Sample records for midbrain auditory thresholds

  1. Representation of particle motion in the auditory midbrain of a developing anuran.

    PubMed

    Simmons, Andrea Megela

    2015-07-01

    In bullfrog tadpoles, a "deaf period" of lessened responsiveness to the pressure component of sounds, evident during the end of the late larval period, has been identified in the auditory midbrain. But coding of underwater particle motion in the vestibular medulla remains stable over all of larval development, with no evidence of a "deaf period." Neural coding of particle motion in the auditory midbrain was assessed to determine if a "deaf period" for this mode of stimulation exists in this brain area in spite of its absence from the vestibular medulla. Recording sites throughout the developing laminar and medial principal nuclei show relatively stable thresholds to z-axis particle motion, up until the "deaf period." Thresholds then begin to increase from this point up through the rest of metamorphic climax, and significantly fewer responsive sites can be located. The representation of particle motion in the auditory midbrain is less robust during later compared to earlier larval stages, overlapping with but also extending beyond the restricted "deaf period" for pressure stimulation. The decreased functional representation of particle motion in the auditory midbrain throughout metamorphic climax may reflect ongoing neural reorganization required to mediate the transition from underwater to amphibious life.

  2. Long-Term Impairment of Sound Processing in the Auditory Midbrain by Daily Short-Term Exposure to Moderate Noise.

    PubMed

    Cheng, Liang; Wang, Shao-Hui; Peng, Kang; Liao, Xiao-Mei

    2017-01-01

    Most citizen people are exposed daily to environmental noise at moderate levels with a short duration. The aim of the present study was to determine the effects of daily short-term exposure to moderate noise on sound level processing in the auditory midbrain. Sound processing properties of auditory midbrain neurons were recorded in anesthetized mice exposed to moderate noise (80 dB SPL, 2 h/d for 6 weeks) and were compared with those from age-matched controls. Neurons in exposed mice had a higher minimum threshold and maximum response intensity, a longer first spike latency, and a higher slope and narrower dynamic range for rate level function. However, these observed changes were greater in neurons with the best frequency within the noise exposure frequency range compared with those outside the frequency range. These sound processing properties also remained abnormal after a 12-week period of recovery in a quiet laboratory environment after completion of noise exposure. In conclusion, even daily short-term exposure to moderate noise can cause long-term impairment of sound level processing in a frequency-specific manner in auditory midbrain neurons.

  3. Long-Term Impairment of Sound Processing in the Auditory Midbrain by Daily Short-Term Exposure to Moderate Noise

    PubMed Central

    Cheng, Liang; Wang, Shao-Hui; Peng, Kang

    2017-01-01

    Most citizen people are exposed daily to environmental noise at moderate levels with a short duration. The aim of the present study was to determine the effects of daily short-term exposure to moderate noise on sound level processing in the auditory midbrain. Sound processing properties of auditory midbrain neurons were recorded in anesthetized mice exposed to moderate noise (80 dB SPL, 2 h/d for 6 weeks) and were compared with those from age-matched controls. Neurons in exposed mice had a higher minimum threshold and maximum response intensity, a longer first spike latency, and a higher slope and narrower dynamic range for rate level function. However, these observed changes were greater in neurons with the best frequency within the noise exposure frequency range compared with those outside the frequency range. These sound processing properties also remained abnormal after a 12-week period of recovery in a quiet laboratory environment after completion of noise exposure. In conclusion, even daily short-term exposure to moderate noise can cause long-term impairment of sound level processing in a frequency-specific manner in auditory midbrain neurons. PMID:28589040

  4. Electrical stimulation of the midbrain excites the auditory cortex asymmetrically.

    PubMed

    Quass, Gunnar Lennart; Kurt, Simone; Hildebrandt, Jannis; Kral, Andrej

    2018-05-17

    Auditory midbrain implant users cannot achieve open speech perception and have limited frequency resolution. It remains unclear whether the spread of excitation contributes to this issue and how much it can be compensated by current-focusing, which is an effective approach in cochlear implants. The present study examined the spread of excitation in the cortex elicited by electric midbrain stimulation. We further tested whether current-focusing via bipolar and tripolar stimulation is effective with electric midbrain stimulation and whether these modes hold any advantage over monopolar stimulation also in conditions when the stimulation electrodes are in direct contact with the target tissue. Using penetrating multielectrode arrays, we recorded cortical population responses to single pulse electric midbrain stimulation in 10 ketamine/xylazine anesthetized mice. We compared monopolar, bipolar, and tripolar stimulation configurations with regard to the spread of excitation and the characteristic frequency difference between the stimulation/recording electrodes. The cortical responses were distributed asymmetrically around the characteristic frequency of the stimulated midbrain region with a strong activation in regions tuned up to one octave higher. We found no significant differences between monopolar, bipolar, and tripolar stimulation in threshold, evoked firing rate, or dynamic range. The cortical responses to electric midbrain stimulation are biased towards higher tonotopic frequencies. Current-focusing is not effective in direct contact electrical stimulation. Electrode maps should account for the asymmetrical spread of excitation when fitting auditory midbrain implants by shifting the frequency-bands downward and stimulating as dorsally as possible. Copyright © 2018 Elsevier Inc. All rights reserved.

  5. Correspondence between evoked vocal responses and auditory thresholds in Pleurodema thaul (Amphibia; Leptodactylidae).

    PubMed

    Penna, Mario; Velásquez, Nelson; Solís, Rigoberto

    2008-04-01

    Thresholds for evoked vocal responses and thresholds of multiunit midbrain auditory responses to pure tones and synthetic calls were investigated in males of Pleurodema thaul, as behavioral thresholds well above auditory sensitivity have been reported for other anurans. Thresholds for evoked vocal responses to synthetic advertisement calls played back at increasing intensity averaged 43 dB RMS SPL (range 31-52 dB RMS SPL), measured at the subjects' position. Number of pulses increased with stimulus intensities, reaching a plateau at about 18-39 dB above threshold and decreased at higher intensities. Latency to call followed inverse trends relative to number of pulses. Neural audiograms yielded an average best threshold in the high frequency range of 46.6 dB RMS SPL (range 41-51 dB RMS SPL) and a center frequency of 1.9 kHz (range 1.7-2.6 kHz). Auditory thresholds for a synthetic call having a carrier frequency of 2.1 kHz averaged 44 dB RMS SPL (range 39-47 dB RMS SPL). The similarity between thresholds for advertisement calling and auditory thresholds for the advertisement call indicates that male P. thaul use the full extent of their auditory sensitivity in acoustic interactions, likely an evolutionary adaptation allowing chorusing activity in low-density aggregations.

  6. Conserved mechanisms of vocalization coding in mammalian and songbird auditory midbrain.

    PubMed

    Woolley, Sarah M N; Portfors, Christine V

    2013-11-01

    The ubiquity of social vocalizations among animals provides the opportunity to identify conserved mechanisms of auditory processing that subserve communication. Identifying auditory coding properties that are shared across vocal communicators will provide insight into how human auditory processing leads to speech perception. Here, we compare auditory response properties and neural coding of social vocalizations in auditory midbrain neurons of mammalian and avian vocal communicators. The auditory midbrain is a nexus of auditory processing because it receives and integrates information from multiple parallel pathways and provides the ascending auditory input to the thalamus. The auditory midbrain is also the first region in the ascending auditory system where neurons show complex tuning properties that are correlated with the acoustics of social vocalizations. Single unit studies in mice, bats and zebra finches reveal shared principles of auditory coding including tonotopy, excitatory and inhibitory interactions that shape responses to vocal signals, nonlinear response properties that are important for auditory coding of social vocalizations and modulation tuning. Additionally, single neuron responses in the mouse and songbird midbrain are reliable, selective for specific syllables, and rely on spike timing for neural discrimination of distinct vocalizations. We propose that future research on auditory coding of vocalizations in mouse and songbird midbrain neurons adopt similar experimental and analytical approaches so that conserved principles of vocalization coding may be distinguished from those that are specialized for each species. This article is part of a Special Issue entitled "Communication Sounds and the Brain: New Directions and Perspectives". Copyright © 2013 Elsevier B.V. All rights reserved.

  7. Response Properties of Neighboring Neurons in the Auditory Midbrain for Pure-Tone Stimulation: A Tetrode Study

    PubMed Central

    Seshagiri, Chandran V.; Delgutte, Bertrand

    2007-01-01

    The complex anatomical structure of the central nucleus of the inferior colliculus (ICC), the principal auditory nucleus in the midbrain, may provide the basis for functional organization of auditory information. To investigate this organization, we used tetrodes to record from neighboring neurons in the ICC of anesthetized cats and studied the similarity and difference among the responses of these neurons to pure-tone stimuli using widely used physiological characterizations. Consistent with the tonotopic arrangement of neurons in the ICC and reports of a threshold map, we found a high degree of correlation in the best frequencies (BFs) of neighboring neurons, which were mostly <3 kHz in our sample, and the pure-tone thresholds among neighboring neurons. However, width of frequency tuning, shapes of the frequency response areas, and temporal discharge patterns showed little or no correlation among neighboring neurons. Because the BF and threshold are measured at levels near the threshold and the characteristic frequency (CF), neighboring neurons may receive similar primary inputs tuned to their CF; however, at higher levels, additional inputs from other frequency channels may be recruited, introducing greater variability in the responses. There was also no correlation among neighboring neurons' sensitivity to interaural time differences (ITD) measured with binaural beats. However, the characteristic phases (CPs) of neighboring neurons revealed a significant correlation. Because the CP is related to the neural mechanisms generating the ITD sensitivity, this result is consistent with segregation of inputs to the ICC from the lateral and medial superior olives. PMID:17671101

  8. Response properties of neighboring neurons in the auditory midbrain for pure-tone stimulation: a tetrode study.

    PubMed

    Seshagiri, Chandran V; Delgutte, Bertrand

    2007-10-01

    The complex anatomical structure of the central nucleus of the inferior colliculus (ICC), the principal auditory nucleus in the midbrain, may provide the basis for functional organization of auditory information. To investigate this organization, we used tetrodes to record from neighboring neurons in the ICC of anesthetized cats and studied the similarity and difference among the responses of these neurons to pure-tone stimuli using widely used physiological characterizations. Consistent with the tonotopic arrangement of neurons in the ICC and reports of a threshold map, we found a high degree of correlation in the best frequencies (BFs) of neighboring neurons, which were mostly <3 kHz in our sample, and the pure-tone thresholds among neighboring neurons. However, width of frequency tuning, shapes of the frequency response areas, and temporal discharge patterns showed little or no correlation among neighboring neurons. Because the BF and threshold are measured at levels near the threshold and the characteristic frequency (CF), neighboring neurons may receive similar primary inputs tuned to their CF; however, at higher levels, additional inputs from other frequency channels may be recruited, introducing greater variability in the responses. There was also no correlation among neighboring neurons' sensitivity to interaural time differences (ITD) measured with binaural beats. However, the characteristic phases (CPs) of neighboring neurons revealed a significant correlation. Because the CP is related to the neural mechanisms generating the ITD sensitivity, this result is consistent with segregation of inputs to the ICC from the lateral and medial superior olives.

  9. Distinct Correlation Structure Supporting a Rate-Code for Sound Localization in the Owl’s Auditory Forebrain

    PubMed Central

    2017-01-01

    Abstract While a topographic map of auditory space exists in the vertebrate midbrain, it is absent in the forebrain. Yet, both brain regions are implicated in sound localization. The heterogeneous spatial tuning of adjacent sites in the forebrain compared to the midbrain reflects different underlying circuitries, which is expected to affect the correlation structure, i.e., signal (similarity of tuning) and noise (trial-by-trial variability) correlations. Recent studies have drawn attention to the impact of response correlations on the information readout from a neural population. We thus analyzed the correlation structure in midbrain and forebrain regions of the barn owl’s auditory system. Tetrodes were used to record in the midbrain and two forebrain regions, Field L and the downstream auditory arcopallium (AAr), in anesthetized owls. Nearby neurons in the midbrain showed high signal and noise correlations (RNCs), consistent with shared inputs. As previously reported, Field L was arranged in random clusters of similarly tuned neurons. Interestingly, AAr neurons displayed homogeneous monotonic azimuth tuning, while response variability of nearby neurons was significantly less correlated than the midbrain. Using a decoding approach, we demonstrate that low RNC in AAr restricts the potentially detrimental effect it can have on information, assuming a rate code proposed for mammalian sound localization. This study harnesses the power of correlation structure analysis to investigate the coding of auditory space. Our findings demonstrate distinct correlation structures in the auditory midbrain and forebrain, which would be beneficial for a rate-code framework for sound localization in the nontopographic forebrain representation of auditory space. PMID:28674698

  10. Tonic effects of the dopaminergic ventral midbrain on the auditory cortex of awake macaque monkeys.

    PubMed

    Huang, Ying; Mylius, Judith; Scheich, Henning; Brosch, Michael

    2016-03-01

    This study shows that ongoing electrical stimulation of the dopaminergic ventral midbrain can modify neuronal activity in the auditory cortex of awake primates for several seconds. This was reflected in a decrease of the spontaneous firing and in a bidirectional modification of the power of auditory evoked potentials. We consider that both effects are due to an increase in the dopamine tone in auditory cortex induced by the electrical stimulation. Thus, the dopaminergic ventral midbrain may contribute to the tonic activity in auditory cortex that has been proposed to be involved in associating events of auditory tasks (Brosch et al. Hear Res 271:66-73, 2011) and may modulate the signal-to-noise ratio of the responses to auditory stimuli.

  11. The dissimilar time course of temporary threshold shifts and reduction of inhibition in the inferior colliculus following intense sound exposure.

    PubMed

    Heeringa, A N; van Dijk, P

    2014-06-01

    Excessive noise exposure is known to produce an auditory threshold shift, which can be permanent or transient in nature. Recent studies showed that noise-induced temporary threshold shifts are associated with loss of synaptic connections to the inner hair cells and with cochlear nerve degeneration, which is reflected in a decreased amplitude of wave I of the auditory brainstem response (ABR). This suggests that, despite normal auditory thresholds, central auditory processing may be abnormal. We recorded changes in central auditory processing following a sound-induced temporary threshold shift. Anesthetized guinea pigs were exposed for 1 h to a pure tone of 11 kHz (124 dB sound pressure level). Hearing thresholds, amplitudes of ABR waves I and IV, and spontaneous and tone-evoked firing rates in the inferior colliculus (IC) were assessed immediately, one week, two weeks, and four weeks post exposure. Hearing thresholds were elevated immediately following overexposure, but recovered within one week. The amplitude of the ABR wave I was decreased in all sound-exposed animals for all test periods. In contrast, the ABR wave IV amplitude was only decreased immediately after overexposure and recovered within a week. The proportion of IC units that show inhibitory responses to pure tones decreased substantially up to two weeks after overexposure, especially when stimulated with high frequencies. The proportion of excitatory responses to low frequencies was increased. Spontaneous activity was unaffected by the overexposure. Despite rapid normalization of auditory thresholds, our results suggest an increased central gain following sound exposure and an abnormal balance between excitatory and inhibitory responses in the midbrain up to two weeks after overexposure. These findings may be associated with hyperacusis after a sound-induced temporary threshold shift. Copyright © 2014 The Authors. Published by Elsevier B.V. All rights reserved.

  12. Forebrain pathway for auditory space processing in the barn owl.

    PubMed

    Cohen, Y E; Miller, G L; Knudsen, E I

    1998-02-01

    The forebrain plays an important role in many aspects of sound localization behavior. Yet, the forebrain pathway that processes auditory spatial information is not known for any species. Using standard anatomic labeling techniques, we used a "top-down" approach to trace the flow of auditory spatial information from an output area of the forebrain sound localization pathway (the auditory archistriatum, AAr), back through the forebrain, and into the auditory midbrain. Previous work has demonstrated that AAr units are specialized for auditory space processing. The results presented here show that the AAr receives afferent input from Field L both directly and indirectly via the caudolateral neostriatum. Afferent input to Field L originates mainly in the auditory thalamus, nucleus ovoidalis, which, in turn, receives input from the central nucleus of the inferior colliculus. In addition, we confirmed previously reported projections of the AAr to the basal ganglia, the external nucleus of the inferior colliculus (ICX), the deep layers of the optic tectum, and various brain stem nuclei. A series of inactivation experiments demonstrated that the sharp tuning of AAr sites for binaural spatial cues depends on Field L input but not on input from the auditory space map in the midbrain ICX: pharmacological inactivation of Field L eliminated completely auditory responses in the AAr, whereas bilateral ablation of the midbrain ICX had no appreciable effect on AAr responses. We conclude, therefore, that the forebrain sound localization pathway can process auditory spatial information independently of the midbrain localization pathway.

  13. Underwater hearing in the loggerhead turtle (Caretta caretta): a comparison of behavioral and auditory evoked potential audiograms.

    PubMed

    Martin, Kelly J; Alessi, Sarah C; Gaspard, Joseph C; Tucker, Anton D; Bauer, Gordon B; Mann, David A

    2012-09-01

    The purpose of this study was to compare underwater behavioral and auditory evoked potential (AEP) audiograms in a single captive adult loggerhead sea turtle (Caretta caretta). The behavioral audiogram was collected using a go/no-go response procedure and a modified staircase method of threshold determination. AEP thresholds were measured using subdermal electrodes placed beneath the frontoparietal scale, dorsal to the midbrain. Both methods showed the loggerhead sea turtle to have low frequency hearing with best sensitivity between 100 and 400 Hz. AEP testing yielded thresholds from 100 to 1131 Hz with best sensitivity at 200 and 400 Hz (110 dB re. 1 μPa). Behavioral testing using 2 s tonal stimuli yielded underwater thresholds from 50 to 800 Hz with best sensitivity at 100 Hz (98 dB re. 1 μPa). Behavioral thresholds averaged 8 dB lower than AEP thresholds from 100 to 400 Hz and 5 dB higher at 800 Hz. The results suggest that AEP testing can be a good alternative to measuring a behavioral audiogram with wild or untrained marine turtles and when time is a crucial factor.

  14. Rapid Effects of Hearing Song on Catecholaminergic Activity in the Songbird Auditory Pathway

    PubMed Central

    Matragrano, Lisa L.; Beaulieu, Michaël; Phillip, Jessica O.; Rae, Ali I.; Sanford, Sara E.; Sockman, Keith W.; Maney, Donna L.

    2012-01-01

    Catecholaminergic (CA) neurons innervate sensory areas and affect the processing of sensory signals. For example, in birds, CA fibers innervate the auditory pathway at each level, including the midbrain, thalamus, and forebrain. We have shown previously that in female European starlings, CA activity in the auditory forebrain can be enhanced by exposure to attractive male song for one week. It is not known, however, whether hearing song can initiate that activity more rapidly. Here, we exposed estrogen-primed, female white-throated sparrows to conspecific male song and looked for evidence of rapid synthesis of catecholamines in auditory areas. In one hemisphere of the brain, we used immunohistochemistry to detect the phosphorylation of tyrosine hydroxylase (TH), a rate-limiting enzyme in the CA synthetic pathway. We found that immunoreactivity for TH phosphorylated at serine 40 increased dramatically in the auditory forebrain, but not the auditory thalamus and midbrain, after 15 min of song exposure. In the other hemisphere, we used high pressure liquid chromatography to measure catecholamines and their metabolites. We found that two dopamine metabolites, dihydroxyphenylacetic acid and homovanillic acid, increased in the auditory forebrain but not the auditory midbrain after 30 min of exposure to conspecific song. Our results are consistent with the hypothesis that exposure to a behaviorally relevant auditory stimulus rapidly induces CA activity, which may play a role in auditory responses. PMID:22724011

  15. Encoding of natural and artificial stimuli in the auditory midbrain

    NASA Astrophysics Data System (ADS)

    Lyzwa, Dominika

    How complex acoustic stimuli are encoded in the main center of convergence in the auditory midbrain is not clear. Here, the representation of neural spiking responses to natural and artificial sounds across this subcortical structure is investigated based on neurophysiological recordings from the mammalian midbrain. Neural and stimulus correlations of neuronal pairs are analyzed with respect to the neurons' distance, and responses to different natural communication sounds are discriminated. A model which includes linear and nonlinear neural response properties of this nucleus is presented and employed to predict temporal spiking responses to new sounds. Supported by BMBF Grant 01GQ0811.

  16. Emergence of band-pass filtering through adaptive spiking in the owl's cochlear nucleus

    PubMed Central

    MacLeod, Katrina M.; Lubejko, Susan T.; Steinberg, Louisa J.; Köppl, Christine; Peña, Jose L.

    2014-01-01

    In the visual, auditory, and electrosensory modalities, stimuli are defined by first- and second-order attributes. The fast time-pressure signal of a sound, a first-order attribute, is important, for instance, in sound localization and pitch perception, while its slow amplitude-modulated envelope, a second-order attribute, can be used for sound recognition. Ascending the auditory pathway from ear to midbrain, neurons increasingly show a preference for the envelope and are most sensitive to particular envelope modulation frequencies, a tuning considered important for encoding sound identity. The level at which this tuning property emerges along the pathway varies across species, and the mechanism of how this occurs is a matter of debate. In this paper, we target the transition between auditory nerve fibers and the cochlear nucleus angularis (NA). While the owl's auditory nerve fibers simultaneously encode the fast and slow attributes of a sound, one synapse further, NA neurons encode the envelope more efficiently than the auditory nerve. Using in vivo and in vitro electrophysiology and computational analysis, we show that a single-cell mechanism inducing spike threshold adaptation can explain the difference in neural filtering between the two areas. We show that spike threshold adaptation can explain the increased selectivity to modulation frequency, as input level increases in NA. These results demonstrate that a spike generation nonlinearity can modulate the tuning to second-order stimulus features, without invoking network or synaptic mechanisms. PMID:24790170

  17. Evidence of degraded representation of speech in noise, in the aging midbrain and cortex

    PubMed Central

    Simon, Jonathan Z.; Anderson, Samira

    2016-01-01

    Humans have a remarkable ability to track and understand speech in unfavorable conditions, such as in background noise, but speech understanding in noise does deteriorate with age. Results from several studies have shown that in younger adults, low-frequency auditory cortical activity reliably synchronizes to the speech envelope, even when the background noise is considerably louder than the speech signal. However, cortical speech processing may be limited by age-related decreases in the precision of neural synchronization in the midbrain. To understand better the neural mechanisms contributing to impaired speech perception in older adults, we investigated how aging affects midbrain and cortical encoding of speech when presented in quiet and in the presence of a single-competing talker. Our results suggest that central auditory temporal processing deficits in older adults manifest in both the midbrain and in the cortex. Specifically, midbrain frequency following responses to a speech syllable are more degraded in noise in older adults than in younger adults. This suggests a failure of the midbrain auditory mechanisms needed to compensate for the presence of a competing talker. Similarly, in cortical responses, older adults show larger reductions than younger adults in their ability to encode the speech envelope when a competing talker is added. Interestingly, older adults showed an exaggerated cortical representation of speech in both quiet and noise conditions, suggesting a possible imbalance between inhibitory and excitatory processes, or diminished network connectivity that may impair their ability to encode speech efficiently. PMID:27535374

  18. Intralaminar stimulation of the inferior colliculus facilitates frequency-specific activation in the auditory cortex

    NASA Astrophysics Data System (ADS)

    Allitt, B. J.; Benjaminsen, C.; Morgan, S. J.; Paolini, A. G.

    2013-08-01

    Objective. Auditory midbrain implants (AMI) provide inadequate frequency discrimination for open set speech perception. AMIs that can take advantage of the tonotopic laminar of the midbrain may be able to better deliver frequency specific perception and lead to enhanced performance. Stimulation strategies that best elicit frequency specific activity need to be identified. This research examined the characteristic frequency (CF) relationship between regions of the auditory cortex (AC), in response to stimulated regions of the inferior colliculus (IC), comparing monopolar, and intralaminar bipolar electrical stimulation. Approach. Electrical stimulation using multi-channel micro-electrode arrays in the IC was used to elicit AC responses in anaesthetized male hooded Wistar rats. The rate of activity in AC regions with CFs within 3 kHz (CF-aligned) and unaligned CFs was used to assess the frequency specificity of responses. Main results. Both monopolar and bipolar IC stimulation led to CF-aligned neural activity in the AC. Altering the distance between the stimulation and reference electrodes in the IC led to changes in both threshold and dynamic range, with bipolar stimulation with 400 µm spacing evoking the lowest AC threshold and widest dynamic range. At saturation, bipolar stimulation elicited a significantly higher mean spike count in the AC at CF-aligned areas than at CF-unaligned areas when electrode spacing was 400 µm or less. Bipolar stimulation using electrode spacing of 400 µm or less also elicited a higher rate of elicited activity in the AC in both CF-aligned and CF-unaligned regions than monopolar stimulation. When electrodes were spaced 600 µm apart no benefit over monopolar stimulation was observed. Furthermore, monopolar stimulation of the external cortex of the IC resulted in more localized frequency responses than bipolar stimulation when stimulation and reference sites were 200 µm apart. Significance. These findings have implications for the future development of AMI, as a bipolar stimulation strategy may improve the ability of implant users to discriminate between frequencies.

  19. Neural Processing of Target Distance by Echolocating Bats: Functional Roles of the Auditory Midbrain

    PubMed Central

    Wenstrup, Jeffrey J.; Portfors, Christine V.

    2011-01-01

    Using their biological sonar, bats estimate distance to avoid obstacles and capture moving prey. The primary distance cue is the delay between the bat's emitted echolocation pulse and the return of an echo. The mustached bat's auditory midbrain (inferior colliculus, IC) is crucial to the analysis of pulse-echo delay. IC neurons are selective for certain delays between frequency modulated (FM) elements of the pulse and echo. One role of the IC is to create these “delay-tuned”, “FM-FM” response properties through a series of spectro-temporal integrative interactions. A second major role of the midbrain is to project target distance information to many parts of the brain. Pathways through auditory thalamus undergo radical reorganization to create highly ordered maps of pulse-echo delay in auditory cortex, likely contributing to perceptual features of target distance analysis. FM-FM neurons in IC also project strongly to pre-motor centers including the pretectum and the pontine nuclei. These pathways may contribute to rapid adjustments in flight, body position, and sonar vocalizations that occur as a bat closes in on a target. PMID:21238485

  20. There's more than one way to scan a cat: imaging cat auditory cortex with high-field fMRI using continuous or sparse sampling.

    PubMed

    Hall, Amee J; Brown, Trecia A; Grahn, Jessica A; Gati, Joseph S; Nixon, Pam L; Hughes, Sarah M; Menon, Ravi S; Lomber, Stephen G

    2014-03-15

    When conducting auditory investigations using functional magnetic resonance imaging (fMRI), there are inherent potential confounds that need to be considered. Traditional continuous fMRI acquisition methods produce sounds >90 dB which compete with stimuli or produce neural activation masking evoked activity. Sparse scanning methods insert a period of reduced MRI-related noise, between image acquisitions, in which a stimulus can be presented without competition. In this study, we compared sparse and continuous scanning methods to identify the optimal approach to investigate acoustically evoked cortical, thalamic and midbrain activity in the cat. Using a 7 T magnet, we presented broadband noise, 10 kHz tones, or 0.5 kHz tones in a block design, interleaved with blocks in which no stimulus was presented. Continuous scanning resulted in larger clusters of activation and more peak voxels within the auditory cortex. However, no significant activation was observed within the thalamus. Also, there was no significant difference found, between continuous or sparse scanning, in activations of midbrain structures. Higher magnitude activations were identified in auditory cortex compared to the midbrain using both continuous and sparse scanning. These results indicate that continuous scanning is the preferred method for investigations of auditory cortex in the cat using fMRI. Also, choice of method for future investigations of midbrain activity should be driven by other experimental factors, such as stimulus intensity and task performance during scanning. Copyright © 2014 Elsevier B.V. All rights reserved.

  1. Amodal brain activation and functional connectivity in response to high-energy-density food cues in obesity.

    PubMed

    Carnell, Susan; Benson, Leora; Pantazatos, Spiro P; Hirsch, Joy; Geliebter, Allan

    2014-11-01

    The obesogenic environment is pervasive, yet only some people become obese. The aim was to investigate whether obese individuals show differential neural responses to visual and auditory food cues, independent of cue modality. Obese (BMI 29-41, n = 10) and lean (BMI 20-24, n = 10) females underwent fMRI scanning during presentation of auditory (spoken word) and visual (photograph) cues representing high-energy-density (ED) and low-ED foods. The effect of obesity on whole-brain activation, and on functional connectivity with the midbrain/VTA, was examined. Obese compared with lean women showed greater modality-independent activation of the midbrain/VTA and putamen in response to high-ED (vs. low-ED) cues, as well as relatively greater functional connectivity between the midbrain/VTA and cerebellum (P < 0.05 corrected). Heightened modality-independent responses to food cues within the midbrain/VTA and putamen, and altered functional connectivity between the midbrain/VTA and cerebellum, could contribute to excessive food intake in obese individuals. © 2014 The Obesity Society.

  2. Evidence that hidden hearing loss underlies amplitude modulation encoding deficits in individuals with and without tinnitus.

    PubMed

    Paul, Brandon T; Bruce, Ian C; Roberts, Larry E

    2017-02-01

    Damage to auditory nerve fibers that expresses with suprathreshold sounds but is hidden from the audiogram has been proposed to underlie deficits in temporal coding ability observed among individuals with otherwise normal hearing, and to be present in individuals experiencing chronic tinnitus with clinically normal audiograms. We tested whether these individuals may have hidden synaptic losses on auditory nerve fibers with low spontaneous rates of firing (low-SR fibers) that are important for coding suprathreshold sounds in noise while high-SR fibers determining threshold responses in quiet remain relatively unaffected. Tinnitus and control subjects were required to detect the presence of amplitude modulation (AM) in a 5 kHz, suprathreshold tone (a frequency in the tinnitus frequency region of the tinnitus subjects, whose audiometric thresholds were normal to 12 kHz). The AM tone was embedded within background noise intended to degrade the contribution of high-SR fibers, such that AM coding was preferentially reliant on low-SR fibers. We also recorded by electroencephalography the "envelope following response" (EFR, generated in the auditory midbrain) to a 5 kHz, 85 Hz AM tone presented in the same background noise, and also in quiet (both low-SR and high-SR fibers contributing to AM coding in the latter condition). Control subjects with EFRs that were comparatively resistant to the addition of background noise had better AM detection thresholds than controls whose EFRs were more affected by noise. Simulated auditory nerve responses to our stimulus conditions using a well-established peripheral model suggested that low-SR fibers were better preserved in the former cases. Tinnitus subjects had worse AM detection thresholds and reduced EFRs overall compared to controls. Simulated auditory nerve responses found that in addition to severe low-SR fiber loss, a degree of high-SR fiber loss that would not be expected to affect audiometric thresholds was needed to explain the results in tinnitus subjects. The results indicate that hidden hearing loss could be sufficient to account for impaired temporal coding in individuals with normal audiograms as well as for cases of tinnitus without audiometric hearing loss. Copyright © 2016 Elsevier B.V. All rights reserved.

  3. Auditory and visual interactions between the superior and inferior colliculi in the ferret.

    PubMed

    Stitt, Iain; Galindo-Leon, Edgar; Pieper, Florian; Hollensteiner, Karl J; Engler, Gerhard; Engel, Andreas K

    2015-05-01

    The integration of visual and auditory spatial information is important for building an accurate perception of the external world, but the fundamental mechanisms governing such audiovisual interaction have only partially been resolved. The earliest interface between auditory and visual processing pathways is in the midbrain, where the superior (SC) and inferior colliculi (IC) are reciprocally connected in an audiovisual loop. Here, we investigate the mechanisms of audiovisual interaction in the midbrain by recording neural signals from the SC and IC simultaneously in anesthetized ferrets. Visual stimuli reliably produced band-limited phase locking of IC local field potentials (LFPs) in two distinct frequency bands: 6-10 and 15-30 Hz. These visual LFP responses co-localized with robust auditory responses that were characteristic of the IC. Imaginary coherence analysis confirmed that visual responses in the IC were not volume-conducted signals from the neighboring SC. Visual responses in the IC occurred later than retinally driven superficial SC layers and earlier than deep SC layers that receive indirect visual inputs, suggesting that retinal inputs do not drive visually evoked responses in the IC. In addition, SC and IC recording sites with overlapping visual spatial receptive fields displayed stronger functional connectivity than sites with separate receptive fields, indicating that visual spatial maps are aligned across both midbrain structures. Reciprocal coupling between the IC and SC therefore probably serves the dynamic integration of visual and auditory representations of space. © 2015 Federation of European Neuroscience Societies and John Wiley & Sons Ltd.

  4. Auditory and audio-visual processing in patients with cochlear, auditory brainstem, and auditory midbrain implants: An EEG study.

    PubMed

    Schierholz, Irina; Finke, Mareike; Kral, Andrej; Büchner, Andreas; Rach, Stefan; Lenarz, Thomas; Dengler, Reinhard; Sandmann, Pascale

    2017-04-01

    There is substantial variability in speech recognition ability across patients with cochlear implants (CIs), auditory brainstem implants (ABIs), and auditory midbrain implants (AMIs). To better understand how this variability is related to central processing differences, the current electroencephalography (EEG) study compared hearing abilities and auditory-cortex activation in patients with electrical stimulation at different sites of the auditory pathway. Three different groups of patients with auditory implants (Hannover Medical School; ABI: n = 6, CI: n = 6; AMI: n = 2) performed a speeded response task and a speech recognition test with auditory, visual, and audio-visual stimuli. Behavioral performance and cortical processing of auditory and audio-visual stimuli were compared between groups. ABI and AMI patients showed prolonged response times on auditory and audio-visual stimuli compared with NH listeners and CI patients. This was confirmed by prolonged N1 latencies and reduced N1 amplitudes in ABI and AMI patients. However, patients with central auditory implants showed a remarkable gain in performance when visual and auditory input was combined, in both speech and non-speech conditions, which was reflected by a strong visual modulation of auditory-cortex activation in these individuals. In sum, the results suggest that the behavioral improvement for audio-visual conditions in central auditory implant patients is based on enhanced audio-visual interactions in the auditory cortex. Their findings may provide important implications for the optimization of electrical stimulation and rehabilitation strategies in patients with central auditory prostheses. Hum Brain Mapp 38:2206-2225, 2017. © 2017 Wiley Periodicals, Inc. © 2017 Wiley Periodicals, Inc.

  5. Accurate Sound Localization in Reverberant Environments is Mediated by Robust Encoding of Spatial Cues in the Auditory Midbrain

    PubMed Central

    Devore, Sasha; Ihlefeld, Antje; Hancock, Kenneth; Shinn-Cunningham, Barbara; Delgutte, Bertrand

    2009-01-01

    In reverberant environments, acoustic reflections interfere with the direct sound arriving at a listener’s ears, distorting the spatial cues for sound localization. Yet, human listeners have little difficulty localizing sounds in most settings. Because reverberant energy builds up over time, the source location is represented relatively faithfully during the early portion of a sound, but this representation becomes increasingly degraded later in the stimulus. We show that the directional sensitivity of single neurons in the auditory midbrain of anesthetized cats follows a similar time course, although onset dominance in temporal response patterns results in more robust directional sensitivity than expected, suggesting a simple mechanism for improving directional sensitivity in reverberation. In parallel behavioral experiments, we demonstrate that human lateralization judgments are consistent with predictions from a population rate model decoding the observed midbrain responses, suggesting a subcortical origin for robust sound localization in reverberant environments. PMID:19376072

  6. Mechanisms of spectral and temporal integration in the mustached bat inferior colliculus

    PubMed Central

    Wenstrup, Jeffrey James; Nataraj, Kiran; Sanchez, Jason Tait

    2012-01-01

    This review describes mechanisms and circuitry underlying combination-sensitive response properties in the auditory brainstem and midbrain. Combination-sensitive neurons, performing a type of auditory spectro-temporal integration, respond to specific, properly timed combinations of spectral elements in vocal signals and other acoustic stimuli. While these neurons are known to occur in the auditory forebrain of many vertebrate species, the work described here establishes their origin in the auditory brainstem and midbrain. Focusing on the mustached bat, we review several major findings: (1) Combination-sensitive responses involve facilitatory interactions, inhibitory interactions, or both when activated by distinct spectral elements in complex sounds. (2) Combination-sensitive responses are created in distinct stages: inhibition arises mainly in lateral lemniscal nuclei of the auditory brainstem, while facilitation arises in the inferior colliculus (IC) of the midbrain. (3) Spectral integration underlying combination-sensitive responses requires a low-frequency input tuned well below a neuron's characteristic frequency (ChF). Low-ChF neurons in the auditory brainstem project to high-ChF regions in brainstem or IC to create combination sensitivity. (4) At their sites of origin, both facilitatory and inhibitory combination-sensitive interactions depend on glycinergic inputs and are eliminated by glycine receptor blockade. Surprisingly, facilitatory interactions in IC depend almost exclusively on glycinergic inputs and are largely independent of glutamatergic and GABAergic inputs. (5) The medial nucleus of the trapezoid body (MNTB), the lateral lemniscal nuclei, and the IC play critical roles in creating combination-sensitive responses. We propose that these mechanisms, based on work in the mustached bat, apply to a broad range of mammals and other vertebrates that depend on temporally sensitive integration of information across the audible spectrum. PMID:23109917

  7. Auditory midbrain implant: a review.

    PubMed

    Lim, Hubert H; Lenarz, Minoo; Lenarz, Thomas

    2009-09-01

    The auditory midbrain implant (AMI) is a new hearing prosthesis designed for stimulation of the inferior colliculus in deaf patients who cannot sufficiently benefit from cochlear implants. The authors have begun clinical trials in which five patients have been implanted with a single shank AMI array (20 electrodes). The goal of this review is to summarize the development and research that has led to the translation of the AMI from a concept into the first patients. This study presents the rationale and design concept for the AMI as well a summary of the animal safety and feasibility studies that were required for clinical approval. The authors also present the initial surgical, psychophysical, and speech results from the first three implanted patients. Overall, the results have been encouraging in terms of the safety and functionality of the implant. All patients obtain improvements in hearing capabilities on a daily basis. However, performance varies dramatically across patients depending on the implant location within the midbrain with the best performer still not able to achieve open set speech perception without lip-reading cues. Stimulation of the auditory midbrain provides a wide range of level, spectral, and temporal cues, all of which are important for speech understanding, but they do not appear to sufficiently fuse together to enable open set speech perception with the currently used stimulation strategies. Finally, several issues and hypotheses for why current patients obtain limited speech perception along with several feasible solutions for improving AMI implementation are presented.

  8. A role for descending auditory cortical projections in songbird vocal learning

    PubMed Central

    Mandelblat-Cerf, Yael; Las, Liora; Denisenko, Natalia; Fee, Michale S

    2014-01-01

    Many learned motor behaviors are acquired by comparing ongoing behavior with an internal representation of correct performance, rather than using an explicit external reward. For example, juvenile songbirds learn to sing by comparing their song with the memory of a tutor song. At present, the brain regions subserving song evaluation are not known. In this study, we report several findings suggesting that song evaluation involves an avian 'cortical' area previously shown to project to the dopaminergic midbrain and other downstream targets. We find that this ventral portion of the intermediate arcopallium (AIV) receives inputs from auditory cortical areas, and that lesions of AIV result in significant deficits in vocal learning. Additionally, AIV neurons exhibit fast responses to disruptive auditory feedback presented during singing, but not during nonsinging periods. Our findings suggest that auditory cortical areas may guide learning by transmitting song evaluation signals to the dopaminergic midbrain and/or other subcortical targets. DOI: http://dx.doi.org/10.7554/eLife.02152.001 PMID:24935934

  9. Incorporating Midbrain Adaptation to Mean Sound Level Improves Models of Auditory Cortical Processing

    PubMed Central

    Schoppe, Oliver; King, Andrew J.; Schnupp, Jan W.H.; Harper, Nicol S.

    2016-01-01

    Adaptation to stimulus statistics, such as the mean level and contrast of recently heard sounds, has been demonstrated at various levels of the auditory pathway. It allows the nervous system to operate over the wide range of intensities and contrasts found in the natural world. Yet current standard models of the response properties of auditory neurons do not incorporate such adaptation. Here we present a model of neural responses in the ferret auditory cortex (the IC Adaptation model), which takes into account adaptation to mean sound level at a lower level of processing: the inferior colliculus (IC). The model performs high-pass filtering with frequency-dependent time constants on the sound spectrogram, followed by half-wave rectification, and passes the output to a standard linear–nonlinear (LN) model. We find that the IC Adaptation model consistently predicts cortical responses better than the standard LN model for a range of synthetic and natural stimuli. The IC Adaptation model introduces no extra free parameters, so it improves predictions without sacrificing parsimony. Furthermore, the time constants of adaptation in the IC appear to be matched to the statistics of natural sounds, suggesting that neurons in the auditory midbrain predict the mean level of future sounds and adapt their responses appropriately. SIGNIFICANCE STATEMENT An ability to accurately predict how sensory neurons respond to novel stimuli is critical if we are to fully characterize their response properties. Attempts to model these responses have had a distinguished history, but it has proven difficult to improve their predictive power significantly beyond that of simple, mostly linear receptive field models. Here we show that auditory cortex receptive field models benefit from a nonlinear preprocessing stage that replicates known adaptation properties of the auditory midbrain. This improves their predictive power across a wide range of stimuli but keeps model complexity low as it introduces no new free parameters. Incorporating the adaptive coding properties of neurons will likely improve receptive field models in other sensory modalities too. PMID:26758822

  10. Anesthetic state modulates excitability but not spectral tuning or neural discrimination in single auditory midbrain neurons

    PubMed Central

    Schumacher, Joseph W.; Schneider, David M.

    2011-01-01

    The majority of sensory physiology experiments have used anesthesia to facilitate the recording of neural activity. Current techniques allow researchers to study sensory function in the context of varying behavioral states. To reconcile results across multiple behavioral and anesthetic states, it is important to consider how and to what extent anesthesia plays a role in shaping neural response properties. The role of anesthesia has been the subject of much debate, but the extent to which sensory coding properties are altered by anesthesia has yet to be fully defined. In this study we asked how urethane, an anesthetic commonly used for avian and mammalian sensory physiology, affects the coding of complex communication vocalizations (songs) and simple artificial stimuli in the songbird auditory midbrain. We measured spontaneous and song-driven spike rates, spectrotemporal receptive fields, and neural discriminability from responses to songs in single auditory midbrain neurons. In the same neurons, we recorded responses to pure tone stimuli ranging in frequency and intensity. Finally, we assessed the effect of urethane on population-level representations of birdsong. Results showed that intrinsic neural excitability is significantly depressed by urethane but that spectral tuning, single neuron discriminability, and population representations of song do not differ significantly between unanesthetized and anesthetized animals. PMID:21543752

  11. Long-Lasting Sound-Evoked Afterdischarge in the Auditory Midbrain.

    PubMed

    Ono, Munenori; Bishop, Deborah C; Oliver, Douglas L

    2016-02-12

    Different forms of plasticity are known to play a critical role in the processing of information about sound. Here, we report a novel neural plastic response in the inferior colliculus, an auditory center in the midbrain of the auditory pathway. A vigorous, long-lasting sound-evoked afterdischarge (LSA) is seen in a subpopulation of both glutamatergic and GABAergic neurons in the central nucleus of the inferior colliculus of normal hearing mice. These neurons were identified with single unit recordings and optogenetics in vivo. The LSA can continue for up to several minutes after the offset of the sound. LSA is induced by long-lasting, or repetitive short-duration, innocuous sounds. Neurons with LSA showed less adaptation than the neurons without LSA. The mechanisms that cause this neural behavior are unknown but may be a function of intrinsic mechanisms or the microcircuitry of the inferior colliculus. Since LSA produces long-lasting firing in the absence of sound, it may be relevant to temporary or chronic tinnitus or to some other aftereffect of long-duration sound.

  12. Social regulation of serotonin in the auditory midbrain

    PubMed Central

    Hall, Ian C.; Sell, Gabrielle L.; Hurley, Laura M .

    2011-01-01

    The neuromodulator serotonin regulates auditory processing and can increase within minutes in response to stimuli like broadband noise as well as non-auditory stressors. Little is known about the serotonergic response in the auditory system to more natural stimuli such as social interactions, however. Using carbon-fiber voltammetry, we measured extracellular serotonin in the auditory midbrain of resident male mice during encounters with a male intruder. Serotonin increased in the inferior colliculus (IC) over the course of a 15 minute interaction, but not when mice were separated with a perforated barrier. Several behaviors, including the amount of immobility and anogenital investigation performed by the resident, were correlated with the serotonergic response. Multiple intrinsic factors associated with individual mice also correlated with the serotonergic response. One of these was age: older mice had smaller serotonergic responses to the social interaction. In a second interaction, individual identity predicted serotonergic responses that were highly consistent with those in the first interaction, even when mice were paired with different intruders. Serotonin was also significantly elevated in the second social interaction relative to the first, suggesting a role for social experience. These findings show that during social interaction, serotonin in the IC is influenced by extrinsic factors such as the directness of social interaction and intrinsic factors including age, individual identity, and experience. PMID:21787041

  13. Discrimination of communication vocalizations by single neurons and groups of neurons in the auditory midbrain.

    PubMed

    Schneider, David M; Woolley, Sarah M N

    2010-06-01

    Many social animals including songbirds use communication vocalizations for individual recognition. The perception of vocalizations depends on the encoding of complex sounds by neurons in the ascending auditory system, each of which is tuned to a particular subset of acoustic features. Here, we examined how well the responses of single auditory neurons could be used to discriminate among bird songs and we compared discriminability to spectrotemporal tuning. We then used biologically realistic models of pooled neural responses to test whether the responses of groups of neurons discriminated among songs better than the responses of single neurons and whether discrimination by groups of neurons was related to spectrotemporal tuning and trial-to-trial response variability. The responses of single auditory midbrain neurons could be used to discriminate among vocalizations with a wide range of abilities, ranging from chance to 100%. The ability to discriminate among songs using single neuron responses was not correlated with spectrotemporal tuning. Pooling the responses of pairs of neurons generally led to better discrimination than the average of the two inputs and the most discriminating input. Pooling the responses of three to five single neurons continued to improve neural discrimination. The increase in discriminability was largest for groups of neurons with similar spectrotemporal tuning. Further, we found that groups of neurons with correlated spike trains achieved the largest gains in discriminability. We simulated neurons with varying levels of temporal precision and measured the discriminability of responses from single simulated neurons and groups of simulated neurons. Simulated neurons with biologically observed levels of temporal precision benefited more from pooling correlated inputs than did neurons with highly precise or imprecise spike trains. These findings suggest that pooling correlated neural responses with the levels of precision observed in the auditory midbrain increases neural discrimination of complex vocalizations.

  14. Long-Lasting Sound-Evoked Afterdischarge in the Auditory Midbrain

    PubMed Central

    Ono, Munenori; Bishop, Deborah C.; Oliver, Douglas L.

    2016-01-01

    Different forms of plasticity are known to play a critical role in the processing of information about sound. Here, we report a novel neural plastic response in the inferior colliculus, an auditory center in the midbrain of the auditory pathway. A vigorous, long-lasting sound-evoked afterdischarge (LSA) is seen in a subpopulation of both glutamatergic and GABAergic neurons in the central nucleus of the inferior colliculus of normal hearing mice. These neurons were identified with single unit recordings and optogenetics in vivo. The LSA can continue for up to several minutes after the offset of the sound. LSA is induced by long-lasting, or repetitive short-duration, innocuous sounds. Neurons with LSA showed less adaptation than the neurons without LSA. The mechanisms that cause this neural behavior are unknown but may be a function of intrinsic mechanisms or the microcircuitry of the inferior colliculus. Since LSA produces long-lasting firing in the absence of sound, it may be relevant to temporary or chronic tinnitus or to some other aftereffect of long-duration sound. PMID:26867811

  15. Brain Activation Patterns in Response to Conspecific and Heterospecific Social Acoustic Signals in Female Plainfin Midshipman Fish, Porichthys notatus.

    PubMed

    Mohr, Robert A; Chang, Yiran; Bhandiwad, Ashwin A; Forlano, Paul M; Sisneros, Joseph A

    2018-01-01

    While the peripheral auditory system of fish has been well studied, less is known about how the fish's brain and central auditory system process complex social acoustic signals. The plainfin midshipman fish, Porichthys notatus, has become a good species for investigating the neural basis of acoustic communication because the production and reception of acoustic signals is paramount for this species' reproductive success. Nesting males produce long-duration advertisement calls that females detect and localize among the noise in the intertidal zone to successfully find mates and spawn. How female midshipman are able to discriminate male advertisement calls from environmental noise and other acoustic stimuli is unknown. Using the immediate early gene product cFos as a marker for neural activity, we quantified neural activation of the ascending auditory pathway in female midshipman exposed to conspecific advertisement calls, heterospecific white seabass calls, or ambient environment noise. We hypothesized that auditory hindbrain nuclei would be activated by general acoustic stimuli (ambient noise and other biotic acoustic stimuli) whereas auditory neurons in the midbrain and forebrain would be selectively activated by conspecific advertisement calls. We show that neural activation in two regions of the auditory hindbrain, i.e., the rostral intermediate division of the descending octaval nucleus and the ventral division of the secondary octaval nucleus, did not differ via cFos immunoreactive (cFos-ir) activity when exposed to different acoustic stimuli. In contrast, female midshipman exposed to conspecific advertisement calls showed greater cFos-ir in the nucleus centralis of the midbrain torus semicircularis compared to fish exposed only to ambient noise. No difference in cFos-ir was observed in the torus semicircularis of animals exposed to conspecific versus heterospecific calls. However, cFos-ir was greater in two forebrain structures that receive auditory input, i.e., the central posterior nucleus of the thalamus and the anterior tuberal hypothalamus, when exposed to conspecific calls versus either ambient noise or heterospecific calls. Our results suggest that higher-order neurons in the female midshipman midbrain torus semicircularis, thalamic central posterior nucleus, and hypothalamic anterior tuberal nucleus may be necessary for the discrimination of complex social acoustic signals. Furthermore, neurons in the central posterior and anterior tuberal nuclei are differentially activated by exposure to conspecific versus other acoustic stimuli. © 2018 S. Karger AG, Basel.

  16. Cortical modulation of auditory processing in the midbrain

    PubMed Central

    Bajo, Victoria M.; King, Andrew J.

    2013-01-01

    In addition to their ascending pathways that originate at the receptor cells, all sensory systems are characterized by extensive descending projections. Although the size of these connections often outweighs those that carry information in the ascending auditory pathway, we still have a relatively poor understanding of the role they play in sensory processing. In the auditory system one of the main corticofugal projections links layer V pyramidal neurons with the inferior colliculus (IC) in the midbrain. All auditory cortical fields contribute to this projection, with the primary areas providing the largest outputs to the IC. In addition to medium and large pyramidal cells in layer V, a variety of cell types in layer VI make a small contribution to the ipsilateral corticocollicular projection. Cortical neurons innervate the three IC subdivisions bilaterally, although the contralateral projection is relatively small. The dorsal and lateral cortices of the IC are the principal targets of corticocollicular axons, but input to the central nucleus has also been described in some studies and is distinctive in its laminar topographic organization. Focal electrical stimulation and inactivation studies have shown that the auditory cortex can modify almost every aspect of the response properties of IC neurons, including their sensitivity to sound frequency, intensity, and location. Along with other descending pathways in the auditory system, the corticocollicular projection appears to continually modulate the processing of acoustical signals at subcortical levels. In particular, there is growing evidence that these circuits play a critical role in the plasticity of neural processing that underlies the effects of learning and experience on auditory perception by enabling changes in cortical response properties to spread to subcortical nuclei. PMID:23316140

  17. Sensorineural hearing loss amplifies neural coding of envelope information in the central auditory system of chinchillas

    PubMed Central

    Zhong, Ziwei; Henry, Kenneth S.; Heinz, Michael G.

    2014-01-01

    People with sensorineural hearing loss often have substantial difficulty understanding speech under challenging listening conditions. Behavioral studies suggest that reduced sensitivity to the temporal structure of sound may be responsible, but underlying neurophysiological pathologies are incompletely understood. Here, we investigate the effects of noise-induced hearing loss on coding of envelope (ENV) structure in the central auditory system of anesthetized chinchillas. ENV coding was evaluated noninvasively using auditory evoked potentials recorded from the scalp surface in response to sinusoidally amplitude modulated tones with carrier frequencies of 1, 2, 4, and 8 kHz and a modulation frequency of 140 Hz. Stimuli were presented in quiet and in three levels of white background noise. The latency of scalp-recorded ENV responses was consistent with generation in the auditory midbrain. Hearing loss amplified neural coding of ENV at carrier frequencies of 2 kHz and above. This result may reflect enhanced ENV coding from the periphery and/or an increase in the gain of central auditory neurons. In contrast to expectations, hearing loss was not associated with a stronger adverse effect of increasing masker intensity on ENV coding. The exaggerated neural representation of ENV information shown here at the level of the auditory midbrain helps to explain previous findings of enhanced sensitivity to amplitude modulation in people with hearing loss under some conditions. Furthermore, amplified ENV coding may potentially contribute to speech perception problems in people with cochlear hearing loss by acting as a distraction from more salient acoustic cues, particularly in fluctuating backgrounds. PMID:24315815

  18. Developmental Experience Alters Information Coding in Auditory Midbrain and Forebrain Neurons

    PubMed Central

    Woolley, Sarah M. N.; Hauber, Mark E.; Theunissen, Frederic E.

    2010-01-01

    In songbirds, species identity and developmental experience shape vocal behavior and behavioral responses to vocalizations. The interaction of species identity and developmental experience may also shape the coding properties of sensory neurons. We tested whether responses of auditory midbrain and forebrain neurons to songs differed between species and between groups of conspecific birds with different developmental exposure to song. We also compared responses of individual neurons to conspecific and heterospecific songs. Zebra and Bengalese finches that were raised and tutored by conspecific birds, and zebra finches that were cross-tutored by Bengalese finches were studied. Single-unit responses to zebra and Bengalese finch songs were recorded and analyzed by calculating mutual information, response reliability, mean spike rate, fluctuations in time-varying spike rate, distributions of time-varying spike rates, and neural discrimination of individual songs. Mutual information quantifies a response’s capacity to encode information about a stimulus. In midbrain and forebrain neurons, mutual information was significantly higher in normal zebra finch neurons than in Bengalese finch and cross-tutored zebra finch neurons, but not between Bengalese finch and cross-tutored zebra finch neurons. Information rate differences were largely due to spike rate differences. Mutual information did not differ between responses to conspecific and heterospecific songs. Therefore, neurons from normal zebra finches encoded more information about songs than did neurons from other birds, but conspecific and heterospecific songs were encoded equally. Neural discrimination of songs and mutual information were highly correlated. Results demonstrate that developmental exposure to vocalizations shapes the information coding properties of songbird auditory neurons. PMID:20039264

  19. Stimulus change detection in phasic auditory units in the frog midbrain: frequency and ear specific adaptation.

    PubMed

    Ponnath, Abhilash; Hoke, Kim L; Farris, Hamilton E

    2013-04-01

    Neural adaptation, a reduction in the response to a maintained stimulus, is an important mechanism for detecting stimulus change. Contributing to change detection is the fact that adaptation is often stimulus specific: adaptation to a particular stimulus reduces excitability to a specific subset of stimuli, while the ability to respond to other stimuli is unaffected. Phasic cells (e.g., cells responding to stimulus onset) are good candidates for detecting the most rapid changes in natural auditory scenes, as they exhibit fast and complete adaptation to an initial stimulus presentation. We made recordings of single phasic auditory units in the frog midbrain to determine if adaptation was specific to stimulus frequency and ear of input. In response to an instantaneous frequency step in a tone, 28% of phasic cells exhibited frequency specific adaptation based on a relative frequency change (delta-f=±16%). Frequency specific adaptation was not limited to frequency steps, however, as adaptation was also overcome during continuous frequency modulated stimuli and in response to spectral transients interrupting tones. The results suggest that adaptation is separated for peripheral (e.g., frequency) channels. This was tested directly using dichotic stimuli. In 45% of binaural phasic units, adaptation was ear specific: adaptation to stimulation of one ear did not affect responses to stimulation of the other ear. Thus, adaptation exhibited specificity for stimulus frequency and lateralization at the level of the midbrain. This mechanism could be employed to detect rapid stimulus change within and between sound sources in complex acoustic environments.

  20. Suppression and facilitation of auditory neurons through coordinated acoustic and midbrain stimulation: investigating a deep brain stimulator for tinnitus

    NASA Astrophysics Data System (ADS)

    Offutt, Sarah J.; Ryan, Kellie J.; Konop, Alexander E.; Lim, Hubert H.

    2014-12-01

    Objective. The inferior colliculus (IC) is the primary processing center of auditory information in the midbrain and is one site of tinnitus-related activity. One potential option for suppressing the tinnitus percept is through deep brain stimulation via the auditory midbrain implant (AMI), which is designed for hearing restoration and is already being implanted in deaf patients who also have tinnitus. However, to assess the feasibility of AMI stimulation for tinnitus treatment we first need to characterize the functional connectivity within the IC. Previous studies have suggested modulatory projections from the dorsal cortex of the IC (ICD) to the central nucleus of the IC (ICC), though the functional properties of these projections need to be determined. Approach. In this study, we investigated the effects of electrical stimulation of the ICD on acoustic-driven activity within the ICC in ketamine-anesthetized guinea pigs. Main Results. We observed ICD stimulation induces both suppressive and facilitatory changes across ICC that can occur immediately during stimulation and remain after stimulation. Additionally, ICD stimulation paired with broadband noise stimulation at a specific delay can induce greater suppressive than facilitatory effects, especially when stimulating in more rostral and medial ICD locations. Significance. These findings demonstrate that ICD stimulation can induce specific types of plastic changes in ICC activity, which may be relevant for treating tinnitus. By using the AMI with electrode sites positioned with the ICD and the ICC, the modulatory effects of ICD stimulation can be tested directly in tinnitus patients.

  1. Stimulus change detection in phasic auditory units in the frog midbrain: frequency and ear specific adaptation

    PubMed Central

    Ponnath, Abhilash; Hoke, Kim L.

    2013-01-01

    Neural adaptation, a reduction in the response to a maintained stimulus, is an important mechanism for detecting stimulus change. Contributing to change detection is the fact that adaptation is often stimulus specific: adaptation to a particular stimulus reduces excitability to a specific subset of stimuli, while the ability to respond to other stimuli is unaffected. Phasic cells (e.g., cells responding to stimulus onset) are good candidates for detecting the most rapid changes in natural auditory scenes, as they exhibit fast and complete adaptation to an initial stimulus presentation. We made recordings of single phasic auditory units in the frog midbrain to determine if adaptation was specific to stimulus frequency and ear of input. In response to an instantaneous frequency step in a tone, 28 % of phasic cells exhibited frequency specific adaptation based on a relative frequency change (delta-f = ±16 %). Frequency specific adaptation was not limited to frequency steps, however, as adaptation was also overcome during continuous frequency modulated stimuli and in response to spectral transients interrupting tones. The results suggest that adaptation is separated for peripheral (e.g., frequency) channels. This was tested directly using dichotic stimuli. In 45 % of binaural phasic units, adaptation was ear specific: adaptation to stimulation of one ear did not affect responses to stimulation of the other ear. Thus, adaptation exhibited specificity for stimulus frequency and lateralization at the level of the midbrain. This mechanism could be employed to detect rapid stimulus change within and between sound sources in complex acoustic environments. PMID:23344947

  2. Persistent Thalamic Sound Processing Despite Profound Cochlear Denervation.

    PubMed

    Chambers, Anna R; Salazar, Juan J; Polley, Daniel B

    2016-01-01

    Neurons at higher stages of sensory processing can partially compensate for a sudden drop in peripheral input through a homeostatic plasticity process that increases the gain on weak afferent inputs. Even after a profound unilateral auditory neuropathy where >95% of afferent synapses between auditory nerve fibers and inner hair cells have been eliminated with ouabain, central gain can restore cortical processing and perceptual detection of basic sounds delivered to the denervated ear. In this model of profound auditory neuropathy, auditory cortex (ACtx) processing and perception recover despite the absence of an auditory brainstem response (ABR) or brainstem acoustic reflexes, and only a partial recovery of sound processing at the level of the inferior colliculus (IC), an auditory midbrain nucleus. In this study, we induced a profound cochlear neuropathy with ouabain and asked whether central gain enabled a compensatory plasticity in the auditory thalamus comparable to the full recovery of function previously observed in the ACtx, the partial recovery observed in the IC, or something different entirely. Unilateral ouabain treatment in adult mice effectively eliminated the ABR, yet robust sound-evoked activity persisted in a minority of units recorded from the contralateral medial geniculate body (MGB) of awake mice. Sound driven MGB units could decode moderate and high-intensity sounds with accuracies comparable to sham-treated control mice, but low-intensity classification was near chance. Pure tone receptive fields and synchronization to broadband pulse trains also persisted, albeit with significantly reduced quality and precision, respectively. MGB decoding of temporally modulated pulse trains and speech tokens were both greatly impaired in ouabain-treated mice. Taken together, the absence of an ABR belied a persistent auditory processing at the level of the MGB that was likely enabled through increased central gain. Compensatory plasticity at the level of the auditory thalamus was less robust overall than previous observations in cortex or midbrain. Hierarchical differences in compensatory plasticity following sensorineural hearing loss may reflect differences in GABA circuit organization within the MGB, as compared to the ACtx or IC.

  3. Auditory Midbrain Implant: Research and Development Towards a Second Clinical Trial

    PubMed Central

    Lim, Hubert H.; Lenarz, Thomas

    2015-01-01

    The cochlear implant is considered one of the most successful neural prostheses to date, which was made possible by visionaries who continued to develop the cochlear implant through multiple technological and clinical challenges. However, patients without a functional auditory nerve or implantable cochlea cannot benefit from a cochlear implant. The focus of the paper is to review the development and translation of a new type of central auditory prosthesis for this group of patients, which is known as the auditory midbrain implant (AMI) and is designed for electrical stimulation within the inferior colliculus. The rationale and results for the first AMI clinical study using a multi-site single-shank array will be presented initially. Although the AMI has achieved encouraging results in terms of safety and improvements in lip-reading capabilities and environmental awareness, it has not yet provided sufficient speech perception. Animal and human data will then be presented to show that a two-shank AMI array can potentially improve hearing performance by targeting specific neurons of the inferior colliculus. Modifications to the AMI array design, stimulation strategy, and surgical approach have been made that are expected to improve hearing performance in the patients implanted with a two-shank array in an upcoming clinical trial funded by the National Institutes of Health. Positive outcomes from this clinical trial will motivate new efforts and developments toward improving central auditory prostheses for those who cannot sufficiently benefit from cochlear implants. PMID:25613994

  4. Frequency-specific adaptation and its underlying circuit model in the auditory midbrain.

    PubMed

    Shen, Li; Zhao, Lingyun; Hong, Bo

    2015-01-01

    Receptive fields of sensory neurons are considered to be dynamic and depend on the stimulus history. In the auditory system, evidence of dynamic frequency-receptive fields has been found following stimulus-specific adaptation (SSA). However, the underlying mechanism and circuitry of SSA have not been fully elucidated. Here, we studied how frequency-receptive fields of neurons in rat inferior colliculus (IC) changed when exposed to a biased tone sequence. Pure tone with one specific frequency (adaptor) was presented markedly more often than others. The adapted tuning was compared with the original tuning measured with an unbiased sequence. We found inhomogeneous changes in frequency tuning in IC, exhibiting a center-surround pattern with respect to the neuron's best frequency. Central adaptors elicited strong suppressive and repulsive changes while flank adaptors induced facilitative and attractive changes. Moreover, we proposed a two-layer model of the underlying network, which not only reproduced the adaptive changes in the receptive fields but also predicted novelty responses to oddball sequences. These results suggest that frequency-specific adaptation in auditory midbrain can be accounted for by an adapted frequency channel and its lateral spreading of adaptation, which shed light on the organization of the underlying circuitry.

  5. Frequency-specific adaptation and its underlying circuit model in the auditory midbrain

    PubMed Central

    Shen, Li; Zhao, Lingyun; Hong, Bo

    2015-01-01

    Receptive fields of sensory neurons are considered to be dynamic and depend on the stimulus history. In the auditory system, evidence of dynamic frequency-receptive fields has been found following stimulus-specific adaptation (SSA). However, the underlying mechanism and circuitry of SSA have not been fully elucidated. Here, we studied how frequency-receptive fields of neurons in rat inferior colliculus (IC) changed when exposed to a biased tone sequence. Pure tone with one specific frequency (adaptor) was presented markedly more often than others. The adapted tuning was compared with the original tuning measured with an unbiased sequence. We found inhomogeneous changes in frequency tuning in IC, exhibiting a center-surround pattern with respect to the neuron's best frequency. Central adaptors elicited strong suppressive and repulsive changes while flank adaptors induced facilitative and attractive changes. Moreover, we proposed a two-layer model of the underlying network, which not only reproduced the adaptive changes in the receptive fields but also predicted novelty responses to oddball sequences. These results suggest that frequency-specific adaptation in auditory midbrain can be accounted for by an adapted frequency channel and its lateral spreading of adaptation, which shed light on the organization of the underlying circuitry. PMID:26483641

  6. Perceptual elements in brain mechanisms of acoustic communication in humans and nonhuman primates.

    PubMed

    Reser, David H; Rosa, Marcello

    2014-12-01

    Ackermann et al. outline a model for elaboration of subcortical motor outputs as a driving force for the development of the apparently unique behaviour of language in humans. They emphasize circuits in the striatum and midbrain, and acknowledge, but do not explore, the importance of the auditory perceptual pathway for evolution of verbal communication. We suggest that understanding the evolution of language will also require understanding of vocalization perception, especially in the auditory cortex.

  7. Sound-by-sound thalamic stimulation modulates midbrain auditory excitability and relative binaural sensitivity in frogs

    PubMed Central

    Ponnath, Abhilash; Farris, Hamilton E.

    2014-01-01

    Descending circuitry can modulate auditory processing, biasing sensitivity to particular stimulus parameters and locations. Using awake in vivo single unit recordings, this study tested whether electrical stimulation of the thalamus modulates auditory excitability and relative binaural sensitivity in neurons of the amphibian midbrain. In addition, by using electrical stimuli that were either longer than the acoustic stimuli (i.e., seconds) or presented on a sound-by-sound basis (ms), experiments addressed whether the form of modulation depended on the temporal structure of the electrical stimulus. Following long duration electrical stimulation (3–10 s of 20 Hz square pulses), excitability (spikes/acoustic stimulus) to free-field noise stimuli decreased by 32%, but returned over 600 s. In contrast, sound-by-sound electrical stimulation using a single 2 ms duration electrical pulse 25 ms before each noise stimulus caused faster and varied forms of modulation: modulation lasted <2 s and, in different cells, excitability either decreased, increased or shifted in latency. Within cells, the modulatory effect of sound-by-sound electrical stimulation varied between different acoustic stimuli, including for different male calls, suggesting modulation is specific to certain stimulus attributes. For binaural units, modulation depended on the ear of input, as sound-by-sound electrical stimulation preceding dichotic acoustic stimulation caused asymmetric modulatory effects: sensitivity shifted for sounds at only one ear, or by different relative amounts for both ears. This caused a change in the relative difference in binaural sensitivity. Thus, sound-by-sound electrical stimulation revealed fast and ear-specific (i.e., lateralized) auditory modulation that is potentially suited to shifts in auditory attention during sound segregation in the auditory scene. PMID:25120437

  8. Sound-by-sound thalamic stimulation modulates midbrain auditory excitability and relative binaural sensitivity in frogs.

    PubMed

    Ponnath, Abhilash; Farris, Hamilton E

    2014-01-01

    Descending circuitry can modulate auditory processing, biasing sensitivity to particular stimulus parameters and locations. Using awake in vivo single unit recordings, this study tested whether electrical stimulation of the thalamus modulates auditory excitability and relative binaural sensitivity in neurons of the amphibian midbrain. In addition, by using electrical stimuli that were either longer than the acoustic stimuli (i.e., seconds) or presented on a sound-by-sound basis (ms), experiments addressed whether the form of modulation depended on the temporal structure of the electrical stimulus. Following long duration electrical stimulation (3-10 s of 20 Hz square pulses), excitability (spikes/acoustic stimulus) to free-field noise stimuli decreased by 32%, but returned over 600 s. In contrast, sound-by-sound electrical stimulation using a single 2 ms duration electrical pulse 25 ms before each noise stimulus caused faster and varied forms of modulation: modulation lasted <2 s and, in different cells, excitability either decreased, increased or shifted in latency. Within cells, the modulatory effect of sound-by-sound electrical stimulation varied between different acoustic stimuli, including for different male calls, suggesting modulation is specific to certain stimulus attributes. For binaural units, modulation depended on the ear of input, as sound-by-sound electrical stimulation preceding dichotic acoustic stimulation caused asymmetric modulatory effects: sensitivity shifted for sounds at only one ear, or by different relative amounts for both ears. This caused a change in the relative difference in binaural sensitivity. Thus, sound-by-sound electrical stimulation revealed fast and ear-specific (i.e., lateralized) auditory modulation that is potentially suited to shifts in auditory attention during sound segregation in the auditory scene.

  9. Fetal Brain Behavior and Cognitive Development.

    ERIC Educational Resources Information Center

    Joseph, R.

    2000-01-01

    Presents information on prenatal brain development, detailing the functions controlled by the medulla, pons, and midbrain, and the implications for cognitive development. Concludes that fetal cognitive motor activity, including auditory discrimination, orienting, the wake-sleep cycle, fetal heart rate accelerations, and defensive reactions,…

  10. Sensitivity and specificity of auditory steady‐state response testing

    PubMed Central

    Rabelo, Camila Maia; Schochat, Eliane

    2011-01-01

    INTRODUCTION: The ASSR test is an electrophysiological test that evaluates, among other aspects, neural synchrony, based on the frequency or amplitude modulation of tones. OBJECTIVE: The aim of this study was to determine the sensitivity and specificity of auditory steady‐state response testing in detecting lesions and dysfunctions of the central auditory nervous system. METHODS: Seventy volunteers were divided into three groups: those with normal hearing; those with mesial temporal sclerosis; and those with central auditory processing disorder. All subjects underwent auditory steady‐state response testing of both ears at 500 Hz and 2000 Hz (frequency modulation, 46 Hz). The difference between auditory steady‐state response‐estimated thresholds and behavioral thresholds (audiometric evaluation) was calculated. RESULTS: Estimated thresholds were significantly higher in the mesial temporal sclerosis group than in the normal and central auditory processing disorder groups. In addition, the difference between auditory steady‐state response‐estimated and behavioral thresholds was greatest in the mesial temporal sclerosis group when compared to the normal group than in the central auditory processing disorder group compared to the normal group. DISCUSSION: Research focusing on central auditory nervous system (CANS) lesions has shown that individuals with CANS lesions present a greater difference between ASSR‐estimated thresholds and actual behavioral thresholds; ASSR‐estimated thresholds being significantly worse than behavioral thresholds in subjects with CANS insults. This is most likely because the disorder prevents the transmission of the sound stimulus from being in phase with the received stimulus, resulting in asynchronous transmitter release. Another possible cause of the greater difference between the ASSR‐estimated thresholds and the behavioral thresholds is impaired temporal resolution. CONCLUSIONS: The overall sensitivity of auditory steady‐state response testing was lower than its overall specificity. Although the overall specificity was high, it was lower in the central auditory processing disorder group than in the mesial temporal sclerosis group. Overall sensitivity was also lower in the central auditory processing disorder group than in the mesial temporal sclerosis group. PMID:21437442

  11. Comparisons of MRI images, and auditory-related and vocal-related protein expressions in the brain of echolocation bats and rodents.

    PubMed

    Hsiao, Chun-Jen; Hsu, Chih-Hsiang; Lin, Ching-Lung; Wu, Chung-Hsin; Jen, Philip Hung-Sun

    2016-08-17

    Although echolocating bats and other mammals share the basic design of laryngeal apparatus for sound production and auditory system for sound reception, they have a specialized laryngeal mechanism for ultrasonic sound emissions as well as a highly developed auditory system for processing species-specific sounds. Because the sounds used by bats for echolocation and rodents for communication are quite different, there must be differences in the central nervous system devoted to producing and processing species-specific sounds between them. The present study examines the difference in the relative size of several brain structures and expression of auditory-related and vocal-related proteins in the central nervous system of echolocation bats and rodents. Here, we report that bats using constant frequency-frequency-modulated sounds (CF-FM bats) and FM bats for echolocation have a larger volume of midbrain nuclei (inferior and superior colliculi) and cerebellum relative to the size of the brain than rodents (mice and rats). However, the former have a smaller volume of the cerebrum and olfactory bulb, but greater expression of otoferlin and forkhead box protein P2 than the latter. Although the size of both midbrain colliculi is comparable in both CF-FM and FM bats, CF-FM bats have a larger cerebrum and greater expression of otoferlin and forkhead box protein P2 than FM bats. These differences in brain structure and protein expression are discussed in relation to their biologically relevant sounds and foraging behavior.

  12. Auditory Distance Coding in Rabbit Midbrain Neurons and Human Perception: Monaural Amplitude Modulation Depth as a Cue

    PubMed Central

    Zahorik, Pavel; Carney, Laurel H.; Bishop, Brian B.; Kuwada, Shigeyuki

    2015-01-01

    Mechanisms underlying sound source distance localization are not well understood. Here we tested the hypothesis that a novel mechanism can create monaural distance sensitivity: a combination of auditory midbrain neurons' sensitivity to amplitude modulation (AM) depth and distance-dependent loss of AM in reverberation. We used virtual auditory space (VAS) methods for sounds at various distances in anechoic and reverberant environments. Stimulus level was constant across distance. With increasing modulation depth, some rabbit inferior colliculus neurons increased firing rates whereas others decreased. These neurons exhibited monotonic relationships between firing rates and distance for monaurally presented noise when two conditions were met: (1) the sound had AM, and (2) the environment was reverberant. The firing rates as a function of distance remained approximately constant without AM in either environment and, in an anechoic condition, even with AM. We corroborated this finding by reproducing the distance sensitivity using a neural model. We also conducted a human psychophysical study using similar methods. Normal-hearing listeners reported perceived distance in response to monaural 1 octave 4 kHz noise source sounds presented at distances of 35–200 cm. We found parallels between the rabbit neural and human responses. In both, sound distance could be discriminated only if the monaural sound in reverberation had AM. These observations support the hypothesis. When other cues are available (e.g., in binaural hearing), how much the auditory system actually uses the AM as a distance cue remains to be determined. PMID:25834060

  13. Effect of long-term stress on H3Ser10 histone phosphorylation in neuronal nuclei of the sensorimotor cortex and midbrain reticular formation in rats with different nervous system excitability.

    PubMed

    Pavlova, M B; Dyuzhikova, N A; Shiryaeva, N V; Savenko, Yu N; Vaido, A I

    2013-07-01

    The effects of long-term mental and pain stress on H3Ser10 histone phosphorylation in neurons of the the sensorimotor corex and midbrain reticular formation were studied 24 h, 2 weeks, and 2 months after exposure of rats differing by the nervous system excitability. Rats with high excitability threshold exhibited higher basal level of H3Ser10 histone phosphorylation in the midbrain reticular formation neurons than rats with low excitability threshold. The sensorimotor cortical neurons of the two strains did not differ by this parameter. Stress led to a significant increase in the counts of immunopositive neuronal nuclei in rats with low excitability threshold: the parameter increased significantly in the sensorimotor cortex 24 h after exposure and normalized in 2 weeks after neurotization. In the midbrain reticular formation of this rat strain stress stimulated H3Ser10 histone phosphorylation after 24 h and after 2 weeks; the parameter normalized after neurotization in 2 months. Hence, genetically determined level of the nervous system excitability was essential for the basal level of neuron phosphorylation and for the time course of this process after long-term exposure to mental and pain stress, depending on the brain structure. A probable relationship between H3Ser10 histone phosphorylation process and liability to obsessive compulsive mental disorders in humans was discussed.

  14. [The discomfort threshold studied in operators at the control consoles in automated production with a view to its use in job selection].

    PubMed

    Tsaneva, L

    1993-01-01

    The results from the investigation of the threshold of discomfort in 385 operators from firm "Kremikovtsi" are discussed. The most expressed changes are found in operators with increased tonal auditory threshold up to 45 and above 50 dB, in high confidential probability. The observed changes in the threshold of discomfort are classified into 3 groups: 1). Raised tonal auditory threshold (up to 30 dB) without decrease in the threshold of discomfort; 2). Decreased threshold of discomfort (with about 15-20 dB) in raised tonal auditory threshold (up to 45 dB); 3). Decreased threshold of discomfort on the background of raised (above 50 dB) tonal auditory threshold. On 4 figures are represented audiograms, illustrating the state of tonal auditory threshold, the field of hearing and the threshold of discomfort. The field of hearing of the operators from the III and IV groups is narrowed, and in the latter also deformed. The explanation of this pathophysiological phenomenon is related to the increased effect of the sound irritation and the presence of recruitment phenomenon with possible engagement of the central end of the auditory analyser. It is underlined, that the threshold of discomfort is sensitive index for the state of the individual norms of each operator for the speech-sound-noise discomfort.(ABSTRACT TRUNCATED AT 250 WORDS)

  15. Passive stimulation and behavioral training differentially transform temporal processing in the inferior colliculus and primary auditory cortex

    PubMed Central

    Beitel, Ralph E.; Schreiner, Christoph E.; Leake, Patricia A.

    2016-01-01

    In profoundly deaf cats, behavioral training with intracochlear electric stimulation (ICES) can improve temporal processing in the primary auditory cortex (AI). To investigate whether similar effects are manifest in the auditory midbrain, ICES was initiated in neonatally deafened cats either during development after short durations of deafness (8 wk of age) or in adulthood after long durations of deafness (≥3.5 yr). All of these animals received behaviorally meaningless, “passive” ICES. Some animals also received behavioral training with ICES. Two long-deaf cats received no ICES prior to acute electrophysiological recording. After several months of passive ICES and behavioral training, animals were anesthetized, and neuronal responses to pulse trains of increasing rates were recorded in the central (ICC) and external (ICX) nuclei of the inferior colliculus. Neuronal temporal response patterns (repetition rate coding, minimum latencies, response precision) were compared with results from recordings made in the AI of the same animals (Beitel RE, Vollmer M, Raggio MW, Schreiner CE. J Neurophysiol 106: 944–959, 2011; Vollmer M, Beitel RE. J Neurophysiol 106: 2423–2436, 2011). Passive ICES in long-deaf cats remediated severely degraded temporal processing in the ICC and had no effects in the ICX. In contrast to observations in the AI, behaviorally relevant ICES had no effects on temporal processing in the ICC or ICX, with the single exception of shorter latencies in the ICC in short-deaf cats. The results suggest that independent of deafness duration passive stimulation and behavioral training differentially transform temporal processing in auditory midbrain and cortex, and primary auditory cortex emerges as a pivotal site for behaviorally driven neuronal temporal plasticity in the deaf cat. NEW & NOTEWORTHY Behaviorally relevant vs. passive electric stimulation of the auditory nerve differentially affects neuronal temporal processing in the central nucleus of the inferior colliculus (ICC) and the primary auditory cortex (AI) in profoundly short-deaf and long-deaf cats. Temporal plasticity in the ICC depends on a critical amount of electric stimulation, independent of its behavioral relevance. In contrast, the AI emerges as a pivotal site for behaviorally driven neuronal temporal plasticity in the deaf auditory system. PMID:27733594

  16. Neural correlates of behavioral amplitude modulation sensitivity in the budgerigar midbrain

    PubMed Central

    Neilans, Erikson G.; Abrams, Kristina S.; Idrobo, Fabio; Carney, Laurel H.

    2016-01-01

    Amplitude modulation (AM) is a crucial feature of many communication signals, including speech. Whereas average discharge rates in the auditory midbrain correlate with behavioral AM sensitivity in rabbits, the neural bases of AM sensitivity in species with human-like behavioral acuity are unexplored. Here, we used parallel behavioral and neurophysiological experiments to explore the neural (midbrain) bases of AM perception in an avian speech mimic, the budgerigar (Melopsittacus undulatus). Behavioral AM sensitivity was quantified using operant conditioning procedures. Neural AM sensitivity was studied using chronically implanted microelectrodes in awake, unrestrained birds. Average discharge rates of multiunit recording sites in the budgerigar midbrain were insufficient to explain behavioral sensitivity to modulation frequencies <100 Hz for both tone- and noise-carrier stimuli, even with optimal pooling of information across recording sites. Neural envelope synchrony, in contrast, could explain behavioral performance for both carrier types across the full range of modulation frequencies studied (16–512 Hz). The results suggest that envelope synchrony in the budgerigar midbrain may underlie behavioral sensitivity to AM. Behavioral AM sensitivity based on synchrony in the budgerigar, which contrasts with rate-correlated behavioral performance in rabbits, raises the possibility that envelope synchrony, rather than average discharge rate, might also underlie AM perception in other species with sensitive AM detection abilities, including humans. These results highlight the importance of synchrony coding of envelope structure in the inferior colliculus. Furthermore, they underscore potential benefits of devices (e.g., midbrain implants) that evoke robust neural synchrony. PMID:26843608

  17. Temporal variability of spectro-temporal receptive fields in the anesthetized auditory cortex.

    PubMed

    Meyer, Arne F; Diepenbrock, Jan-Philipp; Ohl, Frank W; Anemüller, Jörn

    2014-01-01

    Temporal variability of neuronal response characteristics during sensory stimulation is a ubiquitous phenomenon that may reflect processes such as stimulus-driven adaptation, top-down modulation or spontaneous fluctuations. It poses a challenge to functional characterization methods such as the receptive field, since these often assume stationarity. We propose a novel method for estimation of sensory neurons' receptive fields that extends the classic static linear receptive field model to the time-varying case. Here, the long-term estimate of the static receptive field serves as the mean of a probabilistic prior distribution from which the short-term temporally localized receptive field may deviate stochastically with time-varying standard deviation. The derived corresponding generalized linear model permits robust characterization of temporal variability in receptive field structure also for highly non-Gaussian stimulus ensembles. We computed and analyzed short-term auditory spectro-temporal receptive field (STRF) estimates with characteristic temporal resolution 5-30 s based on model simulations and responses from in total 60 single-unit recordings in anesthetized Mongolian gerbil auditory midbrain and cortex. Stimulation was performed with short (100 ms) overlapping frequency-modulated tones. Results demonstrate identification of time-varying STRFs, with obtained predictive model likelihoods exceeding those from baseline static STRF estimation. Quantitative characterization of STRF variability reveals a higher degree thereof in auditory cortex compared to midbrain. Cluster analysis indicates that significant deviations from the long-term static STRF are brief, but reliably estimated. We hypothesize that the observed variability more likely reflects spontaneous or state-dependent internal fluctuations that interact with stimulus-induced processing, rather than experimental or stimulus design.

  18. Frequency-specific attentional modulation in human primary auditory cortex and midbrain.

    PubMed

    Riecke, Lars; Peters, Judith C; Valente, Giancarlo; Poser, Benedikt A; Kemper, Valentin G; Formisano, Elia; Sorger, Bettina

    2018-07-01

    Paying selective attention to an audio frequency selectively enhances activity within primary auditory cortex (PAC) at the tonotopic site (frequency channel) representing that frequency. Animal PAC neurons achieve this 'frequency-specific attentional spotlight' by adapting their frequency tuning, yet comparable evidence in humans is scarce. Moreover, whether the spotlight operates in human midbrain is unknown. To address these issues, we studied the spectral tuning of frequency channels in human PAC and inferior colliculus (IC), using 7-T functional magnetic resonance imaging (FMRI) and frequency mapping, while participants focused on different frequency-specific sounds. We found that shifts in frequency-specific attention alter the response gain, but not tuning profile, of PAC frequency channels. The gain modulation was strongest in low-frequency channels and varied near-monotonically across the tonotopic axis, giving rise to the attentional spotlight. We observed less prominent, non-tonotopic spatial patterns of attentional modulation in IC. These results indicate that the frequency-specific attentional spotlight in human PAC as measured with FMRI arises primarily from tonotopic gain modulation, rather than adapted frequency tuning. Moreover, frequency-specific attentional modulation of afferent sound processing in human IC seems to be considerably weaker, suggesting that the spotlight diminishes toward this lower-order processing stage. Our study sheds light on how the human auditory pathway adapts to the different demands of selective hearing. Copyright © 2018 The Authors. Published by Elsevier Inc. All rights reserved.

  19. Particle motion is broadly represented in the vestibular medulla of the bullfrog across larval development.

    PubMed

    Simmons, Andrea Megela; Flores, Victoria

    2012-04-01

    In their shallow-water habitats, bullfrog (Rana catesbeiana) tadpoles are exposed to both underwater and airborne sources of acoustic stimulation. We probed the representation of underwater particle motion throughout the tadpole's dorsal medulla to determine its spatial extent over larval life. Using neurobiotin-filled micropipettes, we recorded neural activity to z-axis particle motion (frequencies of 40-200 Hz) in the medial vestibular nucleus, lateral vestibular nucleus, dorsal medullary nucleus (DMN), and along the dorsal arcuate pathway. Sensitivity was comparable in the medial and lateral vestibular nuclei, with estimated thresholds between 0.016 and 12.5 μm displacement. Neither best responding frequency nor estimated threshold varied significantly over larval stage. Transport of neurobiotin from active recording sites was also stable over development. The DMN responded poorly to z-axis particle motion, but did respond to low-frequency pressure stimulation. These data suggest that particle motion is represented widely and stably in the tadpole's vestibular medulla. This is in marked contrast to the representation of pressure stimulation in the auditory midbrain, where a transient "deaf period" of non-responsiveness and decreased connectivity occurs immediately prior to metamorphic climax. We suggest that, in bullfrogs, sensitivity to particle motion and to pressure follows different developmental trajectories.

  20. Particle motion is broadly represented in the vestibular medulla of the bullfrog across larval development

    PubMed Central

    Flores, Victoria

    2012-01-01

    In their shallow-water habitats, bullfrog (Rana catesbeiana) tadpoles are exposed to both underwater and airborne sources of acoustic stimulation. We probed the representation of underwater particle motion throughout the tadpole’s dorsal medulla to determine its spatial extent over larval life. Using neurobiotin-filled micropipettes, we recorded neural activity to z-axis particle motion (frequencies of 40–200 Hz) in the medial vestibular nucleus, lateral vestibular nucleus, dorsal medullary nucleus (DMN), and along the dorsal arcuate pathway. Sensitivity was comparable in the medial and lateral vestibular nuclei, with estimated thresholds between 0.016 and 12.5 μm displacement. Neither best responding frequency nor estimated threshold varied significantly over larval stage. Transport of neurobiotin from active recording sites was also stable over development. The DMN responded poorly to z-axis particle motion, but did respond to low-frequency pressure stimulation. These data suggest that particle motion is represented widely and stably in the tadpole’s vestibular medulla. This is in marked contrast to the representation of pressure stimulation in the auditory midbrain, where a transient “deaf period” of non-responsiveness and decreased connectivity occurs immediately prior to metamorphic climax. We suggest that, in bullfrogs, sensitivity to particle motion and to pressure follows different developmental trajectories. PMID:22198742

  1. [Detection of auditory impairment in the offsprings caused by drug treatment of the dams].

    PubMed

    Kameyama, T; Nabeshima, T; Itoh, J

    1982-12-01

    To study the auditory impairment induced by prenatal administration of aminoglycosides in the offspring, the shuttle box method to measure the auditory threshold of rats (Kameyama et al., Folia pharmacol. japon. 77, 15, 1981) was employed. Four groups of pregnant rats were administered 200 mg/kg kanamycin sulfate (KM), 200 mg/kg dihydrostreptomycin sulfate (DHSM), 100 mg/kg neomycin sulfate (NM), or 1 ml/kg saline intramuscularly from the 10th to the 19th day of pregnancy. The auditory threshold of the offspring could be measured by the shuttle box method in about 90% of the live born rats at the age of 100 days. The auditory thresholds of the groups were as follows (mean +/- S.E.): saline group, 53.8 +/- 0.6 dB (N = 36); KM group, 63.8 +/- 1.1 dB (N = 34); DHSM group, 60.0 +/- 1.2 dB (N = 29); NM group, 62.4 +/- 1.2 dB (N = 24). Auditory thresholds of drug-treated groups were significantly higher than that of the saline group. However, no increase in the auditory threshold of the mother rat was detected after treatment with aminoglycosides. In addition, the experimental procedure of the shuttle box method is very easy, and the auditory threshold of a large number of rats could be measured in a short period. These findings suggest that this method is a very useful one for screening for auditory impairment induced by prenatal drug treatment in rat offspring.

  2. Midbrain adaptation may set the stage for the perception of musical beat

    PubMed Central

    2017-01-01

    The ability to spontaneously feel a beat in music is a phenomenon widely believed to be unique to humans. Though beat perception involves the coordinated engagement of sensory, motor and cognitive processes in humans, the contribution of low-level auditory processing to the activation of these networks in a beat-specific manner is poorly understood. Here, we present evidence from a rodent model that midbrain preprocessing of sounds may already be shaping where the beat is ultimately felt. For the tested set of musical rhythms, on-beat sounds on average evoked higher firing rates than off-beat sounds, and this difference was a defining feature of the set of beat interpretations most commonly perceived by human listeners over others. Basic firing rate adaptation provided a sufficient explanation for these results. Our findings suggest that midbrain adaptation, by encoding the temporal context of sounds, creates points of neural emphasis that may influence the perceptual emergence of a beat. PMID:29118141

  3. Midbrain adaptation may set the stage for the perception of musical beat.

    PubMed

    Rajendran, Vani G; Harper, Nicol S; Garcia-Lazaro, Jose A; Lesica, Nicholas A; Schnupp, Jan W H

    2017-11-15

    The ability to spontaneously feel a beat in music is a phenomenon widely believed to be unique to humans. Though beat perception involves the coordinated engagement of sensory, motor and cognitive processes in humans, the contribution of low-level auditory processing to the activation of these networks in a beat-specific manner is poorly understood. Here, we present evidence from a rodent model that midbrain preprocessing of sounds may already be shaping where the beat is ultimately felt. For the tested set of musical rhythms, on-beat sounds on average evoked higher firing rates than off-beat sounds, and this difference was a defining feature of the set of beat interpretations most commonly perceived by human listeners over others. Basic firing rate adaptation provided a sufficient explanation for these results. Our findings suggest that midbrain adaptation, by encoding the temporal context of sounds, creates points of neural emphasis that may influence the perceptual emergence of a beat. © 2017 The Authors.

  4. The auditory brain-stem response to complex sounds: a potential biomarker for guiding treatment of psychosis.

    PubMed

    Tarasenko, Melissa A; Swerdlow, Neal R; Makeig, Scott; Braff, David L; Light, Gregory A

    2014-01-01

    Cognitive deficits limit psychosocial functioning in schizophrenia. For many patients, cognitive remediation approaches have yielded encouraging results. Nevertheless, therapeutic response is variable, and outcome studies consistently identify individuals who respond minimally to these interventions. Biomarkers that can assist in identifying patients likely to benefit from particular forms of cognitive remediation are needed. Here, we describe an event-related potential (ERP) biomarker - the auditory brain-stem response (ABR) to complex sounds (cABR) - that appears to be particularly well-suited for predicting response to at least one form of cognitive remediation that targets auditory information processing. Uniquely, the cABR quantifies the fidelity of sound encoded at the level of the brainstem and midbrain. This ERP biomarker has revealed auditory processing abnormalities in various neurodevelopmental disorders, correlates with functioning across several cognitive domains, and appears to be responsive to targeted auditory training. We present preliminary cABR data from 18 schizophrenia patients and propose further investigation of this biomarker for predicting and tracking response to cognitive interventions.

  5. An Auditory-Masking-Threshold-Based Noise Suppression Algorithm GMMSE-AMT[ERB] for Listeners with Sensorineural Hearing Loss

    NASA Astrophysics Data System (ADS)

    Natarajan, Ajay; Hansen, John H. L.; Arehart, Kathryn Hoberg; Rossi-Katz, Jessica

    2005-12-01

    This study describes a new noise suppression scheme for hearing aid applications based on the auditory masking threshold (AMT) in conjunction with a modified generalized minimum mean square error estimator (GMMSE) for individual subjects with hearing loss. The representation of cochlear frequency resolution is achieved in terms of auditory filter equivalent rectangular bandwidths (ERBs). Estimation of AMT and spreading functions for masking are implemented in two ways: with normal auditory thresholds and normal auditory filter bandwidths (GMMSE-AMT[ERB]-NH) and with elevated thresholds and broader auditory filters characteristic of cochlear hearing loss (GMMSE-AMT[ERB]-HI). Evaluation is performed using speech corpora with objective quality measures (segmental SNR, Itakura-Saito), along with formal listener evaluations of speech quality rating and intelligibility. While no measurable changes in intelligibility occurred, evaluations showed quality improvement with both algorithm implementations. However, the customized formulation based on individual hearing losses was similar in performance to the formulation based on the normal auditory system.

  6. Astrocyte Hypertrophy and Microglia Activation in the Rat Auditory Midbrain Is Induced by Electrical Intracochlear Stimulation.

    PubMed

    Rosskothen-Kuhl, Nicole; Hildebrandt, Heika; Birkenhäger, Ralf; Illing, Robert-Benjamin

    2018-01-01

    Neuron-glia interactions contribute to tissue homeostasis and functional plasticity in the mammalian brain, but it remains unclear how this is achieved. The potential of central auditory brain tissue for stimulation-dependent cellular remodeling was studied in hearing-experienced and neonatally deafened rats. At adulthood, both groups received an intracochlear electrode into the left cochlea and were continuously stimulated for 1 or 7 days after waking up from anesthesia. Normal hearing and deafness were assessed by auditory brainstem responses (ABRs). The effectiveness of stimulation was verified by electrically evoked ABRs as well as immunocytochemistry and in situ hybridization for the immediate early gene product Fos on sections through the auditory midbrain containing the inferior colliculus (IC). Whereas hearing-experienced animals showed a tonotopically restricted Fos response in the IC contralateral to electrical intracochlear stimulation, Fos-positive neurons were found almost throughout the contralateral IC in deaf animals. In deaf rats, the Fos response was accompanied by a massive increase of GFAP indicating astrocytic hypertrophy, and a local activation of microglial cells identified by IBA1. These glia responses led to a noticeable increase of neuron-glia approximations. Moreover, staining for the GABA synthetizing enzymes GAD65 and GAD67 rose significantly in neuronal cell bodies and presynaptic boutons in the contralateral IC of deaf rats. Activation of neurons and glial cells and tissue re-composition were in no case accompanied by cell death as would have been apparent by a Tunel reaction. These findings suggest that growth and activity of glial cells is crucial for the local adjustment of neuronal inhibition to neuronal excitation.

  7. Astrocyte Hypertrophy and Microglia Activation in the Rat Auditory Midbrain Is Induced by Electrical Intracochlear Stimulation

    PubMed Central

    Rosskothen-Kuhl, Nicole; Hildebrandt, Heika; Birkenhäger, Ralf; Illing, Robert-Benjamin

    2018-01-01

    Neuron–glia interactions contribute to tissue homeostasis and functional plasticity in the mammalian brain, but it remains unclear how this is achieved. The potential of central auditory brain tissue for stimulation-dependent cellular remodeling was studied in hearing-experienced and neonatally deafened rats. At adulthood, both groups received an intracochlear electrode into the left cochlea and were continuously stimulated for 1 or 7 days after waking up from anesthesia. Normal hearing and deafness were assessed by auditory brainstem responses (ABRs). The effectiveness of stimulation was verified by electrically evoked ABRs as well as immunocytochemistry and in situ hybridization for the immediate early gene product Fos on sections through the auditory midbrain containing the inferior colliculus (IC). Whereas hearing-experienced animals showed a tonotopically restricted Fos response in the IC contralateral to electrical intracochlear stimulation, Fos-positive neurons were found almost throughout the contralateral IC in deaf animals. In deaf rats, the Fos response was accompanied by a massive increase of GFAP indicating astrocytic hypertrophy, and a local activation of microglial cells identified by IBA1. These glia responses led to a noticeable increase of neuron–glia approximations. Moreover, staining for the GABA synthetizing enzymes GAD65 and GAD67 rose significantly in neuronal cell bodies and presynaptic boutons in the contralateral IC of deaf rats. Activation of neurons and glial cells and tissue re-composition were in no case accompanied by cell death as would have been apparent by a Tunel reaction. These findings suggest that growth and activity of glial cells is crucial for the local adjustment of neuronal inhibition to neuronal excitation. PMID:29520220

  8. Assessment of the discomfort threshold of command board operators in automated productions with respect to its application in professional selection.

    PubMed

    Tzaneva, L

    1996-09-01

    The discomfort threshold problem is not yet clear from the audiological point of view. Its significance for work physiology and hygiene is not enough clarified. This paper discussed the results of a study of the discomfort threshold, performed including 385 operators from the State Company "Kremikovtzi", divided into 4 groups (3 groups according to length of service and one control group). The most prominent changes were found in operators with increased tonal auditory threshold up to 45 and over 50 dB with high confidential probability. The observed changes are distributed in 3 groups: 1. increased tonal auditory threshold (up to 30 dB) without decrease of the discomfort threshold; 2. decreased discomfort threshold (with about 15-20 dB) at increased tonal auditory threshold (up to 45 dB); 3. decreased discomfort threshold at increased (over 50 dB) tonal auditory threshold. The auditory scope of the operators, belonging to groups III and IV (with the longest length of service) is narrowed, being distorted for the latter. This pathophysiological phenomenon can be explained by an enhanced effect of sound irritation and the presence of a recruitment phenomenon with possible engagement of the central part of the auditory analyzer. It is concluded that the discomfort threshold is a sensitive indicator for the state of the individual norms for speech-sound-noise discomfort. The comparison of the discomfort threshold with the hygienic standards and the noise levels at each particular working place can be used as a criterion for the professional selection for work in conditions of masking noise effect and its tolerance with respect to achieving the individual discomfort level depending on the intensity of the speech-sound-noise signals at a particular working place.

  9. Effects of location and timing of co-activated neurons in the auditory midbrain on cortical activity: implications for a new central auditory prosthesis

    NASA Astrophysics Data System (ADS)

    Straka, Małgorzata M.; McMahon, Melissa; Markovitz, Craig D.; Lim, Hubert H.

    2014-08-01

    Objective. An increasing number of deaf individuals are being implanted with central auditory prostheses, but their performance has generally been poorer than for cochlear implant users. The goal of this study is to investigate stimulation strategies for improving hearing performance with a new auditory midbrain implant (AMI). Previous studies have shown that repeated electrical stimulation of a single site in each isofrequency lamina of the central nucleus of the inferior colliculus (ICC) causes strong suppressive effects in elicited responses within the primary auditory cortex (A1). Here we investigate if improved cortical activity can be achieved by co-activating neurons with different timing and locations across an ICC lamina and if this cortical activity varies across A1. Approach. We electrically stimulated two sites at different locations across an isofrequency ICC lamina using varying delays in ketamine-anesthetized guinea pigs. We recorded and analyzed spike activity and local field potentials across different layers and locations of A1. Results. Co-activating two sites within an isofrequency lamina with short inter-pulse intervals (<5 ms) could elicit cortical activity that is enhanced beyond a linear summation of activity elicited by the individual sites. A significantly greater extent of normalized cortical activity was observed for stimulation of the rostral-lateral region of an ICC lamina compared to the caudal-medial region. We did not identify any location trends across A1, but the most cortical enhancement was observed in supragranular layers, suggesting further integration of the stimuli through the cortical layers. Significance. The topographic organization identified by this study provides further evidence for the presence of functional zones across an ICC lamina with locations consistent with those identified by previous studies. Clinically, these results suggest that co-activating different neural populations in the rostral-lateral ICC rather than the caudal-medial ICC using the AMI may improve or elicit different types of hearing capabilities.

  10. Cross-modal attention influences auditory contrast sensitivity: Decreasing visual load improves auditory thresholds for amplitude- and frequency-modulated sounds.

    PubMed

    Ciaramitaro, Vivian M; Chow, Hiu Mei; Eglington, Luke G

    2017-03-01

    We used a cross-modal dual task to examine how changing visual-task demands influenced auditory processing, namely auditory thresholds for amplitude- and frequency-modulated sounds. Observers had to attend to two consecutive intervals of sounds and report which interval contained the auditory stimulus that was modulated in amplitude (Experiment 1) or frequency (Experiment 2). During auditory-stimulus presentation, observers simultaneously attended to a rapid sequential visual presentation-two consecutive intervals of streams of visual letters-and had to report which interval contained a particular color (low load, demanding less attentional resources) or, in separate blocks of trials, which interval contained more of a target letter (high load, demanding more attentional resources). We hypothesized that if attention is a shared resource across vision and audition, an easier visual task should free up more attentional resources for auditory processing on an unrelated task, hence improving auditory thresholds. Auditory detection thresholds were lower-that is, auditory sensitivity was improved-for both amplitude- and frequency-modulated sounds when observers engaged in a less demanding (compared to a more demanding) visual task. In accord with previous work, our findings suggest that visual-task demands can influence the processing of auditory information on an unrelated concurrent task, providing support for shared attentional resources. More importantly, our results suggest that attending to information in a different modality, cross-modal attention, can influence basic auditory contrast sensitivity functions, highlighting potential similarities between basic mechanisms for visual and auditory attention.

  11. Proportional spike-timing precision and firing reliability underlie efficient temporal processing of periodicity and envelope shape cues

    PubMed Central

    Zheng, Y.

    2013-01-01

    Temporal sound cues are essential for sound recognition, pitch, rhythm, and timbre perception, yet how auditory neurons encode such cues is subject of ongoing debate. Rate coding theories propose that temporal sound features are represented by rate tuned modulation filters. However, overwhelming evidence also suggests that precise spike timing is an essential attribute of the neural code. Here we demonstrate that single neurons in the auditory midbrain employ a proportional code in which spike-timing precision and firing reliability covary with the sound envelope cues to provide an efficient representation of the stimulus. Spike-timing precision varied systematically with the timescale and shape of the sound envelope and yet was largely independent of the sound modulation frequency, a prominent cue for pitch. In contrast, spike-count reliability was strongly affected by the modulation frequency. Spike-timing precision extends from sub-millisecond for brief transient sounds up to tens of milliseconds for sounds with slow-varying envelope. Information theoretic analysis further confirms that spike-timing precision depends strongly on the sound envelope shape, while firing reliability was strongly affected by the sound modulation frequency. Both the information efficiency and total information were limited by the firing reliability and spike-timing precision in a manner that reflected the sound structure. This result supports a temporal coding strategy in the auditory midbrain where proportional changes in spike-timing precision and firing reliability can efficiently signal shape and periodicity temporal cues. PMID:23636724

  12. Auditory-motor integration of subliminal phase shifts in tapping: better than auditory discrimination would predict.

    PubMed

    Kagerer, Florian A; Viswanathan, Priya; Contreras-Vidal, Jose L; Whitall, Jill

    2014-04-01

    Unilateral tapping studies have shown that adults adjust to both perceptible and subliminal changes in phase or frequency. This study focuses on the phase responses to abrupt/perceptible and gradual/subliminal changes in auditory-motor relations during alternating bilateral tapping. We investigated these responses in participants with and without good perceptual acuity as determined by an auditory threshold test. Non-musician adults (nine per group) alternately tapped their index fingers in synchrony with auditory cues set at a frequency of 1.4 Hz. Both groups modulated their responses (with no after-effects) to perceptible and to subliminal changes as low as a 5° change in phase. The high-threshold participants were more variable than the adults with low threshold in their responses in the gradual condition set. Both groups demonstrated a synchronization asymmetry between dominant and non-dominant hands associated with the abrupt condition and the later blocks of the gradual condition. Our findings extend previous work in unilateral tapping and suggest (1) no relationship between a discrimination threshold and perceptible auditory-motor integration and (2) a noisier sub-cortical circuitry in those with higher thresholds.

  13. Auditory-motor integration of subliminal phase shifts in tapping: Better than auditory discrimination would predict

    PubMed Central

    Kagerer, Florian A.; Viswanathan, Priya; Contreras-Vidal, Jose L.; Whitall, Jill

    2014-01-01

    Unilateral tapping studies have shown that adults adjust to both perceptible and subliminal changes in phase or frequency. This study focuses on the phase responses to abrupt/perceptible and gradual/subliminal changes in auditory-motor relations during alternating bilateral tapping. We investigated these responses in participants with and without good perceptual acuity as determined by an auditory threshold test. Non-musician adults (9 per group) alternately tapped their index fingers in synchrony with auditory cues set at a frequency of 1.4 Hz. Both groups modulated their responses (with no after-effects) to perceptible and to subliminal changes as low as a 5° change in phase. The high threshold participants were more variable than the adults with low threshold in their responses in the gradual condition set (p=0.05). Both groups demonstrated a synchronization asymmetry between dominant and non-dominant hands associated with the abrupt condition and the later blocks of the gradual condition. Our findings extend previous work in unilateral tapping and suggest (1) no relationship between a discrimination threshold and perceptible auditory-motor integration and (2) a noisier subcortical circuitry in those with higher thresholds. PMID:24449013

  14. Lutein and zeaxanthin status and auditory thresholds in a sample of young healthy adults.

    PubMed

    Wong, Jennifer C; Kaplan, Holly S; Hammond, Billy R

    2017-01-01

    Dietary carotenoids lutein (L) and zeaxanthin (Z) have been linked to improved visual and cognitive function. These effects are thought to be mediated by the presence of these pigments in critical regions of the retina and brain. There, it has been postulated that L and Z mediate improved performance by enhancing neural efficiency. The auditory system also relies on efficient segregating of signals and noise and LZ are also found in the auditory cortex. The purpose of the present study was to investigate the influence of LZ status (as assessed by the measuring levels in retina) on auditory thresholds in young non-smokers (N = 32, M = 20.72 ± 3.28 years). LZ status was determined by measuring macular pigment (MP) optical density using a standardized psychophysical technique (customized heterochromatic flicker photometry). Auditory thresholds were assessed with puretone thresholds and puretone auditory thresholds in white noise. MP density was related to many, but not all, of the puretone thresholds we tested: 250 Hz (F(6,32) = 4.36, P < 0.01), 500 Hz (F(6,32) = 2.25, P < 0.05), 1000 Hz (F(6,32) = 3.22, P < 0.05), and 6000 Hz (F(6,32) = 2.56, P < 0.05). The overall pattern of results is consistent with a role for L and Z in maintaining optimal auditory function.

  15. Diversity of bilateral synaptic assemblies for binaural computation in midbrain single neurons.

    PubMed

    He, Na; Kong, Lingzhi; Lin, Tao; Wang, Shaohui; Liu, Xiuping; Qi, Jiyao; Yan, Jun

    2017-11-01

    Binaural hearing confers many beneficial functions but our understanding of its underlying neural substrates is limited. This study examines the bilateral synaptic assemblies and binaural computation (or integration) in the central nucleus of the inferior colliculus (ICc) of the auditory midbrain, a key convergent center. Using in-vivo whole-cell patch-clamp, the excitatory and inhibitory postsynaptic potentials (EPSPs/IPSPs) of single ICc neurons to contralateral, ipsilateral and bilateral stimulation were recorded. According to the contralateral and ipsilateral EPSP/IPSP, 7 types of bilateral synaptic assemblies were identified. These include EPSP-EPSP (EE), E-IPSP (EI), E-no response (EO), II, IE, IO and complex-mode (CM) neurons. The CM neurons showed frequency- and/or amplitude-dependent EPSPs/IPSPs to contralateral or ipsilateral stimulation. Bilateral stimulation induced EPSPs/IPSPs that could be larger than (facilitation), similar to (ineffectiveness) or smaller than (suppression) those induced by contralateral stimulation. Our findings have allowed our group to characterize novel neural circuitry for binaural computation in the midbrain. Copyright © 2017 Elsevier B.V. All rights reserved.

  16. Neurophysiological findings relevant to echolocation in marine animals

    NASA Technical Reports Server (NTRS)

    Bullock, T. H.; Ridgway, S. H.

    1972-01-01

    A review of echolocation mechanisms in marine mammals, chiefly porpoises, is given. Data cover peripheral auditory and central neurophysiological specializations favorable to the analysis of echolocating clicks and their echoes. Conclusions show (1) signals are received from 50 up to at least 135 kHz, (2) sound is received through the mandible skin, and (3) the midbrain sites are insensitive to low frequencies (below 6 kHz).

  17. Auditory Processing Efficiency and Temporal Resolution in Children and Adults.

    ERIC Educational Resources Information Center

    Hill, Penelope R.; Hartley, Douglas E.H.; Glasberg, Brian R.; Moore, Brian C.J.; Moore, David R.

    2004-01-01

    Children have higher auditory backward masking (BM) thresholds than adults. One explanation for this is poor temporal resolution, resulting in difficulty separating brief or rapidly presented sounds. This implies that the auditory temporal window is broader in children than in adults. Alternatively, elevated BM thresholds in children may indicate…

  18. The Auditory Brain-Stem Response to Complex Sounds: A Potential Biomarker for Guiding Treatment of Psychosis

    PubMed Central

    Tarasenko, Melissa A.; Swerdlow, Neal R.; Makeig, Scott; Braff, David L.; Light, Gregory A.

    2014-01-01

    Cognitive deficits limit psychosocial functioning in schizophrenia. For many patients, cognitive remediation approaches have yielded encouraging results. Nevertheless, therapeutic response is variable, and outcome studies consistently identify individuals who respond minimally to these interventions. Biomarkers that can assist in identifying patients likely to benefit from particular forms of cognitive remediation are needed. Here, we describe an event-related potential (ERP) biomarker – the auditory brain-stem response (ABR) to complex sounds (cABR) – that appears to be particularly well-suited for predicting response to at least one form of cognitive remediation that targets auditory information processing. Uniquely, the cABR quantifies the fidelity of sound encoded at the level of the brainstem and midbrain. This ERP biomarker has revealed auditory processing abnormalities in various neurodevelopmental disorders, correlates with functioning across several cognitive domains, and appears to be responsive to targeted auditory training. We present preliminary cABR data from 18 schizophrenia patients and propose further investigation of this biomarker for predicting and tracking response to cognitive interventions. PMID:25352811

  19. Noise-induced tinnitus: auditory evoked potential in symptomatic and asymptomatic patients.

    PubMed

    Santos-Filha, Valdete Alves Valentins dos; Samelli, Alessandra Giannella; Matas, Carla Gentile

    2014-07-01

    We evaluated the central auditory pathways in workers with noise-induced tinnitus with normal hearing thresholds, compared the auditory brainstem response results in groups with and without tinnitus and correlated the tinnitus location to the auditory brainstem response findings in individuals with a history of occupational noise exposure. Sixty individuals participated in the study and the following procedures were performed: anamnesis, immittance measures, pure-tone air conduction thresholds at all frequencies between 0.25-8 kHz and auditory brainstem response. The mean auditory brainstem response latencies were lower in the Control group than in the Tinnitus group, but no significant differences between the groups were observed. Qualitative analysis showed more alterations in the lower brainstem in the Tinnitus group. The strongest relationship between tinnitus location and auditory brainstem response alterations was detected in individuals with bilateral tinnitus and bilateral auditory brainstem response alterations compared with patients with unilateral alterations. Our findings suggest the occurrence of a possible dysfunction in the central auditory nervous system (brainstem) in individuals with noise-induced tinnitus and a normal hearing threshold.

  20. Auditory brainstem response latency in forward masking, a marker of sensory deficits in listeners with normal hearing thresholds

    PubMed Central

    Mehraei, Golbarg; Gallardo, Andreu Paredes; Shinn-Cunningham, Barbara G.; Dau, Torsten

    2017-01-01

    In rodent models, acoustic exposure too modest to elevate hearing thresholds can nonetheless cause auditory nerve fiber deafferentation, interfering with the coding of supra-threshold sound. Low-spontaneous rate nerve fibers, important for encoding acoustic information at supra-threshold levels and in noise, are more susceptible to degeneration than high-spontaneous rate fibers. The change in auditory brainstem response (ABR) wave-V latency with noise level has been shown to be associated with auditory nerve deafferentation. Here, we measured ABR in a forward masking paradigm and evaluated wave-V latency changes with increasing masker-to-probe intervals. In the same listeners, behavioral forward masking detection thresholds were measured. We hypothesized that 1) auditory nerve fiber deafferentation increases forward masking thresholds and increases wave-V latency and 2) a preferential loss of low-SR fibers results in a faster recovery of wave-V latency as the slow contribution of these fibers is reduced. Results showed that in young audiometrically normal listeners, a larger change in wave-V latency with increasing masker-to-probe interval was related to a greater effect of a preceding masker behaviorally. Further, the amount of wave-V latency change with masker-to-probe interval was positively correlated with the rate of change in forward masking detection thresholds. Although we cannot rule out central contributions, these findings are consistent with the hypothesis that auditory nerve fiber deafferentation occurs in humans and may predict how well individuals can hear in noisy environments. PMID:28159652

  1. In-air hearing of a diving duck: A comparison of psychoacoustic and auditory brainstem response thresholds

    USGS Publications Warehouse

    Crowell, Sara E.; Wells-Berlin, Alicia M.; Therrien, Ronald E.; Yannuzzi, Sally E.; Carr, Catherine E.

    2016-01-01

    Auditory sensitivity was measured in a species of diving duck that is not often kept in captivity, the lesser scaup. Behavioral (psychoacoustics) and electrophysiological [the auditory brainstem response (ABR)] methods were used to measure in-air auditory sensitivity, and the resulting audiograms were compared. Both approaches yielded audiograms with similar U-shapes and regions of greatest sensitivity (2000−3000 Hz). However, ABR thresholds were higher than psychoacoustic thresholds at all frequencies. This difference was least at the highest frequency tested using both methods (5700 Hz) and greatest at 1000 Hz, where the ABR threshold was 26.8 dB higher than the behavioral measure of threshold. This difference is commonly reported in studies involving many different species. These results highlight the usefulness of each method, depending on the testing conditions and availability of the animals.

  2. In-air hearing of a diving duck: A comparison of psychoacoustic and auditory brainstem response thresholds.

    PubMed

    Crowell, Sara E; Wells-Berlin, Alicia M; Therrien, Ronald E; Yannuzzi, Sally E; Carr, Catherine E

    2016-05-01

    Auditory sensitivity was measured in a species of diving duck that is not often kept in captivity, the lesser scaup. Behavioral (psychoacoustics) and electrophysiological [the auditory brainstem response (ABR)] methods were used to measure in-air auditory sensitivity, and the resulting audiograms were compared. Both approaches yielded audiograms with similar U-shapes and regions of greatest sensitivity (2000-3000 Hz). However, ABR thresholds were higher than psychoacoustic thresholds at all frequencies. This difference was least at the highest frequency tested using both methods (5700 Hz) and greatest at 1000 Hz, where the ABR threshold was 26.8 dB higher than the behavioral measure of threshold. This difference is commonly reported in studies involving many different species. These results highlight the usefulness of each method, depending on the testing conditions and availability of the animals.

  3. Involvement of the human midbrain and thalamus in auditory deviance detection.

    PubMed

    Cacciaglia, Raffaele; Escera, Carles; Slabu, Lavinia; Grimm, Sabine; Sanjuán, Ana; Ventura-Campos, Noelia; Ávila, César

    2015-02-01

    Prompt detection of unexpected changes in the sensory environment is critical for survival. In the auditory domain, the occurrence of a rare stimulus triggers a cascade of neurophysiological events spanning over multiple time-scales. Besides the role of the mismatch negativity (MMN), whose cortical generators are located in supratemporal areas, cumulative evidence suggests that violations of auditory regularities can be detected earlier and lower in the auditory hierarchy. Recent human scalp recordings have shown signatures of auditory mismatch responses at shorter latencies than those of the MMN. Moreover, animal single-unit recordings have demonstrated that rare stimulus changes cause a release from stimulus-specific adaptation in neurons of the primary auditory cortex, the medial geniculate body (MGB), and the inferior colliculus (IC). Although these data suggest that change detection is a pervasive property of the auditory system which may reside upstream cortical sites, direct evidence for the involvement of subcortical stages in the human auditory novelty system is lacking. Using event-related functional magnetic resonance imaging during a frequency oddball paradigm, we here report that auditory deviance detection occurs in the MGB and the IC of healthy human participants. By implementing a random condition controlling for neural refractoriness effects, we show that auditory change detection in these subcortical stations involves the encoding of statistical regularities from the acoustic input. These results provide the first direct evidence of the existence of multiple mismatch detectors nested at different levels along the human ascending auditory pathway. Copyright © 2015 Elsevier Ltd. All rights reserved.

  4. [Value of cumulative electrodermal responses in subliminal auditory perception. A preliminary study].

    PubMed

    Borgeat, F; Pannetier, M F

    1982-01-01

    This exploratory study examined the usefulness of averaging electrodermal potential responses for research on subliminal auditory perception. Eighteen female subjects were exposed to three kinds (emotional, neutral and 1000 Hz tone) of auditory stimulation which were repeated six times at three intensities (detection threshold, 10 dB under this threshold and 10 dB above identification threshold). Analysis of electrodermal potential responses showed that the number of responses was related to the emotionality of subliminal stimuli presented at detection threshold but not at 10 dB under it. The data interpretation proposed refers to perceptual defence theory. This study indicates that electrodermal response count constitutes a useful measure for subliminal auditory perception research, but averaging those responses was not shown to bring additional information.

  5. Three subdivisions of the auditory midbrain in chicks (Gallus gallus) identified by their afferent and commissural projections

    PubMed Central

    Wang, Yuan; Karten, Harvey J.

    2010-01-01

    The auditory midbrain is a site of convergence of multiple auditory channels from the brainstem. In birds, two separate ascending channels have been identified, through which time and intensity information is sent to nucleus mesencephalicus lateralis, pars dorsalis (MLd), the homologue of the central nucleus of mammalian inferior colliculus. Using in vivo anterograde and retrograde tracing techniques, the current study provides two lines of anatomical evidence supporting the presence of a third ascending channel to the chick MLd. First, three non-overlapping zones of MLd receive inputs from three distinct cell groups in the caudodorsal brainstem. The projections from nucleus angularis (NA) and nucleus laminaris (NL) are predominately contralateral and may correspond to the time and intensity channels. A rostromedial portion of MLd receives bilateral projections mainly from the Regio Intermedius, an interposed region of cells lying at a caudal level between NL and NA, as well as scattered neurons embedded in 8th nerve tract, and probably a very ventral region of NA. Second, the bilateral zones of MLd on two sides of the brain are reciprocally connected and do not interact with other zones of MLd via commissural connections. In contrast, the NL-recipient zone projects contralaterally upon the NA-recipient zone. The structural separation of the third pathway from the NA and NL projections suggests a third information-processing channel, in parallel with the time and intensity channels. Neurons in the third channel appear to process very low frequency information including infrasound, probably utilizing different mechanisms than that underlying higher frequency processing. PMID:20148439

  6. Context-dependent fluctuation of serotonin in the auditory midbrain: the influence of sex, reproductive state and experience

    PubMed Central

    Hanson, Jessica L.; Hurley, Laura M.

    2014-01-01

    In the face of changing behavioral situations, plasticity of sensory systems can be a valuable mechanism to facilitate appropriate behavioral responses. In the auditory system, the neurotransmitter serotonin is an important messenger for context-dependent regulation because it is sensitive to both external events and internal state, and it modulates neural activity. In male mice, serotonin increases in the auditory midbrain region, the inferior colliculus (IC), in response to changes in behavioral context such as restriction stress and social contact. Female mice have not been measured in similar contexts, although the serotonergic system is sexually dimorphic in many ways. In the present study, we investigated the effects of sex, experience and estrous state on the fluctuation of serotonin in the IC across contexts, as well as potential relationships between behavior and serotonin. Contrary to our expectation, there were no sex differences in increases of serotonin in response to a restriction stimulus. Both sexes had larger increases in second exposures, suggesting experience plays a role in serotonergic release in the IC. In females, serotonin increased during both restriction and interactions with males; however, the increase was more rapid during restriction. There was no effect of female estrous phase on the serotonergic change for either context, but serotonin was related to behavioral activity in females interacting with males. These results show that changes in behavioral context induce increases in serotonin in the IC by a mechanism that appears to be uninfluenced by sex or estrous state, but may depend on experience and behavioral activity. PMID:24198252

  7. Speech-in-Noise Tests and Supra-threshold Auditory Evoked Potentials as Metrics for Noise Damage and Clinical Trial Outcome Measures.

    PubMed

    Le Prell, Colleen G; Brungart, Douglas S

    2016-09-01

    In humans, the accepted clinical standards for detecting hearing loss are the behavioral audiogram, based on the absolute detection threshold of pure-tones, and the threshold auditory brainstem response (ABR). The audiogram and the threshold ABR are reliable and sensitive measures of hearing thresholds in human listeners. However, recent results from noise-exposed animals demonstrate that noise exposure can cause substantial neurodegeneration in the peripheral auditory system without degrading pure-tone audiometric thresholds. It has been suggested that clinical measures of auditory performance conducted with stimuli presented above the detection threshold may be more sensitive than the behavioral audiogram in detecting early-stage noise-induced hearing loss in listeners with audiometric thresholds within normal limits. Supra-threshold speech-in-noise testing and supra-threshold ABR responses are reviewed here, given that they may be useful supplements to the behavioral audiogram for assessment of possible neurodegeneration in noise-exposed listeners. Supra-threshold tests may be useful for assessing the effects of noise on the human inner ear, and the effectiveness of interventions designed to prevent noise trauma. The current state of the science does not necessarily allow us to define a single set of best practice protocols. Nonetheless, we encourage investigators to incorporate these metrics into test batteries when feasible, with an effort to standardize procedures to the greatest extent possible as new reports emerge.

  8. Air and Bone Conduction Frequency-specific Auditory Brainstem Response in Children with Agenesis of the External Auditory Canal

    PubMed Central

    Sleifer, Pricila; Didoné, Dayane Domeneghini; Keppeler, Ísis Bicca; Bueno, Claudine Devicari; Riesgo, Rudimar dos Santos

    2017-01-01

    Introduction  The tone-evoked auditory brainstem responses (tone-ABR) enable the differential diagnosis in the evaluation of children until 12 months of age, including those with external and/or middle ear malformations. The use of auditory stimuli with frequency specificity by air and bone conduction allows characterization of hearing profile. Objective  The objective of our study was to compare the results obtained in tone-ABR by air and bone conduction in children until 12 months, with agenesis of the external auditory canal. Method  The study was cross-sectional, observational, individual, and contemporary. We conducted the research with tone-ABR by air and bone conduction in the frequencies of 500 Hz and 2000 Hz in 32 children, 23 boys, from one to 12 months old, with agenesis of the external auditory canal. Results  The tone-ABR thresholds were significantly elevated for air conduction in the frequencies of 500 Hz and 2000 Hz, while the thresholds of bone conduction had normal values in both ears. We found no statistically significant difference between genders and ears for most of the comparisons. Conclusion  The thresholds obtained by bone conduction did not alter the thresholds in children with conductive hearing loss. However, the conductive hearing loss alter all thresholds by air conduction. The tone-ABR by bone conduction is an important tool for assessing cochlear integrity in children with agenesis of the external auditory canal under 12 months. PMID:29018492

  9. Theoretical Tinnitus Framework: A Neurofunctional Model.

    PubMed

    Ghodratitoostani, Iman; Zana, Yossi; Delbem, Alexandre C B; Sani, Siamak S; Ekhtiari, Hamed; Sanchez, Tanit G

    2016-01-01

    Subjective tinnitus is the conscious (attended) awareness perception of sound in the absence of an external source and can be classified as an auditory phantom perception. Earlier literature establishes three distinct states of conscious perception as unattended, attended, and attended awareness conscious perception. The current tinnitus development models depend on the role of external events congruently paired with the causal physical events that precipitate the phantom perception. We propose a novel Neurofunctional Tinnitus Model to indicate that the conscious (attended) awareness perception of phantom sound is essential in activating the cognitive-emotional value. The cognitive-emotional value plays a crucial role in governing attention allocation as well as developing annoyance within tinnitus clinical distress. Structurally, the Neurofunctional Tinnitus Model includes the peripheral auditory system, the thalamus, the limbic system, brainstem, basal ganglia, striatum, and the auditory along with prefrontal cortices. Functionally, we assume the model includes presence of continuous or intermittent abnormal signals at the peripheral auditory system or midbrain auditory paths. Depending on the availability of attentional resources, the signals may or may not be perceived. The cognitive valuation process strengthens the lateral-inhibition and noise canceling mechanisms in the mid-brain, which leads to the cessation of sound perception and renders the signal evaluation irrelevant. However, the "sourceless" sound is eventually perceived and can be cognitively interpreted as suspicious or an indication of a disease in which the cortical top-down processes weaken the noise canceling effects. This results in an increase in cognitive and emotional negative reactions such as depression and anxiety. The negative or positive cognitive-emotional feedbacks within the top-down approach may have no relation to the previous experience of the patients. They can also be associated with aversive stimuli similar to abnormal neural activity in generating the phantom sound. Cognitive and emotional reactions depend on general personality biases toward evaluative conditioning combined with a cognitive-emotional negative appraisal of stimuli such as the case of people with present hypochondria. We acknowledge that the projected Neurofunctional Tinnitus Model does not cover all tinnitus variations and patients. To support our model, we present evidence from several studies using neuroimaging, electrophysiology, brain lesion, and behavioral techniques.

  10. Theoretical Tinnitus Framework: A Neurofunctional Model

    PubMed Central

    Ghodratitoostani, Iman; Zana, Yossi; Delbem, Alexandre C. B.; Sani, Siamak S.; Ekhtiari, Hamed; Sanchez, Tanit G.

    2016-01-01

    Subjective tinnitus is the conscious (attended) awareness perception of sound in the absence of an external source and can be classified as an auditory phantom perception. Earlier literature establishes three distinct states of conscious perception as unattended, attended, and attended awareness conscious perception. The current tinnitus development models depend on the role of external events congruently paired with the causal physical events that precipitate the phantom perception. We propose a novel Neurofunctional Tinnitus Model to indicate that the conscious (attended) awareness perception of phantom sound is essential in activating the cognitive-emotional value. The cognitive-emotional value plays a crucial role in governing attention allocation as well as developing annoyance within tinnitus clinical distress. Structurally, the Neurofunctional Tinnitus Model includes the peripheral auditory system, the thalamus, the limbic system, brainstem, basal ganglia, striatum, and the auditory along with prefrontal cortices. Functionally, we assume the model includes presence of continuous or intermittent abnormal signals at the peripheral auditory system or midbrain auditory paths. Depending on the availability of attentional resources, the signals may or may not be perceived. The cognitive valuation process strengthens the lateral-inhibition and noise canceling mechanisms in the mid-brain, which leads to the cessation of sound perception and renders the signal evaluation irrelevant. However, the “sourceless” sound is eventually perceived and can be cognitively interpreted as suspicious or an indication of a disease in which the cortical top-down processes weaken the noise canceling effects. This results in an increase in cognitive and emotional negative reactions such as depression and anxiety. The negative or positive cognitive-emotional feedbacks within the top-down approach may have no relation to the previous experience of the patients. They can also be associated with aversive stimuli similar to abnormal neural activity in generating the phantom sound. Cognitive and emotional reactions depend on general personality biases toward evaluative conditioning combined with a cognitive-emotional negative appraisal of stimuli such as the case of people with present hypochondria. We acknowledge that the projected Neurofunctional Tinnitus Model does not cover all tinnitus variations and patients. To support our model, we present evidence from several studies using neuroimaging, electrophysiology, brain lesion, and behavioral techniques. PMID:27594822

  11. Marijuana and Human Performance: An Annotated Bibliography (1970-1975)

    DTIC Science & Technology

    1976-03-01

    Research 5 6 9 20 22 48 56 61 62 72 73 128 131 132 134 163 Auditory Related Research 22 70 I’l 130 134 169 175 IV MEDICAL COMMENTS AND RESEARCH CRITIQUES... Auditory and visual threshold effects of marihuana in man. Perceptual & Motor Skills, 1969, 29, 755-759. Auditory and visual thresholds were measured...a "high." Results indicated no effect on visual acuity, whereas one of three auditory measurements differentiated between marihuana and control

  12. The Physiological Basis and Clinical Use of the Binaural Interaction Component of the Auditory Brainstem Response

    PubMed Central

    Klump, Georg M.; Tollin, Daniel J.

    2016-01-01

    The auditory brainstem response (ABR) is a sound-evoked non-invasively measured electrical potential representing the sum of neuronal activity in the auditory brainstem and midbrain. ABR peak amplitudes and latencies are widely used in human and animal auditory research and for clinical screening. The binaural interaction component (BIC) of the ABR stands for the difference between the sum of the monaural ABRs and the ABR obtained with binaural stimulation. The BIC comprises a series of distinct waves, the largest of which (DN1) has been used for evaluating binaural hearing in both normal hearing and hearing-impaired listeners. Based on data from animal and human studies, we discuss the possible anatomical and physiological bases of the BIC (DN1 in particular). The effects of electrode placement and stimulus characteristics on the binaurally evoked ABR are evaluated. We review how inter-aural time and intensity differences affect the BIC and, analyzing these dependencies, draw conclusion about the mechanism underlying the generation of the BIC. Finally, the utility of the BIC for clinical diagnoses are summarized. PMID:27232077

  13. The basic circuit of the IC: tectothalamic neurons with different patterns of synaptic organization send different messages to the thalamus

    PubMed Central

    Ito, Tetsufumi; Oliver, Douglas L.

    2012-01-01

    The inferior colliculus (IC) in the midbrain of the auditory system uses a unique basic circuit to organize the inputs from virtually all of the lower auditory brainstem and transmit this information to the medial geniculate body (MGB) in the thalamus. Here, we review the basic circuit of the IC, the neuronal types, the organization of their inputs and outputs. We specifically discuss the large GABAergic (LG) neurons and how they differ from the small GABAergic (SG) and the more numerous glutamatergic neurons. The somata and dendrites of LG neurons are identified by axosomatic glutamatergic synapses that are lacking in the other cell types and exclusively contain the glutamate transporter VGLUT2. Although LG neurons are most numerous in the central nucleus of the IC (ICC), an analysis of their distribution suggests that they are not specifically associated with one set of ascending inputs. The inputs to ICC may be organized into functional zones with different subsets of brainstem inputs, but each zone may contain the same three neuron types. However, the sources of VGLUT2 axosomatic terminals on the LG neuron are not known. Neurons in the dorsal cochlear nucleus, superior olivary complex, intermediate nucleus of the lateral lemniscus, and IC itself that express the gene for VGLUT2 only are the likely origin of the dense VGLUT2 axosomatic terminals on LG tectothalamic neurons. The IC is unique since LG neurons are GABAergic tectothalamic neurons in addition to the numerous glutamatergic tectothalamic neurons. SG neurons evidently target other auditory structures. The basic circuit of the IC and the LG neurons in particular, has implications for the transmission of information about sound through the midbrain to the MGB. PMID:22855671

  14. Estradiol-dependent Modulation of Serotonergic Markers in Auditory Areas of a Seasonally Breeding Songbird

    PubMed Central

    Matragrano, Lisa L.; Sanford, Sara E.; Salvante, Katrina G.; Beaulieu, Michaël; Sockman, Keith W.; Maney, Donna L.

    2011-01-01

    Because no organism lives in an unchanging environment, sensory processes must remain plastic so that in any context, they emphasize the most relevant signals. As the behavioral relevance of sociosexual signals changes along with reproductive state, the perception of those signals is altered by reproductive hormones such as estradiol (E2). We showed previously that in white-throated sparrows, immediate early gene responses in the auditory pathway of females are selective for conspecific male song only when plasma E2 is elevated to breeding-typical levels. In this study, we looked for evidence that E2-dependent modulation of auditory responses is mediated by serotonergic systems. In female nonbreeding white-throated sparrows treated with E2, the density of fibers immunoreactive for serotonin transporter innervating the auditory midbrain and rostral auditory forebrain increased compared with controls. E2 treatment also increased the concentration of the serotonin metabolite 5-HIAA in the caudomedial mesopallium of the auditory forebrain. In a second experiment, females exposed to 30 min of conspecific male song had higher levels of 5-HIAA in the caudomedial nidopallium of the auditory forebrain than birds not exposed to song. Overall, we show that in this seasonal breeder, (1) serotonergic fibers innervate auditory areas; (2) the density of those fibers is higher in females with breeding-typical levels of E2 than in nonbreeding, untreated females; and (3) serotonin is released in the auditory forebrain within minutes in response to conspecific vocalizations. Our results are consistent with the hypothesis that E2 acts via serotonin systems to alter auditory processing. PMID:21942431

  15. L-type calcium channels refine the neural population code of sound level

    PubMed Central

    Grimsley, Calum Alex; Green, David Brian

    2016-01-01

    The coding of sound level by ensembles of neurons improves the accuracy with which listeners identify how loud a sound is. In the auditory system, the rate at which neurons fire in response to changes in sound level is shaped by local networks. Voltage-gated conductances alter local output by regulating neuronal firing, but their role in modulating responses to sound level is unclear. We tested the effects of L-type calcium channels (CaL: CaV1.1–1.4) on sound-level coding in the central nucleus of the inferior colliculus (ICC) in the auditory midbrain. We characterized the contribution of CaL to the total calcium current in brain slices and then examined its effects on rate-level functions (RLFs) in vivo using single-unit recordings in awake mice. CaL is a high-threshold current and comprises ∼50% of the total calcium current in ICC neurons. In vivo, CaL activates at sound levels that evoke high firing rates. In RLFs that increase monotonically with sound level, CaL boosts spike rates at high sound levels and increases the maximum firing rate achieved. In different populations of RLFs that change nonmonotonically with sound level, CaL either suppresses or enhances firing at sound levels that evoke maximum firing. CaL multiplies the gain of monotonic RLFs with dynamic range and divides the gain of nonmonotonic RLFs with the width of the RLF. These results suggest that a single broad class of calcium channels activates enhancing and suppressing local circuits to regulate the sensitivity of neuronal populations to sound level. PMID:27605536

  16. Perspectives on the Pure-Tone Audiogram.

    PubMed

    Musiek, Frank E; Shinn, Jennifer; Chermak, Gail D; Bamiou, Doris-Eva

    The pure-tone audiogram, though fundamental to audiology, presents limitations, especially in the case of central auditory involvement. Advances in auditory neuroscience underscore the considerably larger role of the central auditory nervous system (CANS) in hearing and related disorders. Given the availability of behavioral audiological tests and electrophysiological procedures that can provide better insights as to the function of the various components of the auditory system, this perspective piece reviews the limitations of the pure-tone audiogram and notes some of the advantages of other tests and procedures used in tandem with the pure-tone threshold measurement. To review and synthesize the literature regarding the utility and limitations of the pure-tone audiogram in determining dysfunction of peripheral sensory and neural systems, as well as the CANS, and to identify other tests and procedures that can supplement pure-tone thresholds and provide enhanced diagnostic insight, especially regarding problems of the central auditory system. A systematic review and synthesis of the literature. The authors independently searched and reviewed literature (journal articles, book chapters) pertaining to the limitations of the pure-tone audiogram. The pure-tone audiogram provides information as to hearing sensitivity across a selected frequency range. Normal or near-normal pure-tone thresholds sometimes are observed despite cochlear damage. There are a surprising number of patients with acoustic neuromas who have essentially normal pure-tone thresholds. In cases of central deafness, depressed pure-tone thresholds may not accurately reflect the status of the peripheral auditory system. Listening difficulties are seen in the presence of normal pure-tone thresholds. Suprathreshold procedures and a variety of other tests can provide information regarding other and often more central functions of the auditory system. The audiogram is a primary tool for determining type, degree, and configuration of hearing loss; however, it provides the clinician with information regarding only hearing sensitivity, and no information about central auditory processing or the auditory processing of real-world signals (i.e., speech, music). The pure-tone audiogram offers limited insight into functional hearing and should be viewed only as a test of hearing sensitivity. Given the limitations of the pure-tone audiogram, a brief overview is provided of available behavioral tests and electrophysiological procedures that are sensitive to the function and integrity of the central auditory system, which provide better diagnostic and rehabilitative information to the clinician and patient. American Academy of Audiology

  17. Slow Temporal Integration Enables Robust Neural Coding and Perception of a Cue to Sound Source Location.

    PubMed

    Brown, Andrew D; Tollin, Daniel J

    2016-09-21

    In mammals, localization of sound sources in azimuth depends on sensitivity to interaural differences in sound timing (ITD) and level (ILD). Paradoxically, while typical ILD-sensitive neurons of the auditory brainstem require millisecond synchrony of excitatory and inhibitory inputs for the encoding of ILDs, human and animal behavioral ILD sensitivity is robust to temporal stimulus degradations (e.g., interaural decorrelation due to reverberation), or, in humans, bilateral clinical device processing. Here we demonstrate that behavioral ILD sensitivity is only modestly degraded with even complete decorrelation of left- and right-ear signals, suggesting the existence of a highly integrative ILD-coding mechanism. Correspondingly, we find that a majority of auditory midbrain neurons in the central nucleus of the inferior colliculus (of chinchilla) effectively encode ILDs despite complete decorrelation of left- and right-ear signals. We show that such responses can be accounted for by relatively long windows of bilateral excitatory-inhibitory interaction, which we explicitly measure using trains of narrowband clicks. Neural and behavioral data are compared with the outputs of a simple model of ILD processing with a single free parameter, the duration of excitatory-inhibitory interaction. Behavioral, neural, and modeling data collectively suggest that ILD sensitivity depends on binaural integration of excitation and inhibition within a ≳3 ms temporal window, significantly longer than observed in lower brainstem neurons. This relatively slow integration potentiates a unique role for the ILD system in spatial hearing that may be of particular importance when informative ITD cues are unavailable. In mammalian hearing, interaural differences in the timing (ITD) and level (ILD) of impinging sounds carry critical information about source location. However, natural sounds are often decorrelated between the ears by reverberation and background noise, degrading the fidelity of both ITD and ILD cues. Here we demonstrate that behavioral ILD sensitivity (in humans) and neural ILD sensitivity (in single neurons of the chinchilla auditory midbrain) remain robust under stimulus conditions that render ITD cues undetectable. This result can be explained by "slow" temporal integration arising from several-millisecond-long windows of excitatory-inhibitory interaction evident in midbrain, but not brainstem, neurons. Such integrative coding can account for the preservation of ILD sensitivity despite even extreme temporal degradations in ecological acoustic stimuli. Copyright © 2016 the authors 0270-6474/16/369908-14$15.00/0.

  18. Auditory steady-state response in cochlear implant patients.

    PubMed

    Torres-Fortuny, Alejandro; Arnaiz-Marquez, Isabel; Hernández-Pérez, Heivet; Eimil-Suárez, Eduardo

    2018-03-19

    Auditory steady state responses to continuous amplitude modulated tones at rates between 70 and 110Hz, have been proposed as a feasible alternative to objective frequency specific audiometry in cochlear implant subjects. The aim of the present study is to obtain physiological thresholds by means of auditory steady-state response in cochlear implant patients (Clarion HiRes 90K), with acoustic stimulation, on free field conditions and to verify its biological origin. 11 subjects comprised the sample. Four amplitude modulated tones of 500, 1000, 2000 and 4000Hz were used as stimuli, using the multiple frequency technique. The recording of auditory steady-state response was also recorded at 0dB HL of intensity, non-specific stimulus and using a masking technique. The study enabled the electrophysiological thresholds to be obtained for each subject of the explored sample. There were no auditory steady-state responses at either 0dB or non-specific stimulus recordings. It was possible to obtain the masking thresholds. A difference was identified between behavioral and electrophysiological thresholds of -6±16, -2±13, 0±22 and -8±18dB at frequencies of 500, 1000, 2000 and 4000Hz respectively. The auditory steady state response seems to be a suitable technique to evaluate the hearing threshold in cochlear implant subjects. Copyright © 2018 Sociedad Española de Otorrinolaringología y Cirugía de Cabeza y Cuello. Publicado por Elsevier España, S.L.U. All rights reserved.

  19. Threshold changes of ABR results in toddlers and children.

    PubMed

    Louza, Julia; Polterauer, Daniel; Wittlinger, Natalie; Muzaini, Hanan Al; Scheckinger, Siiri; Hempel, Martin; Schuster, Maria

    2016-06-01

    Auditory brainstem response (ABR) is a clinically established method to identify the hearing threshold in young children and is regularly performed after hearing screening has failed. Some studies have shown that, after the first diagnosis of hearing impairment in ABR, further development takes place in a spectrum between progression of hearing loss and, surprisingly, hearing improvement. The aim of this study is to evaluate changes over time of auditory thresholds measured by ABR among young children. For this retrospective study, 459 auditory brainstem measurements were performed and analyzed between 2010 and 2014. Hearing loss was detected and assessed according to national guidelines. 104 right ears and 101 left ears of 116 children aged between 0 and 3 years with multiple ABR measurements were included. The auditory threshold was identified using click and/or NB-chirp-stimuli in natural sleep or in general anesthesia. The frequency of differences of at least more than 10dB between the measurements was identified. In 37 (35%) measurements of right ears and 38 (38%) of left ears there was an improvement of the auditory threshold of more than 10dB; in 27 of those measurements more than 20dB improvement was found. Deterioration was seen in 12% of the right ears and 10% of the left ears. Only half of the children had stable hearing thresholds in repeated measurements. The time between the measurements was on average 5 months (0 to 31 months). Hearing threshold changes are often seen in repeated ABR measurements. Therefore multiple measurements are necessary when ABR yields abnormal. Hearing threshold changes should be taken into account for hearing aid provision. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  20. Increased Fos expression among midbrain dopaminergic cell groups during birdsong tutoring.

    PubMed

    Nordeen, E J; Holtzman, D A; Nordeen, K W

    2009-08-01

    During avian vocal learning, birds memorize conspecific song patterns and then use auditory feedback to match their vocal output to this acquired template. Some models of song learning posit that during tutoring, conspecific visual, social and/or auditory cues activate neuromodulatory systems that encourage acquisition of the tutor's song and attach incentive value to that specific acoustic pattern. This hypothesis predicts that stimuli experienced during social tutoring activate cell populations capable of signaling reward. Using immunocytochemistry for the protein product of the immediate early gene c-Fos, we found that brief exposure of juvenile male zebra finches to a live familiar male tutor increased the density of Fos+ cells within two brain regions implicated in reward processing: the ventral tegmental area (VTA) and substantia nigra pars compacta (SNc). This activation of Fos appears to involve both dopaminergic and non-dopaminergic VTA/SNc neurons. Intriguingly, a familiar tutor was more effective than a novel tutor in stimulating Fos expression within these regions. In the periaqueductal gray, a dopamine-enriched cell population that has been implicated in emotional processing, Fos labeling also was increased after tutoring, with a familiar tutor again being more effective than a novel conspecific. As several neural regions implicated in song acquisition receive strong dopaminergic projections from these midbrain nuclei, their activation in conjunction with hearing the tutor's song could help to establish sensory representations that later guide motor sequence learning.

  1. Cochlear neuropathy and the coding of supra-threshold sound.

    PubMed

    Bharadwaj, Hari M; Verhulst, Sarah; Shaheen, Luke; Liberman, M Charles; Shinn-Cunningham, Barbara G

    2014-01-01

    Many listeners with hearing thresholds within the clinically normal range nonetheless complain of difficulty hearing in everyday settings and understanding speech in noise. Converging evidence from human and animal studies points to one potential source of such difficulties: differences in the fidelity with which supra-threshold sound is encoded in the early portions of the auditory pathway. Measures of auditory subcortical steady-state responses (SSSRs) in humans and animals support the idea that the temporal precision of the early auditory representation can be poor even when hearing thresholds are normal. In humans with normal hearing thresholds (NHTs), paradigms that require listeners to make use of the detailed spectro-temporal structure of supra-threshold sound, such as selective attention and discrimination of frequency modulation (FM), reveal individual differences that correlate with subcortical temporal coding precision. Animal studies show that noise exposure and aging can cause a loss of a large percentage of auditory nerve fibers (ANFs) without any significant change in measured audiograms. Here, we argue that cochlear neuropathy may reduce encoding precision of supra-threshold sound, and that this manifests both behaviorally and in SSSRs in humans. Furthermore, recent studies suggest that noise-induced neuropathy may be selective for higher-threshold, lower-spontaneous-rate nerve fibers. Based on our hypothesis, we suggest some approaches that may yield particularly sensitive, objective measures of supra-threshold coding deficits that arise due to neuropathy. Finally, we comment on the potential clinical significance of these ideas and identify areas for future investigation.

  2. The relative impact of generic head-related transfer functions on auditory speech thresholds: implications for the design of three-dimensional audio displays.

    PubMed

    Arrabito, G R; McFadden, S M; Crabtree, R B

    2001-07-01

    Auditory speech thresholds were measured in this study. Subjects were required to discriminate a female voice recording of three-digit numbers in the presence of diotic speech babble. The voice stimulus was spatialized at 11 static azimuth positions on the horizontal plane using three different head-related transfer functions (HRTFs) measured on individuals who did not participate in this study. The diotic presentation of the voice stimulus served as the control condition. The results showed that two of the HRTFS performed similarly and had significantly lower auditory speech thresholds than the third HRTF. All three HRTFs yielded significantly lower auditory speech thresholds compared with the diotic presentation of the voice stimulus, with the largest difference at 60 degrees azimuth. The practical implications of these results suggest that lower headphone levels of the communication system in military aircraft can be achieved without sacrificing intelligibility, thereby lessening the risk of hearing loss.

  3. Assessment of central auditory processing in a group of workers exposed to solvents.

    PubMed

    Fuente, Adrian; McPherson, Bradley; Muñoz, Verónica; Pablo Espina, Juan

    2006-12-01

    Despite having normal hearing thresholds and speech recognition thresholds, results for central auditory tests were abnormal in a group of workers exposed to solvents. Workers exposed to solvents may have difficulties in everyday listening situations that are not related to a decrement in hearing thresholds. A central auditory processing disorder may underlie these difficulties. To study central auditory processing abilities in a group of workers occupationally exposed to a mix of organic solvents. Ten workers exposed to a mix of organic solvents and 10 matched non-exposed workers were studied. The test battery comprised pure-tone audiometry, tympanometry, acoustic reflex measurement, acoustic reflex decay, dichotic digit, pitch pattern sequence, masking level difference, filtered speech, random gap detection and hearing-in-noise tests. All the workers presented normal hearing thresholds and no signs of middle ear abnormalities. Workers exposed to solvents had lower results in comparison with the control group and previously reported normative data, in the majority of the tests.

  4. Sensation seeking, augmenting-reducing, and absolute auditory threshold: a strength-of-the-nervous-system perspective.

    PubMed

    Goldman, D; Kohn, P M; Hunt, R W

    1983-08-01

    The following measures were obtained from 42 student volunteers: the General and the Disinhibition subscales of the Sensation Seeking Scale (Form IV), the Reducer-Augmenter Scale, and the Absolute Auditory Threshold. General sensation seeking correlated significantly with the Reducer-Augmenter Scale, r(40) = .59, p less than .001, and the Absolute Auditory Threshold, r(40) = .45, p less than .005. Both results proved general across sex. These findings, that high-sensation seekers tend to be reducers and to lack sensitivity to weak stimulation, were interpreted as supporting strength-of-the-nervous-system theory more than the formulation of Zuckerman and his associates.

  5. Auditory steady state response in sound field.

    PubMed

    Hernández-Pérez, H; Torres-Fortuny, A

    2013-02-01

    Physiological and behavioral responses were compared in normal-hearing subjects via analyses of the auditory steady-state response (ASSR) and conventional audiometry under sound field conditions. The auditory stimuli, presented through a loudspeaker, consisted of four carrier tones (500, 1000, 2000, and 4000 Hz), presented singly for behavioral testing but combined (multiple frequency technique), to estimate thresholds using the ASSR. Twenty normal-hearing adults were examined. The average differences between the physiological and behavioral thresholds were between 17 and 22 dB HL. The Spearman rank correlation between ASSR and behavioral thresholds was significant for all frequencies (p < 0.05). Significant differences were found in the ASSR amplitude among frequencies, and strong correlations between the ASSR amplitude and the stimulus level (p < 0.05). The ASSR in sound field testing was found to yield hearing threshold estimates deemed to be reasonably well correlated with behaviorally assessed thresholds.

  6. Automated cortical auditory evoked potentials threshold estimation in neonates.

    PubMed

    Oliveira, Lilian Sanches; Didoné, Dayane Domeneghini; Durante, Alessandra Spada

    2018-02-02

    The evaluation of Cortical Auditory Evoked Potential has been the focus of scientific studies in infants. Some authors have reported that automated response detection is effective in exploring these potentials in infants, but few have reported their efficacy in the search for thresholds. To analyze the latency, amplitude and thresholds of Cortical Auditory Evoked Potential using an automatic response detection device in a neonatal population. This is a cross-sectional, observational study. Cortical Auditory Evoked Potentials were recorded in response to pure-tone stimuli of the frequencies 500, 1000, 2000 and 4000Hz presented in an intensity range between 0 and 80dB HL using a single channel recording. P1 was performed in an exclusively automated fashion, using Hotelling's T 2 statistical test. The latency and amplitude were obtained manually by three examiners. The study comprised 39 neonates up to 28 days old of both sexes with presence of otoacoustic emissions and no risk factors for hearing loss. With the protocol used, Cortical Auditory Evoked Potential responses were detected in all subjects at high intensity and thresholds. The mean thresholds were 24.8±10.4dB NA, 25±9.0dB NA, 28±7.8dB NA and 29.4±6.6dB HL for 500, 1000, 2000 and 4000Hz, respectively. Reliable responses were obtained in the assessment of cortical auditory potentials in the neonates assessed with a device for automatic response detection. Copyright © 2018 Associação Brasileira de Otorrinolaringologia e Cirurgia Cérvico-Facial. Published by Elsevier Editora Ltda. All rights reserved.

  7. Constructing Noise-Invariant Representations of Sound in the Auditory Pathway

    PubMed Central

    Rabinowitz, Neil C.; Willmore, Ben D. B.; King, Andrew J.; Schnupp, Jan W. H.

    2013-01-01

    Identifying behaviorally relevant sounds in the presence of background noise is one of the most important and poorly understood challenges faced by the auditory system. An elegant solution to this problem would be for the auditory system to represent sounds in a noise-invariant fashion. Since a major effect of background noise is to alter the statistics of the sounds reaching the ear, noise-invariant representations could be promoted by neurons adapting to stimulus statistics. Here we investigated the extent of neuronal adaptation to the mean and contrast of auditory stimulation as one ascends the auditory pathway. We measured these forms of adaptation by presenting complex synthetic and natural sounds, recording neuronal responses in the inferior colliculus and primary fields of the auditory cortex of anaesthetized ferrets, and comparing these responses with a sophisticated model of the auditory nerve. We find that the strength of both forms of adaptation increases as one ascends the auditory pathway. To investigate whether this adaptation to stimulus statistics contributes to the construction of noise-invariant sound representations, we also presented complex, natural sounds embedded in stationary noise, and used a decoding approach to assess the noise tolerance of the neuronal population code. We find that the code for complex sounds in the periphery is affected more by the addition of noise than the cortical code. We also find that noise tolerance is correlated with adaptation to stimulus statistics, so that populations that show the strongest adaptation to stimulus statistics are also the most noise-tolerant. This suggests that the increase in adaptation to sound statistics from auditory nerve to midbrain to cortex is an important stage in the construction of noise-invariant sound representations in the higher auditory brain. PMID:24265596

  8. Auditory evoked functions in ground crew working in high noise environment of Mumbai airport.

    PubMed

    Thakur, L; Anand, J P; Banerjee, P K

    2004-10-01

    The continuous exposure to the relatively high level of noise in the surroundings of an airport is likely to affect the central pathway of the auditory system as well as the cognitive functions of the people working in that environment. The Brainstem Auditory Evoked Responses (BAER), Mid Latency Response (MLR) and P300 response of the ground crew employees working in Mumbai airport were studied to evaluate the effects of continuous exposure to high level of noise of the surroundings of the airport on these responses. BAER, P300 and MLR were recorded by using a Nicolet Compact-4 (USA) instrument. Audiometry was also monitored with the help of GSI-16 Audiometer. There was a significant increase in the peak III latency of the BAER in the subjects exposed to noise compared to controls with no change in their P300 values. The exposed group showed hearing loss at different frequencies. The exposure to the high level of noise caused a considerable decline in the auditory conduction upto the level of the brainstem with no significant change in conduction in the midbrain, subcortical areas, auditory cortex and associated areas. There was also no significant change in cognitive function as measured by P300 response.

  9. Inconsistent Effect of Arousal on Early Auditory Perception

    PubMed Central

    Bolders, Anna C.; Band, Guido P. H.; Stallen, Pieter Jan M.

    2017-01-01

    Mood has been shown to influence cognitive performance. However, little is known about the influence of mood on sensory processing, specifically in the auditory domain. With the current study, we sought to investigate how auditory processing of neutral sounds is affected by the mood state of the listener. This was tested in two experiments by measuring masked-auditory detection thresholds before and after a standard mood-induction procedure. In the first experiment (N = 76), mood was induced by imagining a mood-appropriate event combined with listening to mood inducing music. In the second experiment (N = 80), imagining was combined with affective picture viewing to exclude any possibility of confounding the results by acoustic properties of the music. In both experiments, the thresholds were determined by means of an adaptive staircase tracking method in a two-interval forced-choice task. Masked detection thresholds were compared between participants in four different moods (calm, happy, sad, and anxious), which enabled differentiation of mood effects along the dimensions arousal and pleasure. Results of the two experiments were analyzed both in separate analyses and in a combined analysis. The first experiment showed that, while there was no impact of pleasure level on the masked threshold, lower arousal was associated with lower threshold (higher masked sensitivity). However, as indicated by an interaction effect between experiment and arousal, arousal did have a different effect on the threshold in Experiment 2. Experiment 2 showed a trend of arousal in opposite direction. These results show that the effect of arousal on auditory-masked sensitivity may depend on the modality of the mood-inducing stimuli. As clear conclusions regarding the genuineness of the arousal effect on the masked threshold cannot be drawn, suggestions for further research that could clarify this issue are provided. PMID:28424639

  10. Effects of Electrical Stimulation in the Inferior Colliculus on Frequency Discrimination by Rhesus Monkeys and Implications for the Auditory Midbrain Implant

    PubMed Central

    Ross, Deborah A.; Puñal, Vanessa M.; Agashe, Shruti; Dweck, Isaac; Mueller, Jerel; Grill, Warren M.; Wilson, Blake S.

    2016-01-01

    Understanding the relationship between the auditory selectivity of neurons and their contribution to perception is critical to the design of effective auditory brain prosthetics. These prosthetics seek to mimic natural activity patterns to achieve desired perceptual outcomes. We measured the contribution of inferior colliculus (IC) sites to perception using combined recording and electrical stimulation. Monkeys performed a frequency-based discrimination task, reporting whether a probe sound was higher or lower in frequency than a reference sound. Stimulation pulses were paired with the probe sound on 50% of trials (0.5–80 μA, 100–300 Hz, n = 172 IC locations in 3 rhesus monkeys). Electrical stimulation tended to bias the animals' judgments in a fashion that was coarsely but significantly correlated with the best frequency of the stimulation site compared with the reference frequency used in the task. Although there was considerable variability in the effects of stimulation (including impairments in performance and shifts in performance away from the direction predicted based on the site's response properties), the results indicate that stimulation of the IC can evoke percepts correlated with the frequency-tuning properties of the IC. Consistent with the implications of recent human studies, the main avenue for improvement for the auditory midbrain implant suggested by our findings is to increase the number and spatial extent of electrodes, to increase the size of the region that can be electrically activated, and to provide a greater range of evoked percepts. SIGNIFICANCE STATEMENT Patients with hearing loss stemming from causes that interrupt the auditory pathway after the cochlea need a brain prosthetic to restore hearing. Recently, prosthetic stimulation in the human inferior colliculus (IC) was evaluated in a clinical trial. Thus far, speech understanding was limited for the subjects and this limitation is thought to be partly due to challenges in harnessing the sound frequency representation in the IC. Here, we tested the effects of IC stimulation in monkeys trained to report the sound frequencies they heard. Our results indicate that the IC can be used to introduce a range of frequency percepts and suggest that placement of a greater number of electrode contacts may improve the effectiveness of such implants. PMID:27147659

  11. Effect of Mild Cognitive Impairment and Alzheimer Disease on Auditory Steady-State Responses

    PubMed Central

    Shahmiri, Elaheh; Jafari, Zahra; Noroozian, Maryam; Zendehbad, Azadeh; Haddadzadeh Niri, Hassan; Yoonessi, Ali

    2017-01-01

    Introduction: Mild Cognitive Impairment (MCI), a disorder of the elderly people, is difficult to diagnose and often progresses to Alzheimer Disease (AD). Temporal region is one of the initial areas, which gets impaired in the early stage of AD. Therefore, auditory cortical evoked potential could be a valuable neuromarker for detecting MCI and AD. Methods: In this study, the thresholds of Auditory Steady-State Response (ASSR) to 40 Hz and 80 Hz were compared between Alzheimer Disease (AD), MCI, and control groups. A total of 42 patients (12 with AD, 15 with MCI, and 15 elderly normal controls) were tested for ASSR. Hearing thresholds at 500, 1000, and 2000 Hz in both ears with modulation rates of 40 and 80 Hz were obtained. Results: Significant differences in normal subjects were observed in estimated ASSR thresholds with 2 modulation rates in 3 frequencies in both ears. However, the difference was significant only in 500 Hz in the MCI group, and no significant differences were observed in the AD group. In addition, significant differences were observed between the normal subjects and AD patients with regard to the estimated ASSR thresholds with 2 modulation rates and 3 frequencies in both ears. A significant difference was observed between the normal and MCI groups at 2000 Hz, too. An increase in estimated 40 Hz ASSR thresholds in patients with AD and MCI suggests neural changes in auditory cortex compared to that in normal ageing. Conclusion: Auditory threshold estimation with low and high modulation rates by ASSR test could be a potentially helpful test for detecting cognitive impairment. PMID:29158880

  12. Underwater temporary threshold shift in pinnipeds: effects of noise level and duration.

    PubMed

    Kastak, David; Southall, Brandon L; Schusterman, Ronald J; Kastak, Colleen Reichmuth

    2005-11-01

    Behavioral psychophysical techniques were used to evaluate the residual effects of underwater noise on the hearing sensitivity of three pinnipeds: a California sea lion (Zalophus californianus), a harbor seal (Phoca vitulina), and a northern elephant seal (Mirounga angustirostris). Temporary threshold shift (TTS), defined as the difference between auditory thresholds obtained before and after noise exposure, was assessed. The subjects were exposed to octave-band noise centered at 2500 Hz at two sound pressure levels: 80 and 95 dB SL (re: auditory threshold at 2500 Hz). Noise exposure durations were 22, 25, and 50 min. Threshold shifts were assessed at 2500 and 3530 Hz. Mean threshold shifts ranged from 2.9-12.2 dB. Full recovery of auditory sensitivity occurred within 24 h of noise exposure. Control sequences, comprising sham noise exposures, did not result in significant mean threshold shifts for any subject. Threshold shift magnitudes increased with increasing noise sound exposure level (SEL) for two of the three subjects. The results underscore the importance of including sound exposure metrics (incorporating sound pressure level and exposure duration) in order to fully assess the effects of noise on marine mammal hearing.

  13. Improved outcomes in auditory brainstem implantation with the use of near-field electrical compound action potentials.

    PubMed

    Mandalà, Marco; Colletti, Liliana; Colletti, Giacomo; Colletti, Vittorio

    2014-12-01

    To compare the outcomes (auditory threshold and open-set speech perception at 48-month follow-up) of a new near-field monitoring procedure, electrical compound action potential, on positioning the auditory brainstem implant electrode array on the surface of the cochlear nuclei versus the traditional far-field electrical auditory brainstem response. Retrospective study. Tertiary referral center. Among the 202 patients with auditory brainstem implants fitted and monitored with electrical auditory brainstem response during implant fitting, 9 also underwent electrical compound action potential recording. These subjects were matched retrospectively with a control group of 9 patients in whom only the electrical auditory brainstem response was recorded. Electrical compound action potentials were obtained using a cotton-wick recording electrode located near the surface of the cochlear nuclei and on several cranial nerves. Significantly lower potential thresholds were observed with the recording electrode located on the cochlear nuclei surface compared with the electrical auditory brainstem response (104.4 ± 32.5 vs 158.9 ± 24.2, P = .0030). Electrical brainstem response and compound action potentials identified effects on the neighboring cranial nerves on 3.2 ± 2.4 and 7.8 ± 3.2 electrodes, respectively (P = .0034). Open-set speech perception outcomes at 48-month follow-up had improved significantly in the near- versus far-field recording groups (78.9% versus 56.7%; P = .0051). Electrical compound action potentials during auditory brainstem implantation significantly improved the definition of the potential threshold and the number of auditory and extra-auditory waves generated. It led to the best coupling between the electrode array and cochlear nuclei, significantly improving the overall open-set speech perception. © American Academy of Otolaryngology—Head and Neck Surgery Foundation 2014.

  14. Thresholding of auditory cortical representation by background noise

    PubMed Central

    Liang, Feixue; Bai, Lin; Tao, Huizhong W.; Zhang, Li I.; Xiao, Zhongju

    2014-01-01

    It is generally thought that background noise can mask auditory information. However, how the noise specifically transforms neuronal auditory processing in a level-dependent manner remains to be carefully determined. Here, with in vivo loose-patch cell-attached recordings in layer 4 of the rat primary auditory cortex (A1), we systematically examined how continuous wideband noise of different levels affected receptive field properties of individual neurons. We found that the background noise, when above a certain critical/effective level, resulted in an elevation of intensity threshold for tone-evoked responses. This increase of threshold was linearly dependent on the noise intensity above the critical level. As such, the tonal receptive field (TRF) of individual neurons was translated upward as an entirety toward high intensities along the intensity domain. This resulted in preserved preferred characteristic frequency (CF) and the overall shape of TRF, but reduced frequency responding range and an enhanced frequency selectivity for the same stimulus intensity. Such translational effects on intensity threshold were observed in both excitatory and fast-spiking inhibitory neurons, as well as in both monotonic and nonmonotonic (intensity-tuned) A1 neurons. Our results suggest that in a noise background, fundamental auditory representations are modulated through a background level-dependent linear shifting along intensity domain, which is equivalent to reducing stimulus intensity. PMID:25426029

  15. INDIVIDUAL DIFFERENCES IN AUDITORY PROCESSING IN SPECIFIC LANGUAGE IMPAIRMENT: A FOLLOW-UP STUDY USING EVENT-RELATED POTENTIALS AND BEHAVIOURAL THRESHOLDS

    PubMed Central

    Bishop, Dorothy V.M.; McArthur, Genevieve M.

    2005-01-01

    It has frequently been claimed that children with specific language impairment (SLI) have impaired auditory perception, but there is much controversy about the role of such deficits in causing their language problems, and it has been difficult to establish solid, replicable findings in this area. Discrepancies in this field may arise because (a) a focus on mean results obscures the heterogeneity in the population and (b) insufficient attention has been paid to maturational aspects of auditory processing. We conducted a study of 16 young people with specific language impairment (SLI) and 16 control participants, 24 of whom had had auditory event-related potentials (ERPs) and frequency discrimination thresholds assessed 18 months previously. When originally assessed, around one third of the listeners with SLI had poor behavioural frequency discrimination thresholds, and these tended to be the younger participants. However, most of the SLI group had age-inappropriate late components of the auditory ERP, regardless of their frequency discrimination. At follow-up, the behavioural thresholds of those with poor frequency discrimination improved, though some remained outside the control range. At follow-up, ERPs for many of the individuals in the SLI group were still not age-appropriate. In several cases, waveforms of individuals in the SLI group resembled those of younger typically-developing children, though in other cases the waveform was unlike that of control cases at any age. Electrophysiological methods may reveal underlying immaturity or other abnormality of auditory processing even when behavioural thresholds look normal. This study emphasises the variability seen in SLI, and the importance of studying individual cases rather than focusing on group means. PMID:15871598

  16. L-type calcium channels refine the neural population code of sound level.

    PubMed

    Grimsley, Calum Alex; Green, David Brian; Sivaramakrishnan, Shobhana

    2016-12-01

    The coding of sound level by ensembles of neurons improves the accuracy with which listeners identify how loud a sound is. In the auditory system, the rate at which neurons fire in response to changes in sound level is shaped by local networks. Voltage-gated conductances alter local output by regulating neuronal firing, but their role in modulating responses to sound level is unclear. We tested the effects of L-type calcium channels (Ca L : Ca V 1.1-1.4) on sound-level coding in the central nucleus of the inferior colliculus (ICC) in the auditory midbrain. We characterized the contribution of Ca L to the total calcium current in brain slices and then examined its effects on rate-level functions (RLFs) in vivo using single-unit recordings in awake mice. Ca L is a high-threshold current and comprises ∼50% of the total calcium current in ICC neurons. In vivo, Ca L activates at sound levels that evoke high firing rates. In RLFs that increase monotonically with sound level, Ca L boosts spike rates at high sound levels and increases the maximum firing rate achieved. In different populations of RLFs that change nonmonotonically with sound level, Ca L either suppresses or enhances firing at sound levels that evoke maximum firing. Ca L multiplies the gain of monotonic RLFs with dynamic range and divides the gain of nonmonotonic RLFs with the width of the RLF. These results suggest that a single broad class of calcium channels activates enhancing and suppressing local circuits to regulate the sensitivity of neuronal populations to sound level. Copyright © 2016 the American Physiological Society.

  17. ASSESSMENT OF LOW-FREQUENCY HEARING WITH NARROW-BAND CHIRP EVOKED 40-HZ SINUSOIDAL AUDITORY STEADY STATE RESPONSE

    PubMed Central

    Wilson, Uzma S.; Kaf, Wafaa A.; Danesh, Ali A.; Lichtenhan, Jeffery T.

    2016-01-01

    Objective To determine the clinical utility of narrow-band chirp evoked 40-Hz sinusoidal auditory steady state responses (s-ASSR) in the assessment of low-frequency hearing in noisy participants. Design Tone bursts and narrow-band chirps were used to respectively evoke auditory brainstem responses (tb-ABR) and 40-Hz s-ASSR thresholds with the Kalman-weighted filtering technique and were compared to behavioral thresholds at 500, 2000, and 4000 Hz. A repeated measure ANOVA and post-hoc t-tests, and simple regression analyses were performed for each of the three stimulus frequencies. Study Sample Thirty young adults aged 18–25 with normal hearing participated in this study. Results When 4000 equivalent responses averages were used, the range of mean s-ASSR thresholds from 500, 2000, and 4000 Hz were 17–22 dB lower (better) than when 2000 averages were used. The range of mean tb-ABR thresholds were lower by 11–15 dB for 2000 and 4000 Hz when twice as many equivalent response averages were used, while mean tb-ABR thresholds for 500 Hz were indistinguishable regardless of additional response averaging Conclusion Narrow band chirp evoked 40-Hz s-ASSR requires a ~15 dB smaller correction factor than tb-ABR for estimating low-frequency auditory threshold in noisy participants when adequate response averaging is used. PMID:26795555

  18. Auditory-steady-state response reliability in the audiological diagnosis after neonatal hearing screening.

    PubMed

    Núñez-Batalla, Faustino; Noriega-Iglesias, Sabel; Guntín-García, Maite; Carro-Fernández, Pilar; Llorente-Pendás, José Luis

    2016-01-01

    Conventional audiometry is the gold standard for quantifying and describing hearing loss. Alternative methods become necessary to assess subjects who are too young to respond reliably. Auditory evoked potentials constitute the most widely used method for determining hearing thresholds objectively; however, this stimulus is not frequency specific. The advent of the auditory steady-state response (ASSR) leads to more specific threshold determination. The current study describes and compares ASSR, auditory brainstem response (ABR) and conventional behavioural tone audiometry thresholds in a group of infants with various degrees of hearing loss. A comparison was made between ASSR, ABR and behavioural hearing thresholds in 35 infants detected in the neonatal hearing screening program. Mean difference scores (±SD) between ABR and high frequency ABR thresholds were 11.2 dB (±13) and 10.2 dB (±11). Pearson correlations between the ASSR and audiometry thresholds were 0.80 and 0.91 (500Hz); 0.84 and 0.82 (1000Hz); 0.85 and 0.84 (2000Hz); and 0.83 and 0.82 (4000Hz). The ASSR technique is a valuable extension of the clinical test battery for hearing-impaired children. Copyright © 2015 Elsevier España, S.L.U. and Sociedad Española de Otorrinolaringología y Cirugía de Cabeza y Cuello. All rights reserved.

  19. Effects of underwater noise on auditory sensitivity of a cyprinid fish.

    PubMed

    Scholik, A R; Yan, H Y

    2001-02-01

    The ability of a fish to interpret acoustic information in its environment is crucial for its survival. Thus, it is important to understand how underwater noise affects fish hearing. In this study, the fathead minnow (Pimephales promelas) was used to examine: (1) the immediate effects of white noise exposure (0.3-4.0 kHz, 142 dB re: 1 microPa) on auditory thresholds and (2) recovery after exposure. Audiograms were measured using the auditory brainstem response protocol and compared to baseline audiograms of fathead minnows not exposed to noise. Immediately after exposure to 24 h of white noise, five out of the eight frequencies tested showed a significantly higher threshold compared to the baseline fish. Recovery was found to depend on both duration of noise exposure and auditory frequency. These results support the hypothesis that the auditory threshold of the fathead minnow can be altered by white noise, especially in its most sensitive hearing range (0.8-2.0 kHz), and provide evidence that these effects can be long term (>14 days).

  20. Electrophysiological Evidence for the Sources of the Masking Level Difference.

    PubMed

    Fowler, Cynthia G

    2017-08-16

    The purpose of this review article is to review evidence from auditory evoked potential studies to describe the contributions of the auditory brainstem and cortex to the generation of the masking level difference (MLD). A literature review was performed, focusing on the auditory brainstem, middle, and late latency responses used in protocols similar to those used to generate the behavioral MLD. Temporal coding of the signals necessary for generating the MLD occurs in the auditory periphery and brainstem. Brainstem disorders up to wave III of the auditory brainstem response (ABR) can disrupt the MLD. The full MLD requires input to the generators of the auditory late latency potentials to produce all characteristics of the MLD; these characteristics include threshold differences for various binaural signal and noise conditions. Studies using central auditory lesions are beginning to identify the cortical effects on the MLD. The MLD requires auditory processing from the periphery to cortical areas. A healthy auditory periphery and brainstem codes temporal synchrony, which is essential for the ABR. Threshold differences require engaging cortical function beyond the primary auditory cortex. More studies using cortical lesions and evoked potentials or imaging should clarify the specific cortical areas involved in the MLD.

  1. Monitoring the Hearing Handicap and the Recognition Threshold of Sentences of a Patient with Unilateral Auditory Neuropathy Spectrum Disorder with Use of a Hearing Aid.

    PubMed

    Lima, Aline Patrícia; Mantello, Erika Barioni; Anastasio, Adriana Ribeiro Tavares

    2016-04-01

    Introduction Treatment for auditory neuropathy spectrum disorder (ANSD) is not yet well established, including the use of hearing aids (HAs). Not all patients diagnosed with ASND have access to HAs, and in some cases HAs are even contraindicated. Objective To monitor the hearing handicap and the recognition threshold of sentences in silence and in noise in a patient with ASND using an HA. Resumed Report A 47-year-old woman reported moderate sensorineural hearing loss in the right ear and high-frequency loss of 4 kHz in the left ear, with bilateral otoacoustic emissions. Auditory brainstem response suggested changes in the functioning of the auditory pathway (up to the inferior colliculus) on the right. An HA was indicated on the right. The patient was tested within a 3-month period before the HA fitting with respect to recognition threshold of sentences in quiet and in noise and for handicap determination. After HA use, she showed a 2.1-dB improvement in the recognition threshold of sentences in silence, a 6.0-dB improvement for recognition threshold of sentences in noise, and a rapid improvement of the signal-to-noise ratio from +3.66 to -2.4 dB when compared with the same tests before the fitting of the HA. Conclusion There was a reduction of the auditory handicap, although speech perception continued to be severely limited. There was a significant improvement of the recognition threshold of sentences in silence and in noise and of the signal-to-noise ratio after 3 months of HA use.

  2. Monitoring the Hearing Handicap and the Recognition Threshold of Sentences of a Patient with Unilateral Auditory Neuropathy Spectrum Disorder with Use of a Hearing Aid

    PubMed Central

    Lima, Aline Patrícia; Mantello, Erika Barioni; Anastasio, Adriana Ribeiro Tavares

    2015-01-01

    Introduction Treatment for auditory neuropathy spectrum disorder (ANSD) is not yet well established, including the use of hearing aids (HAs). Not all patients diagnosed with ASND have access to HAs, and in some cases HAs are even contraindicated. Objective To monitor the hearing handicap and the recognition threshold of sentences in silence and in noise in a patient with ASND using an HA. Resumed Report A 47-year-old woman reported moderate sensorineural hearing loss in the right ear and high-frequency loss of 4 kHz in the left ear, with bilateral otoacoustic emissions. Auditory brainstem response suggested changes in the functioning of the auditory pathway (up to the inferior colliculus) on the right. An HA was indicated on the right. The patient was tested within a 3-month period before the HA fitting with respect to recognition threshold of sentences in quiet and in noise and for handicap determination. After HA use, she showed a 2.1-dB improvement in the recognition threshold of sentences in silence, a 6.0-dB improvement for recognition threshold of sentences in noise, and a rapid improvement of the signal-to-noise ratio from +3.66 to −2.4 dB when compared with the same tests before the fitting of the HA. Conclusion There was a reduction of the auditory handicap, although speech perception continued to be severely limited. There was a significant improvement of the recognition threshold of sentences in silence and in noise and of the signal-to-noise ratio after 3 months of HA use. PMID:27096026

  3. Dynamic representation of 3D auditory space in the midbrain of the free-flying echolocating bat

    PubMed Central

    2018-01-01

    Essential to spatial orientation in the natural environment is a dynamic representation of direction and distance to objects. Despite the importance of 3D spatial localization to parse objects in the environment and to guide movement, most neurophysiological investigations of sensory mapping have been limited to studies of restrained subjects, tested with 2D, artificial stimuli. Here, we show for the first time that sensory neurons in the midbrain superior colliculus (SC) of the free-flying echolocating bat encode 3D egocentric space, and that the bat’s inspection of objects in the physical environment sharpens tuning of single neurons, and shifts peak responses to represent closer distances. These findings emerged from wireless neural recordings in free-flying bats, in combination with an echo model that computes the animal’s instantaneous stimulus space. Our research reveals dynamic 3D space coding in a freely moving mammal engaged in a real-world navigation task. PMID:29633711

  4. Human inferior colliculus activity relates to individual differences in spoken language learning.

    PubMed

    Chandrasekaran, Bharath; Kraus, Nina; Wong, Patrick C M

    2012-03-01

    A challenge to learning words of a foreign language is encoding nonnative phonemes, a process typically attributed to cortical circuitry. Using multimodal imaging methods [functional magnetic resonance imaging-adaptation (fMRI-A) and auditory brain stem responses (ABR)], we examined the extent to which pretraining pitch encoding in the inferior colliculus (IC), a primary midbrain structure, related to individual variability in learning to successfully use nonnative pitch patterns to distinguish words in American English-speaking adults. fMRI-A indexed the efficiency of pitch representation localized to the IC, whereas ABR quantified midbrain pitch-related activity with millisecond precision. In line with neural "sharpening" models, we found that efficient IC pitch pattern representation (indexed by fMRI) related to superior neural representation of pitch patterns (indexed by ABR), and consequently more successful word learning following sound-to-meaning training. Our results establish a critical role for the IC in speech-sound representation, consistent with the established role for the IC in the representation of communication signals in other animal models.

  5. Audio-visual temporal perception in children with restored hearing.

    PubMed

    Gori, Monica; Chilosi, Anna; Forli, Francesca; Burr, David

    2017-05-01

    It is not clear how audio-visual temporal perception develops in children with restored hearing. In this study we measured temporal discrimination thresholds with an audio-visual temporal bisection task in 9 deaf children with restored audition, and 22 typically hearing children. In typically hearing children, audition was more precise than vision, with no gain in multisensory conditions (as previously reported in Gori et al. (2012b)). However, deaf children with restored audition showed similar thresholds for audio and visual thresholds and some evidence of gain in audio-visual temporal multisensory conditions. Interestingly, we found a strong correlation between auditory weighting of multisensory signals and quality of language: patients who gave more weight to audition had better language skills. Similarly, auditory thresholds for the temporal bisection task were also a good predictor of language skills. This result supports the idea that the temporal auditory processing is associated with language development. Copyright © 2017. Published by Elsevier Ltd.

  6. The Impact of Clinical History on the Threshold Estimation of Auditory Brainstem Response Results for Infants

    ERIC Educational Resources Information Center

    Zaitoun, Maha; Cumming, Steven; Purcell, Alison; O'Brien, Katie

    2017-01-01

    Purpose: This study assesses the impact of patient clinical history on audiologists' performance when interpreting auditory brainstem response (ABR) results. Method: Fourteen audiologists' accuracy in estimating hearing threshold for 16 infants through interpretation of ABR traces was compared on 2 occasions at least 5 months apart. On the 1st…

  7. Salicylate-induced changes in auditory thresholds of adolescent and adult rats.

    PubMed

    Brennan, J F; Brown, C A; Jastreboff, P J

    1996-01-01

    Shifts in auditory intensity thresholds after salicylate administration were examined in postweanling and adult pigmented rats at frequencies ranging from 1 to 35 kHz. A total of 132 subjects from both age levels were tested under two-way active avoidance or one-way active avoidance paradigms. Estimated thresholds were inferred from behavioral responses to presentations of descending and ascending series of intensities for each test frequency value. Reliable threshold estimates were found under both avoidance conditioning methods, and compared to controls, subjects at both age levels showed threshold shifts at selective higher frequency values after salicylate injection, and the extent of shifts was related to salicylate dose level.

  8. Plasticity of peripheral auditory frequency sensitivity in Emei music frog.

    PubMed

    Zhang, Dian; Cui, Jianguo; Tang, Yezhong

    2012-01-01

    In anurans reproductive behavior is strongly seasonal. During the spring, frogs emerge from hibernation and males vocalize for mating or advertising territories. Female frogs have the ability to evaluate the quality of the males' resources on the basis of these vocalizations. Although studies revealed that central single torus semicircularis neurons in frogs exhibit season plasticity, the plasticity of peripheral auditory sensitivity in frog is unknown. In this study the seasonally plasticity of peripheral auditory sensitivity was test in the Emei music frog Babina daunchina, by comparing thresholds and latencies of auditory brainstem responses (ABRs) evoked by tone pips and clicks in the reproductive and non-reproductive seasons. The results show that both ABR thresholds and latency differ significantly between the reproductive and non-reproductive seasons. The thresholds of tone pip evoked ABRs in the non-reproductive season increased significantly about 10 dB than those in the reproductive season for frequencies from 1 KHz to 6 KHz. ABR latencies to waveform valley values for tone pips for the same frequencies using appropriate threshold stimulus levels are longer than those in the reproductive season for frequencies from 1.5 to 6 KHz range, although from 0.2 to 1.5 KHz range it is shorter in the non-reproductive season. These results demonstrated that peripheral auditory frequency sensitivity exhibits seasonal plasticity changes which may be adaptive to seasonal reproductive behavior in frogs.

  9. Age-related changes in auditory nerve-inner hair cell connections, hair cell numbers, auditory brain stem response and gap detection in UM-HET4 mice.

    PubMed

    Altschuler, R A; Dolan, D F; Halsey, K; Kanicki, A; Deng, N; Martin, C; Eberle, J; Kohrman, D C; Miller, R A; Schacht, J

    2015-04-30

    This study compared the timing of appearance of three components of age-related hearing loss that determine the pattern and severity of presbycusis: the functional and structural pathologies of sensory cells and neurons and changes in gap detection (GD), the latter as an indicator of auditory temporal processing. Using UM-HET4 mice, genetically heterogeneous mice derived from four inbred strains, we studied the integrity of inner and outer hair cells by position along the cochlear spiral, inner hair cell-auditory nerve connections, spiral ganglion neurons (SGN), and determined auditory thresholds, as well as pre-pulse and gap inhibition of the acoustic startle reflex (ASR). Comparisons were made between mice of 5-7, 22-24 and 27-29 months of age. There was individual variability among mice in the onset and extent of age-related auditory pathology. At 22-24 months of age a moderate to large loss of outer hair cells was restricted to the apical third of the cochlea and threshold shifts in the auditory brain stem response were minimal. There was also a large and significant loss of inner hair cell-auditory nerve connections and a significant reduction in GD. The expression of Ntf3 in the cochlea was significantly reduced. At 27-29 months of age there was no further change in the mean number of synaptic connections per inner hair cell or in GD, but a moderate to large loss of outer hair cells was found across all cochlear turns as well as significantly increased ABR threshold shifts at 4, 12, 24 and 48 kHz. A statistical analysis of correlations on an individual animal basis revealed that neither the hair cell loss nor the ABR threshold shifts correlated with loss of GD or with the loss of connections, consistent with independent pathological mechanisms. Copyright © 2015 IBRO. Published by Elsevier Ltd. All rights reserved.

  10. Compensatory Effort Parallels Midbrain Deactivation during Mental Fatigue: An fMRI Study

    PubMed Central

    Nakagawa, Seishu; Sugiura, Motoaki; Akitsuki, Yuko; Hosseini, S. M. Hadi; Kotozaki, Yuka; Miyauchi, Carlos Makoto; Yomogida, Yukihito; Yokoyama, Ryoichi; Takeuchi, Hikaru; Kawashima, Ryuta

    2013-01-01

    Fatigue reflects the functioning of our physiological negative feedback system, which prevents us from overworking. When fatigued, however, we often try to suppress this system in an effort to compensate for the resulting deterioration in performance. Previous studies have suggested that the effect of fatigue on neurovascular demand may be influenced by this compensatory effort. The primary goal of the present study was to isolate the effect of compensatory effort on neurovascular demand. Healthy male volunteers participated in a series of visual and auditory divided attention tasks that steadily increased fatigue levels for 2 hours. Functional magnetic resonance imaging scans were performed during the first and last quarter of the study (Pre and Post sessions, respectively). Tasks with low and high attentional load (Low and High conditions, respectively) were administrated in alternating blocks. We assumed that compensatory effort would be greater under the High-attentional-load condition compared with the Low-load condition. The difference was assessed during the two sessions. The effect of compensatory effort on neurovascular demand was evaluated by examining the interaction between load (High vs. Low) and time (Pre vs. Post). Significant fatigue-induced deactivation (i.e., Pre>Post) was observed in the frontal, temporal, occipital, and parietal cortices, in the cerebellum, and in the midbrain in both the High and Low conditions. The interaction was significantly greater in the High than in the Low condition in the midbrain. Neither significant fatigue-induced activation (i.e., Pre[PreE– PostE]) may reflect suppression of the negative feedback system that normally triggers recuperative rest to maintain homeostasis. PMID:23457592

  11. What the Toadfish Ear Tells the Toadfish Brain About Sound.

    PubMed

    Edds-Walton, Peggy L

    2016-01-01

    Of the three, paired otolithic endorgans in the ear of teleost fishes, the saccule is the one most often demonstrated to have a major role in encoding frequencies of biologically relevant sounds. The toadfish saccule also encodes sound level and sound source direction in the phase-locked activity conveyed via auditory afferents to nuclei of the ipsilateral octaval column in the medulla. Although paired auditory receptors are present in teleost fishes, binaural processes were believed to be unimportant due to the speed of sound in water and the acoustic transparency of the tissues in water. In contrast, there are behavioral and anatomical data that support binaural processing in fishes. Studies in the toadfish combined anatomical tract-tracing and physiological recordings from identified sites along the ascending auditory pathway to document response characteristics at each level. Binaural computations in the medulla and midbrain sharpen the directional information provided by the saccule. Furthermore, physiological studies in the central nervous system indicated that encoding frequency, sound level, temporal pattern, and sound source direction are important components of what the toadfish ear tells the toadfish brain about sound.

  12. Auditory Brainstem Response Thresholds to Air- and Bone-Conducted CE-Chirps in Neonates and Adults

    ERIC Educational Resources Information Center

    Cobb, Kensi M.; Stuart, Andrew

    2016-01-01

    Purpose The purpose of this study was to compare auditory brainstem response (ABR) thresholds to air- and bone-conducted CE-Chirps in neonates and adults. Method Thirty-two neonates with no physical or neurologic challenges and 20 adults with normal hearing participated. ABRs were acquired with a starting intensity of 30 dB normal hearing level…

  13. Protective effects of brain-derived neurotrophic factor on the noise-damaged cochlear spiral ganglion.

    PubMed

    Zhai, S-Q; Guo, W; Hu, Y-Y; Yu, N; Chen, Q; Wang, J-Z; Fan, M; Yang, W-Y

    2011-05-01

    To explore the protective effects of brain-derived neurotrophic factor on the noise-damaged cochlear spiral ganglion. Recombinant adenovirus brain-derived neurotrophic factor vector, recombinant adenovirus LacZ and artificial perilymph were prepared. Guinea pigs with audiometric auditory brainstem response thresholds of more than 75 dB SPL, measured seven days after four hours of noise exposure at 135 dB SPL, were divided into three groups. Adenovirus brain-derived neurotrophic factor vector, adenovirus LacZ and perilymph were infused into the cochleae of the three groups, variously. Eight weeks later, the cochleae were stained immunohistochemically and the spiral ganglion cells counted. The auditory brainstem response threshold recorded before and seven days after noise exposure did not differ significantly between the three groups. However, eight weeks after cochlear perfusion, the group receiving brain-derived neurotrophic factor had a significantly decreased auditory brainstem response threshold and increased spiral ganglion cell count, compared with the adenovirus LacZ and perilymph groups. When administered via cochlear infusion following noise damage, brain-derived neurotrophic factor appears to improve the auditory threshold, and to have a protective effect on the spiral ganglion cells.

  14. Early Visual Deprivation Severely Compromises the Auditory Sense of Space in Congenitally Blind Children

    ERIC Educational Resources Information Center

    Vercillo, Tiziana; Burr, David; Gori, Monica

    2016-01-01

    A recent study has shown that congenitally blind adults, who have never had visual experience, are impaired on an auditory spatial bisection task (Gori, Sandini, Martinoli, & Burr, 2014). In this study we investigated how thresholds for auditory spatial bisection and auditory discrimination develop with age in sighted and congenitally blind…

  15. A simulation framework for auditory discrimination experiments: Revealing the importance of across-frequency processing in speech perception.

    PubMed

    Schädler, Marc René; Warzybok, Anna; Ewert, Stephan D; Kollmeier, Birger

    2016-05-01

    A framework for simulating auditory discrimination experiments, based on an approach from Schädler, Warzybok, Hochmuth, and Kollmeier [(2015). Int. J. Audiol. 54, 100-107] which was originally designed to predict speech recognition thresholds, is extended to also predict psychoacoustic thresholds. The proposed framework is used to assess the suitability of different auditory-inspired feature sets for a range of auditory discrimination experiments that included psychoacoustic as well as speech recognition experiments in noise. The considered experiments were 2 kHz tone-in-broadband-noise simultaneous masking depending on the tone length, spectral masking with simultaneously presented tone signals and narrow-band noise maskers, and German Matrix sentence test reception threshold in stationary and modulated noise. The employed feature sets included spectro-temporal Gabor filter bank features, Mel-frequency cepstral coefficients, logarithmically scaled Mel-spectrograms, and the internal representation of the Perception Model from Dau, Kollmeier, and Kohlrausch [(1997). J. Acoust. Soc. Am. 102(5), 2892-2905]. The proposed framework was successfully employed to simulate all experiments with a common parameter set and obtain objective thresholds with less assumptions compared to traditional modeling approaches. Depending on the feature set, the simulated reference-free thresholds were found to agree with-and hence to predict-empirical data from the literature. Across-frequency processing was found to be crucial to accurately model the lower speech reception threshold in modulated noise conditions than in stationary noise conditions.

  16. Auditory Performance and Electrical Stimulation Measures in Cochlear Implant Recipients With Auditory Neuropathy Compared With Severe to Profound Sensorineural Hearing Loss.

    PubMed

    Attias, Joseph; Greenstein, Tally; Peled, Miriam; Ulanovski, David; Wohlgelernter, Jay; Raveh, Eyal

    The aim of the study was to compare auditory and speech outcomes and electrical parameters on average 8 years after cochlear implantation between children with isolated auditory neuropathy (AN) and children with sensorineural hearing loss (SNHL). The study was conducted at a tertiary, university-affiliated pediatric medical center. The cohort included 16 patients with isolated AN with current age of 5 to 12.2 years who had been using a cochlear implant for at least 3.4 years and 16 control patients with SNHL matched for duration of deafness, age at implantation, type of implant, and unilateral/bilateral implant placement. All participants had had extensive auditory rehabilitation before and after implantation, including the use of conventional hearing aids. Most patients received Cochlear Nucleus devices, and the remainder either Med-El or Advanced Bionics devices. Unaided pure-tone audiograms were evaluated before and after implantation. Implantation outcomes were assessed by auditory and speech recognition tests in quiet and in noise. Data were also collected on the educational setting at 1 year after implantation and at school age. The electrical stimulation measures were evaluated only in the Cochlear Nucleus implant recipients in the two groups. Similar mapping and electrical measurement techniques were used in the two groups. Electrical thresholds, comfortable level, dynamic range, and objective neural response telemetry threshold were measured across the 22-electrode array in each patient. Main outcome measures were between-group differences in the following parameters: (1) Auditory and speech tests. (2) Residual hearing. (3) Electrical stimulation parameters. (4) Correlations of residual hearing at low frequencies with electrical thresholds at the basal, middle, and apical electrodes. The children with isolated AN performed equally well to the children with SNHL on auditory and speech recognition tests in both quiet and noise. More children in the AN group than the SNHL group were attending mainstream educational settings at school age, but the difference was not statistically significant. Significant between-group differences were noted in electrical measurements: the AN group was characterized by a lower current charge to reach subjective electrical thresholds, lower comfortable level and dynamic range, and lower telemetric neural response threshold. Based on pure-tone audiograms, the children with AN also had more residual hearing before and after implantation. Highly positive coefficients were found on correlation analysis between T levels across the basal and midcochlear electrodes and low-frequency acoustic thresholds. Prelingual children with isolated AN who fail to show expected oral and auditory progress after extensive rehabilitation with conventional hearing aids should be considered for cochlear implantation. Children with isolated AN had similar pattern as children with SNHL on auditory performance tests after cochlear implantation. The lower current charge required to evoke subjective and objective electrical thresholds in children with AN compared with children with SNHL may be attributed to the contribution to electrophonic hearing from the remaining neurons and hair cells. In addition, it is also possible that mechanical stimulation of the basilar membrane, as in acoustic stimulation, is added to the electrical stimulation of the cochlear implant.

  17. Hearing conspecific vocal signals alters peripheral auditory sensitivity

    PubMed Central

    Gall, Megan D.; Wilczynski, Walter

    2015-01-01

    We investigated whether hearing advertisement calls over several nights, as happens in natural frog choruses, modified the responses of the peripheral auditory system in the green treefrog, Hyla cinerea. Using auditory evoked potentials (AEP), we found that exposure to 10 nights of a simulated male chorus lowered auditory thresholds in males and females, while exposure to random tones had no effect in males, but did result in lower thresholds in females. The threshold change was larger at the lower frequencies stimulating the amphibian papilla than at higher frequencies stimulating the basilar papilla. Suprathreshold responses to tonal stimuli were assessed for two peaks in the AEP recordings. For the peak P1 (assessed for 0.8–1.25 kHz), peak amplitude increased following chorus exposure. For peak P2 (assessed for 2–4 kHz), peak amplitude decreased at frequencies between 2.5 and 4.0 kHz, but remained unaltered at 2.0 kHz. Our results show for the first time, to our knowledge, that hearing dynamic social stimuli, like frog choruses, can alter the responses of the auditory periphery in a way that could enhance the detection of and response to conspecific acoustic communication signals. PMID:25972471

  18. Assessment of hearing threshold in adults with hearing loss using an automated system of cortical auditory evoked potential detection.

    PubMed

    Durante, Alessandra Spada; Wieselberg, Margarita Bernal; Roque, Nayara; Carvalho, Sheila; Pucci, Beatriz; Gudayol, Nicolly; de Almeida, Kátia

    The use of hearing aids by individuals with hearing loss brings a better quality of life. Access to and benefit from these devices may be compromised in patients who present difficulties or limitations in traditional behavioral audiological evaluation, such as newborns and small children, individuals with auditory neuropathy spectrum, autism, and intellectual deficits, and in adults and the elderly with dementia. These populations (or individuals) are unable to undergo a behavioral assessment, and generate a growing demand for objective methods to assess hearing. Cortical auditory evoked potentials have been used for decades to estimate hearing thresholds. Current technological advances have lead to the development of equipment that allows their clinical use, with features that enable greater accuracy, sensitivity, and specificity, and the possibility of automated detection, analysis, and recording of cortical responses. To determine and correlate behavioral auditory thresholds with cortical auditory thresholds obtained from an automated response analysis technique. The study included 52 adults, divided into two groups: 21 adults with moderate to severe hearing loss (study group); and 31 adults with normal hearing (control group). An automated system of detection, analysis, and recording of cortical responses (HEARLab ® ) was used to record the behavioral and cortical thresholds. The subjects remained awake in an acoustically treated environment. Altogether, 150 tone bursts at 500, 1000, 2000, and 4000Hz were presented through insert earphones in descending-ascending intensity. The lowest level at which the subject detected the sound stimulus was defined as the behavioral (hearing) threshold (BT). The lowest level at which a cortical response was observed was defined as the cortical electrophysiological threshold. These two responses were correlated using linear regression. The cortical electrophysiological threshold was, on average, 7.8dB higher than the behavioral for the group with hearing loss and, on average, 14.5dB higher for the group without hearing loss for all studied frequencies. The cortical electrophysiological thresholds obtained with the use of an automated response detection system were highly correlated with behavioral thresholds in the group of individuals with hearing loss. Copyright © 2016 Associação Brasileira de Otorrinolaringologia e Cirurgia Cérvico-Facial. Published by Elsevier Editora Ltda. All rights reserved.

  19. Cochlear third window in the scala vestibuli: an animal model.

    PubMed

    Preis, Michal; Attias, Joseph; Hadar, Tuvia; Nageris, Ben I

    2009-08-01

    Pathologic third window has been investigated in both animals and humans, with a third window located in the vestibular apparatus, specifically, dehiscence of the superior semicircular canal, serving as the clinical model. The present study sought to examine the effect of a cochlear third window in the scala vestibuli on the auditory thresholds in fat sand rats that have a unique anatomy of the inner ear that allows for easy surgical access. The experiment included 7 healthy 6-month-old fat sand rats (a total of 10 ears). A pathologic third window was induced by drilling a hole in the bony labyrinth over the scala vestibuli, with preservation of the membranous labyrinth. Auditory brainstem responses to high- and low-frequency acoustic stimuli delivered via air and bone conduction were recorded before and after the procedure. In the preoperative auditory brainstem response recordings, air-conduction thresholds (ACTs) to clicks and tone bursts averaged 9 and 10 dB, respectively, and bone-conduction thresholds averaged 4.5 and 2.9 dB, respectively. Postfenestration ACTs averaged 41 and 42.2 dB, and bone-conduction thresholds averaged 1.1 and 4.3 dB. The change in ACT was statistically significant (p < 0.01). The presence of a cochlear third window in the scala vestibuli affects auditory thresholds by causing a decrease in sensitivity to air-conducted sound stimuli. These findings agree with the theoretical model and clinical findings.

  20. Auditory-nerve single-neuron thresholds to electrical stimulation from scala tympani electrodes.

    PubMed

    Parkins, C W; Colombo, J

    1987-12-31

    Single auditory-nerve neuron thresholds were studied in sensory-deafened squirrel monkeys to determine the effects of electrical stimulus shape and frequency on single-neuron thresholds. Frequency was separated into its components, pulse width and pulse rate, which were analyzed separately. Square and sinusoidal pulse shapes were compared. There were no or questionably significant threshold differences in charge per phase between sinusoidal and square pulses of the same pulse width. There was a small (less than 0.5 dB) but significant threshold advantage for 200 microseconds/phase pulses delivered at low pulse rates (156 pps) compared to higher pulse rates (625 pps and 2500 pps). Pulse width was demonstrated to be the prime determinant of single-neuron threshold, resulting in strength-duration curves similar to other mammalian myelinated neurons, but with longer chronaxies. The most efficient electrical stimulus pulse width to use for cochlear implant stimulation was determined to be 100 microseconds/phase. This pulse width delivers the lowest charge/phase at threshold. The single-neuron strength-duration curves were compared to strength-duration curves of a computer model based on the specific anatomy of auditory-nerve neurons. The membrane capacitance and resulting chronaxie of the model can be varied by altering the length of the unmyelinated termination of the neuron, representing the unmyelinated portion of the neuron between the habenula perforata and the hair cell. This unmyelinated segment of the auditory-nerve neuron may be subject to aminoglycoside damage. Simulating a 10 micron unmyelinated termination for this model neuron produces a strength-duration curve that closely fits the single-neuron data obtained from aminoglycoside deafened animals. Both the model and the single-neuron strength-duration curves differ significantly from behavioral threshold data obtained from monkeys and humans with cochlear implants. This discrepancy can best be explained by the involvement of higher level neurologic processes in the behavioral responses. These findings suggest that the basic principles of neural membrane function must be considered in developing or analyzing electrical stimulation strategies for cochlear prostheses if the appropriate stimulation of frequency specific populations of auditory-nerve neurons is the objective.

  1. Barn owls have ageless ears.

    PubMed

    Krumm, Bianca; Klump, Georg; Köppl, Christine; Langemann, Ulrike

    2017-09-27

    We measured the auditory sensitivity of the barn owl ( Tyto alba ), using a behavioural Go/NoGo paradigm in two different age groups, one younger than 2 years ( n = 4) and another more than 13 years of age ( n = 3). In addition, we obtained thresholds from one individual aged 23 years, three times during its lifetime. For computing audiograms, we presented test frequencies of between 0.5 and 12 kHz, covering the hearing range of the barn owl. Average thresholds in quiet were below 0 dB sound pressure level (SPL) for frequencies between 1 and 10 kHz. The lowest mean threshold was -12.6 dB SPL at 8 kHz. Thresholds were the highest at 12 kHz, with a mean of 31.7 dB SPL. Test frequency had a significant effect on auditory threshold but age group had no significant effect. There was no significant interaction between age group and test frequency. Repeated threshold estimates over 21 years from a single individual showed only a slight increase in thresholds. We discuss the auditory sensitivity of barn owls with respect to other species and suggest that birds, which generally show a remarkable capacity for regeneration of hair cells in the basilar papilla, are naturally protected from presbycusis. © 2017 The Author(s).

  2. When instructions fail. The effects of stimulus control training on brain injury survivors' attending and reporting during hearing screenings.

    PubMed

    Schlund, M W

    2000-10-01

    Bedside hearing screenings are routinely conducted by speech and language pathologists for brain injury survivors during rehabilitation. Cognitive deficits resulting from brain injury, however, may interfere with obtaining estimates of auditory thresholds. Poor comprehension or attention deficits often compromise patient abilities to follow procedural instructions. This article describes the effects of jointly applying behavioral methods and psychophysical methods to improve two severely brain-injured survivors' attending and reporting on auditory test stimuli presentation. Treatment consisted of stimulus control training that involved differentially reinforcing responding in the presence and absence of an auditory test tone. Subsequent hearing screenings were conducted with novel auditory test tones and a common titration procedure. Results showed that prior stimulus control training improved attending and reporting such that hearing screenings were conducted and estimates of auditory thresholds were obtained.

  3. Reduced auditory efferent activity in childhood selective mutism.

    PubMed

    Bar-Haim, Yair; Henkin, Yael; Ari-Even-Roth, Daphne; Tetin-Schneider, Simona; Hildesheimer, Minka; Muchnik, Chava

    2004-06-01

    Selective mutism is a psychiatric disorder of childhood characterized by consistent inability to speak in specific situations despite the ability to speak normally in others. The objective of this study was to test whether reduced auditory efferent activity, which may have direct bearings on speaking behavior, is compromised in selectively mute children. Participants were 16 children with selective mutism and 16 normally developing control children matched for age and gender. All children were tested for pure-tone audiometry, speech reception thresholds, speech discrimination, middle-ear acoustic reflex thresholds and decay function, transient evoked otoacoustic emission, suppression of transient evoked otoacoustic emission, and auditory brainstem response. Compared with control children, selectively mute children displayed specific deficiencies in auditory efferent activity. These aberrations in efferent activity appear along with normal pure-tone and speech audiometry and normal brainstem transmission as indicated by auditory brainstem response latencies. The diminished auditory efferent activity detected in some children with SM may result in desensitization of their auditory pathways by self-vocalization and in reduced control of masking and distortion of incoming speech sounds. These children may gradually learn to restrict vocalization to the minimal amount possible in contexts that require complex auditory processing.

  4. Auditory Temporal Resolution in Individuals with Diabetes Mellitus Type 2.

    PubMed

    Mishra, Rajkishor; Sanju, Himanshu Kumar; Kumar, Prawin

    2016-10-01

    Introduction  "Diabetes mellitus is a group of metabolic disorders characterized by elevated blood sugar and abnormalities in insulin secretion and action" (American Diabetes Association). Previous literature has reported connection between diabetes mellitus and hearing impairment. There is a dearth of literature on auditory temporal resolution ability in individuals with diabetes mellitus type 2. Objective  The main objective of the present study was to assess auditory temporal resolution ability through GDT (Gap Detection Threshold) in individuals with diabetes mellitus type 2 with high frequency hearing loss. Methods  Fifteen subjects with diabetes mellitus type 2 with high frequency hearing loss in the age range of 30 to 40 years participated in the study as the experimental group. Fifteen age-matched non-diabetic individuals with normal hearing served as the control group. We administered the Gap Detection Threshold (GDT) test to all participants to assess their temporal resolution ability. Result  We used the independent t -test to compare between groups. Results showed that the diabetic group (experimental) performed significantly poorer compared with the non-diabetic group (control). Conclusion  It is possible to conclude that widening of auditory filters and changes in the central auditory nervous system contributed to poorer performance for temporal resolution task (Gap Detection Threshold) in individuals with diabetes mellitus type 2. Findings of the present study revealed the deteriorating effect of diabetes mellitus type 2 at the central auditory processing level.

  5. High levels of sound pressure: acoustic reflex thresholds and auditory complaints of workers with noise exposure.

    PubMed

    Duarte, Alexandre Scalli Mathias; Ng, Ronny Tah Yen; de Carvalho, Guilherme Machado; Guimarães, Alexandre Caixeta; Pinheiro, Laiza Araujo Mohana; Costa, Everardo Andrade da; Gusmão, Reinaldo Jordão

    2015-01-01

    The clinical evaluation of subjects with occupational noise exposure has been difficult due to the discrepancy between auditory complaints and auditory test results. This study aimed to evaluate the contralateral acoustic reflex thresholds of workers exposed to high levels of noise, and to compare these results to the subjects' auditory complaints. This clinical retrospective study evaluated 364 workers between 1998 and 2005; their contralateral acoustic reflexes were compared to auditory complaints, age, and noise exposure time by chi-squared, Fisher's, and Spearman's tests. The workers' age ranged from 18 to 50 years (mean=39.6), and noise exposure time from one to 38 years (mean=17.3). We found that 15.1% (55) of the workers had bilateral hearing loss, 38.5% (140) had bilateral tinnitus, 52.8% (192) had abnormal sensitivity to loud sounds, and 47.2% (172) had speech recognition impairment. The variables hearing loss, speech recognition impairment, tinnitus, age group, and noise exposure time did not show relationship with acoustic reflex thresholds; however, all complaints demonstrated a statistically significant relationship with Metz recruitment at 3000 and 4000Hz bilaterally. There was no significance relationship between auditory complaints and acoustic reflexes. Copyright © 2015 Associação Brasileira de Otorrinolaringologia e Cirurgia Cérvico-Facial. Published by Elsevier Editora Ltda. All rights reserved.

  6. Prestimulus Network Integration of Auditory Cortex Predisposes Near-Threshold Perception Independently of Local Excitability

    PubMed Central

    Leske, Sabine; Ruhnau, Philipp; Frey, Julia; Lithari, Chrysa; Müller, Nadia; Hartmann, Thomas; Weisz, Nathan

    2015-01-01

    An ever-increasing number of studies are pointing to the importance of network properties of the brain for understanding behavior such as conscious perception. However, with regards to the influence of prestimulus brain states on perception, this network perspective has rarely been taken. Our recent framework predicts that brain regions crucial for a conscious percept are coupled prior to stimulus arrival, forming pre-established pathways of information flow and influencing perceptual awareness. Using magnetoencephalography (MEG) and graph theoretical measures, we investigated auditory conscious perception in a near-threshold (NT) task and found strong support for this framework. Relevant auditory regions showed an increased prestimulus interhemispheric connectivity. The left auditory cortex was characterized by a hub-like behavior and an enhanced integration into the brain functional network prior to perceptual awareness. Right auditory regions were decoupled from non-auditory regions, presumably forming an integrated information processing unit with the left auditory cortex. In addition, we show for the first time for the auditory modality that local excitability, measured by decreased alpha power in the auditory cortex, increases prior to conscious percepts. Importantly, we were able to show that connectivity states seem to be largely independent from local excitability states in the context of a NT paradigm. PMID:26408799

  7. Ontogenetic investigation of underwater hearing capabilities in loggerhead sea turtles (Caretta caretta) using a dual testing approach.

    PubMed

    Lavender, Ashley L; Bartol, Soraya M; Bartol, Ian K

    2014-07-15

    Sea turtles reside in different acoustic environments with each life history stage and may have different hearing capacity throughout ontogeny. For this study, two independent yet complementary techniques for hearing assessment, i.e. behavioral and electrophysiological audiometry, were employed to (1) measure hearing in post-hatchling and juvenile loggerhead sea turtles Caretta caretta (19-62 cm straight carapace length) to determine whether these migratory turtles exhibit an ontogenetic shift in underwater auditory detection and (2) evaluate whether hearing frequency range and threshold sensitivity are consistent in behavioral and electrophysiological tests. Behavioral trials first required training turtles to respond to known frequencies, a multi-stage, time-intensive process, and then recording their behavior when they were presented with sound stimuli from an underwater speaker using a two-response forced-choice paradigm. Electrophysiological experiments involved submerging restrained, fully conscious turtles just below the air-water interface and recording auditory evoked potentials (AEPs) when sound stimuli were presented using an underwater speaker. No significant differences in behavior-derived auditory thresholds or AEP-derived auditory thresholds were detected between post-hatchling and juvenile sea turtles. While hearing frequency range (50-1000/1100 Hz) and highest sensitivity (100-400 Hz) were consistent in audiograms pooled by size class for both behavior and AEP experiments, both post-hatchlings and juveniles had significantly higher AEP-derived than behavior-derived auditory thresholds, indicating that behavioral assessment is a more sensitive testing approach. The results from this study suggest that post-hatchling and juvenile loggerhead sea turtles are low-frequency specialists, exhibiting little differences in threshold sensitivity and frequency bandwidth despite residence in acoustically distinct environments throughout ontogeny. © 2014. Published by The Company of Biologists Ltd.

  8. Predicting the threshold of pulse-train electrical stimuli using a stochastic auditory nerve model: the effects of stimulus noise.

    PubMed

    Xu, Yifang; Collins, Leslie M

    2004-04-01

    The incorporation of low levels of noise into an electrical stimulus has been shown to improve auditory thresholds in some human subjects (Zeng et al., 2000). In this paper, thresholds for noise-modulated pulse-train stimuli are predicted utilizing a stochastic neural-behavioral model of ensemble fiber responses to bi-phasic stimuli. The neural refractory effect is described using a Markov model for a noise-free pulse-train stimulus and a closed-form solution for the steady-state neural response is provided. For noise-modulated pulse-train stimuli, a recursive method using the conditional probability is utilized to track the neural responses to each successive pulse. A neural spike count rule has been presented for both threshold and intensity discrimination under the assumption that auditory perception occurs via integration over a relatively long time period (Bruce et al., 1999). An alternative approach originates from the hypothesis of the multilook model (Viemeister and Wakefield, 1991), which argues that auditory perception is based on several shorter time integrations and may suggest an NofM model for prediction of pulse-train threshold. This motivates analyzing the neural response to each individual pulse within a pulse train, which is considered to be the brief look. A logarithmic rule is hypothesized for pulse-train threshold. Predictions from the multilook model are shown to match trends in psychophysical data for noise-free stimuli that are not always matched by the long-time integration rule. Theoretical predictions indicate that threshold decreases as noise variance increases. Theoretical models of the neural response to pulse-train stimuli not only reduce calculational overhead but also facilitate utilization of signal detection theory and are easily extended to multichannel psychophysical tasks.

  9. Differential responses to acoustic damage and furosemide in auditory brainstem and otoacoustic emission measures

    NASA Astrophysics Data System (ADS)

    Mills, David M.

    2003-02-01

    Characteristics of distortion product otoacoustic emissions (DPOAEs) and auditory brainstem responses (ABRs) were measured in Mongolian gerbil before and after the introduction of two different auditory dysfunctions: (1) acoustic damage with a high-intensity tone, or (2) furosemide intoxication. The goal was to find emission parameters and measures that best differentiated between the two dysfunctions, e.g., at a given ABR threshold elevation. Emission input-output or ``growth'' functions were used (frequencies f1 and f2, f2/f1=1.21) with equal levels, L1=L2, and unequal levels, with L1=L2+20 dB. The best parametric choice was found to be unequal stimulus levels, and the best measure was found to be the change in the emission threshold level, Δx. The emission threshold was defined as the stimulus level required to reach a criterion emission amplitude, in this case -10 dB SPL. (The next best measure was the change in emission amplitude at high stimulus levels, specifically that measured at L1×L2=90×70 dB SPL.) For an ABR threshold shift of 20 dB or more, there was essentially no overlap in the emission threshold measures for the two conditions, sound damage or furosemide. The dividing line between the two distributions increased slowly with the change in ABR threshold, ΔABR, and was given by Δxt=0.6 ΔABR+8 dB. For a given ΔABR, if the shift in emission threshold was more than the calculated dividing line value, Δxt, the auditory dysfunction was due to acoustic damage, if less, it was due to furosemide.

  10. Longitudinal Comparison of Auditory Steady-State Evoked Potentials in Preterm and Term Infants: The Maturation Process

    PubMed Central

    Sousa, Ana Constantino; Didoné, Dayane Domeneghini; Sleifer, Pricila

    2017-01-01

    Introduction  Preterm neonates are at risk of changes in their auditory system development, which explains the need for auditory monitoring of this population. The Auditory Steady-State Response (ASSR) is an objective method that allows obtaining the electrophysiological thresholds with greater applicability in neonatal and pediatric population. Objective  The purpose of this study is to compare the ASSR thresholds in preterm and term infants evaluated during two stages. Method  The study included 63 normal hearing neonates: 33 preterm and 30 term. They underwent assessment of ASSR in both ears simultaneously through insert phones in the frequencies of 500 to 4000Hz with the amplitude modulated from 77 to 103Hz. We presented the intensity at a decreasing level to detect the minimum level of responses. At 18 months, 26 of 33 preterm infants returned for the new assessment for ASSR and were compared with 30 full-term infants. We compared between groups according to gestational age. Results  Electrophysiological thresholds were higher in preterm than in full-term neonates ( p  < 0.05) at the first testing. There were no significant differences between ears and gender. At 18 months, there was no difference between groups ( p  > 0.05) in all the variables described. Conclusion  In the first evaluation preterm had higher thresholds in ASSR. There was no difference at 18 months of age, showing the auditory maturation of preterm infants throughout their development. PMID:28680486

  11. Effect of hearing aids on auditory function in infants with perinatal brain injury and severe hearing loss.

    PubMed

    Moreno-Aguirre, Alma Janeth; Santiago-Rodríguez, Efraín; Harmony, Thalía; Fernández-Bouzas, Antonio

    2012-01-01

    Approximately 2-4% of newborns with perinatal risk factors present with hearing loss. Our aim was to analyze the effect of hearing aid use on auditory function evaluated based on otoacoustic emissions (OAEs), auditory brain responses (ABRs) and auditory steady state responses (ASSRs) in infants with perinatal brain injury and profound hearing loss. A prospective, longitudinal study of auditory function in infants with profound hearing loss. Right side hearing before and after hearing aid use was compared with left side hearing (not stimulated and used as control). All infants were subjected to OAE, ABR and ASSR evaluations before and after hearing aid use. The average ABR threshold decreased from 90.0 to 80.0 dB (p = 0.003) after six months of hearing aid use. In the left ear, which was used as a control, the ABR threshold decreased from 94.6 to 87.6 dB, which was not significant (p>0.05). In addition, the ASSR threshold in the 4000-Hz frequency decreased from 89 dB to 72 dB (p = 0.013) after six months of right ear hearing aid use; the other frequencies in the right ear and all frequencies in the left ear did not show significant differences in any of the measured parameters (p>0.05). OAEs were absent in the baseline test and showed no changes after hearing aid use in the right ear (p>0.05). This study provides evidence that early hearing aid use decreases the hearing threshold in ABR and ASSR assessments with no functional modifications in the auditory receptor, as evaluated by OAEs.

  12. Effect of Hearing Aids on Auditory Function in Infants with Perinatal Brain Injury and Severe Hearing Loss

    PubMed Central

    Moreno-Aguirre, Alma Janeth; Santiago-Rodríguez, Efraín; Harmony, Thalía; Fernández-Bouzas, Antonio

    2012-01-01

    Background Approximately 2–4% of newborns with perinatal risk factors present with hearing loss. Our aim was to analyze the effect of hearing aid use on auditory function evaluated based on otoacoustic emissions (OAEs), auditory brain responses (ABRs) and auditory steady state responses (ASSRs) in infants with perinatal brain injury and profound hearing loss. Methodology/Principal Findings A prospective, longitudinal study of auditory function in infants with profound hearing loss. Right side hearing before and after hearing aid use was compared with left side hearing (not stimulated and used as control). All infants were subjected to OAE, ABR and ASSR evaluations before and after hearing aid use. The average ABR threshold decreased from 90.0 to 80.0 dB (p = 0.003) after six months of hearing aid use. In the left ear, which was used as a control, the ABR threshold decreased from 94.6 to 87.6 dB, which was not significant (p>0.05). In addition, the ASSR threshold in the 4000-Hz frequency decreased from 89 dB to 72 dB (p = 0.013) after six months of right ear hearing aid use; the other frequencies in the right ear and all frequencies in the left ear did not show significant differences in any of the measured parameters (p>0.05). OAEs were absent in the baseline test and showed no changes after hearing aid use in the right ear (p>0.05). Conclusions/Significance This study provides evidence that early hearing aid use decreases the hearing threshold in ABR and ASSR assessments with no functional modifications in the auditory receptor, as evaluated by OAEs. PMID:22808289

  13. Transformation from a pure time delay to a mixed time and phase delay representation in the auditory forebrain pathway.

    PubMed

    Vonderschen, Katrin; Wagner, Hermann

    2012-04-25

    Birds and mammals exploit interaural time differences (ITDs) for sound localization. Subsequent to ITD detection by brainstem neurons, ITD processing continues in parallel midbrain and forebrain pathways. In the barn owl, both ITD detection and processing in the midbrain are specialized to extract ITDs independent of frequency, which amounts to a pure time delay representation. Recent results have elucidated different mechanisms of ITD detection in mammals, which lead to a representation of small ITDs in high-frequency channels and large ITDs in low-frequency channels, resembling a phase delay representation. However, the detection mechanism does not prevent a change in ITD representation at higher processing stages. Here we analyze ITD tuning across frequency channels with pure tone and noise stimuli in neurons of the barn owl's auditory arcopallium, a nucleus at the endpoint of the forebrain pathway. To extend the analysis of ITD representation across frequency bands to a large neural population, we employed Fourier analysis for the spectral decomposition of ITD curves recorded with noise stimuli. This method was validated using physiological as well as model data. We found that low frequencies convey sensitivity to large ITDs, whereas high frequencies convey sensitivity to small ITDs. Moreover, different linear phase frequency regimes in the high-frequency and low-frequency ranges suggested an independent convergence of inputs from these frequency channels. Our results are consistent with ITD being remodeled toward a phase delay representation along the forebrain pathway. This indicates that sensory representations may undergo substantial reorganization, presumably in relation to specific behavioral output.

  14. Monoaminergic integration of diet and social signals in the brains of juvenile spadefoot toads.

    PubMed

    Burmeister, Sabrina S; Rodriguez Moncalvo, Verónica G; Pfennig, Karin S

    2017-09-01

    Social behavior often includes the production of species-specific signals (e.g. mating calls or visual displays) that evoke context-dependent behavioral responses from conspecifics. Monoamines are important neuromodulators that have been implicated in context-dependent social behavior, yet we know little about the development of monoaminergic systems and whether they mediate the effects of early life experiences on adult behavior. We examined the effects of diet and social signals on monoamines early in development in the plains spadefoot toad ( Spea bombifrons ), a species in which diet affects the developmental emergence of species recognition and body condition affects the expression of adult mating preferences. To do so, we manipulated the diet of juveniles for 6 weeks following metamorphosis and collected their brains 40 min following the presentation of either a conspecific or a heterospecific call. We measured levels of monoamines and their metabolites using high pressure liquid chromatography from tissue punches of the auditory midbrain (i.e. torus semicircularis), hypothalamus and preoptic area. We found that call type affected dopamine and noradrenaline signaling in the auditory midbrain and that diet affected dopamine and serotonin in the hypothalamus. In the preoptic area, we detected an interaction between diet and call type, indicating that diet modulates how the preoptic area integrates social information. Our results suggest that the responsiveness of monoamine systems varies across the brain and highlight preoptic dopamine and noradrenaline as candidates for mediating effects of early diet experience on later expression of social preferences. © 2017. Published by The Company of Biologists Ltd.

  15. Positron Emission Tomography Imaging Reveals Auditory and Frontal Cortical Regions Involved with Speech Perception and Loudness Adaptation.

    PubMed

    Berding, Georg; Wilke, Florian; Rode, Thilo; Haense, Cathleen; Joseph, Gert; Meyer, Geerd J; Mamach, Martin; Lenarz, Minoo; Geworski, Lilli; Bengel, Frank M; Lenarz, Thomas; Lim, Hubert H

    2015-01-01

    Considerable progress has been made in the treatment of hearing loss with auditory implants. However, there are still many implanted patients that experience hearing deficiencies, such as limited speech understanding or vanishing perception with continuous stimulation (i.e., abnormal loudness adaptation). The present study aims to identify specific patterns of cerebral cortex activity involved with such deficiencies. We performed O-15-water positron emission tomography (PET) in patients implanted with electrodes within the cochlea, brainstem, or midbrain to investigate the pattern of cortical activation in response to speech or continuous multi-tone stimuli directly inputted into the implant processor that then delivered electrical patterns through those electrodes. Statistical parametric mapping was performed on a single subject basis. Better speech understanding was correlated with a larger extent of bilateral auditory cortex activation. In contrast to speech, the continuous multi-tone stimulus elicited mainly unilateral auditory cortical activity in which greater loudness adaptation corresponded to weaker activation and even deactivation. Interestingly, greater loudness adaptation was correlated with stronger activity within the ventral prefrontal cortex, which could be up-regulated to suppress the irrelevant or aberrant signals into the auditory cortex. The ability to detect these specific cortical patterns and differences across patients and stimuli demonstrates the potential for using PET to diagnose auditory function or dysfunction in implant patients, which in turn could guide the development of appropriate stimulation strategies for improving hearing rehabilitation. Beyond hearing restoration, our study also reveals a potential role of the frontal cortex in suppressing irrelevant or aberrant activity within the auditory cortex, and thus may be relevant for understanding and treating tinnitus.

  16. Positron Emission Tomography Imaging Reveals Auditory and Frontal Cortical Regions Involved with Speech Perception and Loudness Adaptation

    PubMed Central

    Berding, Georg; Wilke, Florian; Rode, Thilo; Haense, Cathleen; Joseph, Gert; Meyer, Geerd J.; Mamach, Martin; Lenarz, Minoo; Geworski, Lilli; Bengel, Frank M.; Lenarz, Thomas; Lim, Hubert H.

    2015-01-01

    Considerable progress has been made in the treatment of hearing loss with auditory implants. However, there are still many implanted patients that experience hearing deficiencies, such as limited speech understanding or vanishing perception with continuous stimulation (i.e., abnormal loudness adaptation). The present study aims to identify specific patterns of cerebral cortex activity involved with such deficiencies. We performed O-15-water positron emission tomography (PET) in patients implanted with electrodes within the cochlea, brainstem, or midbrain to investigate the pattern of cortical activation in response to speech or continuous multi-tone stimuli directly inputted into the implant processor that then delivered electrical patterns through those electrodes. Statistical parametric mapping was performed on a single subject basis. Better speech understanding was correlated with a larger extent of bilateral auditory cortex activation. In contrast to speech, the continuous multi-tone stimulus elicited mainly unilateral auditory cortical activity in which greater loudness adaptation corresponded to weaker activation and even deactivation. Interestingly, greater loudness adaptation was correlated with stronger activity within the ventral prefrontal cortex, which could be up-regulated to suppress the irrelevant or aberrant signals into the auditory cortex. The ability to detect these specific cortical patterns and differences across patients and stimuli demonstrates the potential for using PET to diagnose auditory function or dysfunction in implant patients, which in turn could guide the development of appropriate stimulation strategies for improving hearing rehabilitation. Beyond hearing restoration, our study also reveals a potential role of the frontal cortex in suppressing irrelevant or aberrant activity within the auditory cortex, and thus may be relevant for understanding and treating tinnitus. PMID:26046763

  17. Auditory Backward Masking Deficits in Children with Reading Disabilities

    ERIC Educational Resources Information Center

    Montgomery, Christine R.; Morris, Robin D.; Sevcik, Rose A.; Clarkson, Marsha G.

    2005-01-01

    Studies evaluating temporal auditory processing among individuals with reading and other language deficits have yielded inconsistent findings due to methodological problems (Studdert-Kennedy & Mody, 1995) and sample differences. In the current study, seven auditory masking thresholds were measured in fifty-two 7- to 10-year-old children (26…

  18. A comparison of auditory brainstem responses across diving bird species

    USGS Publications Warehouse

    Crowell, Sara E.; Berlin, Alicia; Carr, Catherine E.; Olsen, Glenn H.; Therrien, Ronald E.; Yannuzzi, Sally E.; Ketten, Darlene R.

    2015-01-01

    There is little biological data available for diving birds because many live in hard-to-study, remote habitats. Only one species of diving bird, the black-footed penguin (Spheniscus demersus), has been studied in respect to auditory capabilities (Wever et al., Proc Natl Acad Sci USA 63:676–680, 1969). We, therefore, measured in-air auditory threshold in ten species of diving birds, using the auditory brainstem response (ABR). The average audiogram obtained for each species followed the U-shape typical of birds and many other animals. All species tested shared a common region of the greatest sensitivity, from 1000 to 3000 Hz, although audiograms differed significantly across species. Thresholds of all duck species tested were more similar to each other than to the two non-duck species tested. The red-throated loon (Gavia stellata) and northern gannet (Morus bassanus) exhibited the highest thresholds while the lowest thresholds belonged to the duck species, specifically the lesser scaup (Aythya affinis) and ruddy duck (Oxyura jamaicensis). Vocalization parameters were also measured for each species, and showed that with the exception of the common eider (Somateria mollisima), the peak frequency, i.e., frequency at the greatest intensity, of all species' vocalizations measured here fell between 1000 and 3000 Hz, matching the bandwidth of the most sensitive hearing range.

  19. A comparison of auditory brainstem responses across diving bird species

    PubMed Central

    Crowell, Sara E.; Wells-Berlin, Alicia M.; Carr, Catherine E.; Olsen, Glenn H.; Therrien, Ronald E.; Yannuzzi, Sally E.; Ketten, Darlene R.

    2015-01-01

    There is little biological data available for diving birds because many live in hard-to-study, remote habitats. Only one species of diving bird, the black-footed penguin (Spheniscus demersus), has been studied in respect to auditory capabilities (Wever et al. 1969). We therefore measured in-air auditory threshold in ten species of diving birds, using the auditory brainstem response (ABR). The average audiogram obtained for each species followed the U-shape typical of birds and many other animals. All species tested shared a common region of greatest sensitivity, from 1000 to 3000 Hz, although audiograms differed significantly across species. Thresholds of all duck species tested were more similar to each other than to the two non-duck species tested. The red-throated loon (Gavia stellata) and northern gannet (Morus bassanus) exhibited the highest thresholds while the lowest thresholds belonged to the duck species, specifically the lesser scaup (Aythya affinis) and ruddy duck (Oxyura jamaicensis). Vocalization parameters were also measured for each species, and showed that with the exception of the common eider (Somateria mollisima), the peak frequency, i.e. frequency at the greatest intensity, of all species’ vocalizations measured here fell between 1000 and 3000 Hz, matching the bandwidth of the most sensitive hearing range. PMID:26156644

  20. Threshold and Beyond: Modeling The Intensity Dependence of Auditory Responses

    PubMed Central

    2007-01-01

    In many studies of auditory-evoked responses to low-intensity sounds, the response amplitude appears to increase roughly linearly with the sound level in decibels (dB), corresponding to a logarithmic intensity dependence. But the auditory system is assumed to be linear in the low-intensity limit. The goal of this study was to resolve the seeming contradiction. Based on assumptions about the rate-intensity functions of single auditory-nerve fibers and the pattern of cochlear excitation caused by a tone, a model for the gross response of the population of auditory nerve fibers was developed. In accordance with signal detection theory, the model denies the existence of a threshold. This implies that regarding the detection of a significant stimulus-related effect, a reduction in sound intensity can always be compensated for by increasing the measurement time, at least in theory. The model suggests that the gross response is proportional to intensity when the latter is low (range I), and a linear function of sound level at higher intensities (range III). For intensities in between, it is concluded that noisy experimental data may provide seemingly irrefutable evidence of a linear dependence on sound pressure (range II). In view of the small response amplitudes that are to be expected for intensity range I, direct observation of the predicted proportionality with intensity will generally be a challenging task for an experimenter. Although the model was developed for the auditory nerve, the basic conclusions are probably valid for higher levels of the auditory system, too, and might help to improve models for loudness at threshold. PMID:18008105

  1. Auditory cortex stimulation to suppress tinnitus: mechanisms and strategies.

    PubMed

    Zhang, Jinsheng

    2013-01-01

    Brain stimulation is an important method used to modulate neural activity and suppress tinnitus. Several auditory and non-auditory brain regions have been targeted for stimulation. This paper reviews recent progress on auditory cortex (AC) stimulation to suppress tinnitus and its underlying neural mechanisms and stimulation strategies. At the same time, the author provides his opinions and hypotheses on both animal and human models. The author also proposes a medial geniculate body (MGB)-thalamic reticular nucleus (TRN)-Gating mechanism to reflect tinnitus-related neural information coming from upstream and downstream projection structures. The upstream structures include the lower auditory brainstem and midbrain structures. The downstream structures include the AC and certain limbic centers. Both upstream and downstream information is involved in a dynamic gating mechanism in the MGB together with the TRN. When abnormal gating occurs at the thalamic level, the spilled-out information interacts with the AC to generate tinnitus. The tinnitus signals at the MGB-TRN-Gating may be modulated by different forms of stimulations including brain stimulation. Each stimulation acts as a gain modulator to control the level of tinnitus signals at the MGB-TRN-Gate. This hypothesis may explain why different types of stimulation can induce tinnitus suppression. Depending on the tinnitus etiology, MGB-TRN-Gating may be different in levels and dynamics, which cause variability in tinnitus suppression induced by different gain controllers. This may explain why the induced suppression of tinnitus by one type of stimulation varies across individual patients. Copyright © 2012. Published by Elsevier B.V.

  2. [Perception and selectivity of sound duration in the central auditory midbrain].

    PubMed

    Wang, Xin; Li, An-An; Wu, Fei-Jian

    2010-08-25

    Sound duration plays important role in acoustic communication. Information of acoustic signal is mainly encoded in the amplitude and frequency spectrum of different durations. Duration selective neurons exist in the central auditory system including inferior colliculus (IC) of frog, bat, mouse and chinchilla, etc., and they are important in signal recognition and feature detection. Two generally accepted models, which are "coincidence detector model" and "anti-coincidence detector model", have been raised to explain the mechanism of neural selective responses to sound durations based on the study of IC neurons in bats. Although they are different in details, they both emphasize the importance of synaptic integration of excitatory and inhibitory inputs, and are able to explain the responses of most duration-selective neurons. However, both of the hypotheses need to be improved since other sound parameters, such as spectral pattern, amplitude and repetition rate, could affect the duration selectivity of the neurons. The dynamic changes of sound parameters are believed to enable the animal to effectively perform recognition of behavior related acoustic signals. Under free field sound stimulation, we analyzed the neural responses in the IC and auditory cortex of mouse and bat to sounds with different duration, frequency and amplitude, using intracellular or extracellular recording techniques. Based on our work and previous studies, this article reviews the properties of duration selectivity in central auditory system and discusses the mechanisms of duration selectivity and the effect of other sound parameters on the duration coding of auditory neurons.

  3. Hearing and the round goby: Understanding the auditory system of the round goby (Neogobius melanostomus)

    NASA Astrophysics Data System (ADS)

    Belanger, Andrea J.; Higgs, Dennis M.

    2005-04-01

    The round goby (Neogobius melanostomus), is an invasive species in the Great Lakes watershed. Adult round gobies show behavioral responses to conspecific vocalizations but physiological investigations have not yet been conducted to quantify their hearing abilities. We have been examining the physiological and morphological development of the auditory system in the round goby. Various frequencies (100 Hz to 800 Hz and conspecific sounds), at various intensities (120 dB to 170 dB re 1 Pa) were presented to juveniles and adults and their auditory brain-stem responses (ABR) were recorded. Round gobies only respond physiologically to tones from 100-600 Hz, with threshold varying between 145 to 155 dB re 1 Pa. The response threshold to conspecific sounds was 140 dB re 1 Pa. There was no significant difference in auditory threshold between sizes of fish for either tones or conspecific sounds. Saccular epithelia were stained using phalloidin and there was a trend towards an increase in both hair cell number and density with an increase in fish size. These results represent a first attempt to quantify auditory abilities in this invasive species. This is an important step in understanding their reproductive physiology, which could potentially aid in their population control. [Funded by NSERC.

  4. Auditory enhancement of visual perception at threshold depends on visual abilities.

    PubMed

    Caclin, Anne; Bouchet, Patrick; Djoulah, Farida; Pirat, Elodie; Pernier, Jacques; Giard, Marie-Hélène

    2011-06-17

    Whether or not multisensory interactions can improve detection thresholds, and thus widen the range of perceptible events is a long-standing debate. Here we revisit this question, by testing the influence of auditory stimuli on visual detection threshold, in subjects exhibiting a wide range of visual-only performance. Above the perceptual threshold, crossmodal interactions have indeed been reported to depend on the subject's performance when the modalities are presented in isolation. We thus tested normal-seeing subjects and short-sighted subjects wearing their usual glasses. We used a paradigm limiting potential shortcomings of previous studies: we chose a criterion-free threshold measurement procedure and precluded exogenous cueing effects by systematically presenting a visual cue whenever a visual target (a faint Gabor patch) might occur. Using this carefully controlled procedure, we found that concurrent sounds only improved visual detection thresholds in the sub-group of subjects exhibiting the poorest performance in the visual-only conditions. In these subjects, for oblique orientations of the visual stimuli (but not for vertical or horizontal targets), the auditory improvement was still present when visual detection was already helped with flanking visual stimuli generating a collinear facilitation effect. These findings highlight that crossmodal interactions are most efficient to improve perceptual performance when an isolated modality is deficient. Copyright © 2011 Elsevier B.V. All rights reserved.

  5. Infant Auditory Sensitivity to Pure Tones and Frequency-Modulated Tones

    ERIC Educational Resources Information Center

    Leibold, Lori J.; Werner, Lynne A.

    2007-01-01

    It has been suggested that infants respond preferentially to infant-directed speech because their auditory sensitivity to sounds with extensive frequency modulation (FM) is better than their sensitivity to less modulated sounds. In this experiment, auditory thresholds for FM tones and for unmodulated, or pure, tones in a background of noise were…

  6. Absence of both auditory evoked potentials and auditory percepts dependent on timing cues.

    PubMed

    Starr, A; McPherson, D; Patterson, J; Don, M; Luxford, W; Shannon, R; Sininger, Y; Tonakawa, L; Waring, M

    1991-06-01

    An 11-yr-old girl had an absence of sensory components of auditory evoked potentials (brainstem, middle and long-latency) to click and tone burst stimuli that she could clearly hear. Psychoacoustic tests revealed a marked impairment of those auditory perceptions dependent on temporal cues, that is, lateralization of binaural clicks, change of binaural masked threshold with changes in signal phase, binaural beats, detection of paired monaural clicks, monaural detection of a silent gap in a sound, and monaural threshold elevation for short duration tones. In contrast, auditory functions reflecting intensity or frequency discriminations (difference limens) were only minimally impaired. Pure tone audiometry showed a moderate (50 dB) bilateral hearing loss with a disproportionate severe loss of word intelligibility. Those auditory evoked potentials that were preserved included (1) cochlear microphonics reflecting hair cell activity; (2) cortical sustained potentials reflecting processing of slowly changing signals; and (3) long-latency cognitive components (P300, processing negativity) reflecting endogenous auditory cognitive processes. Both the evoked potential and perceptual deficits are attributed to changes in temporal encoding of acoustic signals perhaps occurring at the synapse between hair cell and eighth nerve dendrites. The results from this patient are discussed in relation to previously published cases with absent auditory evoked potentials and preserved hearing.

  7. Human inferior colliculus activity relates to individual differences in spoken language learning

    PubMed Central

    Chandrasekaran, Bharath; Kraus, Nina

    2012-01-01

    A challenge to learning words of a foreign language is encoding nonnative phonemes, a process typically attributed to cortical circuitry. Using multimodal imaging methods [functional magnetic resonance imaging-adaptation (fMRI-A) and auditory brain stem responses (ABR)], we examined the extent to which pretraining pitch encoding in the inferior colliculus (IC), a primary midbrain structure, related to individual variability in learning to successfully use nonnative pitch patterns to distinguish words in American English-speaking adults. fMRI-A indexed the efficiency of pitch representation localized to the IC, whereas ABR quantified midbrain pitch-related activity with millisecond precision. In line with neural “sharpening” models, we found that efficient IC pitch pattern representation (indexed by fMRI) related to superior neural representation of pitch patterns (indexed by ABR), and consequently more successful word learning following sound-to-meaning training. Our results establish a critical role for the IC in speech-sound representation, consistent with the established role for the IC in the representation of communication signals in other animal models. PMID:22131377

  8. Behavioral and Molecular Genetics of Reading-Related AM and FM Detection Thresholds.

    PubMed

    Bruni, Matthew; Flax, Judy F; Buyske, Steven; Shindhelm, Amber D; Witton, Caroline; Brzustowicz, Linda M; Bartlett, Christopher W

    2017-03-01

    Auditory detection thresholds for certain frequencies of both amplitude modulated (AM) and frequency modulated (FM) dynamic auditory stimuli are associated with reading in typically developing and dyslexic readers. We present the first behavioral and molecular genetic characterization of these two auditory traits. Two extant extended family datasets were given reading tasks and psychoacoustic tasks to determine FM 2 Hz and AM 20 Hz sensitivity thresholds. Univariate heritabilities were significant for both AM (h 2  = 0.20) and FM (h 2  = 0.29). Bayesian posterior probability of linkage (PPL) analysis found loci for AM (12q, PPL = 81 %) and FM (10p, PPL = 32 %; 20q, PPL = 65 %). Bivariate heritability analyses revealed that FM is genetically correlated with reading, while AM was not. Bivariate PPL analysis indicates that FM loci (10p, 20q) are not also associated with reading.

  9. Cortical Auditory Evoked Potentials to Evaluate Cochlear Implant Candidacy in an Ear With Long-standing Hearing Loss: A Case Report.

    PubMed

    Patel, Tirth R; Shahin, Antoine J; Bhat, Jyoti; Welling, D Bradley; Moberly, Aaron C

    2016-10-01

    We describe a novel use of cortical auditory evoked potentials in the preoperative workup to determine ear candidacy for cochlear implantation. A 71-year-old male was evaluated who had a long-deafened right ear, had never worn a hearing aid in that ear, and relied heavily on use of a left-sided hearing aid. Electroencephalographic testing was performed using free field auditory stimulation of each ear independently with pure tones at 1000 and 2000 Hz at approximately 10 dB above pure-tone thresholds for each frequency and for each ear. Mature cortical potentials were identified through auditory stimulation of the long-deafened ear. The patient underwent successful implantation of that ear. He experienced progressively improving aided pure-tone thresholds and binaural speech recognition benefit (AzBio score of 74%). Findings suggest that use of cortical auditory evoked potentials may serve a preoperative role in ear selection prior to cochlear implantation. © The Author(s) 2016.

  10. Musical Experience, Auditory Perception and Reading-Related Skills in Children

    PubMed Central

    Banai, Karen; Ahissar, Merav

    2013-01-01

    Background The relationships between auditory processing and reading-related skills remain poorly understood despite intensive research. Here we focus on the potential role of musical experience as a confounding factor. Specifically we ask whether the pattern of correlations between auditory and reading related skills differ between children with different amounts of musical experience. Methodology/Principal Findings Third grade children with various degrees of musical experience were tested on a battery of auditory processing and reading related tasks. Very poor auditory thresholds and poor memory skills were abundant only among children with no musical education. In this population, indices of auditory processing (frequency and interval discrimination thresholds) were significantly correlated with and accounted for up to 13% of the variance in reading related skills. Among children with more than one year of musical training, auditory processing indices were better, yet reading related skills were not correlated with them. A potential interpretation for the reduction in the correlations might be that auditory and reading-related skills improve at different rates as a function of musical training. Conclusions/Significance Participants’ previous musical training, which is typically ignored in studies assessing the relations between auditory and reading related skills, should be considered. Very poor auditory and memory skills are rare among children with even a short period of musical training, suggesting musical training could have an impact on both. The lack of correlation in the musically trained population suggests that a short period of musical training does not enhance reading related skills of individuals with within-normal auditory processing skills. Further studies are required to determine whether the associations between musical training, auditory processing and memory are indeed causal or whether children with poor auditory and memory skills are less likely to study music and if so, why this is the case. PMID:24086654

  11. Fundamental deficits of auditory perception in Wernicke's aphasia.

    PubMed

    Robson, Holly; Grube, Manon; Lambon Ralph, Matthew A; Griffiths, Timothy D; Sage, Karen

    2013-01-01

    This work investigates the nature of the comprehension impairment in Wernicke's aphasia (WA), by examining the relationship between deficits in auditory processing of fundamental, non-verbal acoustic stimuli and auditory comprehension. WA, a condition resulting in severely disrupted auditory comprehension, primarily occurs following a cerebrovascular accident (CVA) to the left temporo-parietal cortex. Whilst damage to posterior superior temporal areas is associated with auditory linguistic comprehension impairments, functional-imaging indicates that these areas may not be specific to speech processing but part of a network for generic auditory analysis. We examined analysis of basic acoustic stimuli in WA participants (n = 10) using auditory stimuli reflective of theories of cortical auditory processing and of speech cues. Auditory spectral, temporal and spectro-temporal analysis was assessed using pure-tone frequency discrimination, frequency modulation (FM) detection and the detection of dynamic modulation (DM) in "moving ripple" stimuli. All tasks used criterion-free, adaptive measures of threshold to ensure reliable results at the individual level. Participants with WA showed normal frequency discrimination but significant impairments in FM and DM detection, relative to age- and hearing-matched controls at the group level (n = 10). At the individual level, there was considerable variation in performance, and thresholds for both FM and DM detection correlated significantly with auditory comprehension abilities in the WA participants. These results demonstrate the co-occurrence of a deficit in fundamental auditory processing of temporal and spectro-temporal non-verbal stimuli in WA, which may have a causal contribution to the auditory language comprehension impairment. Results are discussed in the context of traditional neuropsychology and current models of cortical auditory processing. Copyright © 2012 Elsevier Ltd. All rights reserved.

  12. [Auditory processing and high frequency audiometry in students of São Paulo].

    PubMed

    Ramos, Cristina Silveira; Pereira, Liliane Desgualdo

    2005-01-01

    Auditory processing and auditory sensibility to high Frequency sounds. To characterize the localization processes, temporal ordering, hearing patterns and detection of high frequency sounds, looking for possible relations between these factors. 32 hearing fourth grade students, born in city of São Paulo, were submitted to: a simplified evaluation of the auditory processing; duration pattern test; high frequency audiometry. Three (9,4%) individuals presented auditory processing disorder (APD) and in one of them there was the coexistence of lower hearing thresholds in high frequency audiometry. APD associated to an auditory sensibility loss in high frequencies should be further investigated.

  13. A quantitative comparison of the hemispheric, areal, and laminar origins of sensory and motor cortical projections to the superior colliculus of the cat.

    PubMed

    Butler, Blake E; Chabot, Nicole; Lomber, Stephen G

    2016-09-01

    The superior colliculus (SC) is a midbrain structure central to orienting behaviors. The organization of descending projections from sensory cortices to the SC has garnered much attention; however, rarely have projections from multiple modalities been quantified and contrasted, allowing for meaningful conclusions within a single species. Here, we examine corticotectal projections from visual, auditory, somatosensory, motor, and limbic cortices via retrograde pathway tracers injected throughout the superficial and deep layers of the cat SC. As anticipated, the majority of cortical inputs to the SC originate in the visual cortex. In fact, each field implicated in visual orienting behavior makes a substantial projection. Conversely, only one area of the auditory orienting system, the auditory field of the anterior ectosylvian sulcus (fAES), and no area involved in somatosensory orienting, shows significant corticotectal inputs. Although small relative to visual inputs, the projection from the fAES is of particular interest, as it represents the only bilateral cortical input to the SC. This detailed, quantitative study allows for comparison across modalities in an animal that serves as a useful model for both auditory and visual perception. Moreover, the differences in patterns of corticotectal projections between modalities inform the ways in which orienting systems are modulated by cortical feedback. J. Comp. Neurol. 524:2623-2642, 2016. © 2016 Wiley Periodicals, Inc. © 2016 Wiley Periodicals, Inc.

  14. Acoustic trauma triggers upregulation of serotonin receptor genes

    PubMed Central

    Smith, Adam R.; Kwon, Jae Hyun; Navarro, Marco; Hurley, Laura M.

    2014-01-01

    Hearing loss induces plasticity in excitatory and inhibitory neurotransmitter systems in auditory brain regions. Excitatory-inhibitory balance is also influenced by a range of neuromodulatory regulatory systems, but less is known about the effects of auditory damage on these networks. In this work, we studied the effects of acoustic trauma on neuromodulatory plasticity in the auditory midbrain of CBA/J mice. Quantitative PCR was used to measure the expression of serotonergic and GABAergic receptor genes in the inferior colliculus (IC) of mice that were unmanipulated, sham controls with no hearing loss, and experimental individuals with hearing loss induced by exposure to a 116 dB, 10 kHz pure tone for 3 hours. Acoustic trauma induced substantial hearing loss that was accompanied by selective upregulation of two serotonin receptor genes in the IC. The Htr1B receptor gene was upregulated tenfold following trauma relative to shams, while the Htr1A gene was upregulated threefold. In contrast, no plasticity in serotonin receptor gene expression was found in the hippocampus, a region also innervated by serotonergic projections. Analyses in the IC demonstrated that acoustic trauma also changed the coexpression of genes in relation to each other, leading to an overexpression of Htr1B compared to other genes.. These data suggest that acoustic trauma induces serotonergic plasticity in the auditory system, and that this plasticity may involve comodulation of functionally-linked receptor genes. PMID:24997228

  15. Middle Latency Auditory Evoked Potential (MLAEP) in Workers with and without Tinnitus who are Exposed to Occupational Noise.

    PubMed

    dos Santos Filha, Valdete Alves Valentins; Samelli, Alessandra Giannella; Matas, Carla Gentile

    2015-09-11

    Tinnitus is an important occupational health concern, but few studies have focused on the central auditory pathways of workers with a history of occupational noise exposure. Thus, we analyzed the central auditory pathways of workers with a history of occupational noise exposure who had normal hearing threshold, and compared middle latency auditory evoked potential in those with and without noise-induced tinnitus. Sixty individuals (30 with and 30 without tinnitus) underwent the following procedures: anamnesis, immittance measures, pure-tone air conduction thresholds at all frequencies between 0.25-8 kHz, and middle latency auditory evoked potentials. Quantitative analysis of latencies and amplitudes of middle latency auditory evoked potential showed no significant differences between the groups with and without tinnitus. In the qualitative analysis, we found that both groups showed increased middle latency auditory evoked potential latencies. The study group had more alterations of the "both" type regarding the Na-Pa amplitude, while the control group had more "electrode effect" alterations, but these alterations were not significantly different when compared to controls. Individuals with normal hearing with or without tinnitus who are exposed to occupational noise have altered middle latency auditory evoked potential, suggesting impairment of the auditory pathways in cortical and subcortical regions. Although differences did not reach significance, individuals with tinnitus seemed to have more abnormalities in components of the middle latency auditory evoked potential when compared to individuals without tinnitus, suggesting alterations in the generation and transmission of neuroelectrical impulses along the auditory pathway.

  16. Animal model of cochlear third window in the scala vestibuli or scala tympani.

    PubMed

    Attias, Joseph; Preis, Michal; Shemesh, Rafi; Hadar, Tuvia; Nageris, Ben I

    2010-08-01

    The auditory impact of a cochlear third window differs by its location in the scala vestibuli or scala tympani. Pathologic third window has been investigated primarily in the vestibular apparatus of animals and humans. Dehiscence of the superior semicircular canal is the clinical model. Fat sand rats (n = 11) have a unique inner-ear anatomy that allows easy surgical access. A window was drilled in the bony labyrinth over the scala vestibuli in 1 group (12 ears) and over the scala tympani in another (7 ears) while preserving the membranous labyrinth. Auditory brain stem responses to high- and low-frequency stimuli delivered by air and bone conduction were recorded before and after the procedure. Scala vestibuli group: preoperative air-conduction thresholds to clicks and tone-bursts averaged 8.3 and 9.6 dB, respectively, and bone-conduction thresholds, 4.6 and 3.3 dB, respectively; after fenestration, air-conduction thresholds averaged 40.4 and 41.8 dB, respectively, and bone-conduction thresholds, -1 and 5.6 dB, respectively. Scala tympani group: preoperative air-conduction thresholds to clicks and tone-bursts averaged 8.6 dB each, and bone-conduction thresholds, 7.9 dB and 7.1 dB, respectively; after fenestration, air-conduction thresholds averaged 11.4 and 9.3 dB, respectively, and bone-conduction thresholds, 9.3 and 4.2 dB, respectively. The changes in air- (p = 0.0001) and bone-conduction (p = 0.04) thresholds were statistically significant only in the scala vestibuli group. The presence of a cochlear third window over the scala vestibuli, but not over the scala tympani, causes a significant increase in air-conduction auditory thresholds. These results agree with the theoretic model and clinical findings and contribute to our understanding of vestibular dehiscence.

  17. Neural bases of rhythmic entrainment in humans: critical transformation between cortical and lower-level representations of auditory rhythm.

    PubMed

    Nozaradan, Sylvie; Schönwiesner, Marc; Keller, Peter E; Lenc, Tomas; Lehmann, Alexandre

    2018-02-01

    The spontaneous ability to entrain to meter periodicities is central to music perception and production across cultures. There is increasing evidence that this ability involves selective neural responses to meter-related frequencies. This phenomenon has been observed in the human auditory cortex, yet it could be the product of evolutionarily older lower-level properties of brainstem auditory neurons, as suggested by recent recordings from rodent midbrain. We addressed this question by taking advantage of a new method to simultaneously record human EEG activity originating from cortical and lower-level sources, in the form of slow (< 20 Hz) and fast (> 150 Hz) responses to auditory rhythms. Cortical responses showed increased amplitudes at meter-related frequencies compared to meter-unrelated frequencies, regardless of the prominence of the meter-related frequencies in the modulation spectrum of the rhythmic inputs. In contrast, frequency-following responses showed increased amplitudes at meter-related frequencies only in rhythms with prominent meter-related frequencies in the input but not for a more complex rhythm requiring more endogenous generation of the meter. This interaction with rhythm complexity suggests that the selective enhancement of meter-related frequencies does not fully rely on subcortical auditory properties, but is critically shaped at the cortical level, possibly through functional connections between the auditory cortex and other, movement-related, brain structures. This process of temporal selection would thus enable endogenous and motor entrainment to emerge with substantial flexibility and invariance with respect to the rhythmic input in humans in contrast with non-human animals. © 2018 Federation of European Neuroscience Societies and John Wiley & Sons Ltd.

  18. Altered brainstem auditory evoked potentials in a rat central sensitization model are similar to those in migraine

    PubMed Central

    Arakaki, Xianghong; Galbraith, Gary; Pikov, Victor; Fonteh, Alfred N.; Harrington, Michael G.

    2014-01-01

    Migraine symptoms often include auditory discomfort. Nitroglycerin (NTG)-triggered central sensitization (CS) provides a rodent model of migraine, but auditory brainstem pathways have not yet been studied in this example. Our objective was to examine brainstem auditory evoked potentials (BAEPs) in rat CS as a measure of possible auditory abnormalities. We used four subdermal electrodes to record horizontal (h) and vertical (v) dipole channel BAEPs before and after injection of NTG or saline. We measured the peak latencies (PLs), interpeak latencies (IPLs), and amplitudes for detectable waveforms evoked by 8, 16, or 32 KHz auditory stimulation. At 8 KHz stimulation, vertical channel positive PLs of waves 4, 5, and 6 (vP4, vP5, and vP6), and related IPLs from earlier negative or positive peaks (vN1-vP4, vN1-vP5, vN1-vP6; vP3-vP4, vP3-vP6) increased significantly 2 hours after NTG injection compared to the saline group. However, BAEP peak amplitudes at all frequencies, PLs and IPLs from the horizontal channel at all frequencies, and the vertical channel stimulated at 16 and 32 KHz showed no significant/consistent change. For the first time in the rat CS model, we show that BAEP PLs and IPLs ranging from putative bilateral medial superior olivary nuclei (P4) to the more rostral structures such as the medial geniculate body (P6) were prolonged 2 hours after NTG administration. These BAEP alterations could reflect changes in neurotransmitters and/or hypoperfusion in the midbrain. The similarity of our results with previous human studies further validates the rodent CS model for future migraine research. PMID:24680742

  19. Enhanced auditory temporal gap detection in listeners with musical training.

    PubMed

    Mishra, Srikanta K; Panda, Manas R; Herbert, Carolyn

    2014-08-01

    Many features of auditory perception are positively altered in musicians. Traditionally auditory mechanisms in musicians are investigated using the Western-classical musician model. The objective of the present study was to adopt an alternative model-Indian-classical music-to further investigate auditory temporal processing in musicians. This study presents that musicians have significantly lower across-channel gap detection thresholds compared to nonmusicians. Use of the South Indian musician model provides an increased external validity for the prediction, from studies on Western-classical musicians, that auditory temporal coding is enhanced in musicians.

  20. Auditory Processing Testing: In the Booth versus Outside the Booth.

    PubMed

    Lucker, Jay R

    2017-09-01

    Many audiologists believe that auditory processing testing must be carried out in a soundproof booth. This expectation is especially a problem in places such as elementary schools. Research comparing pure-tone thresholds obtained in sound booths compared to quiet test environments outside of these booths does not support that belief. Auditory processing testing is generally carried out at above threshold levels, and therefore may be even less likely to require a soundproof booth. The present study was carried out to compare test results in soundproof booths versus quiet rooms. The purpose of this study was to determine whether auditory processing tests can be administered in a quiet test room rather than in the soundproof test suite. The outcomes would identify that audiologists can provide auditory processing testing for children under various test conditions including quiet rooms at their school. A battery of auditory processing tests was administered at a test level equivalent to 50 dB HL through headphones. The same equipment was used for testing in both locations. Twenty participants identified with normal hearing were included in this study, ten having no auditory processing concerns and ten exhibiting auditory processing problems. All participants underwent a battery of tests, both inside the test booth and outside the booth in a quiet room. Order of testing (inside versus outside) was counterbalanced. Participants were first determined to have normal hearing thresholds for tones and speech. Auditory processing tests were recorded and presented from an HP EliteBook laptop computer with noise-canceling headphones attached to a y-cord that not only presented the test stimuli to the participants but also allowed monitor headphones to be worn by the evaluator. The same equipment was used inside as well as outside the booth. No differences were found for each auditory processing measure as a function of the test setting or the order in which testing was done, that is, in the booth or in the room. Results from the present study indicate that one can obtain the same results on auditory processing tests, regardless of whether testing is completed in a soundproof booth or in a quiet test environment. Therefore, audiologists should not be required to test for auditory processing in a soundproof booth. This study shows that audiologists can conduct testing in a quiet room so long as the background noise is sufficiently controlled. American Academy of Audiology

  1. Vestibular receptors contribute to cortical auditory evoked potentials.

    PubMed

    Todd, Neil P M; Paillard, Aurore C; Kluk, Karolina; Whittle, Elizabeth; Colebatch, James G

    2014-03-01

    Acoustic sensitivity of the vestibular apparatus is well-established, but the contribution of vestibular receptors to the late auditory evoked potentials of cortical origin is unknown. Evoked potentials from 500 Hz tone pips were recorded using 70 channel EEG at several intensities below and above the vestibular acoustic threshold, as determined by vestibular evoked myogenic potentials (VEMPs). In healthy subjects both auditory mid- and long-latency auditory evoked potentials (AEPs), consisting of Na, Pa, N1 and P2 waves, were observed in the sub-threshold conditions. However, in passing through the vestibular threshold, systematic changes were observed in the morphology of the potentials and in the intensity dependence of their amplitude and latency. These changes were absent in a patient without functioning vestibular receptors. In particular, for the healthy subjects there was a fronto-central negativity, which appeared at about 42 ms, referred to as an N42, prior to the AEP N1. Source analysis of both the N42 and N1 indicated involvement of cingulate cortex, as well as bilateral superior temporal cortex. Our findings are best explained by vestibular receptors contributing to what were hitherto considered as purely auditory evoked potentials and in addition tentatively identify a new component that appears to be primarily of vestibular origin. Copyright © 2013 The Authors. Published by Elsevier B.V. All rights reserved.

  2. Auditory brainstem responses predict auditory nerve fiber thresholds and frequency selectivity in hearing impaired chinchillas

    PubMed Central

    Henry, Kenneth S.; Kale, Sushrut; Scheidt, Ryan E.; Heinz, Michael G.

    2011-01-01

    Non-invasive auditory brainstem responses (ABRs) are commonly used to assess cochlear pathology in both clinical and research environments. In the current study, we evaluated the relationship between ABR characteristics and more direct measures of cochlear function. We recorded ABRs and auditory nerve (AN) single-unit responses in seven chinchillas with noise induced hearing loss. ABRs were recorded for 1–8 kHz tone burst stimuli both before and several weeks after four hours of exposure to a 115 dB SPL, 50 Hz band of noise with a center frequency of 2 kHz. Shifts in ABR characteristics (threshold, wave I amplitude, and wave I latency) following hearing loss were compared to AN-fiber tuning curve properties (threshold and frequency selectivity) in the same animals. As expected, noise exposure generally resulted in an increase in ABR threshold and decrease in wave I amplitude at equal SPL. Wave I amplitude at equal sensation level (SL), however, was similar before and after noise exposure. In addition, noise exposure resulted in decreases in ABR wave I latency at equal SL and, to a lesser extent, at equal SPL. The shifts in ABR characteristics were significantly related to AN-fiber tuning curve properties in the same animal at the same frequency. Larger shifts in ABR thresholds and ABR wave I amplitude at equal SPL were associated with greater AN threshold elevation. Larger reductions in ABR wave I latency at equal SL, on the other hand, were associated with greater loss of AN frequency selectivity. This result is consistent with linear systems theory, which predicts shorter time delays for broader peripheral frequency tuning. Taken together with other studies, our results affirm that ABR thresholds and wave I amplitude provide useful estimates of cochlear sensitivity. Furthermore, comparisons of ABR wave I latency to normative data at the same SL may prove useful for detecting and characterizing loss of cochlear frequency selectivity. PMID:21699970

  3. Thresholds of Auditory-Motor Coupling Measured with a Simple Task in Musicians and Non-Musicians: Was the Sound Simultaneous to the Key Press?

    PubMed Central

    van Vugt, Floris T.; Tillmann, Barbara

    2014-01-01

    The human brain is able to predict the sensory effects of its actions. But how precise are these predictions? The present research proposes a tool to measure thresholds between a simple action (keystroke) and a resulting sound. On each trial, participants were required to press a key. Upon each keystroke, a woodblock sound was presented. In some trials, the sound came immediately with the downward keystroke; at other times, it was delayed by a varying amount of time. Participants were asked to verbally report whether the sound came immediately or was delayed. Participants' delay detection thresholds (in msec) were measured with a staircase-like procedure. We hypothesised that musicians would have a lower threshold than non-musicians. Comparing pianists and brass players, we furthermore hypothesised that, as a result of a sharper attack of the timbre of their instrument, pianists might have lower thresholds than brass players. Our results show that non-musicians exhibited higher thresholds for delay detection (180±104 ms) than the two groups of musicians (102±65 ms), but there were no differences between pianists and brass players. The variance in delay detection thresholds could be explained by variance in sensorimotor synchronisation capacities as well as variance in a purely auditory temporal irregularity detection measure. This suggests that the brain's capacity to generate temporal predictions of sensory consequences can be decomposed into general temporal prediction capacities together with auditory-motor coupling. These findings indicate that the brain has a relatively large window of integration within which an action and its resulting effect are judged as simultaneous. Furthermore, musical expertise may narrow this window down, potentially due to a more refined temporal prediction. This novel paradigm provides a simple test to estimate the temporal precision of auditory-motor action-effect coupling, and the paradigm can readily be incorporated in studies investigating both healthy and patient populations. PMID:24498299

  4. The effect of superior auditory skills on vocal accuracy

    NASA Astrophysics Data System (ADS)

    Amir, Ofer; Amir, Noam; Kishon-Rabin, Liat

    2003-02-01

    The relationship between auditory perception and vocal production has been typically investigated by evaluating the effect of either altered or degraded auditory feedback on speech production in either normal hearing or hearing-impaired individuals. Our goal in the present study was to examine this relationship in individuals with superior auditory abilities. Thirteen professional musicians and thirteen nonmusicians, with no vocal or singing training, participated in this study. For vocal production accuracy, subjects were presented with three tones. They were asked to reproduce the pitch using the vowel /a/. This procedure was repeated three times. The fundamental frequency of each production was measured using an autocorrelation pitch detection algorithm designed for this study. The musicians' superior auditory abilities (compared to the nonmusicians) were established in a frequency discrimination task reported elsewhere. Results indicate that (a) musicians had better vocal production accuracy than nonmusicians (production errors of 1/2 a semitone compared to 1.3 semitones, respectively); (b) frequency discrimination thresholds explain 43% of the variance of the production data, and (c) all subjects with superior frequency discrimination thresholds showed accurate vocal production; the reverse relationship, however, does not hold true. In this study we provide empirical evidence to the importance of auditory feedback on vocal production in listeners with superior auditory skills.

  5. Influence of Acoustic Overstimulation on the Central Auditory System: An Functional Magnetic Resonance Imaging (fMRI) Study.

    PubMed

    Wolak, Tomasz; Cieśla, Katarzyna; Rusiniak, Mateusz; Piłka, Adam; Lewandowska, Monika; Pluta, Agnieszka; Skarżyński, Henryk; Skarżyński, Piotr H

    2016-11-28

    BACKGROUND The goal of the fMRI experiment was to explore the involvement of central auditory structures in pathomechanisms of a behaviorally manifested auditory temporary threshold shift in humans. MATERIAL AND METHODS The material included 18 healthy volunteers with normal hearing. Subjects in the exposure group were presented with 15 min of binaural acoustic overstimulation of narrowband noise (3 kHz central frequency) at 95 dB(A). The control group was not exposed to noise but instead relaxed in silence. Auditory fMRI was performed in 1 session before and 3 sessions after acoustic overstimulation and involved 3.5-4.5 kHz sweeps. RESULTS The outcomes of the study indicate a possible effect of acoustic overstimulation on central processing, with decreased brain responses to auditory stimulation up to 20 min after exposure to noise. The effect can be seen already in the primary auditory cortex. Decreased BOLD signal change can be due to increased excitation thresholds and/or increased spontaneous activity of auditory neurons throughout the auditory system. CONCLUSIONS The trial shows that fMRI can be a valuable tool in acoustic overstimulation studies but has to be used with caution and considered complimentary to audiological measures. Further methodological improvements are needed to distinguish the effects of TTS and neuronal habituation to repetitive stimulation.

  6. Rapid measurement of auditory filter shape in mice using the auditory brainstem response and notched noise.

    PubMed

    Lina, Ioan A; Lauer, Amanda M

    2013-04-01

    The notched noise method is an effective procedure for measuring frequency resolution and auditory filter shapes in both human and animal models of hearing. Briefly, auditory filter shape and bandwidth estimates are derived from masked thresholds for tones presented in noise containing widening spectral notches. As the spectral notch widens, increasingly less of the noise falls within the auditory filter and the tone becomes more detectible until the notch width exceeds the filter bandwidth. Behavioral procedures have been used for the derivation of notched noise auditory filter shapes in mice; however, the time and effort needed to train and test animals on these tasks renders a constraint on the widespread application of this testing method. As an alternative procedure, we combined relatively non-invasive auditory brainstem response (ABR) measurements and the notched noise method to estimate auditory filters in normal-hearing mice at center frequencies of 8, 11.2, and 16 kHz. A complete set of simultaneous masked thresholds for a particular tone frequency were obtained in about an hour. ABR-derived filter bandwidths broadened with increasing frequency, consistent with previous studies. The ABR notched noise procedure provides a fast alternative to estimating frequency selectivity in mice that is well-suited to high through-put or time-sensitive screening. Copyright © 2013 Elsevier B.V. All rights reserved.

  7. Influence of Acoustic Overstimulation on the Central Auditory System: An Functional Magnetic Resonance Imaging (fMRI) Study

    PubMed Central

    Wolak, Tomasz; Cieśla, Katarzyna; Rusiniak, Mateusz; Piłka, Adam; Lewandowska, Monika; Pluta, Agnieszka; Skarżyński, Henryk; Skarżyński, Piotr H.

    2016-01-01

    Background The goal of the fMRI experiment was to explore the involvement of central auditory structures in pathomechanisms of a behaviorally manifested auditory temporary threshold shift in humans. Material/Methods The material included 18 healthy volunteers with normal hearing. Subjects in the exposure group were presented with 15 min of binaural acoustic overstimulation of narrowband noise (3 kHz central frequency) at 95 dB(A). The control group was not exposed to noise but instead relaxed in silence. Auditory fMRI was performed in 1 session before and 3 sessions after acoustic overstimulation and involved 3.5–4.5 kHz sweeps. Results The outcomes of the study indicate a possible effect of acoustic overstimulation on central processing, with decreased brain responses to auditory stimulation up to 20 min after exposure to noise. The effect can be seen already in the primary auditory cortex. Decreased BOLD signal change can be due to increased excitation thresholds and/or increased spontaneous activity of auditory neurons throughout the auditory system. Conclusions The trial shows that fMRI can be a valuable tool in acoustic overstimulation studies but has to be used with caution and considered complimentary to audiological measures. Further methodological improvements are needed to distinguish the effects of TTS and neuronal habituation to repetitive stimulation. PMID:27893698

  8. States of Awareness I: Subliminal Perception Relationship to Situational Awareness

    DTIC Science & Technology

    1993-05-01

    one experiment, the visual detection threshold was raised by simultaneous auditory stimulation involving subliminal emotional words. Similar results...an assessment was made of the effects of both subliminal and supraliminal auditory accessory stimulation (white noise) on a visual detection task... stimulation investigation. Both subliminal and supraliminal auditory stimulation were employed to evaluate possible differential effects in visual illusions

  9. Relationship between Auditory and Cognitive Abilities in Older Adults

    PubMed Central

    Sheft, Stanley

    2015-01-01

    Objective The objective was to evaluate the association of peripheral and central hearing abilities with cognitive function in older adults. Methods Recruited from epidemiological studies of aging and cognition at the Rush Alzheimer’s Disease Center, participants were a community-dwelling cohort of older adults (range 63–98 years) without diagnosis of dementia. The cohort contained roughly equal numbers of Black (n=61) and White (n=63) subjects with groups similar in terms of age, gender, and years of education. Auditory abilities were measured with pure-tone audiometry, speech-in-noise perception, and discrimination thresholds for both static and dynamic spectral patterns. Cognitive performance was evaluated with a 12-test battery assessing episodic, semantic, and working memory, perceptual speed, and visuospatial abilities. Results Among the auditory measures, only the static and dynamic spectral-pattern discrimination thresholds were associated with cognitive performance in a regression model that included the demographic covariates race, age, gender, and years of education. Subsequent analysis indicated substantial shared variance among the covariates race and both measures of spectral-pattern discrimination in accounting for cognitive performance. Among cognitive measures, working memory and visuospatial abilities showed the strongest interrelationship to spectral-pattern discrimination performance. Conclusions For a cohort of older adults without diagnosis of dementia, neither hearing thresholds nor speech-in-noise ability showed significant association with a summary measure of global cognition. In contrast, the two auditory metrics of spectral-pattern discrimination ability significantly contributed to a regression model prediction of cognitive performance, demonstrating association of central auditory ability to cognitive status using auditory metrics that avoided the confounding effect of speech materials. PMID:26237423

  10. Infant discrimination of rapid auditory cues predicts later language impairment.

    PubMed

    Benasich, April A; Tallal, Paula

    2002-10-17

    The etiology and mechanisms of specific language impairment (SLI) in children are unknown. Differences in basic auditory processing abilities have been suggested to underlie their language deficits. Studies suggest that the neuropathology, such as atypical patterns of cerebral lateralization and cortical cellular anomalies, implicated in such impairments likely occur early in life. Such anomalies may play a part in the rapid processing deficits seen in this disorder. However, prospective, longitudinal studies in infant populations that are critical to examining these hypotheses have not been done. In the study described, performance on brief, rapidly-presented, successive auditory processing and perceptual-cognitive tasks were assessed in two groups of infants: normal control infants with no family history of language disorders and infants from families with a positive family history for language impairment. Initial assessments were obtained when infants were 6-9 months of age (M=7.5 months) and the sample was then followed through age 36 months. At the first visit, infants' processing of rapid auditory cues as well as global processing speed and memory were assessed. Significant differences in mean thresholds were seen in infants born into families with a history of SLI as compared with controls. Examination of relations between infant processing abilities and emerging language through 24 months-of-age revealed that threshold for rapid auditory processing at 7.5 months was the single best predictor of language outcome. At age 3, rapid auditory processing threshold and being male, together predicted 39-41% of the variance in language outcome. Thus, early deficits in rapid auditory processing abilities both precede and predict subsequent language delays. These findings support an essential role for basic nonlinguistic, central auditory processes, particularly rapid spectrotemporal processing, in early language development. Further, these findings provide a temporal diagnostic window during which future language impairments may be addressed.

  11. The effects of noise exposure and musical training on suprathreshold auditory processing and speech perception in noise.

    PubMed

    Yeend, Ingrid; Beach, Elizabeth Francis; Sharma, Mridula; Dillon, Harvey

    2017-09-01

    Recent animal research has shown that exposure to single episodes of intense noise causes cochlear synaptopathy without affecting hearing thresholds. It has been suggested that the same may occur in humans. If so, it is hypothesized that this would result in impaired encoding of sound and lead to difficulties hearing at suprathreshold levels, particularly in challenging listening environments. The primary aim of this study was to investigate the effect of noise exposure on auditory processing, including the perception of speech in noise, in adult humans. A secondary aim was to explore whether musical training might improve some aspects of auditory processing and thus counteract or ameliorate any negative impacts of noise exposure. In a sample of 122 participants (63 female) aged 30-57 years with normal or near-normal hearing thresholds, we conducted audiometric tests, including tympanometry, audiometry, acoustic reflexes, otoacoustic emissions and medial olivocochlear responses. We also assessed temporal and spectral processing, by determining thresholds for detection of amplitude modulation and temporal fine structure. We assessed speech-in-noise perception, and conducted tests of attention, memory and sentence closure. We also calculated participants' accumulated lifetime noise exposure and administered questionnaires to assess self-reported listening difficulty and musical training. The results showed no clear link between participants' lifetime noise exposure and performance on any of the auditory processing or speech-in-noise tasks. Musical training was associated with better performance on the auditory processing tasks, but not the on the speech-in-noise perception tasks. The results indicate that sentence closure skills, working memory, attention, extended high frequency hearing thresholds and medial olivocochlear suppression strength are important factors that are related to the ability to process speech in noise. Crown Copyright © 2017. Published by Elsevier B.V. All rights reserved.

  12. Systemic Nicotine Increases Gain and Narrows Receptive Fields in A1 via Integrated Cortical and Subcortical Actions

    PubMed Central

    Intskirveli, Irakli

    2017-01-01

    Abstract Nicotine enhances sensory and cognitive processing via actions at nicotinic acetylcholine receptors (nAChRs), yet the precise circuit- and systems-level mechanisms remain unclear. In sensory cortex, nicotinic modulation of receptive fields (RFs) provides a model to probe mechanisms by which nAChRs regulate cortical circuits. Here, we examine RF modulation in mouse primary auditory cortex (A1) using a novel electrophysiological approach: current-source density (CSD) analysis of responses to tone-in-notched-noise (TINN) acoustic stimuli. TINN stimuli consist of a tone at the characteristic frequency (CF) of the recording site embedded within a white noise stimulus filtered to create a spectral “notch” of variable width centered on CF. Systemic nicotine (2.1 mg/kg) enhanced responses to the CF tone and to narrow-notch stimuli, yet reduced the response to wider-notch stimuli, indicating increased response gain within a narrowed RF. Subsequent manipulations showed that modulation of cortical RFs by systemic nicotine reflected effects at several levels in the auditory pathway: nicotine suppressed responses in the auditory midbrain and thalamus, with suppression increasing with spectral distance from CF so that RFs became narrower, and facilitated responses in the thalamocortical pathway, while nicotinic actions within A1 further contributed to both suppression and facilitation. Thus, multiple effects of systemic nicotine integrate along the ascending auditory pathway. These actions at nAChRs in cortical and subcortical circuits, which mimic effects of auditory attention, likely contribute to nicotinic enhancement of sensory and cognitive processing. PMID:28660244

  13. Systemic Nicotine Increases Gain and Narrows Receptive Fields in A1 via Integrated Cortical and Subcortical Actions.

    PubMed

    Askew, Caitlin; Intskirveli, Irakli; Metherate, Raju

    2017-01-01

    Nicotine enhances sensory and cognitive processing via actions at nicotinic acetylcholine receptors (nAChRs), yet the precise circuit- and systems-level mechanisms remain unclear. In sensory cortex, nicotinic modulation of receptive fields (RFs) provides a model to probe mechanisms by which nAChRs regulate cortical circuits. Here, we examine RF modulation in mouse primary auditory cortex (A1) using a novel electrophysiological approach: current-source density (CSD) analysis of responses to tone-in-notched-noise (TINN) acoustic stimuli. TINN stimuli consist of a tone at the characteristic frequency (CF) of the recording site embedded within a white noise stimulus filtered to create a spectral "notch" of variable width centered on CF. Systemic nicotine (2.1 mg/kg) enhanced responses to the CF tone and to narrow-notch stimuli, yet reduced the response to wider-notch stimuli, indicating increased response gain within a narrowed RF. Subsequent manipulations showed that modulation of cortical RFs by systemic nicotine reflected effects at several levels in the auditory pathway: nicotine suppressed responses in the auditory midbrain and thalamus, with suppression increasing with spectral distance from CF so that RFs became narrower, and facilitated responses in the thalamocortical pathway, while nicotinic actions within A1 further contributed to both suppression and facilitation. Thus, multiple effects of systemic nicotine integrate along the ascending auditory pathway. These actions at nAChRs in cortical and subcortical circuits, which mimic effects of auditory attention, likely contribute to nicotinic enhancement of sensory and cognitive processing.

  14. Inter-subject synchronization of brain responses during natural music listening

    PubMed Central

    Abrams, Daniel A.; Ryali, Srikanth; Chen, Tianwen; Chordia, Parag; Khouzam, Amirah; Levitin, Daniel J.; Menon, Vinod

    2015-01-01

    Music is a cultural universal and a rich part of the human experience. However, little is known about common brain systems that support the processing and integration of extended, naturalistic ‘real-world’ music stimuli. We examined this question by presenting extended excerpts of symphonic music, and two pseudomusical stimuli in which the temporal and spectral structure of the Natural Music condition were disrupted, to non-musician participants undergoing functional brain imaging and analysing synchronized spatiotemporal activity patterns between listeners. We found that music synchronizes brain responses across listeners in bilateral auditory midbrain and thalamus, primary auditory and auditory association cortex, right-lateralized structures in frontal and parietal cortex, and motor planning regions of the brain. These effects were greater for natural music compared to the pseudo-musical control conditions. Remarkably, inter-subject synchronization in the inferior colliculus and medial geniculate nucleus was also greater for the natural music condition, indicating that synchronization at these early stages of auditory processing is not simply driven by spectro-temporal features of the stimulus. Increased synchronization during music listening was also evident in a right-hemisphere fronto-parietal attention network and bilateral cortical regions involved in motor planning. While these brain structures have previously been implicated in various aspects of musical processing, our results are the first to show that these regions track structural elements of a musical stimulus over extended time periods lasting minutes. Our results show that a hierarchical distributed network is synchronized between individuals during the processing of extended musical sequences, and provide new insight into the temporal integration of complex and biologically salient auditory sequences. PMID:23578016

  15. Human auditory system response to pulsed radiofrequency energy in RF coils for magnetic resonance at 2.4 to 170 MHz.

    PubMed

    Röschmann, P

    1991-10-01

    The threshold conditions for an auditory perception of pulsed radiofrequency (RF) energy absorption in the human head have been studied on six volunteers with RF coils for magnetic resonance (MR) imaging. For homogeneous RF exposure with MR head coils in the 2.4- to 170-MHz range and pulse widths 3 microseconds less than or equal to Tp less than 100 microseconds, the auditory thresholds were observed at 16 +/- 4 mJ pulse energy. Localized RF exposure with optimized surface coils positioned flush with the ear lowers the auditory threshold to only 3 +/- 0.6 mJ. The hearing threshold of RF pulses with Tp greater than 200 microseconds occurs at more or less constant peak power levels of typically 150 +/- 50 W for head coils and as low as 20 W for surface coils. The results from this study confirm theoretical predictions from a thermoelastic expansion model and compare well with reported thresholds from near field antenna measurements at 425 to 3000 MHz. Details of the threshold dependence on RF pulse length reveal primary sites of RF to acoustic energy conversion at the mastoid and temporal bone region and the outer layer of the brain from where thermoelastically generated pressure transients excite audible pressure waves at the resonance modes of the skull around 1.7 kHz and of the brain around 11 kHz. If not masked by usually dominating noise from switched gradients, the conditions for hearing RF pulses, as applied to head coils in MR studies with flip angle alpha at main field B0, is given by Tp/ms less than or equal to 0.4 (alpha/pi)B0/[T]. At peak power levels up to 15 kW presently available in clinical MR systems, there is no evidence known for detrimental health effects arising from the RF auditory phenomenon which is a secondary cause associated with primary RF to thermal energy conversion in body tissues. To avoid the RF-evoked sound pressure levels in the head rising above the discomfort threshold at 110 dB SPL, an upper limit of 30 kW applied peak pulse power is suggested for head coils and 6 kW for surface coils.

  16. Suppressed visual looming stimuli are not integrated with auditory looming signals: Evidence from continuous flash suppression.

    PubMed

    Moors, Pieter; Huygelier, Hanne; Wagemans, Johan; de-Wit, Lee; van Ee, Raymond

    2015-01-01

    Previous studies using binocular rivalry have shown that signals in a modality other than the visual can bias dominance durations depending on their congruency with the rivaling stimuli. More recently, studies using continuous flash suppression (CFS) have reported that multisensory integration influences how long visual stimuli remain suppressed. In this study, using CFS, we examined whether the contrast thresholds for detecting visual looming stimuli are influenced by a congruent auditory stimulus. In Experiment 1, we show that a looming visual stimulus can result in lower detection thresholds compared to a static concentric grating, but that auditory tone pips congruent with the looming stimulus did not lower suppression thresholds any further. In Experiments 2, 3, and 4, we again observed no advantage for congruent multisensory stimuli. These results add to our understanding of the conditions under which multisensory integration is possible, and suggest that certain forms of multisensory integration are not evident when the visual stimulus is suppressed from awareness using CFS.

  17. Auditory effects of aircraft noise on people living near an airport.

    PubMed

    Chen, T J; Chen, S S; Hsieh, P Y; Chiang, H C

    1997-01-01

    Two groups of randomly chosen individuals who lived in two communities located different distances from the airport were studied. We monitored audiometry and brainstem auditory-evoked potentials to evaluate cochlear and retrocochlear functions in the individuals studied. The results of audiometry measurements indicated that hearing ability was reduced significantly in individuals who lived near the airport and who were exposed frequently to aircraft noise. Values of pure-tone average, high pure-tone average, and threshold at 4 kHz were all higher in individuals who lived near the airport, compared with those who lived farther away. With respect to brainstem auditory-evoked potentials, latencies between the two groups were not consistently different; however, the abnormality rate of such potentials was significantly higher in volunteers who lived near the airport, compared with less-exposed counterparts. In addition, a positive correlation was found between brainstem auditory-evoked potential latency and behavioral hearing threshold of high-frequency tone in exposed volunteers. We not only confirmed that damage to the peripheral cochlear organs occurred in individuals exposed frequently to aircraft noise, but we demonstrated involvement of the central auditory pathway.

  18. Establishing the Response of Low Frequency Auditory Filters

    NASA Technical Reports Server (NTRS)

    Rafaelof, Menachem; Christian, Andrew; Shepherd, Kevin; Rizzi, Stephen; Stephenson, James

    2017-01-01

    The response of auditory filters is central to frequency selectivity of sound by the human auditory system. This is true especially for realistic complex sounds that are often encountered in many applications such as modeling the audibility of sound, voice recognition, noise cancelation, and the development of advanced hearing aid devices. The purpose of this study was to establish the response of low frequency (below 100Hz) auditory filters. Two experiments were designed and executed; the first was to measure subject's hearing threshold for pure tones (at 25, 31.5, 40, 50, 63 and 80 Hz), and the second was to measure the Psychophysical Tuning Curves (PTCs) at two signal frequencies (Fs= 40 and 63Hz). Experiment 1 involved 36 subjects while experiment 2 used 20 subjects selected from experiment 1. Both experiments were based on a 3-down 1-up 3AFC adaptive staircase test procedure using either a variable level narrow-band noise masker or a tone. A summary of the results includes masked threshold data in form of PTCs, the response of auditory filters, their distribution, and comparison with similar recently published data.

  19. Potentiation of Chemical Ototoxicity by Noise

    PubMed Central

    Steyger, Peter S.

    2010-01-01

    High-intensity and/or prolonged exposure to noise causes temporary or permanent threshold shifts in auditory perception. Occupational exposure to solvents or administration of clinically important drugs, such as aminoglycoside antibiotics and cisplatin, also can induce permanent hearing loss. The mechanisms by which these ototoxic insults cause auditory dysfunction are still being unraveled, yet they share common sequelae, particularly generation of reactive oxygen species, that ultimately lead to hearing loss and deafness. Individuals are frequently exposed to ototoxic chemical contaminants (e.g., fuel) and noise simultaneously in a variety of work and recreational environments. Does simultaneous exposure to chemical ototoxins and noise potentiate auditory dysfunction? Exposure to solvent vapor in noisy environments potentiates the permanent threshold shifts induced by noise alone. Moderate noise levels potentiate both aminoglycoside- and cisplatin-induced ototoxicity in both rate of onset and in severity of auditory dysfunction. Thus, simultaneous exposure to chemical ototoxins and moderate levels of noise can potentiate auditory dysfunction. Preventing the ototoxic synergy of noise and chemical ototoxins requires removing exposure to ototoxins and/or attenuating noise exposure levels when chemical ototoxins are present. PMID:20523755

  20. Behavioral and auditory evoked potential audiograms of a false killer whale (Pseudorca crassidens)

    NASA Astrophysics Data System (ADS)

    Yuen, Michelle M. L.; Nachtigall, Paul E.; Breese, Marlee; Supin, Alexander Ya.

    2005-10-01

    Behavioral and auditory evoked potential (AEP) audiograms of a false killer whale were measured using the same subject and experimental conditions. The objective was to compare and assess the correspondence of auditory thresholds collected by behavioral and electrophysiological techniques. Behavioral audiograms used 3-s pure-tone stimuli from 4 to 45 kHz, and were conducted with a go/no-go modified staircase procedure. AEP audiograms used 20-ms sinusoidally amplitude-modulated tone bursts from 4 to 45 kHz, and the electrophysiological responses were received through gold disc electrodes in rubber suction cups. The behavioral data were reliable and repeatable, with the region of best sensitivity between 16 and 24 kHz and peak sensitivity at 20 kHz. The AEP audiograms produced thresholds that were also consistent over time, with range of best sensitivity from 16 to 22.5 kHz and peak sensitivity at 22.5 kHz. Behavioral thresholds were always lower than AEP thresholds. However, AEP audiograms were completed in a shorter amount of time with minimum participation from the animal. These data indicated that behavioral and AEP techniques can be used successfully and interchangeably to measure cetacean hearing sensitivity.

  1. The Physiological Bases of Hidden Noise-Induced Hearing Loss: Protocol for a Functional Neuroimaging Study

    PubMed Central

    Hall, Deborah A; Guest, Hannah; Prendergast, Garreth; Plack, Christopher J; Francis, Susan T

    2018-01-01

    Background Rodent studies indicate that noise exposure can cause permanent damage to synapses between inner hair cells and high-threshold auditory nerve fibers, without permanently altering threshold sensitivity. These demonstrations of what is commonly known as hidden hearing loss have been confirmed in several rodent species, but the implications for human hearing are unclear. Objective Our Medical Research Council–funded program aims to address this unanswered question, by investigating functional consequences of the damage to the human peripheral and central auditory nervous system that results from cumulative lifetime noise exposure. Behavioral and neuroimaging techniques are being used in a series of parallel studies aimed at detecting hidden hearing loss in humans. The planned neuroimaging study aims to (1) identify central auditory biomarkers associated with hidden hearing loss; (2) investigate whether there are any additive contributions from tinnitus or diminished sound tolerance, which are often comorbid with hearing problems; and (3) explore the relation between subcortical functional magnetic resonance imaging (fMRI) measures and the auditory brainstem response (ABR). Methods Individuals aged 25 to 40 years with pure tone hearing thresholds ≤20 dB hearing level over the range 500 Hz to 8 kHz and no contraindications for MRI or signs of ear disease will be recruited into the study. Lifetime noise exposure will be estimated using an in-depth structured interview. Auditory responses throughout the central auditory system will be recorded using ABR and fMRI. Analyses will focus predominantly on correlations between lifetime noise exposure and auditory response characteristics. Results This paper reports the study protocol. The funding was awarded in July 2013. Enrollment for the study described in this protocol commenced in February 2017 and was completed in December 2017. Results are expected in 2018. Conclusions This challenging and comprehensive study will have the potential to impact diagnostic procedures for hidden hearing loss, enabling early identification of noise-induced auditory damage via the detection of changes in central auditory processing. Consequently, this will generate the opportunity to give personalized advice regarding provision of ear defense and monitoring of further damage, thus reducing the incidence of noise-induced hearing loss. PMID:29523503

  2. [Clinical diagnosis of Treacher Collins syndrome and the efficacy of using BAHA].

    PubMed

    Wang, Y B; Chen, X W; Wang, P; Fan, X M; Fan, Y; Liu, Q; Gao, Z Q

    2017-04-20

    Objective: To evaluate the efficacy of soft or implanted BAHA in the patients of Treacher Collins syndrome(TCS). Method: Six patients of TCS were studied. The Teber scoring system was used to evaluate the deformity degree. The air and bone auditory thresholds were assessed by auditory brain stem response(ABR). The infant-toddler meaningful auditory integration scale(IT-MAIS) was used to assess the auditory development at three time levels: baseline,3 months and 6 months. The hearing threshold and speech recognition score were measured under unaided and aided conditions. Result: The average score of deformity degree was 14.0±0.6. The TCOF1 gene was tested in two patients. The bone conduction hearing thresholds of patients was(18.0±4.5)dBnHL and the air conduction hearing thresholds was (70.5±7.0)dBnHL. The IT-MAIS total, detection and perception scores were improved significantly after wearing softband BAHA and approached the normal level in the 2 patients under 2 years old. The hearing thresholds of 6 patients in unaided and softband BAHA conditions were(65.8±3.8)dBHL and (30.0±3.2)dBHL ( P <0.01) respectively, and 1 implanted BAHA was 15 dBHL. The speech recognition scores of 3 patients in unaided and softband BAHA conditions were(31.7±3.5)% and(86.0±1.7)%( P <0.05) respectively, and 1 implanted BAHA was 96%. Conclusion: Whenever the patient was diagnosed as TCS by the clinical manifestations and genetic testing, BAHA system could help to rehabilitate the hearing to a normal condition. Copyright© by the Editorial Department of Journal of Clinical Otorhinolaryngology Head and Neck Surgery.

  3. Altered cortical and subcortical connectivity due to infrasound administered near the hearing threshold - Evidence from fMRI.

    PubMed

    Weichenberger, Markus; Bauer, Martin; Kühler, Robert; Hensel, Johannes; Forlim, Caroline Garcia; Ihlenfeld, Albrecht; Ittermann, Bernd; Gallinat, Jürgen; Koch, Christian; Kühn, Simone

    2017-01-01

    In the present study, the brain's response towards near- and supra-threshold infrasound (IS) stimulation (sound frequency < 20 Hz) was investigated under resting-state fMRI conditions. The study involved two consecutive sessions. In the first session, 14 healthy participants underwent a hearing threshold-as well as a categorical loudness scaling measurement in which the individual loudness perception for IS was assessed across different sound pressure levels (SPL). In the second session, these participants underwent three resting-state acquisitions, one without auditory stimulation (no-tone), one with a monaurally presented 12-Hz IS tone (near-threshold) and one with a similar tone above the individual hearing threshold corresponding to a 'medium loud' hearing sensation (supra-threshold). Data analysis mainly focused on local connectivity measures by means of regional homogeneity (ReHo), but also involved independent component analysis (ICA) to investigate inter-regional connectivity. ReHo analysis revealed significantly higher local connectivity in right superior temporal gyrus (STG) adjacent to primary auditory cortex, in anterior cingulate cortex (ACC) and, when allowing smaller cluster sizes, also in the right amygdala (rAmyg) during the near-threshold, compared to both the supra-threshold and the no-tone condition. Additional independent component analysis (ICA) revealed large-scale changes of functional connectivity, reflected in a stronger activation of the right amygdala (rAmyg) in the opposite contrast (no-tone > near-threshold) as well as the right superior frontal gyrus (rSFG) during the near-threshold condition. In summary, this study is the first to demonstrate that infrasound near the hearing threshold may induce changes of neural activity across several brain regions, some of which are known to be involved in auditory processing, while others are regarded as keyplayers in emotional and autonomic control. These findings thus allow us to speculate on how continuous exposure to (sub-)liminal IS could exert a pathogenic influence on the organism, yet further (especially longitudinal) studies are required in order to substantialize these findings.

  4. A masking level difference due to harmonicity.

    PubMed

    Treurniet, W C; Boucher, D R

    2001-01-01

    The role of harmonicity in masking was studied by comparing the effect of harmonic and inharmonic maskers on the masked thresholds of noise probes using a three-alternative, forced-choice method. Harmonic maskers were created by selecting sets of partials from a harmonic series with an 88-Hz fundamental and 45 consecutive partials. Inharmonic maskers differed in that the partial frequencies were perturbed to nearby values that were not integer multiples of the fundamental frequency. Average simultaneous-masked thresholds were as much as 10 dB lower with the harmonic masker than with the inharmonic masker, and this difference was unaffected by masker level. It was reduced or eliminated when the harmonic partials were separated by more than 176 Hz, suggesting that the effect is related to the extent to which the harmonics are resolved by auditory filters. The threshold difference was not observed in a forward-masking experiment. Finally, an across-channel mechanism was implicated when the threshold difference was found between a harmonic masker flanked by harmonic bands and a harmonic masker flanked by inharmonic bands. A model developed to explain the observed difference recognizes that an auditory filter output envelope is modulated when the filter passes two or more sinusoids, and that the modulation rate depends on the differences among the input frequencies. For a harmonic masker, the frequency differences of adjacent partials are identical, and all auditory filters have the same dominant modulation rate. For an inharmonic masker, however, the frequency differences are not constant and the envelope modulation rate varies across filters. The model proposes that a lower variability facilitates detection of a probe-induced change in the variability, thus accounting for the masked threshold difference. The model was supported by significantly improved predictions of observed thresholds when the predictor variables included envelope modulation rate variance measured using simulated auditory filters.

  5. Functional impairment of the auditory pathway after perinatal asphyxia and the short-term effect of perinatal propofol anesthesia in lambs.

    PubMed

    Smit, Adriana L; Seehase, Matthias; Stokroos, Robert J; Jellema, Reint K; Felipe, Lilian; Chenault, Michelene N; Anteunis, Lucien J C; Kremer, Bernd; Kramer, Boris W

    2013-07-01

    Sensorineural hearing loss (SNHL) is a common feature in the postasphyxial syndrome in newborns. Several anesthetic drugs have been proposed to attenuate secondary neuronal injury elicited by hypoxia-ischemia. We hypothesized that propofol anesthesia reduces auditory impairment after perinatal asphyxia in comparison with isoflurane. Twenty-three pregnant ewes were randomized to propofol or isoflurane anesthesia and sedation. The lambs underwent in utero umbilical cord occlusion (isoflurane n = 5; propofol n = 7) and were compared with sham-treated animals (isoflurane n = 5; propofol n = 6) at a gestational age of 133 d. For 8 h after delivery by cesarean section, repeated auditory brainstem responses (ABRs) were recorded to obtain hearing thresholds, peak amplitudes, latencies, and interpeak latencies. Significantly elevated mean thresholds, diminished amplitudes, and elevated latencies were observed in the asphyxia group relative to the control group through the observation period. Comparison of anesthetic treatment in the asphyxia group revealed a significantly lower elevation in threshold and less impairment in the ABR amplitudes and latencies during propofol anesthesia as compared with isoflurane anesthesia. Our results support the hypothesis that anesthesia with propofol has a preventive effect on the functional changes to the auditory pathway in the event of perinatal asphyxia.

  6. Extrinsic Embryonic Sensory Stimulation Alters Multimodal Behavior and Cellular Activation

    PubMed Central

    Markham, Rebecca G.; Shimizu, Toru; Lickliter, Robert

    2009-01-01

    Embryonic vision is generated and maintained by spontaneous neuronal activation patterns, yet extrinsic stimulation also sculpts sensory development. Because the sensory and motor systems are interconnected in embryogenesis, how extrinsic sensory activation guides multimodal differentiation is an important topic. Further, it is unknown whether extrinsic stimulation experienced near sensory sensitivity onset contributes to persistent brain changes, ultimately affecting postnatal behavior. To determine the effects of extrinsic stimulation on multimodal development, we delivered auditory stimulation to bobwhite quail groups during early, middle, or late embryogenesis, and then tested postnatal behavioral responsiveness to auditory or visual cues. Auditory preference tendencies were more consistently toward the conspecific stimulus for animals stimulated during late embryogenesis. Groups stimulated during middle or late embryogenesis showed altered postnatal species-typical visual responsiveness, demonstrating a persistent multimodal effect. We also examined whether auditory-related brain regions are receptive to extrinsic input during middle embryogenesis by measuring postnatal cellular activation. Stimulated birds showed a greater number of ZENK-immunopositive cells per unit volume of brain tissue in deep optic tectum, a midbrain region strongly implicated in multimodal function. We observed similar results in the medial and caudomedial nidopallia in the telencephalon. There were no ZENK differences between groups in inferior colliculus or in caudolateral nidopallium, avian analog to prefrontal cortex. To our knowledge, these are the first results linking extrinsic stimulation delivered so early in embryogenesis to changes in postnatal multimodal behavior and cellular activation. The potential role of competitive interactions between the sensory and motor systems is discussed. PMID:18777564

  7. Testing resonating vector strength: Auditory system, electric fish, and noise

    NASA Astrophysics Data System (ADS)

    Leo van Hemmen, J.; Longtin, André; Vollmayr, Andreas N.

    2011-12-01

    Quite often a response to some input with a specific frequency ν○ can be described through a sequence of discrete events. Here, we study the synchrony vector, whose length stands for the vector strength, and in doing so focus on neuronal response in terms of spike times. The latter are supposed to be given by experiment. Instead of singling out the stimulus frequency ν○ we study the synchrony vector as a function of the real frequency variable ν. Its length turns out to be a resonating vector strength in that it shows clear maxima in the neighborhood of ν○ and multiples thereof, hence, allowing an easy way of determining response frequencies. We study this "resonating" vector strength for two concrete but rather different cases, viz., a specific midbrain neuron in the auditory system of cat and a primary detector neuron belonging to the electric sense of the wave-type electric fish Apteronotus leptorhynchus. We show that the resonating vector strength always performs a clear resonance correlated with the phase locking that it quantifies. We analyze the influence of noise and demonstrate how well the resonance associated with maximal vector strength indicates the dominant stimulus frequency. Furthermore, we exhibit how one can obtain a specific phase associated with, for instance, a delay in auditory analysis.

  8. A quantitative analysis of spectral mechanisms involved in auditory detection of coloration by a single wall reflection.

    PubMed

    Buchholz, Jörg M

    2011-07-01

    Coloration detection thresholds (CDTs) were measured for a single reflection as a function of spectral content and reflection delay for diotic stimulus presentation. The direct sound was a 320-ms long burst of bandpass-filtered noise with varying lower and upper cut-off frequencies. The resulting threshold data revealed that: (1) sensitivity decreases with decreasing bandwidth and increasing reflection delay and (2) high-frequency components contribute less to detection than low-frequency components. The auditory processes that may be involved in coloration detection (CD) are discussed in terms of a spectrum-based auditory model, which is conceptually similar to the pattern-transformation model of pitch (Wightman, 1973). Hence, the model derives an auto-correlation function of the input stimulus by applying a frequency analysis to an auditory representation of the power spectrum. It was found that, to successfully describe the quantitative behavior of the CDT data, three important mechanisms need to be included: (1) auditory bandpass filters with a narrower bandwidth than classic Gammatone filters, the increase in spectral resolution was here linked to cochlear suppression, (2) a spectral contrast enhancement process that reflects neural inhibition mechanisms, and (3) integration of information across auditory frequency bands. Copyright © 2011 Elsevier B.V. All rights reserved.

  9. The Effects of Electromagnetic Fields on The Nervous System,

    DTIC Science & Technology

    Superior Cervical Ganglia: Design of Waveguide Apparatus, and Calculation of Specific Absorption Rate; Effects of Electromagnetic Fields on Muscle ... Contraction ; Effects of Electromagnetic Fields on Auditory System: Effect of Noise Masking on Threshold of Evoked Auditory Responses, Microwave-induced Cochlear Microphonics in Guinea Pigs.

  10. [Communication and auditory behavior obtained by auditory evoked potentials in mammals, birds, amphibians, and reptiles].

    PubMed

    Arch-Tirado, Emilio; Collado-Corona, Miguel Angel; Morales-Martínez, José de Jesús

    2004-01-01

    amphibians, Frog catesbiana (frog bull, 30 animals); reptiles, Sceloporus torcuatus (common small lizard, 22 animals); birds: Columba livia (common dove, 20 animals), and mammals, Cavia porcellus, (guinea pig, 20 animals). With regard to lodging, all animals were maintained at the Institute of Human Communication Disorders, were fed with special food for each species, and had water available ad libitum. Regarding procedure, for carrying out analysis of auditory evoked potentials of brain stem SPL amphibians, birds, and mammals were anesthetized with ketamine 20, 25, and 50 mg/kg, by injection. Reptiles were anesthetized by freezing (6 degrees C). Study subjects had needle electrodes placed in an imaginary line on the half sagittal line between both ears and eyes, behind right ear, and behind left ear. Stimulation was carried out inside a no noise site by means of a horn in free field. The sign was filtered at between 100 and 3,000 Hz and analyzed in a computer for provoked potentials (Racia APE 78). In data shown by amphibians, wave-evoked responses showed greater latency than those of the other species. In reptiles, latency was observed as reduced in comparison with amphibians. In the case of birds, lesser latency values were observed, while in the case of guinea pigs latencies were greater than those of doves but they were stimulated by 10 dB, which demonstrated best auditory threshold in the four studied species. Last, it was corroborated that as the auditory threshold of each species it descends conforms to it advances in the phylogenetic scale. Beginning with these registrations, we care able to say that response for evoked brain stem potential showed to be more complex and lesser values of absolute latency as we advance along the phylogenetic scale; thus, the opposing auditory threshold is better agreement with regard to the phylogenetic scale among studied species. These data indicated to us that seeking of auditory information is more complex in more evolved species.

  11. Mismatch negativity (MMN) reveals inefficient auditory ventral stream function in chronic auditory comprehension impairments.

    PubMed

    Robson, Holly; Cloutman, Lauren; Keidel, James L; Sage, Karen; Drakesmith, Mark; Welbourne, Stephen

    2014-10-01

    Auditory discrimination is significantly impaired in Wernicke's aphasia (WA) and thought to be causatively related to the language comprehension impairment which characterises the condition. This study used mismatch negativity (MMN) to investigate the neural responses corresponding to successful and impaired auditory discrimination in WA. Behavioural auditory discrimination thresholds of consonant-vowel-consonant (CVC) syllables and pure tones (PTs) were measured in WA (n = 7) and control (n = 7) participants. Threshold results were used to develop multiple deviant MMN oddball paradigms containing deviants which were either perceptibly or non-perceptibly different from the standard stimuli. MMN analysis investigated differences associated with group, condition and perceptibility as well as the relationship between MMN responses and comprehension (within which behavioural auditory discrimination profiles were examined). MMN waveforms were observable to both perceptible and non-perceptible auditory changes. Perceptibility was only distinguished by MMN amplitude in the PT condition. The WA group could be distinguished from controls by an increase in MMN response latency to CVC stimuli change. Correlation analyses displayed a relationship between behavioural CVC discrimination and MMN amplitude in the control group, where greater amplitude corresponded to better discrimination. The WA group displayed the inverse effect; both discrimination accuracy and auditory comprehension scores were reduced with increased MMN amplitude. In the WA group, a further correlation was observed between the lateralisation of MMN response and CVC discrimination accuracy; the greater the bilateral involvement the better the discrimination accuracy. The results from this study provide further evidence for the nature of auditory comprehension impairment in WA and indicate that the auditory discrimination deficit is grounded in a reduced ability to engage in efficient hierarchical processing and the construction of invariant auditory objects. Correlation results suggest that people with chronic WA may rely on an inefficient, noisy right hemisphere auditory stream when attempting to process speech stimuli.

  12. Social isolation reduces serotonergic fiber density in the inferior colliculus of female, but not male, mice.

    PubMed

    Keesom, Sarah M; Morningstar, Mitchell D; Sandlain, Rebecca; Wise, Bradley M; Hurley, Laura M

    2018-05-12

    Early-life experiences, including maternal deprivation and social isolation during adolescence, have a profound influence on a range of adult social behaviors. Post-weaning social isolation in rodents influences behavior in part through the alteration of neuromodulatory systems, including the serotonergic system. Of significance to social behavior, the serotonergic system richly innervates brain areas involved in vocal communication, including the auditory system. However, the influence of isolation on serotonergic input to the auditory system remains underexplored. Here, we assess whether 4 weeks of post-weaning individual housing alters serotonergic fiber density in the inferior colliculus (IC), an auditory midbrain nucleus in which serotonin alters auditory-evoked activity. Individually housed male and female mice were compared to conspecifics housed socially in groups of three. Serotonergic projections were subsequently visualized with an antibody to the serotonin transporter, which labels serotonergic fibers with relatively high selectivity. Fiber densities were estimated in the three major subregions of the IC using line-scan intensity analysis. Individually housed female mice showed a significantly reduced fiber density relative to socially housed females, which was accompanied by a lower body weight in individually housed females. In contrast, social isolation did not affect serotonergic fiber density in the IC of males. This finding suggests that sensitivity of the serotonergic system to social isolation is sex-dependent, which could be due to a sex difference in the effect of isolation on psychosocial stress. Since serotonin availability depends on social context, this finding further suggests that social isolation can alter the acute social regulation of auditory processing. Copyright © 2018. Published by Elsevier B.V.

  13. Inter-subject synchronization of brain responses during natural music listening.

    PubMed

    Abrams, Daniel A; Ryali, Srikanth; Chen, Tianwen; Chordia, Parag; Khouzam, Amirah; Levitin, Daniel J; Menon, Vinod

    2013-05-01

    Music is a cultural universal and a rich part of the human experience. However, little is known about common brain systems that support the processing and integration of extended, naturalistic 'real-world' music stimuli. We examined this question by presenting extended excerpts of symphonic music, and two pseudomusical stimuli in which the temporal and spectral structure of the Natural Music condition were disrupted, to non-musician participants undergoing functional brain imaging and analysing synchronized spatiotemporal activity patterns between listeners. We found that music synchronizes brain responses across listeners in bilateral auditory midbrain and thalamus, primary auditory and auditory association cortex, right-lateralized structures in frontal and parietal cortex, and motor planning regions of the brain. These effects were greater for natural music compared to the pseudo-musical control conditions. Remarkably, inter-subject synchronization in the inferior colliculus and medial geniculate nucleus was also greater for the natural music condition, indicating that synchronization at these early stages of auditory processing is not simply driven by spectro-temporal features of the stimulus. Increased synchronization during music listening was also evident in a right-hemisphere fronto-parietal attention network and bilateral cortical regions involved in motor planning. While these brain structures have previously been implicated in various aspects of musical processing, our results are the first to show that these regions track structural elements of a musical stimulus over extended time periods lasting minutes. Our results show that a hierarchical distributed network is synchronized between individuals during the processing of extended musical sequences, and provide new insight into the temporal integration of complex and biologically salient auditory sequences. © 2013 Federation of European Neuroscience Societies and John Wiley & Sons Ltd.

  14. Physiological and behavioral effects of tilt-induced body fluid shifts

    NASA Technical Reports Server (NTRS)

    Parker, D. E.; Tjernstrom, O.; Ivarsson, A.; Gulledge, W. L.; Poston, R. L.

    1983-01-01

    This paper addresses the 'fluid shift theory' of space motion sickness. The primary purpose of the research was the development of procedures to assess individual differences in response to rostral body fluid shifts on earth. Experiment I examined inner ear fluid pressure changes during head-down tilt in intact human beings. Tilt produced reliable changes. Differences among subjects and between ears within the same subject were observed. Experiment II examined auditory threshold changes during tilt. Tilt elicited increased auditory thresholds, suggesting that sensory depression may result from increased inner ear fluid pressure. Additional observations on rotation magnitude estimation during head-down tilt, which indicate that rostral fluid shifts may depress semicircular canal activity, are briefly described. The results of this research suggest that the inner ear pressure and auditory threshold shift procedures could be used to assess individual differences among astronauts prior to space flight. Results from the terrestrial observations could be related to reported incidence/severity of motion sickness in space and used to evaluate the fluid shift theory of space motion sickness.

  15. Revisiting gender, race, and ear differences in peripheral auditory function

    NASA Astrophysics Data System (ADS)

    Boothalingam, Sriram; Klyn, Niall A. M.; Stiepan, Samantha M.; Wilson, Uzma S.; Lee, Jungwha; Siegel, Jonathan H.; Dhar, Sumitrajit

    2018-05-01

    Various measures of auditory function are reported to be superior in females as compared to males, in African American compared to Caucasian individuals, and in right compared to left ears. We re-examined the influence of these subject variables on hearing thresholds and otoacoustic emissions (OAEs) in a sample of 887 human participants between 10 and 68 years of age. Even though the variables of interest here have been examined before, previous attempts have largely been limited to frequencies up to 8 kHz. We used state-of-the-art signal delivery and recording techniques that compensated for individual differences in ear canal acoustics, allowing us to measure hearing thresholds and OAEs up to 20 kHz. The use of these modern calibration and recording techniques provided the motivation for re-examining these commonly studied variables. While controlling for age, noise exposure history, and general health history, we attempted to isolate the effects of gender, race, and ear (left versus right) on hearing thresholds and OAEs. Our results challenge the notion of a right ear advantage and question the existence of a significant gender and race differences in both hearing thresholds and OAE levels. These results suggest that ear canal anatomy and acoustics should be important considerations when evaluating the influence of gender, race, and ear on peripheral auditory function.

  16. Effect of conductive hearing loss on central auditory function.

    PubMed

    Bayat, Arash; Farhadi, Mohammad; Emamdjomeh, Hesam; Saki, Nader; Mirmomeni, Golshan; Rahim, Fakher

    It has been demonstrated that long-term Conductive Hearing Loss (CHL) may influence the precise detection of the temporal features of acoustic signals or Auditory Temporal Processing (ATP). It can be argued that ATP may be the underlying component of many central auditory processing capabilities such as speech comprehension or sound localization. Little is known about the consequences of CHL on temporal aspects of central auditory processing. This study was designed to assess auditory temporal processing ability in individuals with chronic CHL. During this analytical cross-sectional study, 52 patients with mild to moderate chronic CHL and 52 normal-hearing listeners (control), aged between 18 and 45 year-old, were recruited. In order to evaluate auditory temporal processing, the Gaps-in-Noise (GIN) test was used. The results obtained for each ear were analyzed based on the gap perception threshold and the percentage of correct responses. The average of GIN thresholds was significantly smaller for the control group than for the CHL group for both ears (right: p=0.004; left: p<0.001). Individuals with CHL had significantly lower correct responses than individuals with normal hearing for both sides (p<0.001). No correlation was found between GIN performance and degree of hearing loss in either group (p>0.05). The results suggest reduced auditory temporal processing ability in adults with CHL compared to normal hearing subjects. Therefore, developing a clinical protocol to evaluate auditory temporal processing in this population is recommended. Copyright © 2017 Associação Brasileira de Otorrinolaringologia e Cirurgia Cérvico-Facial. Published by Elsevier Editora Ltda. All rights reserved.

  17. Comparative Impacts of Scala Vestibuli Versus Scala Tympani Cochlear Implantation on Auditory Performances and Programming Parameters in Partially Ossified Cochleae.

    PubMed

    Trudel, Mathieu; Côté, Mathieu; Philippon, Daniel; Simonyan, David; Villemure-Poliquin, Noémie; Bussières, Richard

    2018-07-01

    To compare scala vestibuli versus scala tympani cochlear implantation in terms of postoperative auditory performances and programming parameters in patients with severe scala tympani ossification. Retrospective case-control study. Tertiary referral center. One hundred three pediatric and adult patients who underwent cochlear implant surgery between 2000 and 2016. Three groups were formed: a scala vestibuli group, a scala tympani with ossification group, and a scala tympani without ossification group. Patients were matched based on their age, sex, duration of deafness, and side of implantation (ratio of 1:2:2). Postoperative evaluation of auditory performances and programming parameters following intensive functional rehabilitation program completion. Multimedia adaptive test (MAT), hearing in noise test (HINT SNR +10 dB, HINT SNR +5 dB, and HINT SNR +0 dB), impedances, neural response telemetry thresholds (NRT), neural response imaging thresholds (NRI), comfortable levels (C-levels), and threshold levels (T-levels) were compared between groups. Twenty-one patients underwent scala vestibuli cochlear implantation: 19 adults and two children. Auditory performances were similar between groups, although sentence recognition in a noisy environment was slightly higher in the scala vestibuli group. Impedance values were also higher in the scala vestibuli group, but all other programming parameters were similar between groups. We present the largest series of patients with scala vestibuli cochlear implantation. This approach provides at least comparable auditory performances without having any deleterious effects on programming parameters. This viable and useful insertion route might be the primary surgical alternative when facing partial cochlear ossification.

  18. Delayed changes in auditory status in cochlear implant users with preserved acoustic hearing.

    PubMed

    Scheperle, Rachel A; Tejani, Viral D; Omtvedt, Julia K; Brown, Carolyn J; Abbas, Paul J; Hansen, Marlan R; Gantz, Bruce J; Oleson, Jacob J; Ozanne, Marie V

    2017-07-01

    This retrospective review explores delayed-onset hearing loss in 85 individuals receiving cochlear implants designed to preserve acoustic hearing at the University of Iowa Hospitals and Clinics between 2001 and 2015. Repeated measures of unaided behavioral audiometric thresholds, electrode impedance, and electrically evoked compound action potential (ECAP) amplitude growth functions were used to characterize longitudinal changes in auditory status. Participants were grouped into two primary categories according to changes in unaided behavioral thresholds: (1) stable hearing or symmetrical hearing loss and (2) delayed loss of hearing in the implanted ear. Thirty-eight percent of this sample presented with delayed-onset hearing loss of various degrees and rates of change. Neither array type nor insertion approach (round window or cochleostomy) had a significant effect on prevalence. Electrode impedance increased abruptly for many individuals exhibiting precipitous hearing loss; the increase was often transient. The impedance increases were significantly larger than the impedance changes observed for individuals with stable or symmetrical hearing loss. Moreover, the impedance changes were associated with changes in behavioral thresholds for individuals with a precipitous drop in behavioral thresholds. These findings suggest a change in the electrode environment coincident with the change in auditory status. Changes in ECAP thresholds, growth function slopes, and suprathreshold amplitudes were not correlated with changes in behavioral thresholds, suggesting that neural responsiveness in the region excited by the implant is relatively stable. Further exploration into etiology of delayed-onset hearing loss post implantation is needed, with particular interest in mechanisms associated with changes in the intracochlear environment. Copyright © 2017 Elsevier B.V. All rights reserved.

  19. Short-wavelength infrared laser activates the auditory neurons: comparing the effect of 980 vs. 810 nm wavelength.

    PubMed

    Tian, Lan; Wang, Jingxuan; Wei, Ying; Lu, Jianren; Xu, Anting; Xia, Ming

    2017-02-01

    Research on auditory neural triggering by optical stimulus has been developed as an emerging technique to elicit the auditory neural response, which may provide an alternative method to the cochlear implants. However, most previous studies have been focused on using longer-wavelength near-infrared (>1800 nm) laser. The effect comparison of different laser wavelengths in short-wavelength infrared (SWIR) range on the auditory neural stimulation has not been previously explored. In this study, the pulsed 980- and 810-nm SWIR lasers were applied as optical stimuli to irradiate the auditory neurons in the cochlea of five deafened guinea pigs and the neural response under the two laser wavelengths was compared by recording the evoked optical auditory brainstem responses (OABRs). In addition, the effect of radiant exposure, laser pulse width, and threshold with the two laser wavelengths was further investigated and compared. The one-way analysis of variance (ANOVA) was used to analyze those data. Results showed that the OABR amplitude with the 980-nm laser is higher than the amplitude with the 810-nm laser under the same radiant exposure from 10 to 102 mJ/cm 2 . And the laser stimulation of 980 nm wavelength has lower threshold radiant exposure than the 810 nm wavelength at varied pulse duration in 20-500 μs range. Moreover, the 810-nm laser has a wider optimized pulse duration range than the 980-nm laser for the auditory neural stimulation.

  20. The Physiological Bases of Hidden Noise-Induced Hearing Loss: Protocol for a Functional Neuroimaging Study.

    PubMed

    Dewey, Rebecca Susan; Hall, Deborah A; Guest, Hannah; Prendergast, Garreth; Plack, Christopher J; Francis, Susan T

    2018-03-09

    Rodent studies indicate that noise exposure can cause permanent damage to synapses between inner hair cells and high-threshold auditory nerve fibers, without permanently altering threshold sensitivity. These demonstrations of what is commonly known as hidden hearing loss have been confirmed in several rodent species, but the implications for human hearing are unclear. Our Medical Research Council-funded program aims to address this unanswered question, by investigating functional consequences of the damage to the human peripheral and central auditory nervous system that results from cumulative lifetime noise exposure. Behavioral and neuroimaging techniques are being used in a series of parallel studies aimed at detecting hidden hearing loss in humans. The planned neuroimaging study aims to (1) identify central auditory biomarkers associated with hidden hearing loss; (2) investigate whether there are any additive contributions from tinnitus or diminished sound tolerance, which are often comorbid with hearing problems; and (3) explore the relation between subcortical functional magnetic resonance imaging (fMRI) measures and the auditory brainstem response (ABR). Individuals aged 25 to 40 years with pure tone hearing thresholds ≤20 dB hearing level over the range 500 Hz to 8 kHz and no contraindications for MRI or signs of ear disease will be recruited into the study. Lifetime noise exposure will be estimated using an in-depth structured interview. Auditory responses throughout the central auditory system will be recorded using ABR and fMRI. Analyses will focus predominantly on correlations between lifetime noise exposure and auditory response characteristics. This paper reports the study protocol. The funding was awarded in July 2013. Enrollment for the study described in this protocol commenced in February 2017 and was completed in December 2017. Results are expected in 2018. This challenging and comprehensive study will have the potential to impact diagnostic procedures for hidden hearing loss, enabling early identification of noise-induced auditory damage via the detection of changes in central auditory processing. Consequently, this will generate the opportunity to give personalized advice regarding provision of ear defense and monitoring of further damage, thus reducing the incidence of noise-induced hearing loss. ©Rebecca Susan Dewey, Deborah A Hall, Hannah Guest, Garreth Prendergast, Christopher J Plack, Susan T Francis. Originally published in JMIR Research Protocols (http://www.researchprotocols.org), 09.03.2018.

  1. Expression patterns of ion channels and structural proteins in a multimodal cell type of the avian optic tectum.

    PubMed

    Lischka, Katharina; Ladel, Simone; Luksch, Harald; Weigel, Stefan

    2018-02-15

    The midbrain is an important subcortical area involved in distinct functions such as multimodal integration, movement initiation, bottom-up, and top-down attention. Our group is particularly interested in cellular computation of multisensory integration. We focus on the visual part of the avian midbrain, the optic tectum (TeO, counterpart to mammalian superior colliculus). This area has a layered structure with the great advantage of distinct input and output regions. In chicken, the TeO is organized in 15 layers where visual input targets the superficial layers while auditory input terminates in deeper layers. One specific cell type, the Shepherd's crook neuron (SCN), extends dendrites in both input regions. The characteristic feature of these neurons is the axon origin at the apical dendrite. The molecular identity of this characteristic region and thus, the site of action potential generation are of particular importance to understand signal flow and cellular computation in this neuron. We present immunohistochemical data of structural proteins (NF200, Ankyrin G, and Myelin) and ion channels (Pan-Na v , Na v 1.6, and K v 3.1b). NF200 is strongly expressed in the axon. Ankyrin G is mainly expressed at the axon initial segment (AIS). Myelination starts after the AIS as well as the distribution of Na v channels on the axon. The subtype Na v 1.6 has a high density in this region. K v 3.1b is restricted to the soma, the primary neurite and the axon branch. The distribution of functional molecules in SCNs provides insight into the information flow and the integration of sensory modalities in the TeO of the avian midbrain. © 2017 Wiley Periodicals, Inc.

  2. Three-dimensional brain reconstruction of in vivo electrode tracks for neuroscience and neural prosthetic applications

    PubMed Central

    Markovitz, Craig D.; Tang, Tien T.; Edge, David P.; Lim, Hubert H.

    2012-01-01

    The brain is a densely interconnected network that relies on populations of neurons within and across multiple nuclei to code for features leading to perception and action. However, the neurophysiology field is still dominated by the characterization of individual neurons, rather than simultaneous recordings across multiple regions, without consistent spatial reconstruction of their locations for comparisons across studies. There are sophisticated histological and imaging techniques for performing brain reconstructions. However, what is needed is a method that is relatively easy and inexpensive to implement in a typical neurophysiology lab and provides consistent identification of electrode locations to make it widely used for pooling data across studies and research groups. This paper presents our initial development of such an approach for reconstructing electrode tracks and site locations within the guinea pig inferior colliculus (IC) to identify its functional organization for frequency coding relevant for a new auditory midbrain implant (AMI). Encouragingly, the spatial error associated with different individuals reconstructing electrode tracks for the same midbrain was less than 65 μm, corresponding to an error of ~1.5% relative to the entire IC structure (~4–5 mm diameter sphere). Furthermore, the reconstructed frequency laminae of the IC were consistently aligned across three sampled midbrains, demonstrating the ability to use our method to combine location data across animals. Hopefully, through further improvements in our reconstruction method, it can be used as a standard protocol across neurophysiology labs to characterize neural data not only within the IC but also within other brain regions to help bridge the gap between cellular activity and network function. Clinically, correlating function with location within and across multiple brain regions can guide optimal placement of electrodes for the growing field of neural prosthetics. PMID:22754502

  3. Revealing and quantifying the impaired phonological analysis underpinning impaired comprehension in Wernicke's aphasia.

    PubMed

    Robson, Holly; Keidel, James L; Ralph, Matthew A Lambon; Sage, Karen

    2012-01-01

    Wernicke's aphasia is a condition which results in severely disrupted language comprehension following a lesion to the left temporo-parietal region. A phonological analysis deficit has traditionally been held to be at the root of the comprehension impairment in Wernicke's aphasia, a view consistent with current functional neuroimaging which finds areas in the superior temporal cortex responsive to phonological stimuli. However behavioural evidence to support the link between a phonological analysis deficit and auditory comprehension has not been yet shown. This study extends seminal work by Blumstein, Baker, and Goodglass (1977) to investigate the relationship between acoustic-phonological perception, measured through phonological discrimination, and auditory comprehension in a case series of Wernicke's aphasia participants. A novel adaptive phonological discrimination task was used to obtain reliable thresholds of the phonological perceptual distance required between nonwords before they could be discriminated. Wernicke's aphasia participants showed significantly elevated thresholds compared to age and hearing matched control participants. Acoustic-phonological thresholds correlated strongly with auditory comprehension abilities in Wernicke's aphasia. In contrast, nonverbal semantic skills showed no relationship with auditory comprehension. The results are evaluated in the context of recent neurobiological models of language and suggest that impaired acoustic-phonological perception underlies the comprehension impairment in Wernicke's aphasia and favour models of language which propose a leftward asymmetry in phonological analysis. Copyright © 2011 Elsevier Ltd. All rights reserved.

  4. On the Etiology of Listening Difficulties in Noise Despite Clinically Normal Audiograms

    PubMed Central

    2017-01-01

    Many people with difficulties following conversations in noisy settings have “clinically normal” audiograms, that is, tone thresholds better than 20 dB HL from 0.1 to 8 kHz. This review summarizes the possible causes of such difficulties, and examines established as well as promising new psychoacoustic and electrophysiologic approaches to differentiate between them. Deficits at the level of the auditory periphery are possible even if thresholds remain around 0 dB HL, and become probable when they reach 10 to 20 dB HL. Extending the audiogram beyond 8 kHz can identify early signs of noise-induced trauma to the vulnerable basal turn of the cochlea, and might point to “hidden” losses at lower frequencies that could compromise speech reception in noise. Listening difficulties can also be a consequence of impaired central auditory processing, resulting from lesions affecting the auditory brainstem or cortex, or from abnormal patterns of sound input during developmental sensitive periods and even in adulthood. Such auditory processing disorders should be distinguished from (cognitive) linguistic deficits, and from problems with attention or working memory that may not be specific to the auditory modality. Improved diagnosis of the causes of listening difficulties in noise should lead to better treatment outcomes, by optimizing auditory training procedures to the specific deficits of individual patients, for example. PMID:28002080

  5. Understanding an Audiogram. Tipsheet: Serving Students Who Are Hard of Hearing

    ERIC Educational Resources Information Center

    Johnson, Marni

    2009-01-01

    The type, degree, and configuration of hearing loss, if one is present, can be determined by reading an audiogram. The type of hearing loss is determined by comparing auditory thresholds obtained using head-phones or insert earphones (air-conduction thresholds) to those obtained using a bone oscillator (bone-conduction thresholds). By itself, the…

  6. A Psychophysical Evaluation of Spectral Enhancement

    ERIC Educational Resources Information Center

    DiGiovanni, Jeffrey J.; Nelson, Peggy B.; Schlauch, Robert S.

    2005-01-01

    Listeners with sensorineural hearing loss have well-documented elevated hearing thresholds; reduced auditory dynamic ranges; and reduced spectral (or frequency) resolution that may reduce speech intelligibility, especially in the presence of competing sounds. Amplification and amplitude compression partially compensate for elevated thresholds and…

  7. Neuronal adaptation, novelty detection and regularity encoding in audition

    PubMed Central

    Malmierca, Manuel S.; Sanchez-Vives, Maria V.; Escera, Carles; Bendixen, Alexandra

    2014-01-01

    The ability to detect unexpected stimuli in the acoustic environment and determine their behavioral relevance to plan an appropriate reaction is critical for survival. This perspective article brings together several viewpoints and discusses current advances in understanding the mechanisms the auditory system implements to extract relevant information from incoming inputs and to identify unexpected events. This extraordinary sensitivity relies on the capacity to codify acoustic regularities, and is based on encoding properties that are present as early as the auditory midbrain. We review state-of-the-art studies on the processing of stimulus changes using non-invasive methods to record the summed electrical potentials in humans, and those that examine single-neuron responses in animal models. Human data will be based on mismatch negativity (MMN) and enhanced middle latency responses (MLR). Animal data will be based on the activity of single neurons at the cortical and subcortical levels, relating selective responses to novel stimuli to the MMN and to stimulus-specific neural adaptation (SSA). Theoretical models of the neural mechanisms that could create SSA and novelty responses will also be discussed. PMID:25009474

  8. En1 directs superior olivary complex neuron positioning, survival, and expression of FoxP1.

    PubMed

    Altieri, Stefanie C; Jalabi, Walid; Zhao, Tianna; Romito-DiGiacomo, Rita R; Maricich, Stephen M

    2015-12-01

    Little is known about the genetic pathways and transcription factors that control development and maturation of central auditory neurons. En1, a gene expressed by a subset of developing and mature superior olivary complex (SOC) cells, encodes a homeodomain transcription factor important for neuronal development in the midbrain, cerebellum, hindbrain and spinal cord. Using genetic fate-mapping techniques, we show that all En1-lineal cells in the SOC are neurons and that these neurons are glycinergic, cholinergic and GABAergic in neurotransmitter phenotype. En1 deletion does not interfere with specification or neural fate of these cells, but does cause aberrant positioning and subsequent death of all En1-lineal SOC neurons by early postnatal ages. En1-null cells also fail to express the transcription factor FoxP1, suggesting that FoxP1 lies downstream of En1. Our data define important roles for En1 in the development and maturation of a diverse group of brainstem auditory neurons. Copyright © 2015 Elsevier Inc. All rights reserved.

  9. Selective Auditory Attention in Adults: Effects of Rhythmic Structure of the Competing Language

    ERIC Educational Resources Information Center

    Reel, Leigh Ann; Hicks, Candace Bourland

    2012-01-01

    Purpose: The authors assessed adult selective auditory attention to determine effects of (a) differences between the vocal/speaking characteristics of different mixed-gender pairs of masking talkers and (b) the rhythmic structure of the language of the competing speech. Method: Reception thresholds for English sentences were measured for 50…

  10. Auditory Stream Segregation and the Perception of Across-Frequency Synchrony

    ERIC Educational Resources Information Center

    Micheyl, Christophe; Hunter, Cynthia; Oxenham, Andrew J.

    2010-01-01

    This study explored the extent to which sequential auditory grouping affects the perception of temporal synchrony. In Experiment 1, listeners discriminated between 2 pairs of asynchronous "target" tones at different frequencies, A and B, in which the B tone either led or lagged. Thresholds were markedly higher when the target tones were temporally…

  11. Seasonal plasticity of auditory hair cell frequency sensitivity correlates with plasma steroid levels in vocal fish

    PubMed Central

    Rohmann, Kevin N.; Bass, Andrew H.

    2011-01-01

    SUMMARY Vertebrates displaying seasonal shifts in reproductive behavior provide the opportunity to investigate bidirectional plasticity in sensory function. The midshipman teleost fish exhibits steroid-dependent plasticity in frequency encoding by eighth nerve auditory afferents. In this study, evoked potentials were recorded in vivo from the saccule, the main auditory division of the inner ear of most teleosts, to test the hypothesis that males and females exhibit seasonal changes in hair cell physiology in relation to seasonal changes in plasma levels of steroids. Thresholds across the predominant frequency range of natural vocalizations were significantly less in both sexes in reproductive compared with non-reproductive conditions, with differences greatest at frequencies corresponding to call upper harmonics. A subset of non-reproductive males exhibiting an intermediate saccular phenotype had elevated testosterone levels, supporting the hypothesis that rising steroid levels induce non-reproductive to reproductive transitions in saccular physiology. We propose that elevated levels of steroids act via long-term (days to weeks) signaling pathways to upregulate ion channel expression generating higher resonant frequencies characteristic of non-mammalian auditory hair cells, thereby lowering acoustic thresholds. PMID:21562181

  12. Hearing assessment during deep brain stimulation of the central nucleus of the inferior colliculus and dentate cerebellar nucleus in rat.

    PubMed

    Smit, Jasper V; Jahanshahi, Ali; Janssen, Marcus L F; Stokroos, Robert J; Temel, Yasin

    2017-01-01

    Recently it has been shown in animal studies that deep brain stimulation (DBS) of auditory structures was able to reduce tinnitus-like behavior. However, the question arises whether hearing might be impaired when interfering in auditory-related network loops with DBS. The auditory brainstem response (ABR) was measured in rats during high frequency stimulation (HFS) and low frequency stimulation (LFS) in the central nucleus of the inferior colliculus (CIC, n  = 5) or dentate cerebellar nucleus (DCBN, n  = 5). Besides hearing thresholds using ABR, relative measures of latency and amplitude can be extracted from the ABR. In this study ABR thresholds, interpeak latencies (I-III, III-V, I-V) and V/I amplitude ratio were measured during off-stimulation state and during LFS and HFS. In both the CIC and the CNBN groups, no significant differences were observed for all outcome measures. DBS in both the CIC and the CNBN did not have adverse effects on hearing measurements. These findings suggest that DBS does not hamper physiological processing in the auditory circuitry.

  13. Maturation of the auditory system in clinically normal puppies as reflected by the brain stem auditory-evoked potential wave V latency-intensity curve and rarefaction-condensation differential potentials.

    PubMed

    Poncelet, L C; Coppens, A G; Meuris, S I; Deltenre, P F

    2000-11-01

    To evaluate auditory maturation in puppies. Ten clinically normal Beagle puppies. Puppies were examined repeatedly from days 11 to 36 after birth (8 measurements). Click-evoked brain stem auditory-evoked potentials (BAEP) were obtained in response to rarefaction and condensation click stimuli from 90 dB normal hearing level to wave V threshold, using steps of 10 dB. Responses were added, providing an equivalent to alternate polarity clicks, and subtracted, providing the rarefaction-condensation differential potential (RCDP). Steps of 5 dB were used to determine thresholds of RCDP and wave V. Slope of the low-intensity segment of the wave V latency-intensity curve was calculated. The intensity range at which RCDP could not be recorded (ie, pre-RCDP range) was calculated by subtracting the threshold of wave V from threshold of RCDP RESULTS: Slope of the wave V latency-intensity curve low-intensity segment evolved with age, changing from (mean +/- SD) -90.8 +/- 41.6 to -27.8 +/- 4.1 micros/dB. Similar results were obtained from days 23 through 36. The pre-RCDP range diminished as puppies became older, decreasing from 40.0 +/- 7.5 to 20.5 +/- 6.4 dB. Changes in slope of the latency-intensity curve with age suggest enlargement of the audible range of frequencies toward high frequencies up to the third week after birth. Decrease in the pre-RCDP range may indicate an increase of the audible range of frequencies toward low frequencies. Age-related reference values will assist clinicians in detecting hearing loss in puppies.

  14. Acoustic pressure waves induced in human heads by RF pulses from high-field MRI scanners.

    PubMed

    Lin, James C; Wang, Zhangwei

    2010-04-01

    The current evolution toward greater image resolution from magnetic resonance image (MRI) scanners has prompted the exploration of higher strength magnetic fields and use of higher levels of radio frequencies (RFs). Auditory perception of RF pulses by humans has been reported during MRI with head coils. It has shown that the mechanism of interaction for the auditory effect is caused by an RF pulse-induced thermoelastic pressure wave inside the head. We report a computational study of the intensity and frequency of thermoelastic pressure waves generated by RF pulses in the human head inside high-field MRI and clinical scanners. The U.S. Food and Drug Administration (U.S. FDA) guides limit the local specific absorption rate (SAR) in the body-including the head-to 8 W kg(-1). We present results as functions of SAR and show that for a given SAR the peak acoustic pressures generated in the anatomic head model were essentially the same at 64, 300, and 400 MHz (1.5, 7.0, and 9.4 T). Pressures generated in the anatomic head are comparable to the threshold pressure of 20 mPa for sound perception by humans at the cochlea for 4 W kg(-1). Moreover, results indicate that the peak acoustic pressure in the brain is only 2 to 3 times the auditory threshold at the U.S. FDA guideline of 8 W kg(-1). Even at a high SAR of 20 W kg(-1), where the acoustic pressure in the brain could be more than 7 times the auditory threshold, the sound pressure levels would not be more than 17 db above threshold of perception at the cochlea.

  15. Effects of sound intensity on temporal properties of inhibition in the pallid bat auditory cortex.

    PubMed

    Razak, Khaleel A

    2013-01-01

    Auditory neurons in bats that use frequency modulated (FM) sweeps for echolocation are selective for the behaviorally-relevant rates and direction of frequency change. Such selectivity arises through spectrotemporal interactions between excitatory and inhibitory components of the receptive field. In the pallid bat auditory system, the relationship between FM sweep direction/rate selectivity and spectral and temporal properties of sideband inhibition have been characterized. Of note is the temporal asymmetry in sideband inhibition, with low-frequency inhibition (LFI) exhibiting faster arrival times compared to high-frequency inhibition (HFI). Using the two-tone inhibition over time (TTI) stimulus paradigm, this study investigated the interactions between two sound parameters in shaping sideband inhibition: intensity and time. Specifically, the impact of changing relative intensities of the excitatory and inhibitory tones on arrival time of inhibition was studied. Using this stimulation paradigm, single unit data from the auditory cortex of pentobarbital-anesthetized cortex show that the threshold for LFI is on average ~8 dB lower than HFI. For equal intensity tones near threshold, LFI is stronger than HFI. When the inhibitory tone intensity is increased further from threshold, the strength asymmetry decreased. The temporal asymmetry in LFI vs. HFI arrival time is strongest when the excitatory and inhibitory tones are of equal intensities or if excitatory tone is louder. As inhibitory tone intensity is increased, temporal asymmetry decreased suggesting that the relative magnitude of excitatory and inhibitory inputs shape arrival time of inhibition and FM sweep rate and direction selectivity. Given that most FM bats use downward sweeps as echolocation calls, a similar asymmetry in threshold and strength of LFI vs. HFI may be a general adaptation to enhance direction selectivity while maintaining sweep-rate selective responses to downward sweeps.

  16. Putting it in Context: Linking Auditory Processing with Social Behavior Circuits in the Vertebrate Brain.

    PubMed

    Petersen, Christopher L; Hurley, Laura M

    2017-10-01

    Context is critical to the adaptive value of communication. Sensory systems such as the auditory system represent an important juncture at which information on physiological state or social valence can be added to communicative information. However, the neural pathways that convey context to the auditory system are not well understood. The serotonergic system offers an excellent model to address these types of questions. Serotonin fluctuates in the mouse inferior colliculus (IC), an auditory midbrain region important for species-specific vocalizations, during specific social and non-social contexts. Furthermore, serotonin is an indicator of the valence of event-based changes within individual social interactions. We propose a model in which the brain's social behavior network serves as an afferent effector of the serotonergic dorsal raphe nucleus in order to gate contextual release of serotonin in the IC. Specifically, discrete vasopressinergic nuclei within the hypothalamus and extended amygdala that project to the dorsal raphe are functionally engaged during contexts in which serotonin fluctuates in the IC. Since serotonin strongly influences the responses of IC neurons to social vocalizations, this pathway could serve as a feedback loop whereby integrative social centers modulate their own sources of input. The end result of this feedback would be to produce a process that is geared, from sensory input to motor output, toward responding appropriately to a dynamic external world. © The Author 2017. Published by Oxford University Press on behalf of the Society for Integrative and Comparative Biology. All rights reserved. For permissions please email: journals.permissions@oup.com.

  17. Simultaneous recording of fluorescence and electrical signals by photometric patch electrode in deep brain regions in vivo

    PubMed Central

    Hirai, Yasuharu; Nishino, Eri

    2015-01-01

    Despite its widespread use, high-resolution imaging with multiphoton microscopy to record neuronal signals in vivo is limited to the surface of brain tissue because of limited light penetration. Moreover, most imaging studies do not simultaneously record electrical neural activity, which is, however, crucial to understanding brain function. Accordingly, we developed a photometric patch electrode (PME) to overcome the depth limitation of optical measurements and also enable the simultaneous recording of neural electrical responses in deep brain regions. The PME recoding system uses a patch electrode to excite a fluorescent dye and to measure the fluorescence signal as a light guide, to record electrical signal, and to apply chemicals to the recorded cells locally. The optical signal was analyzed by either a spectrometer of high light sensitivity or a photomultiplier tube depending on the kinetics of the responses. We used the PME in Oregon Green BAPTA-1 AM-loaded avian auditory nuclei in vivo to monitor calcium signals and electrical responses. We demonstrated distinct response patterns in three different nuclei of the ascending auditory pathway. On acoustic stimulation, a robust calcium fluorescence response occurred in auditory cortex (field L) neurons that outlasted the electrical response. In the auditory midbrain (inferior colliculus), both responses were transient. In the brain-stem cochlear nucleus magnocellularis, calcium response seemed to be effectively suppressed by the activity of metabotropic glutamate receptors. In conclusion, the PME provides a powerful tool to study brain function in vivo at a tissue depth inaccessible to conventional imaging devices. PMID:25761950

  18. Simultaneous recording of fluorescence and electrical signals by photometric patch electrode in deep brain regions in vivo.

    PubMed

    Hirai, Yasuharu; Nishino, Eri; Ohmori, Harunori

    2015-06-01

    Despite its widespread use, high-resolution imaging with multiphoton microscopy to record neuronal signals in vivo is limited to the surface of brain tissue because of limited light penetration. Moreover, most imaging studies do not simultaneously record electrical neural activity, which is, however, crucial to understanding brain function. Accordingly, we developed a photometric patch electrode (PME) to overcome the depth limitation of optical measurements and also enable the simultaneous recording of neural electrical responses in deep brain regions. The PME recoding system uses a patch electrode to excite a fluorescent dye and to measure the fluorescence signal as a light guide, to record electrical signal, and to apply chemicals to the recorded cells locally. The optical signal was analyzed by either a spectrometer of high light sensitivity or a photomultiplier tube depending on the kinetics of the responses. We used the PME in Oregon Green BAPTA-1 AM-loaded avian auditory nuclei in vivo to monitor calcium signals and electrical responses. We demonstrated distinct response patterns in three different nuclei of the ascending auditory pathway. On acoustic stimulation, a robust calcium fluorescence response occurred in auditory cortex (field L) neurons that outlasted the electrical response. In the auditory midbrain (inferior colliculus), both responses were transient. In the brain-stem cochlear nucleus magnocellularis, calcium response seemed to be effectively suppressed by the activity of metabotropic glutamate receptors. In conclusion, the PME provides a powerful tool to study brain function in vivo at a tissue depth inaccessible to conventional imaging devices. Copyright © 2015 the American Physiological Society.

  19. Plasticity in the adult human auditory brainstem following short-term linguistic training

    PubMed Central

    Song, Judy H.; Skoe, Erika; Wong, Patrick C. M.; Kraus, Nina

    2009-01-01

    Peripheral and central structures along the auditory pathway contribute to speech processing and learning. However, because speech requires the use of functionally and acoustically complex sounds which necessitates high sensory and cognitive demands, long-term exposure and experience using these sounds is often attributed to the neocortex with little emphasis placed on subcortical structures. The present study examines changes in the auditory brainstem, specifically the frequency following response (FFR), as native English-speaking adults learn to incorporate foreign speech sounds (lexical pitch patterns) in word identification. The FFR presumably originates from the auditory midbrain, and can be elicited pre-attentively. We measured FFRs to the trained pitch patterns before and after training. Measures of pitch-tracking were then derived from the FFR signals. We found increased accuracy in pitch-tracking after training, including a decrease in the number of pitch-tracking errors and a refinement in the energy devoted to encoding pitch. Most interestingly, this change in pitch-tracking accuracy only occurred in the most acoustically complex pitch contour (dipping contour), which is also the least familiar to our English-speaking subjects. These results not only demonstrate the contribution of the brainstem in language learning and its plasticity in adulthood, but they also demonstrate the specificity of this contribution (i.e., changes in encoding only occurs in specific, least familiar stimuli, not all stimuli). Our findings complement existing data showing cortical changes after second language learning, and are consistent with models suggesting that brainstem changes resulting from perceptual learning are most apparent when acuity in encoding is most needed. PMID:18370594

  20. Effects of alcohol and noise on temporary threshold shift in Guinea pigs.

    PubMed

    Liu, Tien-Chen; Hsu, Chuan-Jen; Hwang, Juen-Haur; Tseng, Fen-Yu; Chen, Yuh-Shyang

    2004-01-01

    The purpose of this study was to investigate the effects of concomitant exposure to noise and alcohol on the auditory thresholds. Twenty-four guinea pigs were equally divided into three groups: the acute intoxication group, the chronic intoxication group and the control group. Animals in the acute group received single intraperitoneal injections of ethanol (2 g/kg). In the chronic group, alcohol was administered via drinking water (10%, v/v) over a 60-day period. All animals were exposed to a white noise at the intensity of 105 dB A for 30 min. Auditory brainstem response (ABR) thresholds and distortion product otoacoustic emission (DPOAE) levels were measured before, immediately after noise exposure and also 1, 2, and 7 days following exposure. The results showed: first, acute alcohol injection caused a significant, temporary elevation of ABR threshold (4.8 dB in average), while chronic alcohol treatment did not change auditory threshold significantly. Second, noise exposure induced a mean threshold shift of 15.4- 19.7 dB. ABR threshold returned to normal 2 days after exposure. Both acute and chronic alcohol treatment did not alter the magnitude and time course of recovery of the temporary threshold shift (TTS). Third, the mean DPOAE amplitudes decreased at most frequencies following acute injection of alcohol. However, the differences did not reach statistical significance. Fourth, the mean DPOAE levels dropped 3.4-9.6 dB in all groups after noise exposure and returned to normal 1 day to 2 days after noise. There were no significant differences in the amount of DPOAE suppression after noise between the three groups. In summary, we have found that acute and chronic treatment of alcohol in combination with noise did not significantly exacerbate TTS or decrease DPOAE amplitudes relative to noise exposure alone. Copyright 2004 S. Karger AG, Basel

  1. Abnormalities in auditory efferent activities in children with selective mutism.

    PubMed

    Muchnik, Chava; Ari-Even Roth, Daphne; Hildesheimer, Minka; Arie, Miri; Bar-Haim, Yair; Henkin, Yael

    2013-01-01

    Two efferent feedback pathways to the auditory periphery may play a role in monitoring self-vocalization: the middle-ear acoustic reflex (MEAR) and the medial olivocochlear bundle (MOCB) reflex. Since most studies regarding the role of auditory efferent activity during self-vocalization were conducted in animals, human data are scarce. The working premise of the current study was that selective mutism (SM), a rare psychiatric disorder characterized by consistent failure to speak in specific social situations despite the ability to speak normally in other situations, may serve as a human model for studying the potential involvement of auditory efferent activity during self-vocalization. For this purpose, auditory efferent function was assessed in a group of 31 children with SM and compared to that of a group of 31 normally developing control children (mean age 8.9 and 8.8 years, respectively). All children exhibited normal hearing thresholds and type A tympanograms. MEAR and MOCB functions were evaluated by means of acoustic reflex thresholds and decay functions and the suppression of transient-evoked otoacoustic emissions, respectively. Auditory afferent function was tested by means of auditory brainstem responses (ABR). Results indicated a significantly higher proportion of children with abnormal MEAR and MOCB function in the SM group (58.6 and 38%, respectively) compared to controls (9.7 and 8%, respectively). The prevalence of abnormal MEAR and/or MOCB function was significantly higher in the SM group (71%) compared to controls (16%). Intact afferent function manifested in normal absolute and interpeak latencies of ABR components in all children. The finding of aberrant efferent auditory function in a large proportion of children with SM provides further support for the notion that MEAR and MOCB may play a significant role in the process of self-vocalization. © 2013 S. Karger AG, Basel.

  2. Prevalence and degree of hearing loss among males in Beaver Dam cohort: comparison of veterans and nonveterans.

    PubMed

    Wilson, Richard H; Noe, Colleen M; Cruickshanks, Karen J; Wiley, Terry L; Nondahl, David M

    2010-01-01

    The Epidemiology of Hearing Loss Study (EHLS) conducted in Beaver Dam, Wisconsin, was a population-based study that focused on the prevalence of hearing loss among 3,753 participants between 1993 and 1995. This article reports the results of several auditory measures from 999 veteran and 590 nonveteran males 48 to 92 years of age included in the EHLS. The auditory measures included pure tone thresholds, tympanometry and acoustic reflexes, word recognition in quiet and in competing message, and the Hearing Handicap Inventory for the Elderly-Screening (HHIE-S) version. Hearing loss in the auditory domains of pure tone thresholds, word recognition in quiet, and word recognition in competing message increased with age but were not significantly different for the veterans and nonveterans. No significant differences were found between participant groups on the HHIE-S; however, regarding hearing aid usage, mixed differences were found.

  3. Central auditory processing effects induced by solvent exposure.

    PubMed

    Fuente, Adrian; McPherson, Bradley

    2007-01-01

    Various studies have demonstrated that organic solvent exposure may induce auditory damage. Studies conducted in workers occupationally exposed to solvents suggest, on the one hand, poorer hearing thresholds than in matched non-exposed workers, and on the other hand, central auditory damage due to solvent exposure. Taking into account the potential auditory damage induced by solvent exposure due to the neurotoxic properties of such substances, the present research aimed at studying the possible auditory processing disorder (APD), and possible hearing difficulties in daily life listening situations that solvent-exposed workers may acquire. Fifty workers exposed to a mixture of organic solvents (xylene, toluene, methyl ethyl ketone) and 50 non-exposed workers matched by age, gender and education were assessed. Only subjects with no history of ear infections, high blood pressure, kidney failure, metabolic and neurological diseases, or alcoholism were selected. The subjects had either normal hearing or sensorineural hearing loss, and normal tympanometric results. Hearing-in-noise (HINT), dichotic digit (DD), filtered speech (FS), pitch pattern sequence (PPS), and random gap detection (RGD) tests were carried out in the exposed and non-exposed groups. A self-report inventory of each subject's performance in daily life listening situations, the Amsterdam Inventory for Auditory Disability and Handicap, was also administered. Significant threshold differences between exposed and non-exposed workers were found at some of the hearing test frequencies, for both ears. However, exposed workers still presented normal hearing thresholds as a group (equal or better than 20 dB HL). Also, for the HINT, DD, PPS, FS and RGD tests, non-exposed workers obtained better results than exposed workers. Finally, solvent-exposed workers reported significantly more hearing complaints in daily life listening situations than non-exposed workers. It is concluded that subjects exposed to solvents may acquire an APD and thus the sole use of pure-tone audiometry is insufficient to assess hearing in solvent-exposed populations.

  4. Audiological and electrophysiological assessment of professional pop/rock musicians.

    PubMed

    Samelli, Alessandra G; Matas, Carla G; Carvallo, Renata M M; Gomes, Raquel F; de Beija, Carolina S; Magliaro, Fernanda C L; Rabelo, Camila M

    2012-01-01

    In the present study, we evaluated peripheral and central auditory pathways in professional musicians (with and without hearing loss) compared to non-musicians. The goal was to verify if music exposure could affect auditory pathways as a whole. This is a prospective study that compared the results obtained between three groups (musicians with and without hearing loss and non-musicians). Thirty-two male individuals participated and they were assessed by: Immittance measurements, pure-tone air conduction thresholds at all frequencies from 0.25 to 20 kHz, Transient Evoked Otoacoustic Emissions, Auditory Brainstem Response (ABR), and Cognitive Potential. The musicians showed worse hearing thresholds in both conventional and high frequency audiometry when compared to the non-musicians; the mean amplitude of Transient Evoked Otoacoustic Emissions was smaller in the musicians group, but the mean latencies of Auditory Brainstem Response and Cognitive Potential were diminished in the musicians when compared to the non-musicians. Our findings suggest that the population of musicians is at risk for developing music-induced hearing loss. However, the electrophysiological evaluation showed that latency waves of ABR and P300 were diminished in musicians, which may suggest that the auditory training to which these musicians are exposed acts as a facilitator of the acoustic signal transmission to the cortex.

  5. The impact of perilaryngeal vibration on the self-perception of loudness and the Lombard effect.

    PubMed

    Brajot, François-Xavier; Nguyen, Don; DiGiovanni, Jeffrey; Gracco, Vincent L

    2018-04-05

    The role of somatosensory feedback in speech and the perception of loudness was assessed in adults without speech or hearing disorders. Participants completed two tasks: loudness magnitude estimation of a short vowel and oral reading of a standard passage. Both tasks were carried out in each of three conditions: no-masking, auditory masking alone, and mixed auditory masking plus vibration of the perilaryngeal area. A Lombard effect was elicited in both masking conditions: speakers unconsciously increased vocal intensity. Perilaryngeal vibration further increased vocal intensity above what was observed for auditory masking alone. Both masking conditions affected fundamental frequency and the first formant frequency as well, but only vibration was associated with a significant change in the second formant frequency. An additional analysis of pure-tone thresholds found no difference in auditory thresholds between masking conditions. Taken together, these findings indicate that perilaryngeal vibration effectively masked somatosensory feedback, resulting in an enhanced Lombard effect (increased vocal intensity) that did not alter speakers' self-perception of loudness. This implies that the Lombard effect results from a general sensorimotor process, rather than from a specific audio-vocal mechanism, and that the conscious self-monitoring of speech intensity is not directly based on either auditory or somatosensory feedback.

  6. The role of auditory and cognitive factors in understanding speech in noise by normal-hearing older listeners

    PubMed Central

    Schoof, Tim; Rosen, Stuart

    2014-01-01

    Normal-hearing older adults often experience increased difficulties understanding speech in noise. In addition, they benefit less from amplitude fluctuations in the masker. These difficulties may be attributed to an age-related auditory temporal processing deficit. However, a decline in cognitive processing likely also plays an important role. This study examined the relative contribution of declines in both auditory and cognitive processing to the speech in noise performance in older adults. Participants included older (60–72 years) and younger (19–29 years) adults with normal hearing. Speech reception thresholds (SRTs) were measured for sentences in steady-state speech-shaped noise (SS), 10-Hz sinusoidally amplitude-modulated speech-shaped noise (AM), and two-talker babble. In addition, auditory temporal processing abilities were assessed by measuring thresholds for gap, amplitude-modulation, and frequency-modulation detection. Measures of processing speed, attention, working memory, Text Reception Threshold (a visual analog of the SRT), and reading ability were also obtained. Of primary interest was the extent to which the various measures correlate with listeners' abilities to perceive speech in noise. SRTs were significantly worse for older adults in the presence of two-talker babble but not SS and AM noise. In addition, older adults showed some cognitive processing declines (working memory and processing speed) although no declines in auditory temporal processing. However, working memory and processing speed did not correlate significantly with SRTs in babble. Despite declines in cognitive processing, normal-hearing older adults do not necessarily have problems understanding speech in noise as SRTs in SS and AM noise did not differ significantly between the two groups. Moreover, while older adults had higher SRTs in two-talker babble, this could not be explained by age-related cognitive declines in working memory or processing speed. PMID:25429266

  7. Quinine reduces the dynamic range of the human auditory system.

    PubMed

    Berninger, E; Karlsson, K K; Alván, G

    1998-01-01

    The aim of the study was to evaluate and quantify quinine-induced changes in the human auditory dynamic range, as a model for cochlear hearing loss. Six otologically normal volunteers (21-40 years old) received quinine hydrochloride (15 mg/kg body weight) in two identical oral doses and one intravenous infusion. Refined hearing tests were performed monaurally at threshold, at moderate hearing levels and at high hearing levels. Quinine induced a maximal pure-tone threshold shift of 23 dB (1000-2000 Hz). The increase in the psychoacoustical click threshold agreed with an increase in the detection threshold of click-evoked otoacoustic emissions. The change in the stimulus-response relationship of the emissions reflected recruitment. The self-attained most comfortable speech level and the acoustic stapedius reflex thresholds were not affected by quinine administration. Quinine is a useful model substance for reversibly inducing complete loudness recruitment in humans as it acts specifically on some parts of the hearing function. Its mechanism of action on the molecular level is likely to reveal further information on the physiology of hearing.

  8. Structural and functional abnormalities of the motor system in developmental stuttering

    PubMed Central

    Watkins, Kate E.; Smith, Stephen M.; Davis, Steve; Howell, Peter

    2007-01-01

    Summary Though stuttering is manifest in its motor characteristics, the cause of stuttering may not relate purely to impairments in the motor system as stuttering frequency is increased by linguistic factors, such as syntactic complexity and length of utterance, and decreased by changes in perception, such as masking or altering auditory feedback. Using functional and diffusion imaging, we examined brain structure and function in the motor and language areas in a group of young people who stutter. During speech production, irrespective of fluency or auditory feedback, the people who stuttered showed overactivity relative to controls in the anterior insula, cerebellum and midbrain bilaterally and underactivity in the ventral premotor, Rolandic opercular and sensorimotor cortex bilaterally and Heschl’s gyrus on the left. These results are consistent with a recent meta-analysis of functional imaging studies in developmental stuttering. Two additional findings emerged from our study. First, we found overactivity in the midbrain, which was at the level of the substantia nigra and extended to the pedunculopontine nucleus, red nucleus and subthalamic nucleus. This overactivity is consistent with suggestions in previous studies of abnormal function of the basal ganglia or excessive dopamine in people who stutter. Second, we found underactivity of the cortical motor and premotor areas associated with articulation and speech production. Analysis of the diffusion data revealed that the integrity of the white matter underlying the underactive areas in ventral premotor cortex was reduced in people who stutter. The white matter tracts in this area via connections with posterior superior temporal and inferior parietal cortex provide a substrate for the integration of articulatory planning and sensory feedback, and via connections with primary motor cortex, a substrate for execution of articulatory movements. Our data support the conclusion that stuttering is a disorder related primarily to disruption in the cortical and subcortical neural systems supporting the selection, initiation and execution of motor sequences necessary for fluent speech production. PMID:17928317

  9. Structural and functional abnormalities of the motor system in developmental stuttering.

    PubMed

    Watkins, Kate E; Smith, Stephen M; Davis, Steve; Howell, Peter

    2008-01-01

    Though stuttering is manifest in its motor characteristics, the cause of stuttering may not relate purely to impairments in the motor system as stuttering frequency is increased by linguistic factors, such as syntactic complexity and length of utterance, and decreased by changes in perception, such as masking or altering auditory feedback. Using functional and diffusion imaging, we examined brain structure and function in the motor and language areas in a group of young people who stutter. During speech production, irrespective of fluency or auditory feedback, the people who stuttered showed overactivity relative to controls in the anterior insula, cerebellum and midbrain bilaterally and underactivity in the ventral premotor, Rolandic opercular and sensorimotor cortex bilaterally and Heschl's gyrus on the left. These results are consistent with a recent meta-analysis of functional imaging studies in developmental stuttering. Two additional findings emerged from our study. First, we found overactivity in the midbrain, which was at the level of the substantia nigra and extended to the pedunculopontine nucleus, red nucleus and subthalamic nucleus. This overactivity is consistent with suggestions in previous studies of abnormal function of the basal ganglia or excessive dopamine in people who stutter. Second, we found underactivity of the cortical motor and premotor areas associated with articulation and speech production. Analysis of the diffusion data revealed that the integrity of the white matter underlying the underactive areas in ventral premotor cortex was reduced in people who stutter. The white matter tracts in this area via connections with posterior superior temporal and inferior parietal cortex provide a substrate for the integration of articulatory planning and sensory feedback, and via connections with primary motor cortex, a substrate for execution of articulatory movements. Our data support the conclusion that stuttering is a disorder related primarily to disruption in the cortical and subcortical neural systems supporting the selection, initiation and execution of motor sequences necessary for fluent speech production.

  10. Altered cortical and subcortical connectivity due to infrasound administered near the hearing threshold – Evidence from fMRI

    PubMed Central

    Weichenberger, Markus; Bauer, Martin; Kühler, Robert; Hensel, Johannes; Forlim, Caroline Garcia; Ihlenfeld, Albrecht; Ittermann, Bernd; Gallinat, Jürgen; Koch, Christian; Kühn, Simone

    2017-01-01

    In the present study, the brain’s response towards near- and supra-threshold infrasound (IS) stimulation (sound frequency < 20 Hz) was investigated under resting-state fMRI conditions. The study involved two consecutive sessions. In the first session, 14 healthy participants underwent a hearing threshold—as well as a categorical loudness scaling measurement in which the individual loudness perception for IS was assessed across different sound pressure levels (SPL). In the second session, these participants underwent three resting-state acquisitions, one without auditory stimulation (no-tone), one with a monaurally presented 12-Hz IS tone (near-threshold) and one with a similar tone above the individual hearing threshold corresponding to a ‘medium loud’ hearing sensation (supra-threshold). Data analysis mainly focused on local connectivity measures by means of regional homogeneity (ReHo), but also involved independent component analysis (ICA) to investigate inter-regional connectivity. ReHo analysis revealed significantly higher local connectivity in right superior temporal gyrus (STG) adjacent to primary auditory cortex, in anterior cingulate cortex (ACC) and, when allowing smaller cluster sizes, also in the right amygdala (rAmyg) during the near-threshold, compared to both the supra-threshold and the no-tone condition. Additional independent component analysis (ICA) revealed large-scale changes of functional connectivity, reflected in a stronger activation of the right amygdala (rAmyg) in the opposite contrast (no-tone > near-threshold) as well as the right superior frontal gyrus (rSFG) during the near-threshold condition. In summary, this study is the first to demonstrate that infrasound near the hearing threshold may induce changes of neural activity across several brain regions, some of which are known to be involved in auditory processing, while others are regarded as keyplayers in emotional and autonomic control. These findings thus allow us to speculate on how continuous exposure to (sub-)liminal IS could exert a pathogenic influence on the organism, yet further (especially longitudinal) studies are required in order to substantialize these findings. PMID:28403175

  11. Auditory cortical responses in patients with cochlear implants

    PubMed Central

    Burdo, S; Razza, S; Di Berardino, F; Tognola, G

    2006-01-01

    Summary Currently, the most commonly used electrophysiological tests for cochlear implant evaluation are Averaged Electrical Voltages (AEV), Electrical Advisory Brainstem Responses (EABR) and Neural Response Telemetry (NRT). The present paper focuses on the study of acoustic auditory cortical responses, or slow vertex responses, which are not widely used due to the difficulty in recording, especially in young children. Aims of this study were validation of slow vertex responses and their possible applications in monitoring postimplant results, particularly restoration of hearing and auditory maturation. In practice, the use of tone-bursts, also through hearing aids or cochlear implants, as in slow vertex responses, allows many more frequencies to be investigated and louder intensities to be reached than with other tests based on a click as stimulus. Study design focused on latencies of N1 and P2 slow vertex response peaks in cochlear implants. The study population comprised 45 implant recipients (aged 2 to 70 years), divided into 5 different homogeneous groups according to chronological age, age at onset of deafness, and age at implantation. For each subject, slow vertex responses and free-field auditory responses (PTAS) were recorded for tone-bursts at 500 and 2000 Hz before cochlear implant surgery (using hearing aid amplification) and during scheduled sessions at 3rd and 12th month after implant activation. Results showed that N1 and P2 latencies decreased in all groups starting from 3rd through 12th month after activation. Subjects implanted before school age or at least before age 8 yrs showed the widest latency changes. All subjects showed a reduction in the gap between subjective thresholds (obtained with free field auditory responses) and objective thresholds (obtained with slow vertex responses), obtained in presurgery stage and after cochlear implant. In conclusion, a natural evolution of neurophysiological cortical activities of the auditory pathway, over time, was found especially in young children with prelingual deafness and implanted in preschool age. Cochlear implantation appears to provide hearing restoration, demonstrated by the sharp reduction of the gap between subjective free field auditory responses and slow vertex responses threshold obtained with hearing aids vs. cochlear implant. PMID:16886849

  12. Predicting hearing thresholds and occupational hearing loss with multiple-frequency auditory steady-state responses.

    PubMed

    Hsu, Ruey-Fen; Ho, Chi-Kung; Lu, Sheng-Nan; Chen, Shun-Sheng

    2010-10-01

    An objective investigation is needed to verify the existence and severity of hearing impairments resulting from work-related, noise-induced hearing loss in arbitration of medicolegal aspects. We investigated the accuracy of multiple-frequency auditory steady-state responses (Mf-ASSRs) between subjects with sensorineural hearing loss (SNHL) with and without occupational noise exposure. Cross-sectional study. Tertiary referral medical centre. Pure-tone audiometry and Mf-ASSRs were recorded in 88 subjects (34 patients had occupational noise-induced hearing loss [NIHL], 36 patients had SNHL without noise exposure, and 18 volunteers were normal controls). Inter- and intragroup comparisons were made. A predicting equation was derived using multiple linear regression analysis. ASSRs and pure-tone thresholds (PTTs) showed a strong correlation for all subjects (r = .77 ≈ .94). The relationship is demonstrated by the equationThe differences between the ASSR and PTT were significantly higher for the NIHL group than for the subjects with non-noise-induced SNHL (p < .001). Mf-ASSR is a promising tool for objectively evaluating hearing thresholds. Predictive value may be lower in subjects with occupational hearing loss. Regardless of carrier frequencies, the severity of hearing loss affects the steady-state response. Moreover, the ASSR may assist in detecting noise-induced injury of the auditory pathway. A multiple linear regression equation to accurately predict thresholds was shown that takes into consideration all effect factors.

  13. Auditory Sensitivity and Masking Profiles for the Sea Otter (Enhydra lutris).

    PubMed

    Ghoul, Asila; Reichmuth, Colleen

    2016-01-01

    Sea otters are threatened marine mammals that may be negatively impacted by human-generated coastal noise, yet information about sound reception in this species is surprisingly scarce. We investigated amphibious hearing in sea otters by obtaining the first measurements of absolute sensitivity and critical masking ratios. Auditory thresholds were measured in air and underwater from 0.125 to 40 kHz. Critical ratios derived from aerial masked thresholds from 0.25 to 22.6 kHz were also obtained. These data indicate that although sea otters can detect underwater sounds, their hearing appears to be primarily air adapted and not specialized for detecting signals in background noise.

  14. Why is auditory frequency weighting so important in regulation of underwater noise?

    PubMed

    Tougaard, Jakob; Dähne, Michael

    2017-10-01

    A key question related to regulating noise from pile driving, air guns, and sonars is how to take into account the hearing abilities of different animals by means of auditory frequency weighting. Recordings of pile driving sounds, both in the presence and absence of a bubble curtain, were evaluated against recent thresholds for temporary threshold shift (TTS) for harbor porpoises by means of four different weighting functions. The assessed effectivity, expressed as time until TTS, depended strongly on choice of weighting function: 2 orders of magnitude larger for an audiogram-weighted TTS criterion relative to an unweighted criterion, highlighting the importance of selecting the right frequency weighting.

  15. The perception of FM sweeps by Chinese and English listeners.

    PubMed

    Luo, Huan; Boemio, Anthony; Gordon, Michael; Poeppel, David

    2007-02-01

    Frequency-modulated (FM) signals are an integral acoustic component of ecologically natural sounds and are analyzed effectively in the auditory systems of humans and animals. Linearly frequency-modulated tone sweeps were used here to evaluate two questions. First, how rapid a sweep can listeners accurately perceive? Second, is there an effect of native language insofar as the language (phonology) is differentially associated with processing of FM signals? Speakers of English and Mandarin Chinese were tested to evaluate whether being a speaker of a tone language altered the perceptual identification of non-speech tone sweeps. In two psychophysical studies, we demonstrate that Chinese subjects perform better than English subjects in FM direction identification, but not in an FM discrimination task, in which English and Chinese speakers show similar detection thresholds of approximately 20 ms duration. We suggest that the better FM direction identification in Chinese subjects is related to their experience with FM direction analysis in the tone-language environment, even though supra-segmental tonal variation occurs over a longer time scale. Furthermore, the observed common discrimination temporal threshold across two language groups supports the conjecture that processing auditory signals at durations of approximately 20 ms constitutes a fundamental auditory perceptual threshold.

  16. Neural connectivity of the anterior body of the fornix in the human brain: diffusion tensor imaging study.

    PubMed

    Jang, Sung Ho; Kwon, Hyeok Gyu

    2014-01-24

    A few studies have reported on the neural connectivity of the fornix in the human brain, however, little is known about the neural connectivity of the anterior body of the fornix. In this study, we used diffusion tensor imaging in investigation of the neural connectivity of the anterior body of the fornix in normal subjects. Forty healthy subjects were recruited for this study. A seed region of interest was placed on the anterior body of the fornix using the FMRIB Software Library. Connectivity was defined as the incidence of connection between the anterior body of the fornix and any neural structure of the brain at the threshold of 5, 25, and 50 streamlines. In all subjects, the anterior body of the fornix showed 100% connectivity to the anterior commissure and hypothalamus at thresholds of 5, 25, and 50. On the other hand, regarding the thresholds of 5, 25, and 50, the anterior body of the fornix showed connectivity to the septal forebrain region (53.8, 23.8, and 15.0%), frontal lobe via anterior commissure (41.3,12.5, and 10.0%), medial temporal lobe (85.0,66.3, and 62.5%), lateral temporal lobe (75.0, 56.3, and 35.0%), occipital lobe (21.3, 5.0, and 1.3%), frontal lobe via septum pellucidum (28.8, 13.8, and 8.8%), tegmentum of midbrain (7.5, 5.0, and 0%), tectum of midbrain (2.5,0, and 0%), and tegmentum of pons (5.0,0, and 0%). The anterior body of the fornix showed high connectivity with the anterior commissure and hypothalamus, and brain areas relevant to cholinergic nuclei (the septal forebrain region and brainstem) and memory function (the medial temporal lobe). Copyright © 2013 Elsevier Ireland Ltd. All rights reserved.

  17. Neuroanatomical and resting state EEG power correlates of central hearing loss in older adults.

    PubMed

    Giroud, Nathalie; Hirsiger, Sarah; Muri, Raphaela; Kegel, Andrea; Dillier, Norbert; Meyer, Martin

    2018-01-01

    To gain more insight into central hearing loss, we investigated the relationship between cortical thickness and surface area, speech-relevant resting state EEG power, and above-threshold auditory measures in older adults and younger controls. Twenty-three older adults and 13 younger controls were tested with an adaptive auditory test battery to measure not only traditional pure-tone thresholds, but also above individual thresholds of temporal and spectral processing. The participants' speech recognition in noise (SiN) was evaluated, and a T1-weighted MRI image obtained for each participant. We then determined the cortical thickness (CT) and mean cortical surface area (CSA) of auditory and higher speech-relevant regions of interest (ROIs) with FreeSurfer. Further, we obtained resting state EEG from all participants as well as data on the intrinsic theta and gamma power lateralization, the latter in accordance with predictions of the Asymmetric Sampling in Time hypothesis regarding speech processing (Poeppel, Speech Commun 41:245-255, 2003). Methodological steps involved the calculation of age-related differences in behavior, anatomy and EEG power lateralization, followed by multiple regressions with anatomical ROIs as predictors for auditory performance. We then determined anatomical regressors for theta and gamma lateralization, and further constructed all regressions to investigate age as a moderator variable. Behavioral results indicated that older adults performed worse in temporal and spectral auditory tasks, and in SiN, despite having normal peripheral hearing as signaled by the audiogram. These behavioral age-related distinctions were accompanied by lower CT in all ROIs, while CSA was not different between the two age groups. Age modulated the regressions specifically in right auditory areas, where a thicker cortex was associated with better auditory performance in older adults. Moreover, a thicker right supratemporal sulcus predicted more rightward theta lateralization, indicating the functional relevance of the right auditory areas in older adults. The question how age-related cortical thinning and intrinsic EEG architecture relates to central hearing loss has so far not been addressed. Here, we provide the first neuroanatomical and neurofunctional evidence that cortical thinning and lateralization of speech-relevant frequency band power relates to the extent of age-related central hearing loss in older adults. The results are discussed within the current frameworks of speech processing and aging.

  18. Hearing improvement with softband and implanted bone-anchored hearing devices and modified implantation surgery in patients with bilateral microtia-atresia.

    PubMed

    Wang, Yibei; Fan, Xinmiao; Wang, Pu; Fan, Yue; Chen, Xiaowei

    2018-01-01

    To evaluate auditory development and hearing improvement in patients with bilateral microtia-atresia using softband and implanted bone-anchored hearing devices and to modify the implantation surgery. The subjects were divided into two groups: the softband group (40 infants, 3 months to 2 years old, Ponto softband) and the implanted group (6 patients, 6-28 years old, Ponto). The Infant-Toddler Meaning Auditory Integration Scale was used conducted to evaluate auditory development at baseline and after 3, 6, 12, and 24 months, and visual reinforcement audiometry was used to assess the auditory threshold in the softband group. In the implanted group, bone-anchored hearing devices were implanted combined with the auricular reconstruction surgery, and high-resolution CT was used to assess the deformity preoperatively. Auditory threshold and speech discrimination scores of the patients with implants were measured under the unaided, softband, and implanted conditions. Total Infant-Toddler Meaning Auditory Integration Scale scores in the softband group improved significantly and approached normal levels. The average visual reinforcement audiometry values under the unaided and softband conditions were 76.75 ± 6.05 dB HL and 32.25 ± 6.20 dB HL (P < 0.01), respectively. In the implanted group, the auditory thresholds under the unaided, softband, and implanted conditions were 59.17 ± 3.76 dB HL, 32.5 ± 2.74 dB HL, and 17.5 ± 5.24 dB HL (P < 0.01), respectively. The respective speech discrimination scores were 23.33 ± 14.72%, 77.17 ± 6.46%, and 96.50 ± 2.66% (P < 0.01). Using softband bone-anchored hearing devices is effective for auditory development and hearing improvement in infants with bilateral microtia-atresia. Wearing softband bone-anchored hearing devices before auricle reconstruction and combining bone-anchored hearing device implantation with auricular reconstruction surgery may bethe optimal clinical choice for these patients, and results in more significant hearing improvement and minimal surgical and anesthetic injury. Copyright © 2017 Elsevier B.V. All rights reserved.

  19. California sea lion (Zalophus californianus) aerial hearing sensitivity measured using auditory steady-state response and psychophysical methods.

    PubMed

    Mulsow, Jason; Finneran, James J; Houser, Dorian S

    2011-04-01

    Although electrophysiological methods of measuring the hearing sensitivity of pinnipeds are not yet as refined as those for dolphins and porpoises, they appear to be a promising supplement to traditional psychophysical procedures. In order to further standardize electrophysiological methods with pinnipeds, a within-subject comparison of psychophysical and auditory steady-state response (ASSR) measures of aerial hearing sensitivity was conducted with a 1.5-yr-old California sea lion. The psychophysical audiogram was similar to those previously reported for otariids, with a U-shape, and thresholds near 10 dB re 20 μPa at 8 and 16 kHz. ASSR thresholds measured using both single and multiple simultaneous amplitude-modulated tones closely reproduced the psychophysical audiogram, although the mean ASSR thresholds were elevated relative to psychophysical thresholds. Differences between psychophysical and ASSR thresholds were greatest at the low- and high-frequency ends of the audiogram. Thresholds measured using the multiple ASSR method were not different from those measured using the single ASSR method. The multiple ASSR method was more rapid than the single ASSR method, and allowed for threshold measurements at seven frequencies in less than 20 min. The multiple ASSR method may be especially advantageous for hearing sensitivity measurements with otariid subjects that are untrained for psychophysical procedures.

  20. Cortical auditory evoked potentials in the assessment of auditory neuropathy: two case studies.

    PubMed

    Pearce, Wendy; Golding, Maryanne; Dillon, Harvey

    2007-05-01

    Infants with auditory neuropathy and possible hearing impairment are being identified at very young ages through the implementation of hearing screening programs. The diagnosis is commonly based on evidence of normal cochlear function but abnormal brainstem function. This lack of normal brainstem function is highly problematic when prescribing amplification in young infants because prescriptive formulae require the input of hearing thresholds that are normally estimated from auditory brainstem responses to tonal stimuli. Without this information, there is great uncertainty surrounding the final fitting. Cortical auditory evoked potentials may, however, still be evident and reliably recorded to speech stimuli presented at conversational levels. The case studies of two infants are presented that demonstrate how these higher order electrophysiological responses may be utilized in the audiological management of some infants with auditory neuropathy.

  1. Temporal Information Processing as a Basis for Auditory Comprehension: Clinical Evidence from Aphasic Patients

    ERIC Educational Resources Information Center

    Oron, Anna; Szymaszek, Aneta; Szelag, Elzbieta

    2015-01-01

    Background: Temporal information processing (TIP) underlies many aspects of cognitive functions like language, motor control, learning, memory, attention, etc. Millisecond timing may be assessed by sequencing abilities, e.g. the perception of event order. It may be measured with auditory temporal-order-threshold (TOT), i.e. a minimum time gap…

  2. Backward and Simultaneous Masking in Children with Grammatical Specific Language Impairment: No Simple Link between Auditory and Language Abilities

    ERIC Educational Resources Information Center

    Rosen, Stuart; Adlard, Alan; van der Lely, Heather K. J.

    2009-01-01

    Purpose: We investigated claims that specific language impairment (SLI) typically arises from nonspeech auditory deficits by measuring tone-in-noise thresholds in a relatively homogeneous SLI subgroup exhibiting a primary deficit restricted to grammar (Grammatical[G]-SLI). Method: Fourteen children (mostly teenagers) with G-SLI were compared to…

  3. Auditory function in normal-hearing, noise-exposed human ears

    PubMed Central

    Stamper, Greta C.; Johnson, Tiffany A.

    2014-01-01

    Objectives To determine if supra-threshold measures of auditory function, such as distortion-product otoacoustic emissions (DPOAEs) and auditory brainstem responses (ABRs), are correlated with noise exposure history in normal-hearing human ears. Recent data from animal studies have revealed significant deafferentation of auditory nerve fibers following full recovery from temporary noise-induced hearing loss (NIHL). Furthermore, these data report smaller ABR wave I amplitudes in noise-exposed animal ears when compared to non-noise exposed control animals or pre-noise exposure amplitudes in the same animal. It is unknown if a similar phenomenon exists in the normal-hearing, noise-exposed human ear. Design Thirty normal-hearing human subjects with a range of noise exposure backgrounds (NEBs) participated in this study. NEB was quantified by the use of a noise exposure questionnaire that extensively queried loud sound exposure over the previous 12 months. DPOAEs were collected at three f2’s (1, 2, and 4 kHz) over a range of L2’s. DPOAE stimulus level began at 80 dB FPL (forward-pressure level) and decreased in 10 dB steps. Two-channel ABRs were collected in response to click stimuli and 4 kHz tone bursts; one channel utilized an ipsilateral mastoid electrode and the other an ipsilateral tympanic membrane (TM) electrode. ABR stimulus level began at 90 dB nHL and was decreased in 10 dB steps. Amplitudes of waves I and V of the ABR were analyzed. Results A statistically significant relationship between ABR wave I amplitude and NEB was found for clicked-evoked ABRs recorded at a stimulus level of 90 dB nHL using a mastoid recording electrode. For this condition, ABR wave I amplitudes decreased as a function of NEB. Similar systematic trends were present for ABRs collected in response to clicks and 4 kHz tone bursts at additional supra-threshold stimulation levels (≥ 70 dB nHL). The relationship weakened and disappeared with decreases in stimulation level (≤ 60 dB nHL). Similar patterns were present for ABRs collected using a TM electrode. However, these relationships were not statistically significant and were weaker and more variable than those collected using a mastoid electrode. In contrast to the findings for ABR wave I, wave V amplitude was not significantly related to NEB. Furthermore, there was no evidence of a systematic relationship between supra-threshold DPOAEs and NEB. Conclusions A systematic trend of smaller ABR wave I amplitudes was found in normal-hearing human ears with greater amounts of voluntary NEB in response to supra-threshold clicks and 4 kHz tone bursts. These findings are consistent with data from previous work completed in animals, where the reduction in supra-threshold responses was a result of deafferentation of high-threshold/low-spontaneous rate auditory nerve fibers. These data suggest a similar mechanism might be operating in human ears following exposure to high sound levels. However, evidence of this damage is only apparent when examining supra-threshold wave I amplitude of the ABR. In contrast, supra-threshold DPOAE level was not significantly related to NEB. This was expected, given noise-induced auditory damage findings in animal ears did not extend to the outer hair cells, the generator for the DPOAE response. PMID:25350405

  4. Hearing threshold assessment in young children with electrocochleography (EcochG) and auditory brainstem responses (ABR): experience at the University Hospital of Ferrara.

    PubMed

    Aimoni, C; Ciorba, A; Bovo, R; Trevisi, P; Busi, M; Martini, A

    2010-10-01

    Electrophysiological evaluation is a fundamental procedure for the diagnostic assessment of hearing loss during infancy; in these cases, information concerning threshold level and auditory perception is particularly useful to establish a correct hearing rehabilitation program (hearing aids and cochlear implants). Purpose of this study is to underline the role of auditory brainstem responses (ABR) and electrocochleography (EcochG) in the definition of hearing loss in a selected group of children, referred to the Audiology Department of the University Hospital of Ferrara, for a tertiary level audiological assessment. A retrospective study of the paediatric patient database at the Audiology Department of the University Hospital of Ferrara has been performed. In a period between January 2000 and December 2007, a total of 272 paediatric cases have been identified (544 ears). An EM 12 Mercury apparatus has been used for the electrophysiological threshold identification (ABR and EcochG). Recordings were carried out under general anaesthesia, in a protected enviroment. In 19 of the 272 paediatric cases selected--38 ears (7%), the results of threshold evaluation through ABR were uncertain. The Ecochg recording resulted crucial for the final diagnosis in terms of definition of the hearing threshold level, and it was then possible to ensure the better hearing rehabilitation strategy. ABR has to be considered the first choice in hearing assessment strategy, either for screening or for diagnosis in newborns as well as in non-collaborating children; ECochG still may be considered a reliable diagnostic tool. Copyright 2010 Elsevier Ireland Ltd. All rights reserved.

  5. Octave-Band Thresholds for Modeled Reverberant Fields

    NASA Technical Reports Server (NTRS)

    Begault, Durand R.; Wenzel, Elizabeth M.; Tran, Laura L.; Anderson, Mark R.; Trejo, Leonard J. (Technical Monitor)

    1998-01-01

    Auditory thresholds for 10 subjects were obtained for speech stimuli reverberation. The reverberation was produced and manipulated by 3-D audio modeling based on an actual room. The independent variables were octave-band-filtering (bypassed, 0.25 - 2.0 kHz Fc) and reverberation time (0.2- 1.1 sec). An ANOVA revealed significant effects (threshold range: -19 to -35 dB re 60 dB SRL).

  6. The auditory nerve overlapped waveform (ANOW): A new objective measure of low-frequency hearing

    NASA Astrophysics Data System (ADS)

    Lichtenhan, Jeffery T.; Salt, Alec N.; Guinan, John J.

    2015-12-01

    One of the most pressing problems today in the mechanics of hearing is to understand the mechanical motions in the apical half of the cochlea. Almost all available measurements from the cochlear apex of basilar membrane or other organ-of-Corti transverse motion have been made from ears where the health, or sensitivity, in the apical half of the cochlea was not known. A key step in understanding the mechanics of the cochlear base was to trust mechanical measurements only when objective measures from auditory-nerve compound action potentials (CAPs) showed good preparation sensitivity. However, such traditional objective measures are not adequate monitors of cochlear health in the very low-frequency regions of the apex that are accessible for mechanical measurements. To address this problem, we developed the Auditory Nerve Overlapped Waveform (ANOW) that originates from auditory nerve output in the apex. When responses from the round window to alternating low-frequency tones are averaged, the cochlear microphonic is canceled and phase-locked neural firing interleaves in time (i.e., overlaps). The result is a waveform that oscillates at twice the probe frequency. We have demonstrated that this Auditory Nerve Overlapped Waveform - called ANOW - originates from auditory nerve fibers in the cochlear apex [8], relates well to single-auditory-nerve-fiber thresholds, and can provide an objective estimate of low-frequency sensitivity [7]. Our new experiments demonstrate that ANOW is a highly sensitive indicator of apical cochlear function. During four different manipulations to the scala media along the cochlear spiral, ANOW amplitude changed when either no, or only small, changes occurred in CAP thresholds. Overall, our results demonstrate that ANOW can be used to monitor cochlear sensitivity of low-frequency regions during experiments that make apical basilar membrane motion measurements.

  7. Cell-type specific short-term plasticity at auditory nerve synapses controls feed-forward inhibition in the dorsal cochlear nucleus.

    PubMed

    Sedlacek, Miloslav; Brenowitz, Stephan D

    2014-01-01

    Feed-forward inhibition (FFI) represents a powerful mechanism by which control of the timing and fidelity of action potentials in local synaptic circuits of various brain regions is achieved. In the cochlear nucleus, the auditory nerve provides excitation to both principal neurons and inhibitory interneurons. Here, we investigated the synaptic circuit associated with fusiform cells (FCs), principal neurons of the dorsal cochlear nucleus (DCN) that receive excitation from auditory nerve fibers and inhibition from tuberculoventral cells (TVCs) on their basal dendrites in the deep layer of DCN. Despite the importance of these inputs in regulating fusiform cell firing behavior, the mechanisms determining the balance of excitation and FFI in this circuit are not well understood. Therefore, we examined the timing and plasticity of auditory nerve driven FFI onto FCs. We find that in some FCs, excitatory and inhibitory components of FFI had the same stimulation thresholds indicating they could be triggered by activation of the same fibers. In other FCs, excitation and inhibition exhibit different stimulus thresholds, suggesting FCs and TVCs might be activated by different sets of fibers. In addition, we find that during repetitive activation, synapses formed by the auditory nerve onto TVCs and FCs exhibit distinct modes of short-term plasticity. Feed-forward inhibitory post-synaptic currents (IPSCs) in FCs exhibit short-term depression because of prominent synaptic depression at the auditory nerve-TVC synapse. Depression of this feedforward inhibitory input causes a shift in the balance of fusiform cell synaptic input towards greater excitation and suggests that fusiform cell spike output will be enhanced by physiological patterns of auditory nerve activity.

  8. Towards a unifying basis of auditory thresholds: binaural summation.

    PubMed

    Heil, Peter

    2014-04-01

    Absolute auditory threshold decreases with increasing sound duration, a phenomenon explainable by the assumptions that the sound evokes neural events whose probabilities of occurrence are proportional to the sound's amplitude raised to an exponent of about 3 and that a constant number of events are required for threshold (Heil and Neubauer, Proc Natl Acad Sci USA 100:6151-6156, 2003). Based on this probabilistic model and on the assumption of perfect binaural summation, an equation is derived here that provides an explicit expression of the binaural threshold as a function of the two monaural thresholds, irrespective of whether they are equal or unequal, and of the exponent in the model. For exponents >0, the predicted binaural advantage is largest when the two monaural thresholds are equal and decreases towards zero as the monaural threshold difference increases. This equation is tested and the exponent derived by comparing binaural thresholds with those predicted on the basis of the two monaural thresholds for different values of the exponent. The thresholds, measured in a large sample of human subjects with equal and unequal monaural thresholds and for stimuli with different temporal envelopes, are compatible only with an exponent close to 3. An exponent of 3 predicts a binaural advantage of 2 dB when the two ears are equally sensitive. Thus, listening with two (equally sensitive) ears rather than one has the same effect on absolute threshold as doubling duration. The data suggest that perfect binaural summation occurs at threshold and that peripheral neural signals are governed by an exponent close to 3. They might also shed new light on mechanisms underlying binaural summation of loudness.

  9. Round window closure affects cochlear responses to suprathreshold stimuli.

    PubMed

    Cai, Qunfeng; Whitcomb, Carolyn; Eggleston, Jessica; Sun, Wei; Salvi, Richard; Hu, Bo Hua

    2013-12-01

    The round window acts as a vent for releasing inner ear pressure and facilitating basilar membrane vibration. Loss of this venting function affects cochlear function, which leads to hearing impairment. In an effort to identify functional changes that might be used in clinical diagnosis of round window atresia, the current investigation was designed to examine how the cochlea responds to suprathreshold stimuli following round window closure. Prospective, controlled, animal study. A rat model of round window occlusion (RWO) was established. With this model, the thresholds of auditory brainstem responses (ABR) and the input/output (IO) functions of distortion product otoacoustic emissions (DPOAEs) and acoustic startle responses were examined. Round window closure caused a mild shift in the thresholds of the auditory brainstem response (13.5 ± 9.1 dB). It also reduced the amplitudes of the distortion product otoacoustic emissions and the slope of the input/output functions. This peripheral change was accompanied by a significant reduction in the amplitude, but not the threshold, of the acoustic startle reflex, a motor response to suprathreshold sounds. In addition to causing mild increase in the threshold of the auditory brainstem response, round window occlusion reduced the slopes of both distortion product otoacoustic emissions and startle reflex input/output functions. These changes differ from those observed for typical conductive or sensory hearing loss, and could be present in patients with round window atresia. However, future clinical observations in patients are needed to confirm these findings. Copyright © 2013 The American Laryngological, Rhinological and Otological Society, Inc.

  10. Adaptation in the auditory midbrain of the barn owl (Tyto alba) induced by tonal double stimulation.

    PubMed

    Singheiser, Martin; Ferger, Roland; von Campenhausen, Mark; Wagner, Hermann

    2012-02-01

    During hunting, the barn owl typically listens to several successive sounds as generated, for example, by rustling mice. As auditory cells exhibit adaptive coding, the earlier stimuli may influence the detection of the later stimuli. This situation was mimicked with two double-stimulus paradigms, and adaptation was investigated in neurons of the barn owl's central nucleus of the inferior colliculus. Each double-stimulus paradigm consisted of a first or reference stimulus and a second stimulus (probe). In one paradigm (second level tuning), the probe level was varied, whereas in the other paradigm (inter-stimulus interval tuning), the stimulus interval between the first and second stimulus was changed systematically. Neurons were stimulated with monaural pure tones at the best frequency, while the response was recorded extracellularly. The responses to the probe were significantly reduced when the reference stimulus and probe had the same level and the inter-stimulus interval was short. This indicated response adaptation, which could be compensated for by an increase of the probe level of 5-7 dB over the reference level, if the latter was in the lower half of the dynamic range of a neuron's rate-level function. Recovery from adaptation could be best fitted with a double exponential showing a fast (1.25 ms) and a slow (800 ms) component. These results suggest that neurons in the auditory system show dynamic coding properties to tonal double stimulation that might be relevant for faithful upstream signal propagation. Furthermore, the overall stimulus level of the masker also seems to affect the recovery capabilities of auditory neurons. © 2012 The Authors. European Journal of Neuroscience © 2012 Federation of European Neuroscience Societies and Blackwell Publishing Ltd.

  11. Air and Bone Conduction Thresholds of Deaf and Normal Hearing Subjects before and during the Elimination of Cutaneous-Tactile Interference with Anesthesia. Final Report.

    ERIC Educational Resources Information Center

    Nober, E. Harris

    The study investigated whether low frequency air and bone thresholds elicited at high intensity levels from deaf children with a sensory-neural diagnosis reflect valid auditory sensitivity or are mediated through cutaneous-tactile receptors. Subjects were five totally deaf (mean age 17.0) yielding vibrotactile thresholds but with no air and bone…

  12. Human Exploration of Enclosed Spaces through Echolocation.

    PubMed

    Flanagin, Virginia L; Schörnich, Sven; Schranner, Michael; Hummel, Nadine; Wallmeier, Ludwig; Wahlberg, Magnus; Stephan, Thomas; Wiegrebe, Lutz

    2017-02-08

    Some blind humans have developed echolocation, as a method of navigation in space. Echolocation is a truly active sense because subjects analyze echoes of dedicated, self-generated sounds to assess space around them. Using a special virtual space technique, we assess how humans perceive enclosed spaces through echolocation, thereby revealing the interplay between sensory and vocal-motor neural activity while humans perform this task. Sighted subjects were trained to detect small changes in virtual-room size analyzing real-time generated echoes of their vocalizations. Individual differences in performance were related to the type and number of vocalizations produced. We then asked subjects to estimate virtual-room size with either active or passive sounds while measuring their brain activity with fMRI. Subjects were better at estimating room size when actively vocalizing. This was reflected in the hemodynamic activity of vocal-motor cortices, even after individual motor and sensory components were removed. Activity in these areas also varied with perceived room size, although the vocal-motor output was unchanged. In addition, thalamic and auditory-midbrain activity was correlated with perceived room size; a likely result of top-down auditory pathways for human echolocation, comparable with those described in echolocating bats. Our data provide evidence that human echolocation is supported by active sensing, both behaviorally and in terms of brain activity. The neural sensory-motor coupling complements the fundamental acoustic motor-sensory coupling via the environment in echolocation. SIGNIFICANCE STATEMENT Passive listening is the predominant method for examining brain activity during echolocation, the auditory analysis of self-generated sounds. We show that sighted humans perform better when they actively vocalize than during passive listening. Correspondingly, vocal motor and cerebellar activity is greater during active echolocation than vocalization alone. Motor and subcortical auditory brain activity covaries with the auditory percept, although motor output is unchanged. Our results reveal behaviorally relevant neural sensory-motor coupling during echolocation. Copyright © 2017 the authors 0270-6474/17/371614-14$15.00/0.

  13. Behavioral determination of stimulus pair discrimination of auditory acoustic and electrical stimuli using a classical conditioning and heart-rate approach.

    PubMed

    Morgan, Simeon J; Paolini, Antonio G

    2012-06-06

    Acute animal preparations have been used in research prospectively investigating electrode designs and stimulation techniques for integration into neural auditory prostheses, such as auditory brainstem implants and auditory midbrain implants. While acute experiments can give initial insight to the effectiveness of the implant, testing the chronically implanted and awake animals provides the advantage of examining the psychophysical properties of the sensations induced using implanted devices. Several techniques such as reward-based operant conditioning, conditioned avoidance, or classical fear conditioning have been used to provide behavioral confirmation of detection of a relevant stimulus attribute. Selection of a technique involves balancing aspects including time efficiency (often poor in reward-based approaches), the ability to test a plurality of stimulus attributes simultaneously (limited in conditioned avoidance), and measure reliability of repeated stimuli (a potential constraint when physiological measures are employed). Here, a classical fear conditioning behavioral method is presented which may be used to simultaneously test both detection of a stimulus, and discrimination between two stimuli. Heart-rate is used as a measure of fear response, which reduces or eliminates the requirement for time-consuming video coding for freeze behaviour or other such measures (although such measures could be included to provide convergent evidence). Animals were conditioned using these techniques in three 2-hour conditioning sessions, each providing 48 stimulus trials. Subsequent 48-trial testing sessions were then used to test for detection of each stimulus in presented pairs, and test discrimination between the member stimuli of each pair. This behavioral method is presented in the context of its utilisation in auditory prosthetic research. The implantation of electrocardiogram telemetry devices is shown. Subsequent implantation of brain electrodes into the Cochlear Nucleus, guided by the monitoring of neural responses to acoustic stimuli, and the fixation of the electrode into place for chronic use is likewise shown.

  14. Comparisons between detection threshold and loudness perception for individual cochlear implant channels

    PubMed Central

    Bierer, Julie Arenberg; Nye, Amberly D

    2014-01-01

    Objective The objective of the present study, performed in cochlear implant listeners, was to examine how the level of current required to detect single-channel electrical pulse trains relates to loudness perception on the same channel. The working hypothesis was that channels with relatively high thresholds, when measured with a focused current pattern, interface poorly to the auditory nerve. For such channels a smaller dynamic range between perceptual threshold and the most comfortable loudness would result, in part, from a greater sensitivity to changes in electrical field spread compared to low-threshold channels. The narrower range of comfortable listening levels may have important implications for speech perception. Design Data were collected from eight, adult cochlear implant listeners implanted with the HiRes90k cochlear implant (Advanced Bionics Corp.). The partial tripolar (pTP) electrode configuration, consisting of one intracochlear active electrode, two flanking electrodes carrying a fraction (σ) of the return current, and an extracochlear ground, was used for stimulation. Single-channel detection thresholds and most comfortable listening levels were acquired using the most focused pTP configuration possible (σ ≥ 0.8) to identify three channels for further testing – those with the highest, median, and lowest thresholds – for each subject. Threshold, equal-loudness contours (at 50% of the monopolar dynamic range), and loudness growth functions were measured for each of these three test channels using various partial tripolar fractions. Results For all test channels, thresholds increased as the electrode configuration became more focused. The rate of increase with the focusing parameter σ was greatest for the high-threshold channel compared to the median- and low-threshold channels. The 50% equal-loudness contours exhibited similar rates of increase in level across test channels and subjects. Additionally, test channels with the highest thresholds had the narrowest dynamic ranges (for σ ≥ 0.5) and steepest growth of loudness functions for all electrode configurations. Conclusions Together with previous studies using focused stimulation, the results suggest that auditory responses to electrical stimuli at both threshold and suprathreshold current levels are not uniform across the electrode array of individual cochlear implant listeners. Specifically, the steeper growth of loudness and thus smaller dynamic ranges observed for high-threshold channels are consistent with a degraded electrode-neuron interface, which could stem from lower numbers of functioning auditory neurons or a relatively large distance between the neurons and electrodes. These findings may have potential implications for how stimulation levels are set during the clinical mapping procedure, particularly for speech-processing strategies that use focused electrical fields. PMID:25036146

  15. Auditory Brainstem Response Thresholds to Air- and Bone-Conducted CE-Chirps in Neonates and Adults.

    PubMed

    Cobb, Kensi M; Stuart, Andrew

    2016-08-01

    The purpose of this study was to compare auditory brainstem response (ABR) thresholds to air- and bone-conducted CE-Chirps in neonates and adults. Thirty-two neonates with no physical or neurologic challenges and 20 adults with normal hearing participated. ABRs were acquired with a starting intensity of 30 dB normal hearing level (nHL). The lowest stimulus intensity level at which a wave V was identifiable and replicable was considered the ABR threshold. ABR thresholds to air-conducted CE-Chirps were 9.8 dB nHL for neonates and adults. ABR thresholds to bone-conducted CE-Chirps were 3.8 and 13.8 dB nHL for neonates and adults, respectively. The difference in ABR thresholds to bone-conducted CE-Chirps was significantly different (p < .0001, ηp2 = .45). Adults had significantly larger wave V amplitudes to air- (p < .0001, ηp2 = .50) and bone-conducted (p = .013, ηp2 = .15) CE-Chirps at a stimulus intensity of 30 dB nHL. At the same intensity, adults evidenced significantly shorter wave V latencies (p < .0001, ηp2 = .49) only with air-conducted CE-chirps. The difference in ABR thresholds and wave V latencies to air- and bone-conducted CE-Chirps between neonates and adults may be attributed to a disparity in effective signal delivery to the cochlea.

  16. Differences in Speech Recognition Between Children with Attention Deficits and Typically Developed Children Disappear When Exposed to 65 dB of Auditory Noise

    PubMed Central

    Söderlund, Göran B. W.; Jobs, Elisabeth Nilsson

    2016-01-01

    The most common neuropsychiatric condition in the in children is attention deficit hyperactivity disorder (ADHD), affecting ∼6–9% of the population. ADHD is distinguished by inattention and hyperactive, impulsive behaviors as well as poor performance in various cognitive tasks often leading to failures at school. Sensory and perceptual dysfunctions have also been noticed. Prior research has mainly focused on limitations in executive functioning where differences are often explained by deficits in pre-frontal cortex activation. Less notice has been given to sensory perception and subcortical functioning in ADHD. Recent research has shown that children with ADHD diagnosis have a deviant auditory brain stem response compared to healthy controls. The aim of the present study was to investigate if the speech recognition threshold differs between attentive and children with ADHD symptoms in two environmental sound conditions, with and without external noise. Previous research has namely shown that children with attention deficits can benefit from white noise exposure during cognitive tasks and here we investigate if noise benefit is present during an auditory perceptual task. For this purpose we used a modified Hagerman’s speech recognition test where children with and without attention deficits performed a binaural speech recognition task to assess the speech recognition threshold in no noise and noise conditions (65 dB). Results showed that the inattentive group displayed a higher speech recognition threshold than typically developed children and that the difference in speech recognition threshold disappeared when exposed to noise at supra threshold level. From this we conclude that inattention can partly be explained by sensory perceptual limitations that can possibly be ameliorated through noise exposure. PMID:26858679

  17. Correlations among within-channel and between-channel auditory gap-detection thresholds in normal listeners.

    PubMed

    Phillips, Dennis P; Smith, Jennifer C

    2004-01-01

    We obtained data on within-channel and between-channel auditory temporal gap-detection acuity in the normal population. Ninety-five normal listeners were tested for gap-detection thresholds, for conditions in which the gap was bounded by spectrally identical, and by spectrally different, acoustic markers. Separate thresholds were obtained with the use of an adaptive tracking method, for gaps delimited by narrowband noise bursts centred on 1.0 kHz, noise bursts centred on 4.0 kHz, and for gaps bounded by a leading marker of 4.0 kHz noise and a trailing marker of 1.0 kHz noise. Gap thresholds were lowest for silent periods bounded by identical markers--'within-channel' stimuli. Gap thresholds were significantly longer for the between-channel stimulus--silent periods bounded by unidentical markers (p < 0.0001). Thresholds for the two within-channel tasks were highly correlated (R = 0.76). Thresholds for the between-channel stimulus were weakly correlated with thresholds for the within-channel stimuli (1.0 kHz, R = 0.39; and 4.0 kHz, R = 0.46). The relatively poor predictability of between-channel thresholds from the within-channel thresholds is new evidence on the separability of the mechanisms that mediate performance of the two tasks. The data confirm that the acuity difference for the tasks, which has previously been demonstrated in only small numbers of highly trained listeners, extends to a population of untrained listeners. The acuity of the between-channel mechanism may be relevant to the formation of voice-onset time-category boundaries in speech perception.

  18. Working memory resources are shared across sensory modalities.

    PubMed

    Salmela, V R; Moisala, M; Alho, K

    2014-10-01

    A common assumption in the working memory literature is that the visual and auditory modalities have separate and independent memory stores. Recent evidence on visual working memory has suggested that resources are shared between representations, and that the precision of representations sets the limit for memory performance. We tested whether memory resources are also shared across sensory modalities. Memory precision for two visual (spatial frequency and orientation) and two auditory (pitch and tone duration) features was measured separately for each feature and for all possible feature combinations. Thus, only the memory load was varied, from one to four features, while keeping the stimuli similar. In Experiment 1, two gratings and two tones-both containing two varying features-were presented simultaneously. In Experiment 2, two gratings and two tones-each containing only one varying feature-were presented sequentially. The memory precision (delayed discrimination threshold) for a single feature was close to the perceptual threshold. However, as the number of features to be remembered was increased, the discrimination thresholds increased more than twofold. Importantly, the decrease in memory precision did not depend on the modality of the other feature(s), or on whether the features were in the same or in separate objects. Hence, simultaneously storing one visual and one auditory feature had an effect on memory precision equal to those of simultaneously storing two visual or two auditory features. The results show that working memory is limited by the precision of the stored representations, and that working memory can be described as a resource pool that is shared across modalities.

  19. Amphibious auditory evoked potentials in four North American Testudines genera spanning the aquatic-terrestrial spectrum.

    PubMed

    Zeyl, Jeffrey N; Johnston, Carol E

    2015-10-01

    Animals exhibit unique hearing adaptations in relation to the habitat media in which they reside. This study was a comparative analysis of auditory specialization in relation to habitat medium in Testudines, a taxon that includes both highly aquatic and fully terrestrial members. Evoked potential audiograms were collected in four species groups representing diversity along the aquatic-terrestrial spectrum: terrestrial and fossorial Gopherus polyphemus, terrestrial Terrapene carolina carolina, and aquatic Trachemys scripta and Sternotherus (S. odoratus and S. minor). Additionally, underwater sensitivity was tested in T. c. carolina, T. scripta, and Sternotherus with tympana submerged just below the water surface. In aerial audiograms, T. c. carolina were most sensitive, with thresholds 18 dB lower than Sternotherus. At 100-300 Hz, thresholds in T. c. carolina, G. polyphemus, and T. scripta were similar to each other. At 400-800 Hz, G. polyphemus thresholds were elevated to 11 dB above T. c. carolina. The underwater audiograms of T. c. carolina, T. scripta, and Sternotherus were similar. The results suggest aerial hearing adaptations in emydids and high-frequency hearing loss associated with seismic vibration detection in G. polyphemus. The underwater audiogram of T. c. carolina could reflect retention of ancestral aquatic auditory function.

  20. Ototraumatic Effects of Hard Rock Music

    PubMed Central

    Reddell, Rayford C.; Lebo, Charles P.

    1972-01-01

    Temporary and permanent shifts in auditory thresholds were found in 43 hard rock musicians and temporary shifts were also observed in some listeners. The threshold shifts involved all of the conventional puretone test frequencies. Custom-fitted polyvinyl chloride ear protectors were found to be effective in prevention of these noise-induced hearing losses. PMID:5008499

  1. Source analysis of short and long latency vestibular-evoked potentials (VsEPs) produced by left vs. right ear air-conducted 500 Hz tone pips.

    PubMed

    Todd, N P M; Paillard, A C; Kluk, K; Whittle, E; Colebatch, J G

    2014-06-01

    Todd et al. (2014) have recently demonstrated the presence of vestibular dependent changes both in the morphology and in the intensity dependence of auditory evoked potentials (AEPs) when passing through the vestibular threshold as determined by vestibular evoked myogenic potentials (VEMPs). In this paper we extend this work by comparing left vs. right ear stimulation and by conducting a source analysis of the resulting evoked potentials of short and long latency. Ten healthy, right-handed subjects were recruited and evoked potentials were recorded to both left- and right-ear sound stimulation, above and below vestibular threshold. Below VEMP threshold, typical AEPs were recorded, consisting of mid-latency (MLR) waves Na and Pa followed by long latency AEPs (LAEPs) N1 and P2. In the supra-threshold condition, the expected changes in morphology were observed, consisting of: (1) short-latency vestibular evoked potentials (VsEPs) which have no auditory correlate, i.e. the ocular VEMP (OVEMP) and inion response related potentials; (2) a later deflection, labelled N42/P52, followed by the LAEPs N1 and P2. Statistical analysis of the vestibular dependent responses indicated a contralateral effect for inion related short-latency responses and a left-ear/right-hemisphere advantage for the long-latency responses. Source analysis indicated that the short-latency effects may be mediated by a contralateral projection to left cerebellum, while the long-latency effects were mediated by a contralateral projection to right cingulate cortex. In addition we found evidence of a possible vestibular contribution to the auditory T-complex in radial temporal lobe sources. These last results raise the possibility that acoustic activation of the otolith organs could potentially contribute to auditory processing. Copyright © 2014 The Authors. Published by Elsevier B.V. All rights reserved.

  2. Dynamic plasticity in coupled avian midbrain maps

    NASA Astrophysics Data System (ADS)

    Atwal, Gurinder Singh

    2004-12-01

    Internal mapping of the external environment is carried out using the receptive fields of topographic neurons in the brain, and in a normal barn owl the aural and visual subcortical maps are aligned from early experiences. However, instantaneous misalignment of the aural and visual stimuli has been observed to result in adaptive behavior, manifested by functional and anatomical changes of the auditory processing system. Using methods of information theory and statistical mechanics a model of the adaptive dynamics of the aural receptive field is presented and analyzed. The dynamics is determined by maximizing the mutual information between the neural output and the weighted sensory neural inputs, admixed with noise, subject to biophysical constraints. The reduced costs of neural rewiring, as in the case of young barn owls, reveal two qualitatively different types of receptive field adaptation depending on the magnitude of the audiovisual misalignment. By letting the misalignment increase with time, it is shown that the ability to adapt can be increased even when neural rewiring costs are high, in agreement with recent experimental reports of the increased plasticity of the auditory space map in adult barn owls due to incremental learning. Finally, a critical speed of misalignment is identified, demarcating the crossover from adaptive to nonadaptive behavior.

  3. A lateralized functional auditory network is involved in anuran sexual selection.

    PubMed

    Xue, Fei; Fang, Guangzhan; Yue, Xizi; Zhao, Ermi; Brauth, Steven E; Tang, Yezhong

    2016-12-01

    Right ear advantage (REA) exists in many land vertebrates in which the right ear and left hemisphere preferentially process conspecific acoustic stimuli such as those related to sexual selection. Although ecological and neural mechanisms for sexual selection have been widely studied, the brain networks involved are still poorly understood. In this study we used multi-channel electroencephalographic data in combination with Granger causal connectivity analysis to demonstrate, for the first time, that auditory neural network interconnecting the left and right midbrain and forebrain function asymmetrically in the Emei music frog (Babina daunchina), an anuran species which exhibits REA. The results showed the network was lateralized. Ascending connections between the mesencephalon and telencephalon were stronger in the left side while descending ones were stronger in the right, which matched with the REA in this species and implied that inhibition from the forebrainmay induce REA partly. Connections from the telencephalon to ipsilateral mesencephalon in response to white noise were the highest in the non-reproductive stage while those to advertisement calls were the highest in reproductive stage, implying the attention resources and living strategy shift when entered the reproductive season. Finally, these connection changes were sexually dimorphic, revealing sex differences in reproductive roles.

  4. Cluster-based analysis improves predictive validity of spike-triggered receptive field estimates

    PubMed Central

    Malone, Brian J.

    2017-01-01

    Spectrotemporal receptive field (STRF) characterization is a central goal of auditory physiology. STRFs are often approximated by the spike-triggered average (STA), which reflects the average stimulus preceding a spike. In many cases, the raw STA is subjected to a threshold defined by gain values expected by chance. However, such correction methods have not been universally adopted, and the consequences of specific gain-thresholding approaches have not been investigated systematically. Here, we evaluate two classes of statistical correction techniques, using the resulting STRF estimates to predict responses to a novel validation stimulus. The first, more traditional technique eliminated STRF pixels (time-frequency bins) with gain values expected by chance. This correction method yielded significant increases in prediction accuracy, including when the threshold setting was optimized for each unit. The second technique was a two-step thresholding procedure wherein clusters of contiguous pixels surviving an initial gain threshold were then subjected to a cluster mass threshold based on summed pixel values. This approach significantly improved upon even the best gain-thresholding techniques. Additional analyses suggested that allowing threshold settings to vary independently for excitatory and inhibitory subfields of the STRF resulted in only marginal additional gains, at best. In summary, augmenting reverse correlation techniques with principled statistical correction choices increased prediction accuracy by over 80% for multi-unit STRFs and by over 40% for single-unit STRFs, furthering the interpretational relevance of the recovered spectrotemporal filters for auditory systems analysis. PMID:28877194

  5. Acquired hearing loss and brain plasticity.

    PubMed

    Eggermont, Jos J

    2017-01-01

    Acquired hearing loss results in an imbalance of the cochlear output across frequency. Central auditory system homeostatic processes responding to this result in frequency specific gain changes consequent to the emerging imbalance between excitation and inhibition. Several consequences thereof are increased spontaneous firing rates, increased neural synchrony, and (in adults) potentially restricted to the auditory thalamus and cortex a reorganization of tonotopic areas. It does not seem to matter much whether the hearing loss is acquired neonatally or in adulthood. In humans, no clear evidence of tonotopic map changes with hearing loss has so far been provided, but frequency specific gain changes are well documented. Unilateral hearing loss in addition makes brain activity across hemispheres more symmetrical and more synchronous. Molecular studies indicate that in the brainstem, after 2-5 days post trauma, the glutamatergic activity is reduced, whereas glycinergic and GABAergic activity is largely unchanged. At 2 months post trauma, excitatory activity remains decreased but the inhibitory one is significantly increased. In contrast protein assays related to inhibitory transmission are all decreased or unchanged in the brainstem, midbrain and auditory cortex. Comparison of neurophysiological data with the molecular findings during a time-line of changes following noise trauma suggests that increases in spontaneous firing rates are related to decreases in inhibition, and not to increases in excitation. Because noise-induced hearing loss in cats resulted in a loss of cortical temporal processing capabilities, this may also underlie speech understanding in humans. Copyright © 2016 Elsevier B.V. All rights reserved.

  6. Temporal properties of responses to sound in the ventral nucleus of the lateral lemniscus.

    PubMed

    Recio-Spinoso, Alberto; Joris, Philip X

    2014-02-01

    Besides the rapid fluctuations in pressure that constitute the "fine structure" of a sound stimulus, slower fluctuations in the sound's envelope represent an important temporal feature. At various stages in the auditory system, neurons exhibit tuning to envelope frequency and have been described as modulation filters. We examine such tuning in the ventral nucleus of the lateral lemniscus (VNLL) of the pentobarbital-anesthetized cat. The VNLL is a large but poorly accessible auditory structure that provides a massive inhibitory input to the inferior colliculus. We test whether envelope filtering effectively applies to the envelope spectrum when multiple envelope components are simultaneously present. We find two broad classes of response with often complementary properties. The firing rate of onset neurons is tuned to a band of modulation frequencies, over which they also synchronize strongly to the envelope waveform. Although most sustained neurons show little firing rate dependence on modulation frequency, some of them are weakly tuned. The latter neurons are usually band-pass or low-pass tuned in synchronization, and a reverse-correlation approach demonstrates that their modulation tuning is preserved to nonperiodic, noisy envelope modulations of a tonal carrier. Modulation tuning to this type of stimulus is weaker for onset neurons. In response to broadband noise, sustained and onset neurons tend to filter out envelope components over a frequency range consistent with their modulation tuning to periodically modulated tones. The results support a role for VNLL in providing temporal reference signals to the auditory midbrain.

  7. Functional and ultrastructural neuroanatomy of interactive intratectal/tectonigral mesencephalic opioid inhibitory links and nigrotectal GABAergic pathways: involvement of GABAA and mu1-opioid receptors in the modulation of panic-like reactions elicited by electrical stimulation of the dorsal midbrain.

    PubMed

    Ribeiro, S J; Ciscato, J G; de Oliveira, R; de Oliveira, R C; D'Angelo-Dias, R; Carvalho, A D; Felippotti, T T; Rebouças, E C C; Castellan-Baldan, L; Hoffmann, A; Corrêa, S A L; Moreira, J E; Coimbra, N C

    2005-12-01

    In the present study, the functional neuroanatomy of nigrotectal-tectonigral pathways as well as the effects of central administration of opioid antagonists on aversive stimuli-induced responses elicited by electrical stimulation of the midbrain tectum were determined. Central microinjections of naloxonazine, a selective mu(1)-opiod receptor antagonist, in the mesencephalic tectum (MT) caused a significant increase in the escape thresholds elicited by local electrical stimulation. Furthermore, either naltrexone or naloxonazine microinjected in the substantia nigra, pars reticulata (SNpr), caused a significant increase in the defensive thresholds elicited by electrical stimulation of the continuum comprised by dorsolateral aspects of the periaqueductal gray matter (dlPAG) and deep layers of the superior colliculus (dlSC), as compared with controls. These findings suggest an opioid modulation of GABAergic inhibitory inputs controlling the defensive behavior elicited by MT stimulation, in cranial aspects. In fact, iontophoretic microinjections of the neurotracer biodextran into the SNpr, a mesencephalic structure rich in GABA-containing neurons, show outputs to neural substrate of the dlSC/dlPAG involved with the generation and organization of fear- and panic-like reactions. Neurochemical lesion of the nigrotectal pathways increased the sensitivity of the MT to electrical (at alertness, freezing and escape thresholds) and chemical (blockade of GABA(A) receptors) stimulation, suggesting a tonic modulatory effect of the nigrotectal GABAergic outputs on the neural networks of the MT involved with the organization of the defensive behavior and panic-like reactions. Labeled neurons of the midbrain tectum send inputs with varicosities to ipsi and contralateral dlSC/dlPAG and ipsilateral substantia nigra, pars reticulata and compacta, in which the anterograde and retrograde tracing from a single injection indicates that the substantia nigra has reciprocal connections with the dlSC/dlPAG featuring close axo-somatic and axo-dendritic appositions in both locations. In addition, ultrastructural approaches show inhibitory axo-axonic synapses in MT and inhibitory axo-somatic/axo-axonic synapses in the SNpr. These findings, in addition to the psychopharmacological evidence for the interaction between opioid and GABAergic mechanisms in the cranial aspects of the MT as well as in the mesencephalic tegmentum, offer a neuroanatomical basis of a pre-synaptic opioid inhibition of GABAergic nigrotectal neurons modulating fear in defensive behavior-related structures of the cranial mesencephalon, in a short link, and through a major neural circuit, also in GABA-containing perikarya and axons of nigrotectal neurons.

  8. The RetroX auditory implant for high-frequency hearing loss.

    PubMed

    Garin, P; Genard, F; Galle, C; Jamart, J

    2004-07-01

    The objective of this study was to analyze the subjective satisfaction and measure the hearing gain provided by the RetroX (Auric GmbH, Rheine, Germany), an auditory implant of the external ear. We conducted a retrospective case review. We conducted this study at a tertiary referral center at a university hospital. We studied 10 adults with high-frequency sensori-neural hearing loss (ski-slope audiogram). The RetroX consists of an electronic unit sited in the postaural sulcus connected to a titanium tube implanted under the auricle between the sulcus and the entrance of the external auditory canal. Implanting requires only minor surgery under local anesthesia. Main outcome measures were a satisfaction questionnaire, pure-tone audiometry in quiet, speech audiometry in quiet, speech audiometry in noise, and azimuth audiometry (hearing threshold in function of sound source location within the horizontal plane at ear level). : Subjectively, all 10 patients are satisfied or even extremely satisfied with the hearing improvement provided by the RetroX. They wear the implant daily, from morning to evening. We observe a statistically significant improvement of pure-tone thresholds at 1, 2, and 4 kHz. In quiet, the speech reception threshold improves by 9 dB. Speech audiometry in noise shows that intelligibility improves by 26% for a signal-to-noise ratio of -5 dB, by 18% for a signal-to-noise ratio of 0 dB, and by 13% for a signal-to-noise ratio of +5 dB. Localization audiometry indicates that the skull masks sound contralateral to the implanted ear. Of the 10 patients, one had acoustic feedback and one presented with a granulomatous reaction to the foreign body that necessitated removing the implant. The RetroX auditory implant is a semi-implantable hearing aid without occlusion of the external auditory canal. It provides a new therapeutic alternative for managing high-frequency hearing loss.

  9. Evaluation of an imputed pitch velocity model of the auditory tau effect.

    PubMed

    Henry, Molly J; McAuley, J Devin; Zaleha, Marta

    2009-08-01

    This article extends an imputed pitch velocity model of the auditory kappa effect proposed by Henry and McAuley (2009a) to the auditory tau effect. Two experiments were conducted using an AXB design in which listeners judged the relative pitch of a middle target tone (X) in ascending and descending three-tone sequences. In Experiment 1, sequences were isochronous, establishing constant fast, medium, and slow velocity conditions. No systematic distortions in perceived target pitch were observed, and thresholds were similar across velocity conditions. Experiment 2 introduced to-be-ignored variations in target timing. Variations in target timing that deviated from constant velocity conditions introduced systematic distortions in perceived target pitch, indicative of a robust auditory tau effect. Consistent with an auditory motion hypothesis, the magnitude of the tau effect was larger at faster velocities. In addition, the tau effect was generally stronger for descending sequences than for ascending sequences. Combined with previous work on the auditory kappa effect, the imputed velocity model and associated auditory motion hypothesis provide a unified quantitative account of both auditory tau and kappa effects. In broader terms, these findings add support to the view that pitch and time relations in auditory patterns are fundamentally interdependent.

  10. Preservation of auditory brainstem response thresholds after cochleostomy and titanium microactuator implantation in the lateral wall of cat scala tympani.

    PubMed

    Lesinski, S George; Prewitt, Jessica; Bray, Victor; Aravamudhan, Radhika; Bermeo Blanco, Oscar A; Farmer-Fedor, Brenda L; Ward, Jonette A

    2014-04-01

    The safety of implanting a titanium microactuator into the lateral wall of cat scala tympani was assessed by comparing preoperative and postoperative auditory brainstem response (ABR) thresholds for 1 to 3 months. The safety of directly stimulating cochlear perilymph with an implantable hearing system requires maintaining preoperative hearing levels. This cat study is an essential step in the development of the next generation of fully implantable hearing devices for humans. Following GLP surgical standards, a 1-mm cochleostomy was drilled into the lateral wall of the scala tympani, and a nonfunctioning titanium anchor/microactuator assembly was inserted in 8 cats. The scala media was damaged in the 1 cat. ABR thresholds with click and 4- and 8-kHz stimuli were measured preoperatively and compared with postoperative thresholds at 1, 2, and 3 months. Nonimplanted ear thresholds were also measured to establish statistical significance for threshold shifts (>28.4 dB). Two audiologists independently interpreted thresholds. Postoperatively, 7 cats implanted in the scala tympani demonstrated no significant ABR threshold shift for click stimulus; one shifted ABR thresholds to 4- and 8-kHz stimuli. The eighth cat, with surgical damage to the scala media, maintained stable click threshold but had a significant shift to 4- and 8-kHz stimuli. This cat study provides no evidence of worsening hearing thresholds after fenestration of the scala tympani and insertion of a titanium anchor/microactuator, provided there is no surgical trauma to the scala media and the implanted device is securely anchored in the cochleostomy. These 2 issues have been resolved in the development of a fully implantable hearing system for humans. The long-term hearing stability (combined with histologic studies) reaffirm that the microactuator is well tolerated by the cat cochlea.

  11. Absolute auditory threshold: testing the absolute.

    PubMed

    Heil, Peter; Matysiak, Artur

    2017-11-02

    The mechanisms underlying the detection of sounds in quiet, one of the simplest tasks for auditory systems, are debated. Several models proposed to explain the threshold for sounds in quiet and its dependence on sound parameters include a minimum sound intensity ('hard threshold'), below which sound has no effect on the ear. Also, many models are based on the assumption that threshold is mediated by integration of a neural response proportional to sound intensity. Here, we test these ideas. Using an adaptive forced choice procedure, we obtained thresholds of 95 normal-hearing human ears for 18 tones (3.125 kHz carrier) in quiet, each with a different temporal amplitude envelope. Grand-mean thresholds and standard deviations were well described by a probabilistic model according to which sensory events are generated by a Poisson point process with a low rate in the absence, and higher, time-varying rates in the presence, of stimulation. The subject actively evaluates the process and bases the decision on the number of events observed. The sound-driven rate of events is proportional to the temporal amplitude envelope of the bandpass-filtered sound raised to an exponent. We find no evidence for a hard threshold: When the model is extended to include such a threshold, the fit does not improve. Furthermore, we find an exponent of 3, consistent with our previous studies and further challenging models that are based on the assumption of the integration of a neural response that, at threshold sound levels, is directly proportional to sound amplitude or intensity. © 2017 Federation of European Neuroscience Societies and John Wiley & Sons Ltd.

  12. Neuromelanin imaging and midbrain volumetry in progressive supranuclear palsy and Parkinson's disease.

    PubMed

    Taniguchi, Daisuke; Hatano, Taku; Kamagata, Koji; Okuzumi, Ayami; Oji, Yutaka; Mori, Akio; Hori, Masaaki; Aoki, Shigeki; Hattori, Nobutaka

    2018-05-14

    Background Nigral degeneration patterns differ between PSP and PD. However, the relationship between nigral degeneration and midbrain atrophy in PSP remains unclear. Objective We analyzed differences and relationships between nigral degeneration and midbrain atrophy in PSP and PD. Methods Neuromelanin-sensitive MRI and midbrain volumetry were performed in 11 PSP patients, 24 PD patients, and 10 controls to measure the neuromelanin-sensitive SNpc area and midbrain volume. Results The neuromelanin-sensitive SNpc area and midbrain volume were significantly smaller in PSP patients compared with PD patients and controls. Motor deficits were inversely correlated with neuromelanin-sensitive SNpc area in PD, but not PSP patients. There was no significant correlation between neuromelanin-sensitive SNpc area and midbrain volume in either disease group. Midbrain volumetry discriminated PSP from PD. Diagnostic accuracy was improved when neuromelanin-sensitive MRI analysis was added. Conclusions Neuromelanin-sensitive MRI and midbrain volumetry may reflect the clinical and pathological characteristics of PSP and PD. Combining neuromelanin-sensitive MRI and midbrain volumetry may be useful for differentiating PSP from PD. © 2018 International Parkinson and Movement Disorder Society. © 2018 International Parkinson and Movement Disorder Society.

  13. Loud Music Exposure and Cochlear Synaptopathy in Young Adults: Isolated Auditory Brainstem Response Effects but No Perceptual Consequences.

    PubMed

    Grose, John H; Buss, Emily; Hall, Joseph W

    2017-01-01

    The purpose of this study was to test the hypothesis that listeners with frequent exposure to loud music exhibit deficits in suprathreshold auditory performance consistent with cochlear synaptopathy. Young adults with normal audiograms were recruited who either did ( n = 31) or did not ( n = 30) have a history of frequent attendance at loud music venues where the typical sound levels could be expected to result in temporary threshold shifts. A test battery was administered that comprised three sets of procedures: (a) electrophysiological tests including distortion product otoacoustic emissions, auditory brainstem responses, envelope following responses, and the acoustic change complex evoked by an interaural phase inversion; (b) psychoacoustic tests including temporal modulation detection, spectral modulation detection, and sensitivity to interaural phase; and (c) speech tests including filtered phoneme recognition and speech-in-noise recognition. The results demonstrated that a history of loud music exposure can lead to a profile of peripheral auditory function that is consistent with an interpretation of cochlear synaptopathy in humans, namely, modestly abnormal auditory brainstem response Wave I/Wave V ratios in the presence of normal distortion product otoacoustic emissions and normal audiometric thresholds. However, there were no other electrophysiological, psychophysical, or speech perception effects. The absence of any behavioral effects in suprathreshold sound processing indicated that, even if cochlear synaptopathy is a valid pathophysiological condition in humans, its perceptual sequelae are either too diffuse or too inconsequential to permit a simple differential diagnosis of hidden hearing loss.

  14. Controlling Mitochondrial Dynamics to Mitigate Noise-Induced Hearing Loss

    DTIC Science & Technology

    2016-10-01

    exposure significantly reduced noise-induced auditory threshold shifts in our mouse model of NIHL. Additionally, protection against outer hair cell...and at 6 hours post-noise exposure. ‐ Perform analysis of outer auditory hair cells and synaptic ribbons from the different treatment groups...have made progress towards the completion of the outer hair cell counts (OHC) for this Subtask, particularly for study groups (1) mdivi-1/vehicle, and

  15. Enhancing Soldier Performance: A Nonlinear Model of Performance to Improve Selection Testing and Training

    DTIC Science & Technology

    1994-07-01

    psychological refractory period 15. Two-flash threshold 16. Critical flicker fusion (CFF) 17. Steady state visually evoked response 18. Auditory brain stem...States of awareness I: Subliminal erceoption relationships to situational awareness (AL-TR-1992-0085). Brooks Air Force BaSe, TX: Armstrong...the signals required different inputs (e.g., visual versus auditory ) (Colley & Beech, 1989). Despite support of this theory from such experiments

  16. Comparison of auditory stream segregation in sighted and early blind individuals.

    PubMed

    Boroujeni, Fatemeh Moghadasi; Heidari, Fatemeh; Rouzbahani, Masoumeh; Kamali, Mohammad

    2017-01-18

    An important characteristic of the auditory system is the capacity to analyze complex sounds and make decisions on the source of the constituent parts of these sounds. Blind individuals compensate for the lack of visual information by an increase input from other sensory modalities, including increased auditory information. The purpose of the current study was to compare the fission boundary (FB) threshold of sighted and early blind individuals through spectral aspects using a psychoacoustic auditory stream segregation (ASS) test. This study was conducted on 16 sighted and 16 early blind adult individuals. The applied stimuli were presented sequentially as the pure tones A and B and as a triplet ABA-ABA pattern at the intensity of 40dBSL. The A tone frequency was selected as the basis at values of 500, 1000, and 2000Hz. The B tone was presented with the difference of a 4-100% above the basis tone frequency. Blind individuals had significantly lower FB thresholds than sighted people. FB was independent of the frequency of the tone A when expressed as the difference in the number of equivalent rectangular bandwidths (ERBs). Early blindness may increase perceptual separation of the acoustic stimuli to form accurate representations of the world. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  17. Assessing spectral and temporal processing in children and adults using temporal modulation transfer function (TMTF), Iterated Ripple Noise (IRN) perception, and spectral ripple discrimination (SRD).

    PubMed

    Peter, Varghese; Wong, Kogo; Narne, Vijaya Kumar; Sharma, Mridula; Purdy, Suzanne C; McMahon, Catherine

    2014-02-01

    There are many clinically available tests for the assessment of auditory processing skills in children and adults. However, there is limited data available on the maturational effects on the performance on these tests. The current study investigated maturational effects on auditory processing abilities using three psychophysical measures: temporal modulation transfer function (TMTF), iterated ripple noise (IRN) perception, and spectral ripple discrimination (SRD). A cross-sectional study. Three groups of subjects were tested: 10 adults (18-30 yr), 10 older children (12-18 yr), and 10 young children (8-11 yr) Temporal envelope processing was measured by obtaining thresholds for amplitude modulation detection as a function of modulation frequency (TMTF; 4, 8, 16, 32, 64, and 128 Hz). Temporal fine structure processing was measured using IRN, and spectral processing was measured using SRD. The results showed that young children had significantly higher modulation thresholds at 4 Hz (TMTF) compared to the other two groups and poorer SRD scores compared to adults. The results on IRN did not differ across groups. The results suggest that different aspects of auditory processing mature at different age periods and these maturational effects need to be considered while assessing auditory processing in children. American Academy of Audiology.

  18. Neurotransmitter involvement in development and maintenance of the auditory space map in the guinea pig superior colliculus.

    PubMed

    Ingham, N J; Thornton, S K; McCrossan, D; Withington, D J

    1998-12-01

    Neurotransmitter involvement in development and maintenance of the auditory space map in the guinea pig superior colliculus. J. Neurophysiol. 80: 2941-2953, 1998. The mammalian superior colliculus (SC) is a complex area of the midbrain in terms of anatomy, physiology, and neurochemistry. The SC bears representations of the major sensory modalites integrated with a motor output system. It is implicated with saccade generation, in behavioral responses to novel sensory stimuli and receives innervation from diverse regions of the brain using many neurotransmitter classes. Ethylene-vinyl acetate copolymer (Elvax-40W polymer) was used here to deliver chronically neurotransmitter receptor antagonists to the SC of the guinea pig to investigate the potential role played by the major neurotransmitter systems in the collicular representation of auditory space. Slices of polymer containing different drugs were implanted onto the SC of guinea pigs before the development of the SC azimuthal auditory space map, at approximately 20 days after birth (DAB). A further group of animals was exposed to aminophosphonopentanoic acid (AP5) at approximately 250 DAB. Azimuthal spatial tuning properties of deep layer multiunits of anesthetized guinea pigs were examined approximately 20 days after implantation of the Elvax polymer. Broadband noise bursts were presented to the animals under anechoic, free-field conditions. Neuronal responses were used to construct polar plots representative of the auditory spatial multiunit receptive fields (MURFs). Animals exposed to control polymer could develop a map of auditory space in the SC comparable with that seen in unimplanted normal animals. Exposure of the SC of young animals to AP5, 6-cyano-7-nitroquinoxaline-2,3-dione, or atropine, resulted in a reduction in the proportion of spatially tuned responses with an increase in the proportion of broadly tuned responses and a degradation in topographic order. Thus N-methyl--aspartate (NMDA) and non-NMDA glutamate receptors and muscarinic acetylcholine receptors appear to play vital roles in the development of the SC auditory space map. A group of animals exposed to AP5 beginning at approximately 250 DAB produced results very similar to those obtained in the young group exposed to AP5. Thus NMDA glutamate receptors also seem to be involved in the maintenance of the SC representation of auditory space in the adult guinea pig. Exposure of the SC of young guinea pigs to gamma-aminobutyric acid (GABA) receptor blocking agents produced some but not total disruption of the spatial tuning of auditory MURFs. Receptive fields were large compared with controls, but a significant degree of topographical organization was maintained. GABA receptors may play a role in the development of fine tuning and sharpening of auditory spatial responses in the SC but not necessarily in the generation of topographical order of the these responses.

  19. Effects of noise exposure on neonatal auditory brainstem response thresholds in pregnant guinea pigs at different gestational periods.

    PubMed

    Morimoto, Chihiro; Nario, Kazuhiko; Nishimura, Tadashi; Shimokura, Ryota; Hosoi, Hiroshi; Kitahara, Tadashi

    2017-01-01

    Noise exposure during pregnancy has been reported to cause fetal hearing impairment. However, little is known about the effects of noise exposure during various gestational stages on postnatal hearing. In the present study, we investigated the effects of noise exposure on auditory brainstem response (ABR) at the early, mid-, and late gestational periods in newborn guinea pigs. Pregnant guinea pigs were exposed to 4-kHz pure tone at a 120-dB sound pressure level for 4 h. We divided the animals into four groups as follows: the control, early gestational exposure, mid-gestational exposure, and late gestational exposure groups. ABR thresholds and latencies in newborns were recorded using 1-, 2-, and 4-kHz tone burst on postnatal days 1, 7, 14, and 28. Changes in ABR thresholds and latencies were measured between the 4 × 4 and 4 × 3 factorial groups mentioned above (gestational periods × postnatal days, gestational periods × frequencies). The thresholds were low in the order of control group < early gestational exposure group < mid-gestational exposure group and late gestational exposure group. Noise exposure during pregnancy influenced ABR thresholds in neonatal guinea pigs. This is the first study to show that noise exposure during the early, mid-, and late gestational periods significantly elevated ABR thresholds in neonatal guinea pigs. © 2016 Japan Society of Obstetrics and Gynecology.

  20. Interactions between auditory 'what' and 'where' pathways revealed by enhanced near-threshold discrimination of frequency and position.

    PubMed

    Tardif, Eric; Spierer, Lucas; Clarke, Stephanie; Murray, Micah M

    2008-03-07

    Partially segregated neuronal pathways ("what" and "where" pathways, respectively) are thought to mediate sound recognition and localization. Less studied are interactions between these pathways. In two experiments, we investigated whether near-threshold pitch discrimination sensitivity (d') is altered by supra-threshold task-irrelevant position differences and likewise whether near-threshold position discrimination sensitivity is altered by supra-threshold task-irrelevant pitch differences. Each experiment followed a 2 x 2 within-subjects design regarding changes/no change in the task-relevant and task-irrelevant stimulus dimensions. In Experiment 1, subjects discriminated between 750 Hz and 752 Hz pure tones, and d' for this near-threshold pitch change significantly increased by a factor of 1.09 when accompanied by a task-irrelevant position change of 65 micros interaural time difference (ITD). No response bias was induced by the task-irrelevant position change. In Experiment 2, subjects discriminated between 385 micros and 431 micros ITDs, and d' for this near-threshold position change significantly increased by a factor of 0.73 when accompanied by task-irrelevant pitch changes (6 Hz). In contrast to Experiment 1, task-irrelevant pitch changes induced a response criterion bias toward responding that the two stimuli differed. The collective results are indicative of facilitative interactions between "what" and "where" pathways. By demonstrating how these pathways may cooperate under impoverished listening conditions, our results bear implications for possible neuro-rehabilitation strategies. We discuss our results in terms of the dual-pathway model of auditory processing.

  1. Validation of the Acoustic Voice Quality Index in the Lithuanian Language.

    PubMed

    Uloza, Virgilijus; Petrauskas, Tadas; Padervinskis, Evaldas; Ulozaitė, Nora; Barsties, Ben; Maryn, Youri

    2017-03-01

    The aim of the present study was to validate the Acoustic Voice Quality Index in Lithuanian language (AVQI-LT) and investigate the feasibility and robustness of its diagnostic accuracy, differentiating normal and dysphonic voice. A total of 184 native Lithuanian subjects with normal voices (n = 46) and with various voice disorders (n = 138) were asked to read aloud the Lithuanian text and to sustain the vowel /a/. A sentence with 13 syllables and a 3-second midvowel portion of the sustained vowel were edited. Both speech tasks were concatenated, and perceptually rated for dysphonia severity by five voice clinicians. They rated the Grade (G) from the Grade Roughness Breathiness Asthenia Strain (GRBAS) protocol and the overall severity from the Consensus Auditory-perceptual Evaluation of Voice protocol with a visual analog scale (VAS). The average scores (G mean and VAS mean ) were taken as the perceptual dysphonia severity level for every voice sample. All concatenated voice samples were acoustically analyzed to receive an AVQI-LT score. Both auditory-perceptual judgment procedures showed sufficient strength of agreement between five raters. The results achieved significant and marked concurrent validity between both auditory-perceptual judgment procedures and AVQI-LT. The diagnostic accuracy of AVQI-LT showed for both auditory-perceptual judgment procedures comparable results with two different AVQI-LT thresholds. The AVQI-LT threshold of 2.97 for the G mean rating obtained reasonable sensitivity = 0.838 and excellent specificity = 0.937. For the VAS rating, an AVQI-LT threshold of 3.48 was determined with sensitivity = 0.840 and specificity = 0.922. The AVQI-LT is considered a valid and reliable tool for assessing the dysphonia severity level in Lithuanian-speaking population. Copyright © 2017 The Voice Foundation. Published by Elsevier Inc. All rights reserved.

  2. Enhanced perception of pitch changes in speech and music in early blind adults.

    PubMed

    Arnaud, Laureline; Gracco, Vincent; Ménard, Lucie

    2018-06-12

    It is well known that congenitally blind adults have enhanced auditory processing for some tasks. For instance, they show supra-normal capacity to perceive accelerated speech. However, only a few studies have investigated basic auditory processing in this population. In this study, we investigated if pitch processing enhancement in the blind is a domain-general or domain-specific phenomenon, and if pitch processing shares the same properties as in the sighted regarding how scores from different domains are associated. Fifteen congenitally blind adults and fifteen sighted adults participated in the study. We first created a set of personalized native and non-native vowel stimuli using an identification and rating task. Then, an adaptive discrimination paradigm was used to determine the frequency difference limen for pitch direction identification of speech (native and non-native vowels) and non-speech stimuli (musical instruments and pure tones). The results show that the blind participants had better discrimination thresholds than controls for native vowels, music stimuli, and pure tones. Whereas within the blind group, the discrimination thresholds were smaller for musical stimuli than speech stimuli, replicating previous findings in sighted participants, we did not find this effect in the current control group. Further analyses indicate that older sighted participants show higher thresholds for instrument sounds compared to speech sounds. This effect of age was not found in the blind group. Moreover, the scores across domains were not associated to the same extent in the blind as they were in the sighted. In conclusion, in addition to providing further evidence of compensatory auditory mechanisms in early blind individuals, our results point to differences in how auditory processing is modulated in this population. Copyright © 2018 Elsevier Ltd. All rights reserved.

  3. Relationship between auditory thresholds, central spontaneous activity and hair cell loss after acoustic trauma

    PubMed Central

    Mulders, W.H.A.M.; Ding, D.; Salvi, R.; Robertson, D.

    2011-01-01

    Acoustic trauma caused by exposure to a very loud sound increases spontaneous activity in central auditory structures such as the inferior colliculus. This hyperactivity has been suggested as a neural substrate for tinnitus, a phantom hearing sensation. In previous studies we have described a tentative link between the frequency region of hearing impairment and the corresponding tonotopic regions in the inferior colliculus showing hyperactivity. In this study we further investigated the relationship between cochlear compound action potential threshold loss, cochlear outer and inner hair cell loss and central hyperactivity in inferior colliculus of guinea pigs. Two weeks after a 10 kHz pure tone acoustic trauma, a tight relationship was demonstrated between the frequency region of compound action potential threshold loss and frequency regions in the inferior colliculus showing hyperactivity. Extending the duration of the acoustic trauma from 1 to 2 h did not result in significant increases in final cochlear threshold loss, but did result in a further increase of spontaneous firing rates in the inferior colliculus. Interestingly, hair cell loss was not present in the frequency regions where elevated cochlear thresholds and central hyperactivity were measured, suggesting that subtle changes in hair cell or primary afferent neural function are sufficient for central hyperactivity to be triggered and maintained. PMID:21491427

  4. Auditory evoked potential measurements in elasmobranchs

    NASA Astrophysics Data System (ADS)

    Casper, Brandon; Mann, David

    2005-04-01

    Auditory evoked potentials (AEP) were first used to examine hearing in elasmobranchs by Corwin and Bullock in the late 1970s and early 1980s, marking the first time AEPs had been measured in fishes. Results of these experiments identified the regions of the ear and brain in which sound is processed, though no actual hearing thresholds were measured. Those initial experiments provided the ground work for future AEP experiments to measure fish hearing abilities in a manner that is much faster and more convenient than classical conditioning. Data will be presented on recent experiments in which AEPs were used to measure the hearing thresholds of two species of elasmobranchs: the nurse shark, Ginglymostoma cirratum, and the yellow stingray, Urobatis jamaicencis. Audiograms were analyzed and compared to previously published audiograms obtained using classical conditioning with results indicating that hearing thresholds were similar for the two methods. These data suggest that AEP testing is a viable option when measuring hearing in elasmobranchs and can increase the speed in which future hearing measurements can be obtained.

  5. Release from bats: genetic distance and sensoribehavioural regression in the Pacific field cricket, Teleogryllus oceanicus

    NASA Astrophysics Data System (ADS)

    Fullard, James H.; Ter Hofstede, Hannah M.; Ratcliffe, John M.; Pollack, Gerald S.; Brigidi, Gian S.; Tinghitella, Robin M.; Zuk, Marlene

    2010-01-01

    The auditory thresholds of the AN2 interneuron and the behavioural thresholds of the anti-bat flight-steering responses that this cell evokes are less sensitive in female Pacific field crickets that live where bats have never existed (Moorea) compared with individuals subjected to intense levels of bat predation (Australia). In contrast, the sensitivity of the auditory interneuron, ON1 which participates in the processing of both social signals and bat calls, and the thresholds for flight orientation to a model of the calling song of male crickets show few differences between the two populations. Genetic analyses confirm that the two populations are significantly distinct, and we conclude that the absence of bats has caused partial regression in the nervous control of a defensive behaviour in this insect. This study represents the first examination of natural evolutionary regression in the neural basis of a behaviour along a selection gradient within a single species.

  6. Independence between implicit and explicit processing as revealed by the Simon effect.

    PubMed

    Lo, Shih-Yu; Yeh, Su-Ling

    2011-09-01

    Studies showing human behavior influenced by subliminal stimuli mainly focus on implicit processing per se, and little is known about its interaction with explicit processing. We examined this by using the Simon effect, wherein a task-irrelevant spatial distracter interferes with lateralized response. Lo and Yeh (2008) found that the visual Simon effect, although it occurred when participants were aware of the visual distracters, did not occur with subliminal visual distracters. We used the same paradigm and examined whether subliminal and supra-threshold stimuli are processed independently by adding a supra-threshold auditory distracter to ascertain whether it would interact with the subliminal visual distracter. Results showed auditory Simon effect, but there was still no visual Simon effect, indicating that supra-threshold and subliminal stimuli are processed separately in independent streams. In contrast to the traditional view that implicit processing precedes explicit processing, our results suggest that they operate independently in a parallel fashion. Copyright © 2010 Elsevier Inc. All rights reserved.

  7. Severe diarrhea-dehydration in infancy permanently alters auditory function.

    PubMed

    Todd, N Wendell

    2012-02-01

    Of the myriad etiologies of sensorineural hearing impairment, metabolic stress is rarely considered. I posit that severe dehydration in conjunction with hypoxia, at least during infancy, prompts permanent changes in the cochlea. In a population-based prospective study of otitis media, children without otitis were found to have at age 4-8 years, worse auditory thresholds if as an infant had been hospitalized for diarrhea-dehydration. What is more, stapedius reflex thresholds tended to be lower in children who had been hospitalized for diarrhea-dehydration: that is, less acoustic energy for arousal or to be frightening. The hypothesis that the transient metabolic stress of dehydration with hypoxia prompts permanent sensorineural hearing impairment with reduced uncomfortable loudness thresholds, is both (1) consistent in an evolutionary sense with a subsequent survival advantage, and (2) subject to verification both by descriptive studies of children undergoing ECMO (ExtraCorporeal Membrane Oxygenation) or care for congenital diaphragmatic hernia, and by animal studies. Copyright © 2011 Elsevier Ltd. All rights reserved.

  8. Awake craniotomy for assisting placement of auditory brainstem implant in NF2 patients.

    PubMed

    Zhou, Qiangyi; Yang, Zhijun; Wang, Zhenmin; Wang, Bo; Wang, Xingchao; Zhao, Chi; Zhang, Shun; Wu, Tao; Li, Peng; Li, Shiwei; Zhao, Fu; Liu, Pinan

    2018-06-01

    Auditory brainstem implants (ABIs) may be the only opportunity for patients with NF2 to regain some sense of hearing sensation. However, only a very small number of individuals achieved open-set speech understanding and high sentence scores. Suboptimal placement of the ABI electrode array over the cochlear nucleus may be one of main factors for poor auditory performance. In the current study, we present a method of awake craniotomy to assist with ABI placement. Awake surgery and hearing test via the retrosigmoid approach were performed for vestibular schwannoma resections and auditory brainstem implantations in four patients with NF2. Auditory outcomes and complications were assessed postoperatively. Three of 4 patients who underwent awake craniotomy during ABI surgery received reproducible auditory sensations intraoperatively. Satisfactory numbers of effective electrodes, threshold levels and distinct pitches were achieved in the wake-up hearing test. In addition, relatively few electrodes produced non-auditory percepts. There was no serious complication attributable to the ABI or awake craniotomy. It is safe and well tolerated for neurofibromatosis type 2 (NF2) patients using awake craniotomy during auditory brainstem implantation. This method can potentially improve the localization accuracy of the cochlear nucleus during surgery.

  9. From Perception to Metacognition: Auditory and Olfactory Functions in Early Blind, Late Blind, and Sighted Individuals

    PubMed Central

    Cornell Kärnekull, Stina; Arshamian, Artin; Nilsson, Mats E.; Larsson, Maria

    2016-01-01

    Although evidence is mixed, studies have shown that blind individuals perform better than sighted at specific auditory, tactile, and chemosensory tasks. However, few studies have assessed blind and sighted individuals across different sensory modalities in the same study. We tested early blind (n = 15), late blind (n = 15), and sighted (n = 30) participants with analogous olfactory and auditory tests in absolute threshold, discrimination, identification, episodic recognition, and metacognitive ability. Although the multivariate analysis of variance (MANOVA) showed no overall effect of blindness and no interaction with modality, follow-up between-group contrasts indicated a blind-over-sighted advantage in auditory episodic recognition, that was most pronounced in early blind individuals. In contrast to the auditory modality, there was no empirical support for compensatory effects in any of the olfactory tasks. There was no conclusive evidence for group differences in metacognitive ability to predict episodic recognition performance. Taken together, the results showed no evidence of an overall superior performance in blind relative sighted individuals across olfactory and auditory functions, although early blind individuals exceled in episodic auditory recognition memory. This observation may be related to an experience-induced increase in auditory attentional capacity. PMID:27729884

  10. The effect of phasic auditory alerting on visual perception.

    PubMed

    Petersen, Anders; Petersen, Annemarie Hilkjær; Bundesen, Claus; Vangkilde, Signe; Habekost, Thomas

    2017-08-01

    Phasic alertness refers to a short-lived change in the preparatory state of the cognitive system following an alerting signal. In the present study, we examined the effect of phasic auditory alerting on distinct perceptual processes, unconfounded by motor components. We combined an alerting/no-alerting design with a pure accuracy-based single-letter recognition task. Computational modeling based on Bundesen's Theory of Visual Attention was used to examine the effect of phasic alertness on visual processing speed and threshold of conscious perception. Results show that phasic auditory alertness affects visual perception by increasing the visual processing speed and lowering the threshold of conscious perception (Experiment 1). By manipulating the intensity of the alerting cue, we further observed a positive relationship between alerting intensity and processing speed, which was not seen for the threshold of conscious perception (Experiment 2). This was replicated in a third experiment, in which pupil size was measured as a physiological marker of alertness. Results revealed that the increase in processing speed was accompanied by an increase in pupil size, substantiating the link between alertness and processing speed (Experiment 3). The implications of these results are discussed in relation to a newly developed mathematical model of the relationship between levels of alertness and the speed with which humans process visual information. Copyright © 2017 Elsevier B.V. All rights reserved.

  11. Cognitive abilities relate to self-reported hearing disability.

    PubMed

    Zekveld, Adriana A; George, Erwin L J; Houtgast, Tammo; Kramer, Sophia E

    2013-10-01

    In this explorative study, the authors investigated the relationship between auditory and cognitive abilities and self-reported hearing disability. Thirty-two adults with mild to moderate hearing loss completed the Amsterdam Inventory for Auditory Disability and Handicap (AIADH; Kramer, Kapteyn, Festen, & Tobi, 1996) and performed the Text Reception Threshold (TRT; Zekveld, George, Kramer, Goverts, & Houtgast, 2007) test as well as tests of spatial working memory (SWM) and visual sustained attention. Regression analyses examined the predictive value of age, hearing thresholds (pure-tone averages [PTAs]), speech perception in noise (speech reception thresholds in noise [SRTNs]), and the cognitive tests for the 5 AIADH factors. Besides the variance explained by age, PTA, and SRTN, cognitive abilities were related to each hearing factor. The reported difficulties with sound detection and speech perception in quiet were less severe for participants with higher age, lower PTAs, and better TRTs. Fewer sound localization and speech perception in noise problems were reported by participants with better SRTNs and smaller SWM. Fewer sound discrimination difficulties were reported by subjects with better SRTNs and TRTs and smaller SWM. The results suggest a general role of the ability to read partly masked text in subjective hearing. Large working memory was associated with more reported hearing difficulties. This study shows that besides auditory variables and age, cognitive abilities are related to self-reported hearing disability.

  12. Auditory sensitivity to local stimulation of the head surface in a beluga whale (Delphinapterus leucas).

    PubMed

    Popov, Vladimir V; Sysueva, Evgeniya V; Nechaev, Dmitry I; Lemazina, Alena A; Supin, Alexander Ya

    2016-08-01

    Using the auditory evoked response technique, sensitivity to local acoustic stimulation of the ventro-lateral head surface was investigated in a beluga whale (Delphinapterus leucas). The stimuli were tone pip trains of carrier frequencies ranging from 16 to 128 kHz with a pip rate of 1 kHz. For higher frequencies (90-128 kHz), the low-threshold point was located next to the medial side of the middle portion of the lower jaw. For middle (32-64 kHz) and lower (16-22.5 kHz) frequencies, the low-threshold point was located at the lateral side of the middle portion of the lower jaw. For lower frequencies, there was an additional low-threshold point next to the bulla-meatus complex. Based on these data, several frequency-specific paths of sound conduction to the auditory bulla are suggested: (i) through an area on the lateral surface of the lower jaw and further through the intra-jaw fat-body channel (for a wide frequency range); (ii) through an area on the ventro-lateral head surface and further through the medial opening of the lower jaw and intra-jaw fat-body channel (for a high-frequency range); and (iii) through an area on the lateral (near meatus) head surface and further through the lateral fat-body channel (for a low-frequency range).

  13. Transient threshold shift after gunshot noise exposure.

    PubMed

    Saedi, B; Ghasemi, M; Motiee, M; Mojtahed, M; Safavi, A

    2013-01-01

    Many people, such as soldiers, are routinely exposed to gunshot noise during target practice. It is suspected that this high-intensity noise may affect audition through repeated Transient Threshold Shifts (TTS); it can also mechanically alter auditory components such as waves. This study investigates the scope of gunshot noise from the AK-47 rifle (Kalashnikov) and the impact on the shooters' audition. Forty soldiers (80 ears) were recruited in this study. They were all young and being exposed to gunshot noise for the first time. Gunshot characteristics were measured before exposure. The soldiers underwent auditory evaluation with Pure Tone Audiometry (PTA) and Oto-Acoustic Emission (OAE) once before exposure and immediately (less than one hour) after exposure. The AK-47 gunshot noise pressure level varied between L(AIm) = 73.7 dBA to L(AIm) = 111.4 dBA. Fourteen participants had subclinical hearing impairment in their pre-exposure evaluation; this number increased to 16 after the exposure. Six months post-exposure and later, the number of cases with impairment had fallen to eight (improvement in 50%). Both pre- and post-exposure OAE results were within normal values, while PTA results indicated a significant threshold alteration only at 6 kHz. The results of this study confirm that exposure to gunshot noise with no ear protection can represent a significant hazard for auditory function, especially at higher frequencies.

  14. Tinnitus and Auditory Perception After a History of Noise Exposure: Relationship to Auditory Brainstem Response Measures.

    PubMed

    Bramhall, Naomi F; Konrad-Martin, Dawn; McMillan, Garnett P

    2018-01-15

    To determine whether auditory brainstem response (ABR) wave I amplitude is associated with measures of auditory perception in young people with normal distortion product otoacoustic emissions (DPOAEs) and varying levels of noise exposure history. Tinnitus, loudness tolerance, and speech perception ability were measured in 31 young military Veterans and 43 non-Veterans (19 to 35 years of age) with normal pure-tone thresholds and DPOAEs. Speech perception was evaluated in quiet using Northwestern University Auditory Test (NU-6) word lists and in background noise using the words in noise (WIN) test. Loudness discomfort levels were measured using 1-, 3-, 4-, and 6-kHz pulsed pure tones. DPOAEs and ABRs were collected in each participant to assess outer hair cell and auditory nerve function. The probability of reporting tinnitus in this sample increased by a factor of 2.0 per 0.1 µV decrease in ABR wave I amplitude (95% Bayesian confidence interval, 1.1 to 5.0) for males and by a factor of 2.2 (95% confidence interval, 1.0 to 6.4) for females after adjusting for sex and DPOAE levels. Similar results were obtained in an alternate model adjusted for pure-tone thresholds in addition to sex and DPOAE levels. No apparent relationship was found between wave I amplitude and either loudness tolerance or speech perception in quiet or noise. Reduced ABR wave I amplitude was associated with an increased risk of tinnitus, even after adjusting for DPOAEs and sex. In contrast, wave III and V amplitudes had little effect on tinnitus risk. This suggests that changes in peripheral input at the level of the inner hair cell or auditory nerve may lead to increases in central gain that give rise to the perception of tinnitus. Although the extent of synaptopathy in the study participants cannot be measured directly, these findings are consistent with the prediction that tinnitus may be a perceptual consequence of cochlear synaptopathy.

  15. Salicylate-induced cochlear impairments, cortical hyperactivity and re-tuning, and tinnitus.

    PubMed

    Chen, Guang-Di; Stolzberg, Daniel; Lobarinas, Edward; Sun, Wei; Ding, Dalian; Salvi, Richard

    2013-01-01

    High doses of sodium salicylate (SS) have long been known to induce temporary hearing loss and tinnitus, effects attributed to cochlear dysfunction. However, our recent publications reviewed here show that SS can induce profound, permanent, and unexpected changes in the cochlea and central nervous system. Prolonged treatment with SS permanently decreased the cochlear compound action potential (CAP) amplitude in vivo. In vitro, high dose SS resulted in a permanent loss of spiral ganglion neurons and nerve fibers, but did not damage hair cells. Acute treatment with high-dose SS produced a frequency-dependent decrease in the amplitude of distortion product otoacoustic emissions and CAP. Losses were greatest at low and high frequencies, but least at the mid-frequencies (10-20 kHz), the mid-frequency band that corresponds to the tinnitus pitch measured behaviorally. In the auditory cortex, medial geniculate body and amygdala, high-dose SS enhanced sound-evoked neural responses at high stimulus levels, but it suppressed activity at low intensities and elevated response threshold. When SS was applied directly to the auditory cortex or amygdala, it only enhanced sound evoked activity, but did not elevate response threshold. Current source density analysis revealed enhanced current flow into the supragranular layer of auditory cortex following systemic SS treatment. Systemic SS treatment also altered tuning in auditory cortex and amygdala; low frequency and high frequency multiunit clusters up-shifted or down-shifted their characteristic frequency into the 10-20 kHz range thereby altering auditory cortex tonotopy and enhancing neural activity at mid-frequencies corresponding to the tinnitus pitch. These results suggest that SS-induced hyperactivity in auditory cortex originates in the central nervous system, that the amygdala potentiates these effects and that the SS-induced tonotopic shifts in auditory cortex, the putative neural correlate of tinnitus, arises from the interaction between the frequency-dependent losses in the cochlea and hyperactivity in the central nervous system. Copyright © 2012 Elsevier B.V. All rights reserved.

  16. Pathological Laughter as a Symptom of Midbrain Infarction

    PubMed Central

    Dabby, Ron; Watemberg, Nathan; Lampl, Yair; Eilam, Anda; Rapaport, Abraham; Sadeh, Menachem

    2004-01-01

    Pathological laughter is an uncommon symptom usually caused by bilateral, diffuse cerebral lesions. It has rarely been reported in association with isolated cerebral lesions. Midbrain involvement causing pathological laughter is extremely unusual. We describe three patients who developed pathological laughter after midbrain and pontine-midbrain infarction. In two patients a small infarction in the left paramedian midbrain was detected, whereas the third one sustained a massive bilateral pontine infarction extending to the midbrain. Laughter heralded stroke by one day in one patient and occurred as a delayed phenomenon three months after stroke in another. Pathological laughter ceased within a few days in two patients and was still present at a two year follow-up in the patient with delayed-onset laughter. Pathological laughter can herald midbrain infarction or follow stroke either shortly after onset of symptoms or as a delayed phenomenon. Furthermore, small unilateral midbrain infarctions can cause this rare complication. PMID:15706050

  17. Auditory Weighting Functions and TTS/PTS Exposure Functions for Marine Mammals Exposed to Underwater Noise

    DTIC Science & Technology

    2016-12-01

    weighting functions utilized the “M-weighting” functions at lower frequencies, where no TTS existed at that time . Since derivation of the Phase 2...resulting shapes of the weighting functions (left) and exposure functions (right). The arrows indicate the direction of change when the designated parameter...thresholds are in dB re 1 μPa ..................................... iv 1. Species group designations for Navy Phase 3 auditory weighting functions

  18. The role of RIP3 mediated necroptosis in ouabain-induced spiral ganglion neurons injuries.

    PubMed

    Wang, Xi; Wang, Ye; Ding, Zhong-jia; Yue, Bo; Zhang, Peng-zhi; Chen, Xiao-dong; Chen, Xin; Chen, Jun; Chen, Fu-quan; Chen, Yang; Wang, Ren-feng; Mi, Wen-juan; Lin, Ying; Wang, Jie; Qiu, Jian-hua

    2014-08-22

    Spiral ganglion neuron (SGN) injury is a generally accepted precursor of auditory neuropathy. Receptor-interacting protein 3 (RIP3) has been reported as an important necroptosis pathway mediator that can be blocked by necrostatin-1 (Nec-1). In our study, we sought to identify whether necroptosis participated in SGN injury. Ouabain was applied to establish an SGN injury model. We measured the auditory brain-stem response (ABR) threshold shift as an indicator of the auditory conditions. Positive β3-tubulin immunofluorescence staining indicated the surviving SGNs. RIP3 expression was evaluated using immunofluorescence, quantitative real-time polymerase chain reaction and western blot. SGN injury promoted an increase in RIP3 expression that could be suppressed by application of the necroptosis inhibitor Nec-1. A decreased ABR threshold shift and increased SGN density were observed when Nec-1 was administered with apoptosis inhibitor N-benzyloxycarbonyl-Val-Ala-Asp-fluoromethylketone (Z-VAD). These results demonstrated that necroptosis is an indispensable pathway separately from apoptosis leading to SGN death pathway, in which RIP3 plays an important role. Copyright © 2014 Elsevier Ireland Ltd. All rights reserved.

  19. Comparison of hearing and voicing ranges in singing

    NASA Astrophysics Data System (ADS)

    Hunter, Eric J.; Titze, Ingo R.

    2003-04-01

    The spectral and dynamic ranges of the human voice of professional and nonprofessional vocalists were compared to the auditory hearing and feeling thresholds at a distance of one meter. In order to compare these, an analysis was done in true dB SPL, not just relative dB as is usually done in speech analysis. The methodology of converting the recorded acoustic signal to absolute pressure units was described. The human voice range of a professional vocalist appeared to match the dynamic range of the auditory system at some frequencies. In particular, it was demonstrated that professional vocalists were able to make use of the most sensitive part of the hearing thresholds (around 4 kHz) through the use of a learned vocal ring or singer's formant. [Work sponsored by NIDCD.

  20. Neuroimaging somatosensory perception and masking.

    PubMed

    Meador, Kimford J; Revill, Kathleen Pirog; Epstein, Charles M; Sathian, K; Loring, David W; Rorden, Chris

    2017-01-08

    The specific cortical and subcortical regions involved in conscious perception and masking are uncertain. This study sought to identify brain areas involved in conscious perception of somatosensory stimuli during a masking task using functional magnetic resonance (fMRI) to contrast perceived vs. non-perceived targets. Electrical trains were delivered to the right index finger for targets and to the left index finger for masks. Target intensities were adjusted to compensate for threshold drift. Sham target trials were given in ~10% of the trials, and target stimuli without masks were delivered in one of the five runs (68 trials/run). When healthy dextral adult volunteers (n=15) perceived right hand targets, greater left- than right-cerebral activations were seen with similar patterns across the parietal cortex, thalamus, insula, claustrum, and midbrain. When targets were not perceived, left/right cerebral activations were similar overall. Directly comparing perceived vs. non-perceived stimuli with similar intensities in the masking task revealed predominate activations contralateral to masks. In contrast, activations were greater contralateral to perceived targets if no masks were given or if masks were given but target stimulus intensities were greater for perceived than non-perceived targets. The novel aspects of this study include: 1) imaging of cortical and subcortical activations in healthy humans related to somatosensory perception during a masking task, 2) activations in the human thalamus and midbrain related to perception of stimuli compared to matched non-perceived stimuli, and 3) similar left/right cerebral activation patterns across cortical, thalamic and midbrain structures suggesting interactions across all three levels during conscious perception in humans. Copyright © 2016 Elsevier Ltd. All rights reserved.

  1. Sustained Perceptual Deficits from Transient Sensory Deprivation

    PubMed Central

    Sanes, Dan H.

    2015-01-01

    Sensory pathways display heightened plasticity during development, yet the perceptual consequences of early experience are generally assessed in adulthood. This approach does not allow one to identify transient perceptual changes that may be linked to the central plasticity observed in juvenile animals. Here, we determined whether a brief period of bilateral auditory deprivation affects sound perception in developing and adult gerbils. Animals were reared with bilateral earplugs, either from postnatal day 11 (P11) to postnatal day 23 (P23) (a manipulation previously found to disrupt gerbil cortical properties), or from P23-P35. Fifteen days after earplug removal and restoration of normal thresholds, animals were tested on their ability to detect the presence of amplitude modulation (AM), a temporal cue that supports vocal communication. Animals reared with earplugs from P11-P23 displayed elevated AM detection thresholds, compared with age-matched controls. In contrast, an identical period of earplug rearing at a later age (P23-P35) did not impair auditory perception. Although the AM thresholds of earplug-reared juveniles improved during a week of repeated testing, a subset of juveniles continued to display a perceptual deficit. Furthermore, although the perceptual deficits induced by transient earplug rearing had resolved for most animals by adulthood, a subset of adults displayed impaired performance. Control experiments indicated that earplugging did not disrupt the integrity of the auditory periphery. Together, our results suggest that P11-P23 encompasses a critical period during which sensory deprivation disrupts central mechanisms that support auditory perceptual skills. SIGNIFICANCE STATEMENT Sensory systems are particularly malleable during development. This heightened degree of plasticity is beneficial because it enables the acquisition of complex skills, such as music or language. However, this plasticity comes with a cost: nervous system development displays an increased vulnerability to the sensory environment. Here, we identify a precise developmental window during which mild hearing loss affects the maturation of an auditory perceptual cue that is known to support animal communication, including human speech. Furthermore, animals reared with transient hearing loss display deficits in perceptual learning. Our results suggest that speech and language delays associated with transient or permanent childhood hearing loss may be accounted for, in part, by deficits in central auditory processing mechanisms. PMID:26224865

  2. Development and modulation of intrinsic membrane properties control the temporal precision of auditory brain stem neurons.

    PubMed

    Franzen, Delwen L; Gleiss, Sarah A; Berger, Christina; Kümpfbeck, Franziska S; Ammer, Julian J; Felmy, Felix

    2015-01-15

    Passive and active membrane properties determine the voltage responses of neurons. Within the auditory brain stem, refinements in these intrinsic properties during late postnatal development usually generate short integration times and precise action-potential generation. This developmentally acquired temporal precision is crucial for auditory signal processing. How the interactions of these intrinsic properties develop in concert to enable auditory neurons to transfer information with high temporal precision has not yet been elucidated in detail. Here, we show how the developmental interaction of intrinsic membrane parameters generates high firing precision. We performed in vitro recordings from neurons of postnatal days 9-28 in the ventral nucleus of the lateral lemniscus of Mongolian gerbils, an auditory brain stem structure that converts excitatory to inhibitory information with high temporal precision. During this developmental period, the input resistance and capacitance decrease, and action potentials acquire faster kinetics and enhanced precision. Depending on the stimulation time course, the input resistance and capacitance contribute differentially to action-potential thresholds. The decrease in input resistance, however, is sufficient to explain the enhanced action-potential precision. Alterations in passive membrane properties also interact with a developmental change in potassium currents to generate the emergence of the mature firing pattern, characteristic of coincidence-detector neurons. Cholinergic receptor-mediated depolarizations further modulate this intrinsic excitability profile by eliciting changes in the threshold and firing pattern, irrespective of the developmental stage. Thus our findings reveal how intrinsic membrane properties interact developmentally to promote temporally precise information processing. Copyright © 2015 the American Physiological Society.

  3. Two-Stage Processing of Sounds Explains Behavioral Performance Variations due to Changes in Stimulus Contrast and Selective Attention: An MEG Study

    PubMed Central

    Kauramäki, Jaakko; Jääskeläinen, Iiro P.; Hänninen, Jarno L.; Auranen, Toni; Nummenmaa, Aapo; Lampinen, Jouko; Sams, Mikko

    2012-01-01

    Selectively attending to task-relevant sounds whilst ignoring background noise is one of the most amazing feats performed by the human brain. Here, we studied the underlying neural mechanisms by recording magnetoencephalographic (MEG) responses of 14 healthy human subjects while they performed a near-threshold auditory discrimination task vs. a visual control task of similar difficulty. The auditory stimuli consisted of notch-filtered continuous noise masker sounds, and of 1020-Hz target tones occasionally () replacing 1000-Hz standard tones of 300-ms duration that were embedded at the center of the notches, the widths of which were parametrically varied. As a control for masker effects, tone-evoked responses were additionally recorded without masker sound. Selective attention to tones significantly increased the amplitude of the onset M100 response at 100 ms to the standard tones during presence of the masker sounds especially with notches narrower than the critical band. Further, attention modulated sustained response most clearly at 300–400 ms time range from sound onset, with narrower notches than in case of the M100, thus selectively reducing the masker-induced suppression of the tone-evoked response. Our results show evidence of a multiple-stage filtering mechanism of sensory input in the human auditory cortex: 1) one at early (100 ms) latencies bilaterally in posterior parts of the secondary auditory areas, and 2) adaptive filtering of attended sounds from task-irrelevant background masker at longer latency (300 ms) in more medial auditory cortical regions, predominantly in the left hemisphere, enhancing processing of near-threshold sounds. PMID:23071654

  4. Auditory Temporal Acuity Probed With Cochlear Implant Stimulation and Cortical Recording

    PubMed Central

    Kirby, Alana E.

    2010-01-01

    Cochlear implants stimulate the auditory nerve with amplitude-modulated (AM) electric pulse trains. Pulse rates >2,000 pulses per second (pps) have been hypothesized to enhance transmission of temporal information. Recent studies, however, have shown that higher pulse rates impair phase locking to sinusoidal AM in the auditory cortex and impair perceptual modulation detection. Here, we investigated the effects of high pulse rates on the temporal acuity of transmission of pulse trains to the auditory cortex. In anesthetized guinea pigs, signal-detection analysis was used to measure the thresholds for detection of gaps in pulse trains at rates of 254, 1,017, and 4,069 pps and in acoustic noise. Gap-detection thresholds decreased by an order of magnitude with increases in pulse rate from 254 to 4,069 pps. Such a pulse-rate dependence would likely influence speech reception through clinical speech processors. To elucidate the neural mechanisms of gap detection, we measured recovery from forward masking after a 196.6-ms pulse train. Recovery from masking was faster at higher carrier pulse rates and masking increased linearly with current level. We fit the data with a dual-exponential recovery function, consistent with a peripheral and a more central process. High-rate pulse trains evoked less central masking, possibly due to adaptation of the response in the auditory nerve. Neither gap detection nor forward masking varied with cortical depth, indicating that these processes are likely subcortical. These results indicate that gap detection and modulation detection are mediated by two separate neural mechanisms. PMID:19923242

  5. Distribution of androgen receptor mRNA expression in vocal, auditory, and neuroendocrine circuits in a teleost fish.

    PubMed

    Forlano, Paul M; Marchaterre, Margaret; Deitcher, David L; Bass, Andrew H

    2010-02-15

    Across all major vertebrate groups, androgen receptors (ARs) have been identified in neural circuits that shape reproductive-related behaviors, including vocalization. The vocal control network of teleost fishes presents an archetypal example of how a vertebrate nervous system produces social, context-dependent sounds. We cloned a partial cDNA of AR that was used to generate specific probes to localize AR expression throughout the central nervous system of the vocal plainfin midshipman fish (Porichthys notatus). In the forebrain, AR mRNA is abundant in proposed homologs of the mammalian striatum and amygdala, and in anterior and posterior parvocellular and magnocellular nuclei of the preoptic area, nucleus preglomerulosus, and posterior, ventral and anterior tuberal nuclei of the hypothalamus. Many of these nuclei are part of the known vocal and auditory circuitry in midshipman. The midbrain periaqueductal gray, an essential link between forebrain and hindbrain vocal circuitry, and the lateral line recipient nucleus medialis in the rostral hindbrain also express abundant AR mRNA. In the caudal hindbrain-spinal vocal circuit, high AR mRNA is found in the vocal prepacemaker nucleus and along the dorsal periphery of the vocal motor nucleus congruent with the known pattern of expression of aromatase-containing glial cells. Additionally, abundant AR mRNA expression is shown for the first time in the inner ear of a vertebrate. The distribution of AR mRNA strongly supports the role of androgens as modulators of behaviorally defined vocal, auditory, and neuroendocrine circuits in teleost fish and vertebrates in general. 2009 Wiley-Liss, Inc.

  6. Cochlear Implant Electrode Array From Partial to Full Insertion in Non-Human Primate Model.

    PubMed

    Manrique-Huarte, Raquel; Calavia, Diego; Gallego, Maria Antonia; Manrique, Manuel

    2018-04-01

    To determine the feasibility of progressive insertion (two sequential surgeries: partial to full insertion) of an electrode array and to compare functional outcomes. 8 normal-hearing animals (Macaca fascicularis (MF)) were included. A 14 contact electrode array, which is suitably sized for the MF cochlea was partially inserted (PI) in 16 ears. After 3 months of follow-up revision surgery the electrode was advanced to a full insertion (FI) in 8 ears. Radiological examination and auditory testing was performed monthly for 6 months. In order to compare the values a two way repeated measures ANOVA was used. A p-value below 0.05 was considered as statistically significant. IBM SPSS Statistics V20 was used. Surgical procedure was completed in all cases with no complications. Mean auditory threshold shift (ABR click tones) after 6 months follow-up is 19 dB and 27 dB for PI and FI group. For frequencies 4, 6, 8, 12, and 16 kHz in the FI group, tone burst auditory thresholds increased after the revision surgery showing no recovery thereafter. Mean threshold shift at 6 months of follow- up is 19.8 dB ranging from 2 to 36dB for PI group and 33.14dB ranging from 8 to 48dB for FI group. Statistical analysis yields no significant differences between groups. It is feasible to perform a partial insertion of an electrode array and progress on a second surgical time to a full insertion (up to 270º). Hearing preservation is feasible for both procedures. Note that a minimal threshold deterioration is depicted among full insertion group, especially among high frequencies, with no statistical differences.

  7. Lexical-Access Ability and Cognitive Predictors of Speech Recognition in Noise in Adult Cochlear Implant Users

    PubMed Central

    Smits, Cas; Merkus, Paul; Festen, Joost M.; Goverts, S. Theo

    2017-01-01

    Not all of the variance in speech-recognition performance of cochlear implant (CI) users can be explained by biographic and auditory factors. In normal-hearing listeners, linguistic and cognitive factors determine most of speech-in-noise performance. The current study explored specifically the influence of visually measured lexical-access ability compared with other cognitive factors on speech recognition of 24 postlingually deafened CI users. Speech-recognition performance was measured with monosyllables in quiet (consonant-vowel-consonant [CVC]), sentences-in-noise (SIN), and digit-triplets in noise (DIN). In addition to a composite variable of lexical-access ability (LA), measured with a lexical-decision test (LDT) and word-naming task, vocabulary size, working-memory capacity (Reading Span test [RSpan]), and a visual analogue of the SIN test (text reception threshold test) were measured. The DIN test was used to correct for auditory factors in SIN thresholds by taking the difference between SIN and DIN: SRTdiff. Correlation analyses revealed that duration of hearing loss (dHL) was related to SIN thresholds. Better working-memory capacity was related to SIN and SRTdiff scores. LDT reaction time was positively correlated with SRTdiff scores. No significant relationships were found for CVC or DIN scores with the predictor variables. Regression analyses showed that together with dHL, RSpan explained 55% of the variance in SIN thresholds. When controlling for auditory performance, LA, LDT, and RSpan separately explained, together with dHL, respectively 37%, 36%, and 46% of the variance in SRTdiff outcome. The results suggest that poor verbal working-memory capacity and to a lesser extent poor lexical-access ability limit speech-recognition ability in listeners with a CI. PMID:29205095

  8. [The influence of various acoustic stimuli upon the cumulative action potential (SAP) of the auditory nerves in guinea pigs (author's transl)].

    PubMed

    Hofmann, G; Kraak, W

    1976-08-31

    The impact of various acoustic stimuli upon the cumulative action potential of the auditory nerves in guinea pigs is investigated by means of the averaging method. It was found that the potential amplitude within the measuring range increases with the logarithm of the rising sonic pressure velocity. Unlike the evoked response audiometry (ERA), this potential seems unsuitable for furnishing information of the frequency-dependent threshold course.

  9. Is there a best side for cochlear implants in post-lingual patients?

    PubMed

    Amaral, Maria Stella Arantes do; Damico, Thiago A; Gonçales, Alina S; Reis, Ana C M B; Isaac, Myriam de Lima; Massuda, Eduardo T; Hyppolito, Miguel Angelo

    2017-07-29

    Cochlear Implant is a sensory prosthesis capable of restoring hearing in patients with severe or profound bilateral sensorineural hearing loss. To evaluate if there is a better side to be implanted in post-lingual patients. Retrospective longitudinal study. Participants were 40 subjects, of both sex, mean age of 47 years, with post-lingual hearing loss, users of unilateral cochlear implant for more than 12 months and less than 24 months, with asymmetric auditor reserve between the ears (difference of 10dBNA, In at least one of the frequencies with a response, between the ears), divided into two groups. Group A was composed of individuals with cochlear implant in the ear with better auditory reserve and Group B with auditory reserve lower in relation to the contralateral side. There was no statistical difference for the tonal auditory threshold before and after cochlear implant. A better speech perception in pre-cochlear implant tests was present in B (20%), but the final results are similar in both groups. The cochlear implant in the ear with the worst auditory residue favors a bimodal hearing, which would allow the binaural summation, without compromising the improvement of the audiometric threshold and the speech perception. Copyright © 2017 Associação Brasileira de Otorrinolaringologia e Cirurgia Cérvico-Facial. Published by Elsevier Editora Ltda. All rights reserved.

  10. Analysis of subtle auditory dysfunctions in young normal-hearing subjects affected by Williams syndrome.

    PubMed

    Paglialonga, Alessia; Barozzi, Stefania; Brambilla, Daniele; Soi, Daniela; Cesarani, Antonio; Spreafico, Emanuela; Tognola, Gabriella

    2014-11-01

    To assess if young subjects affected by Williams syndrome (WS) with normal middle ear functionality and normal hearing thresholds might have subtle auditory dysfunctions that could be detected by using clinically available measurements. Otoscopy, acoustic reflexes, tympanometry, pure-tone audiometry, and distortion product otoacoustic emissions (DPOAEs) were measured in a group of 13 WS subjects and in 13 age-matched, typically developing control subjects. Participants were required to have normal otoscopy, A-type tympanogram, normal acoustic reflex thresholds, and pure-tone thresholds≤15 dB HL at 0.5, 1, and 2 kHz bilaterally. To limit the possible influence of middle ear status on DPOAE recordings, we analyzed only data from ears with pure-tone thresholds≤15 dB HL across all octave frequencies in the range 0.25-8 kHz, middle ear pressure (MEP)>-50 daPa, static compliance (SC) in the range 0.3-1.2 cm3, and ear canal volume (ECV) in the range 0.2-2 ml, and we performed analysis of covariance to remove the possible effects of middle ear variables on DPOAEs. No differences in mean hearing thresholds, SC, ECV, and gradient were observed between the two groups, whereas significantly lower MEP values were found in WS subjects as well as significantly decreased DPOAEs up to 3.2 kHz after adjusting for differences in middle ear status. Results revealed that WS subjects with normal hearing thresholds (≤15 dB HL) and normal middle ear functionality (MEP>-50 daPa, SC in the range 0.3-1.2 cm3, ECV in the range 0.2-2 ml) might have subtle auditory dysfunctions that can be detected by using clinically available methods. Overall, this study points out the importance of using otoacoustic emissions as a complement to routine audiological examinations in individuals with WS to detect, before the onset of hearing loss, possible subtle auditory dysfunctions so that patients can be early identified, better monitored, and promptly treated. Copyright © 2014 Elsevier Ireland Ltd. All rights reserved.

  11. VMAT2-mediated neurotransmission from midbrain leptin receptor neurons in feeding regulation

    USDA-ARS?s Scientific Manuscript database

    Leptin receptors (LepRs) expressed in the midbrain contribute to the action of leptin on feeding regulation. The midbrain neurons release a variety of neurotransmitters including dopamine (DA), glutamate and GABA. However, which neurotransmitter mediates midbrain leptin action on feeding remains unc...

  12. The Neural Substrate for Binaural Masking Level Differences in the Auditory Cortex

    PubMed Central

    Gilbert, Heather J.; Krumbholz, Katrin; Palmer, Alan R.

    2015-01-01

    The binaural masking level difference (BMLD) is a phenomenon whereby a signal that is identical at each ear (S0), masked by a noise that is identical at each ear (N0), can be made 12–15 dB more detectable by inverting the waveform of either the tone or noise at one ear (Sπ, Nπ). Single-cell responses to BMLD stimuli were measured in the primary auditory cortex of urethane-anesthetized guinea pigs. Firing rate was measured as a function of signal level of a 500 Hz pure tone masked by low-passed white noise. Responses were similar to those reported in the inferior colliculus. At low signal levels, the response was dominated by the masker. At higher signal levels, firing rate either increased or decreased. Detection thresholds for each neuron were determined using signal detection theory. Few neurons yielded measurable detection thresholds for all stimulus conditions, with a wide range in thresholds. However, across the entire population, the lowest thresholds were consistent with human psychophysical BMLDs. As in the inferior colliculus, the shape of the firing-rate versus signal-level functions depended on the neurons' selectivity for interaural time difference. Our results suggest that, in cortex, BMLD signals are detected from increases or decreases in the firing rate, consistent with predictions of cross-correlation models of binaural processing and that the psychophysical detection threshold is based on the lowest neural thresholds across the population. PMID:25568115

  13. Development of tectal connectivity across metamorphosis in the bullfrog (Rana catesbeiana).

    PubMed

    Horowitz, Seth S; Simmons, Andrea Megela

    2010-01-01

    In the bullfrog (Rana catesbeiana), the process of metamorphosis culminates in the appearance of new visual and visuomotor behaviors reflective of the emergence of binocular vision and visually-guided prey capture behaviors as the animal transitions to life on land. Using several different neuroanatomical tracers, we examined the substrates that may underlie these behavioral changes by tracing the afferent and efferent connectivity of the midbrain optic tectum across metamorphic development. Intratectal, tectotoral, tectotegmental, tectobulbar, and tecto-thalamic tracts exhibit similar trajectories of neurobiotin fiber label across the developmental span from early larval tadpoles to adults. Developmental variability was apparent primarily in intensity and distribution of cell and puncta label in target nuclei. Combined injections of cholera toxin subunit β and Phaseolus vulgaris leucoagglutinin consistently label cell bodies, puncta, or fiber segments bilaterally in midbrain targets including the pretectal gray, laminar nucleus of the torus semicircularis, and the nucleus of the medial longitudinal fasciculus. Developmentally stable label was observed bilaterally in medullary targets including the medial vestibular nucleus, lateral vestibular nucleus, and reticular gray, and in forebrain targets including the posterior and ventromedial nuclei of the thalamus. The nucleus isthmi, cerebellum, lateral line nuclei, medial septum, ventral striatum, and medial pallium show more developmentally variable patterns of connectivity. Our results suggest that even during larval development, the optic tectum contains substrates for integration of visual with auditory, vestibular, and somatosensory cues, as well as for guidance of motivated behaviors. Copyright © 2011 S. Karger AG, Basel.

  14. Integration of auditory and vibrotactile stimuli: Effects of frequency

    PubMed Central

    Wilson, E. Courtenay; Reed, Charlotte M.; Braida, Louis D.

    2010-01-01

    Perceptual integration of vibrotactile and auditory sinusoidal tone pulses was studied in detection experiments as a function of stimulation frequency. Vibrotactile stimuli were delivered through a single channel vibrator to the left middle fingertip. Auditory stimuli were presented diotically through headphones in a background of 50 dB sound pressure level broadband noise. Detection performance for combined auditory-tactile presentations was measured using stimulus levels that yielded 63% to 77% correct unimodal performance. In Experiment 1, the vibrotactile stimulus was 250 Hz and the auditory stimulus varied between 125 and 2000 Hz. In Experiment 2, the auditory stimulus was 250 Hz and the tactile stimulus varied between 50 and 400 Hz. In Experiment 3, the auditory and tactile stimuli were always equal in frequency and ranged from 50 to 400 Hz. The highest rates of detection for the combined-modality stimulus were obtained when stimulating frequencies in the two modalities were equal or closely spaced (and within the Pacinian range). Combined-modality detection for closely spaced frequencies was generally consistent with an algebraic sum model of perceptual integration; wider-frequency spacings were generally better fit by a Pythagorean sum model. Thus, perceptual integration of auditory and tactile stimuli at near-threshold levels appears to depend both on absolute frequency and relative frequency of stimulation within each modality. PMID:21117754

  15. Evaluation of high-resolution MRI for preoperative screening for cochlear implantation

    NASA Astrophysics Data System (ADS)

    Madzivire, Mambidzeni; Camp, Jon J.; Lane, John; Witte, Robert J.; Robb, Richard A.

    2002-05-01

    The success of a cochlear implant is dependent on a functioning auditory nerve. An accurate noninvasive method for screening cochlear implant patients to help determine viability of the auditory nerve would allow physicians to better predict the success of the operation. In this study we measured the size of the auditory nerve relative to the size of the juxtaposed facial nerve and correlated these measurements with audiologic test results. The study involved 15 patients, and three normal volunteers. Noninvasive high-resolution bilateral MRI images were acquired from both 1.5T and 3T scanners. The images were reformatted to obtain an anatomically referenced oblique plane perpendicular to the auditory nerve. The cross- sectional areas of the auditory and facial nerves were determined in this plane. Assessment of the data is encouraging. The ratios of auditory to facial nerve size in the control subjects are close to the expected value of 1.0. Patient data ratios range from 0.73 to 1.3, with numbers significantly less than 1.0 suggesting auditory nerve atrophy. The acoustic nerve area correlated to audiologic test findings, particularly (R2equals0.68) to the count of words understood from a list of 100 words. These preliminary analyses suggest that a threshold of size may be determined to differentiate functional from nonfunctional auditory nerves.

  16. Graded and discontinuous EphA-ephrinB expression patterns in the developing auditory brainstem

    PubMed Central

    Wallace, Matthew M.; Harris, J. Aaron; Brubaker, Donald Q.; Klotz, Caitlyn A.; Gabriele, Mark L.

    2016-01-01

    Eph-ephrin interactions guide topographic mapping and pattern formation in a variety of systems. In contrast to other sensory pathways, their precise role in the assembly of central auditory circuits remains poorly understood. The auditory midbrain, or inferior colliculus (IC) is an intriguing structure for exploring guidance of patterned projections as adjacent subdivisions exhibit distinct organizational features. The central nucleus of the IC (CNIC) and deep aspects of its neighboring lateral cortex (LCIC, Layer 3) are tonotopically-organized and receive layered inputs from primarily downstream auditory sources. While less is known about more superficial aspects of the LCIC, its inputs are multimodal, lack a clear tonotopic order, and appear discontinuous, terminating in modular, patch/matrix-like distributions. Here we utilize X-Gal staining approaches in lacZ mutant mice (ephrin-B2, -B3, and EphA4) to reveal EphA-ephrinB expression patterns in the nascent IC during the period of projection shaping that precedes hearing onset. We also report early postnatal protein expression in the cochlear nuclei, the superior olivary complex, the nuclei of the lateral lemniscus, and relevant midline structures. Continuous ephrin-B2 and EphA4 expression gradients exist along frequency axes of the CNIC and LCIC Layer 3. In contrast, more superficial LCIC localization is not graded, but confined to a series of discrete ephrin-B2 and EphA4-positive Layer 2 modules. While heavily expressed in the midline, much of the auditory brainstem is devoid of ephrin-B3, including the CNIC, LCIC Layer 2 modular fields, the dorsal nucleus of the lateral lemniscus (DNLL), as well as much of the superior olivary complex and cochlear nuclei. Ephrin-B3 LCIC expression appears complementary to that of ephrin-B2 and EphA4, with protein most concentrated in presumptive extramodular zones. Described tonotopic gradients and seemingly complementary modular/extramodular patterns suggest Eph-ephrin guidance in establishing juxtaposed continuous and discrete neural maps in the developing IC prior to experience. PMID:26906676

  17. Visual-auditory integration for visual search: a behavioral study in barn owls

    PubMed Central

    Hazan, Yael; Kra, Yonatan; Yarin, Inna; Wagner, Hermann; Gutfreund, Yoram

    2015-01-01

    Barn owls are nocturnal predators that rely on both vision and hearing for survival. The optic tectum of barn owls, a midbrain structure involved in selective attention, has been used as a model for studying visual-auditory integration at the neuronal level. However, behavioral data on visual-auditory integration in barn owls are lacking. The goal of this study was to examine if the integration of visual and auditory signals contributes to the process of guiding attention toward salient stimuli. We attached miniature wireless video cameras on barn owls’ heads (OwlCam) to track their target of gaze. We first provide evidence that the area centralis (a retinal area with a maximal density of photoreceptors) is used as a functional fovea in barn owls. Thus, by mapping the projection of the area centralis on the OwlCam’s video frame, it is possible to extract the target of gaze. For the experiment, owls were positioned on a high perch and four food items were scattered in a large arena on the floor. In addition, a hidden loudspeaker was positioned in the arena. The positions of the food items and speaker were changed every session. Video sequences from the OwlCam were saved for offline analysis while the owls spontaneously scanned the room and the food items with abrupt gaze shifts (head saccades). From time to time during the experiment, a brief sound was emitted from the speaker. The fixation points immediately following the sounds were extracted and the distances between the gaze position and the nearest items and loudspeaker were measured. The head saccades were rarely toward the location of the sound source but to salient visual features in the room, such as the door knob or the food items. However, among the food items, the one closest to the loudspeaker had the highest probability of attracting a gaze shift. This result supports the notion that auditory signals are integrated with visual information for the selection of the next visual search target. PMID:25762905

  18. Graded and discontinuous EphA-ephrinB expression patterns in the developing auditory brainstem.

    PubMed

    Wallace, Matthew M; Harris, J Aaron; Brubaker, Donald Q; Klotz, Caitlyn A; Gabriele, Mark L

    2016-05-01

    Eph-ephrin interactions guide topographic mapping and pattern formation in a variety of systems. In contrast to other sensory pathways, their precise role in the assembly of central auditory circuits remains poorly understood. The auditory midbrain, or inferior colliculus (IC) is an intriguing structure for exploring guidance of patterned projections as adjacent subdivisions exhibit distinct organizational features. The central nucleus of the IC (CNIC) and deep aspects of its neighboring lateral cortex (LCIC, Layer 3) are tonotopically-organized and receive layered inputs from primarily downstream auditory sources. While less is known about more superficial aspects of the LCIC, its inputs are multimodal, lack a clear tonotopic order, and appear discontinuous, terminating in modular, patch/matrix-like distributions. Here we utilize X-Gal staining approaches in lacZ mutant mice (ephrin-B2, -B3, and EphA4) to reveal EphA-ephrinB expression patterns in the nascent IC during the period of projection shaping that precedes hearing onset. We also report early postnatal protein expression in the cochlear nuclei, the superior olivary complex, the nuclei of the lateral lemniscus, and relevant midline structures. Continuous ephrin-B2 and EphA4 expression gradients exist along frequency axes of the CNIC and LCIC Layer 3. In contrast, more superficial LCIC localization is not graded, but confined to a series of discrete ephrin-B2 and EphA4-positive Layer 2 modules. While heavily expressed in the midline, much of the auditory brainstem is devoid of ephrin-B3, including the CNIC, LCIC Layer 2 modular fields, the dorsal nucleus of the lateral lemniscus (DNLL), as well as much of the superior olivary complex and cochlear nuclei. Ephrin-B3 LCIC expression appears complementary to that of ephrin-B2 and EphA4, with protein most concentrated in presumptive extramodular zones. Described tonotopic gradients and seemingly complementary modular/extramodular patterns suggest Eph-ephrin guidance in establishing juxtaposed continuous and discrete neural maps in the developing IC prior to experience. Copyright © 2016 Elsevier B.V. All rights reserved.

  19. Theory of Auditory Thresholds in Primates

    NASA Astrophysics Data System (ADS)

    Harrison, Michael J.

    2001-03-01

    The influence of thermal pressure fluctuations at the tympanic membrane has been previously investigated as a possible determinant of the threshold of hearing in humans (L.J. Sivian and S.D. White, J. Acoust. Soc. Am. IV, 4;288(1933).). More recent work has focussed more precisely on the relation between statistical mechanics and sensory signal processing by biological means in creatures' brains (W. Bialek, in ``Physics of Biological Systems: from molecules to species'', H. Flyvberg et al, (Eds), p. 252; Springer 1997.). Clinical data on the frequency dependence of hearing thresholds in humans and other primates (W.C. Stebbins, ``The Acoustic Sense of Animals'', Harvard 1983.) has long been available. I have derived an expression for the frequency dependence of hearing thresholds in primates, including humans, by first calculating the frequency dependence of thermal pressure fluctuations at eardrums from damped normal modes excited in model ear canals of given simple geometry. I then show that most of the features of the clinical data are directly related to the frequency dependence of the ratio of thermal noise pressure arising from without to that arising from within the masking bandwidth which signals must dominate in order to be sensed. The higher intensity of threshold signals in primates smaller than humans, which is clinically observed over much but not all of the human auditory spectrum is shown to arise from their smaller meatus dimensions. note

  20. Normative behavioral thresholds for short tone-bursts.

    PubMed

    Beattie, R C; Rochverger, I

    2001-10-01

    Although tone-bursts have been commonly used in auditory brainstem response (ABR) evaluations for many years, national standards describing normal calibration values have not been established. This study was designed to gather normative threshold data to establish a physical reference for tone-burst stimuli that can be reproduced across clinics and laboratories. More specifically, we obtained norms for 3-msec tone-bursts presented at two repetition rates (9.3/sec and 39/sec), two gating functions (Trapezoid and Blackman), and four frequencies (500, 1000, 2000, and 4000 Hz). Our results are specified using three physical references: dB peak sound pressure level, dB peak-to-peak equivalent sound pressure level, and dB SPL (fast meter response, rate = 50 stimuli/sec). These data are offered for consideration when calibrating ABR equipment. The 39/sec stimulus rate yielded tone-burst thresholds that were approximately 3 dB lower than the 9.3/sec rate. The improvement in threshold with increasing stimulus rate may reflect the ability of the auditory system to integrate energy that occurs within a time interval of 200 to 500 msec (temporal integration). The Trapezoid gating function yielded thresholds that averaged 1.4 dB lower than the Blackman function. Although these differences are small and of little clinical importance, the cumulative effects of several instrument and/or procedural variables may yield clinically important differences.

  1. Auditory brainstem responses in the Eastern Screech Owl: An estimate of auditory thresholds

    USGS Publications Warehouse

    Brittan-Powell, E.F.; Lohr, B.; Hahn, D.C.; Dooling, R.J.

    2005-01-01

    The auditory brainstem response (ABR), a measure of neural synchrony, was used to estimate auditory sensitivity in the eastern screech owl (Megascops asio). The typical screech owl ABR waveform showed two to three prominent peaks occurring within 5 ms of stimulus onset. As sound pressure levels increased, the ABR peak amplitude increased and latency decreased. With an increasing stimulus presentation rate, ABR peak amplitude decreased and latency increased. Generally, changes in the ABR waveform to stimulus intensity and repetition rate are consistent with the pattern found in several avian families. The ABR audiogram shows that screech owls hear best between 1.5 and 6.4 kHz with the most acute sensitivity between 4?5.7 kHz. The shape of the average screech owl ABR audiogram is similar to the shape of the behaviorally measured audiogram of the barn owl, except at the highest frequencies. Our data also show differences in overall auditory sensitivity between the color morphs of screech owls.

  2. Development of auditory sensitivity in budgerigars (Melopsittacus undulatus)

    NASA Astrophysics Data System (ADS)

    Brittan-Powell, Elizabeth F.; Dooling, Robert J.

    2004-06-01

    Auditory feedback influences the development of vocalizations in songbirds and parrots; however, little is known about the development of hearing in these birds. The auditory brainstem response was used to track the development of auditory sensitivity in budgerigars from hatch to 6 weeks of age. Responses were first obtained from 1-week-old at high stimulation levels at frequencies at or below 2 kHz, showing that budgerigars do not hear well at hatch. Over the next week, thresholds improved markedly, and responses were obtained for almost all test frequencies throughout the range of hearing by 14 days. By 3 weeks posthatch, birds' best sensitivity shifted from 2 to 2.86 kHz, and the shape of the auditory brainstem response (ABR) audiogram became similar to that of adult budgerigars. About a week before leaving the nest, ABR audiograms of young budgerigars are very similar to those of adult birds. These data complement what is known about vocal development in budgerigars and show that hearing is fully developed by the time that vocal learning begins.

  3. Speech training alters consonant and vowel responses in multiple auditory cortex fields

    PubMed Central

    Engineer, Crystal T.; Rahebi, Kimiya C.; Buell, Elizabeth P.; Fink, Melyssa K.; Kilgard, Michael P.

    2015-01-01

    Speech sounds evoke unique neural activity patterns in primary auditory cortex (A1). Extensive speech sound discrimination training alters A1 responses. While the neighboring auditory cortical fields each contain information about speech sound identity, each field processes speech sounds differently. We hypothesized that while all fields would exhibit training-induced plasticity following speech training, there would be unique differences in how each field changes. In this study, rats were trained to discriminate speech sounds by consonant or vowel in quiet and in varying levels of background speech-shaped noise. Local field potential and multiunit responses were recorded from four auditory cortex fields in rats that had received 10 weeks of speech discrimination training. Our results reveal that training alters speech evoked responses in each of the auditory fields tested. The neural response to consonants was significantly stronger in anterior auditory field (AAF) and A1 following speech training. The neural response to vowels following speech training was significantly weaker in ventral auditory field (VAF) and posterior auditory field (PAF). This differential plasticity of consonant and vowel sound responses may result from the greater paired pulse depression, expanded low frequency tuning, reduced frequency selectivity, and lower tone thresholds, which occurred across the four auditory fields. These findings suggest that alterations in the distributed processing of behaviorally relevant sounds may contribute to robust speech discrimination. PMID:25827927

  4. Influence of sound source location on the behavior and physiology of the precedence effect in cats.

    PubMed

    Dent, Micheal L; Tollin, Daniel J; Yin, Tom C T

    2009-08-01

    Psychophysical experiments on the precedence effect (PE) in cats have shown that they localize pairs of auditory stimuli presented from different locations in space based on the spatial position of the stimuli and the interstimulus delay (ISD) between the stimuli in a manner similar to humans. Cats exhibit localization dominance for pairs of transient stimuli with |ISDs| from approximately 0.4 to 10 ms, summing localization for |ISDs| < 0.4 ms and breakdown of fusion for |ISDs| > 10 ms, which is the approximate echo threshold. The neural correlates to the PE have been described in both anesthetized and unanesthetized animals at many levels from auditory nerve to cortex. Single-unit recordings from the inferior colliculus (IC) and auditory cortex of cats demonstrate that neurons respond to both lead and lag sounds at ISDs above behavioral echo thresholds, but the response to the lag is reduced at shorter ISDs, consistent with localization dominance. Here the influence of the relative locations of the leading and lagging sources on the PE was measured behaviorally in a psychophysical task and physiologically in the IC of awake behaving cats. At all configurations of lead-lag stimulus locations, the cats behaviorally exhibited summing localization, localization dominance, and breakdown of fusion. Recordings from the IC of awake behaving cats show neural responses paralleling behavioral measurements. Both behavioral and physiological results suggest systematically shorter echo thresholds when stimuli are further apart in space.

  5. Influence of Sound Source Location on the Behavior and Physiology of the Precedence Effect in Cats

    PubMed Central

    Dent, Micheal L.; Tollin, Daniel J.; Yin, Tom C. T.

    2009-01-01

    Psychophysical experiments on the precedence effect (PE) in cats have shown that they localize pairs of auditory stimuli presented from different locations in space based on the spatial position of the stimuli and the interstimulus delay (ISD) between the stimuli in a manner similar to humans. Cats exhibit localization dominance for pairs of transient stimuli with |ISDs| from ∼0.4 to 10 ms, summing localization for |ISDs| < 0.4 ms and breakdown of fusion for |ISDs| > 10 ms, which is the approximate echo threshold. The neural correlates to the PE have been described in both anesthetized and unanesthetized animals at many levels from auditory nerve to cortex. Single-unit recordings from the inferior colliculus (IC) and auditory cortex of cats demonstrate that neurons respond to both lead and lag sounds at ISDs above behavioral echo thresholds, but the response to the lag is reduced at shorter ISDs, consistent with localization dominance. Here the influence of the relative locations of the leading and lagging sources on the PE was measured behaviorally in a psychophysical task and physiologically in the IC of awake behaving cats. At all configurations of lead-lag stimulus locations, the cats behaviorally exhibited summing localization, localization dominance, and breakdown of fusion. Recordings from the IC of awake behaving cats show neural responses paralleling behavioral measurements. Both behavioral and physiological results suggest systematically shorter echo thresholds when stimuli are further apart in space. PMID:19439668

  6. Auditory abilities of speakers who persisted, or recovered, from stuttering

    PubMed Central

    Howell, Peter; Davis, Stephen; Williams, Sheila M.

    2006-01-01

    Objective The purpose of this study was to see whether participants who persist in their stutter have poorer sensitivity in a backward masking task compared to those participants who recover from their stutter. Design The auditory sensitivity of 30 children who stutter was tested on absolute threshold, simultaneous masking, backward masking with a broadband and with a notched noise masker. The participants had been seen and diagnosed as stuttering at least 1 year before their 12th birthday. The participants were assessed again at age 12 plus to establish whether their stutter had persisted or recovered. Persistence or recovery was based on participant's, parent's and researcher's assessment and Riley's [Riley, G. D. (1994). Stuttering severity instrument for children and adults (3rd ed.). Austin, TX: Pro-Ed.] Stuttering Severity Instrument-3. Based on this assessment, 12 speakers had persisted and 18 had recovered from stuttering. Results Thresholds differed significantly between persistent and recovered groups for the broadband backward-masked stimulus (thresholds being higher for the persistent group). Conclusions Backward masking performance at teenage is one factor that distinguishes speakers who persist in their stutter from those who recover.

 Education objectives: Readers of this article should: (1) explain why auditory factors have been implicated in stuttering; (2) summarise the work that has examined whether peripheral, and/or central, hearing are problems in stuttering; (3) explain how the hearing ability of persistent and recovered stutterers may differ; (4) discuss how hearing disorders have been implicated in other language disorders. PMID:16920188

  7. Application of Data Mining and Knowledge Discovery Techniques to Enhance Binary Target Detection and Decision-Making for Compromised Visual Images

    DTIC Science & Technology

    2004-11-01

    affords exciting opportunities in target detection. The input signal may be a sum of sine waves, it could be an auditory signal, or possibly a visual...rendering of a scene. Since image processing is an area in which the original data are stationary in some sense ( auditory signals suffer from...11 Example 1 of SR - Identification of a Subliminal Signal below a Threshold .......................... 13 Example 2 of SR

  8. Auditory Evoked Potentials for the Evaluation of Hearing Sensitivity in Navy Dolphins. Modification P00002: Assessment of Hearing Sensitivity in Adult Male Elephant Seals

    DTIC Science & Technology

    2006-12-30

    hearing in the potential and underwater behavioral hearing thresholds in four bottlenose beluga Delphinapterus leucas ," Dokl. Akad. Nauk SSSR 294...313, "Auditory filter shapes for the bottlenose dolphin (Tursiops truncatus) and 238-241. the white whale ( Delphinapterus leucas ) derived with...Rickards, F. W., Cohen, L. T., De Vidi, S., and Clark, G. M. of a beluga whale, Delphinapterus leucas ," Aquat. Mamm. 26, 212-228. (1995). "The

  9. Comparing adaptive procedures for estimating the psychometric function for an auditory gap detection task.

    PubMed

    Shen, Yi

    2013-05-01

    A subject's sensitivity to a stimulus variation can be studied by estimating the psychometric function. Generally speaking, three parameters of the psychometric function are of interest: the performance threshold, the slope of the function, and the rate at which attention lapses occur. In the present study, three psychophysical procedures were used to estimate the three-parameter psychometric function for an auditory gap detection task. These were an up-down staircase (up-down) procedure, an entropy-based Bayesian (entropy) procedure, and an updated maximum-likelihood (UML) procedure. Data collected from four young, normal-hearing listeners showed that while all three procedures provided similar estimates of the threshold parameter, the up-down procedure performed slightly better in estimating the slope and lapse rate for 200 trials of data collection. When the lapse rate was increased by mixing in random responses for the three adaptive procedures, the larger lapse rate was especially detrimental to the efficiency of the up-down procedure, and the UML procedure provided better estimates of the threshold and slope than did the other two procedures.

  10. Auditory velocity discrimination in the horizontal plane at very high velocities.

    PubMed

    Frissen, Ilja; Féron, François-Xavier; Guastavino, Catherine

    2014-10-01

    We determined velocity discrimination thresholds and Weber fractions for sounds revolving around the listener at very high velocities. Sounds used were a broadband white noise and two harmonic sounds with fundamental frequencies of 330 Hz and 1760 Hz. Experiment 1 used velocities ranging between 288°/s and 720°/s in an acoustically treated room and Experiment 2 used velocities between 288°/s and 576°/s in a highly reverberant hall. A third experiment addressed potential confounds in the first two experiments. The results show that people can reliably discriminate velocity at very high velocities and that both thresholds and Weber fractions decrease as velocity increases. These results violate Weber's law but are consistent with the empirical trend observed in the literature. While thresholds for the noise and 330 Hz harmonic stimulus were similar, those for the 1760 Hz harmonic stimulus were substantially higher. There were no reliable differences in velocity discrimination between the two acoustical environments, suggesting that auditory motion perception at high velocities is robust against the effects of reverberation. Copyright © 2014 Elsevier B.V. All rights reserved.

  11. Effect of hearing loss on semantic access by auditory and audiovisual speech in children.

    PubMed

    Jerger, Susan; Tye-Murray, Nancy; Damian, Markus F; Abdi, Hervé

    2013-01-01

    This research studied whether the mode of input (auditory versus audiovisual) influenced semantic access by speech in children with sensorineural hearing impairment (HI). Participants, 31 children with HI and 62 children with normal hearing (NH), were tested with the authors' new multimodal picture word task. Children were instructed to name pictures displayed on a monitor and ignore auditory or audiovisual speech distractors. The semantic content of the distractors was varied to be related versus unrelated to the pictures (e.g., picture distractor of dog-bear versus dog-cheese, respectively). In children with NH, picture-naming times were slower in the presence of semantically related distractors. This slowing, called semantic interference, is attributed to the meaning-related picture-distractor entries competing for selection and control of the response (the lexical selection by competition hypothesis). Recently, a modification of the lexical selection by competition hypothesis, called the competition threshold (CT) hypothesis, proposed that (1) the competition between the picture-distractor entries is determined by a threshold, and (2) distractors with experimentally reduced fidelity cannot reach the CT. Thus, semantically related distractors with reduced fidelity do not produce the normal interference effect, but instead no effect or semantic facilitation (faster picture naming times for semantically related versus unrelated distractors). Facilitation occurs because the activation level of the semantically related distractor with reduced fidelity (1) is not sufficient to exceed the CT and produce interference but (2) is sufficient to activate its concept, which then strengthens the activation of the picture and facilitates naming. This research investigated whether the proposals of the CT hypothesis generalize to the auditory domain, to the natural degradation of speech due to HI, and to participants who are children. Our multimodal picture word task allowed us to (1) quantify picture naming results in the presence of auditory speech distractors and (2) probe whether the addition of visual speech enriched the fidelity of the auditory input sufficiently to influence results. In the HI group, the auditory distractors produced no effect or a facilitative effect, in agreement with proposals of the CT hypothesis. In contrast, the audiovisual distractors produced the normal semantic interference effect. Results in the HI versus NH groups differed significantly for the auditory mode, but not for the audiovisual mode. This research indicates that the lower fidelity auditory speech associated with HI affects the normalcy of semantic access by children. Further, adding visual speech enriches the lower fidelity auditory input sufficiently to produce the semantic interference effect typical of children with NH.

  12. Auditory Speech Perception Tests in Relation to the Coding Strategy in Cochlear Implant.

    PubMed

    Bazon, Aline Cristine; Mantello, Erika Barioni; Gonçales, Alina Sanches; Isaac, Myriam de Lima; Hyppolito, Miguel Angelo; Reis, Ana Cláudia Mirândola Barbosa

    2016-07-01

    The objective of the evaluation of auditory perception of cochlear implant users is to determine how the acoustic signal is processed, leading to the recognition and understanding of sound. To investigate the differences in the process of auditory speech perception in individuals with postlingual hearing loss wearing a cochlear implant, using two different speech coding strategies, and to analyze speech perception and handicap perception in relation to the strategy used. This study is prospective cross-sectional cohort study of a descriptive character. We selected ten cochlear implant users that were characterized by hearing threshold by the application of speech perception tests and of the Hearing Handicap Inventory for Adults. There was no significant difference when comparing the variables subject age, age at acquisition of hearing loss, etiology, time of hearing deprivation, time of cochlear implant use and mean hearing threshold with the cochlear implant with the shift in speech coding strategy. There was no relationship between lack of handicap perception and improvement in speech perception in both speech coding strategies used. There was no significant difference between the strategies evaluated and no relation was observed between them and the variables studied.

  13. Auditory Effects of Exposure to Noise and Solvents: A Comparative Study

    PubMed Central

    Lobato, Diolen Conceição Barros; Lacerda, Adriana Bender Moreira De; Gonçalves, Cláudia Giglio De Oliveira; Coifman, Herton

    2013-01-01

    Introduction Industry workers are exposed to different environmental risk agents that, when combined, may potentiate risks to hearing. Objective To evaluate the effects of the combined exposure to noise and solvents on hearing in workers. Methods A transversal retrospective cohort study was performed through documentary analysis of an industry. The sample (n = 198) was divided into four groups: the noise group (NG), exposed only to noise; the noise and solvents group (NSG), exposed to noise and solvents; the noise control group and noise and solvents control group (CNS), no exposure. Results The NG showed 16.66% of cases suggestive of bilateral noise-induced hearing loss and NSG showed 5.26%. The NG and NSG had worse thresholds than their respective control groups. Females were less susceptible to noise than males; however, when simultaneously exposed to solvents, hearing was affected in a similar way, resulting in significant differences (p < 0.05). The 40- to 49-year-old age group was significantly worse (p < 0.05) in the auditory thresholds in the NSG compared with the CNS. Conclusion The results observed in this study indicate that simultaneous exposure to noise and solvents can damage the peripheral auditory system. PMID:25992079

  14. Spike-Threshold Adaptation Predicted by Membrane Potential Dynamics In Vivo

    PubMed Central

    Fontaine, Bertrand; Peña, José Luis; Brette, Romain

    2014-01-01

    Neurons encode information in sequences of spikes, which are triggered when their membrane potential crosses a threshold. In vivo, the spiking threshold displays large variability suggesting that threshold dynamics have a profound influence on how the combined input of a neuron is encoded in the spiking. Threshold variability could be explained by adaptation to the membrane potential. However, it could also be the case that most threshold variability reflects noise and processes other than threshold adaptation. Here, we investigated threshold variation in auditory neurons responses recorded in vivo in barn owls. We found that spike threshold is quantitatively predicted by a model in which the threshold adapts, tracking the membrane potential at a short timescale. As a result, in these neurons, slow voltage fluctuations do not contribute to spiking because they are filtered by threshold adaptation. More importantly, these neurons can only respond to input spikes arriving together on a millisecond timescale. These results demonstrate that fast adaptation to the membrane potential captures spike threshold variability in vivo. PMID:24722397

  15. Auditory detection of non-speech and speech stimuli in noise: Effects of listeners' native language background.

    PubMed

    Liu, Chang; Jin, Su-Hyun

    2015-11-01

    This study investigated whether native listeners processed speech differently from non-native listeners in a speech detection task. Detection thresholds of Mandarin Chinese and Korean vowels and non-speech sounds in noise, frequency selectivity, and the nativeness of Mandarin Chinese and Korean vowels were measured for Mandarin Chinese- and Korean-native listeners. The two groups of listeners exhibited similar non-speech sound detection and frequency selectivity; however, the Korean listeners had better detection thresholds of Korean vowels than Chinese listeners, while the Chinese listeners performed no better at Chinese vowel detection than the Korean listeners. Moreover, thresholds predicted from an auditory model highly correlated with behavioral thresholds of the two groups of listeners, suggesting that detection of speech sounds not only depended on listeners' frequency selectivity, but also might be affected by their native language experience. Listeners evaluated their native vowels with higher nativeness scores than non-native listeners. Native listeners may have advantages over non-native listeners when processing speech sounds in noise, even without the required phonetic processing; however, such native speech advantages might be offset by Chinese listeners' lower sensitivity to vowel sounds, a characteristic possibly resulting from their sparse vowel system and their greater cognitive and attentional demands for vowel processing.

  16. Hearing in the Juvenile Green Sea Turtle (Chelonia mydas): A Comparison of Underwater and Aerial Hearing Using Auditory Evoked Potentials

    PubMed Central

    Piniak, Wendy E. D.; Mann, David A.; Harms, Craig A.; Jones, T. Todd; Eckert, Scott A.

    2016-01-01

    Sea turtles spend much of their life in aquatic environments, but critical portions of their life cycle, such as nesting and hatching, occur in terrestrial environments, suggesting that it may be important for them to detect sounds in both air and water. In this study we compared underwater and aerial hearing sensitivities in five juvenile green sea turtles (Chelonia mydas) by measuring auditory evoked potential responses to tone pip stimuli. Green sea turtles detected acoustic stimuli in both media, responding to underwater stimuli between 50 and 1600 Hz and aerial stimuli between 50 and 800 Hz, with maximum sensitivity between 200 and 400 Hz underwater and 300 and 400 Hz in air. When underwater and aerial hearing sensitivities were compared in terms of pressure, green sea turtle aerial sound pressure thresholds were lower than underwater thresholds, however they detected a wider range of frequencies underwater. When thresholds were compared in terms of sound intensity, green sea turtle sound intensity level thresholds were 2–39 dB lower underwater particularly at frequencies below 400 Hz. Acoustic stimuli may provide important environmental cues for sea turtles. Further research is needed to determine how sea turtles behaviorally and physiologically respond to sounds in their environment. PMID:27741231

  17. Hearing in the Juvenile Green Sea Turtle (Chelonia mydas): A Comparison of Underwater and Aerial Hearing Using Auditory Evoked Potentials.

    PubMed

    Piniak, Wendy E D; Mann, David A; Harms, Craig A; Jones, T Todd; Eckert, Scott A

    2016-01-01

    Sea turtles spend much of their life in aquatic environments, but critical portions of their life cycle, such as nesting and hatching, occur in terrestrial environments, suggesting that it may be important for them to detect sounds in both air and water. In this study we compared underwater and aerial hearing sensitivities in five juvenile green sea turtles (Chelonia mydas) by measuring auditory evoked potential responses to tone pip stimuli. Green sea turtles detected acoustic stimuli in both media, responding to underwater stimuli between 50 and 1600 Hz and aerial stimuli between 50 and 800 Hz, with maximum sensitivity between 200 and 400 Hz underwater and 300 and 400 Hz in air. When underwater and aerial hearing sensitivities were compared in terms of pressure, green sea turtle aerial sound pressure thresholds were lower than underwater thresholds, however they detected a wider range of frequencies underwater. When thresholds were compared in terms of sound intensity, green sea turtle sound intensity level thresholds were 2-39 dB lower underwater particularly at frequencies below 400 Hz. Acoustic stimuli may provide important environmental cues for sea turtles. Further research is needed to determine how sea turtles behaviorally and physiologically respond to sounds in their environment.

  18. Gap Detection and Temporal Modulation Transfer Function as Behavioral Estimates of Auditory Temporal Acuity Using Band-Limited Stimuli in Young and Older Adults

    PubMed Central

    Shen, Yi

    2015-01-01

    Purpose Gap detection and the temporal modulation transfer function (TMTF) are 2 common methods to obtain behavioral estimates of auditory temporal acuity. However, the agreement between the 2 measures is not clear. This study compares results from these 2 methods and their dependencies on listener age and hearing status. Method Gap detection thresholds and the parameters that describe the TMTF (sensitivity and cutoff frequency) were estimated for young and older listeners who were naive to the experimental tasks. Stimuli were 800-Hz-wide noises with upper frequency limits of 2400 Hz, presented at 85 dB SPL. A 2-track procedure (Shen & Richards, 2013) was used for the efficient estimation of the TMTF. Results No significant correlation was found between gap detection threshold and the sensitivity or the cutoff frequency of the TMTF. No significant effect of age and hearing loss on either the gap detection threshold or the TMTF cutoff frequency was found, while the TMTF sensitivity improved with increasing hearing threshold and worsened with increasing age. Conclusion Estimates of temporal acuity using gap detection and TMTF paradigms do not seem to provide a consistent description of the effects of listener age and hearing status on temporal envelope processing. PMID:25087722

  19. Auditory Function in Rhesus Monkeys: Effects of Aging and Caloric Restriction in the Wisconsin Monkeys Five Years Later

    PubMed Central

    Fowler, Cynthia G.; Chiasson, Kirstin Beach; Leslie, Tami Hanson; Thomas, Denise; Beasley, T. Mark; Kemnitz, Joseph W.; Weindruch, Richard

    2010-01-01

    Caloric restriction (CR) slows aging in many species and protects some animals from age-related hearing loss (ARHL), but the effect on humans is not yet known. Because rhesus monkeys are long-lived primates that are phylogenically closer to humans than other research animals are, they provide a better model for studying the effects of CR in aging and ARHL. Subjects were from the pool of 55 rhesus monkeys aged 15–28 years who had been in the Wisconsin study on CR and aging for 8–13.5 years. Distortion product otoacoustic emissions (DPOAE) with f2 frequencies from 2211–8837 Hz and auditory brainstem response (ABR) thresholds from clicks and 8, 16, and 32 kHz tone bursts were obtained. DPOAE levels declined linearly at approximately 1 dB/year, but that rate doubled for the highest frequencies in the oldest monkeys. There were no interactions for diet condition or sex. ABR thresholds to clicks and tone bursts showed increases with aging. Borderline significance was shown for diet in the thresholds at 8 kHz stimuli, with monkeys on caloric restriction having lower thresholds. Because the rhesus monkeys have a maximum longevity of 40 years, the full benefits of CR may not yet be realized. PMID:20079820

  20. Reference-Free Assessment of Speech Intelligibility Using Bispectrum of an Auditory Neurogram.

    PubMed

    Hossain, Mohammad E; Jassim, Wissam A; Zilany, Muhammad S A

    2016-01-01

    Sensorineural hearing loss occurs due to damage to the inner and outer hair cells of the peripheral auditory system. Hearing loss can cause decreases in audibility, dynamic range, frequency and temporal resolution of the auditory system, and all of these effects are known to affect speech intelligibility. In this study, a new reference-free speech intelligibility metric is proposed using 2-D neurograms constructed from the output of a computational model of the auditory periphery. The responses of the auditory-nerve fibers with a wide range of characteristic frequencies were simulated to construct neurograms. The features of the neurograms were extracted using third-order statistics referred to as bispectrum. The phase coupling of neurogram bispectrum provides a unique insight for the presence (or deficit) of supra-threshold nonlinearities beyond audibility for listeners with normal hearing (or hearing loss). The speech intelligibility scores predicted by the proposed method were compared to the behavioral scores for listeners with normal hearing and hearing loss both in quiet and under noisy background conditions. The results were also compared to the performance of some existing methods. The predicted results showed a good fit with a small error suggesting that the subjective scores can be estimated reliably using the proposed neural-response-based metric. The proposed metric also had a wide dynamic range, and the predicted scores were well-separated as a function of hearing loss. The proposed metric successfully captures the effects of hearing loss and supra-threshold nonlinearities on speech intelligibility. This metric could be applied to evaluate the performance of various speech-processing algorithms designed for hearing aids and cochlear implants.

  1. Reference-Free Assessment of Speech Intelligibility Using Bispectrum of an Auditory Neurogram

    PubMed Central

    Hossain, Mohammad E.; Jassim, Wissam A.; Zilany, Muhammad S. A.

    2016-01-01

    Sensorineural hearing loss occurs due to damage to the inner and outer hair cells of the peripheral auditory system. Hearing loss can cause decreases in audibility, dynamic range, frequency and temporal resolution of the auditory system, and all of these effects are known to affect speech intelligibility. In this study, a new reference-free speech intelligibility metric is proposed using 2-D neurograms constructed from the output of a computational model of the auditory periphery. The responses of the auditory-nerve fibers with a wide range of characteristic frequencies were simulated to construct neurograms. The features of the neurograms were extracted using third-order statistics referred to as bispectrum. The phase coupling of neurogram bispectrum provides a unique insight for the presence (or deficit) of supra-threshold nonlinearities beyond audibility for listeners with normal hearing (or hearing loss). The speech intelligibility scores predicted by the proposed method were compared to the behavioral scores for listeners with normal hearing and hearing loss both in quiet and under noisy background conditions. The results were also compared to the performance of some existing methods. The predicted results showed a good fit with a small error suggesting that the subjective scores can be estimated reliably using the proposed neural-response-based metric. The proposed metric also had a wide dynamic range, and the predicted scores were well-separated as a function of hearing loss. The proposed metric successfully captures the effects of hearing loss and supra-threshold nonlinearities on speech intelligibility. This metric could be applied to evaluate the performance of various speech-processing algorithms designed for hearing aids and cochlear implants. PMID:26967160

  2. Analytical and numerical modeling of the hearing system: Advances towards the assessment of hearing damage.

    PubMed

    De Paolis, Annalisa; Bikson, Marom; Nelson, Jeremy T; de Ru, J Alexander; Packer, Mark; Cardoso, Luis

    2017-06-01

    Hearing is an extremely complex phenomenon, involving a large number of interrelated variables that are difficult to measure in vivo. In order to investigate such process under simplified and well-controlled conditions, models of sound transmission have been developed through many decades of research. The value of modeling the hearing system is not only to explain the normal function of the hearing system and account for experimental and clinical observations, but to simulate a variety of pathological conditions that lead to hearing damage and hearing loss, as well as for development of auditory implants, effective ear protections and auditory hazard countermeasures. In this paper, we provide a review of the strategies used to model the auditory function of the external, middle, inner ear, and the micromechanics of the organ of Corti, along with some of the key results obtained from such modeling efforts. Recent analytical and numerical approaches have incorporated the nonlinear behavior of some parameters and structures into their models. Few models of the integrated hearing system exist; in particular, we describe the evolution of the Auditory Hazard Assessment Algorithm for Human (AHAAH) model, used for prediction of hearing damage due to high intensity sound pressure. Unlike the AHAAH model, 3D finite element models of the entire hearing system are not able yet to predict auditory risk and threshold shifts. It is expected that both AHAAH and FE models will evolve towards a more accurate assessment of threshold shifts and hearing loss under a variety of stimuli conditions and pathologies. Copyright © 2017 The Authors. Published by Elsevier B.V. All rights reserved.

  3. The effects of postnatal phthalate exposure on the development of auditory temporal processing in rats.

    PubMed

    Kim, Bong Jik; Kim, Jungyoon; Keoboutdy, Vanhnansy; Kwon, Ho-Jang; Oh, Seung-Ha; Jung, Jae Yun; Park, Il Yong; Paik, Ki Chung

    2017-06-01

    The central auditory pathway is known to continue its development during the postnatal critical periods and is shaped by experience and sensory inputs. Phthalate, a known neurotoxic material, has been reported to be associated with attention deficits in children, impacting many infant neurobehaviors. The objective of this study was to investigate the potential effects of neonatal phthalate exposure on the development of auditory temporal processing. Neonatal Sprague-Dawley rats were randomly assigned into two groups: The phthalate group (n = 6), and the control group (n = 6). Phthalate was given once per day from postnatal day 8 (P8) to P28. Upon completion, at P28, the Auditory Brainstem Response (ABR) and Gap Prepulse Inhibition of Acoustic Startle response (GPIAS) at each gap duration (2, 5, 10, 20, 50 and 80 ms) were measured, and gap detection threshold (GDT) was calculated. These outcomes were compared between the two groups. Hearing thresholds by ABR showed no significant differences at all frequencies between the two groups. Regarding GPIAS, no significant difference was observed, except at a gap duration of 20 ms (p = 0.037). The mean GDT of the phthalate group (44.0 ms) was higher than that of the control group (20.0 ms), but without statistical significance (p = 0.065). Moreover, the phthalate group tended to demonstrate more of a scattered distribution in the GDT group than the in the control group. Neonatal phthalate exposure may disrupt the development of auditory temporal processing in rats. Copyright © 2017 Elsevier B.V. All rights reserved.

  4. Effects of Temperature on Auditory Sensitivity in Eurythermal Fishes: Common Carp Cyprinus carpio (Family Cyprinidae) versus Wels Catfish Silurus glanis (Family Siluridae)

    PubMed Central

    Maiditsch, Isabelle Pia; Ladich, Friedrich

    2014-01-01

    Background In ectothermal animals such as fish, -temperature affects physiological and metabolic processes. This includes sensory organs such as the auditory system. The reported effects of temperature on hearing in eurythermal otophysines are contradictory. We therefore investigated the effect on the auditory system in species representing two different orders. Methodology/Principal Findings Hearing sensitivity was determined using the auditory evoked potentials (AEP) recording technique. Auditory sensitivity and latency in response to clicks were measured in the common carp Cyprinus carpio (order Cypriniformes) and the Wels catfish Silurus glanis (order Siluriformes) after acclimating fish for at least three weeks to two different water temperatures (15°C, 25°C and again 15°C). Hearing sensitivity increased with temperature in both species. Best hearing was detected between 0.3 and 1 kHz at both temperatures. The maximum increase occurred at 0.8 kHz (7.8 dB) in C. carpio and at 0.5 kHz (10.3 dB) in S. glanis. The improvement differed between species and was in particular more pronounced in the catfish at 4 kHz. The latency in response to single clicks was measured from the onset of the sound stimulus to the most constant positive peak of the AEP. The latency decreased at the higher temperature in both species by 0.37 ms on average. Conclusions/Significance The current study shows that higher temperature improves hearing (lower thresholds, shorter latencies) in eurythermal species from different orders of otophysines. Differences in threshold shifts between eurythermal species seem to reflect differences in absolute sensitivity at higher frequencies and they furthermore indicate differences to stenothermal (tropical) species. PMID:25255456

  5. Auditory effects of noise on air-crew personnel.

    DOT National Transportation Integrated Search

    1972-11-01

    Hearing-threshold tests were made on flight personnel of several sorts, including aerial-application pilots, flight instructors, private pilots, stewardesses, and FAA flight inspectors. Excluding those people whose flight experience is of short durat...

  6. The Effects of a Midbrain Glioma on Memory and Other Functions: A Longitudinal Single Case Study

    ERIC Educational Resources Information Center

    Weddell, Rodger A.

    2008-01-01

    Our understanding of the effects of midbrain damage on cognition is largely based on animal studies, though there have been occasional investigations of the effects of human midbrain lesions on cognition. This investigation of a rare case of a glioma initially confined to the dorsal midbrain explores the effects of disease progression on IQ,…

  7. A Decline in Response Variability Improves Neural Signal Detection during Auditory Task Performance.

    PubMed

    von Trapp, Gardiner; Buran, Bradley N; Sen, Kamal; Semple, Malcolm N; Sanes, Dan H

    2016-10-26

    The detection of a sensory stimulus arises from a significant change in neural activity, but a sensory neuron's response is rarely identical to successive presentations of the same stimulus. Large trial-to-trial variability would limit the central nervous system's ability to reliably detect a stimulus, presumably affecting perceptual performance. However, if response variability were to decrease while firing rate remained constant, then neural sensitivity could improve. Here, we asked whether engagement in an auditory detection task can modulate response variability, thereby increasing neural sensitivity. We recorded telemetrically from the core auditory cortex of gerbils, both while they engaged in an amplitude-modulation detection task and while they sat quietly listening to the identical stimuli. Using a signal detection theory framework, we found that neural sensitivity was improved during task performance, and this improvement was closely associated with a decrease in response variability. Moreover, units with the greatest change in response variability had absolute neural thresholds most closely aligned with simultaneously measured perceptual thresholds. Our findings suggest that the limitations imposed by response variability diminish during task performance, thereby improving the sensitivity of neural encoding and potentially leading to better perceptual sensitivity. The detection of a sensory stimulus arises from a significant change in neural activity. However, trial-to-trial variability of the neural response may limit perceptual performance. If the neural response to a stimulus is quite variable, then the response on a given trial could be confused with the pattern of neural activity generated when the stimulus is absent. Therefore, a neural mechanism that served to reduce response variability would allow for better stimulus detection. By recording from the cortex of freely moving animals engaged in an auditory detection task, we found that variability of the neural response becomes smaller during task performance, thereby improving neural detection thresholds. Copyright © 2016 the authors 0270-6474/16/3611097-10$15.00/0.

  8. A Decline in Response Variability Improves Neural Signal Detection during Auditory Task Performance

    PubMed Central

    Buran, Bradley N.; Sen, Kamal; Semple, Malcolm N.; Sanes, Dan H.

    2016-01-01

    The detection of a sensory stimulus arises from a significant change in neural activity, but a sensory neuron's response is rarely identical to successive presentations of the same stimulus. Large trial-to-trial variability would limit the central nervous system's ability to reliably detect a stimulus, presumably affecting perceptual performance. However, if response variability were to decrease while firing rate remained constant, then neural sensitivity could improve. Here, we asked whether engagement in an auditory detection task can modulate response variability, thereby increasing neural sensitivity. We recorded telemetrically from the core auditory cortex of gerbils, both while they engaged in an amplitude-modulation detection task and while they sat quietly listening to the identical stimuli. Using a signal detection theory framework, we found that neural sensitivity was improved during task performance, and this improvement was closely associated with a decrease in response variability. Moreover, units with the greatest change in response variability had absolute neural thresholds most closely aligned with simultaneously measured perceptual thresholds. Our findings suggest that the limitations imposed by response variability diminish during task performance, thereby improving the sensitivity of neural encoding and potentially leading to better perceptual sensitivity. SIGNIFICANCE STATEMENT The detection of a sensory stimulus arises from a significant change in neural activity. However, trial-to-trial variability of the neural response may limit perceptual performance. If the neural response to a stimulus is quite variable, then the response on a given trial could be confused with the pattern of neural activity generated when the stimulus is absent. Therefore, a neural mechanism that served to reduce response variability would allow for better stimulus detection. By recording from the cortex of freely moving animals engaged in an auditory detection task, we found that variability of the neural response becomes smaller during task performance, thereby improving neural detection thresholds. PMID:27798189

  9. Wnt1 and wnt10b function redundantly at the zebrafish midbrain-hindbrain boundary.

    PubMed

    Lekven, Arne C; Buckles, Gerri R; Kostakis, Nicholas; Moon, Randall T

    2003-02-15

    Wnt signals have been shown to be involved in multiple steps of vertebrate neural patterning, yet the relative contributions of individual Wnts to the process of brain regionalization is poorly understood. Wnt1 has been shown in the mouse to be required for the formation of the midbrain and the anterior hindbrain, but this function of wnt1 has not been explored in other model systems. Further, wnt1 is part of a Wnt cluster conserved in all vertebrates comprising wnt1 and wnt10b, yet the function of wnt10b during embryogenesis has not been explored. Here, we report that in zebrafish wnt10b is expressed in a pattern overlapping extensively with that of wnt1. We have generated a deficiency allele for these closely linked loci and performed morpholino antisense oligo knockdown to show that wnt1 and wnt10b provide partially redundant functions in the formation of the midbrain-hindbrain boundary (MHB). When both loci are deleted, the expression of pax2.1, en2, and her5 is lost in the ventral portion of the MHB beginning at the 8-somite stage. However, wnt1 and wnt10b are not required for the maintenance of fgf8, en3, wnt8b, or wnt3a expression. Embryos homozygous for the wnt1-wnt10b deficiency display a mild MHB phenotype, but are sensitized to reductions in either Pax2.1 or Fgf8; that is, in combination with mutant alleles of either of these loci, the morphological MHB is lost. Thus, wnt1 and wnt10b are required to maintain threshold levels of Pax2.1 and Fgf8 at the MHB. Copyright 2003 Elsevier Science (USA)

  10. Midbrain-like Organoids from Human Pluripotent Stem Cells Contain Functional Dopaminergic and Neuromelanin-Producing Neurons.

    PubMed

    Jo, Junghyun; Xiao, Yixin; Sun, Alfred Xuyang; Cukuroglu, Engin; Tran, Hoang-Dai; Göke, Jonathan; Tan, Zi Ying; Saw, Tzuen Yih; Tan, Cheng-Peow; Lokman, Hidayat; Lee, Younghwan; Kim, Donghoon; Ko, Han Seok; Kim, Seong-Oh; Park, Jae Hyeon; Cho, Nam-Joon; Hyde, Thomas M; Kleinman, Joel E; Shin, Joo Heon; Weinberger, Daniel R; Tan, Eng King; Je, Hyunsoo Shawn; Ng, Huck-Hui

    2016-08-04

    Recent advances in 3D culture systems have led to the generation of brain organoids that resemble different human brain regions; however, a 3D organoid model of the midbrain containing functional midbrain dopaminergic (mDA) neurons has not been reported. We developed a method to differentiate human pluripotent stem cells into a large multicellular organoid-like structure that contains distinct layers of neuronal cells expressing characteristic markers of human midbrain. Importantly, we detected electrically active and functionally mature mDA neurons and dopamine production in our 3D midbrain-like organoids (MLOs). In contrast to human mDA neurons generated using 2D methods or MLOs generated from mouse embryonic stem cells, our human MLOs produced neuromelanin-like granules that were structurally similar to those isolated from human substantia nigra tissues. Thus our MLOs bearing features of the human midbrain may provide a tractable in vitro system to study the human midbrain and its related diseases. Copyright © 2016 Elsevier Inc. All rights reserved.

  11. Comparison between ABR with click and narrow band chirp stimuli in children.

    PubMed

    Zirn, Stefan; Louza, Julia; Reiman, Viktor; Wittlinger, Natalie; Hempel, John-Martin; Schuster, Maria

    2014-08-01

    Click and chirp-evoked auditory brainstem responses (ABR) are applied for the estimation of hearing thresholds in children. The present study analyzes ABR thresholds across a large sample of children's ears obtained with both methods. The aim was to demonstrate the correlation between both methods using narrow band chirp and click stimuli. Click and chirp evoked ABRs were measured in 253 children aged from 0 to 18 years to determine their individual auditory threshold. The delay-compensated stimuli were narrow band CE chirps with either 2000 Hz or 4000 Hz center frequencies. Measurements were performed consecutively during natural sleep, and under sedation or general anesthesia. Threshold estimation was performed for each measurement by two experienced audiologists. Pearson-correlation analysis revealed highly significant correlations (r=0.94) between click and chirp derived thresholds for both 2 kHz and 4 kHz chirps. No considerable differences were observed either between different age ranges or gender. Comparing the thresholds estimated using ABR with click stimuli and chirp stimuli, only 0.8-2% for the 2000 Hz NB-chirp and 0.4-1.2% of the 4000 Hz NB-chirp measurements differed more than 15 dB for different degrees of hearing loss or normal hearing. The results suggest that either NB-chirp or click ABR is sufficient for threshold estimation. This holds for the chirp frequencies of 2000 Hz and 4000 Hz. The use of either click- or chirp-evoked ABR allows a reduction of recording time in young infants. Nevertheless, to cross-check the results of one of the methods, we recommend measurements with the other method as well. Copyright © 2014 Elsevier Ireland Ltd. All rights reserved.

  12. Prolonged noise exposure-induced auditory threshold shifts in rats

    PubMed Central

    Chen, Guang-Di; Decker, Brandon; Muthaiah, Vijaya Prakash Krishnan; Sheppard, Adam; Salvi, Richard

    2014-01-01

    Noise-induced hearing loss (NIHL) initially increases with exposure duration, but eventually reaches an asymptotic threshold shift (ATS) once the exposure duration exceeds 18-24 h. Equations for predicting the ATS have been developed for several species, but not for rats, even though this species is extensively used in noise exposure research. To fill this void, we exposed rats to narrowband noise (NBN, 16-20 kHz) for 5 weeks starting at 80 dB SPL in the first week and then increasing the level by 6 dB per week to a final level of 104 dB SPL. Auditory brainstem responses (ABR) were recorded before, during, and following the exposure to determine the amount of hearing loss. The noise induced threshold shift to continuous long-term exposure, defined as compound threshold shift (CTS), within and above 16-20 kHz increased with noise level at the rate of 1.82 dB threshold shift per dB of noise level (NL) above a critical level (C) of 77.2 dB SPL i.e. CTS = 1.82(NL-77.2). The normalized amplitude of the largest ABR peak measured at 100 dB SPL decreased at the rate of 3.1% per dB of NL above the critical level of 76.9 dB SPL, i.e., %ABR Reduction = 3.1%(NL-76.9). ABR thresholds measured >30 days post-exposure only partially recovered resulting in a permanent threshold shift of 30-40 dB along with severe hair cell loss in the basal, high-frequency region of the cochlea. In the rat, CTS increases with noise level with a slope similar to humans and chinchillas. The critical level (C) in the rat is similar to that of humans, but higher than that of chinchillas. PMID:25219503

  13. Brainstem auditory evoked potential wave V latency-intensity function in normal Dalmatian and Beagle puppies.

    PubMed

    Poncelet, L; Coppens, A; Deltenre, P

    2000-01-01

    This study investigated whether Dalmatian puppies with normal hearing bilaterally had the same click-evoked brainstem auditory potential characteristics as age-matched dogs of another breed. Short-latency brainstem auditory potentials evoked by condensation and rarefaction clicks were recorded in 23 1.5- to 2-month-old Dalmatian puppies with normal hearing bilaterally by a qualitative brainstem auditory evoked potential test and in 16 Beagle dogs of the same age. For each stimulus intensity, from 90 dB normal hearing level down to the wave V threshold, the sum of the potentials evoked by the 2 kinds of stimuli were added, giving an equivalent to the alternate click polarity stimulation. The slope of the L segment of the wave V latency-intensity curve was steeper in Dalmatian (-40 +/- 10 micros/dB) than in Beagles (-28 +/- 5 micros/dB, P < .001) puppies. The hearing threshold was lower in the Beagle puppies (P < .05). These results suggest that interbreed differences may exist at the level of cochlear function in this age class. The wave V latency and wave V-wave I latencies differences at high stimulus intensity were different between the groups of puppies (4.3 +/- 0.2 and 2.5 +/- 0.2 milliseconds, respectively, for Beagles; and 4.1 +/- 0.2 and 2.3 +/- 0.2 milliseconds for Dalmatians, P < .05). A different maturation speed of the neural pathways is one possible explanation of this observation.

  14. Control of Phasic Firing by a Background Leak Current in Avian Forebrain Auditory Neurons

    PubMed Central

    Dagostin, André A.; Lovell, Peter V.; Hilscher, Markus M.; Mello, Claudio V.; Leão, Ricardo M.

    2015-01-01

    Central neurons express a variety of neuronal types and ion channels that promote firing heterogeneity among their distinct neuronal populations. Action potential (AP) phasic firing, produced by low-threshold voltage-activated potassium currents (VAKCs), is commonly observed in mammalian brainstem neurons involved in the processing of temporal properties of the acoustic information. The avian caudomedial nidopallium (NCM) is an auditory area analogous to portions of the mammalian auditory cortex that is involved in the perceptual discrimination and memorization of birdsong and shows complex responses to auditory stimuli We performed in vitro whole-cell patch-clamp recordings in brain slices from adult zebra finches (Taeniopygia guttata) and observed that half of NCM neurons fire APs phasically in response to membrane depolarizations, while the rest fire transiently or tonically. Phasic neurons fired APs faster and with more temporal precision than tonic and transient neurons. These neurons had similar membrane resting potentials, but phasic neurons had lower membrane input resistance and time constant. Surprisingly phasic neurons did not express low-threshold VAKCs, which curtailed firing in phasic mammalian brainstem neurons, having similar VAKCs to other NCM neurons. The phasic firing was determined not by VAKCs, but by the potassium background leak conductances, which was more prominently expressed in phasic neurons, a result corroborated by pharmacological, dynamic-clamp, and modeling experiments. These results reveal a new role for leak currents in generating firing diversity in central neurons. PMID:26696830

  15. Hearing, Auditory Processing, and Language Skills of Male Youth Offenders and Remandees in Youth Justice Residences in New Zealand.

    PubMed

    Lount, Sarah A; Purdy, Suzanne C; Hand, Linda

    2017-01-01

    International evidence suggests youth offenders have greater difficulties with oral language than their nonoffending peers. This study examined the hearing, auditory processing, and language skills of male youth offenders and remandees (YORs) in New Zealand. Thirty-three male YORs, aged 14-17 years, were recruited from 2 youth justice residences, plus 39 similarly aged male students from local schools for comparison. Testing comprised tympanometry, self-reported hearing, pure-tone audiometry, 4 auditory processing tests, 2 standardized language tests, and a nonverbal intelligence test. Twenty-one (64%) of the YORs were identified as language impaired (LI), compared with 4 (10%) of the controls. Performance on all language measures was significantly worse in the YOR group, as were their hearing thresholds. Nine (27%) of the YOR group versus 7 (18%) of the control group fulfilled criteria for auditory processing disorder. Only 1 YOR versus 5 controls had an auditory processing disorder without LI. Language was an area of significant difficulty for YORs. Difficulties with auditory processing were more likely to be accompanied by LI in this group, compared with the controls. Provision of speech-language therapy services and awareness of auditory and language difficulties should be addressed in youth justice systems.

  16. AUDITORY ASSOCIATIVE MEMORY AND REPRESENTATIONAL PLASTICITY IN THE PRIMARY AUDITORY CORTEX

    PubMed Central

    Weinberger, Norman M.

    2009-01-01

    Historically, the primary auditory cortex has been largely ignored as a substrate of auditory memory, perhaps because studies of associative learning could not reveal the plasticity of receptive fields (RFs). The use of a unified experimental design, in which RFs are obtained before and after standard training (e.g., classical and instrumental conditioning) revealed associative representational plasticity, characterized by facilitation of responses to tonal conditioned stimuli (CSs) at the expense of other frequencies, producing CS-specific tuning shifts. Associative representational plasticity (ARP) possesses the major attributes of associative memory: it is highly specific, discriminative, rapidly acquired, consolidates over hours and days and can be retained indefinitely. The nucleus basalis cholinergic system is sufficient both for the induction of ARP and for the induction of specific auditory memory, including control of the amount of remembered acoustic details. Extant controversies regarding the form, function and neural substrates of ARP appear largely to reflect different assumptions, which are explicitly discussed. The view that the forms of plasticity are task-dependent is supported by ongoing studies in which auditory learning involves CS-specific decreases in threshold or bandwidth without affecting frequency tuning. Future research needs to focus on the factors that determine ARP and their functions in hearing and in auditory memory. PMID:17344002

  17. Neurotrophic factor intervention restores auditory function in deafened animals

    NASA Astrophysics Data System (ADS)

    Shinohara, Takayuki; Bredberg, Göran; Ulfendahl, Mats; Pyykkö, Ilmari; Petri Olivius, N.; Kaksonen, Risto; Lindström, Bo; Altschuler, Richard; Miller, Josef M.

    2002-02-01

    A primary cause of deafness is damage of receptor cells in the inner ear. Clinically, it has been demonstrated that effective functionality can be provided by electrical stimulation of the auditory nerve, thus bypassing damaged receptor cells. However, subsequent to sensory cell loss there is a secondary degeneration of the afferent nerve fibers, resulting in reduced effectiveness of such cochlear prostheses. The effects of neurotrophic factors were tested in a guinea pig cochlear prosthesis model. After chemical deafening to mimic the clinical situation, the neurotrophic factors brain-derived neurotrophic factor and an analogue of ciliary neurotrophic factor were infused directly into the cochlea of the inner ear for 26 days by using an osmotic pump system. An electrode introduced into the cochlea was used to elicit auditory responses just as in patients implanted with cochlear prostheses. Intervention with brain-derived neurotrophic factor and the ciliary neurotrophic factor analogue not only increased the survival of auditory spiral ganglion neurons, but significantly enhanced the functional responsiveness of the auditory system as measured by using electrically evoked auditory brainstem responses. This demonstration that neurotrophin intervention enhances threshold sensitivity within the auditory system will have great clinical importance for the treatment of deaf patients with cochlear prostheses. The findings have direct implications for the enhancement of responsiveness in deafferented peripheral nerves.

  18. An Overview of Auralization and Psychoacoustics

    NASA Technical Reports Server (NTRS)

    Begault, Durand R.; Null, Cynthia H. (Technical Monitor)

    1998-01-01

    This viewgraph presentation provides information on a study the goal of which was to determine the auditory threshold for speech reverberation using a specific room model. Procedures and hardware used are detailed as are the participants in the study.

  19. Effect of subliminal visual material on an auditory signal detection task.

    PubMed

    Moroney, E; Bross, M

    1984-02-01

    An experiment assessed the effect of subliminally embedded, visual material on an auditory detection task. 22 women and 19 men were presented tachistoscopically with words designated as "emotional" or "neutral" on the basis of prior GSRs and a Word Rating List under four conditions: (a) Unembedded Neutral, (b) Embedded Neutral, (c) Unembedded Emotional, and (d) Embedded Emotional. On each trial subjects made forced choices concerning the presence or absence of an auditory tone (1000 Hz) at threshold level; hits and false alarm rates were used to compute non-parametric indices for sensitivity (A') and response bias (B"). While over-all analyses of variance yielded no significant differences, further examination of the data suggests the presence of subliminally "receptive" and "non-receptive" subpopulations.

  20. Robustness of cortical and subcortical processing in the presence of natural masking sounds.

    PubMed

    Beetz, M Jerome; García-Rosales, Francisco; Kössl, Manfred; Hechavarría, Julio C

    2018-05-01

    Processing of ethologically relevant stimuli could be interfered by non-relevant stimuli. Animals have behavioral adaptations to reduce signal interference. It is largely unexplored whether the behavioral adaptations facilitate neuronal processing of relevant stimuli. Here, we characterize behavioral adaptations in the presence of biotic noise in the echolocating bat Carollia perspicillata and we show that the behavioral adaptations could facilitate neuronal processing of biosonar information. According to the echolocation behavior, bats need to extract their own signals in the presence of vocalizations from conspecifics. With playback experiments, we demonstrate that C. perspicillata increases the sensory acquisition rate by emitting groups of echolocation calls when flying in noisy environments. Our neurophysiological results from the auditory midbrain and cortex show that the high sensory acquisition rate does not vastly increase neuronal suppression and that the response to an echolocation sequence is partially preserved in the presence of biosonar signals from conspecifics.

  1. Visual processing affects the neural basis of auditory discrimination.

    PubMed

    Kislyuk, Daniel S; Möttönen, Riikka; Sams, Mikko

    2008-12-01

    The interaction between auditory and visual speech streams is a seamless and surprisingly effective process. An intriguing example is the "McGurk effect": The acoustic syllable /ba/ presented simultaneously with a mouth articulating /ga/ is typically heard as /da/ [McGurk, H., & MacDonald, J. Hearing lips and seeing voices. Nature, 264, 746-748, 1976]. Previous studies have demonstrated the interaction of auditory and visual streams at the auditory cortex level, but the importance of these interactions for the qualitative perception change remained unclear because the change could result from interactions at higher processing levels as well. In our electroencephalogram experiment, we combined the McGurk effect with mismatch negativity (MMN), a response that is elicited in the auditory cortex at a latency of 100-250 msec by any above-threshold change in a sequence of repetitive sounds. An "odd-ball" sequence of acoustic stimuli consisting of frequent /va/ syllables (standards) and infrequent /ba/ syllables (deviants) was presented to 11 participants. Deviant stimuli in the unisensory acoustic stimulus sequence elicited a typical MMN, reflecting discrimination of acoustic features in the auditory cortex. When the acoustic stimuli were dubbed onto a video of a mouth constantly articulating /va/, the deviant acoustic /ba/ was heard as /va/ due to the McGurk effect and was indistinguishable from the standards. Importantly, such deviants did not elicit MMN, indicating that the auditory cortex failed to discriminate between the acoustic stimuli. Our findings show that visual stream can qualitatively change the auditory percept at the auditory cortex level, profoundly influencing the auditory cortex mechanisms underlying early sound discrimination.

  2. Brainstem auditory evoked potentials with the use of acoustic clicks and complex verbal sounds in young adults with learning disabilities.

    PubMed

    Kouni, Sophia N; Giannopoulos, Sotirios; Ziavra, Nausika; Koutsojannis, Constantinos

    2013-01-01

    Acoustic signals are transmitted through the external and middle ear mechanically to the cochlea where they are transduced into electrical impulse for further transmission via the auditory nerve. The auditory nerve encodes the acoustic sounds that are conveyed to the auditory brainstem. Multiple brainstem nuclei, the cochlea, the midbrain, the thalamus, and the cortex constitute the central auditory system. In clinical practice, auditory brainstem responses (ABRs) to simple stimuli such as click or tones are widely used. Recently, complex stimuli or complex auditory brain responses (cABRs), such as monosyllabic speech stimuli and music, are being used as a tool to study the brainstem processing of speech sounds. We have used the classic 'click' as well as, for the first time, the artificial successive complex stimuli 'ba', which constitutes the Greek word 'baba' corresponding to the English 'daddy'. Twenty young adults institutionally diagnosed as dyslexic (10 subjects) or light dyslexic (10 subjects) comprised the diseased group. Twenty sex-, age-, education-, hearing sensitivity-, and IQ-matched normal subjects comprised the control group. Measurements included the absolute latencies of waves I through V, the interpeak latencies elicited by the classical acoustic click, the negative peak latencies of A and C waves, as well as the interpeak latencies of A-C elicited by the verbal stimulus 'baba' created on a digital speech synthesizer. The absolute peak latencies of waves I, III, and V in response to monoaural rarefaction clicks as well as the interpeak latencies I-III, III-V, and I-V in the dyslexic subjects, although increased in comparison with normal subjects, did not reach the level of a significant difference (p<0.05). However, the absolute peak latencies of the negative wave C and the interpeak latencies of A-C elicited by verbal stimuli were found to be increased in the dyslexic group in comparison with the control group (p=0.0004 and p=0.045, respectively). In the subgroup consisting of 10 patients suffering from 'other learning disabilities' and who were characterized as with 'light' dyslexia according to dyslexia tests, no significant delays were found in peak latencies A and C and interpeak latencies A-C in comparison with the control group. Acoustic representation of a speech sound and, in particular, the disyllabic word 'baba' was found to be abnormal, as low as the auditory brainstem. Because ABRs mature in early life, this can help to identify subjects with acoustically based learning problems and apply early intervention, rehabilitation, and treatment. Further studies and more experience with more patients and pathological conditions such as plasticity of the auditory system, cochlear implants, hearing aids, presbycusis, or acoustic neuropathy are necessary until this type of testing is ready for clinical application. © 2013 Elsevier Inc. All rights reserved.

  3. Transtympanic injections of N-acetylcysteine for the prevention of cisplatin-induced ototoxicity: a feasible method with promising efficacy.

    PubMed

    Riga, Maria G; Chelis, Leonidas; Kakolyris, Stylianos; Papadopoulos, Stergios; Stathakidou, Sofia; Chamalidou, Eleni; Xenidis, Nikolaos; Amarantidis, Kyriakos; Dimopoulos, Prokopios; Danielides, Vasilios

    2013-02-01

    Ototoxicity is a common and irreversible adverse effect of cisplatin treatment with great impact on the patients' quality of life. N-acetylcysteine is a low-molecular-weight agent which has shown substantial otoprotective activity. The role of transtympanic infusions of N-acetylcysteine was examined in a cohort of patients treated with cisplatin-based regimens. Twenty cisplatin-treated patients were subjected, under local anesthesia, to transtympanic N-acetylcysteine (10%) infusions in 1 ear, during the hydration procedure preceding intravenous effusion of cisplatin. The contralateral ear was used as control. The number of transtympanic infusions was respective to the number of administered cycles. Hearing acuity was evaluated before each cycle with pure tone audiometry by an audiologist blinded to the treated ear. A total of 84 transtympanic infusions were performed. In treated ears, no significant changes in auditory thresholds were recorded. In the control ears cisplatin induced a significant decrease of auditory thresholds at the 8000 Hz frequency band (P=0.008). At the same frequency (8000 Hz), the changes in auditory thresholds were significantly larger for the control ears than the treated ones (P=0.005). An acute pain starting shortly after the injection and lasting for a few minutes seemed to be the only significant adverse effect. Transtympanic injections of N-acetylcysteine seem to be a feasible and effective otoprotective strategy for the prevention of cisplatin-induced ototoxicity. Additional studies are required to further clarify the efficiency of this treatment and determine the optimal dosage and protocol.

  4. Ototoxicity in rats exposed to ethylbenzene and to two technical xylene vapours for 13 weeks.

    PubMed

    Gagnaire, François; Langlais, Cristina; Grossmann, Stéphane; Wild, Pascal

    2007-02-01

    Male Sprague-Dawley rats were exposed to ethylbenzene (200, 400, 600 and 800 ppm) and to two mixed xylenes (250, 500, 1,000 and 2,000 ppm total compounds) by inhalation, 6 h/day, 6 days/week for 13 weeks and sacrificed for morphological investigation 8 weeks after the end of exposure. Brainstem auditory-evoked responses were used to determine auditory thresholds at different frequencies. Ethylbenzene produced moderate to severe ototoxicity in rats exposed to the four concentrations studied. Increased thresholds were observed at 2, 4, 8 and 16 kHz in rats exposed to 400, 600 and 800 ppm ethylbenzene. Moderate to severe losses of outer hair cells of the organ of Corti occurred in animals exposed to the four concentrations studied. Exposure to both mixed xylenes produced ototoxicity characterized by increased auditory thresholds and losses of outer hair cells. Ototoxicity potentiation caused by ethylbenzene was observed. Depending on the mixed xylene studied and the area of the concentration-response curves taken into account, the concentrations of ethylbenzene in mixed xylenes necessary to cause a given ototoxicity were 1.7-2.8 times less than those of pure ethylbenzene. Given the high ototoxicity of ethylbenzene, the safety margin of less or equal to two (LOAEL/TWA) might be too small to protect workers from the potential risk of ototoxicity. Moreover, the enhanced ototoxicity of ethylbenzene and para-xylene observed in mixed xylenes should encourage the production of mixed xylenes with the lowest possible concentrations of ethylbenzene and para-xylene.

  5. A probabilistic Poisson-based model accounts for an extensive set of absolute auditory threshold measurements.

    PubMed

    Heil, Peter; Matysiak, Artur; Neubauer, Heinrich

    2017-09-01

    Thresholds for detecting sounds in quiet decrease with increasing sound duration in every species studied. The neural mechanisms underlying this trade-off, often referred to as temporal integration, are not fully understood. Here, we probe the human auditory system with a large set of tone stimuli differing in duration, shape of the temporal amplitude envelope, duration of silent gaps between bursts, and frequency. Duration was varied by varying the plateau duration of plateau-burst (PB) stimuli, the duration of the onsets and offsets of onset-offset (OO) stimuli, and the number of identical bursts of multiple-burst (MB) stimuli. Absolute thresholds for a large number of ears (>230) were measured using a 3-interval-3-alternative forced choice (3I-3AFC) procedure. Thresholds decreased with increasing sound duration in a manner that depended on the temporal envelope. Most commonly, thresholds for MB stimuli were highest followed by thresholds for OO and PB stimuli of corresponding durations. Differences in the thresholds for MB and OO stimuli and in the thresholds for MB and PB stimuli, however, varied widely across ears, were negative in some ears, and were tightly correlated. We show that the variation and correlation of MB-OO and MB-PB threshold differences are linked to threshold microstructure, which affects the relative detectability of the sidebands of the MB stimuli and affects estimates of the bandwidth of auditory filters. We also found that thresholds for MB stimuli increased with increasing duration of the silent gaps between bursts. We propose a new model and show that it accurately accounts for our results and does so considerably better than a leaky-integrator-of-intensity model and a probabilistic model proposed by others. Our model is based on the assumption that sensory events are generated by a Poisson point process with a low rate in the absence of stimulation and higher, time-varying rates in the presence of stimulation. A subject in a 3I-3AFC task is assumed to choose the interval in which the greatest number of events occurred or randomly chooses among intervals which are tied for the greatest number of events. The subject is further assumed to count events over the duration of an evaluation interval that has the same timing and duration as the expected stimulus. The increase in the rate of the events caused by stimulation is proportional to the time-varying amplitude envelope of the bandpass-filtered signal raised to an exponent. We find the exponent to be about 3, consistent with our previous studies. This challenges models that are based on the assumption of the integration of a neural response that is directly proportional to the stimulus amplitude or proportional to its square (i.e., proportional to the stimulus intensity or power). Copyright © 2017 Elsevier B.V. All rights reserved.

  6. [Effects of perinatal exposure to bisphenol A inducing dopaminergic neuronal cell to apoptosis happening in midbrain of male rat offspring].

    PubMed

    Lin, Yong; Zhang, Hao; Wang, Wen-dong; Wu, De-sheng; Jiang, Song-hui; Qu, Wei-dong

    2006-07-01

    To investigate the mechanism and effect of rat perinatal exposure to bisphenol A (BPA) resulting in midbrain dopaminergic neuronal cell apoptosis and tyrosine hydroxylase expression of male offspring. Rat dams were randomLy divided into 4 groups on gestational day(GD) 10 and given orally the bisphenol A doses as 0, 0.5, 5, 50 mg/kg x d from GD10 to weaning. The brains of male offspring were obtained for detecting, with immunohistochemistry protocol, the Caspase-3, Bcl-2 and tyrosine hydroxylase expression in the midbrain on postnatal day 21 or 30 respectively, and the midbrain apoptotic neuronal cell were detected by TUNEL on PND21. The expression of Caspase-3 in the midbrain of rat male offspring were increased but bcl-2 were decreased on PND21 and 30, respectively. On PND21, apoptotic neuronal cell were found in the midbrain of high and medium doses groups. TH protein expression was decreased. Perinatal exposure to bisphenol A can induce the apoptosis of midbrain dopaminergic neuron in the male rat offspring even after weaning, and concomitantly decrease the midbrain TH immunoreactivity, this may cause the abnormal function of dopaminergic pathway of rat male offspring.

  7. VMAT2-Mediated Neurotransmission from Midbrain Leptin Receptor Neurons in Feeding Regulation

    PubMed Central

    Lu, Yungang; Xu, Pingwen; Isingrini, Elsa; Xu, Yong

    2017-01-01

    Abstract Leptin receptors (LepRs) expressed in the midbrain contribute to the action of leptin on feeding regulation. The midbrain neurons release a variety of neurotransmitters including dopamine (DA), glutamate and GABA. However, which neurotransmitter mediates midbrain leptin action on feeding remains unclear. Here, we showed that midbrain LepR neurons overlap with a subset of dopaminergic, GABAergic and glutamatergic neurons. Specific removal of vesicular monoamine transporter 2 (VMAT2) in midbrain LepR neurons (KO mice) disrupted DA accumulation in vesicles, but failed to cause a significant change in the evoked release of either glutamate or GABA to downstream neurons. While KO mice showed no differences on chow, they presented a reduced high-fat diet (HFD) intake and resisted to HFD-induced obesity. Specific activation of midbrain LepR neurons promoted VMAT2-dependent feeding on chow and HFD. When tested with an intermittent access to HFD where first 2.5-h HFD eating (binge-like) and 24-h HFD feeding were measured, KO mice exhibited more binge-like, but less 24-h HFD feeding. Interestingly, leptin inhibited 24-h HFD feeding in controls but not in KO mice. Thus, VMAT2-mediated neurotransmission from midbrain LepR neurons contributes to both binge-like eating and HFD feeding regulation. PMID:28560316

  8. Psycho acoustical Measures in Individuals with Congenital Visual Impairment.

    PubMed

    Kumar, Kaushlendra; Thomas, Teenu; Bhat, Jayashree S; Ranjan, Rajesh

    2017-12-01

    In congenital visual impaired individuals one modality is impaired (visual modality) this impairment is compensated by other sensory modalities. There is evidence that visual impaired performed better in different auditory task like localization, auditory memory, verbal memory, auditory attention, and other behavioural tasks when compare to normal sighted individuals. The current study was aimed to compare the temporal resolution, frequency resolution and speech perception in noise ability in individuals with congenital visual impaired and normal sighted. Temporal resolution, frequency resolution, and speech perception in noise were measured using MDT, GDT, DDT, SRDT, and SNR50 respectively. Twelve congenital visual impaired participants with age range of 18 to 40 years were taken and equal in number with normal sighted participants. All the participants had normal hearing sensitivity with normal middle ear functioning. Individual with visual impairment showed superior threshold in MDT, SRDT and SNR50 as compared to normal sighted individuals. This may be due to complexity of the tasks; MDT, SRDT and SNR50 are complex tasks than GDT and DDT. Visual impairment showed superior performance in auditory processing and speech perception with complex auditory perceptual tasks.

  9. Sleep and Performance Research Center

    DTIC Science & Technology

    2013-05-01

    saturation thresholds under high intensity auditory stimulation during wake. Neuroscience 227:191-200 11 Shevrin,, H., Panksepp, J., Brakel...L.L.A.W. & Snodgrass, M. (2012). Subliminal affect valence words change conscious mood potency but not valence: Is this evidence for unconscious

  10. Cigarette smoking causes hearing impairment among Bangladeshi population.

    PubMed

    Sumit, Ahmed Faisal; Das, Anindya; Sharmin, Zinat; Ahsan, Nazmul; Ohgami, Nobutaka; Kato, Masashi; Akhand, Anwarul Azim

    2015-01-01

    Lifestyle including smoking, noise exposure with MP3 player and drinking alcohol are considered as risk factors for affecting hearing synergistically. However, little is known about the association of cigarette smoking with hearing impairment among subjects who carry a lifestyle without using MP3 player and drinking alcohol. We showed here the influence of smoking on hearing among Bangladeshi subjects who maintain a lifestyle devoid of using MP3 player and drinking alcohol. A total of 184 subjects (smokers: 90; non-smokers: 94) were included considering their duration and frequency of smoking for conducting this study. The mean hearing thresholds of non-smoker subjects at 1, 4, 8 and 12 kHz frequencies were 5.63 ± 2.10, 8.56±5.75, 21.06 ± 11.06, 40.79 ± 20.36 decibel (dB), respectively and that of the smokers were 7 ± 3.8, 13.27 ± 8.4, 30.66 ± 12.50 and 56.88 ± 21.58 dB, respectively. The hearing thresholds of the smokers at 4, 8 and 12 kHz frequencies were significantly (p<0.05) higher than those of the non-smokers, while no significant differences were observed at 1 kHz frequency. We also observed no significant difference in auditory thresholds among smoker subgroups based on smoking frequency. In contrast, subjects smoked for longer duration (>5 years) showed higher level of auditory threshold (62.16 ± 19.87 dB) at 12 kHz frequency compared with that (41.52 ± 19.21 dB) of the subjects smoked for 1-5 years and the difference in auditory thresholds was statistically significant (p<0.0002). In this study, the Brinkman Index (BI) of smokers was from 6 to 440 and the adjusted odds ratio showed a positive correlation between hearing loss and smoking when adjusted for age and body mass index (BMI). In addition, age, but not BMI, also played positive role on hearing impairment at all frequencies. Thus, these findings suggested that cigarette smoking affects hearing level at all the frequencies tested but most significantly at extra higher frequencies.

  11. Cigarette Smoking Causes Hearing Impairment among Bangladeshi Population

    PubMed Central

    Sumit, Ahmed Faisal; Das, Anindya; Sharmin, Zinat; Ahsan, Nazmul; Ohgami, Nobutaka; Kato, Masashi; Akhand, Anwarul Azim

    2015-01-01

    Lifestyle including smoking, noise exposure with MP3 player and drinking alcohol are considered as risk factors for affecting hearing synergistically. However, little is known about the association of cigarette smoking with hearing impairment among subjects who carry a lifestyle without using MP3 player and drinking alcohol. We showed here the influence of smoking on hearing among Bangladeshi subjects who maintain a lifestyle devoid of using MP3 player and drinking alcohol. A total of 184 subjects (smokers: 90; non-smokers: 94) were included considering their duration and frequency of smoking for conducting this study. The mean hearing thresholds of non-smoker subjects at 1, 4, 8 and 12 kHz frequencies were 5.63±2.10, 8.56±5.75, 21.06±11.06, 40.79±20.36 decibel (dB), respectively and that of the smokers were 7±3.8, 13.27±8.4, 30.66±12.50 and 56.88±21.58 dB, respectively. The hearing thresholds of the smokers at 4, 8 and 12 kHz frequencies were significantly (p<0.05) higher than those of the non-smokers, while no significant differences were observed at 1 kHz frequency. We also observed no significant difference in auditory thresholds among smoker subgroups based on smoking frequency. In contrast, subjects smoked for longer duration (>5 years) showed higher level of auditory threshold (62.16±19.87 dB) at 12 kHz frequency compared with that (41.52±19.21 dB) of the subjects smoked for 1-5 years and the difference in auditory thresholds was statistically significant (p<0.0002). In this study, the Brinkman Index (BI) of smokers was from 6 to 440 and the adjusted odds ratio showed a positive correlation between hearing loss and smoking when adjusted for age and body mass index (BMI). In addition, age, but not BMI, also played positive role on hearing impairment at all frequencies. Thus, these findings suggested that cigarette smoking affects hearing level at all the frequencies tested but most significantly at extra higher frequencies. PMID:25781179

  12. A Wnt1-regulated genetic network controls the identity and fate of midbrain-dopaminergic progenitors in vivo.

    PubMed

    Prakash, Nilima; Brodski, Claude; Naserke, Thorsten; Puelles, Eduardo; Gogoi, Robindra; Hall, Anita; Panhuysen, Markus; Echevarria, Diego; Sussel, Lori; Weisenhorn, Daniela M Vogt; Martinez, Salvador; Arenas, Ernest; Simeone, Antonio; Wurst, Wolfgang

    2006-01-01

    Midbrain neurons synthesizing the neurotransmitter dopamine play a central role in the modulation of different brain functions and are associated with major neurological and psychiatric disorders. Despite the importance of these cells, the molecular mechanisms controlling their development are still poorly understood. The secreted glycoprotein Wnt1 is expressed in close vicinity to developing midbrain dopaminergic neurons. Here, we show that Wnt1 regulates the genetic network, including Otx2 and Nkx2-2, that is required for the establishment of the midbrain dopaminergic progenitor domain during embryonic development. In addition, Wnt1 is required for the terminal differentiation of midbrain dopaminergic neurons at later stages of embryogenesis. These results identify Wnt1 as a key molecule in the development of midbrain dopaminergic neurons in vivo. They also suggest the Wnt1-controlled signaling pathway as a promising target for new therapeutic strategies in the treatment of Parkinson's disease.

  13. Electric-acoustic interactions in the hearing cochlea: single fiber recordings.

    PubMed

    Tillein, J; Hartmann, R; Kral, A

    2015-04-01

    The present study investigates interactions of simultaneous electric and acoustic stimulation in single auditory nerve fibers in normal hearing cats. First, the auditory nerve was accessed with a microelectrode and response areas of single nerve fibers were determined for acoustic stimulation. Second, response thresholds to extracochlear sinusoidal electric stimulation using ball electrodes positioned at the round window were measured. Third, interactions that occurred with combined electric-acoustic stimulation were investigated in two areas: (1) the spectral domain (frequency response areas) and (2) the temporal domain (phase-locking to each stimulus) at moderate stimulus intensities (electric: 6 dB re threshold, acoustic: 20-40 dB re threshold at the characteristic frequency, CF). For fibers responding to both modalities responses to both electric and acoustic stimulation could be clearly identified. CFs, thresholds, and bandwidth (Q10dB) of acoustic responses were not significantly affected by simultaneous electric stimulation. Phase-locking of electric responses decreased in the presence of acoustic stimulation. Indication for electric stimulation of inner hair cells with 125 and 250 Hz were observed. However, these did not disturb the acoustic receptive fields of auditory nerve fibers. There was a trade-off between these responses when the intensities of the stimulation were varied: Relatively more intense stimulation dominated less intense stimulation. The scarcity of interaction between the different stimulus modalities demonstrates the ability of electric-acoustic stimulation to transfer useful information through both stimulation channels at the same time despite cochlear electrophonic effects. Application of 30 Hz electric stimulation resulted in a strong suppression of acoustic activity in the anodic phase of the stimulus. An electric stimulation like this might thus be used to control acoustic responses. This article is part of a Special Issue entitled . Copyright © 2014 Elsevier B.V. All rights reserved.

  14. Audiological and electrophysiological alterations in HIV-infected individuals subjected or not to antiretroviral therapy.

    PubMed

    Matas, Carla Gentile; Samelli, Alessandra Giannella; Magliaro, Fernanda Cristina Leite; Segurado, Aluisio

    2017-08-02

    The Human Immunodeficiency Virus (HIV) and infections related to it can affect multiple sites in the hearing system. The use of High-Activity Anti-Retroviral Therapy (HAART) can cause side effects such as ototoxicity. Thus, no consistent patterns of hearing impairment in adults with Human Immunodeficiency Virus / Acquired Immune Deficiency Syndrome have been established, and the problems that affect the hearing system of this population warrant further research. This study aimed to compare the audiological and electrophysiological data of Human Immunodeficiency Virus-positive patients with and without Acquired Immune Deficiency Syndrome, who were receiving High-Activity Anti-Retroviral Therapy, to healthy individuals. It was a cross-sectional study conducted with 71 subjects (30-48 years old), divided into groups: Research Group I: 16 Human Immunodeficiency Virus-positive individuals without Acquired Immunodeficiency Syndrome (not receiving antiretroviral treatment); Research Group II: 25 Human Immunodeficiency Virus-positive individuals with Acquired Immunodeficiency Syndrome (receiving antiretroviral treatment); Control Group: 30 healthy subjects. All individuals were tested by pure-tone air conduction thresholds at 0.25-8kHz, extended high frequencies at 9-20kHz, electrophysiological tests (Auditory Brainstem Response - ABR, Middle Latency Responses - MLR, Cognitive Potential - P300). Research Group I and Research Group II had higher hearing thresholds in both conventional and high frequency audiometry when compared to the control group, prolonged latency of waves I, III, V and interpeak I-V in Auditory Brainstem Response and prolonged latency of P300 Cognitive Potential. Regarding Middle Latency Responses, there was a decrease in the amplitude of the Pa wave of Research Group II compared to the Research Group I. Both groups with Human Immunodeficiency Virus had higher hearing thresholds when compared to healthy individuals (group exposed to antiretroviral treatment showed the worst hearing threshold) and seemed to have lower neuroelectric transmission speed along the auditory pathway in the brainstem, subcortical and cortical regions. Copyright © 2017. Published by Elsevier Editora Ltda.

  15. Oxygen Tension Within the Neurogenic Niche Regulates Dopaminergic Neurogenesis in the Developing Midbrain

    PubMed Central

    Wagenführ, Lisa; Meyer, Anne Karen; Marrone, Lara

    2016-01-01

    Oxygen tension is an important factor controlling stem cell proliferation and maintenance in various stem cell populations with a particular relevance in midbrain dopaminergic progenitors. Further studies have shown that the oxygen-dependent transcription factor hypoxia-inducible factor 1α (HIF-1α) is involved in these processes. However, all available studies on oxygen effects in dopaminergic neuroprogenitors were performed in vitro and thus it remains unclear whether tissue oxygen tension in the embryonic midbrain is also relevant for the regulation of dopaminergic neurogenesis in vivo. We thus dissect here the effects of oxygen tension in combination with HIF-1α conditional knockout on dopaminergic neurogenesis by using a novel experimental design allowing for the control of oxygen tension within the microenvironment of the neurogenic niche of the murine fetal midbrain in vivo. The microenvironment of the midbrain dopaminergic neurogenic niche was detected as hypoxic with oxygen tensions below 1.1%. Maternal oxygen treatment of 10%, 21%, and 75% atmospheric oxygen tension for 48 h translates into robust changes in fetal midbrain oxygenation. Fetal midbrain hypoxia hampered the generation of dopaminergic neurons and is accompanied with restricted fetal midbrain development. In contrast, induced hyperoxia stimulated proliferation and differentiation of dopaminergic progenitors during early and late embryogenesis. Oxygen effects were not directly mediated through HIF-1α signaling. These data—in agreement with in vitro data—indicate that oxygen is a crucial regulator of developmental dopaminergic neurogenesis. Our study provides the initial framework for future studies on molecular mechanisms mediating oxygen regulation of dopaminergic neurogenesis within the fetal midbrain as its natural environment. PMID:26577812

  16. Assessing Auditory Processing Deficits in Tinnitus and Hearing Impaired Patients with the Auditory Behavior Questionnaire

    PubMed Central

    Diges, Isabel; Simón, Francisco; Cobo, Pedro

    2017-01-01

    Background and Purpose: Auditory processing disorders (APD), tinnitus and hearing loss (HL) are typical issues reported by patients in audiologic clinics. These auditory impairments can be concomitant or mutually excluding. APD are not necessarily accompanied by significant HL, whereas many adults exhibit peripheral HL and typical cognitive deficits often associated with APD. Since HL, tinnitus and APD affects to several parts of the ascending auditory pathway from the periphery to the auditory cortex, there could be some interrelationship between them. For instance, tinnitus has been reported to degrade the auditory localization capacity. Tinnitus is believed to be triggered by deafferentation of normal peripheral input to the central auditory system. This peripheral deficit can be accompanied by HL or not, since a type of permanent cochlear damage (thus deafferentation) without an elevation of hearing thresholds might persist. Therefore, a combined study of APD, tinnitus and HL on the same cohort of patients can be audiologically relevant and worthy. Methods: Statistical analysis is applied to a cohort of 305 patients attending an audiology clinic in Madrid (Spain). This group of patients is first categorized in four subgroups, namely, HLTG (with tinnitus and HL), NHLTG (with tinnitus and without HL), HLNTG (with HL but no tinnitus), and NHLNTG (neither tinnitus nor HL). The statistical variables include Age, Average Auditory Threshold (ATT), for assessing HL, Tinnitus Handicap Inventory (THI), for measuring tinnitus, and a new 25-item Auditory Behavior Questionnaire (ABQ), for scoring APD. Factor analysis is applied to arrange these items into 4 subscales. The internal consistency reliability of this ABQ is confirmed by calculating Cronbach's coefficients α. The test-retest reliability is assessed by the intraclass correlation coefficients, ICC. Statistical techniques applied to the data set include descriptive analysis of variables and Spearman rank correlations (ρ) between them. Results: Overall reliability of ABQ is confirmed by an α value of 0.89 and by an ICC of 0.91. Regarding the internal consistency reliability, the four subscales prove a fairly good consistency with α coefficients above 0.7. Average values of statistical variables show significantly lower age of patients with tinnitus and no HL, which can provide a cue of noise overexposure of this segment of population. These younger patients show also decreased ABQ and similar THI in comparison with patients in the other subgroups. A strong correlation (ρ = 0.63) was found between AAT and Age for the HLNTG subgroup. For the HLTG subgroup, a moderate correlation (ρ = 0.44) was found between ABQ and THI. Conclusion: The utilized questionnaire (ABQ), together with AAT and THI, can help to study comorbid hearing impairments in patients regularly attending an audiological clinic. PMID:28428741

  17. Auditory steady-state responses to MM and exponential envelope AM(2)/FM stimuli in normal-hearing adults.

    PubMed

    D'haenens, Wendy; Dhooge, Ingeborg; De Vel, Eddy; Maes, Leen; Bockstael, Annelies; Vinck, Bart M

    2007-08-01

    The present study utilized a commercially available multiple auditory steady-state response (ASSR) system to test normal hearing adults (n=55). The primary objective was to evaluate the impact of the mixed modulation (MM) and the novel proposed exponential AM(2)/FM stimuli on the signal-to-noise ratio (SNR) and threshold estimation accuracy, through a within-subject comparison. The second aim was to establish a normative database for both stimulus types. The results demonstrated that the AM(2)/FM and MM stimulus had a similar effect on the SNR, whereas the ASSR threshold results revealed that the AM(2)/FM produced better thresholds than the MM stimulus for the 500, 1000, and 4000 Hz carrier frequency. The mean difference scores to tones of 500, 1000, 2000, and 4000 Hz were for the MM stimulus: 20+/-12, 14+/-9, 10+/-8, and 12+/-8 dB; and for the AM(2)/FM stimulus: 18+/-13, 12+/-8, 11+/-8, and 10+/-8 dB, respectively. The current research confirms that the AM(2)/FM stimulus can be used efficiently to test normal hearing adults.

  18. Structural and functional neural correlates of music perception.

    PubMed

    Limb, Charles J

    2006-04-01

    This review article highlights state-of-the-art functional neuroimaging studies and demonstrates the novel use of music as a tool for the study of human auditory brain structure and function. Music is a unique auditory stimulus with properties that make it a compelling tool with which to study both human behavior and, more specifically, the neural elements involved in the processing of sound. Functional neuroimaging techniques represent a modern and powerful method of investigation into neural structure and functional correlates in the living organism. These methods have demonstrated a close relationship between the neural processing of music and language, both syntactically and semantically. Greater neural activity and increased volume of gray matter in Heschl's gyrus has been associated with musical aptitude. Activation of Broca's area, a region traditionally considered to subserve language, is important in interpreting whether a note is on or off key. The planum temporale shows asymmetries that are associated with the phenomenon of perfect pitch. Functional imaging studies have also demonstrated activation of primitive emotional centers such as ventral striatum, midbrain, amygdala, orbitofrontal cortex, and ventral medial prefrontal cortex in listeners of moving musical passages. In addition, studies of melody and rhythm perception have elucidated mechanisms of hemispheric specialization. These studies show the power of music and functional neuroimaging to provide singularly useful tools for the study of brain structure and function.

  19. Segregated fronto‐cortical and midbrain connections in the mouse and their relation to approach and avoidance orienting behaviors

    PubMed Central

    Savage, Michael Anthony; McQuade, Richard

    2017-01-01

    Abstract The orchestration of orienting behaviors requires the interaction of many cortical and subcortical areas, for example the superior colliculus (SC), as well as prefrontal areas responsible for top–down control. Orienting involves different behaviors, such as approach and avoidance. In the rat, these behaviors are at least partially mapped onto different SC subdomains, the lateral (SCl) and medial (SCm), respectively. To delineate the circuitry involved in the two types of orienting behavior in mice, we injected retrograde tracer into the intermediate and deep layers of the SCm and SCl, and thereby determined the main input structures to these subdomains. Overall the SCm receives larger numbers of afferents compared to the SCl. The prefrontal cingulate area (Cg), visual, oculomotor, and auditory areas provide strong input to the SCm, while prefrontal motor area 2 (M2), and somatosensory areas provide strong input to the SCl. The prefrontal areas Cg and M2 in turn connect to different cortical and subcortical areas, as determined by anterograde tract tracing. Even though connectivity pattern often overlap, our labeling approaches identified segregated neural circuits involving SCm, Cg, secondary visual cortices, auditory areas, and the dysgranular retrospenial cortex likely to be involved in avoidance behaviors. Conversely, SCl, M2, somatosensory cortex, and the granular retrospenial cortex comprise a network likely involved in approach/appetitive behaviors. PMID:28177526

  20. Preceding weak noise sharpens the frequency tuning and elevates the response threshold of the mouse inferior collicular neurons through GABAergic inhibition.

    PubMed

    Wang, Xin; Jen, Philip H-S; Wu, Fei-Jian; Chen, Qi-Cai

    2007-09-05

    In acoustic communication, animals must extract biologically relevant signals that are embedded in noisy environment. The present study examines how weak noise may affect the auditory sensitivity of neurons in the central nucleus of the mouse inferior colliculus (IC) which receives convergent excitatory and inhibitory inputs from both lower and higher auditory centers. Specifically, we studied the frequency sensitivity and minimum threshold of IC neurons using a pure tone probe and a weak white noise masker under forward masking paradigm. For most IC neurons, probe-elicited response was decreased by a weak white noise that was presented at a specific gap (i.e. time window). When presented within this time window, weak noise masking sharpened the frequency tuning curve and increased the minimum threshold of IC neurons. The degree of weak noise masking of these two measurements increased with noise duration. Sharpening of the frequency tuning curve and increasing of the minimum threshold of IC neurons during weak noise masking were mostly mediated through GABAergic inhibition. In addition, sharpening of frequency tuning curve by the weak noise masker was more effective at the high than at low frequency limb. These data indicate that in the real world the ambient noise may improve frequency sensitivity of IC neurons through GABAergic inhibition while inevitably decrease the frequency response range and sensitivity of IC neurons.

  1. Mind the Gap: Two Dissociable Mechanisms of Temporal Processing in the Auditory System

    PubMed Central

    Anderson, Lucy A.

    2016-01-01

    High temporal acuity of auditory processing underlies perception of speech and other rapidly varying sounds. A common measure of auditory temporal acuity in humans is the threshold for detection of brief gaps in noise. Gap-detection deficits, observed in developmental disorders, are considered evidence for “sluggish” auditory processing. Here we show, in a mouse model of gap-detection deficits, that auditory brain sensitivity to brief gaps in noise can be impaired even without a general loss of central auditory temporal acuity. Extracellular recordings in three different subdivisions of the auditory thalamus in anesthetized mice revealed a stimulus-specific, subdivision-specific deficit in thalamic sensitivity to brief gaps in noise in experimental animals relative to controls. Neural responses to brief gaps in noise were reduced, but responses to other rapidly changing stimuli unaffected, in lemniscal and nonlemniscal (but not polysensory) subdivisions of the medial geniculate body. Through experiments and modeling, we demonstrate that the observed deficits in thalamic sensitivity to brief gaps in noise arise from reduced neural population activity following noise offsets, but not onsets. These results reveal dissociable sound-onset-sensitive and sound-offset-sensitive channels underlying auditory temporal processing, and suggest that gap-detection deficits can arise from specific impairment of the sound-offset-sensitive channel. SIGNIFICANCE STATEMENT The experimental and modeling results reported here suggest a new hypothesis regarding the mechanisms of temporal processing in the auditory system. Using a mouse model of auditory temporal processing deficits, we demonstrate the existence of specific abnormalities in auditory thalamic activity following sound offsets, but not sound onsets. These results reveal dissociable sound-onset-sensitive and sound-offset-sensitive mechanisms underlying auditory processing of temporally varying sounds. Furthermore, the findings suggest that auditory temporal processing deficits, such as impairments in gap-in-noise detection, could arise from reduced brain sensitivity to sound offsets alone. PMID:26865621

  2. Comparative and developmental patterns of amphibious auditory function in salamanders.

    PubMed

    Zeyl, Jeffrey N; Johnston, Carol E

    2016-12-01

    Early amphibious tetrapods may have detected aquatic sound pressure using sound-induced lung vibrations, but their lack of tympanic middle ears would have restricted aerial sensitivity. Sharing these characteristics, salamanders could be models for the carryover of auditory function across an aquatic-terrestrial boundary without tympanic middle ears. We measured amphibious auditory evoked potential audiograms in five phylogenetically and ecologically distinct salamanders (Amphiuma means, Notophthalmus viridescens, Ambystoma talpoideum, Eurycea spp., and Plethodon glutinosus) and tested whether metamorphosis and terrestrial niche were linked to aerial sensitivity. Threshold differences between media varied between species. A. means' relative aerial sensitivity was greatest at 100 Hz and decreased with increasing frequency. In contrast, all other salamanders retained greater sensitivity up to 500 Hz, and in A. talpoideum and Eurycea, relative sensitivity at 500 Hz was higher than at 100 Hz. Aerial thresholds of terrestrial P. glutinosus above 200 Hz were similar to A. talpoideum and Eurycea, but lower than N. viridescens and A. means. Metamorphosis did not affect aerial sensitivity in N. viridescens or A. talpoideum. These results fail to support a hypothesis of terrestrial hearing specialization across ontogeny or phylogeny. We discuss methodological limitations to our amphibious comparisons and factors affecting variation in amphibious performance.

  3. Effect of 24 hours of sleep deprivation on auditory and linguistic perception: a comparison among young controls, sleep-deprived participants, dyslexic readers, and aging adults.

    PubMed

    Fostick, Leah; Babkoff, Harvey; Zukerman, Gil

    2014-06-01

    To test the effects of 24 hr of sleep deprivation on auditory and linguistic perception and to assess the magnitude of this effect by comparing such performance with that of aging adults on speech perception and with that of dyslexic readers on phonological awareness. Fifty-five sleep-deprived young adults were compared with 29 aging adults (older than 60 years) and with 18 young controls on auditory temporal order judgment (TOJ) and on speech perception tasks (Experiment 1). The sleep deprived were also compared with 51 dyslexic readers and with the young controls on TOJ and phonological awareness tasks (One-Minute Test for Pseudowords, Phoneme Deletion, Pig Latin, and Spoonerism; Experiment 2). Sleep deprivation resulted in longer TOJ thresholds, poorer speech perception, and poorer nonword reading compared with controls. The TOJ thresholds of the sleep deprived were comparable to those of the aging adults, but their pattern of speech performance differed. They also performed better on TOJ and phonological awareness than dyslexic readers. A variety of linguistic skills are affected by sleep deprivation. The comparison of sleep-deprived individuals with other groups with known difficulties in these linguistic skills might suggest that different groups exhibit common difficulties.

  4. New perspectives on the auditory cortex: learning and memory.

    PubMed

    Weinberger, Norman M

    2015-01-01

    Primary ("early") sensory cortices have been viewed as stimulus analyzers devoid of function in learning, memory, and cognition. However, studies combining sensory neurophysiology and learning protocols have revealed that associative learning systematically modifies the encoding of stimulus dimensions in the primary auditory cortex (A1) to accentuate behaviorally important sounds. This "representational plasticity" (RP) is manifest at different levels. The sensitivity and selectivity of signal tones increase near threshold, tuning above threshold shifts toward the frequency of acoustic signals, and their area of representation can increase within the tonotopic map of A1. The magnitude of area gain encodes the level of behavioral stimulus importance and serves as a substrate of memory strength. RP has the same characteristics as behavioral memory: it is associative, specific, develops rapidly, consolidates, and can last indefinitely. Pairing tone with stimulation of the cholinergic nucleus basalis induces RP and implants specific behavioral memory, while directly increasing the representational area of a tone in A1 produces matching behavioral memory. Thus, RP satisfies key criteria for serving as a substrate of auditory memory. The findings suggest a basis for posttraumatic stress disorder in abnormally augmented cortical representations and emphasize the need for a new model of the cerebral cortex. © 2015 Elsevier B.V. All rights reserved.

  5. Developmental hearing loss impedes auditory task learning and performance in gerbils

    PubMed Central

    von Trapp, Gardiner; Aloni, Ishita; Young, Stephen; Semple, Malcolm N.; Sanes, Dan H.

    2016-01-01

    The consequences of developmental hearing loss have been reported to include both sensory and cognitive deficits. To investigate these issues in a non-human model, auditory learning and asymptotic psychometric performance were compared between normal hearing (NH) adult gerbils and those reared with conductive hearing loss (CHL). At postnatal day 10, before ear canal opening, gerbil pups underwent bilateral malleus removal to induce a permanent CHL. Both CHL and control animals were trained to approach a water spout upon presentation of a target (Go stimuli), and withhold for foils (Nogo stimuli). To assess the rate of task acquisition and asymptotic performance, animals were tested on an amplitude modulation (AM) rate discrimination task. Behavioral performance was calculated using a signal detection theory framework. Animals reared with developmental CHL displayed a slower rate of task acquisition for AM discrimination task. Slower acquisition was explained by an impaired ability to generalize to newly introduced stimuli, as compared to controls. Measurement of discrimination thresholds across consecutive testing blocks revealed that CHL animals required a greater number of testing sessions to reach asymptotic threshold values, as compared to controls. However, with sufficient training, CHL animals approached control performance. These results indicate that a sensory impediment can delay auditory learning, and increase the risk of poor performance on a temporal task. PMID:27746215

  6. Assessment of cortical auditory evoked potentials in children with specific language impairment.

    PubMed

    Włodarczyk, Elżbieta; Szkiełkowska, Agata; Pilka, Adam; Skarżyński, Henryk

    2018-02-28

    The proper course of speech development heavily influences the cognitive and personal development of children. It is a condition for achieving preschool and school successes - it facilitates socializing and expressing feelings and needs. Impairment of language and its development in children represents a major diagnostic and therapeutic challenge for physicians and therapists. Early diagnosis of coexisting deficits and starting the therapy influence the therapeutic success. One of the basic diagnostic tests for children suffering from specific language impairment (SLI) is audiometry, thus far referred to as a hearing test. Auditory processing is just as important as a proper hearing threshold. Therefore, diagnosis of central auditory disorder may be a valuable supplementation of diagnosis of language impairment. Early diagnosis and implementation of appropriate treatment may contribute to an effective language therapy.

  7. Auditory sensitivity of larval zebrafish (Danio rerio) measured using a behavioral prepulse inhibition assay

    PubMed Central

    Bhandiwad, Ashwin A.; Zeddies, David G.; Raible, David W.; Rubel, Edwin W.; Sisneros, Joseph A.

    2013-01-01

    SUMMARY Zebrafish (Danio rerio) have become a valuable model for investigating the molecular genetics and development of the inner ear in vertebrates. In this study, we employed a prepulse inhibition (PPI) paradigm to assess hearing in larval wild-type (AB) zebrafish during early development at 5–6 days post-fertilization (d.p.f.). We measured the PPI of the acoustic startle response in zebrafish using a 1-dimensional shaker that simulated the particle motion component of sound along the fish's dorsoventral axis. The thresholds to startle-inducing stimuli were determined in 5–6 d.p.f. zebrafish, and their hearing sensitivity was then characterized using the thresholds of prepulse tone stimuli (90–1200 Hz) that inhibited the acoustic startle response to a reliable startle stimulus (820 Hz at 20 dB re. 1 m s−2). Hearing thresholds were defined as the minimum prepulse tone level required to significantly reduce the startle response probability compared with the baseline (no-prepulse) condition. Larval zebrafish showed greatest auditory sensitivity from 90 to 310 Hz with corresponding mean thresholds of −19 to −10 dB re. 1 m s−2, respectively. Hearing thresholds of prepulse tones were considerably lower than previously predicted by startle response assays. The PPI assay was also used to investigate the relative contribution of the lateral line to the detection of acoustic stimuli. After aminoglycoside-induced neuromast hair-cell ablation, we found no difference in PPI thresholds between treated and control fish. We propose that this PPI assay can be used to screen for novel zebrafish hearing mutants and to investigate the ontogeny of hearing in zebrafish and other fishes. PMID:23966590

  8. Characterization of Hearing Thresholds from 500 to 16,000 Hz in Dentists: A Comparative Study

    PubMed Central

    Gonçalves, Claudia Giglio de Oliveira; Santos, Luciana; Lobato, Diolen; Ribas, Angela; Lacerda, Adriana Bender Moreira; Marques, Jair

    2014-01-01

    Introduction High-level noise exposure in dentists' workplaces may cause damages to the auditory systems. High-frequency audiometry is an important tool in the investigation in the early diagnosis of hearing loss. Objectives To analyze the auditory thresholds at frequencies from 500 to 16,000 Hz of dentists in the city of Curitiba. Methods This historic cohort study retrospectively tested hearing thresholds from 500 to 16,000 Hz with a group of dentists from Curitiba, in the state of Paraná, Brazil. Eighty subjects participated in the study, separated into a dentist group and a control group, with the same age range and gender across groups but with no history of occupational exposure to high levels of sound pressure in the control group. Subjects were tested with conventional audiometry and high-frequency audiometry and answered a questionnaire about exposure to noise. Results Results showed that 81% of dentists did not receive any information regarding noise at university; 6 (15%) dentists had sensorineural hearing impairment; significant differences were observed between the groups only at frequencies of 500 Hz and 1,000, 6,000 and 8,000 Hz in the right ear. There was no significant difference between the groups after analysis of mean hearing thresholds of high frequencies with the average hearing thresholds in conventional frequencies; subjects who had been working as dentists for longer than 10 years had worse tonal hearing thresholds at high frequencies. Conclusions In this study, we observed that dentists are at risk for the development of sensorineural hearing loss especially after 10 years of service. PMID:25992172

  9. Auditory processing deficits in growth restricted fetuses affect later language development.

    PubMed

    Kisilevsky, Barbara S; Davies, Gregory A L

    2007-01-01

    An increased risk for language deficits in infants born growth restricted has been reported in follow-up studies for more than 20 years, suggesting a relation between fetal auditory system development and later language learning. Work with animal models indicate that there are at least two ways in which growth restriction could affect the development of auditory perception in human fetuses: a delay in myelination or conduction and an increase in sensorineural threshold. Systematic study of auditory function in growth restricted human fetuses has not been reported. However, results of studies employing low-risk fetuses delivering as healthy full-term infants demonstrate that, by late gestation, the fetus can hear, sound properties modulate behavior, and sensory information is available from both inside (e.g., maternal vascular) and outside (e.g., noise, voices, music) of the maternal body. These data provide substantive evidence that the auditory system is functioning and that environmental sounds are available for shaping neural networks and laying the foundation for language acquisition before birth. We hypothesize that fetal growth restriction affects auditory system development, resulting in atypical auditory information processing in growth restricted fetuses compared to healthy, appropriately-grown-for-gestational-age fetuses. Speech perception that lays the foundation for later language competence will differ in growth restricted compared to normally grown fetuses and be associated with later language abilities.

  10. Psychophysiological responses to masked auditory stimuli.

    PubMed

    Borgeat, F; Elie, R; Chaloult, L; Chabot, R

    1985-02-01

    Psychophysiological responses to masked auditory verbal stimuli of increasing intensities were studied in twenty healthy women. Two experimental sessions corresponding to two stimulation contents (neutral or emotional) were conducted. At each session, two different sets of instructions (attending or not attending to stimuli) were used successively. Verbal stimuli, masked by a 40-dB white noise, were presented to the subject at increasing intensities by increments of 5 dB starting at 0 dB. At each increment, frontal EMG, skin conductance and heart rate were recorded. The data were submitted to analyses of variance and covariance. Psychophysiological responses to stimuli below the thresholds of identification and detection were observed. The instruction not to attend the stimuli modified the patterns of physiological responses. The effect of the affective content of the stimuli on responses was stronger when not attending. The results show the possibility of psychophysiological responses to masked auditory stimuli and suggests that psychophysiological parameters can constitute objective and useful measures for research in auditory subliminal perception.

  11. Auditory evoked potentials: predicting speech therapy outcomes in children with phonological disorders.

    PubMed

    Leite, Renata Aparecida; Wertzner, Haydée Fiszbein; Gonçalves, Isabela Crivellaro; Magliaro, Fernanda Cristina Leite; Matas, Carla Gentile

    2014-03-01

    This study investigated whether neurophysiologic responses (auditory evoked potentials) differ between typically developed children and children with phonological disorders and whether these responses are modified in children with phonological disorders after speech therapy. The participants included 24 typically developing children (Control Group, mean age: eight years and ten months) and 23 children clinically diagnosed with phonological disorders (Study Group, mean age: eight years and eleven months). Additionally, 12 study group children were enrolled in speech therapy (Study Group 1), and 11 were not enrolled in speech therapy (Study Group 2). The subjects were submitted to the following procedures: conventional audiological, auditory brainstem response, auditory middle-latency response, and P300 assessments. All participants presented with normal hearing thresholds. The study group 1 subjects were reassessed after 12 speech therapy sessions, and the study group 2 subjects were reassessed 3 months after the initial assessment. Electrophysiological results were compared between the groups. Latency differences were observed between the groups (the control and study groups) regarding the auditory brainstem response and the P300 tests. Additionally, the P300 responses improved in the study group 1 children after speech therapy. The findings suggest that children with phonological disorders have impaired auditory brainstem and cortical region pathways that may benefit from speech therapy.

  12. Blast-Induced Tinnitus and Elevated Central Auditory and Limbic Activity in Rats: A Manganese-Enhanced MRI and Behavioral Study.

    PubMed

    Ouyang, Jessica; Pace, Edward; Lepczyk, Laura; Kaufman, Michael; Zhang, Jessica; Perrine, Shane A; Zhang, Jinsheng

    2017-07-07

    Blast-induced tinitus is the number one service-connected disability that currently affects military personnel and veterans. To elucidate its underlying mechanisms, we subjected 13 Sprague Dawley adult rats to unilateral 14 psi blast exposure to induce tinnitus and measured auditory and limbic brain activity using manganese-enhanced MRI (MEMRI). Tinnitus was evaluated with a gap detection acoustic startle reflex paradigm, while hearing status was assessed with prepulse inhibition (PPI) and auditory brainstem responses (ABRs). Both anxiety and cognitive functioning were assessed using elevated plus maze and Morris water maze, respectively. Five weeks after blast exposure, 8 of the 13 blasted rats exhibited chronic tinnitus. While acoustic PPI remained intact and ABR thresholds recovered, the ABR wave P1-N1 amplitude reduction persisted in all blast-exposed rats. No differences in spatial cognition were observed, but blasted rats as a whole exhibited increased anxiety. MEMRI data revealed a bilateral increase in activity along the auditory pathway and in certain limbic regions of rats with tinnitus compared to age-matched controls. Taken together, our data suggest that while blast-induced tinnitus may play a role in auditory and limbic hyperactivity, the non-auditory effects of blast and potential traumatic brain injury may also exert an effect.

  13. Seasonal plasticity of auditory saccular sensitivity in "sneaker" type II male plainfin midshipman fish, Porichthys notatus.

    PubMed

    Bhandiwad, Ashwin A; Whitchurch, Elizabeth A; Colleye, Orphal; Zeddies, David G; Sisneros, Joseph A

    2017-03-01

    Adult female and nesting (type I) male midshipman fish (Porichthys notatus) exhibit an adaptive form of auditory plasticity for the enhanced detection of social acoustic signals. Whether this adaptive plasticity also occurs in "sneaker" type II males is unknown. Here, we characterize auditory-evoked potentials recorded from hair cells in the saccule of reproductive and non-reproductive "sneaker" type II male midshipman to determine whether this sexual phenotype exhibits seasonal, reproductive state-dependent changes in auditory sensitivity and frequency response to behaviorally relevant auditory stimuli. Saccular potentials were recorded from the middle and caudal region of the saccule while sound was presented via an underwater speaker. Our results indicate saccular hair cells from reproductive type II males had thresholds based on measures of sound pressure and acceleration (re. 1 µPa and 1 ms -2 , respectively) that were ~8-21 dB lower than non-reproductive type II males across a broad range of frequencies, which include the dominant higher frequencies in type I male vocalizations. This increase in type II auditory sensitivity may potentially facilitate eavesdropping by sneaker males and their assessment of vocal type I males for the selection of cuckoldry sites during the breeding season.

  14. Training in rapid auditory processing ameliorates auditory comprehension in aphasic patients: a randomized controlled pilot study.

    PubMed

    Szelag, Elzbieta; Lewandowska, Monika; Wolak, Tomasz; Seniow, Joanna; Poniatowska, Renata; Pöppel, Ernst; Szymaszek, Aneta

    2014-03-15

    Experimental studies have often reported close associations between rapid auditory processing and language competency. The present study was aimed at improving auditory comprehension in aphasic patients following specific training in the perception of temporal order (TO) of events. We tested 18 aphasic patients showing both comprehension and TO perception deficits. Auditory comprehension was assessed by the Token Test, phonemic awareness and Voice-Onset-Time Test. The TO perception was assessed using auditory Temporal-Order-Threshold, defined as the shortest interval between two consecutive stimuli, necessary to report correctly their before-after relation. Aphasic patients participated in eight 45-minute sessions of either specific temporal training (TT, n=11) aimed to improve sequencing abilities, or control non-temporal training (NT, n=7) focussed on volume discrimination. The TT yielded improved TO perception; moreover, a transfer of improvement was observed from the time domain to the language domain, which was untrained during the training. The NT did not improve either the TO perception or comprehension in any language test. These results are in agreement with previous literature studies which proved ameliorated language competency following the TT in language-learning-impaired or dyslexic children. Our results indicated for the first time such benefits also in aphasic patients. Copyright © 2013 Elsevier B.V. All rights reserved.

  15. Detection Rates of Cortical Auditory Evoked Potentials at Different Sensation Levels in Infants with Sensory/Neural Hearing Loss and Auditory Neuropathy Spectrum Disorder

    PubMed Central

    Gardner-Berry, Kirsty; Chang, Hsiuwen; Ching, Teresa Y. C.; Hou, Sanna

    2016-01-01

    With the introduction of newborn hearing screening, infants are being diagnosed with hearing loss during the first few months of life. For infants with a sensory/neural hearing loss (SNHL), the audiogram can be estimated objectively using auditory brainstem response (ABR) testing and hearing aids prescribed accordingly. However, for infants with auditory neuropathy spectrum disorder (ANSD) due to the abnormal/absent ABR waveforms, alternative measures of auditory function are needed to assess the need for amplification and evaluate whether aided benefit has been achieved. Cortical auditory evoked potentials (CAEPs) are used to assess aided benefit in infants with hearing loss; however, there is insufficient information regarding the relationship between stimulus audibility and CAEP detection rates. It is also not clear whether CAEP detection rates differ between infants with SNHL and infants with ANSD. This study involved retrospective collection of CAEP, hearing threshold, and hearing aid gain data to investigate the relationship between stimulus audibility and CAEP detection rates. The results demonstrate that increases in stimulus audibility result in an increase in detection rate. For the same range of sensation levels, there was no difference in the detection rates between infants with SNHL and ANSD. PMID:27587922

  16. Criteria and Thresholds for U.S. Navy Acoustic and Explosive Effects Analysis

    DTIC Science & Technology

    2012-04-01

    2  2.2  Functional hearing groups... Functions ....................................................................................... 5  2.3.1  Development of marine mammal auditory weighting... functions .................... 5  2.3.2  Navy marine mammal weighting functions .................................................. 10  2.4  Criteria

  17. [Comparison of tone burst evoked auditory brainstem responses with different filter settings for referral infants after hearing screening].

    PubMed

    Diao, Wen-wen; Ni, Dao-feng; Li, Feng-rong; Shang, Ying-ying

    2011-03-01

    Auditory brainstem responses (ABR) evoked by tone burst is an important method of hearing assessment in referral infants after hearing screening. The present study was to compare the thresholds of tone burst ABR with filter settings of 30 - 1500 Hz and 30 - 3000 Hz at each frequency, figure out the characteristics of ABR thresholds with the two filter settings and the effect of the waveform judgement, so as to select a more optimal frequency specific ABR test parameter. Thresholds with filter settings of 30 - 1500 Hz and 30 - 3000 Hz in children aged 2 - 33 months were recorded by click, tone burst ABR. A total of 18 patients (8 male/10 female), 22 ears were included. The thresholds of tone burst ABR with filter settings of 30 - 3000 Hz were higher than that with filter settings of 30 - 1500 Hz. Significant difference was detected for that at 0.5 kHz and 2.0 kHz (t values were 2.238 and 2.217, P < 0.05), no significant difference between the two filter settings was detected at the rest frequencies tone evoked ABR thresholds. The waveform of ABR with filter settings of 30 - 1500 Hz was smoother than that with filter settings of 30 - 3000 Hz at the same stimulus intensity. Response curve of the latter appeared jagged small interfering wave. The filter setting of 30 - 1500 Hz may be a more optimal parameter of frequency specific ABR to improve the accuracy of frequency specificity ABR for infants' hearing assessment.

  18. Auditory function after application of ototopical vancomycin and mupirocin solutions in a murine model.

    PubMed

    Rutherford, Kimberley D; Kavanagh, Katherine; Parham, Kourosh

    2011-03-01

    To determine whether mupirocin (440 µg/mL) and vancomycin otic drops (25 mg/mL) show evidence of ototoxicity in CBA/J mice immediately following a 7-day course of daily intratympanic (IT) injections and 1 month following treatment. Nonrandomized controlled trial. Academic hospital laboratory. Twenty CBA/J mice. Mean auditory brainstem response (ABR) thresholds increased in all drug- and saline-treated ears immediately after 7 days of IT injections but returned to baseline for most stimulus frequencies by 30 days later. This finding appeared to be correlated with the presence and subsequent resolution of tympanic membrane (TM) perforations and granulation tissue at the injection sites. Mupirocin-treated ears showed no significant difference in ABR thresholds compared to saline-treated ears. No significant differences were noted between vancomycin- and saline-treated ears, but there was a significant interaction between testing day and stimulus frequency (P < .001). Further analysis revealed that ABR thresholds at 32 kHz remained significantly elevated in vancomycin-treated mice despite the resolution of TM perforations and granulation tissue 30 days after completion of IT injections (95% confidence interval, -13.5 to -5.5, P < .01). Although IT application of mupirocin solution (440 µg/mL) caused no significant change in the ABR thresholds in a murine model, vancomycin solution (25 mg/mL) resulted in high-frequency threshold elevations in both the ear directly injected and the contralateral ear. Mupirocin solution may be beneficial in managing otitis externa and media caused by resistant pathogens. Further studies of ototopical vancomycin are needed to define parameters governing its safe use.

  19. Magnified Neural Envelope Coding Predicts Deficits in Speech Perception in Noise.

    PubMed

    Millman, Rebecca E; Mattys, Sven L; Gouws, André D; Prendergast, Garreth

    2017-08-09

    Verbal communication in noisy backgrounds is challenging. Understanding speech in background noise that fluctuates in intensity over time is particularly difficult for hearing-impaired listeners with a sensorineural hearing loss (SNHL). The reduction in fast-acting cochlear compression associated with SNHL exaggerates the perceived fluctuations in intensity in amplitude-modulated sounds. SNHL-induced changes in the coding of amplitude-modulated sounds may have a detrimental effect on the ability of SNHL listeners to understand speech in the presence of modulated background noise. To date, direct evidence for a link between magnified envelope coding and deficits in speech identification in modulated noise has been absent. Here, magnetoencephalography was used to quantify the effects of SNHL on phase locking to the temporal envelope of modulated noise (envelope coding) in human auditory cortex. Our results show that SNHL enhances the amplitude of envelope coding in posteromedial auditory cortex, whereas it enhances the fidelity of envelope coding in posteromedial and posterolateral auditory cortex. This dissociation was more evident in the right hemisphere, demonstrating functional lateralization in enhanced envelope coding in SNHL listeners. However, enhanced envelope coding was not perceptually beneficial. Our results also show that both hearing thresholds and, to a lesser extent, magnified cortical envelope coding in left posteromedial auditory cortex predict speech identification in modulated background noise. We propose a framework in which magnified envelope coding in posteromedial auditory cortex disrupts the segregation of speech from background noise, leading to deficits in speech perception in modulated background noise. SIGNIFICANCE STATEMENT People with hearing loss struggle to follow conversations in noisy environments. Background noise that fluctuates in intensity over time poses a particular challenge. Using magnetoencephalography, we demonstrate anatomically distinct cortical representations of modulated noise in normal-hearing and hearing-impaired listeners. This work provides the first link among hearing thresholds, the amplitude of cortical representations of modulated sounds, and the ability to understand speech in modulated background noise. In light of previous work, we propose that magnified cortical representations of modulated sounds disrupt the separation of speech from modulated background noise in auditory cortex. Copyright © 2017 Millman et al.

  20. Active Duty-U.S. Army Noise Induced Hearing Injury Quarterly Surveillance Q3 2007 thru Q4 2009

    DTIC Science & Technology

    2014-05-11

    years (CY) Q3 2007-Q4 2009 shows incident case rates for sensorineural hearing loss (SNHL), significant threshold shift (STS), tinnitus , and Noise-Induced...Prev Med. 2010;38(1S):S71-S77. Humes LE, Jollenbeck LM, Durch JS. Noise and military service: Implications for hearing loss and tinnitus . Washington...threshold shift 79415 NONSPECIFIC ABNORMAL AUDITORY FUNCTION STUDIES TINN Tinnitus 38830 TINNITUS UNSPECIFIED TINN Tinnitus 38831 SUBJECTIVE TINNITUS

  1. The influence of bat echolocation call duration and timing on auditory encoding of predator distance in noctuoid moths.

    PubMed

    Gordon, Shira D; Ter Hofstede, Hannah M

    2018-03-22

    Animals co-occur with multiple predators, making sensory systems that can encode information about diverse predators advantageous. Moths in the families Noctuidae and Erebidae have ears with two auditory receptor cells (A1 and A2) used to detect the echolocation calls of predatory bats. Bat communities contain species that vary in echolocation call duration, and the dynamic range of A1 is limited by the duration of sound, suggesting that A1 provides less information about bats with shorter echolocation calls. To test this hypothesis, we obtained intensity-response functions for both receptor cells across many moth species for sound pulse durations representing the range of echolocation call durations produced by bat species in northeastern North America. We found that the threshold and dynamic range of both cells varied with sound pulse duration. The number of A1 action potentials per sound pulse increases linearly with increasing amplitude for long-duration pulses, saturating near the A2 threshold. For short sound pulses, however, A1 saturates with only a few action potentials per pulse at amplitudes far lower than the A2 threshold for both single sound pulses and pulse sequences typical of searching or approaching bats. Neural adaptation was only evident in response to approaching bat sequences at high amplitudes, not search-phase sequences. These results show that, for short echolocation calls, a large range of sound levels cannot be coded by moth auditory receptor activity, resulting in no information about the distance of a bat, although differences in activity between ears might provide information about direction. © 2018. Published by The Company of Biologists Ltd.

  2. Seasonal plasticity of auditory saccular sensitivity in the vocal plainfin midshipman fish, Porichthys notatus.

    PubMed

    Sisneros, Joseph A

    2009-08-01

    The plainfin midshipman fish, Porichthys notatus, is a seasonally breeding species of marine teleost fish that generates acoustic signals for intraspecific social and reproductive-related communication. Female midshipman use the inner ear saccule as the main acoustic endorgan for hearing to detect and locate vocalizing males that produce multiharmonic advertisement calls during the breeding season. Previous work showed that the frequency sensitivity of midshipman auditory saccular afferents changed seasonally with female reproductive state such that summer reproductive females became better suited than winter nonreproductive females to encode the dominant higher harmonics of the male advertisement calls. The focus of this study was to test the hypothesis that seasonal reproductive-dependent changes in saccular afferent tuning is paralleled by similar changes in saccular sensitivity at the level of the hair-cell receptor. Here, I examined the evoked response properties of midshipman saccular hair cells from winter nonreproductive and summer reproductive females to determine if reproductive state affects the frequency response and threshold of the saccule to behaviorally relevant single tone stimuli. Saccular potentials were recorded from populations of hair cells in vivo while sound was presented by an underwater speaker. Results indicate that saccular hair cells from reproductive females had thresholds that were approximately 8 to 13 dB lower than nonreproductive females across a broad range of frequencies that included the dominant higher harmonic components and the fundamental frequency of the male's advertisement call. These seasonal-reproductive-dependent changes in thresholds varied differentially across the three (rostral, middle, and caudal) regions of the saccule. Such reproductive-dependent changes in saccule sensitivity may represent an adaptive plasticity of the midshipman auditory sense to enhance mate detection, recognition, and localization during the breeding season.

  3. Cross-modal enhancement of speech detection in young and older adults: does signal content matter?

    PubMed

    Tye-Murray, Nancy; Spehar, Brent; Myerson, Joel; Sommers, Mitchell S; Hale, Sandra

    2011-01-01

    The purpose of the present study was to examine the effects of age and visual content on cross-modal enhancement of auditory speech detection. Visual content consisted of three clearly distinct types of visual information: an unaltered video clip of a talker's face, a low-contrast version of the same clip, and a mouth-like Lissajous figure. It was hypothesized that both young and older adults would exhibit reduced enhancement as visual content diverged from the original clip of the talker's face, but that the decrease would be greater for older participants. Nineteen young adults and 19 older adults were asked to detect a single spoken syllable (/ba/) in speech-shaped noise, and the level of the signal was adaptively varied to establish the signal-to-noise ratio (SNR) at threshold. There was an auditory-only baseline condition and three audiovisual conditions in which the syllable was accompanied by one of the three visual signals (the unaltered clip of the talker's face, the low-contrast version of that clip, or the Lissajous figure). For each audiovisual condition, the SNR at threshold was compared with the SNR at threshold for the auditory-only condition to measure the amount of cross-modal enhancement. Young adults exhibited significant cross-modal enhancement with all three types of visual stimuli, with the greatest amount of enhancement observed for the unaltered clip of the talker's face. Older adults, in contrast, exhibited significant cross-modal enhancement only with the unaltered face. Results of this study suggest that visual signal content affects cross-modal enhancement of speech detection in both young and older adults. They also support a hypothesized age-related deficit in processing low-contrast visual speech stimuli, even in older adults with normal contrast sensitivity.

  4. Field hearing measurements of the Atlantic sharpnose shark Rhizoprionodon terraenovae.

    PubMed

    Casper, B M; Mann, D A

    2009-12-01

    Field measurements of hearing thresholds were obtained from the Atlantic sharpnose shark Rhizoprionodon terraenovae using the auditory evoked potential method (AEP). The fish had most sensitive hearing at 20 Hz, the lowest frequency tested, with decreasing sensitivity at higher frequencies. Hearing thresholds were lower than AEP thresholds previously measured for the nurse shark Ginglymostoma cirratum and yellow stingray Urobatis jamaicensis at frequencies <200 Hz, and similar at 200 Hz and above. Rhizoprionodon terraenovae represents the closest comparison in terms of pelagic lifestyle to the sharks which have been observed in acoustic field attraction experiments. The sound pressure levels that would be equivalent to the particle acceleration thresholds of R. terraenovae were much higher than the sound levels which attracted closely related sharks suggesting a discrepancy between the hearing threshold experiments and the field attraction experiments.

  5. Effects of diabetes mellitus and systemic arterial hypertension on elderly patients' hearing.

    PubMed

    Rolim, Laurie Penha; Samelli, Alessandra Giannella; Moreira, Renata Rodrigues; Matas, Carla Gentile; Santos, Itamar de Souza; Bensenor, Isabela Martins; Lotufo, Paulo Andrade

    2017-09-21

    Chronic diseases can act as an accelerating factor in the auditory system degeneration. Studies on the association between presbycusis and diabetes mellitus and systemic arterial hypertension have shown controversial conclusions. To compare the initial audiometry (A1) with a subsequent audiometry (A2) performed after a 3 to 4-year interval in a population of elderly patients with diabetes mellitus and/or systemic arterial hypertension, to verify whether hearing loss in these groups is more accelerated when compared to controls without these clinical conditions. 100 elderly individuals participated in this study. For the auditory threshold assessment, a previous complete audiological evaluation (A1) and a new audiological evaluation (A2) performed 3-4 years after the first one was utilized. The participants were divided into four groups: 20 individuals in the diabetes mellitus group, 20 individuals in the systemic arterial hypertension group, 20 individuals in the diabetes mellitus/systemic arterial hypertension group and 40 individuals in the control group, matching them with each study group, according to age and gender. ANOVA and Kruskal-Wallis statistical tests were used, with a significance level set at 0.05. When comparing the mean annual increase in the auditory thresholds of the A1 with the A2 assessment, considering each study group and its respective control, it can be observed that there was no statistically significant difference for any of the frequencies for the diabetes mellitus group; for the systemic arterial hypertension group, significant differences were observed after 4kHz. For the diabetes mellitus and systemic arterial hypertension group, significant differences were observed at the frequencies of 500, 2kHz, 3kHz and 8kHz. It was observed that the systemic arterial hypertension group showed the greatest decrease in auditory thresholds in the studied segment when compared to the other groups, suggesting that among the three studied conditions, hypertension seems to have the greatest influence on hearing. Copyright © 2017 Associação Brasileira de Otorrinolaringologia e Cirurgia Cérvico-Facial. Published by Elsevier Editora Ltda. All rights reserved.

  6. Subchronic JP-8 jet fuel exposure enhances vulnerability to noise-induced hearing loss in rats.

    PubMed

    Fechter, L D; Fisher, J W; Chapman, G D; Mokashi, V P; Ortiz, P A; Reboulet, J E; Stubbs, J E; Lear, A M; McInturf, S M; Prues, S L; Gearhart, C A; Fulton, S; Mattie, D R

    2012-01-01

    Both laboratory and epidemiological studies published over the past two decades have identified the risk of excess hearing loss when specific chemical contaminants are present along with noise. The objective of this study was to evaluate the potency of JP-8 jet fuel to enhance noise-induced hearing loss (NIHL) using inhalation exposure to fuel and simultaneous exposure to either continuous or intermittent noise exposure over a 4-wk exposure period using both male and female Fischer 344 rats. In the initial study, male (n = 5) and female (n = 5) rats received inhalation exposure to JP-8 fuel for 6 h/d, 5 d/wk for 4 wk at concentrations of 200, 750, or 1500 mg/m³. Parallel groups of rats also received nondamaging noise (constant octave band noise at 85 dB(lin)) in combination with the fuel, noise alone (75, 85, or 95 dB), or no exposure to fuel or noise. Significant concentration-related impairment of auditory function measured by distortion product otoacoustic emissions (DPOAE) and compound action potential (CAP) threshold was seen in rats exposed to combined JP-8 plus noise exposure when JP-8 levels of 1500 mg/m³ were presented with trends toward impairment seen with 750 mg/m³ JP-8 + noise. JP-8 alone exerted no significant effect on auditory function. In addition, noise was able to disrupt the DPOAE and increase auditory thresholds only when noise exposure was at 95 dB. In a subsequent study, male (n = 5 per group) and female (n = 5 per group) rats received 1000 mg/m³ JP-8 for 6 h/d, 5 d/wk for 4 wk with and without exposure to 102 dB octave band noise that was present for 15 min out of each hour (total noise duration 90 min). Comparisons were made to rats receiving only noise, and thosereceiving no experimental treatment. Significant impairment of auditory thresholds especially for high-frequency tones was identified in the male rats receiving combined treatment. This study provides a basis for estimating excessive hearing loss under conditions of subchronic JP-8 jet fuel exposure.

  7. Superior canal dehiscence length and location influences clinical presentation and audiometric and cervical vestibular-evoked myogenic potential testing.

    PubMed

    Niesten, Marlien E F; Hamberg, Leena M; Silverman, Joshua B; Lou, Kristina V; McCall, Andrew A; Windsor, Alanna; Curtin, Hugh D; Herrmann, Barbara S; Grolman, Wilko; Nakajima, Hideko H; Lee, Daniel J

    2014-01-01

    Superior canal dehiscence (SCD) is caused by an absence of bony covering of the arcuate eminence or posteromedial aspect of the superior semicircular canal. However, the clinical presentation of SCD syndrome varies considerably, as some SCD patients are asymptomatic and others have auditory and/or vestibular complaints. In order to determine the basis for these observations, we examined the association between SCD length and location with: (1) auditory and vestibular signs and symptoms; (2) air conduction (AC) loss and air-bone gap (ABG) measured by pure-tone audiometric testing, and (3) cervical vestibular-evoked myogenic potential (cVEMP) thresholds. 104 patients (147 ears) underwent SCD length and location measurements using a novel method of measuring bone density along 0.2-mm radial CT sections. We found that patients with auditory symptoms have a larger dehiscence (median length: 4.5 vs. 2.7 mm) with a beginning closer to the ampulla (median location: 4.8 vs. 6.4 mm from ampulla) than patients with no auditory symptoms (only vestibular symptoms). An increase in AC threshold was found as the SCD length increased at 250 Hz (95% CI: 1.7-4.7), 500 Hz (95% CI: 0.7-3.5) and 1,000 Hz (95% CI: 0.0-2.5), and an increase in ABG as the SCD length increased at 250 Hz (95% CI: 2.0-5.3), 500 Hz (95% CI: 1.6-4.6) and 1,000 Hz (95% CI: 1.3-3.3) was also seen. Finally, a larger dehiscence was associated with lowered cVEMP thresholds at 250 Hz (95% CI: -4.4 to -0.3), 500 Hz (95% CI: -4.1 to -1.0), 750 Hz (95% CI: -4.2 to -0.7) and 1,000 Hz (95% CI: -3.6 to -0.5) and a starting location closer to the ampulla at 250 Hz (95% CI: 1.3-5.1), 750 Hz (95% CI: 0.2-3.3) and 1,000 Hz (95% CI: 0.6-3.5). These findings may help to explain the variation of signs and symptoms seen in patients with SCD syndrome.

  8. Induction of tyrosine hydroxylase mRNA by nicotine in rat midbrain is inhibited by mifepristone

    PubMed Central

    Radcliffe, Pheona M.; Sterling, Carol R.; Tank, A. William

    2009-01-01

    Repeated nicotine administration induces tyrosine hydroxylase (TH) mRNA in rat midbrain. In this study we investigate the mechanisms responsible for this response using two models of midbrain dopamine neurons, rat ventral midbrain slice explant cultures and mouse MN9D cells. In both models nicotine stimulates TH gene transcription rate in a dose-dependent manner. However, this stimulation is short-lived, lasting for 1 hr, but less than 3 hr, and is not sufficient to induce TH mRNA or TH protein. Nicotine elevates circulating glucocorticoids, which induce TH expression in some model systems. We tested the hypothesis that the effect of nicotine on midbrain TH mRNA is mediated by the glucocorticoid receptor. When rats are administered the glucocorticoid receptor antagonist mifepristone, the induction of TH mRNA by nicotine in both substantia nigra and ventral tegmentum is inhibited. Furthermore, the glucocorticoid receptor agonist dexamethasone stimulates TH gene transcription for sustained periods of time in both midbrain slices and MN9D cells, leading to induction of TH mRNA and TH protein. Our results are consistent with the hypothesis that nicotine induces TH mRNA in midbrain by elevating glucocorticoids, which then act on glucocorticoid receptors in dopamine neurons leading to transcriptional activation of the TH gene. PMID:19476543

  9. Flying in tune: sexual recognition in mosquitoes.

    PubMed

    Gibson, Gabriella; Russell, Ian

    2006-07-11

    Mosquitoes hear with their antennae, which in most species are sexually dimorphic. Johnston, who discovered the mosquito auditory organ at the base of the antenna 150 years ago, speculated that audition was involved with mating behaviour. Indeed, male mosquitoes are attracted to female flight tones. The male auditory organ has been proposed to act as an acoustic filter for female flight tones, but female auditory behavior is unknown. We show, for the first time, interactive auditory behavior between males and females that leads to sexual recognition. Individual males and females both respond to pure tones by altering wing-beat frequency. Behavioral auditory tuning curves, based on minimum threshold sound levels that elicit a change in wing-beat frequency to pure tones, are sharper than the mechanical tuning of the antennae, with males being more sensitive than females. We flew opposite-sex pairs of tethered Toxorhynchites brevipalpis and found that each mosquito alters its wing-beat frequency in response to the flight tone of the other, so that within seconds their flight-tone frequencies are closely matched, if not completely synchronized. The flight tones of same-sex pairs may converge in frequency but eventually diverge dramatically.

  10. Underwater Detonations at the Silver Strand Training Complex: Effects on Marine Mammals

    DTIC Science & Technology

    2009-04-30

    and S. H. Ridgway (2000), "Auditory and Behavioral Responses of Bottlenose Dolphins (Tursiops truncatus) and a Beluga Whale ( Delphinapterus leucas ...Shift in Masked Hearing Thresholds of Bottlenose Dolphins, Tursiops truncatus, and White Whales, Delphinapterus leucas , after Exposure to Intense Tones

  11. Effects of several mental tasks on auditory fatigue.

    DOT National Transportation Integrated Search

    1965-01-01

    Eight males were exposed for three minutes to a 4000 cps fatigue tone at 40 dB SL. Each S was tested under four task-conditions: mental arithmetic (MA), written ling division (LD), threshold determination of a 500 cps tone (TD), and reverie (REV). Te...

  12. Otoacoustic Emissions before and after Listening to Music on a Personal Player

    PubMed Central

    Trzaskowski, Bartosz; Jędrzejczak, W. Wiktor; Piłka, Edyta; Cieślicka, Magdalena; Skarżyński, Henryk

    2014-01-01

    Background The problem of the potential impact of personal music players on the auditory system remains an open question. The purpose of the present study was to investigate, by means of otoacoustic emissions (OAEs), whether listening to music on a personal player affected auditory function. Material/Methods A group of 20 normally hearing adults was exposed to music played on a personal player. Transient evoked OAEs (TEOAEs) and distortion product OAEs (DPOAEs), as well as pure tone audiometry (PTA) thresholds, were tested at 3 stages: before, immediately after, and the next day following 30 min of exposure to music at 86.6 dBA. Results We found no statistically significant changes in OAE parameters or PTA thresholds due to listening to the music. Conclusions These results suggest that exposure to music at levels similar to those used in our study does not disturb cochlear function in a way that can be detected by means of PTA, TEOAE, or DPOAE tests. PMID:25116920

  13. Effects of antioxidants on auditory nerve function and survival in deafened guinea pigs.

    PubMed

    Maruyama, Jun; Yamagata, Takahiko; Ulfendahl, Mats; Bredberg, Göran; Altschuler, Richard A; Miller, Josef M

    2007-02-01

    Based on in vitro studies, it is hypothesized that neurotrophic factor deprivation following deafferentation elicits an oxidative state change in the deafferented neuron and the formation of free radicals that then signal cell death pathways. This pathway to cell death was tested in vivo by assessing the efficacy of antioxidants (AOs) to prevent degeneration of deafferented CNVIII spiral ganglion cells (SGCs) in deafened guinea pigs. Following destruction of sensory cells, guinea pigs were treated immediately with Trolox (a water soluble vitamin E analogue)+ascorbic acid (vitamin C) administered either locally, directly in the inner ear, or systemically. Electrical auditory brainstem response (EABR) thresholds were recorded to assess nerve function and showed a large increase following deafness. In treated animals EABR thresholds decreased and surviving SGCs were increased significantly compared to untreated animals. These results indicate that a change in oxidative state following deafferentation plays a role in nerve cell death and antioxidant therapy may rescue SGCs from deafferentation-induced degeneration.

  14. Plasticity after pediatric cochlear implantation: Implication from changes in peripheral plasma level of BDNF and auditory nerve responses.

    PubMed

    Alemi, Razieh; Motassadi Zarandy, Masoud; Joghataei, Mohammad Taghi; Eftekharian, Ali; Zarrindast, Mohammad Reza; Vousooghi, Nasim

    2018-02-01

    Sensory neural hearing loss could lead to some structural and physiological changes in the auditory pathways, such as alteration in the expression of neurotrophins. These factors, especially Brain-Derived Neurotrophic Factor (BDNF), play an important role in synaptic functions and experience-related plasticity. Restoring cochlear function after hearing loss is possible through cochlear implantation (CI). Evaluation of the blood concentration changes of neurotrophins as prerequisites of plasticity could help scientists to determine the prognosis of CI as in the candidacy procedure or enhancing prosthesis function by adding the exact needed amount of BDNF to the electrode array. Here we have studied the plasma BDNF concentration before CI surgery and 6 months after using CI device in 15 pediatric CI recipients and compared this level with changes of BDNF concentration in 10 children who were using hearing aid (H.A). In addition, we searched for a possible correlation between post-surgery plasma BDNF concentration and electrical compound action potential (ECAP) and comfort-level (C-level) thresholds. Plasma BDNF concentration in children with CI increased significantly after CI surgery, while this difference in H.A group was not significant. Analysis of repeated measures of ECAP and C-level thresholds in CI group showed that there were some kinds of steadiness during follow- up sessions for ECAP thresholds in basal and E16 of middle electrodes, whereas C-level thresholds for all selected electrodes increased significantly up to six months follow-up. Interestingly, we did not find any significant correlation between post-surgery plasma BDNF concentration and ECAP or C-level threshold changes. It is concluded that changes in C-level threshold and steady state of ECAP thresholds and significant changes in BDNF concentration could be regarded as an indicator of experienced-related plasticity after CI stimulation. Copyright © 2017 Elsevier B.V. All rights reserved.

  15. Auditory fear conditioning modifies steady-state evoked potentials in the rat inferior colliculus.

    PubMed

    Lockmann, André Luiz Vieira; Mourão, Flávio Afonso Gonçalves; Moraes, Marcio Flávio Dutra

    2017-08-01

    The rat inferior colliculus (IC) is a major midbrain relay for ascending inputs from the auditory brain stem and has been suggested to play a key role in the processing of aversive sounds. Previous studies have demonstrated that auditory fear conditioning (AFC) potentiates transient responses to brief tones in the IC, but it remains unexplored whether AFC modifies responses to sustained periodic acoustic stimulation-a type of response called the steady-state evoked potential (SSEP). Here we used an amplitude-modulated tone-a 10-kHz tone with a sinusoidal amplitude modulation of 53.7 Hz-as the conditioning stimulus (CS) in an AFC protocol (5 CSs per day in 3 consecutive days) while recording local field potentials (LFPs) from the IC. In the preconditioning session ( day 1 ), the CS elicited prominent 53.7-Hz SSEPs. In the training session ( day 2 ), foot shocks occurred at the end of each CS (paired group) or randomized in the inter-CS interval (unpaired group). In the test session ( day 3 ), SSEPs markedly differed from preconditioning in the paired group: in the first two trials the phase to which the SSEP coupled to the CS amplitude envelope shifted ~90°; in the last two trials the SSEP power and the coherence of SSEP with the CS amplitude envelope increased. LFP power decreased in frequency bands other than 53.7 Hz. In the unpaired group, SSEPs did not change in the test compared with preconditioning. Our results show that AFC causes dissociated changes in the phase and power of SSEP in the IC. NEW & NOTEWORTHY Local field potential oscillations in the inferior colliculus follow the amplitude envelope of an amplitude-modulated tone, originating a neural response called the steady-state evoked potential. We show that auditory fear conditioning of an amplitude-modulated tone modifies two parameters of the steady-state evoked potentials in the inferior colliculus: first the phase to which the evoked oscillation couples to the amplitude-modulated tone shifts; subsequently, the evoked oscillation power increases along with its coherence with the amplitude-modulated tone. Copyright © 2017 the American Physiological Society.

  16. Auditory agnosia as a clinical symptom of childhood adrenoleukodystrophy.

    PubMed

    Furushima, Wakana; Kaga, Makiko; Nakamura, Masako; Gunji, Atsuko; Inagaki, Masumi

    2015-08-01

    To investigate detailed auditory features in patients with auditory impairment as the first clinical symptoms of childhood adrenoleukodystrophy (CSALD). Three patients who had hearing difficulty as the first clinical signs and/or symptoms of ALD. Precise examination of the clinical characteristics of hearing and auditory function was performed, including assessments of pure tone audiometry, verbal sound discrimination, otoacoustic emission (OAE), and auditory brainstem response (ABR), as well as an environmental sound discrimination test, a sound lateralization test, and a dichotic listening test (DLT). The auditory pathway was evaluated by MRI in each patient. Poor response to calling was detected in all patients. Two patients were not aware of their hearing difficulty, and had been diagnosed with normal hearing by otolaryngologists at first. Pure-tone audiometry disclosed normal hearing in all patients. All patients showed a normal wave V ABR threshold. Three patients showed obvious difficulty in discriminating verbal sounds, environmental sounds, and sound lateralization and strong left-ear suppression in a dichotic listening test. However, once they discriminated verbal sounds, they correctly understood the meaning. Two patients showed elongation of the I-V and III-V interwave intervals in ABR, but one showed no abnormality. MRIs of these three patients revealed signal changes in auditory radiation including in other subcortical areas. The hearing features of these subjects were diagnosed as auditory agnosia and not aphasia. It should be emphasized that when patients are suspected to have hearing impairment but have no abnormalities in pure tone audiometry and/or ABR, this should not be diagnosed immediately as psychogenic response or pathomimesis, but auditory agnosia must also be considered. Copyright © 2014 The Japanese Society of Child Neurology. Published by Elsevier B.V. All rights reserved.

  17. Sustained Cortical and Subcortical Measures of Auditory and Visual Plasticity following Short-Term Perceptual Learning.

    PubMed

    Lau, Bonnie K; Ruggles, Dorea R; Katyal, Sucharit; Engel, Stephen A; Oxenham, Andrew J

    2017-01-01

    Short-term training can lead to improvements in behavioral discrimination of auditory and visual stimuli, as well as enhanced EEG responses to those stimuli. In the auditory domain, fluency with tonal languages and musical training has been associated with long-term cortical and subcortical plasticity, but less is known about the effects of shorter-term training. This study combined electroencephalography (EEG) and behavioral measures to investigate short-term learning and neural plasticity in both auditory and visual domains. Forty adult participants were divided into four groups. Three groups trained on one of three tasks, involving discrimination of auditory fundamental frequency (F0), auditory amplitude modulation rate (AM), or visual orientation (VIS). The fourth (control) group received no training. Pre- and post-training tests, as well as retention tests 30 days after training, involved behavioral discrimination thresholds, steady-state visually evoked potentials (SSVEP) to the flicker frequencies of visual stimuli, and auditory envelope-following responses simultaneously evoked and measured in response to rapid stimulus F0 (EFR), thought to reflect subcortical generators, and slow amplitude modulation (ASSR), thought to reflect cortical generators. Enhancement of the ASSR was observed in both auditory-trained groups, not specific to the AM-trained group, whereas enhancement of the SSVEP was found only in the visually-trained group. No evidence was found for changes in the EFR. The results suggest that some aspects of neural plasticity can develop rapidly and may generalize across tasks but not across modalities. Behaviorally, the pattern of learning was complex, with significant cross-task and cross-modal learning effects.

  18. Pure word deafness with auditory object agnosia after bilateral lesion of the superior temporal sulcus.

    PubMed

    Gutschalk, Alexander; Uppenkamp, Stefan; Riedel, Bernhard; Bartsch, Andreas; Brandt, Tobias; Vogt-Schaden, Marlies

    2015-12-01

    Based on results from functional imaging, cortex along the superior temporal sulcus (STS) has been suggested to subserve phoneme and pre-lexical speech perception. For vowel classification, both superior temporal plane (STP) and STS areas have been suggested relevant. Lesion of bilateral STS may conversely be expected to cause pure word deafness and possibly also impaired vowel classification. Here we studied a patient with bilateral STS lesions caused by ischemic strokes and relatively intact medial STPs to characterize the behavioral consequences of STS loss. The patient showed severe deficits in auditory speech perception, whereas his speech production was fluent and communication by written speech was grossly intact. Auditory-evoked fields in the STP were within normal limits on both sides, suggesting that major parts of the auditory cortex were functionally intact. Further studies showed that the patient had normal hearing thresholds and only mild disability in tests for telencephalic hearing disorder. Prominent deficits were discovered in an auditory-object classification task, where the patient performed four standard deviations below the control group. In marked contrast, performance in a vowel-classification task was intact. Auditory evoked fields showed enhanced responses for vowels compared to matched non-vowels within normal limits. Our results are consistent with the notion that cortex along STS is important for auditory speech perception, although it does not appear to be entirely speech specific. Formant analysis and single vowel classification, however, appear to be already implemented in auditory cortex on the STP. Copyright © 2015 Elsevier Ltd. All rights reserved.

  19. Sustained Cortical and Subcortical Measures of Auditory and Visual Plasticity following Short-Term Perceptual Learning

    PubMed Central

    Katyal, Sucharit; Engel, Stephen A.; Oxenham, Andrew J.

    2017-01-01

    Short-term training can lead to improvements in behavioral discrimination of auditory and visual stimuli, as well as enhanced EEG responses to those stimuli. In the auditory domain, fluency with tonal languages and musical training has been associated with long-term cortical and subcortical plasticity, but less is known about the effects of shorter-term training. This study combined electroencephalography (EEG) and behavioral measures to investigate short-term learning and neural plasticity in both auditory and visual domains. Forty adult participants were divided into four groups. Three groups trained on one of three tasks, involving discrimination of auditory fundamental frequency (F0), auditory amplitude modulation rate (AM), or visual orientation (VIS). The fourth (control) group received no training. Pre- and post-training tests, as well as retention tests 30 days after training, involved behavioral discrimination thresholds, steady-state visually evoked potentials (SSVEP) to the flicker frequencies of visual stimuli, and auditory envelope-following responses simultaneously evoked and measured in response to rapid stimulus F0 (EFR), thought to reflect subcortical generators, and slow amplitude modulation (ASSR), thought to reflect cortical generators. Enhancement of the ASSR was observed in both auditory-trained groups, not specific to the AM-trained group, whereas enhancement of the SSVEP was found only in the visually-trained group. No evidence was found for changes in the EFR. The results suggest that some aspects of neural plasticity can develop rapidly and may generalize across tasks but not across modalities. Behaviorally, the pattern of learning was complex, with significant cross-task and cross-modal learning effects. PMID:28107359

  20. Integrity of the midbrain region is required to maintain the diencephalic-mesencephalic boundary in zebrafish no isthmus/pax2.1 mutants.

    PubMed

    Scholpp, Steffen; Brand, Michael

    2003-11-01

    Initial anterior-posterior patterning of the neural tube into forebrain, midbrain, and hindbrain primordia occurs already during gastrulation, in response to signals patterning the gastrula embryo. After the initial establishment, further development within each brain part is thought to proceed largely independently of the others. However, mechanisms should exist that ensure proper delineation of brain subdivisions also at later stages; such mechanisms are, however, poorly understood. In zebrafish no isthmus mutant embryos, inactivation of the pax2.1 gene leads to a failure of the midbrain and isthmus primordium to develop normally from the gastrula stage onward (Lun and Brand [1998] Development 125:3049-3062). Here, we report that, after the initially correct establishment during gastrulation stages, the neighbouring forebrain primordium and, partially, the hindbrain primordium expand into the misspecified midbrain territory in no isthmus mutant embryos. The expansion is particularly evident for the posterior part of the diencephalon and less so for the first rhombomeric segment, the territories immediately abutting the midbrain/isthmus primordium. The nucleus of the posterior commissure is expanded in size, and marker genes of the forebrain and rhombomere 1 expand progressively into the misspecified midbrain primordium, eventually resulting in respecification of the midbrain primordium. We therefore suggest that the genetic program controlled by Pax2.1 is not only involved in initiating but also in maintaining the identity of midbrain and isthmus cells to prevent them from assuming a forebrain or hindbrain fate. Copyright 2003 Wiley-Liss, Inc.

  1. Effect of age at cochlear implantation on auditory and speech development of children with auditory neuropathy spectrum disorder.

    PubMed

    Liu, Yuying; Dong, Ruijuan; Li, Yuling; Xu, Tianqiu; Li, Yongxin; Chen, Xueqing; Gong, Shusheng

    2014-12-01

    To evaluate the auditory and speech abilities in children with auditory neuropathy spectrum disorder (ANSD) after cochlear implantation (CI) and determine the role of age at implantation. Ten children participated in this retrospective case series study. All children had evidence of ANSD. All subjects had no cochlear nerve deficiency on magnetic resonance imaging and had used the cochlear implants for a period of 12-84 months. We divided our children into two groups: children who underwent implantation before 24 months of age and children who underwent implantation after 24 months of age. Their auditory and speech abilities were evaluated using the following: behavioral audiometry, the Categories of Auditory Performance (CAP), the Meaningful Auditory Integration Scale (MAIS), the Infant-Toddler Meaningful Auditory Integration Scale (IT-MAIS), the Standard-Chinese version of the Monosyllabic Lexical Neighborhood Test (LNT), the Multisyllabic Lexical Neighborhood Test (MLNT), the Speech Intelligibility Rating (SIR) and the Meaningful Use of Speech Scale (MUSS). All children showed progress in their auditory and language abilities. The 4-frequency average hearing level (HL) (500Hz, 1000Hz, 2000Hz and 4000Hz) of aided hearing thresholds ranged from 17.5 to 57.5dB HL. All children developed time-related auditory perception and speech skills. Scores of children with ANSD who received cochlear implants before 24 months tended to be better than those of children who received cochlear implants after 24 months. Seven children completed the Mandarin Lexical Neighborhood Test. Approximately half of the children showed improved open-set speech recognition. Cochlear implantation is helpful for children with ANSD and may be a good optional treatment for many ANSD children. In addition, children with ANSD fitted with cochlear implants before 24 months tended to acquire auditory and speech skills better than children fitted with cochlear implants after 24 months. Copyright © 2014 Elsevier Ireland Ltd. All rights reserved.

  2. The Transcription Factor Orthodenticle Homeobox 2 Influences Axonal Projections and Vulnerability of Midbrain Dopaminergic Neurons

    ERIC Educational Resources Information Center

    Chung, Chee Yeun; Licznerski, Pawel; Alavian, Kambiz N.; Simeone, Antonio; Lin, Zhicheng; Martin, Eden; Vance, Jeffery; Isacson, Ole

    2010-01-01

    Two adjacent groups of midbrain dopaminergic neurons, A9 (substantia nigra pars compacta) and A10 (ventral tegmental area), have distinct projections and exhibit differential vulnerability in Parkinson's disease. Little is known about transcription factors that influence midbrain dopaminergic subgroup phenotypes or their potential role in disease.…

  3. Discrimination of sound source velocity in human listeners

    NASA Astrophysics Data System (ADS)

    Carlile, Simon; Best, Virginia

    2002-02-01

    The ability of six human subjects to discriminate the velocity of moving sound sources was examined using broadband stimuli presented in virtual auditory space. Subjects were presented with two successive stimuli moving in the frontal horizontal plane level with the ears, and were required to judge which moved the fastest. Discrimination thresholds were calculated for reference velocities of 15, 30, and 60 degrees/s under three stimulus conditions. In one condition, stimuli were centered on 0° azimuth and their duration varied randomly to prevent subjects from using displacement as an indicator of velocity. Performance varied between subjects giving median thresholds of 5.5, 9.1, and 14.8 degrees/s for the three reference velocities, respectively. In a second condition, pairs of stimuli were presented for a constant duration and subjects would have been able to use displacement to assist their judgment as faster stimuli traveled further. It was found that thresholds decreased significantly for all velocities (3.8, 7.1, and 9.8 degrees/s), suggesting that the subjects were using the additional displacement cue. The third condition differed from the second in that the stimuli were ``anchored'' on the same starting location rather than centered on the midline, thus doubling the spatial offset between stimulus endpoints. Subjects showed the lowest thresholds in this condition (2.9, 4.0, and 7.0 degrees/s). The results suggested that the auditory system is sensitive to velocity per se, but velocity comparisons are greatly aided if displacement cues are present.

  4. Specification of posterior midbrain region in zebrafish neuroepithelium.

    PubMed

    Miyagawa, T; Amanuma, H; Kuroiwa, A; Takeda, H

    1996-04-01

    The developing vertebrate nervous system displays a pronounced anterior-posterior (A-P) pattern, but the mechanism that generates this pattern is poorly understood. We examined through cell-transplantation experiments, when and how the cells in the zebrafish posterior midbrain acquire regional specificity along the A-P axis as shown by pax[b] gene expression. Labelled donor cells from the presumptive midbrain region at various stages were transplanted into more anterior part of unlabelled host embryos of the same developmental stage, and the expression of pax[b] in the donor cells were examined by in situ hybridization. The results indicated that, in the cells from the presumptive midbrain region, expression of pax[b] was determined as early as the 55%-epiboly (6.5 h, early gastrulation) when the underlying hypoblastic layer reached the presumptive midbrain region. We also found that when transplanted heterotopically, anterior, but not posterior, hypoblast cells induced expression of pax[b] in the overlying ectoderm. Expression of a midbrain specific gene is determined during early gastrulation and the hypoblastic layer plays an important role in this determination process.

  5. Hearing Loss in a Mouse Model of 22q11.2 Deletion Syndrome

    PubMed Central

    Fuchs, Jennifer C.; Zinnamon, Fhatarah A.; Taylor, Ruth R.; Ivins, Sarah; Scambler, Peter J.; Forge, Andrew; Tucker, Abigail S.; Linden, Jennifer F.

    2013-01-01

    22q11.2 Deletion Syndrome (22q11DS) arises from an interstitial chromosomal microdeletion encompassing at least 30 genes. This disorder is one of the most significant known cytogenetic risk factors for schizophrenia, and can also cause heart abnormalities, cognitive deficits, hearing difficulties, and a variety of other medical problems. The Df1/+ hemizygous knockout mouse, a model for human 22q11DS, recapitulates many of the deficits observed in the human syndrome including heart defects, impaired memory, and abnormal auditory sensorimotor gating. Here we show that Df1/+ mice, like human 22q11DS patients, have substantial rates of hearing loss arising from chronic middle ear infection. Auditory brainstem response (ABR) measurements revealed significant elevation of click-response thresholds in 48% of Df1/+ mice, often in only one ear. Anatomical and histological analysis of the middle ear demonstrated no gross structural abnormalities, but frequent signs of otitis media (OM, chronic inflammation of the middle ear), including excessive effusion and thickened mucosa. In mice for which both in vivo ABR thresholds and post mortem middle-ear histology were obtained, the severity of signs of OM correlated directly with the level of hearing impairment. These results suggest that abnormal auditory sensorimotor gating previously reported in mouse models of 22q11DS could arise from abnormalities in auditory processing. Furthermore, the findings indicate that Df1/+ mice are an excellent model for increased risk of OM in human 22q11DS patients. Given the frequently monaural nature of OM in Df1/+ mice, these animals could also be a powerful tool for investigating the interplay between genetic and environmental causes of OM. PMID:24244619

  6. Hearing loss in a mouse model of 22q11.2 Deletion Syndrome.

    PubMed

    Fuchs, Jennifer C; Zinnamon, Fhatarah A; Taylor, Ruth R; Ivins, Sarah; Scambler, Peter J; Forge, Andrew; Tucker, Abigail S; Linden, Jennifer F

    2013-01-01

    22q11.2 Deletion Syndrome (22q11DS) arises from an interstitial chromosomal microdeletion encompassing at least 30 genes. This disorder is one of the most significant known cytogenetic risk factors for schizophrenia, and can also cause heart abnormalities, cognitive deficits, hearing difficulties, and a variety of other medical problems. The Df1/+ hemizygous knockout mouse, a model for human 22q11DS, recapitulates many of the deficits observed in the human syndrome including heart defects, impaired memory, and abnormal auditory sensorimotor gating. Here we show that Df1/+ mice, like human 22q11DS patients, have substantial rates of hearing loss arising from chronic middle ear infection. Auditory brainstem response (ABR) measurements revealed significant elevation of click-response thresholds in 48% of Df1/+ mice, often in only one ear. Anatomical and histological analysis of the middle ear demonstrated no gross structural abnormalities, but frequent signs of otitis media (OM, chronic inflammation of the middle ear), including excessive effusion and thickened mucosa. In mice for which both in vivo ABR thresholds and post mortem middle-ear histology were obtained, the severity of signs of OM correlated directly with the level of hearing impairment. These results suggest that abnormal auditory sensorimotor gating previously reported in mouse models of 22q11DS could arise from abnormalities in auditory processing. Furthermore, the findings indicate that Df1/+ mice are an excellent model for increased risk of OM in human 22q11DS patients. Given the frequently monaural nature of OM in Df1/+ mice, these animals could also be a powerful tool for investigating the interplay between genetic and environmental causes of OM.

  7. Effect of signal to noise ratio on the speech perception ability of older adults

    PubMed Central

    Shojaei, Elahe; Ashayeri, Hassan; Jafari, Zahra; Zarrin Dast, Mohammad Reza; Kamali, Koorosh

    2016-01-01

    Background: Speech perception ability depends on auditory and extra-auditory elements. The signal- to-noise ratio (SNR) is an extra-auditory element that has an effect on the ability to normally follow speech and maintain a conversation. Speech in noise perception difficulty is a common complaint of the elderly. In this study, the importance of SNR magnitude as an extra-auditory effect on speech perception in noise was examined in the elderly. Methods: The speech perception in noise test (SPIN) was conducted on 25 elderly participants who had bilateral low–mid frequency normal hearing thresholds at three SNRs in the presence of ipsilateral white noise. These participants were selected by available sampling method. Cognitive screening was done using the Persian Mini Mental State Examination (MMSE) test. Results: Independent T- test, ANNOVA and Pearson Correlation Index were used for statistical analysis. There was a significant difference in word discrimination scores at silence and at three SNRs in both ears (p≤0.047). Moreover, there was a significant difference in word discrimination scores for paired SNRs (0 and +5, 0 and +10, and +5 and +10 (p≤0.04)). No significant correlation was found between age and word recognition scores at silence and at three SNRs in both ears (p≥0.386). Conclusion: Our results revealed that decreasing the signal level and increasing the competing noise considerably reduced the speech perception ability in normal hearing at low–mid thresholds in the elderly. These results support the critical role of SNRs for speech perception ability in the elderly. Furthermore, our results revealed that normal hearing elderly participants required compensatory strategies to maintain normal speech perception in challenging acoustic situations. PMID:27390712

  8. Evidence of "hidden hearing loss" following noise exposures that produce robust TTS and ABR wave-I amplitude reductions.

    PubMed

    Lobarinas, Edward; Spankovich, Christopher; Le Prell, Colleen G

    2017-06-01

    In animals, noise exposures that produce robust temporary threshold shifts (TTS) can produce immediate damage to afferent synapses and long-term degeneration of low spontaneous rate auditory nerve fibers. This synaptopathic damage has been shown to correlate with reduced auditory brainstem response (ABR) wave-I amplitudes at suprathreshold levels. The perceptual consequences of this "synaptopathy" remain unknown but have been suggested to include compromised hearing performance in competing background noise. Here, we used a modified startle inhibition paradigm to evaluate whether noise exposures that produce robust TTS and ABR wave-I reduction but not permanent threshold shift (PTS) reduced hearing-in-noise performance. Animals exposed to 109 dB SPL octave band noise showed TTS >30 dB 24-h post noise and modest but persistent ABR wave-I reduction 2 weeks post noise despite full recovery of ABR thresholds. Hearing-in-noise performance was negatively affected by the noise exposure. However, the effect was observed only at the poorest signal to noise ratio and was frequency specific. Although TTS >30 dB 24-h post noise was a predictor of functional deficits, there was no relationship between the degree of ABR wave-I reduction and degree of functional impairment. Copyright © 2016 Elsevier B.V. All rights reserved.

  9. Tympanal mechanics and neural responses in the ears of a noctuid moth

    NASA Astrophysics Data System (ADS)

    Ter Hofstede, Hannah M.; Goerlitz, Holger R.; Montealegre-Z, Fernando; Robert, Daniel; Holderied, Marc W.

    2011-12-01

    Ears evolved in many groups of moths to detect the echolocation calls of predatory bats. Although the neurophysiology of bat detection has been intensively studied in moths for decades, the relationship between sound-induced movement of the noctuid tympanic membrane and action potentials in the auditory sensory cells (A1 and A2) has received little attention. Using laser Doppler vibrometry, we measured the velocity and displacement of the tympanum in response to pure tone pulses for moths that were intact or prepared for neural recording. When recording from the auditory nerve, the displacement of the tympanum at the neural threshold remained constant across frequencies, whereas velocity varied with frequency. This suggests that the key biophysical parameter for triggering action potentials in the sensory cells of noctuid moths is tympanum displacement, not velocity. The validity of studies on the neurophysiology of moth hearing rests on the assumption that the dissection and recording procedures do not affect the biomechanics of the ear. There were no consistent differences in tympanal velocity or displacement when moths were intact or prepared for neural recordings for sound levels close to neural threshold, indicating that this and other neurophysiological studies provide good estimates of what intact moths hear at threshold.

  10. Localization suppression and fusion measure of the precedence effect in young children

    NASA Astrophysics Data System (ADS)

    Litovsky, Ruth; Godar, Shelly; Yu, Gongqiang

    2004-05-01

    This study investigated aspects of the precedence effect (PE) known as fusion and localization dominance in children 4-5 years of age. Stimuli were three, 25-ms noise bursts (2-ms rise/fall times) with 250-ms ISI. On PE conditions the lead stimulus was presented from one of six locations in azimuth, and the lag was at 0 deg. Lead-lag delays varied from 5 to 100 ms. Localization was measured using an identification paradigm. Fusion was measured separately whereby subjects reported whether a single auditory event or two auditory events were perceived. Children reported two sounds on 75% of trials (fusion threshold) at delays ranging from 15 to 35 ms. Below fusion thresholds, the localization of the lead was similar to that of single-source stimuli. Above fusion thresholds lead localization was significantly degraded, persisting out to 100 ms. Localization of the lag was poor at all delays on which it was reported as being heard. According to these results localization dominance (difficulty localizing the lag) in children persists at greater delays than fusion, which is consistent with findings obtained in adult subjects. The range of delays over which these effects are robust in children is longer than the range observed in adults.

  11. Developmental hearing loss impedes auditory task learning and performance in gerbils.

    PubMed

    von Trapp, Gardiner; Aloni, Ishita; Young, Stephen; Semple, Malcolm N; Sanes, Dan H

    2017-04-01

    The consequences of developmental hearing loss have been reported to include both sensory and cognitive deficits. To investigate these issues in a non-human model, auditory learning and asymptotic psychometric performance were compared between normal hearing (NH) adult gerbils and those reared with conductive hearing loss (CHL). At postnatal day 10, before ear canal opening, gerbil pups underwent bilateral malleus removal to induce a permanent CHL. Both CHL and control animals were trained to approach a water spout upon presentation of a target (Go stimuli), and withhold for foils (Nogo stimuli). To assess the rate of task acquisition and asymptotic performance, animals were tested on an amplitude modulation (AM) rate discrimination task. Behavioral performance was calculated using a signal detection theory framework. Animals reared with developmental CHL displayed a slower rate of task acquisition for AM discrimination task. Slower acquisition was explained by an impaired ability to generalize to newly introduced stimuli, as compared to controls. Measurement of discrimination thresholds across consecutive testing blocks revealed that CHL animals required a greater number of testing sessions to reach asymptotic threshold values, as compared to controls. However, with sufficient training, CHL animals approached control performance. These results indicate that a sensory impediment can delay auditory learning, and increase the risk of poor performance on a temporal task. Copyright © 2016 Elsevier B.V. All rights reserved.

  12. Comparison of in-air evoked potential and underwater behavioral hearing thresholds in four bottlenose dolphins (Tursiops truncatus).

    PubMed

    Finneran, James J; Houser, Dorian S

    2006-05-01

    Traditional behavioral techniques for hearing assessment in marine mammals are limited by the time and access required to train subjects. Electrophysiological methods, where passive electrodes are used to measure auditory evoked potentials (AEPs), are attractive alternatives to behavioral techniques; however, there have been few attempts to compare AEP and behavioral results for the same subject. In this study, behavioral and AEP hearing thresholds were compared in four bottlenose dolphins. AEP thresholds were measured in-air using a piezoelectric sound projector embedded in a suction cup to deliver amplitude modulated tones to the dolphin through the lower jaw. Evoked potentials were recorded noninvasively using surface electrodes. Adaptive procedures allowed AEP hearing thresholds to be estimated from 10 to 150 kHz in a single ear in about 45 min. Behavioral thresholds were measured in a quiet pool and in San Diego Bay. AEP and behavioral threshold estimates agreed closely as to the upper cutoff frequency beyond which thresholds increased sharply. AEP thresholds were strongly correlated with pool behavioral thresholds across the range of hearing; differences between AEP and pool behavioral thresholds increased with threshold magnitude and ranged from 0 to + 18 dB.

  13. Aetiological differences in neuroanatomy of the vegetative state: insights from diffusion tensor imaging and functional implications.

    PubMed

    Newcombe, Virginia F J; Williams, Guy B; Scoffings, Daniel; Cross, Justin; Carpenter, T Adrian; Pickard, John D; Menon, David K

    2010-05-01

    An improved in vivo understanding of variations in neuropathology in the vegetative state (VS) may aid diagnosis, improve prognostication and help refine the selection of patients for particular treatment regimes. The authors have used diffusion tensor imaging (DTI) to characterise the extent and location of white matter loss in VS secondary to traumatic brain injury (TBI) and ischaemic-hypoxic injury. Twelve patients with VS (seven TBI, five ischaemic/hypoxic injuries) underwent MRI including DTI at a minimum of 3 months postinjury. Mean apparent diffusion coefficient, fractional anisotropy and eigenvalues were obtained for whole-brain grey and white matter, the pons, thalamus, ventral midbrain, dorsal midbrain and the corpus callosum. DTI measures of supratentorial damage were compared with a summed measure from the JFK modified Coma Recovery Scale (CRS-R) and with a three-point scale of functional magnetic resonance imaging (fMRI) response to an auditory paradigm to assess whether residual integrity of supratentorial white matter connectivity correlated with cortical processing. Conventional radiological approaches did not detect lesions in regions where quantitative DTI demonstrated abnormalities. There was evidence of marked, broadly similar, abnormalities in the supratentorial grey- and white-matter compartments from both aetiologies. In contrast, discordant findings were found in the infratentorial compartment, with DTI abnormalities in the brainstem confined to the TBI group. Supratentorial DTI abnormalities correlated with the CRS-R as well as responses to an fMRI paradigm that detected convert cognitive processing. DTI may help to characterise differences in patients in VS. These findings may have implications for response to therapies, and should be taken into account in trials of interventions aimed at arousal in VS.

  14. Midbrain-Driven Emotion and Reward Processing in Alcoholism

    PubMed Central

    Müller-Oehring, E M; Jung, Y-C; Sullivan, E V; Hawkes, W C; Pfefferbaum, A; Schulte, T

    2013-01-01

    Alcohol dependence is associated with impaired control over emotionally motivated actions, possibly associated with abnormalities in the frontoparietal executive control network and midbrain nodes of the reward network associated with automatic attention. To identify differences in the neural response to alcohol-related word stimuli, 26 chronic alcoholics (ALC) and 26 healthy controls (CTL) performed an alcohol-emotion Stroop Match-to-Sample task during functional MR imaging. Stroop contrasts were modeled for color-word incongruency (eg, word RED printed in green) and for alcohol (eg, BEER), positive (eg, HAPPY) and negative (eg, MAD) emotional word content relative to congruent word conditions (eg, word RED printed in red). During color-Stroop processing, ALC and CTL showed similar left dorsolateral prefrontal activation, and CTL, but not ALC, deactivated posterior cingulate cortex/cuneus. An interaction revealed a dissociation between alcohol-word and color-word Stroop processing: ALC activated midbrain and parahippocampal regions more than CTL when processing alcohol-word relative to color-word conditions. In ALC, the midbrain region was also invoked by negative emotional Stroop words thereby showing significant overlap of this midbrain activation for alcohol-related and negative emotional processing. Enhanced midbrain activation to alcohol-related words suggests neuroadaptation of dopaminergic midbrain systems. We speculate that such tuning is normally associated with behavioral conditioning to optimize responses but here contributed to automatic bias to alcohol-related stimuli. PMID:23615665

  15. Midbrain-driven emotion and reward processing in alcoholism.

    PubMed

    Müller-Oehring, E M; Jung, Y-C; Sullivan, E V; Hawkes, W C; Pfefferbaum, A; Schulte, T

    2013-09-01

    Alcohol dependence is associated with impaired control over emotionally motivated actions, possibly associated with abnormalities in the frontoparietal executive control network and midbrain nodes of the reward network associated with automatic attention. To identify differences in the neural response to alcohol-related word stimuli, 26 chronic alcoholics (ALC) and 26 healthy controls (CTL) performed an alcohol-emotion Stroop Match-to-Sample task during functional MR imaging. Stroop contrasts were modeled for color-word incongruency (eg, word RED printed in green) and for alcohol (eg, BEER), positive (eg, HAPPY) and negative (eg, MAD) emotional word content relative to congruent word conditions (eg, word RED printed in red). During color-Stroop processing, ALC and CTL showed similar left dorsolateral prefrontal activation, and CTL, but not ALC, deactivated posterior cingulate cortex/cuneus. An interaction revealed a dissociation between alcohol-word and color-word Stroop processing: ALC activated midbrain and parahippocampal regions more than CTL when processing alcohol-word relative to color-word conditions. In ALC, the midbrain region was also invoked by negative emotional Stroop words thereby showing significant overlap of this midbrain activation for alcohol-related and negative emotional processing. Enhanced midbrain activation to alcohol-related words suggests neuroadaptation of dopaminergic midbrain systems. We speculate that such tuning is normally associated with behavioral conditioning to optimize responses but here contributed to automatic bias to alcohol-related stimuli.

  16. The effect of gabapentin on gap detection and forward masking in young and old gerbils.

    PubMed

    Gleich, Otto; Strutz, Jürgen

    2011-01-01

    Auditory temporal processing frequently appears more affected in old subjects than would be predicted by the degree of peripheral hearing loss, pointing to an age-dependent central processing deficit. In parallel, an age-dependent decline of inhibitory function has been demonstrated in the auditory pathway, suggesting a causal relationship between temporal processing and inhibition. Gabapentin has been specifically synthesized as a potential gamma-amino-butyric-acid (GABA) mimetic with the capability to cross the blood-brain barrier. Gabapentin treatment ameliorated tinnitus in a rat model and improved tinnitus annoyance in humans with acoustic trauma. Consequently, the present study evaluated the effect of gabapentin on auditory temporal processing in the gerbil model. Psychometric functions were collected for different test paradigms. (A) "Gap detection": The detection of a gap in the middle of a 800 msec broadband noise pulse was determined either at 15 or at 30 dB SL. (B) "Forward masking": The detection of a 20 msec probe stimulus following 2.5 msec after a 400 msec 40 dB SPL masker was determined with masker and probe frequency at 2.85 kHz. The effect of gabapentin was evaluated by collecting gap detection and forward masking functions before, during, and after treating gerbils with gabapentin doses of 115 or 350 mg/kg/day administered via drinking water. Data under different experimental conditions were collected for groups of 3 to 5 young (<2 years) and 6 to 10 old (>2 years) gerbils. Two-way analyses of variance for the factors age groups and treatment groups with subsequent pairwise comparisons for significant effects were used for the statistical evaluation of the data. For gap detection, mean thresholds were significantly increased in the group of old as compared with the young gerbils at 30 dB SL (young 2.0 msec; old 3.2 msec) and at 15 dB SL (young 2.9 msec; old 9.1 msec). Gabapentin had no significant effect on gap detection, and there was no significant interaction between age group and gabapentin treatment. Mean thresholds in the forward masking paradigm were significantly elevated in old (45.5 dB SPL) as compared with young (35.0 dB SPL) gerbils. Overall, gabapentin had no significant effect on masked thresholds; however, there was a significant interaction between treatment and age. Subsequent pairwise comparisons revealed no significant effect on masked thresholds in old gerbils but showed significantly elevated thresholds of young gerbils during 350 mg/kg gabapentin (38.3 dB SPL) compared with thresholds obtained in young gerbils before (32.3 dB SPL) and after (33.5 dB SPL) treatment. Gabapentin did not exert a therapeutic effect on impaired gap detection and forward masking in old gerbils. The lack of an effect of gabapentin on impaired auditory temporal processing in old gerbils and the finding of elevated masked thresholds in young gerbils can be reconciled with reports of only moderate GABAergic effects compared with other drugs (e.g., comparing elevation of GABA levels in the brain by gabapentin and vigabatrin) and effects due to binding of gabapentin to alpha-2-delta units of voltage-gated calcium channels.

  17. Dynamics of infant cortical auditory evoked potentials (CAEPs) for tone and speech tokens.

    PubMed

    Cone, Barbara; Whitaker, Richard

    2013-07-01

    Cortical auditory evoked potentials (CAEPs) to tones and speech sounds were obtained in infants to: (1) further knowledge of auditory development above the level of the brainstem during the first year of life; (2) establish CAEP input-output functions for tonal and speech stimuli as a function of stimulus level and (3) elaborate the data-base that establishes CAEP in infants tested while awake using clinically relevant stimuli, thus providing methodology that would have translation to pediatric audiological assessment. Hypotheses concerning CAEP development were that the latency and amplitude input-output functions would reflect immaturity in encoding stimulus level. In a second experiment, infants were tested with the same stimuli used to evoke the CAEPs. Thresholds for these stimuli were determined using observer-based psychophysical techniques. The hypothesis was that the behavioral thresholds would be correlated with CAEP input-output functions because of shared cortical response areas known to be active in sound detection. 36 infants, between the ages of 4 and 12 months (mean=8 months, s.d.=1.8 months) and 9 young adults (mean age 21 years) with normal hearing were tested. First, CAEPs amplitude and latency input-output functions were obtained for 4 tone bursts and 7 speech tokens. The tone bursts stimuli were 50 ms tokens of pure tones at 0.5, 1.0, 2.0 and 4.0 kHz. The speech sound tokens, /a/, /i/, /o/, /u/, /m/, /s/, and /∫/, were created from natural speech samples and were also 50 ms in duration. CAEPs were obtained for tone burst and speech token stimuli at 10 dB level decrements in descending order from 70 dB SPL. All CAEP tests were completed while the infants were awake and engaged in quiet play. For the second experiment, observer-based psychophysical methods were used to establish perceptual threshold for the same speech sound and tone tokens. Infant CAEP component latencies were prolonged by 100-150 ms in comparison to adults. CAEP latency-intensity input output functions were steeper in infants compared to adults. CAEP amplitude growth functions with respect to stimulus SPL are adult-like at this age, particularly for the earliest component, P1-N1. Infant perceptual thresholds were elevated with respect to those found in adults. Furthermore, perceptual thresholds were higher, on average, than levels at which CAEPs could be obtained. When CAEP amplitudes were plotted with respect to perceptual threshold (dB SL), the infant CAEP amplitude growth slopes were steeper than in adults. Although CAEP latencies indicate immaturity in neural transmission at the level of the cortex, amplitude growth with respect to stimulus SPL is adult-like at this age, particularly for the earliest component, P1-N1. The latency and amplitude input-output functions may provide additional information as to how infants perceive stimulus level. The reasons for the discrepancy between electrophysiologic and perceptual threshold may be due to immaturity in perceptual temporal resolution abilities and the broad-band listening strategy employed by infants. The findings from the current study can be translated to the clinical setting. It is possible to use tonal or speech sound tokens to evoke CAEPs in an awake, passively alert infant, and thus determine whether these sounds activate the auditory cortex. This could be beneficial in the verification of hearing aid or cochlear implant benefit. Copyright © 2013 Elsevier Ireland Ltd. All rights reserved.

  18. The Role of Auditory Evoked Potentials in the Context of Cochlear Implant Provision.

    PubMed

    Hoth, Sebastian; Dziemba, Oliver Christian

    2017-12-01

    : Auditory evoked potentials (AEP) are highly demanded during the whole process of equipping patients with cochlear implants (CI). They play an essential role in preoperative diagnostics, intraoperative testing, and postoperative monitoring of auditory performance and success. The versatility of AEP's is essentially enhanced by their property to be evokable by acoustic as well as electric stimuli. Thus, the electric responses of the auditory system following acoustic stimulation and recorded by the conventional surface technique as well as by transtympanic derivation from the promontory (Electrocochleography [ECochG]) are used for the quantitative determination of hearing loss and, additionally, electrically evoked compound actions potentials (ECAP) can be recorded with the intracochlear electrodes of the implant just adjacent to the stimulation electrode to check the functional integrity of the device and its coupling to the auditory system. The profile of ECAP thresholds is used as basis for speech processor fitting, the spread of excitation (SOE) allows the identification of electrode mislocations such as array foldover, and recovery functions may serve to optimize stimulus pulse rate. These techniques as well as those relying on scalp surface activity originating in the brainstem or the auditory cortex accompany the CI recipient during its whole life span and they offer valuable insights into functioning and possible adverse effects of the CI for clinical and scientific purposes.

  19. Brainstem auditory evoked potentials in children with lead exposure.

    PubMed

    Alvarenga, Katia de Freitas; Morata, Thais Catalani; Lopes, Andrea Cintra; Feniman, Mariza Ribeiro; Corteletti, Lilian Cassia Bornia Jacob

    2015-01-01

    Earlier studies have demonstrated an auditory effect of lead exposure in children, but information on the effects of low chronic exposures needs to be further elucidated. To investigate the effect of low chronic exposures of the auditory system in children with a history of low blood lead levels, using an auditory electrophysiological test. Contemporary cross-sectional cohort. Study participants underwent tympanometry, pure tone and speech audiometry, transient evoked otoacoustic emissions, and brainstem auditory evoked potentials, with blood lead monitoring over a period of 35.5 months. The study included 130 children, with ages ranging from 18 months to 14 years, 5 months (mean age 6 years, 8 months ± 3 years, 2 months). The mean time-integrated cumulative blood lead index was 12 μg/dL (SD ± 5.7, range: 2.433). All participants had hearing thresholds equal to or below 20 dBHL and normal amplitudes of transient evoked otoacoustic emissions. No association was found between the absolute latencies of waves I, III, and V, the interpeak latencies I-III, III-V, and I-V, and the cumulative lead values. No evidence of toxic effects from chronic low lead exposures was observed on the auditory function of children living in a lead contaminated area. Copyright © 2014 Associação Brasileira de Otorrinolaringologia e Cirurgia Cérvico-Facial. Published by Elsevier Editora Ltda. All rights reserved.

  20. A short latency vestibular evoked potential (VsEP) produced by bone-conducted acoustic stimulation

    NASA Astrophysics Data System (ADS)

    McAngus Todd, Neil P.; Rosengren, Sally M.; Colebatch, James G.

    2003-12-01

    In this paper data are presented from an experiment which provides evidence for the existence of a short latency, acoustically evoked potential of probable vestibular origin. The experiment was conducted in two phases using bone-conducted acoustic stimulation. In the first phase subjects were stimulated with 6-ms, 500-Hz tone bursts in order to obtain the threshold VT for vestibular evoked myogenic potentials (VEMP). It was confirmed that the difference between bone-conducted auditory and acoustic vestibular thresholds was slightly over 30 dB. The estimated threshold was then used as a reference value in the second part of the experiment to stimulate subjects over a range of intensities from -6 to +18 dB (re:VT). Averaged EEG recordings were made with eight Ag/AgCl electrodes placed on the scalp at Fpz, F3, F4, F7, F8, Cz, T3, and T4 according to the 10-20 system. Below VT auditory midlatency responses (MLRs) were observed. Above VT two additional potentials appeared: a positivity at about 10 ms (P10) which was maximal at Cz, and a negativity at about 15 ms (N15) which was maximal at Fpz. Extrapolation of the growth functions for the P10 and N15 indicated a threshold close to VT, consistent with a vestibular origin of these potentials. Given the low threshold of vestibular acoustic sensitivity it is possible that this mode may make a contribution to the detection of and affective responses to loud low frequency sounds. The evoked potentials may also have application as a noninvasive and nontraumatic test of vestibular projections to the cortex.

  1. Activation of Midbrain Structures by Associative Novelty and the Formation of Explicit Memory in Humans

    ERIC Educational Resources Information Center

    Schott, Bjorn H.; Sellner, Daniela B.; Lauer, Corinna-J.; Habib, Reza; Frey, Julietta U.; Guderian, Sebastian; Heinze, Hans-Jochen; Duzel, Emrah

    2004-01-01

    Recent evidence suggests a close functional relationship between memory formation in the hippocampus and dopaminergic neuromodulation originating in the ventral tegmental area and medial substantia nigra of the midbrain. Here we report midbrain activation in two functional MRI studies of visual memory in healthy young adults. In the first study,…

  2. Dorsal Striatal-Midbrain Connectivity in Humans Predicts How Reinforcements Are Used to Guide Decisions

    ERIC Educational Resources Information Center

    Kahnt, Thorsten; Park, Soyoung Q.; Cohen, Michael X.; Beck, Anne; Heinz, Andreas; Wrase, Jana

    2009-01-01

    It has been suggested that the target areas of dopaminergic midbrain neurons, the dorsal (DS) and ventral striatum (VS), are differently involved in reinforcement learning especially as actor and critic. Whereas the critic learns to predict rewards, the actor maintains action values to guide future decisions. The different midbrain connections to…

  3. Gray-matter volume, midbrain dopamine D2/D3 receptors and drug craving in methamphetamine users.

    PubMed

    Morales, A M; Kohno, M; Robertson, C L; Dean, A C; Mandelkern, M A; London, E D

    2015-06-01

    Dysfunction of the mesocorticolimbic system has a critical role in clinical features of addiction. Despite evidence suggesting that midbrain dopamine receptors influence amphetamine-induced dopamine release and that dopamine is involved in methamphetamine-induced neurotoxicity, associations between dopamine receptors and gray-matter volume have been unexplored in methamphetamine users. Here we used magnetic resonance imaging and [(18)F]fallypride positron emission tomography, respectively, to measure gray-matter volume (in 58 methamphetamine users) and dopamine D2/D3 receptor availability (binding potential relative to nondisplaceable uptake of the radiotracer, BPnd) (in 31 methamphetamine users and 37 control participants). Relationships between these measures and self-reported drug craving were examined. Although no difference in midbrain D2/D3 BPnd was detected between methamphetamine and control groups, midbrain D2/D3 BPnd was positively correlated with gray-matter volume in the striatum, prefrontal cortex, insula, hippocampus and temporal cortex in methamphetamine users, but not in control participants (group-by-midbrain D2/D3 BPnd interaction, P<0.05 corrected for multiple comparisons). Craving for methamphetamine was negatively associated with gray-matter volume in the insula, prefrontal cortex, amygdala, temporal cortex, occipital cortex, cerebellum and thalamus (P<0.05 corrected for multiple comparisons). A relationship between midbrain D2/D3 BPnd and methamphetamine craving was not detected. Lower midbrain D2/D3 BPnd may increase vulnerability to deficits in gray-matter volume in mesocorticolimbic circuitry in methamphetamine users, possibly reflecting greater dopamine-induced toxicity. Identifying factors that influence prefrontal and limbic volume, such as midbrain BPnd, may be important for understanding the basis of drug craving, a key factor in the maintenance of substance-use disorders.

  4. Anti-Apoptotic Protein Bcl-xL Expression in the Midbrain Raphe Region Is Sensitive to Stress and Glucocorticoids.

    PubMed

    Shishkina, Galina T; Kalinina, Tatyana S; Bulygina, Veta V; Lanshakov, Dmitry A; Babluk, Ekaterina V; Dygalo, Nikolay N

    2015-01-01

    Anti-apoptotic proteins are suggested to be important for the normal health of neurons and synapses as well as for resilience to stress. In order to determine whether stressful events may influence the expression of anti-apoptotic protein Bcl-xL in the midbrain and specifically in the midbrain serotonergic (5-HT) neurons involved in neurobehavioral responses to adverse stimuli, adult male rats were subjected to short-term or chronic forced swim stress. A short-term stress rapidly increased the midbrain bcl-xl mRNA levels and significantly elevated Bcl-xL immunoreactivity in the midbrain 5-HT cells. Stress-induced increase in glucocorticoid secretion was implicated in the observed effect. The levels of bcl-xl mRNA were decreased after stress when glucocorticoid elevation was inhibited by metyrapone (MET, 150 mg/kg), and this decrease was attenuated by glucocorticoid replacement with dexamethasone (DEX; 0.2 mg/kg). Both short-term stress and acute DEX administration, in parallel with Bcl-xL, caused a significant increase in tph2 mRNA levels and slightly enhanced tryptophan hydroxylase immunoreactivity in the midbrain. The increasing effect on the bcl-xl expression was specific to the short-term stress. Forced swim repeated daily for 2 weeks led to a decrease in bcl-xl mRNA in the midbrain without any effects on the Bcl-xL protein expression in the 5-HT neurons. In chronically stressed animals, an increase in tph2 gene expression was not associated with any changes in tryptophan hydroxylase protein levels. Our findings are the first to demonstrate that both short-term stress and acute glucocorticoid exposures induce Bcl-xL protein expression in the midbrain 5-HT neurons concomitantly with the activation of the 5-HT synthesis pathway in these neurons.

  5. Gray-Matter Volume, Midbrain Dopamine D2/D3 Receptors and Drug Craving in Methamphetamine Users

    PubMed Central

    Morales, Angelica A.; Kohno, Milky; Robertson, Chelsea L.; Dean, Andy C.; Mandelkern, Mark A.; London, Edythe D.

    2015-01-01

    Dysfunction of the mesocorticolimbic system plays a critical role in clinical features of addiction. Despite evidence suggesting that midbrain dopamine receptors influence amphetamine-induced dopamine release and that dopamine is involved in methamphetamine-induced neurotoxicity, associations between dopamine receptors and gray-matter volume have been unexplored in methamphetamine users. Here we used magnetic resonance imaging and [18F]fallypride positron emission tomography, respectively, to measure gray-matter volume (in 58 methamphetamine users) and dopamine D2/D3 receptor availability (binding potential relative to nondisplaceable uptake of the radiotracer, BPnd) (in 31 methamphetamine users and 37 control participants). Relationships between these measures and self-reported drug craving were examined. Although no difference in midbrain D2/D3 BPnd was detected between methamphetamine and control groups, midbrain D2/D3 BPnd was positively correlated with gray-matter volume in the striatum, prefrontal cortex, insula, hippocampus and temporal cortex in methamphetamine users, but not in control participants (group-by-midbrain D2/D3 BPnd interaction, p<0.05 corrected for multiple comparisons). Craving for methamphetamine was negatively associated with gray-matter volume in the insula, prefrontal cortex, amygdala, temporal cortex, occipital cortex, cerebellum, and thalamus (p<0.05 corrected for multiple comparisons). A relationship between midbrain D2/D3 BPnd and methamphetamine craving was not detected. Lower midbrain D2/D3 BPnd may increase vulnerability to deficits in gray-matter volume in mesocorticolimbic circuitry in methamphetamine users, possibly reflecting greater dopamine-induced toxicity. Identifying factors that influence prefrontal and limbic volume, such as midbrain BPnd, may be important for understanding the basis of drug craving, a key factor in the maintenance of substance use disorders. PMID:25896164

  6. Putative presynaptic dopamine dysregulation in schizophrenia is supported by molecular evidence from post-mortem human midbrain

    PubMed Central

    Purves-Tyson, T D; Owens, S J; Rothmond, D A; Halliday, G M; Double, K L; Stevens, J; McCrossin, T; Shannon Weickert, C

    2017-01-01

    The dopamine hypothesis of schizophrenia posits that increased subcortical dopamine underpins psychosis. In vivo imaging studies indicate an increased presynaptic dopamine synthesis capacity in striatal terminals and cell bodies in the midbrain in schizophrenia; however, measures of the dopamine-synthesising enzyme, tyrosine hydroxylase (TH), have not identified consistent changes. We hypothesise that dopamine dysregulation in schizophrenia could result from changes in expression of dopamine synthesis enzymes, receptors, transporters or catabolic enzymes. Gene expression of 12 dopamine-related molecules was examined in post-mortem midbrain (28 antipsychotic-treated schizophrenia cases/29 controls) using quantitative PCR. TH and the synaptic dopamine transporter (DAT) proteins were examined in post-mortem midbrain (26 antipsychotic-treated schizophrenia cases per 27 controls) using immunoblotting. TH and aromatic acid decarboxylase (AADC) mRNA and TH protein were unchanged in the midbrain in schizophrenia compared with controls. Dopamine receptor D2 short, vesicular monoamine transporter (VMAT2) and DAT mRNAs were significantly decreased in schizophrenia, with no change in DRD3 mRNA, DRD3nf mRNA and DAT protein between diagnostic groups. However, DAT protein was significantly increased in putatively treatment-resistant cases of schizophrenia compared to putatively treatment-responsive cases. Midbrain monoamine oxidase A (MAOA) mRNA was increased, whereas MAOB and catechol-O-methyl transferase mRNAs were unchanged in schizophrenia. We conclude that, whereas some mRNA changes are consistent with increased dopamine action (decreased DAT mRNA), others suggest reduced dopamine action (increased MAOA mRNA) in the midbrain in schizophrenia. Here, we identify a molecular signature of dopamine dysregulation in the midbrain in schizophrenia that mainly includes gene expression changes of molecules involved in dopamine synthesis and in regulating the time course of dopamine action. PMID:28094812

  7. The sonar aperture and its neural representation in bats.

    PubMed

    Heinrich, Melina; Warmbold, Alexander; Hoffmann, Susanne; Firzlaff, Uwe; Wiegrebe, Lutz

    2011-10-26

    As opposed to visual imaging, biosonar imaging of spatial object properties represents a challenge for the auditory system because its sensory epithelium is not arranged along space axes. For echolocating bats, object width is encoded by the amplitude of its echo (echo intensity) but also by the naturally covarying spread of angles of incidence from which the echoes impinge on the bat's ears (sonar aperture). It is unclear whether bats use the echo intensity and/or the sonar aperture to estimate an object's width. We addressed this question in a combined psychophysical and electrophysiological approach. In three virtual-object playback experiments, bats of the species Phyllostomus discolor had to discriminate simple reflections of their own echolocation calls differing in echo intensity, sonar aperture, or both. Discrimination performance for objects with physically correct covariation of sonar aperture and echo intensity ("object width") did not differ from discrimination performances when only the sonar aperture was varied. Thus, the bats were able to detect changes in object width in the absence of intensity cues. The psychophysical results are reflected in the responses of a population of units in the auditory midbrain and cortex that responded strongest to echoes from objects with a specific sonar aperture, regardless of variations in echo intensity. Neurometric functions obtained from cortical units encoding the sonar aperture are sufficient to explain the behavioral performance of the bats. These current data show that the sonar aperture is a behaviorally relevant and reliably encoded cue for object size in bat sonar.

  8. Sounds, Behaviour, and Auditory Receptors of the Armoured Ground Cricket, Acanthoplus longipes

    PubMed Central

    Kowalski, Kerstin; Lakes-Harlan, Reinhard

    2010-01-01

    The auditory sensory system of the taxon Hetrodinae has not been studied previously. Males of the African armoured ground cricket, Acanthoplus longipes (Orthoptera: Tettigoniidae: Hetrodinae) produce a calling song that lasts for minutes and consists of verses with two pulses. About three impulses are in the first pulse and about five impulses are in the second pulse. In contrast, the disturbance stridulation consists of verses with about 14 impulses that are not separated in pulses. Furthermore, the inter-impulse intervals of both types of sounds are different, whereas verses have similar durations. This indicates that the neuronal networks for sound generation are not identical. The frequency spectrum peaks at about 15 kHz in both types of sounds, whereas the hearing threshold has the greatest sensitivity between 4 and 10 kHz. The auditory afferents project into the prothoracic ganglion. The foreleg contains about 27 sensory neurons in the crista acustica; the midleg has 18 sensory neurons, and the hindleg has 14. The auditory system is similar to those of other Tettigoniidae. PMID:20569136

  9. Audiovisual integration in children listening to spectrally degraded speech.

    PubMed

    Maidment, David W; Kang, Hi Jee; Stewart, Hannah J; Amitay, Sygal

    2015-02-01

    The study explored whether visual information improves speech identification in typically developing children with normal hearing when the auditory signal is spectrally degraded. Children (n=69) and adults (n=15) were presented with noise-vocoded sentences from the Children's Co-ordinate Response Measure (Rosen, 2011) in auditory-only or audiovisual conditions. The number of bands was adaptively varied to modulate the degradation of the auditory signal, with the number of bands required for approximately 79% correct identification calculated as the threshold. The youngest children (4- to 5-year-olds) did not benefit from accompanying visual information, in comparison to 6- to 11-year-old children and adults. Audiovisual gain also increased with age in the child sample. The current data suggest that children younger than 6 years of age do not fully utilize visual speech cues to enhance speech perception when the auditory signal is degraded. This evidence not only has implications for understanding the development of speech perception skills in children with normal hearing but may also inform the development of new treatment and intervention strategies that aim to remediate speech perception difficulties in pediatric cochlear implant users.

  10. The perception of microsound and its musical implications.

    PubMed

    Roads, Curtis

    2003-11-01

    Sound particles or microsounds last only a few milliseconds, near the threshold of auditory perception. We can easily analyze the physical properties of sound particles either individually or in masses. However, correlating these properties with human perception remains complicated. One cannot speak of a single time frame, or a "time constant" for the auditory system. The hearing mechanism involves many different agents, each of which operates on its own timescale. The signals being sent by diverse hearing agents are integrated by the brain into a coherent auditory picture. The pioneer of "sound quanta," Dennis Gabor (1900-1979), suggested that at least two mechanisms are at work in microevent detection: one that isolates events, and another that ascertains their pitch. Human hearing imposes a certain minimum duration in order to establish a firm sense of pitch, amplitude, and timbre. This paper traces disparate strands of literature on the topic and summarizes their meaning. Specifically, we examine the perception of intensity and pitch of microsounds, the phenomena of tone fusion and fission, temporal auditory acuity, and preattentive perception. The final section examines the musical implications of microsonic analysis, synthesis, and transformation.

  11. Relationship Between Hair Cell Loss and Hearing Loss in Fishes.

    PubMed

    Smith, Michael E

    2016-01-01

    Exposure to intense sound or ototoxic chemicals can damage the auditory hair cells of vertebrates, resulting in hearing loss. Although the relationship between such hair cell damage and auditory function is fairly established for terrestrial vertebrates, there are limited data available to understand this relationship in fishes. Although investigators have measured either the morphological damage of the inner ear or the functional deficits in the hearing of fishes, very few have directly measured both in an attempt to find a relationship between the two. Those studies that have examined both auditory hair cell damage in the inner ear and the resulting hearing loss in fishes are reviewed here. In general, there is a significant linear relationship between the number of hair cells lost and the severity of hearing threshold shifts, although this varies between species and different hair cell-damaging stimuli. After trauma to the fish ear, auditory hair cells are able to regenerate to control level densities. With this regeneration also comes a restoration of hearing. Thus there is also a significant relationship between hair cell recovery and hearing recovery in fishes.

  12. Identifying cochlear implant channels with poor electrode-neuron interface: partial tripolar, single-channel thresholds and psychophysical tuning curves.

    PubMed

    Bierer, Julie Arenberg; Faulkner, Kathleen F

    2010-04-01

    The goal of this study was to evaluate the ability of a threshold measure, made with a restricted electrode configuration, to identify channels exhibiting relatively poor spatial selectivity. With a restricted electrode configuration, channel-to-channel variability in threshold may reflect variations in the interface between the electrodes and auditory neurons (i.e., nerve survival, electrode placement, and tissue impedance). These variations in the electrode-neuron interface should also be reflected in psychophysical tuning curve (PTC) measurements. Specifically, it is hypothesized that high single-channel thresholds obtained with the spatially focused partial tripolar (pTP) electrode configuration are predictive of wide or tip-shifted PTCs. Data were collected from five cochlear implant listeners implanted with the HiRes90k cochlear implant (Advanced Bionics Corp., Sylmar, CA). Single-channel thresholds and most comfortable listening levels were obtained for stimuli that varied in presumed electrical field size by using the pTP configuration for which a fraction of current (sigma) from a center-active electrode returns through two neighboring electrodes and the remainder through a distant indifferent electrode. Forward-masked PTCs were obtained for channels with the highest, lowest, and median tripolar (sigma = 1 or 0.9) thresholds. The probe channel and level were fixed and presented with either the monopolar (sigma = 0) or a more focused pTP (sigma > or = 0.55) configuration. The masker channel and level were varied, whereas the configuration was fixed to sigma = 0.5. A standard, three-interval, two-alternative forced choice procedure was used for thresholds and masked levels. Single-channel threshold and variability in threshold across channels systematically increased as the compensating current, sigma, increased and the presumed electrical field became more focused. Across subjects, channels with the highest single-channel thresholds, when measured with a narrow, pTP stimulus, had significantly broader PTCs than the lowest threshold channels. In two subjects, the tips of the tuning curves were shifted away from the probe channel. Tuning curves were also wider for the monopolar probes than with pTP probes for both the highest and lowest threshold channels. These results suggest that single-channel thresholds measured with a restricted stimulus can be used to identify cochlear implant channels with poor spatial selectivity. Channels having wide or tip-shifted tuning characteristics would likely not deliver the appropriate spectral information to the intended auditory neurons, leading to suboptimal perception. As a clinical tool, quick identification of impaired channels could lead to patient-specific mapping strategies and result in improved speech and music perception.

  13. Auditory evoked potentials in two short-finned pilot whales (Globicephala macrorhynchus).

    PubMed

    Schlundt, Carolyn E; Dear, Randall L; Houser, Dorian S; Bowles, Ann E; Reidarson, Tom; Finneran, James J

    2011-02-01

    The hearing sensitivities of two short-finned pilot whales (Globicephala macrorhynchus) were investigated by measuring auditory evoked potentials generated in response to clicks and sinusoidal amplitude modulated (SAM) tones. The first whale tested, an adult female, was a long-time resident at SeaWorld San Diego with a known health history. Click-evoked responses in this animal were similar to those measured in other echolocating odontocetes. Auditory thresholds were comparable to dolphins of similar age determined with similar evoked potential methods. The region of best sensitivity was near 40 kHz and the upper limit of functional hearing was between 80 and 100 kHz. The second whale tested, a juvenile male, was recently stranded and deemed non-releasable. Click-evoked potentials were not detected in this animal and testing with SAM tones suggested severe hearing loss above 10 kHz.

  14. Dyslipidemia and Auditory Function

    PubMed Central

    Evans, M. Bradley; Tonini, Ross; Shope, Cynthia Do; Oghalai, John S.; Jerger, James F.; Insull, William; Brownell, William E.

    2013-01-01

    The relationship between dyslipidemia and hearing is unclear. This study was conducted to investigate whether elevated serum lipid levels impact auditory function in humans and in guinea pigs. In the human study, a cross-sectional study of 40 volunteers with dyslipidemia was conducted. Pure tone thresholds, distortion product otoacoustic emissions, and lipid profiles were analyzed. When controlled for patient age and sex, we found that elevated triglycerides were associated with reduced hearing. In the guinea pig study, a prospective study of animals fed a high-fat diet for 14 weeks was conducted. Although the high-fat diet led to a dramatic elevation in the average weight and total cholesterol in all animals (from 61 to 589 mg/dl), there were no meaningful changes in distortion product otoacoustic emission magnitudes. These results suggest that whereas chronic dyslipidemia associated with elevated triglycerides may reduce auditory function, short-term dietary changes may not. PMID:16868509

  15. Alteration of glycine receptor immunoreactivity in the auditory brainstem of mice following three months of exposure to radiofrequency radiation at SAR 4.0 W/kg.

    PubMed

    Maskey, Dhiraj; Kim, Hyung Gun; Suh, Myung-Whan; Roh, Gu Seob; Kim, Myeung Ju

    2014-08-01

    The increasing use of mobile communication has triggered an interest in its possible effects on the regulation of neurotransmitter signals. Due to the close proximity of mobile phones to hearing-related brain regions during usage, its use may lead to a decrease in the ability to segregate sounds, leading to serious auditory dysfunction caused by the prolonged exposure to radiofrequency (RF) radiation. The interplay among auditory processing, excitation and inhibitory molecule interactions plays a major role in auditory function. In particular, inhibitory molecules, such a glycine, are predominantly localized in the auditory brainstem. However, the effects of exposure to RF radiation on auditory function have not been reported to date. Thus, the aim of the present study was to investigate the effects of exposure to RF radiation on glycine receptor (GlyR) immunoreactivity (IR) in the auditory brainstem region at 835 MHz with a specific absorption rate of 4.0 W/kg for three months using free-floating immunohistochemistry. Compared with the sham control (SC) group, a significant loss of staining intensity of neuropils and cells in the different subdivisions of the auditory brainstem regions was observed in the mice exposed to RF radiation (E4 group). A decrease in the number of GlyR immunoreactive cells was also noted in the cochlear nuclear complex [anteroventral cochlear nucleus (AVCN), 31.09%; dorsal cochlear nucleus (DCN), 14.08%; posteroventral cochlear nucleus (PVCN), 32.79%] and the superior olivary complex (SOC) [lateral superior olivary nucleus (LSO), 36.85%; superior paraolivary nucleus (SPN), 24.33%, medial superior olivary nucleus (MSO), 23.23%; medial nucleus of the trapezoid body (MNTB), 10.15%] of the mice in the E4 group. Auditory brainstem response (ABR) analysis also revealed a significant threshold elevation of in the exposed (E4) group, which may be associated with auditory dysfunction. The present study suggests that the auditory brainstem region is susceptible to chronic exposure to RF radiation, which may affect the function of the central auditory system.

  16. Human amygdala activation by the sound produced during dental treatment: A fMRI study.

    PubMed

    Yu, Jen-Fang; Lee, Kun-Che; Hong, Hsiang-Hsi; Kuo, Song-Bor; Wu, Chung-De; Wai, Yau-Yau; Chen, Yi-Fen; Peng, Ying-Chin

    2015-01-01

    During dental treatments, patients may experience negative emotions associated with the procedure. This study was conducted with the aim of using functional magnetic resonance imaging (fMRI) to visualize cerebral cortical stimulation among dental patients in response to auditory stimuli produced by ultrasonic scaling and power suction equipment. Subjects (n = 7) aged 23-35 years were recruited for this study. All were right-handed and underwent clinical pure-tone audiometry testing to reveal a normal hearing threshold below 20 dB hearing level (HL). As part of the study, subjects initially underwent a dental calculus removal treatment. During the treatment, subjects were exposed to ultrasonic auditory stimuli originating from the scaling handpiece and salivary suction instruments. After dental treatment, subjects were imaged with fMRI while being exposed to recordings of the noise from the same dental instrument so that cerebral cortical stimulation in response to aversive auditory stimulation could be observed. The independent sample confirmatory t-test was used. Subjects also showed stimulation in the amygdala and prefrontal cortex, indicating that the ultrasonic auditory stimuli elicited an unpleasant response in the subjects. Patients experienced unpleasant sensations caused by contact stimuli in the treatment procedure. In addition, this study has demonstrated that aversive auditory stimuli such as sounds from the ultrasonic scaling handpiece also cause aversive emotions. This study was indicated by observed stimulation of the auditory cortex as well as the amygdala, indicating that noise from the ultrasonic scaling handpiece was perceived as an aversive auditory stimulus by the subjects. Subjects can experience unpleasant sensations caused by the sounds from the ultrasonic scaling handpiece based on their auditory stimuli.

  17. Human amygdala activation by the sound produced during dental treatment: A fMRI study

    PubMed Central

    Yu, Jen-Fang; Lee, Kun-Che; Hong, Hsiang-Hsi; Kuo, Song-Bor; Wu, Chung-De; Wai, Yau-Yau; Chen, Yi-Fen; Peng, Ying-Chin

    2015-01-01

    During dental treatments, patients may experience negative emotions associated with the procedure. This study was conducted with the aim of using functional magnetic resonance imaging (fMRI) to visualize cerebral cortical stimulation among dental patients in response to auditory stimuli produced by ultrasonic scaling and power suction equipment. Subjects (n = 7) aged 23-35 years were recruited for this study. All were right-handed and underwent clinical pure-tone audiometry testing to reveal a normal hearing threshold below 20 dB hearing level (HL). As part of the study, subjects initially underwent a dental calculus removal treatment. During the treatment, subjects were exposed to ultrasonic auditory stimuli originating from the scaling handpiece and salivary suction instruments. After dental treatment, subjects were imaged with fMRI while being exposed to recordings of the noise from the same dental instrument so that cerebral cortical stimulation in response to aversive auditory stimulation could be observed. The independent sample confirmatory t-test was used. Subjects also showed stimulation in the amygdala and prefrontal cortex, indicating that the ultrasonic auditory stimuli elicited an unpleasant response in the subjects. Patients experienced unpleasant sensations caused by contact stimuli in the treatment procedure. In addition, this study has demonstrated that aversive auditory stimuli such as sounds from the ultrasonic scaling handpiece also cause aversive emotions. This study was indicated by observed stimulation of the auditory cortex as well as the amygdala, indicating that noise from the ultrasonic scaling handpiece was perceived as an aversive auditory stimulus by the subjects. Subjects can experience unpleasant sensations caused by the sounds from the ultrasonic scaling handpiece based on their auditory stimuli. PMID:26356376

  18. Quantitative analysis of neuronal response properties in primary and higher-order auditory cortical fields of awake house mice (Mus musculus)

    PubMed Central

    Joachimsthaler, Bettina; Uhlmann, Michaela; Miller, Frank; Ehret, Günter; Kurt, Simone

    2014-01-01

    Because of its great genetic potential, the mouse (Mus musculus) has become a popular model species for studies on hearing and sound processing along the auditory pathways. Here, we present the first comparative study on the representation of neuronal response parameters to tones in primary and higher-order auditory cortical fields of awake mice. We quantified 12 neuronal properties of tone processing in order to estimate similarities and differences of function between the fields, and to discuss how far auditory cortex (AC) function in the mouse is comparable to that in awake monkeys and cats. Extracellular recordings were made from 1400 small clusters of neurons from cortical layers III/IV in the primary fields AI (primary auditory field) and AAF (anterior auditory field), and the higher-order fields AII (second auditory field) and DP (dorsoposterior field). Field specificity was shown with regard to spontaneous activity, correlation between spontaneous and evoked activity, tone response latency, sharpness of frequency tuning, temporal response patterns (occurrence of phasic responses, phasic-tonic responses, tonic responses, and off-responses), and degree of variation between the characteristic frequency (CF) and the best frequency (BF) (CF–BF relationship). Field similarities were noted as significant correlations between CFs and BFs, V-shaped frequency tuning curves, similar minimum response thresholds and non-monotonic rate-level functions in approximately two-thirds of the neurons. Comparative and quantitative analyses showed that the measured response characteristics were, to various degrees, susceptible to influences of anesthetics. Therefore, studies of neuronal responses in the awake AC are important in order to establish adequate relationships between neuronal data and auditory perception and acoustic response behavior. PMID:24506843

  19. Nanofibrous scaffolds for the guidance of stem cell-derived neurons for auditory nerve regeneration.

    PubMed

    Hackelberg, Sandra; Tuck, Samuel J; He, Long; Rastogi, Arjun; White, Christina; Liu, Liqian; Prieskorn, Diane M; Miller, Ryan J; Chan, Che; Loomis, Benjamin R; Corey, Joseph M; Miller, Josef M; Duncan, R Keith

    2017-01-01

    Impairment of spiral ganglion neurons (SGNs) of the auditory nerve is a major cause for hearing loss occurring independently or in addition to sensory hair cell damage. Unfortunately, mammalian SGNs lack the potential for autonomous regeneration. Stem cell based therapy is a promising approach for auditory nerve regeneration, but proper integration of exogenous cells into the auditory circuit remains a fundamental challenge. Here, we present novel nanofibrous scaffolds designed to guide the integration of human stem cell-derived neurons in the internal auditory meatus (IAM), the foramen allowing passage of the spiral ganglion to the auditory brainstem. Human embryonic stem cells (hESC) were differentiated into neural precursor cells (NPCs) and seeded onto aligned nanofiber mats. The NPCs terminally differentiated into glutamatergic neurons with high efficiency, and neurite projections aligned with nanofibers in vitro. Scaffolds were assembled by seeding GFP-labeled NPCs on nanofibers integrated in a polymer sheath. Biocompatibility and functionality of the NPC-seeded scaffolds were evaluated in vivo in deafened guinea pigs (Cavia porcellus). To this end, we established an ouabain-based deafening procedure that depleted an average 72% of SGNs from apex to base of the cochleae and caused profound hearing loss. Further, we developed a surgical procedure to implant seeded scaffolds directly into the guinea pig IAM. No evidence of an inflammatory response was observed, but post-surgery tissue repair appeared to be facilitated by infiltrating Schwann cells. While NPC survival was found to be poor, both subjects implanted with NPC-seeded and cell-free control scaffolds showed partial recovery of electrically-evoked auditory brainstem thresholds. Thus, while future studies must address cell survival, nanofibrous scaffolds pose a promising strategy for auditory nerve regeneration.

  20. Auditory hallucinations in adults with hearing impairment: a large prevalence study.

    PubMed

    Linszen, M M J; van Zanten, G A; Teunisse, R J; Brouwer, R M; Scheltens, P; Sommer, I E

    2018-03-20

    Similar to visual hallucinations in visually impaired patients, auditory hallucinations are often suggested to occur in adults with hearing impairment. However, research on this association is limited. This observational, cross-sectional study tested whether auditory hallucinations are associated with hearing impairment, by assessing their prevalence in an adult population with various degrees of objectified hearing impairment. Hallucination presence was determined in 1007 subjects aged 18-92, who were referred for audiometric testing to the Department of ENT-Audiology, University Medical Center Utrecht, the Netherlands. The presence and severity of hearing impairment were calculated using mean air conduction thresholds from the most recent pure tone audiometry. Out of 829 participants with hearing impairment, 16.2% (n = 134) had experienced auditory hallucinations in the past 4 weeks; significantly more than the non-impaired group [5.8%; n = 10/173; p < 0.001, odds ratio 3.2 (95% confidence interval 1.6-6.2)]. Prevalence of auditory hallucinations significantly increased with categorized severity of impairment, with rates up to 24% in the most profoundly impaired group (p < 0.001). The corrected odds of hallucination presence increased 1.02 times for each dB of impairment in the best ear. Auditory hallucinations mostly consisted of voices (51%), music (36%), and doorbells or telephones (24%). Our findings reveal that auditory hallucinations are common among patients with hearing impairment, and increase with impairment severity. Although more research on potential confounding factors is necessary, clinicians should be aware of this phenomenon, by inquiring after hallucinations in hearing-impaired patients and, conversely, assessing hearing impairment in patients with auditory hallucinations, since it may be a treatable factor.

  1. Identification and characterisation of midbrain nuclei using optimised functional magnetic resonance imaging

    PubMed Central

    Limbrick-Oldfield, Eve H.; Brooks, Jonathan C.W.; Wise, Richard J.S.; Padormo, Francesco; Hajnal, Jo V.; Beckmann, Christian F.; Ungless, Mark A.

    2012-01-01

    Localising activity in the human midbrain with conventional functional MRI (fMRI) is challenging because the midbrain nuclei are small and located in an area that is prone to physiological artefacts. Here we present a replicable and automated method to improve the detection and localisation of midbrain fMRI signals. We designed a visual fMRI task that was predicted would activate the superior colliculi (SC) bilaterally. A limited number of coronal slices were scanned, orientated along the long axis of the brainstem, whilst simultaneously recording cardiac and respiratory traces. A novel anatomical registration pathway was used to optimise the localisation of the small midbrain nuclei in stereotactic space. Two additional structural scans were used to improve registration between functional and structural T1-weighted images: an echo-planar image (EPI) that matched the functional data but had whole-brain coverage, and a whole-brain T2-weighted image. This pathway was compared to conventional registration pathways, and was shown to significantly improve midbrain registration. To reduce the physiological artefacts in the functional data, we estimated and removed structured noise using a modified version of a previously described physiological noise model (PNM). Whereas a conventional analysis revealed only unilateral SC activity, the PNM analysis revealed the predicted bilateral activity. We demonstrate that these methods improve the measurement of a biologically plausible fMRI signal. Moreover they could be used to investigate the function of other midbrain nuclei. PMID:21867762

  2. On pure word deafness, temporal processing, and the left hemisphere.

    PubMed

    Stefanatos, Gerry A; Gershkoff, Arthur; Madigan, Sean

    2005-07-01

    Pure word deafness (PWD) is a rare neurological syndrome characterized by severe difficulties in understanding and reproducing spoken language, with sparing of written language comprehension and speech production. The pathognomonic disturbance of auditory comprehension appears to be associated with a breakdown in processes involved in mapping auditory input to lexical representations of words, but the functional locus of this disturbance and the localization of the responsible lesion have long been disputed. We report here on a woman with PWD resulting from a circumscribed unilateral infarct involving the left superior temporal lobe who demonstrated significant problems processing transitional spectrotemporal cues in both speech and nonspeech sounds. On speech discrimination tasks, she exhibited poor differentiation of stop consonant-vowel syllables distinguished by voicing onset and brief formant frequency transitions. Isolated formant transitions could be reliably discriminated only at very long durations (> 200 ms). By contrast, click fusion threshold, which depends on millisecond-level resolution of brief auditory events, was normal. These results suggest that the problems with speech analysis in this case were not secondary to general constraints on auditory temporal resolution. Rather, they point to a disturbance of left hemisphere auditory mechanisms that preferentially analyze rapid spectrotemporal variations in frequency. The findings have important implications for our conceptualization of PWD and its subtypes.

  3. High lead exposure and auditory sensory-neural function in Andean children.

    PubMed Central

    Counter, S A; Vahter, M; Laurell, G; Buchanan, L H; Ortega, F; Skerfving, S

    1997-01-01

    We investigated blood lead (B-Pb) and mercury (B-Hg) levels and auditory sensory-neural function in 62 Andean school children living in a Pb-contaminated area of Ecuador and 14 children in a neighboring gold mining area with no known Pb exposure. The median B-Pb level for 62 children in the Pb-exposed group was 52.6 micrograms/dl (range 9.9-110.0 micrograms/dl) compared with 6.4 micrograms/dl (range 3.9-12.0 micrograms/dl) for the children in the non-Pb exposed group; the differences were statistically significant (p < 0.001). Auditory thresholds for the Pb-exposed group were normal at the pure tone frequencies of 0.25-8 kHz over the entire range of B-Pb levels, Auditory brain stem response tests in seven children with high B-Pb levels showed normal absolute peak and interpeak latencies. The median B-Hg levels were 0.16 micrograms/dl (range 0.04-0.58 micrograms/dl) for children in the Pb-exposed group and 0.22 micrograms/dl (range 0.1-0.44 micrograms/dl) for children in the non-Pb exposed gold mining area, and showed no significant relationship to auditory function. Images Figure 1. Figure 3. A Figure 3. B PMID:9222138

  4. Peripheral auditory processing changes seasonally in Gambel’s white-crowned sparrow

    PubMed Central

    Caras, Melissa L.; Brenowitz, Eliot; Rubel, Edwin W

    2010-01-01

    Song in oscine birds is a learned behavior that plays important roles in breeding. Pronounced seasonal differences in song behavior, and in the morphology and physiology of the neural circuit underlying song production are well documented in many songbird species. Androgenic and estrogenic hormones largely mediate these seasonal changes. While much work has focused on the hormonal mechanisms underlying seasonal plasticity in songbird vocal production, relatively less work has investigated seasonal and hormonal effects on songbird auditory processing, particularly at a peripheral level. We addressed this issue in Gambel’s white-crowned sparrow (Zonotrichia leucophrys gambelii), a highly seasonal breeder. Photoperiod and hormone levels were manipulated in the laboratory to simulate natural breeding and non-breeding conditions. Peripheral auditory function was assessed by measuring the auditory brainstem response (ABR) and distortion product otoacoustic emissions (DPOAEs) of males and females in both conditions. Birds exposed to breeding-like conditions demonstrated elevated thresholds and prolonged peak latencies compared with birds housed under non-breeding-like conditions. There were no changes in DPOAEs, however, which indicates that the seasonal differences in ABRs do not arise from changes in hair cell function. These results suggest that seasons and hormones impact auditory processing as well as vocal production in wild songbirds. PMID:20563817

  5. Brain activation responses to subliminal or supraliminal rectal stimuli and to auditory stimuli in irritable bowel syndrome.

    PubMed

    Andresen, V; Bach, D R; Poellinger, A; Tsrouya, C; Stroh, A; Foerschler, A; Georgiewa, P; Zimmer, C; Mönnikes, H

    2005-12-01

    Visceral hypersensitivity in irritable bowel syndrome (IBS) has been associated with altered cerebral activations in response to visceral stimuli. It is unclear whether these processing alterations are specific for visceral sensation. In this study we aimed to determine by functional magnetic resonance imaging (fMRI) whether cerebral processing of supraliminal and subliminal rectal stimuli and of auditory stimuli is altered in IBS. In eight IBS patients and eight healthy controls, fMRI activations were recorded during auditory and rectal stimulation. Intensities of rectal balloon distension were adapted to the individual threshold of first perception (IPT): subliminal (IPT -10 mmHg), liminal (IPT), or supraliminal (IPT +10 mmHg). IBS patients relative to controls responded with lower activations of the prefrontal cortex (PFC) and anterior cingulate cortex (ACC) to both subliminal and supraliminal stimulation and with higher activation of the hippocampus (HC) to supraliminal stimulation. In IBS patients, not in controls, ACC and HC were also activated by auditory stimulation. In IBS patients, decreased ACC and PFC activation with subliminal and supraliminal rectal stimuli and increased HC activation with supraliminal stimuli suggest disturbances of the associative and emotional processing of visceral sensation. Hyperreactivity to auditory stimuli suggests that altered sensory processing in IBS may not be restricted to visceral sensation.

  6. Auditory and Non-Auditory Contributions for Unaided Speech Recognition in Noise as a Function of Hearing Aid Use

    PubMed Central

    Gieseler, Anja; Tahden, Maike A. S.; Thiel, Christiane M.; Wagener, Kirsten C.; Meis, Markus; Colonius, Hans

    2017-01-01

    Differences in understanding speech in noise among hearing-impaired individuals cannot be explained entirely by hearing thresholds alone, suggesting the contribution of other factors beyond standard auditory ones as derived from the audiogram. This paper reports two analyses addressing individual differences in the explanation of unaided speech-in-noise performance among n = 438 elderly hearing-impaired listeners (mean = 71.1 ± 5.8 years). The main analysis was designed to identify clinically relevant auditory and non-auditory measures for speech-in-noise prediction using auditory (audiogram, categorical loudness scaling) and cognitive tests (verbal-intelligence test, screening test of dementia), as well as questionnaires assessing various self-reported measures (health status, socio-economic status, and subjective hearing problems). Using stepwise linear regression analysis, 62% of the variance in unaided speech-in-noise performance was explained, with measures Pure-tone average (PTA), Age, and Verbal intelligence emerging as the three most important predictors. In the complementary analysis, those individuals with the same hearing loss profile were separated into hearing aid users (HAU) and non-users (NU), and were then compared regarding potential differences in the test measures and in explaining unaided speech-in-noise recognition. The groupwise comparisons revealed significant differences in auditory measures and self-reported subjective hearing problems, while no differences in the cognitive domain were found. Furthermore, groupwise regression analyses revealed that Verbal intelligence had a predictive value in both groups, whereas Age and PTA only emerged significant in the group of hearing aid NU. PMID:28270784

  7. Monkey׳s short-term auditory memory nearly abolished by combined removal of the rostral superior temporal gyrus and rhinal cortices.

    PubMed

    Fritz, Jonathan B; Malloy, Megan; Mishkin, Mortimer; Saunders, Richard C

    2016-06-01

    While monkeys easily acquire the rules for performing visual and tactile delayed matching-to-sample, a method for testing recognition memory, they have extraordinary difficulty acquiring a similar rule in audition. Another striking difference between the modalities is that whereas bilateral ablation of the rhinal cortex (RhC) leads to profound impairment in visual and tactile recognition, the same lesion has no detectable effect on auditory recognition memory (Fritz et al., 2005). In our previous study, a mild impairment in auditory memory was obtained following bilateral ablation of the entire medial temporal lobe (MTL), including the RhC, and an equally mild effect was observed after bilateral ablation of the auditory cortical areas in the rostral superior temporal gyrus (rSTG). In order to test the hypothesis that each of these mild impairments was due to partial disconnection of acoustic input to a common target (e.g., the ventromedial prefrontal cortex), in the current study we examined the effects of a more complete auditory disconnection of this common target by combining the removals of both the rSTG and the MTL. We found that the combined lesion led to forgetting thresholds (performance at 75% accuracy) that fell precipitously from the normal retention duration of ~30 to 40s to a duration of ~1 to 2s, thus nearly abolishing auditory recognition memory, and leaving behind only a residual echoic memory. This article is part of a Special Issue entitled SI: Auditory working memory. Published by Elsevier B.V.

  8. Auditory and Non-Auditory Contributions for Unaided Speech Recognition in Noise as a Function of Hearing Aid Use.

    PubMed

    Gieseler, Anja; Tahden, Maike A S; Thiel, Christiane M; Wagener, Kirsten C; Meis, Markus; Colonius, Hans

    2017-01-01

    Differences in understanding speech in noise among hearing-impaired individuals cannot be explained entirely by hearing thresholds alone, suggesting the contribution of other factors beyond standard auditory ones as derived from the audiogram. This paper reports two analyses addressing individual differences in the explanation of unaided speech-in-noise performance among n = 438 elderly hearing-impaired listeners ( mean = 71.1 ± 5.8 years). The main analysis was designed to identify clinically relevant auditory and non-auditory measures for speech-in-noise prediction using auditory (audiogram, categorical loudness scaling) and cognitive tests (verbal-intelligence test, screening test of dementia), as well as questionnaires assessing various self-reported measures (health status, socio-economic status, and subjective hearing problems). Using stepwise linear regression analysis, 62% of the variance in unaided speech-in-noise performance was explained, with measures Pure-tone average (PTA), Age , and Verbal intelligence emerging as the three most important predictors. In the complementary analysis, those individuals with the same hearing loss profile were separated into hearing aid users (HAU) and non-users (NU), and were then compared regarding potential differences in the test measures and in explaining unaided speech-in-noise recognition. The groupwise comparisons revealed significant differences in auditory measures and self-reported subjective hearing problems, while no differences in the cognitive domain were found. Furthermore, groupwise regression analyses revealed that Verbal intelligence had a predictive value in both groups, whereas Age and PTA only emerged significant in the group of hearing aid NU.

  9. Noise over-exposure alters long-term somatosensory-auditory processing in the dorsal cochlear nucleus – possible basis for tinnitus-related hyperactivity?

    PubMed Central

    Dehmel, Susanne; Pradhan, Shashwati; Koehler, Seth; Bledsoe, Sanford; Shore, Susan

    2012-01-01

    The dorsal cochlear nucleus (DCN) is the first neural site of bimodal auditory-somatosensory integration. Previous studies have shown that stimulation of somatosensory pathways results in immediate suppression or enhancement of subsequent acoustically-evoked discharges. In the unimpaired auditory system suppression predominates. However, damage to the auditory input pathway leads to enhancement of excitatory somatosensory inputs to the cochlear nucleus, changing their effects on DCN neurons (Zeng et al., 2009; Shore et al., 2008). Given the well described connection between the somatosensory system and tinnitus in patients we sought to determine if plastic changes in long lasting bimodal somatosensory-auditory processing accompany tinnitus. Here we demonstrate for the first time in vivo long-term effects of somatosensory inputs on acoustically-evoked discharges of DCN neurons in guinea pigs. The effects of trigeminal nucleus stimulation are compared between normal-hearing animals and animals overexposed with narrow band noise and behaviorally tested for tinnitus. The noise exposure resulted in a temporary threshold shift (TTS) in auditory brainstem responses but a persistent increase in spontaneous and sound-evoked DCN unit firing rates and increased steepness of rate-level functions (RLFs). Rate increases were especially prominent in buildup units. The long-term somatosensory enhancement of sound-evoked responses was strengthened while suppressive effects diminished in noise-exposed animals, especially those that developed tinnitus. Damage to the auditory nerve (ANF) is postulated to trigger compensatory long-term synaptic plasticity of somatosensory inputs that might be an important underlying mechanism for tinnitus generation. PMID:22302808

  10. The representation of sound localization cues in the barn owl's inferior colliculus

    PubMed Central

    Singheiser, Martin; Gutfreund, Yoram; Wagner, Hermann

    2012-01-01

    The barn owl is a well-known model system for studying auditory processing and sound localization. This article reviews the morphological and functional organization, as well as the role of the underlying microcircuits, of the barn owl's inferior colliculus (IC). We focus on the processing of frequency and interaural time (ITD) and level differences (ILD). We first summarize the morphology of the sub-nuclei belonging to the IC and their differentiation by antero- and retrograde labeling and by staining with various antibodies. We then focus on the response properties of neurons in the three major sub-nuclei of IC [core of the central nucleus of the IC (ICCc), lateral shell of the central nucleus of the IC (ICCls), and the external nucleus of the IC (ICX)]. ICCc projects to ICCls, which in turn sends its information to ICX. The responses of neurons in ICCc are sensitive to changes in ITD but not to changes in ILD. The distribution of ITD sensitivity with frequency in ICCc can only partly be explained by optimal coding. We continue with the tuning properties of ICCls neurons, the first station in the midbrain where the ITD and ILD pathways merge after they have split at the level of the cochlear nucleus. The ICCc and ICCls share similar ITD and frequency tuning. By contrast, ICCls shows sigmoidal ILD tuning which is absent in ICCc. Both ICCc and ICCls project to the forebrain, and ICCls also projects to ICX, where space-specific neurons are found. Space-specific neurons exhibit side peak suppression in ITD tuning, bell-shaped ILD tuning, and are broadly tuned to frequency. These neurons respond only to restricted positions of auditory space and form a map of two-dimensional auditory space. Finally, we briefly review major IC features, including multiplication-like computations, correlates of echo suppression, plasticity, and adaptation. PMID:22798945

  11. Influence of Oxygen Tension on Dopaminergic Differentiation of Human Fetal Stem Cells of Midbrain and Forebrain Origin

    PubMed Central

    Krabbe, Christina; Bak, Sara Thornby; Jensen, Pia; von Linstow, Christian; Martínez Serrano, Alberto; Hansen, Claus; Meyer, Morten

    2014-01-01

    Neural stem cells (NSCs) constitute a promising source of cells for transplantation in Parkinson's disease (PD), but protocols for controlled dopaminergic differentiation are not yet available. Here we investigated the influence of oxygen on dopaminergic differentiation of human fetal NSCs derived from the midbrain and forebrain. Cells were differentiated for 10 days in vitro at low, physiological (3%) versus high, atmospheric (20%) oxygen tension. Low oxygen resulted in upregulation of vascular endothelial growth factor and increased the proportion of tyrosine hydroxylase-immunoreactive (TH-ir) cells in both types of cultures (midbrain: 9.1±0.5 and 17.1±0.4 (P<0.001); forebrain: 1.9±0.4 and 3.9±0.6 (P<0.01) percent of total cells). Regardless of oxygen levels, the content of TH-ir cells with mature neuronal morphologies was higher for midbrain as compared to forebrain cultures. Proliferative Ki67-ir cells were found in both types of cultures, but the relative proportion of these cells was significantly higher for forebrain NSCs cultured at low, as compared to high, oxygen tension. No such difference was detected for midbrain-derived cells. Western blot analysis revealed that low oxygen enhanced β-tubulin III and GFAP expression in both cultures. Up-regulation of β-tubulin III was most pronounced for midbrain cells, whereas GFAP expression was higher in forebrain as compared to midbrain cells. NSCs from both brain regions displayed less cell death when cultured at low oxygen tension. Following mictrotransplantation into mouse striatal slice cultures predifferentiated midbrain NSCs were found to proliferate and differentiate into substantial numbers of TH-ir neurons with mature neuronal morphologies, particularly at low oxygen. In contrast, predifferentiated forebrain NSCs microtransplanted using identical conditions displayed little proliferation and contained few TH-ir cells, all of which had an immature appearance. Our data may reflect differences in dopaminergic differentiation capacity and region-specific requirements of NSCs, with the dopamine-depleted striatum cultured at low oxygen offering an attractive micro-environment for midbrain NSCs. PMID:24788190

  12. The impact of cochlear fine structure on hearing thresholds and DPOAE levels

    NASA Astrophysics Data System (ADS)

    Lee, Jungmee; Long, Glenis; Talmadge, Carrick L.

    2004-05-01

    Although otoacoustic emissions (OAE) are used as clinical and research tools, the correlation between OAE behavioral estimates of hearing status is not large. In normal-hearing individuals, the level of OAEs can vary as much as 30 dB when the frequency is changed less than 5%. These pseudoperiodic variations of OAE level with frequency are known as fine structure. Hearing thresholds measured with high-frequency resolution reveals a similar (up to 15 dB) fine structure. We examine the impact of OAE and threshold fine structures on the prediction of auditory thresholds from OAE levels. Distortion product otoacoustic emissions (DPOAEs) were measured with sweeping primary tones. Psychoacoustic detection thresholds were measured using pure tones, sweep tones, FM tones, and narrow-band noise. Sweep DPOAE and narrow-band threshold estimates provide estimates that are less influenced by cochlear fine structure and should lead to a higher correlation between OAE levels and psychoacoustic thresholds. [Research supported by PSC CUNY, NIDCD, National Institute on Disability and Rehabilitation Research in U.S. Department of Education, and The Ministry of Education in Korea.

  13. Ability of primary auditory cortical neurons to detect amplitude modulation with rate and temporal codes: neurometric analysis

    PubMed Central

    Johnson, Jeffrey S.; Yin, Pingbo; O'Connor, Kevin N.

    2012-01-01

    Amplitude modulation (AM) is a common feature of natural sounds, and its detection is biologically important. Even though most sounds are not fully modulated, the majority of physiological studies have focused on fully modulated (100% modulation depth) sounds. We presented AM noise at a range of modulation depths to awake macaque monkeys while recording from neurons in primary auditory cortex (A1). The ability of neurons to detect partial AM with rate and temporal codes was assessed with signal detection methods. On average, single-cell synchrony was as or more sensitive than spike count in modulation detection. Cells are less sensitive to modulation depth if tested away from their best modulation frequency, particularly for temporal measures. Mean neural modulation detection thresholds in A1 are not as sensitive as behavioral thresholds, but with phase locking the most sensitive neurons are more sensitive, suggesting that for temporal measures the lower-envelope principle cannot account for thresholds. Three methods of preanalysis pooling of spike trains (multiunit, similar to convergence from a cortical column; within cell, similar to convergence of cells with matched response properties; across cell, similar to indiscriminate convergence of cells) all result in an increase in neural sensitivity to modulation depth for both temporal and rate codes. For the across-cell method, pooling of a few dozen cells can result in detection thresholds that approximate those of the behaving animal. With synchrony measures, indiscriminate pooling results in sensitive detection of modulation frequencies between 20 and 60 Hz, suggesting that differences in AM response phase are minor in A1. PMID:22422997

  14. Residual Inhibition Functions Overlap Tinnitus Spectra and the Region of Auditory Threshold Shift

    PubMed Central

    Moffat, Graeme; Baumann, Michael; Ward, Lawrence M.

    2008-01-01

    Animals exposed to noise trauma show augmented synchronous neural activity in tonotopically reorganized primary auditory cortex consequent on hearing loss. Diminished intracortical inhibition in the reorganized region appears to enable synchronous network activity that develops when deafferented neurons begin to respond to input via their lateral connections. In humans with tinnitus accompanied by hearing loss, this process may generate a phantom sound that is perceived in accordance with the location of the affected neurons in the cortical place map. The neural synchrony hypothesis predicts that tinnitus spectra, and heretofore unmeasured “residual inhibition functions” that relate residual tinnitus suppression to the center frequency of masking sounds, should cover the region of hearing loss in the audiogram. We confirmed these predictions in two independent cohorts totaling 90 tinnitus subjects, using computer-based tools designed to assess the psychoacoustic properties of tinnitus. Tinnitus spectra and residual inhibition functions for depth and duration increased with the amount of threshold shift over the region of hearing impairment. Residual inhibition depth was shallower when the masking sounds that were used to induce residual inhibition showed decreased correspondence with the frequency spectrum and bandwidth of the tinnitus. These findings suggest that tinnitus and its suppression in residual inhibition depend on processes that span the region of hearing impairment and not on mechanisms that enhance cortical representations for sound frequencies at the audiometric edge. Hearing thresholds measured in age-matched control subjects without tinnitus implicated hearing loss as a factor in tinnitus, although elevated thresholds alone were not sufficient to cause tinnitus. PMID:18712566

  15. Wide-dynamic-range forward suppression in marmoset inferior colliculus neurons is generated centrally and accounts for perceptual masking.

    PubMed

    Nelson, Paul C; Smith, Zachary M; Young, Eric D

    2009-02-25

    An organism's ability to detect and discriminate sensory inputs depends on the recent stimulus history. For example, perceptual detection thresholds for a brief tone can be elevated by as much as 50 dB when following a masking stimulus. Previous work suggests that such forward masking is not a direct result of peripheral neural adaptation; the central pathway apparently modifies the representation in a way that further attenuates the input's response to short probe signals. Here, we show that much of this transformation is complete by the level of the inferior colliculus (IC). Single-neuron extracellular responses were recorded in the central nucleus of the awake marmoset IC. The threshold for a 20 ms probe tone presented at best frequency was determined for various masker-probe delays, over a range of masker sound pressure levels (SPLs) and frequencies. The most striking aspect of the data was the increased potency of forward maskers as their SPL was increased, despite the fact that the excitatory response to the masker was often saturating or nonmonotonic over the same range of levels. This led to probe thresholds at high masker levels that were almost always higher than those observed in the auditory nerve. Probe threshold shifts were not usually caused by a persistent excitatory response to the masker; instead we propose a wide-dynamic-range inhibitory mechanism locked to sound offset as an explanation for several key aspects of the data. These findings further delineate the role of subcortical auditory processing in the generation of a context-dependent representation of ongoing acoustic scenes.

  16. Wide dynamic range forward suppression in marmoset inferior colliculus neurons is generated centrally and accounts for perceptual masking

    PubMed Central

    Nelson, Paul C.; Smith, Zachary M.; Young, Eric D.

    2009-01-01

    An organism’s ability to detect and discriminate sensory inputs depends on the recent stimulus history. For example, perceptual detection thresholds for a brief tone can be elevated by as much as 50 dB when following a masking stimulus. Previous work suggests that such forward masking is not a direct result of peripheral neural adaptation; the central pathway apparently modifies the representation in a way that further attenuates the input’s response to short probe signals. Here, we show that much of this transformation is complete by the level of the inferior colliculus (IC). Single-neuron extracellular responses were recorded in the central nucleus of the awake marmoset IC. The threshold for a 20-ms probe tone presented at best frequency was determined for various masker-probe delays, over a range of masker SPLs and frequencies. The most striking aspect of the data was the increased potency of forward maskers as their SPL was increased, despite the fact that the excitatory response to the masker was often saturating or non-monotonic over the same range of levels. This led to probe thresholds at high masker levels that were almost always higher than those observed in the auditory nerve. Probe threshold shifts were not usually caused by a persistent excitatory response to the masker; instead we propose a wide dynamic-range inhibitory mechanism locked to sound offset as an explanation for several key aspects of the data. These findings further delineate the role of subcortical auditory processing in the generation of a context-dependent representation of ongoing acoustic scenes. PMID:19244530

  17. The Effect of Attention-Deficit/Hyperactivity Disorder and Methylphenidate Treatment on the Adult Auditory Temporal Order Judgment Threshold

    ERIC Educational Resources Information Center

    Fostick, Leah

    2017-01-01

    Purpose: "The Diagnostic and Statistical Manual of Mental Disorders, Fifth Edition" notes that attention-deficit/hyperactivity disorder (ADHD) diagnosed in childhood will persist into adulthood among at least some individuals. There is a paucity of evidence, however, regarding whether other difficulties that often accompany childhood…

  18. An Evaluation of Psychophysical Models of Auditory Change Perception

    ERIC Educational Resources Information Center

    Micheyl, Christophe; Kaernbach, Christian; Demany, Laurent

    2008-01-01

    In many psychophysical experiments, the participant's task is to detect small changes along a given stimulus dimension or to identify the direction (e.g., upward vs. downward) of such changes. The results of these experiments are traditionally analyzed with a constant-variance Gaussian (CVG) model or a high-threshold (HT) model. Here, the authors…

  19. Temporal resolution in individuals with neurological disorders

    PubMed Central

    Rabelo, Camila Maia; Weihing, Jeffrey A; Schochat, Eliane

    2015-01-01

    OBJECTIVE: Temporal processing refers to the ability of the central auditory nervous system to encode and detect subtle changes in acoustic signals. This study aims to investigate the temporal resolution ability of individuals with mesial temporal sclerosis and to determine the sensitivity and specificity of the gaps-in-noise test in identifying this type of lesion. METHOD: This prospective study investigated differences in temporal resolution between 30 individuals with normal hearing and without neurological lesions (G1) and 16 individuals with both normal hearing and mesial temporal sclerosis (G2). Test performances were compared, and the sensitivity and specificity were calculated. RESULTS: There was no difference in gap detection thresholds between the two groups, although G1 revealed better average thresholds than G2 did. The sensitivity and specificity of the gaps-in-noise test for neurological lesions were 68% and 98%, respectively. CONCLUSIONS: Temporal resolution ability is compromised in individuals with neurological lesions caused by mesial temporal sclerosis. The gaps-in-noise test was shown to be a sensitive and specific measure of central auditory dysfunction in these patients. PMID:26375561

  20. Auditory maturation in premature infants: a potential pitfall for early cochlear implantation.

    PubMed

    Hof, Janny R; Stokroos, Robert J; Wix, Eduard; Chenault, Mickey; Gelders, Els; Brokx, Jan

    2013-08-01

    To describe spontaneous hearing improvement in the first years of life of a number of preterm neonates relative to cochlear implant candidacy. Retrospective case study. Hearing levels of 14 preterm neonates (mean gestational age at birth = 29 weeks) referred after newborn hearing screening were evaluated. Initial hearing thresholds ranged from 40 to 105 dBHL (mean = 85 dBHL). Hearing level improved to normal levels for four neonates and to moderate levels for five, whereas for five neonates, no improvement in hearing thresholds was observed and cochlear implantation was recommended. Three of the four neonates in whom the hearing improved to normal levels were born prior to 28 weeks gestational age. Hearing improvement was mainly observed prior to a gestational age of 80 weeks. Delayed maturation of an immature auditory pathway might be an important reason for referral after newborn hearing screening in premature infants. Caution is advised regarding early cochlear implantation in preterm born infants. Audiological follow-ups until at least 80 weeks gestational age are therefore recommended. © 2013 The American Laryngological, Rhinological and Otological Society, Inc.

Top