Science.gov

Sample records for midbrain dopaminergic neurons

  1. How to make a midbrain dopaminergic neuron.

    PubMed

    Arenas, Ernest; Denham, Mark; Villaescusa, J Carlos

    2015-06-01

    Midbrain dopaminergic (mDA) neuron development has been an intense area of research during recent years. This is due in part to a growing interest in regenerative medicine and the hope that treatment for diseases affecting mDA neurons, such as Parkinson's disease (PD), might be facilitated by a better understanding of how these neurons are specified, differentiated and maintained in vivo. This knowledge might help to instruct efforts to generate mDA neurons in vitro, which holds promise not only for cell replacement therapy, but also for disease modeling and drug discovery. In this Primer, we will focus on recent developments in understanding the molecular mechanisms that regulate the development of mDA neurons in vivo, and how they have been used to generate human mDA neurons in vitro from pluripotent stem cells or from somatic cells via direct reprogramming. Current challenges and future avenues in the development of a regenerative medicine for PD will be identified and discussed.

  2. Fate of midbrain dopaminergic neurons controlled by the engrailed genes.

    PubMed

    Simon, H H; Saueressig, H; Wurst, W; Goulding, M D; O'Leary, D D

    2001-05-01

    Deficiencies in neurotransmitter-specific cell groups in the midbrain result in prominent neural disorders, including Parkinson's disease, which is caused by the loss of dopaminergic neurons of the substantia nigra. We have investigated in mice the role of the engrailed homeodomain transcription factors, En-1 and En-2, in controlling the developmental fate of midbrain dopaminergic neurons. En-1 is highly expressed by essentially all dopaminergic neurons in the substantia nigra and ventral tegmentum, whereas En-2 is highly expressed by a subset of them. These neurons are generated and differentiate their dopaminergic phenotype in En-1/En-2 double null mutants, but disappear soon thereafter. Use of an En-1/tau-LacZ knock-in mouse as an autonomous marker for these neurons indicates that they are lost, rather than that they change their neurotransmitter phenotype. A single allele of En-1 on an En-2 null background is sufficient to produce a wild type-like substantia nigra and ventral tegmentum, whereas in contrast a single allele of En-2 on an En-1 null background results in the survival of only a small proportion of these dopaminergic neurons, a finding that relates to the differential expression of En-1 and En-2. Additional findings indicate that En-1 and En-2 regulate expression of alpha-synuclein, a gene that is genetically linked to Parkinson's disease. These findings show that the engrailed genes are expressed by midbrain dopaminergic neurons from their generation to adulthood but are not required for their specification. However, the engrailed genes control the survival of midbrain dopaminergic neurons in a gene dose-dependent manner. Our findings also suggest a link between engrailed and Parkinson's disease.

  3. Fate of midbrain dopaminergic neurons controlled by the engrailed genes.

    PubMed

    Simon, H H; Saueressig, H; Wurst, W; Goulding, M D; O'Leary, D D

    2001-05-01

    Deficiencies in neurotransmitter-specific cell groups in the midbrain result in prominent neural disorders, including Parkinson's disease, which is caused by the loss of dopaminergic neurons of the substantia nigra. We have investigated in mice the role of the engrailed homeodomain transcription factors, En-1 and En-2, in controlling the developmental fate of midbrain dopaminergic neurons. En-1 is highly expressed by essentially all dopaminergic neurons in the substantia nigra and ventral tegmentum, whereas En-2 is highly expressed by a subset of them. These neurons are generated and differentiate their dopaminergic phenotype in En-1/En-2 double null mutants, but disappear soon thereafter. Use of an En-1/tau-LacZ knock-in mouse as an autonomous marker for these neurons indicates that they are lost, rather than that they change their neurotransmitter phenotype. A single allele of En-1 on an En-2 null background is sufficient to produce a wild type-like substantia nigra and ventral tegmentum, whereas in contrast a single allele of En-2 on an En-1 null background results in the survival of only a small proportion of these dopaminergic neurons, a finding that relates to the differential expression of En-1 and En-2. Additional findings indicate that En-1 and En-2 regulate expression of alpha-synuclein, a gene that is genetically linked to Parkinson's disease. These findings show that the engrailed genes are expressed by midbrain dopaminergic neurons from their generation to adulthood but are not required for their specification. However, the engrailed genes control the survival of midbrain dopaminergic neurons in a gene dose-dependent manner. Our findings also suggest a link between engrailed and Parkinson's disease. PMID:11312297

  4. Transcriptional comparison of human induced and primary midbrain dopaminergic neurons

    PubMed Central

    Xia, Ninuo; Zhang, Pengbo; Fang, Fang; Wang, Zhengyuan; Rothstein, Megan; Angulo, Benjamin; Chiang, Rosaria; Taylor, James; Reijo Pera, Renee A.

    2016-01-01

    Generation of induced dopaminergic (iDA) neurons may provide a significant step forward towards cell replacement therapy for Parkinson’s disease (PD). To study and compare transcriptional programs of induced cells versus primary DA neurons is a preliminary step towards characterizing human iDA neurons. We have optimized a protocol to efficiently generate iDA neurons from human pluripotent stem cells (hPSCs). We then sequenced the transcriptomes of iDA neurons derived from 6 different hPSC lines and compared them to that of primary midbrain (mDA) neurons. We identified a small subset of genes with altered expression in derived iDA neurons from patients with Parkinson’s Disease (PD). We also observed that iDA neurons differ significantly from primary mDA neurons in global gene expression, especially in genes related to neuron maturation level. Results suggest iDA neurons from patient iPSCs could be useful for basic and translational studies, including in vitro modeling of PD. However, further refinement of methods of induction and maturation of neurons may better recapitulate full development of mDA neurons from hPSCs. PMID:26842779

  5. Generation and survival of midbrain dopaminergic neurons in weaver mice.

    PubMed

    Martí, Joaquín; Santa-Cruz, M C; Bayer, Shirley A; Ghetti, Bernardino; Hervás, José P

    2007-08-01

    Generation and survival of midbrain dopaminergic (DA) neurons were investigated using tyrosine hydroxylase (TH) immunocytochemistry combined with tritiated thymidine autoradiography at appropriate anatomical levels throughout the anteroposterior (A/P) axes of the substantia nigra pars compacta (SNc) and the ventral tegmental area (VTA). The wild-type (+/+) and homozygous weaver (wv/wv) mice used here were the offspring of pregnant dams injected with the radioactive precursor when the mesencephalic neurons were being produced (gestational days 11-15). Data reveal that, at postnatal day 90, depletion of TH-stained cells in the wv/wv presented an A/P pattern of increasing severity and, therefore, the DA cells located in posterior parts of the SNc or the VTA appear to be more vulnerable than the settled anterior neurons. When the time of neuron origin is inferred for each level of these cell groups, it is found that the neurogenesis span is similar for both experimental groups, although significant deficits in the frequency of wv/wv late-generated neurons were observed in any level considered. On the other hand, it has been found that TH-positive neurons were settled along the extent of the SNc and the VTA following precise and differential neurogenetic gradients. Thus, the acute rostrocaudal increase in the proportion of late-generated neurons detected in both+/+DA-cell groups is disturbed in the weaver homozygotes due to the indicated A/P depletion.

  6. The Transcription Factor Orthodenticle Homeobox 2 Influences Axonal Projections and Vulnerability of Midbrain Dopaminergic Neurons

    ERIC Educational Resources Information Center

    Chung, Chee Yeun; Licznerski, Pawel; Alavian, Kambiz N.; Simeone, Antonio; Lin, Zhicheng; Martin, Eden; Vance, Jeffery; Isacson, Ole

    2010-01-01

    Two adjacent groups of midbrain dopaminergic neurons, A9 (substantia nigra pars compacta) and A10 (ventral tegmental area), have distinct projections and exhibit differential vulnerability in Parkinson's disease. Little is known about transcription factors that influence midbrain dopaminergic subgroup phenotypes or their potential role in disease.…

  7. Roles for the TGFβ superfamily in the development and survival of midbrain dopaminergic neurons.

    PubMed

    Hegarty, Shane V; Sullivan, Aideen M; O'Keeffe, Gerard W

    2014-10-01

    The adult midbrain contains 75% of all dopaminergic neurons in the CNS. Within the midbrain, these neurons are divided into three anatomically and functionally distinct clusters termed A8, A9 and A10. The A9 group plays a functionally non-redundant role in the control of voluntary movement, which is highlighted by the motor syndrome that results from their progressive degeneration in the neurodegenerative disorder, Parkinson's disease. Despite 50 years of investigation, treatment for Parkinson's disease remains symptomatic, but an intensive research effort has proposed delivering neurotrophic factors to the brain to protect the remaining dopaminergic neurons, or using these neurotrophic factors to differentiate dopaminergic neurons from stem cell sources for cell transplantation. Most neurotrophic factors studied in this context have been members of the transforming growth factor β (TGFβ) superfamily. In recent years, an intensive research effort has focused on understanding the function of these proteins in midbrain dopaminergic neuron development and their role in the molecular architecture that regulates the development of this brain region, with the goal of applying this knowledge to develop novel therapies for Parkinson's disease. In this review, the current evidence showing that TGFβ superfamily members play critical roles in the regulation of midbrain dopaminergic neuron induction, differentiation, target innervation and survival during embryonic and postnatal development is analysed, and the implications of these findings are discussed.

  8. Wnt/β-catenin signaling in midbrain dopaminergic neuron specification and neurogenesis.

    PubMed

    Joksimovic, Milan; Awatramani, Rajeshwar

    2014-02-01

    Loss of midbrain dopaminergic (mDA) neurons underlies the motor symptoms of Parkinson's disease. Towards cell replacement, studies have focused on mechanisms underlying embryonic mDA production, as a rational basis for deriving mDA neurons from stem cells. We will review studies of β-catenin, an obligate component of the Wnt cascade that is critical to mDA specification and neurogenesis. mDA neurons have a unique origin--the midbrain floor plate (FP). Unlike the hindbrain and spinal cord FP, the midbrain FP is highly neurogenic and Wnt/β-catenin signaling is critical to this difference in neurogenic potential. In β-catenin loss-of-function experiments, the midbrain FP resembles the hindbrain FP, and key mDA progenitor genes such as Otx2, Lmx1a, Msx1, and Ngn2 are downregulated whereas Shh is maintained. Accordingly, the neurogenic capacity of the midbrain FP is diminished, resulting in fewer mDA neurons. Conversely, in β-catenin gain-of-function experiments, the hindbrain FP expresses key mDA progenitor genes, and is highly neurogenic. Interestingly, when excessive β-catenin is supplied to the midbrain FP, less mDA neurons are produced suggesting that the dosage of Wnt/β-catenin signaling is critical. These studies of β-catenin have facilitated new protocols to derive mDA neurons from stem cells.

  9. Parkinson's disease candidate gene prioritization based on expression profile of midbrain dopaminergic neurons

    PubMed Central

    2010-01-01

    Background Parkinson's disease is the second most common neurodegenerative disorder. The pathological hallmark of the disease is degeneration of midbrain dopaminergic neurons. Genetic association studies have linked 13 human chromosomal loci to Parkinson's disease. Identification of gene(s), as part of the etiology of Parkinson's disease, within the large number of genes residing in these loci can be achieved through several approaches, including screening methods, and considering appropriate criteria. Since several of the indentified Parkinson's disease genes are expressed in substantia nigra pars compact of the midbrain, expression within the neurons of this area could be a suitable criterion to limit the number of candidates and identify PD genes. Methods In this work we have used the combination of findings from six rodent transcriptome analysis studies on the gene expression profile of midbrain dopaminergic neurons and the PARK loci in OMIM (Online Mendelian Inheritance in Man) database, to identify new candidate genes for Parkinson's disease. Results Merging the two datasets, we identified 20 genes within PARK loci, 7 of which are located in an orphan Parkinson's disease locus and one, which had been identified as a disease gene. In addition to identifying a set of candidates for further genetic association studies, these results show that the criteria of expression in midbrain dopaminergic neurons may be used to narrow down the number of genes in PARK loci for such studies. PMID:20716345

  10. A natural compound macelignan protects midbrain dopaminergic neurons from inflammatory degeneration via microglial arginase-1 expression.

    PubMed

    Kiyofuji, Kana; Kurauchi, Yuki; Hisatsune, Akinori; Seki, Takahiro; Mishima, Satoshi; Katsuki, Hiroshi

    2015-08-01

    Inflammatory events involving activated microglia have been recognized to play an important role in pathogenesis of various neurodegenerative disorders including Parkinson disease. Compounds regulating activation profiles of microglia may provide therapeutic benefits for Parkinson disease characterized by degeneration of midbrain dopaminergic neurons. Here we examined the effect of macelignan, a compound derived from nutmeg, on inflammatory degeneration of midbrain dopaminergic neurons. Treatment of midbrain slice cultures with interferon (IFN)-γ and lipopolysaccharide (LPS) caused a substantial decrease in viable dopaminergic neurons and an increase in nitric oxide (NO) production indicated by extracellular nitrite accumulation. Application of macelignan (10 μM) concomitantly with LPS prevented the loss of dopaminergic neurons. Besides nitrite accumulation, up-regulation of inducible NO synthase protein expression in response to IFN-γ/LPS was confirmed by Western blotting, and immunohistochemical examination revealed expression of inducible NO synthase in a subpopulation of Iba-1-poitive microglia. However, macelignan did not affect any of these NO-related parameters. On the other hand, macelignan promoted expression of arginase-1 in midbrain slice cultures irrespective of the presence or the absence of IFN-γ/LPS treatment. Arginase-1 expression was mainly localized in a subpopulation of Iba-1-positive cells. Importantly, the neuroprotective effect of macelignan was antagonized by N(ω)-hydroxy-nor-L-arginine, a specific arginase inhibitor. The neuroprotective effect of macelignan was also prevented by GW9662, a peroxisome proliferator-activated receptor γ (PPARγ) antagonist. Overall, these results indicate that macelignan, a compound with PPARγ agonist activity, can provide neuroprotective effect on dopaminergic neurons in an arginase-dependent but NO-independent manner. PMID:25917324

  11. A natural compound macelignan protects midbrain dopaminergic neurons from inflammatory degeneration via microglial arginase-1 expression.

    PubMed

    Kiyofuji, Kana; Kurauchi, Yuki; Hisatsune, Akinori; Seki, Takahiro; Mishima, Satoshi; Katsuki, Hiroshi

    2015-08-01

    Inflammatory events involving activated microglia have been recognized to play an important role in pathogenesis of various neurodegenerative disorders including Parkinson disease. Compounds regulating activation profiles of microglia may provide therapeutic benefits for Parkinson disease characterized by degeneration of midbrain dopaminergic neurons. Here we examined the effect of macelignan, a compound derived from nutmeg, on inflammatory degeneration of midbrain dopaminergic neurons. Treatment of midbrain slice cultures with interferon (IFN)-γ and lipopolysaccharide (LPS) caused a substantial decrease in viable dopaminergic neurons and an increase in nitric oxide (NO) production indicated by extracellular nitrite accumulation. Application of macelignan (10 μM) concomitantly with LPS prevented the loss of dopaminergic neurons. Besides nitrite accumulation, up-regulation of inducible NO synthase protein expression in response to IFN-γ/LPS was confirmed by Western blotting, and immunohistochemical examination revealed expression of inducible NO synthase in a subpopulation of Iba-1-poitive microglia. However, macelignan did not affect any of these NO-related parameters. On the other hand, macelignan promoted expression of arginase-1 in midbrain slice cultures irrespective of the presence or the absence of IFN-γ/LPS treatment. Arginase-1 expression was mainly localized in a subpopulation of Iba-1-positive cells. Importantly, the neuroprotective effect of macelignan was antagonized by N(ω)-hydroxy-nor-L-arginine, a specific arginase inhibitor. The neuroprotective effect of macelignan was also prevented by GW9662, a peroxisome proliferator-activated receptor γ (PPARγ) antagonist. Overall, these results indicate that macelignan, a compound with PPARγ agonist activity, can provide neuroprotective effect on dopaminergic neurons in an arginase-dependent but NO-independent manner.

  12. Dicer expression is essential for adult midbrain dopaminergic neuron maintenance and survival.

    PubMed

    Pang, Xueyan; Hogan, Eric M; Casserly, Alison; Gao, Guangping; Gardner, Paul D; Tapper, Andrew R

    2014-01-01

    The type III RNAse, Dicer, is responsible for the processing of microRNA (miRNA) precursors into functional miRNA molecules, non-coding RNAs that bind to and target messenger RNAs for repression. Dicer expression is essential for mouse midbrain development and dopaminergic (DAergic) neuron maintenance and survival during the early post-natal period. However, the role of Dicer in adult mouse DAergic neuron maintenance and survival is unknown. To bridge this gap in knowledge, we selectively knocked-down Dicer expression in individual DAergic midbrain areas, including the ventral tegmental area (VTA) and substantia nigra pars compacta (SNpc) via viral-mediated expression of Cre in adult floxed Dicer knock-in mice (Dicer(flox/flox)). Bilateral Dicer loss in the VTA resulted in progressive hyperactivity that was significantly reduced by the dopamine agonist, amphetamine. In contrast, decreased Dicer expression in the SNpc did not affect locomotor activity but did induce motor-learning impairment on an accelerating rotarod. Knock-down of Dicer in both midbrain regions of adult Dicer(flox/flox) mice resulted in preferential, progressive loss of DAergic neurons likely explaining motor behavior phenotypes. In addition, knock-down of Dicer in midbrain areas triggered neuronal death via apoptosis. Together, these data indicate that Dicer expression and, as a consequence, miRNA function, are essential for DAergic neuronal maintenance and survival in adult midbrain DAergic neuron brain areas.

  13. Differentiation and molecular heterogeneity of inhibitory and excitatory neurons associated with midbrain dopaminergic nuclei.

    PubMed

    Lahti, Laura; Haugas, Maarja; Tikker, Laura; Airavaara, Mikko; Voutilainen, Merja H; Anttila, Jenni; Kumar, Suman; Inkinen, Caisa; Salminen, Marjo; Partanen, Juha

    2016-02-01

    Local inhibitory GABAergic and excitatory glutamatergic neurons are important for midbrain dopaminergic and hindbrain serotonergic pathways controlling motivation, mood, and voluntary movements. Such neurons reside both within the dopaminergic nuclei, and in adjacent brain structures, including the rostromedial and laterodorsal tegmental nuclei. Compared with the monoaminergic neurons, the development, heterogeneity, and molecular characteristics of these regulatory neurons are poorly understood. We show here that different GABAergic and glutamatergic subgroups associated with the monoaminergic nuclei express specific transcription factors. These neurons share common origins in the ventrolateral rhombomere 1, where the postmitotic selector genes Tal1, Gata2 and Gata3 control the balance between the generation of inhibitory and excitatory neurons. In the absence of Tal1, or both Gata2 and Gata3, the GABAergic precursors adopt glutamatergic fates and populate the glutamatergic nuclei in excessive numbers. Together, our results uncover developmental regulatory mechanisms, molecular characteristics, and heterogeneity of central regulators of monoaminergic circuits.

  14. Cocaine increases dopaminergic neuron and motor activity via midbrain α1 adrenergic signaling.

    PubMed

    Goertz, Richard Brandon; Wanat, Matthew J; Gomez, Jorge A; Brown, Zeliene J; Phillips, Paul E M; Paladini, Carlos A

    2015-03-13

    Cocaine reinforcement is mediated by increased extracellular dopamine levels in the forebrain. This neurochemical effect was thought to require inhibition of dopamine reuptake, but cocaine is still reinforcing even in the absence of the dopamine transporter. Here, we demonstrate that the rapid elevation in dopamine levels and motor activity elicited by cocaine involves α1 receptor activation within the ventral midbrain. Activation of α1 receptors increases dopaminergic neuron burst firing by decreasing the calcium-activated potassium channel current (SK), as well as elevates dopaminergic neuron pacemaker firing through modulation of both SK and the hyperpolarization-activated cation currents (Ih). Furthermore, we found that cocaine increases both the pacemaker and burst-firing frequency of rat ventral-midbrain dopaminergic neurons through an α1 adrenergic receptor-dependent mechanism within the ventral tegmental area and substantia nigra pars compacta. These results demonstrate the mechanism underlying the critical role of α1 adrenergic receptors in the regulation of dopamine neurotransmission and behavior by cocaine.

  15. Neuroprotective Effects of 7, 8-dihydroxyflavone on Midbrain Dopaminergic Neurons in MPP+-treated Monkeys

    PubMed Central

    He, Jingjing; Xiang, Zheng; Zhu, Xiaoqing; Ai, Zongyong; Shen, Jingsong; Huang, Tianzhuang; Liu, Liegang; Ji, Weizhi; Li, Tianqing

    2016-01-01

    Parkinson’s disease (PD) is one common neurodegenerative disease caused by a significant loss of midbrain dopaminergic neurons. Previous reports showed that 7, 8- dihydroxyflavone (7, 8-DHF) as a potent TrkB agonist can mimic BDNF and play neuroprotective roles for mouse dopaminergic neurons. Nonetheless, the safety and neuroprotective effects are unclear in monkey models of PD. Here, we find that 7, 8-DHF could be absorbed and metabolized into 7-hydroxy-8-methoxyflavone through oral administration in monkeys. The half-life time of 7, 8-DHF in monkey plasma is about 4–8 hrs. Furthermore, these monkeys maintain health state throughout the course of seven-month treatments of 7, 8-DHF (30 mg/kg/day). Importantly, 7, 8-DHF treatments can prevent the progressive degeneration of midbrain dopaminergic neurons by attenuating neurotoxic effects of MPP+ and display strong neuroprotective effects in monkeys. Our study demonstrates that this promising small molecule may be transited into a clinical useful pharmacological agent. PMID:27731318

  16. The Shh coreceptor Cdo is required for differentiation of midbrain dopaminergic neurons.

    PubMed

    Kwon, Yu-Rim; Jeong, Myong-Ho; Leem, Young-Eun; Lee, Sang-Jin; Kim, Hyun-Jin; Bae, Gyu-Un; Kang, Jong-Sun

    2014-09-01

    Sonic hedgehog (Shh) signaling is required for numerous developmental processes including specification of ventral cell types in the central nervous system such as midbrain dopaminergic (DA) neurons. The multifunctional coreceptor Cdo increases the signaling activity of Shh which is crucial for development of forebrain and neural tube. In this study, we investigated the role of Cdo in midbrain DA neurogenesis. Cdo and Shh signaling components are induced during neurogenesis of embryonic stem (ES) cells. Cdo(-/-) ES cells show reduced neuronal differentiation accompanied by increased cell death upon neuronal induction. In addition, Cdo(-/-) ES cells form fewer tyrosine hydroxylase (TH) and microtubule associated protein 2 (MAP2)-positive DA neurons correlating with the decreased expression of key regulators of DA neurogenesis, such as Shh, Neurogenin2, Mash1, Foxa2, Lmx1a, Nurr1 and Pitx3, relative to the Cdo(+/+) ES cells. Consistently, the Cdo(-/-) embryonic midbrain displays a reduction in expression of TH and Nurr1. Furthermore, activation of Shh signaling by treatment with Purmorphamine (Pur) restores the DA neurogenesis of Cdo(-/-) ES cells, suggesting that Cdo is required for the full Shh signaling activation to induce efficient DA neurogenesis.

  17. Non-motor function of the midbrain dopaminergic neurons.

    PubMed

    Da Cunha, Claudio; Wietzikoski, Evellyn Claudia; Bortolanza, Mariza; Dombrowski, Patricia Andréia; dos Santos, Lucélia Mendes; Boschen, Suelen Lúcio; Miyoshi, Edmar; Vital, Maria Aparecida Barbato Frazão; Boerngen-Lacerda, Roseli; Andreatini, Roberto

    2009-01-01

    The roles of the nigrostriatal pathway are far beyond the simple control of motor functions. The tonic release of dopamine in the dorsal and ventral striatum controls the choice of proper actions toward a given environmental situation. In the striatum, a specific action is triggered by a specific stimulus associated with it. When the subject faces a novel and salient stimulus, the phasic release of dopamine allows synaptic plasticity in the cortico-striatal synapses. Neurons of different regions of cortical areas make synapses that converge to the same medium spine neurons of the striatum. The convergent associations form functional units encoding body parts, objects, locations, and symbolic representations of the subject's world. Such units emerge in the striatum in a repetitive manner, like a mosaic of broken mirrors. The phasic release of dopamine allows the association of units to encode an action of the subject directed to an object or location with the outcome of this action. Reinforced stimulus-action-outcome associations will affect future decision making when the same stimulus (object, location, idea) is presented to the subject in the future. In the absence of a minimal amount of striatal dopamine, no action is initiated as seen in Parkinson's disease subjects. The abnormal and improper association of these units leads to the initiation of unpurposeful and sometimes repetitive actions, as those observed in dyskinetic patients. The association of an excessive reinforcement of some actions, like drug consumption, leads to drug addiction. Improper associations of ideas and unpleasant outcomes may be related to traumatic and depressive symptoms common in many diseases, including Parkinson's disease. The same can be said about the learning and memory impairments observed in demented and nondemented Parkinson's disease patients.

  18. Epigenetic regulation contributes to urocortin-enhanced midbrain dopaminergic neuron differentiation.

    PubMed

    Huang, Hsin-Yi; Chiu, Tsung-Lang; Chang, Hui-Fen; Hsu, Hui-Ru; Pang, Cheng-Yoong; Liew, Hock-Kean; Wang, Mei-Jen

    2015-05-01

    The production of midbrain dopaminergic (mDA) neurons requires precise extrinsic inductive signals and intrinsic transcriptional cascade at a specific time point in development. Urocortin (UCN) is a peptide of the corticotropin-releasing hormone family that mediates various responses to stress. UCN was first cloned from adult rat midbrain. However, the contribution of UCN to the development of mDA neurons is poorly understood. Here, we show that UCN is endogenously expressed in the developing ventral midbrain (VM) and its receptors are exhibited in Nurr1(+) postmitotic mDA precursors and TH(+) neurons, suggesting possible roles in regulating their terminal differentiation. UCN treatment increased DA cell numbers in rat VM precursor cultures by promoting the conversion of Nurr1(+) precursors into DA neurons. Furthermore, neutralization of secreted UCN with anti-UCN antibody resulted in a reduction in the number of DA neurons. UCN induced an abundance of acetylated histone H3 and enhanced late DA regulator Nurr1, Foxa2, and Pitx3 expressions. Using pharmacological and RNA interference approaches, we further demonstrated that histone deacetylase (HDAC) inhibition and late transcriptional factors upregulation contribute to UCN-mediated DA neuron differentiation. Chromatin immunoprecipitation analyses revealed that UCN promoted histone acetylation of chromatin surrounding the TH promoter by directly inhibiting HDAC and releasing of methyl CpG binding protein 2-CoREST-HDAC1 repressor complex from the promoter, ultimately leading to an increase in Nurr1/coactivators-mediated transcription of TH gene. Moreover, UCN treatment in vivo also resulted in increased DA neuron differentiation. These findings suggest that UCN might contribute to regulate late mDA neuron differentiation during VM development.

  19. Allopregnanolone enhances the neurogenesis of midbrain dopaminergic neurons in APPswe/PSEN1 mice.

    PubMed

    Zhang, P; Xie, M Q; Ding, Y-Q; Liao, M; Qi, S S; Chen, S X; Gu, Q Q; Zhou, P; Sun, C Y

    2015-04-01

    An earlier study has demonstrated that exogenous allopregnanolone (APα) can reverse the reduction of tyrosine hydroxylase (TH)-positive neurons in the substantia nigra pars compacta (SNpc) of 3-month-old male triple transgenic Alzheimer's disease mouse (3xTgAD). This paper is focused on further clarifying the origin of these new-born TH-positive neurons induced by exogenous APα treatment. We performed a deeper research in another AD mouse model, 4-month-old male APPswe/PSEN1 double transgenic AD mouse (2xTgAD) by measuring APα concentration and counting immunopositive neurons using enzyme-linked immunosorbent assay (ELISA) and unbiased stereology. It was found that endogenous APα level and the number of TH-positive neurons were reduced in the 2xTgAD mice, and these reductions were present prior to the appearance of β-amyloid (Aβ)-positive plaques. Furthermore, a single 20mg/kg of exogenous APα treatment prevented the decline of total neurons, TH-positive neurons and TH/bromodeoxyuridine (BrdU) double-positive neurons in the SNpc of 2xTgAD mice although the decreased intensity of TH-positive fibers was not rescued in the striatum. It was also noted that exogenous APα administration had an apparent increase in the doublecortin (DCX)-positive neurons and DCX/BrdU double-positive neurons of subventricular zone (SVZ), as well as in the percentage of neuronal nuclear antigen (NeuN)/BrdU double-positive neurons of the SNpc in the 2xTgAD mice. These findings indicate that a lower level of endogenous APα is implicated in the loss of midbrain dopaminergic neurons in the 2xTgAD mice, and exogenous APα-induced a significant increase in the new-born dopaminergic neurons might be derived from the proliferating and differentiation of neural stem niche of SVZ.

  20. Midbrain-like Organoids from Human Pluripotent Stem Cells Contain Functional Dopaminergic and Neuromelanin-Producing Neurons.

    PubMed

    Jo, Junghyun; Xiao, Yixin; Sun, Alfred Xuyang; Cukuroglu, Engin; Tran, Hoang-Dai; Göke, Jonathan; Tan, Zi Ying; Saw, Tzuen Yih; Tan, Cheng-Peow; Lokman, Hidayat; Lee, Younghwan; Kim, Donghoon; Ko, Han Seok; Kim, Seong-Oh; Park, Jae Hyeon; Cho, Nam-Joon; Hyde, Thomas M; Kleinman, Joel E; Shin, Joo Heon; Weinberger, Daniel R; Tan, Eng King; Je, Hyunsoo Shawn; Ng, Huck-Hui

    2016-08-01

    Recent advances in 3D culture systems have led to the generation of brain organoids that resemble different human brain regions; however, a 3D organoid model of the midbrain containing functional midbrain dopaminergic (mDA) neurons has not been reported. We developed a method to differentiate human pluripotent stem cells into a large multicellular organoid-like structure that contains distinct layers of neuronal cells expressing characteristic markers of human midbrain. Importantly, we detected electrically active and functionally mature mDA neurons and dopamine production in our 3D midbrain-like organoids (MLOs). In contrast to human mDA neurons generated using 2D methods or MLOs generated from mouse embryonic stem cells, our human MLOs produced neuromelanin-like granules that were structurally similar to those isolated from human substantia nigra tissues. Thus our MLOs bearing features of the human midbrain may provide a tractable in vitro system to study the human midbrain and its related diseases. PMID:27476966

  1. Molecular heterogeneity of midbrain dopaminergic neurons--Moving toward single cell resolution.

    PubMed

    Anderegg, Angela; Poulin, Jean-Francois; Awatramani, Rajeshwar

    2015-12-21

    Since their discovery, midbrain dopamine (DA) neurons have been researched extensively, in part because of their diverse functions and involvement in various neuropsychiatric disorders. Over the last few decades, reports have emerged that midbrain DA neurons were not a homogeneous group, but that DA neurons located in distinct anatomical locations within the midbrain had distinctive properties in terms of physiology, function, and vulnerability. Accordingly, several studies focused on identifying heterogeneous gene expression across DA neuron clusters. Here we review the importance of understanding DA neuron heterogeneity at the molecular level, previous studies detailing heterogeneous gene expression in DA neurons, and finally recent work which brings together previous heterogeneous gene expression profiles in a coordinated manner, at single cell resolution.

  2. Lmx1a and Lmx1b regulate mitochondrial functions and survival of adult midbrain dopaminergic neurons.

    PubMed

    Doucet-Beaupré, Hélène; Gilbert, Catherine; Profes, Marcos Schaan; Chabrat, Audrey; Pacelli, Consiglia; Giguère, Nicolas; Rioux, Véronique; Charest, Julien; Deng, Qiaolin; Laguna, Ariadna; Ericson, Johan; Perlmann, Thomas; Ang, Siew-Lan; Cicchetti, Francesca; Parent, Martin; Trudeau, Louis-Eric; Lévesque, Martin

    2016-07-26

    The LIM-homeodomain transcription factors Lmx1a and Lmx1b play critical roles during the development of midbrain dopaminergic progenitors, but their functions in the adult brain remain poorly understood. We show here that sustained expression of Lmx1a and Lmx1b is required for the survival of adult midbrain dopaminergic neurons. Strikingly, inactivation of Lmx1a and Lmx1b recreates cellular features observed in Parkinson's disease. We found that Lmx1a/b control the expression of key genes involved in mitochondrial functions, and their ablation results in impaired respiratory chain activity, increased oxidative stress, and mitochondrial DNA damage. Lmx1a/b deficiency caused axonal pathology characterized by α-synuclein(+) inclusions, followed by a progressive loss of dopaminergic neurons. These results reveal the key role of these transcription factors beyond the early developmental stages and provide mechanistic links between mitochondrial dysfunctions, α-synuclein aggregation, and the survival of dopaminergic neurons. PMID:27407143

  3. GLUTAMATERGIC SIGNALING BY MIDBRAIN DOPAMINERGIC NEURONS: RECENT INSIGHTS FROM OPTOGENETIC, MOLECULAR AND BEHAVIORAL STUDIES

    PubMed Central

    Koos, Tibor; Tecuapetla, Fatuel; Tepper, James M.

    2011-01-01

    Although the notion that dopaminergic neurons utilize glutamate as a co-transmitter has long been supported by tantalizing molecular, immunocytochemical and electrophysiological evidence it has only been with the recent addition of optogenetic and other approaches that the existence and functional relevance of this mechanism could be unambiguously demonstrated. Here we discuss the possible mechanisms of action of glutamate released from mesoaccumbens dopaminergic neurons based on recently accumulated evidence. Surprisingly, rather then to confirm a role in conventional fast excitatory transmission, the latest evidence suggests that glutamate released from dopaminergic neurons may primarily act through different unconventional pre- and postsynaptic mechanisms. PMID:21632236

  4. GDNF-Ret signaling in midbrain dopaminergic neurons and its implication for Parkinson disease.

    PubMed

    Kramer, Edgar R; Liss, Birgit

    2015-12-21

    Glial cell line-derived neurotrophic factor (GDNF) and its canonical receptor Ret can signal together or independently to fulfill many important functions in the midbrain dopaminergic (DA) system. While Ret signaling clearly impacts on the development, maintenance and regeneration of the mesostriatal DA system, the physiological functions of GDNF for the DA system are still unclear. Nevertheless, GDNF is still considered to be an excellent candidate to protect and/or regenerate the mesostriatal DA system in Parkinson disease (PD). Clinical trials with GDNF on PD patients are, however, so far inconclusive. Here, we review the current knowledge of GDNF and Ret signaling and function in the midbrain DA system, and their crosstalk with proteins and signaling pathways associated with PD.

  5. Aldehyde dehydrogenase 1a1 mediates a GABA synthesis pathway in midbrain dopaminergic neurons.

    PubMed

    Kim, Jae-Ick; Ganesan, Subhashree; Luo, Sarah X; Wu, Yu-Wei; Park, Esther; Huang, Eric J; Chen, Lu; Ding, Jun B

    2015-10-01

    Midbrain dopamine neurons are an essential component of the basal ganglia circuitry, playing key roles in the control of fine movement and reward. Recently, it has been demonstrated that γ-aminobutyric acid (GABA), the chief inhibitory neurotransmitter, is co-released by dopamine neurons. Here, we show that GABA co-release in dopamine neurons does not use the conventional GABA-synthesizing enzymes, glutamate decarboxylases GAD65 and GAD67. Our experiments reveal an evolutionarily conserved GABA synthesis pathway mediated by aldehyde dehydrogenase 1a1 (ALDH1a1). Moreover, GABA co-release is modulated by ethanol (EtOH) at concentrations seen in blood alcohol after binge drinking, and diminished ALDH1a1 leads to enhanced alcohol consumption and preference. These findings provide insights into the functional role of GABA co-release in midbrain dopamine neurons, which may be essential for reward-based behavior and addiction.

  6. TGF-beta superfamily members promote survival of midbrain dopaminergic neurons and protect them against MPP+ toxicity.

    PubMed Central

    Krieglstein, K; Suter-Crazzolara, C; Fischer, W H; Unsicker, K

    1995-01-01

    The superfamily of transforming growth factors-beta (TGF-beta) comprises an expanding list of multifunctional proteins serving as regulators of cell proliferation and differentiation. Prominent members of this family include the TGF-beta s 1-5, activins, bone morphogenetic proteins and a recently discovered glial cell line-derived neurotrophic factor (GDNF). In the present study we demonstrate and compare the survival promoting and neuroprotective effects of TGF-beta 1, -2 and -3, activin A and GDNF for midbrain dopaminergic neurons in vitro. All proteins increase the survival of tyrosine hydroxylase-immunoreactive dopaminergic neurons isolated from the embryonic day (E) 14 rat mesencephalon floor to varying extents (TGF-beta s 2.5-fold, activin A and GDNF 1.6-fold). TGF-beta s, activin A and GDNF did not augment numbers of very rarely observed astroglial cells visualized by using antibodies to glial fibrillary acidic protein and had no effect on cell proliferation monitored by incorporation of BrdU. TGF-beta 1 and activin A protected dopaminergic neurons against N-methyl-4-phenylpiridinium ion toxicity. Reverse transcription-polymerase chain reaction (RT-PCR) analysis indicated that TGF-beta 2 mRNA, but not GDNF mRNA, is expressed in the E14 rat midbrain floor and in mesencephalic cultures. We conclude that TGF-beta s 1-3, activin A and GDNF share a neurotrophic capacity for developing dopaminergic neurons, which is not mediated by astroglial cells and not accompanied by an increase in cell proliferation. Images PMID:7882977

  7. Calcitriol imparts neuroprotection in vitro to midbrain dopaminergic neurons by upregulating GDNF expression.

    PubMed

    Orme, Rowan P; Bhangal, Manminder S; Fricker, Rosemary A

    2013-01-01

    During development a tightly controlled signaling cascade dictates the differentiation, maturation and survival of developing neurons. Understanding this signaling mechanism is important for developing therapies for neurodegenerative illnesses. In previous work we have sought to understand the complex signaling pathways responsible for the development of midbrain dopamine neurons using a proteomic approach. One protein we have identified as being expressed in developing midbrain tissue is the vitamin D receptor. Therefore we investigated the effect of the biologically active vitamin D3 metabolite, calcitriol, on primary fetal ventral mesencephalic cultures of dopamine neurons. We observed a dose responsive increase in numbers of rat primary dopamine neurons when calcitriol was added to culture media. Western blot data showed that calcitriol upregulated the expression of glial derived neurotrophic factor (GDNF). Blocking GDNF signaling could prevent calcitriol's ability to increase numbers of dopamine neurons. An apoptosis assay and cell birth dating experiment revealed that calcitriol increases the number of dopamine neurons through neuroprotection and not increased differentiation. This could have implications for future neuroprotective PD therapies.

  8. Calcitriol Imparts Neuroprotection In Vitro to Midbrain Dopaminergic Neurons by Upregulating GDNF Expression

    PubMed Central

    Orme, Rowan P.; Bhangal, Manminder S.; Fricker, Rosemary A.

    2013-01-01

    During development a tightly controlled signaling cascade dictates the differentiation, maturation and survival of developing neurons. Understanding this signaling mechanism is important for developing therapies for neurodegenerative illnesses. In previous work we have sought to understand the complex signaling pathways responsible for the development of midbrain dopamine neurons using a proteomic approach. One protein we have identified as being expressed in developing midbrain tissue is the vitamin D receptor. Therefore we investigated the effect of the biologically active vitamin D3 metabolite, calcitriol, on primary fetal ventral mesencephalic cultures of dopamine neurons. We observed a dose responsive increase in numbers of rat primary dopamine neurons when calcitriol was added to culture media. Western blot data showed that calcitriol upregulated the expression of glial derived neurotrophic factor (GDNF). Blocking GDNF signaling could prevent calcitriol’s ability to increase numbers of dopamine neurons. An apoptosis assay and cell birth dating experiment revealed that calcitriol increases the number of dopamine neurons through neuroprotection and not increased differentiation. This could have implications for future neuroprotective PD therapies. PMID:23626767

  9. Progressive loss of dopaminergic neurons in the ventral midbrain of adult mice heterozygote for Engrailed1: a new genetic model for Parkinson's disease?

    PubMed

    Le Pen, Gwenaëlle; Sonnier, Laure; Hartmann, Andreas; Bizot, Jean-Charles; Trovero, Fabrice; Krebs, Marie-Odile; Prochiantz, Alain

    2008-01-01

    Engrailed1 is a developmental gene of the homeogene family that controls the survival of midbrain dopaminergic neurons throughout life. Since these neurons have been crucially implicated in Parkinson's disease (PD), transgenic mice lacking one En1 allele could be of particular interest for the development of an animal model for PD. We showed in En1+/- mice, some traits reminiscent of PD such as (1) a progressive loss of mesencephalic dopaminergic (DA) neurons, and (2) motor deficits, anhedonia, decreased social interactions and depression-like behaviours. Further validation is needed, but these first results suggest that En1+/- mice could provide a promising model for the study of PD.

  10. Vesicular expression and release of ATP from dopaminergic neurons of the mouse retina and midbrain

    PubMed Central

    Ho, Tracy; Jobling, Andrew I.; Greferath, Ursula; Chuang, Trinette; Ramesh, Archana; Fletcher, Erica L.; Vessey, Kirstan A.

    2015-01-01

    Vesicular nucleotide transporter (VNUT) is required for active accumulation of adenosine tri-phosphate (ATP) into vesicles for purinergic neurotransmission, however, the cell types that express VNUT in the central nervous system remain unknown. This study characterized VNUT expression within the mammalian retina and brain and assessed a possible functional role in purinergic signaling. Two native isoforms of VNUT were detected in mouse retina and brain based on RNA transcript and protein analysis. Using immunohistochemistry, VNUT was found to co-localize with tyrosine hydroxylase (TH) positive, dopaminergic (DA) neurons of the substantia nigra and ventral tegmental area, however, VNUT expression in extranigral non-DA neurons was also observed. In the retina, VNUT labeling was found to co-localize solely with TH-positive DA-cells. In the outer retina, VNUT-positive interplexiform cell processes were in close contact with horizontal cells and cone photoreceptor terminals, which are known to express P2 purinergic-receptors. In order to assess function, dissociated retinal neurons were loaded with fluorescent ATP markers (Quinacrine or Mant-ATP) and the DA marker FFN102, co-labeled with a VNUT antibody and imaged in real time. Fluorescent ATP markers and FFN102 puncta were found to co-localize in VNUT positive neurons and upon stimulation with high potassium, ATP marker fluorescence at the cell membrane was reduced. This response was blocked in the presence of cadmium. These data suggest DA neurons co-release ATP via calcium dependent exocytosis and in the retina this may modulate the visual response by activating purine receptors on closely associated neurons. PMID:26500494

  11. Interaction of NMDA receptor and pacemaking mechanisms in the midbrain dopaminergic neuron.

    PubMed

    Ha, Joon; Kuznetsov, Alexey

    2013-01-01

    Dopamine neurotransmission has been found to play a role in addictive behavior and is altered in psychiatric disorders. Dopaminergic (DA) neurons display two functionally distinct modes of electrophysiological activity: low- and high-frequency firing. A puzzling feature of the DA neuron is the following combination of its responses: N-methyl-D-aspartate receptor (NMDAR) activation evokes high-frequency firing, whereas other tonic excitatory stimuli (α-amino-3-hydroxyl-5-methyl-4-isoxazolepropionate receptor (AMPAR) activation or applied depolarization) block firing instead. We suggest a new computational model that reproduces this combination of responses and explains recent experimental data. Namely, somatic NMDAR stimulation evokes high-frequency firing and is more effective than distal dendritic stimulation. We further reduce the model to a single compartment and analyze the mechanism of the distinct high-frequency response to NMDAR activation vs. other stimuli. Standard nullcline analysis shows that the mechanism is based on a decrease in the amplitude of calcium oscillations. The analysis confirms that the nonlinear voltage dependence provided by the magnesium block of the NMDAR determine its capacity to elevate the firing frequency. We further predict that the moderate slope of the voltage dependence plays the central role in the frequency elevation. Additionally, we suggest a repolarizing current that sustains calcium-independent firing or firing in the absence of calcium-dependent repolarizing currents. We predict that the ether-a-go-go current (ERG), which has been observed in the DA neuron, is the best fit for this critical role. We show that a calcium-dependent and a calcium-independent oscillatory mechanisms form a structure of interlocked negative feedback loops in the DA neuron. The structure connects research of DA neuron firing with circadian biology and determines common minimal models for investigation of robustness of oscillations, which is

  12. The Effects of Electrical and Optical Stimulation of Midbrain Dopaminergic Neurons on Rat 50-kHz Ultrasonic Vocalizations

    PubMed Central

    Scardochio, Tina; Trujillo-Pisanty, Ivan; Conover, Kent; Shizgal, Peter; Clarke, Paul B. S.

    2015-01-01

    Rationale: Adult rats emit ultrasonic vocalizations (USVs) at around 50-kHz; these commonly occur in contexts that putatively engender positive affect. While several reports indicate that dopaminergic (DAergic) transmission plays a role in the emission of 50-kHz calls, the pharmacological evidence is mixed. Different modes of dopamine (DA) release (i.e., tonic and phasic) could potentially explain this discrepancy. Objective: To investigate the potential role of phasic DA release in 50-kHz call emission. Methods: In Experiment 1, USVs were recorded in adult male rats following unexpected electrical stimulation of the medial forebrain bundle (MFB). In parallel, phasic DA release in the nucleus accumbens (NAcc) was recorded using fast-scan cyclic voltammetry. In Experiment 2, USVs were recorded following response-contingent or non-contingent optogenetic stimulation of midbrain DAergic neurons. Four 20-s schedules of optogenetic stimulation were used: fixed-interval, fixed-time, variable-interval, and variable-time. Results: Brief electrical stimulation of the MFB increased both 50-kHz call rate and phasic DA release in the NAcc. During optogenetic stimulation sessions, rats initially called at a high rate comparable to that observed following reinforcers such as psychostimulants. Although optogenetic stimulation maintained reinforced responding throughout the 2-h session, the call rate declined to near zero within the first 30 min. The trill call subtype predominated following both electrical and optical stimulation. Conclusion: The occurrence of electrically-evoked 50-kHz calls, time-locked to phasic DA (Experiment 1), provides correlational evidence supporting a role for phasic DA in USV production. However, in Experiment 2, the temporal dissociation between calling and optogenetic stimulation of midbrain DAergic neurons suggests that phasic mesolimbic DA release is not sufficient to produce 50-kHz calls. The emission of the trill subtype of 50-kHz calls

  13. Conditional Expression of Parkinson's Disease-Related R1441C LRRK2 in Midbrain Dopaminergic Neurons of Mice Causes Nuclear Abnormalities without Neurodegeneration

    PubMed Central

    Tsika, Elpida; Kannan, Meghna; Foo, Caroline Shi-Yan; Dikeman, Dustin; Glauser, Liliane; Gellhaar, Sandra; Galter, Dagmar; Knott, Graham W.; Dawson, Ted M.; Dawson, Valina L.; Moore, Darren J.

    2015-01-01

    Mutations in the leucine-rich repeat kinase 2 (LRRK2) gene cause late-onset, autosomal dominant Parkinson's disease (PD). The clinical and neurochemical features of LRRK2-linked PD are similar to idiopathic disease although neuropathology is somewhat heterogeneous. Dominant mutations in LRRK2 precipitate neurodegeneration through a toxic gain-of-function mechanism which can be modeled in transgenic mice overexpressing human LRRK2 variants. A number of LRRK2 transgenic mouse models have been developed that display abnormalities in dopaminergic neurotransmission and alterations in tau metabolism yet without consistently inducing dopaminergic neurodegeneration. To directly explore the impact of mutant LRRK2 on the nigrostriatal dopaminergic pathway, we developed conditional transgenic mice that selectively express human R1441C LRRK2 in dopaminergic neurons from the endogenous murine ROSA26 promoter. The expression of R1441C LRRK2 does not induce the degeneration of substantia nigra dopaminergic neurons or striatal dopamine deficits in mice up to 2 years of age, and fails to precipitate abnormal protein inclusions containing alpha-synuclein, tau, ubiquitin or autophagy markers (LC3 and p62). Furthermore, mice expressing R1441C LRRK2 exhibit normal motor activity and olfactory function with increasing age. Intriguingly, the expression of R1441C LRRK2 induces age-dependent abnormalities of the nuclear envelope in nigral dopaminergic neurons including reduced nuclear circularity and increased invaginations of the nuclear envelope. In addition, R1441C LRRK2 mice display increased neurite complexity of cultured midbrain dopaminergic neurons. Collectively, these novel R1441C LRRK2 conditional transgenic mice reveal altered dopaminergic neuronal morphology with advancing age, and provide a useful tool for exploring the pathogenic mechanisms underlying the R1441C LRRK2 mutation in PD. PMID:25174890

  14. Dickkopf 3 Promotes the Differentiation of a Rostrolateral Midbrain Dopaminergic Neuronal Subset In Vivo and from Pluripotent Stem Cells In Vitro in the Mouse.

    PubMed

    Fukusumi, Yoshiyasu; Meier, Florian; Götz, Sebastian; Matheus, Friederike; Irmler, Martin; Beckervordersandforth, Ruth; Faus-Kessler, Theresa; Minina, Eleonora; Rauser, Benedict; Zhang, Jingzhong; Arenas, Ernest; Andersson, Elisabet; Niehrs, Christof; Beckers, Johannes; Simeone, Antonio; Wurst, Wolfgang; Prakash, Nilima

    2015-09-30

    Wingless-related MMTV integration site 1 (WNT1)/β-catenin signaling plays a crucial role in the generation of mesodiencephalic dopaminergic (mdDA) neurons, including the substantia nigra pars compacta (SNc) subpopulation that preferentially degenerates in Parkinson's disease (PD). However, the precise functions of WNT1/β-catenin signaling in this context remain unknown. Stem cell-based regenerative (transplantation) therapies for PD have not been implemented widely in the clinical context, among other reasons because of the heterogeneity and incomplete differentiation of the transplanted cells. This might result in tumor formation and poor integration of the transplanted cells into the dopaminergic circuitry of the brain. Dickkopf 3 (DKK3) is a secreted glycoprotein implicated in the modulation of WNT/β-catenin signaling. Using mutant mice, primary ventral midbrain cells, and pluripotent stem cells, we show that DKK3 is necessary and sufficient for the correct differentiation of a rostrolateral mdDA neuron subset. Dkk3 transcription in the murine ventral midbrain coincides with the onset of mdDA neurogenesis and is required for the activation and/or maintenance of LMX1A (LIM homeobox transcription factor 1α) and PITX3 (paired-like homeodomain transcription factor 3) expression in the corresponding mdDA precursor subset, without affecting the proliferation or specification of their progenitors. Notably, the treatment of differentiating pluripotent stem cells with recombinant DKK3 and WNT1 proteins also increases the proportion of mdDA neurons with molecular SNc DA cell characteristics in these cultures. The specific effects of DKK3 on the differentiation of rostrolateral mdDA neurons in the murine ventral midbrain, together with its known prosurvival and anti-tumorigenic properties, make it a good candidate for the improvement of regenerative and neuroprotective strategies in the treatment of PD. Significance statement: We show here that Dickkopf 3 (DKK3), a

  15. The {beta}-chemokines CCL2 and CCL7 are two novel differentiation factors for midbrain dopaminergic precursors and neurons

    SciTech Connect

    Edman, Linda C.; Mira, Helena; Arenas, Ernest

    2008-06-10

    {beta}-chemokines are secreted factors that regulate diverse functions in the adult brain, such as neuro-immune responses and neurotransmission, but their function in the developing brain is largely unknown. We recently found that the orphan nuclear receptor, Nurr1, up regulates CCL2 and CCL7 in neural stem cells, suggesting a possible function of {beta}-chemokines in midbrain development. Here we report that two {beta}-chemokines, CCL2 and CCL7, and two of their receptors, CCR1 and CCR2, are expressed and developmentally regulated in the ventral midbrain (VM). Moreover, we found that the expression of CCL7 was down regulated in the Nurr1 knockout mice, linking CCL7 to dopamine (DA) neuron development. When the function of CCL2 and CCL7 was examined, we found that they selectively enhanced the differentiation of Nurr1+ precursors into DA neurons, but not their survival or progenitor proliferation in primary precursor cultures. Moreover, both CCL2 and CCL7 promoted neuritogenesis in midbrain DA neuron cultures. Thus, our results show for the first time a function of {beta}-chemokines in the developing brain and identify {beta}-chemokines as novel class of pro-differentiation factors for midbrain DA neurons. These data also suggest that {beta}-chemokines may become useful tools to enhance the differentiation of DA cell preparations for cell replacement therapy and drug discovery in Parkinson's disease (PD)

  16. Depressive-like phenotype induced by AAV-mediated overexpression of human α-synuclein in midbrain dopaminergic neurons.

    PubMed

    Caudal, D; Alvarsson, A; Björklund, A; Svenningsson, P

    2015-11-01

    Parkinson's disease (PD) is a neurodegenerative disorder characterized by a progressive loss of nigral dopaminergic neurons and by the presence of aggregates containing α-synuclein called Lewy bodies. Viral vector-induced overexpression of α-synuclein in dopaminergic neurons represents a model of PD which recapitulates disease progression better than commonly used neurotoxin models. Previous studies using this model have reported motor and cognitive impairments, whereas depression, mood and anxiety phenotypes are less described. To investigate these psychiatric phenotypes, Sprague-Dawley rats received bilateral injections of a recombinant adeno-associated virus (AAV) vector expressing human α-synuclein or GFP into the substantia nigra pars compacta. Behavior was assessed at two timepoints: 3 and 8 weeks post-injection. We report that nigral α-synuclein overexpression led to a pronounced nigral dopaminergic cell loss accompanied by a smaller cell loss in the ventral tegmental area, and to a decreased striatal density of dopaminergic fibers. The AAV-α-synuclein group exhibited modest, but significant motor impairments 8 weeks after vector administration. The AAV-α-synuclein group displayed depressive-like behavior in the forced swim test after 3 weeks, and reduced sucrose preference at week 8. At both timepoints, overexpression of α-synuclein was linked to a hyperactive hypothalamic-pituitary-adrenal (HPA) axis regulation of corticosterone. The depressive-like phenotype was also correlated with decreased nigral brain-derived neurotrophic factor and spinophilin levels, and with decreased striatal levels of the activity-regulated cytoskeleton-associated protein. This study demonstrates that AAV-mediated α-synuclein overexpression in dopamine neurons is not only useful to model motor impairments of PD, but also depression. This study also provides evidence that depression in experimental Parkinsonism is correlated to dysregulation of the HPA axis and to

  17. SLC35D3 increases autophagic activity in midbrain dopaminergic neurons by enhancing BECN1-ATG14-PIK3C3 complex formation.

    PubMed

    Wei, Zong-Bo; Yuan, Ye-Feng; Jaouen, Florence; Ma, Mei-Sheng; Hao, Chan-Juan; Zhang, Zhe; Chen, Quan; Yuan, Zengqiang; Yu, Li; Beurrier, Corinne; Li, Wei

    2016-07-01

    Searching for new regulators of autophagy involved in selective dopaminergic (DA) neuron loss is a hallmark in the pathogenesis of Parkinson disease (PD). We here report that an endoplasmic reticulum (ER)-associated transmembrane protein SLC35D3 is selectively expressed in subsets of midbrain DA neurons in about 10% TH (tyrosine hydroxylase)-positive neurons in the substantia nigra pars compacta (SNc) and in about 22% TH-positive neurons in the ventral tegmental area (VTA). Loss of SLC35D3 in ros (roswell mutant) mice showed a reduction of 11.9% DA neurons in the SNc and 15.5% DA neuron loss in the VTA with impaired autophagy. We determined that SLC35D3 enhanced the formation of the BECN1-ATG14-PIK3C3 complex to induce autophagy. These results suggest that SLC35D3 is a new regulator of tissue-specific autophagy and plays an important role in the increased autophagic activity required for the survival of subsets of DA neurons. PMID:27171858

  18. Protection of Primary Dopaminergic Midbrain Neurons by GPR139 Agonists Supports Different Mechanisms of MPP(+) and Rotenone Toxicity.

    PubMed

    Bayer Andersen, Kirsten; Leander Johansen, Jens; Hentzer, Morten; Smith, Garrick Paul; Dietz, Gunnar P H

    2016-01-01

    The G-protein coupled receptor 139 (GPR139) is expressed specifically in the brain in areas of relevance for motor control. GPR139 function and signal transduction pathways are elusive, and results in the literature are even contradictory. Here, we examined the potential neuroprotective effect of GPR139 agonism in primary culture models of dopaminergic (DA) neuronal degeneration. We find that in vitro GPR139 agonists protected primary mesencephalic DA neurons against 1-methyl-4-phenylpyridinium (MPP(+))-mediated degeneration. Protection was concentration-dependent and could be blocked by a GPR139 antagonist. However, the protection of DA neurons was not found against rotenone or 6-hydroxydopamine (6-OHDA) mediated degeneration. Our results support differential mechanisms of toxicity for those substances commonly used in Parkinson's disease (PD) models and potential for GPR139 agonists in neuroprotection. PMID:27445691

  19. Protection of Primary Dopaminergic Midbrain Neurons by GPR139 Agonists Supports Different Mechanisms of MPP+ and Rotenone Toxicity

    PubMed Central

    Bayer Andersen, Kirsten; Leander Johansen, Jens; Hentzer, Morten; Smith, Garrick Paul; Dietz, Gunnar P. H.

    2016-01-01

    The G-protein coupled receptor 139 (GPR139) is expressed specifically in the brain in areas of relevance for motor control. GPR139 function and signal transduction pathways are elusive, and results in the literature are even contradictory. Here, we examined the potential neuroprotective effect of GPR139 agonism in primary culture models of dopaminergic (DA) neuronal degeneration. We find that in vitro GPR139 agonists protected primary mesencephalic DA neurons against 1-methyl-4-phenylpyridinium (MPP+)-mediated degeneration. Protection was concentration-dependent and could be blocked by a GPR139 antagonist. However, the protection of DA neurons was not found against rotenone or 6-hydroxydopamine (6-OHDA) mediated degeneration. Our results support differential mechanisms of toxicity for those substances commonly used in Parkinson’s disease (PD) models and potential for GPR139 agonists in neuroprotection. PMID:27445691

  20. Elevated P75NTR expression causes death of engrailed-deficient midbrain dopaminergic neurons by Erk1/2 suppression

    PubMed Central

    Alavian, Kambiz N; Sgadò, Paola; Alberi, Lavinia; Subramaniam, Srinivasa; Simon, Horst H

    2009-01-01

    Background The homeodomain transcription factors Engrailed-1 and Engrailed-2 are required for the survival of mesencephalic dopaminergic (mesDA) neurons in a cell-autonomous and gene-dose-dependent manner. Homozygote mutant mice, deficient of both genes (En1-/-;En2-/-), die at birth and exhibit a loss of all mesDA neurons by mid-gestation. In heterozygote animals (En1+/-;En2-/-), which are viable and fertile, postnatal maintenance of the nigrostriatal dopaminergic system is afflicted, leading to a progressive degeneration specific to this subpopulation and Parkinson's disease-like molecular and behavioral deficits. Results In this work, we show that the dose of Engrailed is inversely correlated to the expression level of the pan-neurotrophin receptor gene P75NTR (Ngfr). Loss of mesDA neurons in the Engrailed-null mutant embryos is caused by elevated expression of this neurotrophin receptor: Unusually, in this case, the cell death signal of P75NTR is mediated by suppression of Erk1/2 (extracellular-signal-regulated kinase 1/2) activity. The reduction in expression of Engrailed, possibly related to the higher levels of P75NTR, also decreases mitochondrial stability. In particular, the dose of Engrailed determines the sensitivity to cell death induced by the classic Parkinson-model toxin MPTP and to inhibition of the anti-apoptotic members of the Bcl-2 family of proteins. Conclusion Our study links the survival function of the Engrailed genes in developing mesDA neurons to the regulation of P75NTR and the sensitivity of these neurons to mitochondrial insult. The similarities to the disease etiology in combination with the nigral phenotype of En1+/-;En2-/- mice suggests that haplotype variations in the Engrailed genes and/or P75NTR that alter their expression levels could, in part, determine susceptibility to Parkinson's disease. PMID:19291307

  1. Morphological Properties in Dopaminergic Neurons of the Rat Midbrain during Early Developmental Stages and One Numerical Approach to Passive-Membrane Modeling

    NASA Astrophysics Data System (ADS)

    Tateno, Takashi

    In this study, I aim to understand morphological changes in dopaminergic neurons of the rat midbrain during early developmental stages and their computational properties in the dendrites. To this end, firstly, I measured morphological details of dopaminergic neurons using an immunochemical double-staining technique. In the viewpoint of the Rall's equivalent-cylinder model, secondly, I tested if the data satisfied one of conditions (3/2 power law) of the Rall's model. On the basis of the experimental data, I next investigated if some branches in the individual dendrites had special selectivity in efficient passive propagation of membrane potentials between the branches of individual cells and different cells. The results show that the Rall's 3/2 power law was not satisfied in many branch points and that among branches of each dendrite, specific selectivity in efficient propagation was not found. In addition, I note an implementation method in which the finite element method is applied to one-dimensional cable model of dendrites and give some numerical examples.

  2. Disrupted Functional Connectivity with Dopaminergic Midbrain in Cocaine Abusers

    SciTech Connect

    Tomasi, D.; Tomasi, D.; Volkow, N.D.; Wang, R.; Carrillo, J.; Maloney, T.; Alia-Klein, N.; Woicik, P.A.; Telang, F.; Goldstein, R.Z.

    2010-06-01

    Chronic cocaine use is associated with disrupted dopaminergic neurotransmission but how this disruption affects overall brain function (other than reward/motivation) is yet to be fully investigated. Here we test the hypothesis that cocaine addicted subjects will have disrupted functional connectivity between the midbrain (where dopamine neurons are located) and cortical and subcortical brain regions during the performance of a sustained attention task. We measured brain activation and functional connectivity with fMRI in 20 cocaine abusers and 20 matched controls. When compared to controls, cocaine abusers had lower positive functional connectivity of midbrain with thalamus, cerebellum, and rostral cingulate, and this was associated with decreased activation in thalamus and cerebellum and enhanced deactivation in rostral cingulate. These findings suggest that decreased functional connectivity of the midbrain interferes with the activation and deactivation signals associated with sustained attention in cocaine addicts.

  3. Selective expression of Parkinson's disease-related Leucine-rich repeat kinase 2 G2019S missense mutation in midbrain dopaminergic neurons impairs dopamine release and dopaminergic gene expression

    PubMed Central

    Liu, Guoxiang; Sgobio, Carmelo; Gu, Xinglong; Sun, Lixin; Lin, Xian; Yu, Jia; Parisiadou, Loukia; Xie, Chengsong; Sastry, Namratha; Ding, Jinhui; Lohr, Kelly M.; Miller, Gary W.; Mateo, Yolanda; Lovinger, David M.; Cai, Huaibin

    2015-01-01

    Preferential dysfunction/degeneration of midbrain substantia nigra pars compacta (SNpc) dopaminergic (DA) neurons contributes to the main movement symptoms manifested in Parkinson's disease (PD). Although the Leucine-rich repeat kinase 2 (LRRK2) G2019S missense mutation (LRRK2 G2019S) is the most common causative genetic factor linked to PD, the effects of LRRK2 G2019S on the function and survival of SNpc DA neurons are poorly understood. Using a binary gene expression system, we generated transgenic mice expressing either wild-type human LRRK2 (WT mice) or the LRRK2 G2019S mutation (G2019S mice) selectively in the midbrain DA neurons. Here we show that overexpression of LRRK2 G2019S did not induce overt motor abnormalities or substantial SNpc DA neuron loss. However, the LRRK2 G2019S mutation impaired dopamine homeostasis and release in aged mice. This reduction in dopamine content/release coincided with the degeneration of DA axon terminals and decreased expression of DA neuron-enriched genes tyrosine hydroxylase (TH), vesicular monoamine transporter 2, dopamine transporter and aldehyde dehydrogenase 1. These factors are responsible for dopamine synthesis, transport and degradation, and their expression is regulated by transcription factor paired-like homeodomain 3 (PITX3). Levels of Pitx3 mRNA and protein were similarly decreased in the SNpc DA neurons of aged G2019S mice. Together, these findings suggest that PITX3-dependent transcription regulation could be one of the many potential mechanisms by which LRRK2 G2019S acts in SNpc DA neurons, resulting in downregulation of its downstream target genes critical for dopamine homeostasis and release. PMID:26123485

  4. Selective expression of Parkinson's disease-related Leucine-rich repeat kinase 2 G2019S missense mutation in midbrain dopaminergic neurons impairs dopamine release and dopaminergic gene expression.

    PubMed

    Liu, Guoxiang; Sgobio, Carmelo; Gu, Xinglong; Sun, Lixin; Lin, Xian; Yu, Jia; Parisiadou, Loukia; Xie, Chengsong; Sastry, Namratha; Ding, Jinhui; Lohr, Kelly M; Miller, Gary W; Mateo, Yolanda; Lovinger, David M; Cai, Huaibin

    2015-09-15

    Preferential dysfunction/degeneration of midbrain substantia nigra pars compacta (SNpc) dopaminergic (DA) neurons contributes to the main movement symptoms manifested in Parkinson's disease (PD). Although the Leucine-rich repeat kinase 2 (LRRK2) G2019S missense mutation (LRRK2 G2019S) is the most common causative genetic factor linked to PD, the effects of LRRK2 G2019S on the function and survival of SNpc DA neurons are poorly understood. Using a binary gene expression system, we generated transgenic mice expressing either wild-type human LRRK2 (WT mice) or the LRRK2 G2019S mutation (G2019S mice) selectively in the midbrain DA neurons. Here we show that overexpression of LRRK2 G2019S did not induce overt motor abnormalities or substantial SNpc DA neuron loss. However, the LRRK2 G2019S mutation impaired dopamine homeostasis and release in aged mice. This reduction in dopamine content/release coincided with the degeneration of DA axon terminals and decreased expression of DA neuron-enriched genes tyrosine hydroxylase (TH), vesicular monoamine transporter 2, dopamine transporter and aldehyde dehydrogenase 1. These factors are responsible for dopamine synthesis, transport and degradation, and their expression is regulated by transcription factor paired-like homeodomain 3 (PITX3). Levels of Pitx3 mRNA and protein were similarly decreased in the SNpc DA neurons of aged G2019S mice. Together, these findings suggest that PITX3-dependent transcription regulation could be one of the many potential mechanisms by which LRRK2 G2019S acts in SNpc DA neurons, resulting in downregulation of its downstream target genes critical for dopamine homeostasis and release.

  5. Glutamate neurons within the midbrain dopamine regions.

    PubMed

    Morales, M; Root, D H

    2014-12-12

    Midbrain dopamine systems play important roles in Parkinson's disease, schizophrenia, addiction, and depression. The participation of midbrain dopamine systems in diverse clinical contexts suggests these systems are highly complex. Midbrain dopamine regions contain at least three neuronal phenotypes: dopaminergic, GABAergic, and glutamatergic. Here, we review the locations, subtypes, and functions of glutamatergic neurons within midbrain dopamine regions. Vesicular glutamate transporter 2 (VGluT2) mRNA-expressing neurons are observed within each midbrain dopamine system. Within rat retrorubral field (RRF), large populations of VGluT2 neurons are observed throughout its anteroposterior extent. Within rat substantia nigra pars compacta (SNC), VGluT2 neurons are observed centrally and caudally, and are most dense within the laterodorsal subdivision. RRF and SNC rat VGluT2 neurons lack tyrosine hydroxylase (TH), making them an entirely distinct population of neurons from dopaminergic neurons. The rat ventral tegmental area (VTA) contains the most heterogeneous populations of VGluT2 neurons. VGluT2 neurons are found in each VTA subnucleus but are most dense within the anterior midline subnuclei. Some subpopulations of rat VGluT2 neurons co-express TH or glutamic acid decarboxylase (GAD), but most of the VGluT2 neurons lack TH or GAD. Different subsets of rat VGluT2-TH neurons exist based on the presence or absence of vesicular monoamine transporter 2, dopamine transporter, or D2 dopamine receptor. Thus, the capacity by which VGluT2-TH neurons may release dopamine will differ based on their capacity to accumulate vesicular dopamine, uptake extracellular dopamine, or be autoregulated by dopamine. Rat VTA VGluT2 neurons exhibit intrinsic VTA projections and extrinsic projections to the accumbens and to the prefrontal cortex. Mouse VTA VGluT2 neurons project to accumbens shell, prefrontal cortex, ventral pallidum, amygdala, and lateral habenula. Given their molecular

  6. Oxygen Tension Within the Neurogenic Niche Regulates Dopaminergic Neurogenesis in the Developing Midbrain.

    PubMed

    Wagenführ, Lisa; Meyer, Anne Karen; Marrone, Lara; Storch, Alexander

    2016-02-01

    Oxygen tension is an important factor controlling stem cell proliferation and maintenance in various stem cell populations with a particular relevance in midbrain dopaminergic progenitors. Further studies have shown that the oxygen-dependent transcription factor hypoxia-inducible factor 1α (HIF-1α) is involved in these processes. However, all available studies on oxygen effects in dopaminergic neuroprogenitors were performed in vitro and thus it remains unclear whether tissue oxygen tension in the embryonic midbrain is also relevant for the regulation of dopaminergic neurogenesis in vivo. We thus dissect here the effects of oxygen tension in combination with HIF-1α conditional knockout on dopaminergic neurogenesis by using a novel experimental design allowing for the control of oxygen tension within the microenvironment of the neurogenic niche of the murine fetal midbrain in vivo. The microenvironment of the midbrain dopaminergic neurogenic niche was detected as hypoxic with oxygen tensions below 1.1%. Maternal oxygen treatment of 10%, 21%, and 75% atmospheric oxygen tension for 48 h translates into robust changes in fetal midbrain oxygenation. Fetal midbrain hypoxia hampered the generation of dopaminergic neurons and is accompanied with restricted fetal midbrain development. In contrast, induced hyperoxia stimulated proliferation and differentiation of dopaminergic progenitors during early and late embryogenesis. Oxygen effects were not directly mediated through HIF-1α signaling. These data--in agreement with in vitro data-indicate that oxygen is a crucial regulator of developmental dopaminergic neurogenesis. Our study provides the initial framework for future studies on molecular mechanisms mediating oxygen regulation of dopaminergic neurogenesis within the fetal midbrain as its natural environment.

  7. The role of growth/differentiation factor 5 (GDF5) in the induction and survival of midbrain dopaminergic neurones: relevance to Parkinson's disease treatment

    PubMed Central

    Sullivan, Aideen M; O'Keeffe, Gerard W

    2005-01-01

    Growth/differentiation factor-5 (GDF5) is a member of the transforming growth factor-β superfamily which has potent effects on dopaminergic neurones in vitro and in vivo. GDF5 is under investigation as a potential therapeutic agent for Parkinson's disease (PD), which is caused by the progressive degeneration of dopaminergic neurones projecting from the substantia nigra (SN) to the striatum. In the rat ventral mesencephalon (VM; the developing SN), GDF5 expression peaks at embryonic day 14, the time at which dopaminergic neurones undergo terminal differentiation. Addition of GDF5 protein to cultures of embryonic rat VM increases the survival and improves the morphology of dopaminergic neurones in these cultures. GDF5 treatment also increases the number of cells which adopt a dopaminergic phenotype in cultures of VM progenitor cells. Intracerebral administration of GDF5 has potent neuroprotective and restorative effects on the nigrostriatal pathway in animal models of PD. Furthermore, addition of GDF5 protein to embryonic rat dopaminergic neuronal transplants improves their survival and function in a rat model of PD. Thus, GDF5 has potential applications to PD therapy as a dopaminergic neuroprotective agent and as a factor that may induce a dopaminergic neuronal fate in unrestricted progenitor cells. PMID:16185246

  8. Perinatal Exposure to Neuregulin-1 Results in Disinhibition of Adult Midbrain Dopaminergic Neurons: Implication in Schizophrenia Modeling

    PubMed Central

    Namba, Hisaaki; Okubo, Takeshi; Nawa, Hiroyuki

    2016-01-01

    Aberrant neuregulin-1 (NRG1) signals are suggested to associate with the neuropathophysiology of schizophrenia. Employing a mouse schizophrenia model established by neonatal neuregulin-1 challenge, we analysed postpubertal consequence of the NRG1 pretreatment for the electrophysiological property of nigral dopamine neurons. In vivo single unit recordings from anaesthetized NRG1-pretreated mice revealed increased spike bursting of nigral dopamine neurons. In slice preparations from NRG1-pretreated mice, spontaneous firing was elevated relative to controls. The relative increase in firing rates was abolished by a GABAA receptor antagonist. Whole-cell recording showed that perinatal NRG1 pretreatment diminished inhibitory miniature synaptic currents as well as GABAA receptor sensitivity. These results collectively suggest that perinatal exposure to neuregulin-1 results in the disinhibition of nigral dopamine neurons to influence their firing properties at the adult stage when the behavioral deficits are evident. PMID:26935991

  9. Fast transmission from the dopaminergic ventral midbrain to the sensory cortex of awake primates.

    PubMed

    Mylius, Judith; Happel, Max F K; Gorkin, Alexander G; Huang, Ying; Scheich, Henning; Brosch, Michael

    2015-11-01

    Motivated by the increasing evidence that auditory cortex is under control of dopaminergic cell structures of the ventral midbrain, we studied how the ventral tegmental area and substantia nigra affect neuronal activity in auditory cortex. We electrically stimulated 567 deep brain sites in total within and in the vicinity of the two dopaminergic ventral midbrain structures and at the same time, recorded local field potentials and neuronal discharges in cortex. In experiments conducted on three awake macaque monkeys, we found that electrical stimulation of the dopaminergic ventral midbrain resulted in short-latency (~35 ms) phasic activations in all cortical layers of auditory cortex. We were also able to demonstrate similar activations in secondary somatosensory cortex and superior temporal polysensory cortex. The electrically evoked responses in these parts of sensory cortex were similar to those previously described for prefrontal cortex. Moreover, these phasic responses could be reversibly altered by the dopamine D1-receptor antagonist SCH23390 for several tens of minutes. Thus, we speculate that the dopaminergic ventral midbrain exerts a temporally precise, phasic influence on sensory cortex using fast-acting non-dopaminergic transmitters and that their effects are modulated by dopamine on a longer timescale. Our findings suggest that some of the information carried by the neuronal discharges in the dopaminergic ventral midbrain, such as the motivational value or the motivational salience, is transmitted to auditory cortex and other parts of sensory cortex. The mesocortical pathway may thus contribute to the representation of non-auditory events in the auditory cortex and to its associative functions. PMID:25084746

  10. Fast transmission from the dopaminergic ventral midbrain to the sensory cortex of awake primates.

    PubMed

    Mylius, Judith; Happel, Max F K; Gorkin, Alexander G; Huang, Ying; Scheich, Henning; Brosch, Michael

    2015-11-01

    Motivated by the increasing evidence that auditory cortex is under control of dopaminergic cell structures of the ventral midbrain, we studied how the ventral tegmental area and substantia nigra affect neuronal activity in auditory cortex. We electrically stimulated 567 deep brain sites in total within and in the vicinity of the two dopaminergic ventral midbrain structures and at the same time, recorded local field potentials and neuronal discharges in cortex. In experiments conducted on three awake macaque monkeys, we found that electrical stimulation of the dopaminergic ventral midbrain resulted in short-latency (~35 ms) phasic activations in all cortical layers of auditory cortex. We were also able to demonstrate similar activations in secondary somatosensory cortex and superior temporal polysensory cortex. The electrically evoked responses in these parts of sensory cortex were similar to those previously described for prefrontal cortex. Moreover, these phasic responses could be reversibly altered by the dopamine D1-receptor antagonist SCH23390 for several tens of minutes. Thus, we speculate that the dopaminergic ventral midbrain exerts a temporally precise, phasic influence on sensory cortex using fast-acting non-dopaminergic transmitters and that their effects are modulated by dopamine on a longer timescale. Our findings suggest that some of the information carried by the neuronal discharges in the dopaminergic ventral midbrain, such as the motivational value or the motivational salience, is transmitted to auditory cortex and other parts of sensory cortex. The mesocortical pathway may thus contribute to the representation of non-auditory events in the auditory cortex and to its associative functions.

  11. Ascending midbrain dopaminergic axons require descending GAD65 axon fascicles for normal pathfinding

    PubMed Central

    García-Peña, Claudia M.; Kim, Minkyung; Frade-Pérez, Daniela; Ávila-González, Daniela; Téllez, Elisa; Mastick, Grant S.; Tamariz, Elisa; Varela-Echavarría, Alfredo

    2014-01-01

    The Nigrostriatal pathway (NSP) is formed by dopaminergic axons that project from the ventral midbrain to the dorsolateral striatum as part of the medial forebrain bundle. Previous studies have implicated chemotropic proteins in the formation of the NSP during development but little is known of the role of substrate-anchored signals in this process. We observed in mouse and rat embryos that midbrain dopaminergic axons ascend in close apposition to descending GAD65-positive axon bundles throughout their trajectory to the striatum. To test whether such interaction is important for dopaminergic axon pathfinding, we analyzed transgenic mouse embryos in which the GAD65 axon bundle was reduced by the conditional expression of the diphtheria toxin. In these embryos we observed dopaminergic misprojection into the hypothalamic region and abnormal projection in the striatum. In addition, analysis of Robo1/2 and Slit1/2 knockout embryos revealed that the previously described dopaminergic misprojection in these embryos is accompanied by severe alterations in the GAD65 axon scaffold. Additional studies with cultured dopaminergic neurons and whole embryos suggest that NCAM and Robo proteins are involved in the interaction of GAD65 and dopaminergic axons. These results indicate that the fasciculation between descending GAD65 axon bundles and ascending dopaminergic axons is required for the stereotypical NSP formation during brain development and that known guidance cues may determine this projection indirectly by instructing the pathfinding of the axons that are part of the GAD65 axon scaffold. PMID:24926237

  12. The Dopaminergic Midbrain Encodes the Expected Certainty about Desired Outcomes.

    PubMed

    Schwartenbeck, Philipp; FitzGerald, Thomas H B; Mathys, Christoph; Dolan, Ray; Friston, Karl

    2015-10-01

    Dopamine plays a key role in learning; however, its exact function in decision making and choice remains unclear. Recently, we proposed a generic model based on active (Bayesian) inference wherein dopamine encodes the precision of beliefs about optimal policies. Put simply, dopamine discharges reflect the confidence that a chosen policy will lead to desired outcomes. We designed a novel task to test this hypothesis, where subjects played a "limited offer" game in a functional magnetic resonance imaging experiment. Subjects had to decide how long to wait for a high offer before accepting a low offer, with the risk of losing everything if they waited too long. Bayesian model comparison showed that behavior strongly supported active inference, based on surprise minimization, over classical utility maximization schemes. Furthermore, midbrain activity, encompassing dopamine projection neurons, was accurately predicted by trial-by-trial variations in model-based estimates of precision. Our findings demonstrate that human subjects infer both optimal policies and the precision of those inferences, and thus support the notion that humans perform hierarchical probabilistic Bayesian inference. In other words, subjects have to infer both what they should do as well as how confident they are in their choices, where confidence may be encoded by dopaminergic firing. PMID:25056572

  13. The Dopaminergic Midbrain Encodes the Expected Certainty about Desired Outcomes

    PubMed Central

    Schwartenbeck, Philipp; FitzGerald, Thomas H. B.; Mathys, Christoph; Dolan, Ray; Friston, Karl

    2015-01-01

    Dopamine plays a key role in learning; however, its exact function in decision making and choice remains unclear. Recently, we proposed a generic model based on active (Bayesian) inference wherein dopamine encodes the precision of beliefs about optimal policies. Put simply, dopamine discharges reflect the confidence that a chosen policy will lead to desired outcomes. We designed a novel task to test this hypothesis, where subjects played a “limited offer” game in a functional magnetic resonance imaging experiment. Subjects had to decide how long to wait for a high offer before accepting a low offer, with the risk of losing everything if they waited too long. Bayesian model comparison showed that behavior strongly supported active inference, based on surprise minimization, over classical utility maximization schemes. Furthermore, midbrain activity, encompassing dopamine projection neurons, was accurately predicted by trial-by-trial variations in model-based estimates of precision. Our findings demonstrate that human subjects infer both optimal policies and the precision of those inferences, and thus support the notion that humans perform hierarchical probabilistic Bayesian inference. In other words, subjects have to infer both what they should do as well as how confident they are in their choices, where confidence may be encoded by dopaminergic firing. PMID:25056572

  14. Dissecting the diversity of midbrain dopamine neurons.

    PubMed

    Roeper, Jochen

    2013-06-01

    Midbrain dopamine (DA) neurons are essential for controlling key functions of the brain, such as voluntary movement, reward processing, and working memory. The largest populations of midbrain DA neurons are localized in two neighboring nuclei, the substantia nigra (SN) and the ventral tegmental area (VTA). Regardless of their different axonal projections to subcortical and cortical targets, midbrain DA neurons have traditionally been regarded as a relatively homogeneous group of neurons, with a stereotypical set of intrinsic electrophysiological properties and in vivo pattern of activity. In this review, I highlight recent data supporting an unexpected degree of diversity among these midbrain DA neurons in the mammalian brain, ranging from their developmental lineages and different synaptic connectivity to their electrophysiological properties and behavioral functions.

  15. Diverse roles for Wnt7a in ventral midbrain neurogenesis and dopaminergic axon morphogenesis.

    PubMed

    Fernando, Chathurini V; Kele, Julianna; Bye, Christopher R; Niclis, Jonathan C; Alsanie, Walaa; Blakely, Brette D; Stenman, Jan; Turner, Brad J; Parish, Clare L

    2014-09-01

    During development of the central nervous system, trophic, together with genetic, cues dictate the balance between cellular proliferation and differentiation. Subsequent to the birth of new neurons, additional intrinsic and extrinsic signals regulate the connectivity of these cells. While a number of regulators of ventral midbrain (VM) neurogenesis and dopaminergic (DA) axon guidance are known, we identify a number of novel roles for the secreted glycoprotein, Wnt7a, in this context. We demonstrate a temporal and spatial expression of Wnt7a in the VM, indicative of roles in neurogenesis, differentiation, and axonal growth and guidance. In primary VM cultures, and validated in Wnt7a-deficient mice, we show that the early expression within the VM is important for regulating VM progenitor proliferation, cell cycle progression, and cell survival, thereby dictating the number of midbrain Nurr1 precursors and DA neurons. During early development of the midbrain DA pathways, Wnt7a promotes axonal elongation and repels DA neurites out of the midbrain. Later, Wnt7a expression in the VM midline suggests a role in preventing axonal crossing while expression in regions flanking the medial forebrain bundle (thalamus and hypothalamus) ensured appropriate trajectory of DA axons en route to their forebrain targets. We show that the effects of Wnt7a in VM development are mediated, at least in part, by the β-catenin/canonical pathways. Together, these findings identify Wnt7a as a new regulator of VM neurogenesis and DA axon growth and guidance.

  16. Telencephalic neural precursor cells show transient competence to interpret the dopaminergic niche of the embryonic midbrain.

    PubMed

    Baizabal, José-Manuel; Valencia, Concepción; Guerrero-Flores, Gilda; Covarrubias, Luis

    2011-01-15

    Neural Precursor Cells (NPCs) generate complex stereotypic arrays of neuronal subtypes in the brain. This process involves the integration of patterning cues that progressively restrict the fate of specific NPCs. Yet the capacity of NPCs to interpret foreign microenvironments during development remains poorly defined. The aim of this work was to test the competence of mouse telencephalic NPCs to respond to the dopaminergic niche of the mesencephalon. Telencephalic NPCs isolated from midgestation mouse embryos (E10.5) and transplanted to age-matched mesencephalic explants efficiently differentiated into neurons but were largely unable to produce midbrain dopaminergic (mDA) neurons. Instead, E10.5 telencephalic NPCs behaved as restricted gabaergic progenitors that maintained ectopic expression of Foxg1 and Pax6. In contrast, E8.5 telencephalic NPCs were able to differentiate into Lmx1a(+)/Foxa2(+)/TH(+) neurons in the dopaminergic niche of the mesencephalic explants. In addition, these early telencephalic NPCs showed region-dependent expression of Nkx6.1, Nkx2.2 and site-specific differentiation into gabaergic neurons within the mesencephalic tissue. Significant dopaminergic differentiation of E8.5 telencephalic NPCs was not observed after transplantation to E12.5 mesencephalic explants, suggesting that inductive signals in the dopaminergic niche rapidly decay after midgestation. Moreover, we employed transplantation of embryonic stem cells-derived precursors to demonstrate that extinction of inductive signals within the telencephalon lags behind the commitment of residing NPCs. Our data indicate that the plasticity to interpret multiple instructive niches is an early and ephemeral feature of the telencephalic neural lineage.

  17. Primary cilia are critical for Sonic hedgehog-mediated dopaminergic neurogenesis in the embryonic midbrain.

    PubMed

    Gazea, Mary; Tasouri, Evangelia; Tolve, Marianna; Bosch, Viktoria; Kabanova, Anna; Gojak, Christian; Kurtulmus, Bahtiyar; Novikov, Orna; Spatz, Joachim; Pereira, Gislene; Hübner, Wolfgang; Brodski, Claude; Tucker, Kerry L; Blaess, Sandra

    2016-01-01

    Midbrain dopaminergic (mDA) neurons modulate various motor and cognitive functions, and their dysfunction or degeneration has been implicated in several psychiatric diseases. Both Sonic Hedgehog (Shh) and Wnt signaling pathways have been shown to be essential for normal development of mDA neurons. Primary cilia are critical for the development of a number of structures in the brain by serving as a hub for essential developmental signaling cascades, but their role in the generation of mDA neurons has not been examined. We analyzed mutant mouse lines deficient in the intraflagellar transport protein IFT88, which is critical for primary cilia function. Conditional inactivation of Ift88 in the midbrain after E9.0 results in progressive loss of primary cilia, a decreased size of the mDA progenitor domain, and a reduction in mDA neurons. We identified Shh signaling as the primary cause of these defects, since conditional inactivation of the Shh signaling pathway after E9.0, through genetic ablation of Gli2 and Gli3 in the midbrain, results in a phenotype basically identical to the one seen in Ift88 conditional mutants. Moreover, the expansion of the mDA progenitor domain observed when Shh signaling is constitutively activated does not occur in absence of Ift88. In contrast, clusters of Shh-responding progenitors are maintained in the ventral midbrain of the hypomorphic Ift88 mouse mutant, cobblestone. Despite the residual Shh signaling, the integrity of the mDA progenitor domain is severely disturbed, and consequently very few mDA neurons are generated in cobblestone mutants. Our results identify for the first time a crucial role of primary cilia in the induction of mDA progenitors, define a narrow time window in which Shh-mediated signaling is dependent upon normal primary cilia function for this purpose, and suggest that later Wnt signaling-dependent events act independently of primary cilia.

  18. Purification of functional human ES and iPSC-derived midbrain dopaminergic progenitors using LRTM1

    PubMed Central

    Samata, Bumpei; Doi, Daisuke; Nishimura, Kaneyasu; Kikuchi, Tetsuhiro; Watanabe, Akira; Sakamoto, Yoshimasa; Kakuta, Jungo; Ono, Yuichi; Takahashi, Jun

    2016-01-01

    Human induced pluripotent stem cells (iPSCs) can provide a promising source of midbrain dopaminergic (mDA) neurons for cell replacement therapy for Parkinson's disease (PD). However, iPSC-derived donor cells inevitably contain tumorigenic or inappropriate cells. To eliminate these unwanted cells, cell sorting using antibodies for specific markers such as CORIN or ALCAM has been developed, but neither marker is specific for ventral midbrain. Here we employ a double selection strategy for cells expressing both CORIN and LMX1A::GFP, and report a cell surface marker to enrich mDA progenitors, LRTM1. When transplanted into 6-OHDA-lesioned rats, human iPSC-derived LRTM1+ cells survive and differentiate into mDA neurons in vivo, resulting in a significant improvement in motor behaviour without tumour formation. In addition, there was marked survival of mDA neurons following transplantation of LRTM1+ cells into the brain of an MPTP-treated monkey. Thus, LRTM1 may provide a tool for efficient and safe cell therapy for PD patients. PMID:27739432

  19. Neurofeedback-mediated self-regulation of the dopaminergic midbrain.

    PubMed

    Sulzer, James; Sitaram, Ranganatha; Blefari, Maria Laura; Kollias, Spyros; Birbaumer, Niels; Stephan, Klaas Enno; Luft, Andreas; Gassert, Roger

    2013-12-01

    The dopaminergic system is involved in reward encoding and reinforcement learning. Dopaminergic neurons from this system in the substantia nigra/ventral tegmental area complex (SN/VTA) fire in response to unexpected reinforcing cues. The goal of this study was to investigate whether individuals can gain voluntary control of SN/VTA activity, thereby potentially enhancing dopamine release to target brain regions. Neurofeedback and mental imagery were used to self-regulate the SN/VTA. Real-time functional magnetic resonance imaging (rtfMRI) provided abstract visual feedback of the SN/VTA activity while the subject imagined rewarding scenes. Skin conductance response (SCR) was recorded as a measure of emotional arousal. To examine the effect of neurofeedback, subjects were assigned to either receiving feedback directly proportional (n=15, veridical feedback) or inversely proportional (n=17, inverted feedback) to SN/VTA activity. Both groups of subjects were able to up-regulate SN/VTA activity initially without feedback. Veridical feedback improved the ability to up-regulate SN/VTA compared to baseline while inverted feedback did not. Additional dopaminergic regions were activated in both groups. The ability to self-regulate SN/VTA was differentially correlated with SCR depending on the group, suggesting an association between emotional arousal and neurofeedback performance. These findings indicate that SN/VTA can be voluntarily activated by imagery and voluntary activation is further enhanced by neurofeedback. The findings may lead the way towards a non-invasive strategy for endogenous control of dopamine.

  20. Representation of spontaneous movement by dopaminergic neurons is cell-type selective and disrupted in parkinsonism.

    PubMed

    Dodson, Paul D; Dreyer, Jakob K; Jennings, Katie A; Syed, Emilie C J; Wade-Martins, Richard; Cragg, Stephanie J; Bolam, J Paul; Magill, Peter J

    2016-04-12

    Midbrain dopaminergic neurons are essential for appropriate voluntary movement, as epitomized by the cardinal motor impairments arising in Parkinson's disease. Understanding the basis of such motor control requires understanding how the firing of different types of dopaminergic neuron relates to movement and how this activity is deciphered in target structures such as the striatum. By recording and labeling individual neurons in behaving mice, we show that the representation of brief spontaneous movements in the firing of identified midbrain dopaminergic neurons is cell-type selective. Most dopaminergic neurons in the substantia nigra pars compacta (SNc), but not in ventral tegmental area or substantia nigra pars lateralis, consistently represented the onset of spontaneous movements with a pause in their firing. Computational modeling revealed that the movement-related firing of these dopaminergic neurons can manifest as rapid and robust fluctuations in striatal dopamine concentration and receptor activity. The exact nature of the movement-related signaling in the striatum depended on the type of dopaminergic neuron providing inputs, the striatal region innervated, and the type of dopamine receptor expressed by striatal neurons. Importantly, in aged mice harboring a genetic burden relevant for human Parkinson's disease, the precise movement-related firing of SNc dopaminergic neurons and the resultant striatal dopamine signaling were lost. These data show that distinct dopaminergic cell types differentially encode spontaneous movement and elucidate how dysregulation of their firing in early Parkinsonism can impair their effector circuits.

  1. Representation of spontaneous movement by dopaminergic neurons is cell-type selective and disrupted in parkinsonism

    PubMed Central

    Dreyer, Jakob K.; Jennings, Katie A.; Syed, Emilie C. J.; Wade-Martins, Richard; Cragg, Stephanie J.; Bolam, J. Paul; Magill, Peter J.

    2016-01-01

    Midbrain dopaminergic neurons are essential for appropriate voluntary movement, as epitomized by the cardinal motor impairments arising in Parkinson’s disease. Understanding the basis of such motor control requires understanding how the firing of different types of dopaminergic neuron relates to movement and how this activity is deciphered in target structures such as the striatum. By recording and labeling individual neurons in behaving mice, we show that the representation of brief spontaneous movements in the firing of identified midbrain dopaminergic neurons is cell-type selective. Most dopaminergic neurons in the substantia nigra pars compacta (SNc), but not in ventral tegmental area or substantia nigra pars lateralis, consistently represented the onset of spontaneous movements with a pause in their firing. Computational modeling revealed that the movement-related firing of these dopaminergic neurons can manifest as rapid and robust fluctuations in striatal dopamine concentration and receptor activity. The exact nature of the movement-related signaling in the striatum depended on the type of dopaminergic neuron providing inputs, the striatal region innervated, and the type of dopamine receptor expressed by striatal neurons. Importantly, in aged mice harboring a genetic burden relevant for human Parkinson’s disease, the precise movement-related firing of SNc dopaminergic neurons and the resultant striatal dopamine signaling were lost. These data show that distinct dopaminergic cell types differentially encode spontaneous movement and elucidate how dysregulation of their firing in early Parkinsonism can impair their effector circuits. PMID:27001837

  2. NMDA Receptors in Dopaminergic Neurons are Crucial for Habit Learning

    PubMed Central

    Wang, Lei Phillip; Li, Fei; Wang, Dong; Xie, Kun; Wang, Deheng; Shen, Xiaoming; Tsien, Joe Z.

    2011-01-01

    Summary Dopamine is crucial for habit learning. Activities of midbrain dopaminergic neurons are regulated by the cortical and subcortical signals among which glutamatergic afferents provide excitatory inputs. Cognitive implications of glutamatergic afferents in regulating and engaging dopamine signals during habit learning however remain unclear. Here we show that mice with dopaminergic neuron-specific NMDAR1 deletion are impaired in a variety of habit learning tasks while normal in some other dopamine-modulated functions such as locomotor activities, goal directed learning, and spatial reference memories. In vivo neural recording revealed that DA neurons in these mutant mice could still develop the cue-reward association responses, but their conditioned response robustness was drastically blunted. Our results suggest that integration of glutamatergic inputs to DA neurons by NMDA receptors, likely by regulating associative activity patterns, is a crucial part of the cellular mechanism underpinning habit learning. PMID:22196339

  3. Primary Culture of Mouse Dopaminergic Neurons

    PubMed Central

    Gaven, Florence; Marin, Philippe; Claeysen, Sylvie

    2014-01-01

    Dopaminergic neurons represent less than 1% of the total number of neurons in the brain. This low amount of neurons regulates important brain functions such as motor control, motivation, and working memory. Nigrostriatal dopaminergic neurons selectively degenerate in Parkinson's disease (PD). This progressive neuronal loss is unequivocally associated with the motors symptoms of the pathology (bradykinesia, resting tremor, and muscular rigidity). The main agent responsible of dopaminergic neuron degeneration is still unknown. However, these neurons appear to be extremely vulnerable in diverse conditions. Primary cultures constitute one of the most relevant models to investigate properties and characteristics of dopaminergic neurons. These cultures can be submitted to various stress agents that mimic PD pathology and to neuroprotective compounds in order to stop or slow down neuronal degeneration. The numerous transgenic mouse models of PD that have been generated during the last decade further increased the interest of researchers for dopaminergic neuron cultures. Here, the video protocol focuses on the delicate dissection of embryonic mouse brains. Precise excision of ventral mesencephalon is crucial to obtain neuronal cultures sufficiently rich in dopaminergic cells to allow subsequent studies. This protocol can be realized with embryonic transgenic mice and is suitable for immunofluorescence staining, quantitative PCR, second messenger quantification, or neuronal death/survival assessment. PMID:25226064

  4. The lifelong maintenance of mesencephalic dopaminergic neurons by Nurr1 and engrailed

    PubMed Central

    2014-01-01

    Specific vulnerability and degeneration of the dopaminergic neurons in the substantia nigra pars compacta of the midbrain is the pathological hallmark of Parkinson’s disease. A number of transcription factors regulate the birth and development of this set of neurons and some remain constitutively expressed throughout life. These maintenance transcription factors are closely associated with essential neurophysiological functions and are required ultimately for the long-term survival of the midbrain dopaminergic neurons. The current review describes the role of two such factors, Nurr1 and engrailed, in differentiation, maturation, and in normal physiological functions including acquisition of neurotransmitter identity. The review will also elucidate the relationship of these factors with life, vulnerability, degeneration and death of mesencephalic dopaminergic neurons in the context of Parkinson’s disease. PMID:24685177

  5. Pitx3 is required for development of substantia nigra dopaminergic neurons

    PubMed Central

    Nunes, Irene; Tovmasian, Lucy T.; Silva, Robert M.; Burke, Robert E.; Goff, Stephen P.

    2003-01-01

    Dopaminergic (DA) neurons of substantia nigra in the midbrain control voluntary movement, and their degeneration is the cause of Parkinson's disease. The complete set of genes required to specifically determine the development of midbrain DA subgroups is not known yet. We report here that mice lacking the bicoid-related homeoprotein Pitx3 fail to develop DA neurons of the substantia nigra. Other mesencephalic DA neurons of the ventral tegmental area and retrorubral field are unaltered in their dopamine expression and histological organization. These data suggest that Pitx3-dependent gene expression is specifically required for the differentiation of DA progenitors within the mesencephalic DA system. PMID:12655058

  6. Genome-wide characterisation of Foxa1 binding sites reveals several mechanisms for regulating neuronal differentiation in midbrain dopamine cells.

    PubMed

    Metzakopian, Emmanouil; Bouhali, Kamal; Alvarez-Saavedra, Matías; Whitsett, Jeffrey A; Picketts, David J; Ang, Siew-Lan

    2015-04-01

    Midbrain dopamine neuronal progenitors develop into heterogeneous subgroups of neurons, such as substantia nigra pars compacta, ventral tegmental area and retrorubal field, that regulate motor control, motivated and addictive behaviours. The development of midbrain dopamine neurons has been extensively studied, and these studies indicate that complex cross-regulatory interactions between extrinsic and intrinsic molecules regulate a precise temporal and spatial programme of neurogenesis in midbrain dopamine progenitors. To elucidate direct molecular interactions between multiple regulatory factors during neuronal differentiation in mice, we characterised genome-wide binding sites of the forkhead/winged helix transcription factor Foxa1, which functions redundantly with Foxa2 to regulate the differentiation of mDA neurons. Interestingly, our studies identified a rostral brain floor plate Neurog2 enhancer that requires direct input from Otx2, Foxa1, Foxa2 and an E-box transcription factor for its transcriptional activity. Furthermore, the chromatin remodelling factor Smarca1 was shown to function downstream of Foxa1 and Foxa2 to regulate differentiation from immature to mature midbrain dopaminergic neurons. Our genome-wide Foxa1-bound cis-regulatory sequences from ChIP-Seq and Foxa1/2 candidate target genes from RNA-Seq analyses of embryonic midbrain dopamine cells also provide an excellent resource for probing mechanistic insights into gene regulatory networks involved in the differentiation of midbrain dopamine neurons.

  7. [The influence of L-glutamate and carbachol on burst firing of dopaminergic neurons in ventral tegmental area].

    PubMed

    Wang, Shan-shan; Wei, Chun-ling; Liu, Zhi-qiang; Ren, Wei

    2011-02-25

    Burst firing of dopaminergic neurons in ventral tegmental area (VTA) induces a large transient increase in synaptic dopamine (DA) release and thus is considered the reward-related signal. But the mechanisms of burst generation of dopaminergic neuron still remain unclear. This experiment investigated the burst firing of VTA dopaminergic neurons in rat midbrain slices perfused with carbachol and L-glutamate individually or simultaneously to understand the neurotransmitter mechanism underlying burst generation. The results showed that bath application of carbachol (10 μmol/L) and pulse application of L-glutamate (3 mmol/L) both induced burst firing in dopaminergic neuron. Co-application of carbachol and L-glutamate induced burst firing in VTA dopaminergic cells which couldn't be induced to burst by the two chemicals separately. The result indicates that carbachol and L-glutamate co-regulate burst firing of dopaminergic neuron.

  8. [Impact of opiates on dopaminergic neurons].

    PubMed

    Kaufling, Jennifer; Freund-Mercier, Marie-José; Barrot, Michel

    2016-01-01

    Since the work of Johnson and North, it is known that opiates increase the activity of dopaminergic neurons by a GABA neuron-mediated desinhibition. This model should however be updated based on recent advances. Thus, the neuroanatomical location of the GABA neurons responsible for this desinhibition has been recently detailed: they belong to a brain structure in continuity with the posterior part of the ventral tegmental area and discovered this past decade. Other data also highlighted the critical role played by glutamatergic transmission in the opioid regulation of dopaminergic neuron activity. During protracted opiate withdrawal, the inhibitory/excitatory balance exerted on dopaminergic neurons is altered. These results are now leading to propose an original hypothesis for explaining the impact of protracted opiate withdrawal on mood. PMID:27406773

  9. Differences in Number of Midbrain Dopamine Neurons Associated with Summer and Winter Photoperiods in Humans

    PubMed Central

    Aumann, Tim D.; Raabus, Mai; Tomas, Doris; Prijanto, Agustinus; Churilov, Leonid; Spitzer, Nicholas C.; Horne, Malcolm K.

    2016-01-01

    Recent evidence indicates the number of dopaminergic neurons in the adult rodent hypothalamus and midbrain is regulated by environmental cues, including photoperiod, and that this occurs via up- or down-regulation of expression of genes and proteins that are important for dopamine (DA) synthesis in extant neurons (‘DA neurotransmitter switching’). If the same occurs in humans, it may have implications for neurological symptoms associated with DA imbalances. Here we tested whether there are differences in the number of tyrosine hydroxylase (TH, the rate-limiting enzyme in DA synthesis) and DA transporter (DAT) immunoreactive neurons in the midbrain of people who died in summer (long-day photoperiod, n = 5) versus winter (short-day photoperiod, n = 5). TH and DAT immunoreactivity in neurons and their processes was qualitatively higher in summer compared with winter. The density of TH immunopositive (TH+) neurons was significantly (~6-fold) higher whereas the density of TH immunonegative (TH-) neurons was significantly (~2.5-fold) lower in summer compared with winter. The density of total neurons (TH+ and TH- combined) was not different. The density of DAT+ neurons was ~2-fold higher whereas the density of DAT- neurons was ~2-fold lower in summer compared with winter, although these differences were not statistically significant. In contrast, midbrain nuclear volume, the density of supposed glia (small TH- cells), and the amount of TUNEL staining were the same in summer compared with winter. This study provides the first evidence of an association between environmental stimuli (photoperiod) and the number of midbrain DA neurons in humans, and suggests DA neurotransmitter switching underlies this association. PMID:27428306

  10. Selective vulnerability of late-generated dopaminergic neurons of the substantia nigra in weaver mutant mice.

    PubMed Central

    Bayer, S A; Wills, K V; Triarhou, L C; Verina, T; Thomas, J D; Ghetti, B

    1995-01-01

    In homozygous weaver (wv/wv) mutant mice, nearly 50% of the dopaminergic substantia nigra neurons degenerate by postnatal day 20. We have now determined that the total number of dopaminergic neurons in the ventral midbrains of a litter of obligatory homozygous weaver pups and a litter of normal wild-type control pups indicates that no significant differences are present between groups at birth. To test the hypothesis that the subsequent degeneration of these neurons is linked to their time of origin, [3H]thymidine autoradiography was combined with tyrosine hydroxylase immunocytochemistry to construct neurogenetic timetables on postnatal day 20 in wild-type mice and weaver homozygotes. Both groups have the same span of neurogenesis but have statistically different proportions of neurons generated on specific days. In wild-type mice, more than half of the dopaminergic neurons originate on or after embryonic day 12. In contrast, over two-thirds of the surviving dopaminergic neurons in homozygous weaver mice originate on or before embryonic day 11. Our data suggest that the weaver gene does not interfere with the generation of dopaminergic neurons, but it preferentially kills late-generated dopaminergic neurons between birth and postnatal day 20. Images Fig. 2 PMID:7568088

  11. Age-related changes in midbrain dopaminergic regulation of the human reward system

    PubMed Central

    Dreher, Jean-Claude; Meyer-Lindenberg, Andreas; Kohn, Philip; Berman, Karen Faith

    2008-01-01

    The dopamine system, which plays a crucial role in reward processing, is particularly vulnerable to aging. Significant losses over a normal lifespan have been reported for dopamine receptors and transporters, but very little is known about the neurofunctional consequences of this age-related dopaminergic decline. In animals, a substantial body of data indicates that dopamine activity in the midbrain is tightly associated with reward processing. In humans, although indirect evidence from pharmacological and clinical studies also supports such an association, there has been no direct demonstration of a link between midbrain dopamine and reward-related neural response. Moreover, there are no in vivo data for alterations in this relationship in older humans. Here, by using 6-[18F]FluoroDOPA (FDOPA) positron emission tomography (PET) and event-related 3T functional magnetic resonance imaging (fMRI) in the same subjects, we directly demonstrate a link between midbrain dopamine synthesis and reward-related prefrontal activity in humans, show that healthy aging induces functional alterations in the reward system, and identify an age-related change in the direction of the relationship (from a positive to a negative correlation) between midbrain dopamine synthesis and prefrontal activity. These results indicate an age-dependent dopaminergic tuning mechanism for cortical reward processing and provide system-level information about alteration of a key neural circuit in healthy aging. Taken together, our findings provide an important characterization of the interactions between midbrain dopamine function and the reward system in healthy young humans and older subjects, and identify the changes in this regulatory circuit that accompany aging. PMID:18794529

  12. alpha4beta2 nicotinic acetylcholine receptors on dopaminergic neurons mediate nicotine reward and anxiety relief

    PubMed Central

    McGranahan, Tresa M.; Patzlaff, Natalie E.; Grady, Sharon R.; Heinemann, Stephen F.; Booker, T.K.

    2012-01-01

    Nicotine is the primary psychoactive substance in tobacco and it exerts its effects by interaction with various subtypes of nicotinic acetylcholine receptors (nAChRs) in the brain. One of the major subtypes expressed in brain, the alpha4beta2-nAChR, endogenously modulates neuronal excitability and thereby, modifies certain normal, as well as nicotine-induced, behaviors. Although alpha4-containing nAChRs are widely expressed across the brain, a major focus has been on their roles within midbrain dopaminergic regions involved in drug addition, mental illness and movement control in humans. We developed a unique model system to examine the role of alpha4-nAChRs within dopaminergic neurons by a targeted genetic deletion of the alpha4 subunit from dopaminergic neurons in mice. The loss alpha4 mRNA and alpha4beta2-nAChRs from dopaminergic neurons was confirmed, as well as selective loss of alpha4beta2-nAChR function from dopaminergic but not GABAergic neurons. Two behaviors central to nicotine dependence, reward and anxiety relief, were examined. Alpha4-nAChRs specifically on dopaminergic neurons were demonstrated to be necessary for nicotine reward as measured by nicotine place preference, but not for another drug of addiction, cocaine. Alpha4-nAChRs are necessary for the anxiolytic effects of nicotine in the elevated plus maze and elimination of alpha4-beta2-nAChRs specifically from dopaminergic neurons decreased sensitivity to the anxiolytic effects of nicotine. Deletion of alpha4-nAChRs specifically from dopaminergic neurons also increased sensitivity to nicotine-induced locomotor depression, however nicotine-induced hypothermia was unaffected. This is the first work to develop a dopaminergic specific deletion of a nAChR subunit and examine resulting changes in nicotine behaviors. PMID:21795541

  13. How to make a mesodiencephalic dopaminergic neuron.

    PubMed

    Smidt, Marten P; Burbach, J Peter H

    2007-01-01

    Dopaminergic neurons located in the ventral mesodiencephalon are essential for the control of voluntary movement and the regulation of emotion, and are severely affected in neurodegenerative diseases such as Parkinson's disease. Recent advances in molecular biology and mouse genetics have helped to unravel the mechanisms involved in the development of mesodiencephalic dopaminergic (mdDA) neurons, including their specification, migration and differentiation, as well as the processes that govern axonal pathfinding and their specific patterns of connectivity and maintenance. Here, we follow the developmental path of these neurons with the goal of generating a molecular code that could be exploited in cell-replacement strategies to treat diseases such as Parkinson's disease. PMID:17180160

  14. Limitations of In Vivo Reprogramming to Dopaminergic Neurons via a Tricistronic Strategy.

    PubMed

    Theodorou, Marina; Rauser, Benedict; Zhang, Jingzhong; Prakash, Nilima; Wurst, Wolfgang; Schick, Joel A

    2015-08-01

    Parkinson's disease is one of the most common neurodegenerative disorders characterized by cell death of dopaminergic neurons in the substantia nigra. Recent research has focused on cellular replacement through lineage reprogramming as a potential therapeutic strategy. This study sought to use genetics to define somatic cell types in vivo amenable to reprogramming. To stimulate in vivo reprogramming to dopaminergic neurons, we generated a Rosa26 knock-in mouse line conditionally overexpressing Mash1, Lmx1a, and Nurr1. These proteins are characterized by their role in neuronal commitment and development of midbrain dopaminergic neurons and have previously been shown to convert fibroblasts to dopaminergic neurons in vitro. We show that a tricistronic construct containing these transcription factors can reprogram astrocytes and fibroblasts in vitro. However, cassette overexpression triggered cell death in vivo, in part through endoplasmic reticulum stress, while we also detected "uncleaved" forms of the polyprotein, suggesting poor "cleavage" efficiency of the 2A peptides. Based on our results, the cassette overexpression induced apoptosis and precluded reprogramming in our mouse model. Therefore, we suggest that alternatives must be explored to balance construct design with efficacious reprogramming. It is evident that there are still biological obstacles to overcome for in vivo reprogramming to dopaminergic neurons.

  15. Reward and choice encoding in terminals of midbrain dopamine neurons depends on striatal target

    PubMed Central

    Parker, Nathan F.; Cameron, Courtney M.; Taliaferro, Joshua P.; Lee, Junuk; Choi, Jung Yoon; Davidson, Thomas J.; Daw, Nathaniel D.; Witten, Ilana B.

    2016-01-01

    Dopaminergic (DA) neurons in the midbrain provide rich, topographic innervation of the striatum and are central to learning and to generating actions. Despite the importance of this DA innervation, it remains unclear if and how DA neurons are specialized based on the location of their striatal target. Thus, we sought to compare the function of subpopulations of DA neurons that target distinct striatal subregions in the context of an instrumental reversal learning task. We identified key differences in the encoding of reward and choice in dopamine terminals in dorsal versus ventral striatum: DA terminals in ventral striatum responded more strongly to reward consumption and reward-predicting cues, whereas DA terminals in dorsomedial striatum responded more strongly to contralateral choices. In both cases the terminals encoded a reward prediction error. Our results suggest that the DA modulation of the striatum is spatially organized to support the specialized function of the targeted subregion. PMID:27110917

  16. The Dopaminergic Midbrain Mediates an Effect of Average Reward on Pavlovian Vigor.

    PubMed

    Rigoli, Francesco; Chew, Benjamin; Dayan, Peter; Dolan, Raymond J

    2016-09-01

    Dopamine plays a key role in motivation. Phasic dopamine response reflects a reinforcement prediction error (RPE), whereas tonic dopamine activity is postulated to represent an average reward that mediates motivational vigor. However, it has been hard to find evidence concerning the neural encoding of average reward that is uncorrupted by influences of RPEs. We circumvented this difficulty in a novel visual search task where we measured participants' button pressing vigor in a context where information (underlying an RPE) about future average reward was provided well before the average reward itself. Despite no instrumental consequence, participants' pressing force increased for greater current average reward, consistent with a form of Pavlovian effect on motivational vigor. We recorded participants' brain activity during task performance with fMRI. Greater average reward was associated with enhanced activity in dopaminergic midbrain to a degree that correlated with the relationship between average reward and pressing vigor. Interestingly, an opposite pattern was observed in subgenual cingulate cortex, a region implicated in negative mood and motivational inhibition. These findings highlight a crucial role for dopaminergic midbrain in representing aspects of average reward and motivational vigor. PMID:27082045

  17. The Dopaminergic Midbrain Mediates an Effect of Average Reward on Pavlovian Vigor.

    PubMed

    Rigoli, Francesco; Chew, Benjamin; Dayan, Peter; Dolan, Raymond J

    2016-09-01

    Dopamine plays a key role in motivation. Phasic dopamine response reflects a reinforcement prediction error (RPE), whereas tonic dopamine activity is postulated to represent an average reward that mediates motivational vigor. However, it has been hard to find evidence concerning the neural encoding of average reward that is uncorrupted by influences of RPEs. We circumvented this difficulty in a novel visual search task where we measured participants' button pressing vigor in a context where information (underlying an RPE) about future average reward was provided well before the average reward itself. Despite no instrumental consequence, participants' pressing force increased for greater current average reward, consistent with a form of Pavlovian effect on motivational vigor. We recorded participants' brain activity during task performance with fMRI. Greater average reward was associated with enhanced activity in dopaminergic midbrain to a degree that correlated with the relationship between average reward and pressing vigor. Interestingly, an opposite pattern was observed in subgenual cingulate cortex, a region implicated in negative mood and motivational inhibition. These findings highlight a crucial role for dopaminergic midbrain in representing aspects of average reward and motivational vigor.

  18. Necrostatin-1 protection of dopaminergic neurons

    PubMed Central

    Wu, Jing-ru; Wang, Jie; Zhou, Sheng-kui; Yang, Long; Yin, Jia-le; Cao, Jun-ping; Cheng, Yan-bo

    2015-01-01

    Necroptosis is characterized by programmed necrotic cell death and autophagic activation and might be involved in the death process of dopaminergic neurons in Parkinson's disease. We hypothesized that necrostatin-1 could block necroptosis and give protection to dopaminergic neurons. There is likely to be crosstalk between necroptosis and other cell death pathways, such as apoptosis and autophagy. PC12 cells were pretreated with necroststin-1 1 hour before exposure to 6-hydroxydopamine. We examined cell viability, mitochondrial membrane potential and expression patterns of apoptotic and necroptotic death signaling proteins. The results showed that the autophagy/lysosomal pathway is involved in the 6-hydroxydopamine-induced death process of PC12 cells. Mitochondrial disability induced overactive autophagy, increased cathepsin B expression, and diminished Bcl-2 expression. Necrostatin-1 within a certain concentration range (5–30 μM) elevated the viability of PC12 cells, stabilized mitochondrial membrane potential, inhibited excessive autophagy, reduced the expression of LC3-II and cathepsin B, and increased Bcl-2 expression. These findings suggest that necrostatin-1 exerted a protective effect against injury on dopaminergic neurons. Necrostatin-1 interacts with the apoptosis signaling pathway during this process. This pathway could be a new neuroprotective and therapeutic target in Parkinson's disease. PMID:26330837

  19. Human neuromelanin: an endogenous microglial activator for dopaminergic neuron death

    PubMed Central

    Zhang, Wei; Zecca, Luigi; Wilson, Belinda; Ren, RW; Wang, Yong-jun; Wang, Xiao-min; Hong, Jau-Shyong

    2013-01-01

    Substantial evidence indicates that neuroinflammation caused by over-activation of microglial in the substantia nigra is critical in the pathogenesis of dopaminergic neurodegeneration in Parkinson’s disease (PD). Increasing data demonstrates that environmental factors such as rotenone, paraquat play pivotal roles in the death of dopaminergic neurons. Here, potential role and mechanism of neuromelanin (NM), a major endogenous component in dopaminergic neurons of the substantia nigra, on microglial activation and associated dopaminergic neurotoxicity were investigated. Using multiple well-established primary mesencephalic cultures, we tested whether human NM (HNM) could activate microglia, thereby provoking dopaminergic neurodegeneration. The results demonstrated that in primary mesencephalic neuron-glia cultures, HNM caused dopaminergic neuronal damage characterized by the decreased dopamine uptake and reduced numbers and shorted dendrites of dopaminergic neurons. HNM-induced degeneration was relatively selective to dopaminergic neurons since the other types of neurons determined by either gamma-aminobutyric acid uptake and total neuronal numbers after staining showed smaller decrease. We demonstrated that HNM produced modest dopaminergic neurotoxicity in neuron-enriched cultures; in contrast, much greater neurotoxicity was observed in the presence of microglia. HNM-induced microglial activation was shown by morphological changes and production of proinflammatory and neurotoxic factors. These results suggest that HNM, once released from damaged dopaminergic neurons, can be an potent endogenous activator involved in the reactivation of microglia, which may mediate disease progression. Thus, inhibition of reactive microglia can be a useful strategy for PD therapy. PMID:23276965

  20. Brief dopaminergic stimulations produce transient physiological changes in prefrontal pyramidal neurons.

    PubMed

    Moore, Anna R; Zhou, Wen-Liang; Potapenko, Evgeniy S; Kim, Eun-Ji; Antic, Srdjan D

    2011-01-25

    In response to food reward and other pertinent events, midbrain dopaminergic neurons fire short bursts of action potentials causing a phasic release of dopamine in the prefrontal cortex (rapid and transient increases in cortical dopamine concentration). Here we apply short (2s) iontophoretic pulses of glutamate, GABA, dopamine and dopaminergic agonists locally, onto layer 5 pyramidal neurons in brain slices of the rat medial prefrontal cortex (PFC). Unlike glutamate and GABA, brief dopaminergic pulses had negligible effects on the resting membrane potential. However, dopamine altered action potential firing in an extremely rapid (<1s) and transient (<5 min) manner, as every neuron returned to baseline in less than 5-min post-application. The physiological responses to dopamine differed markedly among individual neurons. Pyramidal neurons with a preponderance of D1-like receptor signaling respond to dopamine with a severe depression in action potential firing rate, while pyramidal neurons dominated by the D2 signaling pathway respond to dopamine with an instantaneous increase in spike production. Increasing levels of dopamine concentrations around the cell body resulted in a dose dependent response, which resembles an "inverted U curve" (Vijayraghavan S, Wang M, Birnbaum SG, Williams GV, Arnsten AF (2007) Inverted-U dopamine D1 receptor actions on prefrontal neurons engaged in working memory. Nat Neurosci 10:376-384), but this effect can easily be caused by an iontophoresis current artifact. Our present data imply that one population of PFC pyramidal neurons receiving direct synaptic contacts from midbrain dopaminergic neurons would stall during the 0.5s of the phasic dopamine burst. The spillover dopamine, on the other hand, would act as a positive stimulator of cortical excitability (30% increase) to all D2-receptor carrying pyramidal cells, for the next 40s.

  1. Brief Dopaminergic Stimulations Produce Transient Physiological Changes in Prefrontal Pyramidal Neurons

    PubMed Central

    Moore, Anna R.; Zhou, Wen-Liang; Potapenko, Evgeniy S.; Kim, Eun-Ji; Antic, Srdjan D.

    2010-01-01

    In response to food reward and other pertinent events, midbrain dopaminergic neurons fire short bursts of action potentials causing a phasic release of dopamine in the prefrontal cortex (rapid and transient increases in cortical dopamine concentration). Here we apply short (2 sec) iontophoretic pulses of glutamate, GABA, dopamine and dopaminergic agonists locally, onto layer 5 pyramidal neurons in brain slices of the rat medial prefrontal cortex (PFC). Unlike glutamate and GABA, brief dopaminergic pulses had negligible effects on the resting membrane potential. However, dopamine altered action potential firing in an extremely rapid (<1s) and transient (<5min) manner, as every neuron returned to baseline in less than 5-min post-application. The physiological responses to dopamine differed markedly among individual neurons. Pyramidal neurons with a preponderance of D1-like receptor signaling respond to dopamine with a severe depression in action potential firing rate, while pyramidal neurons dominated by the D2 signaling pathway respond to dopamine with an instantaneous increase in spike production. Increasing levels of dopamine concentrations around the cell body resulted in a dose dependent response, which resembles an “inverted U curve” (Vijayraghavan et al., 2007), but this effect can easily be caused by an iontophoresis current artifact. Our present data imply that one population of PFC pyramidal neurons receiving direct synaptic contacts from midbrain dopaminergic neurons would stall during the 0.5 sec of the phasic dopamine burst. The spillover dopamine, on the other hand, would act as a positive stimulator of cortical excitability (30% increase) to all D2-receptor carrying pyramidal cells, for the next 40 seconds. PMID:21059342

  2. Ebf2 is required for development of dopamine neurons in the midbrain periaqueductal gray matter of mouse.

    PubMed

    Yang, Qiaoqiao; Liu, Shuxi; Yin, Min; Yin, Yanqing; Zhou, Guomin; Zhou, Jiawei

    2015-11-01

    Dopaminergic (DA) neurons in the midbrain ventral periaqueductal gray matter (PAG) play critical roles in various physiological and pathophysiological processes including sleep-wake rhyme, antinociception, and drug addiction. However, the molecular mechanisms underlying their development are poorly understood. Here, we showed that PAG DA neurons arose as early as E15.5 in mouse embryos. During the prenatal period, the majority of PAG DA neurons was distributed in the intermediate and caudal regions of the PAG. In the postnatal brain, ∼50% of PAG DA neurons were preferentially located in the caudal portion of the PAG. Moreover, transcription factor early B-cell factor 2 (Ebf2) was transiently expressed in a subset of DA neurons in embryonic ventral mesencephalon. Functional analysis revealed that loss of Ebf2 in vivo caused a marked reduction in the number of DA neurons in the midbrain PAG but not in the substantia nigra and ventral tegmental area. Thus, Ebf2 is identified as a novel and important regulator selectively required for midbrain PAG DA neuron development.

  3. Parkin protects dopaminergic neurons from excessive Wnt/{beta}-catenin signaling

    SciTech Connect

    Rawal, Nina; Corti, Olga; Sacchetti, Paola; Ardilla-Osorio, Hector; Sehat, Bita; Brice, Alexis; Arenas, Ernest

    2009-10-23

    Parkinson's disease (PD) is caused by degeneration of the dopaminergic (DA) neurons of the substantia nigra but the molecular mechanisms underlying the degenerative process remain elusive. Several reports suggest that cell cycle deregulation in post-mitotic neurons could lead to neuronal cell death. We now show that Parkin, an E3 ubiquitin ligase linked to familial PD, regulates {beta}-catenin protein levels in vivo. Stabilization of {beta}-catenin in differentiated primary ventral midbrain neurons results in increased levels of cyclin E and proliferation, followed by increased levels of cleaved PARP and loss of DA neurons. Wnt3a signaling also causes death of post-mitotic DA neurons in parkin null animals, suggesting that both increased stabilization and decreased degradation of {beta}-catenin results in DA cell death. These findings demonstrate a novel regulation of Wnt signaling by Parkin and suggest that Parkin protects DA neurons against excessive Wnt signaling and {beta}-catenin-induced cell death.

  4. Zhichan decoction induces differentiation of dopaminergic neurons in Parkinson's disease rats after neural stem cell transplantation

    PubMed Central

    Shi, Huifen; Song, Jie; Yang, Xuming

    2014-01-01

    The goal of this study was to increase the dopamine content and reduce dopaminergic metabolites in the brain of Parkinson's disease rats. Using high-performance liquid chromatography, we found that dopamine and dopaminergic metabolite (dihydroxyphenylacetic acid and homovanillic acid) content in the midbrain of Parkinson's disease rats was increased after neural stem cell transplantation + Zhichan decoction, compared with neural stem cell transplantation alone. Our genetic algorithm results show that dihydroxyphenylacetic acid and homovanillic acid levels achieve global optimization. Neural stem cell transplantation + Zhichan decoction increased dihydroxyphenylacetic acid levels up to 10-fold, while transplantation alone resulted in a 3-fold increment. Homovanillic acid levels showed no apparent change. Our experimental findings show that after neural stem cell transplantation in Parkinson's disease rats, Zhichan decoction can promote differentiation of neural stem cells into dopaminergic neurons. PMID:25206914

  5. Do substantia nigra dopaminergic neurons differentiate between reward and punishment?

    PubMed

    Frank, Michael J; Surmeier, D James

    2009-10-01

    The activity of dopaminergic neurons are thought to be increased by stimuli that predict reward and decreased by stimuli that predict aversive outcomes. Recent work by Matsumoto and Hikosaka challenges this model by asserting that stimuli associated with either rewarding or aversive outcomes increase the activity of dopaminergic neurons in the substantia nigra pars compacta.

  6. Cell cycle and p53 gate the direct conversion of human fibroblasts to dopaminergic neurons.

    PubMed

    Jiang, Houbo; Xu, Zhimin; Zhong, Ping; Ren, Yong; Liang, Gaoyang; Schilling, Haley A; Hu, Zihua; Zhang, Yi; Wang, Xiaomin; Chen, Shengdi; Yan, Zhen; Feng, Jian

    2015-01-01

    The direct conversion of fibroblasts to induced dopaminergic (iDA) neurons and other cell types demonstrates the plasticity of cell fate. The low efficiency of these relatively fast conversions suggests that kinetic barriers exist to safeguard cell-type identity. Here we show that suppression of p53, in conjunction with cell cycle arrest at G1 and appropriate extracellular environment, markedly increase the efficiency in the transdifferentiation of human fibroblasts to iDA neurons by Ascl1, Nurr1, Lmx1a and miR124. The conversion is dependent on Tet1, as G1 arrest, p53 knockdown or expression of the reprogramming factors induces Tet1 synergistically. Tet1 knockdown abolishes the transdifferentiation while its overexpression enhances the conversion. The iDA neurons express markers for midbrain DA neurons and have active dopaminergic transmission. Our results suggest that overcoming these kinetic barriers may enable highly efficient epigenetic reprogramming in general and will generate patient-specific midbrain DA neurons for Parkinson's disease research and therapy. PMID:26639555

  7. FolR1: a novel cell surface marker for isolating midbrain dopamine neural progenitors and nascent dopamine neurons

    PubMed Central

    Gennet, Nicole; Tamburini, Claudia; Nan, Xinsheng; Li, Meng

    2016-01-01

    Cell type-specific surface markers offer a powerful tool for purifying defined cell types for restorative therapies and drug screenings. Midbrain dopaminergic neurons (mesDA) are the nerve cells preferentially lost in the brains of Parkinson’s disease patients. Clinical trials of transplantation of fetal neural precursors suggest that cell therapy may offer a cure for this devastating neurological disease. Many lines of preclinical studies demonstrate that neural progenitors committed to dopaminergic fate survive and integrate better than postmitotic DA neurons. We show that the folate-receptor 1 (FolR1), a GPI-anchored cell surface molecule, specifically marks mesDA neural progenitors and immature mesDA neurons. FolR1 expression superimposes with Lmx1a, a bona-fide mesDA lineage marker, during the active phase of mesDA neurogenesis from E9.5 to E14.5 during mouse development, as well as in ESC-derived mesDA lineage. FolR1+ neural progenitors can be isolated by FACS or magnetic sorting (MAC) which give rise to dopamine neurons expressing TH and Pitx3, whilst FolR1 negative cells generate non-dopaminergic neurons and glia cells. This study identifies FolR1 as a new cell surface marker selectively expressed in mesDA progenitors in vivo and in vitro and that can be used to enrich in vitro differentiated TH neurons. PMID:27580818

  8. FolR1: a novel cell surface marker for isolating midbrain dopamine neural progenitors and nascent dopamine neurons.

    PubMed

    Gennet, Nicole; Tamburini, Claudia; Nan, Xinsheng; Li, Meng

    2016-01-01

    Cell type-specific surface markers offer a powerful tool for purifying defined cell types for restorative therapies and drug screenings. Midbrain dopaminergic neurons (mesDA) are the nerve cells preferentially lost in the brains of Parkinson's disease patients. Clinical trials of transplantation of fetal neural precursors suggest that cell therapy may offer a cure for this devastating neurological disease. Many lines of preclinical studies demonstrate that neural progenitors committed to dopaminergic fate survive and integrate better than postmitotic DA neurons. We show that the folate-receptor 1 (FolR1), a GPI-anchored cell surface molecule, specifically marks mesDA neural progenitors and immature mesDA neurons. FolR1 expression superimposes with Lmx1a, a bona-fide mesDA lineage marker, during the active phase of mesDA neurogenesis from E9.5 to E14.5 during mouse development, as well as in ESC-derived mesDA lineage. FolR1(+) neural progenitors can be isolated by FACS or magnetic sorting (MAC) which give rise to dopamine neurons expressing TH and Pitx3, whilst FolR1 negative cells generate non-dopaminergic neurons and glia cells. This study identifies FolR1 as a new cell surface marker selectively expressed in mesDA progenitors in vivo and in vitro and that can be used to enrich in vitro differentiated TH neurons. PMID:27580818

  9. Environmental modulations of the number of midbrain dopamine neurons in adult mice.

    PubMed

    Tomas, Doris; Prijanto, Augustinus H; Burrows, Emma L; Hannan, Anthony J; Horne, Malcolm K; Aumann, Tim D

    2015-01-01

    Long-lasting changes in the brain or 'brain plasticity' underlie adaptive behavior and brain repair following disease or injury. Furthermore, interactions with our environment can induce brain plasticity. Increasingly, research is trying to identify which environments stimulate brain plasticity beneficial for treating brain and behavioral disorders. Two environmental manipulations are described which increase or decrease the number of tyrosine hydroxylase immunopositive (TH+, the rate-limiting enzyme in dopamine (DA) synthesis) neurons in the adult mouse midbrain. The first comprises pairing male and female mice together continuously for 1 week, which increases midbrain TH+ neurons by approximately 12% in males, but decreases midbrain TH+ neurons by approximately 12% in females. The second comprises housing mice continuously for 2 weeks in 'enriched environments' (EE) containing running wheels, toys, ropes, nesting material, etc., which increases midbrain TH+ neurons by approximately 14% in males. Additionally, a protocol is described for concurrently infusing drugs directly into the midbrain during these environmental manipulations to help identify mechanisms underlying environmentally-induced brain plasticity. For example, EE-induction of more midbrain TH+ neurons is abolished by concurrent blockade of synaptic input onto midbrain neurons. Together, these data indicate that information about the environment is relayed via synaptic input to midbrain neurons to switch on or off expression of 'DA' genes. Thus, appropriate environmental stimulation, or drug targeting of the underlying mechanisms, might be helpful for treating brain and behavioral disorders associated with imbalances in midbrain DA (e.g. Parkinson's disease, attention deficit and hyperactivity disorder, schizophrenia, and drug addiction).

  10. M-type channels selectively control bursting in rat dopaminergic neurons

    PubMed Central

    Drion, Guillaume; Bonjean, Maxime; Waroux, Olivier; Scuvée-Moreau, Jacqueline; Liégeois, Jean-François; Sejnowski, Terrence J; Sepulchre, Rodolphe; Seutin, Vincent

    2010-01-01

    Midbrain dopaminergic neurons in the substantia nigra, pars compacta and ventral tegmental area are critically important in many physiological functions. These neurons exhibit firing patterns that include tonic slow pacemaking, irregular firing and bursting, and the amount of dopamine that is present in the synaptic cleft is much increased during bursting. The mechanisms responsible for the switch between these spiking patterns remain unclear. Using both in-vivo recordings combined with microiontophoretic or intraperitoneal drug applications and in-vitro experiments, we have found that M-type channels, which are present in midbrain dopaminergic cells, modulate the firing during bursting without affecting the background low-frequency pacemaker firing. Thus, a selective blocker of these channels, 10,10-bis(4-pyridinylmethyl)-9(10H)-anthracenone dihydrochloride, specifically potentiated burst firing. Computer modeling of the dopamine neuron confirmed the possibility of a differential influence of M-type channels on excitability during various firing patterns. Therefore, these channels may provide a novel target for the treatment of dopamine-related diseases, including Parkinson’s disease and drug addiction. Moreover, our results demonstrate that the influence of M-type channels on the excitability of these slow pacemaker neurons is conditional upon their firing pattern. PMID:20180842

  11. Molecular Marker Differences Relate to Developmental Position and Subsets of Mesodiencephalic Dopaminergic Neurons

    PubMed Central

    Smits, Simone M.; von Oerthel, Lars; Hoekstra, Elisa J.; Burbach, J. Peter H; Smidt, Marten P.

    2013-01-01

    The development of mesodiencephalic dopaminergic (mdDA) neurons located in the substantia nigra compacta (SNc) and ventral tegmental area (VTA) follow a number of stages marked by distinct events. After preparation of the region by signals that provide induction and patterning, several transcription factors have been identified, which are involved in specifying the neuronal fate of these cells. The specific vulnerability of SNc neurons is thought to root in these specific developmental programs. The present study examines the positions of young postmitotic mdDA neurons to relate developmental position to mdDA subset specific markers. MdDA neurons were mapped relative to the neuromeric domains (prosomeres 1-3 (P1-3), midbrain, and hindbrain) as well as the longitudinal subdivisions (floor plate, basal plate, alar plate), as proposed by the prosomeric model. We found that postmitotic mdDA neurons are located mainly in the floorplate domain and very few in slightly more lateral domains. Moreover, mdDA neurons are present along a large proportion of the anterior/posterior axis extending from the midbrain to P3 in the diencephalon. The specific positions relate to some extent to the presence of specific subset markers as Ahd2. In the adult stage more of such subsets specific expressed genes are present and may represent a molecular map defining molecularly distinct groups of mdDA neurons. PMID:24116087

  12. Glutamate neurons are intermixed with midbrain dopamine neurons in nonhuman primates and humans

    PubMed Central

    Root, David H.; Wang, Hui-Ling; Liu, Bing; Barker, David J.; Mód, László; Szocsics, Péter; Silva, Afonso C.; Maglóczky, Zsófia; Morales, Marisela

    2016-01-01

    The rodent ventral tegmental area (VTA) and substantia nigra pars compacta (SNC) contain dopamine neurons intermixed with glutamate neurons (expressing vesicular glutamate transporter 2; VGluT2), which play roles in reward and aversion. However, identifying the neuronal compositions of the VTA and SNC in higher mammals has remained challenging. Here, we revealed VGluT2 neurons within the VTA and SNC of nonhuman primates and humans by simultaneous detection of VGluT2 mRNA and tyrosine hydroxylase (TH; for identification of dopamine neurons). We found that several VTA subdivisions share similar cellular compositions in nonhuman primates and humans; their rostral linear nuclei have a high prevalence of VGluT2 neurons lacking TH; their paranigral and parabrachial pigmented nuclei have mostly TH neurons, and their parabrachial pigmented nuclei have dual VGluT2-TH neurons. Within nonhuman primates and humans SNC, the vast majority of neurons are TH neurons but VGluT2 neurons were detected in the pars lateralis subdivision. The demonstration that midbrain dopamine neurons are intermixed with glutamate or glutamate-dopamine neurons from rodents to humans offers new opportunities for translational studies towards analyzing the roles that each of these neurons play in human behavior and in midbrain-associated illnesses such as addiction, depression, schizophrenia, and Parkinson’s disease. PMID:27477243

  13. Endorphinic neurons are contacting the tuberoinfundibular dopaminergic neurons in the rat brain

    SciTech Connect

    Morel, G.; Pelletier, G.

    1986-11-01

    The anatomical relationships between endorphinic neurons and dopaminergic neurons were evaluated in the rat hypothalamus using a combination of immunocytochemistry and autoradiography. In the arcuate nucleus, endorphinic endings were seen making contacts with dopaminergic cell bodies and dendrites. No synapsis could be observed at the sites of contacts. These results strongly suggest that the endorphinic neurons are directly acting on dopaminergic neurons to modify the release of dopamine into the pituitary portal system.

  14. Differentiation of human epidermal neural crest stem cells (hEPI-NCSC) into virtually homogenous populations of dopaminergic neurons.

    PubMed

    Narytnyk, Alla; Verdon, Bernard; Loughney, Andrew; Sweeney, Michele; Clewes, Oliver; Taggart, Michael J; Sieber-Blum, Maya

    2014-04-01

    Here we provide a protocol for the directed differentiation of hEPI-NCSC into midbrain dopaminergic neurons, which degenerate in Parkinson's disease. hEPI-NCSC are neural crest-derived multipotent stem cells that persist into adulthood in the bulge of hair follicles. The experimental design is distinctly different from conventional protocols for embryonic stem cells and induced pluripotent stem (iPS) cells. It includes pre-differentiation of the multipotent hEPI-NCSC into neural stem cell-like cells, followed by ventralizing, patterning, continued exposure to the TGFβ receptor inhibitor, SB431542, and at later stages of differentiation the presence of the WNT inhibitor, IWP-4. All cells expressed A9 midbrain dopaminergic neuron progenitor markers with gene expression levels comparable to those in normal human substantia nigra. The current study shows for the first time that virtually homogeneous populations of dopaminergic neurons can be derived ex vivo from somatic stem cells without the need for purification, with useful timeliness and high efficacy. This novel development is an important first step towards the establishment of fully functional dopaminergic neurons from an ontologically relevant stem cell type, hEPI-NCSC. PMID:24399192

  15. Methamphetamine Self-Administration in Mice Decreases GIRK Channel-Mediated Currents in Midbrain Dopamine Neurons

    PubMed Central

    Sharpe, Amanda L.; Varela, Erika; Bettinger, Lynne

    2015-01-01

    Background: Methamphetamine is a psychomotor stimulant with abuse liability and a substrate for catecholamine uptake transporters. Acute methamphetamine elevates extracellular dopamine, which in the midbrain can activate D2 autoreceptors to increase a G-protein gated inwardly rectifying potassium (GIRK) conductance that inhibits dopamine neuron firing. These studies examined the neurophysiological consequences of methamphetamine self-administration on GIRK channel-mediated currents in dopaminergic neurons in the substantia nigra and ventral tegmental area. Methods: Male DBA/2J mice were trained to self-administer intravenous methamphetamine. A dose response was conducted as well as extinction and cue-induced reinstatement. In a second study, after at least 2 weeks of stable self-administration of methamphetamine, electrophysiological brain slice recordings were conducted on dopamine neurons from self-administering and control mice. Results: In the first experiment, ad libitum-fed, nonfood-trained mice exhibited a significant increase in intake and locomotion following self-administration as the concentration of methamphetamine per infusion was increased (0.0015–0.15mg/kg/infusion). Mice exhibited extinction in responding and cue-induced reinstatement. In the second experiment, dopamine cells in both the substantia nigra and ventral tegmental area from adult mice with a history of methamphetamine self-administration exhibited significantly smaller D2 and GABAB receptor-mediated currents compared with control mice, regardless of whether their daily self-administration sessions had been 1 or 4 hours. Interestingly, the effects of methamphetamine self-administration were not present when intracellular calcium was chelated by including BAPTA in the recording pipette. Conclusions: Our results suggest that methamphetamine self-administration decreases GIRK channel-mediated currents in dopaminergic neurons and that this effect may be calcium dependent. PMID:25522412

  16. Interaction between Oc-1 and Lmx1a promotes ventral midbrain dopamine neural stem cells differentiation into dopamine neurons.

    PubMed

    Yuan, Jian; Lei, Zhi-nian; Wang, Xi; Deng, Yong-Jian; Chen, Dong-Bo

    2015-05-22

    Recent studies have shown that Onecut (Oc) transcription factors may be involved in the early development of midbrain dopaminergic neurons (mdDA). The expression profile of Oc factors matches that of Lmx1a, an important intrinsic transcription factor in the development of mDA neuron. Moreover, the Wnt1-Lmx1a pathway controls the mdDA differentiation. However, their expression dynamics and molecular mechanisms remain to be determined. To address these issues, we hypothesize that cross-talk between Oc-1 and Lmx1a regulates the mdDA specification and differentiation through the canonical Wnt-β-catenin pathway. We found that Oc-1 and Lmx1a displayed a very similar expression profile from embryonic to adult ventral midbrain (VM) tissues. Oc-1 regulated the proliferation and differentiation of ventral midbrain neural stem cells (vmNSCs). Downregulation of Oc-1 decreased both transcript and protein level of Lmx1a. Oc-1 interacted with lmx1a in vmNSCs in vitro and in VM tissues in vivo. Knockdown of Lmx1a reduced the expression of Oc-1 and Wnt1 in vmNSCs. Inhibiting Wnt1 signaling in vmNSCs provoked similar responses. Our data suggested that Oc-1 interacts with Lmx1a to promote vmNSCs differentiation into dopamine neuron through Wnt1-Lmx1a pathway.

  17. Neuroprotection of resveratrol against neurotoxicity induced by methamphetamine in mouse mesencephalic dopaminergic neurons.

    PubMed

    Sun, Dong; Yue, Qingwei; Guo, Weihua; Li, Tao; Zhang, Jing; Li, Guibao; Liu, Zengxun; Sun, Jinhao

    2015-01-01

    Resveratrol is originally extracted from huzhang, a Chinese herbal medicine. Recently, resveratrol has attracted a great of attention due to its antioxidant and antiapoptotic properties. Although the neuroprotection of resveratrol on neural damages in various models has been well characterized, little is known about the role of resveratrol in methamphetamine (MA) induced neurotoxicity in mesencephalic dopaminergic neurons. Dopaminergic neurons were isolated from midbrain of mouse embryos at embryonic day 15 and cultured in the presence of MA and resveratrol. Cell viability was examined by MTT assay and the apoptosis was assessed using Hoechst33342/PI double staining. To evaluate the Oxidative damage, ROS assay was performed. Moreover, the changes of time course of intracellular free calcium concentration ([Ca(2+) ]i) were analyzed with Fluo-3/AM tracing. The data showed that MA induced the neurotoxicity of cultured cells in a dose-dependent manner. Resveratrol significantly increased cellular viability and retarded cell apoptosis. Furthermore, resveratrol also attenuated MA induced ROS production and intracellular free calcium overload. Our results suggest that resveratrol protects dopaminergic neurons from MA-induced neuronal cytotoxicity, which, at least partly, is mediated by inhibition of [Ca(2+) ]i and oxidative stress. © 2015 BioFactors 41(4):252-260, 2015.

  18. Glucocerebrosidase gene therapy prevents α-synucleinopathy of midbrain dopamine neurons.

    PubMed

    Rocha, Emily M; Smith, Gaynor A; Park, Eric; Cao, Hongmei; Brown, Eilish; Hayes, Melissa A; Beagan, Jonathan; McLean, Jesse R; Izen, Sarah C; Perez-Torres, Eduardo; Hallett, Penelope J; Isacson, Ole

    2015-10-01

    Diminished lysosomal function can lead to abnormal cellular accumulation of specific proteins, including α-synuclein, contributing to disease pathogenesis of vulnerable neurons in Parkinson's disease (PD) and related α-synucleinopathies. GBA1 encodes for the lysosomal hydrolase glucocerebrosidase (GCase), and mutations in GBA1 are a prominent genetic risk factor for PD. Previous studies showed that in sporadic PD, and in normal aging, GCase brain activity is reduced and levels of corresponding glycolipid substrates are increased. The present study tested whether increasing GCase through AAV-GBA1 intra-cerebral gene delivery in two PD rodent models would reduce the accumulation of α-synuclein and protect midbrain dopamine neurons from α-synuclein-mediated neuronal damage. In the first model, transgenic mice overexpressing wildtype α-synuclein throughout the brain (ASO mice) were used, and in the second model, a rat model of selective dopamine neuron degeneration was induced by AAV-A53T mutant α-synuclein. In ASO mice, intra-cerebral AAV-GBA1 injections into several brain regions increased GCase activity and reduced the accumulation of α-synuclein in the substantia nigra and striatum. In rats, co-injection of AAV-GBA1 with AAV-A53T α-synuclein into the substantia nigra prevented α-synuclein-mediated degeneration of nigrostriatal dopamine neurons by 6 months. These neuroprotective effects were associated with altered protein expression of markers of autophagy. These experiments demonstrate, for the first time, the neuroprotective effects of increasing GCase against dopaminergic neuron degeneration, and support the development of therapeutics targeting GCase or other lysosomal genes to improve neuronal handling of α-synuclein.

  19. Wnt/β-catenin signaling is required to rescue midbrain dopaminergic progenitors and promote neurorepair in ageing mouse model of Parkinson's disease.

    PubMed

    L'Episcopo, Francesca; Tirolo, Cataldo; Testa, Nunzio; Caniglia, Salvatore; Morale, Maria Concetta; Serapide, Maria Francesca; Pluchino, Stefano; Marchetti, Bianca

    2014-08-01

    Wnt/β-catenin signaling is required for specification and neurogenesis of midbrain dopaminergic (mDA) neurons, the pivotal neuronal population that degenerates in Parkinson's disease (PD), and in 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) mouse model of PD. Wnt/β-catenin signaling plays a vital role in adult neurogenesis but whether it might engage DA neurogenesis/neurorepair in the affected PD brain is yet unresolved. Recently, the adult midbrain aqueduct periventricular regions (Aq-PVRs) were shown to harbor multipotent clonogenic neural stem/progenitor cells (mNPCs) with DA potential in vitro, but restrictive mechanisms in vivo are believed to limit their DA regenerative capacity. Using in vitro mNPC culture systems we herein demonstrate that aging is one most critical factor restricting mNPC neurogenic potential via dysregulation of Wnt/β-catenin signaling. Coculture paradigms between young/aged (Y/A) mNPCs and Y/A astrocytes identified glial age and a decline of glial-derived factors including Wnts as key determinants of impaired neurogenic potential, whereas Wnt activation regimens efficiently reversed the diminished proliferative, neuronal, and DA differentiation potential of A-mNPCs. Next, in vivo studies in wild (Wt) and transgenic β-catenin reporter mice uncovered Wnt/β-catenin signaling activation and remarkable astrocyte remodeling of Aq-PVR in response to MPTP-induced DA neuron death. Spatio-temporal analyses unveiled β-catenin signaling in predopaminergic (Nurr1(+)/TH(-)) and imperiled or rescuing DAT(+) neurons during MPTP-induced DA neuron injury and self-repair. Aging inhibited Wnt signaling, whereas β-catenin activation in situ with a specific GSK-3β antagonist promoted a significant degree of DA neurorestoration associated with reversal of motor deficit, with implications for neurorestorative approaches in PD.

  20. Loss of Dopamine Phenotype Among Midbrain Neurons in Lesch–Nyhan Disease

    PubMed Central

    Göttle, Martin; Prudente, Cecilia N.; Fu, Rong; Sutcliffe, Diane; Pang, Hong; Cooper, Deborah; Veledar, Emir; Glass, Jonathan D.; Gearing, Marla; Visser, Jasper E.; Jinnah, H. A.

    2016-01-01

    Objective Lesch–Nyhan disease (LND) is caused by congenital deficiency of the purine recycling enzyme, hypoxanthine-guanine phosphoribosyltransferase (HGprt). Affected patients have a peculiar neurobehavioral syndrome linked with reductions of dopamine in the basal ganglia. The purpose of the current studies was to determine the anatomical basis for the reduced dopamine in human brain specimens collected at autopsy. Methods Histopathological studies were conducted using autopsy tissue from 5 LND cases and 6 controls. Specific findings were replicated in brain tissue from an HGprt-deficient knockout mouse using immunoblots, and in a cell model of HGprt deficiency by flow-activated cell sorting (FACS). Results Extensive histological studies of the LND brains revealed no signs suggestive of a degenerative process or other consistent abnormalities in any brain region. However, neurons of the substantia nigra from the LND cases showed reduced melanization and reduced immunoreactivity for tyrosine hydroxylase (TH), the rate-limiting enzyme in dopamine synthesis. In the HGprt-deficient mouse model, immunohistochemical stains for TH revealed no obvious loss of midbrain dopamine neurons, but quantitative immunoblots revealed reduced TH expression in the striatum. Finally, 10 independent HGprt-deficient mouse MN9D neuroblastoma lines showed no signs of impaired viability, but FACS revealed significantly reduced TH immunoreactivity compared to the control parent line. Interpretation These results reveal an unusual phenomenon in which the neurochemical phenotype of dopaminergic neurons is not linked with a degenerative process. They suggest an important relationship between purine recycling pathways and the neurochemical integrity of the dopaminergic phenotype. PMID:24891139

  1. The vitamin D receptor in dopamine neurons; its presence in human substantia nigra and its ontogenesis in rat midbrain.

    PubMed

    Cui, X; Pelekanos, M; Liu, P-Y; Burne, T H J; McGrath, J J; Eyles, D W

    2013-04-16

    There is growing evidence that vitamin D is a neuroactive steroid capable of regulating multiple pathways important for both brain development and mature brain function. In particular, there is evidence from rodent models that prenatal vitamin D deficiency alters the development of dopaminergic pathways and this disruption is associated with altered behavior and neurochemistry in the adult brain. Although the presence of the vitamin D receptor (VDR) has been noted in the human substantia nigra, there is a lack of direct evidence showing that VDR is present in dopaminergic cells. Here we confirm that the VDR is present in the nucleus of tyrosine hydroxylase (TH)-positive neurons in both the human and rat substantia nigra, and it emerges early in development in the rat, between embryonic day 12 (E12) and E15. Consistent evidence based on immunohistochemistry, real-time PCR and western blot confirmed a pattern of increasing VDR expression in the rat midbrain until weaning. The nuclear expression of VDR in TH-positive neurons during critical periods of brain development suggests that alterations in early life vitamin D status may influence the orderly development of dopaminergic neurons. PMID:23352937

  2. Engrailed Homeoprotein Protects Mesencephalic Dopaminergic Neurons from Oxidative Stress

    PubMed Central

    Rekaik, Hocine; Blaudin de Thé, François-Xavier; Fuchs, Julia; Massiani-Beaudoin, Olivia; Prochiantz, Alain; Joshi, Rajiv L.

    2016-01-01

    Summary Engrailed homeoproteins are expressed in adult dopaminergic neurons of the substantia nigra. In Engrailed1 heterozygous mice, these neurons start dying at 6 weeks, are more sensitive to oxidative stress, and progressively develop traits similar to those observed following an acute and strong oxidative stress inflected to wild-type neurons. These changes include DNA strand breaks and the modification (intensity and distribution) of several nuclear and nucleolar heterochromatin marks. Engrailed1 and Engrailed2 are biochemically equivalent transducing proteins previously used to antagonize dopaminergic neuron death in Engrailed1 heterozygous mice and in mouse models of Parkinson disease. Accordingly, we show that, following an acute oxidative stress, a single Engrailed2 injection restores all nuclear and nucleolar heterochromatin marks, decreases the number of DNA strand breaks, and protects dopaminergic neurons against apoptosis. PMID:26411690

  3. Genome-wide characterization of Foxa2 targets reveals upregulation of floor plate genes and repression of ventrolateral genes in midbrain dopaminergic progenitors

    PubMed Central

    Metzakopian, Emmanouil; Lin, Wei; Salmon-Divon, Mali; Dvinge, Heidi; Andersson, Elisabet; Ericson, Johan; Perlmann, Thomas; Whitsett, Jeffrey A.; Bertone, Paul; Ang, Siew-Lan

    2012-01-01

    The transcription factors Foxa1 and Foxa2 promote the specification of midbrain dopaminergic (mDA) neurons and the floor plate. Whether their role is direct has remained unclear as they also regulate the expression of Shh, which has similar roles. We characterized the Foxa2 cis-regulatory network by chromatin immunoprecipitation followed by high-throughput sequencing of mDA progenitors. This identified 9160 high-quality Foxa2 binding sites associated with 5409 genes, providing mechanistic insights into Foxa2-mediated positive and negative regulatory events. Foxa2 regulates directly and positively key determinants of mDA neurons, including Lmx1a, Lmx1b, Msx1 and Ferd3l, while negatively inhibiting transcription factors expressed in ventrolateral midbrain such as Helt, Tle4, Otx1, Sox1 and Tal2. Furthermore, Foxa2 negatively regulates extrinsic and intrinsic components of the Shh signaling pathway, possibly by binding to the same enhancer regions of co-regulated genes as Gli1. Foxa2 also regulates the expression of floor plate factors that control axon trajectories around the midline of the embryo, thereby contributing to the axon guidance function of the floor plate. Finally, this study identified multiple Foxa2-regulated enhancers that are active in the floor plate of the midbrain or along the length of the embryo in mouse and chick. This work represents the first comprehensive characterization of Foxa2 targets in mDA progenitors and provides a framework for elaborating gene regulatory networks in a functionally important progenitor population. PMID:22696295

  4. Death receptors and caspases but not mitochondria are activated in the GDNF- or BDNF-deprived dopaminergic neurons.

    PubMed

    Yu, Li-ying; Saarma, Mart; Arumäe, Urmas

    2008-07-23

    Neurotrophic factors, including glial cell line-derived neurotrophic factor (GDNF) and brain-derived neurotrophic factor (BDNF), promote survival of midbrain dopaminergic neurons, but the death pathways activated in the dopaminergic neurons by deprivation of these factors are poorly studied. We show here that deprivation of GDNF or BDNF triggers a novel mitochondria-independent death pathway in the cultured embryonic dopaminergic neurons: cytochrome c was not released from the mitochondria to cytosol, proapoptotic protein Bax was not activated, and overexpressed Bcl-xL did not block the death. Caspases were critically required, because the death was completely blocked by caspase inhibitor BAF [boc-aspartyl(OMe)-fluoromethylketone] and overexpression of dominant-negative mutants of caspase-9, -3, and -7 significantly blocked the death. Also, the death receptor pathway was involved, because blockage of caspase-8 or FADD (Fas-associated protein with death domain), an adapter required for caspase-8 activation, inhibited death induced by GDNF or BDNF deprivation. Ligation of Fas by agonistic anti-Fas antibody induced apoptosis in the GDNF- or BDNF-maintained neurons, and inhibition of Fas by Fas-Fc chimera blocked the death of GDNF- or BDNF-deprived neurons, whereas FAIM(L) (long isoform of Fas apoptosis inhibitory molecule) could control the activity of Fas in the dopaminergic neurons.

  5. Detailed Analysis of the Genetic and Epigenetic Signatures of iPSC-Derived Mesodiencephalic Dopaminergic Neurons

    PubMed Central

    Roessler, Reinhard; Smallwood, Sebastien A.; Veenvliet, Jesse V.; Pechlivanoglou, Petros; Peng, Su-Ping; Chakrabarty, Koushik; Groot-Koerkamp, Marian J.A.; Pasterkamp, R. Jeroen; Wesseling, Evelyn; Kelsey, Gavin; Boddeke, Erik; Smidt, Marten P.; Copray, Sjef

    2014-01-01

    Summary Induced pluripotent stem cells (iPSCs) hold great promise for in vitro generation of disease-relevant cell types, such as mesodiencephalic dopaminergic (mdDA) neurons involved in Parkinson’s disease. Although iPSC-derived midbrain DA neurons have been generated, detailed genetic and epigenetic characterizations of such neurons are lacking. The goal of this study was to examine the authenticity of iPSC-derived DA neurons obtained by established protocols. We FACS purified mdDA (Pitx3Gfp/+) neurons derived from mouse iPSCs and primary mdDA (Pitx3Gfp/+) neurons to analyze and compare their genetic and epigenetic features. Although iPSC-derived DA neurons largely adopted characteristics of their in vivo counterparts, relevant deviations in global gene expression and DNA methylation were found. Hypermethylated genes, mainly involved in neurodevelopment and basic neuronal functions, consequently showed reduced expression levels. Such abnormalities should be addressed because they might affect unambiguous long-term functionality and hamper the potential of iPSC-derived DA neurons for in vitro disease modeling or cell-based therapy. PMID:24749075

  6. Single dopaminergic neurons that modulate aggression in Drosophila.

    PubMed

    Alekseyenko, Olga V; Chan, Yick-Bun; Li, Ran; Kravitz, Edward A

    2013-04-01

    Monoamines, including dopamine (DA), have been linked to aggression in various species. However, the precise role or roles served by the amine in aggression have been difficult to define because dopaminergic systems influence many behaviors, and all can be altered by changing the function of dopaminergic neurons. In the fruit fly, with the powerful genetic tools available, small subsets of brain cells can be reliably manipulated, offering enormous advantages for exploration of how and where amine neurons fit into the circuits involved with aggression. By combining the GAL4/upstream activating sequence (UAS) binary system with the Flippase (FLP) recombination technique, we were able to restrict the numbers of targeted DA neurons down to a single-cell level. To explore the function of these individual dopaminergic neurons, we inactivated them with the tetanus toxin light chain, a genetically encoded inhibitor of neurotransmitter release, or activated them with dTrpA1, a temperature-sensitive cation channel. We found two sets of dopaminergic neurons that modulate aggression, one from the T1 cluster and another from the PPM3 cluster. Both activation and inactivation of these neurons resulted in an increase in aggression. We demonstrate that the presynaptic terminals of the identified T1 and PPM3 dopaminergic neurons project to different parts of the central complex, overlapping with the receptor fields of DD2R and DopR DA receptor subtypes, respectively. These data suggest that the two types of dopaminergic neurons may influence aggression through interactions in the central complex region of the brain involving two different DA receptor subtypes. PMID:23530210

  7. Emerging restorative treatments for Parkinson's disease: manipulation and inducement of dopaminergic neurons from adult stem cells.

    PubMed

    Zhao, Junpeng; Xu, Qunyuan

    2011-06-01

    Parkinson's disease (PD) is a common neurodegenerative disease, characterized by a selective loss of midbrain Dopaminergic (DA) neurons. To address this problem, various types of stem cells that have potential to differentiate into DA neurons are being investigated as cellular therapies for PD, including cells derived from embryonic or adult donor tissue, and embryonic stem cells. These cell sources, however, have raised certain questions with regard to ethical and rejection issues. Recent progress in adult stems has further proved that the cells derived from adult tissue could be expanded and differentiated into DA precursor cells in vitro, and cell therapy with adult stem cells could produce a clear improvement for PD models. Using adult stem cells for clinic application may not only overcome the ethical problem inherent in using human fetal tissue or embryonic stem cells, but also open the possibility for autologous transplantation. The patient-specific adult stem cell is therefore a potential and prospective candidate for PD treatment.

  8. Midbrain dopamine neurons reflect affiliation phenotypes in finches and are tightly coupled to courtship.

    PubMed

    Goodson, James L; Kabelik, David; Kelly, Aubrey M; Rinaldi, Jacob; Klatt, James D

    2009-05-26

    Mesolimbic dopamine (DA) circuits mediate a wide range of goal-oriented behavioral processes, and DA strongly influences appetitive and consummatory aspects of male sexual behavior. In both birds and mammals, mesolimbic projections arise primarily from the ventral tegmental area (VTA), with a smaller contribution from the midbrain central gray (CG). Despite the well known importance of the VTA cell group for incentive motivation functions, relationships of VTA subpopulations to specific aspects of social phenotype remain wholly undescribed. We now show that in male zebra finches (Estrildidae: Taeniopygia guttata), Fos activity within a subpopulation of tyrosine hydroxylase-immunoreactive (TH-ir; presumably dopaminergic) neurons in the caudal VTA is significantly correlated with courtship singing and coupled to gonadal state. In addition, the number of TH-ir neurons in this caudal subpopulation dichotomously differentiates courting from non-courting male phenotypes, and evolves in relation to sociality (flocking vs. territorial) across several related finch species. Combined, these findings for the VTA suggest that divergent social phenotypes may arise due to the differential assignment of "incentive value" to conspecific stimuli. TH-ir neurons of the CG (a population of unknown function in mammals) exhibit properties that are even more selectively and tightly coupled to the expression of courtship phenotypes (and appetitive courtship singing), both in terms of TH-ir cell number, which correlates significantly with constitutive levels of courtship motivation, and with TH-Fos colocalization, which increases in direct proportion to the phasic expression of song. We propose that these neurons may be core components of social communication circuits across diverse vertebrate taxa. PMID:19439662

  9. Natural apoptosis in developing mice dopamine midbrain neurons and vermal Purkinje cells.

    PubMed

    Martí-Clúa, J

    2016-01-01

    Natural cell death by apoptosis was studied in two neuronal populations of BALB/c, C57BL/6 and B6CBA-Aw-j/A hybrid stock mice: (I) dopaminergic (DA) neurons in choosing coronal levels throughout the anteroposterior extent of the substantia nigra pars compacta (SNc), and (II) Purkinje cells (PCs) in each vermal lobe of the cerebellar cortex. Mice were collected at postnatal day (P) 2 and P14 for the midbrain study, and at P4 and P7 for the analysis of the cerebellum. No DA cells with morphologic criteria for apoptosis were found. Moreover, when the combination of tyrosine hydroxylase and TUNEL or tyrosine hydroxylase and active caspase-3 immunohistochemistry were performed in the same tissue section, no DA cells TUNEL positives or active caspase-3-stained DA neurons were seen. On the other hand, when PCs were considered, data analysis revealed that more dying PCs were observed at P4 than at P7. Values of neuron death were highest in the central lobe; this was followed by the posterior and anterior lobes and then by the inferior lobe. To determine if apoptotic death of PCs is linked to their time-of-origin profiles, pregnant dams were administered with [3H]TdR on embryonic days 11-12, 12-13, 13-14 and 14-15. When TUNEL and [3H]TdR autoradiography or active caspase-3 immunohistochemistry and [3H]TdR autoradiography were combined in the same tissue section, results reveal that the naturally occurring PC death is not related to its time of origin but, rather, is random across age.

  10. Natural apoptosis in developing mice dopamine midbrain neurons and vermal Purkinje cells.

    PubMed

    Martí-Clúa, J

    2016-01-01

    Natural cell death by apoptosis was studied in two neuronal populations of BALB/c, C57BL/6 and B6CBA-Aw-j/A hybrid stock mice: (I) dopaminergic (DA) neurons in choosing coronal levels throughout the anteroposterior extent of the substantia nigra pars compacta (SNc), and (II) Purkinje cells (PCs) in each vermal lobe of the cerebellar cortex. Mice were collected at postnatal day (P) 2 and P14 for the midbrain study, and at P4 and P7 for the analysis of the cerebellum. No DA cells with morphologic criteria for apoptosis were found. Moreover, when the combination of tyrosine hydroxylase and TUNEL or tyrosine hydroxylase and active caspase-3 immunohistochemistry were performed in the same tissue section, no DA cells TUNEL positives or active caspase-3-stained DA neurons were seen. On the other hand, when PCs were considered, data analysis revealed that more dying PCs were observed at P4 than at P7. Values of neuron death were highest in the central lobe; this was followed by the posterior and anterior lobes and then by the inferior lobe. To determine if apoptotic death of PCs is linked to their time-of-origin profiles, pregnant dams were administered with [3H]TdR on embryonic days 11-12, 12-13, 13-14 and 14-15. When TUNEL and [3H]TdR autoradiography or active caspase-3 immunohistochemistry and [3H]TdR autoradiography were combined in the same tissue section, results reveal that the naturally occurring PC death is not related to its time of origin but, rather, is random across age. PMID:27543775

  11. Neuromelanin activates microglia and induces degeneration of dopaminergic neurons: implications for progression of Parkinson's disease

    PubMed Central

    Zhang, Wei; Phillips, Kester; Wielgus, Albert R.; Liu, Jie; Albertini, Alberto; Zucca, Fabio A.; Faust, Rudolph; Qian, Steven Y.; Miller, David S.; Chignell, Colin F.; Wilson, Belinda; Jackson-Lewis, Vernice; Przedborski, Serge; Joset, Danielle; Loike, John; Hong, Jau-Shyong; Sulzer, David; Zecca, Luigi

    2013-01-01

    In Parkinson's disease (PD), there is a progressive loss of neuromelanin (NM)-containing dopamine (DA) neurons in substantia nigra (SN) which is associated with microgliosis and presence of extracellular NM. Herein, we have investigated the interplay between microglia and human NM on the degeneration of SN dopaminergic neurons. Although NM particles are phagocytised and degraded by microglia within minutes in vitro, extracellular NM particles induce microglial activation and ensuing production of superoxide, nitric oxide (NO), hydrogen peroxide (H2O2), and pro-inflammatory factors. Furthermore, NM produces, in a microglia-depended manner, neurodegeneration in primary ventral midbrain cultures. Neurodegeneration was effectively attenuated with microglia derived from mice deficient in macrophage antigen complex-1 (Mac-1), a microglial integrin receptor involved in the initiation of phagocytosis. Neuronal loss was also attenuated with microglia derived from mice deficient in phagocytic oxidase (PHOX), a subunit of NADPH oxidase, that is responsible for superoxide and H2O2 production, or apocyanin, a NADPH oxidase inhibitor. In vivo, NM injected into rat SN produces microgliosis and a loss of tyrosine hydroxylase (TH) neurons. Thus, these results show that extracellular NM can activate microglia, which in turn, may induce dopaminergic neurodegeneration in PD. Our study may have far-reaching implications, both pathogenic and therapeutic. PMID:19957214

  12. Dopaminergic Neurons and Brain Reward Pathways: From Neurogenesis to Circuit Assembly.

    PubMed

    Luo, Sarah X; Huang, Eric J

    2016-03-01

    Midbrain dopaminergic (DA) neurons in the substantia nigra pars compacta and ventral tegmental area regulate extrapyramidal movement and important cognitive functions, including motivation, reward associations, and habit learning. Dysfunctions in DA neuron circuitry have been implicated in several neuropsychiatric disorders, including addiction and schizophrenia, whereas selective degeneration of DA neurons in substantia nigra pars compacta is a key neuropathological feature in Parkinson disease. Efforts to understand these disorders have focused on dissecting the underlying causes, as well as developing therapeutic strategies to replenish dopamine deficiency. In particular, the promise of cell replacement therapies for clinical intervention has led to extensive research in the identification of mechanisms involved in DA neuron development. It is hoped that a comprehensive understanding of these mechanisms will lead to therapeutic strategies that improve the efficiency of DA neuron production, engraftment, and function. This review provides a comprehensive discussion on how Wnt/β-catenin and sonic hedgehog-Smoothened signaling mechanisms control the specification and expansion of DA progenitors and the differentiation of DA neurons. We also discuss how mechanisms involving transforming growth factor-β and transcriptional cofactor homeodomain interacting protein kinase 2 regulate the survival and maturation of DA neurons in early postnatal life. These results not only reveal fundamental mechanisms regulating DA neuron development, but also provide important insights to their potential contributions to neuropsychiatric and neurodegenerative diseases. PMID:26724386

  13. Dopaminergic Neurons and Brain Reward Pathways: From Neurogenesis to Circuit Assembly.

    PubMed

    Luo, Sarah X; Huang, Eric J

    2016-03-01

    Midbrain dopaminergic (DA) neurons in the substantia nigra pars compacta and ventral tegmental area regulate extrapyramidal movement and important cognitive functions, including motivation, reward associations, and habit learning. Dysfunctions in DA neuron circuitry have been implicated in several neuropsychiatric disorders, including addiction and schizophrenia, whereas selective degeneration of DA neurons in substantia nigra pars compacta is a key neuropathological feature in Parkinson disease. Efforts to understand these disorders have focused on dissecting the underlying causes, as well as developing therapeutic strategies to replenish dopamine deficiency. In particular, the promise of cell replacement therapies for clinical intervention has led to extensive research in the identification of mechanisms involved in DA neuron development. It is hoped that a comprehensive understanding of these mechanisms will lead to therapeutic strategies that improve the efficiency of DA neuron production, engraftment, and function. This review provides a comprehensive discussion on how Wnt/β-catenin and sonic hedgehog-Smoothened signaling mechanisms control the specification and expansion of DA progenitors and the differentiation of DA neurons. We also discuss how mechanisms involving transforming growth factor-β and transcriptional cofactor homeodomain interacting protein kinase 2 regulate the survival and maturation of DA neurons in early postnatal life. These results not only reveal fundamental mechanisms regulating DA neuron development, but also provide important insights to their potential contributions to neuropsychiatric and neurodegenerative diseases.

  14. Caspase-11 plays an essential role in methamphetamine-induced dopaminergic neuron apoptosis.

    PubMed

    Huang, Weiye; Xie, Wei-Bing; Qiao, Dongfang; Qiu, Pingming; Huang, Enping; Li, Bing; Chen, Chuanxiang; Liu, Chao; Wang, Qi; Lin, Zhoumeng; Wang, Huijun

    2015-05-01

    Methamphetamine (METH) is an extremely addictive stimulant drug that is widely used with high potential of abuse. Previous studies have shown that METH exposure damages the nervous system, especially dopaminergic neurons. However, the exact molecular mechanisms of METH-induced neurotoxicity remain unclear. We hypothesized that caspase-11 is involved in METH-induced neuronal apoptosis. We tested our hypothesis by examining the change of caspase-11 protein expression in dopaminergic neurons (PC12 and SH-SY5Y) and in the midbrain of rats exposed to METH with Western blotting. We also determined the effects of blocking caspase-11 expression with wedelolactone (a specific inhibitor of caspase-11) or siRNA on METH-induced apoptosis in PC12 cells and SH-SY5Y cells using Annexin V and TUNEL staining. Furthermore, we observed the protein expression changes of the apoptotic markers, cleaved caspase-3 and cleaved poly(ADP-ribose) polymerase 1 (PARP), after silencing the caspase-11 expression in rat midbrain by injecting LV-shcasp11 lentivirus using a stereotaxic positioning system. Results showed that METH exposure increased caspase-11 expression both in vitro and in vivo, with the effects in vitro being dose- and time-dependent. Inhibition of caspase-11 expression with either wedelolactone or siRNAs reduced the number of METH-induced apoptotic cells. In addition, blocking caspase-11 expression inhibited METH-induced activation of caspase-3 and PARP in vitro and in vivo, suggesting that caspase-11/caspase-3 signal pathway is involved in METH-induced neurotoxicity. These results indicate that caspase-11 plays an essential role in METH-induced neuronal apoptosis and may be a potential gene target for therapeutics in METH-caused neurotoxicity.

  15. Differentiation of human embryonic stem cells to dopaminergic neurons in serum-free suspension culture.

    PubMed

    Schulz, Thomas C; Noggle, Scott A; Palmarini, Gail M; Weiler, Deb A; Lyons, Ian G; Pensa, Kate A; Meedeniya, Adrian C B; Davidson, Bruce P; Lambert, Nevin A; Condie, Brian G

    2004-01-01

    The use of human embryonic stem cells (hESCs) as a source of dopaminergic neurons for Parkinson's disease cell therapy will require the development of simple and reliable cell differentiation protocols. The use of cell cocultures, added extracellular signaling factors, or transgenic approaches to drive hESC differentiation could lead to additional regulatory as well as cell production delays for these therapies. Because the neuronal cell lineage seems to require limited or no signaling for its formation, we tested the ability of hESCs to differentiate to form dopamine-producing neurons in a simple serum-free suspension culture system. BG01 and BG03 hESCs were differentiated as suspension aggregates, and neural progenitors and neurons were detectable after 2-4 weeks. Plated neurons responded appropriately to electrophysiological cues. This differentiation was inhibited by early exposure to bone morphogenic protein (BMP)-4, but a pulse of BMP-4 from days 5 to 9 caused induction of peripheral neuronal differentiation. Real-time polymerase chain reaction and whole-mount immunocytochemistry demonstrated the expression of multiple markers of the midbrain dopaminergic phenotype in serum-free differentiations. Neurons expressing tyrosine hydroxylase (TH) were killed by 6-hydroxydopamine (6-OHDA), a neurotoxic catecholamine. Upon plating, these cells released dopamine and other catecholamines in response to K+ depolarization. Surviving TH+ neurons, derived from the cells differentiated in serum-free suspension cultures, were detected 8 weeks after transplantation into 6-OHDA-lesioned rat brains. This work suggests that hESCs can differentiate in simple serum-free suspension cultures to produce the large number of cells required for transplantation studies. PMID:15579641

  16. Pedunculopontine tegmental nucleus neurons provide reward, sensorimotor, and alerting signals to midbrain dopamine neurons

    PubMed Central

    Hong, Simon; Hikosaka, Okihide

    2014-01-01

    Dopamine (DA) neurons in the midbrain are crucial for motivational control of behavior. However, recent studies suggest that signals transmitted by DA neurons are heterogeneous. This may reflect a wide range of inputs to DA neurons, but which signals are provided by which brain areas is still unclear. Here we focused on the pedunculopontine tegmental nucleus (PPTg) in macaque monkeys and characterized its inputs to DA neurons. Since the PPTg projects to many brain areas, it is crucial to identify PPTg neurons that project to DA neuron areas. For this purpose we used antidromic activation technique by electrically stimulating three locations (medial, central, lateral) in the substantia nigra pars compacta (SNc). We found SNc-projecting neurons mainly in the PPTg, and some in the cuneiform nucleus (CuN). Electrical stimulation in the SNc-projecting PPTg regions induced a burst of spikes in presumed DA neurons, suggesting that the PPTg-DA(SNc) connection is excitatory. Behavioral tasks and clinical tests showed that the SNc-projecting PPTg neurons encoded reward, sensorimotor and arousal/alerting signals. Importantly, reward-related PPTg neurons tended to project to the medial and central SNc, whereas sensorimotor/arousal/alerting-related PPTg neurons tended to project to the lateral SNc. Most reward-related signals were positively biased: excitation and inhibition when a better and worse reward was expected, respectively. These PPTg neurons tended to retain the reward value signal until after a reward outcome, representing ‘value state’; this was different from DA neurons which show phasic signals representing ‘value change’. Our data, together with previous studies, suggest that PPTg neurons send positive reward-related signals mainly to the medial-central SNc where DA neurons encode motivational values and sensorimotor/arousal signals to the lateral SNc where DA neurons encode motivational salience. PMID:25058502

  17. Chronic stress enhances microglia activation and exacerbates death of nigral dopaminergic neurons under conditions of inflammation

    PubMed Central

    2014-01-01

    Background Parkinson’s disease is an irreversible neurodegenerative disease linked to progressive movement disorders and is accompanied by an inflammatory reaction that is believed to contribute to its pathogenesis. Since sensitivity to inflammation is not the same in all brain structures, the aim of this work was to test whether physiological conditions as stress could enhance susceptibility to inflammation in the substantia nigra, where death of dopaminergic neurons takes place in Parkinson’s disease. Methods To achieve our aim, we induced an inflammatory process in nonstressed and stressed rats (subject to a chronic variate stress) by a single intranigral injection of lipopolysaccharide, a potent proinflammogen. The effect of this treatment was evaluated on inflammatory markers as well as on neuronal and glial populations. Results Data showed a synergistic effect between inflammation and stress, thus resulting in higher microglial activation and expression of proinflammatory markers. More important, the higher inflammatory response seen in stressed animals was associated with a higher rate of death of dopaminergic neurons in the substantia nigra, the most characteristic feature seen in Parkinson’s disease. This effect was dependent on glucocorticoids. Conclusions Our data demonstrate that stress sensitises midbrain microglia to further inflammatory stimulus. This suggests that stress may be an important risk factor in the degenerative processes and symptoms of Parkinson’s disease. PMID:24565378

  18. Dissecting the role of Engrailed in adult dopaminergic neurons--Insights into Parkinson disease pathogenesis.

    PubMed

    Rekaik, Hocine; Blaudin de Thé, François-Xavier; Prochiantz, Alain; Fuchs, Julia; Joshi, Rajiv L

    2015-12-21

    The homeoprotein Engrailed (Engrailed-1/Engrailed-2, collectively En1/2) is not only a survival factor for mesencephalic dopaminergic (mDA) neurons during development, but continues to exert neuroprotective and physiological functions in adult mDA neurons. Loss of one En1 allele in the mouse leads to progressive demise of mDA neurons in the ventral midbrain starting from 6 weeks of age. These mice also develop Parkinson disease-like motor and non-motor symptoms. The characterization of En1 heterozygous mice have revealed striking parallels to central mechanisms of Parkinson disease pathogenesis, mainly related to mitochondrial dysfunction and retrograde degeneration. Thanks to the ability of homeoproteins to transduce cells, En1/2 proteins have also been used to protect mDA neurons in various experimental models of Parkinson disease. This neuroprotection is partly linked to the ability of En1/2 to regulate the translation of certain nuclear-encoded mitochondrial mRNAs for complex I subunits. Other transcription factors that govern mDA neuron development (e.g. Foxa1/2, Lmx1a/b, Nurr1, Otx2, Pitx3) also continue to function for the survival and maintenance of mDA neurons in the adult and act through partially overlapping but also diverse mechanisms.

  19. Dissecting the role of Engrailed in adult dopaminergic neurons: Insights into Parkinson disease pathogenesis

    PubMed Central

    Rekaik, Hocine; Blaudin de Thé, François-Xavier; Prochiantz, Alain; Fuchs, Julia; Joshi, Rajiv L.

    2016-01-01

    The homeoprotein Engrailed (Engrailed-1/Engrailed-2, collectively En1/2) is not only a survival factor for mesencephalic dopaminergic (mDA) neurons during development, but continues to exert neuroprotective and physiological functions in adult mDA neurons. Loss of one En1 allele in the mouse leads to progressive demise of mDA neurons in the ventral midbrain starting from 6 weeks of age. These mice also develop Parkinson disease-like motor and non-motor symptoms. The characterization of En1 heterozygous mice have revealed striking parallels to central mechanisms of Parkinson disease pathogenesis, mainly related to mitochondrial dysfunction and retrograde degeneration. Thanks to the ability of homeoproteins to transduce cells, En1/2 proteins have also been used to protect mDA neurons in various experimental models of Parkinson disease. This neuroprotection is partly linked to the ability of En1/2 to regulate the translation of certain nuclear-encoded mitochondrial mRNAs for complex I subunits. Other transcription factors that govern mDA neuron development (e.g. Foxa1/2, Lmx1a/b, Nurr1, Otx2, Pitx3) also continue to function for the survival and maintenance of mDA neurons in the adult and act through partially overlapping but also diverse mechanisms. PMID:26459030

  20. Properties of dopaminergic neurons in organotypic mesencephalic-striatal co-cultures--evidence for a facilitatory effect of dopamine on the glutamatergic input mediated by α-1 adrenergic receptors.

    PubMed

    Cucchiaroni, Maria L; Freestone, Peter S; Berretta, Nicola; Viscomi, Maria T; Bisicchia, Elisa; Okano, Hideyuki; Molinari, Marco; Bernardi, Giorgio; Lipski, Janusz; Mercuri, Nicola B; Guatteo, Ezia

    2011-05-01

    Organotypic cultures (OCs) have been widely used to investigate the midbrain dopaminergic system, but only a few studies focused on the functional properties of dopaminergic neurons and their synaptic inputs from dopaminergic and non-dopaminergic neurons also contained in such cultures. In addition, it is not clear whether the culturing process affects the intrinsic neuronal properties and the expression of specific receptors and transporters. We performed patch-clamp recordings from dopaminergic neurons in mesencephalic-striatal co-cultures obtained from transgenic mice expressing green fluorescent protein (GFP) under the tyrosine hydroxylase promoter. Some (10/44) GFP+ neurons displayed a bursting activity that renders the firing of these cells similar to that of the dopaminergic neurons in vivo. The culturing process reduced the hyperpolarization-activated current (I(h) ) and the expression of D₂ receptors. Downregulation of D₂ receptor mRNA and protein was confirmed with reverse transcriptase polymerase chain reaction and Western blotting. Immunocytochemistry revealed that many synaptic terminals, most likely originating from dopaminergic neurons, co-expressed the dopamine (DA) transporter and the vesicular glutamate transporter-2, suggesting a co-release of DA and glutamate. Interestingly, exogenous DA decreased glutamate release in young cultures [days in vitro (DIV)<20] by acting on pre-synaptic D₂ receptors, while in older cultures (DIV>26) DA increased glutamate release by acting on α-1 adrenoreceptors. The facilitatory effect of DA on glutamatergic transmission to midbrain dopaminergic neurons may be important in conditions when the expression of D₂ receptors is compromised, such as long-term treatment with antipsychotic drugs. Our data show that midbrain OCs at DIV>26 may provide a suitable model of such conditions.

  1. Dopaminergic neurons generated from monkey embryonic stem cells function in a Parkinson primate model.

    PubMed

    Takagi, Yasushi; Takahashi, Jun; Saiki, Hidemoto; Morizane, Asuka; Hayashi, Takuya; Kishi, Yo; Fukuda, Hitoshi; Okamoto, Yo; Koyanagi, Masaomi; Ideguchi, Makoto; Hayashi, Hideki; Imazato, Takayuki; Kawasaki, Hiroshi; Suemori, Hirofumi; Omachi, Shigeki; Iida, Hidehiko; Itoh, Nobuyuki; Nakatsuji, Norio; Sasai, Yoshiki; Hashimoto, Nobuo

    2005-01-01

    Parkinson disease (PD) is a neurodegenerative disorder characterized by loss of midbrain dopaminergic (DA) neurons. ES cells are currently the most promising donor cell source for cell-replacement therapy in PD. We previously described a strong neuralizing activity present on the surface of stromal cells, named stromal cell-derived inducing activity (SDIA). In this study, we generated neurospheres composed of neural progenitors from monkey ES cells, which are capable of producing large numbers of DA neurons. We demonstrated that FGF20, preferentially expressed in the substantia nigra, acts synergistically with FGF2 to increase the number of DA neurons in ES cell-derived neurospheres. We also analyzed the effect of transplantation of DA neurons generated from monkey ES cells into 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine-treated (MPTP-treated) monkeys, a primate model for PD. Behavioral studies and functional imaging revealed that the transplanted cells functioned as DA neurons and attenuated MPTP-induced neurological symptoms.

  2. Enhanced differentiation of neural progenitor cells into neurons of the mesencephalic dopaminergic subtype on topographical patterns.

    PubMed

    Tan, Kenneth K B; Tann, Jason Y; Sathe, Sharvari R; Goh, Seok Hong; Ma, Dongliang; Goh, Eyleen L K; Yim, Evelyn K F

    2015-03-01

    Parkinson's disease (PD) is a neurodegenerative disease attributed to the loss of midbrain dopaminergic (DA) neurons. The current lack of predictive models for this disease has been hampered by the acquirement of robust cells, posing a major barrier to drug development. Differentiation of stem cells into subtype specific cells may be guided by appropriate topographical cues but the role of topography has hitherto not been well understood. We used a Multi-Architecture (MARC) chip with various topographical structures and identified three topographies, which generate DA neurons from murine hippocampal neural progenitor cells with the highest percentage of neuronal (β-III-tubulin positive) and dopaminergic (tyrosine hydroxylase positive) populations. Analysis on single pattern structures showed that 2 μm gratings with 2 μm spacing and 2 μm height (2 μm gratings) and 2 μm gratings with hierarchical structure produced cells with the highest gene expression of TH and PITX3, with the longest neurite and highest percentage of alignment. Quantitative image analysis showed the 2 μm gratings produced cells with the highest expression of pituitary homeobox 3 (PITX3), LIM homeobox transcription factor 1 alpha (LMX1a), aldehyde dehydrogenase 1 family member A1 (ALDH1a1) and microtubule associated protein 2 (MAP2), as compared to nano-gratings and unpatterned controls. These patterns also enhance DA neuron differentiation on different substrate rigidities, as seen on both poly-dimethylsiloxane (PDMS) and tissue culture polystyrene (TCPS) substrates. These results show the use of topographical influence for neuronal subtype specification, which could be translated into a wide range of clinical applications for PD. PMID:25591959

  3. Rotenone induces oxidative stress and dopaminergic neuron damage in organotypic substantia nigra cultures.

    PubMed

    Testa, Claudia M; Sherer, Todd B; Greenamyre, J Timothy

    2005-03-24

    Rotenone, a pesticide and complex I inhibitor, causes nigrostriatal degeneration similar to Parkinson disease pathology in a chronic, systemic, in vivo rodent model [M. Alam, W.J. Schmidt, Rotenone destroys dopaminergic neurons and induces parkinsonian symptoms in rats, Behav. Brain Res. 136 (2002) 317-324; R. Betarbet, T.B. Sherer, G. MacKenzie, M. Garcia-Osuna, A.V. Panov, J.T. Greenamyre, Chronic systemic pesticide exposure reproduces features of Parkinson's disease, Nat. Neurosci. 3 (2000) 1301-1306; S.M. Fleming, C. Zhu, P.O. Fernagut, A. Mehta, C.D. DiCarlo, R.L. Seaman, M.F. Chesselet, Behavioral and immunohistochemical effects of chronic intravenous and subcutaneous infusions of varying doses of rotenone, Exp. Neurol. 187 (2004) 418-429; T.B. Sherer, J.H. Kim, R. Betarbet, J.T. Greenamyre, Subcutaneous rotenone exposure causes highly selective dopaminergic degeneration and alpha-synuclein aggregation, Exp. Neurol. 179 (2003) 9-16.]. To better investigate the role of mitochondria and complex I inhibition in chronic, progressive neurodegenerative disease, we developed methods for long-term culture of rodent postnatal midbrain organotypic slices. Chronic complex I inhibition over weeks by low dose (10-50 nM) rotenone in this system lead to dose- and time-dependent destruction of substantia nigra pars compacta neuron processes, morphologic changes, some neuronal loss, and decreased tyrosine hydroxylase (TH) protein levels. Chronic complex I inhibition also caused oxidative damage to proteins, measured by protein carbonyl levels. This oxidative damage was blocked by the antioxidant alpha-tocopherol (vitamin E). At the same time, alpha-tocopherol also blocked rotenone-induced reductions in TH protein and TH immunohistochemical changes. Thus, oxidative damage is a primary mechanism of mitochondrial toxicity in intact dopaminergic neurons. The organotypic culture system allows close study of this and other interacting mechanisms over a prolonged time period in

  4. Transcription factors FOXA1 and FOXA2 maintain dopaminergic neuronal properties and control feeding behavior in adult mice

    PubMed Central

    Pristerà, Alessandro; Lin, Wei; Kaufmann, Anna-Kristin; Brimblecombe, Katherine R.; Threlfell, Sarah; Dodson, Paul D.; Magill, Peter J.; Fernandes, Cathy; Cragg, Stephanie J.; Ang, Siew-Lan

    2015-01-01

    Midbrain dopaminergic (mDA) neurons are implicated in cognitive functions, neuropsychiatric disorders, and pathological conditions; hence understanding genes regulating their homeostasis has medical relevance. Transcription factors FOXA1 and FOXA2 (FOXA1/2) are key determinants of mDA neuronal identity during development, but their roles in adult mDA neurons are unknown. We used a conditional knockout strategy to specifically ablate FOXA1/2 in mDA neurons of adult mice. We show that deletion of Foxa1/2 results in down-regulation of tyrosine hydroxylase, the rate-limiting enzyme of dopamine (DA) biosynthesis, specifically in dopaminergic neurons of the substantia nigra pars compacta (SNc). In addition, DA synthesis and striatal DA transmission were reduced after Foxa1/2 deletion. Furthermore, the burst-firing activity characteristic of SNc mDA neurons was drastically reduced in the absence of FOXA1/2. These molecular and functional alterations lead to a severe feeding deficit in adult Foxa1/2 mutant mice, independently of motor control, which could be rescued by l-DOPA treatment. FOXA1/2 therefore control the maintenance of molecular and physiological properties of SNc mDA neurons and impact on feeding behavior in adult mice. PMID:26283356

  5. Electrical and Ca2+ signaling in dendritic spines of substantia nigra dopaminergic neurons

    PubMed Central

    Hage, Travis A; Sun, Yujie; Khaliq, Zayd M

    2016-01-01

    Little is known about the density and function of dendritic spines on midbrain dopamine neurons, or the relative contribution of spine and shaft synapses to excitability. Using Ca2+ imaging, glutamate uncaging, fluorescence recovery after photobleaching and transgenic mice expressing labeled PSD-95, we comparatively analyzed electrical and Ca2+ signaling in spines and shaft synapses of dopamine neurons. Dendritic spines were present on dopaminergic neurons at low densities in live and fixed tissue. Uncaging-evoked potential amplitudes correlated inversely with spine length but positively with the presence of PSD-95. Spine Ca2+ signals were less sensitive to hyperpolarization than shaft synapses, suggesting amplification of spine head voltages. Lastly, activating spines during pacemaking, we observed an unexpected enhancement of spine Ca2+ midway throughout the spike cycle, likely involving recruitment of NMDA receptors and voltage-gated conductances. These results demonstrate functionality of spines in dopamine neurons and reveal a novel modulation of spine Ca2+ signaling during pacemaking. DOI: http://dx.doi.org/10.7554/eLife.13905.001 PMID:27163179

  6. Differential Neuronal Plasticity of Dental Pulp Stem Cells From Exfoliated Deciduous and Permanent Teeth Towards Dopaminergic Neurons.

    PubMed

    Majumdar, Debanjana; Kanafi, Mohammad; Bhonde, Ramesh; Gupta, Pawan; Datta, Indrani

    2016-09-01

    Based on early occurrence in chronological age, stem-cells from human exfoliated deciduous teeth (SHED) has been reported to possess better differentiation-potential toward certain cell-lineage in comparison to stem-cells from adult teeth (DPSCs). Whether this same property between them extends for the yield of functional central nervous system neurons is still not evaluated. Hence, we aim to assess the neuronal plasticity of SHED in comparison to DPSCs toward dopaminergic-neurons and further, if the difference is reflected in a differential expression of sonic-hedgehog (SHH)-receptors and basal-expressions of tyrosine-hydroxylase [TH; through cAMP levels]. Human SHED and DPSCs were exposed to midbrain-cues [SHH, fibroblast growth-factor8, and basic fibroblast growth-factor], and their molecular, immunophenotypical, and functional characterization was performed at different time-points of induction. Though SHED and DPSCs spontaneously expressed early-neuronal and neural-crest marker in their naïve state, only SHED expressed a high basal-expression of TH. The upregulation of dopaminergic transcription-factors Nurr1, Engrailed1, and Pitx3 was more pronounced in DPSCs. The yield of TH-expressing cells decreased from 49.8% to 32.16% in SHED while it increased from 8.09% to 77.47% in DPSCs. Dopamine release and intracellular-Ca(2+) influx upon stimulation (KCl and ATP) was higher in induced DPSCs. Significantly lower-expression of SHH-receptors was noted in naïve SHED than DPSCs, which may explain the differential neuronal plasticity. In addition, unlike DPSCs, SHED showed a down-regulation of cyclic adenosine-monophosphate (cAMP) upon exposure to SHH; possibly another contributor to the lesser differentiation-potential. Our data clearly demonstrates for the first time that DPSCs possess superior neuronal plasticity toward dopaminergic-neurons than SHED; influenced by higher SHH-receptor and lower basal TH expression. J. Cell. Physiol. 231: 2048-2063, 2016. © 2016

  7. Differential Neuronal Plasticity of Dental Pulp Stem Cells From Exfoliated Deciduous and Permanent Teeth Towards Dopaminergic Neurons.

    PubMed

    Majumdar, Debanjana; Kanafi, Mohammad; Bhonde, Ramesh; Gupta, Pawan; Datta, Indrani

    2016-09-01

    Based on early occurrence in chronological age, stem-cells from human exfoliated deciduous teeth (SHED) has been reported to possess better differentiation-potential toward certain cell-lineage in comparison to stem-cells from adult teeth (DPSCs). Whether this same property between them extends for the yield of functional central nervous system neurons is still not evaluated. Hence, we aim to assess the neuronal plasticity of SHED in comparison to DPSCs toward dopaminergic-neurons and further, if the difference is reflected in a differential expression of sonic-hedgehog (SHH)-receptors and basal-expressions of tyrosine-hydroxylase [TH; through cAMP levels]. Human SHED and DPSCs were exposed to midbrain-cues [SHH, fibroblast growth-factor8, and basic fibroblast growth-factor], and their molecular, immunophenotypical, and functional characterization was performed at different time-points of induction. Though SHED and DPSCs spontaneously expressed early-neuronal and neural-crest marker in their naïve state, only SHED expressed a high basal-expression of TH. The upregulation of dopaminergic transcription-factors Nurr1, Engrailed1, and Pitx3 was more pronounced in DPSCs. The yield of TH-expressing cells decreased from 49.8% to 32.16% in SHED while it increased from 8.09% to 77.47% in DPSCs. Dopamine release and intracellular-Ca(2+) influx upon stimulation (KCl and ATP) was higher in induced DPSCs. Significantly lower-expression of SHH-receptors was noted in naïve SHED than DPSCs, which may explain the differential neuronal plasticity. In addition, unlike DPSCs, SHED showed a down-regulation of cyclic adenosine-monophosphate (cAMP) upon exposure to SHH; possibly another contributor to the lesser differentiation-potential. Our data clearly demonstrates for the first time that DPSCs possess superior neuronal plasticity toward dopaminergic-neurons than SHED; influenced by higher SHH-receptor and lower basal TH expression. J. Cell. Physiol. 231: 2048-2063, 2016. © 2016

  8. Correlation between dopaminergic phenotype and expression of calretinin in the midbrain nuclei of the opossum (Monodelphis domestica): an immunohistological study.

    PubMed

    Klejbor, Ilona; Ludkiewicz, Beata; Wojcik, Sławomir; Turlejski, Krzysztof

    2013-01-01

    We investigated distribution and morphology of neurons of the midbrain nuclei: the ventral tegmental area (VTA), substantia nigra (SN) and periaqueductal gray (PAG) of the adult grey short-tailed opossums that were double immunolabeled for the presence of calretinin (CR) and/or tyrosine hydroxylase (TH). The majority of TH-immunopositive neurons and fibers were located in the VTA, SN, and only scarce population of small neurons expressing TH was present in the PAG. In the SN 80 percent of TH-expressing neurons had large cell bodies, and only a small fraction had small perikarya. In the PAG populations of large and medium sized neurons were equal and 20 percent of neurons had small perikarya. Much scarcer population of TH-immunoreactive neurons in the PAG consisted of large or small neurons in its dorsal part (PAGd) and almost exclusively small neurons in the ventral part (PAGv). Distribution of neurons expressing TH and their types in the opossum are similar to those in rodents. The majority of CR-immunolabeled neurons were found in the VTA. In its subdivision, the parabrachal pigmented nucleus (PBP) cells expressing CR were approximately 28 percent more numerous than cells expressing TH. In spite of that, only 42 percent of TH-expressing neurons coexpressed CR. The high degree of colocalization TH and CR was observed in the SN. We propose that a higher percentage of TH/CR colocalization, which is observed in the opossums SN, may give them the ability to adapt to changes in their motor functions.

  9. Remote control of induced dopaminergic neurons in parkinsonian rats.

    PubMed

    Dell'Anno, Maria Teresa; Caiazzo, Massimiliano; Leo, Damiana; Dvoretskova, Elena; Medrihan, Lucian; Colasante, Gaia; Giannelli, Serena; Theka, Ilda; Russo, Giovanni; Mus, Liudmila; Pezzoli, Gianni; Gainetdinov, Raul R; Benfenati, Fabio; Taverna, Stefano; Dityatev, Alexander; Broccoli, Vania

    2014-07-01

    Direct lineage reprogramming through genetic-based strategies enables the conversion of differentiated somatic cells into functional neurons and distinct neuronal subtypes. Induced dopaminergic (iDA) neurons can be generated by direct conversion of skin fibroblasts; however, their in vivo phenotypic and functional properties remain incompletely understood, leaving their impact on Parkinson's disease (PD) cell therapy and modeling uncertain. Here, we determined that iDA neurons retain a transgene-independent stable phenotype in culture and in animal models. Furthermore, transplanted iDA neurons functionally integrated into host neuronal tissue, exhibiting electrically excitable membranes, synaptic currents, dopamine release, and substantial reduction of motor symptoms in a PD animal model. Neuronal cell replacement approaches will benefit from a system that allows the activity of transplanted neurons to be controlled remotely and enables modulation depending on the physiological needs of the recipient; therefore, we adapted a DREADD (designer receptor exclusively activated by designer drug) technology for remote and real-time control of grafted iDA neuronal activity in living animals. Remote DREADD-dependent iDA neuron activation markedly enhanced the beneficial effects in transplanted PD animals. These data suggest that iDA neurons have therapeutic potential as a cell replacement approach for PD and highlight the applicability of pharmacogenetics for enhancing cellular signaling in reprogrammed cell-based approaches. PMID:24937431

  10. Dual effects of L-DOPA on nigral dopaminergic neurons.

    PubMed

    Guatteo, Ezia; Yee, Andrew; McKearney, James; Cucchiaroni, Maria L; Armogida, Marta; Berretta, Nicola; Mercuri, Nicola B; Lipski, Janusz

    2013-09-01

    L-DOPA (Levodopa) remains the gold standard for the treatment of motor symptoms of Parkinson's disease (PD), despite indications that the drug may have detrimental effects in cell culture. Classically, l-DOPA increases the production of dopamine (DA) in nigral dopaminergic neurons, while paradoxically inhibiting the firing of these neurons due to activation of D2 autoreceptors by extracellularly released DA. Using a combination of electrophysiology and calcium microfluorometry in brain slices, we have identified a novel effect of L-DOPA on dopaminergic neurons when D2 receptors were blocked. Under these conditions, L-DOPA (0.03-3 mM) evoked an excitatory effect consisting of two components. The 'early' component observed during and immediately after application of the drug, was associated with increased firing, membrane depolarization and inward current. This excitatory response was strongly attenuated by CNQX (10 μM), pointing to the involvement of TOPA quinone, an auto-oxidation product of L-DOPA and a potent activator of AMPA/kainate receptors. The 'late' phase of excitation persisted >30 min after brief L-DOPA application and was not mediated by ionotropic glutamate receptors, nor by D1, α1-adrenergic, mGluR1 or GABAB receptors. It was eliminated by carbidopa, demonstrating its dependence on conversion of L-DOPA to DA. Exogenous DA (50 μM) also evoked a glutamate-receptor independent increase in firing and an inward current when D2 receptors were blocked. In voltage-clamped neurons, both L-DOPA and DA produced a long-lasting increase in [Ca(2+)]i which was unaffected by block of ionotropic glutamate receptors. These results demonstrate that L-DOPA has dual, inhibitory and excitatory, effects on nigral dopaminergic neurons, and suggest that the excitation and calcium rise may have long-lasting consequences for the activity and survival of these neurons when the expression or function of D2 receptors is impaired. PMID:23481547

  11. Melanocortin 3 Receptor Signaling in Midbrain Dopamine Neurons Increases the Motivation for Food Reward.

    PubMed

    Pandit, Rahul; Omrani, Azar; Luijendijk, Mieneke C M; de Vrind, Véronne A J; Van Rozen, Andrea J; Ophuis, Ralph J A Oude; Garner, Keith; Kallo, Imre; Ghanem, Alexander; Liposits, Zsolt; Conzelmann, Karl-Klaus; Vanderschuren, Louk J M J; la Fleur, Susanne E; Adan, Roger A H

    2016-08-01

    The central melanocortin (MC) system mediates its effects on food intake via MC3 (MC3R) and MC4 receptors (MC4R). Although the role of MC4R in meal size determination, satiation, food preference, and motivation is well established, the involvement of MC3R in the modulation of food intake has been less explored. Here, we investigated the role of MC3R on the incentive motivation for food, which is a crucial component of feeding behavior. Dopaminergic neurons within the ventral tegmental area (VTA) have a crucial role in the motivation for food. We here report that MC3Rs are expressed on VTA dopaminergic neurons and that pro-opiomelanocortinergic (POMC) neurons in the arcuate nucleus of the hypothalamus (Arc) innervate these VTA dopaminergic neurons. Our findings show that intracerebroventricular or intra-VTA infusion of the selective MC3R agonist γMSH increases responding for sucrose under a progressive ratio schedule of reinforcement, but not free sucrose consumption in rats. Furthermore, ex vivo electrophysiological recordings show increased VTA dopaminergic neuronal activity upon γMSH application. Consistent with a dopamine-mediated effect of γMSH, the increased motivation for sucrose after intra-VTA infusion of γMSH was blocked by pretreatment with the dopamine receptor antagonist α-flupenthixol. Taken together, we demonstrate an Arc POMC projection onto VTA dopaminergic neurons that modulates motivation for palatable food via activation of MC3R signaling. PMID:26852738

  12. Sex-dependent diversity in ventral tegmental dopaminergic neurons and developmental programing: A molecular, cellular and behavioral analysis

    PubMed Central

    Gillies, G.E.; Virdee, K.; McArthur, S.; Dalley, J.W.

    2014-01-01

    The knowledge that diverse populations of dopaminergic neurons within the ventral tegmental area (VTA) can be distinguished in terms of their molecular, electrophysiological and functional properties, as well as their differential projections to cortical and subcortical regions has significance for key brain functions, such as the regulation of motivation, working memory and sensorimotor control. Almost without exception, this understanding has evolved from landmark studies performed in the male sex. However, converging evidence from both clinical and pre-clinical studies illustrates that the structure and functioning of the VTA dopaminergic systems are intrinsically different in males and females. This may be driven by sex differences in the hormonal environment during adulthood (‘activational’ effects) and development (perinatal and/or pubertal ‘organizational’ effects), as well as genetic factors, especially the SRY gene on the Y chromosome in males, which is expressed in a sub-population of adult midbrain dopaminergic neurons. Stress and stress hormones, especially glucocorticoids, are important factors which interact with the VTA dopaminergic systems in order to achieve behavioral adaptation and enable the individual to cope with environmental change. Here, also, there is male/female diversity not only during adulthood, but also in early life when neurobiological programing by stress or glucocorticoid exposure differentially impacts dopaminergic developmental trajectories in male and female brains. This may have enduring consequences for individual resilience or susceptibility to pathophysiological change induced by stressors in later life, with potential translational significance for sex bias commonly found in disorders involving dysfunction of the mesocorticolimbic dopaminergic systems. These findings highlight the urgent need for a better understanding of the sexual dimorphism in the VTA if we are to improve strategies for the prevention and

  13. Multiple value signals in dopaminergic midbrain and their role in avoidance contexts.

    PubMed

    Rigoli, Francesco; Chew, Benjamin; Dayan, Peter; Dolan, Raymond J

    2016-07-15

    The role of dopaminergic brain regions in avoidance behaviour is unclear. Active avoidance requires motivation, and the latter is linked to increased activity in dopaminergic regions. However, avoidance is also often tethered to the prospect of punishment, a state typically characterized by below baseline levels of dopaminergic function. Avoidance has been considered from the perspective of two-factor theories where the prospect of safety is considered to act as a surrogate for reward, leading to dopamine release and enhanced motivational drive. Using fMRI we investigated predictions from two-factor theory by separating the neural representation of a conventional net expected value, which is negative in the case of avoidance, from an adjusted expected value which factors in a possibility of punishment and is larger for both big rewards and big (predictably avoidable) punishments. We show that neural responses in ventral striatum and ventral tegmental area/substantial nigra (VTA/SN) covaried with net expected value. Activity in VTA/SN also covaried with an adjusted expected value, as did activity in anterior insula. Consistent with two-factor theory models, the findings indicate that VTA/SN and insula process an adjusted expected value during avoidance behaviour.

  14. Multiple value signals in dopaminergic midbrain and their role in avoidance contexts.

    PubMed

    Rigoli, Francesco; Chew, Benjamin; Dayan, Peter; Dolan, Raymond J

    2016-07-15

    The role of dopaminergic brain regions in avoidance behaviour is unclear. Active avoidance requires motivation, and the latter is linked to increased activity in dopaminergic regions. However, avoidance is also often tethered to the prospect of punishment, a state typically characterized by below baseline levels of dopaminergic function. Avoidance has been considered from the perspective of two-factor theories where the prospect of safety is considered to act as a surrogate for reward, leading to dopamine release and enhanced motivational drive. Using fMRI we investigated predictions from two-factor theory by separating the neural representation of a conventional net expected value, which is negative in the case of avoidance, from an adjusted expected value which factors in a possibility of punishment and is larger for both big rewards and big (predictably avoidable) punishments. We show that neural responses in ventral striatum and ventral tegmental area/substantial nigra (VTA/SN) covaried with net expected value. Activity in VTA/SN also covaried with an adjusted expected value, as did activity in anterior insula. Consistent with two-factor theory models, the findings indicate that VTA/SN and insula process an adjusted expected value during avoidance behaviour. PMID:27132047

  15. Menthol Alone Upregulates Midbrain nAChRs, Alters nAChR Subtype Stoichiometry, Alters Dopamine Neuron Firing Frequency, and Prevents Nicotine Reward.

    PubMed

    Henderson, Brandon J; Wall, Teagan R; Henley, Beverley M; Kim, Charlene H; Nichols, Weston A; Moaddel, Ruin; Xiao, Cheng; Lester, Henry A

    2016-03-01

    Upregulation of β2 subunit-containing (β2*) nicotinic acetylcholine receptors (nAChRs) is implicated in several aspects of nicotine addiction, and menthol cigarette smokers tend to upregulate β2* nAChRs more than nonmenthol cigarette smokers. We investigated the effect of long-term menthol alone on midbrain neurons containing nAChRs. In midbrain dopaminergic (DA) neurons from mice containing fluorescent nAChR subunits, menthol alone increased the number of α4 and α6 nAChR subunits, but this upregulation did not occur in midbrain GABAergic neurons. Thus, chronic menthol produces a cell-type-selective upregulation of α4* nAChRs, complementing that of chronic nicotine alone, which upregulates α4 subunit-containing (α4*) nAChRs in GABAergic but not DA neurons. In mouse brain slices and cultured midbrain neurons, menthol reduced DA neuron firing frequency and altered DA neuron excitability following nAChR activation. Furthermore, menthol exposure before nicotine abolished nicotine reward-related behavior in mice. In neuroblastoma cells transfected with fluorescent nAChR subunits, exposure to 500 nm menthol alone also increased nAChR number and favored the formation of (α4)3(β2)2 nAChRs; this contrasts with the action of nicotine itself, which favors (α4)2(β2)3 nAChRs. Menthol alone also increases the number of α6β2 receptors that exclude the β3 subunit. Thus, menthol stabilizes lower-sensitivity α4* and α6 subunit-containing nAChRs, possibly by acting as a chemical chaperone. The abolition of nicotine reward-related behavior may be mediated through menthol's ability to stabilize lower-sensitivity nAChRs and alter DA neuron excitability. We conclude that menthol is more than a tobacco flavorant: administered alone chronically, it alters midbrain DA neurons of the nicotine reward-related pathway.

  16. Tuberoinfundibular dopaminergic neurons of the hypothalamus are progestin target cells

    SciTech Connect

    Sar, M.

    1986-03-01

    To find out a direct relationship between progestin target neurons and tuberoinfundibular dopaminergic neurons colocalization of /sup 3/H ORG 2058 (a synthetic progestin) and tyrosine hydroxylase, TH, antibodies were studied by combined autoradiography and immunohistochemistry. Eight 23 day-old ovariectomized and adrenalectomized rats were injected s.c. 17-beta estradiol, daily for 4 days. On the 5th day each animal was injected i.v. 1.0 ug per 100g b.w. of /sup 3/H ORG 2058. Two animals each received 1mg of unlabeled ORG 2058 15 min prior to the injection of /sup 3/H ORG 2058 to show the specificity of localization. Animals were sacrificed after 15 or 30 min, brains were dissected, frozen and processed for autoradiography. The autoradiograms were stained immunohistochemically with antibodies to TH. TH-containing cells in the arcuate nucleus and in the hypothalamic periventricular nucleus (Group A12) showed concentration of radioactivity in their nuclei, while TH cells in Group A11, A13, A14, and in the substantia nigra (Group A9), and ventral tegmental area (Group A10) did not show nuclear concentration of /sup 3/H ORG 2058. Competition studies with unlabeled ORG 2058 abolished the nuclear uptake of radioactivity in TH containing neurons. The results suggest a direct affect of progestin on tuberoinfundibular dopaminergic neurons.

  17. Immunocytochemical identification of proteins involved in dopamine release from the somatodendritic compartment of nigral dopaminergic neurons

    PubMed Central

    Witkovsky, Paul; Patel, Jyoti C.; Lee, Christian R.; Rice, Margaret E.

    2010-01-01

    We examined the somatodendritic compartment of nigral dopaminergic neurons by immunocytochemistry and confocal microscopy, with the aim of identifying proteins that participate in dopamine packaging and release. Nigral dopaminergic neurons were identified by location, cellular features and tyrosine hydroxylase immunoreactivity. Immunoreactive puncta of vesicular monoamine transporter type 2 and proton ATPase, both involved in the packaging of dopamine for release, were located primarily in dopaminergic cell bodies, but were absent in distal dopaminergic dendrites. Many presynaptic proteins associated with transmitter release at fast synapses were absent in nigral dopaminergic neurons, including synaptotagmin 1, syntaxin1, synaptic vesicle proteins 2a and 2b, synaptophysin and synaptobrevin 1 (VAMP 1). On the other hand, syntaxin 3, synaptobrevin 2 (VAMP 2) and SNAP-25-immunoreactivities were found in dopaminergic somata and dendrites Our data imply that the storage and exocytosis of dopamine from the somatodendritic compartment of nigral dopaminergic neurons is mechanistically distinct from transmitter release at axon terminals utilizing amino acid neurotransmitters. PMID:19682556

  18. Smoking-Relevant Nicotine Concentration Attenuates the Unfolded Protein Response in Dopaminergic Neurons

    PubMed Central

    Srinivasan, Rahul; Henley, Beverley M.; Henderson, Brandon J.; Indersmitten, Tim; Cohen, Bruce N.; Kim, Charlene H.; McKinney, Sheri; Deshpande, Purnima; Xiao, Cheng

    2016-01-01

    Retrospective epidemiological studies show an inverse correlation between susceptibility to Parkinson's disease and a person's history of tobacco use. Animal model studies suggest nicotine as a neuroprotective agent and nicotinic acetylcholine (ACh) receptors (nAChRs) as targets for neuroprotection, but the underlying neuroprotective mechanism(s) are unknown. We cultured mouse ventral midbrain neurons for 3 weeks. Ten to 20% of neurons were dopaminergic (DA), revealed by tyrosine hydroxylase (TH) immunoreactivity. We evoked mild endoplasmic reticulum (ER) stress with tunicamycin (Tu), producing modest increases in the level of nuclear ATF6, phosphorylated eukaryotic initiation factor 2α, nuclear XBP1, and the downstream proapoptotic effector nuclear C/EBP homologous protein. We incubated cultures for 2 weeks with 200 nm nicotine, the approximate steady-state concentration between cigarette smoking or vaping, or during nicotine patch use. Nicotine incubation suppressed Tu-induced ER stress and the unfolded protein response (UPR). Study of mice with fluorescent nAChR subunits showed that the cultured TH+ neurons displayed α4, α6, and β3 nAChR subunit expression and ACh-evoked currents. Gene expression profile in cultures from TH-eGFP mice showed that the TH+ neurons also express several other genes associated with DA release. Nicotine also upregulated ACh-induced currents in DA neurons by ∼2.5-fold. Thus, nicotine, at a concentration too low to activate an appreciable fraction of plasma membrane nAChRs, induces two sequelae of pharmacological chaperoning in the ER: UPR suppression and nAChR upregulation. Therefore, one mechanism of neuroprotection by nicotine is pharmacological chaperoning, leading to UPR suppression. Measuring this pathway may help in assessing neuroprotection. SIGNIFICANCE STATEMENT Parkinson's disease (PD) cannot yet be cured or prevented. However, many retrospective epidemiological studies reveal that PD is diagnosed less frequently in

  19. Dorsal Striatal-Midbrain Connectivity in Humans Predicts How Reinforcements Are Used to Guide Decisions

    ERIC Educational Resources Information Center

    Kahnt, Thorsten; Park, Soyoung Q.; Cohen, Michael X.; Beck, Anne; Heinz, Andreas; Wrase, Jana

    2009-01-01

    It has been suggested that the target areas of dopaminergic midbrain neurons, the dorsal (DS) and ventral striatum (VS), are differently involved in reinforcement learning especially as actor and critic. Whereas the critic learns to predict rewards, the actor maintains action values to guide future decisions. The different midbrain connections to…

  20. Functional properties of dopaminergic neurones in the mouse olfactory bulb

    PubMed Central

    Pignatelli, Angela; Kobayashi, Kazuto; Okano, Hideyuki; Belluzzi, Ottorino

    2005-01-01

    The olfactory bulb of mammals contains a large population of dopaminergic interneurones within the glomerular layer. Dopamine has been shown both in vivo and in vitro to modulate several aspects of olfactory information processing, but the functional properties of dopaminergic neurones have never been described due to the inability to recognize these cells in living preparations. To overcome this difficulty, we used a transgenic mouse strain harbouring an eGFP (enhanced green fluorescent protein) reporter construct under the promoter of tyrosine hydroxylase, the rate-limiting enzyme for cathecolamine synthesis. As a result, we were able to identify dopaminergic neurones (TH-GFP cells) in living preparations and, for the first time, we could study the functional properties of such neurones in the olfactory bulb, in both slices and dissociated cells. The most prominent feature of these cells was the autorhythmicity. In these cells we identified five main voltage-dependent conductances: the two having largest amplitude were a fast transient Na+ current and a delayed rectifier K+ current. In addition, we observed three smaller inward currents, sustained by Na+ ions (persistent type) and by Ca2+ ions (LVA and HVA). Using pharmacological tools and ion substitution methods we showed that the pacemaking process is supported by the interplay of the persistent Na+ current and of a T-type Ca2+ current. We carried out a complete kinetical analysis of the five conductances present in these cells, and developed a Hodgkin-Huxley model of TH-GFP cells, capable of reproducing accurately the properties of living cells, including autorhytmicity, and allowing a precise understanding of the process. PMID:15731185

  1. Thymoquinone protects dopaminergic neurons against MPP+ and rotenone.

    PubMed

    Radad, Khaled; Moldzio, Rudolf; Taha, Mokhtar; Rausch, Wolf-Dieter

    2009-05-01

    Thymoquinone is the main active constituent of Nigella sativa seeds with antioxidant and antiinflammatory properties. In the present study, primary dopaminergic cultures from mouse mesencephala were used to investigate the neuroprotective effects of thymoquinone against MPP(+) and rotenone toxicities. MPP(+) (10 microm on day 10 in vitro (i.v.) for 48 h) significantly decreased the number of THir by 40% compared with untreated control cultures. Rotenone at both short (20 nm on day 10 i.v. for 48 h) and long-term (1 nm on day 6 i.v. for 6 consecutive days) toxicities reduced the number of THir neurons by 33% and 24%, respectively. Treatment of cultures with thymoquinone (0.01, 0.1, 1, 10 microm on day 8 i.v. for 4 days) rescued about 25% of THir neurons at concentrations of 0.1 microm and 1 microm against MPP(+)-induced cell death. Against rotenone, thymoquinone afforded significant protection in both short- and long-term models. In short-term rotenone toxicity, thymoquinone (from days 8-12 i.v.) saved about 65%, 74% and 79% of THir neurons at concentrations of 0.01, 0.1 and 1 microm, respectively, compared with cell loss induced by rotenone. In long-term rotenone toxicity, concomitant treatment of cultures with thymoquinone significantly rescued about 83-100% of THir neurons compared with rotenone-treated cultures. In conclusion, the current study presents for the first time the potential of thymoquinone to protect primary dopaminergic neurons against MPP(+) and rotenone relevant to Parkinson's disease.

  2. Neuroprotective effects of a brain permeant 6-aminoquinoxaline derivative in cell culture conditions that model the loss of dopaminergic neurons in Parkinson disease.

    PubMed

    Le Douaron, Gael; Schmidt, Fanny; Amar, Majid; Kadar, Hanane; Debortoli, Lucila; Latini, Alexandra; Séon-Méniel, Blandine; Ferrié, Laurent; Michel, Patrick Pierre; Touboul, David; Brunelle, Alain; Raisman-Vozari, Rita; Figadère, Bruno

    2015-01-01

    Parkinson disease is a neurodegenerative disorder of aging, characterized by disabling motor symptoms resulting from the loss of midbrain dopaminergic neurons and the decrease of dopamine in the striatum. Current therapies are directed at treating the symptoms but there is presently no cure for the disease. In order to discover neuroprotective compounds with a therapeutical potential, our research team has established original and highly regioselective methods for the synthesis of 2,3-disubstituted 6-aminoquinoxalines. To evaluate the neuroprotective activity of these molecules, we used midbrain cultures and various experimental conditions that promote dopaminergic cell loss. Among a series of 11 molecules, only compound MPAQ (2-methyl-3-phenyl-6-aminoquinoxaline) afforded substantial protection in a paradigm where dopaminergic neurons die spontaneously and progressively as they mature. Prediction of blood-brain barrier permeation by Quantitative Structure-Activity Relationship studies (QSARs) suggested that MPAQ was able to reach the brain parenchyma with sufficient efficacy. HPLC-MS/MS quantification in brain homogenates and MALDI-TOF mass spectrometry imaging on brain tissue sections performed in MPAQ-treated mice allowed us to confirm this prediction and to demonstrate, by MALDI-TOF mass spectrometry imaging, that MPAQ was localized in areas containing vulnerable neurons and/or their terminals. Of interest, MPAQ also rescued dopaminergic neurons, which (i) acquired dependency on the trophic peptide GDNF for their survival or (ii) underwent oxidative stress-mediated insults mediated by catalytically active iron. In summary, MPAQ possesses an interesting pharmacological profile as it penetrates the brain parenchyma and counteracts mechanisms possibly contributive to dopaminergic cell death in Parkinson disease.

  3. Enhancing depression mechanisms in midbrain dopamine neurons achieves homeostatic resilience.

    PubMed

    Friedman, Allyson K; Walsh, Jessica J; Juarez, Barbara; Ku, Stacy M; Chaudhury, Dipesh; Wang, Jing; Li, Xianting; Dietz, David M; Pan, Nina; Vialou, Vincent F; Neve, Rachael L; Yue, Zhenyu; Han, Ming-Hu

    2014-04-18

    Typical therapies try to reverse pathogenic mechanisms. Here, we describe treatment effects achieved by enhancing depression-causing mechanisms in ventral tegmental area (VTA) dopamine (DA) neurons. In a social defeat stress model of depression, depressed (susceptible) mice display hyperactivity of VTA DA neurons, caused by an up-regulated hyperpolarization-activated current (I(h)). Mice resilient to social defeat stress, however, exhibit stable normal firing of these neurons. Unexpectedly, resilient mice had an even larger I(h), which was observed in parallel with increased potassium (K(+)) channel currents. Experimentally further enhancing Ih or optogenetically increasing the hyperactivity of VTA DA neurons in susceptible mice completely reversed depression-related behaviors, an antidepressant effect achieved through resilience-like, projection-specific homeostatic plasticity. These results indicate a potential therapeutic path of promoting natural resilience for depression treatment.

  4. Enhancing Depression Mechanisms in Midbrain Dopamine Neurons Achieves Homeostatic Resilience

    PubMed Central

    Friedman, Allyson K.; Walsh, Jessica J.; Juarez, Barbara; Ku, Stacy M.; Chaudhury, Dipesh; Wang, Jing; Li, Xianting; Dietz, David M.; Pan, Nina; Vialou, Vincent F.; Neve, Rachael L.; Yue, Zhenyu; Han, Ming-Hu

    2015-01-01

    Typical therapies try to reverse pathogenic mechanisms. Here, we describe treatment effects by enhancing depression-causing mechanisms in ventral tegmental area (VTA) dopamine (DA) neurons. In a social defeat stress model of depression, depressed (susceptible) mice display hyperactivity of VTA DA neurons, caused by an up-regulated hyperpolarization-activated current (Ih). Mice resilient to social defeat stress, however, exhibit stable normal firing of these neurons. Unexpectedly, resilient mice had an even larger Ih, which was observed in parallel with increased potassium (K+) channel currents. Experimentally enhancing the firing-increasing Ih or optogenetically increasing the hyperactivity of VTA DA neurons in susceptible mice, completely reversed depression-related behaviors, an antidepressant effect achieved through resilience-like, projection-specific homeostatic plasticity. These results indicate a potential therapeutic path of promoting natural resilience for depression treatment. PMID:24744379

  5. Sparse and dense coding of natural stimuli by distinct midbrain neuron subpopulations in weakly electric fish

    PubMed Central

    Vonderschen, Katrin; Chacron, Maurice J.

    2015-01-01

    While peripheral sensory neurons respond to natural stimuli with a broad range of spatiotemporal frequencies, central neurons instead respond sparsely to specific features in general. The nonlinear transformations leading to this emergent selectivity are not well understood. Here we characterized how the neural representation of stimuli changes across successive brain areas, using the electrosensory system of weakly electric fish as a model system. We found that midbrain torus semicircularis (TS) neurons were on average more selective in their responses than hindbrain electrosensory lateral line lobe (ELL) neurons. Further analysis revealed two categories of TS neurons: dense coding TS neurons that were ELL-like and sparse coding TS neurons that displayed selective responses. These neurons in general responded to preferred stimuli with few spikes and were mostly silent for other stimuli. We further investigated whether information about stimulus attributes was contained in the activities of ELL and TS neurons. To do so, we used a spike train metric to quantify how well stimuli could be discriminated based on spiking responses. We found that sparse coding TS neurons performed poorly even when their activities were combined compared with ELL and dense coding TS neurons. In contrast, combining the activities of as few as 12 dense coding TS neurons could lead to optimal discrimination. On the other hand, sparse coding TS neurons were better detectors of whether their preferred stimulus occurred compared with either dense coding TS or ELL neurons. Our results therefore suggest that the TS implements parallel detection and estimation of sensory input. PMID:21940609

  6. Menthol Alone Upregulates Midbrain nAChRs, Alters nAChR Subtype Stoichiometry, Alters Dopamine Neuron Firing Frequency, and Prevents Nicotine Reward

    PubMed Central

    Henderson, Brandon J.; Wall, Teagan R.; Henley, Beverley M.; Kim, Charlene H.; Nichols, Weston A.; Moaddel, Ruin; Xiao, Cheng

    2016-01-01

    Upregulation of β2 subunit-containing (β2*) nicotinic acetylcholine receptors (nAChRs) is implicated in several aspects of nicotine addiction, and menthol cigarette smokers tend to upregulate β2* nAChRs more than nonmenthol cigarette smokers. We investigated the effect of long-term menthol alone on midbrain neurons containing nAChRs. In midbrain dopaminergic (DA) neurons from mice containing fluorescent nAChR subunits, menthol alone increased the number of α4 and α6 nAChR subunits, but this upregulation did not occur in midbrain GABAergic neurons. Thus, chronic menthol produces a cell-type-selective upregulation of α4* nAChRs, complementing that of chronic nicotine alone, which upregulates α4 subunit-containing (α4*) nAChRs in GABAergic but not DA neurons. In mouse brain slices and cultured midbrain neurons, menthol reduced DA neuron firing frequency and altered DA neuron excitability following nAChR activation. Furthermore, menthol exposure before nicotine abolished nicotine reward-related behavior in mice. In neuroblastoma cells transfected with fluorescent nAChR subunits, exposure to 500 nm menthol alone also increased nAChR number and favored the formation of (α4)3(β2)2 nAChRs; this contrasts with the action of nicotine itself, which favors (α4)2(β2)3 nAChRs. Menthol alone also increases the number of α6β2 receptors that exclude the β3 subunit. Thus, menthol stabilizes lower-sensitivity α4* and α6 subunit-containing nAChRs, possibly by acting as a chemical chaperone. The abolition of nicotine reward-related behavior may be mediated through menthol's ability to stabilize lower-sensitivity nAChRs and alter DA neuron excitability. We conclude that menthol is more than a tobacco flavorant: administered alone chronically, it alters midbrain DA neurons of the nicotine reward-related pathway. SIGNIFICANCE STATEMENT Menthol, the most popular flavorant for tobacco products, has been considered simply a benign flavor additive. However, as we show here

  7. Ascl1 Converts Dorsal Midbrain Astrocytes into Functional Neurons In Vivo.

    PubMed

    Liu, Yueguang; Miao, Qinglong; Yuan, Jiacheng; Han, Su'e; Zhang, Panpan; Li, Sanlan; Rao, Zhiping; Zhao, Wenlong; Ye, Qian; Geng, Junlan; Zhang, Xiaohui; Cheng, Leping

    2015-06-24

    In vivo induction of non-neuronal cells into neurons by transcription factors offers potential therapeutic approaches for neural regeneration. Although generation of induced neuronal (iN) cells in vitro and in vivo has been reported, whether iN cells can be fully integrated into existing circuits remains unclear. Here we show that expression of achaete-scute complex homolog-like 1 (Ascl1) alone is sufficient to convert dorsal midbrain astrocytes of mice into functional iN cells in vitro and in vivo. Specific expression of Ascl1 in astrocytes by infection with GFAP-adeno-associated virus (AAV) vector converts astrocytes in dorsal midbrain, striatum, and somatosensory cortex of postnatal and adult mice into functional neurons in vivo. These iN cells mature progressively, exhibiting neuronal morphology and markers, action potentials, and synaptic inputs from and output to existing neurons. Thus, a single transcription factor, Ascl1, is sufficient to convert brain astrocytes into functional neurons, and GFAP-AAV is an efficient vector for generating iN cells from astrocytes in vivo.

  8. Prokineticin-2 upregulation during neuronal injury mediates a compensatory protective response against dopaminergic neuronal degeneration

    PubMed Central

    Gordon, Richard; Neal, Matthew L.; Luo, Jie; Langley, Monica R.; Harischandra, Dilshan S.; Panicker, Nikhil; Charli, Adhithiya; Jin, Huajun; Anantharam, Vellareddy; Woodruff, Trent M.; Zhou, Qun-Yong; Kanthasamy, Anumantha G.; Kanthasamy, Arthi

    2016-01-01

    Prokineticin-2 (PK2), a recently discovered secreted protein, regulates important physiological functions including olfactory biogenesis and circadian rhythms in the CNS. Interestingly, although PK2 expression is low in the nigral system, its receptors are constitutively expressed on nigrostriatal neurons. Herein, we demonstrate that PK2 expression is highly induced in nigral dopaminergic neurons during early stages of degeneration in multiple models of Parkinson's disease (PD), including PK2 reporter mice and MitoPark mice. Functional studies demonstrate that PK2 promotes mitochondrial biogenesis and activates ERK and Akt survival signalling pathways, thereby driving neuroprotection. Importantly, PK2 overexpression is protective whereas PK2 receptor antagonism exacerbates dopaminergic degeneration in experimental PD. Furthermore, PK2 expression increased in surviving nigral dopaminergic neurons from PD brains, indicating that PK2 upregulation is clinically relevant to human PD. Collectively, our results identify a paradigm for compensatory neuroprotective PK2 signalling in nigral dopaminergic neurons that could have important therapeutic implications for PD. PMID:27703142

  9. Estradiol Facilitates Functional Integration of iPSC-Derived Dopaminergic Neurons into Striatal Neuronal Circuits via Activation of Integrin α5β1.

    PubMed

    Nishimura, Kaneyasu; Doi, Daisuke; Samata, Bumpei; Murayama, Shigeo; Tahara, Tsuyoshi; Onoe, Hirotaka; Takahashi, Jun

    2016-04-12

    For cell transplantation therapy for Parkinson's disease (PD) to be realized, the grafted neurons should be integrated into the host neuronal circuit to restore the lost neuronal function. Here, using wheat-germ agglutinin-based transsynaptic tracing, we show that integrin α5 is selectively expressed in striatal neurons that are innervated by midbrain dopaminergic (DA) neurons. In addition, we found that integrin α5β1 was activated by the administration of estradiol-2-benzoate (E2B) in striatal neurons of adult female rats. Importantly, we observed that the systemic administration of E2B into hemi-parkinsonian rat models facilitates the functional integration of grafted DA neurons derived from human induced pluripotent stem cells into the host striatal neuronal circuit via the activation of integrin α5β1. Finally, methamphetamine-induced abnormal rotation was recovered earlier in E2B-administered rats than in rats that received other regimens. Our results suggest that the simultaneous administration of E2B with stem cell-derived DA progenitors can enhance the efficacy of cell transplantation therapy for PD. PMID:26997644

  10. Estradiol Facilitates Functional Integration of iPSC-Derived Dopaminergic Neurons into Striatal Neuronal Circuits via Activation of Integrin α5β1

    PubMed Central

    Nishimura, Kaneyasu; Doi, Daisuke; Samata, Bumpei; Murayama, Shigeo; Tahara, Tsuyoshi; Onoe, Hirotaka; Takahashi, Jun

    2016-01-01

    Summary For cell transplantation therapy for Parkinson's disease (PD) to be realized, the grafted neurons should be integrated into the host neuronal circuit to restore the lost neuronal function. Here, using wheat-germ agglutinin-based transsynaptic tracing, we show that integrin α5 is selectively expressed in striatal neurons that are innervated by midbrain dopaminergic (DA) neurons. In addition, we found that integrin α5β1 was activated by the administration of estradiol-2-benzoate (E2B) in striatal neurons of adult female rats. Importantly, we observed that the systemic administration of E2B into hemi-parkinsonian rat models facilitates the functional integration of grafted DA neurons derived from human induced pluripotent stem cells into the host striatal neuronal circuit via the activation of integrin α5β1. Finally, methamphetamine-induced abnormal rotation was recovered earlier in E2B-administered rats than in rats that received other regimens. Our results suggest that the simultaneous administration of E2B with stem cell-derived DA progenitors can enhance the efficacy of cell transplantation therapy for PD. PMID:26997644

  11. Unique responses of midbrain CART neurons in macaques to ovarian steroids.

    PubMed

    Lima, F B; Henderson, J A; Reddy, A P; Tokuyama, Y; Hubert, G W; Kuhar, M J; Bethea, C L

    2008-08-28

    CART (cocaine and amphetamine regulated transcript) is a neuropeptide involved in the control of several physiological processes, such as response to psychostimulants, food intake, depressive diseases and neuroprotection. It is robustly expressed in the brain, mainly in regions that control emotional and stress responses and it is regulated by estrogen in the hypothalamus. There is a distinct population of CART neurons located in the vicinity of the Edinger-Westphal nucleus of the midbrain that also colocalize urocortin-1. The aims of this study were 1) to determine the distribution of CART immunoreactive neurons in the monkey midbrain, 2) to examine the effects of estrogen (E) and progesterone (P) on midbrain CART mRNA and peptide expression and 3) to determine whether midbrain CART neurons contain steroid receptors. Adult female rhesus monkeys (Macaca mulatta) were spayed and either treated with placebo (OVX), estrogen alone (E), progesterone alone (P) or E+P. Animals were prepared (a) for RNA extraction followed by microarray analysis and quantitative (q) RT-PCR (n=3/group); (b) for immunohistochemical analysis of CART and CART+tryptophan hydroxylase (TPH), CART+estrogen receptors (ER) or CART+progesterone receptors (n=5/group) and (c) for Western blots (n=3/group). Both E- and E+P-administration decreased CART gene expression on the microarray and with qRT-PCR. Stereological analysis of CART immunostaining at five levels of the Edinger-Westphal nucleus indicated little effect of E or E+P administration on the area of CART immunostaining. However, P administration increased CART-immunopositive area in comparison to the OVX control group with Student's t-test, but not with ANOVA. CART 55-102 detection on Western blot was unchanged by hormone administration. ERbeta and PR were detected in CART neurons and CART fibers appeared to innervate TPH-positive serotonin neurons in the dorsal raphe. In summary, E decreased CART mRNA, but this effect did not translate to the

  12. In actio optophysiological analyses reveal functional diversification of dopaminergic neurons in the nematode C. elegans

    PubMed Central

    Tanimoto, Yuki; Zheng, Ying Grace; Fei, Xianfeng; Fujie, Yukako; Hashimoto, Koichi; Kimura, Koutarou D.

    2016-01-01

    Many neuronal groups such as dopamine-releasing (dopaminergic) neurons are functionally divergent, although the details of such divergence are not well understood. Dopamine in the nematode Caenorhabditis elegans modulates various neural functions and is released from four left-right pairs of neurons. The terminal identities of these dopaminergic neurons are regulated by the same genetic program, and previous studies have suggested that they are functionally redundant. In this study, however, we show functional divergence within the dopaminergic neurons of C. elegans. Because dopaminergic neurons of the animals were supposedly activated by mechanical stimulus upon entry into a lawn of their food bacteria, we developed a novel integrated microscope system that can auto-track a freely-moving (in actio) C. elegans to individually monitor and stimulate the neuronal activities of multiple neurons. We found that only head-dorsal pair of dopaminergic neurons (CEPD), but not head-ventral or posterior pairs, were preferentially activated upon food entry. In addition, the optogenetic activation of CEPD neurons alone exhibited effects similar to those observed upon food entry. Thus, our results demonstrated functional divergence in the genetically similar dopaminergic neurons, which may provide a new entry point toward understanding functional diversity of neurons beyond genetic terminal identification. PMID:27193056

  13. In actio optophysiological analyses reveal functional diversification of dopaminergic neurons in the nematode C. elegans

    NASA Astrophysics Data System (ADS)

    Tanimoto, Yuki; Zheng, Ying Grace; Fei, Xianfeng; Fujie, Yukako; Hashimoto, Koichi; Kimura, Koutarou D.

    2016-05-01

    Many neuronal groups such as dopamine-releasing (dopaminergic) neurons are functionally divergent, although the details of such divergence are not well understood. Dopamine in the nematode Caenorhabditis elegans modulates various neural functions and is released from four left-right pairs of neurons. The terminal identities of these dopaminergic neurons are regulated by the same genetic program, and previous studies have suggested that they are functionally redundant. In this study, however, we show functional divergence within the dopaminergic neurons of C. elegans. Because dopaminergic neurons of the animals were supposedly activated by mechanical stimulus upon entry into a lawn of their food bacteria, we developed a novel integrated microscope system that can auto-track a freely-moving (in actio) C. elegans to individually monitor and stimulate the neuronal activities of multiple neurons. We found that only head-dorsal pair of dopaminergic neurons (CEPD), but not head-ventral or posterior pairs, were preferentially activated upon food entry. In addition, the optogenetic activation of CEPD neurons alone exhibited effects similar to those observed upon food entry. Thus, our results demonstrated functional divergence in the genetically similar dopaminergic neurons, which may provide a new entry point toward understanding functional diversity of neurons beyond genetic terminal identification.

  14. Photobiomodulation preserves behaviour and midbrain dopaminergic cells from MPTP toxicity: evidence from two mouse strains

    PubMed Central

    2013-01-01

    Background We have shown previously that near-infrared light (NIr) treatment or photobiomodulation neuroprotects dopaminergic cells in substantia nigra pars compacta (SNc) from degeneration induced by 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) in Balb/c albino mice, a well-known model for Parkinson’s disease. The present study explores whether NIr treatment offers neuroprotection to these cells in C57BL/6 pigmented mice. In addition, we examine whether NIr influences behavioural activity in both strains after MPTP treatment. We tested for various locomotive parameters in an open-field test, namely velocity, high mobility and immobility. Results Balb/c (albino) and C57BL/6 (pigmented) mice received injections of MPTP (total of 50 mg/kg) or saline and NIr treatments (or not) over 48 hours. After each injection and/or NIr treatment, the locomotor activity of the mice was tested. After six days survival, brains were processed for TH (tyrosine hydroxylase) immunochemistry and the number of TH+ cells in the substantia nigra pars compacta (SNc) was estimated using stereology. Results showed higher numbers of TH+ cells in the MPTP-NIr groups of both strains, compared to the MPTP groups, with the protection greater in the Balb/c mice (30% vs 20%). The behavioural tests revealed strain differences also. For Balb/c mice, the MPTP-NIr group showed greater preservation of locomotor activity than the MPTP group. Behavioural preservation was less evident in the C57BL/6 strain however, with little effect of NIr being recorded in the MPTP-treated cases of this strain. Finally, there were differences between the two strains in terms of NIr penetration across the skin and fur. Our measurements indicated that NIr penetration was considerably less in the pigmented C57BL/6, compared to the albino Balb/c mice. Conclusions In summary, our results revealed the neuroprotective benefits of NIr treatment after parkinsonian insult at both cellular and behavioural levels and

  15. Transduced PEP-1-PON1 proteins regulate microglial activation and dopaminergic neuronal death in a Parkinson's disease model.

    PubMed

    Kim, Mi Jin; Park, Meeyoung; Kim, Dae Won; Shin, Min Jea; Son, Ora; Jo, Hyo Sang; Yeo, Hyeon Ji; Cho, Su Bin; Park, Jung Hwan; Lee, Chi Hern; Kim, Duk-Soo; Kwon, Oh-Shin; Kim, Joon; Han, Kyu Hyung; Park, Jinseu; Eum, Won Sik; Choi, Soo Young

    2015-09-01

    Parkinson's disease (PD) is an oxidative stress-mediated neurodegenerative disorder caused by selective dopaminergic neuronal death in the midbrain substantia nigra. Paraoxonase 1 (PON1) is a potent inhibitor of low-density lipoprotein (LDL) and high-density lipoprotein (HDL) against oxidation by destroying biologically active phospholipids with potential protective effects against oxidative stress-induced inflammatory disorders. In a previous study, we constructed protein transduction domain (PTD) fusion PEP-1-PON1 protein to transduce PON1 into cells and tissue. In this study, we examined the role of transduced PEP-1-PON1 protein in repressing oxidative stress-mediated inflammatory response in microglial BV2 cells after exposure to lipopolysaccharide (LPS). Moreover, we identified the functions of transduced PEP-1-PON1 proteins which include, mitigating mitochondrial damage, decreasing reactive oxidative species (ROS) production, matrix metalloproteinase-9 (MMP-9) expression and protecting against 1-methyl-4-phenylpyridinium (MPP(+))-induced neurotoxicity in SH-SY5Y cells. Furthermore, transduced PEP-1-PON1 protein reduced MMP-9 expression and protected against dopaminergic neuronal cell death in a 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP)-induced PD mice model. Taken together, these results suggest a promising therapeutic application of PEP-1-PON1 proteins against PD and other inflammation and oxidative stress-related neuronal diseases.

  16. Cellular manganese content is developmentally regulated in human dopaminergic neurons

    NASA Astrophysics Data System (ADS)

    Kumar, Kevin K.; Lowe, Edward W., Jr.; Aboud, Asad A.; Neely, M. Diana; Redha, Rey; Bauer, Joshua A.; Odak, Mihir; Weaver, C. David; Meiler, Jens; Aschner, Michael; Bowman, Aaron B.

    2014-10-01

    Manganese (Mn) is both an essential biological cofactor and neurotoxicant. Disruption of Mn biology in the basal ganglia has been implicated in the pathogenesis of neurodegenerative disorders, such as parkinsonism and Huntington's disease. Handling of other essential metals (e.g. iron and zinc) occurs via complex intracellular signaling networks that link metal detection and transport systems. However, beyond several non-selective transporters, little is known about the intracellular processes regulating neuronal Mn homeostasis. We hypothesized that small molecules that modulate intracellular Mn could provide insight into cell-level Mn regulatory mechanisms. We performed a high throughput screen of 40,167 small molecules for modifiers of cellular Mn content in a mouse striatal neuron cell line. Following stringent validation assays and chemical informatics, we obtained a chemical `toolbox' of 41 small molecules with diverse structure-activity relationships that can alter intracellular Mn levels under biologically relevant Mn exposures. We utilized this toolbox to test for differential regulation of Mn handling in human floor-plate lineage dopaminergic neurons, a lineage especially vulnerable to environmental Mn exposure. We report differential Mn accumulation between developmental stages and stage-specific differences in the Mn-altering activity of individual small molecules. This work demonstrates cell-level regulation of Mn content across neuronal differentiation.

  17. Paliperidone increases spontaneous and evoked firing of mesocortical dopaminergic neurons by activating a hyperpolarization-activated inward current.

    PubMed

    Dong, Haiman; Wang, Qian; Zhu, Dexiao; Gao, Fei; Wang, Hui; Bao, Lihua; Zhang, Jing; Hu, Yanlai; Ding, Zhaoxi; Sun, Jinhao

    2016-10-01

    Mesocortical dopaminergic (DA) subtype neurons specifically project to the prefrontal cortex, which is closely related with schizophrenia. Mesocortical DA neurons have unique physiological characteristics that are different from those of mesostriatal and mesolimbic DA neurons. Paliperidone, an atypical antipsychotic, is currently used to treat schizophrenia and has better therapeutic effects than typical antipsychotics. However, the underlying physiological mechanism remains unclear. To explore the effects of paliperidone on mesocortical DA neuron activity, here, we retrogradely labeled these cells with fluorescent microsphere retrobeads, and the electrophysiological changes were recorded in whole-cell recordings in rat midbrain slices with or without paliperidone. The data showed that paliperidone (20μmol/L) increased the spontaneous firing rates of labeled mesocortical neurons (P<0.05). Moreover, paliperidone also increased the frequency of evoked action potentials by current injection stimulation (P<0.05), whereas the accompanying amplitude decreased. Furthermore, to explore the mechanisms of paliperidone's effect, Ih currents were detected, and the results showed that hyperpolarizing voltage pulses evoked instantaneous Ih inward currents and paliperidone increased the maximum Ih current. In addition, paliperidone decreased the spontaneous inhibitory postsynaptic currents. Thus, paliperidone increased the spontaneous and evoked firing of mesocortical neurons, possibly by activating the Ih inward current and reducing the inhibitory synaptic transmission, which provides an underlying mechanism of paliperidone's application in schizophrenia. PMID:27435059

  18. Temporally selective processing of communication signals by auditory midbrain neurons

    PubMed Central

    Christensen-Dalsgaard, Jakob; Kelley, Darcy B.

    2011-01-01

    Perception of the temporal structure of acoustic signals contributes critically to vocal signaling. In the aquatic clawed frog Xenopus laevis, calls differ primarily in the temporal parameter of click rate, which conveys sexual identity and reproductive state. We show here that an ensemble of auditory neurons in the laminar nucleus of the torus semicircularis (TS) of X. laevis specializes in encoding vocalization click rates. We recorded single TS units while pure tones, natural calls, and synthetic clicks were presented directly to the tympanum via a vibration-stimulation probe. Synthesized click rates ranged from 4 to 50 Hz, the rate at which the clicks begin to overlap. Frequency selectivity and temporal processing were characterized using response-intensity curves, temporal-discharge patterns, and autocorrelations of reduplicated responses to click trains. Characteristic frequencies ranged from 140 to 3,250 Hz, with minimum thresholds of −90 dB re 1 mm/s at 500 Hz and −76 dB at 1,100 Hz near the dominant frequency of female clicks. Unlike units in the auditory nerve and dorsal medullary nucleus, most toral units respond selectively to the behaviorally relevant temporal feature of the rate of clicks in calls. The majority of neurons (85%) were selective for click rates, and this selectivity remained unchanged over sound levels 10 to 20 dB above threshold. Selective neurons give phasic, tonic, or adapting responses to tone bursts and click trains. Some algorithms that could compute temporally selective receptive fields are described. PMID:21289132

  19. Semaphorin 3C Released from a Biocompatible Hydrogel Guides and Promotes Axonal Growth of Rodent and Human Dopaminergic Neurons.

    PubMed

    Carballo-Molina, Oscar A; Sánchez-Navarro, Andrea; López-Ornelas, Adolfo; Lara-Rodarte, Rolando; Salazar, Patricia; Campos-Romo, Aurelio; Ramos-Mejía, Verónica; Velasco, Iván

    2016-06-01

    Cell therapy in experimental models of Parkinson's disease replaces the lost dopamine neurons (DAN), but we still need improved methods to guide dopaminergic axons (DAx) of grafted neurons to make proper connections. The protein Semaphorin 3C (Sema3C) attracts DAN axons and enhances their growth. In this work, we show that the hydrogel PuraMatrix, a self-assembling peptide-based matrix, incorporates Sema3C and releases it steadily during 4 weeks. We also tested if hydrogel-delivered Sema3C attracts DAx using a system of rat midbrain explants embedded in collagen gels. We show that Sema3C released by this hydrogel attracts DAx, in a similar way to pretectum, which is known to attract growing DAN axons. We assessed the effect of Sema3C on the growth of DAx using microfluidic devices. DAN from rat midbrain or those differentiated from human embryonic stem cells showed enhanced axonal extension when exposed to hydrogel-released Sema3C, similar to soluble Sema3C. Notably, DAN of human origin express the cognate Sema3C receptors, Neuropilin1 and Neuropilin2. These results show that PuraMatrix is able to incorporate and release Sema3C, and such delivery guides and promotes the axonal growth of DAN. This biocompatible hydrogel might be useful as a Sema3C carrier for in vivo studies in parkinsonian animal models. PMID:27174503

  20. Semaphorin 3C Released from a Biocompatible Hydrogel Guides and Promotes Axonal Growth of Rodent and Human Dopaminergic Neurons

    PubMed Central

    Carballo-Molina, Oscar A.; Sánchez-Navarro, Andrea; López-Ornelas, Adolfo; Lara-Rodarte, Rolando; Salazar, Patricia; Campos-Romo, Aurelio; Ramos-Mejía, Verónica

    2016-01-01

    Cell therapy in experimental models of Parkinson's disease replaces the lost dopamine neurons (DAN), but we still need improved methods to guide dopaminergic axons (DAx) of grafted neurons to make proper connections. The protein Semaphorin 3C (Sema3C) attracts DAN axons and enhances their growth. In this work, we show that the hydrogel PuraMatrix, a self-assembling peptide-based matrix, incorporates Sema3C and releases it steadily during 4 weeks. We also tested if hydrogel-delivered Sema3C attracts DAx using a system of rat midbrain explants embedded in collagen gels. We show that Sema3C released by this hydrogel attracts DAx, in a similar way to pretectum, which is known to attract growing DAN axons. We assessed the effect of Sema3C on the growth of DAx using microfluidic devices. DAN from rat midbrain or those differentiated from human embryonic stem cells showed enhanced axonal extension when exposed to hydrogel-released Sema3C, similar to soluble Sema3C. Notably, DAN of human origin express the cognate Sema3C receptors, Neuropilin1 and Neuropilin2. These results show that PuraMatrix is able to incorporate and release Sema3C, and such delivery guides and promotes the axonal growth of DAN. This biocompatible hydrogel might be useful as a Sema3C carrier for in vivo studies in parkinsonian animal models. PMID:27174503

  1. Loss of mitochondrial fission depletes axonal mitochondria in midbrain dopamine neurons.

    PubMed

    Berthet, Amandine; Margolis, Elyssa B; Zhang, Jue; Hsieh, Ivy; Zhang, Jiasheng; Hnasko, Thomas S; Ahmad, Jawad; Edwards, Robert H; Sesaki, Hiromi; Huang, Eric J; Nakamura, Ken

    2014-10-22

    Disruptions in mitochondrial dynamics may contribute to the selective degeneration of dopamine (DA) neurons in Parkinson's disease (PD). However, little is known about the normal functions of mitochondrial dynamics in these neurons, especially in axons where degeneration begins, and this makes it difficult to understand the disease process. To study one aspect of mitochondrial dynamics-mitochondrial fission-in mouse DA neurons, we deleted the central fission protein dynamin-related protein 1 (Drp1). Drp1 loss rapidly eliminates the DA terminals in the caudate-putamen and causes cell bodies in the midbrain to degenerate and lose α-synuclein. Without Drp1, mitochondrial mass dramatically decreases, especially in axons, where the mitochondrial movement becomes uncoordinated. However, in the ventral tegmental area (VTA), a subset of midbrain DA neurons characterized by small hyperpolarization-activated cation currents (Ih) is spared, despite near complete loss of their axonal mitochondria. Drp1 is thus critical for targeting mitochondria to the nerve terminal, and a disruption in mitochondrial fission can contribute to the preferential death of nigrostriatal DA neurons.

  2. Extrasynaptic release of GABA and dopamine by retinal dopaminergic neurons

    PubMed Central

    Hirasawa, Hajime; Contini, Massimo; Raviola, Elio

    2015-01-01

    In the mouse retina, dopaminergic amacrine (DA) cells synthesize both dopamine and GABA. Both transmitters are released extrasynaptically and act on neighbouring and distant retinal neurons by volume transmission. In simultaneous recordings of dopamine and GABA release from isolated perikarya of DA cells, a proportion of the events of dopamine and GABA exocytosis were simultaneous, suggesting co-release. In addition, DA cells establish GABAergic synapses onto AII amacrine cells, the neurons that transfer rod bipolar signals to cone bipolars. GABAA but not dopamine receptors are clustered in the postsynaptic membrane. Therefore, dopamine, irrespective of its site of release—synaptic or extrasynaptic—exclusively acts by volume transmission. Dopamine is released upon illumination and sets the gain of retinal neurons for vision in bright light. The GABA released at DA cells' synapses probably prevents signals from the saturated rods from entering the cone pathway when the dark-adapted retina is exposed to bright illumination. The GABA released extrasynaptically by DA and other amacrine cells may set a ‘GABAergic tone’ in the inner plexiform layer and thus counteract the effects of a spillover of glutamate released at the bipolar cell synapses of adjacent OFF and ON strata, thus preserving segregation of signals between ON and OFF pathways. PMID:26009765

  3. GABA transporter currents activated by protein kinase A excite midbrain neurons during opioid withdrawal.

    PubMed

    Bagley, Elena E; Gerke, Michelle B; Vaughan, Christopher W; Hack, Stephen P; Christie, MacDonald J

    2005-02-01

    Adaptations in neurons of the midbrain periaqueductal gray (PAG) induced by chronic morphine treatment mediate expression of many signs of opioid withdrawal. The abnormally elevated action potential rate of opioid-sensitive PAG neurons is a likely cellular mechanism for withdrawal expression. We report here that opioid withdrawal in vitro induced an opioid-sensitive cation current that was mediated by the GABA transporter-1 (GAT-1) and required activation of protein kinase A (PKA) for its expression. Inhibition of GAT-1 or PKA also prevented withdrawal-induced hyperexcitation of PAG neurons. Our findings indicate that GAT-1 currents can directly increase the action potential rates of neurons and that GAT-1 may be a target for therapy to alleviate opioid-withdrawal symptoms.

  4. Electrosensory Midbrain Neurons Display Feature Invariant Responses to Natural Communication Stimuli

    PubMed Central

    Aumentado-Armstrong, Tristan; Metzen, Michael G.; Sproule, Michael K. J.; Chacron, Maurice J.

    2015-01-01

    Neurons that respond selectively but in an invariant manner to a given feature of natural stimuli have been observed across species and systems. Such responses emerge in higher brain areas, thereby suggesting that they occur by integrating afferent input. However, the mechanisms by which such integration occurs are poorly understood. Here we show that midbrain electrosensory neurons can respond selectively and in an invariant manner to heterogeneity in behaviorally relevant stimulus waveforms. Such invariant responses were not seen in hindbrain electrosensory neurons providing afferent input to these midbrain neurons, suggesting that response invariance results from nonlinear integration of such input. To test this hypothesis, we built a model based on the Hodgkin-Huxley formalism that received realistic afferent input. We found that multiple combinations of parameter values could give rise to invariant responses matching those seen experimentally. Our model thus shows that there are multiple solutions towards achieving invariant responses and reveals how subthreshold membrane conductances help promote robust and invariant firing in response to heterogeneous stimulus waveforms associated with behaviorally relevant stimuli. We discuss the implications of our findings for the electrosensory and other systems. PMID:26474395

  5. Electrosensory Midbrain Neurons Display Feature Invariant Responses to Natural Communication Stimuli.

    PubMed

    Aumentado-Armstrong, Tristan; Metzen, Michael G; Sproule, Michael K J; Chacron, Maurice J

    2015-10-01

    Neurons that respond selectively but in an invariant manner to a given feature of natural stimuli have been observed across species and systems. Such responses emerge in higher brain areas, thereby suggesting that they occur by integrating afferent input. However, the mechanisms by which such integration occurs are poorly understood. Here we show that midbrain electrosensory neurons can respond selectively and in an invariant manner to heterogeneity in behaviorally relevant stimulus waveforms. Such invariant responses were not seen in hindbrain electrosensory neurons providing afferent input to these midbrain neurons, suggesting that response invariance results from nonlinear integration of such input. To test this hypothesis, we built a model based on the Hodgkin-Huxley formalism that received realistic afferent input. We found that multiple combinations of parameter values could give rise to invariant responses matching those seen experimentally. Our model thus shows that there are multiple solutions towards achieving invariant responses and reveals how subthreshold membrane conductances help promote robust and invariant firing in response to heterogeneous stimulus waveforms associated with behaviorally relevant stimuli. We discuss the implications of our findings for the electrosensory and other systems.

  6. Selective increase of in vivo firing frequencies in DA SN neurons after proteasome inhibition in the ventral midbrain.

    PubMed

    Subramaniam, Mahalakshmi; Kern, Beatrice; Vogel, Simone; Klose, Verena; Schneider, Gaby; Roeper, Jochen

    2014-09-01

    The impairment of protein degradation via the ubiquitin-proteasome system (UPS) is present in sporadic Parkinson's disease (PD), and might play a key role in selective degeneration of vulnerable dopamine (DA) neurons in the substantia nigra pars compacta (SN). Further evidence for a causal role of dysfunctional UPS in familial PD comes from mutations in parkin, which results in a loss of function of an E3-ubiquitin-ligase. In a mouse model, genetic inactivation of an essential component of the 26S proteasome lead to widespread neuronal degeneration including DA midbrain neurons and the formation of alpha-synuclein-positive inclusion bodies, another hallmark of PD. Studies using pharmacological UPS inhibition in vivo had more mixed results, varying from extensive degeneration to no loss of DA SN neurons. However, it is currently unknown whether UPS impairment will affect the neurophysiological functions of DA midbrain neurons. To answer this question, we infused a selective proteasome inhibitor into the ventral midbrain in vivo and recorded single DA midbrain neurons 2 weeks after the proteasome challenge. We found a selective increase in the mean in vivo firing frequencies of identified DA SN neurons in anesthetized mice, while those in the ventral tegmental area (VTA) were unaffected. Our results demonstrate that a single-hit UPS inhibition is sufficient to induce a stable and selective hyperexcitability phenotype in surviving DA SN neurons in vivo. This might imply that UPS dysfunction sensitizes DA SN neurons by enhancing 'stressful pacemaking'.

  7. Early-life stress increases the survival of midbrain neurons during postnatal development and enhances reward-related and anxiolytic-like behaviors in a sex-dependent fashion.

    PubMed

    Chocyk, Agnieszka; Majcher-Maślanka, Iwona; Przyborowska, Aleksandra; Maćkowiak, Marzena; Wędzony, Krzysztof

    2015-08-01

    Clinical studies have suggested that early-life stress (ELS) increases the risk of psychopathologies that are strongly associated with dysfunction of dopaminergic neurotransmission. Thus, ELS may interfere with the development and maturation of the dopaminergic system; however, the mechanisms involved in such interference are poorly understood. In the present study, we investigated the effect of ELS on the survival of specific populations of neurons in the substantia nigra pars compacta (SNc) and ventral tegmental area (VTA) during postnatal development. First, we injected bromodeoxyuridine (BrdU) into pregnant rat dams on embryonic days 12, 13 and 14 to permanently label midbrain neurons. Then, after birth, the dams and litters were subjected to a maternal separation (MS) procedure to model ELS conditions. The number of BrdU+ neurons and the total number of neurons (cresyl violet+, CV+) were estimated in both male and female juvenile, adolescent, and adult rats. Moreover, sucrose preference and anxiety-like behaviors were studied during adulthood. We found that MS permanently increased the number of BrdU+ and CV+ neurons in the VTA of males. In the SNc, a temporary increase in the number of BrdU+ neurons was observed in juvenile MS males; however, only adult MS males displayed an increase in the number of CV+ neurons. Immunofluorescence analysis implied that MS affected the fate of non-dopaminergic neurons. MS males displayed anxiolytic-like behavior and an increase in sucrose preference. These results suggest that ELS induces distinct dysregulation in the midbrain circuitry of males, which may lead to sex-specific psychopathology of the reward system.

  8. Efficient Conversion of Spermatogonial Stem Cells to Phenotypic and Functional Dopaminergic Neurons via the PI3K/Akt and P21/Smurf2/Nolz1 Pathway.

    PubMed

    Yang, Hao; Liu, Yang; Hai, Yanan; Guo, Ying; Yang, Shi; Li, Zheng; Gao, Wei-Qiang; He, Zuping

    2015-12-01

    Parkinson's disease (PD) is a common neurodegenerative syndrome characterized by loss of midbrain dopaminergic (DA) neurons. Generation of functional dopaminergic (DA) neurons is of unusual significance for treating Parkinson's disease (PD). However, direct conversion of spermatogonial stem cells (SSCs) to functional DA neurons without being reprogrammed to a pluripotent status has not been achieved. Here, we report an efficient approach to obtain morphological, phenotypic, and functional DA neurons from SSCs using a specific combination of olfactory ensheathing cell-conditioned medium (OECCM) and several defined growth factors (DGF). By following the current protocol, direct conversion of SSCs (both SSC line and primary SSCs) to neural cells and DA neurons was demonstrated by expression of numerous phenotypic genes and proteins for neural cells, as well as cell morphological features. More significantly, SSCs-derived DA neurons acquired neuronal functional properties such as synapse formation, electrophysiology activity, and dopamine secretion. Furthermore, PI3K/Akt pathway and p21/Nolz1 cascades were activated whereas Smurf2 was inactivated, leading to cell cycle exit during the conversion of SSCs into DA neurons. Collectively, this study could provide sufficient neural cells from SSCs for applications in the treatment of PD and offers novel insights into mechanisms underlying neural system development from the line of germ cells.

  9. Thyroid Hormone-Otx2 Signaling Is Required for Embryonic Ventral Midbrain Neural Stem Cells Differentiated into Dopamine Neurons.

    PubMed

    Chen, Chunhai; Ma, Qinglong; Chen, Xiaowei; Zhong, Min; Deng, Ping; Zhu, Gang; Zhang, Yanwen; Zhang, Lei; Yang, Zhiqi; Zhang, Kuan; Guo, Lu; Wang, Liting; Yu, Zhengping; Zhou, Zhou

    2015-08-01

    Midbrain dopamine (DA) neurons are essential for maintaining multiple brain functions. These neurons have also been implicated in relation with diverse neurological disorders. However, how these neurons are developed from neuronal stem cells (NSCs) remains largely unknown. In this study, we provide both in vivo and in vitro evidence that the thyroid hormone, an important physiological factor for brain development, promotes DA neuron differentiation from embryonic ventral midbrain (VM) NSCs. We find that thyroid hormone deficiency during development reduces the midbrain DA neuron number, downregulates the expression of tyrosine hydroxylase (TH) and the dopamine transporter (DAT), and impairs the DA neuron-dependent motor behavior. In addition, thyroid hormone treatment during VM NSC differentiation in vitro increases the production of DA neurons and upregulates the expression of TH and DAT. We also found that the thyroid hormone enhances the expression of Otx2, an important determinant of DA neurogenesis, during DA neuron differentiation. Our in vitro gene silencing experiments indicate that Otx2 is required for thyroid hormone-dependent DA neuron differentiation from embryonic VM NSCs. Finally, we revealed both in vivo and in vitro that the thyroid hormone receptor alpha 1 is expressed in embryonic VM NSCs. Furthermore, it participates in the effects of thyroid hormone-induced Otx2 upregulation and DA neuron differentiation. These data demonstrate the role and molecular mechanisms of how the thyroid hormone regulates DA neuron differentiation from embryonic VM NSCs, particularly providing new mechanisms and a potential strategy for generating dopamine neurons from NSCs.

  10. [Neurons of the rabbit midbrain reticular formation during a defensive conditioned reflex].

    PubMed

    Shevchenko, D G

    1975-01-01

    Analysis of unit activity of the midbrain reticular formation was carried out on alert rabbits during defensive conditioning. Most of the examined neurones exhibited phasic responses corresponding in time to the components of the evoked potential (EP) recorded in the cortical visual area in response to the "indifferent" stimulus, and to the conditioned stimulus and electric cutaneous reinforcement. The data obtained are considered from the standpoint of the Anokhin functional systems theory. A conclusion has been made regarding the participation of reticular units in providing all the basic mechanisms of the functional system of the behavioral act. Discharges of one and the same neurone may correspond to different components of the EPs to conditioned and unconditioned stimuli. In different behavioral acts a neurone may apparently participate in different systemic mechanisms.

  11. Atrazine Causes Autophagy- and Apoptosis-Related Neurodegenerative Effects in Dopaminergic Neurons in the Rat Nigrostriatal Dopaminergic System.

    PubMed

    Song, Xiao-Yao; Li, Jia-Nan; Wu, Yan-Ping; Zhang, Bo; Li, Bai-Xiang

    2015-06-12

    Atrazine (2-chloro-4-ethytlamino-6-isopropylamine-1,3,5-triazine; ATR) is widely used as a broad-spectrum herbicide. Animal studies have demonstrated that ATR exposure can cause cell death in dopaminergic neurons. The molecular mechanisms underlying ATR-induced neuronal cell death, however, are unknown. In this study, we investigated the autophagy and apoptosis induced by ATR in dopaminergic neurons in vivo. Wistar rats were administered with ATR at doses of 10, 50 and 100 mg/kg body weight by oral gavage for three months. In terms of histopathology, the expression of autophagy- and apoptosis-related genes as well as proteins related to the Beclin-1/B-cell lymphoma 2 (Bcl-2) autophagy and apoptosis pathways were examined in the rat nigrostriatal dopaminergic system. We observed degenerative micromorphology indicative of neuronal apoptosis and mitochondrial autophagy by electron microscopy in ATR-exposed rat striatum. The rat ventral mesencephalon in the ATR-exposed groups also showed increased expression of Beclin-1, LC3-II, Bax and Caspase-9, and decreased expression of tyrosine hydroxylase (TH), Bcl-xl and Bcl-2. These findings indicate that ATR may induce autophagy- and apoptosis-related changes in doparminergic neurons. Furthermore, this induction may be regulated by the Beclin-1 and Bcl-2 autophagy and apoptosis pathways, and this may help to better understand the mechanism underlying the neurotoxicity of ATR.

  12. Atrazine Causes Autophagy- and Apoptosis-Related Neurodegenerative Effects in Dopaminergic Neurons in the Rat Nigrostriatal Dopaminergic System

    PubMed Central

    Song, Xiao-Yao; Li, Jia-Nan; Wu, Yan-Ping; Zhang, Bo; Li, Bai-Xiang

    2015-01-01

    Atrazine (2-chloro-4-ethytlamino-6-isopropylamine-1,3,5-triazine; ATR) is widely used as a broad-spectrum herbicide. Animal studies have demonstrated that ATR exposure can cause cell death in dopaminergic neurons. The molecular mechanisms underlying ATR-induced neuronal cell death, however, are unknown. In this study, we investigated the autophagy and apoptosis induced by ATR in dopaminergic neurons in vivo. Wistar rats were administered with ATR at doses of 10, 50 and 100 mg/kg body weight by oral gavage for three months. In terms of histopathology, the expression of autophagy- and apoptosis-related genes as well as proteins related to the Beclin-1/B-cell lymphoma 2 (Bcl-2) autophagy and apoptosis pathways were examined in the rat nigrostriatal dopaminergic system. We observed degenerative micromorphology indicative of neuronal apoptosis and mitochondrial autophagy by electron microscopy in ATR-exposed rat striatum. The rat ventral mesencephalon in the ATR-exposed groups also showed increased expression of Beclin-1, LC3-II, Bax and Caspase-9, and decreased expression of tyrosine hydroxylase (TH), Bcl-xl and Bcl-2. These findings indicate that ATR may induce autophagy- and apoptosis-related changes in doparminergic neurons. Furthermore, this induction may be regulated by the Beclin-1 and Bcl-2 autophagy and apoptosis pathways, and this may help to better understand the mechanism underlying the neurotoxicity of ATR. PMID:26075868

  13. Neural Differentiation in the Third Dimension: Generating a Human Midbrain.

    PubMed

    Marton, Rebecca M; Paşca, Sergiu P

    2016-08-01

    In recent years, technological improvements in three-dimensional (3D) culture systems have enabled the generation of organoids or spheroids representing a variety of tissues, including the brain. In this issue of Cell Stem Cell, Jo et al. (2016) describe a 3D culture model of the human midbrain containing dopaminergic neurons and neuromelanin. PMID:27494668

  14. Sweet Taste and Nutrient Value Subdivide Rewarding Dopaminergic Neurons in Drosophila

    PubMed Central

    Huetteroth, Wolf; Perisse, Emmanuel; Lin, Suewei; Klappenbach, Martín; Burke, Christopher; Waddell, Scott

    2015-01-01

    Summary Dopaminergic neurons provide reward learning signals in mammals and insects [1–4]. Recent work in Drosophila has demonstrated that water-reinforcing dopaminergic neurons are different to those for nutritious sugars [5]. Here, we tested whether the sweet taste and nutrient properties of sugar reinforcement further subdivide the fly reward system. We found that dopaminergic neurons expressing the OAMB octopamine receptor [6] specifically convey the short-term reinforcing effects of sweet taste [4]. These dopaminergic neurons project to the β′2 and γ4 regions of the mushroom body lobes. In contrast, nutrient-dependent long-term memory requires different dopaminergic neurons that project to the γ5b regions, and it can be artificially reinforced by those projecting to the β lobe and adjacent α1 region. Surprisingly, whereas artificial implantation and expression of short-term memory occur in satiated flies, formation and expression of artificial long-term memory require flies to be hungry. These studies suggest that short-term and long-term sugar memories have different physiological constraints. They also demonstrate further functional heterogeneity within the rewarding dopaminergic neuron population. PMID:25728694

  15. Sweet taste and nutrient value subdivide rewarding dopaminergic neurons in Drosophila.

    PubMed

    Huetteroth, Wolf; Perisse, Emmanuel; Lin, Suewei; Klappenbach, Martín; Burke, Christopher; Waddell, Scott

    2015-03-16

    Dopaminergic neurons provide reward learning signals in mammals and insects [1-4]. Recent work in Drosophila has demonstrated that water-reinforcing dopaminergic neurons are different to those for nutritious sugars [5]. Here, we tested whether the sweet taste and nutrient properties of sugar reinforcement further subdivide the fly reward system. We found that dopaminergic neurons expressing the OAMB octopamine receptor [6] specifically convey the short-term reinforcing effects of sweet taste [4]. These dopaminergic neurons project to the β'2 and γ4 regions of the mushroom body lobes. In contrast, nutrient-dependent long-term memory requires different dopaminergic neurons that project to the γ5b regions, and it can be artificially reinforced by those projecting to the β lobe and adjacent α1 region. Surprisingly, whereas artificial implantation and expression of short-term memory occur in satiated flies, formation and expression of artificial long-term memory require flies to be hungry. These studies suggest that short-term and long-term sugar memories have different physiological constraints. They also demonstrate further functional heterogeneity within the rewarding dopaminergic neuron population.

  16. VITAMIN C FACILITATES DOPAMINE NEURON DIFFERENTIATION IN FETAL MIDBRAIN THROUGH TET1- AND JMJD3-DEPENDENT EPIGENETIC CONTROL MANNER

    PubMed Central

    He, Xi-Biao; Kim, Mirang; Kim, Seon-Young; Yi, Sang-Hoon; Rhee, Yong-Hee; Kim, Taeho; Lee, Eun-Hye; Park, Chang-Hwan; Dixit, Shilpy; Harrison, Fiona E.; Lee, Sang-Hun

    2015-01-01

    Intracellular Vitamin C (VC) is maintained at high levels in the developing brain by the activity of sodium-dependent VC transporter 2 (Svct2), suggesting specific VC functions in brain development. A role of VC as a cofactor for Fe(II)-2-oxoglutarate-dependent dioxygenases has recently been suggested. We show that VC supplementation in neural stem cell (NSC) cultures derived from embryonic midbrains greatly enhanced differentiation towards midbrain-type DA (mDA) neurons, the neuronal subtype associated with Parkinson’s disease. VC induced gain of 5-hydroxymethylcytosine (5hmC) and loss of H3K27m3 in DA phenotype gene promoters, which are catalyzed by Tet1 and Jmjd3, respectively. Consequently VC enhanced DA phenotype gene transcriptions in the progenitors by Nurr1, a transcription factor critical for mDA neuron development, to be more accessible to the gene promoters. Further mechanism studies including Tet1 and Jmjd3 knockdown/inhibition experiments revealed that both the 5hmC and H3K27m3 changes, specifically in the progenitor cells, are indispensible for the VC-mediated mDA neuron differentiation. We finally show that in Svct2 knockout mouse embryos, mDA neuron formation in the developing midbrain decreased along with the 5hmC/ H3k27m3 changes. These findings together indicate an epigenetic role of VC in midbrain DA neuron development. PMID:25535150

  17. Vitamin C facilitates dopamine neuron differentiation in fetal midbrain through TET1- and JMJD3-dependent epigenetic control manner.

    PubMed

    He, Xi-Biao; Kim, Mirang; Kim, Seon-Young; Yi, Sang-Hoon; Rhee, Yong-Hee; Kim, Taeho; Lee, Eun-Hye; Park, Chang-Hwan; Dixit, Shilpy; Harrison, Fiona E; Lee, Sang-Hun

    2015-04-01

    Intracellular Vitamin C (VC) is maintained at high levels in the developing brain by the activity of sodium-dependent VC transporter 2 (Svct2), suggesting specific VC functions in brain development. A role of VC as a cofactor for Fe(II)-2-oxoglutarate-dependent dioxygenases has recently been suggested. We show that VC supplementation in neural stem cell cultures derived from embryonic midbrains greatly enhanced differentiation toward midbrain-type dopamine (mDA) neurons, the neuronal subtype associated with Parkinson's disease. VC induced gain of 5-hydroxymethylcytosine (5hmC) and loss of H3K27m3 in DA phenotype gene promoters, which are catalyzed by Tet1 and Jmjd3, respectively. Consequently, VC enhanced DA phenotype gene transcriptions in the progenitors by Nurr1, a transcription factor critical for mDA neuron development, to be more accessible to the gene promoters. Further mechanism studies including Tet1 and Jmjd3 knockdown/inhibition experiments revealed that both the 5hmC and H3K27m3 changes, specifically in the progenitor cells, are indispensible for the VC-mediated mDA neuron differentiation. We finally show that in Svct2 knockout mouse embryos, mDA neuron formation in the developing midbrain decreased along with the 5hmC/H3k27m3 changes. These findings together indicate an epigenetic role of VC in midbrain DA neuron development.

  18. The effect of different durations of morphine exposure on mesencephalic dopaminergic neurons in morphine dependent rats.

    PubMed

    Shi, Weibo; Ma, Chunling; Qi, Qian; Liu, Lizhe; Bi, Haitao; Cong, Bin; Li, Yingmin

    2015-12-01

    Mesencephalic dopaminergic neurons are heavily involved in the development of drug dependence. Thyrosine hydroxylase (TH), the rate-limiting enzyme in dopamine synthesis, plays an important role in the survival of dopaminergic neurons. Therefore, this study investigated TH changes in dopaminergic neurons of the ventral tegmental area (VTA) and substantia nigra (SN), as well as the morphine effects on dopaminergic neurons induced by different durations of morphine dependence. Models of morphine dependence were established in rats, and paraffin-embedded sections, immunohistochemistry and western blotting were used to observe the changes in the expression of TH protein. Fluoro-Jade B staining was used to detect degeneration and necrosis, and terminal deoxynucleotidyl transferase-mediated dUTP nick-end-labeling (TUNEL) detected the apoptosis of mesencephalic dopaminergic nerve cells. Immunohistochemistry and western blotting showed that the number of TH positive cells and the protein levels in the VTA and SN were significantly decreased in the rats with a long period of morphine dependency. With prolonged morphine exposure, the dopaminergic nerve cells in the VTA and SN showed degeneration and necrosis, while apoptotic cells were not observed. The number of VTA and SN dopaminergic nerve cells decreased with increasing periods of morphine dependence, which was most likely attributable to the degeneration and necrosis of nerve cells induced by morphine toxicity.

  19. Bursts and Isolated Spikes Code for Opposite Movement Directions in Midbrain Electrosensory Neurons

    PubMed Central

    Khosravi-Hashemi, Navid; Chacron, Maurice J.

    2012-01-01

    Directional selectivity, in which neurons respond strongly to an object moving in a given direction but weakly or not at all to the same object moving in the opposite direction, is a crucial computation that is thought to provide a neural correlate of motion perception. However, directional selectivity has been traditionally quantified by using the full spike train, which does not take into account particular action potential patterns. We investigated how different action potential patterns, namely bursts (i.e. packets of action potentials followed by quiescence) and isolated spikes, contribute to movement direction coding in a mathematical model of midbrain electrosensory neurons. We found that bursts and isolated spikes could be selectively elicited when the same object moved in opposite directions. In particular, it was possible to find parameter values for which our model neuron did not display directional selectivity when the full spike train was considered but displayed strong directional selectivity when bursts or isolated spikes were instead considered. Further analysis of our model revealed that an intrinsic burst mechanism based on subthreshold T-type calcium channels was not required to observe parameter regimes for which bursts and isolated spikes code for opposite movement directions. However, this burst mechanism enhanced the range of parameter values for which such regimes were observed. Experimental recordings from midbrain neurons confirmed our modeling prediction that bursts and isolated spikes can indeed code for opposite movement directions. Finally, we quantified the performance of a plausible neural circuit and found that it could respond more or less selectively to isolated spikes for a wide range of parameter values when compared with an interspike interval threshold. Our results thus show for the first time that different action potential patterns can differentially encode movement and that traditional measures of directional selectivity

  20. Crucial role of nicotinic α5 subunit variants for Ca2+ fluxes in ventral midbrain neurons.

    PubMed

    Sciaccaluga, Miriam; Moriconi, Claudia; Martinello, Katiuscia; Catalano, Myriam; Bermudez, Isabel; Stitzel, Jerry A; Maskos, Uwe; Fucile, Sergio

    2015-08-01

    Neuronal nicotinic acetylcholine receptors (nAChRs) containing the α5 subunit modulate nicotine consumption, and the human CHRNA5 rs16969968 polymorphism, causing the replacement of the aspartic acid residue at position 398 with an asparagine (α5DN), has recently been associated with increased use of tobacco and higher incidence of lung cancer. We show that in ventral midbrain neurons, the α5 subunit is essential for heteromeric nAChR-induced intracellular-free Ca(2+) concentration elevations and that in α5(-/-) mice, a class of large-amplitude nicotine-evoked currents is lost. Furthermore, the expression of the α5DN subunit is not able to restore nicotinic responses, indicating a loss of function by this subunit in native neurons. To understand how α5DN impairs heteromeric nAChR functions, we coexpressed α4, α5, or α5DN subunits with a dimeric concatemer (β2α4) in a heterologous system, to obtain nAChRs with fixed stoichiometry. Both α5(β2α4)2 and α5DN(β2α4)2 nAChRs yielded similar levels of functional expression and Ca(2+) permeability, measured as fractional Ca(2+) currents (8.2 ± 0.7% and 8.0 ± 1.9%, respectively), 2-fold higher than α4(β2α4)2. Our results indicate that the loss of function of nicotinic responses observed in α5DN-expressing ventral midbrain neurons is neither due to an intrinsic inability of this subunit to form functional nAChRs nor to an altered Ca(2+) permeability but likely to intracellular modulation.

  1. Programming of Dopaminergic Neurons by Neonatal Sex Hormone Exposure: Effects on Dopamine Content and Tyrosine Hydroxylase Expression in Adult Male Rats

    PubMed Central

    Espinosa, Pedro; Silva, Roxana A.; Sanguinetti, Nicole K.; Venegas, Francisca C.; Riquelme, Raul; González, Luis F.; Cruz, Gonzalo; Renard, Georgina M.; Moya, Pablo R.; Sotomayor-Zárate, Ramón

    2016-01-01

    We sought to determine the long-term changes produced by neonatal sex hormone administration on the functioning of midbrain dopaminergic neurons in adult male rats. Sprague-Dawley rats were injected subcutaneously at postnatal day 1 and were assigned to the following experimental groups: TP (testosterone propionate of 1.0 mg/50 μL); DHT (dihydrotestosterone of 1.0 mg/50 μL); EV (estradiol valerate of 0.1 mg/50 μL); and control (sesame oil of 50 μL). At postnatal day 60, neurochemical studies were performed to determine dopamine content in substantia nigra-ventral tegmental area and dopamine release in nucleus accumbens. Molecular (mRNA expression of tyrosine hydroxylase) and cellular (tyrosine hydroxylase immunoreactivity) studies were also performed. We found increased dopamine content in substantia nigra-ventral tegmental area of TP and EV rats, in addition to increased dopamine release in nucleus accumbens. However, neonatal exposure to DHT, a nonaromatizable androgen, did not affect midbrain dopaminergic neurons. Correspondingly, compared to control rats, levels of tyrosine hydroxylase mRNA and protein were significantly increased in TP and EV rats but not in DHT rats, as determined by qPCR and immunohistochemistry, respectively. Our results suggest an estrogenic mechanism involving increased tyrosine hydroxylase expression, either by direct estrogenic action or by aromatization of testosterone to estradiol in substantia nigra-ventral tegmental area. PMID:26904299

  2. Programming of Dopaminergic Neurons by Neonatal Sex Hormone Exposure: Effects on Dopamine Content and Tyrosine Hydroxylase Expression in Adult Male Rats.

    PubMed

    Espinosa, Pedro; Silva, Roxana A; Sanguinetti, Nicole K; Venegas, Francisca C; Riquelme, Raul; González, Luis F; Cruz, Gonzalo; Renard, Georgina M; Moya, Pablo R; Sotomayor-Zárate, Ramón

    2016-01-01

    We sought to determine the long-term changes produced by neonatal sex hormone administration on the functioning of midbrain dopaminergic neurons in adult male rats. Sprague-Dawley rats were injected subcutaneously at postnatal day 1 and were assigned to the following experimental groups: TP (testosterone propionate of 1.0 mg/50 μL); DHT (dihydrotestosterone of 1.0 mg/50 μL); EV (estradiol valerate of 0.1 mg/50 μL); and control (sesame oil of 50 μL). At postnatal day 60, neurochemical studies were performed to determine dopamine content in substantia nigra-ventral tegmental area and dopamine release in nucleus accumbens. Molecular (mRNA expression of tyrosine hydroxylase) and cellular (tyrosine hydroxylase immunoreactivity) studies were also performed. We found increased dopamine content in substantia nigra-ventral tegmental area of TP and EV rats, in addition to increased dopamine release in nucleus accumbens. However, neonatal exposure to DHT, a nonaromatizable androgen, did not affect midbrain dopaminergic neurons. Correspondingly, compared to control rats, levels of tyrosine hydroxylase mRNA and protein were significantly increased in TP and EV rats but not in DHT rats, as determined by qPCR and immunohistochemistry, respectively. Our results suggest an estrogenic mechanism involving increased tyrosine hydroxylase expression, either by direct estrogenic action or by aromatization of testosterone to estradiol in substantia nigra-ventral tegmental area.

  3. Protective effects of a polysaccharide from Spirulina platensis on dopaminergic neurons in an MPTP-induced Parkinson's disease model in C57BL/6J mice.

    PubMed

    Zhang, Fang; Lu, Jian; Zhang, Ji-Guo; Xie, Jun-Xia

    2015-02-01

    The present study aimed to determine whether a polysaccharide obtained from Spirulina platensis shows protective effects on dopaminergic neurons. A Parkinson's disease model was established through the intraperitoneal injection of 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) in C57BL/6J mice. Prior to the MPTP injection, some mice were pretreated with intraperitoneal injections of a polysaccharide derived from Spirulina platensis once daily for 10 days. The results showed that the immunoreactive staining and mRNA expression of the dopamine transporter and tyrosine hydroxylase, the rate-limiting enzyme in dopamine synthesis, in the substantia nigra, were significantly increased in mice pretreated with 800 mg/kg of the polysaccharide compared with those in MPTP-treated mice. The activities of superoxide dismutase and glutathione peroxidase in the serum and midbrain were also increased significantly in mice injected with MPTP after pretreatment with the polysaccharide from Spirulina platensis. By contrast, the activity of monoamine oxidase B in serum and midbrain maintained unchanged. These experimental findings indicate that the polysaccharide obtained from Spirulina platensis plays a protective role against the MPTP-induced loss of dopaminergic neurons in C57BL/6J mice, and that the antioxidative properties of this polysaccharide likely underlie its neuroprotective effect. PMID:25883632

  4. Protective effects of a polysaccharide from Spirulina platensis on dopaminergic neurons in an MPTP-induced Parkinson's disease model in C57BL/6J mice

    PubMed Central

    Zhang, Fang; Lu, Jian; Zhang, Ji-guo; Xie, Jun-xia

    2015-01-01

    The present study aimed to determine whether a polysaccharide obtained from Spirulina platensis shows protective effects on dopaminergic neurons. A Parkinson's disease model was established through the intraperitoneal injection of 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) in C57BL/6J mice. Prior to the MPTP injection, some mice were pretreated with intraperitoneal injections of a polysaccharide derived from Spirulina platensis once daily for 10 days. The results showed that the immunoreactive staining and mRNA expression of the dopamine transporter and tyrosine hydroxylase, the rate-limiting enzyme in dopamine synthesis, in the substantia nigra, were significantly increased in mice pretreated with 800 mg/kg of the polysaccharide compared with those in MPTP-treated mice. The activities of superoxide dismutase and glutathione peroxidase in the serum and midbrain were also increased significantly in mice injected with MPTP after pretreatment with the polysaccharide from Spirulina platensis. By contrast, the activity of monoamine oxidase B in serum and midbrain maintained unchanged. These experimental findings indicate that the polysaccharide obtained from Spirulina platensis plays a protective role against the MPTP-induced loss of dopaminergic neurons in C57BL/6J mice, and that the antioxidative properties of this polysaccharide likely underlie its neuroprotective effect. PMID:25883632

  5. Distribution of centrifugal neurons targeting the soma clusters of the olfactory midbrain among decapod crustaceans.

    PubMed

    Schmidt, M

    1997-03-28

    To determine the distribution of two systems of centrifugal neurons innervating the soma clusters of the olfactory midbrain across decapod crustaceans, brains of the following nine species comprising most infraorders were immunostained with antibodies against dopamine and the neuropeptides substance P and FMRFamide: Macrobrachium rosenbergii, Homarus americanus, Cherax destructor, Orconectes limosus, Procambarus clarkii, Astacus leptodactylus, Carcinus maenas, Eriocheir sinensis and Pagurus bernhardus. One system consisting of several neurons with dopamine-like immunoreactivity that originate in the eyestalk ganglia was present in the four crayfish but not in any other species. These neurons project mainly into the lateral soma clusters (cluster 10) comprising the somata of ascending olfactory projection neurons and innervate very sparsely the medial soma clusters (clusters 9 and 11) containing the somata of local interneurons. In the innervation pattern of the lateral cluster, the dopamine-immunoreactive neurons showed large species-specific differences. The other system comprises a pair of giant neurons with substance P-like immunoreactivity. These neurons have somata in the median protocerebrum of the central brain and major projections into the lateral clusters and the core of the olfactory lobes, the neuropils that are the first synaptic relay in the central olfactory pathway of decapods; minor arborizations are present in the medial clusters. The system of substance P-immunoreactive giant neurons was present and of great morphological similarity in all studied species. Only in one species, the shrimp Macrobrachium rosenbergii, evidence for co-localization of FMRFamide-like with substance P-like immunoreactivity in these neurons was obtained. These and previously collected data indicate that the centrifugal neurons with dopamine-like immunoreactivity may be associated with the presence of an accessory lobe, a second-order neuropil that receives input from the

  6. Effect of total flavonoids from Scutellaria baicalensis on dopaminergic neurons in the substantia nigra

    PubMed Central

    Li, Xue-Li; Xu, Xiao-Fan; Bu, Qing-Xia; Jin, Wei-Rong; Sun, Qian-Ru; Feng, De-Peng; Zhang, Qing-Jv; Wang, Le-Xin

    2016-01-01

    The aim of the present study was to investigate the effect of Scutellaria baicalensis stem-leaf total flavonoid (SSTF) on the dopaminergic neurons in the substantia nigra in a mouse model of Parkinson's disease (PD). The mouse model was established by intravenous injection of 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP). SSTF (5 mg/kg) was administered to the mice before or after MPTP injection, and the effects of SSTF on the behavior of the mice and the dopaminergic neurons in the substantia nigra were assessed. In addition, the level of serum malondialdehyde (MDA) was measured. Following injection of MPTP, the number of dopaminergic neurons in the substantia nigra was decreased and the neurons appeared atrophic. In addition, the level of serum MDA in the MPTP mice increased. The mean behavioral scores and the number of dopaminergic neurons in the SSTF treatment groups were significantly higher than in the MPTP group (P<0.05), and the mean serum MDA levels were significantly lower (P<0.05). Thus, SSTF improves the behaviors and the numbers of dopaminergic neurons in the substantia nigra in MPTP-induced PD in mice. These beneficial effects appear to be associated with the reduction in serum MDA. PMID:27446544

  7. Control of dopaminergic neuron survival by the unfolded protein response transcription factor XBP1

    PubMed Central

    Valdés, Pamela; Mercado, Gabriela; Vidal, Rene L.; Molina, Claudia; Parsons, Geoffrey; Court, Felipe A.; Martinez, Alexis; Galleguillos, Danny; Armentano, Donna; Schneider, Bernard L.; Hetz, Claudio

    2014-01-01

    Parkinson disease (PD) is characterized by the selective loss of dopaminergic neurons of the substantia nigra pars compacta (SNpc). Although growing evidence indicates that endoplasmic reticulum (ER) stress is a hallmark of PD, its exact contribution to the disease process is not well understood. Here we report that developmental ablation of X-Box binding protein 1 (XBP1) in the nervous system, a key regulator of the unfolded protein response (UPR), protects dopaminergic neurons against a PD-inducing neurotoxin. This survival effect was associated with a preconditioning condition that resulted from induction of an adaptive ER stress response in dopaminergic neurons of the SNpc, but not in other brain regions. In contrast, silencing XBP1 in adult animals triggered chronic ER stress and dopaminergic neuron degeneration. Supporting this finding, gene therapy to deliver an active form of XBP1 provided neuroprotection and reduced striatal denervation in animals injected with 6-hydroxydopamine. Our results reveal a physiological role of the UPR in the maintenance of protein homeostasis in dopaminergic neurons that may help explain the differential neuronal vulnerability observed in PD. PMID:24753614

  8. Presynaptic recording of quanta from midbrain dopamine neurons and modulation of the quantal size.

    PubMed

    Pothos, E N; Davila, V; Sulzer, D

    1998-06-01

    The observation of quantal release from central catecholamine neurons has proven elusive because of the absence of evoked rapid postsynaptic currents. We adapted amperometric methods to observe quantal release directly from axonal varicosities of midbrain dopamine neurons that predominantly contain small synaptic vesicles. Quantal events were elicited by high K+ or alpha-latrotoxin, required extracellular Ca2+, and were abolished by reserpine. The events indicated the release of 3000 molecules over 200 microsec, much smaller and faster events than quanta associated with large dense-core vesicles previously recorded in vertebrate preparations. The number of dopamine molecules per quantum increased as a population to 380% of controls after glial-derived neurotrophic factor (GDNF) exposure and to 350% of controls after exposure to the dopamine precursor L-dihydroxyphenylalanine (L-DOPA). These results introduce a means to measure directly the number of transmitter molecules released from small synaptic vesicles of CNS neurons. Moreover, quantal size was not an invariant parameter in CNS neurons but could be modulated by neurotrophic factors and altered neurotransmitter synthesis.

  9. Nkx6-1 controls the identity and fate of red nucleus and oculomotor neurons in the mouse midbrain

    PubMed Central

    Prakash, Nilima; Puelles, Eduardo; Freude, Kristine; Trümbach, Dietrich; Omodei, Daniela; Di Salvio, Michela; Sussel, Lori; Ericson, Johan; Sander, Maike; Simeone, Antonio; Wurst, Wolfgang

    2009-01-01

    Summary Little is known about the cues controlling the generation of motoneuron populations in the mammalian ventral midbrain. We show that Otx2 provides the crucial anterior-posterior positional information for the generation of red nucleus neurons in the murine midbrain. Moreover, the homeodomain transcription factor Nkx6-1 controls the proper development of the red nucleus and of the oculomotor and trochlear nucleus neurons. Nkx6-1 is expressed in ventral midbrain progenitors and acts as a fate determinant of the Brn3a+ (also known as Pou4f1) red nucleus neurons. These progenitors are partially dorsalized in the absence of Nkx6-1, and a fraction of their postmitotic offspring adopts an alternative cell fate, as revealed by the activation of Dbx1 and Otx2 in these cells. Nkx6-1 is also expressed in postmitotic Isl1+ oculomotor and trochlear neurons. Similar to hindbrain visceral (branchio-) motoneurons, Nkx6-1 controls the proper migration and axon outgrowth of these neurons by regulating the expression of at least three axon guidance/neuronal migration molecules. Based on these findings, we provide additional evidence that the developmental mechanism of the oculomotor and trochlear neurons exhibits more similarity with that of special visceral motoneurons than with that controlling the generation of somatic motoneurons located in the murine caudal hindbrain and spinal cord. PMID:19592574

  10. A Wnt1 regulated Frizzled-1/β-Catenin signaling pathway as a candidate regulatory circuit controlling mesencephalic dopaminergic neuron-astrocyte crosstalk: Therapeutical relevance for neuron survival and neuroprotection

    PubMed Central

    2011-01-01

    Background Dopamine-synthesizing (dopaminergic, DA) neurons in the ventral midbrain (VM) constitute a pivotal neuronal population controlling motor behaviors, cognitive and affective brain functions, which generation critically relies on the activation of Wingless-type MMTV integration site (Wnt)/β-catenin pathway in their progenitors. In Parkinson's disease, DA cell bodies within the substantia nigra pars compacta (SNpc) progressively degenerate, with causes and mechanisms poorly understood. Emerging evidence suggests that Wnt signaling via Frizzled (Fzd) receptors may play a role in different degenerative states, but little is known about Wnt signaling in the adult midbrain. Using in vitro and in vivo model systems of DA degeneration, along with functional studies in both intact and SN lesioned mice, we herein highlight an intrinsic Wnt1/Fzd-1/β-catenin tone critically contributing to the survival and protection of adult midbrain DA neurons. Results In vitro experiments identifie Fzd-1 receptor expression at a mRNA and protein levels in dopamine transporter (DAT) expressing neurons, and demonstrate the ability of exogenous Wnt1 to exert robust neuroprotective effects against Caspase-3 activation, the loss of tyrosine hydroxylase-positive (TH+) neurons and [3H] dopamine uptake induced by different DA-specific insults, including serum and growth factor deprivation, 6-hydroxydopamine and MPTP/MPP+. Co-culture of DA neurons with midbrain astrocytes phenocopies Wnt1 neuroprotective effects, whereas RNA interference-mediated knockdown of Wnt1 in midbrain astrocytes markedly reduces astrocyte-induced TH+ neuroprotection. Likewise, silencing β-catenin mRNA or knocking down Fzd-1 receptor expression in mesencephalic neurons counteract astrocyte-induced TH+ neuroprotection. In vivo experiments document Fzd-1 co-localization with TH+ neurons within the intact SNpc and blockade of Fzd/β-catenin signaling by unilateral infusion of a Fzd/β-catenin antagonist within the SN

  11. Pleiotrophin over-expression provides trophic support to dopaminergic neurons in parkinsonian rats

    PubMed Central

    2011-01-01

    Background Pleiotrophin is known to promote the survival and differentiation of dopaminergic neurons in vitro and is up-regulated in the substantia nigra of Parkinson's disease patients. To establish whether pleiotrophin has a trophic effect on nigrostriatal dopaminergic neurons in vivo, we injected a recombinant adenovirus expressing pleiotrophin in the substantia nigra of 6-hydroxydopamine lesioned rats. Results The viral vector induced pleiotrophin over-expression by astrocytes in the substantia nigra pars compacta, without modifying endogenous neuronal expression. The percentage of tyrosine hydroxylase-immunoreactive cells as well as the area of their projections in the lesioned striatum was higher in pleiotrophin-treated animals than in controls. Conclusions These results indicate that pleiotrophin over-expression partially rescues tyrosine hydroxylase-immunoreactive cell bodies and terminals of dopaminergic neurons undergoing 6-hydroxydopamine-induced degeneration. PMID:21649894

  12. Abnormal Development of Glutamatergic Synapses Afferent to Dopaminergic Neurons of the Pink1−/− Mouse Model of Parkinson’s Disease

    PubMed Central

    Pearlstein, Edouard; Michel, François J.; Save, Laurène; Ferrari, Diana C.; Hammond, Constance

    2016-01-01

    In a preceding study, we showed that in adult pink1−/− mice, a monogenic animal model of Parkinson’s disease (PD), striatal neurons display aberrant electrical activities that precede the onset of overt clinical manifestations. Here, we tested the hypothesis that the maturation of dopaminergic (DA) neurons of the pink1−/− substantia nigra compacta (SNc) follows, from early stages on, a different developmental trajectory from age-matched wild type (wt) SNc DA neurons. We used immature (postnatal days P2–P10) and young adult (P30–P90) midbrain slices of pink1−/− mice expressing the green fluorescent protein in tyrosine hydroxylase (TH)-positive neurons. We report that the developmental sequence of N-Methyl-D-aspartic acid (NMDA) spontaneous excitatory postsynaptic currents (sEPSCs) is altered in pink1−/− SNc DA neurons, starting from shortly after birth. They lack the transient episode of high NMDA receptor-mediated neuronal activity characteristic of the immature stage of wt SNc DA neurons. The maturation of the membrane resistance of pink1−/− SNc DA neurons is also altered. Collectively, these observations suggest that electrical manifestations occurring shortly after birth in SNc DA neurons might lead to dysfunction in dopamine release and constitute an early pathogenic mechanism of PD. PMID:27445695

  13. The cellular and Genomic response of rat dopaminergic neurons (N27) to coated nanosilver

    EPA Science Inventory

    This study examined if nanosilver (nanoAg) of different sizes and coatings were differentially toxic to oxidative stress-sensitive neurons. N27 rat dopaminergic neurons were exposed (0.5-5ppm) to a set of nanoAg of different sizes (10nm, 75nm) and coatings (PVP, citrate) and thei...

  14. The Drosophila vesicular monoamine transporter reduces pesticide-induced loss of dopaminergic neurons

    PubMed Central

    Lawal, Hakeem O.; Chang, Hui-Yun; Terrell, Ashley N.; Brooks, Elizabeth S.; Pulido, Dianne; Simon, Anne F.; Krantz, David E.

    2010-01-01

    Dopamine is cytotoxic and may play a role in the development of Parkinson’s disease. However, its interaction with environmental risk factors such as pesticides remains poorly understood. The vesicular monoamine transporter (VMAT) regulates intracellular dopamine content, and we have tested the neuroprotective effects of VMAT in vivo using the model organism Drosophila melanogaster. We find that Drosophila VMAT (dVMAT) mutants contain fewer dopaminergic neurons than wild type, consistent with a developmental effect, and that dopaminergic cell loss in the mutant is exacerbated by the pesticides rotenone and paraquat. Over-expression of DVMAT protein does not increase the survival of animals exposed to rotenone, but blocks the loss of dopaminergic neurons caused by this pesticide. These results are the first to demonstrate an interaction between a VMAT and pesticides in vivo, and provide an important model to investigate the mechanisms by which pesticides and cellular DA may interact to kill dopaminergic cells. PMID:20472063

  15. Comparison of midbrain and thalamic space-specific neurons in barn owls.

    PubMed

    Pérez, María Lucía; Peña, José Luis

    2006-02-01

    Spatial receptive fields of neurons in the auditory pathway of the barn owl result from the sensitivity to combinations of interaural time (ITD) and level differences across stimulus frequency. Both the forebrain and tectum of the owl contain such neurons. The neural pathways, which lead to the forebrain and tectal representations of auditory space, separate before the midbrain map of auditory space is synthesized. The first nuclei that belong exclusively to either the forebrain or the tectal pathways are the nucleus ovoidalis (Ov) and the external nucleus of the inferior colliculus (ICx), respectively. Both receive projections from the lateral shell subdivision of the inferior colliculus but are not interconnected. Previous studies indicate that the owl's tectal representation of auditory space is different from those found in the owl's forebrain and the mammalian brain. We addressed the question of whether the computation of spatial cues in both pathways is the same by comparing the ITD tuning of Ov and ICx neurons. Unlike in ICx, the relationship between frequency and ITD tuning had not been studied in single Ov units. In contrast to the conspicuous frequency independent ITD tuning of space-specific neurons of ICx, ITD selectivity varied with frequency in Ov. We also observed that the spatially tuned neurons of Ov respond to lower frequencies and are more broadly tuned to ITD than in ICx. Thus there are differences in the integration of frequency and ITD in the two sound-localization pathways. Thalamic neurons integrate spatial information not only within a broader frequency band but also across ITD channels. PMID:16424454

  16. Menthol enhances phasic and tonic GABAA receptor-mediated currents in midbrain periaqueductal grey neurons

    PubMed Central

    Lau, Benjamin K; Karim, Shafinaz; Goodchild, Ann K; Vaughan, Christopher W; Drew, Geoffrey M

    2014-01-01

    Background and Purpose Menthol, a naturally occurring compound in the essential oil of mint leaves, is used for its medicinal, sensory and fragrant properties. Menthol acts via transient receptor potential (TRPM8 and TRPA1) channels and as a positive allosteric modulator of recombinant GABAA receptors. Here, we examined the actions of menthol on GABAA receptor-mediated currents in intact midbrain slices. Experimental Approach Whole-cell voltage-clamp recordings were made from periaqueductal grey (PAG) neurons in midbrain slices from rats to determine the effects of menthol on GABAA receptor-mediated phasic IPSCs and tonic currents. Key Results Menthol (150–750 μM) produced a concentration-dependent prolongation of spontaneous GABAA receptor-mediated IPSCs, but not non-NMDA receptor-mediated EPSCs throughout the PAG. Menthol actions were unaffected by TRPM8 and TRPA1 antagonists, tetrodotoxin and the benzodiazepine antagonist, flumazenil. Menthol also enhanced a tonic current, which was sensitive to the GABAA receptor antagonists, picrotoxin (100 μM), bicuculline (30 μM) and Zn2+ (100 μM), but unaffected by gabazine (10 μM) and a GABAC receptor antagonist, 1,2,5,6-tetrahydropyridin-4-yl)methylphosphinic acid hydrate (TPMPA; 50 μM). In addition, menthol potentiated currents induced by the extrasynaptic GABAA receptor agonist THIP/gaboxadol (10 μM). Conclusions and Implications These results suggest that menthol positively modulates both synaptic and extrasynaptic populations of GABAA receptors in native PAG neurons. The development of agents that potentiate GABAA-mediated tonic currents and phasic IPSCs in a manner similar to menthol could provide a basis for novel GABAA-related pharmacotherapies. PMID:24460753

  17. Chemogenetic ablation of dopaminergic neurons leads to transient locomotor impairments in zebrafish larvae.

    PubMed

    Godoy, Rafael; Noble, Sandra; Yoon, Kevin; Anisman, Hymie; Ekker, Marc

    2015-10-01

    To determine the impact of a controlled loss of dopaminergic neurons on locomotor function, we generated transgenic zebrafish, Tg(dat:CFP-NTR), expressing a cyan fluorescent protein-nitroreductase fusion protein (CFP-NTR) under the control of dopamine transporter (dat) cis-regulatory elements. Embryonic and larval zebrafish express the transgene in several groups of dopaminergic neurons, notably in the olfactory bulb, telencephalon, diencephalon and caudal hypothalamus. Administration of the pro-drug metronidazole (Mtz) resulted in activation of caspase 3 in CFP-positive neurons and in a reduction in dat-positive cells by 5 days post-fertilization (dpf). Loss of neurons coincided with impairments in global locomotor parameters such as swimming distance, percentage of time spent moving, as well as changes in tail bend parameters such as time to maximal bend and angular velocity. Dopamine levels were transiently decreased following Mtz administration. Recovery of some of the locomotor parameters was observed by 7 dpf. However, the total numbers of dat-expressing neurons were still decreased at 7, 12, or 14 dpf, even though there was evidence for production of new dat-expressing cells. Tg(dat:CFP-NTR) zebrafish provide a model to correlate altered dopaminergic neuron numbers with locomotor function and to investigate factors influencing regeneration of dopaminergic neurons. PMID:26118896

  18. Midbrain dopamine neurons compute inferred and cached value prediction errors in a common framework

    PubMed Central

    Sadacca, Brian F; Jones, Joshua L; Schoenbaum, Geoffrey

    2016-01-01

    Midbrain dopamine neurons have been proposed to signal reward prediction errors as defined in temporal difference (TD) learning algorithms. While these models have been extremely powerful in interpreting dopamine activity, they typically do not use value derived through inference in computing errors. This is important because much real world behavior – and thus many opportunities for error-driven learning – is based on such predictions. Here, we show that error-signaling rat dopamine neurons respond to the inferred, model-based value of cues that have not been paired with reward and do so in the same framework as they track the putative cached value of cues previously paired with reward. This suggests that dopamine neurons access a wider variety of information than contemplated by standard TD models and that, while their firing conforms to predictions of TD models in some cases, they may not be restricted to signaling errors from TD predictions. DOI: http://dx.doi.org/10.7554/eLife.13665.001 PMID:26949249

  19. Mechanisms of Long-Interval Selectivity in Midbrain Auditory Neurons: Roles of Excitation, Inhibition, and Plasticity

    PubMed Central

    Edwards, Christofer J.; Leary, Christopher J.; Rose, Gary J.

    2008-01-01

    Stereotyped intervals between successive sound pulses characterize the acoustic signals of anurans and other organisms and provide critical information to receivers. One class of midbrain neuron responds selectively when pulses are repeated at slow rates (long intervals). To examine the mechanisms that underlie long-interval selectivity, we made whole cell recordings, in vivo, from neurons in the anuran inferior colliculus (anuran IC). In most cases, long-pass interval selectivity appeared to arise from interplay between excitation and inhibition; in ∼25% of these cases, the delayed inhibition to a pulse overlapped with the excitation to the following pulse at fast pulse repetition rates (PRRs), resulting in a phasic “onset” response. In the remaining cases, inhibition appeared to precede excitation. These neurons did not respond to fast PRRs apparently because delayed excitation to a pulse overlapped with the inhibition to the following pulse. These results suggest that the relative timing of inhibition and excitation govern differences in the response properties of these two cell types. Loading cells with cesium increased their responses to fast AM rates, supporting a role for inhibition in long-interval selectivity. Three cells showed little or no evidence of inhibition and exhibited strong depression of excitation. These findings are discussed in the context of current models for long-pass interval selectivity. PMID:18945816

  20. Neural signals of extinction in the inhibitory microcircuit of the ventral midbrain.

    PubMed

    Pan, Wei-Xing; Brown, Jennifer; Dudman, Joshua Tate

    2013-01-01

    Midbrain dopaminergic (DA) neurons are thought to guide learning via phasic elevations of firing in response to reward predicting stimuli. The mechanism for these signals remains unclear. Using extracellular recording during associative learning, we found that inhibitory neurons in the ventral midbrain of mice responded to salient auditory stimuli with a burst of activity that occurred before the onset of the phasic response of DA neurons. This population of inhibitory neurons exhibited enhanced responses during extinction and was anticorrelated with the phasic response of simultaneously recorded DA neurons. Optogenetic stimulation revealed that this population was, in part, derived from inhibitory projection neurons of the substantia nigra that provide a robust monosynaptic inhibition of DA neurons. Thus, our results elaborate on the dynamic upstream circuits that shape the phasic activity of DA neurons and suggest that the inhibitory microcircuit of the midbrain is critical for new learning in extinction.

  1. Long-term health of dopaminergic neuron transplants in Parkinson's disease patients.

    PubMed

    Hallett, Penelope J; Cooper, Oliver; Sadi, Damaso; Robertson, Harold; Mendez, Ivar; Isacson, Ole

    2014-06-26

    To determine the long-term health and function of transplanted dopamine neurons in Parkinson's disease (PD) patients, the expression of dopamine transporters (DATs) and mitochondrial morphology were examined in human fetal midbrain cellular transplants. DAT was robustly expressed in transplanted dopamine neuron terminals in the reinnervated host putamen and caudate for at least 14 years after transplantation. The transplanted dopamine neurons showed a healthy and nonatrophied morphology at all time points. Labeling of the mitochondrial outer membrane protein Tom20 and α-synuclein showed a typical cellular pathology in the patients' own substantia nigra, which was not observed in transplanted dopamine neurons. These results show that the vast majority of transplanted neurons remain healthy for the long term in PD patients, consistent with clinical findings that fetal dopamine neuron transplants maintain function for up to 15-18 years in patients. These findings are critically important for the rational development of stem-cell-based dopamine neuronal replacement therapies for PD.

  2. Non-Monotonic Relation between Noise Exposure Severity and Neuronal Hyperactivity in the Auditory Midbrain

    PubMed Central

    Hesse, Lara Li; Bakay, Warren; Ong, Hui-Ching; Anderson, Lucy; Ashmore, Jonathan; McAlpine, David; Linden, Jennifer; Schaette, Roland

    2016-01-01

    The occurrence of tinnitus can be linked to hearing loss in the majority of cases, but there is nevertheless a large degree of unexplained heterogeneity in the relation between hearing loss and tinnitus. Part of the problem might be that hearing loss is usually quantified in terms of increased hearing thresholds, which only provides limited information about the underlying cochlear damage. Moreover, noise exposure that does not cause hearing threshold loss can still lead to “hidden hearing loss” (HHL), i.e., functional deafferentation of auditory nerve fibers (ANFs) through loss of synaptic ribbons in inner hair cells. While it is known that increased hearing thresholds can trigger increases in spontaneous neural activity in the central auditory system, i.e., a putative neural correlate of tinnitus, the central effects of HHL have not yet been investigated. Here, we exposed mice to octave-band noise at 100 and 105 dB SPL to generate HHL and permanent increases of hearing thresholds, respectively. Deafferentation of ANFs was confirmed through measurement of auditory brainstem responses and cochlear immunohistochemistry. Acute extracellular recordings from the auditory midbrain (inferior colliculus) demonstrated increases in spontaneous neuronal activity (a putative neural correlate of tinnitus) in both groups. Surprisingly, the increase in spontaneous activity was most pronounced in the mice with HHL, suggesting that the relation between hearing loss and neuronal hyperactivity might be more complex than currently understood. Our computational model indicated that these differences in neuronal hyperactivity could arise from different degrees of deafferentation of low-threshold ANFs in the two exposure groups. Our results demonstrate that HHL is sufficient to induce changes in central auditory processing, and they also indicate a non-monotonic relationship between cochlear damage and neuronal hyperactivity, suggesting an explanation for why tinnitus might occur

  3. Non-Monotonic Relation between Noise Exposure Severity and Neuronal Hyperactivity in the Auditory Midbrain

    PubMed Central

    Hesse, Lara Li; Bakay, Warren; Ong, Hui-Ching; Anderson, Lucy; Ashmore, Jonathan; McAlpine, David; Linden, Jennifer; Schaette, Roland

    2016-01-01

    The occurrence of tinnitus can be linked to hearing loss in the majority of cases, but there is nevertheless a large degree of unexplained heterogeneity in the relation between hearing loss and tinnitus. Part of the problem might be that hearing loss is usually quantified in terms of increased hearing thresholds, which only provides limited information about the underlying cochlear damage. Moreover, noise exposure that does not cause hearing threshold loss can still lead to “hidden hearing loss” (HHL), i.e., functional deafferentation of auditory nerve fibers (ANFs) through loss of synaptic ribbons in inner hair cells. While it is known that increased hearing thresholds can trigger increases in spontaneous neural activity in the central auditory system, i.e., a putative neural correlate of tinnitus, the central effects of HHL have not yet been investigated. Here, we exposed mice to octave-band noise at 100 and 105 dB SPL to generate HHL and permanent increases of hearing thresholds, respectively. Deafferentation of ANFs was confirmed through measurement of auditory brainstem responses and cochlear immunohistochemistry. Acute extracellular recordings from the auditory midbrain (inferior colliculus) demonstrated increases in spontaneous neuronal activity (a putative neural correlate of tinnitus) in both groups. Surprisingly, the increase in spontaneous activity was most pronounced in the mice with HHL, suggesting that the relation between hearing loss and neuronal hyperactivity might be more complex than currently understood. Our computational model indicated that these differences in neuronal hyperactivity could arise from different degrees of deafferentation of low-threshold ANFs in the two exposure groups. Our results demonstrate that HHL is sufficient to induce changes in central auditory processing, and they also indicate a non-monotonic relationship between cochlear damage and neuronal hyperactivity, suggesting an explanation for why tinnitus might occur

  4. Non-Monotonic Relation between Noise Exposure Severity and Neuronal Hyperactivity in the Auditory Midbrain.

    PubMed

    Hesse, Lara Li; Bakay, Warren; Ong, Hui-Ching; Anderson, Lucy; Ashmore, Jonathan; McAlpine, David; Linden, Jennifer; Schaette, Roland

    2016-01-01

    The occurrence of tinnitus can be linked to hearing loss in the majority of cases, but there is nevertheless a large degree of unexplained heterogeneity in the relation between hearing loss and tinnitus. Part of the problem might be that hearing loss is usually quantified in terms of increased hearing thresholds, which only provides limited information about the underlying cochlear damage. Moreover, noise exposure that does not cause hearing threshold loss can still lead to "hidden hearing loss" (HHL), i.e., functional deafferentation of auditory nerve fibers (ANFs) through loss of synaptic ribbons in inner hair cells. While it is known that increased hearing thresholds can trigger increases in spontaneous neural activity in the central auditory system, i.e., a putative neural correlate of tinnitus, the central effects of HHL have not yet been investigated. Here, we exposed mice to octave-band noise at 100 and 105 dB SPL to generate HHL and permanent increases of hearing thresholds, respectively. Deafferentation of ANFs was confirmed through measurement of auditory brainstem responses and cochlear immunohistochemistry. Acute extracellular recordings from the auditory midbrain (inferior colliculus) demonstrated increases in spontaneous neuronal activity (a putative neural correlate of tinnitus) in both groups. Surprisingly, the increase in spontaneous activity was most pronounced in the mice with HHL, suggesting that the relation between hearing loss and neuronal hyperactivity might be more complex than currently understood. Our computational model indicated that these differences in neuronal hyperactivity could arise from different degrees of deafferentation of low-threshold ANFs in the two exposure groups. Our results demonstrate that HHL is sufficient to induce changes in central auditory processing, and they also indicate a non-monotonic relationship between cochlear damage and neuronal hyperactivity, suggesting an explanation for why tinnitus might occur

  5. The sleep-modulating peptide orexin-B protects midbrain dopamine neurons from degeneration, alone or in cooperation with nicotine.

    PubMed

    Guerreiro, Serge; Florence, Clélia; Rousseau, Erwann; Hamadat, Sabah; Hirsch, Etienne C; Michel, Patrick P

    2015-01-01

    To determine whether orexinergic hypothalamic peptides can influence the survival of brainstem dopamine (DA) neurons, we used a model system of rat midbrain cultures in which DA neurons degenerate spontaneously and progressively as they mature. We established that orexin (OX)-B provides partial but significant protection to spontaneously dying DA neurons, whereas the homologous peptide OXA has only marginal effects. Importantly, DA neurons rescued by OXB accumulated DA efficiently by active transport, suggesting that they were functional. G-protein-coupled OX1 and OX2 receptors were both present on DA neurons, but the protective effect of OXB was attributable solely to OX2 receptors; a selective inhibitor of this receptor subtype, N-ethyl-2-[(6-methoxy-3-pyridinyl)[(2-methylphenyl)sulfonyl]amino]-N-(3-pyridinylmethyl)-acetamide (EMPA), suppressed this effect, whereas a selective agonist, [Ala(11), d-Leu(15)]OXB, reproduced it. Survival promotion by OXB required intracellular calcium mobilization via inositol-1,4,5-triphosphate and ryanodine receptors. Nicotine, a well known neuroprotective molecule for DA neurons, improved OXB-mediated rescue through the activation of α-bungarotoxin-sensitive (presumably α7) nicotinic receptors, although nicotine had no effect on its own. Altogether, our data suggest that the loss of hypothalamic orexinergic neurons that occurs in Parkinson's disease might confer an increased vulnerability to midbrain DA neurons in this disorder.

  6. Glutamate and Dopamine Transmission from Midbrain Dopamine Neurons Share Similar Release Properties But Are Differentially Affected by Cocaine

    PubMed Central

    Adrover, Martín F.; Shin, Jung Hoon

    2014-01-01

    Synaptic transmission between ventral tegmental area and nucleus accumbens (NAc) is critically involved in reward-motivated behaviors and thought to be altered in addiction. In addition to dopamine (DA), glutamate is packaged and released by a subset of mesolimbic DA neurons, eliciting EPSCs onto medium spiny neurons in NAc. Little is known about the properties and modulation of glutamate release from DA midbrain terminals and the effect of cocaine. Using an optogenetic approach to selectively activate midbrain DA fibers, we compared the properties and modulation of DA transients and EPSCs measured using fast-scan cyclic voltammetry and whole-cell recordings in mouse brain slices. DA transients and EPSCs were inhibited by DA receptor D2R agonist and showed a marked paired-pulse depression that required 2 min for full recovery. Cocaine depressed EPSCs amplitude by 50% but enhanced the overall DA transmission from midbrain DA neurons. AMPA and NMDA receptor-mediated EPSCs were equally inhibited by cocaine, suggesting a presynaptic mechanism of action. Pharmacological blockage and genetic deletion of D2R in DA neurons prevented the cocaine-induced inhibition of EPSCs and caused a larger increase in DA transient peak, confirming the involvement of presynaptic D2R. These findings demonstrate that acute cocaine inhibits DA and glutamate release from midbrain DA neurons via presynaptic D2R but has differential overall effects on their transmissions in the NAc. We postulate that cocaine, by blocking DA reuptake, prolongs DA transients and facilitates the feedback inhibition of DA and glutamate release from these terminals. PMID:24573277

  7. Manganese nanoparticle activates mitochondrial dependent apoptotic signaling and autophagy in dopaminergic neuronal cells

    SciTech Connect

    Afeseh Ngwa, Hilary; Kanthasamy, Arthi; Gu, Yan; Fang, Ning; Anantharam, Vellareddy; Kanthasamy, Anumantha G.

    2011-11-15

    The production of man-made nanoparticles for various modern applications has increased exponentially in recent years, but the potential health effects of most nanoparticles are not well characterized. Unfortunately, in vitro nanoparticle toxicity studies are extremely limited by yet unresolved problems relating to dosimetry. In the present study, we systematically characterized manganese (Mn) nanoparticle sizes and examined the nanoparticle-induced oxidative signaling in dopaminergic neuronal cells. Differential interference contrast (DIC) microscopy and transmission electron microscopy (TEM) studies revealed that Mn nanoparticles range in size from single nanoparticles ({approx} 25 nM) to larger agglomerates when in treatment media. Manganese nanoparticles were effectively internalized in N27 dopaminergic neuronal cells, and they induced a time-dependent upregulation of the transporter protein transferrin. Exposure to 25-400 {mu}g/mL Mn nanoparticles induced cell death in a time- and dose-dependent manner. Mn nanoparticles also significantly increased ROS, accompanied by a caspase-mediated proteolytic cleavage of proapoptotic protein kinase C{delta} (PKC{delta}), as well as activation loop phosphorylation. Blocking Mn nanoparticle-induced ROS failed to protect against the neurotoxic effects, suggesting the involvement of other pathways. Further mechanistic studies revealed changes in Beclin 1 and LC3, indicating that Mn nanoparticles induce autophagy. Primary mesencephalic neuron exposure to Mn nanoparticles induced loss of TH positive dopaminergic neurons and neuronal processes. Collectively, our results suggest that Mn nanoparticles effectively enter dopaminergic neuronal cells and exert neurotoxic effects by activating an apoptotic signaling pathway and autophagy, emphasizing the need for assessing possible health risks associated with an increased use of Mn nanoparticles in modern applications. -- Highlights: Black-Right-Pointing-Pointer Mn nanoparticles

  8. Electrical coupling between model midbrain dopamine neurons: effects on firing pattern and synchrony.

    PubMed

    Komendantov, Alexander O; Canavier, Carmen C

    2002-03-01

    The role of gap junctions between midbrain dopamine (DA) neurons in mechanisms of firing pattern generation and synchronization has not been well characterized experimentally. We modified a multi-compartment model of DA neuron by adding a spike-generating mechanism and electrically coupling the dendrites of two such neurons through gap junctions. The burst-generating mechanism in the model neuron results from the interaction of a N-methyl-D-aspartate (NMDA)-induced current and the sodium pump. The firing patterns exhibited by the two model neurons included low frequency (2-7 Hz) spiking, high-frequency (13-20 Hz) spiking, irregular spiking, regular bursting, irregular bursting, and leader/follower bursting, depending on the parameter values used for the permeability for NMDA-induced current and the conductance for electrical coupling. All of these firing patterns have been observed in physiological neurons, but a systematic dependence of the firing pattern on the covariation of these two parameters has not been established experimentally. Our simulations indicate that electrical coupling facilitates NMDA-induced burst firing via two mechanisms. The first can be observed in a pair of identical cells. At low frequencies (low NMDA), as coupling strength was increased, only a transition from asynchronous to synchronous single-spike firing was observed. At high frequencies (high NMDA), increasing the strength of the electrical coupling in an identical pair resulted in a transition from high-frequency single-spike firing to burst firing, and further increases led to synchronous high-frequency spiking. Weak electrical coupling destabilizes the synchronous solution of the fast spiking subsystems, and in the presence of a slowly varying sodium concentration, the desynchronized spiking solution leads to bursts that are approximately in phase with spikes that are not in phase. Thus this transitional mechanism depends critically on action potential dynamics. The second

  9. BDNF Interacts with Endocannabinoids to Regulate Cocaine-Induced Synaptic Plasticity in Mouse Midbrain Dopamine Neurons

    PubMed Central

    Zhong, Peng; Liu, Yong; Hu, Ying; Wang, Tong; Zhao, Yong-ping

    2015-01-01

    Brain-derived neurotrophic factor (BDNF) and endocannabinoids (eCBs) have been individually implicated in behavioral effects of cocaine. The present study examined how BDNF-eCB interaction regulates cocaine-induced synaptic plasticity in the ventral tegmental area and behavioral effects. We report that BDNF and selective tyrosine kinase receptor B (TrkB) agonist 7,8-dihydroxyflavone (DHF) activated the TrkB receptor to facilitate two forms of eCB-mediated synaptic depression, depolarization-induced suppression of inhibition (DSI), and long-term depression (I-LTD) of IPSCs in ventral tegmental area dopamine neurons in mouse midbrain slices. The facilitation appears to be mediated by an increase in eCB production via phospholipase Cγ pathway, but not by an increase in CB1 receptor responsiveness or a decrease in eCB hydrolysis. Using Cre-loxP technology to specifically delete BDNF in dopamine neurons, we showed that eCB-mediated I-LTD, cocaine-induced reduction of GABAergic inhibition, and potentiation of glutamatergic excitation remained intact in wild-type control mice, but were impaired in BDNF conditional knock-out mice. We also showed that cocaine-induced conditioned place preference was attenuated in BDNF conditional knock-out mice, in vivo pretreatments with DHF before place conditioning restored cocaine conditioned place preference in these mice, and the behavioral effect of DHF was blocked by a CB1 receptor antagonist. Together, these results suggest that BDNF in dopamine neurons regulates eCB responses, cocaine-induced synaptic plasticity, and associative learning. PMID:25762688

  10. BDNF interacts with endocannabinoids to regulate cocaine-induced synaptic plasticity in mouse midbrain dopamine neurons.

    PubMed

    Zhong, Peng; Liu, Yong; Hu, Ying; Wang, Tong; Zhao, Yong-ping; Liu, Qing-song

    2015-03-11

    Brain-derived neurotrophic factor (BDNF) and endocannabinoids (eCBs) have been individually implicated in behavioral effects of cocaine. The present study examined how BDNF-eCB interaction regulates cocaine-induced synaptic plasticity in the ventral tegmental area and behavioral effects. We report that BDNF and selective tyrosine kinase receptor B (TrkB) agonist 7,8-dihydroxyflavone (DHF) activated the TrkB receptor to facilitate two forms of eCB-mediated synaptic depression, depolarization-induced suppression of inhibition (DSI), and long-term depression (I-LTD) of IPSCs in ventral tegmental area dopamine neurons in mouse midbrain slices. The facilitation appears to be mediated by an increase in eCB production via phospholipase Cγ pathway, but not by an increase in CB1 receptor responsiveness or a decrease in eCB hydrolysis. Using Cre-loxP technology to specifically delete BDNF in dopamine neurons, we showed that eCB-mediated I-LTD, cocaine-induced reduction of GABAergic inhibition, and potentiation of glutamatergic excitation remained intact in wild-type control mice, but were impaired in BDNF conditional knock-out mice. We also showed that cocaine-induced conditioned place preference was attenuated in BDNF conditional knock-out mice, in vivo pretreatments with DHF before place conditioning restored cocaine conditioned place preference in these mice, and the behavioral effect of DHF was blocked by a CB₁ receptor antagonist. Together, these results suggest that BDNF in dopamine neurons regulates eCB responses, cocaine-induced synaptic plasticity, and associative learning. PMID:25762688

  11. Degeneration of Dopaminergic Neurons Due to Metabolic Alterations and Parkinson’s Disease

    PubMed Central

    Song, Juhyun; Kim, Jongpil

    2016-01-01

    The rates of metabolic diseases, such as type 2 diabetes mellitus (T2DM), obesity, and cardiovascular disease (CVD), markedly increase with age. In recent years, studies have reported an association between metabolic changes and various pathophysiological mechanisms in the central nervous system (CNS) in patients with metabolic diseases. Oxidative stress and hyperglycemia in metabolic diseases lead to adverse neurophysiological phenomena, including neuronal loss, synaptic dysfunction, and improper insulin signaling, resulting in Parkinson’s disease (PD). In addition, several lines of evidence suggest that alterations of CNS environments by metabolic changes influence the dopamine neuronal loss, eventually affecting the pathogenesis of PD. Thus, we reviewed recent findings relating to degeneration of dopaminergic neurons during metabolic diseases. We highlight the fact that using a metabolic approach to manipulate degeneration of dopaminergic neurons can serve as a therapeutic strategy to attenuate pathology of PD. PMID:27065205

  12. Id2 IS REQUIRED FOR SPECIFICATION OF DOPAMINERGIC NEURONS DURING ADULT OLFACTORY NEUROGENESIS

    PubMed Central

    Havrda, Matthew C.; Harris, Brent T.; Mantani, Akio; Ward, Nora M.; Paolella, Brenton R.; Cuzon, Verginia C.; Yeh, Hermes H.; Israel, Mark A.

    2009-01-01

    Understanding the biology of adult neural stem cells has important implications for nervous system development and may contribute to our understanding of neurodegenerative disorders and their treatment. We have characterized the process of olfactory neurogenesis in adult mice lacking Inhibitor of DNA Binding 2 (Id2). We found a diminished olfactory bulb containing reduced numbers of granular and periglomerular neurons with a distinct paucity of dopaminergic periglomerular neurons. While no deficiency of the stem cell compartment was detectable, migrating neuroblasts in Id2−/− mutant mice prematurely undergo astroglial differentiation within a disorganized rostral migratory stream. Further, when evaluated in vitro loss of Id2 results in decreased proliferation of neural progenitors and decreased expression of the Hes1 and Mash1 transcription factors, known mediators of neuronal differentiation. These data support a novel role for sustained Id2 expression in migrating neural progenitors mediating olfactory dopaminergic neuronal differentiation in adult animals. PMID:19109490

  13. A Stem Cell-Derived Platform for Studying Single Synaptic Vesicles in Dopaminergic Synapses

    PubMed Central

    Gu, Haigang; Lazarenko, Roman M.; Koktysh, Dmitry; Iacovitti, Lorraine

    2015-01-01

    The exocytotic release of dopamine is one of the most characteristic but also one of the least appreciated processes in dopaminergic neurotransmission. Fluorescence imaging has yielded rich information about the properties of synaptic vesicles and the release of neurotransmitters in excitatory and inhibitory neurons. In contrast, imaging-based studies for in-depth understanding of synaptic vesicle behavior in dopamine neurons are lagging largely because of a lack of suitable preparations. Midbrain culture has been one of the most valuable preparations for the subcellular investigation of dopaminergic transmission; however, the paucity and fragility of cultured dopaminergic neurons limits their use for live cell imaging. Recent developments in stem cell technology have led to the successful production of dopamine neurons from embryonic or induced pluripotent stem cells. Although the dopaminergic identity of these stem cell-derived neurons has been characterized in different ways, vesicle-mediated dopamine release from their axonal terminals has been barely assessed. We report a more efficient procedure to reliably generate dopamine neurons from embryonic stem cells, and it yields more dopamine neurons with more dopaminergic axon projections than midbrain culture does. Using a collection of functional measurements, we show that stem cell-derived dopamine neurons are indistinguishable from those in midbrain culture. Taking advantage of this new preparation, we simultaneously tracked the turnover of hundreds of synaptic vesicles individually using pH-sensitive quantum dots. By doing so, we revealed distinct fusion kinetics of the dopamine-secreting vesicles, which is consistent within both preparations. Significance For the use of stem cell-derived neurons in clinical applications, improved differentiation efficiency and more careful characterization of resultant cells are needed. A procedure has been refined for differentiation of mouse embryonic stem cells into

  14. Autologous mesenchymal stem cell–derived dopaminergic neurons function in parkinsonian macaques

    PubMed Central

    Hayashi, Takuya; Wakao, Shohei; Kitada, Masaaki; Ose, Takayuki; Watabe, Hiroshi; Kuroda, Yasumasa; Mitsunaga, Kanae; Matsuse, Dai; Shigemoto, Taeko; Ito, Akihito; Ikeda, Hironobu; Fukuyama, Hidenao; Onoe, Hirotaka; Tabata, Yasuhiko; Dezawa, Mari

    2012-01-01

    A cell-based therapy for the replacement of dopaminergic neurons has been a long-term goal in Parkinson’s disease research. Here, we show that autologous engraftment of A9 dopaminergic neuron-like cells induced from mesenchymal stem cells (MSCs) leads to long-term survival of the cells and restoration of motor function in hemiparkinsonian macaques. Differentiated MSCs expressed markers of A9 dopaminergic neurons and released dopamine after depolarization in vitro. The differentiated autologous cells were engrafted in the affected portion of the striatum. Animals that received transplants showed modest and gradual improvements in motor behaviors. Positron emission tomography (PET) using [11C]-CFT, a ligand for the dopamine transporter (DAT), revealed a dramatic increase in DAT expression, with a subsequent exponential decline over a period of 7 months. Kinetic analysis of the PET findings revealed that DAT expression remained above baseline levels for over 7 months. Immunohistochemical evaluations at 9 months consistently demonstrated the existence of cells positive for DAT and other A9 dopaminergic neuron markers in the engrafted striatum. These data suggest that transplantation of differentiated autologous MSCs may represent a safe and effective cell therapy for Parkinson’s disease. PMID:23202734

  15. Phosphodiesterase 7 Inhibition Preserves Dopaminergic Neurons in Cellular and Rodent Models of Parkinson Disease

    PubMed Central

    Morales-Garcia, Jose A.; Redondo, Miriam; Alonso-Gil, Sandra; Gil, Carmen; Perez, Concepción; Martinez, Ana; Santos, Angel; Perez-Castillo, Ana

    2011-01-01

    Background Phosphodiesterase 7 plays a major role in down-regulation of protein kinase A activity by hydrolyzing cAMP in many cell types. This cyclic nucleotide plays a key role in signal transduction in a wide variety of cellular responses. In the brain, cAMP has been implicated in learning, memory processes and other brain functions. Methodology/Principal Findings Here we show a novel function of phosphodiesterase 7 inhibition on nigrostriatal dopaminergic neuronal death. We found that S14, a heterocyclic small molecule inhibitor of phosphodiesterase 7, conferred significant neuronal protection against different insults both in the human dopaminergic cell line SH-SY5Y and in primary rat mesencephalic cultures. S14 treatment also reduced microglial activation, protected dopaminergic neurons and improved motor function in the lipopolysaccharide rat model of Parkinson disease. Finally, S14 neuroprotective effects were reversed by blocking the cAMP signaling pathways that operate through cAMP-dependent protein kinase A. Conclusions/Significance Our findings demonstrate that phosphodiesterase 7 inhibition can protect dopaminergic neurons against different insults, and they provide support for the therapeutic potential of phosphodiesterase 7 inhibitors in the treatment of neurodegenerative disorders, particularly Parkinson disease. PMID:21390306

  16. NANOMETER DIESEL EXHAUST PARTICLES ARE NEUROTOXIC TO DOPAMINERGIC NEURONS THROUGH MICROGLIAL ACTIVATION.

    EPA Science Inventory

    NANOMETER DIESEL EXHAUST PARTICLES ARE NEUROTOXIC TO DOPAMINERGIC NEURONS THROUGH MICROGLIAL ACTIVATION. M.L. Block1,2, X. Wu1, P. Zhong1, G. Li1, T. Wang1, J.S. Hong1 & B.Veronesi.2
    1The Laboratory of Pharmacology and Chemistry, NIEHS, RTP, NC and 2 National Health and Envi...

  17. Ceftriaxone Ameliorates Motor Deficits and Protects Dopaminergic Neurons in 6-Hydroxydopamine-Lesioned Rats

    PubMed Central

    2011-01-01

    Parkinson’s disease is caused by the degeneration of dopaminergic neurons in substantia nigra. There is no current promising treatment for neuroprotection of dopaminergic neurons. Ceftriaxone is a beta-lactam antibiotic and has been reported to offer neuroprotective effects (Rothstein, J.-D., Patel, S., Regan, M.-R., Haenggeli, C., Huang, Y.-H., Bergles, D.-E., Jin, L., Dykes, H.-M., Vidensky, S., Chung, D.-S., Toan, S.-V., Bruijn, L.-I., Su, Z.-Z., Gupta, P., and Fisher, P.-B. (2005) Beta-lactam antibiotics offer neuroprotection by increasing glutamate transporter expression Nature433, 73–77). In the present study, efficacy of ceftriaxone in neuroprotection of dopaminergic neurons and amelioration of motor deficits in a rat model of Parkinson’s disease were investigated. Ceftriaxone was administrated in 6-hydroxydopamine-lesioned rats. Using behavioral tests, grip strength and numbers of apomorphine-induced contralateral rotation were declined in the ceftriaxone-treated group. More importantly, cell death of dopaminergic neurons was found to decrease. In addition, both the protein expression and immunoreactivity for GLT-1 were up-regulated. The present results strongly indicate that ceftriaxone is a potential agent in the treatment of Parkinson’s disease. PMID:22860178

  18. Opposing effects of APP/PS1 and TrkB.T1 genotypes on midbrain dopamine neurons and stimulated dopamine release in vivo.

    PubMed

    Kärkkäinen, E; Yavich, L; Miettinen, P O; Tanila, H

    2015-10-01

    Brain derived neurotrophic factor (BDNF) signaling disturbances in Alzheimer׳s disease (AD) have been demonstrated. BDNF levels fall in AD, but the ratio between truncated and full-length BDNF receptors TrkB.T1 and TrkB.TK, respectively, increases in brains of AD patients and APPswe/PS1dE9 (APP/PS1) AD model mice. Dopaminergic (DAergic) system disturbances in AD and detrimental effects of BDNF signaling deficits on DAergic system functions have also been indicated. Against this, we investigated changes in nigrostriatal dopamine (DA) system in mice carrying APP/PS1 and/or TrkB.T1 transgenes, the latter line modeling the TrkB.T1/TK ratio change in AD. Employing in vivo voltammetry, we found normal short-term DA release in caudate-putamen of mice carrying APP/PS1 or TrkB.T1 transgenes but impaired capacity to recruit more DA upon prolonged stimulation. However, mice carrying both transgenes did not differ from wild-type controls. Immunohistochemistry revealed normal density of tyrosine hydroxylase positive axon terminals in caudate-putamen in all genotypes and intact presynaptic machinery for DA release and reuptake, as shown by unchanged levels of SNAP-25, α-synuclein and DA transporter. However, we observed increased DAergic neurons in substantia nigra of TrkB.T1 mice resulting in decreased tyrosine hydroxylase per neuron in TrkB.T1 mice. The finding of unchanged nigral DAergic neurons in APP/PS1 mice largely confirms earlier reports, but the unexpected increase in midbrain DA neurons in TrkB.T1 mice is a novel finding. We suggest that both APP/PS1 and TrkB.T1 genotypes disrupt DAergic signaling, but via separate mechanisms. PMID:26168899

  19. Opposing effects of APP/PS1 and TrkB.T1 genotypes on midbrain dopamine neurons and stimulated dopamine release in vivo.

    PubMed

    Kärkkäinen, E; Yavich, L; Miettinen, P O; Tanila, H

    2015-10-01

    Brain derived neurotrophic factor (BDNF) signaling disturbances in Alzheimer׳s disease (AD) have been demonstrated. BDNF levels fall in AD, but the ratio between truncated and full-length BDNF receptors TrkB.T1 and TrkB.TK, respectively, increases in brains of AD patients and APPswe/PS1dE9 (APP/PS1) AD model mice. Dopaminergic (DAergic) system disturbances in AD and detrimental effects of BDNF signaling deficits on DAergic system functions have also been indicated. Against this, we investigated changes in nigrostriatal dopamine (DA) system in mice carrying APP/PS1 and/or TrkB.T1 transgenes, the latter line modeling the TrkB.T1/TK ratio change in AD. Employing in vivo voltammetry, we found normal short-term DA release in caudate-putamen of mice carrying APP/PS1 or TrkB.T1 transgenes but impaired capacity to recruit more DA upon prolonged stimulation. However, mice carrying both transgenes did not differ from wild-type controls. Immunohistochemistry revealed normal density of tyrosine hydroxylase positive axon terminals in caudate-putamen in all genotypes and intact presynaptic machinery for DA release and reuptake, as shown by unchanged levels of SNAP-25, α-synuclein and DA transporter. However, we observed increased DAergic neurons in substantia nigra of TrkB.T1 mice resulting in decreased tyrosine hydroxylase per neuron in TrkB.T1 mice. The finding of unchanged nigral DAergic neurons in APP/PS1 mice largely confirms earlier reports, but the unexpected increase in midbrain DA neurons in TrkB.T1 mice is a novel finding. We suggest that both APP/PS1 and TrkB.T1 genotypes disrupt DAergic signaling, but via separate mechanisms.

  20. Regulation of differentiation flux by Notch signalling influences the number of dopaminergic neurons in the adult brain

    PubMed Central

    Trujillo-Paredes, Niurka; Valencia, Concepción; Guerrero-Flores, Gilda; Arzate, Dulce-María; Baizabal, José-Manuel; Guerra-Crespo, Magdalena; Fuentes-Hernández, Ayari; Zea-Armenta, Iván; Covarrubias, Luis

    2016-01-01

    ABSTRACT Notch signalling is a well-established pathway that regulates neurogenesis. However, little is known about the role of Notch signalling in specific neuronal differentiation. Using Dll1 null mice, we found that Notch signalling has no function in the specification of mesencephalic dopaminergic neural precursor cells (NPCs), but plays an important role in regulating their expansion and differentiation into neurons. Premature neuronal differentiation was observed in mesencephalons of Dll1-deficient mice or after treatment with a Notch signalling inhibitor. Coupling between neurogenesis and dopaminergic differentiation was indicated from the coincident emergence of neuronal and dopaminergic markers. Early in differentiation, decreasing Notch signalling caused a reduction in NPCs and an increase in dopaminergic neurons in association with dynamic changes in the proportion of sequentially-linked dopaminergic NPCs (Msx1/2+, Ngn2+, Nurr1+). These effects in differentiation caused a significant reduction in the number of dopaminergic neurons produced. Accordingly, Dll1 haploinsufficient adult mice, in comparison with their wild-type littermates, have a consistent reduction in neuronal density that was particularly evident in the substantia nigra pars compacta. Our results are in agreement with a mathematical model based on a Dll1-mediated regulatory feedback loop between early progenitors and their dividing precursors that controls the emergence and number of dopaminergic neurons. PMID:26912775

  1. Modulation of GABA release during morphine withdrawal in midbrain neurons in vitro.

    PubMed

    Hack, Stephen P; Vaughan, Christopher W; Christie, MacDonald J

    2003-10-01

    Chronic treatment with opioids induces adaptations in neurons leading to tolerance and dependence. Studies have implicated the midbrain periaqueductal gray (PAG) in the expression of many signs of withdrawal. Patch-clamp recording techniques were used to examine whether augmentation of adenylyl cyclase signalling produces hyperexcitation in GABAergic nerve terminals within the mouse PAG. Both the rate of mIPSCs and the amplitude of evoked IPSCs during naloxone-precipitated withdrawal was profoundly enhanced in chronically morphine treated mice, compared to vehicle treated controls, in the presence but not the absence an adenosine A(1) receptor antagonist DPCPX. Enhanced GABAergic transmission in the presence of DPCPX was abolished by blocking protein kinase A. Inhibitors of cAMP transport, phosphodiesterase and nucleotide transport mimicked the effect of DPCPX. Coupling efficacy of micro-receptors to presynaptic inhibition of GABA release was increased in dependent mice in the presence of DPCPX. The increased coupling efficacy was abolished by blocking protein kinase A, which unmasked an underlying micro-receptor tolerance. These findings indicate that enhanced adenylyl cyclase signalling following chronic morphine treatment produces (1) GABAergic terminal hyperexcitability during withdrawal that is retarded by a concomitant increase in endogenous adenosine, and (2) enhanced micro-receptor coupling to presynaptic inhibition that overcomes an underlying tolerance.

  2. Hemispheric Asymmetries in Striatal Reward Responses Relate to Approach-Avoidance Learning and Encoding of Positive-Negative Prediction Errors in Dopaminergic Midbrain Regions.

    PubMed

    Aberg, Kristoffer Carl; Doell, Kimberly C; Schwartz, Sophie

    2015-10-28

    Some individuals are better at learning about rewarding situations, whereas others are inclined to avoid punishments (i.e., enhanced approach or avoidance learning, respectively). In reinforcement learning, action values are increased when outcomes are better than predicted (positive prediction errors [PEs]) and decreased for worse than predicted outcomes (negative PEs). Because actions with high and low values are approached and avoided, respectively, individual differences in the neural encoding of PEs may influence the balance between approach-avoidance learning. Recent correlational approaches also indicate that biases in approach-avoidance learning involve hemispheric asymmetries in dopamine function. However, the computational and neural mechanisms underpinning such learning biases remain unknown. Here we assessed hemispheric reward asymmetry in striatal activity in 34 human participants who performed a task involving rewards and punishments. We show that the relative difference in reward response between hemispheres relates to individual biases in approach-avoidance learning. Moreover, using a computational modeling approach, we demonstrate that better encoding of positive (vs negative) PEs in dopaminergic midbrain regions is associated with better approach (vs avoidance) learning, specifically in participants with larger reward responses in the left (vs right) ventral striatum. Thus, individual dispositions or traits may be determined by neural processes acting to constrain learning about specific aspects of the world.

  3. Hemispheric Asymmetries in Striatal Reward Responses Relate to Approach-Avoidance Learning and Encoding of Positive-Negative Prediction Errors in Dopaminergic Midbrain Regions.

    PubMed

    Aberg, Kristoffer Carl; Doell, Kimberly C; Schwartz, Sophie

    2015-10-28

    Some individuals are better at learning about rewarding situations, whereas others are inclined to avoid punishments (i.e., enhanced approach or avoidance learning, respectively). In reinforcement learning, action values are increased when outcomes are better than predicted (positive prediction errors [PEs]) and decreased for worse than predicted outcomes (negative PEs). Because actions with high and low values are approached and avoided, respectively, individual differences in the neural encoding of PEs may influence the balance between approach-avoidance learning. Recent correlational approaches also indicate that biases in approach-avoidance learning involve hemispheric asymmetries in dopamine function. However, the computational and neural mechanisms underpinning such learning biases remain unknown. Here we assessed hemispheric reward asymmetry in striatal activity in 34 human participants who performed a task involving rewards and punishments. We show that the relative difference in reward response between hemispheres relates to individual biases in approach-avoidance learning. Moreover, using a computational modeling approach, we demonstrate that better encoding of positive (vs negative) PEs in dopaminergic midbrain regions is associated with better approach (vs avoidance) learning, specifically in participants with larger reward responses in the left (vs right) ventral striatum. Thus, individual dispositions or traits may be determined by neural processes acting to constrain learning about specific aspects of the world. PMID:26511241

  4. Direct reprogramming of human fibroblasts into dopaminergic neuron-like cells.

    PubMed

    Liu, Xinjian; Li, Fang; Stubblefield, Elizabeth A; Blanchard, Barbara; Richards, Toni L; Larson, Gaynor A; He, Yujun; Huang, Qian; Tan, Aik-Choon; Zhang, Dabing; Benke, Timothy A; Sladek, John R; Zahniser, Nancy R; Li, Chuan-Yuan

    2012-02-01

    Transplantation of exogenous dopaminergic neuron (DA neurons) is a promising approach for treating Parkinson's disease (PD). However, a major stumbling block has been the lack of a reliable source of donor DA neurons. Here we show that a combination of five transcriptional factors Mash1, Ngn2, Sox2, Nurr1, and Pitx3 can directly and effectively reprogram human fibroblasts into DA neuron-like cells. The reprogrammed cells stained positive for various markers for DA neurons. They also showed characteristic DA uptake and production properties. Moreover, they exhibited DA neuron-specific electrophysiological profiles. Finally, they provided symptomatic relief in a rat PD model. Therefore, our directly reprogrammed DA neuron-like cells are a promising source of cell-replacement therapy for PD. PMID:22105488

  5. In vitro differentiation of human amniotic fluid-derived cells: augmentation towards a neuronal dopaminergic phenotype.

    PubMed

    Pfeiffer, Shona; McLaughlin, David

    2010-09-01

    Amniotic fluid is known to yield a number of cell types which are multipotent, ethically derived, genetically stable, easily grown, expanded and possess favourable immunogenicity, which has resulted in an increasing interest for use in various neuronal disorders such as Parkinson's disease. The neuronal potential of cells derived from the adherent fraction of amniotic fluid, routinely taken by amniocentesis, are least explored. The aim of the present study was to investigate the capacity of these cells for neuronal and dopaminergic differentiation using in vitro differentiation protocols with canonical inductive factors not previously tested. To do this, samples derived from multiple donors were grown under four conditions: standard serum-containing media, NB (neurobasal) media designed specifically for propagation and maintenance of neuronal cells, NB media with addition of retinoic acid and BDNF (brain-derived neurotrophic factor) for NI (neuronal induction), and NB media with addition of FGF8 (fibroblast growth factor-8) and Shh (sonic hedgehog) after NI. Our results showed the presence of multiple neuronal markers after growth in serum-containing medium [TUJ1, MAP2, NF-M, TH (tyrosine hydroxylase)], which was significantly up-regulated after serum withdrawal in NB medium alone with induction of NeuN (neuronal nuclei) and NSE (neuron-specific enolase). NI and DA.I (dopaminergic induction) was accompanied by further increases in expression and a distinct transition to a sustained neuronal morphology. Western blot analysis confirmed increasing TH expression and NURR1, expressed in base serum-containing media, found to be down-regulated after induction. In conclusion, these cells possess a highly favourable base neuronal and dopaminergic prepotential, which may easily be accentuated by standard induction protocols. PMID:20388119

  6. Transgenic Zebrafish Expressing mCherry in the Mitochondria of Dopaminergic Neurons.

    PubMed

    Noble, Sandra; Godoy, Rafael; Affaticati, Pierre; Ekker, Marc

    2015-10-01

    Genetic mutations and environmental toxins are known to affect mitochondrial health and have been implicated in the progressive degeneration of dopaminergic neurons in Parkinson's disease. To visualize mitochondria in dopaminergic neurons of live zebrafish, we used the regulatory elements of the dopamine transporter (dat) gene to target a reporter, mCherry, after fusion with the mitochondrial localizing signal (MLS) of Tom20. Immunoblot analysis of mitochondrial and cytosolic fractions from Tg(dat:tom20 MLS-mCherry) larvae shows that mCherry is efficiently targeted to the mitochondria. Confocal imaging of live fish was carried out from 1 day postfertilization (dpf) to 9 dpf. We also colocalized dat mRNA expression with the mCherry protein in the olfactory bulb (OB), subpallium (SP), pretectum (Pr), diencephalic clusters 2 and 3 (DC2/3), caudal hypothalamus (Hc), locus coeruleus (LC), anterior preoptic area (POa), retinal amacrine cells (RAC), caudal hypothalamus (Hc), and preoptic area (PO). Treating Tg(dat:tom20 MLS-mCherry) larvae with the dopaminergic neurotoxin MPTP (1-Methyl-4-phenyl-1,2,3,6-tetrahydropyridine) at 2 or 3 dpf resulted in a decrease in mCherry fluorescence in the pretectum, olfactory bulb, subpallium, diencephalic clusters 2 and 3, and the caudal hypothalamus. Labeling of mitochondria in nigrostriatal dopaminergic neurons of zebrafish could allow their visualization in vivo following genetic or pharmacological manipulations.

  7. Parkin cooperates with GDNF/RET signaling to prevent dopaminergic neuron degeneration.

    PubMed

    Meka, Durga Praveen; Müller-Rischart, Anne Kathrin; Nidadavolu, Prakash; Mohammadi, Behnam; Motori, Elisa; Ponna, Srinivas Kumar; Aboutalebi, Helia; Bassal, Mahmoud; Annamneedi, Anil; Finckh, Barbara; Miesbauer, Margit; Rotermund, Natalie; Lohr, Christian; Tatzelt, Jörg; Winklhofer, Konstanze F; Kramer, Edgar R

    2015-05-01

    Parkin and the glial cell line-derived neurotrophic factor (GDNF) receptor RET have both been independently linked to the dopaminergic neuron degeneration that underlies Parkinson's disease (PD). In the present study, we demonstrate that there is genetic crosstalk between parkin and the receptor tyrosine kinase RET in two different mouse models of PD. Mice lacking both parkin and RET exhibited accelerated dopaminergic cell and axonal loss compared with parkin-deficient animals, which showed none, and RET-deficient mice, in which we found moderate degeneration. Transgenic expression of parkin protected the dopaminergic systems of aged RET-deficient mice. Downregulation of either parkin or RET in neuronal cells impaired mitochondrial function and morphology. Parkin expression restored mitochondrial function in GDNF/RET-deficient cells, while GDNF stimulation rescued mitochondrial defects in parkin-deficient cells. In both cases, improved mitochondrial function was the result of activation of the prosurvival NF-κB pathway, which was mediated by RET through the phosphoinositide-3-kinase (PI3K) pathway. Taken together, these observations indicate that parkin and the RET signaling cascade converge to control mitochondrial integrity and thereby properly maintain substantia nigra pars compacta dopaminergic neurons and their innervation in the striatum. The demonstration of crosstalk between parkin and RET highlights the interplay in the protein network that is altered in PD and suggests potential therapeutic targets and strategies to treat PD. PMID:25822020

  8. Gypenosides protects dopaminergic neurons in primary culture against MPP(+)-induced oxidative injury.

    PubMed

    Wang, Peng; Niu, Le; Guo, Xiao-Dong; Gao, Li; Li, Wei-Xin; Jia, Dong; Wang, Xue-Lian; Ma, Lian-Ting; Gao, Guo-Dong

    2010-10-30

    Oxidative injury has been implicated in the etiology of Parkinson's disease (PD). Gypenosides (GPs), the saponins extract derived from the Gynostemma pentaphyllum, has various bioactivities. In this study, GPs was investigated for its neuroprotective effects on the 1-methyl-4-phenylpyridinium ion (MPP(+))-induced oxidative injury of dopaminergic neurons in primary nigral culture. It was found that GPs pretreatment, cotreatment or posttreatment significantly and dose-dependently attenuated MPP(+)-induced oxidative damage, reduction of dopamine uptake, loss of tyrosine hydrolase (TH)-immunopositive neurons and degeneration of TH-immunopositive neurites. However, the preventive effect of GPs was more potential than its therapeutical effect. Most importantly, the neuroprotective effect of GPs may be attributed to GPs-induced strengthened antioxidation as manifested by significantly increased glutathione content and enhanced activity of glutathione peroxidase, catalyze and superoxide dismutase in nigral culture. The neuroprotective effects of GPs are specific for dopaminergic neurons and it may have therapeutic potential in the treatment of PD.

  9. Structure-activity relationship of sulfated hetero/galactofucan polysaccharides on dopaminergic neuron.

    PubMed

    Wang, Jing; Liu, Huaide; Jin, Weihua; Zhang, Hong; Zhang, Quanbin

    2016-01-01

    Parkinson's disease (PD) is associated with progressive loss of dopaminergic neurons and more-widespread neuronal changes that cause complex symptoms. The aim of this study was to investigate the structure-activity relationship of sulfated hetero-polysaccharides (DF1) and sulfated galactofucan polysaccharides (DF2) on dopaminergic neuron in vivo and in vitro. Treatment with samples significantly ameliorated the depletion of both DA and TH-, Bcl-2- and Bax-positive neurons in MPTP-induced PD mice, DF1 showed the highest activity. The in vitro results found that DF1 and DF2 could reverse the decreased mitochondrial activity and the increased LDL release induced by MPP(+) (P<0.01 or P<0.001) which provides further evidence that DF1 and DF2 also exerts a direct protection against the neuronal injury caused by MPP(+). Furthermore, the administration of samples effectively decreased lipid peroxidation and increased the level/activities of GSH, GSH-PX, MDA and CAT in MPTP mice. Thus, the neuron protective effect may be mediated, in part, through antioxidant activity and the prevention of cell apoptosis. The chemical composition of DF1, DF2 and DF differed markedly, the DF1 fraction had the most complex chemical composition and showed the highest neuron protective activity. These results suggest that diverse monosaccharides and uronic acid might contribute to neuron protective activity.

  10. Dopaminergic Neuronal Differentiation from the Forebrain-Derived Human Neural Stem Cells Induced in Cultures by Using a Combination of BMP-7 and Pramipexole with Growth Factors

    PubMed Central

    Yang, HongNa; Wang, Jing; Wang, Feng; Liu, XiaoDun; Chen, Heng; Duan, WeiMing; Qu, TingYu

    2016-01-01

    Transplantation of dopaminergic (DA) neurons is considered to be the most promising therapeutic strategy for replacing degenerated dopamine cells in the midbrain of Parkinson's disease (PD), thereby restoring normal neural circuit function and slow clinical progression of the disease. Human neural stem cells (hNSCs) derived from fetal forebrain are thought to be the important cell sources for producing DA neurons because of their multipotency for differentiation and long-term expansion property in cultures. However, low DA differentiation of the forebrain-derived hNSCs limited their therapeutic potential in PD. In the current study, we explored a combined application of Pramipexole (PRX), bone morphogenetic proteins 7 (BMP-7), and growth factors, including acidic fibroblast factor (aFGF), forskolin, and phorbol-12-myristae-13-acetate (TPA), to induce differentiation of forebrain-derived hNSCs toward DA neurons in cultures. We found that DA neuron-associated genes, including Nurr1, Neurogenin2 (Ngn2), and tyrosine hydroxylase (TH) were significantly increased after 24 h of differentiation by RT-PCR analysis (p < 0.01). Fluorescent examination showed that about 25% of cells became TH-positive neurons at 24 h, about 5% of cells became VMAT2 (vascular monoamine transporter 2)-positive neurons, and less than 5% of cells became DAT (dopamine transporter)-positive neurons at 72 h following differentiation in cultures. Importantly, these TH-, VMAT2-, and DAT-expressing neurons were able to release dopamine into cultures under both of the basal and evoked conditions. Dopamine levels released by DA neurons produced using our protocol were significantly higher compared to the control groups (P < 0.01), as examined by ELISA. Our results demonstrated that the combination of PRX, BMP-7, and growth factors was able to greatly promote differentiation of the forebrain-derived hNSCs into DA-releasing neurons. PMID:27147976

  11. A bi-modal function of Wnt signalling directs an FGF activity gradient to spatially regulate neuronal differentiation in the midbrain.

    PubMed

    Dyer, Carlene; Blanc, Eric; Hanisch, Anja; Roehl, Henry; Otto, Georg W; Yu, Tian; Basson, M A; Knight, Robert

    2014-01-01

    FGFs and Wnts are important morphogens during midbrain development, but their importance and potential interactions during neurogenesis are poorly understood. We have employed a combination of genetic and pharmacological manipulations in zebrafish to show that during neurogenesis FGF activity occurs as a gradient along the anterior-posterior axis of the dorsal midbrain and directs spatially dynamic expression of the Hairy gene her5. As FGF activity diminishes during development, Her5 is lost and differentiation of neuronal progenitors occurs in an anterior-posterior manner. We generated mathematical models to explain how Wnt and FGFs direct the spatial differentiation of neurons in the midbrain through Wnt regulation of FGF signalling. These models suggested that a negative-feedback loop controlled by Wnt is crucial for regulating FGF activity. We tested Sprouty genes as mediators of this regulatory loop using conditional mouse knockouts and pharmacological manipulations in zebrafish. These reveal that Sprouty genes direct the positioning of early midbrain neurons and are Wnt responsive in the midbrain. We propose a model in which Wnt regulates FGF activity at the isthmus by driving both FGF and Sprouty gene expression. This controls a dynamic, posteriorly retracting expression of her5 that directs neuronal differentiation in a precise spatiotemporal manner in the midbrain.

  12. Toxic effects of potential environmental neurotoxins related to 1-methyl-4-phenylpyridinium on cultured rat dopaminergic neurons

    SciTech Connect

    Michel, P.P.; Dandapani, B.K.; Sanchez-Ramos, J.; Efange, S.; Pressman, B.C.; Hefti, F.

    1989-02-01

    Dopaminergic rat mesencephalic neurons in culture were exposed to a group of potential environmental neurotoxins. These cultures, which contained 0.5 to 1% dopaminergic neurons, were a suitable tool for determining nonselective and selective dopaminergic cytotoxicity. Selective toxicity was quantitated as the concentration which destroyed half of the population of dopaminergic neurons as visualized by tyrosine hydroxylase immunocytochemistry. Nonselective toxicity was defined as the concentration of test drug which destroyed half of the entire population of cultured cells as visualized by phase contrast microscopy. The compounds tested were selected to fulfill two molecular criteria underlying the toxic activity of 1-methyl-4-phenylpyridinium (MPP+), the active metabolite of 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine toward dopaminergic cells: 1) to be a substrate for the selective uptake system of the dopaminergic neurons and 2) to possess a delocalized positive charge related to their ability to inhibit mitochondrial electron transport. Of a total number of 29 compounds tested, MPP+ and its close derivatives, 2'-methyl-MPP+ and p-amino-MPP+, exhibited highly selective dopaminergic toxicity, hence the requirements for a selective dopaminergic neurotoxin are rather strict.

  13. Adult neurogenesis restores dopaminergic neuronal loss in the olfactory bulb.

    PubMed

    Lazarini, Françoise; Gabellec, Marie-Madeleine; Moigneu, Carine; de Chaumont, Fabrice; Olivo-Marin, Jean-Christophe; Lledo, Pierre-Marie

    2014-10-22

    Subventricular zone (SVZ) neurogenesis continuously provides new GABA- and dopamine (DA)-containing interneurons for the olfactory bulb (OB) in most adult mammals. DAergic interneurons are located in the glomerular layer (GL) where they participate in the processing of sensory inputs. To examine whether adult neurogenesis might contribute to regeneration after circuit injury in mice, we induce DAergic neuronal loss by injecting 6-hydroxydopamine (6-OHDA) in the dorsal GL or in the right substantia nigra pars compacta. We found that a 6-OHDA treatment of the OB produces olfactory deficits and local inflammation and partially decreases the number of neurons expressing the enzyme tyrosine hydroxylase (TH) near the injected site. Blockade of inflammation by minocycline treatment immediately after the 6-OHDA administration rescued neither TH(+) interneuron number nor the olfactory deficits, suggesting that the olfactory impairments are most likely linked to TH(+) cell death and not to microglial activation. TH(+) interneuron number was restored 1 month later. This rescue resulted at least in part from enhanced recruitment of immature neurons targeting the lesioned GL area. Seven days after 6-OHDA lesion in the OB, we found that the integration of lentivirus-labeled adult-born neurons was biased: newly formed neurons were preferentially incorporated into glomerular circuits of the lesioned area. Behavioral rehabilitation occurs 2 months after lesion. This study establishes a new model into which loss of DAergic cells could be compensated by recruiting newly formed neurons. We propose that adult neurogenesis not only replenishes the population of DAergic bulbar neurons but that it also restores olfactory sensory processing. PMID:25339754

  14. Strategies to unravel molecular codes essential for the development of meso-diencephalic dopaminergic neurons

    PubMed Central

    Jacobs, F M J; Smits, S M; Hornman, K J M; Burbach, J P H; Smidt, M P

    2006-01-01

    Understanding the development of neuronal systems has become an important asset in the attempt to solve complex questions about neuropathology as found in Parkinson's disease, schizophrenia and other complex neuronal diseases. The development of anatomical and functional divergent structures in the brain is achieved by a combination of early anatomical patterning and highly coordinated neuronal migration and differentiation events. Fundamental to the existence of divergent structures in the brain is the early region-specific molecular programming. Neuronal progenitors located along the neural tube can still adapt many different identities. Their exact position in the developing brain, however, determines early molecular specification by region-specific signalling molecules. These signals determine time and region-specific expression of early regulatory genes, leading to neuronal differentiation. Here, we focus on a well-described neuronal group, the meso-diencephalic dopaminergic neurons, of which heterogeneity based on anatomical position could account for the difference in vulnerability of specific subgroups as observed in Parkinson's disease. The knowledge of their molecular coding helps us to understand how the meso-diencephalic dopaminergic system is built and could provide clues that unravel mechanisms associated with the neuropathology in complex diseases such as Parkinson's disease. PMID:16809365

  15. Quantification of dopaminergic neuron differentiation and neurotoxicity via a genetic reporter

    PubMed Central

    Cui, Jun; Rothstein, Megan; Bennett, Theo; Zhang, Pengbo; Xia, Ninuo; Reijo Pera, Renee A.

    2016-01-01

    Human pluripotent stem cells provide a powerful human-genome based system for modeling human diseases in vitro and for potentially identifying novel treatments. Directed differentiation of pluripotent stem cells produces many specific cell types including dopaminergic neurons. Here, we generated a genetic reporter assay in pluripotent stem cells using newly-developed genome editing technologies in order to monitor differentiation efficiency and compare dopaminergic neuron survival under different conditions. We show that insertion of a luciferase reporter gene into the endogenous tyrosine hydroxylase (TH) locus enables rapid and easy quantification of dopaminergic neurons in cell culture throughout the entire differentiation process. Moreover, we demonstrate that the cellular assay is effective in assessing neuron response to different cytotoxic chemicals and is able to be scaled for high throughput applications. These results suggest that stem cell-derived terminal cell types can provide an alternative to traditional immortal cell lines or primary cells as a quantitative cellular model for toxin evaluation and drug discovery. PMID:27121904

  16. Oleuropein Prevents Neuronal Death, Mitigates Mitochondrial Superoxide Production and Modulates Autophagy in a Dopaminergic Cellular Model

    PubMed Central

    Achour, Imène; Arel-Dubeau, Anne-Marie; Renaud, Justine; Legrand, Manon; Attard, Everaldo; Germain, Marc; Martinoli, Maria-Grazia

    2016-01-01

    Parkinson’s disease (PD) is a progressive neurodegenerative disorder, primarily affecting dopaminergic neurons in the substantia nigra. There is currently no cure for PD and present medications aim to alleviate clinical symptoms, thus prevention remains the ideal strategy to reduce the prevalence of this disease. The goal of this study was to investigate whether oleuropein (OLE), the major phenolic compound in olive derivatives, may prevent neuronal degeneration in a cellular dopaminergic model of PD, differentiated PC12 cells exposed to the potent parkinsonian toxin 6-hydroxydopamine (6-OHDA). We also investigated OLE’s ability to mitigate mitochondrial oxidative stress and modulate the autophagic flux. Our results obtained by measuring cytotoxicity and apoptotic events demonstrate that OLE significantly decreases neuronal death. OLE could also reduce mitochondrial production of reactive oxygen species resulting from blocking superoxide dismutase activity. Moreover, quantification of autophagic and acidic vesicles in the cytoplasm alongside expression of specific autophagic markers uncovered a regulatory role for OLE against autophagic flux impairment induced by bafilomycin A1. Altogether, our results define OLE as a neuroprotective, anti-oxidative and autophagy-regulating molecule, in a neuronal dopaminergic cellular model. PMID:27517912

  17. Microarray expression profiling in 6-hydroxydopamine-induced dopaminergic neuronal cell death.

    PubMed

    Park, Bokyung; Oh, Chang-Ki; Choi, Won-Seok; Chung, In Kwon; Youdim, Moussa B H; Oh, Young J

    2011-11-01

    Parkinson's disease (PD) is the second most common neurodegenerative disorder and is characterized by a loss of dopaminergic neurons in the substantia nigra pars compacta. To discover potential key molecules in this process, we utilized cDNA microarray technology to obtain an expression profile of transcripts in MN9D dopaminergic neuronal cells treated with 6-hydroxydopamine. Using a self-organizing map algorithm, data mining and clustering were combined to identify distinct functional subgroups of genes. We identified alterations in the expression of 81 genes in eight clusters. Among these genes, we verified protein expression patterns of MAP kinase phosphatase 1 and sequestosome 1 using both cell culture and rat brain models of PD. Immunological analyses revealed increased expression levels as well as aggregated distribution patterns of these gene products in 6-hydroxydopamine-treated dopaminergic neurons. In addition to the identification of other proteins that are known to be associated with protein aggregation, our results raise the possibility that a more widespread set of proteins may be associated with the generation of protein aggregates in dying neurons. Further research to determine the functional roles of other altered gene products within the same cluster as well as the seven remaining clusters may provide new insights into the neurodegeneration that underlies PD pathogenesis.

  18. Oleuropein Prevents Neuronal Death, Mitigates Mitochondrial Superoxide Production and Modulates Autophagy in a Dopaminergic Cellular Model.

    PubMed

    Achour, Imène; Arel-Dubeau, Anne-Marie; Renaud, Justine; Legrand, Manon; Attard, Everaldo; Germain, Marc; Martinoli, Maria-Grazia

    2016-01-01

    Parkinson's disease (PD) is a progressive neurodegenerative disorder, primarily affecting dopaminergic neurons in the substantia nigra. There is currently no cure for PD and present medications aim to alleviate clinical symptoms, thus prevention remains the ideal strategy to reduce the prevalence of this disease. The goal of this study was to investigate whether oleuropein (OLE), the major phenolic compound in olive derivatives, may prevent neuronal degeneration in a cellular dopaminergic model of PD, differentiated PC12 cells exposed to the potent parkinsonian toxin 6-hydroxydopamine (6-OHDA). We also investigated OLE's ability to mitigate mitochondrial oxidative stress and modulate the autophagic flux. Our results obtained by measuring cytotoxicity and apoptotic events demonstrate that OLE significantly decreases neuronal death. OLE could also reduce mitochondrial production of reactive oxygen species resulting from blocking superoxide dismutase activity. Moreover, quantification of autophagic and acidic vesicles in the cytoplasm alongside expression of specific autophagic markers uncovered a regulatory role for OLE against autophagic flux impairment induced by bafilomycin A1. Altogether, our results define OLE as a neuroprotective, anti-oxidative and autophagy-regulating molecule, in a neuronal dopaminergic cellular model. PMID:27517912

  19. Endogenous dynorphin protects against neurotoxin-elicited nigrostriatal dopaminergic neuron damage and motor deficits in mice

    PubMed Central

    2012-01-01

    Background The striato-nigral projecting pathway contains the highest concentrations of dynorphin in the brain. The functional role of this opioid peptide in the regulation of mesencephalic dopaminergic (DAergic) neurons is not clear. We reported previously that exogenous dynorphin exerts potent neuroprotective effects against inflammation-induced dopaminergic neurodegeneration in vitro. The present study was performed to investigate whether endogenous dynorphin has neuroprotective roles in vivo. Methods 1-Methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) and methamphetamine (MA), two commonly used neurotoxins in rodent models of Parkinson’s disease, were administered to wild-type (Dyn+/+) and prodynorphin-deficient mice (Dyn−/−). We examined dopaminergic neurotoxicity by using an automated video tracking system, HPLC, immunocytochemistry, and reverse transcription and polymerase chain reaction (RT-PCR). Results Treatment with MPTP resulted in behavioral impairments in both strains. However, these impairments were more pronounced in Dyn-l- than in Dyn+/+. Dyn−/− showed more severe MPTP-induced dopaminergic neuronal loss in the substantia nigra and striatum than Dyn+/+. Similarly, the levels of dopamine and its metabolites in the striatum were depleted to a greater extent in Dyn−/− than in Dyn+/+. Additional mechanistic studies revealed that MPTP treatment caused a higher degree of microglial activation and M1 phenotype differentiation in Dyn−/− than in Dyn+/+. Consistent with these observations, prodynorphin deficiency also exacerbated neurotoxic effects induced by MA, although this effect was less pronounced than that of MPTP. Conclusions The in vivo results presented here extend our previous in vitro findings and further indicate that endogenous dynorphin plays a critical role in protecting dopaminergic neurons through its anti-inflammatory effects. PMID:22695044

  20. Efficient derivation of functional dopaminergic neurons from human embryonic stem cells on a large scale.

    PubMed

    Cho, Myung-Soo; Hwang, Dong-Youn; Kim, Dong-Wook

    2008-01-01

    Cell-replacement therapy using human embryonic stem cells (hESCs) holds great promise in treating Parkinson's disease. We have recently reported a highly efficient method to generate functional dopaminergic (DA) neurons from hESCs. Our method includes a unique step, the formation of spherical neural masses (SNMs), and offers the highest yield of DA neurons ever achieved so far. In this report, we describe our method step by step, covering not only how to differentiate hESCs into DA neurons at a high yield, but also how to amplify, freeze and thaw the SNMs, which are the key structures that make our protocol unique and advantageous. Although the whole process of generation of DA neurons from hESCs takes about 2 months, only 14 d are needed to derive DA neurons from the SNMs.

  1. Loss of dopaminergic nigrostriatal neurons accounts for the motivational and affective deficits in Parkinson's disease.

    PubMed

    Drui, G; Carnicella, S; Carcenac, C; Favier, M; Bertrand, A; Boulet, S; Savasta, M

    2014-03-01

    Parkinson's disease (PD) involves the degeneration of dopaminergic (DA) neurons in the substantia nigra pars compacta (SNc) that is thought to cause the classical motor symptoms of this disease. However, motivational and affective impairments are also often observed in PD patients. These are usually attributed to a psychological reaction to the general motor impairment and to a loss of some of the neurons within the ventral tegmental area (VTA). We induced selective lesions of the VTA and SNc DA neurons that did not provoke motor deficits, and showed that bilateral dopamine loss within the SNc, but not within the VTA, induces motivational deficits and affective impairments that mimicked the symptoms of PD patients. Thus, motivational and affective deficits are a core impairment of PD, as they stem from the loss of the major group of neurons that degenerates in this disease (DA SNc neurons) and are independent of motor deficits.

  2. Progressive loss of dopaminergic neurons induced by unilateral rotenone infusion into the medial forebrain bundle.

    PubMed

    Norazit, Anwar; Meedeniya, Adrian C B; Nguyen, Maria Nga; Mackay-Sim, Alan

    2010-11-11

    Rotenone, a mitochondrial complex 1 inhibitor, causes oxidative damage via production of reactive oxygen species. We examined the pathophysiology of neuronal and glial cells of the nigrostriatal pathway following unilateral infusion of varying doses of rotenone into the substantia nigra or medial forebrain bundle of adult male Sprague-Dawley rats, sacrificed 14 and 60 days after infusion. Immunofluorescence techniques were used to qualitatively and quantitatively assay dopaminergic neurons, their projections, glial cells, synapses, and oxidative stress. Rotenone infusion into the substantia nigra at all concentrations caused extensive damage and tissue necrosis, therefore of limited relevance for producing a Parkinson disease model. Infusion of 0.5μg of rotenone targeting the medial forebrain bundle induced oxidative stress in dopaminergic neurons causing ongoing cell stress as defined by an elevation of stress granule and oxidative stress markers. This treatment resulted in the loss of tyrosine hydroxylase immunoreactive cells in the substantia nigra (p≤0.01) and loss of tyrosine hydroxylase immunoreactive nerve fibres and synaptic specialisations in the striatum (p≤0.01). The infusion of 0.5μg of rotenone also caused an increase in astrocytes and microglial cells in the substantia nigra in comparison to control (p≤0.01). We examined the time-dependent reduction of tyrosine hydroxylase-positive nerve fibres and cell bodies in the striatum and substantia nigra respectively, with a progressive reduction evident 60days after infusion (p≤0.01, p≤0.05). Dopaminergic axons exposed to low-dose rotenone undergo oxidative stress, with a resultant ongoing loss of dopaminergic neurons, providing an animal model relevant to Parkinson disease.

  3. Lithium fails to protect dopaminergic neurons in the 6-OHDA model of Parkinson's disease.

    PubMed

    Yong, Yue; Ding, Hanqing; Fan, Zhiqin; Luo, Jia; Ke, Zun-Ji

    2011-03-01

    Lithium has been used for the treatment of bipolar mood disorder and is shown to have neuroprotective properties. Since lithium inhibits the activity of glycogen synthase kinase 3 (GSK3) which is implicated in various human diseases, particularly neurodegenerative diseases, the therapeutic potential of lithium receives great attention. Parkinson's disease (PD) is the second most common neurodegenerative disease, characterized by the pathological loss of dopaminergic neurons in the substantia nigra pars compacta (SNpc). Intranigral injection of the catecholaminergic neurotoxin 6-hydroxydopamine (6-OHDA) causes selective and progressive degeneration of dopaminergic neurons in SNpc, and is a commonly used animal model of PD. The current study was designated to determine whether lithium is effective in alleviating 6-OHDA-induced neurodegeneration in the SNpc of rats. We demonstrated that chronic subcutaneous administration of lithium inhibited GSK3 activity in the SNpc, which was evident by an increase in phosphorylation of GSK3β at serine 9, cyclin D1 expression, and a decrease in tau phosphorylation. 6-OHDA did not affect GSK3 activity in the SNpc. Moreover, lithium was unable to alleviate 6-OHDA-induced degeneration of SNpc dopaminergic neurons. The results suggest that GSK3 is minimally involved in the neurodegeneration in the rat 6-OHDA model of PD.

  4. Pramipexole protects dopaminergic neurons through paraplegin against 6-hydroxydopamine.

    PubMed

    Kim, Mun Ki; Park, Hyeon Soo; Cho, Jea Hyeon; Kim, Gon Sup; Won, Chungkil

    2015-01-21

    The neurotransmitter dopamine (DA) regulates various physiological and psychological functions, such as movement, motivation, behavior, and learning. DA exerts its function through DA receptors and a series of studies have reported the role of DAergic receptors in preventing DAergic neuronal degeneration. Here, we studied the DA receptor-mediated neuroprotective effect of the D2-like receptor agonists against 6-hydroxydopamine (6-OHDA)-induced DAergic neurodegeneration. D2-like receptor agonists were administered in the substantia nigra in vivo and to primary cultured neurons. Treatment of 6-OHDA decreased tyrosine hydroxylase (TH) and paraplegin (mitochondrial regulation protein) immunoreactivity, whereas pretreatment with quinpirole (a full D2-like receptor agonist) preserved TH and paraplegin reactivity. This led us to test which DA receptors were necessary for the neuroprotective effect and whether paraplegin can be regulated by D2 or D3 receptor agonists. Pretreatment with the D2 receptor selective agonist, sumanirole, did not preserve TH and paraplegin reactivity from 6-OHDA. However, the D3 receptor agonist, pramipexole, protected TH reactivity and restored paraplegin expression to the control level in the presence of 6-OHDA. Interestingly, pretreatment with the D3 receptor antagonist GR103691 reduced TH and paraplegin expression levels. These results suggest that the D3 receptor agonist may protect DA neurons from the effect of 6-OHDA through the modulation of the mitochondrial regulation protein paraplegin. PMID:25514384

  5. Non-dopaminergic neurons expressing dopamine synthesis enzymes: differentiation and functional significance.

    PubMed

    Ugryumov, M V; Mel'nikova, V I; Ershov, P V; Balan, I S; Kalas, A

    2002-01-01

    The development and functional significance of neurons in the arcuate nucleus expressing tyrosine hydroxylase and/or aromatic L-amino acid decarboxylase were studied in rat fetuses, neonates, and adults using immunocytochemical (single and double immunolabeling of tyrosine hydroxylase and aromatic L-amino acid decarboxylase) methods with a confocal microscope and computerized image analysis, HPLC with electrochemical detection, and radioimmunological analysis. Single-enzyme neurons containing tyrosine hydroxylase were first seen on day 18 of embryonic development in the ventrolateral part of the arcuate nucleus. Neurons expressing only aromatic L-amino acid decarboxylase or both enzymes of the dopamine synthesis pathway were first seen on day 20 of embryonic development, in the dorsomedial part of the nucleus. On days 20-21 of embryonic development, dopaminergic (containing both enzymes) neurons amounted to less than 1% of all neurons expressing tyrosine hydroxylase and/or aromatic L-amino acid decarboxylase. Nonetheless, in the ex vivo arcuate nucleus and in primary neuron cultures from this structure, there were relatively high leveLs of dopamine and L-dihydroxyphenylalanine (L-DOPA), and these substances were secreted spontaneously and in response to stimulation. In addition. dopamine levels in the arcuate nucleus in fetuses were sufficient to support the inhibitory regulation of prolactin secretion by the hypophysis, which is typical of adult animals. During development, the proportion of dopaminergic neurons increased, reaching 38% in adult rats. Specialized contacts between single-enzyme tyrosine hydroxylase-containing and aromatic L-amino acid decarboxylase-containing neurons were present by day 21 of embryonic development; these were probably involved in transporting L-DOPA from the former neurons to the latter. It was also demonstrated that the axons of single-enzyme decarboxylase-containing neurons projected into the median eminence, supporting the

  6. The Sensory Impact of Nicotine on Noradrenergic and Dopaminergic Neurons of the Nicotine Reward - Addiction Neurocircuitry

    PubMed Central

    Rose, Jed E; Dehkordi, Ozra; Manaye, Kebreten F; Millis, Richard M; Cianaki, Salman Ameri; Jayam-Trouth, Annapurni

    2016-01-01

    The sensory experience of smoking is a key component of nicotine addiction known to result, in part, from stimulation of nicotinic acetylcholine receptors (nAChRs) at peripheral sensory nerve endings. Such stimulation of nAChRs is followed by activation of neurons at multiple sites in the mesocorticolimbic reward pathways. However, the neurochemical profiles of CNS cells that mediate the peripheral sensory impact of nicotine remain unknown. In the present study in mice, we first used c-Fos immunohistochemistry to identify CNS cells stimulated by nicotine (NIC, 40 μg/kg, IP) and by a peripherally-acting analog of nicotine, nicotine pyrrolidine methiodide (NIC-PM, 30 μg/kg, IP). Sequential double-labelling was then performed to determine whether noradrenergic and dopaminergic neurons of the nicotine reward-addiction circuitry were primary targets of NIC and NIC-PM. Double-labelling of NIC and/or NIC-PM activated c-Fos immunoreactive cells with tyrosine hydroxylase (TH) showed no apparent c-Fos expression by the dopaminergic cells of the ventral tegmental area (VTA). With the exception of sparse numbers of TH immunoreactive D11 cells, dopamine-containing neurons in other areas of the reward-addiction circuitry, namely periaqueductal gray, and dorsal raphe, were also devoid of c-Fos immunoreactivity. Noradrenergic neurons of locus coeruleus (LC), known to innervate VTA, were activated by both NIC and NIC-PM. These results demonstrate that noradrenergic neurons of LC are among the first structures that are stimulated by single acute IP injection of NIC and NIC-PM. Dopaminergic neurons of VTA and other CNS sites, did not respond to acute IP administration of NIC or NIC-PM by induction of c-Fos. PMID:27347434

  7. Olfactory Sensory Activity Modulates Microglial-Neuronal Interactions during Dopaminergic Cell Loss in the Olfactory Bulb

    PubMed Central

    Grier, Bryce D.; Belluscio, Leonardo; Cheetham, Claire E. J.

    2016-01-01

    The mammalian olfactory bulb (OB) displays robust activity-dependent plasticity throughout life. Dopaminergic (DA) neurons in the glomerular layer (GL) of the OB are particularly plastic, with loss of sensory input rapidly reducing tyrosine hydroxylase (TH) expression and dopamine production, followed by a substantial reduction in DA neuron number. Here, we asked whether microglia participate in activity-dependent elimination of DA neurons in the mouse OB. Interestingly, we found a significant reduction in the number of both DA neurons and their synapses in the OB ipsilateral to the occluded naris (occluded OB) within just 7 days of sensory deprivation. Concomitantly, the volume of the occluded OB decreased, resulting in an increase in microglial density. Microglia in the occluded OB also adopted morphologies consistent with activation. Using in vivo 2-photon imaging and histological analysis we then showed that loss of olfactory input markedly altered microglial-neuronal interactions during the time that DA neurons are being eliminated: both microglial process motility and the frequency of wrapping of DA neuron somata by activated microglia increased significantly in the occluded OB. Furthermore, we found microglia in the occluded OB that had completely engulfed components of DA neurons. Together, our data provide evidence that loss of olfactory input modulates microglial-DA neuron interactions in the OB, thereby suggesting an important role for microglia in the activity-dependent elimination of DA neurons and their synapses. PMID:27471450

  8. Olfactory Sensory Activity Modulates Microglial-Neuronal Interactions during Dopaminergic Cell Loss in the Olfactory Bulb.

    PubMed

    Grier, Bryce D; Belluscio, Leonardo; Cheetham, Claire E J

    2016-01-01

    The mammalian olfactory bulb (OB) displays robust activity-dependent plasticity throughout life. Dopaminergic (DA) neurons in the glomerular layer (GL) of the OB are particularly plastic, with loss of sensory input rapidly reducing tyrosine hydroxylase (TH) expression and dopamine production, followed by a substantial reduction in DA neuron number. Here, we asked whether microglia participate in activity-dependent elimination of DA neurons in the mouse OB. Interestingly, we found a significant reduction in the number of both DA neurons and their synapses in the OB ipsilateral to the occluded naris (occluded OB) within just 7 days of sensory deprivation. Concomitantly, the volume of the occluded OB decreased, resulting in an increase in microglial density. Microglia in the occluded OB also adopted morphologies consistent with activation. Using in vivo 2-photon imaging and histological analysis we then showed that loss of olfactory input markedly altered microglial-neuronal interactions during the time that DA neurons are being eliminated: both microglial process motility and the frequency of wrapping of DA neuron somata by activated microglia increased significantly in the occluded OB. Furthermore, we found microglia in the occluded OB that had completely engulfed components of DA neurons. Together, our data provide evidence that loss of olfactory input modulates microglial-DA neuron interactions in the OB, thereby suggesting an important role for microglia in the activity-dependent elimination of DA neurons and their synapses. PMID:27471450

  9. Analysis of dopaminergic neuronal dysfunction in genetic and toxin-induced models of Parkinson's disease in Drosophila.

    PubMed

    Navarro, Juan A; Heßner, Sabina; Yenisetti, Sarat C; Bayersdorfer, Florian; Zhang, Li; Voigt, Aaron; Schneuwly, Stephan; Botella, Jose A

    2014-11-01

    Drosophila melanogaster has contributed significantly to the understanding of disease mechanisms in Parkinson's disease (PD) as it is one of the very few PD model organisms that allow the study of age-dependent behavioral defects, physiology and histology, and genetic interactions among different PD-related genes. However, there have been contradictory results from a number of recent reports regarding the loss of dopaminergic neurons in different PD fly models. In an attempt to re-evaluate and clarify this issue, we have examined three different genetic (α-synuclein, Pink1, parkin) and two toxin-based (rotenone and paraquat) models of the disease for neuronal cell loss. Our results showed no dopaminergic neuronal loss in all models tested. Despite this surprising result, we found additional phenotypes showing the dysfunctional status of the dopaminergic neurons in most of the models analyzed. A common feature found in most models is a quantifiable decrease in the fluorescence of a green-fluorescent protein reporter gene in dopaminergic neurons that correlates well with other phenotypes found for these models and can be reliably used as a hallmark of the neurodegenerative process when modeling diseases affecting the dopaminergic system in Drosophila. Analyzing three genetic and two toxin-based Drosophila models of Parkinson's disease (PD) through green fluorescent protein reporter and α-tyrosine hydroxylase staining, we have found the number of dopaminergic neurons to remain unchanged. Despite the lack of neuronal loss, we have detected a remarkable decrease in a reporter green-fluorescent protein (GFP) signal in dopaminergic neurons, suggesting an abnormal neuronal status that correlates with the phenotypes associated with those PD fly models.

  10. Dopamine midbrain neurons in health and Parkinson's disease: emerging roles of voltage-gated calcium channels and ATP-sensitive potassium channels.

    PubMed

    Dragicevic, E; Schiemann, J; Liss, B

    2015-01-22

    Dopamine (DA) releasing midbrain neurons are essential for multiple brain functions, such as voluntary movement, working memory, emotion and cognition. DA midbrain neurons within the substantia nigra (SN) and the ventral tegmental area (VTA) exhibit a variety of distinct axonal projections and cellular properties, and are differentially affected in diseases like schizophrenia, attention deficit hyperactivity disorder, and Parkinson's disease (PD). Apart from having diverse functions in health and disease states, DA midbrain neurons display distinct electrical activity patterns, crucial for DA release. These activity patterns are generated and modulated by specific sets of ion channels. Recently, two ion channels have been identified, not only contributing to these activity patterns and to functional properties of DA midbrain neurons, but also seem to render SN DA neurons particularly vulnerable to degeneration in PD and its animal models: L-type calcium channels (LTCCs) and ATP-sensitive potassium channels (K-ATPs). In this review, we focus on the emerging physiological and pathophysiological roles of these two ion channels (and their complex interplay with other ion channels), particularly in highly vulnerable SN DA neurons, as selective degeneration of these neurons causes the major motor symptoms of PD. PMID:25450964

  11. Dopamine midbrain neurons in health and Parkinson's disease: emerging roles of voltage-gated calcium channels and ATP-sensitive potassium channels.

    PubMed

    Dragicevic, E; Schiemann, J; Liss, B

    2015-01-22

    Dopamine (DA) releasing midbrain neurons are essential for multiple brain functions, such as voluntary movement, working memory, emotion and cognition. DA midbrain neurons within the substantia nigra (SN) and the ventral tegmental area (VTA) exhibit a variety of distinct axonal projections and cellular properties, and are differentially affected in diseases like schizophrenia, attention deficit hyperactivity disorder, and Parkinson's disease (PD). Apart from having diverse functions in health and disease states, DA midbrain neurons display distinct electrical activity patterns, crucial for DA release. These activity patterns are generated and modulated by specific sets of ion channels. Recently, two ion channels have been identified, not only contributing to these activity patterns and to functional properties of DA midbrain neurons, but also seem to render SN DA neurons particularly vulnerable to degeneration in PD and its animal models: L-type calcium channels (LTCCs) and ATP-sensitive potassium channels (K-ATPs). In this review, we focus on the emerging physiological and pathophysiological roles of these two ion channels (and their complex interplay with other ion channels), particularly in highly vulnerable SN DA neurons, as selective degeneration of these neurons causes the major motor symptoms of PD.

  12. Social Isolation Blunted the Response of Mesocortical Dopaminergic Neurons to Chronic Ethanol Voluntary Intake

    PubMed Central

    Lallai, Valeria; Manca, Letizia; Dazzi, Laura

    2016-01-01

    Previous studies have shown that stress can increase the response of mesolimbic dopaminergic neurons to acute administration of drugs of abuse included ethanol. In this study, we investigated the possible involvement of the mesocortical dopaminergic pathway in the development of ethanol abuse under stress conditions. To this aim we trained both socially isolated (SI) and group housed (GH) rats to self administer ethanol which was made available only 2 ha day (from 11:00 to 13:00 h). Rats have been trained for 3 weeks starting at postnatal day 35. After training, rats were surgically implanted with microdialysis probes under deep anesthesia, and 24 hlater extracellular dopamine concentrations were monitored in medial prefrontal cortex (mPFC) for the 2 hpreceding ethanol administration (anticipatory phase), during ethanol exposure (consummatory phase) and for 2 hafter ethanol removal. Results show that, in GH animals, dopamine extracellular concentration in the mPFC increased as early as 80 min before ethanol presentation (+50% over basal values) and remained elevated for 80 min during ethanol exposure. In SI rats, on the contrary, dopamine extracellular concentration did not show any significant change at any time point. Ethanol consumption was significantly higher in SI than in GH rats. Moreover, mesocortical dopaminergic neurons in SI animals also showed a decreased sensitivity to an acute administration of ethanol with respect to GH rats. Our results show that prolonged exposure to stress, as in social isolation, is able to induce significant changes in the response of mesocortical dopaminergic neurons to ethanol exposure and suggest that these changes might play an important role in the compulsivity observed in ethanol addiction. PMID:27378852

  13. Social Isolation Blunted the Response of Mesocortical Dopaminergic Neurons to Chronic Ethanol Voluntary Intake.

    PubMed

    Lallai, Valeria; Manca, Letizia; Dazzi, Laura

    2016-01-01

    Previous studies have shown that stress can increase the response of mesolimbic dopaminergic neurons to acute administration of drugs of abuse included ethanol. In this study, we investigated the possible involvement of the mesocortical dopaminergic pathway in the development of ethanol abuse under stress conditions. To this aim we trained both socially isolated (SI) and group housed (GH) rats to self administer ethanol which was made available only 2 ha day (from 11:00 to 13:00 h). Rats have been trained for 3 weeks starting at postnatal day 35. After training, rats were surgically implanted with microdialysis probes under deep anesthesia, and 24 hlater extracellular dopamine concentrations were monitored in medial prefrontal cortex (mPFC) for the 2 hpreceding ethanol administration (anticipatory phase), during ethanol exposure (consummatory phase) and for 2 hafter ethanol removal. Results show that, in GH animals, dopamine extracellular concentration in the mPFC increased as early as 80 min before ethanol presentation (+50% over basal values) and remained elevated for 80 min during ethanol exposure. In SI rats, on the contrary, dopamine extracellular concentration did not show any significant change at any time point. Ethanol consumption was significantly higher in SI than in GH rats. Moreover, mesocortical dopaminergic neurons in SI animals also showed a decreased sensitivity to an acute administration of ethanol with respect to GH rats. Our results show that prolonged exposure to stress, as in social isolation, is able to induce significant changes in the response of mesocortical dopaminergic neurons to ethanol exposure and suggest that these changes might play an important role in the compulsivity observed in ethanol addiction. PMID:27378852

  14. Enhancing the efficiency of direct reprogramming of human primary fibroblasts into dopaminergic neuron-like cells through p53 suppression.

    PubMed

    Liu, XinJian; Huang, Qian; Li, Fang; Li, Chuan-Yuan

    2014-09-01

    Dopaminergic (DA) neuron-like cells obtained through direct reprogramming of primary human fibroblasts offer exciting opportunities for treatment of Parkinson's disease. A significant obstacle is the low efficiency of conversion during the reprogramming process. Here, we demonstrate that the suppression of p53 significantly enhances the efficiency of transcription factor-mediated conversion of human fibroblasts into functional dopaminergic neurons. In particular, blocking p53 activity using a dominant-negative p53 (p53-DN) in IMR90 cells increases the conversion efficiency by 5-20 fold. The induced DA neuron-like cells exhibit dopamine neuron-specific gene expression, significant dopamine uptake and production capacities, and enables symptomatic relief in a rat Parkinson's disease model. Taken together, our findings suggest that p53 is a critical barrier in direct reprogramming of fibroblast into dopaminergic neurons. PMID:25129808

  15. Tiagabine Protects Dopaminergic Neurons against Neurotoxins by Inhibiting Microglial Activation

    PubMed Central

    Liu, Jie; Huang, Dongping; Xu, Jing; Tong, Jiabin; Wang, Zishan; Huang, Li; Yang, Yufang; Bai, Xiaochen; Wang, Pan; Suo, Haiyun; Ma, Yuanyuan; Yu, Mei; Fei, Jian; Huang, Fang

    2015-01-01

    Microglial activation and inflammation are associated with progressive neuronal apoptosis in neurodegenerative disorders such as Parkinson’s disease (PD). γ-Aminobutyric acid (GABA), the major inhibitory neurotransmitter in the central nervous system, has recently been shown to play an inhibitory role in the immune system. Tiagabine, a piperidine derivative, enhances GABAergic transmission by inhibiting GABA transporter 1 (GAT 1). In the present study, we found that tiagabine pretreatment attenuated microglial activation, provided partial protection to the nigrostriatal axis and improved motor deficits in a methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) mouse model of PD. The protective function of tiagabine was abolished in GAT 1 knockout mice that were challenged with MPTP. In an alternative PD model, induced by intranigral infusion of lipopolysaccharide (LPS), microglial suppression and subsequent neuroprotective effects of tiagabine were demonstrated. Furthermore, the LPS-induced inflammatory activation of BV-2 microglial cells and the toxicity of conditioned medium toward SH-SY5Y cells were inhibited by pretreatment with GABAergic drugs. The attenuation of the nuclear translocation of nuclear factor κB (NF-κB) and the inhibition of the generation of inflammatory mediators were the underlying mechanisms. Our results suggest that tiagabine acts as a brake for nigrostriatal microglial activation and that it might be a novel therapeutic approach for PD. PMID:26499517

  16. Tiagabine Protects Dopaminergic Neurons against Neurotoxins by Inhibiting Microglial Activation.

    PubMed

    Liu, Jie; Huang, Dongping; Xu, Jing; Tong, Jiabin; Wang, Zishan; Huang, Li; Yang, Yufang; Bai, Xiaochen; Wang, Pan; Suo, Haiyun; Ma, Yuanyuan; Yu, Mei; Fei, Jian; Huang, Fang

    2015-10-26

    Microglial activation and inflammation are associated with progressive neuronal apoptosis in neurodegenerative disorders such as Parkinson's disease (PD). γ-Aminobutyric acid (GABA), the major inhibitory neurotransmitter in the central nervous system, has recently been shown to play an inhibitory role in the immune system. Tiagabine, a piperidine derivative, enhances GABAergic transmission by inhibiting GABA transporter 1 (GAT 1). In the present study, we found that tiagabine pretreatment attenuated microglial activation, provided partial protection to the nigrostriatal axis and improved motor deficits in a methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) mouse model of PD. The protective function of tiagabine was abolished in GAT 1 knockout mice that were challenged with MPTP. In an alternative PD model, induced by intranigral infusion of lipopolysaccharide (LPS), microglial suppression and subsequent neuroprotective effects of tiagabine were demonstrated. Furthermore, the LPS-induced inflammatory activation of BV-2 microglial cells and the toxicity of conditioned medium toward SH-SY5Y cells were inhibited by pretreatment with GABAergic drugs. The attenuation of the nuclear translocation of nuclear factor κB (NF-κB) and the inhibition of the generation of inflammatory mediators were the underlying mechanisms. Our results suggest that tiagabine acts as a brake for nigrostriatal microglial activation and that it might be a novel therapeutic approach for PD.

  17. Progressive loss of nigrostriatal dopaminergic neurons induced by inflammatory responses to fipronil.

    PubMed

    Park, Jae Hyeon; Park, Youn Sun; Koh, Hyun Chul

    2016-09-01

    Inflammatory responses are involved in mechanisms of neuronal cell damage in the pathogenesis of neurodegenerative diseases such as Parkinson's disease (PD). We investigated the mechanisms whereby inflammatory responses contribute to loss of dopaminergic neurons in fipronil (FPN)-treated rats. After stereotaxic injection of FPN in the substantia nigra (SN), the number of tyrosine hydroxylase (TH)-positive neurons and the levels of TH expression in the SN decreased at 7days, and a significant decrease was observed at 14days with a subsequent reduction in striatal TH expression. Decreases in dopamine (DA) levels, however, began at 3days post-injection, preceding the changes in TH expression. In contrast, glial fibrillary acidic protein (GFAP) expression was significantly increased at 3days and persisted for up to 14days post-lesion; these changes in GFAP expression appeared to be inversely correlated with TH expression. Furthermore, we found that FPN administration induced an inflammatory response characterized by increased levels of inducible NO synthase (iNOS), cyclooxygenase-2 (COX-2), and tumor necrosis factor-α (TNF-α), which was mediated by activated microglia following infusion of FPN unilaterally into the SN. Intranigral injection of FPN underwent an inflammatory response with a resultant ongoing loss of dopaminergic neurons, indicating that pesticides may have important implication for the study of PD.

  18. The fate of striatal dopaminergic neurons in Parkinson's disease and Huntington's chorea.

    PubMed

    Huot, Philippe; Lévesque, Martin; Parent, André

    2007-01-01

    The striatum harbours a population of dopaminergic neurons that is thought to act as a local source of dopamine (DA). This neuronal population increases in size in animal models of Parkinson's disease, where striatal DA levels are low, but its fate in idiopathic Parkinson's disease and Huntington's chorea is poorly known. In this study, we used antibodies raised against the enzyme tyrosine hydroxylase (TH), a faithful marker of dopaminergic neurons, to compare, by means of stereological counting methods, the number of striatal TH+ neurons on post-mortem brain sections from Parkinson's disease patients, Huntington's disease patients and age-matched controls. Propidium iodide nuclear staining was also performed to avoid counting short TH+ axonal segments that bear a large swollen varicosity and resemble small bipolar neurons. In normal subjects, TH+ neurons were scattered throughout the striatum, but they abounded preferentially in the ventral portion of the structure and were more numerous in the putamen than in the caudate nucleus. They displayed a multipolar cell body of medium size (10-20 mum in diameter) that emitted 3-5 smooth dendrites, a typical characteristic of striatal interneurons. These TH+ cells were rarely found in the small TH-poor striosomes, most of them being embedded in the large TH-rich extrastriosomal matrix. The number of striatal TH+ neurons was also found to vary according to an inverse relation with the age of the subjects. In pathological brains, the morphological characteristics of the striatal TH+ neurons were relatively unaltered, but the number of such neurons was markedly reduced compared with controls. The striatum of Parkinson's disease patients was found to contain six times less TH+ neurons than that of controls, whereas the striatum of Huntington's disease patients was largely devoid of such neurons. These findings are at odds with the results obtained in rodent and monkey models of Parkinson's disease, in which the number of

  19. Functional Interplay between Dopaminergic and Serotonergic Neuronal Systems during Development and Adulthood

    PubMed Central

    Dymecki, Susan M.

    2016-01-01

    The complex integration of neurotransmitter signals in the nervous system contributes to the shaping of behavioral and emotional constitutions throughout development. Imbalance among these signals may result in pathological behaviors and psychiatric illnesses. Therefore, a better understanding of the interplay between neurotransmitter systems holds potential to facilitate therapeutic development. Of particular clinical interest are the dopaminergic and serotonergic systems, as both modulate a broad array of behaviors and emotions and have been implicated in a wide range of affective disorders. Here we review evidence speaking to an interaction between the dopaminergic and serotonergic neuronal systems across development. We highlight data stemming from developmental, functional, and clinical studies, reflecting the importance of this transmonoaminergic interplay. PMID:25747116

  20. Functional Interplay between Dopaminergic and Serotonergic Neuronal Systems during Development and Adulthood.

    PubMed

    Niederkofler, Vera; Asher, Tedi E; Dymecki, Susan M

    2015-07-15

    The complex integration of neurotransmitter signals in the nervous system contributes to the shaping of behavioral and emotional constitutions throughout development. Imbalance among these signals may result in pathological behaviors and psychiatric illnesses. Therefore, a better understanding of the interplay between neurotransmitter systems holds potential to facilitate therapeutic development. Of particular clinical interest are the dopaminergic and serotonergic systems, as both modulate a broad array of behaviors and emotions and have been implicated in a wide range of affective disorders. Here we review evidence speaking to an interaction between the dopaminergic and serotonergic neuronal systems across development. We highlight data stemming from developmental, functional, and clinical studies, reflecting the importance of this transmonoaminergic interplay.

  1. Basal and stress-induced corticosterone secretion is decreased by lesion of mesencephalic dopaminergic neurons.

    PubMed

    Casolini, P; Kabbaj, M; Leprat, F; Piazza, P V; Rougé-Pont, F; Angelucci, L; Simon, H; Le Moal, M; Maccari, S

    1993-09-17

    There is evidence that certain psychopathological conditions are accompanied by a dysfunction in both the hypothalamo-pituitary-adrenal axis and dopaminergic systems, although the relationship between these two systems is as yet unclear. In the present study we investigated the effect of a specific lesion of dopamine mesencephalic neurons (Ventral Tegmental Area) on basal and stress-induced corticosterone secretion. Three weeks after injection of 6-OHDA, there was a depletion in dopamine in the frontal cortex and in the ventral and dorsal striatum, whereas norepinephrine and serotonin levels were unchanged. The dopamine-lesioned rats exhibited a lower basal and stress-induced corticosterone secretion than the sham-lesioned animals. The results indicate that the dopaminergic system may have a stimulatory influence on the hypothalamo-pituitary-adrenal axis. PMID:8242373

  2. Effect of Cell Adhesion Molecules on the Neurite Outgrowth of Induced Pluripotent Stem Cell-Derived Dopaminergic Neurons.

    PubMed

    Peng, Su-Ping; Schachner, Melitta; Boddeke, Erik; Copray, Sjef

    2016-04-01

    Intrastriatal transplantation of dopaminergic neurons has been shown to be a potentially very effective therapeutic approach for the treatment of Parkinson's disease (PD). With the detection of induced pluripotent stem cells (iPSCs), an unlimited source of autologous dopaminergic (DA) neurons became available. Although the iPSC-derived dopaminergic neurons exhibited most of the fundamental dopaminergic characteristics, detailed analysis and comparison with primary DA neurons have shown some aberrations in the expression of genes involved in neuronal development and neurite outgrowth. The limited outgrowth of the iPSC-derived DA neurons may hamper their potential application in cell transplantation therapy for PD. In the present study, we examined whether the forced expression of L1 cell adhesion molecule (L1CAM) and polysialylated neuronal cell adhesion molecule (PSA-NCAM), via gene transduction, can promote the neurite formation and outgrowth of iPSC-derived DA neurons. In cultures on astrocyte layers, both adhesion factors significantly increased neurite formation of the adhesion factor overexpressing iPSC-derived DA neurons in comparison to control iPSC-derived DA neurons. The same tendency was observed when the DA neurons were plated on postnatal organotypic striatal slices; however, this effect did not reach statistical significance. Next, we examined the neurite outgrowth of the L1CAM- or PSA-NCAM-overexpressing iPSC-derived DA neurons after implantation in the striatum of unilaterally 6-hydroxydopamine (6-OHDA)-lesioned rats, the animal model for PD. Like the outgrowth on the organotypic striatal slices, no significant L1CAM- and PSA-NCAM-enforced neurite outgrowth of the implanted DA neurons was observed. Apparently, induced expression of L1CAM or PSA-NCAM in the iPSC-derived DA neurons cannot completely restore the neurite outgrowth potential that was reduced in these DA neurons as a consequence of epigenetic aberrations resulting from the i

  3. The role of alpha-synuclein in melanin synthesis in melanoma and dopaminergic neuronal cells.

    PubMed

    Pan, Tianhong; Zhu, Julie; Hwu, Wen-Jen; Jankovic, Joseph

    2012-01-01

    The relatively high co-occurrence of Parkinson's disease (PD) and melanoma has been established by a large number of epidemiological studies. However, a clear biological explanation for this finding is still lacking. Ultra-violet radiation (UVR)-induced skin melanin synthesis is a defense mechanism against UVR-induced damage relevant to the initiation of melanoma, whereas, increased neuromelanin (NM), the melanin synthesized in dopaminergic neurons, may enhance the susceptibility to oxidative stress-induced neuronal injury relevant to PD. SNCA is a PD-causing gene coding for alpha-Synuclein (α-Syn) that expresses not only in brain, but also in skin as well as in tumors, such as melanoma. The findings that α-Syn can interact with tyrosinase (TYR) and inhibit tyrosine hydroxylase (TH), both of which are enzymes involved in the biosynthesis of melanin and dopamine (DA), led us to propose that α-Syn may participate in the regulation of melanin synthesis. In this study, by applying ultraviolet B (UVB) light, a physiologically relevant stimulus of melanogenesis, we detected melanin synthesis in A375 and SK-MEL-28 melanoma cells and in SH-SY5Y and PC12 dopaminergic neuronal cells and determined effects of α-Syn on melanin synthesis. Our results showed that UVB light exposure increased melanin synthesis in all 4 cell lines. However, we found that α-Syn expression reduced UVB light-induced increase of melanin synthesis and that melanin content was lower when melanoma cells were expressed with α-Syn, indicating that α-Syn may have inhibitory effects on melanin synthesis in melanoma cells. Different from melanoma cells, the melanin content was higher in α-Syn-over-expressed dopaminergic neuronal SH-SY5Y and PC12 cells, cellular models of PD, than that in non-α-Syn-expressed control cells. We concluded that α-Syn could be one of the points responsible for the positive association between PD and melanoma via its differential roles in melanin synthesis in melanoma

  4. Aminochrome induces dopaminergic neuronal dysfunction: a new animal model for Parkinson's disease.

    PubMed

    Herrera, Andrea; Muñoz, Patricia; Paris, Irmgard; Díaz-Veliz, Gabriela; Mora, Sergio; Inzunza, Jose; Hultenby, Kjell; Cardenas, Cesar; Jaña, Fabián; Raisman-Vozari, Rita; Gysling, Katia; Abarca, Jorge; Steinbusch, Harry W M; Segura-Aguilar, Juan

    2016-09-01

    L-Dopa continues to be the gold drug in Parkinson's disease (PD) treatment from 1967. The failure to translate successful results from preclinical to clinical studies can be explained by the use of preclinical models which do not reflect what happens in the disease since these induce a rapid and extensive degeneration; for example, MPTP induces a severe Parkinsonism in only 3 days in humans contrasting with the slow degeneration and progression of PD. This study presents a new anatomy and develops preclinical model based on aminochrome which induces a slow and progressive dysfunction of dopaminergic neurons. The unilateral injection of aminochrome into rat striatum resulted in (1) contralateral rotation when the animals are stimulated with apomorphine; (2) absence of significant loss of tyrosine hydroxylase-positive neuronal elements both in substantia nigra and striatum; (3) cell shrinkage; (4) significant reduction of dopamine release; (5) significant increase in GABA release; (6) significant decrease in the number of monoaminergic presynaptic vesicles; (7) significant increase of dopamine concentration inside of monoaminergic vesicles; (8) significant increase of damaged mitochondria; (9) significant decrease of ATP level in the striatum (10) significant decrease in basal and maximal mitochondrial respiration. These results suggest that aminochrome induces dysfunction of dopaminergic neurons where the contralateral behavior can be explained by aminochrome-induced ATP decrease required both for anterograde transport of synaptic vesicles and dopamine release. Aminochrome could be implemented as a new model neurotoxin to study Parkinson's disease. PMID:27001668

  5. Aminochrome induces dopaminergic neuronal dysfunction: a new animal model for Parkinson's disease.

    PubMed

    Herrera, Andrea; Muñoz, Patricia; Paris, Irmgard; Díaz-Veliz, Gabriela; Mora, Sergio; Inzunza, Jose; Hultenby, Kjell; Cardenas, Cesar; Jaña, Fabián; Raisman-Vozari, Rita; Gysling, Katia; Abarca, Jorge; Steinbusch, Harry W M; Segura-Aguilar, Juan

    2016-09-01

    L-Dopa continues to be the gold drug in Parkinson's disease (PD) treatment from 1967. The failure to translate successful results from preclinical to clinical studies can be explained by the use of preclinical models which do not reflect what happens in the disease since these induce a rapid and extensive degeneration; for example, MPTP induces a severe Parkinsonism in only 3 days in humans contrasting with the slow degeneration and progression of PD. This study presents a new anatomy and develops preclinical model based on aminochrome which induces a slow and progressive dysfunction of dopaminergic neurons. The unilateral injection of aminochrome into rat striatum resulted in (1) contralateral rotation when the animals are stimulated with apomorphine; (2) absence of significant loss of tyrosine hydroxylase-positive neuronal elements both in substantia nigra and striatum; (3) cell shrinkage; (4) significant reduction of dopamine release; (5) significant increase in GABA release; (6) significant decrease in the number of monoaminergic presynaptic vesicles; (7) significant increase of dopamine concentration inside of monoaminergic vesicles; (8) significant increase of damaged mitochondria; (9) significant decrease of ATP level in the striatum (10) significant decrease in basal and maximal mitochondrial respiration. These results suggest that aminochrome induces dysfunction of dopaminergic neurons where the contralateral behavior can be explained by aminochrome-induced ATP decrease required both for anterograde transport of synaptic vesicles and dopamine release. Aminochrome could be implemented as a new model neurotoxin to study Parkinson's disease.

  6. Alterations in mitochondrial dynamics induced by tebufenpyrad and pyridaben in a dopaminergic neuronal cell culture model.

    PubMed

    Charli, Adhithiya; Jin, Huajun; Anantharam, Vellareddy; Kanthasamy, Arthi; Kanthasamy, Anumantha G

    2016-03-01

    Tebufenpyrad and pyridaben are two agro-chemically important acaricides that function like the known mitochondrial toxicant rotenone. Although these two compounds have been commonly used to kill populations of mites and ticks in commercial greenhouses, their neurotoxic profiles remain largely unknown. Therefore, we investigated the effects of these two pesticides on mitochondrial structure and function in an in vitro cell culture model using the Seahorse bioanalyzer and confocal fluorescence imaging. The effects were compared with rotenone. Exposing rat dopaminergic neuronal cells (N27 cells) to tebufenpyrad and pyridaben for 3h induced dose-dependent cell death with an EC50 of 3.98μM and 3.77μM, respectively. Also, tebufenpyrad and pyridaben (3μM) exposure induced reactive oxygen species (ROS) generation and m-aconitase damage, suggesting that the pesticide toxicity is associated with oxidative damage. Morphometric image analysis with the MitoTracker red fluorescent probe indicated that tebufenpyrad and pyridaben, as well as rotenone, caused abnormalities in mitochondrial morphology, including reduced mitochondrial length and circularity. Functional bioenergetic experiments using the Seahorse XF96 analyzer revealed that tebufenpyrad and pyridaben very rapidly suppressed the basal mitochondrial oxygen consumption rate similar to that of rotenone. Further analysis of bioenergetic curves also revealed dose-dependent decreases in ATP-linked respiration and respiratory capacity. The luminescence-based ATP measurement further confirmed that pesticide-induced mitochondrial inhibition of respiration is accompanied by the loss of cellular ATP. Collectively, our results suggest that exposure to the pesticides tebufenpyrad and pyridaben induces neurotoxicity by rapidly initiating mitochondrial dysfunction and oxidative damage in dopaminergic neuronal cells. Our findings also reveal that monitoring the kinetics of mitochondrial respiration with Seahorse could be used as an

  7. Differentiation of Human Dental Pulp Stem Cells into Dopaminergic Neuron-like Cells in Vitro.

    PubMed

    Chun, So Young; Soker, Shay; Jang, Yu-Jin; Kwon, Tae Gyun; Yoo, Eun Sang

    2016-02-01

    We investigated the potential of human dental pulp stem cells (hDPSCs) to differentiate into dopaminergic neurons in vitro as an autologous stem cell source for Parkinson's disease treatment. The hDPSCs were expanded in knockout-embryonic stem cell (KO-ES) medium containing leukemia inhibitory factor (LIF) on gelatin-coated plates for 3-4 days. Then, the medium was replaced with KO-ES medium without LIF to allow the formation of the neurosphere for 4 days. The neurosphere was transferred into ITS medium, containing ITS (human insulin-transferrin-sodium) and fibronectin, to select for Nestin-positive cells for 6-8 days. The cells were then cultured in N-2 medium containing basic fibroblast growth factor (FGF), FGF-8b, sonic hedgehog-N, and ascorbic acid on poly-l-ornithine/fibronectin-coated plates to expand the Nestin-positive cells for up to 2 weeks. Finally, the cells were transferred into N-2/ascorbic acid medium to allow for their differentiation into dopaminergic neurons for 10-15 days. The differentiation stages were confirmed by morphological, immunocytochemical, flow cytometric, real-time PCR, and ELISA analyses. The expressions of mesenchymal stem cell markers were observed at the early stages. The expressions of early neuronal markers were maintained throughout the differentiation stages. The mature neural markers showed increased expression from stage 3 onwards. The percentage of cells positive for tyrosine hydroxylase was 14.49%, and the amount was 0.526 ± 0.033 ng/mL at the last stage. hDPSCs can differentiate into dopaminergic neural cells under experimental cell differentiation conditions, showing potential as an autologous cell source for the treatment of Parkinson's disease.

  8. A Conserved Role for p48 Homologs in Protecting Dopaminergic Neurons from Oxidative Stress

    PubMed Central

    Bou Dib, Peter; Gnägi, Bettina; Daly, Fiona; Sabado, Virginie; Tas, Damla; Glauser, Dominique A.; Meister, Peter; Nagoshi, Emi

    2014-01-01

    Parkinson's disease (PD) is the most common neurodegenerative movement disorder characterized by the progressive loss of dopaminergic (DA) neurons. Both environmental and genetic factors are thought to contribute to the pathogenesis of PD. Although several genes linked to rare familial PD have been identified, endogenous risk factors for sporadic PD, which account for the majority of PD cases, remain largely unknown. Genome-wide association studies have identified many single nucleotide polymorphisms associated with sporadic PD in neurodevelopmental genes including the transcription factor p48/ptf1a. Here we investigate whether p48 plays a role in the survival of DA neurons in Drosophila melanogaster and Caenorhabditis elegans. We show that a Drosophila p48 homolog, 48-related-2 (Fer2), is expressed in and required for the development and survival of DA neurons in the protocerebral anterior medial (PAM) cluster. Loss of Fer2 expression in adulthood causes progressive PAM neuron degeneration in aging flies along with mitochondrial dysfunction and elevated reactive oxygen species (ROS) production, leading to the progressive locomotor deficits. The oxidative stress challenge upregulates Fer2 expression and exacerbates the PAM neuron degeneration in Fer2 loss-of-function mutants. hlh-13, the worm homolog of p48, is also expressed in DA neurons. Unlike the fly counterpart, hlh-13 loss-of-function does not impair development or survival of DA neurons under normal growth conditions. Yet, similar to Fer2, hlh-13 expression is upregulated upon an acute oxidative challenge and is required for the survival of DA neurons under oxidative stress in adult worms. Taken together, our results indicate that p48 homologs share a role in protecting DA neurons from oxidative stress and degeneration, and suggest that loss-of-function of p48 homologs in flies and worms provides novel tools to study gene-environmental interactions affecting DA neuron survival. PMID:25340742

  9. γ neurons mediate dopaminergic input during aversive olfactory memory formation in Drosophila

    PubMed Central

    Qin, H.; Cressy, M.; Li, W.; Coravos, J.; Izzi, S.; Dubnau, J.

    2012-01-01

    SUMMARY Mushroom body (MB) dependent olfactory learning in Drosophila provides a powerful model to investigate memory mechanisms. MBs integrate olfactory conditioned stimuli (CS) inputs with neuromodulatory reinforcement (unconditioned stimuli, US) [1, 2], which for aversive learning is thought to rely on dopaminergic (DA) signaling [3–6] to DopR, a D1-like dopamine receptor expressed in MB [7, 8]. A wealth of evidence suggests the conclusion that parallel and independent signaling occurs downstream of DopR within two MB neuron cell types, with each supporting half of memory performance. For instance, expression of the rutabaga adenylyl cyclase (rut) in γ neurons is sufficient to restore normal learning to rut mutants [9] whereas expression of Neurofibromatosis I (NFI) in α/β neurons is sufficient to rescue NF1 mutants [10, 11]. DopR mutations are the only case where memory performance is fully eliminated [7], consistent with the hypothesis that DopR receives the US inputs for both γ and α/β lobe traces. We demonstrate, however, that DopR expression in γ neurons is sufficient to fully support short (STM) and long-term memory (LTM). We argue that DA-mediated CS-US association is formed in γ neurons followed by communication between γ and α/β neurons to drive consolidation. PMID:22425153

  10. Progranulin Gene Delivery Protects Dopaminergic Neurons in a Mouse Model of Parkinson’s Disease

    PubMed Central

    Van Kampen, Jackalina M.; Baranowski, David; Kay, Denis G.

    2014-01-01

    Parkinson’s disease (PD) is a progressive neurodegenerative disorder characterized by tremor, rigidity and akinesia/bradykinesia resulting from the progressive loss of nigrostriatal dopaminergic neurons. To date, only symptomatic treatment is available for PD patients, with no effective means of slowing or stopping the progression of the disease. Progranulin (PGRN) is a 593 amino acid multifunction protein that is widely distributed throughout the CNS, localized primarily in neurons and microglia. PGRN has been demonstrated to be a potent regulator of neuroinflammation and also acts as an autocrine neurotrophic factor, important for long-term neuronal survival. Thus, enhancing PGRN expression may strengthen the cells resistance to disease. In the present study, we have used the 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) model of PD to investigate the possible use of PGRN gene delivery as a therapy for the prevention or treatment of PD. Viral vector delivery of the PGRN gene was an effective means of elevating PGRN expression in nigrostriatal neurons. When PGRN expression was elevated in the SNC, nigrostriatal neurons were protected from MPTP toxicity in mice, along with a preservation of striatal dopamine content and turnover. Further, protection of nigrostriatal neurons by PGRN gene therapy was accompanied by reductions in markers of MPTP-induced inflammation and apoptosis as well as a complete preservation of locomotor function. We conclude that PGRN gene therapy may have beneficial effects in the treatment of PD. PMID:24804730

  11. Positive Reinforcement Mediated by Midbrain Dopamine Neurons Requires D1 and D2 Receptor Activation in the Nucleus Accumbens

    PubMed Central

    Steinberg, Elizabeth E.; Boivin, Josiah R.; Saunders, Benjamin T.; Witten, Ilana B.; Deisseroth, Karl; Janak, Patricia H.

    2014-01-01

    The neural basis of positive reinforcement is often studied in the laboratory using intracranial self-stimulation (ICSS), a simple behavioral model in which subjects perform an action in order to obtain exogenous stimulation of a specific brain area. Recently we showed that activation of ventral tegmental area (VTA) dopamine neurons supports ICSS behavior, consistent with proposed roles of this neural population in reinforcement learning. However, VTA dopamine neurons make connections with diverse brain regions, and the specific efferent target(s) that mediate the ability of dopamine neuron activation to support ICSS have not been definitively demonstrated. Here, we examine in transgenic rats whether dopamine neuron-specific ICSS relies on the connection between the VTA and the nucleus accumbens (NAc), a brain region also implicated in positive reinforcement. We find that optogenetic activation of dopaminergic terminals innervating the NAc is sufficient to drive ICSS, and that ICSS driven by optical activation of dopamine neuron somata in the VTA is significantly attenuated by intra-NAc injections of D1 or D2 receptor antagonists. These data demonstrate that the NAc is a critical efferent target sustaining dopamine neuron-specific ICSS, identify receptor subtypes through which dopamine acts to promote this behavior, and ultimately help to refine our understanding of the neural circuitry mediating positive reinforcement. PMID:24733061

  12. Positive reinforcement mediated by midbrain dopamine neurons requires D1 and D2 receptor activation in the nucleus accumbens.

    PubMed

    Steinberg, Elizabeth E; Boivin, Josiah R; Saunders, Benjamin T; Witten, Ilana B; Deisseroth, Karl; Janak, Patricia H

    2014-01-01

    The neural basis of positive reinforcement is often studied in the laboratory using intracranial self-stimulation (ICSS), a simple behavioral model in which subjects perform an action in order to obtain exogenous stimulation of a specific brain area. Recently we showed that activation of ventral tegmental area (VTA) dopamine neurons supports ICSS behavior, consistent with proposed roles of this neural population in reinforcement learning. However, VTA dopamine neurons make connections with diverse brain regions, and the specific efferent target(s) that mediate the ability of dopamine neuron activation to support ICSS have not been definitively demonstrated. Here, we examine in transgenic rats whether dopamine neuron-specific ICSS relies on the connection between the VTA and the nucleus accumbens (NAc), a brain region also implicated in positive reinforcement. We find that optogenetic activation of dopaminergic terminals innervating the NAc is sufficient to drive ICSS, and that ICSS driven by optical activation of dopamine neuron somata in the VTA is significantly attenuated by intra-NAc injections of D1 or D2 receptor antagonists. These data demonstrate that the NAc is a critical efferent target sustaining dopamine neuron-specific ICSS, identify receptor subtypes through which dopamine acts to promote this behavior, and ultimately help to refine our understanding of the neural circuitry mediating positive reinforcement.

  13. Live imaging of mitochondrial dynamics in CNS dopaminergic neurons in vivo demonstrates early reversal of mitochondrial transport following MPP(+) exposure.

    PubMed

    Dukes, April A; Bai, Qing; Van Laar, Victor S; Zhou, Yangzhong; Ilin, Vladimir; David, Christopher N; Agim, Zeynep S; Bonkowsky, Joshua L; Cannon, Jason R; Watkins, Simon C; Croix, Claudette M St; Burton, Edward A; Berman, Sarah B

    2016-11-01

    Extensive convergent evidence collectively suggests that mitochondrial dysfunction is central to the pathogenesis of Parkinson's disease (PD). Recently, changes in the dynamic properties of mitochondria have been increasingly implicated as a key proximate mechanism underlying neurodegeneration. However, studies have been limited by the lack of a model in which mitochondria can be imaged directly and dynamically in dopaminergic neurons of the intact vertebrate CNS. We generated transgenic zebrafish in which mitochondria of dopaminergic neurons are labeled with a fluorescent reporter, and optimized methods allowing direct intravital imaging of CNS dopaminergic axons and measurement of mitochondrial transport in vivo. The proportion of mitochondria undergoing axonal transport in dopaminergic neurons decreased overall during development between 2days post-fertilization (dpf) and 5dpf, at which point the major period of growth and synaptogenesis of the relevant axonal projections is complete. Exposure to 0.5-1.0mM MPP(+) between 4 and 5dpf did not compromise zebrafish viability or cause detectable changes in the number or morphology of dopaminergic neurons, motor function or monoaminergic neurochemistry. However, 0.5mM MPP(+) caused a 300% increase in retrograde mitochondrial transport and a 30% decrease in anterograde transport. In contrast, exposure to higher concentrations of MPP(+) caused an overall reduction in mitochondrial transport. This is the first time mitochondrial transport has been observed directly in CNS dopaminergic neurons of a living vertebrate and quantified in a PD model in vivo. Our findings are compatible with a model in which damage at presynaptic dopaminergic terminals causes an early compensatory increase in retrograde transport of compromised mitochondria for degradation in the cell body. These data are important because manipulation of early pathogenic mechanisms might be a valid therapeutic approach to PD. The novel transgenic lines and

  14. Live imaging of mitochondrial dynamics in CNS dopaminergic neurons in vivo demonstrates early reversal of mitochondrial transport following MPP(+) exposure.

    PubMed

    Dukes, April A; Bai, Qing; Van Laar, Victor S; Zhou, Yangzhong; Ilin, Vladimir; David, Christopher N; Agim, Zeynep S; Bonkowsky, Joshua L; Cannon, Jason R; Watkins, Simon C; Croix, Claudette M St; Burton, Edward A; Berman, Sarah B

    2016-11-01

    Extensive convergent evidence collectively suggests that mitochondrial dysfunction is central to the pathogenesis of Parkinson's disease (PD). Recently, changes in the dynamic properties of mitochondria have been increasingly implicated as a key proximate mechanism underlying neurodegeneration. However, studies have been limited by the lack of a model in which mitochondria can be imaged directly and dynamically in dopaminergic neurons of the intact vertebrate CNS. We generated transgenic zebrafish in which mitochondria of dopaminergic neurons are labeled with a fluorescent reporter, and optimized methods allowing direct intravital imaging of CNS dopaminergic axons and measurement of mitochondrial transport in vivo. The proportion of mitochondria undergoing axonal transport in dopaminergic neurons decreased overall during development between 2days post-fertilization (dpf) and 5dpf, at which point the major period of growth and synaptogenesis of the relevant axonal projections is complete. Exposure to 0.5-1.0mM MPP(+) between 4 and 5dpf did not compromise zebrafish viability or cause detectable changes in the number or morphology of dopaminergic neurons, motor function or monoaminergic neurochemistry. However, 0.5mM MPP(+) caused a 300% increase in retrograde mitochondrial transport and a 30% decrease in anterograde transport. In contrast, exposure to higher concentrations of MPP(+) caused an overall reduction in mitochondrial transport. This is the first time mitochondrial transport has been observed directly in CNS dopaminergic neurons of a living vertebrate and quantified in a PD model in vivo. Our findings are compatible with a model in which damage at presynaptic dopaminergic terminals causes an early compensatory increase in retrograde transport of compromised mitochondria for degradation in the cell body. These data are important because manipulation of early pathogenic mechanisms might be a valid therapeutic approach to PD. The novel transgenic lines and

  15. Opposing Dopaminergic and GABAergic Neurons Control the Duration and Persistence of Copulation in Drosophila

    PubMed Central

    Crickmore, Michael A.; Vosshall, Leslie B.

    2014-01-01

    SUMMARY Behavioral persistence is a major factor in determiningwhen and under which circumstances animals will terminate their current activity and transition into more profitable, appropriate, or urgent behavior. We show that, for the first 5 min of copulation in Drosophila, stressful stimuli do not interrupt mating, whereas 10 min later, even minor perturbations are sufficient to terminate copulation. This decline in persistence occurs as the probability of successful mating increases and is promoted by approximately eight sexually dimorphic, GABAergic interneurons of the male abdominal ganglion. When these interneurons were silenced, persistence increased and males copulated far longer than required for successful mating. When these interneurons were stimulated, persistence decreased and copulations were shortened. In contrast, dopaminergic neurons of the ventral nerve cord promote copulation persistence and extend copulation duration. Thus, copulation duration in Drosophila is a product of gradually declining persistence controlled by opposing neuronal populations using conserved neurotransmission systems. PMID:24209625

  16. Slow progressive degeneration of nigral dopaminergic neurons in postnatal Engrailed mutant mice

    PubMed Central

    Sgadò, Paola; Albéri, Lavinia; Gherbassi, Daniel; Galasso, Sherri L.; Ramakers, Geert M. J.; Alavian, Kambiz N.; Smidt, Marten P.; Dyck, Richard H.; Simon, Horst H.

    2006-01-01

    The homeobox transcription factors Engrailed-1 and Engrailed-2 are required for the survival of mesencephalic dopaminergic neurons in a cell-autonomous and gene-dose-dependent manner. Because of this requirement, the cells die by apoptosis when all four alleles of the Engrailed genes are genetically ablated (En1−/−;En2−/−). In the present study, we show that viable and fertile mice, heterozygous null for Engrailed-1 and homozygous null for Engrailed-2 (En1+/−;En2−/−), have an adult phenotype that resembles key pathological features of Parkinson's disease. Specifically, postnatal mutant mice exhibit a progressive degeneration of dopaminergic neurons in the substantia nigra during the first 3 mo of their lives, leading to diminished storage and release of dopamine in the caudate putamen, motor deficits similar to akinesia and bradykinesia, and a lower body weight. This genetic model may provide access to the molecular etiology for Parkinson's disease and could assist in the development of novel treatments for this neurodegenerative disorder. PMID:17015829

  17. Withania somnifera alleviates parkinsonian phenotypes by inhibiting apoptotic pathways in dopaminergic neurons.

    PubMed

    Prakash, Jay; Chouhan, Shikha; Yadav, Satyndra Kumar; Westfall, Susan; Rai, Sachchida Nand; Singh, Surya Pratap

    2014-12-01

    Maneb (MB) and paraquat (PQ) are environmental toxins that have been experimentally used to induce selective damage of dopaminergic neurons leading to the development of Parkinson's disease (PD). Although the mechanism of this selective neuronal toxicity in not fully understood, oxidative stress has been linked to the pathogenesis of PD. The present study investigates the mechanisms of neuroprotection elicited by Withania somnifera (Ws), a herb traditionally recognized by the Indian system of medicine, Ayurveda. An ethanolic root extract of Ws was co-treated with the MB-PQ induced mouse model of PD and was shown to significantly rescue canonical indicators of PD including compromised locomotor activity, reduced dopamine in the substantia nigra and various aspects of oxidative damage. In particular, Ws reduced the expression of iNOS, a measure of oxidative stress. Ws also significantly improved the MB + PQ mediated induction of a pro-apoptotic state by reducing Bax and inducing Bcl-2 protein expression, respectively. Finally, Ws reduced expression of the pro-inflammatory marker of astrocyte activation, GFAP. Altogether, the present study suggests that Ws treatment provides nigrostriatal dopaminergic neuroprotection against MB-PQ induced Parkinsonism by the modulation of oxidative stress and apoptotic machinery possibly accounting for the behavioural effects.

  18. Severe dopaminergic neuron loss in rhesus monkey brain impairs morphine-induced conditioned place preference

    PubMed Central

    Yan, Ting; Rizak, Joshua Dominic; Wang, Jianhong; Yang, Shangchuan; Ma, Yuanye; Hu, Xintian

    2015-01-01

    It is well known that dopamine (DA) is critical for reward, but the precise role of DA in reward remains uncertain. The aim of this study was to determine what percentage of dopaminergic neurons in the primate brain is required for the expression of conditioned reward by measuring the performance of DA-deficient rhesus monkeys in a morphine-induced conditioned place preference (CPP) paradigm. Animals with mild Parkinsonian symptoms successfully developed and retained a morphine preference that was equivalent to control monkeys. However, these monkeys could not maintain the preference as well as controls when they retained severe Parkinsonian symptoms. On the other hand, monkeys initially in a severe Parkinsonian state developed a preference for morphine, but this preference was weaker than that of the controls. Histological results showed that the loss of dopaminergic neurons in monkeys that had severe Parkinsonian symptoms was about 80% in comparison to the control monkeys. All these data suggest that a severely impaired DA system alters rewarding-seeking behavior in non-human primates. PMID:26528155

  19. A critical period of vulnerability to adolescent stress: epigenetic mediators in mesocortical dopaminergic neurons.

    PubMed

    Niwa, Minae; Lee, Richard S; Tanaka, Teppei; Okada, Kinya; Kano, Shin-Ichi; Sawa, Akira

    2016-04-01

    The molecular basis of vulnerability to stress during the adolescent period is largely unknown. To identify potential molecular mediators that may play a role in stress-induced behavioral deficits, we imposed social isolation on a genetically vulnerable mouse model. We report that 3-week (5-8 weeks of age) adolescent stress in combination with disrupted-in-schizophrenia 1 (Disc1) genetic risk elicits alterations in DNA methylation of a specific set of genes, tyrosine hydroxylase, brain-derived neurotrophic factor and FK506 binding protein 5. The epigenetic changes in the mesocortical dopaminergic neurons were prevented when animals were treated with a glucocorticoid receptor (GR) antagonist RU486 during social isolation, which implicates the role for glucocorticoid signaling in this pathological event. We define the critical period of GR intervention as the first 1-week period during the stress regimen, suggesting that this particular week in adolescence may be a specific period of maturation and function of mesocortical dopaminergic neurons and their sensitivity to glucocorticoids. Our study may also imply the clinical significance of early detection and prophylactic intervention against conditions associated with adolescent social stress in individuals with genetic risk. PMID:26908623

  20. FoxO1 in dopaminergic neurons regulates energy homeostasis and targets tyrosine hydroxylase

    PubMed Central

    Doan, Khanh V.; Kinyua, Ann W.; Yang, Dong Joo; Ko, Chang Mann; Moh, Sang Hyun; Shong, Ko Eun; Kim, Hail; Park, Sang-Kyu; Kim, Dong-Hoon; Kim, Inki; Paik, Ji-Hye; DePinho, Ronald A.; Yoon, Seul Gi; Kim, Il Yong; Seong, Je Kyung; Choi, Yun-Hee; Kim, Ki Woo

    2016-01-01

    Dopaminergic (DA) neurons are involved in the integration of neuronal and hormonal signals to regulate food consumption and energy balance. Forkhead transcriptional factor O1 (FoxO1) in the hypothalamus plays a crucial role in mediation of leptin and insulin function. However, the homoeostatic role of FoxO1 in DA system has not been investigated. Here we report that FoxO1 is highly expressed in DA neurons and mice lacking FoxO1 specifically in the DA neurons (FoxO1 KODAT) show markedly increased energy expenditure and interscapular brown adipose tissue (iBAT) thermogenesis accompanied by reduced fat mass and improved glucose/insulin homoeostasis. Moreover, FoxO1 KODAT mice exhibit an increased sucrose preference in concomitance with higher dopamine and norepinephrine levels. Finally, we found that FoxO1 directly targets and negatively regulates tyrosine hydroxylase (TH) expression, the rate-limiting enzyme of the catecholamine synthesis, delineating a mechanism for the KO phenotypes. Collectively, these results suggest that FoxO1 in DA neurons is an important transcriptional factor that directs the coordinated control of energy balance, thermogenesis and glucose homoeostasis. PMID:27681312

  1. Non-linear developmental trajectory of electrical phenotype in rat substantia nigra pars compacta dopaminergic neurons

    PubMed Central

    Dufour, Martial A; Woodhouse, Adele; Amendola, Julien; Goaillard, Jean-Marc

    2014-01-01

    Neurons have complex electrophysiological properties, however, it is often difficult to determine which properties are the most relevant to neuronal function. By combining current-clamp measurements of electrophysiological properties with multi-variate analysis (hierarchical clustering, principal component analysis), we were able to characterize the postnatal development of substantia nigra dopaminergic neurons' electrical phenotype in an unbiased manner, such that subtle changes in phenotype could be analyzed. We show that the intrinsic electrical phenotype of these neurons follows a non-linear trajectory reaching maturity by postnatal day 14, with two developmental transitions occurring between postnatal days 3–5 and 9–11. This approach also predicted which parameters play a critical role in phenotypic variation, enabling us to determine (using pharmacology, dynamic-clamp) that changes in the leak, sodium and calcium-activated potassium currents are central to these two developmental transitions. This analysis enables an unbiased definition of neuronal type/phenotype that is applicable to a range of research questions. DOI: http://dx.doi.org/10.7554/eLife.04059.001 PMID:25329344

  2. Dopaminergic neurons expressing Fos during waking and paradoxical sleep in the rat.

    PubMed

    Léger, Lucienne; Sapin, Emilie; Goutagny, Romain; Peyron, Christelle; Salvert, Denise; Fort, Patrice; Luppi, Pierre-Hervé

    2010-07-01

    Formerly believed to contribute to behavioural waking (W) alone, dopaminergic (DA) neurons are now also known to participate in the regulation of paradoxical sleep (PS or REM) in mammals. Indeed, stimulation of postsynaptic DA1 receptors with agonists induces a reduction in the daily amount of PS. DA neurons in the ventral tegmental area were recently shown to fire in bursts during PS, but nothing is known about the activity of the other DA cell groups in relation to waking or PS. To fulfil this gap, we used a protocol in which rats were maintained in continuous W for 3h in a novel environment, or specifically deprived of PS for 3 days with some of them allowed to recover from this deprivation. A double immunohistochemical labeling with Fos and tyrosine hydroxylase was then performed. DA neurons in the substantia nigra (A9) and ventral tegmental area (A10), and its dorsocaudal extension in the periaqueductal gray (A10dc), almost never showed a Fos-immunoreactive nucleus, regardless of the experimental condition. The caudal hypothalamic (A11) group showed a moderate activation after PS deprivation and novel environment. During PS-recovery, the zona incerta (A13) group contained a significant number and percentage of double-labeled neurons. These results suggest that some DA neurons (A11) could participate in waking and/or the inhibition of PS during PS deprivation whereas others (A13) would be involved in the control of PS.

  3. Orexinergic Input to Dopaminergic Neurons of the Human Ventral Tegmental Area

    PubMed Central

    Hrabovszky, Erik; Molnár, Csilla S.; Borsay, Beáta Á.; Gergely, Péter; Herczeg, László; Liposits, Zsolt

    2013-01-01

    The mesolimbic reward pathway arising from dopaminergic (DA) neurons of the ventral tegmental area (VTA) has been strongly implicated in reward processing and drug abuse. In rodents, behaviors associated with this projection are profoundly influenced by an orexinergic input from the lateral hypothalamus to the VTA. Because the existence and significance of an analogous orexigenic regulatory mechanism acting in the human VTA have been elusive, here we addressed the possibility that orexinergic neurons provide direct input to DA neurons of the human VTA. Dual-label immunohistochemistry was used and orexinergic projections to the VTA and to DA neurons of the neighboring substantia nigra (SN) were analyzed comparatively in adult male humans and rats. Orexin B-immunoreactive (IR) axons apposed to tyrosine hydroxylase (TH)-IR DA and to non-DA neurons were scarce in the VTA and SN of both species. In the VTA, 15.0±2.8% of TH-IR perikarya in humans and 3.2±0.3% in rats received orexin B-IR afferent contacts. On average, 0.24±0.05 and 0.05±0.005 orexinergic appositions per TH-IR perikaryon were detected in humans and rats, respectively. The majority (86–88%) of randomly encountered orexinergic contacts targeted the dendritic compartment of DA neurons. Finally, DA neurons of the SN also received orexinergic innervation in both species. Based on the observation of five times heavier orexinergic input to TH-IR neurons of the human, compared with the rat, VTA, we propose that orexinergic mechanism acting in the VTA may play just as important roles in reward processing and drug abuse in humans, as already established well in rodents. PMID:24376626

  4. Auditory distance coding in rabbit midbrain neurons and human perception: monaural amplitude modulation depth as a cue.

    PubMed

    Kim, Duck O; Zahorik, Pavel; Carney, Laurel H; Bishop, Brian B; Kuwada, Shigeyuki

    2015-04-01

    Mechanisms underlying sound source distance localization are not well understood. Here we tested the hypothesis that a novel mechanism can create monaural distance sensitivity: a combination of auditory midbrain neurons' sensitivity to amplitude modulation (AM) depth and distance-dependent loss of AM in reverberation. We used virtual auditory space (VAS) methods for sounds at various distances in anechoic and reverberant environments. Stimulus level was constant across distance. With increasing modulation depth, some rabbit inferior colliculus neurons increased firing rates whereas others decreased. These neurons exhibited monotonic relationships between firing rates and distance for monaurally presented noise when two conditions were met: (1) the sound had AM, and (2) the environment was reverberant. The firing rates as a function of distance remained approximately constant without AM in either environment and, in an anechoic condition, even with AM. We corroborated this finding by reproducing the distance sensitivity using a neural model. We also conducted a human psychophysical study using similar methods. Normal-hearing listeners reported perceived distance in response to monaural 1 octave 4 kHz noise source sounds presented at distances of 35-200 cm. We found parallels between the rabbit neural and human responses. In both, sound distance could be discriminated only if the monaural sound in reverberation had AM. These observations support the hypothesis. When other cues are available (e.g., in binaural hearing), how much the auditory system actually uses the AM as a distance cue remains to be determined.

  5. Auditory Distance Coding in Rabbit Midbrain Neurons and Human Perception: Monaural Amplitude Modulation Depth as a Cue

    PubMed Central

    Zahorik, Pavel; Carney, Laurel H.; Bishop, Brian B.; Kuwada, Shigeyuki

    2015-01-01

    Mechanisms underlying sound source distance localization are not well understood. Here we tested the hypothesis that a novel mechanism can create monaural distance sensitivity: a combination of auditory midbrain neurons' sensitivity to amplitude modulation (AM) depth and distance-dependent loss of AM in reverberation. We used virtual auditory space (VAS) methods for sounds at various distances in anechoic and reverberant environments. Stimulus level was constant across distance. With increasing modulation depth, some rabbit inferior colliculus neurons increased firing rates whereas others decreased. These neurons exhibited monotonic relationships between firing rates and distance for monaurally presented noise when two conditions were met: (1) the sound had AM, and (2) the environment was reverberant. The firing rates as a function of distance remained approximately constant without AM in either environment and, in an anechoic condition, even with AM. We corroborated this finding by reproducing the distance sensitivity using a neural model. We also conducted a human psychophysical study using similar methods. Normal-hearing listeners reported perceived distance in response to monaural 1 octave 4 kHz noise source sounds presented at distances of 35–200 cm. We found parallels between the rabbit neural and human responses. In both, sound distance could be discriminated only if the monaural sound in reverberation had AM. These observations support the hypothesis. When other cues are available (e.g., in binaural hearing), how much the auditory system actually uses the AM as a distance cue remains to be determined. PMID:25834060

  6. EFFECTS OF CHRONIC ANTIDEPRESSANT DRUG ADMINISTRATION AND ELECTROCONVULSIVE SHOCK ON ACTIVITY OF DOPAMINERGIC NEURONS IN THE VENTRAL TEGMENTUM

    PubMed Central

    West, Charles Hutchison Keesor; Weiss, Jay Michael

    2010-01-01

    Increasing attention is now focused on reduced dopaminergic neurotransmission in the forebrain as participating in depression. The present paper assessed whether effective antidepressant (AD) treatments might counteract, or compensate for, such a change by altering the neuronal activity of dopaminergic neurons in the ventral tegmental area (VTA-DA neurons), the cell bodies of the mesocorticolimbic dopaminergic system. Eight AD drugs or vehicle were administered to rats for 14 days via subcutaneously-implanted minipumps, at which time single-unit electrophysiological activity of VTA-DA neurons was recorded under anesthesia. Also, animals received a series of five electroconvulsive shocks (ECS) or control procedures, after which VTA-DA activity was measured either three or five days after the last ECS. Results showed that the chronic administration of all AD drugs tested except for the monoamine oxidase inhibitor increased the spontaneous firing rate of VTA-DA neurons, while effects on “burst” firing activity were found to be considerably less notable or consistent. ECS increased both spontaneous firing rate and burst firing of VTA-DA neurons. It is suggested that the effects observed are consistent with reports of increased dopamine release in regions to which VTA neurons project after effective AD treatment. However, it is further suggested that changes in VTA-DA neuronal activity in response to AD treatment should be most appropriately assessed under conditions associated with depression, such as stressful conditions. PMID:20482941

  7. A High-content screen identifies compounds promoting the neuronal differentiation and the midbrain dopamine neuron specification of human neural progenitor cells

    PubMed Central

    Rhim, Ji heon; Luo, Xiangjian; Xu, Xiaoyun; Gao, Dongbing; Zhou, Tieling; Li, Fuhai; Qin, Lidong; Wang, Ping; Xia, Xiaofeng; Wong, Stephen T. C.

    2015-01-01

    Small molecule compounds promoting the neuronal differentiation of stem/progenitor cells are of pivotal importance to regenerative medicine. We carried out a high-content screen to systematically characterize known bioactive compounds, on their effects on the neuronal differentiation and the midbrain dopamine (mDA) neuron specification of neural progenitor cells (NPCs) derived from the ventral mesencephalon of human fetal brain. Among the promoting compounds three major pharmacological classes were identified including the statins, TGF-βRI inhibitors, and GSK-3 inhibitors. The function of each class was also shown to be distinct, either to promote both the neuronal differentiation and mDA neuron specification, or selectively the latter, or promote the former but suppress the latter. We then carried out initial investigation on the possible mechanisms underlying, and demonstrated their applications on NPCs derived from human pluripotent stem cells (PSCs). Our study revealed the potential of several small molecule compounds for use in the directed differentiation of human NPCs. The screening result also provided insight into the signaling network regulating the differentiation of human NPCs. PMID:26542303

  8. Neuron-derived IgG protects dopaminergic neurons from insult by 6-OHDA and activates microglia through the FcγR I and TLR4 pathways.

    PubMed

    Zhang, Jie; Niu, Na; Wang, Mingyu; McNutt, Michael A; Zhang, Donghong; Zhang, Baogang; Lu, Shijun; Liu, Yuqing; Liu, Zhihui

    2013-08-01

    Oxidative and immune attacks from the environment or microglia have been implicated in the loss of dopaminergic neurons of Parkinson's disease. The role of IgG which is an important immunologic molecule in the process of Parkinson's disease has been unclear. Evidence suggests that IgG can be produced by neurons in addition to its traditionally recognized source B lymphocytes, but its function in neurons is poorly understood. In this study, extensive expression of neuron-derived IgG was demonstrated in dopaminergic neurons of human and rat mesencephalon. With an in vitro Parkinson's disease model, we found that neuron-derived IgG can improve the survival and reduce apoptosis of dopaminergic neurons induced by 6-hydroxydopamine toxicity, and also depress the release of NO from microglia triggered by 6-hydroxydopamine. Expression of TNF-α and IL-10 in microglia was elevated to protective levels by neuron-derived IgG at a physiologic level via the FcγR I and TLR4 pathways and microglial activation could be attenuated by IgG blocking. All these data suggested that neuron-derived IgG may exert a self-protective function by activating microglia properly, and IgG may be involved in maintaining immunity homeostasis in the central nervous system and serve as an active factor under pathological conditions such as Parkinson's disease.

  9. Synergy of AMPA and NMDA Receptor Currents in Dopaminergic Neurons: A Modeling Study.

    PubMed

    Zakharov, Denis; Lapish, Christopher; Gutkin, Boris; Kuznetsov, Alexey

    2016-01-01

    Dopaminergic (DA) neurons display two modes of firing: low-frequency tonic and high-frequency bursts. The high frequency firing within the bursts is attributed to NMDA, but not AMPA receptor activation. In our models of the DA neuron, both biophysical and abstract, the NMDA receptor current can significantly increase their firing frequency, whereas the AMPA receptor current is not able to evoke high-frequency activity and usually suppresses firing. However, both currents are produced by glutamate receptors and, consequently, are often co-activated. Here we consider combined influence of AMPA and NMDA synaptic input in the models of the DA neuron. Different types of neuronal activity (resting state, low frequency, or high frequency firing) are observed depending on the conductance of the AMPAR and NMDAR currents. In two models, biophysical and reduced, we show that the firing frequency increases more effectively if both receptors are co-activated for certain parameter values. In particular, in the more quantitative biophysical model, the maximal frequency is 40% greater than that with NMDAR alone. The dynamical mechanism of such frequency growth is explained in the framework of phase space evolution using the reduced model. In short, both the AMPAR and NMDAR currents flatten the voltage nullcline, providing the frequency increase, whereas only NMDA prevents complete unfolding of the nullcline, providing robust firing. Thus, we confirm a major role of the NMDAR in generating high-frequency firing and conclude that AMPAR activation further significantly increases the frequency. PMID:27252643

  10. Synergy of AMPA and NMDA Receptor Currents in Dopaminergic Neurons: A Modeling Study

    PubMed Central

    Zakharov, Denis; Lapish, Christopher; Gutkin, Boris; Kuznetsov, Alexey

    2016-01-01

    Dopaminergic (DA) neurons display two modes of firing: low-frequency tonic and high-frequency bursts. The high frequency firing within the bursts is attributed to NMDA, but not AMPA receptor activation. In our models of the DA neuron, both biophysical and abstract, the NMDA receptor current can significantly increase their firing frequency, whereas the AMPA receptor current is not able to evoke high-frequency activity and usually suppresses firing. However, both currents are produced by glutamate receptors and, consequently, are often co-activated. Here we consider combined influence of AMPA and NMDA synaptic input in the models of the DA neuron. Different types of neuronal activity (resting state, low frequency, or high frequency firing) are observed depending on the conductance of the AMPAR and NMDAR currents. In two models, biophysical and reduced, we show that the firing frequency increases more effectively if both receptors are co-activated for certain parameter values. In particular, in the more quantitative biophysical model, the maximal frequency is 40% greater than that with NMDAR alone. The dynamical mechanism of such frequency growth is explained in the framework of phase space evolution using the reduced model. In short, both the AMPAR and NMDAR currents flatten the voltage nullcline, providing the frequency increase, whereas only NMDA prevents complete unfolding of the nullcline, providing robust firing. Thus, we confirm a major role of the NMDAR in generating high-frequency firing and conclude that AMPAR activation further significantly increases the frequency. PMID:27252643

  11. Neonatal exposure to lipopolysaccharide enhances vulnerability of nigrostriatal dopaminergic neurons to rotenone neurotoxicity in later life.

    PubMed

    Fan, Lir-Wan; Tien, Lu-Tai; Lin, Rick C S; Simpson, Kimberly L; Rhodes, Philip G; Cai, Zhengwei

    2011-12-01

    Brain inflammation in early life has been proposed to play important roles in the development of neurodegenerative disorders in adult life. To test this hypothesis, we used a neonatal rat model of lipopolysaccharide (LPS) exposure (1000 EU/g body weight, intracerebral injection on P5) to produce brain inflammation. By P70, when LPS-induced behavioral deficits were spontaneously recovered, animals were challenged with rotenone, a commonly used pesticide, through subcutaneous mini-pump infusion at a dose of 1.25 mg/kg per day for 14 days. This rotenone treatment regimen ordinarily does not produce toxic effects on behaviors in normal adult rats. Our results show that neonatal LPS exposure enhanced the vulnerability of nigrostriatal dopaminergic neurons to rotenone neurotoxicity in later life. Rotenone treatment resulted in motor neurobehavioral impairments in rats with the neonatal LPS exposure, but not in those without the neonatal LPS exposure. Rotenone induced losses of tyrosine hydroxylase immunoreactive neurons in the substantia nigra and decreased mitochondrial complex I activity in the striatum of rats with neonatal LPS exposure, but not in those without this exposure. Neonatal LPS exposure with later exposure to rotenone decreased retrogradely labeled nigrostriatal dopaminergic projecting neurons. The current study suggests that perinatal brain inflammation may enhance adult susceptibility to the development of neurodegenerative disorders triggered later on by environmental toxins at an ordinarily non-toxic or sub-toxic dose. Our model may be useful for studying mechanisms involved in the pathogenesis of nonfamilial Parkinson's disease and the development of potential therapeutic treatments.

  12. Otx2 Requires Lmx1b to Control the Development of Mesodiencephalic Dopaminergic Neurons

    PubMed Central

    Sherf, Orna; Nashelsky Zolotov, Limor; Liser, Keren; Tilleman, Hadas; Jovanovic, Vukasin M.; Zega, Ksenija; Jukic, Marin M.; Brodski, Claude

    2015-01-01

    Studying the development of mesodiencephalic dopaminergic (mdDA) neurons provides an important basis for better understanding dopamine-associated brain functions and disorders and is critical for establishing cell replacement therapy for Parkinson’s disease. The transcription factors Otx2 and Lmx1b play a key role in the development of mdDA neurons. However, little is known about the genes downstream of Otx2 and Lmx1b in the pathways controlling the formation of mdDA neurons in vivo. Here we report on our investigation of Lmx1b as downstream target of Otx2 in the formation of mdDA neurons. Mouse mutants expressing Otx2 under the control of the En1 promoter (En1+/Otx2) showed increased Otx2 expression in the mid-hindbrain region, resulting in upregulation of Lmx1b and expansion of mdDA neurons there. In contrast, Lmx1b-/- mice showed decreased expression of Otx2 and impairments in several aspects of mdDA neuronal formation. To study the functional interaction between Otx2 and Lmx1b, we generated compound mutants in which Otx2 expression was restored in mice lacking Lmx1b (En1+/Otx2;Lmx1b-/-). In these animals Otx2 was not sufficient to rescue any of the aberrations in the formation of mdDA neurons caused by the loss of Lmx1b, but rescued the loss of ocular motor neurons. Gene expression studies in Lmx1b-/- embryos indicated that in these mutants Wnt1, En1 and Fgf8 expression are induced but subsequently lost in the mdDA precursor domain and the mid-hindbrain organizer in a specific, spatio-temporal manner. In summary, we demonstrate that Otx2 critically depends on Lmx1b for the formation of mdDA neurons, but not for the generation of ocular motor neurons. Moreover, our data suggest that Lmx1b precisely maintains the expression pattern of Wnt1, Fgf8 and En1, which are essential for mid-hindbrain organizer function and the formation of mdDA neurons. PMID:26444681

  13. Effects of pre- and perinatal exposure to hashish extracts on the ontogeny of brain dopaminergic neurons.

    PubMed

    Rodríguez de Fonseca, F; Cebeira, M; Fernández-Ruiz, J J; Navarro, M; Ramos, J A

    1991-01-01

    , paired to a rise in L-3,4-dihydroxyphenylacetic acid/dopamine ratio and anterior pituitary content of dopamine and to a decrease in the prolactin release. Perinatal exposure to cannabinoids altered the normal development of nigrostriatal, mesolimbic and tuberoinfundibular dopaminergic neurons, as reflected by changes in several indices of their activity. These changes were different regarding the sex and brain areas. Cannabinoid effects were more marked and constant in the striatum of males, while alterations in limbic neurons were mostly transient and those in hypothalamic neurons occurred after drug withdrawal. A long-term impact of these early changes on the neurological processes of adulthood is plausible.

  14. Visualization of Plasticity in Fear-Evoked Calcium Signals in Midbrain Dopamine Neurons

    ERIC Educational Resources Information Center

    Gore, Bryan B.; Soden, Marta E.; Zweifel, Larry S.

    2014-01-01

    Dopamine is broadly implicated in fear-related processes, yet we know very little about signaling dynamics in these neurons during active fear conditioning. We describe the direct imaging of calcium signals of dopamine neurons during Pavlovian fear conditioning using fiber-optic confocal microscopy coupled with the genetically encoded calcium…

  15. Differential Regulation of Action Potential Shape and Burst-Frequency Firing by BK and Kv2 Channels in Substantia Nigra Dopaminergic Neurons

    PubMed Central

    Kimm, Tilia; Khaliq, Zayd M.

    2015-01-01

    Little is known about the voltage-dependent potassium currents underlying spike repolarization in midbrain dopaminergic neurons. Studying mouse substantia nigra pars compacta dopaminergic neurons both in brain slice and after acute dissociation, we found that BK calcium-activated potassium channels and Kv2 channels both make major contributions to the depolarization-activated potassium current. Inhibiting Kv2 or BK channels had very different effects on spike shape and evoked firing. Inhibiting Kv2 channels increased spike width and decreased the afterhyperpolarization, as expected for loss of an action potential-activated potassium conductance. BK inhibition also increased spike width but paradoxically increased the afterhyperpolarization. Kv2 channel inhibition steeply increased the slope of the frequency–current (f–I) relationship, whereas BK channel inhibition had little effect on the f–I slope or decreased it, sometimes resulting in slowed firing. Action potential clamp experiments showed that both BK and Kv2 current flow during spike repolarization but with very different kinetics, with Kv2 current activating later and deactivating more slowly. Further experiments revealed that inhibiting either BK or Kv2 alone leads to recruitment of additional current through the other channel type during the action potential as a consequence of changes in spike shape. Enhancement of slowly deactivating Kv2 current can account for the increased afterhyperpolarization produced by BK inhibition and likely underlies the very different effects on the f–I relationship. The cross-regulation of BK and Kv2 activation illustrates that the functional role of a channel cannot be defined in isolation but depends critically on the context of the other conductances in the cell. SIGNIFICANCE STATEMENT This work shows that BK calcium-activated potassium channels and Kv2 voltage-activated potassium channels both regulate action potentials in dopamine neurons of the substantia nigra

  16. Neuroprotective effects of tadalafil on gerbil dopaminergic neurons following cerebral ischemia.

    PubMed

    Kim, Kwang Taek; Chung, Kyung Jin; Lee, Han Sae; Ko, Il Gyu; Kim, Chang Ju; Na, Yong Gil; Kim, Khae Hawn

    2013-03-15

    Impairment of dopamine function, which is known to have major effects on behaviors and cognition, is one of the main problems associated with cerebral ischemia. Tadalafil, a long-acting phosphodiesterase type-5 inhibitor, is known to ameliorate neurologic impairment induced by brain injury, but not in dopaminergic regions. We investigated the neuroprotective effects of treatment with tadalafil on cyclic guanosine monophosphate level and dopamine function following cerebral ischemia. Forty adult Mongolian gerbils were randomly and evenly divided into five groups (n = 8 in each group): Sham-operation group, cerebral ischemia-induced and 0, 0.1, 1, and 10 mg/kg tadalafil-treated groups, respectively. Tadalafil dissolved in distilled water was administered orally for 7 consecutive days, starting 1 day after surgery. Cyclic guanosine monophosphate assay and immunohistochemistry were performed for thyrosine hydroxylase expression and western blot analysis for dopamine D2 receptor expression. A decrease in cyclic guanosine monophosphate level following cerebral ischemia was found with an increase in thyrosine hydroxylase activity and a decrease in dopamine D2 receptor expression in the striatum and substantia nigra region. However, treatment with tadalafil increased cyclic guanosine monophosphate expression, suppressed thyrosine hydroxylase expression and increased dopamine D2 receptor expression in the striatum and substantia nigra region in a dose-dependent manner. Tadalafil might ameliorate cerebral ischemia-induced dopaminergic neuron injury. Therefore, tadalafil has the potential as a new neuroprotective treatment strategy for cerebral ischemic injury. PMID:25206715

  17. Are striatal tyrosine hydroxylase interneurons dopaminergic?

    PubMed

    Xenias, Harry S; Ibáñez-Sandoval, Osvaldo; Koós, Tibor; Tepper, James M

    2015-04-22

    Striatal GABAergic interneurons that express the gene for tyrosine hydroxylase (TH) have been identified previously by several methods. Although generally assumed to be dopaminergic, possibly serving as a compensatory source of dopamine (DA) in Parkinson's disease, this assumption has never been tested directly. In TH-Cre mice whose nigrostriatal pathway had been eliminated unilaterally with 6-hydroxydopamine, we injected a Cre-dependent virus coding for channelrhodopsin-2 and enhanced yellow fluorescent protein unilaterally into the unlesioned midbrain or bilaterally into the striatum. Fast-scan cyclic voltammetry in striatal slices revealed that both optical and electrical stimulation readily elicited DA release in control striata but not from contralateral striata when nigrostriatal neurons were transduced. In contrast, neither optical nor electrical stimulation could elicit striatal DA release in either the control or lesioned striata when the virus was injected directly into the striatum transducing only striatal TH interneurons. This demonstrates that striatal TH interneurons do not release DA. Fluorescence immunocytochemistry in enhanced green fluorescent protein (EGFP)-TH mice revealed colocalization of DA, l-amino acid decarboxylase, the DA transporter, and vesicular monoamine transporter-2 with EGFP in midbrain dopaminergic neurons but not in any of the striatal EGFP-TH interneurons. Optogenetic activation of striatal EGFP-TH interneurons produced strong GABAergic inhibition in all spiny neurons tested. These results indicate that striatal TH interneurons are not dopaminergic but rather are a type of GABAergic interneuron that expresses TH but none of the other enzymes or transporters necessary to operate as dopaminergic neurons and exert widespread GABAergic inhibition onto direct and indirect spiny neurons. PMID:25904808

  18. Are striatal tyrosine hydroxylase interneurons dopaminergic?

    PubMed

    Xenias, Harry S; Ibáñez-Sandoval, Osvaldo; Koós, Tibor; Tepper, James M

    2015-04-22

    Striatal GABAergic interneurons that express the gene for tyrosine hydroxylase (TH) have been identified previously by several methods. Although generally assumed to be dopaminergic, possibly serving as a compensatory source of dopamine (DA) in Parkinson's disease, this assumption has never been tested directly. In TH-Cre mice whose nigrostriatal pathway had been eliminated unilaterally with 6-hydroxydopamine, we injected a Cre-dependent virus coding for channelrhodopsin-2 and enhanced yellow fluorescent protein unilaterally into the unlesioned midbrain or bilaterally into the striatum. Fast-scan cyclic voltammetry in striatal slices revealed that both optical and electrical stimulation readily elicited DA release in control striata but not from contralateral striata when nigrostriatal neurons were transduced. In contrast, neither optical nor electrical stimulation could elicit striatal DA release in either the control or lesioned striata when the virus was injected directly into the striatum transducing only striatal TH interneurons. This demonstrates that striatal TH interneurons do not release DA. Fluorescence immunocytochemistry in enhanced green fluorescent protein (EGFP)-TH mice revealed colocalization of DA, l-amino acid decarboxylase, the DA transporter, and vesicular monoamine transporter-2 with EGFP in midbrain dopaminergic neurons but not in any of the striatal EGFP-TH interneurons. Optogenetic activation of striatal EGFP-TH interneurons produced strong GABAergic inhibition in all spiny neurons tested. These results indicate that striatal TH interneurons are not dopaminergic but rather are a type of GABAergic interneuron that expresses TH but none of the other enzymes or transporters necessary to operate as dopaminergic neurons and exert widespread GABAergic inhibition onto direct and indirect spiny neurons.

  19. Dopaminergic neurons write and update memories with cell-type-specific rules.

    PubMed

    Aso, Yoshinori; Rubin, Gerald M

    2016-01-01

    Associative learning is thought to involve parallel and distributed mechanisms of memory formation and storage. In Drosophila, the mushroom body (MB) is the major site of associative odor memory formation. Previously we described the anatomy of the adult MB and defined 20 types of dopaminergic neurons (DANs) that each innervate distinct MB compartments (Aso et al., 2014a, 2014b). Here we compare the properties of memories formed by optogenetic activation of individual DAN cell types. We found extensive differences in training requirements for memory formation, decay dynamics, storage capacity and flexibility to learn new associations. Even a single DAN cell type can either write or reduce an aversive memory, or write an appetitive memory, depending on when it is activated relative to odor delivery. Our results show that different learning rules are executed in seemingly parallel memory systems, providing multiple distinct circuit-based strategies to predict future events from past experiences. PMID:27441388

  20. Tryptamine-derived alkaloids from Annonaceae exerting neurotrophin-like properties on primary dopaminergic neurons.

    PubMed

    Schmidt, Fanny; Le Douaron, Gael; Champy, Pierre; Amar, Majid; Séon-Méniel, Blandine; Raisman-Vozari, Rita; Figadère, Bruno

    2010-07-15

    N-fatty acyl tryptamines constitute a scarce group of natural compounds mainly encountered in Annonaceous plants. No biological activity was reported so far for these rare molecules. This study investigated the neurotrophic properties of these natural tryptaminic derivatives on dopaminergic (DA) neurons in primary mesencephalic cultures. A structure-activity relationships study led us to precise the role of a nitrogen atom into the aliphatic chain conferring to the compounds a combined neuroprotective and neuritogenic activity in the nanomolar range. The potent antioxidant activity of these natural products seems to be involved in part of their mechanism of action. This study provides the first description of natural neurotrophin mimetics present in Annonaceae extracts, and led to the biological characterization of compounds, which present a potential interest in neurodegenerative diseases such as Parkinson's disease.

  1. Mixed-mode oscillations in a three time-scale model for the dopaminergic neuron

    NASA Astrophysics Data System (ADS)

    Krupa, Martin; Popović, Nikola; Kopell, Nancy; Rotstein, Horacio G.

    2008-03-01

    Mixed-mode dynamics is a complex type of dynamical behavior that has been observed both numerically and experimentally in numerous prototypical systems in the natural sciences. The compartmental Wilson-Callaway model for the dopaminergic neuron is an example of a system that exhibits a wide variety of mixed-mode patterns upon variation of a control parameter. One characteristic feature of this system is the presence of multiple time scales. In this article, we study the Wilson-Callaway model from a geometric point of view. We show that the observed mixed-mode dynamics is caused by a slowly varying canard structure. By appropriately transforming the model equations, we reduce them to an underlying three-dimensional canonical form that can be analyzed via a slight adaptation of the approach developed by M. Krupa, N. Popović, and N. Kopell (unpublished).

  2. Neuroprotective effects of pyrroloquinoline quinone against rotenone injury in primary cultured midbrain neurons and in a rat model of Parkinson's disease.

    PubMed

    Zhang, Qi; Chen, Shuhua; Yu, Shu; Qin, Jiaojiao; Zhang, Jingjing; Cheng, Qiong; Ke, Kaifu; Ding, Fei

    2016-09-01

    Mitochondrial dysfunction and oxidative stress have been implicated in the pathogenesis of Parkinson's disease (PD). Pyrroloquinoline quinone (PQQ), a redox cofactor in the mitochondrial respiratory chain, has been reported to protect SH-SY5Y cells from cytotoxicity induced by rotenone, a mitochondrial complex I inhibitor. In this study, we aimed to investigate the neuroprotective effects of PQQ against rotenone injury in primary cultured midbrain neurons and in a rat model of Parkinson's disease. Pre-treatment with PQQ prevented cultured midbrain neurons from rotenone-induced apoptosis, restored mitochondrial membrane potential, inhibited intracellular reactive oxygen species (ROS) production, and affected microtubule depolymerization. On the other hand, intraperitoneal administration of PQQ exerted protective effects on rats that had received rotenone injection into the medial forebrain bundle through decreasing the apomorphine-evoked rotation, inhibiting neuronal loss and TH down-regulation in SNc, increasing the antioxidative ability, and regulating intracellular expressions of Ndufs1 and Ndufs 4. Silencing of Ndufs1 or Ndufs4 in cultured SH-SY5Y cells or midbrain neurons reduced the neuroprotective effects of PQQ. Overall, our results suggest that PQQ neuroprotection may be mediated by the inhibition of mitochondrial dysfunction and oxidative stress as well as by the gene modulation of Ndufs1 and Ndufs4.

  3. Selective Deletion of the Leptin Receptor in Dopamine Neurons Produces Anxiogenic-like Behavior and Increases Dopaminergic Activity in Amygdala

    PubMed Central

    Liu, Jing; Perez, Stephanie M.; Zhang, Wei; Lodge, Daniel J.; Lu, Xin-Yun

    2012-01-01

    Leptin receptors (Lepr) are expressed on midbrain dopamine neurons. However, the specific role of Lepr signaling in dopamine neurons remains to be clarified. In the present study, we generated a line of conditional knockout mice lacking functional leptin receptors selectively on dopamine neurons (LeprDAT-Cre). These mice exhibit normal body weight and feeding. Behaviorally, LeprDAT-Cre mice display an anxiogenic-like phenotype in the elevated plus-maze, light-dark box, social interaction and novelty-suppressed feeding tests. Depression-related behaviors in the chronic stress-induced anhedonia, forced swim and tail-suspension tests were not affected by deletion of Lepr in dopamine neurons. In vivo electrophysiological recordings of dopamine neurons in the ventral tegmental area (VTA) revealed an increase in burst firing in LeprDAT-Cre mice. Moreover, blockade of D1-dependent dopamine transmission in the central amygdala by local microinjection of the D1 antagonist SCH23390 attenuated the anxiogenic phenotype of LeprDAT-Cre mice. These findings suggest that leptin receptor signaling in midbrain dopamine neurons has a crucial role for the expression of anxiety and for the dopamine modulation of amygdala function. PMID:21483433

  4. Glucose Levels in Culture Medium Determine Cell Death Mode in MPP+-treated Dopaminergic Neuronal Cells

    PubMed Central

    Yoon, So-Young

    2015-01-01

    We previously demonstrated that 1-methyl-4-phenylpyridinium (MPP+) causes caspase-independent, non-apoptotic death of dopaminergic (DA) neuronal cells. Here, we specifically examined whether change of glucose concentration in culture medium may play a role for determining cell death modes of DA neurons following MPP+ treatment. By incubating MN9D cells in medium containing varying concentrations of glucose (5~35 mM), we found that cells underwent a distinct cell death as determined by morphological and biochemical criteria. At 5~10 mM glucose concentration (low glucose levels), MPP+ induced typical of the apoptotic dell death accompanied with caspase activation and DNA fragmentation as well as cell shrinkage. In contrast, MN9D cells cultivated in medium containing more than 17.5 mM (high glucose levels) did not demonstrate any of these changes. Subsequently, we observed that MPP+ at low glucose levels but not high glucose levels led to ROS generation and subsequent JNK activation. Therefore, MPP+-induced cell death only at low glucose levels was significantly ameliorated following co-treatment with ROS scavenger, caspase inhibitor or JNK inhibitor. We basically confirmed the quite similar pattern of cell death in primary cultures of DA neurons. Taken together, our results suggest that a biochemically distinct cell death mode is recruited by MPP+ depending on extracellular glucose levels. PMID:26412968

  5. Multitarget intervention of Fasudil in the neuroprotection of dopaminergic neurons in MPTP-mouse model of Parkinson's disease.

    PubMed

    Zhao, Yong-fei; Zhang, Qiong; Xi, Jian-ying; Li, Yan-hua; Ma, Cun-gen; Xiao, Bao-guo

    2015-01-01

    Recent studies have demonstrated that activation of the Rho-associated kinase (ROCK) pathway participates in the dopaminergic neuron degeneration and possibly in Parkinson's disease (PD). In the current study, we tried to observe the therapeutic potential of ROCK inhibitor Fasudil against dopaminergic neuron injury in 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP)-mouse model of PD, and explore possible molecular mechanisms by enzyme-linked immunosorbent assay (ELISA), western blot and immunofluorescent assays. The results showed that MPTP-PD mice presented motor deficits, dopaminergic neuron loss, activation of inflammatory response and oxidative stress as well as ROCK and glycogen synthase kinase 3β (GSK-3β) signaling pathways. The administration of Fasudil exhibited neuroprotective effects against the dopaminergic neurons and improved the motor function recovery in the MPTP-PD mice, accompanied by the suppression of inflammatory responses (IL-1β, TNF-α, NF-κB-p65 and TLR-2), and oxidative stress (iNOS and gp91Phox), which might be associated with the inhibition of ROCK and GSK-3β activity. Simultaneously, the administration of Fasudil resulted in the shift from inflammatory M1 to anti-inflammatory/neurorepair M2 microglia. Additionally, Fasudil intervention enhanced the expression of anti-oxidative factors such as NF-E2-related factor 2 (Nrf2), Hmox as well as neurotrophic factor including GDNF. Our observations defined the neuroprotective effects of Fasudil in MPTP-PD mice, and we found a series of novel effector molecules and pathways for explaining the neuroprotective effects against dopaminergic neurons. However, a lot of investigations are warranted to further elucidate the crosstalk among Fasudil, oxidative stress, inflammatory response, GDNF and ROCK/NF-kB/Nrf2 pathways in the therapeutic potential of PD. PMID:25908255

  6. Protein Kinase D1 (PKD1) Phosphorylation Promotes Dopaminergic Neuronal Survival during 6-OHDA-Induced Oxidative Stress

    PubMed Central

    Asaithambi, Arunkumar; Ay, Muhammet; Jin, Huajun; Gosh, Anamitra; Anantharam, Vellareddy; Kanthasamy, Arthi; Kanthasamy, Anumantha G.

    2014-01-01

    Oxidative stress is a major pathophysiological mediator of degenerative processes in many neurodegenerative diseases including Parkinson’s disease (PD). Aberrant cell signaling governed by protein phosphorylation has been linked to oxidative damage of dopaminergic neurons in PD. Although several studies have associated activation of certain protein kinases with apoptotic cell death in PD, very little is known about protein kinase regulation of cell survival and protection against oxidative damage and degeneration in dopaminergic neurons. Here, we characterized the PKD1-mediated protective pathway against oxidative damage in cell culture models of PD. Dopaminergic neurotoxicant 6-hydroxy dopamine (6-OHDA) was used to induce oxidative stress in the N27 dopaminergic cell model and in primary mesencephalic neurons. Our results indicated that 6-OHDA induced the PKD1 activation loop (PKD1S744/S748) phosphorylation during early stages of oxidative stress and that PKD1 activation preceded cell death. We also found that 6-OHDA rapidly increased phosphorylation of the C-terminal S916 in PKD1, which is required for PKD1 activation loop (PKD1S744/748) phosphorylation. Interestingly, negative modulation of PKD1 activation by RNAi knockdown or by the pharmacological inhibition of PKD1 by kbNB-14270 augmented 6-OHDA-induced apoptosis, while positive modulation of PKD1 by the overexpression of full length PKD1 (PKD1WT) or constitutively active PKD1 (PKD1S744E/S748E) attenuated 6-OHDA-induced apoptosis, suggesting an anti-apoptotic role for PKD1 during oxidative neuronal injury. Collectively, our results demonstrate that PKD1 signaling plays a cell survival role during early stages of oxidative stress in dopaminergic neurons and therefore, positive modulation of the PKD1-mediated signal transduction pathway can provide a novel neuroprotective strategy against PD. PMID:24806360

  7. Aldehyde dehydrogenase 1 defines and protects a nigrostriatal dopaminergic neuron subpopulation

    PubMed Central

    Liu, Guoxiang; Yu, Jia; Ding, Jinhui; Xie, Chengsong; Sun, Lixin; Rudenko, Iakov; Zheng, Wang; Sastry, Namratha; Luo, Jing; Rudow, Gay; Troncoso, Juan C.; Cai, Huaibin

    2014-01-01

    Subpopulations of dopaminergic (DA) neurons within the substantia nigra pars compacta (SNpc) display a differential vulnerability to loss in Parkinson’s disease (PD); however, it is not clear why these subsets are preferentially selected in PD-associated neurodegeneration. In rodent SNpc, DA neurons can be divided into two subpopulations based on the expression of aldehyde dehydrogenase 1 (ALDH1A1). Here, we have shown that, in α-synuclein transgenic mice, a murine model of PD-related disease, DA neurodegeneration occurs mainly in a dorsomedial ALDH1A1-negative subpopulation that is also prone to cytotoxic aggregation of α-synuclein. Notably, the topographic ALDH1A1 pattern observed in α-synuclein transgenic mice was conserved in human SNpc. Postmortem evaluation of brains of patients with PD revealed a severe reduction of ALDH1A1 expression and neurodegeneration in the ventral ALDH1A1-positive DA subpopulations. ALDH1A1 expression was also suppressed in α-synuclein transgenic mice. Deletion of Aldh1a1 exacerbated α-synuclein–mediated DA neurodegeneration and α-synuclein aggregation, whereas Aldh1a1-null and control DA neurons were comparably susceptible to 1-methyl-4-phenylpyridinium–, glutamate-, or camptothecin-induced cell death. ALDH1A1 overexpression appeared to preferentially protect against α-synuclein–mediated DA neurodegeneration but did not rescue α-synuclein–induced loss of cortical neurons. Together, our findings suggest that ALDH1A1 protects subpopulations of SNpc DA neurons by preventing the accumulation of dopamine aldehyde intermediates and formation of cytotoxic α-synuclein oligomers. PMID:24865427

  8. Rapid regulation of depression-related behaviours by control of midbrain dopamine neurons.

    PubMed

    Chaudhury, Dipesh; Walsh, Jessica J; Friedman, Allyson K; Juarez, Barbara; Ku, Stacy M; Koo, Ja Wook; Ferguson, Deveroux; Tsai, Hsing-Chen; Pomeranz, Lisa; Christoffel, Daniel J; Nectow, Alexander R; Ekstrand, Mats; Domingos, Ana; Mazei-Robison, Michelle S; Mouzon, Ezekiell; Lobo, Mary Kay; Neve, Rachael L; Friedman, Jeffrey M; Russo, Scott J; Deisseroth, Karl; Nestler, Eric J; Han, Ming-Hu

    2013-01-24

    Ventral tegmental area (VTA) dopamine neurons in the brain's reward circuit have a crucial role in mediating stress responses, including determining susceptibility versus resilience to social-stress-induced behavioural abnormalities. VTA dopamine neurons show two in vivo patterns of firing: low frequency tonic firing and high frequency phasic firing. Phasic firing of the neurons, which is well known to encode reward signals, is upregulated by repeated social-defeat stress, a highly validated mouse model of depression. Surprisingly, this pathophysiological effect is seen in susceptible mice only, with no apparent change in firing rate in resilient individuals. However, direct evidence--in real time--linking dopamine neuron phasic firing in promoting the susceptible (depression-like) phenotype is lacking. Here we took advantage of the temporal precision and cell-type and projection-pathway specificity of optogenetics to show that enhanced phasic firing of these neurons mediates susceptibility to social-defeat stress in freely behaving mice. We show that optogenetic induction of phasic, but not tonic, firing in VTA dopamine neurons of mice undergoing a subthreshold social-defeat paradigm rapidly induced a susceptible phenotype as measured by social avoidance and decreased sucrose preference. Optogenetic phasic stimulation of these neurons also quickly induced a susceptible phenotype in previously resilient mice that had been subjected to repeated social-defeat stress. Furthermore, we show differences in projection-pathway specificity in promoting stress susceptibility: phasic activation of VTA neurons projecting to the nucleus accumbens (NAc), but not to the medial prefrontal cortex (mPFC), induced susceptibility to social-defeat stress. Conversely, optogenetic inhibition of the VTA-NAc projection induced resilience, whereas inhibition of the VTA-mPFC projection promoted susceptibility. Overall, these studies reveal novel firing-pattern- and neural

  9. PPARα regulates cholinergic-driven activity of midbrain dopamine neurons via a novel mechanism involving α7 nicotinic acetylcholine receptors.

    PubMed

    Melis, Miriam; Scheggi, Simona; Carta, Gianfranca; Madeddu, Camilla; Lecca, Salvatore; Luchicchi, Antonio; Cadeddu, Francesca; Frau, Roberto; Fattore, Liana; Fadda, Paola; Ennas, M Grazia; Castelli, M Paola; Fratta, Walter; Schilstrom, Bjorn; Banni, Sebastiano; De Montis, M Graziella; Pistis, Marco

    2013-04-01

    Ventral tegmental area dopamine neurons control reward-driven learning, and their dysregulation can lead to psychiatric disorders. Tonic and phasic activity of these dopaminergic neurons depends on cholinergic tone and activation of nicotinic acetylcholine receptors (nAChRs), particularly those containing the β2 subunit (β2*-nAChRs). Nuclear peroxisome proliferator-activated receptors type-α (PPARα) tonically regulate β2*-nAChRs and thereby control dopamine neuron firing activity. However, it is unknown how and when PPARα endogenous ligands are synthesized by dopamine cells. Using ex vivo and in vivo electrophysiological techniques combined with biochemical and behavioral analysis, we show that activation of α7-nAChRs increases in the rat VTA both the tyrosine phosphorylation of the β2 subunit of nAChRs and the levels of two PPARα endogenous ligands in a Ca(2+)-dependent manner. Accordingly, in vivo production of endogenous PPARα ligands, triggered by α7-nAChR activation, blocks in rats nicotine-induced increased firing activity of dopamine neurons and displays antidepressant-like properties. These data demonstrate that endogenous PPARα ligands are effectors of α7-nAChRs and that their neuromodulatory properties depend on phosphorylation of β2*-nAChRs on VTA dopamine cells. This reveals an autoinhibitory mechanism aimed at reducing dopamine cell overexcitation engaged during hypercholinergic drive. Our results unveil important physiological functions of nAChR/PPARα signaling in dopamine neurons and how behavioral output can change after modifications of this signaling pathway. Overall, the present study suggests PPARα as new therapeutic targets for disorders associated with unbalanced dopamine-acetylcholine systems. PMID:23554501

  10. Localization of reelin signaling pathway components in murine midbrain and striatum.

    PubMed

    Sharaf, Ahmed; Rahhal, Belal; Spittau, Björn; Roussa, Eleni

    2015-02-01

    We investigated the distribution patterns of the extracellular matrix protein Reelin and of crucial Reelin signaling components in murine midbrain and striatum. The cellular distribution of the Reelin receptors VLDLr and ApoER2, the intracellular downstream mediator Dab1, and the alternative Reelin receptor APP were analyzed at embryonic day 16, at postnatal stage 15 (P15), and in 3-month-old mice. Reelin was expressed intracellularly and extracellularly in midbrain mesencephalic dopaminergic (mDA) neurons of newborns. In the striatum, Calbindin D-28k(+) neurons exhibited Reelin intracellularly at E16 and extracellularly at P15 and 3 months. ApoER2 and VLDLr were expressed in mDA neurons at E16 and P15 and in oligodendrocytes at 3 months, whereas Dab1 and APP immunoreactivity was observed in mDA at all stages analyzed. In the striatum, Calbindin D-28k(+)/GAD67(+) inhibitory neurons expressed VLDLr, ApoER2, and Dab1 at P15, but only Dab1 at E16 and 3 months. APP was always expressed in mouse striatum in which it colocalized with Calbindin D-28k. Our data underline the importance of Reelin signalling during embryonic development and early postnatal maturation of the mesostriatal and mesocorticolimbic system, and suggest that the striatum and not the midbrain is the primary source of Reelin for midbrain neurons. The loss of ApoER2 and VLDLr expression in the mature midbrain and striatum implies that Reelin functions are restricted to migratory events and early postnatal maturation and are dispensable for the maintenance of dopaminergic neurons.

  11. Dopaminergic System in Birdsong Learning and Maintenance

    PubMed Central

    Kubikova, Lubica; Košt’ál, L’ubor

    2009-01-01

    Dopamine function in birdsong has been studied extensively in recent years. Several song and auditory nuclei are innervated by midbrain dopaminergic fibers and contain neurons with various dopamine receptors. During sexually motivated singing, activity of midbrain dopaminergic neurons in the ventral tegmental area and dopamine release in the striatal Area X, involved in song learning and maintenance, are higher. In this review we provide an overview of the dopaminergic system and neurotransmission in songbirds and the outline of possible involvement of dopamine in control of song learning, production, and maintenance. Based on both behavioral and computational biology data, we describe several models of song learning and the proposed role of dopamine in them. Special attention is given to possible role of dopamine in incentive salience (wanting) and reward prediction error signaling during song learning and maintenance, as well as the role of dopamine-mediated synaptic plasticity in reward processing. Finally, the role of dopamine in determination of personality traits in relation to birdsong is discussed. PMID:19900537

  12. α2-Null mutant mice have altered levels of neuronal activity in restricted midbrain and limbic brain regions during nicotine withdrawal as demonstrated by cfos expression.

    PubMed

    Upton, Montana; Lotfipour, Shahrdad

    2015-10-15

    Neuronal nicotinic acetylcholine receptors (nAChRs) are the primary binding sites for nicotine within the brain. Using alpha(α)2 nAChR subunit-null mutant mice, the current study evaluates whether the absence of this gene product during mecamylamine-precipitated nicotine withdrawal eliminates neuronal activity within selective midbrain and limbic brain regions, as determined by the expression of the immediate early gene, cfos. Our results demonstrate that nicotine withdrawal enhances neuronal activity within the interpeduncular nucleus and dorsal hippocampus, which is absent in mice null for α2-containing nAChRs. In contrast, we observe that α2-null mutant mice exhibit a suppression of neuronal activity in the dentate gyrus in mice undergoing nicotine withdrawal. Interestingly, α2-null mutant mice display potentiated neuronal activity specifically within the stratum lacunosum moleculare layer of the hippocampus, independent of nicotine withdrawal. Overall, our findings demonstrate that α2-null mutant mice have altered cfos expression in distinct populations of neurons within selective midbrain and limbic brain structures that mediate baseline and nicotine withdrawal-induced neuronal activity.

  13. Cannabinoid CB2 receptors modulate midbrain dopamine neuronal activity and dopamine-related behavior in mice

    PubMed Central

    Zhang, Hai-Ying; Gao, Ming; Liu, Qing-Rong; Bi, Guo-Hua; Li, Xia; Yang, Hong-Ju; Gardner, Eliot L.; Wu, Jie

    2014-01-01

    Cannabinoid CB2 receptors (CB2Rs) have been recently reported to modulate brain dopamine (DA)-related behaviors; however, the cellular mechanisms underlying these actions are unclear. Here we report that CB2Rs are expressed in ventral tegmental area (VTA) DA neurons and functionally modulate DA neuronal excitability and DA-related behavior. In situ hybridization and immunohistochemical assays detected CB2 mRNA and CB2R immunostaining in VTA DA neurons. Electrophysiological studies demonstrated that activation of CB2Rs by JWH133 or other CB2R agonists inhibited VTA DA neuronal firing in vivo and ex vivo, whereas microinjections of JWH133 into the VTA inhibited cocaine self-administration. Importantly, all of the above findings observed in WT or CB1−/− mice are blocked by CB2R antagonist and absent in CB2−/− mice. These data suggest that CB2R-mediated reduction of VTA DA neuronal activity may underlie JWH133's modulation of DA-regulated behaviors. PMID:25368177

  14. Midbrain dopamine neurons signal aversion in a reward-context-dependent manner

    PubMed Central

    Matsumoto, Hideyuki; Tian, Ju; Uchida, Naoshige; Watabe-Uchida, Mitsuko

    2016-01-01

    Dopamine is thought to regulate learning from appetitive and aversive events. Here we examined how optogenetically-identified dopamine neurons in the lateral ventral tegmental area of mice respond to aversive events in different conditions. In low reward contexts, most dopamine neurons were exclusively inhibited by aversive events, and expectation reduced dopamine neurons’ responses to reward and punishment. When a single odor predicted both reward and punishment, dopamine neurons’ responses to that odor reflected the integrated value of both outcomes. Thus, in low reward contexts, dopamine neurons signal value prediction errors (VPEs) integrating information about both reward and aversion in a common currency. In contrast, in high reward contexts, dopamine neurons acquired a short-latency excitation to aversive events that masked their VPE signaling. Our results demonstrate the importance of considering the contexts to examine the representation in dopamine neurons and uncover different modes of dopamine signaling, each of which may be adaptive for different environments. DOI: http://dx.doi.org/10.7554/eLife.17328.001 PMID:27760002

  15. Involvement of the mitochondrial apoptotic pathway and nitric oxide synthase in dopaminergic neuronal death induced by 6-hydroxydopamine and lipopolysaccharide.

    PubMed

    Singh, Sarika; Kumar, Sachin; Dikshit, Madhu

    2010-01-01

    The primary pathology in Parkinson's disease patients is significant loss of dopaminergic neurons in the substantia nigra through multiple mechanisms. We previously have demonstrated the involvement of nitric oxide (NO) in the dopaminergic neurodegeneration induced by 6-hydroxydopamine (6-OHDA) and lipopolysaccharide (LPS) in rats. The present study was undertaken to investigate further the role of NO in the mitochondria-mediated apoptosis of dopaminergic neurons during the early time period after administration of 6-OHDA and LPS. Measurement of dopamine and its metabolites, TH immunolabeling, cytochrome-c release, mitochondrial complex-I and caspase-3 activity assessment was performed in both the 6-OHDA- and LPS-induced experimental models of Parkinson's disease. Significant decreases in dopamine, 3,4-dihydroxyphenylacetic acid (DOPAC), homovanillic acid (HVA), tyrosine hydroxylase (TH) immunolabeling and mitochondrial complex-I activity were observed, with increase in cytochrome-c release and caspase-3 activation. Dopmaine and its metabolite levels, mitochondrial complex-I activity and caspase-3 activity were significantly reversed with treatment of the NOS inhibitor, L-NAME. The reduction in the extent of cytochrome-c release responded variably to NOS inhibition in both the models. The results obtained suggest that NO contributes to mitochondria-mediated neuronal apoptosis in the dopaminergic neurodegeneration induced by 6-OHDA and LPS in rats. PMID:20594414

  16. Engrailed 1 shapes the dopaminergic and serotonergic landscape through proper isthmic organizer maintenance and function.

    PubMed

    Kouwenhoven, Willemieke M; Veenvliet, Jesse V; van Hooft, Johannes A; van der Heide, L P; Smidt, Marten P

    2016-01-01

    The isthmic organizer (IsO) is a signaling center that specifies the correct and distinct embryonic development of the dopaminergic midbrain and serotonergic hindbrain. The IsO is a linear boundary between the two brain regions, emerging at around embryonic day 7-8 of murine embryonic development, that shapes its surroundings through the expression of instructive signals such as Wnt and growth factors. Homeobox transcription factor engrailed 1 (En1) is present in midbrain and rostral hindbrain (i.e. rhombomere 1, R1). Its expression spans the IsO, and it is known to be an important survival factor for both dopaminergic and serotonergic neurons. Erroneous composition of dopaminergic neurons in the midbrain or serotonergic neurons in the hindbrain is associated with severe pathologies such as Parkinson's disease, depression or autism. Here we investigated the role of En1 in early mid-hindbrain development, using multiple En1-ablated mouse models as well as lineage-tracing techniques, and observed the appearance of ectopic dopaminergic neurons, indistinguishable from midbrain dopaminergic neurons based on molecular profile and intrinsic electrophysiological properties. We propose that this change is the direct result of a caudal relocation of the IsO as represented by ectopic presence of Fgf8, Otx2, Wnt1 and canonical Wnt-signalling. Our work suggests a newly-discovered role for En1: the repression of Otx2, Wnt1 and canonical Wnt-signaling in R1. Overall, our results suggest that En1 is essential for proper IsO maintenance and function. PMID:26879466

  17. Kappa opioid receptors on dopaminergic neurons are necessary for kappa-mediated place aversion.

    PubMed

    Chefer, Vladimir I; Bäckman, Cristina M; Gigante, Eduardo D; Shippenberg, Toni S

    2013-12-01

    Kappa-opioid receptor (KOR) agonists have dysphoric properties in humans and are aversive in rodents. This has been attributed to the activation of KORs within the mesolimbic dopamine (DA) system. However, the role of DA in KOR-mediated aversion and stress remains divisive as recent studies have suggested that activation of KORs on serotonergic neurons may be sufficient to mediate aversive behaviors. To address this question, we used conditional knock-out (KO) mice with KORs deleted on DA neurons (DAT(Cre/wt)/KOR(loxp/loxp), or DATCre-KOR KO). In agreement with previous findings, control mice (DAT(Cre/wt)/KOR(wt/wt) or WT) showed conditioned place aversion (CPA) to the systemically administered KOR agonist U69,593. In contrast, DATCre-KOR KO mice did not exhibit CPA with this same agonist. In addition, in vivo microdialysis showed that systemic U69,593 decreased overflow of DA in the nucleus accumbens (NAc) in WT mice, but had no effect in DATCre-KOR KO mice. Intra- ventral tegmental area (VTA) delivery of KORs using an adeno-associated viral gene construct, resulted in phenotypic rescue of the KOR-mediated NAc DA response and aversive behavior in DATCre-KOR KO animals. These results provide evidence that KORs on VTA DA neurons are necessary to mediate KOR-mediated aversive behavior. Therefore, our data, along with recent findings, suggest that the neuronal mechanisms of KOR-mediated aversive behavior may include both dopaminergic and serotonergic components. PMID:23921954

  18. Phosphodiesterase 7 Inhibition Induces Dopaminergic Neurogenesis in Hemiparkinsonian Rats

    PubMed Central

    Morales-Garcia, Jose A.; Alonso-Gil, Sandra; Gil, Carmen; Martinez, Ana; Santos, Angel

    2015-01-01

    Parkinson’s disease is characterized by a loss of dopaminergic neurons in a specific brain region, the ventral midbrain. Parkinson’s disease is diagnosed when approximately 50% of the dopaminergic neurons of the substantia nigra pars compacta (SNpc) have degenerated and the others are already affected by the disease. Thus, it is conceivable that all therapeutic strategies, aimed at neuroprotection, start too late. Therefore, an urgent medical need exists to discover new pharmacological targets and novel drugs with disease-modifying properties. In this regard, modulation of endogenous adult neurogenesis toward a dopaminergic phenotype might provide a new strategy to target Parkinson’s disease by partially ameliorating the dopaminergic cell loss that occurs in this disorder. We have previously shown that a phosphodiesterase 7 (PDE7) inhibitor, S14, exerts potent neuroprotective and anti-inflammatory effects in different rodent models of Parkinson’s disease, indicating that this compound could represent a novel therapeutic agent to stop the dopaminergic cell loss that occurs during the progression of the disease. In this report we show that, in addition to its neuroprotective effect, the PDE7 inhibitor S14 is also able to induce endogenous neuroregenerative processes toward a dopaminergic phenotype. We describe a population of actively dividing cells that give rise to new neurons in the SNpc of hemiparkinsonian rats after treatment with S14. In conclusion, our data identify S14 as a novel regulator of dopaminergic neuron generation. Significance Parkinson’s disease is a neurodegenerative disorder characterized by the loss of dopaminergic neurons in the ventral midbrain. Currently, no cure and no effective disease-modifying therapy are available for Parkinson’s disease; therefore, an urgent medical need exists to discover new pharmacological targets and novel drugs for the treatment of this disorder. The present study reports that an inhibitor of the enzyme

  19. Diversity of Transgenic Mouse Models for Selective Targeting of Midbrain Dopamine Neurons

    PubMed Central

    Lammel, Stephan; Steinberg, Elizabeth E.; Földy, Csaba; Wall, Nicholas R.; Beier, Kevin; Luo, Liqun; Malenka, Robert C.

    2015-01-01

    Ventral tegmental area (VTA) dopamine (DA) neurons have been implicated in reward, aversion, salience, cognition, and several neuropsychiatric disorders. Optogenetic approaches involving transgenic Cre-driver mouse lines provide powerful tools for dissecting DA-specific functions. However, the emerging complexity of VTA circuits requires Cre-driver mouse lines that restrict transgene expression to a precisely defined cell population. Because of recent work reporting that VTA DA neurons projecting to the lateral habenula release GABA, but not DA, we performed an extensive anatomical, molecular, and functional characterization of prominent DA transgenic mouse driver lines. We find that transgenes under control of the tyrosine hydroxylase, but not the dopamine transporter, promoter exhibit dramatic non-DA cell-specific expression patterns within and around VTA nuclei. Our results demonstrate how Cre expression in unintentionally targeted cells in transgenic mouse lines can confound the interpretation of supposedly cell-type-specific experiments. This Matters Arising paper is in response to Stamatakis et al. (2013), published in Neuron. See also the Matters Arising Response paper by Stuber et al. (2015), published concurrently with this Matters Arising in Neuron. PMID:25611513

  20. Phase-Sensitive Midbrain Neurons in Eigenmannia: Neural Correlates of the Jamming Avoidance Response

    NASA Astrophysics Data System (ADS)

    Bastian, Joseph; Heiligenberg, Walter

    1980-08-01

    Neurons in the torus semicircularis of the weakly electric fish Eigenmannia encode phase differences between sinusoidal electrical stimuli received in different body regions. These fish normally experience time-varying phase differences when the electric organ discharge fields of two or more individuals overlap. These phase differences supply information necessary for the animal's jamming avoidance behavior.

  1. Caffeic acid phenethyl ester protects against the dopaminergic neuronal loss induced by 6-hydroxydopamine in rats.

    PubMed

    Barros Silva, R; Santos, N A G; Martins, N M; Ferreira, D A S; Barbosa, F; Oliveira Souza, V C; Kinoshita, A; Baffa, O; Del-Bel, E; Santos, A C

    2013-03-13

    Caffeic acid phenethyl ester (CAPE) is a botanical compound abundant in honeybees' propolis. It has anti-inflammatory, antiviral, antioxidant, immunomodulatory and antitumor properties. Its beneficial effects against neurodegenerative diseases, including Parkinson's disease, have also been suggested and some mechanisms have been proposed. Mitochondrial damage and oxidative stress are critical events in neurodegeneration. Release of cytochrome c from mitochondria to cytosol and the downstream activation of caspase-3 have been suggested as targets of the protective mechanism of CAPE. Most of the studies addressing the protective effect of CAPE have been performed in cell culture. This is the first study to demonstrate the protective effect of CAPE against the dopaminergic neuronal loss induced by 6-hydroxydopamine (6-OHDA) in rats. It also demonstrates, for the first time, the inhibitory effect of CAPE on mitochondrial permeability transition (MPT), a mediator of neuronal death that triggers cytochrome c release and caspase-3 activation. Scavenging of reactive oxygen species (ROS) and metal chelation was demonstrated in the brain-affected areas of the rats treated with 6-OHDA and CAPE. Additionally, we demonstrated that CAPE does not affect brain mitochondrial function. Based on these findings and on its ability to cross the blood-brain barrier, CAPE is a promising compound to treat Parkinson's and other neurodegenerative diseases.

  2. The cellular and genomic response of rat dopaminergic neurons (N27) to coated nanosilver.

    PubMed

    Chorley, Brian; Ward, William; Simmons, Steven O; Vallanat, Beena; Veronesi, Bellina

    2014-12-01

    This study examined if nanosilver (nanoAg) of different sizes and coatings were differentially toxic to oxidative stress-sensitive neurons. N27 rat dopaminergic neurons were exposed (0.5-5 ppm) to a set of nanoAg of different sizes (10nm, 75 nm) and coatings (PVP, citrate) and their physicochemical, cellular and genomic response measured. Both coatings retained their manufactured sizes in culture media, however, the zeta potentials of both sizes of PVP-coated nanoAg were significantly less electronegative than those of their citrate-coated counterparts. Markers of oxidative stress, measured at 0.5-5 ppm exposure concentrations, indicated that caspase 3/7 activity and glutathione levels were significantly increased by both sizes of PVP-coated nanoAg and by the 75 nm citrate-coated nanoAg. Both sizes of PVP-coated nanoAg also increased intra-neuronal nitrite levels and activated ARE/NRF2, a reporter gene for the oxidative stress-protection pathway. Global gene expression on N27 neurons, exposed to 0.5 ppm for 8h, indicated a dominant effect by PVP-coated nanoAg over citrate. The 75 nm PVP-coated material altered 196 genes that were loosely associated with mitochondrial dysfunction. In contrast, the 10nm PVP-coated nanoAg altered 82 genes that were strongly associated with NRF2 oxidative stress pathways. Less that 20% of the affected genes were shared by both sizes of PVP-coated nanoAg. These cellular and genomic findings suggest that PVP-coated nanoAg is more bioactive than citrate-coated nanoAg. Although both sizes of PVP-coated nanoAg altered the genomic expression of N27 neurons along oxidative stress pathways, exposure to the 75 nm nanoAg favored pathways associated with mitochondrial dysfunction, whereas the 10nm PVP-coated nanoAg affected NRF2 neuronal protective pathways.

  3. Multiphasic temporal dynamics in responses of midbrain dopamine neurons to appetitive and aversive stimuli.

    PubMed

    Fiorillo, Christopher D; Song, Minryung R; Yun, Sora R

    2013-03-13

    The transient response of dopamine neurons has been described as reward prediction error (RPE), with activation or suppression by events that are better or worse than expected, respectively. However, at least a minority of neurons are activated by aversive or high-intensity stimuli, casting doubt on the generality of RPE in describing the dopamine signal. To overcome limitations of previous studies, we studied neuronal responses to a wider variety of high-intensity and aversive stimuli, and we quantified and controlled aversiveness through a choice task in which macaques sacrificed juice to avoid aversive stimuli. Whereas most previous work has portrayed the RPE as a single impulse or "phase," here we demonstrate its multiphasic temporal dynamics. Aversive or high-intensity stimuli evoked a triphasic sequence of activation-suppression-activation extending over a period of 40-700 ms. The initial activation at short latencies (40-120 ms) reflected sensory intensity. The influence of motivational value became dominant between 150 and 250 ms, with activation in the case of appetitive stimuli, and suppression in the case of aversive and neutral stimuli. The previously unreported late activation appeared to be a modest "rebound" after strong suppression. Similarly, strong activation by reward was often followed by suppression. We suggest that these "rebounds" may result from overcompensation by homeostatic mechanisms in some cells. Our results are consistent with a realistic RPE, which evolves over time through a dynamic balance of excitation and inhibition.

  4. Desipramine Protects Neuronal Cell Death and Induces Heme Oxygenase-1 Expression in Mes23.5 Dopaminergic Neurons

    PubMed Central

    Lin, Hsiao-Yun; Yeh, Wei-Lan; Huang, Bor-Ren; Lin, Chingju; Lai, Chih-Ho; Lin, Ho; Lu, Dah-Yuu

    2012-01-01

    Background Desipramine is known principally as a tricyclic antidepressant drug used to promote recovery of depressed patients. It has also been used in a number of other psychiatric and medical conditions. The present study is the first to investigate the neuroprotective effect of desipramine. Methodology/Principal Findings Mes23.5 dopaminergic cells were used to examine neuroprotective effect of desipramine. Western blot, reverse transcription-PCR, MTT assay, siRNA transfection and electrophoretic mobility shift assay (EMSA) were carried out to assess the effects of desipramine. Desipramine induces endogenous anti-oxidative enzyme, heme oxygenase-1 (HO-1) protein and mRNA expression in concentration- and time-dependent manners. A different type of antidepressant SSRI (selective serotonin reuptake inhibitor), fluoxetine also shows similar effects of desipramine on HO-1 expression. Moreover, desipramine induces HO-1 expression through activation of ERK and JNK signaling pathways. Desipramine also increases NF-E2-related factor-2 (Nrf2) accumulation in the nucleus and enhances Nrf2-DNA binding activity. Moreover, desipramine-mediated increase of HO-1 expression is reduced by transfection with siRNA against Nrf2. On the other hand, pretreatment of desipramine protects neuronal cells against rotenone- and 6-hydroxydopamine (6-OHDA)-induced neuronal death. Furthermore, inhibition of HO-1 activity by a HO-1 pharmacological inhibitor, ZnPP IX, attenuates the neuroprotective effect of desipramine. Otherwise, activation of HO-1 activity by HO-1 activator and inducer protect 6-OHDA-induced neuronal death. Conclusions/Significance These findings suggest that desipramine-increased HO-1 expression is mediated by Nrf2 activation through the ERK and JNK signaling pathways. Our results also suggest that desipramine provides a novel effect of neuroprotection, and neurodegenerative process might play an important role in depression disorder. PMID:23209658

  5. Orexins contribute to restraint stress-induced cocaine relapse by endocannabinoid-mediated disinhibition of dopaminergic neurons.

    PubMed

    Tung, Li-Wei; Lu, Guan-Ling; Lee, Yen-Hsien; Yu, Lung; Lee, Hsin-Jung; Leishman, Emma; Bradshaw, Heather; Hwang, Ling-Ling; Hung, Ming-Shiu; Mackie, Ken; Zimmer, Andreas; Chiou, Lih-Chu

    2016-01-01

    Orexins are associated with drug relapse in rodents. Here, we show that acute restraint stress in mice activates lateral hypothalamic (LH) orexin neurons, increases levels of orexin A and 2-arachidonoylglycerol (2-AG) in the ventral tegmental area (VTA), and reinstates extinguished cocaine-conditioned place preference (CPP). This stress-induced reinstatement of cocaine CPP depends on type 1 orexin receptors (OX1Rs), type 1 cannabinoid receptors (CB1Rs) and diacylglycerol lipase (DAGL) in the VTA. In dopaminergic neurons of VTA slices, orexin A presynaptically inhibits GABAergic transmission. This effect is prevented by internal GDP-β-S or inhibiting OX1Rs, CB1Rs, phospholipase C or DAGL, and potentiated by inhibiting 2-AG degradation. These results suggest that restraint stress activates LH orexin neurons, releasing orexins into the VTA to activate postsynaptic OX1Rs of dopaminergic neurons and generate 2-AG through a Gq-protein-phospholipase C-DAGL cascade. 2-AG retrogradely inhibits GABA release through presynaptic CB1Rs, leading to VTA dopaminergic disinhibition and reinstatement of cocaine CPP. PMID:27448020

  6. Orexins contribute to restraint stress-induced cocaine relapse by endocannabinoid-mediated disinhibition of dopaminergic neurons

    PubMed Central

    Tung, Li-Wei; Lu, Guan-Ling; Lee, Yen-Hsien; Yu, Lung; Lee, Hsin-Jung; Leishman, Emma; Bradshaw, Heather; Hwang, Ling-Ling; Hung, Ming-Shiu; Mackie, Ken; Zimmer, Andreas; Chiou, Lih-Chu

    2016-01-01

    Orexins are associated with drug relapse in rodents. Here, we show that acute restraint stress in mice activates lateral hypothalamic (LH) orexin neurons, increases levels of orexin A and 2-arachidonoylglycerol (2-AG) in the ventral tegmental area (VTA), and reinstates extinguished cocaine-conditioned place preference (CPP). This stress-induced reinstatement of cocaine CPP depends on type 1 orexin receptors (OX1Rs), type 1 cannabinoid receptors (CB1Rs) and diacylglycerol lipase (DAGL) in the VTA. In dopaminergic neurons of VTA slices, orexin A presynaptically inhibits GABAergic transmission. This effect is prevented by internal GDP-β-S or inhibiting OX1Rs, CB1Rs, phospholipase C or DAGL, and potentiated by inhibiting 2-AG degradation. These results suggest that restraint stress activates LH orexin neurons, releasing orexins into the VTA to activate postsynaptic OX1Rs of dopaminergic neurons and generate 2-AG through a Gq-protein-phospholipase C-DAGL cascade. 2-AG retrogradely inhibits GABA release through presynaptic CB1Rs, leading to VTA dopaminergic disinhibition and reinstatement of cocaine CPP. PMID:27448020

  7. α6-Containing Nicotinic Acetylcholine Receptors in Midbrain Dopamine Neurons are Poised to Govern Dopamine-Mediated Behaviors and Synaptic Plasticity

    PubMed Central

    Berry, Jennifer N.; Engle, Staci E.; McIntosh, J. Michael; Drenan, Ryan M.

    2015-01-01

    Acetylcholine acts through nicotinic and muscarinic acetylcholine (ACh) receptors in ventral midbrain and striatal areas to influence dopamine (DA) transmission. This cholinergic control of DA transmission is important for processes such as attention and motivated behavior, and is manipulated by nicotine in tobacco products. Identifying and characterizing the key ACh receptors involved in cholinergic control of DA transmission could lead to small molecule therapeutics for treating disorders involving attention, addiction, Parkinson’s disease, and schizophrenia. α6-containing nicotinic acetylcholine receptors (nAChRs) are highly and specifically expressed in midbrain DA neurons, making them an attractive drug target. Here, we used genetic, pharmacological, behavioral, and biophysical approaches to study this nAChR subtype. For many experiments, we used mice expressing mutant α6 nAChRs (“α6L9S” mice) that increase the sensitivity of these receptors to agonists such as ACh and nicotine. Taking advantage of a simple behavioral phenotype exhibited by α6L9S mice, we compared the ability of full versus partial α6* nAChR agonists to activate α6* nAChRs in vivo. Using local infusions of both agonists and antagonists into brain, we demonstrate that neurons and nAChRs in the midbrain are sufficient to account for this behavioral response. To complement these behavioral studies, we studied the ability of in vivo α6* nAChR activation to support plasticity changes in midbrain DA neurons that are relevant to behavioral sensitization and addiction. By coupling local infusion of drugs and brain slice patch clamp electrophysiology, we show that activating α6* nAChRs in midbrain DA areas is sufficient to enhance glutamatergic transmission in VTA DA neurons. Together, these results from in vivo studies strongly suggest that α6* nAChRs expressed by VTA DA neurons are positioned to strongly influence both DA-mediated behaviors and the induction of synaptic plasticity by

  8. α6-Containing nicotinic acetylcholine receptors in midbrain dopamine neurons are poised to govern dopamine-mediated behaviors and synaptic plasticity.

    PubMed

    Berry, J N; Engle, S E; McIntosh, J M; Drenan, R M

    2015-09-24

    Acetylcholine (ACh) acts through nicotinic and muscarinic ACh receptors in the ventral midbrain and striatal areas to influence dopamine (DA) transmission. This cholinergic control of DA transmission is important for processes such as attention and motivated behavior, and is manipulated by nicotine in tobacco products. Identifying and characterizing the key ACh receptors involved in cholinergic control of DA transmission could lead to small molecule therapeutics for treating disorders involving attention, addiction, Parkinson's disease, and schizophrenia. α6-Containing nicotinic acetylcholine receptors (nAChRs) are highly and specifically expressed in midbrain DA neurons, making them an attractive drug target. Here, we used genetic, pharmacological, behavioral, and biophysical approaches to study this nAChR subtype. For many experiments, we used mice expressing mutant α6 nAChRs ("α6L9S" mice) that increase the sensitivity of these receptors to agonists such as ACh and nicotine. Taking advantage of a simple behavioral phenotype exhibited by α6L9S mice, we compared the ability of full versus partial α6(∗) nAChR agonists to activate α6(∗) nAChRs in vivo. Using local infusions of both agonists and antagonists into the brain, we demonstrate that neurons and nAChRs in the midbrain are sufficient to account for this behavioral response. To complement these behavioral studies, we studied the ability of in vivo α6(∗) nAChR activation to support plasticity changes in midbrain DA neurons that are relevant to behavioral sensitization and addiction. By coupling local infusion of drugs and brain slice patch-clamp electrophysiology, we show that activating α6(∗) nAChRs in midbrain DA areas is sufficient to enhance glutamatergic transmission in ventral tegmental area (VTA) DA neurons. Together, these results from in vivo studies strongly suggest that α6(∗) nAChRs expressed by VTA DA neurons are positioned to strongly influence both DA-mediated behaviors and the

  9. Subcellular Distribution of M2-muscarinic Receptors in Relation to Dopaminergic Neurons of the Rat Ventral Tegmental Area

    PubMed Central

    Garzón, Miguel; Pickel, Virginia M.

    2008-01-01

    Acetylcholine can affect cognitive functions and reward, in part, through activation of muscarinic receptors in the ventral tegmental area (VTA) to evoke changes in mesocorticolimbic dopaminergic transmission. Of the known muscarinic receptor subtypes present in the VTA, the M2 receptor (M2R) is most implicated in autoregulation, and also may play a heteroreceptor role in regulation of the output of the dopaminergic neurons. We sought to determine the functionally relevant sites for M2R activation in relation to VTA dopaminergic neurons by examining the electron microscopic immunolabeling of M2R and the dopamine transporter (DAT) in the VTA of rat brain. The M2R was localized to endomembranes in DAT-containing somatodendritic profiles, but showed a more prominent, size-dependent plasmalemmal location in non-dopaminergic dendrites. M2R also was located on the plasma membrane of morphologically heterogenous axon terminals contacting unlabeled as well as M2R or DAT-labeled dendrites. Some of these terminals formed asymmetric synapses resembling those of cholinergic terminals in the VTA. The majority, however, formed symmetric, inhibitory-type synapses, or were apposed without recognized junctions. Our results provide the first ultrastructural evidence that the M2R is expressed, but largely not available for local activation, on the plasma membrane of VTA dopaminergic neurons. Instead, the M2R in this region has a distribution suggesting more indirect regulation of mesocorticolimbic transmission through autoregulation of acetylcholine release and changes in the physiological activity or release of other, largely inhibitory transmitters. These findings could have implications for understanding the muscarinic control of cognitive and goal-directed behaviors within the VTA. PMID:16927256

  10. Hypothalamic dopaminergic neurons in an animal model of seasonal affective disorder.

    PubMed

    Deats, Sean P; Adidharma, Widya; Yan, Lily

    2015-08-18

    Light has profound effects on mood regulation as exemplified in seasonal affective disorder (SAD) and the therapeutic benefits of light therapy. However, the underlying neural pathways through which light regulates mood are not well understood. Our previous work has developed the diurnal grass rat, Arvicanthis niloticus, as an animal model of SAD. Following housing conditions of either 12:12 h dim light:dark (DLD) or 8:16 h short photoperiod (SP), which mimic the lower light intensity or short day-length of winter, respectively, grass rats exhibit an increase in depression-like behavior compared to those housed in a 12:12 h bright light:dark (BLD) condition. Furthermore, we have shown that the orexinergic system is involved in mediating the effects of light on mood and anxiety. To explore other potential neural substrates involved in the depressive phenotype, the present study examined hypothalamic dopaminergic (DA) and somatostatin (SST) neurons in the brains of grass rats housed in DLD, SP and BLD. Using immunostaining for tyrosine hydroxylase (TH) and SST, we found that the number of TH- and SST-ir cells in the hypothalamus was significantly lower in the DLD and SP groups compared to the BLD group. We also found that treating BLD animals with a selective orexin receptor 1 (OX1R) antagonist SB-334867 significantly reduced the number of hypothalamic TH-ir cells. The present study suggests that the hypothalamic DA neurons are sensitive to daytime light deficiency and are regulated by an orexinergic pathway. The results support the hypothesis that the orexinergic pathways mediate the effects of light on other neuronal systems that collectively contribute to light-dependent changes in the affective state.

  11. Hypothalamic Dopaminergic Neurons in an Animal Model of Seasonal Affective Disorder

    PubMed Central

    Deats, Sean P.; Adidharma, Widya; Yan, Lily

    2015-01-01

    Light has profound effects on mood regulation as exemplified in Seasonal Affective Disorder (SAD) and the therapeutic benefits of light therapy. However, the underlying neural pathways through which light regulates mood are not well understood. Our previous work has developed the diurnal grass rat, Arvicanthis niloticus, as an animal model of SAD. Following housing conditions of either 12:12hr Dim Light:Dark (DLD) or 8:16hr Short Photoperiod (SP), which mimic the lower light intensity or short day-length of winter, respectively, grass rats exhibit an increase in depression-like behavior compared to those housed in a 12:12hr Bright Light:Dark (BLD) condition. Furthermore, we revealed that the orexinergic system is involved in mediating the effects of light on mood and anxiety. To explore other potential neural substrates involved in the depressive phenotype, the present study examined hypothalamic dopaminergic (DA) and somatostatin (SST) neurons in the brains of grass rats housed in DLD, SP and BLD. Using immunostaining for tyrosine hydroxylase (TH) and SST, we found that the number of TH- and SST-ir cells in the hypothalamus was significantly lower in the DLD and SP groups compared to the BLD group. We also found that treating BLD animals with a selective orexin receptor 1 (OX1R) antagonist SB-334867 significantly reduced the number of hypothalamic TH-ir cells. The present study suggests that the hypothalamic DA neurons are sensitive to daytime light deficiency and are regulated by an orexinergic pathway. The results support the hypothesis that the orexinergic pathways mediate the effects of light on other neuronal systems that collectively contribute to light-dependent changes in the affective state. PMID:26116821

  12. Inhibition of kynurenine aminotransferase II reduces activity of midbrain dopamine neurons.

    PubMed

    Linderholm, Klas R; Alm, Maximilian Tufvesson; Larsson, Markus K; Olsson, Sara K; Goiny, Michel; Hajos, Mihaly; Erhardt, Sophie; Engberg, Göran

    2016-03-01

    Kynurenic acid (KYNA), a neuroactive metabolite of tryptophan, is elevated in the brain of patients with psychotic disorders. Therefore, lowering brain KYNA levels might be a novel approach in the treatment of psychotic disorders. The present in vivo electrophysiological study aimed to investigate the effect of an inhibitor of kynurenine aminotransferase (KAT) II, the primary enzyme for KYNA synthesis, on dopamine (DA) neurons in the ventral tegmental area (VTA). Acute administration of the KAT II inhibitor PF-04859989 (5 or 10 mg/kg) was associated with a short-onset, time-dependent decrease in firing rate and burst activity of DA neurons, both parameters reaching a 50% reduction within 45 min. Furthermore, PF-04859989 reduced the number of spontaneously active DA cells as measured 4-6 after administration. Pretreatment with d-cycloserine (30 mg/kg) or CGP-52432 (10 mg/kg) prevented the inhibitory action of PF-04859989 (5 mg/kg) on firing rate and burst firing activity. In contrast, pretreatment with methyllycaconitine (MLA, 4 mg/kg) did not change the response, whereas picrotoxin (4.5 mg/kg) partially prevented the inhibitory effects of PF-04859989 (5 mg/kg, i.v.). Our results show that a specific inhibition of KAT II is associated with a marked reduction in VTA DA firing activity. This effect appears to be specifically executed by NMDA-receptors and mediated indirectly via a GABA(B)-receptor-induced disinhibition of DA neurons. Our findings are in line with the view that endogenous KYNA, by modulation of the NMDA-receptor, exerts important physiological roles in the brain.

  13. Dopaminergic neuron-specific deletion of p53 gene is neuroprotective in an experimental Parkinson's disease model.

    PubMed

    Qi, Xin; Davis, Brandon; Chiang, Yung-Hsiao; Filichia, Emily; Barnett, Austin; Greig, Nigel H; Hoffer, Barry; Luo, Yu

    2016-09-01

    p53, a stress response gene, is involved in diverse cell death pathways and its activation has been implicated in the pathogenesis of Parkinson's disease (PD). However, whether the neuronal p53 protein plays a direct role in regulating dopaminergic (DA) neuronal cell death is unknown. In this study, in contrast to the global inhibition of p53 function by pharmacological inhibitors and in traditional p53 knock-out (KO) mice, we examined the effect of DA specific p53 gene deletion in DAT-p53KO mice. These DAT-p53KO mice did not exhibit apparent changes in the general structure and neuronal density of DA neurons during late development and in aging. However, in DA-p53KO mice treated with the neurotoxin 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP), we found that the induction of Bax and p53 up-regulated modulator of apoptosis (PUMA) mRNA and protein levels by MPTP were diminished in both striatum and substantia nigra of these mice. Notably, deletion of the p53 gene in DA neurons significantly reduced dopaminergic neuronal loss in substantia nigra, dopaminergic neuronal terminal loss at striatum and, additionally, decreased motor deficits in mice challenged with MPTP. In contrast, there was no difference in astrogliosis between WT and DAT-p53KO mice in response to MPTP treatment. These findings demonstrate a specific contribution of p53 activation in DA neuronal cell death by MPTP challenge. Our results further support the role of programmed cell death mediated by p53 in this animal model of PD and identify Bax, BAD and PUMA genes as downstream targets of p53 in modulating DA neuronal death in the in vivo MPTP-induced PD model. We deleted p53 gene in dopaminergic neurons in late developmental stages and found that DA specific p53 deletion is protective in acute MPTP animal model possibly through blocking MPTP-induced BAX and PUMA up-regulation. Astrocyte activation measured by GFAP positive cells and GFAP gene up-regulation in the striatum shows no difference

  14. Dopaminergic neuron-specific deletion of p53 gene is neuroprotective in an experimental Parkinson's disease model.

    PubMed

    Qi, Xin; Davis, Brandon; Chiang, Yung-Hsiao; Filichia, Emily; Barnett, Austin; Greig, Nigel H; Hoffer, Barry; Luo, Yu

    2016-09-01

    p53, a stress response gene, is involved in diverse cell death pathways and its activation has been implicated in the pathogenesis of Parkinson's disease (PD). However, whether the neuronal p53 protein plays a direct role in regulating dopaminergic (DA) neuronal cell death is unknown. In this study, in contrast to the global inhibition of p53 function by pharmacological inhibitors and in traditional p53 knock-out (KO) mice, we examined the effect of DA specific p53 gene deletion in DAT-p53KO mice. These DAT-p53KO mice did not exhibit apparent changes in the general structure and neuronal density of DA neurons during late development and in aging. However, in DA-p53KO mice treated with the neurotoxin 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP), we found that the induction of Bax and p53 up-regulated modulator of apoptosis (PUMA) mRNA and protein levels by MPTP were diminished in both striatum and substantia nigra of these mice. Notably, deletion of the p53 gene in DA neurons significantly reduced dopaminergic neuronal loss in substantia nigra, dopaminergic neuronal terminal loss at striatum and, additionally, decreased motor deficits in mice challenged with MPTP. In contrast, there was no difference in astrogliosis between WT and DAT-p53KO mice in response to MPTP treatment. These findings demonstrate a specific contribution of p53 activation in DA neuronal cell death by MPTP challenge. Our results further support the role of programmed cell death mediated by p53 in this animal model of PD and identify Bax, BAD and PUMA genes as downstream targets of p53 in modulating DA neuronal death in the in vivo MPTP-induced PD model. We deleted p53 gene in dopaminergic neurons in late developmental stages and found that DA specific p53 deletion is protective in acute MPTP animal model possibly through blocking MPTP-induced BAX and PUMA up-regulation. Astrocyte activation measured by GFAP positive cells and GFAP gene up-regulation in the striatum shows no difference

  15. Differential Effects of Toluene and Ethanol on Dopaminergic Neurons of the Ventral Tegmental Area

    PubMed Central

    Nimitvilai, Sudarat; You, Chang; Arora, Devinder S.; McElvain, Maureen A.; Vandegrift, Bertha J.; Brodie, Mark S.; Woodward, John J.

    2016-01-01

    Drugs of abuse increase the activity of dopaminergic neurons of the ventral tegmental area (VTA), and output from the VTA is critical for both natural and drug-induced reward and reinforcement. Ethanol and the abused inhalant toluene both enhance VTA neuronal firing, but the mechanisms of this effect is not fully known. In this study, we used extracellular recordings to compare the actions of toluene and ethanol on DA VTA neurons. Both ethanol and toluene increased the firing rate of DA neurons, although toluene was ~100 times more potent than ethanol. The mixed ion channel blocker quinine (100 μM) blocked the increases in firing produced by ethanol and toluene, indicating some similarity in mechanisms of excitation. A mixture of antagonists of GABA and cholinergic receptors did not prevent toluene-induced or ethanol-induced excitation, and toluene-induced excitation was not altered by co-administration of ethanol, suggesting independent mechanisms of excitation for ethanol and toluene. Concurrent blockade of NMDA, AMPA, and metabotropic glutamate receptors enhanced the excitatory effect of toluene while having no significant effect on ethanol excitation. Nicotine increased firing of DA VTA neurons, and this was blocked by the nicotinic antagonist mecamylamine (1 μM). Mecamylamine did not alter ethanol or toluene excitation of firing but the muscarinic antagonist atropine (5 μM) or a combination of GABA antagonists (bicuculline and CGP35348, 10 μM each) reduced toluene-induced excitation without affecting ethanol excitation. The Ih current blocker ZD7288 abolished the excitatory effect of toluene but unlike the block of ethanol excitation, the effect of ZD7288 was not reversed by the GIRK channel blocker barium, but was reversed by GABA antagonists. These results demonstrate that the excitatory effects of ethanol and toluene have some similarity, such as block by quinine and ZD7288, but also indicate that there are important differences between these two drugs

  16. Midbrain dopamine neurons bidirectionally regulate CA3-CA1 synaptic drive.

    PubMed

    Rosen, Zev B; Cheung, Stephanie; Siegelbaum, Steven A

    2015-12-01

    Dopamine (DA) is required for hippocampal-dependent memory and long-term potentiation (LTP) at CA1 Schaffer collateral (SC) synapses. It is therefore surprising that exogenously applied DA has little effect on SC synapses, but suppresses CA1 perforant path (PP) inputs. To examine DA actions under more physiological conditions, we used optogenetics to release DA from ventral tegmental area inputs to hippocampus. Unlike exogenous DA application, optogenetic release of DA caused a bidirectional, activity-dependent modulation of SC synapses, with no effect on PP inputs. Low levels of DA release, simulating tonic DA neuron firing, depressed the SC response through a D4 receptor-dependent enhancement of feedforward inhibition mediated by parvalbumin-expressing interneurons. Higher levels of DA release, simulating phasic firing, increased SC responses through a D1 receptor-dependent enhancement of excitatory transmission. Thus, tonic-phasic transitions in DA neuron firing in response to motivational demands may cause a modulatory switch from inhibition to enhancement of hippocampal information flow.

  17. Dopaminergic neurons differentiating from LRRK2 G2019S induced pluripotent stem cells show early neuritic branching defects.

    PubMed

    Borgs, Laurence; Peyre, Elise; Alix, Philippe; Hanon, Kevin; Grobarczyk, Benjamin; Godin, Juliette D; Purnelle, Audrey; Krusy, Nathalie; Maquet, Pierre; Lefebvre, Philippe; Seutin, Vincent; Malgrange, Brigitte; Nguyen, Laurent

    2016-01-01

    Some mutations of the LRRK2 gene underlie autosomal dominant form of Parkinson's disease (PD). The G2019S is a common mutation that accounts for about 2% of PD cases. To understand the pathophysiology of this mutation and its possible developmental implications, we developed an in vitro assay to model PD with human induced pluripotent stem cells (hiPSCs) reprogrammed from skin fibroblasts of PD patients suffering from the LRKK2 G2019S mutation. We differentiated the hiPSCs into neural stem cells (NSCs) and further into dopaminergic neurons. Here we show that NSCs bearing the mutation tend to differentiate less efficiently into dopaminergic neurons and that the latter exhibit significant branching defects as compared to their controls. PMID:27640816

  18. Dopaminergic neurons differentiating from LRRK2 G2019S induced pluripotent stem cells show early neuritic branching defects

    PubMed Central

    Borgs, Laurence; Peyre, Elise; Alix, Philippe; Hanon, Kevin; Grobarczyk, Benjamin; Godin, Juliette D.; Purnelle, Audrey; Krusy, Nathalie; Maquet, Pierre; Lefebvre, Philippe; Seutin, Vincent; Malgrange, Brigitte; Nguyen, Laurent

    2016-01-01

    Some mutations of the LRRK2 gene underlie autosomal dominant form of Parkinson’s disease (PD). The G2019S is a common mutation that accounts for about 2% of PD cases. To understand the pathophysiology of this mutation and its possible developmental implications, we developed an in vitro assay to model PD with human induced pluripotent stem cells (hiPSCs) reprogrammed from skin fibroblasts of PD patients suffering from the LRKK2 G2019S mutation. We differentiated the hiPSCs into neural stem cells (NSCs) and further into dopaminergic neurons. Here we show that NSCs bearing the mutation tend to differentiate less efficiently into dopaminergic neurons and that the latter exhibit significant branching defects as compared to their controls. PMID:27640816

  19. Pathophysiological basis of vulnerability to drug abuse: role of an interaction between stress, glucocorticoids, and dopaminergic neurons.

    PubMed

    Piazza, P V; Le Moal, M L

    1996-01-01

    Research on drug abuse has recently focused on understanding the vulnerability to develop addiction that is present in certain individuals. These investigations suggest that addiction results from an interaction between drugs and specific individual substrates. Differences in the propensity to develop drug intake can be demonstrated in animals with equal access to drugs under stable laboratory conditions and can be predicted by drug-independent behaviors. Stress, corticosterone, and mesencephalic dopaminergic neurons seem to be organized in a pathophysiological chain determining such a vulnerability. An increased corticosterone secretion, or a higher sensitivity to the effects of this hormone, either naturally present in certain individuals or induced by stress in others, increases the vulnerability to develop drug intake, via an enhancement of the activity of mesencephalic dopaminergic neurons. These findings suggest that addiction therapies should counteract the biological peculiarity that leads some individuals to respond in a pathophysiological way to drugs. PMID:8725394

  20. Abnormal differentiation of dopaminergic neurons in zebrafish trpm7 mutant larvae impairs development of the motor pattern.

    PubMed

    Decker, Amanda R; McNeill, Matthew S; Lambert, Aaron M; Overton, Jeffrey D; Chen, Yu-Chia; Lorca, Ramón A; Johnson, Nicolas A; Brockerhoff, Susan E; Mohapatra, Durga P; MacArthur, Heather; Panula, Pertti; Masino, Mark A; Runnels, Loren W; Cornell, Robert A

    2014-02-15

    Transient receptor potential, melastatin-like 7 (Trpm7) is a combined ion channel and kinase implicated in the differentiation or function of many cell types. Early lethality in mice and frogs depleted of the corresponding gene impedes investigation of the functions of this protein particularly during later stages of development. By contrast, zebrafish trpm7 mutant larvae undergo early morphogenesis normally and thus do not have this limitation. The mutant larvae are characterized by multiple defects including melanocyte cell death, transient paralysis, and an ion imbalance that leads to the development of kidney stones. Here we report a requirement for Trpm7 in differentiation or function of dopaminergic neurons in vivo. First, trpm7 mutant larvae are hypomotile and fail to make a dopamine-dependent developmental transition in swim-bout length. Both of these deficits are partially rescued by the application of levodopa or dopamine. Second, histological analysis reveals that in trpm7 mutants a significant fraction of dopaminergic neurons lack expression of tyrosine hydroxylase, the rate-limiting enzyme in dopamine synthesis. Third, trpm7 mutants are unusually sensitive to the neurotoxin 1-methyl-4-phenylpyridinium, an oxidative stressor, and their motility is partially rescued by application of the iron chelator deferoxamine, an anti-oxidant. Finally, in SH-SY5Y cells, which model aspects of human dopaminergic neurons, forced expression of a channel-dead variant of TRPM7 causes cell death. In summary, a forward genetic screen in zebrafish has revealed that both melanocytes and dopaminergic neurons depend on the ion channel Trpm7. The mechanistic underpinning of this dependence requires further investigation.

  1. Docosahexaenoic acid prevents paraquat-induced reactive oxygen species production in dopaminergic neurons via enhancement of glutathione homeostasis

    SciTech Connect

    Lee, Hyoung Jun; Han, Jeongsu; Jang, Yunseon; Kim, Soo Jeong; Park, Ji Hoon; Seo, Kang Sik; Jeong, Soyeon; Shin, Soyeon; Lim, Kyu; Heo, Jun Young; Kweon, Gi Ryang

    2015-01-30

    Highlights: • DHA prevents PQ-induced dopaminergic neuronal loss via decreasing of excessive ROS. • DHA increases GR and GCLm derivate GSH pool by enhancement of Nrf2 expression. • Protective mechanism is removal of PQ-induced ROS via DHA-dependent GSH pool. • DHA may be a good preventive strategy for Parkinson’s disease (PD) therapy. - Abstract: Omega-3 polyunsaturated fatty acid levels are reduced in the substantia nigra area in Parkinson’s disease patients and animal models, implicating docosahexaenoic acid (DHA) as a potential treatment for preventing Parkinson’s disease and suggesting the need for investigations into how DHA might protect against neurotoxin-induced dopaminergic neuron loss. The herbicide paraquat (PQ) induces dopaminergic neuron loss through the excessive production of reactive oxygen species (ROS). We found that treatment of dopaminergic SN4741 cells with PQ reduced cell viability in a dose-dependent manner, but pretreatment with DHA ameliorated the toxic effect of PQ. To determine the toxic mechanism of PQ, we measured intracellular ROS content in different organelles with specific dyes. As expected, all types of ROS were increased by PQ treatment, but DHA pretreatment selectively decreased cytosolic hydrogen peroxide content. Furthermore, DHA treatment-induced increases in glutathione reductase and glutamate cysteine ligase modifier subunit (GCLm) mRNA expression were positively correlated with glutathione (GSH) content. Consistent with this increase in GCLm mRNA levels, Western blot analysis revealed that DHA pretreatment increased nuclear factor-erythroid 2 related factor 2 (Nrf2) protein levels. These findings indicate that DHA prevents PQ-induced neuronal cell loss by enhancing Nrf2-regulated GSH homeostasis.

  2. Dopaminergic neurons write and update memories with cell-type-specific rules

    PubMed Central

    Aso, Yoshinori; Rubin, Gerald M

    2016-01-01

    Associative learning is thought to involve parallel and distributed mechanisms of memory formation and storage. In Drosophila, the mushroom body (MB) is the major site of associative odor memory formation. Previously we described the anatomy of the adult MB and defined 20 types of dopaminergic neurons (DANs) that each innervate distinct MB compartments (Aso et al., 2014a, 2014b). Here we compare the properties of memories formed by optogenetic activation of individual DAN cell types. We found extensive differences in training requirements for memory formation, decay dynamics, storage capacity and flexibility to learn new associations. Even a single DAN cell type can either write or reduce an aversive memory, or write an appetitive memory, depending on when it is activated relative to odor delivery. Our results show that different learning rules are executed in seemingly parallel memory systems, providing multiple distinct circuit-based strategies to predict future events from past experiences. DOI: http://dx.doi.org/10.7554/eLife.16135.001 PMID:27441388

  3. An Efficient and Versatile System for Visualization and Genetic Modification of Dopaminergic Neurons in Transgenic Mice

    PubMed Central

    Kramer, Edgar R.

    2015-01-01

    Background & Aims The brain dopaminergic (DA) system is involved in fine tuning many behaviors and several human diseases are associated with pathological alterations of the DA system such as Parkinson’s disease (PD) and drug addiction. Because of its complex network integration, detailed analyses of physiological and pathophysiological conditions are only possible in a whole organism with a sophisticated tool box for visualization and functional modification. Methods & Results Here, we have generated transgenic mice expressing the tetracycline-regulated transactivator (tTA) or the reverse tetracycline-regulated transactivator (rtTA) under control of the tyrosine hydroxylase (TH) promoter, TH-tTA (tet-OFF) and TH-rtTA (tet-ON) mice, to visualize and genetically modify DA neurons. We show their tight regulation and efficient use to overexpress proteins under the control of tet-responsive elements or to delete genes of interest with tet-responsive Cre. In combination with mice encoding tet-responsive luciferase, we visualized the DA system in living mice progressively over time. Conclusion These experiments establish TH-tTA and TH-rtTA mice as a powerful tool to generate and monitor mouse models for DA system diseases. PMID:26291828

  4. Circadian modulation of dopamine levels and dopaminergic neuron development contributes to attention deficiency and hyperactive behavior.

    PubMed

    Huang, Jian; Zhong, Zhaomin; Wang, Mingyong; Chen, Xifeng; Tan, Yicheng; Zhang, Shuqing; He, Wei; He, Xiong; Huang, Guodong; Lu, Haiping; Wu, Ping; Che, Yi; Yan, Yi-Lin; Postlethwait, John H; Chen, Wenbiao; Wang, Han

    2015-02-11

    Attention-deficit/hyperactivity disorder (ADHD) is one of the most prevalent psychiatric disorders in children and adults. While ADHD patients often display circadian abnormalities, the underlying mechanisms are unclear. Here we found that the zebrafish mutant for the circadian gene period1b (per1b) displays hyperactive, impulsive-like, and attention deficit-like behaviors and low levels of dopamine, reminiscent of human ADHD patients. We found that the circadian clock directly regulates dopamine-related genes monoamine oxidase and dopamine β hydroxylase, and acts via genes important for the development or maintenance of dopaminergic neurons to regulate their number and organization in the ventral diencephalic posterior tuberculum. We then found that Per1 knock-out mice also display ADHD-like symptoms and reduced levels of dopamine, thereby showing highly conserved roles of the circadian clock in ADHD. Our studies demonstrate that disruption of a circadian clock gene elicits ADHD-like syndrome. The circadian model for attention deficiency and hyperactive behavior sheds light on ADHD pathogenesis and opens avenues for exploring novel targets for diagnosis and therapy for this common psychiatric disorder.

  5. Circadian Modulation of Dopamine Levels and Dopaminergic Neuron Development Contributes to Attention Deficiency and Hyperactive Behavior

    PubMed Central

    Huang, Jian; Zhong, Zhaomin; Wang, Mingyong; Chen, Xifeng; Tan, Yicheng; Zhang, Shuqing; He, Wei; He, Xiong; Huang, Guodong; Lu, Haiping; Wu, Ping; Che, Yi; Yan, Yi-Lin; Postlethwait, John H.; Chen, Wenbiao

    2015-01-01

    Attention-deficit/hyperactivity disorder (ADHD) is one of the most prevalent psychiatric disorders in children and adults. While ADHD patients often display circadian abnormalities, the underlying mechanisms are unclear. Here we found that the zebrafish mutant for the circadian gene period1b (per1b) displays hyperactive, impulsive-like, and attention deficit-like behaviors and low levels of dopamine, reminiscent of human ADHD patients. We found that the circadian clock directly regulates dopamine-related genes monoamine oxidase and dopamine β hydroxylase, and acts via genes important for the development or maintenance of dopaminergic neurons to regulate their number and organization in the ventral diencephalic posterior tuberculum. We then found that Per1 knock-out mice also display ADHD-like symptoms and reduced levels of dopamine, thereby showing highly conserved roles of the circadian clock in ADHD. Our studies demonstrate that disruption of a circadian clock gene elicits ADHD-like syndrome. The circadian model for attention deficiency and hyperactive behavior sheds light on ADHD pathogenesis and opens avenues for exploring novel targets for diagnosis and therapy for this common psychiatric disorder. PMID:25673850

  6. Increased gabaergic input to ventral tegmental area dopaminergic neurons associated with decreased cocaine reinforcement in mu-opioid receptor knockout mice.

    PubMed

    Mathon, D S; Lesscher, H M B; Gerrits, M A F M; Kamal, A; Pintar, J E; Schuller, A G P; Spruijt, B M; Burbach, J P H; Smidt, M P; van Ree, J M; Ramakers, G M J

    2005-01-01

    There is general agreement that dopaminergic neurons projecting from the ventral tegmental area (VTA) to the nucleus accumbens and prefrontal cortex play a key role in drug reinforcement. The activity of these neurons is strongly modulated by the inhibitory and excitatory input they receive. Activation of mu-opioid receptors, located on GABAergic neurons in the VTA, causes hyperpolarization of these GABAergic neurons, thereby causing a disinhibition of VTA dopaminergic neurons. This effect of mu-opioid receptors upon GABA neurotransmission is a likely mechanism for mu-opioid receptor modulation of drug reinforcement. We studied mu-opioid receptor signaling in relation to cocaine reinforcement in wild-type and mu-opioid receptor knockout mice using a cocaine self-administration paradigm and in vitro electrophysiology. Cocaine self-administration was reduced in mu-opioid receptor knockout mice, suggesting a critical role of mu-opioid receptors in cocaine reinforcement. The frequency of spontaneous inhibitory post-synaptic currents onto dopaminergic neurons in the ventral tegmental area was increased in mu-opioid receptor knockout mice compared with wild-type controls, while the frequency of spontaneous excitatory post-synaptic currents was unaltered. The reduced cocaine self-administration and increased GABAergic input to VTA dopaminergic neurons in mu-opioid receptor knockout mice supports the notion that suppression of GABAergic input onto dopaminergic neurons in the VTA contributes to mu-opioid receptor modulation of cocaine reinforcement. PMID:15664692

  7. Inflammatory Animal Model for Parkinson's Disease: The Intranigral Injection of LPS Induced the Inflammatory Process along with the Selective Degeneration of Nigrostriatal Dopaminergic Neurons

    PubMed Central

    Machado, A.; Herrera, A. J.; Venero, J. L.; Santiago, M.; de Pablos, R. M.; Villarán, R. F.; Espinosa-Oliva, A. M.; Argüelles, S.; Sarmiento, M.; Delgado-Cortés, M. J.; Mauriño, R.; Cano, J.

    2011-01-01

    We have developed an animal model of degeneration of the nigrostriatal dopaminergic neurons, the neuronal system involved in Parkinson's disease (PD). The implication of neuroinflammation on this disease was originally established in 1988, when the presence of activated microglia in the substantia nigra (SN) of parkinsonians was reported by McGeer et al. Neuroinflammation could be involved in the progression of the disease or even has more direct implications. We injected 2 μg of the potent proinflammatory compound lipopolysaccharide (LPS) in different areas of the CNS, finding that SN displayed the highest inflammatory response and that dopaminergic (body) neurons showed a special and specific sensitivity to this process with the induction of selective dopaminergic degeneration. Neurodegeneration is induced by inflammation since it is prevented by anti-inflammatory compounds. The special sensitivity of dopaminergic neurons seems to be related to the endogenous dopaminergic content, since it is overcome by dopamine depletion. Compounds that activate microglia or induce inflammation have similar effects to LPS. This model suggest that inflammation is an important component of the degeneration of the nigrostriatal dopaminergic system, probably also in PD. Anti-inflammatory treatments could be useful to prevent or slow down the rate of dopaminergic degeneration in this disease. PMID:22389821

  8. Endogenous brain-derived neurotrophic factor protects dopaminergic nigral neurons against transneuronal degeneration induced by striatal excitotoxic injury.

    PubMed

    Canudas, Anna M; Pezzi, Susana; Canals, Josep M; Pallàs, Mercè; Alberch, Jordi

    2005-03-24

    Injury to the central nervous system causes atrophy or death of connecting neurons and can modify the expression of neurotrophic factors. We observed transneuronal upregulation of brain-derived neurotrophic factor (BDNF) expression in the rat ipsilateral substantia nigra pars compacta after a striatal lesion induced by kainate. This effect is developmentally regulated because the enhancement of nigral BDNF expression was only observed when striatal lesion was performed on postnatal day (P) 15 and in adulthood, but not at P7. Interestingly, the lack of regulation of BDNF was coincident with the transynaptic degeneration of nigral neurons after striatal excitotoxic injury. Hence, the number of tyrosine hydroxylase-positive neurons in the substantia nigra pars compacta decreased when the lesion was performed at P7, but not at P15 or at P30. The analysis of the functional significance of this BDNF upregulation was done using trkB-IgG fusion proteins. After striatal injury, blockade of endogenous BDNF by trkB fusion proteins induced an atrophy of the dopaminergic neurons of the pars compacta. The injection of trkB-IgG fusion proteins did not modify the effects of kainate in the substantia nigra pars reticulata. Thus, our results show that BDNF exerts an autocrine/paracrine protective effect selectively on dopaminergic neurons against the loss of trophic support from the target striatum.

  9. The medial prefrontal cortex plays an important role in the excitation of A10 dopaminergic neurons following intravenous muscimol administration.

    PubMed

    Lokwan, S J; Overton, P G; Berry, M S; Clark, D

    2000-01-01

    Intravenous muscimol administration increases the activity of dopaminergic neurons of the A10 cell group, located in the ventral tegmental area. Evidence suggests that this increase in activity is produced by disinhibition following the inhibition of GABAergic ("non-dopaminergic") cells in the ventral tegmental area. We hypothesized that the activation of A10 cells by muscimol is likely to be at least partly caused by the action of excitatory afferents. To verify this, A10 cells were isolated from ipsilateral afferent sources which utilise excitatory amino acids (which play an important role in the activity of these neurons), using hemisections at the level of the subthalamic nucleus (or just anterior to the subthalamic nucleus), electrolytic lesions of the pedunculopontine tegmental nucleus, or a combination of both. Following hemisections, and hemisections combined with lesions of the pedunculopontine tegmental nucleus, muscimol inhibited rather than excited A10 dopaminergic neurons. The pedunculopontine tegmental nucleus itself appeared to make little intrinsic contribution to muscimol-induced excitation, although the results suggested that part of the excitation which originates in the forebrain may be conducted to A10 cells via the pedunculopontine tegmental nucleus. The source of the effective forebrain excitation was investigated using electrolytic lesions of documented sources of excitatory amino acidergic afferents to the ventral tegmental area: the medial prefrontal cortex, certain nuclei of the amygdalar complex and the lateral habenular nucleus. In the medial prefrontal cortex-lesioned group, muscimol again produced inhibition, an effect qualitatively and quantitatively similar to that in the hemisected groups. Habenular lesions blocked muscimol-induced excitation without producing inhibition, whilst amygdalar lesions produced no significant change in the effects of muscimol. The results suggest that under normal circumstances, an active excitation

  10. Neonatal systemic exposure to lipopolysaccharide enhances susceptibility of nigrostriatal dopaminergic neurons to rotenone neurotoxicity in later life

    PubMed Central

    Cai, Zhengwei; Fan, Lir-Wan; Kaizaki, Asuka; Tien, Lu-Tai; Ma, Tangeng; Pang, Yi; Lin, Shuying; Lin, Rick C. S.; Simpson, Kimberly L.

    2013-01-01

    Brain inflammation via intracerebral injection with lipopolysaccharide (LPS) in early life has been shown to increase risks for the development of neurodegenerative disorders in adult rats. To determine if neonatal systemic LPS exposure has the same effects on enhancement of adult dopaminergic neuron susceptibility to rotenone neurotoxicity as centrally-injected LPS does, LPS (2 μg/g body weight) was administered intraperitoneally into post-natal day 5 (P5) rats and when grown to P70, rats were challenged with rotenone, a commonly used pesticide, through subcutaneous mini-pump infusion at a dose of 1.25 mg/kg per day for 14 days. Systemically administered LPS can penetrate into the neonatal rat brain and cause acute and chronic brain inflammation, as evidenced by persistent increases in IL-1β levels, cyclooxygenase-2 expression and microglial activation in the substantia nigra (SN) of P70 rats. Neonatal LPS exposure resulted in suppression of tyrosine hydroxylase (TH) expression, but not actual death of dopaminergic neurons in the SN, as indicated by the reduced number of TH+ cells and unchanged total number of neurons (NeuN+) in the SN. Neonatal LPS exposure also caused motor function deficits, which were spontaneously recoverable by P70. A small dose of rotenone at P70 induced loss of dopaminergic neurons, as indicated by reduced numbers of both TH+ and NeuN+ cells in the SN, and Parkinson’s disease (PD)-like motor impairment in P98 rats that had experienced neonatal LPS exposure, but not in those without the LPS exposure. These results indicate that although neonatal systemic LPS exposure may not necessarily lead to death of dopaminergic neurons in the SN, such an exposure could cause persistent functional alterations in the dopaminergic system and indirectly predispose the nigrostriatal system in the adult brain more vulnerable to be damaged by environmental toxins at an ordinarily non-toxic or sub-toxic dose to develop PD-like pathological features and

  11. Progressive Axonal Degeneration of Nigrostriatal Dopaminergic Neurons in Calcium-Independent Phospholipase A2β Knockout Mice

    PubMed Central

    Beck, Goichi; Shinzawa, Koei; Hayakawa, Hideki; Baba, Kousuke; Sumi-Akamaru, Hisae; Tsujimoto, Yoshihide; Mochizuki, Hideki

    2016-01-01

    Calcium-independent phospholipase A2β (iPLA2β, PLA2G6) is essential for the remodeling of membrane glycerophospholipids. Mutations in this gene are responsible for autosomal recessive, young onset, L-dopa-responsive parkinsonism (PARK14), suggesting a neurodegenerative condition in the nigrostriatal dopaminergic system in patients with PLA2G6 mutations. We previously observed slowly progressive motor deficits in iPLA2β-knockout (KO) mice. To clarify whether a deficiency of iPLA2β leads to the degeneration of nigrostriatal dopaminergic neurons, we analyzed the striatum of iPLA2β-KO mice. At all clinical stages, nerve terminals in the striatum were immunopositive for tyrosine hydroxylase (TH) and dopamine transporter (DAT) in wild-type (WT) control mice. In iPLA2β-KO mice, focal loss of nerve terminals positive for TH and DAT was found from 56 weeks (early clinical stage), although iPLA2β-KO mice at 56 weeks showed no significant decrease in the number of dopaminergic neurons in the substantia nigra compared with age-matched WT mice, as reported previously. At 100 weeks (late clinical stage), greater decreases in DAT immunoreactivity were observed in the striatum of iPLA2β-KO mice. Moreover, strongly TH-positive structures, presumed to be deformed axons, were observed in the neuropils of the striatum of iPLA2β-KO mice starting at 15 weeks (preclinical stage) and increased with age. These results suggest that the degeneration of dopaminergic neurons occurs mainly in the distal region of axons in iPLA2β-KO mice. PMID:27078024

  12. Progressive Axonal Degeneration of Nigrostriatal Dopaminergic Neurons in Calcium-Independent Phospholipase A2β Knockout Mice.

    PubMed

    Beck, Goichi; Shinzawa, Koei; Hayakawa, Hideki; Baba, Kousuke; Sumi-Akamaru, Hisae; Tsujimoto, Yoshihide; Mochizuki, Hideki

    2016-01-01

    Calcium-independent phospholipase A2β (iPLA2β, PLA2G6) is essential for the remodeling of membrane glycerophospholipids. Mutations in this gene are responsible for autosomal recessive, young onset, L-dopa-responsive parkinsonism (PARK14), suggesting a neurodegenerative condition in the nigrostriatal dopaminergic system in patients with PLA2G6 mutations. We previously observed slowly progressive motor deficits in iPLA2β-knockout (KO) mice. To clarify whether a deficiency of iPLA2β leads to the degeneration of nigrostriatal dopaminergic neurons, we analyzed the striatum of iPLA2β-KO mice. At all clinical stages, nerve terminals in the striatum were immunopositive for tyrosine hydroxylase (TH) and dopamine transporter (DAT) in wild-type (WT) control mice. In iPLA2β-KO mice, focal loss of nerve terminals positive for TH and DAT was found from 56 weeks (early clinical stage), although iPLA2β-KO mice at 56 weeks showed no significant decrease in the number of dopaminergic neurons in the substantia nigra compared with age-matched WT mice, as reported previously. At 100 weeks (late clinical stage), greater decreases in DAT immunoreactivity were observed in the striatum of iPLA2β-KO mice. Moreover, strongly TH-positive structures, presumed to be deformed axons, were observed in the neuropils of the striatum of iPLA2β-KO mice starting at 15 weeks (preclinical stage) and increased with age. These results suggest that the degeneration of dopaminergic neurons occurs mainly in the distal region of axons in iPLA2β-KO mice. PMID:27078024

  13. Selenoprotein T Exerts an Essential Oxidoreductase Activity That Protects Dopaminergic Neurons in Mouse Models of Parkinson's Disease

    PubMed Central

    Boukhzar, Loubna; Hamieh, Abdallah; Cartier, Dorthe; Tanguy, Yannick; Alsharif, Ifat; Castex, Matthieu; Arabo, Arnaud; Hajji, Sana El; Bonnet, Jean-Jacques; Errami, Mohammed; Falluel-Morel, Anthony; Chagraoui, Abdeslam; Lihrmann, Isabelle

    2016-01-01

    Abstract Aims: Oxidative stress is central to the pathogenesis of Parkinson's disease (PD), but the mechanisms involved in the control of this stress in dopaminergic cells are not fully understood. There is increasing evidence that selenoproteins play a central role in the control of redox homeostasis and cell defense, but the precise contribution of members of this family of proteins during the course of neurodegenerative diseases is still elusive. Results: We demonstrated first that selenoprotein T (SelT) whose gene disruption is lethal during embryogenesis, exerts a potent oxidoreductase activity. In the SH-SY5Y cell model of dopaminergic neurons, both silencing and overexpression of SelT affected oxidative stress and cell survival. Treatment with PD-inducing neurotoxins such as 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) or rotenone triggered SelT expression in the nigrostriatal pathway of wild-type mice, but provoked rapid and severe parkinsonian-like motor defects in conditional brain SelT-deficient mice. This motor impairment was associated with marked oxidative stress and neurodegeneration and decreased tyrosine hydroxylase activity and dopamine levels in the nigrostriatal system. Finally, in PD patients, we report that SelT is tremendously increased in the caudate putamen tissue. Innovation: These results reveal the activity of a novel selenoprotein enzyme that protects dopaminergic neurons against oxidative stress and prevents early and severe movement impairment in animal models of PD. Conclusions: Our findings indicate that selenoproteins such as SelT play a crucial role in the protection of dopaminergic neurons against oxidative stress and cell death, providing insight into the molecular underpinnings of this stress in PD. Antioxid. Redox Signal. 24, 557–574. PMID:26866473

  14. Midbrain Gene Screening Identifies a New Mesoaccumbal Glutamatergic Pathway and a Marker for Dopamine Cells Neuroprotected in Parkinson’s Disease

    PubMed Central

    Viereckel, Thomas; Dumas, Sylvie; Smith-Anttila, Casey J. A.; Vlcek, Bianca; Bimpisidis, Zisis; Lagerström, Malin C.; Konradsson-Geuken, Åsa; Wallén-Mackenzie, Åsa

    2016-01-01

    The ventral tegmental area (VTA) and substantia nigra pars compacta (SNc) of the midbrain are associated with Parkinson’s disease (PD), schizophrenia, mood disorders and addiction. Based on the recently unraveled heterogeneity within the VTA and SNc, where glutamate, GABA and co-releasing neurons have been found to co-exist with the classical dopamine neurons, there is a compelling need for identification of gene expression patterns that represent this heterogeneity and that are of value for development of human therapies. Here, several unique gene expression patterns were identified in the mouse midbrain of which NeuroD6 and Grp were expressed within different dopaminergic subpopulations of the VTA, and TrpV1 within a small heterogeneous population. Optogenetics-coupled in vivo amperometry revealed a previously unknown glutamatergic mesoaccumbal pathway characterized by TrpV1-Cre-expression. Human GRP was strongly detected in non-melanized dopaminergic neurons within the SNc of both control and PD brains, suggesting GRP as a marker for neuroprotected neurons in PD. This study thus unravels markers for distinct subpopulations of neurons within the mouse and human midbrain, defines unique anatomical subregions within the VTA and exposes an entirely new glutamatergic pathway. Finally, both TRPV1 and GRP are implied in midbrain physiology of importance to neurological and neuropsychiatric disorders. PMID:27762319

  15. The cortical modulation of stimulus-specific adaptation in the auditory midbrain and thalamus: a potential neuronal correlate for predictive coding

    PubMed Central

    Malmierca, Manuel S.; Anderson, Lucy A.; Antunes, Flora M.

    2015-01-01

    To follow an ever-changing auditory scene, the auditory brain is continuously creating a representation of the past to form expectations about the future. Unexpected events will produce an error in the predictions that should “trigger” the network’s response. Indeed, neurons in the auditory midbrain, thalamus and cortex, respond to rarely occurring sounds while adapting to frequently repeated ones, i.e., they exhibit stimulus specific adaptation (SSA). SSA cannot be explained solely by intrinsic membrane properties, but likely involves the participation of the network. Thus, SSA is envisaged as a high order form of adaptation that requires the influence of cortical areas. However, present research supports the hypothesis that SSA, at least in its simplest form (i.e., to frequency deviants), can be transmitted in a bottom-up manner through the auditory pathway. Here, we briefly review the underlying neuroanatomy of the corticofugal projections before discussing state of the art studies which demonstrate that SSA present in the medial geniculate body (MGB) and inferior colliculus (IC) is not inherited from the cortex but can be modulated by the cortex via the corticofugal pathways. By modulating the gain of neurons in the thalamus and midbrain, the auditory cortex (AC) would refine SSA subcortically, preventing irrelevant information from reaching the cortex. PMID:25805974

  16. Neuroprotective effects of tetramethylpyrazine against dopaminergic neuron injury in a rat model of Parkinson's disease induced by MPTP.

    PubMed

    Lu, Chen; Zhang, Jin; Shi, Xiaopeng; Miao, Shan; Bi, Linlin; Zhang, Song; Yang, Qian; Zhou, Xuanxuan; Zhang, Meng; Xie, Yanhua; Miao, Qing; Wang, Siwang

    2014-01-01

    Parkinson's disease (PD) is the second most prevalent progressive neurodegenerative disease. Although several hypotheses have been proposed to explain the pathogenesis of PD, apoptotic cell death and oxidative stress are the most prevalent mechanisms. Tetramethylpyrazine (TMP) is a biological component that has been extracted from Ligusticum wallichii Franchat (ChuanXiong), which exhibits anti-apoptotic and antioxidant roles. In the current study, we aimed to investigate the possible protective effect of TMP against dopaminergic neuron injury in a rat model of Parkinson's disease induced by MPTP and to elucidate probable molecular mechanisms. The results showed that TMP could notably prevent MPTP-induced dopaminergic neurons damage, reflected by improvement of motor deficits, enhancement of TH expression and the content of dopamine and its metabolite, DOPAC. We observed MPTP-induced activation of mitochondrial apoptotic death pathway, evidenced by up-regulation of Bax, down-regulation of Bcl-2, release of cytochrome c and cleavage of caspase 3, which was significantly inhibited by TMP. Moreover, TMP could prevent MPTP-increased TBARS level and MPTP-decreased GSH level, indicating the antioxidant role of TMP in PD model. And the antioxidant role of TMP attributes to the prevention of MPTP-induced reduction of Nrf2 and GCLc expression. In conclusion, in MPTP-induced PD model, TMP prevents the down-regulation of Nrf2 and GCLc, maintaining redox balance and inhibiting apoptosis, leading to the attenuation of dopaminergic neuron damage. The effectiveness of TMP in treating PD potentially leads to interesting therapeutic perspectives. PMID:24719552

  17. Orthodenticle is necessary for survival of a cluster of clonally related dopaminergic neurons in the Drosophila larval and adult brain

    PubMed Central

    2011-01-01

    Background The dopaminergic (DA) neurons present in the central brain of the Drosophila larva are spatially arranged in stereotyped groups that define clusters of bilaterally symmetrical neurons. These clusters have been classified according to anatomical criteria (position of the cell bodies within the cortex and/or projection pattern of the axonal tracts). However, information pertaining to the developmental biology, such as lineage relationship of clustered DA neurons and differential cell subtype-specific molecular markers and mechanisms of differentiation and/or survival, is currently not available. Results Using MARCM and twin-spot MARCM techniques together with anti-tyrosine hydroxylase immunoreactivity, we have analyzed the larval central brain DA neurons from a developmental point of view and determined their time of birth, their maturation into a DA neurotransmitter phenotype as well as their lineage relationships. In addition, we have found that the homeodomain containing transcription factor Orthodenticle (Otd) is present in a cluster of clonally related DA neurons in both the larval and adult brain. Taking advantage of the otd hypomorphic mutation ocelliless (oc) and the oc2-Gal4 reporter line, we have studied the involvement of orthodenticle (otd) in the survival and/or cell fate specification of these post-mitotic neurons. Conclusions Our findings provide evidence of the presence of seven neuroblast lineages responsible for the generation of the larval central brain DA neurons during embryogenesis. otd is expressed in a defined group of clonally related DA neurons from first instar larvae to adulthood, making it possible to establish an identity relationship between the larval DL2a and the adult PPL2 DA clusters. This poses otd as a lineage-specific and differential marker of a subset of clonally related DA neurons. Finally, we show that otd is required in those DA neurons for their survival. PMID:21999236

  18. Odour enrichment increases adult-born dopaminergic neurons in the mouse olfactory bulb.

    PubMed

    Bonzano, Sara; Bovetti, Serena; Fasolo, Aldo; Peretto, Paolo; De Marchis, Silvia

    2014-11-01

    The olfactory bulb (OB) is the first brain region involved in the processing of olfactory information. In adult mice, the OB is highly plastic, undergoing cellular/molecular dynamic changes that are modulated by sensory experience. Odour deprivation induces down-regulation of tyrosine hydroxylase (TH) expression in OB dopaminergic interneurons located in the glomerular layer (GL), resulting in decreased dopamine in the OB. Although the effect of sensory deprivation is well established, little is known about the influence of odour enrichment on dopaminergic cells. Here we report that prolonged odour enrichment on C57BL/6J strain mice selectively increases TH-immunopositive cells in the GL by nearly 20%. Following odour enrichment on TH-green fluorescent protein (GFP) transgenic mice, in which GFP identified both mature TH-positive cells and putative immature dopaminergic cells expressing TH mRNA but not TH protein, we found a similar 20% increase in GFP-expressing cells, with no changes in the ratio between TH-positive and TH-negative cells. These data suggest that enriched conditions induce an expansion in the whole dopaminergic lineage. Accordingly, by using 5-bromo-2-deoxyuridine injections to label adult-generated cells in the GL of TH-GFP mice, we found an increase in the percentage of 5-bromo-2-deoxyuridine-positive dopaminergic cells in enriched compared with control conditions, whereas no differences were found for calretinin- and calbindin-positive subtypes. Strikingly, the fraction of newborn cells among the dopaminergic population doubled in enriched conditions. On the whole, our results demonstrate that odour enrichment drives increased integration of adult-generated dopaminergic cells that could be critical to adapt the OB circuits to the environmental incoming information.

  19. Dopaminergic Neurons Exhibit an Age-Dependent Decline in Electrophysiological Parameters in the MitoPark Mouse Model of Parkinson's Disease

    PubMed Central

    Branch, Sarah Y.; Chen, Cang; Sharma, Ramaswamy; Lechleiter, James D.

    2016-01-01

    Dopaminergic neurons of the substantia nigra (SN) play a vital role in everyday tasks, such as reward-related behavior and voluntary movement, and excessive loss of these neurons is a primary hallmark of Parkinson's disease (PD). Mitochondrial dysfunction has long been implicated in PD and many animal models induce parkinsonian features by disrupting mitochondrial function. MitoPark mice are a recently developed genetic model of PD that lacks the gene for mitochondrial transcription factor A specifically in dopaminergic neurons. This model mimics many distinct characteristics of PD including progressive and selective loss of SN dopamine neurons, motor deficits that are improved by l-DOPA, and development of inclusion bodies. Here, we used brain slice electrophysiology to construct a timeline of functional decline in SN dopaminergic neurons from MitoPark mice. Dopaminergic neurons from MitoPark mice exhibited decreased cell capacitance and increased input resistance that became more severe with age. Pacemaker firing regularity was disrupted in MitoPark mice and ion channel conductances associated with firing were decreased. Additionally, dopaminergic neurons from MitoPark mice showed a progressive decrease of endogenous dopamine levels, decreased dopamine release, and smaller D2 dopamine receptor-mediated outward currents. Interestingly, expression of ion channel subunits associated with impulse activity (Cav1.2, Cav1.3, HCN1, Nav1.2, and NavB3) was upregulated in older MitoPark mice. The results describe alterations in intrinsic and synaptic properties of dopaminergic neurons in MitoPark mice occurring at ages both before and concurrent with motor impairment. These findings may help inform future investigations into treatment targets for prodromal PD. SIGNIFICANCE STATEMENT Parkinson's disease (PD) is the second most diagnosed neurodegenerative disorder, and the classic motor symptoms of the disease are attributed to selective loss of dopaminergic neurons of the

  20. Transcription factor Six2 mediates the protection of GDNF on 6-OHDA lesioned dopaminergic neurons by regulating Smurf1 expression

    PubMed Central

    Gao, J; Kang, X-y; Sun, S; Li, L; Zhang, B-l; Li, Y-q; Gao, D-s

    2016-01-01

    Glial cell line-derived neurotrophic factor (GDNF) has strong neuroprotective and neurorestorative effects on dopaminergic (DA) neurons in the substantia nigra (SN); however, the underlying molecular mechanisms remain to be fully elucidated. In this study, we found that the expression level of transcription factor Six2 was increased in damaged DA neurons after GDNF rescue in vivo and in vitro. Knockdown of Six2 resulted in decreased cell viability and increased the apoptosis of damaged DA neurons after GDNF treatment in vitro. In contrast, Six2 overexpression increased cell viability and decreased cell apoptosis. Furthermore, genome-wide chromatin immunoprecipitation sequencing (ChIP-seq) indicated that Six2 directly bound to the promoter CAGCTG sequence of smad ubiquitylation regulatory factor 1 (Smurf1). ChIP-quantitative polymerase chain reaction (qPCR) analysis showed that Smurf1 expression was significantly upregulated after GDNF rescue. Moreover, knockdown of Six2 decreased Smurf1 expression, whereas overexpression of Six2 increased Smurf1 expression in damaged DA neurons after GDNF rescue. Meanwhile, knockdown and overexpression of Smurf1 increased and decreased p53 expression, respectively. Taken together, our results from in vitro and in vivo analysis indicate that Six2 mediates the protective effects of GDNF on damaged DA neurons by regulating Smurf1 expression, which could be useful in identifying potential drug targets for injured DA neurons. PMID:27148690

  1. Transcription factor Six2 mediates the protection of GDNF on 6-OHDA lesioned dopaminergic neurons by regulating Smurf1 expression.

    PubMed

    Gao, J; Kang, X-Y; Sun, S; Li, L; Zhang, B-L; Li, Y-Q; Gao, D-S

    2016-01-01

    Glial cell line-derived neurotrophic factor (GDNF) has strong neuroprotective and neurorestorative effects on dopaminergic (DA) neurons in the substantia nigra (SN); however, the underlying molecular mechanisms remain to be fully elucidated. In this study, we found that the expression level of transcription factor Six2 was increased in damaged DA neurons after GDNF rescue in vivo and in vitro. Knockdown of Six2 resulted in decreased cell viability and increased the apoptosis of damaged DA neurons after GDNF treatment in vitro. In contrast, Six2 overexpression increased cell viability and decreased cell apoptosis. Furthermore, genome-wide chromatin immunoprecipitation sequencing (ChIP-seq) indicated that Six2 directly bound to the promoter CAGCTG sequence of smad ubiquitylation regulatory factor 1 (Smurf1). ChIP-quantitative polymerase chain reaction (qPCR) analysis showed that Smurf1 expression was significantly upregulated after GDNF rescue. Moreover, knockdown of Six2 decreased Smurf1 expression, whereas overexpression of Six2 increased Smurf1 expression in damaged DA neurons after GDNF rescue. Meanwhile, knockdown and overexpression of Smurf1 increased and decreased p53 expression, respectively. Taken together, our results from in vitro and in vivo analysis indicate that Six2 mediates the protective effects of GDNF on damaged DA neurons by regulating Smurf1 expression, which could be useful in identifying potential drug targets for injured DA neurons. PMID:27148690

  2. Chondroitinase improves midbrain pathway reconstruction by transplanted dopamine progenitors in Parkinsonian mice.

    PubMed

    Kauhausen, Jessica A; Thompson, Lachlan H; Parish, Clare L

    2015-11-01

    Within the adult central nervous system the lack of guidance cues together with the presence of inhibitory molecules produces an environment that is restrictive to axonal growth following injury. Consequently, while clinical trials in Parkinson's disease (PD) patients have demonstrated the capacity of fetal-derived dopamine neurons to survive, integrate and alleviate symptoms, the non-permissive host environment has contributed to the incomplete re-innervation of the target tissue by ectopic grafts, and even more noticeable, the poor reconstruction of the midbrain dopamine pathways following homotopic midbrain grafting. One such inhibitory molecule is the chondroitin sulfate proteoglycan (CSPG), a protein that has been shown to impede axonal growth during development and after injury. Digestion of CSPGs, by delivery of the bacterial enzyme chondroitinase ABC (ChABC), can improve axonal regrowth following a number of neural injuries. Here we examined whether ChABC could similarly improve axonal growth of transplanted dopamine neurons in an animal model of PD. Acute delivery of ChABC, into the medial forebrain bundle, degraded CSPGs along the nigrostriatal pathway. Simultaneous homotopic transplantation of dopaminergic progenitors, into the ventral midbrain of ChABC treated PD mice, had no effect on graft survival but resulted in enhanced axonal growth along the nigrostriatal pathway and reinnervation of the striatum, compared to control grafted mice. This study demonstrates that removal of axonal growth inhibitory molecules could significantly enhance dopaminergic graft integration, thereby holding implications for future approaches in the development of cell replacement therapies for Parkinsonian patients.

  3. An update on the connections of the ventral mesencephalic dopaminergic complex.

    PubMed

    Yetnikoff, L; Lavezzi, H N; Reichard, R A; Zahm, D S

    2014-12-12

    This review covers the intrinsic organization and afferent and efferent connections of the midbrain dopaminergic complex, comprising the substantia nigra, ventral tegmental area and retrorubral field, which house, respectively, the A9, A10 and A8 groups of nigrostriatal, mesolimbic and mesocortical dopaminergic neurons. In addition, A10dc (dorsal, caudal) and A10rv (rostroventral) extensions into, respectively, the ventrolateral periaqueductal gray and supramammillary nucleus are discussed. Associated intrinsic and extrinsic connections of the midbrain dopaminergic complex that utilize gamma-aminobutyric acid (GABA), glutamate and neuropeptides and various co-expressed combinations of these compounds are considered in conjunction with the dopamine-containing systems. A framework is provided for understanding the organization of massive afferent systems descending and ascending to the midbrain dopaminergic complex from the telencephalon and brainstem, respectively. Within the context of this framework, the basal ganglia direct and indirect output pathways are treated in some detail. Findings from rodent brain are briefly compared with those from primates, including humans. Recent literature is emphasized, including traditional experimental neuroanatomical and modern gene transfer and optogenetic studies. An attempt was made to provide sufficient background and cite a representative sampling of earlier primary papers and reviews so that people new to the field may find this to be a relatively comprehensive treatment of the subject. PMID:24735820

  4. Voluntary adolescent drinking enhances excitation by low levels of alcohol in a subset of dopaminergic neurons in the ventral tegmental area.

    PubMed

    Avegno, Elizabeth M; Salling, Michael C; Borgkvist, Anders; Mrejeru, Ana; Whitebirch, Alexander C; Margolis, Elyssa B; Sulzer, David; Harrison, Neil L

    2016-11-01

    Enhanced dopamine (DA) neurotransmission from the ventral tegmental area (VTA) to the ventral striatum is thought to drive drug self-administration and mediate positive reinforcement. We examined neuronal firing rates in slices of mouse midbrain following adolescent binge-like alcohol drinking and find that prior alcohol experience greatly enhanced the sensitivity to excitation by ethanol itself (10-50 mM) in a subset of ventral midbrain DA neurons located in the medial VTA. This enhanced response after drinking was not associated with alterations of firing rate or other measures of intrinsic excitability. In addition, the phenomenon appears to be specific to adolescent drinking, as mice that established a drinking preference only after the onset of adulthood showed no change in alcohol sensitivity. Here we demonstrate not only that drinking during adolescence induces enhanced alcohol sensitivity, but also that this DA neuronal response occurs over a range of alcohol concentrations associated with social drinking in humans. PMID:27475082

  5. Inhibitory effect of A10 dopaminergic neurons of the ventral tegmental area on the orienting response evoked by acoustic stimulation in the cat.

    PubMed

    Crescimanno, G; Sorbera, F; Emmi, A; Amato, G

    1998-01-01

    The effect of bilateral electric stimulation of A10 dopaminergic neurons of the ventral tegmental area (80-300 microA, 20-50 Hz, 0.1-0.5 ms, 2 s duration) on latency and duration of the orienting response, evoked by acoustic stimuli (4500-8000 Hz, 2 s), was studied in the cat. A10 neuron stimulation, simultaneous with the acoustic one, was performed with threshold parameters inducing minimal behavioral signs (head searching movement, sniffing, increase in alertness). By means of a videoanalysis system, a statistically significant increase, both of latency and duration of the response, was observed. The possible role of dopamine was studied administrating sulpiride (20 mg/kg i.p.), a dopaminergic antagonist prevalently acting on the mesolimbic-mesocortical system. In this condition, the disappearance of A10 neuron effect occurred. Sulpiride injection did not affect the parameters of the orienting response to acoustic stimulus alone, suggesting a direct effect on A10 dopaminergic neurons. Moreover, when saline administration was carried out, no significant modification of the effects, obtained following A10 neuron activation, was observed. The data suggest that A10 dopaminergic neurons, origin of the mesolimbic-mesocortical system, may be involved in the control of the response to sensory stimuli, likely by influencing sensorimotor integration processes. An involvement in the inhibitory regulation of the switching of attention is also discussed. PMID:9434203

  6. Nobiletin protects dopaminergic neurons in the 1-methyl-4-phenylpyridinium-treated rat model of Parkinson's disease.

    PubMed

    Jeong, Kyoung Hoon; Jeon, Min-Tae; Kim, Heung Deok; Jung, Un Ju; Jang, Min Cheol; Chu, Jin Woo; Yang, Seung Jun; Choi, Il Yoon; Choi, Myung-Sook; Kim, Sang Ryong

    2015-04-01

    This study investigated the effect of nobiletin, a flavonoid found in citrus fruits, on the degeneration of dopaminergic (DA) neurons in a neurotoxin model of Parkinson's disease (PD). 1-Methyl-4-phenylpyridinium (MPP(+)) was unilaterally injected into the median forebrain bundle of rat brains (to generate a neurotoxin model of PD) with or without daily intraperitoneal injection of nobiletin. Our results showed that nobiletin treatment at 10 mg/kg bw, but not at 1 or 20 mg/kg bw, significantly protected DA neurons in the substantia nigra (SN) of MPP(+)-treated rats. In parallel to the neuroprotection, nobiletin treatment at 10 mg/kg inhibited microglial activation and preserved the expression of the glial cell line-derived neurotrophic factor, which is a therapeutic agent against PD, in the SN. These results suggest that the proper supplementation with nobiletin may protect against the neurodegeneration involved in PD.

  7. Nobiletin protects dopaminergic neurons in the 1-methyl-4-phenylpyridinium-treated rat model of Parkinson's disease.

    PubMed

    Jeong, Kyoung Hoon; Jeon, Min-Tae; Kim, Heung Deok; Jung, Un Ju; Jang, Min Cheol; Chu, Jin Woo; Yang, Seung Jun; Choi, Il Yoon; Choi, Myung-Sook; Kim, Sang Ryong

    2015-04-01

    This study investigated the effect of nobiletin, a flavonoid found in citrus fruits, on the degeneration of dopaminergic (DA) neurons in a neurotoxin model of Parkinson's disease (PD). 1-Methyl-4-phenylpyridinium (MPP(+)) was unilaterally injected into the median forebrain bundle of rat brains (to generate a neurotoxin model of PD) with or without daily intraperitoneal injection of nobiletin. Our results showed that nobiletin treatment at 10 mg/kg bw, but not at 1 or 20 mg/kg bw, significantly protected DA neurons in the substantia nigra (SN) of MPP(+)-treated rats. In parallel to the neuroprotection, nobiletin treatment at 10 mg/kg inhibited microglial activation and preserved the expression of the glial cell line-derived neurotrophic factor, which is a therapeutic agent against PD, in the SN. These results suggest that the proper supplementation with nobiletin may protect against the neurodegeneration involved in PD. PMID:25325362

  8. Metformin Prevents Dopaminergic Neuron Death in MPTP/P-Induced Mouse Model of Parkinson’s Disease via Autophagy and Mitochondrial ROS Clearance

    PubMed Central

    Lu, Ming; Su, Cunjin; Qiao, Chen; Bian, Yaqi; Ding, Jianhua

    2016-01-01

    Background: Our previous study demonstrated that metabolic inflammation exacerbates dopaminergic neuronal degeneration in type 2 diabetes mice. Metformin, a typical oral hypoglycemic agent for diabetes, has been regarded as an activator of AMP-activated protein kinase and a regulator of systemic energy metabolism. Although metformin plays potential protective effects in many disorders, it is unclear whether metformin has a therapeutic role in dopaminergic neuron degeneration in Parkinson’s disease. Methods: In the present study, a 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine plus probenecid-induced mouse model of Parkinson’s disease was established to explore the neuroprotective effect of metformin on dopaminergic neurons in substania nigra compacta. We next cultured SH-SY5Y cells to investigate the mechanisms for the neuroprotective effect of metformin. Results: We showed that treatment with metformin (5mg/mL in drinking water) for 5 weeks significantly ameliorated the degeneration of substania nigra compacta dopaminergic neurons, increased striatal dopaminergic levels, and improved motor impairment induced by 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine plus probenecid. We further found that metformin inhibited microglia overactivation-induced neuroinflammation in substania nigra compacta of 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine plus probenecid Parkinson’s disease mice, which might contribute to the protective effect of metformin on neurodegeneration. Furthermore, metformin (2mM) activated AMP-activated protein kinase in SH-SY5Y cells, in turn inducing microtubule-associated protein 1 light chain 3-II-mediated autophagy and eliminating mitochondrial reactive oxygen species. Consequently, metformin alleviated MPP+-induced cytotoxicity and attenuated neuronal apoptosis. Conclusions: Our findings demonstrate that metformin may be a pluripotent and promising drug for dopaminergic neuron degeneration, which will give us insight into the potential of

  9. 2-Amino-1-methyl-6-phenylimidazo[4,5-b]pyridine (PhIP) is selectively toxic to primary dopaminergic neurons in vitro.

    PubMed

    Griggs, Amy M; Agim, Zeynep S; Mishra, Vartika R; Tambe, Mitali A; Director-Myska, Alison E; Turteltaub, Kenneth W; McCabe, George P; Rochet, Jean-Christophe; Cannon, Jason R

    2014-07-01

    Parkinson's disease (PD) is the second most common neurodegenerative disease. Much data has linked the etiology of PD to a variety of environmental factors. The majority of cases are thought to arise from a combination of genetic susceptibility and environmental factors. Chronic exposures to dietary factors, including meat, have been identified as potential risk factors. Although heterocyclic amines that are produced during high-temperature meat cooking are known to be carcinogenic, their effect on the nervous system has yet to be studied in depth. In this study, we investigated neurotoxic effects of 2-amino-1-methyl-6-phenylimidazo[4,5-b]pyridine (PhIP), a highly abundant heterocyclic amine in cooked meat, in vitro. We tested toxicity of PhIP and the two major phase I metabolites, N-OH-PhIP and 4'-OH-PhIP, using primary mesencephalic cultures from rat embryos. This culture system contains both dopaminergic and nondopaminergic neurons, which allows specificity of neurotoxicity to be readily examined. We find that exposure to PhIP or N-OH-PhIP is selectively toxic to dopaminergic neurons in primary cultures, resulting in a decreased percentage of dopaminergic neurons. Neurite length is decreased in surviving dopaminergic neurons. Exposure to 4'-OH-PhIP did not produce significant neurotoxicity. PhIP treatment also increased formation of oxidative damage markers, 4-hydroxy-2-nonenal (HNE) and 3-nitrotyrosine in dopaminergic neurons. Pretreatment with N-acetylcysteine was protective. Finally, treatment with blueberry extract, a dietary factor with known antioxidant and other protective mechanisms, prevented PhIP-induced toxicity. Collectively, our study suggests, for the first time, that PhIP is selectively toxic to dopaminergic neurons likely through inducing oxidative stress. PMID:24718704

  10. 2-Amino-1-methyl-6-phenylimidazo[4,5-b]pyridine (PhIP) Is Selectively Toxic to Primary Dopaminergic Neurons In Vitro

    PubMed Central

    Griggs, Amy M.; Agim, Zeynep S.; Mishra, Vartika R.; Tambe, Mitali A.; Director-Myska, Alison E.; Turteltaub, Kenneth W.; McCabe, George P.; Rochet, Jean-Christophe; Cannon, Jason R.

    2014-01-01

    Parkinson's disease (PD) is the second most common neurodegenerative disease. Much data has linked the etiology of PD to a variety of environmental factors. The majority of cases are thought to arise from a combination of genetic susceptibility and environmental factors. Chronic exposures to dietary factors, including meat, have been identified as potential risk factors. Although heterocyclic amines that are produced during high-temperature meat cooking are known to be carcinogenic, their effect on the nervous system has yet to be studied in depth. In this study, we investigated neurotoxic effects of 2-amino-1-methyl-6-phenylimidazo[4,5-b]pyridine (PhIP), a highly abundant heterocyclic amine in cooked meat, in vitro. We tested toxicity of PhIP and the two major phase I metabolites, N-OH-PhIP and 4′-OH-PhIP, using primary mesencephalic cultures from rat embryos. This culture system contains both dopaminergic and nondopaminergic neurons, which allows specificity of neurotoxicity to be readily examined. We find that exposure to PhIP or N-OH-PhIP is selectively toxic to dopaminergic neurons in primary cultures, resulting in a decreased percentage of dopaminergic neurons. Neurite length is decreased in surviving dopaminergic neurons. Exposure to 4′-OH-PhIP did not produce significant neurotoxicity. PhIP treatment also increased formation of oxidative damage markers, 4-hydroxy-2-nonenal (HNE) and 3-nitrotyrosine in dopaminergic neurons. Pretreatment with N-acetylcysteine was protective. Finally, treatment with blueberry extract, a dietary factor with known antioxidant and other protective mechanisms, prevented PhIP-induced toxicity. Collectively, our study suggests, for the first time, that PhIP is selectively toxic to dopaminergic neurons likely through inducing oxidative stress. PMID:24718704

  11. The Neuroprotective Mechanism of Low-Frequency rTMS on Nigral Dopaminergic Neurons of Parkinson's Disease Model Mice.

    PubMed

    Dong, Qiaoyun; Wang, Yanyong; Gu, Ping; Shao, Rusheng; Zhao, Li; Liu, Xiqi; Wang, Zhanqiang; Wang, Mingwei

    2015-01-01

    Background. Parkinson's disease is a neurodegenerative disease in elder people, pathophysiologic basis of which is the severe deficiency of dopamine in the striatum. The purpose of the present study was to evaluate the neuroprotective effect of low-frequency rTMS on Parkinson's disease in model mice. Methods. The effects of low-frequency rTMS on the motor function, cortex excitability, neurochemistry, and neurohistopathology of MPTP-induced Parkinson's disease mice were investigated through behavioral detection, electrophysiologic technique, high performance liquid chromatography-electrochemical detection, immunohistochemical staining, and western blot. Results. Low-frequency rTMS could improve the motor coordination impairment of Parkinson's disease mice: the resting motor threshold significantly decreased in the Parkinson's disease mice; the degeneration of nigral dopaminergic neuron and the expression of tyrosine hydroxylase were significantly improved by low-frequency rTMS; moreover, the expressions of brain derived neurotrophic factor and glial cell line derived neurotrophic factor were also improved by low-frequency rTMS. Conclusions. Low-frequency rTMS had a neuroprotective effect on the nigral dopaminergic neuron which might be due to the improved expressions of brain derived neurotrophic factor and glial cell line-derived neurotrophic factor. The present study provided a theoretical basis for the application of low-frequency rTMS in the clinical treatment and recovery of Parkinson's disease.

  12. Associated degeneration of ventral tegmental area dopaminergic neurons in the rat nigrostriatal lactacystin model of parkinsonism and their neuroprotection by valproate

    PubMed Central

    Harrison, Ian F.; Anis, Hiba K.; Dexter, David T.

    2016-01-01

    Parkinson’s disease (PD) manifests clinically as bradykinesia, rigidity, and development of a resting tremor, primarily due to degeneration of dopaminergic nigrostriatal pathways in the brain. Intranigral administration of the irreversible ubiquitin proteasome system inhibitor, lactacystin, has been used extensively to model nigrostriatal degeneration in rats, and study the effects of candidate neuroprotective agents on the integrity of the dopaminergic nigrostriatal system. Recently however, adjacent extra-nigral brain regions such as the ventral tegmental area (VTA) have been noted to also become affected in this model, yet their integrity in studies of candidate neuroprotective agents in the model have largely been overlooked. Here we quantify the extent and distribution of dopaminergic degeneration in the VTA of rats intranigrally lesioned with lactacystin, and quantify the extent of VTA dopaminergic neuroprotection after systemic treatment with an epigenetic therapeutic agent, valproate, shown previously to protect dopaminergic SNpc neurons in this model. We found that unilateral intranigral administration of lactacystin resulted in a 53.81% and 31.72% interhemispheric loss of dopaminergic SNpc and VTA neurons, respectively. Daily systemic treatment of lactacystin lesioned rats with valproate however resulted in dose-dependant neuroprotection of VTA neurons. Our findings demonstrate that not only is the VTA also affected in the intranigral lactacystin rat model of PD, but that this extra-nigral brain region is substrate for neuroprotection by valproate, an agent shown previously to induce neuroprotection and neurorestoration of SNpc dopaminergic neurons in this model. Our results therefore suggest that valproate is a candidate for extra-nigral as well as intra-nigral neuroprotection. PMID:26742637

  13. Dopamine synapse is a neuroligin-2-mediated contact between dopaminergic presynaptic and GABAergic postsynaptic structures.

    PubMed

    Uchigashima, Motokazu; Ohtsuka, Toshihisa; Kobayashi, Kazuto; Watanabe, Masahiko

    2016-04-12

    Midbrain dopamine neurons project densely to the striatum and form so-called dopamine synapses on medium spiny neurons (MSNs), principal neurons in the striatum. Because dopamine receptors are widely expressed away from dopamine synapses, it remains unclear how dopamine synapses are involved in dopaminergic transmission. Here we demonstrate that dopamine synapses are contacts formed between dopaminergic presynaptic and GABAergic postsynaptic structures. The presynaptic structure expressed tyrosine hydroxylase, vesicular monoamine transporter-2, and plasmalemmal dopamine transporter, which are essential for dopamine synthesis, vesicular filling, and recycling, but was below the detection threshold for molecules involving GABA synthesis and vesicular filling or for GABA itself. In contrast, the postsynaptic structure of dopamine synapses expressed GABAergic molecules, including postsynaptic adhesion molecule neuroligin-2, postsynaptic scaffolding molecule gephyrin, and GABAA receptor α1, without any specific clustering of dopamine receptors. Of these, neuroligin-2 promoted presynaptic differentiation in axons of midbrain dopamine neurons and striatal GABAergic neurons in culture. After neuroligin-2 knockdown in the striatum, a significant decrease of dopamine synapses coupled with a reciprocal increase of GABAergic synapses was observed on MSN dendrites. This finding suggests that neuroligin-2 controls striatal synapse formation by giving competitive advantage to heterologous dopamine synapses over conventional GABAergic synapses. Considering that MSN dendrites are preferential targets of dopamine synapses and express high levels of dopamine receptors, dopamine synapse formation may serve to increase the specificity and potency of dopaminergic modulation of striatal outputs by anchoring dopamine release sites to dopamine-sensing targets. PMID:27035941

  14. Identification of dopaminergic neurons of the substantia nigra pars compacta as a target of manganese accumulation.

    PubMed

    Robison, Gregory; Sullivan, Brendan; Cannon, Jason R; Pushkar, Yulia

    2015-05-01

    Manganese serves as a cofactor to a variety of proteins necessary for proper bodily development and function. However, an overabundance of Mn in the brain can result in manganism, a neurological condition resembling Parkinson's disease (PD). Bulk sample measurement techniques have identified the globus pallidus and thalamus as targets of Mn accumulation in the brain, however smaller structures/cells cannot be measured. Here, X-ray fluorescence microscopy determined the metal content and distribution in the substantia nigra (SN) of the rodent brain. In vivo retrograde labeling of dopaminergic cells (via FluoroGold™) of the SN pars compacta (SNc) subsequently allowed for XRF imaging of dopaminergic cells in situ at subcellular resolution. Chronic Mn exposure resulted in a significant Mn increase in both the SN pars reticulata (>163%) and the SNc (>170%) as compared to control; no other metal concentrations were significantly changed. Subcellular imaging of dopaminergic cells demonstrated that Mn is located adjacent to the nucleus. Measured intracellular manganese concentrations range between 40-200 μM; concentrations as low as 100 μM have been observed to cause cell death in cell cultures. Direct observation of Mn accumulation in the SNc could establish a biological basis for movement disorders associated with manganism, specifically Mn caused insult to the SNc. Accumulation of Mn in dopaminergic cells of the SNc may help clarify the relationship between Mn and the loss of motor skills associated with manganism. PMID:25695229

  15. Identification of dopaminergic neurons of the substantia nigra pars compacta as a target of manganese accumulation

    PubMed Central

    Robison, Gregory; Sullivan, Brendan; Cannon, Jason R.; Pushkar, Yulia

    2015-01-01

    Manganese serves as a cofactor to a variety of proteins necessary for proper bodily development and function. However, an overabundance of Mn in the brain can result in manganism, a neurological condition resembling Parkinson’s disease (PD). Bulk sample measurement techniques have identified the globus pallidus and thalamus as targets of Mn accumulation in the brain, however smaller structures/cells cannot be measured. Here, X-ray fluorescence microscopy determined the metal content and distribution in the substantia nigra (SN) of the rodent brain. In vivo retrograde labeling of dopaminergic cells (via FluoroGold™) of the SN pars compacta (SNc) subsequently allowed for XRF imaging of dopaminergic cells in situ at subcellular resolution. Chronic Mn exposure resulted in a significant Mn increase in both the SN pars reticulata (>163%) and the SNc (>170%) as compared to control; no other metal concentrations were significantly changed. Subcellular imaging of dopaminergic cells demonstrated that Mn is located adjacent to the nucleus. Measured intracellular manganese concentrations range between 40–200 μM; concentrations as low as 100 μM have been observed to cause cell death in cell cultures. Direct observation of Mn accumulation in the SNc could establish a biological basis for movement disorders associated with manganism, specifically Mn caused insult to the SNc. Accumulation of Mn in dopaminergic cells of the SNc may help clarify the relationship between Mn and the loss of motor skills associated with manganism. PMID:25695229

  16. Dopaminergic Input to the Inferior Colliculus in Mice.

    PubMed

    Nevue, Alexander A; Elde, Cameron J; Perkel, David J; Portfors, Christine V

    2015-01-01

    The response of sensory neurons to stimuli can be modulated by a variety of factors including attention, emotion, behavioral context, and disorders involving neuromodulatory systems. For example, patients with Parkinson's disease (PD) have disordered speech processing, suggesting that dopamine alters normal representation of these salient sounds. Understanding the mechanisms by which dopamine modulates auditory processing is thus an important goal. The principal auditory midbrain nucleus, the inferior colliculus (IC), is a likely location for dopaminergic modulation of auditory processing because it contains dopamine receptors and nerve terminals immunoreactive for tyrosine hydroxylase (TH), the rate-limiting enzyme in dopamine synthesis. However, the sources of dopaminergic input to the IC are unknown. In this study, we iontophoretically injected a retrograde tracer into the IC of mice and then stained the tissue for TH. We also immunostained for dopamine beta-hydroxylase (DBH), an enzyme critical for the conversion of dopamine to norepinephrine, to differentiate between dopaminergic and noradrenergic inputs. Retrogradely labeled neurons that were positive for TH were seen bilaterally, with strong ipsilateral dominance, in the subparafascicular thalamic nucleus (SPF). All retrogradely labeled neurons that we observed in other brain regions were TH-negative. Projections from the SPF were confirmed using an anterograde tracer, revealing TH-positive and DBH-negative anterogradely labeled fibers and terminals in the IC. While the functional role of this dopaminergic input to the IC is not yet known, it provides a potential mechanism for context dependent modulation of auditory processing. PMID:26834578

  17. Dopaminergic Input to the Inferior Colliculus in Mice

    PubMed Central

    Nevue, Alexander A.; Elde, Cameron J.; Perkel, David J.; Portfors, Christine V.

    2016-01-01

    The response of sensory neurons to stimuli can be modulated by a variety of factors including attention, emotion, behavioral context, and disorders involving neuromodulatory systems. For example, patients with Parkinson’s disease (PD) have disordered speech processing, suggesting that dopamine alters normal representation of these salient sounds. Understanding the mechanisms by which dopamine modulates auditory processing is thus an important goal. The principal auditory midbrain nucleus, the inferior colliculus (IC), is a likely location for dopaminergic modulation of auditory processing because it contains dopamine receptors and nerve terminals immunoreactive for tyrosine hydroxylase (TH), the rate-limiting enzyme in dopamine synthesis. However, the sources of dopaminergic input to the IC are unknown. In this study, we iontophoretically injected a retrograde tracer into the IC of mice and then stained the tissue for TH. We also immunostained for dopamine beta-hydroxylase (DBH), an enzyme critical for the conversion of dopamine to norepinephrine, to differentiate between dopaminergic and noradrenergic inputs. Retrogradely labeled neurons that were positive for TH were seen bilaterally, with strong ipsilateral dominance, in the subparafascicular thalamic nucleus (SPF). All retrogradely labeled neurons that we observed in other brain regions were TH-negative. Projections from the SPF were confirmed using an anterograde tracer, revealing TH-positive and DBH-negative anterogradely labeled fibers and terminals in the IC. While the functional role of this dopaminergic input to the IC is not yet known, it provides a potential mechanism for context dependent modulation of auditory processing. PMID:26834578

  18. Nifedipine and nimodipine protect dopaminergic substantia nigra neurons against axotomy-induced cell death in rat vibrosections via modulating inflammatory responses.

    PubMed

    Daschil, Nina; Humpel, Christian

    2014-09-18

    Neurodegeneration of cholinergic and dopaminergic neurons is a major hallmark in Alzheimer's or Parkinson's disease, respectively. A dysregulation in calcium homeostasis may be part of this process and counteracting calcium influx may have neuroprotective properties in both diseases. Therefore, we investigated the putative neuroprotective or neurotoxic activity of L-type calcium channel (LTCC) inhibitors on cholinergic and dopaminergic neurons in a rat organotypic vibrosection model. Sagittal or coronal vibrosections (200 μm thick) of postnatal day 10 rats were cultured on 0.4 μm semipermeable membranes for 2 weeks with 10 ng/ml nerve growth factor (NGF) and/or glial-cell line derived neurotrophic factor (GDNF) to maintain survival of cholinergic or dopaminergic neurons, respectively. Thereafter, sections were incubated with 0.1, 1 or 10 μM isradipine, nicardipine or verapamil for 2 weeks to explore cytotoxicity. Alternatively, in order to explore neuroprotective activity, vibrosections were incubated without growth factors but with isradipine or verapamil or with nicardipine, nimodipine or nifedipine from the beginning for 4 weeks. Our data show that all LTCC inhibitors exhibited no neurotoxic effect on cholinergic and dopaminergic neurons. Further, LTCC inhibitors did not have any neuroprotective activity on cholinergic neurons. However, nimodipine and nifedipine significantly enhanced the survival of dopaminergic substantia nigra (SN) but not ventral tegmental area (VTA) neurons, while nicardipine, isradipine and verapamil had no effect. Nifedipine (and more potently GDNF) reduced inflammatory cytokines (macrophage inflammatory protein-2, tumor necrosis factor-α), but did not influence oxidative stress or caspase-3 activity and did not interfere with iron-mediated overload. Our data show that nifedipine and nimodipine are very potent to enhance the survival of axotomized SN neurons, possibly influencing inflammatory processes.

  19. α-Synuclein propagates from mouse brain to grafted dopaminergic neurons and seeds aggregation in cultured human cells

    PubMed Central

    Hansen, Christian; Angot, Elodie; Bergström, Ann-Louise; Steiner, Jennifer A.; Pieri, Laura; Paul, Gesine; Outeiro, Tiago F.; Melki, Ronald; Kallunki, Pekka; Fog, Karina; Li, Jia-Yi; Brundin, Patrik

    2011-01-01

    Post-mortem analyses of brains from patients with Parkinson disease who received fetal mesencephalic transplants show that α-synuclein–containing (α-syn–containing) Lewy bodies gradually appear in grafted neurons. Here, we explored whether intercellular transfer of α-syn from host to graft, followed by seeding of α-syn aggregation in recipient neurons, can contribute to this phenomenon. We assessed α-syn cell-to-cell transfer using microscopy, flow cytometry, and high-content screening in several coculture model systems. Coculturing cells engineered to express either GFP– or DsRed-tagged α-syn resulted in a gradual increase in double-labeled cells. Importantly, α-syn–GFP derived from 1 neuroblastoma cell line localized to red fluorescent aggregates in other cells expressing DsRed–α-syn, suggesting a seeding effect of transmitted α-syn. Extracellular α-syn was taken up by cells through endocytosis and interacted with intracellular α-syn. Next, following intracortical injection of recombinant α-syn in rats, we found neuronal uptake was attenuated by coinjection of an endocytosis inhibitor. Finally, we demonstrated in vivo transfer of α-syn between host cells and grafted dopaminergic neurons in mice overexpressing human α-syn. In summary, intercellularly transferred α-syn interacts with cytoplasmic α-syn and can propagate α-syn pathology. These results suggest that α-syn propagation is a key element in the progression of Parkinson disease pathology. PMID:21245577

  20. Small molecule TrkB agonist deoxygedunin protects nigrostriatal dopaminergic neurons from 6-OHDA and MPTP induced neurotoxicity in rodents.

    PubMed

    Nie, Shuke; Xu, Yan; Chen, Guiqin; Ma, Kai; Han, Chao; Guo, Zhenli; Zhang, Zhentao; Ye, Keqiang; Cao, Xuebing

    2015-12-01

    Dopaminergic neurons loss in the substantia nigra (SN) and dopamine (DA) content loss in the striatum correlate well with disease severity in Parkinson's disease (PD). Brain-derived neurotrophic factor (BDNF) is a member of neurotrophin family and is necessary for the survival and development of DA neurons in the SN. Deficits in BDNF/TrkB receptors signaling contribute to the dysfunction of PD. Deoxygedunin, a derivative of gedunin produced from Indian neem tree, binds TrkB receptor and activates TrkB and its downstream signaling cascades in a BDNF-independent manner, and possesses neuroprotective effects in vitro and in vivo. In this study, we tested the neuroprotective effects of deoxygedunin in 6-hydroxydopamine (6-OHDA)-lesioned rat model and 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP)-induced mice model of Parkinson's disease. Rats were treated with deoxygedunin 5 mg/kg (i.p.) for one month started two weeks before 6-OHDA lesion (pre-treatment), or for two weeks right after lesion (post-treatment), with isovolumetric vehicle as control and normal. Mice were given deoxygedunin 5 mg/kg (i.p.) for 2 weeks and administrated with MPTP twice at the dose of 20 mg/kg (i.p.) on day 7. The results revealed that pretreatment with deoxygedunin improved PD models' behavioral performance and reduced dopaminergic neurons loss in SN, associated with the activation of TrkB receptors and its two major signaling cascades involving mitogen-activated protein kinase (MAPK) and phosphatidylinositol 3-kinase (PI3K). Thus, our current study indicates that deoxygedunin, as a small molecule TrkB agonist, displays prominent neuroprotective properties, providing a novel therapeutic strategy for treating Parkinson's disease. PMID:26282118

  1. Excitation of neurones in a restricted portion of the midbrain periaqueductal grey elicits both behavioural and cardiovascular components of the defence reaction in the unanaesthetised decerebrate cat.

    PubMed

    Carrive, P; Dampney, R A; Bandler, R

    1987-10-29

    Microinjections of the excitant amino acid D,L-homocysteic acid (DLH) into a restricted part of the midbrain periaqueductal grey (PAG) of unanaesthetized decerebrate cats evoked a distinctive pattern of facio-vocal and cardiovascular changes characteristic of a defence reaction, including pupillary dilatation, howling vocalization, an increase in arterial pressure and heart rate, and skeletal muscle vasoconstriction. These facio-vocal and cardiovascular responses always occurred together, and thus may arise from excitation of a common population of neurones. DLH injections within a greater extent of the PAG elicited other facio-vocal changes characteristic of defence, such as hissing or growling, but these were not accompanied by significant cardiovascular changes. PMID:3431744

  2. Dopaminergic modulation of long-term synaptic plasticity in rat prefrontal neurons.

    PubMed

    Otani, Satoru; Daniel, Hérve; Roisin, Marie-Paule; Crepel, Francis

    2003-11-01

    In rat prefrontal cortex (the prelimbic area of medial frontal cortex), the induction of long-term depression (LTD) and long-term potentiation (LTP) of glutamatergic synapses is powerfully modulated by dopamine. The presence of dopamine in the bathing medium facilitates LTD in slice preparations, whereas in the anesthetized intact brain, dopamine released from dopaminergic axon terminals in the prefrontal cortex facilitates LTP. Dopaminergic facilitation of LTD is at least partly achieved by postsynaptic biochemical mechanisms in which enzymatic processes triggered by dopamine receptor activation cooperate with those triggered by glutamate metabotropic receptor activation. Evidence suggests that dopamine facilitates LTP also in the slice condition. In this case, dopamine receptors must be pre-stimulated ('primed') before the application of high-frequency stimuli in the presence of dopamine. This procedure may mimic baseline stimulation of dopamine receptors that occurs under physiological conditions.

  3. Human midbrain precursors activate the expected developmental genetic program and differentiate long-term to functional A9 dopamine neurons in vitro. Enhancement by Bcl-X(L).

    PubMed

    Seiz, Emma G; Ramos-Gómez, Milagros; Courtois, Elise T; Tønnesen, Jan; Kokaia, Merab; Liste Noya, Isabel; Martínez-Serrano, Alberto

    2012-11-15

    Understanding the molecular programs of the generation of human dopaminergic neurons (DAn) from their ventral mesencephalic (VM) precursors is of key importance for basic studies, progress in cell therapy, drug screening and pharmacology in the context of Parkinson's disease. The nature of human DAn precursors in vitro is poorly understood, their properties unstable, and their availability highly limited. Here we present positive evidence that human VM precursors retaining their genuine properties and long-term capacity to generate A9 type Substantia nigra human DAn (hVM1 model cell line) can be propagated in culture. During a one month differentiation, these cells activate all key genes needed to progress from pro-neural and pro-dopaminergic precursors to mature and functional DAn. For the first time, we demonstrate that gene cascades are correctly activated during differentiation, resulting in the generation of mature DAn. These DAn have morphological and functional properties undistinguishable from those generated by VM primary neuronal cultures. In addition, we have found that the forced expression of Bcl-X(L) induces an increase in the expression of key developmental genes (MSX1, NGN2), maintenance of PITX3 expression temporal profile, and also enhances genes involved in DAn long-term function, maintenance and survival (EN1, LMX1B, NURR1 and PITX3). As a result, Bcl-X(L) anticipates and enhances DAn generation.

  4. Isoliquiritigenin isolated from licorice Glycyrrhiza uralensis prevents 6-hydroxydopamine-induced apoptosis in dopaminergic neurons.

    PubMed

    Hwang, Cheol Kyu; Chun, Hong Sung

    2012-01-01

    Licorice (Glycyrrhiza uralensis) is a medicinal herb containing various bioactive components implicated in antioxidative, anti-inflammatory, antiviral, and neuroprotective effects, but the effects of licorice against Parkinson's disease (PD)-related dopaminergic cell death have not been studied. In this study, we investigated the protective effects of isoliquiritigenin (ISL) isolated from Glycyrrhiza uralensis on 6-hydroxydopamine (6-OHDA)-induced neurotoxicity in a dopaminergic cell line, SN4741. ISL (1 µM) significantly attenuated 6-OHDA (50 µM)-induced reactive oxygen species (ROS) and nitric oxide (NO) generation and apoptotic cell death. ISL pretreatment effectively suppressed 6-OHDA-mediated upregulation of Bax, p-c-Jun N-terminal kinase (JNK), p-p38 mitogen-activated protein (MAP) kinase, cytochrome c release, and caspase 3 activation. In addition, ISL significantly attenuated 6-OHDA-induced Bcl-2, brain-derived neurotrophic factor (BDNF), and mitochondrial membrane potential (MMP) reduction. Pharmacological inhibitors of the phosphatidylinositol 3-kinase (PI3K)-Akt/protein kinase B (PKB) pathway reversed ISL-mediated neuroprotection against 6-OHDA toxicity in SN4741 cells. These results provide the first evidence that ISL can protect dopaminergic cells under oxidative stress conditions by regulating the apoptotic process.

  5. Suppression and facilitation of auditory neurons through coordinated acoustic and midbrain stimulation: investigating a deep brain stimulator for tinnitus

    NASA Astrophysics Data System (ADS)

    Offutt, Sarah J.; Ryan, Kellie J.; Konop, Alexander E.; Lim, Hubert H.

    2014-12-01

    Objective. The inferior colliculus (IC) is the primary processing center of auditory information in the midbrain and is one site of tinnitus-related activity. One potential option for suppressing the tinnitus percept is through deep brain stimulation via the auditory midbrain implant (AMI), which is designed for hearing restoration and is already being implanted in deaf patients who also have tinnitus. However, to assess the feasibility of AMI stimulation for tinnitus treatment we first need to characterize the functional connectivity within the IC. Previous studies have suggested modulatory projections from the dorsal cortex of the IC (ICD) to the central nucleus of the IC (ICC), though the functional properties of these projections need to be determined. Approach. In this study, we investigated the effects of electrical stimulation of the ICD on acoustic-driven activity within the ICC in ketamine-anesthetized guinea pigs. Main Results. We observed ICD stimulation induces both suppressive and facilitatory changes across ICC that can occur immediately during stimulation and remain after stimulation. Additionally, ICD stimulation paired with broadband noise stimulation at a specific delay can induce greater suppressive than facilitatory effects, especially when stimulating in more rostral and medial ICD locations. Significance. These findings demonstrate that ICD stimulation can induce specific types of plastic changes in ICC activity, which may be relevant for treating tinnitus. By using the AMI with electrode sites positioned with the ICD and the ICC, the modulatory effects of ICD stimulation can be tested directly in tinnitus patients.

  6. Dopaminergic neurons derived from human induced pluripotent stem cells survive and integrate into 6-OHDA-lesioned rats.

    PubMed

    Cai, Jingli; Yang, Ming; Poremsky, Elizabeth; Kidd, Sarah; Schneider, Jay S; Iacovitti, Lorraine

    2010-07-01

    Cell replacement therapy could be an important treatment strategy for Parkinson's disease (PD), which is caused by the degeneration of dopamine neurons in the midbrain (mDA). The success of this approach greatly relies on the discovery of an abundant source of cells capable of mDAergic function in the brain. With the paucity of available human fetal tissue, efforts have increasingly focused on renewable stem cells. Human induced pluripotent stem (hiPS) cells offer great promise in this regard. If hiPS cells can be differentiated into authentic mDA neuron, hiPS could provide a potential autologous source of transplant tissue when generated from PD patients, a clear advantage over human embryonic stem (hES) cells. Here, we report that mDA neurons can be derived from a commercially available hiPS cell line, IMR90 clone 4, using a modified hES differentiation protocol established in our lab. These cells express all the markers (Lmx1a, Aldh1a1, TH, TrkB), follow the same mDA lineage pathway as H9 hES cells, and have similar expression levels of DA and DOPAC. Moreover, when hiPS mDA progenitor cells are transplanted into 6-OHDA-lesioned PD rats, they survive long term and many develop into bona fide mDA neurons. Despite their differentiation and integration into the brain, many Nestin+ tumor-like cells remain at the site of the graft. Our data suggest that as with hES cells, selecting the appropriate population of mDA lineage cells and eliminating actively dividing hiPS cells before transplantation will be critical for the future success of hiPS cell replacement therapy in PD patients.

  7. New 6-Aminoquinoxaline Derivatives with Neuroprotective Effect on Dopaminergic Neurons in Cellular and Animal Parkinson Disease Models.

    PubMed

    Le Douaron, Gael; Ferrié, Laurent; Sepulveda-Diaz, Julia E; Amar, Majid; Harfouche, Abha; Séon-Méniel, Blandine; Raisman-Vozari, Rita; Michel, Patrick P; Figadère, Bruno

    2016-07-14

    Parkinson's disease (PD) is a neurodegenerative disorder of aging characterized by motor symptoms that result from the loss of midbrain dopamine neurons and the disruption of dopamine-mediated neurotransmission. There is currently no curative treatment for this disorder. To discover druggable neuroprotective compounds for dopamine neurons, we have designed and synthesized a second-generation of quinoxaline-derived molecules based on structure-activity relationship studies, which led previously to the discovery of our first neuroprotective brain penetrant hit compound MPAQ (5c). Neuroprotection assessment in PD cellular models of our newly synthesized quinoxaline-derived compounds has led to the selection of a better hit compound, PAQ (4c). Extensive in vitro characterization of 4c showed that its neuroprotective action is partially attributable to the activation of reticulum endoplasmic ryanodine receptor channels. Most interestingly, 4c was able to attenuate neurodegeneration in a mouse model of PD, making this compound an interesting drug candidate for the treatment of this disorder.

  8. Protective effects of quercetin on dieldrin-induced endoplasmic reticulum stress and apoptosis in dopaminergic neuronal cells.

    PubMed

    Park, Euteum; Chun, Hong Sung

    2016-10-19

    Dieldrin, an organochlorine pesticide still used in several developing countries, has been proposed as a risk factor for Parkinson's disease. Quercetin is one of the potent bioactive flavonoids present in numerous plants. In this study, we investigated the protective effects of quercetin on neurotoxicity induced by dieldrin in cultured dopaminergic SN4741 cells. Our initial experiments showed that quercetin (10-40 μM) dose dependently prevented dieldrin (20 μM)-induced cytotoxicity in SN4741 cells. Pretreatment for 1 h with quercetin before dieldrin application could significantly suppress dieldrin-induced apoptotic characteristics, including nuclear condensation, DNA fragmentation, and caspase-3/7 activation. Results showed that dieldrin-induced markers of endoplasmic reticulum (ER) stress response such as chaperone GRP78, heme oxygenase-1, and phosphorylation of the α subunit of eukaryotic initiation factor 2. In addition, dieldrin reduced antiapoptotic Bcl-2 expression, but significantly elevated a proapoptotic transcription factor CHOP. Furthermore, RNA interference to CHOP almost completely repressed dieldrin-induced apoptotic cell death. Interestingly, quercetin prevented the changes in dieldrin-induced ER stress markers. These results suggest that quercetin may suppress the ER stress-CHOP pathway and dieldrin-induced apoptosis in dopaminergic neurons.

  9. Protective effects of quercetin on dieldrin-induced endoplasmic reticulum stress and apoptosis in dopaminergic neuronal cells.

    PubMed

    Park, Euteum; Chun, Hong Sung

    2016-10-19

    Dieldrin, an organochlorine pesticide still used in several developing countries, has been proposed as a risk factor for Parkinson's disease. Quercetin is one of the potent bioactive flavonoids present in numerous plants. In this study, we investigated the protective effects of quercetin on neurotoxicity induced by dieldrin in cultured dopaminergic SN4741 cells. Our initial experiments showed that quercetin (10-40 μM) dose dependently prevented dieldrin (20 μM)-induced cytotoxicity in SN4741 cells. Pretreatment for 1 h with quercetin before dieldrin application could significantly suppress dieldrin-induced apoptotic characteristics, including nuclear condensation, DNA fragmentation, and caspase-3/7 activation. Results showed that dieldrin-induced markers of endoplasmic reticulum (ER) stress response such as chaperone GRP78, heme oxygenase-1, and phosphorylation of the α subunit of eukaryotic initiation factor 2. In addition, dieldrin reduced antiapoptotic Bcl-2 expression, but significantly elevated a proapoptotic transcription factor CHOP. Furthermore, RNA interference to CHOP almost completely repressed dieldrin-induced apoptotic cell death. Interestingly, quercetin prevented the changes in dieldrin-induced ER stress markers. These results suggest that quercetin may suppress the ER stress-CHOP pathway and dieldrin-induced apoptosis in dopaminergic neurons. PMID:27513201

  10. MC4R expression in pedunculopontine nucleus involved in the modulation of midbrain dopamine system

    PubMed Central

    Hao, Yan; Tian, Xue-Bi; Liu, Tao-Tao; Liu, Cheng; Xiang, Hong-Bing; Zhang, Jian-Guo

    2015-01-01

    Background and objective: Separate studies have implicated the pedunculopontine tegmental nucleus (PPTg) in processing aversive stimuli to dopamine systems, and melanocortin-4 receptor (MC4R) are broadly expressed by the neurons in the PPTg, but the exact neurosubstrate underlying the regulation of dopamine systems by the central melanocortin pathway is poorly understood. Methods: In this study, the PPTg of 6 adult mice expressing green fluorescent protein (GFP) under the control of the MC4R promoter was detected by fluorescence immunohistochemistry. Results: A large number of GFP-positive neurons in the dissipated parts of PPTg (dpPPTg) were found, and approximately 50% of MC4R-GFP- positive neurons in the dpPPTg coexpressed tyrosine hydroxylase, a marker of dopamine neurons, indicating that they were dopaminergic. Conclusions: Our findings support the hypothesis that MC4R signaling in the dpPPTg may involve in the modulation of midbrain dopamine systems. PMID:25973101

  11. DJ-1 Null Dopaminergic Neuronal Cells Exhibit Defects in Mitochondrial Function and Structure: Involvement of Mitochondrial Complex I Assembly

    PubMed Central

    Heo, Jun Young; Park, Ji Hoon; Kim, Soung Jung; Seo, Kang Sik; Han, Jeong Su; Lee, Sang Hee; Kim, Jin Man; Park, Jong Il; Park, Seung Kiel; Lim, Kyu; Hwang, Byung Doo; Shong, Minho; Kweon, Gi Ryang

    2012-01-01

    DJ-1 is a Parkinson's disease-associated gene whose protein product has a protective role in cellular homeostasis by removing cytosolic reactive oxygen species and maintaining mitochondrial function. However, it is not clear how DJ-1 regulates mitochondrial function and why mitochondrial dysfunction is induced by DJ-1 deficiency. In a previous study we showed that DJ-1 null dopaminergic neuronal cells exhibit defective mitochondrial respiratory chain complex I activity. In the present article we investigated the role of DJ-1 in complex I formation by using blue native-polyacrylamide gel electrophoresis and 2-dimensional gel analysis to assess native complex status. On the basis of these experiments, we concluded that DJ-1 null cells have a defect in the assembly of complex I. Concomitant with abnormal complex I formation, DJ-1 null cells show defective supercomplex formation. It is known that aberrant formation of the supercomplex impairs the flow of electrons through the channels between respiratory chain complexes, resulting in mitochondrial dysfunction. We took two approaches to study these mitochondrial defects. The first approach assessed the structural defect by using both confocal microscopy with MitoTracker staining and electron microscopy. The second approach assessed the functional defect by measuring ATP production, O2 consumption, and mitochondrial membrane potential. Finally, we showed that the assembly defect as well as the structural and functional abnormalities in DJ-1 null cells could be reversed by adenovirus-mediated overexpression of DJ-1, demonstrating the specificity of DJ-1 on these mitochondrial properties. These mitochondrial defects induced by DJ-1mutation may be a pathological mechanism for the degeneration of dopaminergic neurons in Parkinson's disease. PMID:22403686

  12. n-Butylidenephthalide Protects against Dopaminergic Neuron Degeneration and α-Synuclein Accumulation in Caenorhabditis elegans Models of Parkinson's Disease

    PubMed Central

    Fu, Ru-Huei; Harn, Horng-Jyh; Liu, Shih-Ping; Chen, Chang-Shi; Chang, Wen-Lin; Chen, Yue-Mi; Huang, Jing-En; Li, Rong-Jhu; Tsai, Sung-Yu; Hung, Huey-Shan; Shyu, Woei-Cherng; Lin, Shinn-Zong; Wang, Yu-Chi

    2014-01-01

    Background Parkinson's disease (PD) is the second most common degenerative disorder of the central nervous system that impairs motor skills and cognitive function. To date, the disease has no effective therapies. The identification of new drugs that provide benefit in arresting the decline seen in PD patients is the focus of much recent study. However, the lengthy time frame for the progression of neurodegeneration in PD increases both the time and cost of examining potential therapeutic compounds in mammalian models. An alternative is to first evaluate the efficacy of compounds in Caenorhabditis elegans models, which reduces examination time from months to days. n-Butylidenephthalide is the naturally-occurring component derived from the chloroform extract of Angelica sinensis. It has been shown to have anti-tumor and anti-inflammatory properties, but no reports have yet described the effects of n-butylidenephthalide on PD. The aim of this study was to assess the potential for n-butylidenephthalide to improve PD in C. elegans models. Methodology/Principal Findings In the current study, we employed a pharmacological strain that expresses green fluorescent protein specifically in dopaminergic neurons (BZ555) and a transgenic strain that expresses human α-synuclein in muscle cells (OW13) to investigate the antiparkinsonian activities of n-butylidenephthalide. Our results demonstrate that in PD animal models, n-butylidenephthalide significantly attenuates dopaminergic neuron degeneration induced by 6-hydroxydopamine; reduces α-synuclein accumulation; recovers lipid content, food-sensing behavior, and dopamine levels; and prolongs life-span of 6-hydroxydopamine treatment, thus revealing its potential as a possible antiparkinsonian drug. n-Butylidenephthalide may exert its effects by blocking egl-1 expression to inhibit apoptosis pathways and by raising rpn-6 expression to enhance the activity of proteasomes. Conclusions/Significance n-Butylidenephthalide may be one of

  13. Estrogen-related receptor gamma regulates dopaminergic neuronal phenotype by activating GSK3β/NFAT signaling in SH-SY5Y cells.

    PubMed

    Lim, Juhee; Choi, Hueng-Sik; Choi, Hyun Jin

    2015-05-01

    The orphan nuclear receptor estrogen-related receptor gamma (ERRγ) is highly expressed in the nervous system during embryogenesis and in adult brains, but its physiological role in neuronal development remains unknown. In this study, we evaluated the relevance of ERRγ in regulating dopaminergic (DAergic) phenotype and the corresponding signaling pathway. We used retinoic acid (RA) to differentiate human neuroblastoma SH-SY5Y cells. RA induced neurite outgrowth of SH-SY5Y cells with an increase in DAergic neuron-like properties, including up-regulation of tyrosine hydroxylase, dopamine transporter, and vesicular monoamine transporter 2. ERRγ, but not ERRα, was up-regulated by RA, and participated in RA effect on SH-SY5Y cells. ERRγ over-expression enhanced mature DAergic neuronal phenotype with neurite outgrowth as with RA treatment; and RA-induced increase in DAergic phenotype was attenuated by silencing ERRγ expression. ERRγ appears to have a crucial role in morphological and functional regulation of cells that is selective for DAergic neurons. Polo-like kinase 2 was up-regulated in ERRγ-over-expressing SH-SY5Y cells, which was involved in phosphorylation of glycogen synthase kinase 3β and resulting downstream activation of nuclear factor of activated T cells. The likely involvement of ERRγ in regulating the DAergic neuronal phenotype makes this orphan nuclear receptor a novel target for understanding DAergic neuronal differentiation. We propose the relevance of estrogen-related receptor gamma (ERRγ) in regulating dopaminergic neuronal phenotype: ERRγ is up-regulated by retinoic acid in SH-SY5Y cells, and enhances dopaminergic phenotypes and induces neurite outgrowth; Polo-like kinase 2 (PLK2) and glycogen synthase kinase 3 beta/nuclear factor of activated T cells (GSK3β/NFAT) signaling are responsible for the ERRγ effect. Our findings provide the first insights into the role of ERRγ in the brain, as a novel approach toward understanding

  14. DYRK1A promotes dopaminergic neuron survival in the developing brain and in a mouse model of Parkinson's disease.

    PubMed

    Barallobre, M J; Perier, C; Bové, J; Laguna, A; Delabar, J M; Vila, M; Arbonés, M L

    2014-01-01

    In the brain, programmed cell death (PCD) serves to adjust the numbers of the different types of neurons during development, and its pathological reactivation in the adult leads to neurodegeneration. Dual-specificity tyrosine-(Y)-phosphorylation regulated kinase 1A (DYRK1A) is a pleiotropic kinase involved in neural proliferation and cell death, and its role during brain growth is evolutionarily conserved. Human DYRK1A lies in the Down syndrome critical region on chromosome 21, and heterozygous mutations in the gene cause microcephaly and neurological dysfunction. The mouse model for DYRK1A haploinsufficiency (the Dyrk1a(+/-) mouse) presents neuronal deficits in specific regions of the adult brain, including the substantia nigra (SN), although the mechanisms underlying these pathogenic effects remain unclear. Here we study the effect of DYRK1A copy number variation on dopaminergic cell homeostasis. We show that mesencephalic DA (mDA) neurons are generated in the embryo at normal rates in the Dyrk1a haploinsufficient model and in a model (the mBACtgDyrk1a mouse) that carries three copies of Dyrk1a. We also show that the number of mDA cells diminishes in postnatal Dyrk1a(+/-) mice and increases in mBACtgDyrk1a mice due to an abnormal activity of the mitochondrial caspase9 (Casp9)-dependent apoptotic pathway during the main wave of PCD that affects these neurons. In addition, we show that the cell death induced by 1-methyl-4-phenyl-1,2,3,6 tetrahydropyridine (MPTP), a toxin that activates Casp9-dependent apoptosis in mDA neurons, is attenuated in adult mBACtgDyrk1a mice, leading to an increased survival of SN DA neurons 21 days after MPTP intoxication. Finally, we present data indicating that Dyrk1a phosphorylation of Casp9 at the Thr125 residue is the mechanism by which this kinase hinders both physiological and pathological PCD in mDA neurons. These data provide new insight into the mechanisms that control cell death in brain DA neurons and they show that

  15. Acute restraint stress decreases dopamine synthesis and turnover in the median eminence: a model for the study of the inhibitory neuronal influences on tuberoinfundibular dopaminergic neurons.

    PubMed

    Demarest, K T; Moore, K E; Riegle, G D

    1985-11-01

    The effects of acute stress on serum prolactin concentrations and tuberoinfundibular dopaminergic (TIDA) neuronal activity were studied in female rats. TIDA neuronal activity was estimated by measuring the rate of dihydroxyphenylalanine (DOPA) accumulation after the administration of a decarboxylase inhibitor (NSD 1015) and the rate of decline of dopamine (DA) after the administration of a tyrosine hydroxylase inhibitor (alpha-methyltyrosine) in the median eminence. Serum prolactin concentrations were increased following 30 min of supine immobilization (restraint stress), but returned to control levels by 2, 8, and 16 h after the onset of this stress. The rate of DOPA accumulation was decreased during the 30 min of restraint; it was still further reduced 2 h later but had returned to control levels 8 and 16 h later. No change in the rate of DOPA accumulation was observed in the striatum or neurointermediate lobe of the pituitary at any time after the start of restraint. Restraint stress also decreased the rate of DA turnover in the median eminence, but was without effect on the rates of DA turnover in the striatum or neurointermediate lobe. These results suggest that restraint stress activates an inhibitory neuronal pathway which decreases the activity of TIDA neurons and may be responsible, at least in part, for the increase in serum prolactin concentrations. The responsiveness of TIDA neurons to the stress-induced decrease in activity was not influenced by the time of day or the stage of the estrous cycle. Not all stressful manipulations decreased TIDA neuronal activity.(ABSTRACT TRUNCATED AT 250 WORDS)

  16. A Mathematical Model of a Midbrain Dopamine Neuron Identifies Two Slow Variables Likely Responsible for Bursts Evoked by SK Channel Antagonists and Terminated by Depolarization Block.

    PubMed

    Yu, Na; Canavier, Carmen C

    2015-01-01

    Midbrain dopamine neurons exhibit a novel type of bursting that we call "inverted square wave bursting" when exposed to Ca(2+)-activated small conductance (SK) K(+) channel blockers in vitro. This type of bursting has three phases: hyperpolarized silence, spiking, and depolarization block. We find that two slow variables are required for this type of bursting, and we show that the three-dimensional bifurcation diagram for inverted square wave bursting is a folded surface with upper (depolarized) and lower (hyperpolarized) branches. The activation of the L-type Ca(2+) channel largely supports the separation between these branches. Spiking is initiated at a saddle node on an invariant circle bifurcation at the folded edge of the lower branch and the trajectory spirals around the unstable fixed points on the upper branch. Spiking is terminated at a supercritical Hopf bifurcation, but the trajectory remains on the upper branch until it hits a saddle node on the upper folded edge and drops to the lower branch. The two slow variables contribute as follows. A second, slow component of sodium channel inactivation is largely responsible for the initiation and termination of spiking. The slow activation of the ether-a-go-go-related (ERG) K(+) current is largely responsible for termination of the depolarized plateau. The mechanisms and slow processes identified herein may contribute to bursting as well as entry into and recovery from the depolarization block to different degrees in different subpopulations of dopamine neurons in vivo. PMID:25852980

  17. Secreted miR-34a in astrocytic shedding vesicles enhanced the vulnerability of dopaminergic neurons to neurotoxins by targeting Bcl-2.

    PubMed

    Mao, Susu; Sun, Qi; Xiao, Hui; Zhang, Chenyu; Li, Liang

    2015-07-01

    MicroRNAs (miRNAs) are a class of noncoding RNAs that regulates target gene expression at posttranscriptional level, leading to further biological functions. We have demonstrated that microvesicles (MVs) can deliver miRNAs into target cells as a novel way of intercellular communication. It is reported that in central nervous system, glial cells release MVs, which modulate neuronal function in normal condition. To elucidate the potential role of glial MVs in disease, we evaluated the effects of secreted astrocytic MVs on stress condition. Our results demonstrated that after Lipopolysaccharide (LPS) stimulation, astrocytes released shedding vesicles (SVs) that enhanced vulnerability of dopaminergic neurons to neurotoxin. Further investigation showed that increased astrocytic miR-34a in SVs was involved in this progress via targeting anti-apoptotic protein Bcl-2 in dopaminergic neurons. We also found that inhibition of astrocytic miR-34a after LPS stimulation can postpone dopaminergic neuron loss under neurotoxin stress. These data revealed a novel mechanism underlying astrocyte-neuron interaction in disease.

  18. The peptidyl-prolyl isomerase Pin1 up-regulation and proapoptotic function in dopaminergic neurons: relevance to the pathogenesis of Parkinson disease.

    PubMed

    Ghosh, Anamitra; Saminathan, Hariharan; Kanthasamy, Arthi; Anantharam, Vellareddy; Jin, Huajun; Sondarva, Gautam; Harischandra, Dilshan S; Qian, Ziqing; Rana, Ajay; Kanthasamy, Anumantha G

    2013-07-26

    Parkinson disease (PD) is a chronic neurodegenerative disease characterized by a slow and progressive degeneration of dopaminergic neurons in substantia nigra. The pathophysiological mechanisms underlying PD remain unclear. Pin1, a major peptidyl-prolyl isomerase, has recently been associated with certain diseases. Notably, Ryo et al. (Ryo, A., Togo, T., Nakai, T., Hirai, A., Nishi, M., Yamaguchi, A., Suzuki, K., Hirayasu, Y., Kobayashi, H., Perrem, K., Liou, Y. C., and Aoki, I. (2006) J. Biol. Chem. 281, 4117-4125) implicated Pin1 in PD pathology. Therefore, we sought to systematically characterize the role of Pin1 in PD using cell culture and animal models. To our surprise we observed a dramatic up-regulation of Pin1 mRNA and protein levels in dopaminergic MN9D neuronal cells treated with the parkinsonian toxicant 1-methyl-4-phenylpyridinium (MPP(+)) as well as in the substantia nigra of the 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP)-induced PD mouse model. Notably, a marked expression of Pin1 was also observed in the substantia nigra of human PD brains along with a high co-localization of Pin1 within dopaminergic neurons. In functional studies, siRNA-mediated knockdown of Pin1 almost completely prevented MPP(+)-induced caspase-3 activation and DNA fragmentation, indicating that Pin1 plays a proapoptotic role. Interestingly, multiple pharmacological Pin1 inhibitors, including juglone, attenuated MPP(+)-induced Pin1 up-regulation, α-synuclein aggregation, caspase-3 activation, and cell death. Furthermore, juglone treatment in the MPTP mouse model of PD suppressed Pin1 levels and improved locomotor deficits, dopamine depletion, and nigral dopaminergic neuronal loss. Collectively, our findings demonstrate for the first time that Pin1 is up-regulated in PD and has a pathophysiological role in the nigrostriatal dopaminergic system and suggest that modulation of Pin1 levels may be a useful translational therapeutic strategy in PD.

  19. Dopamine synapse is a neuroligin-2–mediated contact between dopaminergic presynaptic and GABAergic postsynaptic structures

    PubMed Central

    Uchigashima, Motokazu; Ohtsuka, Toshihisa; Kobayashi, Kazuto; Watanabe, Masahiko

    2016-01-01

    Midbrain dopamine neurons project densely to the striatum and form so-called dopamine synapses on medium spiny neurons (MSNs), principal neurons in the striatum. Because dopamine receptors are widely expressed away from dopamine synapses, it remains unclear how dopamine synapses are involved in dopaminergic transmission. Here we demonstrate that dopamine synapses are contacts formed between dopaminergic presynaptic and GABAergic postsynaptic structures. The presynaptic structure expressed tyrosine hydroxylase, vesicular monoamine transporter-2, and plasmalemmal dopamine transporter, which are essential for dopamine synthesis, vesicular filling, and recycling, but was below the detection threshold for molecules involving GABA synthesis and vesicular filling or for GABA itself. In contrast, the postsynaptic structure of dopamine synapses expressed GABAergic molecules, including postsynaptic adhesion molecule neuroligin-2, postsynaptic scaffolding molecule gephyrin, and GABAA receptor α1, without any specific clustering of dopamine receptors. Of these, neuroligin-2 promoted presynaptic differentiation in axons of midbrain dopamine neurons and striatal GABAergic neurons in culture. After neuroligin-2 knockdown in the striatum, a significant decrease of dopamine synapses coupled with a reciprocal increase of GABAergic synapses was observed on MSN dendrites. This finding suggests that neuroligin-2 controls striatal synapse formation by giving competitive advantage to heterologous dopamine synapses over conventional GABAergic synapses. Considering that MSN dendrites are preferential targets of dopamine synapses and express high levels of dopamine receptors, dopamine synapse formation may serve to increase the specificity and potency of dopaminergic modulation of striatal outputs by anchoring dopamine release sites to dopamine-sensing targets. PMID:27035941

  20. The glutaminergic, GABAergic, dopaminergic but not cholinergic neurons are susceptible to anaesthesia-induced cell death in the rat developing brain.

    PubMed

    Zhou, Z-W; Shu, Y; Li, M; Guo, X; Pac-Soo, C; Maze, M; Ma, D

    2011-02-01

    Neuronal cell death induced by anaesthetics in the developing brain was evident in previous pre-clinical studies. However, the neuronal cell types involved in anaesthesia-induced neuronal cell death remains elusive. The aim of this study was to investigate glutamatergic, GABAergic, cholinergic and dopaminergic neuronal cell apoptosis induced by anaesthetic exposure in specific brain regions in rats. Separate cohorts of 7-day-old Sprague Dawley (SD) rat pups were randomly assigned to two groups: Naive and anaesthetics alone (70% nitrous oxide and 0.75% isoflurane exposure for 6 h). The brains were sectioned and the slices that contained the basal forebrain, substantia nigra, cornu ammonis area 1 (CA1) subarea of hippocampus or cingulate cortex were selected and subsequently subjected to double-labelled fluorescent immunohistochemistry for choline acetyltransferase, dopamine, vesicular glutamate transporter 1 (vGLUT1) or glutamic acid decarboxylase 67 (GAD67) together with caspase 3, respectively. Compared to the naive control, anaesthetic exposure significantly increased the number of caspase-3 positive cells in the CA1 subarea of hippocampus, cingulate cortex, and substantia nigra, but not in the basal forebrain. 54% and 14% of apoptotic cells in the CA1 subarea of hippocampus were GABAergic and glutamatergic neurons respectively. In the cingulate cortex, 30% and 37% of apoptotic cells were GABAergic and glutamatergic neurons respectively. In the substantia nigra, 22% of apoptotic cells were dopaminergic neurons. Our data suggests, anaesthetic exposure significantly increases neuroapoptosis of glutamatergic, GABAergic and dopaminergic neurons in the developing brain but not that of the cholinergic neurons in the basal forebrain. PMID:21056635

  1. Intranasal insulin protects against substantia nigra dopaminergic neuronal loss and alleviates motor deficits induced by 6-OHDA in rats.

    PubMed

    Pang, Y; Lin, S; Wright, C; Shen, J; Carter, K; Bhatt, A; Fan, L-W

    2016-03-24

    Protection of substantia nigra (SN) dopaminergic (DA) neurons by neurotrophic factors (NTFs) is one of the promising strategies in Parkinson's disease (PD) therapy. A major clinical challenge for NTF-based therapy is that NTFs need to be delivered into the brain via invasive means, which often shows limited delivery efficiency. The nose to brain pathway is a non-invasive brain drug delivery approach developed in recent years. Of particular interest is the finding that intranasal insulin improves cognitive functions in Alzheimer's patients. In vitro, insulin has been shown to protect neurons against various insults. Therefore, the current study was designed to test whether intranasal insulin could afford neuroprotection in the 6-hydroxydopamine (6-OHDA)-based rat PD model. 6-OHDA was injected into the right side of striatum to induce a progressive DA neuronal lesion in the ipsilateral SN pars compact (SNc). Recombinant human insulin was applied intranasally to rats starting from 24h post lesion, once per day, for 2 weeks. A battery of motor behavioral tests was conducted on day 8 and 15. The number of DA neurons in the SNc was estimated by stereological counting. Our results showed that 6-OHDA injection led to significant motor deficits and 53% of DA neuron loss in the ipsilateral side of injection. Treatment with insulin significantly ameliorated 6-OHDA-induced motor impairments, as shown by improved locomotor activity, tapered/ledged beam-walking performance, vibrissa-elicited forelimb-placing, initial steps, as well as methamphetamine-induced rotational behavior. Consistent with behavioral improvements, insulin treatment provided a potent protection of DA neurons in the SNc against 6-OHDA neurotoxicity, as shown by a 74.8% increase in tyrosine hydroxylase (TH)-positive neurons compared to the vehicle group. Intranasal insulin treatment did not affect body weight and blood glucose levels. In conclusion, our study showed that intranasal insulin provided strong

  2. Intranasal insulin protects against substantia nigra dopaminergic neuronal loss and alleviates motor deficits induced by 6-OHDA in rats.

    PubMed

    Pang, Y; Lin, S; Wright, C; Shen, J; Carter, K; Bhatt, A; Fan, L-W

    2016-03-24

    Protection of substantia nigra (SN) dopaminergic (DA) neurons by neurotrophic factors (NTFs) is one of the promising strategies in Parkinson's disease (PD) therapy. A major clinical challenge for NTF-based therapy is that NTFs need to be delivered into the brain via invasive means, which often shows limited delivery efficiency. The nose to brain pathway is a non-invasive brain drug delivery approach developed in recent years. Of particular interest is the finding that intranasal insulin improves cognitive functions in Alzheimer's patients. In vitro, insulin has been shown to protect neurons against various insults. Therefore, the current study was designed to test whether intranasal insulin could afford neuroprotection in the 6-hydroxydopamine (6-OHDA)-based rat PD model. 6-OHDA was injected into the right side of striatum to induce a progressive DA neuronal lesion in the ipsilateral SN pars compact (SNc). Recombinant human insulin was applied intranasally to rats starting from 24h post lesion, once per day, for 2 weeks. A battery of motor behavioral tests was conducted on day 8 and 15. The number of DA neurons in the SNc was estimated by stereological counting. Our results showed that 6-OHDA injection led to significant motor deficits and 53% of DA neuron loss in the ipsilateral side of injection. Treatment with insulin significantly ameliorated 6-OHDA-induced motor impairments, as shown by improved locomotor activity, tapered/ledged beam-walking performance, vibrissa-elicited forelimb-placing, initial steps, as well as methamphetamine-induced rotational behavior. Consistent with behavioral improvements, insulin treatment provided a potent protection of DA neurons in the SNc against 6-OHDA neurotoxicity, as shown by a 74.8% increase in tyrosine hydroxylase (TH)-positive neurons compared to the vehicle group. Intranasal insulin treatment did not affect body weight and blood glucose levels. In conclusion, our study showed that intranasal insulin provided strong

  3. Pleiotrophin mediates the neurotrophic effect of cyclic AMP on dopaminergic neurons: analysis of suppression-subtracted cDNA libraries and confirmation in vitro.

    PubMed

    Mourlevat, Sophie; Debeir, Thomas; Ferrario, Juan E; Delbe, Jean; Caruelle, Daniele; Lejeune, Olivier; Depienne, Christel; Courty, José; Raisman-Vozari, Rita; Ruberg, Merle

    2005-07-01

    To better understand the particular vulnerability of mesencephalic dopaminergic neurons to toxins or gene mutations causing parkinsonism, we have taken advantage of a primary cell culture system in which these neurons die selectively. Antimitotic agents, such as cytosine arabinoside or cAMP, prevent the death of the neurons by arresting astrocyte proliferation. To identify factors implicated in either the death of the dopaminergic neurons or in the neuroprotective effect of cAMP, we constructed cDNA libraries enriched by subtractive hybridization and suppressive PCR in transcripts that are preferentially expressed in either control or cAMP-treated cultures. Differentially expressed transcripts were identified by hybridization of the enriched cDNAs with a commercially available cDNA expression array. The proteoglycan receptors syndecan-3 and the receptor protein tyrosine phosphatase zeta/beta were found among the transcripts preferentially expressed under control conditions, and their ligand, the cytokine pleiotrophin, was highly represented in the cDNA libraries for both conditions. Since pleiotrophin is expressed during embryonic and perinatal neural development and following lesions in the adult brain, we investigated its role in our cell culture model. Pleiotrophin was not responsible for the death of dopaminergic neurons under control conditions, or for their survival in cAMP-treated cultures. It was, however, implicated in the initial and cAMP-dependent enhancement of the differentiation of the dopaminergic neurons in our cultures. In addition, our experiments have provided evidence for a cAMP-dependent regulatory pathway leading to protease activation, and the identification of pleiotrophin as a target of this pathway.

  4. Activity in descending dopaminergic neurons represents but is not required for leg movements in the fruit fly Drosophila.

    PubMed

    Tschida, Katherine; Bhandawat, Vikas

    2015-03-01

    Modulatory descending neurons (DNs) that link the brain to body motor circuits, including dopaminergic DNs (DA-DNs), are thought to contribute to the flexible control of behavior. Dopamine elicits locomotor-like outputs and influences neuronal excitability in isolated body motor circuits over tens of seconds to minutes, but it remains unknown how and over what time scale DA-DN activity relates to movement in behaving animals. To address this question, we identified DA-DNs in the Drosophila brain and developed an electrophysiological preparation to record and manipulate the activity of these cells during behavior. We find that DA-DN spike rates are rapidly modulated during a subset of leg movements and scale with the total speed of ongoing leg movements, whether occurring spontaneously or in response to stimuli. However, activating DA-DNs does not elicit leg movements in intact flies, nor do acute bidirectional manipulations of DA-DN activity affect the probability or speed of leg movements over a time scale of seconds to minutes. Our findings indicate that in the context of intact descending control, changes in DA-DN activity are not sufficient to influence ongoing leg movements and open the door to studies investigating how these cells interact with other descending and local neuromodulatory inputs to influence body motor output.

  5. Activity in descending dopaminergic neurons represents but is not required for leg movements in the fruit fly Drosophila

    PubMed Central

    Tschida, Katherine; Bhandawat, Vikas

    2015-01-01

    Modulatory descending neurons (DNs) that link the brain to body motor circuits, including dopaminergic DNs (DA-DNs), are thought to contribute to the flexible control of behavior. Dopamine elicits locomotor-like outputs and influences neuronal excitability in isolated body motor circuits over tens of seconds to minutes, but it remains unknown how and over what time scale DA-DN activity relates to movement in behaving animals. To address this question, we identified DA-DNs in the Drosophila brain and developed an electrophysiological preparation to record and manipulate the activity of these cells during behavior. We find that DA-DN spike rates are rapidly modulated during a subset of leg movements and scale with the total speed of ongoing leg movements, whether occurring spontaneously or in response to stimuli. However, activating DA-DNs does not elicit leg movements in intact flies, nor do acute bidirectional manipulations of DA-DN activity affect the probability or speed of leg movements over a time scale of seconds to minutes. Our findings indicate that in the context of intact descending control, changes in DA-DN activity are not sufficient to influence ongoing leg movements and open the door to studies investigating how these cells interact with other descending and local neuromodulatory inputs to influence body motor output. PMID:25742959

  6. Klotho Protects Dopaminergic Neuron Oxidant-Induced Degeneration by Modulating ASK1 and p38 MAPK Signaling Pathways

    PubMed Central

    Brobey, Reynolds K.; German, Dwight; Sonsalla, Patricia K.; Gurnani, Prem; Pastor, Johanne; Hsieh, C-C; Papaconstantinou, John; Foster, Philip P.; Kuro-o, Makoto; Rosenblatt, Kevin P.

    2015-01-01

    Klotho transgenic mice exhibit resistance to oxidative stress as measured by their urinal levels of 8-hydroxy-2-deoxyguanosine, albeit this anti-oxidant defense mechanism has not been locally investigated in the brain. Here, we tested the hypothesis that the reactive oxygen species (ROS)-sensitive apoptosis signal-regulating kinase 1 (ASK1)/p38 MAPK pathway regulates stress levels in the brain of these mice and showed that: 1) the ratio of free ASK1 to thioredoxin (Trx)-bound ASK1 is relatively lower in the transgenic brain whereas the reverse is true for the Klotho knockout mice; 2) the reduced p38 activation level in the transgene corresponds to higher level of ASK1-bound Trx, while the KO mice showed elevated p38 activation and lower level of–bound Trx; and 3) that 14-3-3ζ is hyper phosphorylated (Ser-58) in the transgene which correlated with increased monomer forms. In addition, we evaluated the in vivo robustness of the protection by challenging the brains of Klotho transgenic mice with a neurotoxin, MPTP and analyzed for residual neuron numbers and integrity in the substantia nigra pars compacta. Our results show that Klotho overexpression significantly protects dopaminergic neurons against oxidative damage, partly by modulating p38 MAPK activation level. Our data highlight the importance of ASK1/p38 MAPK pathway in the brain and identify Klotho as a possible anti-oxidant effector. PMID:26452228

  7. Control of proliferation rate of N27 dopaminergic neurons using Transcranial Magnetic Stimulation orientation

    NASA Astrophysics Data System (ADS)

    Meng, Yiwen; Hadimani, Ravi; Anantharam, Vellareddy; Kanthasamy, Anumantha; Jiles, David

    2015-03-01

    Transcranial magnetic stimulation (TMS) has been used to investigate possible treatments for a variety of neurological disorders. However, the effect that magnetic fields have on neurons has not been well documented in the literature. We have investigated the effect of different orientation of magnetic field generated by TMS coils with a monophasic stimulator on the proliferation rate of N27 neuronal cells cultured in flasks and multi-well plates. The proliferation rate of neurons would increase by exposed horizontally adherent N27 cells to a magnetic field pointing upward through the neuronal proliferation layer compared with the control group. On the other hand, proliferation rate would decrease in cells exposed to a magnetic field pointing downward through the neuronal growth layer compared with the control group. We confirmed results obtained from the Trypan-blue and automatic cell counting methods with those from the CyQuant and MTS cell viability assays. Our findings could have important implications for the preclinical development of TMS treatments of neurological disorders and represents a new method to control the proliferation rate of neuronal cells.

  8. Rapid signalling in distinct dopaminergic axons during locomotion and reward.

    PubMed

    Howe, M W; Dombeck, D A

    2016-07-28

    Dopaminergic projection axons from the midbrain to the striatum are crucial for motor control, as their degeneration in Parkinson disease results in profound movement deficits. Paradoxically, most recording methods report rapid phasic dopamine signalling (~100-ms bursts) in response to unpredicted rewards, with little evidence for movement-related signalling. The leading model posits that phasic signalling in striatum-targeting dopamine neurons drives reward-based learning, whereas slow variations in firing (tens of seconds to minutes) in these same neurons bias animals towards or away from movement. However, current methods have provided little evidence to support or refute this model. Here, using new optical recording methods, we report the discovery of rapid phasic signalling in striatum-targeting dopaminergic axons that is associated with, and capable of triggering, locomotion in mice. Axons expressing these signals were largely distinct from those that responded to unexpected rewards. These results suggest that dopaminergic neuromodulation can differentially impact motor control and reward learning with sub-second precision, and indicate that both precise signal timing and neuronal subtype are important parameters to consider in the treatment of dopamine-related disorders. PMID:27398617

  9. Rapid signalling in distinct dopaminergic axons during locomotion and reward.

    PubMed

    Howe, M W; Dombeck, D A

    2016-07-28

    Dopaminergic projection axons from the midbrain to the striatum are crucial for motor control, as their degeneration in Parkinson disease results in profound movement deficits. Paradoxically, most recording methods report rapid phasic dopamine signalling (~100-ms bursts) in response to unpredicted rewards, with little evidence for movement-related signalling. The leading model posits that phasic signalling in striatum-targeting dopamine neurons drives reward-based learning, whereas slow variations in firing (tens of seconds to minutes) in these same neurons bias animals towards or away from movement. However, current methods have provided little evidence to support or refute this model. Here, using new optical recording methods, we report the discovery of rapid phasic signalling in striatum-targeting dopaminergic axons that is associated with, and capable of triggering, locomotion in mice. Axons expressing these signals were largely distinct from those that responded to unexpected rewards. These results suggest that dopaminergic neuromodulation can differentially impact motor control and reward learning with sub-second precision, and indicate that both precise signal timing and neuronal subtype are important parameters to consider in the treatment of dopamine-related disorders.

  10. Establishing diversity in the dopaminergic system.

    PubMed

    Bodea, Gabriela O; Blaess, Sandra

    2015-12-21

    Midbrain dopaminergic neurons (MbDNs) modulate cognitive processes, regulate voluntary movement, and encode reward prediction errors and aversive stimuli. While the degeneration of MbDNs underlies the motor defects in Parkinson's disease, imbalances in dopamine levels are associated with neuropsychiatric disorders such as depression, schizophrenia and substance abuse. In recent years, progress has been made in understanding how MbDNs, which constitute a relatively small neuronal population in the brain, can contribute to such diverse functions and dysfunctions. In particular, important insights have been gained regarding the distinct molecular, neurochemical and network properties of MbDNs. How this diversity of MbDNs is established during brain development is only starting to be unraveled. In this review, we summarize the current knowledge on the diversity in MbDN progenitors and differentiated MbDNs in the developing rodent brain. We discuss the signaling pathways, transcription factors and transmembrane receptors that contribute to setting up these diverse MbDN subpopulations. A better insight into the processes that establish diversity in MbDNs will ultimately improve the understanding of the architecture and function of the dopaminergic system in the adult brain. PMID:26431946

  11. Dopaminergic Modulation of the Voltage-Gated Sodium Current in the Cochlear Afferent Neurons of the Rat

    PubMed Central

    Valdés-Baizabal, Catalina; Soto, Enrique; Vega, Rosario

    2015-01-01

    The cochlear inner hair cells synapse onto type I afferent terminal dendrites, constituting the main afferent pathway for auditory information flow. This pathway receives central control input from the lateral olivocochlear efferent neurons that release various neurotransmitters, among which dopamine (DA) plays a salient role. DA receptors activation exert a protective role in the over activation of the afferent glutamatergic synapses, which occurs when an animal is exposed to intense sound stimuli or during hypoxic events. However, the mechanism of action of DA at the cellular level is still not completely understood. In this work, we studied the actions of DA and its receptor agonists and antagonists on the voltage-gated sodium current (INa) in isolated cochlear afferent neurons of the rat to define the mechanisms of dopaminergic control of the afferent input in the cochlear pathway. Experiments were performed using the voltage and current clamp techniques in the whole-cell configuration in primary cultures of cochlear spiral ganglion neurons (SGNs). Recordings of the INa showed that DA receptor activation induced a significant inhibition of the peak current amplitude, leading to a significant decrease in cell excitability. Inhibition of the INa was produced by a phosphorylation of the sodium channels as shown by the use of phosphatase inhibitor that produced an inhibition analogous to that caused by DA receptor activation. Use of specific agonists and antagonists showed that inhibitory action of DA was mediated both by activation of D1- and D2-like DA receptors. The action of the D1- and D2-like receptors was shown to be mediated by a Gαs/AC/cAMP/PKA and Gαq/PLC/PKC pathways respectively. These results showed that DA receptor activation constitutes a significant modulatory input to SGNs, effectively modulating their excitability and information flow in the auditory pathway. PMID:25768433

  12. Dopaminergic modulation of the voltage-gated sodium current in the cochlear afferent neurons of the rat.

    PubMed

    Valdés-Baizabal, Catalina; Soto, Enrique; Vega, Rosario

    2015-01-01

    The cochlear inner hair cells synapse onto type I afferent terminal dendrites, constituting the main afferent pathway for auditory information flow. This pathway receives central control input from the lateral olivocochlear efferent neurons that release various neurotransmitters, among which dopamine (DA) plays a salient role. DA receptors activation exert a protective role in the over activation of the afferent glutamatergic synapses, which occurs when an animal is exposed to intense sound stimuli or during hypoxic events. However, the mechanism of action of DA at the cellular level is still not completely understood. In this work, we studied the actions of DA and its receptor agonists and antagonists on the voltage-gated sodium current (INa) in isolated cochlear afferent neurons of the rat to define the mechanisms of dopaminergic control of the afferent input in the cochlear pathway. Experiments were performed using the voltage and current clamp techniques in the whole-cell configuration in primary cultures of cochlear spiral ganglion neurons (SGNs). Recordings of the INa showed that DA receptor activation induced a significant inhibition of the peak current amplitude, leading to a significant decrease in cell excitability. Inhibition of the INa was produced by a phosphorylation of the sodium channels as shown by the use of phosphatase inhibitor that produced an inhibition analogous to that caused by DA receptor activation. Use of specific agonists and antagonists showed that inhibitory action of DA was mediated both by activation of D1- and D2-like DA receptors. The action of the D1- and D2-like receptors was shown to be mediated by a Gαs/AC/cAMP/PKA and Gαq/PLC/PKC pathways respectively. These results showed that DA receptor activation constitutes a significant modulatory input to SGNs, effectively modulating their excitability and information flow in the auditory pathway. PMID:25768433

  13. Prevention of the degeneration of human dopaminergic neurons in an astrocyte co-culture system allowing endogenous drug metabolism

    PubMed Central

    Efremova, Liudmila; Schildknecht, Stefan; Adam, Martina; Pape, Regina; Gutbier, Simon; Hanf, Benjamin; Bürkle, Alexander; Leist, Marcel

    2015-01-01

    Background and Purpose Few neuropharmacological model systems use human neurons. Moreover, available test systems rarely reflect functional roles of co-cultured glial cells. There is no human in vitro counterpart of the widely used 1-methyl-4-phenyl-tetrahydropyridine (MPTP) mouse model of Parkinson's disease Experimental Approach We generated such a model by growing an intricate network of human dopaminergic neurons on a dense layer of astrocytes. In these co-cultures, MPTP was metabolized to 1-methyl-4-phenyl-pyridinium (MPP+) by the glial cells, and the toxic metabolite was taken up through the dopamine transporter into neurons. Cell viability was measured biochemically and by quantitative neurite imaging, siRNA techniques were also used. Key Results We initially characterized the activation of PARP. As in mouse models, MPTP exposure induced (poly-ADP-ribose) synthesis and neurodegeneration was blocked by PARP inhibitors. Several different putative neuroprotectants were then compared in mono-cultures and co-cultures. Rho kinase inhibitors worked in both models; CEP1347, ascorbic acid or a caspase inhibitor protected mono-cultures from MPP+ toxicity, but did not protect co-cultures, when used alone or in combination. Application of GSSG prevented degeneration in co-cultures, but not in mono-cultures. The surprisingly different pharmacological profiles of the models suggest that the presence of glial cells, and the in situ generation of the toxic metabolite MPP+ within the layered cultures played an important role in neuroprotection. Conclusions and Implications Our new model system is a closer model of human brain tissue than conventional cultures. Its use for screening of candidate neuroprotectants may increase the predictiveness of a test battery. PMID:25989025

  14. Transient activation of dopaminergic neurons during development modulates visual responsiveness, locomotion and brain activity in a dopamine ontogeny model of schizophrenia.

    PubMed

    Calcagno, B; Eyles, D; van Alphen, B; van Swinderen, B

    2013-01-08

    It has been observed that certain developmental environmental risk factors for schizophrenia when modeled in rodents alter the trajectory of dopaminergic development, leading to persistent behavioural changes in adults. This has recently been articulated as the "dopamine ontogeny hypothesis of schizophrenia". To test one aspect of this hypothesis, namely that transient dopaminergic effects during development modulate attention-like behavior and arousal in adults, we turned to a small-brain model, Drosophila melanogaster. By applying genetic tools allowing transient activation or silencing of dopaminergic neurons in the fly brain, we investigated whether a critical window exists during development when altered dopamine (DA) activity levels could lead to impairments in arousal states in adult animals. We found that increased activity in dopaminergic neurons in later stages of development significantly increased visual responsiveness and locomotion, especially in adult males. This misallocation of visual salience and hyperactivity mimicked the effect of acute methamphetamine feeding to adult flies, suggesting up-regulated DA signaling could result from developmental manipulations. Finally, brain recordings revealed significantly reduced gamma-band activity in adult animals exposed to the transient developmental insult. Together, these data support the idea that transient alterations in DA signaling during development can permanently alter behavior in adults, and that a reductionist model such as Drosophila can be used to investigate potential mechanisms underlying complex cognitive disorders such as schizophrenia.

  15. Enhancement of the FGFR1 signaling in the FGFR1-5-HT1A heteroreceptor complex in midbrain raphe 5-HT neuron systems. Relevance for neuroplasticity and depression.

    PubMed

    Borroto-Escuela, Dasiel O; Pérez-Alea, Mileidys; Narvaez, Manuel; Tarakanov, Alexander O; Mudó, Giuseppa; Jiménez-Beristain, Antonio; Agnati, Luigi F; Ciruela, Francisco; Belluardo, Natale; Fuxe, Kjell

    2015-07-31

    New findings show existence of FGFR1-5-HT1A heteroreceptor complexes in 5-HT nerve cells of the dorsal and median raphe nuclei of the rat midbrain and hippocampus. Synergistic receptor-receptor interactions in these receptor complexes indicated their enhancing role in hippocampal plasticity. The existence of FGFR1-5-HT1A heteroreceptor complexes also in midbrain raphe 5-HT nerve cells open up the possibility that antidepressant drugs by increasing extracellular 5-HT levels can cause an activation of the FGF-2/FGFR1 mechanism in these nerve cells as well. Therefore, the agonist modulation of the FGFR1-5-HT1A heteroreceptor complexes and their specific role is now determined in rat medullary raphe RN33B cells and in the caudal midline raphe area of the midbrain rich in 5-HT nerve cells. The combined i.c.v. treatment with FGF-2 and the 5-HT1A agonist 8-OHDPAT synergistically increased FGFR1 and ERK1/2 phosphorylation in the raphe midline area of the midbrain and in the RN33B cells. Cotreatment with FGF2 and the 5-HT1A agonist induced RN33B cell differentiation as seen from development of an increased number and length of extensions per cell and their increased 5-HT immunoreactivity. These signaling and differentiation events were dependent on the receptor interface since they were blocked by incubation with TMV but not by TMII of the 5-HT1A receptor. Taken together, the 5-HT1A autoreceptors by being part of a FGFR1-5-HT1A heteroreceptor complex in the midbrain raphe 5-HT nerve cells appears to have also a trophic role in the central 5-HT neuron systems besides playing a key role in reducing the firing of these neurons.

  16. 1-Methyl-4-phenylpyridinium-induced alterations of glutathione status in immortalized rat dopaminergic neurons

    SciTech Connect

    Drechsel, Derek A.; Liang, L.-P.; Patel, Manisha . E-mail: manisha.patel@uchsc.edu

    2007-05-01

    Decreased glutathione levels associated with increased oxidative stress are a hallmark of numerous neurodegenerative diseases, including Parkinson's disease. GSH is an important molecule that serves as an anti-oxidant and is also a major determinant of cellular redox environment. Previous studies have demonstrated that neurotoxins can cause changes in reduced and oxidized GSH levels; however, information regarding steady state levels remains unexplored. The goal of this study was to characterize changes in cellular GSH levels and its regulatory enzymes in a dopaminergic cell line (N27) following treatment with the Parkinsonian toxin, 1-methyl-4-phenylpyridinium (MPP{sup +}). Cellular GSH levels were initially significantly decreased 12 h after treatment, but subsequently recovered to values greater than controls by 24 h. However, oxidized glutathione (GSSG) levels were increased 24 h following treatment, concomitant with a decrease in GSH/GSSG ratio prior to cell death. In accordance with these changes, ROS levels were also increased, confirming the presence of oxidative stress. Decreased enzymatic activities of glutathione reductase and glutamate-cysteine ligase by 20-25% were observed at early time points and partly account for changes in GSH levels after MPP{sup +} exposure. Additionally, glutathione peroxidase activity was increased 24 h following treatment. MPP{sup +} treatment was not associated with increased efflux of glutathione to the medium. These data further elucidate the mechanisms underlying GSH depletion in response to the Parkinsonian toxin, MPP{sup +}.

  17. Laminin deficits induce alterations in the development of dopaminergic neurons in the mouse retina

    PubMed Central

    Dénes, Viktória; Witkovsky, Paul; Koch, Manuel; Hunter, Dale D.; Pinzón-Duarte, Germán; Brunken, William J.

    2010-01-01

    Genetically modified mice lacking the β2 laminin chain (β2null), the γ3 laminin chain (γ3 null), or both β2/γ3 chains (compound null) were produced. The development of tyrosine hydroxylase (TH) immunoreactive neurons in these mouse lines was studied between birth and postnatal day (P) 20. Compared to wild type mice, no alterations were seen in γ3 null mice. In β2 null mice, however, the large, type I TH neurons appeared later in development, were at a lower density and had reduced TH immunoreactivity, although TH process number and size were not altered. In the compound null mouse, the same changes were observed together with reduced TH process outgrowth. Surprisingly, in the smaller, type II TH neurons, TH immunoreactivity was increased in laminin-deficient compared to wild type mice. Other retinal defects we observed were a patchy disruption of the inner limiting retinal basement membrane and a disoriented growth of Müller glial cells. Starburst and AII type amacrine cells were not apparently altered in laminin-deficient relative to wild type mice. We postulate that laminin-dependent developmental signals are conveyed to TH amacrine neurons through intermediate cell types, perhaps the Müller glial cell and/or the retinal ganglion cell. PMID:17711601

  18. Midbrain dopamine neurons in Parkinson's disease exhibit a dysregulated miRNA and target-gene network.

    PubMed

    Briggs, Christine E; Wang, Yulei; Kong, Benjamin; Woo, Tsung-Ung W; Iyer, Lakshmanan K; Sonntag, Kai C

    2015-08-27

    The degeneration of substantia nigra (SN) dopamine (DA) neurons in sporadic Parkinson׳s disease (PD) is characterized by disturbed gene expression networks. Micro(mi)RNAs are post-transcriptional regulators of gene expression and we recently provided evidence that these molecules may play a functional role in the pathogenesis of PD. Here, we document a comprehensive analysis of miRNAs in SN DA neurons and PD, including sex differences. Our data show that miRNAs are dysregulated in disease-affected neurons and differentially expressed between male and female samples with a trend of more up-regulated miRNAs in males and more down-regulated miRNAs in females. Unbiased Ingenuity Pathway Analysis (IPA) revealed a network of miRNA/target-gene associations that is consistent with dysfunctional gene and signaling pathways in PD pathology. Our study provides evidence for a general association of miRNAs with the cellular function and identity of SN DA neurons, and with deregulated gene expression networks and signaling pathways related to PD pathogenesis that may be sex-specific.

  19. Molecular manipulation targeting regulation of dopaminergic differentiation and proliferation of neural stem cells or pluripotent stem cells.

    PubMed

    Ding, Yin-Xiu; Wei, Li-Chun; Wang, Ya-Zhou; Cao, Rong; Wang, Xi; Chen, Liang-Wei

    2011-06-01

    Parkinson's disease (PD) is a severe deliberating neurological disease caused by progressive degenerative death of dopaminergic neurons in the substantia nigra of midbrain. While cell replacement strategy by transplantation of neural stem cells and inducement of dopaminergic neurons is recommended for the treatment of PD, understanding the differentiation mechanism and controlled proliferation of grafted stem cells remain major concerns in their clinical application. Here we review recent studies on molecular signaling pathways in regulation of dopaminergic differentiation and proliferation of stem cells, particularly Wnt/beta-catenin signaling in stimulating formation of the dopaminergic phenotype, Notch signaling in inhibiting stem cell differentiation, and Sonic hedgehog functioning in neural stem cell proliferation and neuronal cell production. Activation of oncogenes involved in uncontrolled proliferation or tumorigenicity of stem cells is also discussed. It is proposed that a selective molecular manipulation targeting strategy will greatly benefit cell replacement therapy for PD by effectively promoting dopaminergic neuronal cell generation and reducing risk of tumorigenicity of in vivo stem cell applications.

  20. Dopaminergic neurons differentiating from LRRK2 G2019S induced pluripotent stem cells show early neuritic branching defects

    PubMed Central

    Borgs, Laurence; Peyre, Elise; Alix, Philippe; Hanon, Kevin; Grobarczyk, Benjamin; Godin, Juliette D.; Purnelle, Audrey; Krusy, Nathalie; Maquet, Pierre; Lefebvre, Philippe; Seutin, Vincent; Malgrange, Brigitte; Nguyen, Laurent

    2016-01-01

    Some mutations of the LRRK2 gene underlie autosomal dominant form of Parkinson’s disease (PD). The G2019S is a common mutation that accounts for about 2% of PD cases. To understand the pathophysiology of this mutation and its possible developmental implications, we developed an in vitro assay to model PD with human induced pluripotent stem cells (hiPSCs) reprogrammed from skin fibroblasts of PD patients suffering from the LRKK2 G2019S mutation. We differentiated the hiPSCs into neural stem cells (NSCs) and further into dopaminergic neurons. Here we show that NSCs bearing the mutation tend to differentiate less efficiently into dopaminergic neurons and that the latter exhibit significant branching defects as compared to their controls. PMID:27640816

  1. Dopamine as a potent inducer of cellular glutathione and NAD(P)H:quinone oxidoreductase 1 in PC12 neuronal cells: a potential adaptive mechanism for dopaminergic neuroprotection.

    PubMed

    Jia, Zhenquan; Zhu, Hong; Misra, Bhaba R; Li, Yunbo; Misra, Hara P

    2008-11-01

    Dopamine auto-oxidation and the consequent formation of reactive oxygen species and electrophilic quinone molecules have been implicated in dopaminergic neuronal cell death in Parkinson's disease. We reported here that in PC12 dopaminergic neuronal cells dopamine at noncytotoxic concentrations (50-150 muM) potently induced cellular glutathione (GSH) and the phase 2 enzyme NAD(P)H:quinone oxidoreductase 1 (NQO1), two critical cellular defenses in detoxification of ROS and electrophilic quinone molecules. Incubation of PC12 cells with dopamine also led to a marked increase in the mRNA levels for gamma-glutamylcysteine ligase catalytic subunit (GCLC) and NQO1. In addition, treatment of PC12 cells with dopamine resulted in a significant elevation of GSH content in the mitochondrial compartment. To determine whether treatment with dopamine at noncytotoxic concentrations, which upregulated the cellular defenses could protect the neuronal cells against subsequent lethal oxidative and electrophilic injury, PC12 cells were pretreated with dopamine (150 muM) for 24 h and then exposed to various cytotoxic concentrations of dopamine or 6-hydroxydopamine (6-OHDA). We found that pretreatment of PC12 cells with dopamine at a noncytotoxic concentration led to a remarkable protection against cytotoxicity caused by dopamine or 6-OHDA at lethal concentrations, as detected by 3-[4,5-dimethylthiazol-2-yl]-2,5-diphenyltetrazolium reduction assay. In view of the critical roles of GSH and NQO1 in protecting against dopaminergic neuron degeneration, the above findings implicate that upregulation of both GSH and NQO1 by dopamine at noncytotoxic concentrations may serve as an important adaptive mechanism for dopaminergic neuroprotection. PMID:18368484

  2. Potential environmental neurotoxins related to 1-methyl-4-phenylpyridinium: Selective toxicity of 1-methyl-4-(4'-acetamidophenyl)-pyridinium and 1-methyl-4-cyclohexylpyridinium for dopaminergic neurons in culture

    SciTech Connect

    Michel, P.P.; Dandapani, B.K.; Efange, S.M.; Hefti, F. )

    1990-05-01

    Mesencephalic cells in culture were exposed to various compounds which we hypothesized to be selective toxins for dopaminergic neurons. The culture system was previously shown suitable for assessing selective dopaminergic neurotoxicity, since 1-methyl-4-phenyl-pyridinium (MPP+), the active metabolite of 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridinium, destroyed dopaminergic neurons without affecting other cells. Some compounds tested were selected to fulfill two criteria believed to underly the selective dopaminergic neurotoxicity of MPP+, i.e., to be a potential substrate for the uptake carrier for dopamine and to possess a strong delocalized positive charge to inhibit the mitochondrial respiratory system. Other compounds were chosen on the basis of clinical or anecdotal evidence linking them to Parkinson's disease. Among the tested compounds two pyridinium analogs, 1-methyl-4-(4'-acetamidophenyl)pyridinium (MACPP+) and 1-methyl-4-cyclohexylpyridinium (MCP+) were found to be selectively toxic toward dopaminergic neurons. Incubation of cultures with both MACPP+ and MCP+ produced a dramatic reduction in the number of tyrosine hydroxylase-positive cells and the uptake of (3H)dopamine without reducing the number of cells visualized by phase-contrast microscopy or the uptake of (3H)aminobutyric acid. Besides MACPP+ and MCP+ none of the tested compounds exhibited any selective dopaminergic neurotoxicity. Together with earlier findings, these data suggest that the structural requirements are rather strict for a chemical to be a selective dopaminergic neurotoxin and make it unlikely that there is a wide spectrum of environmental dopaminergic toxins.

  3. Disruption of Lateral Olivocochlear Neurons With a Dopaminergic Neurotoxin Depresses Spontaneous Auditory Nerve Activity

    PubMed Central

    Le Prell, Colleen G.; Dolan, David F.; Hughes, Larry F.; Altschuler, Richard A.; Shore, Susan E.; Bledsoe, Sanford C.

    2015-01-01

    Neurons of the lateral olivocochlear (LOC) system project from the auditory brainstem to the cochlea, where they synapse on radial dendrites of auditory nerve fibers. Selective LOC disruption depresses sound-evoked auditory nerve activity in the guinea pig, but enhances it in the mouse. Here, LOC disruption depressed spontaneous auditory nerve activity in the guinea pig. Recordings from single auditory nerve fibers revealed a significantly reduced proportion of fibers with the highest spontaneous firing rates (SRs) and an increased proportion of neurons with lower SRs. Ensemble activity, estimated using round window noise, also decreased after LOC disruption. Decreased spontaneous activity after LOC disruption may be a consequence of reduced tonic release of excitatory transmitters from the LOC terminals in guinea pigs. PMID:25175420

  4. Disruption of lateral olivocochlear neurons with a dopaminergic neurotoxin depresses spontaneous auditory nerve activity.

    PubMed

    Le Prell, Colleen G; Dolan, David F; Hughes, Larry F; Altschuler, Richard A; Shore, Susan E; Bledsoe, Sanford C

    2014-10-17

    Neurons of the lateral olivocochlear (LOC) system project from the auditory brainstem to the cochlea, where they synapse on radial dendrites of auditory nerve fibers. Selective LOC disruption depresses sound-evoked auditory nerve activity in the guinea pig, but enhances it in the mouse. Here, LOC disruption depressed spontaneous auditory nerve activity in the guinea pig. Recordings from single auditory nerve fibers revealed a significantly reduced proportion of fibers with the highest spontaneous firing rates (SRs) and an increased proportion of neurons with lower SRs. Ensemble activity, estimated using round window noise, also decreased after LOC disruption. Decreased spontaneous activity after LOC disruption may be a consequence of reduced tonic release of excitatory transmitters from the LOC terminals in guinea pigs. PMID:25175420

  5. Synaptic Input of ON-Bipolar Cells onto the Dopaminergic Neurons of the Mouse Retina

    PubMed Central

    Contini, Massimo; Lin, Bin; Kobayashi, Kazuto; Okano, Hideyuki; Masland, Richard H.; Raviola, Elio

    2010-01-01

    In the retina, dopamine fulfills a crucial role in neural adaptation to photopic illumination, but the pathway that carries cone signals to the dopaminergic amacrine (DA) cells was not known. We identified the site of ON-cone bipolar input onto DA cells in transgenic mice in which both types of catecholaminergic amacrine (CA) cells were labeled with green fluorescent protein or human placental alkaline phosphatase (PLAP). In confocal Z series of retinal whole mounts stained with antibodies to tyrosine hydroxylase (TH), DA cells gave rise to varicose processes that descended obliquely through the scleral half of the inner plexiform layer (IPL) and formed a loose, tangential plexus in the middle of this layer. Comparison with the distribution of the dendrites of type 2 CA cells and examination of neurobiotin-injected DA cells proved that their vitreal processes were situated in stratum S3 of the IPL. Electron microscope demonstration of PLAP activity showed that bipolar cell endings in S3 established ribbon synapses onto a postsynaptic dyad in which one or both processes were labeled by a precipitate of lead phosphate and therefore belonged to DA cells. In places, the postsynaptic DA cell processes returned a reciprocal synapse onto the bipolar endings. Confocal images of sections stained with antibodies to TH, kinesin Kif3a, which labels synaptic ribbons, and glutamate or GABAA receptors, confirmed that ribbon-containing endings made glutamatergic synapses onto DA cells processes in S3 and received from them GABAergic synapses. The presynaptic ON-bipolar cells most likely belonged to the CB3 (type 5) variety. PMID:20394057

  6. Automated screening for mutants affecting dopaminergic-neuron specification in C. elegans.

    PubMed

    Doitsidou, Maria; Flames, Nuria; Lee, Albert C; Boyanov, Alexander; Hobert, Oliver

    2008-10-01

    We describe an automated method to isolate mutant Caenorhabditis elegans that do not appropriately execute cellular differentiation programs. We used a fluorescence-activated sorting mechanism implemented in the COPAS Biosort machine to isolate mutants with subtle alterations in the cellular specificity of GFP expression. This methodology is considerably more efficient than comparable manual screens and enabled us to isolate mutants in wh