the literature and provides an ex vivo characterization of the ABCFlex Probe tissue effect at different settings when used at small distances. METHODS: Depth of thermal tissue effect was characterized to determine the effect of three parameters: power (W), distance from probe tip to tissue (mm) and application duration (s). 3 ABCFlex Probes were used to create 15 samples on ex vivo porcine small intestine for each combination of parameters. The depth of tissue effect for each sample was measured using a light microscope. RESULTS: Depth of tissue effect increases as power and application time increases. An increase of distance from the probe tip to the tissue results in a decrease in depth of tissue effect from a near contact to 1mm distance. Depth of tissue effect doesn't significantly change from 1mm to 3mm distance. CONCLUSION: ABCFlex Probe can be used to achieve hemostasis in endoscopic procedures. Increasing power and application time increases the depth of thermal effect while increasing distance from the probe time to the surface of the tissue decreases the depth of tissue effect.

  18. [Role of spatio-temporal non uniformities in blood coagulation regulation].

    PubMed

    Shibeko, A M; Ataullakhanov, F I

    2013-01-01

    This paper reviews some contemporary researches of thrombosis and hemostasis process that consider its spatio-temporal dynamics. Among them, there are platelet distribution in the blood vessel and the dependence of the platelet plug growth on the hematocrit level; influence of the tissue factor density on the blood coagulation onset and on the efficacy of some drugs, designed for the hemostasis improvement; regulation of blood coagulation by the flow rate. Mechanisms controlling the mentioned processes are described. Clinical significance and novel diagnostic and therapeutic approaches are discussed from the position of the spatio-temporal non uniformities of thrombosis and hemosatsis.

  19. IMPACT OF OBESITY ON ENDOTOXIN-INDUCED DISSEMINATED INTRAVASCULAR COAGULATION.

    PubMed

    Duburcq, Thibault; Tournoys, Antoine; Gnemmi, Viviane; Hubert, Thomas; Gmyr, Valery; Pattou, François; Jourdain, Mercé

    2015-10-01

    An early activation of coagulation and fibrinolysis occurs during sepsis, leading to the syndrome of disseminated intravascular coagulation (DIC). Obesity has been demonstrated to be a hypercoagulable and hypofibrinolytic state, but its impact on DIC has never been studied. In this study, we aimed to determine if obesity impairs DIC in an acute endotoxic shock model using minipigs. This was a prospective, comparative, and experimental ancillary study approved by the Animal Ethics Committee. Pigs were chosen as a clinically relevant species, resembling humans in coagulation reactions. Four groups of five "Yucatan" minipigs were studied: lean and obese control groups, a lean lipopolysaccharide (LPS) group receiving Escherichia coli endotoxin (LPS), and an obese LPS group receiving the same endotoxin dose. We measured standard coagulation parameters (prothrombin time [PT], platelet count, and fibrinogen levels), thrombin-antithrombin complexes, tissue-type plasminogen activator, and plasminogen activator inhibitor-1. All measurements were performed at baseline and 30, 60, 90, 150, and 300 min. Results were given as median with interquartile ranges. At baseline, platelet count (477 [428 - 532] G/L vs. 381 [307 - 442] G/L; P = 0.005) and fibrinogen levels (4.6 [3.8 - 5.2] g/L vs. 2 [1.8 - 2.9] g/L; P < 0.001) were significantly higher, whereas PT (80% [76% - 92%] vs. 96% [89% - 100%]; P = 0.01) was significantly lower in obese pigs compared with lean pigs. In the LPS groups, administration of endotoxin resulted in a typical hypokinetic shock with DIC. The decrease in coagulation parameters (PT, platelet count, and fibrinogen levels) and the increase in thrombin-antithrombin complexes (581 [382 - 1,057] μg/mL vs. 247 [125 - 369] μg/mL at 150 min; P = 0.03) were significantly more important in the obese LPS group compared with those in the lean LPS group. Concerning the fibrinolytic reaction, we found a slightly more elevated increase of plasminogen

  20. Dust Coagulation in Protoplanetary Accretion Disks

    NASA Technical Reports Server (NTRS)

    Schmitt, W.; Henning, Th.; Mucha, R.

    1996-01-01

    The time evolution of dust particles in circumstellar disk-like structures around protostars and young stellar objects is discussed. In particular, we consider the coagulation of grains due to collisional aggregation. The coagulation of the particles is calculated by solving numerically the non-linear Smoluchowski equation. The different physical processes leading to relative velocities between the grains are investigated. The relative velocities may be induced by Brownian motion, turbulence and drift motion. Starting from different regimes which can be identified during the grain growth we also discuss the evolution of dust opacities. These opacities are important for both the derivation of the circumstellar dust mass from submillimeter/millimeter continuum observations and the dynamical behavior of the disks. We present results of our numerical studies of the coagulation of dust grains in a turbulent protoplanetary accretion disk described by a time-dependent one-dimensional (radial) alpha-model. For several periods and disk radii, mass distributions of coagulated grains have been calculated. From these mass spectra, we determined the corresponding Rosseland mean dust opacities. The influence of grain opacity changes due to dust coagulation on the dynamical evolution of a protostellar disk is considered. Significant changes in the thermal structure of the protoplanetary nebula are observed. A 'gap' in the accretion disk forms at the very frontier of the coagulation, i.e., behind the sublimation boundary in the region between 1 and 5 AU.

  1. [Incidental finding of pathological coagulation parameters].

    PubMed

    Luxembourg, B; Lindhoff-Last, E

    2014-10-01

    Pathological coagulation parameters may reflect life-threatening hemorrhagic or thromboembolic diseases but may also be a laboratory result without any clinical significance, result from in vitro phenomena or preanalytical errors. This article gives an overview of potential pitfalls in coagulation diagnostics, lists the differential diagnoses of pathological coagulation parameters and describes further steps in the diagnostic approach to clarify pathological results. The focus lies on coagulation parameters that are frequently determined in routine clinical investigations, e.g. platelet count, prothrombin time, activated partial thromboplastin time (aPTT) and fibrinogen. Besides heparin, fondaparinux, danaparoid, and vitamin K antagonists, direct factor Xa inhibitors and direct thrombin inhibitors are nowadays available for therapeutic anticoagulation. This article gives an overview of the influence of anticoagulants on coagulation parameters which depends on the dose, the time of the last administration, as well as the method used for the determination of coagulation parameters. Moreover, common reasons for elevation of the fibrin degradation product D-dimer are presented. The clinical utility of D-dimer assays is limited by their poor specificity. Elevated D-dimer concentrations can be found in various diseases and also under normal physiological circumstances (e.g. in the elderly). Thus, the most useful clinical application of D-dimer is evidence of normal values to essentially rule out venous thromboembolism. PMID:25190093

  2. Effects of Ar-H2-N2 microwave plasma on chitosan and its nanoliposomes blend thin films designed for tissue engineering applications.

    PubMed

    Zhang, H Y; Cleymand, F; Noël, C; Kahn, C J F; Linder, M; Dahoun, A; Henrion, G; Arab-Tehrany, E

    2013-04-01

    This work addresses the functionalization of chitosan thin films and its nanoliposomes blend films by a microwave-excited Ar/N2/H2 surface-wave plasma treatment which was found an effective tool to modify surface properties. Changes in the film properties (wettability, chemical composition, morphology) induced by the plasma treatment are studied using water contact angle measurements, X-ray photoelectron spectroscopy and scanning probe microscopy. The results suggest that hydrophilicity of the films is improved by plasma treatment in a plasma condition dependency manner. Water contact angle of chitosan films before and after plasma treatment are, respectively, 101° and 27°. Besides chemical changes on the surface, the nanoliposomes incorporation and plasma treatment also induce morphological modifications. Moreover, a correlation is found between the nanoliposomes composition and size, and the effects of plasma treatment. It is shown that the plasma treatment significantly improves the chitosan film functionalization. The effect of N2 content (88% and 100%) in the plasma gas mixture on the film etching is also pointed out.

  3. Coagulation algorithms with size binning

    NASA Technical Reports Server (NTRS)

    Statton, David M.; Gans, Jason; Williams, Eric

    1994-01-01

    The Smoluchowski equation describes the time evolution of an aerosol particle size distribution due to aggregation or coagulation. Any algorithm for computerized solution of this equation requires a scheme for describing the continuum of aerosol particle sizes as a discrete set. One standard form of the Smoluchowski equation accomplishes this by restricting the particle sizes to integer multiples of a basic unit particle size (the monomer size). This can be inefficient when particle concentrations over a large range of particle sizes must be calculated. Two algorithms employing a geometric size binning convention are examined: the first assumes that the aerosol particle concentration as a function of size can be considered constant within each size bin; the second approximates the concentration as a linear function of particle size within each size bin. The output of each algorithm is compared to an analytical solution in a special case of the Smoluchowski equation for which an exact solution is known . The range of parameters more appropriate for each algorithm is examined.

  4. Electrosurgical device for both mechanical cutting and coagulation of bleeding

    SciTech Connect

    Doss, J.D.; Mc Cabe, C.W.

    1987-03-24

    A surgical instrument is described for cutting and coagulating tissue, the surgical instrument comprising in combination: means for pressure cutting, the pressuring cutting means serving as a first electrode and having a leading edge and a cutting surface, the leading edge of the means for pressure cutting forming the forward portion of the cutting surface; second electrode means set apart from and electrically insulated from the pressure cutting means on the side of the pressure cutting means opposite the cutting surface thereof; means for attaching the second electrode means to the pressure cutting means; and means for providing a voltage between the pressure cutting means the second electrode means whereby an electric current can be made to flow between a portion of the side of the pressure cutting means opposite the cutting surface thereof and the second electrode means, and between the leading edge of the pressure cutting means and the second electrode means through tissue which is located therebetween. The current has sufficient amplitude to cause coagulation therein.

  5. Dysfunction in the coagulation system and schizophrenia

    PubMed Central

    Hoirisch-Clapauch, S; Amaral, O B; Mezzasalma, M A U; Panizzutti, R; Nardi, A E

    2016-01-01

    Although different hypotheses have been formulated to explain schizophrenia pathogenesis, the links between them are weak. The observation that five psychotic patients on chronic warfarin therapy for deep-vein thrombosis showed long-term remission of psychotic symptoms made us suspect that abnormalities in the coagulation pathway, specifically low tissue plasminogen activator (tPA) activity, could be one of the missing links. Our hypothesis is supported by a high prevalence of conditions affecting tPA activity in drug-naive schizophrenia, such as antiphospholipid antibodies, elevated cytokine levels, hyperinsulinemia and hyperhomocysteinemia. We recently screened a group of schizophrenia patients and controls for conditions affecting tPA activity. Free-protein S deficiency was highly prevalent among patients, but not found in controls. Free-protein S and functional protein C are natural anticoagulants that form complexes that inhibit tPA inhibitors. All participants had normal protein C levels, suggesting that protein S could have a role in schizophrenia, independent of protein C. Chronic patients and those studied during acute episodes had between three and six conditions affecting tPA and/or protein S activity, while patients in remission had up to two, which led us to postulate that multiple conditions affecting tPA and/or protein S activity could contribute to the full expression of schizophrenia phenotype. This paper describes the physiological roles of tPA and protein S, reviewing how their activity influences pathogenesis and comorbidity of schizophrenia. Next, it analyzes how activity of tPA and protein S is influenced by biochemical abnormalities found in schizophrenia. Last, it suggests future directions for research, such as studies on animal models and on therapeutic approaches for schizophrenia aiming at increasing tPA and protein S activity. PMID:26731441

  6. Dysfunction in the coagulation system and schizophrenia.

    PubMed

    Hoirisch-Clapauch, S; Amaral, O B; Mezzasalma, M A U; Panizzutti, R; Nardi, A E

    2016-01-05

    Although different hypotheses have been formulated to explain schizophrenia pathogenesis, the links between them are weak. The observation that five psychotic patients on chronic warfarin therapy for deep-vein thrombosis showed long-term remission of psychotic symptoms made us suspect that abnormalities in the coagulation pathway, specifically low tissue plasminogen activator (tPA) activity, could be one of the missing links. Our hypothesis is supported by a high prevalence of conditions affecting tPA activity in drug-naive schizophrenia, such as antiphospholipid antibodies, elevated cytokine levels, hyperinsulinemia and hyperhomocysteinemia. We recently screened a group of schizophrenia patients and controls for conditions affecting tPA activity. Free-protein S deficiency was highly prevalent among patients, but not found in controls. Free-protein S and functional protein C are natural anticoagulants that form complexes that inhibit tPA inhibitors. All participants had normal protein C levels, suggesting that protein S could have a role in schizophrenia, independent of protein C. Chronic patients and those studied during acute episodes had between three and six conditions affecting tPA and/or protein S activity, while patients in remission had up to two, which led us to postulate that multiple conditions affecting tPA and/or protein S activity could contribute to the full expression of schizophrenia phenotype. This paper describes the physiological roles of tPA and protein S, reviewing how their activity influences pathogenesis and comorbidity of schizophrenia. Next, it analyzes how activity of tPA and protein S is influenced by biochemical abnormalities found in schizophrenia. Last, it suggests future directions for research, such as studies on animal models and on therapeutic approaches for schizophrenia aiming at increasing tPA and protein S activity.

  7. Comparative Histology of Plasma Treated Tissue

    NASA Astrophysics Data System (ADS)

    Rick, Kyle

    2009-10-01

    Atmospheric plasmas applied in surgical settings have unique characteristics found in histological results from animal tissue studies. This is evident in both ex vivo bench tissue tests and in vivo fresh tissue. Examples of these histological features are presented as results of a comparative study between plasma treated, common medical argon coagulation, and electrosurgery.

  8. Immunobiotic lactobacilli reduce viral-associated pulmonary damage through the modulation of inflammation-coagulation interactions.

    PubMed

    Zelaya, Hortensia; Tsukida, Kohichiro; Chiba, Eriko; Marranzino, Gabriela; Alvarez, Susana; Kitazawa, Haruki; Agüero, Graciela; Villena, Julio

    2014-03-01

    The exacerbated disease due to immune- and coagulative-mediated pulmonary injury during acute respiratory viruses infection results in severe morbidity and mortality. Identifying novel approaches to modulate virus-induced inflammation-coagulation interactions could be important alternatives for treating acute respiratory viruses infections. In this study we investigated the effect of the probiotic strain Lactobacillus rhamnosus CRL1505 on lung TLR3-mediated inflammation, and its ability to modulate inflammation-coagulation interaction during respiratory viral infection. Our findings reveal for the first time that a probiotic bacterium is able to influence lung immune-coagulative reaction triggered by TLR3 activation, by modulating the production of proinflammatory and anti-inflammatory cytokines as well as expression of tissue factor and thrombomodulin in the lung. We also demonstrated that the preventive treatment with the probiotic bacteria beneficially modulates the fine tune balance between clearing respiratory viruses (respiratory syncytial virus and influenza virus) and controlling immune-coagulative responses in the lung, allowing normal lung function to be maintained in the face of a viral attack. Our data also pinpoint a crucial role for IL-10 in the immune protection induced by L. rhamnosus CRL1505 during respiratory viral infections. These observations might be helpful to propose new preventive or therapeutic approaches to better control virus-inflammatory lung damage using probiotic functional foods.

  9. Modification of a commercial thromboelastography instrument to measure coagulation dynamics with three-dimensional biomaterials.

    PubMed

    Hawker, Morgan J; Olver, Christine S; Fisher, Ellen R

    2016-06-01

    Three-dimensional synthetic constructs with complex geometries have immense potential for use in a multitude of blood-contacting applications. Understanding coagulation phenomena is arguably the most critical aspect for applications involving synthetic biomaterials; however, real-time evaluation of the clot formation while interfacing with these materials is difficult to achieve in a reproducible and robust manner. Here, work representing first steps toward addressing this deficit is presented, wherein modified consumables for a clinical instrument (a Thromboelastograph(®)) have been fabricated. Thromboelastography (TEG) measures viscoelastic properties throughout clot formation and therefore provides clinically relevant coagulation measurements in real time (i.e., kinetics and strength of clot formation). Through our modification, TEG consumables can readily accommodate three-dimensional materials (e.g., those for regenerative tissue applications). The authors performed proof-of-concept experiments using polymer scaffolds with a range of surface properties and demonstrated that variations in surface properties resulted in differences in blood plasma coagulation dynamics. For example, the maximum rate of thrombus generation ranged from 22.2 ± 2.2 (dyn/cm(2))/s for fluorocarbon coated scaffolds to 8.7 ± 1.0 (dyn/cm(2))/s for nitrogen-containing scaffolds. Through this work, the ability to make real-time coagulation activity measurements during constant coagulation factor interface with biomedically relevant materials is demonstrated. PMID:27126596

  10. Preparation of magnetic indole-3-acetic acid imprinted polymer beads with 4-vinylpyridine and β-cyclodextrin as binary monomer via microwave heating initiated polymerization and their application to trace analysis of auxins in plant tissues.

    PubMed

    Zhang, Yi; Li, Yuanwen; Hu, Yuling; Li, Gongke; Chen, Yueqin

    2010-11-19

    Auxin is a crucial phytohormone for precise control of growth and development of plants. Due to its low concentration in plant tissues which are rich in interfering substances, the accurate determination of auxins remains a challenge. In this paper, a new strategy for isolation and enrichment of auxins from plant tissues was obtained by the magnetic molecularly imprinted polymer (mag-MIP) beads, which were prepared by microwave heating initiated suspension polymerization using indole-3-acetic acid (IAA) as template. In order to obtain higher selective recognition cavities, an enhanced imprinting method based on binary functional monomers, 4-vinylpyridine (4-VP) and β-cyclodextrin (β-CD), was adopted for IAA imprinting. The morphological and magnetic characteristics of the mag-MIP beads were characterized by scanning electron microscopy, Fourier-transform infrared spectroscopy and vibrating sample magnetometry. A majority of resultant beads were within the size range of 80-150μm. Porous surface morphology and good magnetic property were observed. Furthermore, the mag-MIP beads fabricated with 4-VP and β-CD as binary functional monomers exhibited improved recognition ability to IAA, as compared with the mag-MIP beads prepared with the individual monomer separately. Competitive rebinding experiment results revealed that the mag-MIP beads exhibited a higher specific recognition for the template than the non-imprinted polymer (mag-NIP) beads. An extraction method by mag-MIP beads coupled with high performance liquid chromatography (HPLC) was developed for determination of IAA and indole-3-butyric acid (IBA) in plant tissues. Linear ranges for IAA and IBA were in the range of 7.00-100.0μgL(-1) and 10.0-100.0μgL(-1), and the detection limits were 3.9 and 7.4μgL(-1), respectively. The analytical performance was also estimated by seedlings or immature embryos samples from three different plant tissues, pea, rice and wheat. Recoveries were in the range of 70

  11. Implantable microwave antennas for thermal therapy

    NASA Astrophysics Data System (ADS)

    Stauffer, Paul R.

    1998-04-01

    The purpose of this article is to review the physical construction and power deposition characteristics of interstitial microwave antennas that may be used for highly localized heating of tissue at depth in the human body. Several different antenna designs are described and matched with potential clinical applications that range from moderate temperature Hyperthermia therapy to tissue- necrosing Thermal Ablation therapy. Typical clinical procedures are outlined for thermal treatment of target sites such as brain, prostate, heart, and gynecologic region tissues. Associated methods of implanting the antennas and coupling microwave energy into the surrounding tissue are also described, including the use of single or multi-chamber stiff, flexible or inflatable balloon type catheters, with or without circulating air or water cooling. With numerous references to the primary literature, this material should provide a framework for analyzing potential new applications for interstitial microwave antennas, as derived from the physical capabilities and limitations of the available hardware and techniques.

  12. Magnetic particle imaging of blood coagulation

    NASA Astrophysics Data System (ADS)

    Murase, Kenya; Song, Ruixiao; Hiratsuka, Samu

    2014-06-01

    We investigated the feasibility of visualizing blood coagulation using a system for magnetic particle imaging (MPI). A magnetic field-free line is generated using two opposing neodymium magnets and transverse images are reconstructed from the third-harmonic signals received by a gradiometer coil, using the maximum likelihood-expectation maximization algorithm. Our MPI system was used to image the blood coagulation induced by adding CaCl2 to whole sheep blood mixed with magnetic nanoparticles (MNPs). The "MPI value" was defined as the pixel value of the transverse image reconstructed from the third-harmonic signals. MPI values were significantly smaller for coagulated blood samples than those without coagulation. We confirmed the rationale of these results by calculating the third-harmonic signals for the measured viscosities of samples, with an assumption that the magnetization and particle size distribution of MNPs obey the Langevin equation and log-normal distribution, respectively. We concluded that MPI can be useful for visualizing blood coagulation.

  13. Viscoelastic coagulation testing: technology, applications, and limitations.

    PubMed

    McMichael, Maureen A; Smith, Stephanie A

    2011-06-01

    Use of viscoelastic point-of-care (POC) coagulation instrumentation is relatively new to veterinary medicine. In human medicine, this technology has recently undergone resurgence owing to its capacity to detect hypercoagulability. The lack of sensitive tests for detecting hypercoagulable states, along with our current understanding of in vivo coagulation, highlights the deficiencies of standard coagulation tests, such as prothrombin and partial thromboplastin times, which are performed on platelet-poor plasma. Viscoelastic coagulation analyzers can provide an assessment of global coagulation, from the beginning of clot formation to fibrinolysis, utilizing whole blood. In people, use of this technology has been reported to improve management of hemostasis during surgery and decrease usage of blood products and is being used as a rapid screen for hypercoagulability. In veterinary medicine, clinical use of viscoelastic technology has been reported in dogs, cats, foals, and adult horses. This article will provide an overview of the technology, reagents and assays, applications in human and veterinary medicine, and limitations of the 3 viscoelastic POC analyzers in clinical use.

  14. Magnetic particle imaging of blood coagulation

    SciTech Connect

    Murase, Kenya Song, Ruixiao; Hiratsuka, Samu

    2014-06-23

    We investigated the feasibility of visualizing blood coagulation using a system for magnetic particle imaging (MPI). A magnetic field-free line is generated using two opposing neodymium magnets and transverse images are reconstructed from the third-harmonic signals received by a gradiometer coil, using the maximum likelihood-expectation maximization algorithm. Our MPI system was used to image the blood coagulation induced by adding CaCl{sub 2} to whole sheep blood mixed with magnetic nanoparticles (MNPs). The “MPI value” was defined as the pixel value of the transverse image reconstructed from the third-harmonic signals. MPI values were significantly smaller for coagulated blood samples than those without coagulation. We confirmed the rationale of these results by calculating the third-harmonic signals for the measured viscosities of samples, with an assumption that the magnetization and particle size distribution of MNPs obey the Langevin equation and log-normal distribution, respectively. We concluded that MPI can be useful for visualizing blood coagulation.

  15. Viscoelastic coagulation testing: technology, applications, and limitations.

    PubMed

    McMichael, Maureen A; Smith, Stephanie A

    2011-06-01

    Use of viscoelastic point-of-care (POC) coagulation instrumentation is relatively new to veterinary medicine. In human medicine, this technology has recently undergone resurgence owing to its capacity to detect hypercoagulability. The lack of sensitive tests for detecting hypercoagulable states, along with our current understanding of in vivo coagulation, highlights the deficiencies of standard coagulation tests, such as prothrombin and partial thromboplastin times, which are performed on platelet-poor plasma. Viscoelastic coagulation analyzers can provide an assessment of global coagulation, from the beginning of clot formation to fibrinolysis, utilizing whole blood. In people, use of this technology has been reported to improve management of hemostasis during surgery and decrease usage of blood products and is being used as a rapid screen for hypercoagulability. In veterinary medicine, clinical use of viscoelastic technology has been reported in dogs, cats, foals, and adult horses. This article will provide an overview of the technology, reagents and assays, applications in human and veterinary medicine, and limitations of the 3 viscoelastic POC analyzers in clinical use. PMID:21446994

  16. Fibrinolysis and the control of blood coagulation.

    PubMed

    Chapin, John C; Hajjar, Katherine A

    2015-01-01

    Fibrin plays an essential role in hemostasis as both the primary product of the coagulation cascade and the ultimate substrate for fibrinolysis. Fibrinolysis efficiency is greatly influenced by clot structure, fibrinogen isoforms and polymorphisms, the rate of thrombin generation, the reactivity of thrombus-associated cells such as platelets, and the overall biochemical environment. Regulation of the fibrinolytic system, like that of the coagulation cascade, is accomplished by a wide array of cofactors, receptors, and inhibitors. Fibrinolytic activity can be generated either on the surface of a fibrin-containing thrombus, or on cells that express profibrinolytic receptors. In a widening spectrum of clinical disorders, acquired and congenital defects in fibrinolysis contribute to disease morbidity, and new assays of global fibrinolysis now have potential predictive value in multiple clinical settings. Here, we summarize the basic elements of the fibrinolytic system, points of interaction with the coagulation pathway, and some recent clinical advances.

  17. Fibrinolysis and the control of blood coagulation

    PubMed Central

    Chapin, John C.; Hajjar, Katherine A.

    2014-01-01

    Fibrin plays an essential role in hemostasis as both the primary product of the coagulation cascade and the ultimate substrate for fibrinolysis. Fibrinolysis efficiency is greatly influenced by clot structure, fibrinogen isoforms and polymorphisms, the rate of thrombin generation, the reactivity of thrombus-associated cells such as platelets, and the overall biochemical environment. Regulation of the fibrinolytic system, like that of the coagulation cascade, is accomplished by a wide array of cofactors, receptors, and inhibitors. Fibrinolytic activity can be generated either on the surface of a fibrin-containing thrombus, or on cells that express profibrinolytic receptors. In a widening spectrum of clinical disorders, acquired and congenital defects in fibrinolysis contribute to disease morbidity, and new assays of global fibrinolysis now have potential predictive value in multiple clinical settings. Here, we summarize the basic elements of the fibrinolytic system, points of interaction with the coagulation pathway, and some recent clinical advances. PMID:25294122

  18. Post-treatment of sanitary landfill leachate by coagulation-flocculation using chitosan as primary coagulant.

    PubMed

    Nascimento, Inara Oliveira do Carmo; Guedes, Ana Rosa Pinto; Perelo, Louisa Wessels; Queiroz, Luciano Matos

    2016-01-01

    Chitosan was chosen as an alternative primary coagulant in a complementary coagulation-flocculation treatment of sanitary landfill leachate with the aim of removing recalcitrant organic matter. In order to optimize the process conditions, central composite design and response surface methodology were applied. To evaluate the performance of the process using chitosan, we also carried out tests with aluminium sulphate (Al(2) (SO(4))(3).14 H(2)O) as coagulant. In addition, acute toxicity tests were carried using the duckweed Lemna minor and the guppy fish Poecilia reticulata as test organisms. The analytic hierarchy process was employed for selecting the most appropriate coagulant. Mean values of true colour removal efficiency of 80% and turbidity removal efficiency of 91.4% were reached at chitosan dosages of 960 mg L(-1) at pH 8.5. The acute toxicity tests showed that organisms were sensitive to all samples, mainly after coagulation-flocculation using chitosan. CE(50) for L. minor was not determined because there was no inhibition of the average growth rate and biomass production; LC(50) for P. reticulata was 23% (v v(-1)). Multi-criteria analysis showed that alum was the most appropriate coagulant. Therefore, chitosan as primary coagulant was not considered to be a viable alternative in the post-treatment of landfill leachate. PMID:27387003

  19. Microwave alcohol fuel sensor

    SciTech Connect

    Kimura, K.; Endo, A.; Morozumi, H.; Shibata, T.

    1984-06-05

    A microwave alcohol fuel sensor comprises a microwave oscillator, a microwave receiver, and a microwave transmission circuit connected to the oscillator and the receiver. The microwave transmission circuit comprises a dielectric substrate and, a strip line mounted on the substrate so that microwaves leak from the substrate to an alcohol gasoline fuel, and the microwaves attenuate by alcohol dielectric loss, whereby output voltage from the receiver corresponds to alcohol content rate. The dielectric substrate is formed tubular so that a constant amount of the fuel is fed the sensor.

  20. Asphyxia by Drowning Induces Massive Bleeding Due To Hyperfibrinolytic Disseminated Intravascular Coagulation

    PubMed Central

    Schwameis, Michael; Schober, Andreas; Schörgenhofer, Christian; Sperr, Wolfgang Reinhard; Schöchl, Herbert; Janata-Schwatczek, Karin; Kürkciyan, Erol Istepan; Sterz, Fritz

    2015-01-01

    Objective: To date, no study has systematically investigated the impact of drowning-induced asphyxia on hemostasis. Our objective was to test the hypothesis that asphyxia induces bleeding by hyperfibrinolytic disseminated intravascular coagulation. Design: Observational study. Setting: A 2,100-bed tertiary care facility in Vienna, Austria, Europe. Patients: All cases of drowning-induced asphyxia (n = 49) were compared with other patients with cardiopulmonary resuscitation (n = 116) and to patients with acute promyelocytic leukemia (n = 83). Six drowning victims were investigated prospectively. To study the mechanism, a forearm-ischemia model was used in 20 volunteers to investigate whether hypoxia releases tissue plasminogen activator. Interventions: None. Measurements and Main Results: Eighty percent of patients with drowning-induced asphyxia developed overt disseminated intravascular coagulation within 24 hours. When compared with nondrowning cardiac arrest patients, drowning patients had a 13 times higher prevalence of overt disseminated intravascular coagulation at admission (55% vs 4%; p < 0.001). Despite comparable disseminated intravascular coagulation scores, acute promyelocytic leukemia patients had higher fibrinogen but lower d-dimer levels and platelet counts than drowning patients (p < 0.001). Drowning victims had a three-fold longer activated partial thromboplastin time (124 s; p < 0.001) than both nondrowning cardiac arrest and acute promyelocytic leukemia patients. Hyperfibrinolysis was reflected by up to 1,000-fold increased d-dimer levels, greater than 5-fold elevated plasmin antiplasmin levels, and a complete absence of thrombelastometric clotting patterns, which was reversed by antifibrinolytics and heparinase. Thirty minutes of forearm-ischemia increased tissue plasminogen activator 31-fold (p < 0.001). Conclusions: The vast majority of drowning patients develops overt hyperfibrinolytic disseminated intravascular coagulation, partly caused by

  1. [CONGENITAL DEFICIENCY OF COAGULATION FACTOR V].

    PubMed

    Kvezereli-Kopadze, M; Kvezereli-Kopadze, A; Chikovani, M

    2016-07-01

    The study was designed to investigate the 5 year old girl with rare bleeding disorder -deficiency of coagulation factor V. The diagnosis was based on detail family history, physical examination and para-clinical data analyses. The age of patient, purpura, this has been detected from early age, positive family history, non-controlled, longtime bleeding, inadequate trauma of the tongue, which did not resolve after surgery, strong hypocoagulation, which was slightly improved, after several plasma transfusions. This allowed us to suggest the existence of the congenital coagulopathy, which was confirmed by the investigation of coagulation factors - particularly the deficiency of factor V was detected. PMID:27661277

  2. Development of the selective coagulation process

    SciTech Connect

    Yoon, R.H.; Luttrell, G.H.

    1991-01-01

    The aim of this project is to develop an economical method for producing low-sulfur and low-ash coals using the selective hydrophobic coagulation (SHC) process. This work has been divided into three tasks: (1) project planning and sample acquisition; (2) studies of the fundamental mechanism(s) of the selective coagulation process and the parameters that affect the process of separating coal from both the ash-forming minerals and pyritic sulfur; and (3) bench-scale process development test work to establish the best possible method(s) of separating the hydrophobic and coagula from the dispersed mineral matter.

  3. Coagulation factors in chronic liver disease.

    PubMed

    Donaldson, G W; Davies, S H; Darg, A; Richmond, J

    1969-03-01

    Coagulation studies were carried out on 30 patients with chronic liver disease. The clotting defect was complex and involved factors V, VII, IX (Christmas factor), and prothrombin. Some patients showed a significant depression of factor IX in the presence of a normal one-stage prothrombin time. Thrombotest was found to be a good indicator of factor IX deficiency in this group of patients and may be of use as an additional liver function test. The screening of patients with liver disease for surgery or liver biopsy should assess the coagulation factors involved in both intrinsic and extrinsic thromboplastin generation.

  4. Computer-assisted interstitial laser coagulation for BPH

    NASA Astrophysics Data System (ADS)

    Ho, Gideon; Barrett, Adrian R. W.; Ng, Wan S.; Lim, Liam G.; Cheng, Wai S.

    2001-06-01

    Interstitial laser thermotherapy is a minimally invasive surgical procedure that utilizes laser to coagulate and treat benign prostatic hyperplasia. This study explores the use of a computer-assisted interstitial laser coagulation system to aid surgeons in performing this procedure.

  5. Nanoparticle coagulation in fractionally charged and charge fluctuating dusty plasmas

    SciTech Connect

    Nunomura, Shota; Kondo, Michio; Shiratani, Masaharu; Koga, Kazunori; Watanabe, Yukio

    2008-08-15

    The kinetics of nanoparticle coagulation has been studied in fractionally charged and charge fluctuating dusty plasmas. The coagulation occurs when the mutual collision frequency among nanoparticles exceeds their charging and decharging/neutralization frequency. Interestingly, the coagulation is suppressed while a fraction (several percent) of nanoparticles are negatively charged in a plasma, in which stochastic charging plays an important role. A model is developed to predict a phase diagram of the coagulation and its suppression.

  6. Acquired coagulation inhibitor-associated bleeding disorders: an update.

    PubMed

    Franchini, Massimo; Veneri, Dino

    2005-12-01

    Acquired blood coagulation inhibitors are circulating immunoglobulins that neutralize the activity of a specific coagulation protein or accelerate its clearance from the plasma, thus causing a bleeding tendency. In this review, we focus on the nonhemophilic inhibitors of coagulation, i.e. the autoantibodies occurring in individuals without a pre-existent coagulation defect, reporting the most recent advances in the pathophysiology, diagnosis and treatment of these rare acquired bleeding disorders.

  7. Low intensity argon laser coagulation in central serous retinopathy (csr).

    PubMed

    Greite, J H; Birngruber, R

    1975-01-01

    Mechanisms of light coagulation effects in RPE and detached retina are discussed. 25 cases of CSR are presented in which the leaking point in the RPE was coagulated with an argon laser coagulator, the exposure parameters being set to avoid a whitening of the retina. The results suggest that the retinal whitening and consequently retinal damage does not constitute a criterium for coagulation effectiveness in CSR.

  8. Microwave hematoma detector

    DOEpatents

    Haddad, Waleed S.; Trebes, James E.; Matthews, Dennis L.

    2001-01-01

    The Microwave Hematoma Detector is a non-invasive device designed to detect and localize blood pooling and clots near the outer surface of the body. While being geared towards finding sub-dural and epi-dural hematomas, the device can be used to detect blood pooling anywhere near the surface of the body. Modified versions of the device can also detect pneumothorax, organ hemorrhage, atherosclerotic plaque in the carotid arteries, evaluate perfusion (blood flow) at or near the body surface, body tissue damage at or near the surface (especially for burn assessment) and be used in a number of NDE applications. The device is based on low power pulsed microwave technology combined with a specialized antenna, signal processing/recognition algorithms and a disposable cap worn by the patient which will facilitate accurate mapping of the brain and proper function of the instrument. The invention may be used for rapid, non-invasive detection of sub-dural or epi-dural hematoma in human or animal patients, detection of hemorrhage within approximately 5 cm of the outer surface anywhere on a patient's body.

  9. Disseminated intravascular coagulation in meningococcal sepsis. Case 7.

    PubMed

    Zeerleder, S; Zürcher Zenklusen, R; Hack, C E; Wuillemin, W A

    2003-08-01

    We report on a man (age: 49 years), who died from severe meningococcal sepsis with disseminated intravascular coagulation (DIC), multiple organ dysfunction syndrome and extended skin necrosis. We discuss in detail the pathophysiology of the activation of coagulation and fibrinolysis during sepsis. The article discusses new therapeutic concepts in the treatment of disseminated intravascular coagulation in meningococcal sepsis, too.

  10. Use of the diode laser (805 nm) and an angled fiber for coagulation/vaporization of the prostate in the dog

    NASA Astrophysics Data System (ADS)

    Bartels, Kenneth E.; Stair, Ernest L.; Dickey, D. Thomas; Hurd, John S.; Powell, Ronald; Schafer, Steven A.; Nordquist, Robert E.; Willis, Randall J.; Hults, Donald F.

    1996-05-01

    This study evaluates tissue coagulation and ablation effects in the prostate gland of the canine model when a diode laser (805 nm-Diomed 25R-Surgimedics/ESP, The Woodlands, Texas) and an angled fiber configuration (1000 (mu) 20 degree bent-Surgimedics/ESP, The Woodlands, Texas were used at specified power densities. Comparisons of therapeutic modalities included animals treated with noncontact coagulation alone, contact ablation alone, and noncontact coagulation and contact ablation in combination. The principal objective was to validate the effectiveness of coagulating prostatic tissue in a noncontact mode at a lower power, followed immediately with contact ablation of the prostatic urethra at a higher energy level. Applying laser energy with the fiber tip in noncontact mode created a deeper zone of coagulative necrosis with an increased level of cellular destruction (lower power 15 - 20 watts delivered to four quadrants for 200 seconds/quadrant) than did higher power modalities alone. An increased luminal diameter, which prevented immediate postoperative urodynamic abnormalities (stranguria, dysuria, and severe hematuria) in this model, was produced by ablating the prostatic urethra with the fiber tip in a contact mode (higher power: 23 - 60 watts for an additional 120 - 200 seconds for the ablative process) immediately following the coagulative procedure. Additionally, semen evaluations performed before and after laser surgery (8 weeks after coagulation/ablation) were performed on one dog and found to be normal with respect to number of spermatozoa and motility.

  11. Microwave ablation of hepatocellular carcinoma

    PubMed Central

    Poggi, Guido; Tosoratti, Nevio; Montagna, Benedetta; Picchi, Chiara

    2015-01-01

    Although surgical resection is still the optimal treatment option for early-stage hepatocellular carcinoma (HCC) in patients with well compensated cirrhosis, thermal ablation techniques provide a valid non-surgical treatment alternative, thanks to their minimal invasiveness, excellent tolerability and safety profile, proven efficacy in local disease control, virtually unlimited repeatability and cost-effectiveness. Different energy sources are currently employed in clinics as physical agents for percutaneous or intra-surgical thermal ablation of HCC nodules. Among them, radiofrequency (RF) currents are the most used, while microwave ablations (MWA) are becoming increasingly popular. Starting from the 90s’, RF ablation (RFA) rapidly became the standard of care in ablation, especially in the treatment of small HCC nodules; however, RFA exhibits substantial performance limitations in the treatment of large lesions and/or tumors located near major heat sinks. MWA, first introduced in the Far Eastern clinical practice in the 80s’, showing promising results but also severe limitations in the controllability of the emitted field and in the high amount of power employed for the ablation of large tumors, resulting in a poor coagulative performance and a relatively high complication rate, nowadays shows better results both in terms of treatment controllability and of overall coagulative performance, thanks to the improvement of technology. In this review we provide an extensive and detailed overview of the key physical and technical aspects of MWA and of the currently available systems, and we want to discuss the most relevant published data on MWA treatments of HCC nodules in regard to clinical results and to the type and rate of complications, both in absolute terms and in comparison with RFA. PMID:26557950

  12. Microwave ablation of hepatocellular carcinoma.

    PubMed

    Poggi, Guido; Tosoratti, Nevio; Montagna, Benedetta; Picchi, Chiara

    2015-11-01

    Although surgical resection is still the optimal treatment option for early-stage hepatocellular carcinoma (HCC) in patients with well compensated cirrhosis, thermal ablation techniques provide a valid non-surgical treatment alternative, thanks to their minimal invasiveness, excellent tolerability and safety profile, proven efficacy in local disease control, virtually unlimited repeatability and cost-effectiveness. Different energy sources are currently employed in clinics as physical agents for percutaneous or intra-surgical thermal ablation of HCC nodules. Among them, radiofrequency (RF) currents are the most used, while microwave ablations (MWA) are becoming increasingly popular. Starting from the 90s', RF ablation (RFA) rapidly became the standard of care in ablation, especially in the treatment of small HCC nodules; however, RFA exhibits substantial performance limitations in the treatment of large lesions and/or tumors located near major heat sinks. MWA, first introduced in the Far Eastern clinical practice in the 80s', showing promising results but also severe limitations in the controllability of the emitted field and in the high amount of power employed for the ablation of large tumors, resulting in a poor coagulative performance and a relatively high complication rate, nowadays shows better results both in terms of treatment controllability and of overall coagulative performance, thanks to the improvement of technology. In this review we provide an extensive and detailed overview of the key physical and technical aspects of MWA and of the currently available systems, and we want to discuss the most relevant published data on MWA treatments of HCC nodules in regard to clinical results and to the type and rate of complications, both in absolute terms and in comparison with RFA. PMID:26557950

  13. Roles for vitamin K beyond coagulation

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Recent interest in vitamin K has been motivated by evidence of physiological roles beyond that of coagulation. Vitamin K and vitamin K-dependent proteins may be involved in regulation of calcification, energy metabolism, and inflammation. However, the evidence for many of these proposed roles in the...

  14. Point of Care Assessment of Coagulation.

    PubMed

    Hyatt, Clare E; Brainard, Benjamin M

    2016-03-01

    Disorders of hemostasis can be difficult to fully elucidate but can severely affect patient outcome. The optimal therapy for coagulopathies is also not always clear. Point of care (POC) testing in veterinary medicine can assist in the diagnosis of hemostatic disorders and also direct treatment. Advantages of POC testing include rapid turnaround times, ease of use, and proximity to the patient. Disadvantages include differences in analytic performance compared with reference laboratory devices, the potential for operator error, and limited test options per device. Conventional coagulation tests such as prothrombin time, activated partial thromboplastin time, and activated clotting time can be measured by POC devices and can accurately diagnose hypocoagulability, but they cannot detect hypercoagulability or disorders of fibrinolysis. Viscoelastic POC coagulation testing more accurately evaluates in vivo coagulation, and can detect hypocoagulability, hypercoagulability, and alterations in fibrinolysis. POC platelet function testing methodologies can detect platelet adhesion abnormalities including von Willebrand disease, and can be used to monitor the efficacy of antiplatelet drugs. It is unlikely that a single test would be ideal for assessing the complete coagulation status of all patients; therefore, the ideal combination of tests for a specific patient needs to be determined based on an understanding of the underlying disease, and protocols must be standardized to minimize interoperator and interinstitutional variability.

  15. Laboratory testing in disseminated intravascular coagulation.

    PubMed

    Favaloro, Emmanuel J

    2010-06-01

    The diagnosis of disseminated intravascular coagulation (DIC) relies on clinical signs and symptoms, identification of the underlying disease, the results of laboratory testing, and differentiation from other pathologies. The clinical features mainly depend on the underlying cause of the DIC. The laboratory diagnosis of DIC uses a combination of tests because no single test result alone can firmly establish or rule out the diagnosis. Global tests of hemostasis may initially provide evidence of coagulation activation and later in the process provide evidence of consumption of coagulation factors, but their individual diagnostic efficiency is limited. Fibrinolytic markers, in particular D-dimer, are reflective of activation of both coagulation and fibrinolysis, so that a normal finding can be useful for ruling-out DIC. Decreased levels of the natural anticoagulants (in particular, antithrombin and protein C) are frequently observed in patients with DIC, but their measurement is not normally incorporated into standard diagnostic algorithms. New tests are being explored for utility in DIC, and some additional tests may be useful on a case-by-case basis, depending on the proposed cause of the DIC or their local availability. For example, clot waveform analysis is useful but currently limited to a single instrument. Also, procalcitonin is an inflammatory biomarker that may be useful within the context of septic DIC, and activated factor X clotting time is an emerging test of procoagulant phospholipids that also seems to hold promise in DIC.

  16. Point of Care Assessment of Coagulation.

    PubMed

    Hyatt, Clare E; Brainard, Benjamin M

    2016-03-01

    Disorders of hemostasis can be difficult to fully elucidate but can severely affect patient outcome. The optimal therapy for coagulopathies is also not always clear. Point of care (POC) testing in veterinary medicine can assist in the diagnosis of hemostatic disorders and also direct treatment. Advantages of POC testing include rapid turnaround times, ease of use, and proximity to the patient. Disadvantages include differences in analytic performance compared with reference laboratory devices, the potential for operator error, and limited test options per device. Conventional coagulation tests such as prothrombin time, activated partial thromboplastin time, and activated clotting time can be measured by POC devices and can accurately diagnose hypocoagulability, but they cannot detect hypercoagulability or disorders of fibrinolysis. Viscoelastic POC coagulation testing more accurately evaluates in vivo coagulation, and can detect hypocoagulability, hypercoagulability, and alterations in fibrinolysis. POC platelet function testing methodologies can detect platelet adhesion abnormalities including von Willebrand disease, and can be used to monitor the efficacy of antiplatelet drugs. It is unlikely that a single test would be ideal for assessing the complete coagulation status of all patients; therefore, the ideal combination of tests for a specific patient needs to be determined based on an understanding of the underlying disease, and protocols must be standardized to minimize interoperator and interinstitutional variability. PMID:27451044

  17. Bacteria under stress by complement and coagulation.

    PubMed

    Berends, Evelien T M; Kuipers, Annemarie; Ravesloot, Marietta M; Urbanus, Rolf T; Rooijakkers, Suzan H M

    2014-11-01

    The complement and coagulation systems are two related protein cascades in plasma that serve important roles in host defense and hemostasis, respectively. Complement activation on bacteria supports cellular immune responses and leads to direct killing of bacteria via assembly of the Membrane Attack Complex (MAC). Recent studies have indicated that the coagulation system also contributes to mammalian innate defense since coagulation factors can entrap bacteria inside clots and generate small antibacterial peptides. In this review, we will provide detailed insights into the molecular interplay between these protein cascades and bacteria. We take a closer look at how these pathways are activated on bacterial surfaces and discuss the mechanisms by which they directly cause stress to bacterial cells. The poorly understood mechanism for bacterial killing by the MAC will be reevaluated in light of recent structural insights. Finally, we highlight the strategies used by pathogenic bacteria to modulate these protein networks. Overall, these insights will contribute to a better understanding of the host defense roles of complement and coagulation against bacteria.

  18. Development of the Selective Hydrophobic Coagulation process

    SciTech Connect

    Yoon, R.H.; Luttrell, G.H.

    1992-01-01

    A novel technique for selectively coagulating and separating coal from dispersed mineral matter has been developed at Virginia Tech. The process, Selective Hydrophobic Coagulation (SHC), has been studied since 1986 under the sponsorship of the US Department of Energy (Contracts AC22-86PC91221 and AC22-90PC90174). The SHC process differs from oil agglomeration, shear or polymer flocculation, and electrolytic coagulation processes in that it does not require reagents or additives to induce the formation of coagula. In most cases, simple pH control is all that is required to (1) induce the coagulation of coal particles and (2) effectively disperse particles of mineral matter. If the coal is oxidized, a small dosage of reagents can be used to enhance the process. During the quarter, the Anutech Mark IV surface force apparatus was used to generate surface force-distance data for the mica/dodecylamine hydrochloride system (Task 2.1.1). Work to characterize the hydrophobicity of this system and the mica/DDOA[sup [minus

  19. Development of the selective hydrophobic coagulation process

    SciTech Connect

    Yoon, R.H.; Luttrell, G.H.

    1992-01-01

    A novel technique for selectively coagulating and separating coal from dispersed mineral matter has been developed at Virginia Tech. The process, Selective Hydrophobic Coagulation (SHC), has been studied since 1986 under the sponsorship of the US Department of Energy. The SHC process differs from oil agglomeration, shear or polymer flocculation, and electrolytic coagulation processes in that it does not require reagents or additives to induce the formation of coagula. In most cases, simple pH control is all that is required to (i) induce the coagulation of coal particles and (ii) effectively disperse particles of mineral matter. If the coal is oxidized, a small dosage of reagents can be used to enhance the process. The technical work program was initiated on July 1, 1992. Force-distance curves were generated for DDOA Br-coated mica surfaces in water and used to calculate hydrophobicity constants and decay lengths for this system; and a new device for the measurement of water contact angles, similar to the Wilhelmy plate balance, has been built 225 kg samples of Pittsburgh No. 8 and Elkhom No. 3 seam coals were obtained; a static mixer test facility for the study of coagula growth was set up and was undergoing shakedown tests at the end of the quarter; a bench-scale lamella thickener was being constructed; and preliminary coagula/ mineral separation tests were being conducted in a bench-scale continuous drum filter.

  20. Development of the selective coagulation process

    SciTech Connect

    Yoon, R.H.; Luttrell, G.H.

    1991-01-01

    The overall objective of this project is to develop an economical method of producing low-ash and low-sulfur coals using the selective coagulation process. The work is subdivided into three tasks: (1) Project Planning, (2) Establish the fundamental mechanism of the selective coagulation process and determine the parameters that affect the process of separating coal from both the ash-forming minerals and pyritic sulfur, and (3) Conduct bench-scale process development testwork to establish the best possible method of separating the coagula from the dispersed mineral matter. The effect of pH on the energy of particle/bubble detachment has been measured with a single point surface force apparatus (Task 2.1); bench-scale coagulation experiments, coupled with contact angle and zeta potential measurements, are being used to determine hydrophobic interaction parameters for a Pittsburgh No. 8 coal sample (Task 2.2); and a population balance model of the hydrophobic coagulation process is under development (Task 2.3). A sample of Pittsburgh No. 8 coal has been received and is currently being characterized (Tasks 3.1 3.2), and the mixer required for Task 3.3 was designed and constructed. 4 refs., 7 figs.

  1. Changes in optical properties of rat skin during thermal coagulation

    NASA Astrophysics Data System (ADS)

    Thomsen, Sharon L.; Vijverberg, Helene; Huang, Robert; Schwartz, Jon A.

    1993-07-01

    Thermal coagulation of albino rat skin heated in vitro results in prominent changes of light scattering but relatively little in light absorption based on measurements using an integrating sphere spectrometer. The reduced scattering coefficients, (mu) s(1-g), gradually increase as temperatures increase from room temperature to 55 degree(s)C then rapidly decrease to plateau after 70 degree(s)C is reached. The differences among the (mu) s(1-g) values for the different wavelengths were greater at the lower temperatures than at higher temperatures. The absorption coefficient, (mu) a, changed very little over the test temperature range (room temperature to 90 degree(s)C) and then only at higher temperatures and for longer wavelengths. The optical property changes were associated with thermally induced light microscopic and ultrastructural changes in the dermal collagen, a major tissue component of skin.

  2. Optimized coagulation of high alkalinity, low temperature and particle water: pH adjustment and polyelectrolytes as coagulant aids.

    PubMed

    Yu, Jianfeng; Wang, Dongsheng; Yan, Mingquan; Ye, Changqing; Yang, Min; Ge, Xiaopeng

    2007-08-01

    The Yellow River in winter as source water is characterized as high alkalinity, low temperature and low particle concentrations, which have brought many difficulties to water treatment plants. This study fully examines the optimized coagulation process of the Yellow River by conventional and pre-polymerized metal coagulants, pH adjustment and polyelectrolytes as the primary coagulants or coagulant aids. For all the metal coagulants, polyaluminum chlorides are superior to traditional metal coagulants due to their stable polymeric species and low consumption of alkalinity. The removal of natural organic matter by monomeric metal coagulants can be improved through pH adjustment, which is in accordance with the higher concentration of polymeric species formed at corresponding pH value. With the addition of polyelectrolytes as coagulant aids, the coagulation performance is significantly improved. The effective removal of dissolved organic matter is consistent with high charge density, while molecular weight is relatively important for removing particles, which is consistent with polyelectrolytes as primary coagulants. These results suggest that the coagulation mechanisms in the removal of dissolved organic matter and particles are different, which may be exploited for optimized coagulation for the typical source water in practice.

  3. Dynamic analysis of coagulation of low turbidity water sources using Al- and Fe-based coagulants.

    PubMed

    Ebie, K; Kawaguchi, T; Yamaguchi, D

    2006-01-01

    The direct filtration system is widely used in the treatment of source waters with low and stable turbidity. We have previously indicated the importance of optimizing agitation strength GR and time TR in rapid mixing tanks in order to decrease filter head loss and treated water turbidity in direct filtration. In the present study, we employ a batch-type coagulation experimental apparatus that incorporates a high-sensitivity particle counter, where the particulate concentrations are measured continuously after injection of coagulant, in order to clarify the fundamental coagulation and microfloc formation dynamics. Specifically, it is shown that, after injection of the coagulant, coagulation and microfloc formation occur through distinct periods: an agglomeration preparation period, followed by an agglomeration progression period, and then finally an agglomeration stabilization period, and that optimization of the GR value is the most important consideration, although both the coagulant concentration and GR influence the time at which agglomeration begins in the preparatory period, the time at which agglomeration stabilizes after the progression period, and the concentration of initial particles with diameters of 1-3 microm at completion of agglomeration.

  4. Novel Ion-Exchange Coagulants Remove More Low Molecular Weight Organics than Traditional Coagulants.

    PubMed

    Zhao, Huazhang; Wang, Lei; Hanigan, David; Westerhoff, Paul; Ni, Jinren

    2016-04-01

    Low molecular weight (MW) charged organic matter is poorly removed by conventional coagulants but contributes to disinfection byproduct formation during chlorination of drinking waters. We hypothesized that CIEX, a new Al-based hybrid coagulant with ion-exchange functional groups, would be new mechanistic approach to remove low MW organic matter during coagulation and would perform better than polyaluminum chloride (PACl) or metal-salt based coagulants. We measured coagulation performance using dissolved organic carbon (DOC) in a high hardness surface water. CIEX achieved excellent turbidity removal and removed 20% to 46% more DOC than FeCl3, Al2(SO4)3, or PACl, depending on dose. The improved DOC removal was attributable to better removal of low MW organic matter (<2 kDa). We further studied removal mechanisms in a model water containing a low MW organic acid (salicylic acid (SA)). CIEX achieved high removal of organic acids (>90% of SA) independent of pH, whereas removal by metal salts was lower (<15%) and was strongly pH dependent. CIEX ion-exchange capability is facilitated by its covalently bound quaternary ammonium group, which conventional coagulants lack. Plus, unlike other cationic polymers that react with chloramines to form N-nitrosodimethylamine (NDMA), CIEX has a low molar yield (9.3 × 10(-7) mol NDMA per mol CIEX-N).

  5. Improvement of paint effluents coagulation using natural and synthetic coagulant aids.

    PubMed

    Aboulhassan, M A; Souabi, S; Yaacoubi, A; Baudu, M

    2006-11-01

    The coagulant iron chloride and the flocculants Polysep 3000 (PO), Superfloc A-1820 (SU) and Praestol 2515 TR (PR) have been used in this study to show the efficiency of coagulation flocculation process in the chemical precipitation method for the removal of organic and colouring matters from the paint industry wastewater. This study also includes the amount of produced sludge. The results indicate that FeCl(3) is efficient at pH range 8-9 and at optimal dose of 650 mgl(-1). Iron chloride allows the removal of 82% of chemical oxygen demand (COD) and 94% of colour. However, sequential addition of coagulant and polymeric additives enhance clearly pollutant removal and produces less decanted sludge compared to the results obtained when the coagulant is used alone. The removal efficiency of COD reaches 91% and that of colour 99%. Coagulation-biflocculation process is more effective than the coagulation-monoflocculation one. The sequential addition of iron chloride, Polysep 3000 (cationic flocculant) and Praestol 2515 TR (anionic flocculant) seems to be the most suitable combination for the treatment of the paint industry wastewaters.

  6. Study on the removal of acid dyes using chitosan as a natural coagulant/coagulant aid.

    PubMed

    Zonoozi, M H; Alavi Moghaddam, M R; Arami, M

    2011-01-01

    Chitosan was selected as a natural coagulating agent for the removal of acid dyes (Acid Blue 292; AB292, and Acid Red 398; AR398) from dye-containing solutions. The study was organised in two phases. In phase 1, chitosan was used alone as a natural coagulant for the removal of the dyes. For this purpose, the effect of different parameters including pH, chitosan dosage and initial dye concentration on the dye removal efficiency was examined. In phase 2 of the study, the application of chitosan as a natural coagulant aid in conjunction with polyaluminium chloride (PAC) was assessed. According to the results of phase 1, the best removal efficiencies occurred in an acidic pH range (less than 6) for both of the dyes. Also, excellent dye removal results (about 90%) were achieved with relatively low dosages of chitosan (30-35 mg L(-1) for AB292 and 50-60 mg L(-1) for AR398). However, the initial concentration of the dyes severely influenced the coagulation performance of chitosan, which can constrain the performance of chitosan as a natural coagulant. On the basis of the results of phase 2, chitosan, as a natural coagulant aid, noticeably enhanced the dye removal efficiency of PAC, especially in the case of AB292. Small amounts of chitosan (3 or 5 mg L(-1)) enhanced the dye removal efficiency of PAC up to 2.5 times for AB292.

  7. Viscoelasticity and Ultrastructure in Coagulation and Inflammation: Two Diverse Techniques, One Conclusion.

    PubMed

    Swanepoel, Albe C; Nielsen, Vance G; Pretorius, Etheresia

    2015-08-01

    The process of blood clotting has been studied for centuries. A synopsis of current knowledge pertaining to haemostasis and the blood components, including platelets and fibrin networks which are closely involved in coagulation, are discussed. Special emphasis is placed on tissue factor (TF), calcium and thrombin since these components have been implicated in both the coagulation process and inflammation. Analysis of platelets and fibrin morphology indicate that calcium, tissue factor and thrombin at concentrations used during viscoelastic analysis (with thromboelastography or TEG) bring about alterations in platelet and fibrin network ultrastructure, which is similar to that seen in inflammation. Scanning electron microscopy indicated that, when investigating platelet structure in disease, addition of TF, calcium or thrombin will mask disease-induced alterations associated with platelet activation. Therefore, washed platelets without any additives is preferred for morphological analysis. Furthermore, morphological and viscoelastic analysis confirmed that thrombin activation is the preferred method of fibrin activation when investigating fibrin network ultrastructure.

  8. Coagulation-induced shedding of platelet glycoprotein VI mediated by factor Xa.

    PubMed

    Al-Tamimi, Mohammad; Grigoriadis, George; Tran, Huy; Paul, Eldho; Servadei, Patricia; Berndt, Michael C; Gardiner, Elizabeth E; Andrews, Robert K

    2011-04-01

    This study evaluated shedding of the platelet collagen receptor, glycoprotein VI (GPVI) in human plasma. Collagen or other ligands induce metalloproteinase-mediated GPVI ectodomain shedding, generating approximately 55-kDa soluble GPVI (sGPVI) and approximately 10-kDa platelet-associated fragments. In the absence of GPVI ligands, coagulation of platelet-rich plasma from healthy persons induced GPVI shedding, independent of added tissue factor, but inhibitable by metalloproteinase inhibitor, GM6001. Factor Xa (FXa) common to intrinsic and tissue factor-mediated coagulation pathways was critical for sGPVI release because (1) shedding was strongly blocked by the FXa-selective inhibitor rivaroxaban but not FIIa (thrombin) inhibitors dabigatran or hirudin; (2) Russell viper venom that directly activates FX generated sGPVI, with complete inhibition by enoxaparin (inhibits FXa and FIIa) but not hirudin; (3) impaired GPVI shedding during coagulation of washed platelets resuspended in FX-depleted plasma was restored by adding purified FX; and (4) purified FXa induced GM6001-inhibitable GPVI shedding from washed platelets. In 29 patients with disseminated intravascular coagulation, mean plasma sGPVI was 53.9 ng/mL (95% confidence interval, 39.9-72.8 ng/mL) compared with 12.5 ng/mL (95% confidence interval, 9.0-17.3 ng/mL) in thrombocytopenic controls (n = 36, P < .0001), and 14.6 ng/mL (95% confidence interval, 7.9-27.1 ng/mL) in healthy subjects (n = 25, P = .002). In conclusion, coagulation-induced GPVI shedding via FXa down-regulates GPVI under procoagulant conditions. FXa inhibitors have an unexpected role in preventing GPVI down-regulation.

  9. Venous gas embolism associated with argon-enhanced coagulation of the liver.

    PubMed

    Palmer, M; Miller, C W; van Way, C W; Orton, E C

    1993-01-01

    Argon-enhanced coagulation (AEC) is a method for operative coagulation of tissues that utilizes a jet of argon gas encompassing an electrofulguration arc. Concern has been raised that the argon jet may produce harmful venous gas embolization. Two questions were addressed by this study. First, does AEC result in generation of venous gas emboli, and if so, what is the influence of gas flow rate and coagulation power on the amount of gas emboli generated? Second, does the amount of venous gas emboli generated by AEC produce harmful hemodynamic effects? Two AEC units were evaluated during coagulation of cut sections of the liver in pigs. The number of gas emboli generated was measured by an ultrasonic Doppler flow cuff placed around the caudal vena cava. Hemodynamic variables measured following AEC included systemic and pulmonary arterial pressure, pulmonary wedge pressure, and cardiac output by thermodilution. Venous gas emboli were produced during AEC of the liver. The number of gas emboli generated increased with increasing gas flow rates, but was not affected by coagulation power. No change in any of the measured hemodynamic variables was observed following AEC of the liver. The following recommendations were made: (1) Surgeons using AEC should select an argon flow rate as low as feasible to clear a bleeding tissue surface of blood and debris. (2) Although AEC seems to be associated with tolerable amounts of venous gas embolism, surgeons and anesthesiologists should be aware that the potential for harmful venous gas embolism exists. (3) In patients where extensive use of AEC is planned, appropriate monitoring and precautions for gas embolism should be undertaken.

  10. Coagulation-induced shedding of platelet glycoprotein VI mediated by factor Xa.

    PubMed

    Al-Tamimi, Mohammad; Grigoriadis, George; Tran, Huy; Paul, Eldho; Servadei, Patricia; Berndt, Michael C; Gardiner, Elizabeth E; Andrews, Robert K

    2011-04-01

    This study evaluated shedding of the platelet collagen receptor, glycoprotein VI (GPVI) in human plasma. Collagen or other ligands induce metalloproteinase-mediated GPVI ectodomain shedding, generating approximately 55-kDa soluble GPVI (sGPVI) and approximately 10-kDa platelet-associated fragments. In the absence of GPVI ligands, coagulation of platelet-rich plasma from healthy persons induced GPVI shedding, independent of added tissue factor, but inhibitable by metalloproteinase inhibitor, GM6001. Factor Xa (FXa) common to intrinsic and tissue factor-mediated coagulation pathways was critical for sGPVI release because (1) shedding was strongly blocked by the FXa-selective inhibitor rivaroxaban but not FIIa (thrombin) inhibitors dabigatran or hirudin; (2) Russell viper venom that directly activates FX generated sGPVI, with complete inhibition by enoxaparin (inhibits FXa and FIIa) but not hirudin; (3) impaired GPVI shedding during coagulation of washed platelets resuspended in FX-depleted plasma was restored by adding purified FX; and (4) purified FXa induced GM6001-inhibitable GPVI shedding from washed platelets. In 29 patients with disseminated intravascular coagulation, mean plasma sGPVI was 53.9 ng/mL (95% confidence interval, 39.9-72.8 ng/mL) compared with 12.5 ng/mL (95% confidence interval, 9.0-17.3 ng/mL) in thrombocytopenic controls (n = 36, P < .0001), and 14.6 ng/mL (95% confidence interval, 7.9-27.1 ng/mL) in healthy subjects (n = 25, P = .002). In conclusion, coagulation-induced GPVI shedding via FXa down-regulates GPVI under procoagulant conditions. FXa inhibitors have an unexpected role in preventing GPVI down-regulation. PMID:21252089

  11. Comparative study between atmospheric microwave and low-frequency plasmas: Production efficiency of reactive species and their effectiveness

    NASA Astrophysics Data System (ADS)

    Won, Im Hee; Kim, Myoung Soo; Kim, Ho Young; Shin, Hyun Kook; Kwon, Hyoung Cheol; Sim, Jae Yoon; Lee, Jae Koo

    2014-01-01

    The characteristics of low-frequency (LF) and microwave-powered plasmas were investigated. The optical emission of these two plasmas indicated that more chemicals were generated by microwave plasma than by LF plasma with the intensities being higher by factors of about 9, 3, 5, and 1.6 for OH (309 nm), O (777 nm), NO (247 nm), and Ca2+ (290 nm), respectively. Application experiments were also conducted. A steel plate became hydrophilic after 45 s of microwave plasma treatment. This is more than ten times faster than in the case of LF plasma treatment, an action related to the generation of reactive species (e.g., OH, O, and NO) as measured by optical emission spectroscopy (OES). Ca2+ generation was verified by blood coagulation experiment. Microwave-plasma-induced coagulation was twice faster than LF-plasma-induced coagulation. Simulation results that explain the chemical generation in microwave plasma were also included. High-energy electrons were considered a major factor for microwave plasma characteristics.

  12. Coagulating activity of the blood, vascular wall, and myocardium under hypodynamia conditions

    NASA Technical Reports Server (NTRS)

    Petrovskiy, B. V. (Editor); Chazov, E. I. (Editor); Andreyev, S. V. (Editor)

    1980-01-01

    In order to study the effects of hypodynamia on the coagulating properties of the blood, vascular wall, and myocardium, chinchilla rabbits were kept for varying periods in special cages which restricted their movements. At the end of the experiment, blood samples were taken and the animals were sacrificed. Preparations were made from the myocardium venae cavae, and layers of the aorta. Two resultant interrelated and mutually conditioned syndromes were discovered: thrombohemorrhagic in the blood and hemorrago-thrombotic in the tissues.

  13. Microwave Medical Treatment Apparatus and Method

    NASA Technical Reports Server (NTRS)

    Arndt, G. Dickey (Inventor); Ngo, Phong H. (Inventor); Carl, James R. (Inventor); George, W. Rflfoul (Inventor)

    2005-01-01

    Methods, simulations, and apparatus are provided that may be utilized for medical treatments which are especially suitable for treatment of benign prostatic hyperplasia (BPH). In a preferred embodiment, a plurality of separate microwave antennas are utilized to heat prostatic tissue to promote necrosing of the prostatic tissue that relieves the pressure of the prostatic tissue against the urethra as the body reabsorbs the necrosed or dead tissue. By utilizing constructive and destructive interference of the microwave transmission, the energy can be deposited on the tissues to be necrosed while protecting other tissues such as the urethra. Saline injections to alter the conductivity of the tissues may also be used to further focus the energy deposits. A computer simulation is Provided that can be used to Predict the resulting temperature profile produced in the prostatic tissue. By changing the various control features of one or more catheters and the methods of applying microwave energy, a temperature profile can be predicted and produced that is similar to the temperature profile desired for the particular patient.

  14. MF/UF performance with and without coagulation

    SciTech Connect

    Robert, C.; Taylor, J.S.; Reiss, C.R.

    1999-07-01

    Although size-exclusion membrane processes produce superior water quality relative to conventional surface water treatment, fouling can significantly limit the use of these membrane processes. Coagulation can reduce organic, particulate and biological fouling, and was investigated as a pretreatment process to microfiltration (MF) and ultrafiltration (UF) membrane processes. Varying coagulants, coagulant pH and dose and variation of conventional coagulation pretreatment processes including coagulation-sedimentation-filtration (CSF), coagulation-sedimentation (CS) and in-line coagulation (ILC) for varying dose and pH were investigated. The Hillsborough River, a highly organic productive subtropical surface water in Tampa, Florida and the Maumee River, a moderately productive northern US surface water were used as water sources for this study.

  15. The removal of anionic surfactants from water in coagulation process.

    PubMed

    Kaleta, Jadwiga; Elektorowicz, Maria

    2013-01-01

    This paper presents the results of a laboratory study on the effectiveness of the coagulation process in removing surfactants from water. The application of traditional coagulants (aluminium sulfate and iron chlorides) has not brought satisfactory results, the reduction in anionic surfactant (AS) content reached 7.6% and 10%, respectively. Adding cationic polyelectrolyte (Zetag-50) increased the removal efficiency to 24%. Coagulation using a polyelectrolyte alone proved to be more efficient, the reduction in surfactant content fluctuated at a level of about 50%. Complete surfactant removal was obtained when powdered activated carbon was added 5 minutes before the basic coagulant to the coagulation process. The efficiency of surfactant coagulation also increased after the application of powdered clinoptilolite, but to a smaller degree. Then the removal of AS was found to be improved by dosing powdered clinoptilolite simultaneously or with short delay after the addition of the basic coagulant. PMID:23837351

  16. Coagulation activation by MC28 fibrosarcoma cells facilitates lung tumor formation.

    PubMed

    Amirkhosravi, M; Francis, J L

    1995-01-01

    Tumor cells interact with the hemostatic system in various ways and may thus influence malignant growth and spread. MC28 fibrosarcoma cells possess a potent procoagulant activity (PCA) and form lung tumors following intravenous injection. The aim of this work was to study the relationship between PCA, intravascular coagulation and lung seeding in the MC28 model. MC28 cells were injected into control, warfarinized and heparinized hooded Lister rats. Coagulation changes were monitored by thromboelastography (TEG) and Sonoclot analysis (SA), lung fibrin formation by light and electron microscopy, tumor seeding by macroscopic counting and tumor cell and platelet deposition in the lungs by radiolabelling. PCA was measured by chromogenic assay. MC28 PCA was characterized as a tissue factor-factor VIIa complex that probably arose during cell culture or disaggregation of solid tumors. Injection of tumor cells caused marked coagulopathy and was rapidly (within 30 min) followed by fibrin deposition in the lungs and accumulation of radiolabelled platelets. Heparin and warfarin significantly reduced lung seeding (p < 0.001) and reduced retention of radiolabelled tumor cells in the pulmonary circulation (p < 0.01). Inhibition of cellular PCA by prior treatment with concanavalin A markedly reduced intravascular coagulation and lung seeding. We conclude that MC28 cells cause intravascular coagulation as a direct result of their procoagulant activity. The data suggest that tumor cells form complexes with platelets and fibrin which are retained in the lungs long enough for extravasation and seeding to occur.(ABSTRACT TRUNCATED AT 250 WORDS)

  17. The role of platelets in coagulation dysfunction in xenotransplantation, and therapeutic options.

    PubMed

    Iwase, Hayato; Ezzelarab, Mohamed B; Ekser, Burcin; Cooper, David K C

    2014-01-01

    Xenotransplantation could resolve the increasing discrepancy between the availability of deceased human donor organs and the demand for transplantation. Most advances in this field have resulted from the introduction of genetically engineered pigs, e.g., α1,3-galactosyltransferase gene-knockout (GTKO) pigs transgenic for one or more human complement-regulatory proteins (e.g., CD55, CD46, CD59). Failure of these grafts has not been associated with the classical features of acute humoral xenograft rejection, but with the development of thrombotic microangiopathy in the graft and/or consumptive coagulopathy in the recipient. Although the precise mechanisms of coagulation dysregulation remain unclear, molecular incompatibilities between primate coagulation factors and pig natural anticoagulants exacerbate the thrombotic state within the xenograft vasculature. Platelets play a crucial role in thrombosis and contribute to the coagulation disorder in xenotransplantation. They are therefore important targets if this barrier is to be overcome. Further genetic manipulation of the organ-source pigs, such as pigs that express one or more coagulation-regulatory genes (e.g., thrombomodulin, endothelial protein C receptor, tissue factor pathway inhibitor, CD39), is anticipated to inhibit platelet activation and the generation of thrombus. In addition, adjunctive pharmacologic anti-platelet therapy may be required. The genetic manipulations that are currently being tested are reviewed, as are the potential pharmacologic agents that may prove beneficial.

  18. Coagulation activation by MC28 fibrosarcoma cells facilitates lung tumor formation.

    PubMed

    Amirkhosravi, M; Francis, J L

    1995-01-01

    Tumor cells interact with the hemostatic system in various ways and may thus influence malignant growth and spread. MC28 fibrosarcoma cells possess a potent procoagulant activity (PCA) and form lung tumors following intravenous injection. The aim of this work was to study the relationship between PCA, intravascular coagulation and lung seeding in the MC28 model. MC28 cells were injected into control, warfarinized and heparinized hooded Lister rats. Coagulation changes were monitored by thromboelastography (TEG) and Sonoclot analysis (SA), lung fibrin formation by light and electron microscopy, tumor seeding by macroscopic counting and tumor cell and platelet deposition in the lungs by radiolabelling. PCA was measured by chromogenic assay. MC28 PCA was characterized as a tissue factor-factor VIIa complex that probably arose during cell culture or disaggregation of solid tumors. Injection of tumor cells caused marked coagulopathy and was rapidly (within 30 min) followed by fibrin deposition in the lungs and accumulation of radiolabelled platelets. Heparin and warfarin significantly reduced lung seeding (p < 0.001) and reduced retention of radiolabelled tumor cells in the pulmonary circulation (p < 0.01). Inhibition of cellular PCA by prior treatment with concanavalin A markedly reduced intravascular coagulation and lung seeding. We conclude that MC28 cells cause intravascular coagulation as a direct result of their procoagulant activity. The data suggest that tumor cells form complexes with platelets and fibrin which are retained in the lungs long enough for extravasation and seeding to occur.(ABSTRACT TRUNCATED AT 250 WORDS) PMID:7740497

  19. Therapeutic modulation of coagulation and fibrinolysis in acute lung injury and the acute respiratory distress syndrome.

    PubMed

    Sebag, Sara C; Bastarache, Julie A; Ware, Lorraine B

    2011-09-01

    Acute respiratory distress syndrome (ARDS) and acute lung injury (ALI) are characterized by excessive intraalveolar fibrin deposition, driven, at least in part by inflammation. The imbalance between activation of coagulation and inhibition of fibrinolysis in patients with ALI/ARDS favors fibrin formation and appears to occur both systemically and in the lung and airspace. Tissue factor (TF), a key mediator of the activation of coagulation in the lung, has been implicated in the pathogenesis of ALI/ARDS. As such, there have been numerous investigations modulating TF activity in a variety of experimental systems in order to develop new therapeutic strategies for ALI/ARDS. This review will summarize current understanding of the role of TF and other proteins of the coagulation cascade as well the fibrinolysis pathway in the development of ALI/ARDS with an emphasis on the pathways that are potential therapeutic targets. These include the TF inhibitor pathway, the protein C pathway, antithrombin, heparin, and modulation of fibrinolysis through plasminogen activator- 1 (PAI-1) or plasminogen activators (PA). Although experimental studies show promising results, clinical trials to date have proven unsuccessful in improving patient outcomes. Modulation of coagulation and fibrinolysis has complex effects on both hemostasis and inflammatory pathways and further studies are needed to develop new treatment strategies for patients with ALI/ARDS. PMID:21401517

  20. Blood coagulation and fibrinolysis in aortic valve stenosis: links with inflammation and calcification.

    PubMed

    Natorska, J; Undas, A

    2015-08-01

    Aortic valve stenosis (AS) increasingly afflicts our aging population. However, the pathobiology of the disease is still poorly understood and there is no effective pharmacotherapy for treating those at risk for clinical progression. The progression of AS involves complex inflammatory and fibroproliferative processes that resemble to some extent atherosclerosis. Accumulating evidence indicates that several coagulation proteins and its inhibitors, including tissue factor, tissue factor pathway inhibitor, prothrombin, factor XIII, von Willebrand factor, display increased expression within aortic stenotic valves, predominantly on macrophages and myofibroblasts around calcified areas. Systemic impaired fibrinolysis, along with increased plasma and valvular expression of plasminogen activator inhibitor-1, has also been observed in patients with AS in association with the severity of the disease. There is an extensive cross-talk between inflammation and coagulation in stenotic valve tissue which contributes to the calcification and mineralisation of the aortic valve leaflets. This review summarises the available data on blood coagulation and fibrinolysis in AS with the emphasis on their interactions with inflammation and calcification.

  1. Links between coagulation, inflammation, regeneration, and fibrosis in kidney pathology.

    PubMed

    Suárez-Álvarez, Beatriz; Liapis, Helen; Anders, Hans-Joachim

    2016-04-01

    Acute kidney injury (AKI) involves nephron injury leading to irreversible nephron loss, ie, chronic kidney disease (CKD). Both AKI and CKD are associated with distinct histological patterns of tissue injury, but kidney atrophy in CKD involves tissue remodeling with interstitial inflammation and scarring. No doubt, nephron atrophy, inflammation, fibrosis, and renal dysfunction are associated with each other, but their hierarchical relationships remain speculative. To better understand the pathophysiology, we provide an overview of the fundamental danger response programs that assure host survival upon traumatic injury from as early as the first multicellular organisms, ie, bleeding control by coagulation, infection control by inflammation, epithelial barrier restoration by re-epithelialization, and tissue stabilization by mesenchymal repair. Although these processes assure survival in the majority of the populations, their dysregulation causes kidney disease in a minority. We discuss how, in genetically heterogeneous population, genetic variants shift balances and modulate danger responses toward kidney disease. We further discuss how classic kidney disease entities develop from an insufficient or overshooting activation of these danger response programs. Finally, we discuss molecular pathways linking, for example, inflammation and regeneration or inflammation and fibrosis. Understanding the causative and hierarchical relationships and the molecular links between the danger response programs should help to identify molecular targets to modulate kidney injury and to improve outcomes for kidney disease patients.

  2. The coagulation characteristics of humic acid by using acid-soluble chitosan, water-soluble chitosan, and chitosan coagulant mixtures.

    PubMed

    Chen, Chih-Yu; Wu, Chung-Yu; Chung, Ying-Chien

    2015-01-01

    Chitosan is a potential substitute for traditional aluminium salts in water treatment systems. This study compared the characteristics of humic acid (HA) removal by using acid-soluble chitosan, water-soluble chitosan, and coagulant mixtures of chitosan with aluminium sulphate (alum) or polyaluminium chloride (PACl). In addition, we evaluated their respective coagulation efficiencies at various coagulant concentrations, pH values, turbidities, and hardness levels. Furthermore, we determined the size and settling velocity of flocs formed by these coagulants to identify the major factors affecting HA coagulation. The coagulation efficiency of acid- and water-soluble chitosan for 15 mg/l of HA was 74.4% and 87.5%, respectively. The optimal coagulation range of water-soluble chitosan (9-20 mg/l) was broader than that of acid-soluble chitosan (4-8 mg/l). Notably, acid-soluble chitosan/PACl and water-soluble chitosan/alum coagulant mixtures exhibited a higher coagulation efficiency for HA than for PACl or alum alone. Furthermore, these coagulant mixtures yielded an acceptable floc settling velocity and savings in both installation and operational expenses. Based on these results, we confidently assert that coagulant mixtures with a 1:1 mass ratio of acid-soluble chitosan/PACl and water-soluble chitosan/alum provide a substantially more cost-effective alternative to using chitosan alone for removing HA from water. PMID:25362971

  3. Microwave Radiometer (MWR) Handbook

    SciTech Connect

    Morris, VR

    2006-08-01

    The Microwave Radiometer (MWR) provides time-series measurements of column-integrated amounts of water vapor and liquid water. The instrument itself is essentially a sensitive microwave receiver. That is, it is tuned to measure the microwave emissions of the vapor and liquid water molecules in the atmosphere at specific frequencies.

  4. Microwave Workshop for Windows.

    ERIC Educational Resources Information Center

    White, Colin

    1998-01-01

    "Microwave Workshop for Windows" consists of three programs that act as teaching aid and provide a circuit design utility within the field of microwave engineering. The first program is a computer representation of a graphical design tool; the second is an accurate visual and analytical representation of a microwave test bench; the third is a more…

  5. Blood coagulation disorders in septic patients.

    PubMed

    Knoebl, Paul

    2010-03-01

    Host defense and blood coagulation are tightly connected and interacting systems, necessary for the integrity of an organism. Complex mechanisms regulate the intensity of a host response to invading pathogens or other potentially dangerous situations. Under regular conditions, this response is limited in time and located to the site of injury. Sometimes, however, systemic host response is overwhelming and disproportional and causes damage, not cure. Dependent on the genetical predisposition of the host, its current immunocompetence, or the type of injury, the reaction leads to the clinical picture of the different degrees of sepsis. Septic organ dysfunction is caused by intravascular fibrin deposition as a result of coagulation activation, anticoagulant breakdown, and shut down of fibrinolysis. This article describes the major pathophysiologic reactions in these situations and presents www.SepDIC.eu, an online tool on sepsis and associated coagulopathy.

  6. Coagulation of dust particles in a plasma

    NASA Technical Reports Server (NTRS)

    Horanyi, M.; Goertz, C. K.

    1990-01-01

    The electrostatic charge of small dust grains in a plasma in which the temperature varies in time is discussed, pointing out that secondary electron emission might introduce charge separation. If the sign of the charge on small grains is opposite to that on big ones, enhanced coagulation can occur which will affect the size distribution of grains in a plasma. Two scenarios where this process might be relevant are considered: a hot plasma environment with temperature fluctuations and a cold plasma environment with transient heating events. The importance of the enhanced coagulation is uncertain, because the plasma parameters in grain-producing environments such as a molecular cloud or a protoplanetary disk are not known. It is possible, however, that this process is the most efficient mechanism for the growth of grains in the size range of 0.1-500 microns.

  7. Poly(γ-glutamic acid), coagulation? Anticoagulation?

    PubMed

    Xu, Tingting; Peng, Fang; Zhang, Tao; Chi, Bo; Xu, Hong; Mao, Chun; Feng, Shuaihui

    2016-11-01

    Poly(γ-glutamic acid) (γ-PGA) powder was usually used as hemostatic agent because of its excellent physical properties of water-absorption and water-locking. However, if γ-PGA absorbs enough water, how about its blood compatibility? Here, the other side of the coin was investigated. The anticoagulant properties of γ-PGA were characterized by in vitro coagulation tests, hemolytic assay, platelet adhesion, and platelet activation. Moreover, cytotoxicity experiments of γ-PGA were also carried out by MTT assay. Results indicated that the sufficient water-absorbed γ-PGA has good anticoagulant property and non-cytotoxicity. It means γ-PGA has good anticoagulant property, non-cytotoxicity. If γ-PGA has absorbed enough water, it can be used as an anticoagulation biomaterial. With double effects (coagulation and anticoagulation), the γ-PGA with desirable bioproperties can be readily tailored to cater to various biomedical applications. PMID:27545694

  8. [Disseminated intravascular coagulation: clinical and biological diagnosis].

    PubMed

    Touaoussa, Aziz; El Youssi, Hind; El Hassani, Imane; Hanouf, Daham; El Bergui, Imane; Zoulati, Ghizlane; Amrani Hassani, Moncef

    2015-01-01

    Disseminated intravascular coagulation (DIC) is a syndrome characterized by the systemic activation of blood coagulation. Its pathophysiological mechanisms are complex and dependent on the underlying pathology, making the clinical and biological expression of quite variable DIC. Among the various biological parameters disrupted, most are not specific, and none of them allows in itself to make the diagnosis. All this does not facilitate the task of the practitioner for diagnosis of overt DIC, much less that of the non-overt DIC, early stage whose treatment would improve the prognosis. These considerations have led to develop scores, combining several parameters depending on their availability in daily practice, as well as their diagnostic relevance. Of all the scores, the ISTH (International society of thrombosis and hemostasis) remains the most used.

  9. Casting uniform ceramics with direct coagulation

    SciTech Connect

    Graule, T.J.; Baader, F.H.; Gauckler, L.J.

    1995-06-01

    Today complex-shaped ceramic parts are mass fabricated by many different methods, two of which are slip casting and injection molding. The selection of the appropriate technique is governed by the geometric shape, the number of pieces to be manufactured, and the chemistry of the ceramic. Both slip casting and injection molding introduce imperfections in the green part, which lead to inhomogeneous microstructures in the sintered parts. A new fabrication method, direct coagulation casting (DCC), may be suitable for the mass production of complex ceramic parts with high strength and reliability. In DCC, an aqueous suspension is coagulated by a change in pH or an increase in ionic strength after casting, producing a rigid green body. The use of DCC can avoid most of the limitations of conventional shaping techniques, and it can be applied to a large variety of ceramic powders, sols, and polymers, alone or in combination.

  10. [Disseminated intravascular coagulation in solid tumours].

    PubMed

    Ferrand, François Régis; Garcia-Hejl, Carine; Moussaid, Yassine; Schernberg, Antoine; Bidard, François-Clément; Pavic, Michel; Khenifer, Safia; Stoclin, Annabelle

    2014-06-01

    Disseminated intravascular coagulation (DIC) is a complex abnormality of hemostasis with dramatic consequences and long described as associated with tumors. Yet the diagnosis and management of paraneoplastic DIC are poorly defined. The purpose of this paper is to review DIC associated with solid tumors, at the pathophysiological and therapeutic levels in particular. We also report data from a recent retrospective series of patients with DIC in the context of a solid tumor, to illustrate the epidemiological, clinical and prognostic.

  11. Patterned retinal coagulation with a scanning laser

    NASA Astrophysics Data System (ADS)

    Palanker, Daniel; Jain, ATul; Paulus, Yannis; Andersen, Dan; Blumenkranz, Mark S.

    2007-02-01

    Pan-retinal photocoagulation in patients with diabetic retinopathy typically involves application of more than 1000 laser spots; often resulting in physician fatigue and patient discomfort. We present a semi-automated patterned scanning laser photocoagulator that rapidly applies predetermined patterns of lesions; thus, greatly improving the comfort, efficiency and precision of the treatment. Patterns selected from a graphical user interface are displayed on the retina with an aiming beam, and treatment can be initiated and interrupted by depressing a foot pedal. To deliver a significant number of burns during the eye's fixation time, each pulse should be considerably shorter than conventional 100ms pulse duration. We measured coagulation thresholds and studied clinical and histological outcomes of the application of laser pulses in the range of 1-200ms in pigmented rabbits. Laser power required for producing ophthalmoscopically visible lesions with a laser spot of 132μm decreased from 360 to 37mW with pulse durations increasing from 1 to 100ms. In the range of 10-100ms clinically and histologically equivalent light burns could be produced. The safe therapeutic range of coagulation (ratio of the laser power required to produce a rupture to that for a light burn) decreased with decreasing pulse duration: from 3.8 at 100ms, to 3.0 at 20ms, to 2.5 at 10ms, and to 1.1 at 1ms. Histology demonstrated increased confinement of the thermal damage with shorter pulses, with coagulation zone limited to the photoreceptor layer at pulses shorter than 10ms. Durations of 10-20ms appear to be a good compromise between the speed and safety of retinal coagulation. Rapid application of multiple lesions greatly improves the speed, precision, and reduces pain in retinal photocoagulation.

  12. Development of the selective coagulation process

    SciTech Connect

    Yoon, R.H.; Luttrell, G.H.

    1992-07-01

    The selective hydrophobic coagulation (SHC) process is based on the recent finding that hydrophobic particles can be selectively coagulated without using traditional agglomerating agents or flocculants. The driving force for the coagulation is the attractive energy between hydrophobic surfaces, an interaction that has been overlooked in classical colloid chemistry. In most cases, selective separations can be achieved using simple pH control to disperse the mineral matter, followed by recovery of the coal coagula using techniques that take advantage of the size enlargement. In the present work, studies have been carried out to further investigate the fundamental mechanisms of the SHC process and the parameters that affect the process of separating coal from the ash-forming minerals and pyritic sulfur. Studies have included direct force measurements of the attractive interaction between model hydrophobic surfaces, in-situ measurements of the size distributions of coagula formed under a variety of operating conditions, and development of a population balance model to describe the coagulation process. An extended DLVO colloid stability model which includes a hydrophobic interaction energy term has also been developed to explain the findings obtained from the experimental studies. In addition to the fundamental studies, bench-scale process development test work has been performed to establish the best possible method of separating the coagula from dispersed mineral matter. Two types of separators, i.e., a sedimentation tank and a rotating drum screen, were examined in this study. The sedimentation tank proved to be the more efficient unit, achieving ash reductions as high as 60% in a single pass while recovering more than 90% of the combustible material. This device, which minimizes turbulence and coagula breakage, was used in subsequent test work to optimize design and operating parameters.

  13. [Physiology of blood coagulation and fibrinolysis: biochemistry].

    PubMed

    Preissner, K T

    2008-12-01

    The principles of initiator and amplifications reactions of blood coagulation and fibrinolysis will be presented and discussed in relation to various regulatory pathways of haemostasis. In particular, cell surface-dependent activation and inhibition reactions are characteristics of multicomponent enzyme complexes that also allow the endogenous control of the haemostasis system. The understanding of these relationships in complications of haemostasis has lead to different strategies for the therapeutic intervention with pro- and anticoagulant substances. PMID:19132158

  14. Disseminated intravascular coagulation: testing and diagnosis.

    PubMed

    Wada, Hideo; Matsumoto, Takeshi; Yamashita, Yoshiki; Hatada, Tsuyoshi

    2014-09-25

    Abnormalities of the hemostatic system in patients with DIC result from the sum of vectors for hypercoagulation and hyperfibrinolysis. DIC is classified into hyperfibrinolysis, hypercoagulation, massive bleeding or nonsymptomatic types according to the balance of the two vectors. Both the antithrombin (AT) and protein C (PC) levels are significantly low in patients with septic DIC, and reduced amounts of AT and PC result in the lack of inhibition of thrombin and activated FVIII, respectively. Thrombin activates FVIII, while activated FVIII accelerates the coagulation pathway to generate thrombin; thus activation of the coagulation system persists. Three sets of diagnostic criteria have been established by the Japanese Ministry of Health, Labour and Welfare, International Society of Thrombosis and Haemostasis and Japanese Association for Acute Medicine, respectively. Although these three diagnostic criteria score hemostatic abnormalities using similar global coagulation tests, the sensitivity and/or specificity for death differ. Treatment with AT or activated PC may not improve the outcomes of patients with sepsis at the early stage, although they may improve the outcomes in those with DIC. Therefore, new diagnostic criteria for determining the appropriate time to initiate anticoagulant treatment are required.

  15. Development of the selective coagulation process

    SciTech Connect

    Yoon, R.H.; Luttrell, G.H.

    1991-01-01

    The overall objective of this project is to develop an economical method of producing low-ash and low-sulfur coals using the selective coagulation process. Work is subdivided into three tasks: (1) project planning; (2) studies of the fundamental mechanism of the selective coagulation process and the parameters that affect the process of separating coal from both the ash-forming minerals and pyritic sulfur; and (3) bench-scale process development testwork to establish the best possible methods of separating the coagula from the dispersed mineral matter. During the second quarter, the effects of surface hydrophobicity, pH and KCI concentrations on the interaction energies of attachment and detachment have been evaluated; hydrophobic interaction parameters were determined for oxidized and unoxidized; Elkhorn No. 3 seam coal samples and then compared with calculations based on the extended DLVO theory; and work continued on the population balance model of the hydrophobic coagulation process. A sample of Elkhorn No. 3 seam coal was obtained and is currently being characterized; a particle size monitor has been received; and work has begun on enhancing the separation of coagula (Task 3.4). 14 figs.

  16. Arsenic removal from drinking water during coagulation

    SciTech Connect

    Hering, J.G.; Chen, P.Y.; Wilkie, J.A.; Elimelech, M.

    1997-08-01

    The efficiency of arsenic removal from source waters and artificial freshwaters during coagulation with ferric chloride and alum was examined in bench-scale studies. Arsenic(V) removal by either ferric chloride or alum was relatively insensitive to variations in source water composition below pH 8. At pH 8 and 9, the efficiency of arsenic(V) removal by ferric chloride was decreased in the presence of natural organic matter. The pH range for arsenic(V) removal with alum was more restricted than with ferric chloride. For source waters spiked with 20 {micro}g/L arsenic(V), final dissolved arsenic(V) concentrations in the product water of less than 2 {micro}g/L were achieved with both coagulants at neutral pH. Removal of arsenic(III) from source waters by ferric chloride was both less efficient and more strongly influenced by source water composition than removal of arsenic(V). The presence of sulfate (at pH 4 and 5) and natural organic matter (at pH 4 through 9) adversely affected the efficiency of arsenic(III) removal by ferric chloride. Arsenic(III) could not be removed from source waters by coagulation with alum.

  17. Carbon nanotubes and microwaves: interactions, responses, and applications.

    PubMed

    Vázquez, Ester; Prato, Maurizio

    2009-12-22

    The interaction of microwaves with carbon nanotubes (CNTs) is an interesting topic for a variety of potential applications. Microwaves have been used for the purification of CNTs and for their chemical functionalization, providing a technique for simple, green, and large-scale protocols. In addition, the selective destruction of metallic CNTs under microwave irradiation could potentially result in a batch of semiconducting-only nanotubes. As an innovative application, the combination of microwaves with well-aligned CNTs could produce a new illumination technology. Moreover, the microwave absorbing properties of CNTs and their different behavior from typical organic compounds may open the door to the preparation of a wide range of new materials useful in many fields. A few examples of practical applications include electromagnetic interference for protecting the environment from radiation and microwave hyperthermia for cancer treatment as well as other medical therapies requiring precise heating of biological tissues. PMID:20025299

  18. Microwave sintering of ceramics

    SciTech Connect

    Snyder, W.B.

    1989-01-01

    Successful adaptation of microwave heating to the densification of ceramic materials require a marriage of microwave and materials technologies. Using an interdisciplinary team of microwave and materials engineers, we have successfully demonstrated the ability to density ceramic materials over a wide range of temperatures. Microstructural evolution during microwave sintering has been found to be significantly different from that observed in conventional sintering. Our results and those of others indicate that microwave sintering has the potential to fabricate components to near net shape with mechanical properties equivalent to hot pressed or hot isostatically pressed material. 6 refs., 11 figs.

  19. Effects of microwave radiation on the eye: The occupational health perspective

    SciTech Connect

    Cutz, A. )

    1989-01-01

    The purpose of this overview is to promote an interest in understanding and reducing the possible occupational health risks of microwave radiation on the eye. Microwaves act on living tissue through two types of mechanisms, thermal and nonthermal. Lens opacities can be induced in experimental animals at relatively high intensities (power densities greater than 100 mW/cm2). For lower intensities, lens changes may depend on the cumulative dose. At nonthermal intensities, microwaves can act as a trigger and set off changes in the living tissues (e.g. Ca++ efflux). Some cataract-causing agents (alloxan and galactose) act synergistically with microwaves. Microwaves also accelerate formation of cataracts due to diabetes. The corneal endothelium can be damaged by microwaves alone or in combination with some drugs. Microwave degeneration of retinal nerve endings and a small increase in retinal permeability were also found in animals. The effect of long-term low-intensity microwave exposure on the human lens remains poorly understood. Several reports have implicated occupational microwave exposure as a factor in increasing the rate of lens aging and retinal injury in microwave workers. In Canada, recommended microwave exposure limits are set at 25 mW/cm2 for microwave workers and at 1 mW/cm2 for the general public (both averaged over 1 minute). The Australian microwave exposure safety standard (1985) recommends pre- and post-employment eye examinations for workers.

  20. High brightness microwave lamp

    DOEpatents

    Kirkpatrick, Douglas A.; Dolan, James T.; MacLennan, Donald A.; Turner, Brian P.; Simpson, James E.

    2003-09-09

    An electrodeless microwave discharge lamp includes a source of microwave energy, a microwave cavity, a structure configured to transmit the microwave energy from the source to the microwave cavity, a bulb disposed within the microwave cavity, the bulb including a discharge forming fill which emits light when excited by the microwave energy, and a reflector disposed within the microwave cavity, wherein the reflector defines a reflective cavity which encompasses the bulb within its volume and has an inside surface area which is sufficiently less than an inside surface area of the microwave cavity. A portion of the reflector may define a light emitting aperture which extends from a position closely spaced to the bulb to a light transmissive end of the microwave cavity. Preferably, at least a portion of the reflector is spaced from a wall of the microwave cavity. The lamp may be substantially sealed from environmental contamination. The cavity may include a dielectric material is a sufficient amount to require a reduction in the size of the cavity to support the desired resonant mode.

  1. Microwave hemorrhagic stroke detector

    DOEpatents

    Haddad, Waleed S.; Trebes, James E.

    2007-06-05

    The microwave hemorrhagic stroke detector includes a low power pulsed microwave transmitter with a broad-band antenna for producing a directional beam of microwaves, an index of refraction matching cap placed over the patients head, and an array of broad-band microwave receivers with collection antennae. The system of microwave transmitter and receivers are scanned around, and can also be positioned up and down the axis of the patients head. The microwave hemorrhagic stroke detector is a completely non-invasive device designed to detect and localize blood pooling and clots or to measure blood flow within the head or body. The device is based on low power pulsed microwave technology combined with specialized antennas and tomographic methods. The system can be used for rapid, non-invasive detection of blood pooling such as occurs with hemorrhagic stoke in human or animal patients as well as for the detection of hemorrhage within a patient's body.

  2. Microwave hemorrhagic stroke detector

    DOEpatents

    Haddad, Waleed S.; Trebes, James E.

    2002-01-01

    The microwave hemorrhagic stroke detector includes a low power pulsed microwave transmitter with a broad-band antenna for producing a directional beam of microwaves, an index of refraction matching cap placed over the patients head, and an array of broad-band microwave receivers with collection antennae. The system of microwave transmitter and receivers are scanned around, and can also be positioned up and down the axis of the patients head. The microwave hemorrhagic stroke detector is a completely non-invasive device designed to detect and localize blood pooling and clots or to measure blood flow within the head or body. The device is based on low power pulsed microwave technology combined with specialized antennas and tomographic methods. The system can be used for rapid, non-invasive detection of blood pooling such as occurs with hemorrhagic stroke in human or animal patients as well as for the detection of hemorrhage within a patient's body.

  3. Large Volume Coagulation Utilizing Multiple Cavitation Clouds Generated by Array Transducer Driven by 32 Channel Drive Circuits

    NASA Astrophysics Data System (ADS)

    Nakamura, Kotaro; Asai, Ayumu; Sasaki, Hiroshi; Yoshizawa, Shin; Umemura, Shin-ichiro

    2013-07-01

    High-intensity focused ultrasound (HIFU) treatment is a noninvasive treatment, in which focused ultrasound is generated outside the body and coagulates a diseased tissue. The advantage of this method is minimal physical and mental stress to the patient, and the disadvantage is the long treatment time caused by the smallness of the therapeutic volume by a single exposure. To improve the efficiency and shorten the treatment time, we are focusing attention on utilizing cavitation bubbles. The generated microbubbles can convert the acoustic energy into heat with a high efficiency. In this study, using the class D amplifiers, which we have developed, to drive the array transducer, we demonstrate a new method to coagulate a large volume by a single HIFU exposure through generating cavitation bubbles distributing in a large volume and vibrating all of them. As a result, the coagulated volume by the proposed method was 1.71 times as large as that of the conventional method.

  4. Coagulation of Dust Particles in Argon Plasma of RF Discharge

    SciTech Connect

    Mankelevich, Yu. A.; Olevanov, M. A.; Pal, A. F.; Rakhimova, T. V.; Ryabinkin, A. N.; Serov, A. O.; Filippov, A. V.

    2008-09-07

    The experiments on coagulation of poly-disperse particles with various size distributions injected into the argon plasma of the magnetron radio-frequency discharge are discussed. The experiments were carried out under the conditions similar to those using dusty plasma for technology applications. Within the created theory the threshold behavior of the coagulation process was explained for the first time, the estimation of the critical particle size for onset of a fast coagulation was made, and the analytical calculation of the coagulation rate of dust particles was performed. The proposed coagulation mechanism makes it possible to describe the typical features of coagulation processes observed in experiments and to explain the effects of attraction and coalescence of highly negatively charged microns size particles.

  5. [Roles of coagulation pathway and factor Xa in chronic kidney disease (CKD)].

    PubMed

    Ono, Takahiko

    2012-01-01

    Considering that fibrin deposition is observed in glomerulonephritis as well as in diabetic nephropathy, we performed studies to clarify the roles of the coagulation pathway and the active type of coagulation factor X (factor Xa) in the development of chronic kidney disease (CKD) using animal models. Factor Xa activates various cell types through protease-activated receptor 2 (PAR2). Several in vitro studies have demonstrated that PAR2 can mediate factor Xa signaling, but not thrombin signaling. Coagulation processes proceed together with the extracellular matrix (ECM) accumulation through factor V expression in rat Thy-1 nephritis. DX-9065a, a factor Xa inhibitor, suppresses this type of glomerulonephritis. The factor Xa inhibitor danaparoid ameliorated proteinuria, cellular proliferation, and fibrin deposition in lipopolysaccharide (LPS)-triggered activation of High IgA (HIGA) strain of ddY mice. Another factor Xa inhibitor, fondaparinux, suppressed urinary protein, glomerular hypertrophy, and connective tissue growth factor (CTGF), and ECM protein deposition together with angiogenesis in diabetic db/db mice. Finally, in the model of peritoneal fibrosis, fondaparinux treatment decreased the thickness of submesothelial fibrotic tissue and angiogenesis. In consideration of the results to potential human therapy, factor Xa regulation may be promising for the treatment of the aggravation in glomerulonephritis and of the early phase of diabetic nephropathy. In the near future, novel factor Xa inhibitors with the characteristics of oral administration and biliary elimination may appear in the clinical use for treatment of cardiovascular diseases. PMID:22465921

  6. Thromboplastin immobilized on polystyrene surface exhibits kinetic characteristics close to those for the native protein and activates in vitro blood coagulation similarly to thromboplastin on fibroblasts.

    PubMed

    Fadeeva, O A; Panteleev, M A; Karamzin, S S; Balandina, A N; Smirnov, I V; Ataullakhanov, F I

    2010-06-01

    A method for transmembrane protein thromboplastin (tissue factor) immobilization on polystyrene surface is described. Tissue factor is the main activating factor launching the blood coagulation process. It is a cofactor of factor VIIa, the first protease in the cascade of coagulation reactions. The proposed method preserves kinetic characteristics specific for native tissue factor on the fibroblast surface. The kinetics of binding to factor VIIa and enzymic activity of the formed complex follow Michaelis-Menten kinetics, which is also characteristic of native complex. A small difference is that dissociation constant for tissue factor immobilized on polystyrene surface exceeds 2.7-fold that for native factor. The proposed technique of immobilization provides for protein density on the activating surface corresponding to the tissue factor density on the fibroblast surface. The immobilized tissue factor can be used to activate blood coagulation in methods simulating spatial dynamics of in vitro clot growth. Investigation in this direction will make it possible to register both hypo- and hypercoagulation states of the system. This approach is advantageous over traditional methods of estimation of the coagulation system conditions, which mainly register only hypocoagulation. Investigation of the storage time has shown that activators containing immobilized tissue factor can be stored and used during for at least 100 days in the method studying spatial dynamics of fibrin clot formation.

  7. Percutaneous microwave ablation vs radiofrequency ablation in the treatment of hepatocellular carcinoma

    PubMed Central

    Poulou, Loukia S; Botsa, Evanthia; Thanou, Ioanna; Ziakas, Panayiotis D; Thanos, Loukas

    2015-01-01

    Hepatocellular cancer ranks fifth among cancers and is related to chronic viral hepatitis, alcohol abuse, steatohepatitis and liver autoimmunity. Surgical resection and orthotopic liver transplantation have curative potential, but fewer than 20% of patients are suitable candidates. Interventional treatments are offered to the vast majority of patients. Radiofrequency (RFA) and microwave ablation (MWA) are among the therapeutic modalities, with similar indications which include the presence of up to three lesions, smaller than 3 cm in size, and the absence of extrahepatic disease. The therapeutic effect of both methods relies on thermal injury, but MWA uses an electromagnetic field as opposed to electrical current used in RFA. Unlike MWA, the effect of RFA is partially limited by the heat-sink effect and increased impedance of the ablated tissue. Compared with RFA, MWA attains a more predictable ablation zone, permits simultaneous treatment of multiple lesions, and achieves larger coagulation volumes in a shorter procedural time. Major complications of both methods are comparable and infrequent (approximately 2%-3%), and they include haemorrhage, infection/abscess, visceral organ injury, liver failure, and pneumothorax. RFA may incur the additional complication of skin burns. Nevertheless, there is no compelling evidence for differences in clinical outcomes, including local recurrence rates and survival. PMID:26052394

  8. Coagulation activation in sickle cell trait: an exploratory study.

    PubMed

    Amin, Chirag; Adam, Soheir; Mooberry, Micah J; Kutlar, Abdullah; Kutlar, Ferdane; Esserman, Denise; Brittain, Julia E; Ataga, Kenneth I; Chang, Jen-Yea; Wolberg, Alisa S; Key, Nigel S

    2015-11-01

    Recent epidemiologic data suggest that sickle cell trait (HbAS; AS) is a risk factor for venous thromboembolism. We conducted an exploratory study of healthy subjects with AS under baseline conditions to determine whether a chronic basal hyperactivation of coagulation exists, and if so, what mechanism(s) contribute to this state. Eighteen healthy AS individuals were compared to 22 African-American controls with a normal haemoglobin profile (HbAA; AA) and 17 patients with sickle cell disease (HbSS; SS). Plasma thrombin-antithrombin complexes and D-dimer levels were elevated in AS relative to AA patients (P = 0·0385 and P = 0·017, respectively), and as expected, were much higher in SSversusAA (P < 0·0001 for both). Thrombin generation in platelet poor plasma was indistinguishable between AA and AS subjects, whereas a paradoxical decrease in endogenous thrombin potential was observed in SS (P ≤ 0·0001). Whole blood tissue factor was elevated in SS compared to AA (P = 0·005), but did not differ between AA and AS. Plasma microparticle tissue factor activity was non-significantly elevated in AS (P = 0·051), but was clearly elevated in SS patients (P = 0·004) when compared to AA controls. Further studies in larger cohorts of subjects with sickle cell trait are needed to confirm the results of this preliminary investigation.

  9. Coagulation and precise ablation of biotissues by pulsed sealed-off carbon monoxide laser

    NASA Astrophysics Data System (ADS)

    Masychev, Victor I.; Alejnikov, Vladislav S.; Klimenko, Vladimir I.

    1991-06-01

    Continuous-wave CO-laser seems to be useful in surgery of soft blood tissue because its spectrum contains the components with cutting and coagulating features. If CO-laser or another types of continuous wave lasers for surgering are employed the main cause of the health tissues damaging on the walls of cut of drilled hole, is heating walls by evaporation products. Tissue damaging by heated products are not excepting under the thermal process of tissue destruction principally. This is apparent with continuous water vaporjet induced by C-W laser beams particularly. It is shown that depth of cuts wall overheated by destruction products, may be decreased in some times by means of using the pulse repetition mode operation CO-laser and the mass removed rate decreased at the same time. This approach is appropriated in the case when thermal influence area decreasing is the main demand to the planed surgery intervention. Coagulative effect on the walls of laser wound may be provided by the radiation with relatively large penetrative length in tissue. In case of CO-laser its spectrum contains a sufficient part of such radiation for both continuous and pulsed modes.

  10. Pathogenesis and management of peripartum coagulopathic calamities (disseminated intravascular coagulation and amniotic fluid embolism).

    PubMed

    Levi, Marcel

    2013-01-01

    Acute coagulopathic peripartum calamities are relatively rare but contribute importantly to maternal morbidity and mortality in the Western world. Abruptio placenta, amniotic fluid embolism, and retained fetal or placental material may lead to fulminant intravascular activation of coagulation which results in thromboembolic complications and consumption coagulopathy causing severe hemorrhage. The central underlying pathophysiological pathway in the coagulopathy associated with these syndromes is the occurrence of tissue factor, released from the placenta and amniotic fluid, in the circulation, in combination with low levels of physiological anticoagulant factors during pregnancy. The diagnosis of DIC may be made trough conventional composite scoring systems employing routine coagulation tests, whereas for the diagnosis of amniotic fluid embolism measurement of insulin like growth factor binding protein-1 seems promising. Therapy is aimed at removing the precipitating factor combined with supportive adjunctive treatment options.

  11. Coagulation of monodisperse aerosol particles by isotropic turbulence

    NASA Astrophysics Data System (ADS)

    Chun, J.; Koch, D. L.

    2005-02-01

    The rate of coagulation of initially monodisperse aerosols due to isotropic turbulence is studied with particular emphasis on the effects of noncontinuum hydrodynamics and particle inertia. The prevalence of these two factors distinguishes aerosol coagulation from the coagulation of colloidal particles. The turbulent flow seen by an interacting pair of particles is modelled as a stochastically varying flow field that is a linear function of position. This approximation is valid because the 1-10 micron diameter particles for which turbulence dominates coagulation are much smaller than the smallest eddies of a typical turbulent flow field. It is shown that the finite mean-free path of the gas enhances the rate of coagulation and leads to a finite coagulation rate even in the absence of van der Waals attractions. The coupled effects of turbulent shear and Brownian motion are treated. As in the case of laminar shear flows, it is found that Brownian motion plays an important role in the coagulation process even when the Peclet number is moderately large. It is shown that particle inertia increases the coagulation rate in two ways. First, preferential concentration increases the radial distribution function on length scales intermediate between the Kolmogorov length scale and the particle diameter. Second, the greater persistence of particles' relative motion during their local interaction leads to an increase in coagulation rate with increasing particle Stokes number.

  12. Improving the efficiency of clarifiers for coagulation treatment of water

    NASA Astrophysics Data System (ADS)

    Vinogradov, V. N.; Smirnov, B. A.; Zhadan, A. V.; Avan, V. K.

    2010-08-01

    Technological and design possibilities of improving clarifiers for coagulation treatment of water are considered. The results obtained from implementing these possibilities in real devices are presented.

  13. Recovery of struvite via coagulation and flocculation using natural compounds.

    PubMed

    Latifian, Maryam; Liu, Jing; Mattiasson, Bo

    2014-01-01

    One of the major setbacks of struvite recovery processes is the difficulty in harvesting struvite crystals. This study evaluates the use of different coagulants to improve precipitation of struvite (MgNH4PO4.6H20) crystals. Chitosan and poly(diallyldimethyl ammonium chloride) (Poly-DADMAC) as a coagulant-flocculent and alginate and bentonite as a coagulant aid have been examined in jar tests. Also, a continuous three-phase process, i.e., struvite crystallization, coagulation/flocculation and precipitation process, was set up for real wastewater. Addition of chitosan as the coagulant and bentonite as the coagulant aid was significantly more efficient in forming struvite flocs in comparison to Poly-DADMAC alone or with coagulant aid, which did not show any positive effect. The calculated average settling velocity of struvite with chitosan-bentonite addition in synthetic and in real wastewater increased by approximately 5.3 and 2.8 folds, respectively, compared with that of no coagulant/flocculent addition. Phosphorus recovery of over 70% was achieved by the continuous process. Findings in this study clearly confirmed the possibility of using chitosan and bentonite as an efficient coagulant-flocculent to enhance the recovery of struvite crystals.

  14. Activation of Blood Coagulation in Two Prototypic Autoimmune Skin Diseases: A Possible Link with Thrombotic Risk.

    PubMed

    Cugno, Massimo; Tedeschi, Alberto; Borghi, Alessandro; Bucciarelli, Paolo; Asero, Riccardo; Venegoni, Luigia; Griffini, Samantha; Grovetti, Elena; Berti, Emilio; Marzano, Angelo Valerio

    2015-01-01

    Coagulation activation has been demonstrated in two prototypic autoimmune skin diseases, chronic autoimmune urticaria and bullous pemphigoid, but only the latter is associated with increased thrombotic risk. Two markers of coagulation activation (prothrombin fragment F1+2 and fibrin fragment D-dimer) were measured by immunoenzymatic methods in plasma samples from 30 patients with active chronic autoimmune urticaria, positive for autologous serum skin test, 30 patients with active bullous pemphigoid and 30 healthy subjects. In skin biopsies, tissue factor expression was evaluated by both immunohistochemistry and in situ hybridization. F1+2 and D-dimer levels were higher in active chronic autoimmune urticaria (276.5±89.8 pmol/L and 5.56±4.40 nmol/L, respectively) than in controls (145.2±38.0 pmol/L and 1.06±0.25 nmol/L; P=0.029 and P=0.011) and were much higher in active bullous pemphigoid (691.7±318.7 pmol/L and 15.24±9.09 nmol/L, respectively) (P<0.0001). Tissue factor positivity was evident in skin biopsies of both disorders with higher intensity in bullous pemphigoid. F1+2 and D-dimer, during remission, were markedly reduced in both disorders. These findings support the involvement of coagulation activation in the pathophysiology of both diseases. The strong systemic activation of coagulation in bullous pemphigoid may contribute to increase the thrombotic risk and provides the rationale for clinical trials on anticoagulant treatments in this disease.

  15. Aptamer-based modulation of blood coagulation.

    PubMed

    Mayer, G; Rohrbach, F; Pötzsch, B; Müller, J

    2011-11-01

    Nucleic acid based aptamers are single-stranded oligonucleotide ligands isolated from random libraries by an in-vitro selection procedure. Through the formation of unique three-dimensional structures, aptamers are able to selectively interact with a variety of target molecules and are therefore also promising candidates for the development of anticoagulant drugs. While thrombin represents the most prominent enzymatic target in this field, also aptamers directed against other coagulation proteins and proteases have been identified with some currently being tested in clinical trials. In this review, we summarize recent developments in the design and evaluation of aptamers for anticoagulant therapy and research.

  16. Coagulation disorders and their cutaneous presentations: Pathophysiology.

    PubMed

    Chang, Yunyoung; Dabiri, Ganary; Damstetter, Elizabeth; Baiyee Ebot, Emily; Powers, Jennifer Gloeckner; Phillips, Tania

    2016-05-01

    Hypercoagulable states are inherited or acquired predispositions to venous or arterial thromboses that are best understood in the context of the coagulation cascade. Dermatologists can play a critical role in diagnosing and treating patients with hypercoagulable states because cutaneous symptoms may be a presenting manifestation, thereby reducing morbidity and mortality related to these conditions. This review focuses on the epidemiology and pathophysiology of hypercoagulable states, while the accompanying article iterates the basic clinical features, diagnostic testing, and management of patients who have these conditions.

  17. Monitoring changes in tissue optical properties following interstitial photothermal therapy of ex vivo human prostate tissue

    NASA Astrophysics Data System (ADS)

    Weersink, Robert A.; He, Jie; Veilleux, Israel; Trachtenberg, John; Wilson, Brian C.

    2013-03-01

    We are developing a method of monitoring treatment progression of interstitial photothermal therapy of focal prostate cancer using transrectal diffuse optical tomography (TRDOT) combined with transrectal 3D ultrasound (3D-TRUS). Measurements of prostate tissue optical properties were made on ex vivo human prostate samples prior to and post coagulation. Interstitial photothermal treatments were delivered to the ex vivo samples and monitored using an interstitial probe near the treatment fiber. After treatment, bulk optical properties were measured on native and coagulated zones of tissue. Changes in optical properties across the boundary between native and coagulated tissues were spatially mapped using a small diffuse reflectance probe. The optical property estimates and spatial information obtained using each method was compared.

  18. A new approach using coagulation rate constant for evaluation of turbidity removal

    NASA Astrophysics Data System (ADS)

    Al-Sameraiy, Mukheled

    2015-09-01

    Coagulation-flocculation-sedimentation processes for treating three levels of bentonite synthetic turbid water using date seeds (DS) and alum (A) coagulants were investigated in the previous research work. In the current research, the same experimental results were used to adopt a new approach on a basis of using coagulation rate constant as an investigating parameter to identify optimum doses of these coagulants. Moreover, the performance of these coagulants to meet (WHO) turbidity standard was assessed by introducing a new evaluating criterion in terms of critical coagulation rate constant (kc). Coagulation rate constants (k2) were mathematically calculated in second order form of coagulation process for each coagulant. The maximum (k2) values corresponded to doses, which were obviously to be considered as optimum doses. The proposed criterion to assess the performance of coagulation process of these coagulants was based on the mathematical representation of (WHO) turbidity guidelines in second order form of coagulation process stated that (k2) for each coagulant should be ≥ (kc) for each level of synthetic turbid water. For all tested turbid water, DS coagulant could not satisfy it. While, A coagulant could satisfy it. The results obtained in the present research are exactly in agreement with the previous published results in terms of finding optimum doses for each coagulant and assessing their performances. On the whole, it is recommended considering coagulation rate constant to be a new approach as an indicator for investigating optimum doses and critical coagulation rate constant to be a new evaluating criterion to assess coagulants' performance.

  19. Coagulant recovery and reuse for drinking water treatment.

    PubMed

    Keeley, James; Jarvis, Peter; Smith, Andrea D; Judd, Simon J

    2016-01-01

    Coagulant recovery and reuse from waterworks sludge has the potential to significantly reduce waste disposal and chemicals usage for water treatment. Drinking water regulations demand purification of recovered coagulant before they can be safely reused, due to the risk of disinfection by-product precursors being recovered from waterworks sludge alongside coagulant metals. While several full-scale separation technologies have proven effective for coagulant purification, none have matched virgin coagulant treatment performance. This study examines the individual and successive separation performance of several novel and existing ferric coagulant recovery purification technologies to attain virgin coagulant purity levels. The new suggested approach of alkali extraction of dissolved organic compounds (DOC) from waterworks sludge prior to acidic solubilisation of ferric coagulants provided the same 14:1 selectivity ratio (874 mg/L Fe vs. 61 mg/L DOC) to the more established size separation using ultrafiltration (1285 mg/L Fe vs. 91 mg/L DOC). Cation exchange Donnan membranes were also examined: while highly selective (2555 mg/L Fe vs. 29 mg/L DOC, 88:1 selectivity), the low pH of the recovered ferric solution impaired subsequent treatment performance. The application of powdered activated carbon (PAC) to ultrafiltration or alkali pre-treated sludge, dosed at 80 mg/mg DOC, reduced recovered ferric DOC contamination to <1 mg/L but in practice, this option would incur significant costs. The treatment performance of the purified recovered coagulants was compared to that of virgin reagent with reference to key water quality parameters. Several PAC-polished recovered coagulants provided the same or improved DOC and turbidity removal as virgin coagulant, as well as demonstrating the potential to reduce disinfection byproducts and regulated metals to levels comparable to that attained from virgin material.

  20. Coagulant recovery and reuse for drinking water treatment.

    PubMed

    Keeley, James; Jarvis, Peter; Smith, Andrea D; Judd, Simon J

    2016-01-01

    Coagulant recovery and reuse from waterworks sludge has the potential to significantly reduce waste disposal and chemicals usage for water treatment. Drinking water regulations demand purification of recovered coagulant before they can be safely reused, due to the risk of disinfection by-product precursors being recovered from waterworks sludge alongside coagulant metals. While several full-scale separation technologies have proven effective for coagulant purification, none have matched virgin coagulant treatment performance. This study examines the individual and successive separation performance of several novel and existing ferric coagulant recovery purification technologies to attain virgin coagulant purity levels. The new suggested approach of alkali extraction of dissolved organic compounds (DOC) from waterworks sludge prior to acidic solubilisation of ferric coagulants provided the same 14:1 selectivity ratio (874 mg/L Fe vs. 61 mg/L DOC) to the more established size separation using ultrafiltration (1285 mg/L Fe vs. 91 mg/L DOC). Cation exchange Donnan membranes were also examined: while highly selective (2555 mg/L Fe vs. 29 mg/L DOC, 88:1 selectivity), the low pH of the recovered ferric solution impaired subsequent treatment performance. The application of powdered activated carbon (PAC) to ultrafiltration or alkali pre-treated sludge, dosed at 80 mg/mg DOC, reduced recovered ferric DOC contamination to <1 mg/L but in practice, this option would incur significant costs. The treatment performance of the purified recovered coagulants was compared to that of virgin reagent with reference to key water quality parameters. Several PAC-polished recovered coagulants provided the same or improved DOC and turbidity removal as virgin coagulant, as well as demonstrating the potential to reduce disinfection byproducts and regulated metals to levels comparable to that attained from virgin material. PMID:26521220

  1. COAGULATION DYSREGULATION AS A BARRIER TO XENOTRANSPLANTATION IN THE PRIMATE

    PubMed Central

    Lin, Chih Che; Cooper, David K.C.; Dorling, Anthony

    2009-01-01

    Purpose of review The ability to generate pigs expressing a human complement regulatory protein (hCRP) and/or pigs in which the α1,3-galactosyltransferase gene has been knocked out (GT-KO) has largely overcome the barrier of hyperacute rejection of a pig organ transplanted into a primate. However, acute humoral xenograft rejection (AHXR), presenting as microvascular thrombosis and/or consumptive coagulopathy, remains a major hurdle to successful xenotransplantation. This review summarizes recent studies of the coagulation problems associated with xenotransplantation, and discusses potential strategies to overcome them. Recent progress Organ transplantation into nonhuman primates from GT-KO pigs that express a hCRP are not susceptible to hyperacute rejection. Nevertheless, most recipients of GT-KO and/or hCRP transgenic pig organs develop a consumptive coagulopathy, even when the graft remains functioning. This is associated with platelet aggregation, thrombocytopenia, anemia, and a tendency to bleed. Whilst this may reflect an ongoing immune response against the graft, (as exposure to anti-nonGal antibodies in vitro induces procoagulant changes in porcine ECs, even in the absence of complement), histological examination of the graft often shows only minimal features of immune injury, unlike grafts undergoing typical AHXR. Importantly, recent in vitro studies have indicated that the coincubation of porcine endothelial cells (ECs) with human platelets activates the platelets to express tissue factor, independent of a humoral immune response. These observations suggest that the use of organs from GT-KO pigs that express a hCRP may not be sufficient to prevent the development of a coagulation disorder following xenotransplantation, even if complete immunological tolerance can be achieved. Summary Both thrombotic microangiopathy and systemic consumptive coagulopathy are increasingly recognized as barriers to successful xenotransplantation. The breeding of transgenic

  2. Microwave Lightcraft concept

    NASA Technical Reports Server (NTRS)

    2004-01-01

    Looking like an alien space ship or a flying saucer the Microwave Lightcraft is an unconventional launch vehicle approach for delivering payload to orbit using power transmitted via microwaves. Microwaves re beamed from either a ground station or an orbiting solar power satellite to the lightcraft. The energy received breaks air molecules into a plasma and a magnetohydrodynamic fanjet provides the lifting force. Only a small amount of propellant is required for circulation, attitude control and deorbit.

  3. Optical and thermal simulations of noninvasive laser coagulation of the human vas deferens

    NASA Astrophysics Data System (ADS)

    Schweinsberger, Gino R.; Cilip, Christopher M.; Trammell, Susan R.; Cherukuri, Harish; Fried, Nathaniel M.

    2011-03-01

    Successful noninvasive laser coagulation of the canine vas deferens, in vivo, has been previously reported. However, there is a significant difference between the optical properties of canine and human skin. In this study, Monte Carlo simulations of light transport through tissue and heat transfer simulations are performed to determine the feasibility of noninvasive laser vasectomy in humans. A laser wavelength of 1064 nm was chosen for deep optical penetration in tissue. Monte Carlo simulations determined the spatial distribution of absorbed photons inside the tissue layers (epidermis, dermis, and vas). The results were convolved with a 3-mm-diameter laser beam, and then used as the spatial heat source for the heat transfer model. A laser pulse duration of 500 ms and pulse rate of 1 Hz, and cryogen spray cooling were incident on the tissue for 60 s. Average laser power (5-9 W), cryogen pulse duration (60-100 ms), cryogen cooling rate (0.5-1.0 Hz), and increase in optical transmission due to optical clearing (0-50 %), were studied. After application of an optical clearing agent to increase skin transmission by 50%, an average laser power of 6 W, cryogen pulse duration of 60 ms, and cryogen cooling rate of 1 Hz resulted in vas temperatures of ~ 60°C, sufficient for thermal coagulation, while 1 mm of the skin surface (epidermis and dermis) remained at a safe temperature of ~ 45 °C. Monte Carlo and heat transfer simulations indicate that it is possible to noninvasively thermally coagulate the human vas without adverse effects (e.g. scrotal skin burns), if an optical clearing agent is applied to the skin prior to the procedure.

  4. Advanced microwave processing concepts

    SciTech Connect

    Lauf, R.J.; McMillan, A.D.; Paulauskas, F.L.

    1997-04-01

    The purpose of this work is to explore the feasibility of several advanced microwave processing concepts to develop new energy-efficient materials and processes. The project includes two tasks: (1) commercialization of the variable-frequency microwave furnace; and (2) microwave curing of polymeric materials. The variable frequency microwave furnace, whose initial conception and design was funded by the AIM Materials Program, allows the authors, for the first time, to conduct microwave processing studies over a wide frequency range. This novel design uses a high-power traveling wave tube (TWT) originally developed for electronic warfare. By using this microwave source, one can not only select individual microwave frequencies for particular experiments, but also achieve uniform power densities over a large area by the superposition of many different frequencies. Microwave curing of various thermoset resins will be studied because it holds the potential of in-situ curing of continuous-fiber composites for strong, lightweight components or in-situ curing of adhesives, including metal-to-metal. Microwave heating can shorten curing times, provided issues of scaleup, uniformity, and thermal management can be adequately addressed.

  5. Plasma enhanced microwave joining

    SciTech Connect

    Yiin, T.; Barmatz, M.; Sayir, A.

    1995-12-31

    A new method for plasma enhanced microwave joining of high purity (99.8%) alumina has been developed. The controlled application of a plasma between the adjoining surfaces of two rods initially heats the microwave-low-absorbing alumina rods to temperatures high enough for them to absorb microwave energy efficiently. With this technology, the adjacent surfaces of alumina rods can be melted and welded together in less than three minutes using approximately 400 watts of microwave energy. Four point bending tests measured fracture strengths of up to 130 MPa at the joined interface. Optical and SEM micrographs indicated that exaggerated grain growth prevailed for all joints studied.

  6. Advanced microwave processing concepts

    SciTech Connect

    Lauf, R.J.; McMillan, A.D.; Paulauskas, F.L.

    1995-05-01

    The purpose of this work is to explore the feasibility of several advanced microwave processing concepts to develop new energy-efficient materials and processes. The project includes two tasks: (1) commercialization of the variable-frequency microwave furnace; and (2) microwave curing of polymer composites. The variable frequency microwave furnace, whose initial conception and design was funded by the AIC Materials Program, will allow us, for the first time, to conduct microwave processing studies over a wide frequency range. This novel design uses a high-power traveling wave tube (TWT) originally developed for electronic warfare. By using this microwave source, one can not only select individual microwave frequencies for particular experiments, but also achieve uniform power densities over a large area by the superposition of many different frequencies. Microwave curing of thermoset resins will be studied because it hold the potential of in-situ curing of continuous-fiber composites for strong, lightweight components. Microwave heating can shorten curing times, provided issues of scaleup, uniformity, and thermal management can be adequately addressed.

  7. Cosmic dust synthesis by accretion and coagulation

    NASA Technical Reports Server (NTRS)

    Praburam, G.; Goree, J.

    1995-01-01

    The morphology of grains grown by accretion and coagulation is revaled by a new laboratory method of synthesizing cosmic dust analogs. Submicron carbon particles, grown by accretion of carbon atoms from a gas, have a spherical shape with a cauliflower-like surface and an internal micro-structure of radial columns. This shape is probably common for grains grown by accretion at a temperature well below the melting point. Coagulated grains, consisting of spheres that collided to form irregular strings, were also synthesized. Another shape we produced had a bumpy non- spherical morphology, like an interplanetary particle collected in the terrestrial stratosphere. Besides these isolated grains, large spongy aggregates of nanometer-size particles were also found for various experimental conditions. Grains were synthesized using ions to sputter a solid target, producing an atomic vapor at a low temperature. The ions were provided by a plasma, which also provided electrostatic levitation of the grains during their growth. The temporal development of grain growth was studied by extinguishing the plasma after various intervals.

  8. Bradykinin: Inflammatory Product of the Coagulation System.

    PubMed

    Hofman, Zonne; de Maat, Steven; Hack, C Erik; Maas, Coen

    2016-10-01

    Episodic and recurrent local cutaneous or mucosal swelling are key features of angioedema. The vasoactive agents histamine and bradykinin are highly implicated as mediators of these swelling attacks. It is challenging to assess the contribution of bradykinin to the clinical expression of angioedema, as accurate biomarkers for the generation of this vasoactive peptide are still lacking. In this review, we will describe the mechanisms that are responsible for bradykinin production in hereditary angioedema (HAE) and the central role that the coagulation factor XII (FXII) plays in it. Evidently, several plasma parameters of coagulation change during attacks of HAE and may prove valuable biomarkers for disease activity. We propose that these changes are secondary to vascular leakage, rather than a direct consequence of FXII activation. Furthermore, biomarkers for fibrinolytic system activation (i.e. plasminogen activation) also change during attacks of HAE. These changes may reflect triggering of the bradykinin-forming mechanisms by plasmin. Finally, multiple lines of evidence suggest that neutrophil activation and mast-cell activation are functionally linked to bradykinin production. We put forward the paradigm that FXII functions as a 'sensor molecule' to detect conditions that require bradykinin release via crosstalk with cell-derived enzymes. Understanding the mechanisms that drive bradykinin generation may help to identify angioedema patients that have bradykinin-mediated disease and could benefit from a targeted treatment. PMID:27122021

  9. Perioperative coagulation management--fresh frozen plasma.

    PubMed

    Kor, Daryl J; Stubbs, James R; Gajic, Ognjen

    2010-03-01

    Clinical studies support the use of perioperative fresh frozen plasma (FFP) in patients who are actively bleeding with multiple coagulation factor deficiencies and for the prevention of dilutional coagulopathy in patients with major trauma and/or massive haemorrhage. In these settings, current FFP dosing recommendations may be inadequate. However, a substantial proportion of FFP is transfused in non-bleeding patients with mild elevations in coagulation screening tests. This practice is not supported by the literature, is unlikely to be of benefit and unnecessarily exposes patients to the risks of FFP. The role of FFP in reversing the effects of warfarin anticoagulation is dependent on the clinical context and availability of alternative agents. Although FFP is commonly transfused in patients with liver disease, this practice needs broad reconsideration. Adverse effects of FFP include febrile and allergic reactions, transfusion-associated circulatory overload and transfusion-related acute lung injury. The latter is the most serious complication, being less common with the preferential use of non-alloimmunised, male-donor predominant plasma. FP24 and thawed plasma are alternatives to FFP with similar indications for administration. Both provide an opportunity for increasing the safe plasma donor pool. Although prothrombin complex concentrates and factor VIIa may be used as alternatives to FFP in a variety of specific clinical contexts, additional study is needed.

  10. Bradykinin: Inflammatory Product of the Coagulation System.

    PubMed

    Hofman, Zonne; de Maat, Steven; Hack, C Erik; Maas, Coen

    2016-10-01

    Episodic and recurrent local cutaneous or mucosal swelling are key features of angioedema. The vasoactive agents histamine and bradykinin are highly implicated as mediators of these swelling attacks. It is challenging to assess the contribution of bradykinin to the clinical expression of angioedema, as accurate biomarkers for the generation of this vasoactive peptide are still lacking. In this review, we will describe the mechanisms that are responsible for bradykinin production in hereditary angioedema (HAE) and the central role that the coagulation factor XII (FXII) plays in it. Evidently, several plasma parameters of coagulation change during attacks of HAE and may prove valuable biomarkers for disease activity. We propose that these changes are secondary to vascular leakage, rather than a direct consequence of FXII activation. Furthermore, biomarkers for fibrinolytic system activation (i.e. plasminogen activation) also change during attacks of HAE. These changes may reflect triggering of the bradykinin-forming mechanisms by plasmin. Finally, multiple lines of evidence suggest that neutrophil activation and mast-cell activation are functionally linked to bradykinin production. We put forward the paradigm that FXII functions as a 'sensor molecule' to detect conditions that require bradykinin release via crosstalk with cell-derived enzymes. Understanding the mechanisms that drive bradykinin generation may help to identify angioedema patients that have bradykinin-mediated disease and could benefit from a targeted treatment.

  11. Coagulation chemistries for silica removal from cooling tower water.

    SciTech Connect

    Nyman, May Devan; Altman, Susan Jeanne; Stewart, Tom

    2010-02-01

    The formation of silica scale is a problem for thermoelectric power generating facilities, and this study investigated the potential for removal of silica by means of chemical coagulation from source water before it is subjected to mineral concentration in cooling towers. In Phase I, a screening of many typical as well as novel coagulants was carried out using concentrated cooling tower water, with and without flocculation aids, at concentrations typical for water purification with limited results. In Phase II, it was decided that treatment of source or make up water was more appropriate, and that higher dosing with coagulants delivered promising results. In fact, the less exotic coagulants proved to be more efficacious for reasons not yet fully determined. Some analysis was made of the molecular nature of the precipitated floc, which may aid in process improvements. In Phase III, more detailed study of process conditions for aluminum chloride coagulation was undertaken. Lime-soda water softening and the precipitation of magnesium hydroxide were shown to be too limited in terms of effectiveness, speed, and energy consumption to be considered further for the present application. In Phase IV, sodium aluminate emerged as an effective coagulant for silica, and the most attractive of those tested to date because of its availability, ease of use, and low requirement for additional chemicals. Some process optimization was performed for coagulant concentration and operational pH. It is concluded that silica coagulation with simple aluminum-based agents is effective, simple, and compatible with other industrial processes.

  12. Impact of source water quality on multiwall carbon nanotube coagulation.

    PubMed

    Holbrook, R David; Kline, Carly N; Filliben, James J

    2010-02-15

    Potable water treatment facilities may become an important barrier in limiting human exposure to engineered nanoparticles (ENPs) as ENPs begin to contaminate natural aquatic systems. Coagulation of ENPs will likely be a major process that controls the ENP fate and the subsequent removal in the aqueous phase. The influence that source water quality has on ENP coagulation is still relatively unknown. The current study uses a 2(3) x 2(4-1) fractional factorial design to identify seven key surface water constituents that affect multiwall carbon nanotube (MWCNT) coagulation. These seven factors include: influent concentrations of kaolin, organic matter (OM), alginate, and MWCNTs; type and dosage of coagulant; and method of MWCNT stabilization. MWCNT removal was most affected by coagulant type and dosage, with alum outperforming ferric chloride at circumneutral pH. None of the other factors were universally significant but instead depended on coagulant type, dose, and method of stabilization. In all cases where factors were found to have a significant impact on MWCNT removal, however, the relationship was consistent: higher influent concentrations of kaolin and alginate improved MWCNT removal while higher influent concentrations of OM hindered MWCNT coagulation. Once MWCNTs are released into the natural environment, their coagulation behavior will be determined by the type and quantity of pollutants (i.e., factors) present in the aquatic environment and are governed by the same mechanisms that influence the colloidal stability of "natural" nanoparticles. PMID:20092299

  13. Metals in airpollution particles decrease whole blood coagulation time

    EPA Science Inventory

    The mechanism underlying the pro-coagulative effect of air pollution particle exposure is not known. We tested the postulate that 1) the soluble fraction ofan air pollution particle can affect whole blood coagulation time and 2) metals included in the soluble fraction are respons...

  14. Analysis and optimization of coagulation and flocculation process

    NASA Astrophysics Data System (ADS)

    Saritha, V.; Srinivas, N.; Srikanth Vuppala, N. V.

    2015-02-01

    Natural coagulants have been the focus of research of many investigators through the last decade owing to the problems caused by the chemical coagulants. Optimization of process parameters is vital for the effectiveness of coagulation process. In the present study optimization of parameters like pH, dose of coagulant and mixing speed were studied using natural coagulants sago and chitin in comparison with alum. Jar test apparatus was used to perform the coagulation. The results showed that the removal of turbidity was up to 99 % by both alum and chitin at lower doses of coagulant, i.e., 0.1-0.3 g/L, whereas sago has shown a reduction of 70-100 % at doses of 0.1 and 0.2 g/L. The optimum conditions observed for sago were 6 and 7 whereas chitin was stable at all pH ranges, lower coagulant doses, i.e., 0.1-0.3 g/L and mixing speed—rapid mixing at 100 rpm for 10 min and slow mixing 20 rpm for 20 min. Hence, it can be concluded that sago and chitin can be used for treating water even with large seasonal variation in turbidity.

  15. Medical imaging with a microwave tomographic scanner.

    PubMed

    Jofre, L; Hawley, M S; Broquetas, A; de los Reyes, E; Ferrando, M; Elias-Fusté, A R

    1990-03-01

    A microwave tomographic scanner for biomedical applications is presented. The scanner consists of a 64 element circular array with a useful diameter of 20 cm. Electronically scanning the transmitting and receiving antennas allows multiview measurements with no mechanical movement. Imaging parameters are appropriate for medical use: a spatial resolution of 7 mm and a contrast resolution of 1% for a measurement time of 3 s. Measurements on tissue-simulating phantoms and volunteers, together with numerical simulations, are presented to assess the system for absolute imaging of tissue distribution and for differential imaging of physiological, pathological, and induced changes in tissues. PMID:2329003

  16. Disseminated intravascular coagulation in term and preterm neonates.

    PubMed

    Veldman, Alex; Fischer, Doris; Nold, Marcel F; Wong, Flora Y

    2010-06-01

    Among critically ill patients, the risk of developing disseminated intravascular coagulation (DIC) is probably highest in neonates. Low plasma reserves in pro- and anticoagulant coagulation factors, intravascular volume contraction after birth, and a high incidence of hypoxia and sepsis in critically ill newborns rapidly lead to a decompensation of the coagulation system in this population. Global coagulation tests and single-factor plasma levels have to be interpreted in the context of age-corrected normal ranges. Platelet consumption and reduced protein C plasma levels have diagnostic value; the latter also has prognostic potential in neonates with DIC and sepsis. Therapeutic success relies heavily on reversal of the underlying condition. Some coagulation-specific therapies have been explored in small studies and case series with varying success and sometimes conflicting results. Therefore, larger controlled trials in this common and serious condition are urgently needed.

  17. Management of cancer-associated disseminated intravascular coagulation.

    PubMed

    Levi, Marcel

    2016-04-01

    Cancer may be complicated by the occurrence of disseminated intravascular coagulation (DIC). DIC is characterized by a widespread and intravascular activation of coagulation (leading to intravascular fibrin deposition) and simultaneous consumption of coagulation factors and platelets (potentially resulting in bleeding). Clinically, DIC in cancer has in general a less fulminant presentation than the types of DIC complicating sepsis and trauma. A more gradual, but also more chronic, systemic activation of coagulation can proceed subclinically. Eventually this process may lead to exhaustion of platelets and coagulation factors and bleeding (for example at the site of the tumor) may be the first clinical symptom indicating the presence of DIC. In some cases, the clinical presentation of DIC in cancer may be reminiscent of thrombotic microangiopathies, which is understandable in view of the role of endothelium in both conditions. The therapeutic cornerstone of DIC is treatment of the underlying disorder but supportive treatment, specifically aimed at the hemostatic system may be required. PMID:27067981

  18. Analysis of Coagulation Processes for the Groundwater Treatment

    NASA Astrophysics Data System (ADS)

    Albrektiene, Ramune; Rimeika, Mindaugas; Jurkiene, Anzelika

    2013-06-01

    Coagulation process is widely used for removal of natural organic matters (NOM) and for water color intensity reduction. The efficiency of coagulation process depends on many different factors. Aim of this research is to investigate coagulation process under different conditions. During the research coagulation process was held at different pH values (5.5; 6.0; 6.5), at different water alkalinity and at different water turbidity. It was found that removal of NOM and water color intensity reduction is most effective at pH values from 5.5 to 6.0. At these conditions water color intensity reduction is most efficient, but removal of dissolved organic carbon (DOC) is the lowest. During the research it was also found that different water alkalinity and turbidity do not make significant influence on efficiency of coagulation process.

  19. Performance and characterization of a new tannin-based coagulant

    NASA Astrophysics Data System (ADS)

    Beltrán-Heredia, J.; Sánchez-Martín, J.; Gómez-Muñoz, C.

    2012-09-01

    Diethanolamine and formaldehyde were employed to cationize tannins from black wattle. This novel coagulant called CDF was functionally characterized in removing sodium dodecylbenzene sulfonate (anionic surfactant) and Palatine Fast Black WAN (azoic dye). Refined tannin-derived commercial coagulants exhibited similar efficiency, while CDF presented higher coagulant ability than alum, a usual coagulant agent. Low doses of CDF (ca. 100 mg L-1) were able to remove more than 70 % of surfactant and more than 85 % of dye (initial pollutant concentration of ca. 100 mg L-1) and it presented no temperature affection and worked at a relatively wide pH range. Surfactant and dye removal responded to the classical coagulant-and-adsorption models, such as Frumkin-Fowler-Guggenheim or Gu and Zhu in the case of surfactant, and Langmuir and Freundlich in the case of dye.

  20. Comparison of 808, 980, and 1075nm lasers for noninvasive thermal coagulation of the canine vas deferens, ex vivo

    NASA Astrophysics Data System (ADS)

    Cilip, Christopher M.; Schweinsberger, Gino R.; Fried, Nathaniel M.

    2011-03-01

    Successful noninvasive laser coagulation of the canine vas deferens, in vivo, has been previously reported. However, the therapeutic window for treatment is relatively narrow. This study determines the dependence of vas thermal coagulation on laser wavelength for development of a noninvasive laser vasectomy procedure. Noninvasive laser coagulation of canine vas tissue, ex vivo, was performed using three commonly available near-infrared laser wavelengths: 808, 980, and 1075 nm. Each laser delivered an average power of 9.2 W, 500-ms pulse duration, pulse rate of 1.0-Hz, and 3.2-mm diameter laser spot, synchronized with cryogen spray cooling of the scrotal skin surface for a total treatment time of 60 s. Vas burst pressures were measured to determine strength of vas closure and compared to previously reported ejaculation pressures. Gross inspection of vas and scrotal skin was also performed immediately after the procedure as an indicator of thermal coagulation and skin burns. The 1075 nm laser produced the highest vas burst pressures (288 +/- 28 mmHg), significantly greater than previously reported ejaculation pressures (136 +/- 29 mmHg). The 808 nm wavelength produced insufficient vas burst pressures of 141 +/- 61 mmHg, and minor scrotal skin burns were observed in at least one case. The 980 nm wavelength was unable to produce thermal coagulation of the vas, with low burst pressures (89 +/- 58 mmHg) and severe scrotal skin burns. The 1075 nm wavelength was the only near-IR wavelength that consistently thermally coagulated the vas with a strong degree of closure and without any scrotal skin burns.

  1. Enhanced arsenite removal through surface-catalyzed oxidative coagulation treatment.

    PubMed

    Li, Yue; Bland, Garret D; Yan, Weile

    2016-05-01

    Arsenic being a naturally-occurring groundwater contaminant is subject to stringent water quality regulations. Coagulation and adsorption are widely used methods to treat arsenic-contaminated water, however, these treatments have been reported to be less efficient for the removal of arsenite (As(III)) than arsenate (As(V)). In this study, the feasibility of in situ oxidation of As(III) during coagulation was investigated in two systems: Fe(II) or H2O2-assisted oxidative coagulation treatment using ferric chloride as the coagulant. This setup exploits the catalytic property of the fresh formed Fe(III) hydroxide colloids in coagulation suspension to mediate the production of reactive oxidants capable of As(III) oxidation. Fe(II)-assisted coagulation brought about small improvements in As(III) removal compared to treatment with Fe(III) coagulant alone, however, its arsenic removal efficiency is strongly dependent on pH (observed optimal pH = 7-9). Addition of H2O2 together with ferric chloride led to a significant enhancement in arsenic retention at pH 6-8, with final arsenic concentrations well below the U.S.EPA regulatory limit (10 μg/L). H2O2-assisted oxidative coagulation can attain reliable As(III) removal over a broad pH range of 4-9. Radical quenching experiments reveal the participation of superoxide radical in As(III) removal in the oxidative coagulation systems. Phosphate (at > 0.1 mM) strongly suppresses As(III) removal efficiency, whereas carbonate and humic acid pose a minor impact. Overall, the results suggest that a low dose addition of H2O2 along with ferric coagulant is a feasible method for the existing water treatment facilities to achieve improved As(III) removal efficiency. PMID:26897520

  2. Current Pathological and Laboratory Considerations in the Diagnosis of Disseminated Intravascular Coagulation.

    PubMed

    Toh, Cheng Hock; Alhamdi, Yasir; Abrams, Simon T

    2016-11-01

    Systemically sustained thrombin generation in vivo is the hallmark of disseminated intravascular coagulation (DIC). Typically, this is in response to a progressing disease state that is associated with significant cellular injury. The etiology could be infectious or noninfectious, with the main pathophysiological mechanisms involving cross-activation among coagulation, innate immunity, and inflammatory responses. This leads to consumption of both pro- and anticoagulant factors as well as endothelial dysfunction and disrupted homeostasis at the blood vessel wall interface. In addition to the release of tissue plasminogen activator (tPA) and soluble thrombomodulin (sTM) following cellular activation and damage, respectively, there is the release of damage-associated molecular patterns (DAMPs) such as extracellular histones and cell-free DNA. Extracellular histones are increasingly recognized as significantly pathogenic in critical illnesses through direct cell toxicity, the promotion of thrombin generation, and the induction of neutrophil extracellular trap (NET) formation. Clinically, high circulating levels of histones and histone-DNA complexes are associated with multiorgan failure, DIC, and adverse patient outcomes. Their measurements as well as that of other DAMPs and molecular markers of thrombin generation are not yet applicable in the routine diagnostic laboratory. To provide a practical diagnostic tool for acute DIC, a composite scoring system using rapidly available coagulation tests is recommended by the International Society on Thrombosis and Haemostasis. Its usefulness and limitations are discussed alongside the advances and unanswered questions in DIC pathogenesis. PMID:27578502

  3. Postoperative MRI in patients undergoing interstitial laser coagulation thermotherapy of benign prostatic hyperplasia

    SciTech Connect

    Mueller-Lisse, U.G.; Heuck, A.F.; Scheidler, H.J.; Reiser, M.F.

    1996-03-01

    We conducted MRI of the effects of laser-induced thermal therapy (LITT) in benign prostatic hyperplasia (BPH). Eighteen patients (average age 64 years) were examined with MRI 24-48 h before and after LITT of BPH. Sagittal and axial T2-weighted FSE MR images were evaluated for signs of coagulation necrosis in the prostate gland and the presence of intra- and extraprostatic edema. Coagulation areas showed as a hypointense central core with a hyperintense rim. Intraprostatic edema led to a volume increase of 18-108% both in the central and in the total gland. Periprostatic edema was severe in preprostatic and prevesical tissue as well as lateral to the prostate, moderate in the presacral space, and mild perirectally and dorsal to the prostate. Follow-up examinations 2 weeks to 6 months after LITT in five patients showed decrease of coagulation necrosis volume, prostate size, and edema. MRI appears to be a reliable method to monitor LITT effects in patients with BPH. 22 refs., 5 figs., 4 tabs.

  4. Current Pathological and Laboratory Considerations in the Diagnosis of Disseminated Intravascular Coagulation.

    PubMed

    Toh, Cheng Hock; Alhamdi, Yasir; Abrams, Simon T

    2016-11-01

    Systemically sustained thrombin generation in vivo is the hallmark of disseminated intravascular coagulation (DIC). Typically, this is in response to a progressing disease state that is associated with significant cellular injury. The etiology could be infectious or noninfectious, with the main pathophysiological mechanisms involving cross-activation among coagulation, innate immunity, and inflammatory responses. This leads to consumption of both pro- and anticoagulant factors as well as endothelial dysfunction and disrupted homeostasis at the blood vessel wall interface. In addition to the release of tissue plasminogen activator (tPA) and soluble thrombomodulin (sTM) following cellular activation and damage, respectively, there is the release of damage-associated molecular patterns (DAMPs) such as extracellular histones and cell-free DNA. Extracellular histones are increasingly recognized as significantly pathogenic in critical illnesses through direct cell toxicity, the promotion of thrombin generation, and the induction of neutrophil extracellular trap (NET) formation. Clinically, high circulating levels of histones and histone-DNA complexes are associated with multiorgan failure, DIC, and adverse patient outcomes. Their measurements as well as that of other DAMPs and molecular markers of thrombin generation are not yet applicable in the routine diagnostic laboratory. To provide a practical diagnostic tool for acute DIC, a composite scoring system using rapidly available coagulation tests is recommended by the International Society on Thrombosis and Haemostasis. Its usefulness and limitations are discussed alongside the advances and unanswered questions in DIC pathogenesis.

  5. MICROWAVES IN ORGANIC SYNTHESIS

    EPA Science Inventory

    The effect of microwaves, a non-ionizing radiation, on organic reactions is described both in polar solvents and under solvent-free conditions. The special applications are highlighted in the context of solventless organic synthesis which involve microwave (MW) exposure of neat r...

  6. Microwave device investigations

    NASA Technical Reports Server (NTRS)

    Choudhury, K. K. D.; Haddad, G. I.; Kwok, S. P.; Masnari, N. A.; Trew, R. J.

    1972-01-01

    Materials, devices and novel schemes for generation, amplification and detection of microwave and millimeter wave energy are studied. Considered are: (1) Schottky-barrier microwave devices; (2) intermodulation products in IMPATT diode amplifiers; and (3) harmonic generation using Read diode varactors.

  7. Television Microwave--1971.

    ERIC Educational Resources Information Center

    Peterson, Roger E.

    Since it became a reality just before World War II, terrestrial microwave has improved in systems and equipments, but with the improvements have come higher costs. Television microwave costs are so high because users are demanding more capability, land prices have increased, operating costs are higher, and there is frequency congestion along many…

  8. Microwave processing of ceramics

    SciTech Connect

    Katz, J.D.

    1993-01-01

    Recent work in the areas of microwave processing and joining of ceramics is briefly reviewed. Advantages and disadvantages of microwave processing as well as some of the current issues in the field are discussed. Current state and potential for future commercialization of this technology is also addressed.

  9. Microwave processing of ceramics

    SciTech Connect

    Katz, J.D.

    1993-04-01

    Recent work in the areas of microwave processing and joining of ceramics is briefly reviewed. Advantages and disadvantages of microwave processing as well as some of the current issues in the field are discussed. Current state and potential for future commercialization of this technology is also addressed.

  10. Variable frequency microwave heating apparatus

    DOEpatents

    Bible, Don W.; Lauf, Robert J.; Johnson, Arvid C.; Thigpen, Larry T.

    1999-01-01

    A variable frequency microwave heating apparatus (10) designed to allow modulation of the frequency of the microwaves introduced into a multi-mode microwave cavity (34) for testing or other selected applications. The variable frequency microwave heating apparatus (10) includes a microwave signal generator (12) and a high-power microwave amplifier (20) or a high-power microwave oscillator (14). A power supply (22) is provided for operation of the high-power microwave oscillator (14) or microwave amplifier (20). A directional coupler (24) is provided for detecting the direction and amplitude of signals incident upon and reflected from the microwave cavity (34). A first power meter (30) is provided for measuring the power delivered to the microwave furnace (32). A second power meter (26) detects the magnitude of reflected power. Reflected power is dissipated in the reflected power load (28).

  11. Variable frequency microwave heating apparatus

    SciTech Connect

    Bible, D.W.; Lauf, R.J.; Johnson, A.C.; Thigpen, L.T.

    1999-10-05

    A variable frequency microwave heating apparatus (10) designed to allow modulation of the frequency of the microwaves introduced into a multi-mode microwave cavity (34) for testing or other selected applications. The variable frequency microwave heating apparatus (10) includes a microwave signal generator (12) and a high-power microwave amplifier (20) or a high-power microwave oscillator (14). A power supply (22) is provided for operation of the high-power microwave oscillator (14) or microwave amplifier (20). A directional coupler (24) is provided for detecting the direction and amplitude of signals incident upon and reflected from the microwave cavity (34). A first power meter (30) is provided for measuring the power delivered to the microwave furnace (32). A second power meter (26) detects the magnitude of reflected power. Reflected power is dissipated in the reflected power load (28).

  12. Fat emulsion infusion potentiates coagulation activation during human endotoxemia.

    PubMed

    van der Poll, T; Coyle, S M; Levi, M; Boermeester, M A; Braxton, C C; Jansen, P M; Hack, C E; Lowry, S F

    1996-01-01

    Intravenous fat emulsions are frequently given to malnourished patients who are prone to suffer from infectious complications. As injection of low dose endotoxin represents a model to study the human response to acute infection, we sought to determine the effect of lipid emulsion infusion on endotoxin-induced activation of the hemostatic mechanism in man. Ten healthy men received a bolus intravenous injection of endotoxin (lot EC-5; 20 U/kg) midway through a 4-h infusion (125 ml/h) of either dextrose 5% (n = 5) or Intralipid 20% (n = 5). Lipid infusion potentiated endotoxin-induced coagulation activation, as indicated by higher plasma levels of the prothrombin fragment F1 + 2 and of thrombin-antithrombin III complexes (both p < 0.05 for the difference between groups). However, lipid infusion did not influence the fibrinolytic response to intravenous endotoxin, as reflected by similar increases in the levels of tissue-type plasminogen activator and plasmin-alpha 2-antiplasmin complexes in both groups. Endotoxin-induced appearance of plasminogen activator inhibitor type I was enhanced by lipid infusion (p < 0.05). These data suggest that fat emulsion infusion may enhance the tendency towards thrombotic complications in patients with infections.

  13. Microwave hydrology: A trilogy

    NASA Technical Reports Server (NTRS)

    Stacey, J. M.; Johnston, E. J.; Girard, M. A.; Regusters, H. A.

    1985-01-01

    Microwave hydrology, as the term in construed in this trilogy, deals with the investigation of important hydrological features on the Earth's surface as they are remotely, and passively, sensed by orbiting microwave receivers. Microwave wavelengths penetrate clouds, foliage, ground cover, and soil, in varying degrees, and reveal the occurrence of standing liquid water on and beneath the surface. The manifestation of liquid water appearing on or near the surface is reported by a microwave receiver as a signal with a low flux level, or, equivalently, a cold temperature. Actually, the surface of the liquid water reflects the low flux level from the cosmic background into the input terminals of the receiver. This trilogy describes and shows by microwave flux images: the hydrological features that sustain Lake Baykal as an extraordinary freshwater resource; manifestations of subsurface water in Iran; and the major water features of the Congo Basin, a rain forest.

  14. Microwave ion source

    SciTech Connect

    Leung, Ka-Ngo; Reijonen, Jani; Thomae, Rainer W.

    2005-07-26

    A compact microwave ion source has a permanent magnet dipole field, a microwave launcher, and an extractor parallel to the source axis. The dipole field is in the form of a ring. The microwaves are launched from the middle of the dipole ring using a coaxial waveguide. Electrons are heated using ECR in the magnetic field. The ions are extracted from the side of the source from the middle of the dipole perpendicular to the source axis. The plasma density can be increased by boosting the microwave ion source by the addition of an RF antenna. Higher charge states can be achieved by increasing the microwave frequency. A xenon source with a magnetic pinch can be used to produce intense EUV radiation.

  15. Chemical sympathectomy attenuates inflammation, glycocalyx shedding and coagulation disorders in rats with acute traumatic coagulopathy.

    PubMed

    Xu, Lin; Yu, Wen-Kui; Lin, Zhi-Liang; Tan, Shan-Jun; Bai, Xiao-Wu; Ding, Kai; Li, Ning

    2015-03-01

    Acute traumatic coagulopathy (ATC) may trigger sympathoadrenal activation associated with endothelial damage and coagulation disturbances. Overexcitation of sympathetic nerve in this state would disrupt sympathetic-vagal balance, leading to autonomic nervous system dysfunction. The aim of this study was to evaluate the autonomic function in ATC and its influence on inflammation, endothelial and coagulation activation. Male Sprague-Dawley rats were randomly assigned to sham, ATC control (ATCC) and ATC with sympathectomy by 6-hydroxydopamine (ATCS) group. Sham animals underwent the same procedure without trauma and bleeding. Following trauma and hemorrhage, rats underwent heart rate variability (HRV) test, which predicts autonomic dysfunction through the analysis of variation in individual R-R intervals. Then, rats were euthanized at baseline, and at 0, 1 and 2 h after shock and blood gas, conventional coagulation test and markers of inflammation, coagulation, fibrinolysis, endothelial damage and catecholamine were measured. HRV showed an attenuation of total power and high frequency, along with a rise of low frequency and low frequency : high frequency ratio in the ATC rats, which both were reversed by sympathectomy in the ATCS group. Additionally, sympathetic denervation significantly suppressed the increase of proinflammatory cytokines, tumor necrosis factor-α and the fibrinolysis markers including tissue-type plasminogen activator and plasmin-antiplasmin complex. Serum catecholamine, soluble thrombomodulin and syndecan-1 were also effectively inhibited by sympathectomy. These data indicated that autonomic dysfunction in ATC involves both sympathetic activation and parasympathetic inhibition. Moreover, sympathectomy yielded anti-inflammatory, antifibrinolysis and endothelial protective effects in rats with ATC. The role of autonomic neuropathy in ATC should be explored further.

  16. [Effect of xuebijing oral effervescent tablet on endotoxin induced fever and disseminated intravascular coagulation rabbit model].

    PubMed

    Guo, Shan-Shan; Gao, Ying-Jie; Tian, Xue-Chuan; Jin, Ya-Hong; Liu, Fang-Zhou; Cui, Xiao-Lan

    2013-08-01

    In order to discover the mechanism of Xuebijing oral effervescent tablet (XBJOET) to treat infectious diseases, the effect of XBJOET on endotoxin induced rabbit fever and disseminated intravascular coagulation (DIC) was investigated. Auricle microcirculation in rabbit was detected by laser speckle blood perfusion imager system; coagulation function was measured by coagulation analyzer, fibrinolytic system was quantified by Elisa assay and micro thrombosis in tissues was observed with HE staining under light microscope. The results demonstrated that the body temperature of rabbit decreased significantly at 1-3 h after administration with 4.8, 2.4 and 1.2 g x kg(-1) XBJOET to endotoxin induced DIC rabbit model, the auricle microcirculation blood flow in model group (54.45 +/- 14.53) PU was lower than that in control group (77.18 +/- 12.32) PU. The auricle microcirculation blood flow increased markedly and there was significant difference between model group and 1.2 g x kg(-1) XBJOET group. There was significant difference between model group and control group in the content of PAI1 and FIB. The PAI1 levels in model and control groups were (30.48 +/- 2.46) ng x mL(-1) and (20.93 +/- 3.25) ng x mL(-1), respectively. The FIB levels in model and control group were (3.34 +/- 1.09) g x L(-1) and (4.84 +/- 1.10) g x L(-1), respectively. The content of PAI1 in rabbit plasma decreased notably, there were significant differences between model group and 4.8, 2.4 g x kg(-1) XBJOET groups. On the contrary the content of FIB increased. XBJOET possessed pharmacological activities of curing infectious fever and DIC, the mechanism of which is related to amelioration of microcirculation disturbance, inhibition of fibrinolytic system activation and coagulation and micro thrombosis elimination.

  17. Effects of Rivaroxaban on Platelet Activation and Platelet–Coagulation Pathway Interaction

    PubMed Central

    Heitmeier, Stefan; Laux, Volker

    2015-01-01

    Introduction: Activation of coagulation and platelets is closely linked, and arterial thrombosis involves coagulation activation as well as platelet activation and aggregation. In these studies, we investigated the possible synergistic effects of rivaroxaban in combination with antiplatelet agents on thrombin generation and platelet aggregation in vitro and on arterial thrombosis and hemostasis in rat models. Materials and Methods: Thrombin generation was measured by the Calibrated Automated Thrombogram method (0.5 pmol/L tissue factor) using human platelet-rich plasma (PRP) spiked with rivaroxaban (15, 30, or 60 ng/mL), ticagrelor (1.0 µg/mL), and acetylsalicylic acid (ASA; 100 µg/mL). Tissue factor-induced platelet aggregation was measured in PRP spiked with rivaroxaban (15 or 30 ng/mL), ticagrelor (1 or 3 µg/mL), or a combination of these. An arteriovenous (AV) shunt model in rats was used to determine the effects of rivaroxaban (0.01, 0.03, or 0.1 mg/kg), clopidogrel (1 mg/kg), ASA (3 mg/kg), and combinations on arterial thrombosis. Results: Rivaroxaban inhibited thrombin generation in a concentration-dependent manner and the effect was enhanced with ticagrelor and ticagrelor plus ASA. Rivaroxaban and ticagrelor also concentration-dependently inhibited tissue factor-induced platelet aggregation, and their combination increased the inhibition synergistically. In the AV shunt model, rivaroxaban dose-dependently reduced thrombus formation. Combining subefficacious or weakly efficacious doses of rivaroxaban with ASA or ASA plus clopidogrel increased the antithrombotic effect. Conclusion: These data indicate that the combination of rivaroxaban with single or dual antiplatelet agents works synergistically to reduce platelet activation, which may in turn lead to the delayed/reduced formation of coagulation complexes and vice versa, thereby enhancing antithrombotic potency. PMID:25848131

  18. Diagnosis of overt disseminated intravascular coagulation in critically Ill adults by Sonoclot coagulation analysis.

    PubMed

    Wan, Peng; Tong, Hua-Sheng; Zhang, Xing-Qin; Duan, Peng-Kai; Tang, You-Qing; Su, Lei

    2014-08-01

    Disseminated intravascular coagulation (DIC) diagnosis is hampered by the limited availability of reliable clinical or laboratory tests. Currently available tests are time consuming and expensive. We investigated whether coagulation and platelet function analyses using the Sonoclot system were suitable for overt DIC diagnosis in critically ill adults. This was an observational diagnostic study performed in 498 patients presenting with an underlying disorder associated with DIC. Overt DIC patients were identified according to an International Society on Thrombosis and Hemostasis (ISTH) score of >5. Coagulation and platelet parameters were analyzed using the Sonoclot system, and compared with ISTH as the gold standard. Receiver operating characteristic curves and area under the curves were used to evaluate the value of the Sonoclot parameters. There were no differences for age or gender between the groups. Significant correlations were observed between activated clotting time (ACT) and ISTH score (r = 0.7; P < 0.001), clot rate (CR) and ISTH score (r = 0.5; P < 0.001), platelet function (PF) and ISTH score (r = -0.6; P < 0.001), and PF and platelet count (r = 0.5; P < 0.001). An ACT cut-off value of 213.5 s alone or combined with CR presented good sensitivity (76.7 and 86.8 %, respectively) and specificity (96.2 and 93.3 %, respectively). Sonoclot analysis can be performed using a point-of-care device that effectively discriminates low and high ISTH scores, and that effectively predicts coagulation dysfunction in patients with overt DIC.

  19. Microwave radiation hazards around large microwave antenna.

    NASA Technical Reports Server (NTRS)

    Klascius, A.

    1973-01-01

    The microwave radiation hazards associated with the use of large antennas become increasingly more dangerous to personnel as the transmitters go to ever higher powers. The near-field area is of the greatest concern. It has spill over from subreflector and reflections from nearby objects. Centimeter waves meeting in phase will reinforce each other and create hot spots of microwave energy. This has been measured in front of and around several 26-meter antennas. Hot spots have been found and are going to be the determining factor in delineating safe areas for personnel to work. Better techniques and instruments to measure these fields are needed for the evaluation of hazard areas.

  20. New bipolar tissue ligator combines constant tissue compression and temperature guidance: histologic study and implications for treatment of hemorrhoids

    PubMed Central

    Piskun, Gregory; Tucker, Robert

    2012-01-01

    Background Several minimally invasive technologies are available to treat common soft tissue lesions including symptomatic hemorrhoids. The use of energy to deliver heat and coagulate target lesions is commonly practiced. This study compares the histologic effects produced on intestinal tissues by two energy-based systems which employ different approaches of heat delivery. Methods Two heat delivery systems were evaluated in vivo in a single porcine subject: infrared coagulator and bipolar tissue ligator utilizing constant tissue compression and temperature guidance. Eighteen treatment sites divided into three groups of six were assessed. Treatment site temperature was measured and the effects of thermal treatment in the mucosa, submucosa, submucosal vessels, and muscularis layer were scored. Lateral thermal spread beyond the energy application site was also assessed. Results Treatment site temperatures were much lower in the bipolar ligator group than in the infrared coagulator group. The mucosal and submucosal tissue changes observed in tissues treated with infrared energy and bipolar energy at 55°C were similar. Both the mucosal and submucosal tissue changes with bipolar energy at 50°C were significantly less. Conclusion Both devices achieved similar histologic results. However, the unique design of the bipolar ligator, which allows consistent capture, constant compression, and temperature monitoring of target tissue, accomplished the desired histologic changes with less muscular damage at much lower temperatures than the infrared coagulator. The use of bipolar ligation could offer clinical advantages such as reduced patient pain and a minimized chance of heat-related collateral tissue damage. PMID:23152714

  1. Viability and antigenicity of anisakis simplex after conventional and microwave heating at fixed temperatures.

    PubMed

    Vidaček, Sanja; De Las Heras, Cristina; Solas, Maria Teresa; García, Maria Luisa; Mendizábal, Angel; Tejada, Margarita

    2011-12-01

    Inactivation of parasites in food by microwave treatment may vary due to differences in the characteristics of microwave ovens and food properties. Microwave treatment in standard domestic ovens results in hot and cold spots, and the microwaves do not penetrate all areas of the samples depending on the thickness, which makes it difficult to compare microwave with conventional heat treatments. The viability of Anisakis simplex (isolated larvae and infected fish muscle) heated in a microwave oven with precise temperature control was compared with that of larvae heated in a water bath to investigate any additional effect of the microwaves. At a given temperature, less time was required to kill the larvae by microwaves than by heated water. Microwave treatment killed A. simplex larvae faster than did conventional cooking when the microwaves fully penetrated the samples and resulted in fewer changes in the fish muscle. However, the heat-stable allergen Ani s 4 was detected by immunohistochemistry in the fish muscle after both heat treatments, even at 70°C, suggesting that Ani s 4 allergens were released from the larvae into the surrounding tissue and that the tissues retained their allergenicity even after the larvae were killed by both heat treatments. Thus, microwave cooking will not render fish safe for individuals already sensitized to A. simplex heat-resistant allergens. PMID:22186053

  2. Coagulation fibrinolysis in sickle-cell disease

    PubMed Central

    Gordon, P. A.; Breeze, G. R.; Mann, J. R.; Stuart, J.

    1974-01-01

    A study of fibrinolytic activity in sickle-cell patients during asymptomatic periods has shown a normal fibrinolytic response to exercise and local heat to the arm. During vasoocclusive crises there was no significant decrease in fibrinolytic activity. These results contrast with earlier reports of decreased fibrinolysis during crisis and a suggestion that fibrinolytic activators might be of value in preventing vasoocclusive episodes. Patients in painful crisis showed a significant rise in fibrinogen concentration and fall in platelet count. The former may contribute to localized vascular sludging by increasing whole-blood viscosity, while the latter probably results from local trapping of platelets in areas of sickling or from subsequent splenic sequestration of damaged platelets. There was no evidence of disseminated, as opposed to localized, intravascular coagulation during crisis. PMID:4412492

  3. Optimized alumina coagulants for water treatment

    DOEpatents

    Nyman, May D.; Stewart, Thomas A.

    2012-02-21

    Substitution of a single Ga-atom or single Ge-atom (GaAl.sub.12 and GeAl.sub.12 respectively) into the center of an aluminum Keggin polycation (Al.sub.13) produces an optimal water-treatment product for neutralization and coagulation of anionic contaminants in water. GaAl.sub.12 consistently shows .about.1 order of magnitude increase in pathogen reduction, compared to Al.sub.13. At a concentration of 2 ppm, GaAl.sub.12 performs equivalently to 40 ppm alum, removing .about.90% of the dissolved organic material. The substituted GaAl.sub.12 product also offers extended shelf-life and consistent performance. We also synthesized a related polyaluminum chloride compound made of pre-hydrolyzed dissolved alumina clusters of [GaO.sub.4Al.sub.12(OH).sub.24(H.sub.2O).sub.12].sup.7+.

  4. Quinine-Induced Disseminated Intravascular Coagulation.

    PubMed

    Abed, Firas; Baniya, Ramkaji; Bachuwa, Ghassan

    2016-01-01

    Every drug comes with some side effect. It is the benefit/risk ratio that determines the medical use of the drug. Quinine, a known antimalarial drug, has been used for nocturnal leg cramps since the 1930s; it is associated with severe life-threatening hematological and cardiovascular side effects. Disseminated intravascular coagulation (DIC), albeit rare, is a known coagulopathy associated with Quinine. It is imperative to inquire about the Quinine intake in medication history in patients with coagulopathy, as most patients still consider it a harmless home remedy for nocturnal leg cramps. In this report, we present a case of coagulopathy in a middle-aged woman, who gave a history of taking Quinine for nocturnal leg cramps, as her home remedy. Early identification of the offending agent led to the diagnosis, prompt discontinuation of the medication, and complete recovery and prevented the future possibility of recurrence. PMID:27293443

  5. Contact activation of blood-plasma coagulation

    NASA Astrophysics Data System (ADS)

    Golas, Avantika

    Surface engineering of biomaterials with improved hemocompatibility is an imperative, given the widespread global need for cardiovascular devices. Research summarized in this dissertation focuses on contact activation of FXII in buffer and blood plasma frequently referred to as autoactivation. The extant theory of contact activation imparts FXII autoactivation ability to negatively charged, hydrophilic surfaces. According to this theory, contact activation of plasma involves assembly of proteins comprising an "activation complex" on activating surfaces mediated by specific chemical interactions between complex proteins and the surface. This work has made key discoveries that significantly improve our core understanding of contact activation and unravel the existing paradigm of plasma coagulation. It is shown herein that contact activation of blood factor XII (FXII, Hageman factor) in neat-buffer solution exhibits a parabolic profile when scaled as a function of silanized-glass-particle activator surface energy (measured as advancing water adhesion tension t°a=g° Iv costheta in dyne/cm, where g°Iv is water interfacial tension in dyne/cm and theta is the advancing contact angle). Nearly equal activation is observed at the extremes of activator water-wetting properties --36 < t°a < 72 dyne/cm (O° ≤ theta < 120°), falling sharply through a broad minimum within the 20 < t°a < 40 dyne/cm (55° < theta < 75°). Furthermore, contact activation of FXII in buffer solution produces an ensemble of protein fragments exhibiting either procoagulant properties in plasma (proteolysis of blood factor XI or prekallikrein), amidolytic properties (cleavage of s-2302 chromogen), or the ability to suppress autoactivation through currently unknown biochemistry. The relative proportions of these fragments depend on activator surface chemistry/energy. We have also discovered that contact activation is moderated by adsorption of plasma proteins unrelated to coagulation through an

  6. Management of coagulation abnormalities in liver disease.

    PubMed

    Potze, Wilma; Porte, Robert J; Lisman, Ton

    2015-01-01

    Liver disease is characterized by changes in all phases of hemostasis. These hemostatic alterations were long considered to predispose patients with liver disease towards a bleeding tendency, as they are associated with prolonged conventional coagulation tests. However, these patients may also suffer from thrombotic complications, and we now know that the hemostatic system in patient with liver disease is, in fact, in a rebalanced state. In this review we discuss the concept of rebalanced hemostasis and its implications for clinical management of patients with liver disease. For instance, there is no evidence that the use of prophylactic blood product transfusion prior to invasive procedures reduces bleeding risk. Clinicians should also be aware of the possibility of thrombosis occurring in patients with a liver disease, and regular thrombosis prophylaxis should not be withheld in these patients.

  7. Electromagnetic Initiation and Propagation of Bipolar Radiofrequency Tissue Reactions via Invasive Non-Insulated Microneedle Electrodes

    PubMed Central

    Na, Jongju; Zheng, Zhenlong; Dannaker, Christopher; Lee, Sang Eun; Kang, Jin-Soo; Cho, Sung Bin

    2015-01-01

    Radiofrequency (RF) energy can be emitted into the skin, either non- or invasively, via a monopolar mode that utilizes an active electrode and a grounded electrode or via a bipolar mode that employs two active electrodes. In this experimental study of RF tissue reactions, bipolar RF energy was emitted in vivo to micropig skin at varying microneedle penetration depths, signal amplitudes, and conduction times. Immediately after RF treatment, skin samples exhibited RF-induced coagulation columns of thermal injury, separately generated around each microneedle in the dermis. In ex vivo bovine liver tissue, the thermal coagulation columns were found to be concentrated maximally around the pointed tips of each electrode. After a RF conduction time of 2 seconds, the individual areas of thermal coagulation began to converge with neighboring RF-induced coagulation columns; the convergence of coagulation columns was found to start from the tips of neighboring electrodes. PMID:26563971

  8. Coagulation factor XII protease domain crystal structure

    PubMed Central

    Pathak, M; Wilmann, P; Awford, J; Li, C; Hamad, BK; Fischer, PM; Dreveny, I; Dekker, LV; Emsley, J

    2015-01-01

    Background Coagulation factor XII is a serine protease that is important for kinin generation and blood coagulation, cleaving the substrates plasma kallikrein and FXI. Objective To investigate FXII zymogen activation and substrate recognition by determining the crystal structure of the FXII protease domain. Methods and results A series of recombinant FXII protease constructs were characterized by measurement of cleavage of chromogenic peptide and plasma kallikrein protein substrates. This revealed that the FXII protease construct spanning the light chain has unexpectedly weak proteolytic activity compared to β-FXIIa, which has an additional nine amino acid remnant of the heavy chain present. Consistent with these data, the crystal structure of the light chain protease reveals a zymogen conformation for active site residues Gly193 and Ser195, where the oxyanion hole is absent. The Asp194 side chain salt bridge to Arg73 constitutes an atypical conformation of the 70-loop. In one crystal form, the S1 pocket loops are partially flexible, which is typical of a zymogen. In a second crystal form of the deglycosylated light chain, the S1 pocket loops are ordered, and a short α-helix in the 180-loop of the structure results in an enlarged and distorted S1 pocket with a buried conformation of Asp189, which is critical for P1 Arg substrate recognition. The FXII structures define patches of negative charge surrounding the active site cleft that may be critical for interactions with inhibitors and substrates. Conclusions These data provide the first structural basis for understanding FXII substrate recognition and zymogen activation. PMID:25604127

  9. The effects of perioperatively administered crystalloids and colloids on concentrations of molecular markers of activated coagulation and fibrinolysis.

    PubMed

    Fries, Dietmar; Streif, Werner; Margreiter, Josef; Klingler, Anton; Kühbacher, Gabriele; Schobersberger, Wolfgang; Wirleitner, Barbara; Innerhofer, Petra

    2004-04-01

    To explore whether intravenous administration of routinely used crystalloid or colloid solutions differently affects the coagulation system, we investigated orthopaedic patients. Since crystalloid solutions might cause hypercoagulability, we here present our results on molecular markers of coagulation and fibrinolysis. Patients undergoing knee replacement surgery randomly received isovolemic amounts of lactated Ringer's solution, 6% hydroxyethyl starch 200/0.5 or 4% modified gelatine. Arterial blood samples for determination of specific molecular markers of activated coagulation (thrombin/antithrombin complex, D-dimer, prothrombin fragment F1 + 2), fibrinolysis (plasmin/alpha 2-antiplasmin complex, tissue plasminogen activator, plasminogen activator inhibitor-1), and concentrations of coagulation factor XIII were obtained at baseline, before tourniquet release, at the end of surgery and 2 h after operation. During the observation period, thrombin/antithrombin complex increased from 4.8 to 54.7 microg/l, D-dimer increased from 0.3 to 6.0 mg/ml, prothrombin fragment F1 + 2 increased from 1.7 to 5.9 nmol/l, tissue plasminogen activator decreased from 7.3 to 6.7 ng/ml, plasminogen activator inhibitor-1 increased from 68.4 to 71.0 ng/ml, plasmin/alpha 2-antiplasmin complex increased from 281.5 to 884 microg/l and factor XIII decreased from 89.0 to 58.5%. All parameters changed significantly but without any detectable difference in the response profile between the groups receiving different intravenous fluids. During knee replacement surgery a pronounced activation of the coagulation/fibrinolytic system was observed, regardless of whether patients received crystalloid or colloid fluids. Thus, these results cannot confirm the hypothesis that crystalloid fluids per se cause hypercoagulability in vivo.

  10. Coagulation of egg white by thermal-feedback-controlled CO2 laser

    NASA Astrophysics Data System (ADS)

    Cilesiz, Inci F.; Katzir, Abraham

    2000-11-01

    Temperature feedback control during laser-assisted tissue coagulation was investigated and demonstrated using the egg white model. Dynamics of photothermal denaturation during CO2 laser irradiation was observed by simultaneously controlling surface temperature and monitoring HeNe laser transmission of egg white samples. Once a quasi-constant surface temperature was established, transmission of egg white tended to decrease linearly with time. A first order rate process was observed. Our experiments demonstrated that thermal feedback can effectively control/limit photothermal damage.

  11. Rat prostate tumors express cancer procoagulant, an activator of coagulation factor X.

    PubMed

    Kamocka, Malgorzata; Pollard, Morris; Suckow, Mark; Mielicki, Wojciech P; Rosen, Elliot D

    2008-06-01

    Two common procoagulant activities associated with tumors are tissue factor and cancer procoagulant (CP), an activator of coagulation factor X. We have identified a convenient source of CP in transplanted Lobund-Wistar rat PA3 prostate tumors. CP activity was purified from 5 independent transplanted prostate tumors by column chromatography. The protein activated factor X in the absence of TF and factor VII. An antihuman CP antibody recognized rat CP in an ELISA and inactivated CP activity in a chromogenic assay. Lobund-Wistar prostate tumors may provide a convenient animal model useful in determining the role of CP in cancer development.

  12. Strong enhancement of dispersion forces from microwave radiation

    NASA Astrophysics Data System (ADS)

    Sernelius, B. E.

    2002-11-01

    We have studied non-thermal effects of microwave radiation on the forces between objects. This is the first step in a study of possible effects of microwave radiation from cellular phones on biological tissue. We have used a simplified model for human blood cells in blood. We find for the normal radiation level of cellular phones an enhancement of the attractive force with ten orders of magnitude as compared to the corresponding effect at thermal radiation.

  13. Enhanced Microwave Hyperthermia of Cancer Cells with Fullerene.

    PubMed

    Sun, Mingrui; Kiourti, Asimina; Wang, Hai; Zhao, Shuting; Zhao, Gang; Lu, Xiongbin; Volakis, John L; He, Xiaoming

    2016-07-01

    Hyperthermia generated with various energy sources including microwave has been widely studied for cancer treatment. However, the potential damage due to nontargeted heating of normal tissue is a major hurdle to its widespread application. Fullerene is a potential agent for improving cancer therapy with microwave hyperthermia but is limited by its poor solubility in water for biomedical applications. Here we report a combination therapy for enhanced cancer cell destruction by combining microwave heating with C60-PCNPs consisting of fullerene (C60) encapsulated in Pluronic F127-chitosan nanoparticles (PCNPs) with high water solubility. A cell culture dish integrated with an antenna was fabricated to generate microwave (2.7 GHz) for heating PC-3 human prostate cancer cells either with or without the C60-PCNPs. The cell viability data show that the C60-PCNPs alone have minimal cytotoxicity. The combination of microwave heating and C60-PCNPs is significantly more effective than the microwave heating alone in killing the cancer cells (7.5 versus 42.2% cell survival). Moreover, the combination of microwave heating and C60-PCNPs is significantly more destructive to the cancer cells than the combination of simple water-bath heating (with a similar thermal history to microwave heating) and C60-PCNPs (7.5 versus 32.5% survival) because the C60 in the many nanoparticles taken up by the cells can absorb the microwave energy and convert it into heat to enhance heating inside the cells under microwave irradiation. These data suggest the great potential of targeted heating via fullerene for enhanced cancer treatment by microwave hyperthermia. PMID:27195904

  14. Nanoparticles and the blood coagulation system. Part II: safety concerns.

    PubMed

    Ilinskaya, Anna N; Dobrovolskaia, Marina A

    2013-06-01

    Nanoparticle interactions with the blood coagulation system can be beneficial or adverse depending on the intended use of a nanomaterial. Nanoparticles can be engineered to be procoagulant or to carry coagulation-initiating factors to treat certain disorders. Likewise, they can be designed to be anticoagulant or to carry anticoagulant drugs to intervene in other pathological conditions in which coagulation is a concern. An overview of the coagulation system was given and a discussion of a desirable interface between this system and engineered nanomaterials was assessed in part I, which was published in the May 2013 issue of Nanomedicine. Unwanted pro- and anti-coagulant properties of nanoparticles represent significant concerns in the field of nanomedicine, and often hamper the development and transition into the clinic of many promising engineered nanocarriers. This part will focus on the undesirable effects of engineered nanomaterials on the blood coagulation system. We will discuss the relationship between the physicochemical properties of nanoparticles (e.g., size, charge and hydrophobicity) that determine their negative effects on the blood coagulation system in order to understand how manipulation of these properties can help to overcome unwanted side effects.

  15. Coagulation pretreatment of highly concentrated acrylonitrile wastewater from petrochemical plants.

    PubMed

    Zheng, Dongju; Qin, Lin; Wang, Tao; Ren, Xiaojing; Zhang, Zhongguo; Li, Jiding

    2014-01-01

    Acrylonitrile (AN) wastewater is a heavily polluted and a likely hazardous liquid that is generated during the production of AN. Several chemical methods for the pretreatment of AN wastewater are available in laboratory scale. However, the harsh reaction conditions and high operational cost make these methods undesirable. Until now, four-effect evaporation is the only pretreatment method used for AN wastewater in industry despite its huge energy consumption and high cost. It is difficult to find an energy-saving pretreatment technique from the perspective of industrial application. In this study, a safe and low-cost coagulation technique was developed for the pretreatment of AN wastewater. Three types of inorganic coagulant and three types of polymer coagulant were investigated for the coagulation treatment of highly concentrated AN wastewater from petrochemical plants. The effects of coagulant type, dosage, and coagulation conditions on the pretreatment efficiency of AN wastewater were investigated. The results show that a combination of inorganic and polymer coagulants is effective for the pretreatment of AN wastewater.

  16. Chemical behavior of different species of phosphorus in coagulation.

    PubMed

    Park, Taejun; Ampunan, Vanvimol; Lee, Sanghyup; Chung, Eunhyea

    2016-02-01

    Phosphorus is one of the elements that have a significant impact on such environmental problems as eutrophication or algal bloom. Phosphorus compounds in water can be hydrolyzed to orthophosphate that is the only form of phosphorus that algae can assimilate. In this study, phosphorus removal in terms of orthophosphate and total phosphorus from wastewater was studied using alum or ferric ions as coagulants. It was observed that alum shows higher phosphorus removal efficiency than ferric ions in the same mole ratio concentrations. The proportion of orthophosphate among total phosphorus did not change significantly during coagulation process when the coagulant concentration is low. However, the proportion becomes gradually decreased as the coagulant concentration increases. Not only the electrolyte concentration difference in solution, but the characteristics of orthophosphate and polyphosphate such as reactivity and ionic size might also cause the differences in the removal rate. Orthophosphate that has greater reactivity than other phosphorus species would be involved in chemical reactions dominantly when large amounts of coagulants are applied. However, the effect of reactivity was diminished due to the large ionic size of polyphosphate and low concentration of electrolyte in low coagulant concentration during the coagulation process. PMID:26598995

  17. Chemical behavior of different species of phosphorus in coagulation.

    PubMed

    Park, Taejun; Ampunan, Vanvimol; Lee, Sanghyup; Chung, Eunhyea

    2016-02-01

    Phosphorus is one of the elements that have a significant impact on such environmental problems as eutrophication or algal bloom. Phosphorus compounds in water can be hydrolyzed to orthophosphate that is the only form of phosphorus that algae can assimilate. In this study, phosphorus removal in terms of orthophosphate and total phosphorus from wastewater was studied using alum or ferric ions as coagulants. It was observed that alum shows higher phosphorus removal efficiency than ferric ions in the same mole ratio concentrations. The proportion of orthophosphate among total phosphorus did not change significantly during coagulation process when the coagulant concentration is low. However, the proportion becomes gradually decreased as the coagulant concentration increases. Not only the electrolyte concentration difference in solution, but the characteristics of orthophosphate and polyphosphate such as reactivity and ionic size might also cause the differences in the removal rate. Orthophosphate that has greater reactivity than other phosphorus species would be involved in chemical reactions dominantly when large amounts of coagulants are applied. However, the effect of reactivity was diminished due to the large ionic size of polyphosphate and low concentration of electrolyte in low coagulant concentration during the coagulation process.

  18. Microwave bonding of MEMS component

    NASA Technical Reports Server (NTRS)

    Barmatz, Martin B. (Inventor); Mai, John D. (Inventor); Jackson, Henry W. (Inventor); Budraa, Nasser K. (Inventor); Pike, William T. (Inventor)

    2005-01-01

    Bonding of MEMs materials is carried out using microwave. High microwave absorbing films are placed within a microwave cavity, and excited to cause selective heating in the skin of the material. This causes heating in one place more than another. Thereby minimizing the effects of the bonding microwave energy.

  19. Seawater pretreatment for reverse osmosis: chemistry, contaminants, and coagulation.

    PubMed

    Edzwald, James K; Haarhoff, Johannes

    2011-11-01

    The paper addresses the effects of salinity and temperature on the chemistry of important parameters affecting coagulation pretreatment including the ion product of water, acid-base chemistry, dissolved metal speciation, and precipitation reactions for aluminum and iron coagulants. The ion product of seawater is greater than for freshwaters and affects chemical hydrolysis and metal-hydroxide solubility reactions. Inorganic carbon is the main cause of seawater alkalinity and buffer intensity but borate B(OH)(4)(1-) also contributes. Buffer intensity is an important parameter in assessing coagulation pH adjustment. Mineral particles are relatively unstable in seawater from electrical double layer compression, and when present these particles are easily coagulated. Algal-particle stability is affected by steric effects and algal motility. Dissolved natural organic matter from algae and humic substances causes fouling of RO membranes and pretreatment removal is essential. Aluminum coagulants are not recommended, and not used, because they are too soluble in seawater. Ferric coagulants are preferred and used. The equilibrium solubility of Fe with amorphous ferric hydroxide in seawater is low over a wide range of pH and temperature conditions. Ferric chloride dosing guidelines are presented for various raw seawater quality characteristics. The effect of pH on coagulant dose and the role of buffer intensity are addressed. A dual coagulation strategy is recommended for treating seawater with moderate to high concentrations of algae or seawater with humic matter. This involves a low and constant dose with high charge-density cationic polymers using Fe as the main coagulant where it is varied in response to raw water quality changes.

  20. Seawater pretreatment for reverse osmosis: chemistry, contaminants, and coagulation.

    PubMed

    Edzwald, James K; Haarhoff, Johannes

    2011-11-01

    The paper addresses the effects of salinity and temperature on the chemistry of important parameters affecting coagulation pretreatment including the ion product of water, acid-base chemistry, dissolved metal speciation, and precipitation reactions for aluminum and iron coagulants. The ion product of seawater is greater than for freshwaters and affects chemical hydrolysis and metal-hydroxide solubility reactions. Inorganic carbon is the main cause of seawater alkalinity and buffer intensity but borate B(OH)(4)(1-) also contributes. Buffer intensity is an important parameter in assessing coagulation pH adjustment. Mineral particles are relatively unstable in seawater from electrical double layer compression, and when present these particles are easily coagulated. Algal-particle stability is affected by steric effects and algal motility. Dissolved natural organic matter from algae and humic substances causes fouling of RO membranes and pretreatment removal is essential. Aluminum coagulants are not recommended, and not used, because they are too soluble in seawater. Ferric coagulants are preferred and used. The equilibrium solubility of Fe with amorphous ferric hydroxide in seawater is low over a wide range of pH and temperature conditions. Ferric chloride dosing guidelines are presented for various raw seawater quality characteristics. The effect of pH on coagulant dose and the role of buffer intensity are addressed. A dual coagulation strategy is recommended for treating seawater with moderate to high concentrations of algae or seawater with humic matter. This involves a low and constant dose with high charge-density cationic polymers using Fe as the main coagulant where it is varied in response to raw water quality changes. PMID:21907384

  1. Three-dimensional microwave imaging with incorporated prior structural information

    NASA Astrophysics Data System (ADS)

    Golnabi, Amir H.; Meaney, Paul M.; Epstein, Neil R.; Paulsen, Keith D.

    2012-03-01

    Microwave imaging for biomedical applications, especially for early detection of breast cancer and effective treatment monitoring, has attracted increasing interest in last several decades. This fact is due to the high contrast between the dielectric properties of the normal and malignant breast tissues at microwave frequencies. The available range of dielectric properties for different soft tissue can provide important functional information about tissue health. Nonetheless, one of the limiting weaknesses of microwave imaging is that unlike conventional modalities, such as X-ray CT or MRI, it inherently cannot provide high-resolution images. The conventional modalities can produce highly resolved anatomical information but often cannot provide the functional information required for diagnoses. Previously, we have developed a regularization strategy that can incorporate prior anatomical information from MR or other sources and use it in a way to refine the resolution of the microwave images, while also retaining the functional nature of the reconstructed property values. In the present work, we extend the use of prior structural information in microwave imaging from 2D to 3D. This extra dimension adds a significant layer of complexity to the entire image reconstruction procedure. In this paper, several challenges with respect to the 3D microwave imaging will be discussed and the results of a series of 3D simulation and phantom experiments with prior structural information will be studied.

  2. [Incidence of biological intravascular coagulation in legal induced abortions].

    PubMed

    Boudaoud, S; Eurin, B; Drouet, L; Alhomme, P; Dreyfus, R; Serfaty, D

    1986-01-01

    A prospective study was designed to evaluate coagulation abnormalities induced by early abortion (before ten weeks of pregnancy). Fifty-two women underwent suction abortion, under diazepam-fentanyl anaesthesia with spontaneous ventilation; they were screened for coagulation parameters before and after surgery. Eight tests were carried out: prothrombin time, activated partial thromboplastin time (APTT), thrombin time platelet count, fibrinogen levels, fibrin split products, fibrin soluble complexes and euglobulin lysis time. Results were consistent with activation. Consequences were limited and one general test (APTT) was not significantly modified. Suction abortion, even performed in early pregnancy, exposed to biological disseminated intravascular coagulation with a general risk of venous thrombosis.

  3. Current concepts in the management of disseminated intravascular coagulation.

    PubMed

    Thachil, Jecko; Toh, Cheng Hock

    2012-04-01

    Disseminated Intravascular Coagulation is a clinicopathological syndrome where widespread intravascular coagulation occurs in response to an inciting process. The pathophysiology for this disorder is complex with an important role for thrombin, the central regulator of the coagulation process. Since the clinical spectrum of DIC is variable due to its dynamic nature, the laboratory diagnosis should ideally be not based on a single marker or an isolated set of results. The treatment should primary focus on the management of the underlying triggering condition with blood products used as resuscitative measures. Newer therapeutic modalities have been recently tried with success although the management of DIC still remains a major challenge.

  4. The coagulation system and its function in early immune defense.

    PubMed

    van der Poll, Tom; Herwald, Heiko

    2014-10-01

    Blood coagulation has a Janus-faced role in infectious diseases. When systemically activated, it can cause serious complications associated with high morbidity and mortality. However, coagulation is also part of the innate immune system and its local activation has been found to play an important role in the early host response to infection. Though the latter aspect has been less investigated, phylogenetic studies have shown that many factors involved in coagulation have ancestral origins which are often combined with anti-microbial features. This review gives a general overview about the most recent advances in this area of research also referred to as immunothrombosis.

  5. Changes in the human blood coagulating system during prolonged hypokinesia

    NASA Technical Reports Server (NTRS)

    Filatova, L. M.; Anashkin, O. D.

    1978-01-01

    Changes in the coagulating system of the blood were studied in six subjects during prolonged hypokinesia. Thrombogenic properties of the blood rose in all cases on the 8th day. These changes are explained by stress reaction due to unusual conditions for a healthy person. Changes in the blood coagulating system in the group subjected to physical exercise and without it ran a practically parallel course. Apparently physical exercise is insufficient to prevent such changes that appear in the coagulating system of the blood during prolonged hypokinesia.

  6. EPCR-dependent PAR2 activation by the blood coagulation initiation complex regulates LPS-triggered interferon responses in mice.

    PubMed

    Liang, Hai Po H; Kerschen, Edward J; Hernandez, Irene; Basu, Sreemanti; Zogg, Mark; Botros, Fady; Jia, Shuang; Hessner, Martin J; Griffin, John H; Ruf, Wolfram; Weiler, Hartmut

    2015-04-30

    Infection and inflammation are invariably associated with activation of the blood coagulation mechanism, secondary to the inflammation-induced expression of the coagulation initiator tissue factor (TF) on innate immune cells. By investigating the role of cell-surface receptors for coagulation factors in mouse endotoxemia, we found that the protein C receptor (ProcR; EPCR) was required for the normal in vivo and in vitro induction of lipopolysaccharide (LPS)-regulated gene expression. In cultured bone marrow-derived myeloid cells and in monocytic RAW264.7 cells, the LPS-induced expression of functionally active TF, assembly of the ternary TF-VIIa-Xa initiation complex of blood coagulation, and the EPCR-dependent activation of protease-activated receptor 2 (PAR2) by the ternary TF-VIIa-Xa complex were required for the normal LPS induction of messenger RNAs encoding the TLR3/4 signaling adaptor protein Pellino-1 and the transcription factor interferon regulatory factor 8. In response to in vivo challenge with LPS, mice lacking EPCR or PAR2 failed to fully initiate an interferon-regulated gene expression program that included the Irf8 target genes Lif, Iigp1, Gbp2, Gbp3, and Gbp6. The inflammation-induced expression of TF and crosstalk with EPCR, PAR2, and TLR4 therefore appear necessary for the normal evolution of interferon-regulated host responses.

  7. Method of constructing a microwave antenna

    NASA Technical Reports Server (NTRS)

    Arndt, G. Dickey (Inventor); Carl, James (Inventor); Ngo, Phong (Inventor)

    2003-01-01

    A method, simulation, and apparatus are provided that are highly suitable for treatment of benign prostatic hyperplasia (BPH). A catheter is disclosed that includes a small diameter disk loaded monopole antenna surrounded by fusion material having a high heat of fusion and a melting point preferably at or near body temperature. Microwaves from the antenna heat prostatic tissue to promote necrosing of the prostatic tissue that relieves the pressure of the prostatic tissue against the urethra as the body reabsorbs the necrosed or dead tissue. The fusion material keeps the urethra cool by means of the heat of fusion of the fusion material. This prevents damage to the urethra while the prostatic tissue is necrosed. A computer simulation is provided that can be used to predict the resulting temperature profile produced in the prostatic tissue. By changing the various control features of the catheter and method of applying microwave energy a temperature profile can be predicted and produced that is similar to the temperature profile desired for the particular patient.

  8. Method of Constructing a Microwave Antenna

    NASA Technical Reports Server (NTRS)

    Arndt, G. Dickey (Inventor); Carl, James (Inventor); Ngo, Phong (Inventor)

    2003-01-01

    A method, simulation, and apparatus are provided that are highly suitable for treatment of benign prostatic hyperplasia (BPH). A catheter is disclosed that includes a small diameter disk loaded monopole antenna surrounded by fusion material having a high heat of fusion and a melting point preferably at or near body temperature. Microwaves from the antenna heat prostatic tissue to promote necrosing of the prostatic tissue that relieves the pressure of the prostatic tissue against the urethra as the body reabsorbs the necrosed or dead tissue. The fusion material keeps the urethra cool by means of the heat of fusion of the fusion material. This prevents damage to the urethra while the prostatic tissue is necrosed. A computer simulation is provided that can be used to predict the resulting temperature profile produced in the prostatic tissue. By changing the various control features of the catheter and method of applying microwave energy a temperature profile can be predicted and produced that is similar to the temperature profile desired for the particular patient.

  9. Microwave coupler and method

    DOEpatents

    Holcombe, Cressie E.

    1985-01-01

    The present invention is directed to a microwave coupler for enhancing the heating or metallurgical treatment of materials within a cold-wall, rapidly heated cavity as provided by a microwave furnace. The coupling material of the present invention is an alpha-rhombohedral-boron-derivative-structure material such as boron carbide or boron silicide which can be appropriately positioned as a susceptor within the furnace to heat other material or be in powder particulate form so that composites and structures of boron carbide such as cutting tools, grinding wheels and the like can be rapidly and efficiently formed within microwave furnaces.

  10. Microwave coupler and method

    DOEpatents

    Holcombe, C.E.

    1984-11-29

    The present invention is directed to a microwave coupler for enhancing the heating or metallurgical treatment of materials within a cold-wall, rapidly heated cavity as provided by a microwave furnace. The coupling material of the present invention is an alpha-rhombohedral-boron-derivative-structure material such as boron carbide or boron silicide which can be appropriately positioned as a susceptor within the furnace to heat other material or be in powder particulate form so that composites and structures of boron carbide such as cutting tools, grinding wheels and the like can be rapidly and efficiently formed within microwave furnaces.

  11. Microwave vision for robots

    NASA Technical Reports Server (NTRS)

    Lewandowski, Leon; Struckman, Keith

    1994-01-01

    Microwave Vision (MV), a concept originally developed in 1985, could play a significant role in the solution to robotic vision problems. Originally our Microwave Vision concept was based on a pattern matching approach employing computer based stored replica correlation processing. Artificial Neural Network (ANN) processor technology offers an attractive alternative to the correlation processing approach, namely the ability to learn and to adapt to changing environments. This paper describes the Microwave Vision concept, some initial ANN-MV experiments, and the design of an ANN-MV system that has led to a second patent disclosure in the robotic vision field.

  12. Monolithic microwave integrated circuits

    NASA Astrophysics Data System (ADS)

    Pucel, R. A.

    Monolithic microwave integrated circuits (MMICs), a new microwave technology which is expected to exert a profound influence on microwave circuit designs for future military systems as well as for the commercial and consumer markets, is discussed. The book contains an historical discussion followed by a comprehensive review presenting the current status in the field. The general topics of the volume are: design considerations, materials and processing considerations, monolithic circuit applications, and CAD, measurement, and packaging techniques. All phases of MMIC technology are covered, from design to testing.

  13. Microwave sterilization of enterobacteria.

    PubMed

    Rosaspina, S; Anzanel, D; Salvatorelli, G

    1993-01-01

    A new method is described which makes it possible to treat metal materials with microwaves. In consequence scalpel blades as well as cover glasses contaminated with four species of bacteria (Salmonella typhi, Proteus mirabilis, Escherichia coli and Pseudomonas aeruginosa) were sterilized. With this method sterilization can be achieved quite rapidly (1.5-2 min). Scanning electron microscopy revealed a progressive alteration in the morphology of micro-organisms and this proved proportional to the microwave exposure time. Only in Proteus mirabilis were no modifications found, even after long periods of microwave exposure. PMID:8302204

  14. Microwave thawing apparatus and method

    DOEpatents

    Fathi, Zakaryae; Lauf, Robert J.; McMillan, April D.

    2004-06-01

    An apparatus for thawing a frozen material includes: a microwave energy source; a microwave applicator which defines a cavity for applying microwave energy from the microwave source to a material to be thawed; and a shielded region which is shielded from the microwave source, the shielded region in fluid communication with the cavity so that thawed material may flow from the cavity into the shielded region.

  15. Effect of nano-scale curvature on the intrinsic blood coagulation system.

    PubMed

    Kushida, Takashi; Saha, Krishnendu; Subramani, Chandramouleeswaran; Nandwana, Vikas; Rotello, Vincent M

    2014-11-01

    The intrinsic coagulation activity of silica nanoparticles strongly depends on their surface curvature. Nanoparticles with higher surface curvature do not denature blood coagulation factor XII on its surface, providing a coagulation 'silent' surface, while nanoparticles with lower surface curvature show denaturation and concomitant coagulation.

  16. Effect of copper(II) on natural organic matter removal during drinking water coagulation using aluminum-based coagulants.

    PubMed

    Liu, Guojing; Zhang, Xiangru; Talley, Jeffrey W

    2007-06-01

    Coagulation has been proposed as a best available technology for controlling natural organic matter (NOM) during drinking water treatment. The presence of heavy metals such as copper(II) in source water, which may form copper-NOM complexes and/or interact with a coagulant, may pose a potential challenge on the coagulation of NOM. In this work, the effect of copper(II) on NOM removal by coagulation using alum or PAX-18 (a commercial polymerized aluminum chloride from Kemiron Inc., Bartow, Florida) was examined. The results show that the presence of 1 to 10 mg/L of copper(H) in the simulated waters improved the total organic carbon (TOC) removal by up to 25% for alum coagulation and by up to 22% for PAX-18 coagulation. The increased NOM removal with the presence of copper(II) in the waters can most likely be ascribed to the formation copper-NOM complexes that may be more adsorbable on aluminum precipitates and to the formation of copper(II) co-precipitates that may also adsorb NOM. The presence of 1 to 5 mg/L of copper(I) in the waters containing 3 mg/L NOM as carbon was reduced below the maximum contaminant level goal (1.3 mg/L as copper) using either coagulant. The results suggest that the presence of copper(H) in source water may not adversely affect the NOM removal by coagulation. A good linear correlation was observed between the TOC removal efficiency and the log-total moles of the precipitated metals, which include the metal ion from a coagulant and the divalent metal ion(s) in source water. PMID:17605328

  17. Removal of titanium dioxide nanoparticles by coagulation: effects of coagulants, typical ions, alkalinity and natural organic matters.

    PubMed

    Wang, H T; Ye, Y Y; Qi, J; Li, F T; Tang, Y L

    2013-01-01

    To investigate the possibility of removing titanium dioxide nanoparticles (TiO2 NPs) from water by coagulation, as well as to find the optimal coagulant and experimental conditions for TiO2 NP removal, four types of coagulant were adopted: polyferric sulfate (PFS), ferric chloride (FeCl3), polyaluminum chloride (PACl), and alum (Al2(SO4)3). It was found that the removal of TiO2 NPs by coagulation was affected by ionic strength, alkalinity, as well as types and dosages of coagulants. PFS and FeCl3 achieved much higher removal efficiency of TiO2 NPs than PACl and Al2(SO4)3 did. For 30 mg/L TiO2 NPs, a dosage of 0.3 mM PFS (as Fe) achieved 84% removal after coagulation followed by 30 min settlement. Optimal ionic strength (0.1 M NaCl or 0.03 M CaCl2) is of vital importance for the performance of PFS. Na2SO4 is unfavorable for the performance of PFS. Optimal alkalinity (0.01-0.03 M NaHCO3) is necessary for FeCl3 to remove TiO2 NPs. Natural organic matter, as represented by humic acid (HA) up to 11 mg/L, reduces the removal of TiO2 NPs by coagulation. These findings indicate that coagulation is a good option for the removal of TiO2 NPs from water, and more attention should be paid to the effects of water quality when using coagulation to remove TiO2 NPs from aqueous matrices. This provides a possible solution to alleviate the potential hazard caused by TiO2 NPs.

  18. Influence of natural coagulants on isoflavones and antioxidant activity of tofu.

    PubMed

    Rekha, C R; Vijayalakshmi, G

    2010-08-01

    Tofu (instead of preparing using synthetic coagulant) was prepared using coagulants of plant origin (Citrus limonum, Garcinia indica, Tamarindus indica, Phyllanthus acidus and Passiflora edulis). Total crude protein and fat contents were highest in tofu prepared using G. indica and T. indica (72.5% dbw) compared to synthetic coagulant. Tofu prepared with natural coagulants had signifi cantly higher antioxidant activity compared to synthetic coagulant. Bioconversion of isoflavone glucosides (daidzin and genistin) into their corresponding bioactive aglycones (daidzein and genistein) was observed in tofu. The difference between glucosides and aglycones contents in soy milk was significant but there was not much difference in tofu coagulated with synthetic and natural coagulants.

  19. Impacts of epichlorohydrin-dimethylamine on coagulation performance and membrane fouling in coagulation/ultrafiltration combined process with different Al-based coagulants.

    PubMed

    Bu, Fan; Gao, Baoyu; Li, Ruihua; Sun, Shenglei; Yue, Qinyan

    2016-09-01

    Two kinds of aluminum-based coagulants and epichlorohydrin-dimethylamine (DAM-ECH) were used in the treatment of humic acid-kaolin simulated water by coagulation-ultrafiltration (C-UF) hybrid process. Coagulation performance, floc characteristics, including floc size, compact degree, and strength were investigated in this study. Ultrafiltration experiments were conducted by a dead-end batch unit to implement the resistance analyses to explore the membrane fouling mechanisms. Results showed that DAM-ECH aid significantly increased the UV254 and DOC removal efficiencies and contributed to the formation of larger and stronger flocs with a looser structure. Aluminum chloride (Al) gave rise to better coagulation performance with DAM-ECH compared with poly aluminum chloride (PACl). The consequences of ultrafiltration experiments showed that DAM-ECH aid could reduce the membrane fouling mainly by decreasing the cake layer resistance. The flux reductions for PACl, Al/DAM-ECH (dosing both Al and DAM-ECH) and PACl/DAM-ECH (dosing both PACl and DAM-ECH) were 62%, 56% and 44%, respectively. Results of this study would be beneficial for the application of PACl/DAM-ECH and Al/DAM-ECH composite coagulants in water treatment processes.

  20. Impacts of epichlorohydrin-dimethylamine on coagulation performance and membrane fouling in coagulation/ultrafiltration combined process with different Al-based coagulants.

    PubMed

    Bu, Fan; Gao, Baoyu; Li, Ruihua; Sun, Shenglei; Yue, Qinyan

    2016-09-01

    Two kinds of aluminum-based coagulants and epichlorohydrin-dimethylamine (DAM-ECH) were used in the treatment of humic acid-kaolin simulated water by coagulation-ultrafiltration (C-UF) hybrid process. Coagulation performance, floc characteristics, including floc size, compact degree, and strength were investigated in this study. Ultrafiltration experiments were conducted by a dead-end batch unit to implement the resistance analyses to explore the membrane fouling mechanisms. Results showed that DAM-ECH aid significantly increased the UV254 and DOC removal efficiencies and contributed to the formation of larger and stronger flocs with a looser structure. Aluminum chloride (Al) gave rise to better coagulation performance with DAM-ECH compared with poly aluminum chloride (PACl). The consequences of ultrafiltration experiments showed that DAM-ECH aid could reduce the membrane fouling mainly by decreasing the cake layer resistance. The flux reductions for PACl, Al/DAM-ECH (dosing both Al and DAM-ECH) and PACl/DAM-ECH (dosing both PACl and DAM-ECH) were 62%, 56% and 44%, respectively. Results of this study would be beneficial for the application of PACl/DAM-ECH and Al/DAM-ECH composite coagulants in water treatment processes. PMID:27295439

  1. Carbon dioxide pressure-induced coagulation of microalgae.

    PubMed

    Lee, Roland; Jessop, Philip G; Champagne, Pascale

    2015-12-28

    The move to a low-carbon economy has generated renewed interest in microalgae for the production of biofuels with the potential mutual benefit of wastewater treatment. However, harvesting has been identified as a limiting factor to the economic viability of this process. This paper explores the harvesting of microalgae using high-pressure gas without the addition of coagulants. Coagulation of microalgae under high-pressure gas was found to be an efficient method to separate algae from suspension. The critical coagulation pressures (CCPs) for H(2) and CO(2) were determined to be 6.1 and 6.2 MPa, respectively. The CO(2)-induced decrease in solution pH positively influenced coagulation rates, without appearing to affect the CCP. This approach could be beneficial for the economic removal of microalgae from solution for the production of both biofuels and biomedical compounds without the addition of non-environmentally friendly chemicals.

  2. Surgical Coagulator With Carbon Dioxide Laser For Gynecology

    NASA Astrophysics Data System (ADS)

    Wolinski, Wieslaw; Kazmirowski, Antoni; Korobowicz, Witold; Olborski, Zbigniew

    1987-10-01

    The technical data and parameters of the CO2 surgical laser for gynecology are given. Coagulator was designed and constructed in Institute of Microelectronics and Optoelectronics Warsaw Technical University.

  3. Electro-coagulation treatment of oily wastewater with sludge analysis.

    PubMed

    Ibrahim, Dhorgham Skban; Sakthipriya, N; Balasubramanian, N

    2012-01-01

    Experiments were carried out in a batch reactor to treat the oily effluent by electro-coagulation. The influence of operating parameters such as applied current, type of electrode and electrolysis time on electro-coagulation efficiency has been critically examined. The maximum percentage removal of chemical oxygen demand (COD) was 94% under optimum experimental conditions of pH 6.7, current density 6 mA/cm², electrolysis time 40 min, and using mild steel as anode. The remaining sludge in the reactor was analyzed by energy disperse analysis of X-rays (EDAX) and scanning electron microscope (SEM) analysis. The analysis confirms that the oily pollutant was removed by electroflotation and adsorption of the oily particles of precipitate during the electro-coagulation process. Electro-coagulation can be used as an efficient treatment technique for oily wastewater. PMID:23109567

  4. Argon beam coagulation in foot and ankle surgery.

    PubMed

    Adams, Melissa L; Steinberg, John S

    2011-01-01

    In this brief report, we introduce the principles, indications, advantages, disadvantages, and surgical techniques involved in the use of argon beam coagulation in foot and ankle surgery. PMID:21907597

  5. CARDIOVASCULAR AND BLOOD COAGULATION EFFECTS OF PULMONARY ZINC EXPOSURE

    EPA Science Inventory

    Cardiovascular damage induced by pulmonary exposure to environmental chemicals can result from direct action or, secondarily, from pulmonary injury. We have developed a rat model of pulmonary exposure to zinc to demonstrate cardiac, coagulative, and fibrinolytic alterations. Mal...

  6. Carbon dioxide pressure-induced coagulation of microalgae.

    PubMed

    Lee, Roland; Jessop, Philip G; Champagne, Pascale

    2015-12-28

    The move to a low-carbon economy has generated renewed interest in microalgae for the production of biofuels with the potential mutual benefit of wastewater treatment. However, harvesting has been identified as a limiting factor to the economic viability of this process. This paper explores the harvesting of microalgae using high-pressure gas without the addition of coagulants. Coagulation of microalgae under high-pressure gas was found to be an efficient method to separate algae from suspension. The critical coagulation pressures (CCPs) for H(2) and CO(2) were determined to be 6.1 and 6.2 MPa, respectively. The CO(2)-induced decrease in solution pH positively influenced coagulation rates, without appearing to affect the CCP. This approach could be beneficial for the economic removal of microalgae from solution for the production of both biofuels and biomedical compounds without the addition of non-environmentally friendly chemicals. PMID:26574522

  7. The battle cry for coagulants and flocculants: Charge!

    SciTech Connect

    Shelley, S.A.

    1997-06-01

    When treating potable and process water and industrial wastewater, the removal of suspended solids, metallic ions and organisms is key. Since the behavior of suspended solids is directly affected by the electrical charges these particles carry, water treatment operators often rely on coagulants and flocculants to neutralize surface charges and promote agglomeration. By destabilizing colloidal matter, these chemical additives ease separation by filtration or settling. Today, coagulant and flocculant use is driven by process requirements and regulatory limits. With the strictest regulations and the biggest emphasis on water-quality issues, the US leads the world in demand for water treatment chemicals, particularly coagulants and flocculants. The paper discusses the various coagulants and flocculant, their advantages and disadvantages for water treatment.

  8. Moringa coagulant as a stabilizer for amorphous solids: Part I.

    PubMed

    Bhende, Santosh; Jadhav, Namdeo

    2012-06-01

    Stabilization of amorphous state is a focal area for formulators to reap benefits related with solubility and consequently bioavailability of poorly soluble drugs. In the present work, an attempt has been made to explore the potential of moringa coagulant as an amorphous state stabilizer by investigating its role in stabilization of spray-dried (amorphous) ibuprofen, meloxicam and felodipine. Thermal studies like glass forming ability, glass transition temperature, hot stage microscopy and DSC were carried out for understanding thermodynamic stabilization of drugs. PXRD and dissolution studies were performed to support contribution of moringa coagulant. Studies showed that hydrogen bonding and electrostatic interactions between drug and moringa coagulant are responsible for amorphous state stabilization as explored by ATR-FTIR and molecular docking. Especially, H-bonding was found to be predominant mechanism for drug stabilization. Therein, arginine (basic amino acid in coagulant) exhibited various interactions and played important role in stabilization of aforesaid amorphous drugs. PMID:22359158

  9. Electro-coagulation treatment of oily wastewater with sludge analysis.

    PubMed

    Ibrahim, Dhorgham Skban; Sakthipriya, N; Balasubramanian, N

    2012-01-01

    Experiments were carried out in a batch reactor to treat the oily effluent by electro-coagulation. The influence of operating parameters such as applied current, type of electrode and electrolysis time on electro-coagulation efficiency has been critically examined. The maximum percentage removal of chemical oxygen demand (COD) was 94% under optimum experimental conditions of pH 6.7, current density 6 mA/cm², electrolysis time 40 min, and using mild steel as anode. The remaining sludge in the reactor was analyzed by energy disperse analysis of X-rays (EDAX) and scanning electron microscope (SEM) analysis. The analysis confirms that the oily pollutant was removed by electroflotation and adsorption of the oily particles of precipitate during the electro-coagulation process. Electro-coagulation can be used as an efficient treatment technique for oily wastewater.

  10. Emitron: microwave diode

    DOEpatents

    Craig, G.D.; Pettibone, J.S.; Drobot, A.T.

    1982-05-06

    The invention comprises a new class of device, driven by electron or other charged particle flow, for producing coherent microwaves by utilizing the interaction of electromagnetic waves with electron flow in diodes not requiring an external magnetic field. Anode and cathode surfaces are electrically charged with respect to one another by electron flow, for example caused by a Marx bank voltage source or by other charged particle flow, for example by a high energy charged particle beam. This produces an electric field which stimulates an emitted electron beam to flow in the anode-cathode region. The emitted electrons are accelerated by the electric field and coherent microwaves are produced by the three dimensional spatial and temporal interaction of the accelerated electrons with geometrically allowed microwave modes which results in the bunching of the electrons and the pumping of at least one dominant microwave mode.

  11. Microwave Oven Observations.

    ERIC Educational Resources Information Center

    Sumrall, William J.; Richardson, Denise; Yan, Yuan

    1998-01-01

    Explains a series of laboratory activities which employ a microwave oven to help students understand word problems that relate to states of matter, collect data, and calculate and compare electrical costs to heat energy costs. (DDR)

  12. Microwave Radiation Detector

    NASA Technical Reports Server (NTRS)

    Lesh, J. R.

    1984-01-01

    Direct photon detector responds to microwave frequencies. Method based on trapped-ion frequency-generation standards proposed to detect radio-frequency (RF) radiation at 40.5 GHz. Technique used for directdetection (RF) communication, radar, and radio astronomy.

  13. Microwave sensing from orbit

    NASA Technical Reports Server (NTRS)

    Kritikos, H. N.; Shiue, J.

    1979-01-01

    Microwave sensors, used in conjunction with the traditional sensors of visible and infrared light to extend present capabilities of global weather forecasts and local storm watches, are discussed. The great advantage of these sensors is that they can penetrate or 'see' through cloud formations to monitor temperature, humidity and wind fields below the clouds. Other uses are that they can penetrate the earth deeper than optical and IR systems; they can control their own angle of incidence; they can detect oil spills; and they can enhance the studies of the upper atmosphere through measurement of temperature, water vapor and other gaseous species. Two types of microwave sensors, active and passive, are examined. Special attention is given to the study of the microwave radiometer and the corresponding temperature resolution as detected by the antenna. It is determined that not only will the microwave remote sensors save lives by allowing close monitoring of developing storms, but also save approximately $172 million/year.

  14. Microwave beam power

    NASA Technical Reports Server (NTRS)

    Faymon, Karl A.

    1989-01-01

    Information on microwave beam power is given in viewgraph form. Information is given on orbit transfer proulsion applications, costs of delivering 100 kWe of usable power, and costs of delivering a 1 kg payload into orbit.

  15. The microwave drill.

    PubMed

    Jerby, E; Dikhtyar, V; Aktushev, O; Grosglick, U

    2002-10-18

    We present a drilling method that is based on the phenomenon of local hot spot generation by near-field microwave radiation. The microwave drill is implemented by a coaxial near-field radiator fed by a conventional microwave source. The near-field radiator induces the microwave energy into a small volume in the drilled material under its surface, and a hot spot evolves in a rapid thermal-runaway process. The center electrode of the coaxial radiator itself is then inserted into the softened material to form the hole. The method is applicable for drilling a variety of nonconductive materials. It does not require fast rotating parts, and its operation makes no dust or noise. PMID:12386331

  16. Microwave fluid flow meter

    DOEpatents

    Billeter, Thomas R.; Philipp, Lee D.; Schemmel, Richard R.

    1976-01-01

    A microwave fluid flow meter is described utilizing two spaced microwave sensors positioned along a fluid flow path. Each sensor includes a microwave cavity having a frequency of resonance dependent upon the static pressure of the fluid at the sensor locations. The resonant response of each cavity with respect to a variation in pressure of the monitored fluid is represented by a corresponding electrical output which can be calibrated into a direct pressure reading. The pressure drop between sensor locations is then correlated as a measure of fluid velocity. In the preferred embodiment the individual sensor cavities are strategically positioned outside the path of fluid flow and are designed to resonate in two distinct frequency modes yielding a measure of temperature as well as pressure. The temperature response can then be used in correcting for pressure responses of the microwave cavity encountered due to temperature fluctuations.

  17. The electromagnetic-trait imaging computation of traveling wave method in breast tumor microwave sensor system.

    PubMed

    Tao, Zhi-Fu; Han, Zhong-Ling; Yao, Meng

    2011-01-01

    Using the difference of dielectric constant between malignant tumor tissue and normal breast tissue, breast tumor microwave sensor system (BRATUMASS) determines the detected target of imaging electromagnetic trait by analyzing the properties of target tissue back wave obtained after near-field microwave radicalization (conelrad). The key of obtained target properties relationship and reconstructed detected space is to analyze the characteristics of the whole process from microwave transmission to back wave reception. Using traveling wave method, we derive spatial transmission properties and the relationship of the relation detected points distances, and valuate the properties of each unit by statistical valuation theory. This chapter gives the experimental data analysis results.

  18. Microwave emissions from snow

    NASA Technical Reports Server (NTRS)

    Chang, A. T. C.

    1984-01-01

    The radiation emitted from dry and wet snowpack in the microwave region (1 to 100 GHz) is discussed and related to ground observations. Results from theoretical model calculations match the brightness temperatures obtained by truck mounted, airborne and spaceborne microwave sensor systems. Snow wetness and internal layer structure complicate the snow parameter retrieval algorithm. Further understanding of electromagnetic interaction with snowpack may eventually provide a technique to probe the internal snow properties

  19. High power microwave generator

    DOEpatents

    Ekdahl, C.A.

    1983-12-29

    A microwave generator efficiently converts the energy of an intense relativistic electron beam (REB) into a high-power microwave emission using the Smith-Purcell effect which is related to Cerenkov radiation. Feedback for efficient beam bunching and high gain is obtained by placing a cylindrical Smith-Purcell transmission grating on the axis of a toroidal resonator. High efficiency results from the use of a thin cold annular highly-magnetized REB that is closely coupled to the resonant structure.

  20. High power microwave generator

    DOEpatents

    Ekdahl, Carl A.

    1986-01-01

    A microwave generator efficiently converts the energy of an intense relativistic electron beam (REB) into a high-power microwave emission using the Smith-Purcell effect which is related to Cerenkov radiation. Feedback for efficient beam bunching and high gain is obtained by placing a cylindrical Smith-Purcell transmission grating on the axis of a toroidal resonator. High efficiency results from the use of a thin cold annular highly-magnetized REB that is closely coupled to the resonant structure.

  1. Spaceborne Microwave Imagers

    NASA Technical Reports Server (NTRS)

    Stacey, J. M.

    1991-01-01

    Monograph presents comprehensive overview of science and technology of spaceborne microwave-imaging systems. Microwave images used as versatile orbiting, remote-sensing systems to investigate atmospheres and surfaces of planets. Detect surface objects through canopies of clouds, measure distributions of raindrops in clouds that their views penetrate, find meandering rivers in rain forests and underground water in arid regions, and provide information on ocean currents, wakes, ice/water boundaries, aircraft, ships, buoys, and bridges.

  2. Removal of Arsenic from Drinking Water by Adsorption and Coagulation

    NASA Astrophysics Data System (ADS)

    Zhang, M.; Sugita, H.; Hara, J.; Takahashi, S.

    2013-12-01

    Removal of arsenic from drinking water has been an important issue worldwide, which has attracted greater attentions in recent years especially for supplying safe drinking water in developing countries. Although many kinds of treatment approaches that are available or applicable both in principle and practice, such as adsorption, coagulation, membrane filtration, ion exchange, biological process, electrocoagulation and so on, the first 2 approaches (i.e., adsorption and coagulation) are most promising due to the low-cost, high-efficiency, simplicity of treating systems, and thus can be practically used in developing countries. In this study, a literature survey on water quality in Bangladesh was performed to understand the ranges of arsenic concentration and pH of groundwater in Bangladesh. A series of tests were then organized and performed to investigate the effects of arsenic concentration, arsenic forms, pH, chemical compositions of the materials used for adsorption and coagulation, particle size distribution and treatment time on quality of treated water. The experimental results obtained in the study illustrated that both adsorption and coagulation can be used to effectively reduce the concentrations of either arsenic (V) or arsenic (III) from the contaminated water. Coagulation of arsenic with a magnesium-based material developed in this study can be very effective to remove arsenic, especially arsenic (V), from contaminated water with a concentration of 10 ppm to an undetectable level of 0.002 ppm by ICP analyses. Compared to arsenic (III), arsenic (V) is easier to be removed. The materials used for adsorption and coagulation in this study can remove arsenic (V) up to 9 mg/g and 6 mg/g, and arsenic (III) up to 4 mg/g and 3 mg/g, respectively, depending on test conditions and compositions of the materials being used. The control of pH during treatment can be a challenging technical issue for developing both adsorbent and coagulant. Keywords: Water Treatment

  3. Coagulation and flocculation study of iron ore fines

    SciTech Connect

    Singh, B.P.; Besra, L.; Ravi Prasad, A.

    1999-03-01

    A comparative study of the flocculation and coagulation response of an iron ore fines suspension has been carried out, and the extent of flocculation has been assessed by measurement of electrophoretic mobility, supernatant clarity, and settling rate. Of the several commercial flocculants and polyelectrolyte studied, the combination of medium molecular weight anionic flocculants Magnafloc 1011 and Rishfloc 258 (1:1), and coagulant aluminum nitrate was most effective in terms of enhancing settling rate and supernatant clarity.

  4. Disseminated intravascular coagulation and hepatocellular necrosis due to clove oil.

    PubMed

    Brown, S A; Biggerstaff, J; Savidge, G F

    1992-10-01

    We describe the case of a 2-year-old child who suffered from disseminated intravascular coagulation (DIC) and hepatocellular necrosis, following ingestion of clove oil. The patient was treated with heparin and fresh frozen plasma, and, following specific haemostasis assays, with appropriate coagulation factor and inhibitor concentrates. The case demonstrates how this approach can be successfully used in the management of DIC with coexisting liver failure. PMID:1450336

  5. Determination of colchicine and O-demethylated metabolites in decomposed skeletal tissues by microwave assisted extraction, microplate solid phase extraction and ultra-high performance liquid chromatography (MAE-MPSPE-UHPLC).

    PubMed

    Watterson, J H; Imfeld, A B; Cornthwaite, H C

    2014-06-01

    Microwave assisted extraction (MAE) followed by microplate solid phase extraction (MPSPE) coupled with ultra high performance liquid chromatography (UHPLC) for the semi-quantitative determination of colchicine, 3-demethyl colchicine and 2-demethyl colchicine in postmortem rat bone is described. Rats (n=4) received 50mg/kg colchicine (i.p), and euthanized by CO2 asphyxiation. Remains decomposed to skeleton outdoors and vertebral bones were collected cleaned, and ground to a fine powder. Powdered bone underwent MAE using methanol in a closed microwave system, followed by MPSPE and analysis using UHPLC-PDA. MAE analyte stability was assessed and found to be stable for at least 60 min irradiation time. The majority (>95%) of each analyte was recovered after 15 min. The MPSPE-UHPLC method was linear between 10 and 2,000 ng/mL, with coefficients of variation <20% in triplicate analysis, with a limit of detection of 10 ng/mL for each of the three analytes. Following MAE for 30 min (80°C, 1200W), MPSPE-UHPLC analysis of vertebral bone of colchicine-exposed rats detected colchicine (1.8-4.1 μg/g), 3-demethyl colchicine (0.77-1.8 μg/g) and 2-demethyl colchicine (0.43-0.80 μg/g) in all samples assayed. PMID:24799069

  6. Microwave quantum illumination.

    PubMed

    Barzanjeh, Shabir; Guha, Saikat; Weedbrook, Christian; Vitali, David; Shapiro, Jeffrey H; Pirandola, Stefano

    2015-02-27

    Quantum illumination is a quantum-optical sensing technique in which an entangled source is exploited to improve the detection of a low-reflectivity object that is immersed in a bright thermal background. Here, we describe and analyze a system for applying this technique at microwave frequencies, a more appropriate spectral region for target detection than the optical, due to the naturally occurring bright thermal background in the microwave regime. We use an electro-optomechanical converter to entangle microwave signal and optical idler fields, with the former being sent to probe the target region and the latter being retained at the source. The microwave radiation collected from the target region is then phase conjugated and upconverted into an optical field that is combined with the retained idler in a joint-detection quantum measurement. The error probability of this microwave quantum-illumination system, or quantum radar, is shown to be superior to that of any classical microwave radar of equal transmitted energy.

  7. Microwave quantum illumination.

    PubMed

    Barzanjeh, Shabir; Guha, Saikat; Weedbrook, Christian; Vitali, David; Shapiro, Jeffrey H; Pirandola, Stefano

    2015-02-27

    Quantum illumination is a quantum-optical sensing technique in which an entangled source is exploited to improve the detection of a low-reflectivity object that is immersed in a bright thermal background. Here, we describe and analyze a system for applying this technique at microwave frequencies, a more appropriate spectral region for target detection than the optical, due to the naturally occurring bright thermal background in the microwave regime. We use an electro-optomechanical converter to entangle microwave signal and optical idler fields, with the former being sent to probe the target region and the latter being retained at the source. The microwave radiation collected from the target region is then phase conjugated and upconverted into an optical field that is combined with the retained idler in a joint-detection quantum measurement. The error probability of this microwave quantum-illumination system, or quantum radar, is shown to be superior to that of any classical microwave radar of equal transmitted energy. PMID:25768743

  8. Microwave interaction with air

    NASA Astrophysics Data System (ADS)

    Bollen, W. M.; Pershing, D.

    1985-06-01

    Microwave breakdown studies of gaseous elements have been carried out extensively over a wide range of pressures and for several microwave frequencies using CW and pulsed radiation sources. The main emphasis in these studies was on the determination of the breakdown power threshold and its dependence on the gas pressure and the microwave frequency. The coupling of mircowave energy into the breakdown plasma and neutral gas has not been studied in detail. The reason for this is that, until recently, no high-power microwave sources have been available to perform such studies. Most of the early work performed on breakdown thresholds was performed using high Q-cavities to obtain the necessary electric field to break down the gas. Once breakdown of the gas occurred, the Q of the cavity dropped and the interaction changed. Using the NRL high-power gyrotron facility, we have been able to eliminate the need for cavities and have performed experiments using a focused geometry to examine the coupling of microwave energy to nitrogen gas during breakdown. We have also modeled the experiments using a 1-D computer simulation code. Simulations were performed in a spherical geometry using a self-consistent, nitrogen chemistry, wave optics, microwave breakdown simulation code, MINI. The main emphasis of past work was on the ionization front created during nitrogen breakdown and its motion and plasma properties, as observed experimentally.

  9. Microwaves and Alzheimer's disease

    PubMed Central

    Zhang, Xia; Huang, Wen-Juan; Chen, Wei-Wei

    2016-01-01

    Alzheimer's diseases (AD) is the most common type of dementia and a neurodegenerative disease that occurs when the nerve cells in the brain die. The cause and treatment of AD remain unknown. However, AD is a disease that affects the brain, an organ that controls behavior. Accordingly, anything that can interact with the brain may affect this organ positively or negatively, thereby protecting or encouraging AD. In this regard, modern life encompasses microwaves for all issues including industrial, communications, medical and domestic tenders, and among all applications, the cell phone wave, which directly exposes the brain, continues to be the most used. Evidence suggests that microwaves may produce various biological effects on the central nervous system (CNS) and many arguments relay the possibility that microwaves may be involved in the pathophysiology of CNS disease, including AD. By contrast, previous studies have reported some beneficial cognitive effects and that microwaves may protect against cognitive impairment in AD. However, although many of the beneficial effects of microwaves are derived from animal models, but can easily be extrapolated to humans, whether microwaves cause AD is an important issue that is to be addressed in the current review. PMID:27698682

  10. Microwaves and Alzheimer's disease

    PubMed Central

    Zhang, Xia; Huang, Wen-Juan; Chen, Wei-Wei

    2016-01-01

    Alzheimer's diseases (AD) is the most common type of dementia and a neurodegenerative disease that occurs when the nerve cells in the brain die. The cause and treatment of AD remain unknown. However, AD is a disease that affects the brain, an organ that controls behavior. Accordingly, anything that can interact with the brain may affect this organ positively or negatively, thereby protecting or encouraging AD. In this regard, modern life encompasses microwaves for all issues including industrial, communications, medical and domestic tenders, and among all applications, the cell phone wave, which directly exposes the brain, continues to be the most used. Evidence suggests that microwaves may produce various biological effects on the central nervous system (CNS) and many arguments relay the possibility that microwaves may be involved in the pathophysiology of CNS disease, including AD. By contrast, previous studies have reported some beneficial cognitive effects and that microwaves may protect against cognitive impairment in AD. However, although many of the beneficial effects of microwaves are derived from animal models, but can easily be extrapolated to humans, whether microwaves cause AD is an important issue that is to be addressed in the current review.

  11. Behavioral effects of microwaves

    SciTech Connect

    Stern, S.

    1980-01-01

    Microwaves can produce sensations of warmth and sound in humans. In other species, they also can serve as cues, they may be avoided, and they can disrupt ongoing behavior. These actions appear to be due to heat produced by energy absorption. The rate of absorption depends on the microwave parameters and the electrical and geometric properties of the subject. We therefore, cannot predict the human response to microwaves based on data from other animals without appropriate scaling considerations. At low levels of exposure, microwaves can produce changes in behavior without large, or even measureable, changes in body temperature. Thermoregulatory behavior may respond to those low levels of heat, and thereby affect other behavior occurring concurrently. There are no data that demonstrate that behavioral effects of microwaves depend on any mechanism other than reactions to heat. Our interpretation of whether a reported behavioral effect indicates that microwaves may be hazardous depends on our having a complete description of the experiment and on our criteria of behavioral toxicity.

  12. Effect of rivaroxaban on blood coagulation using the viscoelastic coagulation test ROTEM™.

    PubMed

    Casutt, M; Konrad, C; Schuepfer, G

    2012-11-01

    This study investigated the influence of the oral direct inhibitor of factor Xa rivaroxaban on blood coagulation measured by rotation thrombelastometry ROTEM™. Blood was obtained from 11 healthy male volunteers before and 2.5 h after oral administration of 10 mg rivaroxaban. In addition to standard coagulation tests clot formation was measured by ROTEM™ analyzing extrinsic (Extem) and intrinsic thrombelastometry (Intem). Significant differences to the baseline values were found in the Extem clotting time (Extem-CT, 58 ± 9 s and 87 ± 17 s, p < 0.01), Intem-CT (194 ± 26 s and 239 ± 43 s; p = 0.02), prothrombin time (PT, 86 ± 9% and 67 ± 7%; p < 0.01) and activated partial thromboplastin time (aPTT, 28 ± 1 s and 35 ± 2 s; p < 0.01). There was a low correlation between Extem-CT and PT as well as between Intem-CT and aPTT before and after rivaroxaban intake. The receiver operating characteristic curve (ROC) analysis determined aPTT to be the most appropriate parameter for the prediction of rivaroxaban-induced anticoagulation, Intem-CT and Extem-CT proved to be moderate tests and PT had no significance in the prediction of rivaroxaban-induced anticoagulation. Of utmost clinical importance was the fact that rivaroxaban treated patients could still show normal ROTEM™ values. Thus, ROTEM™ cannot be a suitable test method to exclude inhibition of blood coagulation by rivaroxaban.

  13. Coagulation-flocculation in leachate treatment using modified micro sand

    NASA Astrophysics Data System (ADS)

    Thaldiri, Nur Hanani; Halim, Azhar Abdul

    2013-11-01

    Sanitary landfill leachate is considered as highly polluted wastewater, without any treatment, discharging into water system will cause underground water and surface water pollutions. This study was to investigate the treatability of the semi-aerobic landfill leachate via coagulation-flocculation using poly-aluminum chloride (PAC), cationic polymer, and modified micro sand. Leachate was collected from Pulau Burung Sanitary Landfill (PBSL) located in Penang, Malaysia. Coagulation-flocculation was performed by using jar test equipment and the effect of pH, dose of coagulant and dose of polymer toward removal of chemical oxygen demand (COD), color and suspended solid (SS) were examined. Micro sand was also used in this study to compare settling time of coagulation-flocculation process. The optimum pH, dose of coagulant (PAC) and dose of polymer (cationic) achieved were 7.0, 1000 mg/L and 8 mg/L, respectively. The dose of micro sand used for the settling time process was 300 mg/L. Results showed that 52.66% removal of COD, 97.16% removal of SS and 96.44% removal of color were achieved under optimum condition. The settling times for the settling down of the sludge or particles that formed during coagulation-flocculation process were 1 min with modified sand, 20 min with raw micro sand and 45 min without micro sand.

  14. Treatment of paper and pulp mill effluent by coagulation.

    PubMed

    Chaudhari, Parmesh Kumar; Majumdar, Bidyut; Choudhary, Rumi; Yadav, Deepak Kumar; Chand, Shri

    2010-04-01

    Pulp and paper mill effluent is highly polluting and is a subject of great environmental concern. In the present research we studied the removal of chemical oxygen demand (COD) and colour from paper mill effluent, using the coagulation process. A batch coagulation study was conducted using various coagulants such as aluminium chloride (AlCl3), polyaluminium chloride (PAC) and copper sulphate (CuSO4 x 5H20). The initial pH of the effluent had a tremendous effect on the COD and colour removal. The PAC reduced COD by 83% and reduced colour by 92% at an optimum pH of 5.0 and a coagulant dose of 8 mL L(-1). With AlCl3, at an optimum pH of 4.0 and a coagulant dose of 5 g L(-1), 72% COD removal and 84% colour removal were observed. At an optimum pH of 6.0 and a mass loading of 5 g L(-1), 76% COD reduction and 78% colour reduction were obtained with copper sulphate. It was also observed that, after addition of coagulant, the pH of the effluent decreased. The decrease in the pH was highest with AlCl3, followed by PAC and then CuSO4 x 5H20. PMID:20450109

  15. Planetesimal formation by sweep-up coagulation

    NASA Astrophysics Data System (ADS)

    Windmark, Fredrik; Birnstiel, Til; Ormel, Chris W.; Dullemond, Cornelis P.

    2013-07-01

    The formation of planetesimals is often accredited to collisional sticking of dust grains in the protoplanetary disk. The exact process is however unknown, as collisions between larger aggregates tend to lead to fragmentation or bouncing rather than sticking. These growth barriers tend to halt the dust growth already at millimeters or centimeters in size, which is far below the kilometer-sizes that are needed for gravity to aid in the accretion. To study how far dust coagulation can proceed, we have developed a new collision model based on the latest laboratory experiments, and have used it together with a dust-size evolution code capable of resolving all grain interactions in the protoplanetary disk. We find that for the general dust population, bouncing and fragmenting collisions prevent the growth above millimeter-sizes. However, a small number of lucky particles can grow larger than the rest by only interacting at low, sticky velocities. As they grow, they become increasingly resilient to fragmentation caused by the small grains. In this way, two populations are formed: One which remains small due to the collisional barriers, and one that continues to grow by sweeping up the smaller grains around them.

  16. Oxidation inhibits iron-induced blood coagulation.

    PubMed

    Pretorius, Etheresia; Bester, Janette; Vermeulen, Natasha; Lipinski, Boguslaw

    2013-01-01

    Blood coagulation under physiological conditions is activated by thrombin, which converts soluble plasma fibrinogen (FBG) into an insoluble clot. The structure of the enzymatically-generated clot is very characteristic being composed of thick fibrin fibers susceptible to the fibrinolytic degradation. However, in chronic degenerative diseases, such as atherosclerosis, diabetes mellitus, cancer, and neurological disorders, fibrin clots are very different forming dense matted deposits (DMD) that are not effectively removed and thus create a condition known as thrombosis. We have recently shown that trivalent iron (ferric ions) generates hydroxyl radicals, which subsequently convert FBG into abnormal fibrin clots in the form of DMDs. A characteristic feature of DMDs is their remarkable and permanent resistance to the enzymatic degradation. Therefore, in order to prevent thrombotic incidences in the degenerative diseases it is essential to inhibit the iron-induced generation of hydroxyl radicals. This can be achieved by the pretreatment with a direct free radical scavenger (e.g. salicylate), and as shown in this paper by the treatment with oxidizing agents such as hydrogen peroxide, methylene blue, and sodium selenite. Although the actual mechanism of this phenomenon is not yet known, it is possible that hydroxyl radicals are neutralized by their conversion to the molecular oxygen and water, thus inhibiting the formation of dense matted fibrin deposits in human blood.

  17. Endotoxin Induced Disseminated Intravascular Coagulation in Cattle

    PubMed Central

    Thomson, G. W.; McSherry, B. J.; Valli, V. E. O.

    1974-01-01

    Endotoxin administered intravenously to a group of four calves resulted in disseminated intravascular coagulation. A sublethal dose of piromen, a commercially available Pseudomonas spp endotoxin, was used. Serial measurements of total plasma fibrinogen, soluble fibrin levels, ethanol gelation tests, protamine sulfate tests, fibrinogen-fibrin-related antigen (FR-antigen) and prothrombin and thrombin times were done. Initial depression of plasma fibrinogen with a nadir of about 40% of pre-endotoxin levels at eight to 11 hours post-endotoxin (+8 to +11 hours) followed by an overcompensation to 180% at +60 to +108 hours was shown. Soluble fibrin was demonstrated in plasma from +2 to +22 hours with a peak of 100-114 mg/100 ml at +4 to +9 hours. Positive plasma ethanol gelation and protamine sulfate tests, as well as the presence of serum FR-antigen, occurred consistently following endotoxin administration. Significant increases in prothrombin times (PT) from +4 to +40 hours and in thrombin times (TT) from +4 to +16 hours were demonstrated. The peak increase of PT at +8 to +10 hours was 180%. The peak increase of TT at +6 to +9 hours was 260-290%. ImagesFig. 1.Fig. 2.Fig. 3.Fig. 4. PMID:4279765

  18. Evaluation of the coagulation profile among oral and vaginal combined hormonal contraceptive users using sonoclot coagulation analyzer.

    PubMed

    Brandy, Kyle R; Meyer, Rachel M; Luo, Xianghua; Rao, Gundu H; Datta, Yvonne H; Divani, Afshin A

    2012-11-01

    Combined hormonal contraceptives possess an inherent risk of thrombus-related events. The purpose of this study is to elucidate alterations in the coagulation profile among young women using combined oral contraceptive (COC) or combined vaginal contraceptive (CVC) compared to a normal, healthy, female control group using the Sonoclot coagulation analyzer. We enrolled 159 participants (64 control individuals, 51 COC users, and 44 CVC users). Each participant completed a survey of medical history, family medical history, and lifestyle choices. Citrated venous whole blood was collected and analyzed using the Sonoclot coagulation analyzer. After adjusting for age, race, alcohol consumption, sleeping habits, and family history of cardiovascular disease, and stroke, we observed COC and CVC users had mostly similar coagulation profiles except when compared to the control, and COC and CVC users had an elevated glass bead peak signal while COC users had a shorter peak time.

  19. 1.06-μm Nd:YAG laser coagulation tonsillectomy: an animal study

    NASA Astrophysics Data System (ADS)

    Wang, Zhi; Pankratov, Michail M.; Volk, Mark S.; Perrault, Donald F., Jr.; Shapshay, Stanley M.

    1995-05-01

    Tonsillectomy is one of the most frequently performed surgeries which is not free from post- operative morbidity. We have developed a non contact photocoagulation technique using 1.06 micrometers Nd:YAG laser and tested its safety and efficacy in an animal model. Eight animals were divided into the laser coagulation group (6 animals) and the laser excision group (2 animals). Tonsils of the laser coagulation animals were irradiated with 8 - 10 W of laser power for 5 - 6 min in a slow painting-like motion over the surface of a tonsil until slight blanching of mucosa was noticed. Tonsils of the laser excision group were resected with 25 - 30 W of 1.06 micrometers Nd:YAG laser power through a contact fiber. The animals were examined endoscopically at 1.5 hrs and at 2, 5, 12, 30, and 42 days post treatment. Atrophic process was followed until total disappearance of tonsillar tissue was observed. The animals were sacrificed at various time intervals and the tonsillar specimens were collected for gross and histological examination. The thermal damage to mucosa and adjacent tissues was minimal which we attribute to a low laser power and cooling from preoperative injection of saline into subcapsular space. The potential advantages of this technique include intact mucosa with no intra- or post-operative bleeding, less pain, and avoidance of general anesthesia. These advantages may enable this surgery to become an in-the-office procedure.

  20. Endothelium Preserving Microwave Treatment for Atherosclerosis

    NASA Technical Reports Server (NTRS)

    Carl, James R. (Inventor); Arndt, Dickey (Inventor); Fink, Patrick W. (Inventor); Beer, Reginald (Inventor); Henry, Phillip D. (Inventor); Pacifico, Antonio (Inventor); Raffoul, George W. (Inventor)

    2002-01-01

    Method and apparatus are provided to treat atherosclerosis wherein the artery is partially closed by dilating the artery while preserving the vital and sensitive endothelial layer thereof. Microwave energy having a frequency from 3 GHz to 300 GHz is propagated into the arterial wall to produce a desired temperature profile therein at tissue depths sufficient for thermally necrosing connective tissue and softening fatty and waxy plaque while limiting heating of surrounding tissues including the endothelial layer and/or other healthy tissue, organs, and blood. The heating period for raising the temperature a potentially desired amount, about 20 C. within the atherosclerotic lesion may be less than about one second. In one embodiment of the invention, a radically beveled waveguide antenna is used to deliver microwave energy at frequencies from 25 GHz or 30 GHz to about 300 GHz and is focused towards a particular radial sector of the artery. Because the atherosclerotic lesions are often asymmetrically disposed, directable or focussed heating preserves healthy sectors or the artery and applies energy to the asymmetrically positioned lesion faster than a non-directed bean. A computer simulation predicts isothermic temperature profiles for the given conditions and may be used in selecting power, pulse duration, beam width, and frequency of operation to maximize energy deposition and control heat rise within the atherosclerotic lesion without harming healthy tissues or the sensitive endothelium cells.