Science.gov

Sample records for midbrain dopaminergic neurons

  1. Genetic control of midbrain dopaminergic neuron development.

    PubMed

    Blaess, Sandra; Ang, Siew-Lan

    2015-01-01

    Midbrain dopaminergic neurons are involved in regulating motor control, reward behavior, and cognition. Degeneration or dysfunction of midbrain dopaminergic neurons is implicated in several neuropsychiatric disorders such as Parkinson's disease, substance use disorders, depression, and schizophrenia. Understanding the developmental processes that generate midbrain dopaminergic neurons will facilitate the generation of dopaminergic neurons from stem cells for cell replacement therapies to substitute degenerating cells in Parkinson's disease patients and will forward our understanding on how functional diversity of dopaminergic neurons in the adult brain is established. Midbrain dopaminergic neurons develop in a multistep process. Following the induction of the ventral midbrain, a distinct dopaminergic progenitor domain is specified and dopaminergic progenitors undergo proliferation, neurogenesis, and differentiation. Subsequently, midbrain dopaminergic neurons acquire a mature dopaminergic phenotype, migrate to their final position and establish projections and connections to their forebrain targets. This review will discuss insights gained on the signaling network of secreted molecules, cell surface receptors, and transcription factors that regulate specification and differentiation of midbrain dopaminergic progenitors and neurons, from the induction of the ventral midbrain to the migration of dopaminergic neurons. For further resources related to this article, please visit the WIREs website. The authors have declared no conflicts of interest for this article. © 2015 Medical Research Council.

  2. Genetic networks controlling the development of midbrain dopaminergic neurons

    PubMed Central

    Prakash, Nilima; Wurst, Wolfgang

    2006-01-01

    Recent data have substantially advanced our understanding of midbrain dopaminergic neuron development. Firstly, a Wnt1-regulated genetic network, including Otx2 and Nkx2-2, and a Shh-controlled genetic cascade, including Lmx1a, Msx1 and Nkx6-1, have been unravelled, acting in parallel or sequentially to establish a territory competent for midbrain dopaminergic precursor production at relatively early stages of neural development. Secondly, the same factors (Wnt1 and Lmx1a/Msx1) appear to regulate midbrain dopaminergic and/or neuronal fate specification in the postmitotic progeny of these precursors by controlling the expression of midbrain dopaminergic-specific and/or general proneural factors at later stages of neural development. For the first time, early inductive events have thus been linked to later differentiation processes in midbrain dopaminergic neuron development. Given the pivotal importance of this neuronal population for normal function of the human brain and its involvement in severe neurological and psychiatric disorders such as Parkinson's Disease, these advances open new prospects for potential stem cell-based therapies. We will summarize these new findings in the overall context of midbrain dopaminergic neuron development in this review. PMID:16825303

  3. Pharmacogenetic activation of midbrain dopaminergic neurons induces hyperactivity.

    PubMed

    Wang, Shujie; Tan, Yan; Zhang, Ju-En; Luo, Minmin

    2013-10-01

    Dopaminergic neurons regulate and organize numerous important behavioral processes including motor activity. Consistently, manipulation of brain dopamine concentrations changes animal activity levels. Dopamine is synthesized by several neuronal populations in the brain. This study was carried out to directly test whether selective activation of dopamine neurons in the midbrain induces hyperactivity. A pharmacogenetic approach was used to activate midbrain dopamine neurons, and behavioral assays were conducted to determine the effects on mouse activity levels. Transgenic expression of the evolved hM3Dq receptor was achieved by infusing Cre-inducible AAV viral vectors into the midbrain of DAT-Cre mice. Neurons were excited by injecting the hM3Dq ligand clozapine-N-oxide (CNO). Mouse locomotor activity was measured in an open field. The results showed that CNO selectively activated midbrain dopaminergic neurons and induced hyperactivity in a dose-dependent manner, supporting the idea that these neurons play an important role in regulating motor activity.

  4. Dopamine gates action potential backpropagation in midbrain dopaminergic neurons.

    PubMed

    Gentet, Luc J; Williams, Stephen R

    2007-02-21

    Dopamine is released from both axonal and somatodendritic sites of midbrain dopaminergic neurons in an action potential-dependent manner. In contrast to the majority of central neurons, the axon of dopaminergic neurons typically originates from a dendritic site, suggesting a specialized computational function. Here, we examine the initiation and spread of action potentials in dopaminergic neurons of the substantia nigra pars reticulata and reveal that the displacement of the axon to a dendritic site allows highly compartmentalized electrical signaling. In response to a train of synaptic input, action potentials initiated at axon-bearing dendritic sites formed a variable trigger for invasion to the soma and contralateral dendritic tree, with action potentials often confined to the axon-bearing dendrite. The application of dopamine increased this form of electrical compartmentalization, an effect mediated by a tonic membrane potential hyperpolarization leading to an increased availability of a class of voltage-dependent potassium channel. These data suggest that the release of dopamine from axonal and somatodendritic sites are dissociable, and that dopamine levels within the midbrain are dynamically controlled by the somatodendritic spread of action potentials.

  5. Dopaminergic neurons modulate GABA neuron migration in the embryonic midbrain

    PubMed Central

    Vasudevan, Anju; Won, Chungkil; Li, Suyan; Erdélyi, Ferenc; Szabó, Gábor; Kim, Kwang-Soo

    2012-01-01

    Neuronal migration, a key event during brain development, remains largely unexplored in the mesencephalon, where dopaminergic (DA) and GABA neurons constitute two major neuronal populations. Here we study the migrational trajectories of DA and GABA neurons and show that they occupy ventral mesencephalic territory in a temporally and spatially specific manner. Our results from the Pitx3-deficient aphakia mouse suggest that pre-existing DA neurons modulate GABA neuronal migration to their final destination, providing novel insights and fresh perspectives concerning neuronal migration and connectivity in the mesencephalon in normal as well as diseased brains. PMID:22872083

  6. Dopaminergic neurons modulate GABA neuron migration in the embryonic midbrain.

    PubMed

    Vasudevan, Anju; Won, Chungkil; Li, Suyan; Erdélyi, Ferenc; Szabó, Gábor; Kim, Kwang-Soo

    2012-09-01

    Neuronal migration, a key event during brain development, remains largely unexplored in the mesencephalon, where dopaminergic (DA) and GABA neurons constitute two major neuronal populations. Here we study the migrational trajectories of DA and GABA neurons and show that they occupy ventral mesencephalic territory in a temporally and spatially specific manner. Our results from the Pitx3-deficient aphakia mouse suggest that pre-existing DA neurons modulate GABA neuronal migration to their final destination, providing novel insights and fresh perspectives concerning neuronal migration and connectivity in the mesencephalon in normal as well as diseased brains.

  7. The Transcription Factor Orthodenticle Homeobox 2 Influences Axonal Projections and Vulnerability of Midbrain Dopaminergic Neurons

    ERIC Educational Resources Information Center

    Chung, Chee Yeun; Licznerski, Pawel; Alavian, Kambiz N.; Simeone, Antonio; Lin, Zhicheng; Martin, Eden; Vance, Jeffery; Isacson, Ole

    2010-01-01

    Two adjacent groups of midbrain dopaminergic neurons, A9 (substantia nigra pars compacta) and A10 (ventral tegmental area), have distinct projections and exhibit differential vulnerability in Parkinson's disease. Little is known about transcription factors that influence midbrain dopaminergic subgroup phenotypes or their potential role in disease.…

  8. The Transcription Factor Orthodenticle Homeobox 2 Influences Axonal Projections and Vulnerability of Midbrain Dopaminergic Neurons

    ERIC Educational Resources Information Center

    Chung, Chee Yeun; Licznerski, Pawel; Alavian, Kambiz N.; Simeone, Antonio; Lin, Zhicheng; Martin, Eden; Vance, Jeffery; Isacson, Ole

    2010-01-01

    Two adjacent groups of midbrain dopaminergic neurons, A9 (substantia nigra pars compacta) and A10 (ventral tegmental area), have distinct projections and exhibit differential vulnerability in Parkinson's disease. Little is known about transcription factors that influence midbrain dopaminergic subgroup phenotypes or their potential role in disease.…

  9. A new designer drug 5F-ADB activates midbrain dopaminergic neurons but not serotonergic neurons.

    PubMed

    Asaoka, Nozomi; Kawai, Hiroyuki; Nishitani, Naoya; Kinoshita, Haruko; Shibui, Norihiro; Nagayasu, Kazuki; Shirakawa, Hisashi; Kaneko, Shuji

    2016-01-01

    N-[[1-(5-fluoropentyl)-1H-indazol-3-yl]carbonyl]-3-methyl-D-valine methyl ester (5F-ADB) is one of the most potent synthetic cannabinoids and elicits severe psychotic symptoms in humans, sometimes causing death. To investigate the neuronal mechanisms underlying its toxicity, we examined the effects of 5F-ADB on midbrain dopaminergic and serotonergic systems, which modulate various basic brain functions such as those in reward-related behavior. 5F-ADB-induced changes in spontaneous firing activity of dopaminergic and serotonergic neurons were recorded by ex vivo electrophysiological techniques. In dopaminergic neurons, 5F-ADB (1 μM) significantly increased the spontaneous firing rate, while 5F-ADB failed to activate dopaminergic neurons in the presence of the CB1 antagonist AM251 (1 μM). However, the same concentration of 5F-ADB did not affect serotonergic-neuron activity. These results suggest that 5F-ADB activates local CB1 receptors and potentiates midbrain dopaminergic systems with no direct effects on midbrain serotonergic systems.

  10. The transcription factor orthodenticle homeobox 2 influences axonal projections and vulnerability of midbrain dopaminergic neurons

    PubMed Central

    Chung, Chee Yeun; Licznerski, Pawel; Alavian, Kambiz N.; Simeone, Antonio; Lin, Zhicheng; Martin, Eden; Vance, Jeffery

    2010-01-01

    Two adjacent groups of midbrain dopaminergic neurons, A9 (substantia nigra pars compacta) and A10 (ventral tegmental area), have distinct projections and exhibit differential vulnerability in Parkinson’s disease. Little is known about transcription factors that influence midbrain dopaminergic subgroup phenotypes or their potential role in disease. Here, we demonstrate elevated expression of the transcription factor orthodenticle homeobox 2 in A10 dopaminergic neurons of embryonic and adult mouse, primate and human midbrain. Overexpression of orthodenticle homeobox 2 using lentivirus increased levels of known A10 elevated genes, including neuropilin 1, neuropilin 2, slit2 and adenylyl cyclase-activating peptide in both MN9D cells and ventral mesencephalic cultures, whereas knockdown of endogenous orthodenticle homeobox 2 levels via short hairpin RNA reduced expression of these genes in ventral mesencephalic cultures. Lack of orthodenticle homeobox 2 in the ventral mesencephalon of orthodenticle homeobox 2 conditional knockout mice caused a reduction of midbrain dopaminergic neurons and selective loss of A10 dopaminergic projections. Orthodenticle homeobox 2 overexpression protected dopaminergic neurons in ventral mesencephalic cultures from Parkinson’s disease-relevant toxin, 1-methyl-4-phenylpyridinium, whereas downregulation of orthodenticle homeobox 2 using short hairpin RNA increased their susceptibility. These results show that orthodenticle homeobox 2 is important for establishing subgroup phenotypes of post-mitotic midbrain dopaminergic neurons and may alter neuronal vulnerability. PMID:20573704

  11. In ovo electroporation in chick midbrain for studying gene function in dopaminergic neuron development.

    PubMed

    Yang, Ben; Geary, Lauren B; Ma, Yong-Chao

    2012-08-03

    Dopaminergic neurons located in the ventral midbrain control movement, emotional behavior, and reward mechanisms. The dysfunction of ventral midbrain dopaminergic neurons is implicated in Parkinson's disease, Schizophrenia, depression, and dementia. Thus, studying the regulation of midbrain dopaminergic neuron differentiation could not only provide important insight into mechanisms regulating midbrain development and neural progenitor fate specification, but also help develop new therapeutic strategies for treating a variety of human neurological disorders. Dopaminergic neurons differentiate from neural progenitors lining the ventricular zone of embryonic ventral midbrain. The development of neural progenitors is controlled by gene expression programs. Here we report techniques utilizing electroporation to express genes specifically in the midbrain of Hamburger Hamilton (HH) stage 11 (thirteen somites, 42 hours) chick embryos. The external development of chick embryos allows for convenient experimental manipulations at specific embryonic stages, with the effects determined at later developmental time points. Chick embryonic neural tubes earlier than HH stage 13 (nineteen somites, 48 hours) consist of multipotent neural progenitors that are capable of differentiating into distinct cell types of the nervous system. The pCAG vector, which contains both a CMV promoter and a chick β-actin enhancer, allows for robust expression of Flag or other epitope-tagged constructs in embryonic chick neural tubes. In this report, we emphasize special measures to achieve regionally restricted gene expression in embryonic midbrain dopaminergic neuron progenitors, including how to inject DNA constructs specifically into the embryonic midbrain region and how to pinpoint electroporation with small custom-made electrodes. Analyzing chick midbrain at later stages provides an excellent in vivo system for plasmid vector-mediated gain-of-function and loss-of-function studies of midbrain

  12. Social modulation during songbird courtship potentiates midbrain dopaminergic neurons.

    PubMed

    Huang, Ya-Chun; Hessler, Neal A

    2008-10-01

    Synaptic transmission onto dopaminergic neurons of the mammalian ventral tegmental area (VTA) can be potentiated by acute or chronic exposure to addictive drugs. Because rewarding behavior, such as social affiliation, can activate the same neural circuitry as addictive drugs, we tested whether the intense social interaction of songbird courtship may also potentiate VTA synaptic function. We recorded glutamatergic synaptic currents from VTA of male zebra finches who had experienced distinct social and behavioral conditions during the previous hour. The level of synaptic transmission to VTA neurons, as assayed by the ratio of alpha-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA) to N-methyl-D-aspartic acid (NMDA) glutamate receptor mediated synaptic currents, was increased after males sang to females, and also after they saw females without singing, but not after they sang while alone. Potentiation after female exposure alone did not appear to result from stress, as it was not blocked by inhibition of glucocorticoid receptors. This potentiation was restricted to synapses of dopaminergic projection neurons, and appeared to be expressed postsynaptically. This study supports a model in which VTA dopaminergic neurons are more strongly activated during singing used for courtship than during non-courtship singing, and thus can provide social context-dependent modulation to forebrain areas. More generally, these results demonstrate that an intense social encounter can trigger the same pathways of neuronal plasticity as addictive drugs.

  13. Wnt/β-catenin signaling in midbrain dopaminergic neuron specification and neurogenesis.

    PubMed

    Joksimovic, Milan; Awatramani, Rajeshwar

    2014-02-01

    Loss of midbrain dopaminergic (mDA) neurons underlies the motor symptoms of Parkinson's disease. Towards cell replacement, studies have focused on mechanisms underlying embryonic mDA production, as a rational basis for deriving mDA neurons from stem cells. We will review studies of β-catenin, an obligate component of the Wnt cascade that is critical to mDA specification and neurogenesis. mDA neurons have a unique origin--the midbrain floor plate (FP). Unlike the hindbrain and spinal cord FP, the midbrain FP is highly neurogenic and Wnt/β-catenin signaling is critical to this difference in neurogenic potential. In β-catenin loss-of-function experiments, the midbrain FP resembles the hindbrain FP, and key mDA progenitor genes such as Otx2, Lmx1a, Msx1, and Ngn2 are downregulated whereas Shh is maintained. Accordingly, the neurogenic capacity of the midbrain FP is diminished, resulting in fewer mDA neurons. Conversely, in β-catenin gain-of-function experiments, the hindbrain FP expresses key mDA progenitor genes, and is highly neurogenic. Interestingly, when excessive β-catenin is supplied to the midbrain FP, less mDA neurons are produced suggesting that the dosage of Wnt/β-catenin signaling is critical. These studies of β-catenin have facilitated new protocols to derive mDA neurons from stem cells.

  14. Parkinson's disease candidate gene prioritization based on expression profile of midbrain dopaminergic neurons

    PubMed Central

    2010-01-01

    Background Parkinson's disease is the second most common neurodegenerative disorder. The pathological hallmark of the disease is degeneration of midbrain dopaminergic neurons. Genetic association studies have linked 13 human chromosomal loci to Parkinson's disease. Identification of gene(s), as part of the etiology of Parkinson's disease, within the large number of genes residing in these loci can be achieved through several approaches, including screening methods, and considering appropriate criteria. Since several of the indentified Parkinson's disease genes are expressed in substantia nigra pars compact of the midbrain, expression within the neurons of this area could be a suitable criterion to limit the number of candidates and identify PD genes. Methods In this work we have used the combination of findings from six rodent transcriptome analysis studies on the gene expression profile of midbrain dopaminergic neurons and the PARK loci in OMIM (Online Mendelian Inheritance in Man) database, to identify new candidate genes for Parkinson's disease. Results Merging the two datasets, we identified 20 genes within PARK loci, 7 of which are located in an orphan Parkinson's disease locus and one, which had been identified as a disease gene. In addition to identifying a set of candidates for further genetic association studies, these results show that the criteria of expression in midbrain dopaminergic neurons may be used to narrow down the number of genes in PARK loci for such studies. PMID:20716345

  15. Identification of embryonic stem cell-derived midbrain dopaminergic neurons for engraftment.

    PubMed

    Ganat, Yosif M; Calder, Elizabeth L; Kriks, Sonja; Nelander, Jenny; Tu, Edmund Y; Jia, Fan; Battista, Daniela; Harrison, Neil; Parmar, Malin; Tomishima, Mark J; Rutishauser, Urs; Studer, Lorenz

    2012-08-01

    Embryonic stem cells (ESCs) represent a promising source of midbrain dopaminergic (DA) neurons for applications in Parkinson disease. However, ESC-based transplantation paradigms carry a risk of introducing inappropriate or tumorigenic cells. Cell purification before transplantation may alleviate these concerns and enable identification of the specific DA neuron stage most suitable for cell therapy. Here, we used 3 transgenic mouse ESC reporter lines to mark DA neurons at 3 stages of differentiation (early, middle, and late) following induction of differentiation using Hes5::GFP, Nurr1::GFP, and Pitx3::YFP transgenes, respectively. Transplantation of FACS-purified cells from each line resulted in DA neuron engraftment, with the mid-stage and late-stage neuron grafts being composed almost exclusively of midbrain DA neurons. Mid-stage neuron cell grafts had the greatest amount of DA neuron survival and robustly induced recovery of motor deficits in hemiparkinsonian mice. Our data suggest that the Nurr1+ stage (middle stage) of neuronal differentiation is particularly suitable for grafting ESC-derived DA neurons. Moreover, global transcriptome analysis of progeny from each of the ESC reporter lines revealed expression of known midbrain DA neuron genes and also uncovered previously uncharacterized midbrain genes. These data demonstrate remarkable fate specificity of ESC-derived DA neurons and outline a sequential stage-specific ESC reporter line paradigm for in vivo gene discovery.

  16. A natural compound macelignan protects midbrain dopaminergic neurons from inflammatory degeneration via microglial arginase-1 expression.

    PubMed

    Kiyofuji, Kana; Kurauchi, Yuki; Hisatsune, Akinori; Seki, Takahiro; Mishima, Satoshi; Katsuki, Hiroshi

    2015-08-05

    Inflammatory events involving activated microglia have been recognized to play an important role in pathogenesis of various neurodegenerative disorders including Parkinson disease. Compounds regulating activation profiles of microglia may provide therapeutic benefits for Parkinson disease characterized by degeneration of midbrain dopaminergic neurons. Here we examined the effect of macelignan, a compound derived from nutmeg, on inflammatory degeneration of midbrain dopaminergic neurons. Treatment of midbrain slice cultures with interferon (IFN)-γ and lipopolysaccharide (LPS) caused a substantial decrease in viable dopaminergic neurons and an increase in nitric oxide (NO) production indicated by extracellular nitrite accumulation. Application of macelignan (10 μM) concomitantly with LPS prevented the loss of dopaminergic neurons. Besides nitrite accumulation, up-regulation of inducible NO synthase protein expression in response to IFN-γ/LPS was confirmed by Western blotting, and immunohistochemical examination revealed expression of inducible NO synthase in a subpopulation of Iba-1-poitive microglia. However, macelignan did not affect any of these NO-related parameters. On the other hand, macelignan promoted expression of arginase-1 in midbrain slice cultures irrespective of the presence or the absence of IFN-γ/LPS treatment. Arginase-1 expression was mainly localized in a subpopulation of Iba-1-positive cells. Importantly, the neuroprotective effect of macelignan was antagonized by N(ω)-hydroxy-nor-L-arginine, a specific arginase inhibitor. The neuroprotective effect of macelignan was also prevented by GW9662, a peroxisome proliferator-activated receptor γ (PPARγ) antagonist. Overall, these results indicate that macelignan, a compound with PPARγ agonist activity, can provide neuroprotective effect on dopaminergic neurons in an arginase-dependent but NO-independent manner. Copyright © 2015 Elsevier B.V. All rights reserved.

  17. Midbrain dopaminergic neuron activity across alternating brain states of urethane anaesthetized rat.

    PubMed

    Walczak, Magdalena; Błasiak, Tomasz

    2017-04-01

    Midbrain dopaminergic neurons are implicated in the control of motor functions and reward-driven behaviours. The function of this neuronal population is strongly connected with distinct patterns of firing - irregular or bursting, which either maintains basal levels of dopamine (DA) or leads to phasic release, respectively. Heterogeneity of dopaminergic neurons, observed on both structural and functional levels, is also reflected in different responses of DA neurons to changes in global brain states. Preparation of urethane anaesthetized animal is a broadly used model to study brain state dependent activity of neurons. Unfortunately activity of midbrain DA neurons across urethane induced cyclic, spontaneous brain state alternations is poorly described. To fulfil this gap in our knowledge we have performed simultaneous, extracellular recordings of the firing of single putative DA neurons combined with continuous brain state monitoring. We found that during slow wave activity, the firing rate of recorded putative DA neurons was significantly higher compared to firing rates during activated state, both in ventral tegmental area (VTA) and substantia nigra pars compacta (SNc). In the presence of cortical slow waves, putative dopaminergic neurons also intensified bursting activity, but the magnitude of this phenomena differed in respect to the examined region (VTA or SNc). Our results show that activity of DA neurons under urethane anaesthesia is brain-state dependent and emphasize the importance of brain state monitoring during electrophysiological experiments. © 2017 Federation of European Neuroscience Societies and John Wiley & Sons Ltd.

  18. Dicer expression is essential for adult midbrain dopaminergic neuron maintenance and survival.

    PubMed

    Pang, Xueyan; Hogan, Eric M; Casserly, Alison; Gao, Guangping; Gardner, Paul D; Tapper, Andrew R

    2014-01-01

    The type III RNAse, Dicer, is responsible for the processing of microRNA (miRNA) precursors into functional miRNA molecules, non-coding RNAs that bind to and target messenger RNAs for repression. Dicer expression is essential for mouse midbrain development and dopaminergic (DAergic) neuron maintenance and survival during the early post-natal period. However, the role of Dicer in adult mouse DAergic neuron maintenance and survival is unknown. To bridge this gap in knowledge, we selectively knocked-down Dicer expression in individual DAergic midbrain areas, including the ventral tegmental area (VTA) and substantia nigra pars compacta (SNpc) via viral-mediated expression of Cre in adult floxed Dicer knock-in mice (Dicer(flox/flox)). Bilateral Dicer loss in the VTA resulted in progressive hyperactivity that was significantly reduced by the dopamine agonist, amphetamine. In contrast, decreased Dicer expression in the SNpc did not affect locomotor activity but did induce motor-learning impairment on an accelerating rotarod. Knock-down of Dicer in both midbrain regions of adult Dicer(flox/flox) mice resulted in preferential, progressive loss of DAergic neurons likely explaining motor behavior phenotypes. In addition, knock-down of Dicer in midbrain areas triggered neuronal death via apoptosis. Together, these data indicate that Dicer expression and, as a consequence, miRNA function, are essential for DAergic neuronal maintenance and survival in adult midbrain DAergic neuron brain areas. © 2013.

  19. Neurotensin Induces Presynaptic Depression of D2 Dopamine Autoreceptor-Mediated Neurotransmission in Midbrain Dopaminergic Neurons.

    PubMed

    Piccart, Elisabeth; Courtney, Nicholas A; Branch, Sarah Y; Ford, Christopher P; Beckstead, Michael J

    2015-08-05

    Increased dopaminergic signaling is a hallmark of severe mesencephalic pathologies such as schizophrenia and psychostimulant abuse. Activity of midbrain dopaminergic neurons is under strict control of inhibitory D2 autoreceptors. Application of the modulatory peptide neurotensin (NT) to midbrain dopaminergic neurons transiently increases activity by decreasing D2 dopamine autoreceptor function, yet little is known about the mechanisms that underlie long-lasting effects. Here, we performed patch-clamp electrophysiology and fast-scan cyclic voltammetry in mouse brain slices to determine the effects of NT on dopamine autoreceptor-mediated neurotransmission. Application of the active peptide fragment NT8-13 produced synaptic depression that exhibited short- and long-term components. Sustained depression of D2 autoreceptor signaling required activation of the type 2 NT receptor and the protein phosphatase calcineurin. NT application increased paired-pulse ratios and decreased extracellular levels of somatodendritic dopamine, consistent with a decrease in presynaptic dopamine release. Surprisingly, we observed that electrically induced long-term depression of dopaminergic neurotransmission that we reported previously was also dependent on type 2 NT receptors and calcineurin. Because electrically induced depression, but not NT-induced depression, was blocked by postsynaptic calcium chelation, our findings suggest that endogenous NT may act through a local circuit to decrease presynaptic dopamine release. The current research provides a mechanism through which augmented NT release can produce a long-lasting increase in membrane excitability of midbrain dopamine neurons. Whereas plasticity of glutamate synapses in the brain has been studied extensively, demonstrations of plasticity at dopaminergic synapses have been more elusive. By quantifying inhibitory neurotransmission between midbrain dopaminergic neurons in brain slices from mice we have discovered that the modulatory

  20. Ldb1 Is Essential for the Development of Isthmic Organizer and Midbrain Dopaminergic Neurons.

    PubMed

    Kim, Soojin; Zhao, Yangu; Lee, Ja-Myong; Kim, Woon Ryoung; Gorivodsky, Marat; Westphal, Heiner; Geum, Dongho

    2016-07-01

    LIM domain-binding protein 1 (Ldb1) is a nuclear cofactor that interacts with LIM homeodomain proteins to form multiprotein complexes that are important for transcription regulation. Ldb1 has been shown to play essential roles in various processes during mouse embryogenesis. To determine the role of Ldb1 in mid- and hindbrain development, we have generated a conditional mutant with a specific deletion of the Ldb1 in the Engrailed-1-expressing region of the developing mid- and hindbrain. Our study showed that the deletion impaired the expression of signaling molecules, such as fibroblast growth factor 8 (FGF8) and Wnt1, in the isthmic organizer and the expression of Shh in the ventral midbrain. The midbrain and the cerebellum were severely reduced in size, and the midbrain dopaminergic (mDA) neurons were missing in the mutant. These defects are identical to the phenotype that has been observed previously in mice with a deletion of the LIM homeodomain gene Lmx1b. Our results thus provide genetic evidence supporting that Ldb1 and Lmx1b function cooperatively to regulate mid- and hindbrain development. In addition, we found that mouse embryonic stem cells lacking Ldb1 failed to generate several types of differentiated neurons, including the mDA neurons, serotonergic neurons, cholinergic neurons, and olfactory bulb neurons, indicating an essential cell-autonomous role for Ldb1 in the development of these neurons.

  1. Neuroprotective Effects of 7, 8-dihydroxyflavone on Midbrain Dopaminergic Neurons in MPP+-treated Monkeys

    PubMed Central

    He, Jingjing; Xiang, Zheng; Zhu, Xiaoqing; Ai, Zongyong; Shen, Jingsong; Huang, Tianzhuang; Liu, Liegang; Ji, Weizhi; Li, Tianqing

    2016-01-01

    Parkinson’s disease (PD) is one common neurodegenerative disease caused by a significant loss of midbrain dopaminergic neurons. Previous reports showed that 7, 8- dihydroxyflavone (7, 8-DHF) as a potent TrkB agonist can mimic BDNF and play neuroprotective roles for mouse dopaminergic neurons. Nonetheless, the safety and neuroprotective effects are unclear in monkey models of PD. Here, we find that 7, 8-DHF could be absorbed and metabolized into 7-hydroxy-8-methoxyflavone through oral administration in monkeys. The half-life time of 7, 8-DHF in monkey plasma is about 4–8 hrs. Furthermore, these monkeys maintain health state throughout the course of seven-month treatments of 7, 8-DHF (30 mg/kg/day). Importantly, 7, 8-DHF treatments can prevent the progressive degeneration of midbrain dopaminergic neurons by attenuating neurotoxic effects of MPP+ and display strong neuroprotective effects in monkeys. Our study demonstrates that this promising small molecule may be transited into a clinical useful pharmacological agent. PMID:27731318

  2. Cocaine increases dopaminergic neuron and motor activity via midbrain α1 adrenergic signaling.

    PubMed

    Goertz, Richard Brandon; Wanat, Matthew J; Gomez, Jorge A; Brown, Zeliene J; Phillips, Paul E M; Paladini, Carlos A

    2015-03-13

    Cocaine reinforcement is mediated by increased extracellular dopamine levels in the forebrain. This neurochemical effect was thought to require inhibition of dopamine reuptake, but cocaine is still reinforcing even in the absence of the dopamine transporter. Here, we demonstrate that the rapid elevation in dopamine levels and motor activity elicited by cocaine involves α1 receptor activation within the ventral midbrain. Activation of α1 receptors increases dopaminergic neuron burst firing by decreasing the calcium-activated potassium channel current (SK), as well as elevates dopaminergic neuron pacemaker firing through modulation of both SK and the hyperpolarization-activated cation currents (Ih). Furthermore, we found that cocaine increases both the pacemaker and burst-firing frequency of rat ventral-midbrain dopaminergic neurons through an α1 adrenergic receptor-dependent mechanism within the ventral tegmental area and substantia nigra pars compacta. These results demonstrate the mechanism underlying the critical role of α1 adrenergic receptors in the regulation of dopamine neurotransmission and behavior by cocaine.

  3. Non-motor function of the midbrain dopaminergic neurons.

    PubMed

    Da Cunha, Claudio; Wietzikoski, Evellyn Claudia; Bortolanza, Mariza; Dombrowski, Patricia Andréia; dos Santos, Lucélia Mendes; Boschen, Suelen Lúcio; Miyoshi, Edmar; Vital, Maria Aparecida Barbato Frazão; Boerngen-Lacerda, Roseli; Andreatini, Roberto

    2009-01-01

    The roles of the nigrostriatal pathway are far beyond the simple control of motor functions. The tonic release of dopamine in the dorsal and ventral striatum controls the choice of proper actions toward a given environmental situation. In the striatum, a specific action is triggered by a specific stimulus associated with it. When the subject faces a novel and salient stimulus, the phasic release of dopamine allows synaptic plasticity in the cortico-striatal synapses. Neurons of different regions of cortical areas make synapses that converge to the same medium spine neurons of the striatum. The convergent associations form functional units encoding body parts, objects, locations, and symbolic representations of the subject's world. Such units emerge in the striatum in a repetitive manner, like a mosaic of broken mirrors. The phasic release of dopamine allows the association of units to encode an action of the subject directed to an object or location with the outcome of this action. Reinforced stimulus-action-outcome associations will affect future decision making when the same stimulus (object, location, idea) is presented to the subject in the future. In the absence of a minimal amount of striatal dopamine, no action is initiated as seen in Parkinson's disease subjects. The abnormal and improper association of these units leads to the initiation of unpurposeful and sometimes repetitive actions, as those observed in dyskinetic patients. The association of an excessive reinforcement of some actions, like drug consumption, leads to drug addiction. Improper associations of ideas and unpleasant outcomes may be related to traumatic and depressive symptoms common in many diseases, including Parkinson's disease. The same can be said about the learning and memory impairments observed in demented and nondemented Parkinson's disease patients.

  4. Allopregnanolone enhances the neurogenesis of midbrain dopaminergic neurons in APPswe/PSEN1 mice.

    PubMed

    Zhang, P; Xie, M Q; Ding, Y-Q; Liao, M; Qi, S S; Chen, S X; Gu, Q Q; Zhou, P; Sun, C Y

    2015-04-02

    An earlier study has demonstrated that exogenous allopregnanolone (APα) can reverse the reduction of tyrosine hydroxylase (TH)-positive neurons in the substantia nigra pars compacta (SNpc) of 3-month-old male triple transgenic Alzheimer's disease mouse (3xTgAD). This paper is focused on further clarifying the origin of these new-born TH-positive neurons induced by exogenous APα treatment. We performed a deeper research in another AD mouse model, 4-month-old male APPswe/PSEN1 double transgenic AD mouse (2xTgAD) by measuring APα concentration and counting immunopositive neurons using enzyme-linked immunosorbent assay (ELISA) and unbiased stereology. It was found that endogenous APα level and the number of TH-positive neurons were reduced in the 2xTgAD mice, and these reductions were present prior to the appearance of β-amyloid (Aβ)-positive plaques. Furthermore, a single 20mg/kg of exogenous APα treatment prevented the decline of total neurons, TH-positive neurons and TH/bromodeoxyuridine (BrdU) double-positive neurons in the SNpc of 2xTgAD mice although the decreased intensity of TH-positive fibers was not rescued in the striatum. It was also noted that exogenous APα administration had an apparent increase in the doublecortin (DCX)-positive neurons and DCX/BrdU double-positive neurons of subventricular zone (SVZ), as well as in the percentage of neuronal nuclear antigen (NeuN)/BrdU double-positive neurons of the SNpc in the 2xTgAD mice. These findings indicate that a lower level of endogenous APα is implicated in the loss of midbrain dopaminergic neurons in the 2xTgAD mice, and exogenous APα-induced a significant increase in the new-born dopaminergic neurons might be derived from the proliferating and differentiation of neural stem niche of SVZ.

  5. Survival of a Novel Subset of Midbrain Dopaminergic Neurons Projecting to the Lateral Septum Is Dependent on NeuroD Proteins

    PubMed Central

    Chabrat, Audrey; Spencer-Dene, Bradley

    2017-01-01

    Midbrain dopaminergic neurons are highly heterogeneous. They differ in their connectivity and firing patterns and, therefore, in their functional properties. The molecular underpinnings of this heterogeneity are largely unknown, and there is a paucity of markers that distinguish these functional subsets. In this paper, we report the identification and characterization of a novel subset of midbrain dopaminergic neurons located in the ventral tegmental area that expresses the basic helix-loop-helix transcription factor, Neurogenic Differentiation Factor-6 (NEUROD6). Retrograde fluorogold tracing experiments demonstrate that Neurod6+ midbrain dopaminergic neurons neurons project to two distinct septal regions: the dorsal and intermediate region of the lateral septum. Loss-of-function studies in mice demonstrate that Neurod6 and the closely related family member Neurod1 are both specifically required for the survival of this lateral-septum projecting neuronal subset during development. Our findings underscore the complex organization of midbrain dopaminergic neurons and provide an entry point for future studies of the functions of the Neurod6+ subset of midbrain dopaminergic neurons. SIGNIFICANCE STATEMENT Midbrain dopaminergic neurons regulate diverse brain functions, including voluntary movement and cognitive and emotive behaviors. These neurons are heterogeneous, and distinct subsets are thought to regulate different behaviors. However, we currently lack the means to identify and modify gene function in specific subsets of midbrain dopaminergic neurons. In this study, we identify the transcription factor NEUROD6 as a specific marker for a novel subset of midbrain dopaminergic neurons in the ventral midbrain that project to the lateral septum, and we reveal essential roles for Neurod1 and Neurod6 in the survival of these neurons during development. Our findings highlight the molecular and anatomical heterogeneity of midbrain dopaminergic neurons and contribute to a

  6. Survival of a Novel Subset of Midbrain Dopaminergic Neurons Projecting to the Lateral Septum Is Dependent on NeuroD Proteins.

    PubMed

    Khan, Shabana; Stott, Simon R W; Chabrat, Audrey; Truckenbrodt, Anna M; Spencer-Dene, Bradley; Nave, Klaus-Armin; Guillemot, François; Levesque, Martin; Ang, Siew-Lan

    2017-03-01

    Midbrain dopaminergic neurons are highly heterogeneous. They differ in their connectivity and firing patterns and, therefore, in their functional properties. The molecular underpinnings of this heterogeneity are largely unknown, and there is a paucity of markers that distinguish these functional subsets. In this paper, we report the identification and characterization of a novel subset of midbrain dopaminergic neurons located in the ventral tegmental area that expresses the basic helix-loop-helix transcription factor, Neurogenic Differentiation Factor-6 (NEUROD6). Retrograde fluorogold tracing experiments demonstrate that Neurod6(+) midbrain dopaminergic neurons neurons project to two distinct septal regions: the dorsal and intermediate region of the lateral septum. Loss-of-function studies in mice demonstrate that Neurod6 and the closely related family member Neurod1 are both specifically required for the survival of this lateral-septum projecting neuronal subset during development. Our findings underscore the complex organization of midbrain dopaminergic neurons and provide an entry point for future studies of the functions of the Neurod6(+) subset of midbrain dopaminergic neurons.SIGNIFICANCE STATEMENT Midbrain dopaminergic neurons regulate diverse brain functions, including voluntary movement and cognitive and emotive behaviors. These neurons are heterogeneous, and distinct subsets are thought to regulate different behaviors. However, we currently lack the means to identify and modify gene function in specific subsets of midbrain dopaminergic neurons. In this study, we identify the transcription factor NEUROD6 as a specific marker for a novel subset of midbrain dopaminergic neurons in the ventral midbrain that project to the lateral septum, and we reveal essential roles for Neurod1 and Neurod6 in the survival of these neurons during development. Our findings highlight the molecular and anatomical heterogeneity of midbrain dopaminergic neurons and contribute to

  7. Increased innervation of forebrain targets by midbrain dopaminergic neurons in the absence of FGF-2.

    PubMed

    Rumpel, R; Baron, O; Ratzka, A; Schröder, M-L; Hohmann, M; Effenberg, A; Claus, P; Grothe, C

    2016-02-09

    Fibroblast growth factors (FGFs) regulate development and maintenance, and reduce vulnerability of neurons. FGF-2 is essential for survival of midbrain dopaminergic (DA) neurons and is responsible for their dysplasia and disease-related degeneration. We previously reported that FGF-2 is involved in adequate forebrain (FB) target innervation by these neurons in an organotypic co-culture model. It remains unclear, how this ex-vivo phenotype relates to the in vivo situation, and which FGF-related signaling pathway is involved in this process. Here, we demonstrate that lack of FGF-2 results in an increased volume of the striatal target area in mice. We further add evidence that the low molecular weight (LMW) FGF-2 isoform is responsible for this phenotype, as this isoform is predominantly expressed in the embryonic ventral midbrain (VM) as well as in postnatal striatum (STR) and known to act via canonical transmembrane FGF receptor (FGFR) activation. Additionally, we confirm that the phenotype with an enlarged FB-target area by DA neurons can be mimicked in an ex-vivo explant model by inhibiting the canonical FGFR signaling, which resulted in decreased extracellular signal-regulated kinase (ERK) activation, while AKT activation remained unchanged.

  8. N-oleoyldopamine modulates activity of midbrain dopaminergic neurons through multiple mechanisms.

    PubMed

    Sergeeva, Olga A; De Luca, Roberto; Mazur, Karolina; Chepkova, Aissa N; Haas, Helmut L; Bauer, Andreas

    2017-04-09

    N-oleoyl-dopamine (OLDA) is an amide of dopamine and oleic acid, synthesized in catecholaminergic neurons. The present study investigates OLDA targets in midbrain dopaminergic (DA) neurons. Substantia Nigra compacta (SNc) DA neurons recorded in brain slices were excited by OLDA in wild type mice. In transient receptor potential vanilloid 1 (TRPV1) knockout (KO) mice, however, SNc DA neurons displayed sustained inhibition of firing. In the presence of the dopamine type 2 receptor (D2R) antagonist sulpiride or the dopamine transporter blocker nomifensine no such inhibition was observed. Under sulpiride OLDA slightly excited SNc DA neurons, an action abolished upon combined application of the cannabinoid1 and 2 receptor antagonists AM251 and AM630. In ventral tegmental area (VTA) DA neurons from TRPV1 KO mice a transient inhibition of firing by OLDA was observed. Thus OLDA modulates the firing of nigrostriatal DA neurons through interactions with TRPV1, cannabinoid receptors and dopamine uptake. These findings suggest further development of OLDA-like tandem molecules for the treatment of movement disorders including Parkinson's disease.

  9. Generation of embryonic stem cells and transgenic mice expressing green fluorescence protein in midbrain dopaminergic neurons.

    PubMed

    Zhao, Suling; Maxwell, Sarah; Jimenez-Beristain, Antonio; Vives, Joaquim; Kuehner, Eva; Zhao, Jiexin; O'Brien, Carmel; de Felipe, Carmen; Semina, Elena; Li, Meng

    2004-03-01

    We have generated embryonic stem (ES) cells and transgenic mice with green fluorescent protein (GFP) inserted into the Pitx3 locus via homologous recombination. In the central nervous system, Pitx3-directed GFP was visualized in dopaminergic (DA) neurons in the substantia nigra and ventral tegmental area. Live primary DA neurons can be isolated by fluorescence-activated cell sorting from these transgenic mouse embryos. In culture, Pitx3-GFP is coexpressed in a proportion of ES-derived DA neurons. Furthermore, ES cell-derived Pitx3-GFP expressing DA neurons responded to neurotrophic factors and were sensitive to DA-specific neurotoxin N-4-methyl-1, 2, 3, 6-tetrahydropyridine. We anticipate that the Pitx3-GFP ES cells could be used as a powerful model system for functional identification of molecules governing mDA neuron differentiation and for preclinical research including pharmaceutical drug screening and transplantation. The Pitx3 knock-in mice, on the other hand, could be used for purifying primary neurons for molecular studies associated with the midbrain-specific DA phenotype at a level not previously feasible. These mice would also provide a useful tool to study DA fate determination from embryo- or adult-derived neural stem cells.

  10. Expression of early developmental markers predicts the efficiency of embryonic stem cell differentiation into midbrain dopaminergic neurons.

    PubMed

    Salti, Ahmad; Nat, Roxana; Neto, Sonya; Puschban, Zoe; Wenning, Gregor; Dechant, Georg

    2013-02-01

    Dopaminergic neurons derived from pluripotent stem cells are among the best investigated products of in vitro stem cell differentiation owing to their potential use for neurorestorative therapy of Parkinson's disease. However, the classical differentiation protocols for both mouse and human pluripotent stem cells generate a limited percentage of dopaminergic neurons and yield a considerable cellular heterogeneity comprising numerous scarcely characterized cell populations. To improve pluripotent stem cell differentiation protocols for midbrain dopaminergic neurons, we established extensive and strictly quantitative gene expression profiles, including markers for pluripotent cells, neural progenitors, non-neural cells, pan-neuronal and glial cells, neurotransmitter phenotypes, midbrain and nonmidbrain populations, floor plate and basal plate populations, as well as for Hedgehog, Fgf, and Wnt signaling pathways. The profiles were applied to discrete stages of in vitro differentiation of mouse embryonic stem cells toward the dopaminergic lineage and after transplantation into the striatum of 6-hydroxy-dopamine-lesioned rats. The comparison of gene expression in vitro with stages in the developing ventral midbrain between embryonic day 11.5 and 13.5 ex vivo revealed dynamic changes in the expression of transcription factors and signaling molecules. Based on these profiles, we propose quantitative gene expression milestones that predict the efficiency of dopaminergic differentiation achieved at the end point of the protocol, already at earlier stages of differentiation.

  11. The transcription factor Uncx4.1 acts in a short window of midbrain dopaminergic neuron differentiation

    PubMed Central

    2012-01-01

    Background The homeobox containing transcription factor Uncx4.1 is, amongst others, expressed in the mouse midbrain. The early expression of this transcription factor in the mouse, as well as in the chick midbrain, points to a conserved function of Uncx4.1, but so far a functional analysis in this brain territory is missing. The goal of the current study was to analyze in which midbrain neuronal subgroups Uncx4.1 is expressed and to examine whether this factor plays a role in the early development of these neuronal subgroups. Results We have shown that Uncx4.1 is expressed in GABAergic, glutamatergic and dopaminergic neurons in the mouse midbrain. In midbrain dopaminergic (mDA) neurons Uncx4.1 expression is particularly high around E11.5 and strongly diminished already at E17.5. The analysis of knockout mice revealed that the loss of Uncx4.1 is accompanied with a 25% decrease in the population of mDA neurons, as marked by tyrosine hydroxylase (TH), dopamine transporter (DAT), Pitx3 and Ngn2. In contrast, the number of glutamatergic Pax6-positive cells was augmented, while the GABAergic neuron population appears not affected in Uncx4.1-deficient embryos. Conclusion We conclude that Uncx4.1 is implicated in the development of mDA neurons where it displays a unique temporal expression profile in the early postmitotic stage. Our data indicate that the mechanism underlying the role of Uncx4.1 in mDA development is likely related to differentiation processes in postmitotic stages, and where Ngn2 is engaged. Moreover, Uncx4.1 might play an important role during glutamatergic neuronal differentiation in the mouse midbrain. PMID:23217170

  12. The transcription factor Uncx4.1 acts in a short window of midbrain dopaminergic neuron differentiation.

    PubMed

    Rabe, Tamara I; Griesel, Gundula; Blanke, Stephen; Kispert, Andreas; Leitges, Michael; van der Zwaag, Bert; Burbach, J Peter H; Varoqueaux, Frédérique; Mansouri, Ahmed

    2012-12-08

    The homeobox containing transcription factor Uncx4.1 is, amongst others, expressed in the mouse midbrain. The early expression of this transcription factor in the mouse, as well as in the chick midbrain, points to a conserved function of Uncx4.1, but so far a functional analysis in this brain territory is missing. The goal of the current study was to analyze in which midbrain neuronal subgroups Uncx4.1 is expressed and to examine whether this factor plays a role in the early development of these neuronal subgroups. We have shown that Uncx4.1 is expressed in GABAergic, glutamatergic and dopaminergic neurons in the mouse midbrain. In midbrain dopaminergic (mDA) neurons Uncx4.1 expression is particularly high around E11.5 and strongly diminished already at E17.5. The analysis of knockout mice revealed that the loss of Uncx4.1 is accompanied with a 25% decrease in the population of mDA neurons, as marked by tyrosine hydroxylase (TH), dopamine transporter (DAT), Pitx3 and Ngn2. In contrast, the number of glutamatergic Pax6-positive cells was augmented, while the GABAergic neuron population appears not affected in Uncx4.1-deficient embryos. We conclude that Uncx4.1 is implicated in the development of mDA neurons where it displays a unique temporal expression profile in the early postmitotic stage. Our data indicate that the mechanism underlying the role of Uncx4.1 in mDA development is likely related to differentiation processes in postmitotic stages, and where Ngn2 is engaged. Moreover, Uncx4.1 might play an important role during glutamatergic neuronal differentiation in the mouse midbrain.

  13. Midbrain-like Organoids from Human Pluripotent Stem Cells Contain Functional Dopaminergic and Neuromelanin-Producing Neurons.

    PubMed

    Jo, Junghyun; Xiao, Yixin; Sun, Alfred Xuyang; Cukuroglu, Engin; Tran, Hoang-Dai; Göke, Jonathan; Tan, Zi Ying; Saw, Tzuen Yih; Tan, Cheng-Peow; Lokman, Hidayat; Lee, Younghwan; Kim, Donghoon; Ko, Han Seok; Kim, Seong-Oh; Park, Jae Hyeon; Cho, Nam-Joon; Hyde, Thomas M; Kleinman, Joel E; Shin, Joo Heon; Weinberger, Daniel R; Tan, Eng King; Je, Hyunsoo Shawn; Ng, Huck-Hui

    2016-08-04

    Recent advances in 3D culture systems have led to the generation of brain organoids that resemble different human brain regions; however, a 3D organoid model of the midbrain containing functional midbrain dopaminergic (mDA) neurons has not been reported. We developed a method to differentiate human pluripotent stem cells into a large multicellular organoid-like structure that contains distinct layers of neuronal cells expressing characteristic markers of human midbrain. Importantly, we detected electrically active and functionally mature mDA neurons and dopamine production in our 3D midbrain-like organoids (MLOs). In contrast to human mDA neurons generated using 2D methods or MLOs generated from mouse embryonic stem cells, our human MLOs produced neuromelanin-like granules that were structurally similar to those isolated from human substantia nigra tissues. Thus our MLOs bearing features of the human midbrain may provide a tractable in vitro system to study the human midbrain and its related diseases. Copyright © 2016 Elsevier Inc. All rights reserved.

  14. Wnt5a cooperates with canonical Wnts to generate midbrain dopaminergic neurons in vivo and in stem cells.

    PubMed

    Andersson, Emma R; Saltó, Carmen; Villaescusa, J Carlos; Cajanek, Lukas; Yang, Shanzheng; Bryjova, Lenka; Nagy, Irina I; Vainio, Seppo J; Ramirez, Carmen; Bryja, Vitezslav; Arenas, Ernest

    2013-02-12

    Wnts are a family of secreted proteins that regulate multiple steps of neural development and stem cell differentiation. Two of them, Wnt1 and Wnt5a, activate distinct branches of Wnt signaling and individually regulate different aspects of midbrain dopaminergic (DA) neuron development. However, several of their functions and interactions remain to be elucidated. Here, we report that loss of Wnt1 results in loss of Lmx1a and Ngn2 expression, as well as agenesis of DA neurons in the midbrain floor plate. Remarkably, a few ectopic DA neurons still emerge in the basal plate of Wnt1(-/-) mice, where Lmx1a is ectopically expressed. These results indicate that Wnt1 orchestrates DA specification and neurogenesis in vivo. Analysis of Wnt1(-/-);Wnt5a(-/-) mice revealed a greater loss of Nurr1(+) cells and DA neurons than in single mutants, indicating that Wnt1 and Wnt5a interact genetically and cooperate to promote midbrain DA neuron development in vivo. Our results unravel a functional interaction between Wnt1 and Wnt5a resulting in enhanced DA neurogenesis. Taking advantage of these findings, we have developed an application of Wnts to improve the generation of midbrain DA neurons from neural and embryonic stem cells. We thus show that coordinated Wnt actions promote DA neuron development in vivo and in stem cells and suggest that coordinated Wnt administration can be used to improve DA differentiation of stem cells and the development of stem cell-based therapies for Parkinson's disease.

  15. Molecular Heterogeneity of Midbrain Dopaminergic Neurons – Moving Toward Single Cell Resolution

    PubMed Central

    Anderegg, Angela; Poulin, Jean-Francois; Awatramani, Rajeshwar

    2015-01-01

    Since their discovery, midbrain dopamine (DA) neurons have been researched extensively, in part because of their diverse functions and involvement in various neuropsychiatric disorders. Over the last few decades, reports have emerged that midbrain DA neurons were not a homogeneous group, but that DA neurons located in distinct anatomical locations within the midbrain had distinctive properties in terms of physiology, function, and vulnerability. Accordingly, several studies focused on identifying heterogeneous gene expression across DA neuron clusters. Here we review the importance of understanding DA neuron heterogeneity at the molecular level, previous studies detailing heterogeneous gene expression in DA neurons, and finally recent work which brings together previous heterogeneous gene expression profiles in a coordinated manner, at single cell resolution. PMID:26505674

  16. Molecular heterogeneity of midbrain dopaminergic neurons--Moving toward single cell resolution.

    PubMed

    Anderegg, Angela; Poulin, Jean-Francois; Awatramani, Rajeshwar

    2015-12-21

    Since their discovery, midbrain dopamine (DA) neurons have been researched extensively, in part because of their diverse functions and involvement in various neuropsychiatric disorders. Over the last few decades, reports have emerged that midbrain DA neurons were not a homogeneous group, but that DA neurons located in distinct anatomical locations within the midbrain had distinctive properties in terms of physiology, function, and vulnerability. Accordingly, several studies focused on identifying heterogeneous gene expression across DA neuron clusters. Here we review the importance of understanding DA neuron heterogeneity at the molecular level, previous studies detailing heterogeneous gene expression in DA neurons, and finally recent work which brings together previous heterogeneous gene expression profiles in a coordinated manner, at single cell resolution. Copyright © 2015 Federation of European Biochemical Societies. Published by Elsevier B.V. All rights reserved.

  17. Regulation of firing frequency in a computational model of a midbrain dopaminergic neuron.

    PubMed

    Kuznetsova, Anna Y; Huertas, Marco A; Kuznetsov, Alexey S; Paladini, Carlos A; Canavier, Carmen C

    2010-06-01

    Dopaminergic (DA) neurons of the mammalian midbrain exhibit unusually low firing frequencies in vitro. Furthermore, injection of depolarizing current induces depolarization block before high frequencies are achieved. The maximum steady and transient rates are about 10 and 20 Hz, respectively, despite the ability of these neurons to generate bursts at higher frequencies in vivo. We use a three-compartment model calibrated to reproduce DA neuron responses to several pharmacological manipulations to uncover mechanisms of frequency limitation. The model exhibits a slow oscillatory potential (SOP) dependent on the interplay between the L-type Ca(2+) current and the small conductance K(+) (SK) current that is unmasked by fast Na(+) current block. Contrary to previous theoretical work, the SOP does not pace the steady spiking frequency in our model. The main currents that determine the spontaneous firing frequency are the subthreshold L-type Ca(2+) and the A-type K(+) currents. The model identifies the channel densities for the fast Na(+) and the delayed rectifier K(+) currents as critical parameters limiting the maximal steady frequency evoked by a depolarizing pulse. We hypothesize that the low maximal steady frequencies result from a low safety factor for action potential generation. In the model, the rate of Ca(2+) accumulation in the distal dendrites controls the transient initial frequency in response to a depolarizing pulse. Similar results are obtained when the same model parameters are used in a multi-compartmental model with a realistic reconstructed morphology, indicating that the salient contributions of the dendritic architecture have been captured by the simpler model.

  18. Regulation of Firing Frequency in a Computational Model of a Midbrain Dopaminergic Neuron

    PubMed Central

    Kuznetsova, Anna Y; Huertas, Marco A.; Kuznetsov, Alexey S; Paladini, Carlos A; Canavier, Carmen C

    2010-01-01

    Dopaminergic (DA) neurons of the mammalian midbrain exhibit unusually low firing frequencies in vitro. Furthermore, injection of depolarizing current induces depolarization block before high frequencies are achieved. The maximum steady and transient rates are about 10 and 20 Hz, respectively, despite the ability of these neurons to generate bursts at higher frequencies in vivo. We use a three-compartment model calibrated to reproduce DA neuron responses to several pharmacological manipulations to uncover mechanisms of frequency limitation. The model exhibits a slow oscillatory potential (SOP) dependent on the interplay between the L-type Ca2+ current and the small conductance K+ (SK) current that is unmasked by fast Na+ current block. Contrary to previous theoretical work, the SOP does not pace the steady spiking frequency in our model. The main currents that determine the spontaneous firing frequency are the subthreshold L-type Ca2+ and the A-type K+ currents. The model identifies the channel densities for the fast Na+ and the delayed rectifier K+ currents as critical parameters limiting the maximal steady frequency evoked by a depolarizing pulse. We hypothesize that the low maximal steady frequencies result from a low safety factor for action potential generation. In the model, the rate of Ca2+ accumulation in the distal dendrites controls the transient initial frequency in response to a depolarizing pulse. Similar results are obtained when the same model parameters are used in a multi-compartmental model with a realistic reconstructed morphology, indicating that the salient contributions of the dendritic architecture have been captured by the simpler model. PMID:20217204

  19. Lmx1a and Lmx1b regulate mitochondrial functions and survival of adult midbrain dopaminergic neurons

    PubMed Central

    Doucet-Beaupré, Hélène; Gilbert, Catherine; Profes, Marcos Schaan; Chabrat, Audrey; Pacelli, Consiglia; Giguère, Nicolas; Rioux, Véronique; Deng, Qiaolin; Laguna, Ariadna; Ericson, Johan; Perlmann, Thomas; Ang, Siew-Lan; Cicchetti, Francesca; Parent, Martin; Trudeau, Louis-Eric; Lévesque, Martin

    2016-01-01

    The LIM-homeodomain transcription factors Lmx1a and Lmx1b play critical roles during the development of midbrain dopaminergic progenitors, but their functions in the adult brain remain poorly understood. We show here that sustained expression of Lmx1a and Lmx1b is required for the survival of adult midbrain dopaminergic neurons. Strikingly, inactivation of Lmx1a and Lmx1b recreates cellular features observed in Parkinson’s disease. We found that Lmx1a/b control the expression of key genes involved in mitochondrial functions, and their ablation results in impaired respiratory chain activity, increased oxidative stress, and mitochondrial DNA damage. Lmx1a/b deficiency caused axonal pathology characterized by α-synuclein+ inclusions, followed by a progressive loss of dopaminergic neurons. These results reveal the key role of these transcription factors beyond the early developmental stages and provide mechanistic links between mitochondrial dysfunctions, α-synuclein aggregation, and the survival of dopaminergic neurons. PMID:27407143

  20. GDNF-Ret signaling in midbrain dopaminergic neurons and its implication for Parkinson disease.

    PubMed

    Kramer, Edgar R; Liss, Birgit

    2015-12-21

    Glial cell line-derived neurotrophic factor (GDNF) and its canonical receptor Ret can signal together or independently to fulfill many important functions in the midbrain dopaminergic (DA) system. While Ret signaling clearly impacts on the development, maintenance and regeneration of the mesostriatal DA system, the physiological functions of GDNF for the DA system are still unclear. Nevertheless, GDNF is still considered to be an excellent candidate to protect and/or regenerate the mesostriatal DA system in Parkinson disease (PD). Clinical trials with GDNF on PD patients are, however, so far inconclusive. Here, we review the current knowledge of GDNF and Ret signaling and function in the midbrain DA system, and their crosstalk with proteins and signaling pathways associated with PD. Copyright © 2015 Federation of European Biochemical Societies. Published by Elsevier B.V. All rights reserved.

  1. TGF-beta superfamily members promote survival of midbrain dopaminergic neurons and protect them against MPP+ toxicity.

    PubMed Central

    Krieglstein, K; Suter-Crazzolara, C; Fischer, W H; Unsicker, K

    1995-01-01

    The superfamily of transforming growth factors-beta (TGF-beta) comprises an expanding list of multifunctional proteins serving as regulators of cell proliferation and differentiation. Prominent members of this family include the TGF-beta s 1-5, activins, bone morphogenetic proteins and a recently discovered glial cell line-derived neurotrophic factor (GDNF). In the present study we demonstrate and compare the survival promoting and neuroprotective effects of TGF-beta 1, -2 and -3, activin A and GDNF for midbrain dopaminergic neurons in vitro. All proteins increase the survival of tyrosine hydroxylase-immunoreactive dopaminergic neurons isolated from the embryonic day (E) 14 rat mesencephalon floor to varying extents (TGF-beta s 2.5-fold, activin A and GDNF 1.6-fold). TGF-beta s, activin A and GDNF did not augment numbers of very rarely observed astroglial cells visualized by using antibodies to glial fibrillary acidic protein and had no effect on cell proliferation monitored by incorporation of BrdU. TGF-beta 1 and activin A protected dopaminergic neurons against N-methyl-4-phenylpiridinium ion toxicity. Reverse transcription-polymerase chain reaction (RT-PCR) analysis indicated that TGF-beta 2 mRNA, but not GDNF mRNA, is expressed in the E14 rat midbrain floor and in mesencephalic cultures. We conclude that TGF-beta s 1-3, activin A and GDNF share a neurotrophic capacity for developing dopaminergic neurons, which is not mediated by astroglial cells and not accompanied by an increase in cell proliferation. Images PMID:7882977

  2. Tiam1 Regulates the Wnt/Dvl/Rac1 Signaling Pathway and the Differentiation of Midbrain Dopaminergic Neurons

    PubMed Central

    Čajánek, Lukáš; Ganji, Ranjani Sri; Henriques-Oliveira, Catarina; Theofilopoulos, Spyridon; Koník, Peter

    2013-01-01

    Understanding the mechanisms that drive the differentiation of dopaminergic (DA) neurons is crucial for successful development of novel therapies for Parkinson's disease, in which DA neurons progressively degenerate. However, the mechanisms underlying the differentiation-promoting effects of Wnt5a on DA precursors are poorly understood. Here, we present the molecular and functional characterization of a signaling pathway downstream of Wnt5a, the Wnt/Dvl/Rac1 pathway. First, we characterize the interaction between Rac1 and Dvl and identify the N-terminal part of Dvl3 as necessary for Rac1 binding. Next, we show that Tiam1, a Rac1 guanosine exchange factor (GEF), is expressed in the ventral midbrain, interacts with Dvl, facilitates Dvl-Rac1 interaction, and is required for Dvl- or Wnt5a-induced activation of Rac1. Moreover, we show that Wnt5a promotes whereas casein kinase 1 (CK1), a negative regulator of the Wnt/Dvl/Rac1 pathway, abolishes the interactions between Dvl and Tiam1. Finally, using ventral midbrain neurosphere cultures, we demonstrate that the generation of DA neurons in culture is impaired after Tiam1 knockdown, indicating that Tiam1 is required for midbrain DA differentiation. In summary, our data identify Tiam1 as a novel regulator of DA neuron development and as a Dvl-associated and Rac1-specific GEF acting in the Wnt/Dvl/Rac1 pathway. PMID:23109420

  3. Tiam1 regulates the Wnt/Dvl/Rac1 signaling pathway and the differentiation of midbrain dopaminergic neurons.

    PubMed

    Čajánek, Lukáš; Ganji, Ranjani Sri; Henriques-Oliveira, Catarina; Theofilopoulos, Spyridon; Koník, Peter; Bryja, Vítězslav; Arenas, Ernest

    2013-01-01

    Understanding the mechanisms that drive the differentiation of dopaminergic (DA) neurons is crucial for successful development of novel therapies for Parkinson's disease, in which DA neurons progressively degenerate. However, the mechanisms underlying the differentiation-promoting effects of Wnt5a on DA precursors are poorly understood. Here, we present the molecular and functional characterization of a signaling pathway downstream of Wnt5a, the Wnt/Dvl/Rac1 pathway. First, we characterize the interaction between Rac1 and Dvl and identify the N-terminal part of Dvl3 as necessary for Rac1 binding. Next, we show that Tiam1, a Rac1 guanosine exchange factor (GEF), is expressed in the ventral midbrain, interacts with Dvl, facilitates Dvl-Rac1 interaction, and is required for Dvl- or Wnt5a-induced activation of Rac1. Moreover, we show that Wnt5a promotes whereas casein kinase 1 (CK1), a negative regulator of the Wnt/Dvl/Rac1 pathway, abolishes the interactions between Dvl and Tiam1. Finally, using ventral midbrain neurosphere cultures, we demonstrate that the generation of DA neurons in culture is impaired after Tiam1 knockdown, indicating that Tiam1 is required for midbrain DA differentiation. In summary, our data identify Tiam1 as a novel regulator of DA neuron development and as a Dvl-associated and Rac1-specific GEF acting in the Wnt/Dvl/Rac1 pathway.

  4. Activation of Tyrosine Hydroxylase mRNA Translation by cAMP in Midbrain Dopaminergic Neurons

    PubMed Central

    Chen, Xiqun; Xu, Lu; Radcliffe, Pheona; Sun, Baoyong; Tank, A. William

    2009-01-01

    During prolonged stress or chronic treatment with neurotoxins, robust compensatory mechanisms occur which maintain sufficient levels of catecholamine neurotransmitters in terminal regions. One of these mechanisms is the up-regulation of tyrosine hydroxylase (TH), the enzyme that controls catecholamine biosynthesis. In neurons of the periphery and locus coeruleus, this up-regulation is associated with an initial induction of TH mRNA. In contrast, this induction either does not occur or is nominal in mesencephalic dopamine neurons. The reasons for this lack of compensatory TH mRNA induction remain obscure, because so little is known about the regulation of TH expression in these neurons. In this report we test whether activation of the cAMP signaling pathway regulates TH gene expression in two rodent models of midbrain dopamine neurons, ventral midbrain organotypic slice cultures and MN9D cells. Our results demonstrate that elevation of cAMP leads to induction of TH protein and TH activity in both model systems; however, TH mRNA levels are not up-regulated by cAMP. The induction of TH protein is the result of a novel post-transcriptional mechanism that activates TH mRNA translation. This translational activation is mediated by sequences within the 3′UTR of TH mRNA. Our results support a model in which cAMP induces or activates trans-factors that interact with the TH mRNA 3′UTR to increase TH protein synthesis. An understanding of this novel regulatory mechanism may help to explain the control of TH gene expression and consequently dopamine biosynthesis in midbrain neurons under different physiological and pathological conditions. PMID:18349104

  5. Nato3 integrates with the Shh-Foxa2 transcriptional network regulating the differentiation of midbrain dopaminergic neurons.

    PubMed

    Nissim-Eliraz, Einat; Zisman, Sophie; Schatz, Omri; Ben-Arie, Nissim

    2013-09-01

    Mesencephalic dopaminergic (mesDA) neurons originate from the floor plate of the midbrain, a transient embryonic organizing center located at the ventral-most midline. Since the loss of mesDA leads to Parkinson's disease, the molecular mechanisms controlling the genesis and differentiation of dopaminergic progenitors are extensively studied and the identification and characterization of new genes is of interest. Here, we show that the expression of the basic helix-loop-helix transcription factor Nato3 (Ferd3l) increases in parallel to the differentiation of SN4741 dopaminergic cells in vitro. Nato3 transcription is directly regulated by the transcription factor Foxa2, a target and effector of the Sonic hedgehog (Shh) signaling cascade. Moreover, pharmacological inhibition of Shh signaling downregulated the expression of Nato3, thus defining Nato3 as a novel component of one of the major pathways controlling cell patterning and generation of mesDA. Furthermore, we show that Nato3 regulated Shh and Foxa2 through a novel feed-backward loop. Up- and downregulation of Nato3 further affected the transcription of Nurr1, implicated in the genesis of mesDA, but not of TH. Taken together, these data shed new light on the transcriptional networks controlling the generation of mesDA and may be utilized in the efforts to direct stem cells towards a dopaminergic fate.

  6. Modafinil inhibits rat midbrain dopaminergic neurons through D2-like receptors.

    PubMed

    Korotkova, T M; Klyuch, B P; Ponomarenko, A A; Lin, J S; Haas, H L; Sergeeva, O A

    2007-02-01

    Modafinil is a well-tolerated medication for excessive sleepiness, attention-deficit disorder, cocaine dependence and as an adjunct to antidepressants with low propensity for abuse. We investigated the modafinil action on identified dopaminergic and GABAergic neurons in the ventral tegmental area (VTA) and substantia nigra (SN) of rat brain slices. Modafinil (20 microM) inhibited the firing of dopaminergic, but not GABAergic neurons. This inhibition was maintained in the presence of tetrodotoxin and was accompanied by hyperpolarization. Sulpiride (10 microM), a D2-receptor antagonist, but not prazosine (20 microM, an alpha1-adrenoreceptor blocker) abolished the modafinil action. Inhibition of dopamine reuptake with a low dose of nomifensine (1 microM) reduced the firing of DA neurons in a sulpiride-dependent manner and blunted the effect of modafinil. On acutely isolated neurons, modafinil evoked D2-receptor-mediated outward currents in tyrosine-hydroxylase positive cells, identified by single-cell RT-PCR, which reversed polarity near the K(+) equilibrium potential and were unchanged in the presence of nomifensine. Thus modafinil directly inhibits DA neurons through D2 receptors.

  7. Efficient generation of hPSC-derived midbrain dopaminergic neurons in a fully defined, scalable, 3D biomaterial platform

    PubMed Central

    Adil, Maroof M.; Rodrigues, Gonçalo M. C.; Kulkarni, Rishikesh U.; Rao, Antara T.; Chernavsky, Nicole E.; Miller, Evan W.; Schaffer, David V.

    2017-01-01

    Pluripotent stem cells (PSCs) have major potential as an unlimited source of functional cells for many biomedical applications; however, the development of cell manufacturing systems to enable this promise faces many challenges. For example, there have been major recent advances in the generation of midbrain dopaminergic (mDA) neurons from stem cells for Parkinson’s Disease (PD) therapy; however, production of these cells typically involves undefined components and difficult to scale 2D culture formats. Here, we used a fully defined, 3D, thermoresponsive biomaterial platform to rapidly generate large numbers of action-potential firing mDA neurons after 25 days of differentiation (~40% tyrosine hydroxylase (TH) positive, maturing into 25% cells exhibiting mDA neuron-like spiking behavior). Importantly, mDA neurons generated in 3D exhibited a 30-fold increase in viability upon implantation into rat striatum compared to neurons generated on 2D, consistent with the elevated expression of survival markers FOXA2 and EN1 in 3D. A defined, scalable, and resource-efficient cell culture platform can thus rapidly generate high quality differentiated cells, both neurons and potentially other cell types, with strong potential to accelerate both basic and translational research. PMID:28091566

  8. Angiotensin II protects cultured midbrain dopaminergic neurons against rotenone-induced cell death.

    PubMed

    Grammatopoulos, Tom N; Ahmadi, Ferogh; Jones, Susan M; Fariss, Marc W; Weyhenmeyer, James A; Zawada, W Michael

    2005-05-31

    In this study, we demonstrate that angiotensin II (Ang II) protects dopamine (DA) neurons from rotenone toxicity in vitro. Primary ventral mesencephalic (VM) cultures from E15 rats were grown for 5 days and then cultured in the presence of the mitochondrial complex I inhibitor, rotenone. Acute exposure (20 h) to 20 nM rotenone reduced the number of tyrosine hydroxylase-positive (TH+) neurons by 50 +/- 6% when compared to untreated cultures. Pre-treatment of VM cultures with 100 nM Ang II decreased TH+ neuronal loss to 25 +/- 10% at the 20-nM rotenone concentration. Ang II in the presence of the angiotensin type 1 receptor (AT1R) antagonist, losartan, was even more effective in protecting DA neurons showing a loss of only 13 +/- 4% at 20 nM rotenone. Conversely, the AT2R antagonist, PD123319, abolished the protective effects of Ang II. Furthermore, both the NMDA receptor antagonist, MK801, and the antioxidant, alpha-tocopheryl succinate (vitamin E analogue), prevented rotenone-induced toxicity. Here, we show that acute exposure of VM cultures to the pesticide rotenone leads to dopaminergic neuronal cell death and that angiotensin acting through the AT2 receptor protects dopamine neurons from rotenone toxicity.

  9. Activation of midbrain presumed dopaminergic neurones by muscarinic cholinergic receptors: an in vivo electrophysiological study in the rat

    PubMed Central

    Gronier, B; Rasmussen, K

    1998-01-01

    Extracellular single-unit recording and iontophoresis were used to examine the effects of different cholinoceptor agonists and antagonists on the firing rate and firing pattern of A9 and A10 presumed dopaminergic neurones in the anaesthetized rat.Administration of low currents (1–5 nA) of the selective muscarinic agonists oxotremorine M (Oxo M) and muscarine and of the non-selective muscarinic/nicotinic agonist carbamylcholine (CCh) produced a dose-dependent increase in firing rate in most of the A9 and A10 presumed dopaminergic neurones tested. Oxo M-induced activation could be completely blocked by iontophoretic application of the muscarinic antagonist butyl-scopolamine or systemic administration of the muscarinic antagonist scopolamine (300 μg kg−1, i.v.).Iontophoretic application of the selective nicotinic agonist methylcarbamylcholine (MCCh), but not nicotine, induced a consistent increase in firing rate. Surprisingly, the excitatory effect of MCCh was significantly reduced by the selective muscarinic antagonist scopolamine (300 μg kg−1, i.v.), but not by the selective nicotinic antagonist mecamylamine (2.2 mg kg−1, i.v.). Mecamylamine (3 mg kg−1, i.v.) was also ineffective in reducing the CCh-induced activation of presumed dopamine neurones, suggesting that both CCh and MCCh increased the activity of dopamine neurones via an interaction with muscarinic receptors.Iontophoretic application of the endogenous agonist acetylcholine (ACh) had no or little effect on the firing activity of A10 presumed dopaminergic neurones. However, concomitant application of neostigmine, a potent cholinesterase inhibitor, with acetylcholine induced a substantial activation of these neurones. This activation consisted of two components; one, which was prevalent, was scopolamine (300 μg kg−1, i.v.)-sensitive, and the other was mecamylamine (2 mg kg−1, i.v.)-sensitive.In addition to their effect on firing activity, Oxo M, muscarine and

  10. Marked differences in the number and type of synapses innervating the somata and primary dendrites of midbrain dopaminergic neurons, striatal cholinergic interneurons, and striatal spiny projection neurons in the rat.

    PubMed

    Sizemore, Rachel J; Zhang, Rong; Lin, Naili; Goddard, Liping; Wastney, Timothy; Parr-Brownlie, Louise C; Reynolds, John N J; Oorschot, Dorothy E

    2016-04-01

    Elucidating the link between cellular activity and goal-directed behavior requires a fuller understanding of the mechanisms underlying burst firing in midbrain dopaminergic neurons and those that suppress activity during aversive or non-rewarding events. We have characterized the afferent synaptic connections onto these neurons in the rat substantia nigra pars compacta (SNpc) and ventral tegmental area (VTA), and compared these findings with cholinergic interneurons and spiny projection neurons in the striatum. We found that the average absolute number of synapses was three to three and one-half times greater onto the somata of dorsal striatal spiny projection neurons than onto the somata of dopaminergic neurons in the SNpc or dorsal striatal cholinergic interneurons. A similar comparison between populations of dopamine neurons revealed a two times greater number of somatic synapses on VTA dopaminergic neurons than SNpc dopaminergic neurons. The percentage of symmetrical, presumably inhibitory, synaptic inputs on somata was significantly higher on spiny projection neurons and cholinergic interneurons compared with SNpc dopaminergic neurons. Synaptic data on the primary dendrites yielded similar significant differences for the percentage of symmetrical synapses for VTA dopaminergic vs. striatal neurons. No differences in the absolute number or type of somatic synapses were evident for dopaminergic neurons in the SNpc of Wistar vs. Sprague-Dawley rat strains. These data from identified neurons are pivotal for interpreting their electrophysiological responses to afferent activity and for generating realistic computer models of neuronal networks of striatal and midbrain dopaminergic function.

  11. Interaction of NMDA Receptor and Pacemaking Mechanisms in the Midbrain Dopaminergic Neuron

    PubMed Central

    Ha, Joon; Kuznetsov, Alexey

    2013-01-01

    Dopamine neurotransmission has been found to play a role in addictive behavior and is altered in psychiatric disorders. Dopaminergic (DA) neurons display two functionally distinct modes of electrophysiological activity: low- and high-frequency firing. A puzzling feature of the DA neuron is the following combination of its responses: N-methyl-D-aspartate receptor (NMDAR) activation evokes high-frequency firing, whereas other tonic excitatory stimuli (-amino-3-hydroxyl-5-methyl-4-isoxazolepropionate receptor (AMPAR) activation or applied depolarization) block firing instead. We suggest a new computational model that reproduces this combination of responses and explains recent experimental data. Namely, somatic NMDAR stimulation evokes high-frequency firing and is more effective than distal dendritic stimulation. We further reduce the model to a single compartment and analyze the mechanism of the distinct high-frequency response to NMDAR activation vs. other stimuli. Standard nullcline analysis shows that the mechanism is based on a decrease in the amplitude of calcium oscillations. The analysis confirms that the nonlinear voltage dependence provided by the magnesium block of the NMDAR determine its capacity to elevate the firing frequency. We further predict that the moderate slope of the voltage dependence plays the central role in the frequency elevation. Additionally, we suggest a repolarizing current that sustains calcium-independent firing or firing in the absence of calcium-dependent repolarizing currents. We predict that the ether–a-go-go current (ERG), which has been observed in the DA neuron, is the best fit for this critical role. We show that a calcium-dependent and a calcium-independent oscillatory mechanisms form a structure of interlocked negative feedback loops in the DA neuron. The structure connects research of DA neuron firing with circadian biology and determines common minimal models for investigation of robustness of oscillations, which is

  12. The Effects of Electrical and Optical Stimulation of Midbrain Dopaminergic Neurons on Rat 50-kHz Ultrasonic Vocalizations

    PubMed Central

    Scardochio, Tina; Trujillo-Pisanty, Ivan; Conover, Kent; Shizgal, Peter; Clarke, Paul B. S.

    2015-01-01

    Rationale: Adult rats emit ultrasonic vocalizations (USVs) at around 50-kHz; these commonly occur in contexts that putatively engender positive affect. While several reports indicate that dopaminergic (DAergic) transmission plays a role in the emission of 50-kHz calls, the pharmacological evidence is mixed. Different modes of dopamine (DA) release (i.e., tonic and phasic) could potentially explain this discrepancy. Objective: To investigate the potential role of phasic DA release in 50-kHz call emission. Methods: In Experiment 1, USVs were recorded in adult male rats following unexpected electrical stimulation of the medial forebrain bundle (MFB). In parallel, phasic DA release in the nucleus accumbens (NAcc) was recorded using fast-scan cyclic voltammetry. In Experiment 2, USVs were recorded following response-contingent or non-contingent optogenetic stimulation of midbrain DAergic neurons. Four 20-s schedules of optogenetic stimulation were used: fixed-interval, fixed-time, variable-interval, and variable-time. Results: Brief electrical stimulation of the MFB increased both 50-kHz call rate and phasic DA release in the NAcc. During optogenetic stimulation sessions, rats initially called at a high rate comparable to that observed following reinforcers such as psychostimulants. Although optogenetic stimulation maintained reinforced responding throughout the 2-h session, the call rate declined to near zero within the first 30 min. The trill call subtype predominated following both electrical and optical stimulation. Conclusion: The occurrence of electrically-evoked 50-kHz calls, time-locked to phasic DA (Experiment 1), provides correlational evidence supporting a role for phasic DA in USV production. However, in Experiment 2, the temporal dissociation between calling and optogenetic stimulation of midbrain DAergic neurons suggests that phasic mesolimbic DA release is not sufficient to produce 50-kHz calls. The emission of the trill subtype of 50-kHz calls

  13. Conditional Expression of Parkinson's Disease-Related R1441C LRRK2 in Midbrain Dopaminergic Neurons of Mice Causes Nuclear Abnormalities without Neurodegeneration

    PubMed Central

    Tsika, Elpida; Kannan, Meghna; Foo, Caroline Shi-Yan; Dikeman, Dustin; Glauser, Liliane; Gellhaar, Sandra; Galter, Dagmar; Knott, Graham W.; Dawson, Ted M.; Dawson, Valina L.; Moore, Darren J.

    2015-01-01

    Mutations in the leucine-rich repeat kinase 2 (LRRK2) gene cause late-onset, autosomal dominant Parkinson's disease (PD). The clinical and neurochemical features of LRRK2-linked PD are similar to idiopathic disease although neuropathology is somewhat heterogeneous. Dominant mutations in LRRK2 precipitate neurodegeneration through a toxic gain-of-function mechanism which can be modeled in transgenic mice overexpressing human LRRK2 variants. A number of LRRK2 transgenic mouse models have been developed that display abnormalities in dopaminergic neurotransmission and alterations in tau metabolism yet without consistently inducing dopaminergic neurodegeneration. To directly explore the impact of mutant LRRK2 on the nigrostriatal dopaminergic pathway, we developed conditional transgenic mice that selectively express human R1441C LRRK2 in dopaminergic neurons from the endogenous murine ROSA26 promoter. The expression of R1441C LRRK2 does not induce the degeneration of substantia nigra dopaminergic neurons or striatal dopamine deficits in mice up to 2 years of age, and fails to precipitate abnormal protein inclusions containing alpha-synuclein, tau, ubiquitin or autophagy markers (LC3 and p62). Furthermore, mice expressing R1441C LRRK2 exhibit normal motor activity and olfactory function with increasing age. Intriguingly, the expression of R1441C LRRK2 induces age-dependent abnormalities of the nuclear envelope in nigral dopaminergic neurons including reduced nuclear circularity and increased invaginations of the nuclear envelope. In addition, R1441C LRRK2 mice display increased neurite complexity of cultured midbrain dopaminergic neurons. Collectively, these novel R1441C LRRK2 conditional transgenic mice reveal altered dopaminergic neuronal morphology with advancing age, and provide a useful tool for exploring the pathogenic mechanisms underlying the R1441C LRRK2 mutation in PD. PMID:25174890

  14. Dickkopf 3 Promotes the Differentiation of a Rostrolateral Midbrain Dopaminergic Neuronal Subset In Vivo and from Pluripotent Stem Cells In Vitro in the Mouse.

    PubMed

    Fukusumi, Yoshiyasu; Meier, Florian; Götz, Sebastian; Matheus, Friederike; Irmler, Martin; Beckervordersandforth, Ruth; Faus-Kessler, Theresa; Minina, Eleonora; Rauser, Benedict; Zhang, Jingzhong; Arenas, Ernest; Andersson, Elisabet; Niehrs, Christof; Beckers, Johannes; Simeone, Antonio; Wurst, Wolfgang; Prakash, Nilima

    2015-09-30

    Wingless-related MMTV integration site 1 (WNT1)/β-catenin signaling plays a crucial role in the generation of mesodiencephalic dopaminergic (mdDA) neurons, including the substantia nigra pars compacta (SNc) subpopulation that preferentially degenerates in Parkinson's disease (PD). However, the precise functions of WNT1/β-catenin signaling in this context remain unknown. Stem cell-based regenerative (transplantation) therapies for PD have not been implemented widely in the clinical context, among other reasons because of the heterogeneity and incomplete differentiation of the transplanted cells. This might result in tumor formation and poor integration of the transplanted cells into the dopaminergic circuitry of the brain. Dickkopf 3 (DKK3) is a secreted glycoprotein implicated in the modulation of WNT/β-catenin signaling. Using mutant mice, primary ventral midbrain cells, and pluripotent stem cells, we show that DKK3 is necessary and sufficient for the correct differentiation of a rostrolateral mdDA neuron subset. Dkk3 transcription in the murine ventral midbrain coincides with the onset of mdDA neurogenesis and is required for the activation and/or maintenance of LMX1A (LIM homeobox transcription factor 1α) and PITX3 (paired-like homeodomain transcription factor 3) expression in the corresponding mdDA precursor subset, without affecting the proliferation or specification of their progenitors. Notably, the treatment of differentiating pluripotent stem cells with recombinant DKK3 and WNT1 proteins also increases the proportion of mdDA neurons with molecular SNc DA cell characteristics in these cultures. The specific effects of DKK3 on the differentiation of rostrolateral mdDA neurons in the murine ventral midbrain, together with its known prosurvival and anti-tumorigenic properties, make it a good candidate for the improvement of regenerative and neuroprotective strategies in the treatment of PD. Significance statement: We show here that Dickkopf 3 (DKK3), a

  15. The {beta}-chemokines CCL2 and CCL7 are two novel differentiation factors for midbrain dopaminergic precursors and neurons

    SciTech Connect

    Edman, Linda C.; Mira, Helena; Arenas, Ernest

    2008-06-10

    {beta}-chemokines are secreted factors that regulate diverse functions in the adult brain, such as neuro-immune responses and neurotransmission, but their function in the developing brain is largely unknown. We recently found that the orphan nuclear receptor, Nurr1, up regulates CCL2 and CCL7 in neural stem cells, suggesting a possible function of {beta}-chemokines in midbrain development. Here we report that two {beta}-chemokines, CCL2 and CCL7, and two of their receptors, CCR1 and CCR2, are expressed and developmentally regulated in the ventral midbrain (VM). Moreover, we found that the expression of CCL7 was down regulated in the Nurr1 knockout mice, linking CCL7 to dopamine (DA) neuron development. When the function of CCL2 and CCL7 was examined, we found that they selectively enhanced the differentiation of Nurr1+ precursors into DA neurons, but not their survival or progenitor proliferation in primary precursor cultures. Moreover, both CCL2 and CCL7 promoted neuritogenesis in midbrain DA neuron cultures. Thus, our results show for the first time a function of {beta}-chemokines in the developing brain and identify {beta}-chemokines as novel class of pro-differentiation factors for midbrain DA neurons. These data also suggest that {beta}-chemokines may become useful tools to enhance the differentiation of DA cell preparations for cell replacement therapy and drug discovery in Parkinson's disease (PD)

  16. Role of Dopamine D2/D3 Receptors in Development, Plasticity, and Neuroprotection in Human iPSC-Derived Midbrain Dopaminergic Neurons.

    PubMed

    Bono, Federica; Savoia, Paola; Guglielmi, Adele; Gennarelli, Massimo; Piovani, Giovanna; Sigala, Sandra; Leo, Damiana; Espinoza, Stefano; Gainetdinov, Raul R; Devoto, Paola; Spano, PierFranco; Missale, Cristina; Fiorentini, Chiara

    2017-01-14

    The role of dopamine D2 and D3 receptors (D2R/D3R), located on midbrain dopaminergic (DA) neurons, in the regulation of DA synthesis and release and in DA neuron homeostasis has been extensively investigated in rodent animal models. By contrast, the properties of D2R/D3R in human DA neurons have not been elucidated yet. On this line, the use of human-induced pluripotent stem cells (hiPSCs) for producing any types of cells has offered the innovative opportunity for investigating the human neuronal phenotypes at the molecular levels. In the present study, hiPSCs generated from human dermal fibroblasts were used to produce midbrain DA (mDA) neurons, expressing the proper set of genes and proteins typical of authentic, terminally differentiated DA neurons. In this model, the expression and the functional properties of the human D2R/D3R were investigated with a combination of biochemical and functional techniques. We observed that in hiPSC-derived mDA neurons, the activation of D2R/D3R promotes the proliferation of neuronal progenitor cells. In addition, we found that D2R/D3R activation inhibits nicotine-stimulated DA release and exerts neurotrophic effects on mDA neurons that likely occur via the activation of PI3K-dependent mechanisms. Furthermore, D2R/D3R stimulation counteracts both the aggregation of alpha-synuclein induced by glucose deprivation and the associated neuronal damage affecting both the soma and the dendrites of mDA neurons. Taken together, these data point to the D2R/D3R-related signaling events as a biochemical pathway crucial for supporting both neuronal development and survival and protection of human DA neurons.

  17. Efficient expansion and dopaminergic differentiation of human fetal ventral midbrain neural stem cells by midbrain morphogens.

    PubMed

    Ribeiro, Diogo; Laguna Goya, Rocio; Ravindran, Geeta; Vuono, Romina; Parish, Clare L; Foldi, Claire; Piroth, Tobias; Yang, Shanzheng; Parmar, Malin; Nikkhah, Guido; Hjerling-Leffler, Jens; Lindvall, Olle; Barker, Roger A; Arenas, Ernest

    2013-01-01

    Human fetal midbrain tissue grafting has provided proof-of-concept for dopamine cell replacement therapy (CRT) in Parkinson's disease (PD). However, limited tissue availability has hindered the development and widespread use of this experimental therapy. Here we present a method for generating large numbers of midbrain dopaminergic (DA) neurons based on expanding and differentiating neural stem/progenitor cells present in the human ventral midbrain (hVM) tissue. Our results show that hVM neurospheres (hVMN) with low cell numbers, unlike their rodent counterparts, expand the total number of cells 3-fold, whilst retaining their capacity to differentiate into midbrain DA neurons. Moreover, Wnt5a promoted DA differentiation of expanded cells resulting in improved morphological maturation, midbrain DA marker expression, DA release and electrophysiological properties. This method results in cell preparations that, after expansion and differentiation, can contain 6-fold more midbrain DA neurons than the starting VM preparation. Thus, our results provide evidence that by improving expansion and differentiation of progenitors present in the hVM it is possible to greatly enrich cell preparations for DA neurons. This method could substantially reduce the amount of human fetal midbrain tissue necessary for CRT in patients with PD, which could have major implications for the widespread adoption of this approach. Copyright © 2012 Elsevier Inc. All rights reserved.

  18. Dkk1 regulates ventral midbrain dopaminergic differentiation and morphogenesis.

    PubMed

    Ribeiro, Diogo; Ellwanger, Kristina; Glagow, Désirée; Theofilopoulos, Spyridon; Corsini, Nina S; Martin-Villalba, Ana; Niehrs, Christof; Arenas, Ernest

    2011-02-11

    Dickkopf1 (Dkk1) is a Wnt/β-catenin inhibitor that participates in many processes during embryonic development. One of its roles during embryogenesis is to induce head formation, since Dkk1-null mice lack head structures anterior to midbrain. The Wnt/β-catenin pathway is also known to regulate different aspects of ventral midbrain (VM) dopaminergic (DA) neuron development and, in vitro, Dkk1-mediated inhibition of the Wnt/β-catenin pathway improves the DA differentiation in mouse embryonic stem cells (mESC). However, the in vivo function of Dkk1 on the development of midbrain DA neurons remains to be elucidated. Here we examined Dkk1(+/-) embryos and found that Dkk1 is required for the differentiation of DA precursors/neuroblasts into DA neurons at E13.5. This deficit persisted until E17.5, when a defect in the number and distribution of VM DA neurons was detected. Furthermore, analysis of the few Dkk1(-/-) embryos that survived until E17.5 revealed a more severe loss of midbrain DA neurons and morphogenesis defects. Our results thus show that Dkk1 is required for midbrain DA differentiation and morphogenesis.

  19. Depressive-like phenotype induced by AAV-mediated overexpression of human α-synuclein in midbrain dopaminergic neurons.

    PubMed

    Caudal, D; Alvarsson, A; Björklund, A; Svenningsson, P

    2015-11-01

    Parkinson's disease (PD) is a neurodegenerative disorder characterized by a progressive loss of nigral dopaminergic neurons and by the presence of aggregates containing α-synuclein called Lewy bodies. Viral vector-induced overexpression of α-synuclein in dopaminergic neurons represents a model of PD which recapitulates disease progression better than commonly used neurotoxin models. Previous studies using this model have reported motor and cognitive impairments, whereas depression, mood and anxiety phenotypes are less described. To investigate these psychiatric phenotypes, Sprague-Dawley rats received bilateral injections of a recombinant adeno-associated virus (AAV) vector expressing human α-synuclein or GFP into the substantia nigra pars compacta. Behavior was assessed at two timepoints: 3 and 8 weeks post-injection. We report that nigral α-synuclein overexpression led to a pronounced nigral dopaminergic cell loss accompanied by a smaller cell loss in the ventral tegmental area, and to a decreased striatal density of dopaminergic fibers. The AAV-α-synuclein group exhibited modest, but significant motor impairments 8 weeks after vector administration. The AAV-α-synuclein group displayed depressive-like behavior in the forced swim test after 3 weeks, and reduced sucrose preference at week 8. At both timepoints, overexpression of α-synuclein was linked to a hyperactive hypothalamic-pituitary-adrenal (HPA) axis regulation of corticosterone. The depressive-like phenotype was also correlated with decreased nigral brain-derived neurotrophic factor and spinophilin levels, and with decreased striatal levels of the activity-regulated cytoskeleton-associated protein. This study demonstrates that AAV-mediated α-synuclein overexpression in dopamine neurons is not only useful to model motor impairments of PD, but also depression. This study also provides evidence that depression in experimental Parkinsonism is correlated to dysregulation of the HPA axis and to

  20. New perspectives on catecholaminergic regulation of executive circuits: evidence for independent modulation of prefrontal functions by midbrain dopaminergic and noradrenergic neurons.

    PubMed

    Chandler, Daniel J; Waterhouse, Barry D; Gao, Wen-Jun

    2014-01-01

    Cognitive functions associated with prefrontal cortex (PFC), such as working memory and attention, are strongly influenced by catecholamine [dopamine (DA) and norepinephrine (NE)] release. Midbrain dopaminergic neurons in the ventral tegmental area and noradrenergic neurons in the locus coeruleus are major sources of DA and NE to the PFC. It is traditionally believed that DA and NE neurons are homogeneous with highly divergent axons innervating multiple terminal fields and once released, DA and NE individually or complementarily modulate the prefrontal functions and other brain regions. However, recent studies indicate that both DA and NE neurons in the mammalian brain are heterogeneous with a great degree of diversity, including their developmental lineages, molecular phenotypes, projection targets, afferent inputs, synaptic connectivity, physiological properties, and behavioral functions. These diverse characteristics could potentially endow DA and NE neurons with distinct roles in executive function, and alterations in their responses to genetic and epigenetic risk factors during development may contribute to distinct phenotypic and functional changes in disease states. In this review of recent literature, we discuss how these advances in DA and NE neurons change our thinking of catecholamine influences in cognitive functions in the brain, especially functions related to PFC. We review how the projection-target specific populations of neurons in these two systems execute their functions in both normal and abnormal conditions. Additionally, we explore what open questions remain and suggest where future research needs to move in order to provide a novel insight into the cause of neuropsychiatric disorders related to DA and NE systems.

  1. Protection of Primary Dopaminergic Midbrain Neurons by GPR139 Agonists Supports Different Mechanisms of MPP+ and Rotenone Toxicity

    PubMed Central

    Bayer Andersen, Kirsten; Leander Johansen, Jens; Hentzer, Morten; Smith, Garrick Paul; Dietz, Gunnar P. H.

    2016-01-01

    The G-protein coupled receptor 139 (GPR139) is expressed specifically in the brain in areas of relevance for motor control. GPR139 function and signal transduction pathways are elusive, and results in the literature are even contradictory. Here, we examined the potential neuroprotective effect of GPR139 agonism in primary culture models of dopaminergic (DA) neuronal degeneration. We find that in vitro GPR139 agonists protected primary mesencephalic DA neurons against 1-methyl-4-phenylpyridinium (MPP+)-mediated degeneration. Protection was concentration-dependent and could be blocked by a GPR139 antagonist. However, the protection of DA neurons was not found against rotenone or 6-hydroxydopamine (6-OHDA) mediated degeneration. Our results support differential mechanisms of toxicity for those substances commonly used in Parkinson’s disease (PD) models and potential for GPR139 agonists in neuroprotection. PMID:27445691

  2. Disrupted Functional Connectivity with Dopaminergic Midbrain in Cocaine Abusers

    SciTech Connect

    Tomasi, D.; Tomasi, D.; Volkow, N.D.; Wang, R.; Carrillo, J.; Maloney, T.; Alia-Klein, N.; Woicik, P.A.; Telang, F.; Goldstein, R.Z.

    2010-06-01

    Chronic cocaine use is associated with disrupted dopaminergic neurotransmission but how this disruption affects overall brain function (other than reward/motivation) is yet to be fully investigated. Here we test the hypothesis that cocaine addicted subjects will have disrupted functional connectivity between the midbrain (where dopamine neurons are located) and cortical and subcortical brain regions during the performance of a sustained attention task. We measured brain activation and functional connectivity with fMRI in 20 cocaine abusers and 20 matched controls. When compared to controls, cocaine abusers had lower positive functional connectivity of midbrain with thalamus, cerebellum, and rostral cingulate, and this was associated with decreased activation in thalamus and cerebellum and enhanced deactivation in rostral cingulate. These findings suggest that decreased functional connectivity of the midbrain interferes with the activation and deactivation signals associated with sustained attention in cocaine addicts.

  3. Dopaminergic Neurons from Midbrain-Specified Human Embryonic Stem Cell-Derived Neural Stem Cells Engrafted in a Monkey Model of Parkinson’s Disease

    PubMed Central

    Daadi, Marcel M.; Grueter, Brad A.; Malenka, Robert C.; Redmond, D. Eugene; Steinberg, Gary K.

    2012-01-01

    The use of human embryonic stem cells (hESCs) to repair diseased or injured brain is promising technology with significant humanitarian, societal and economic impact. Parkinson’s disease (PD) is a neurological disorder characterized by the loss of midbrain dopaminergic (DA) neurons. The generation of this cell type will fulfill a currently unmet therapeutic need. We report on the isolation and perpetuation of a midbrain-specified self-renewable human neural stem cell line (hNSCs) from hESCs. These hNSCs grew as a monolayer and uniformly expressed the neural precursor markers nestin, vimentin and a radial glial phenotype. We describe a process to direct the differentiation of these hNSCs towards the DA lineage. Glial conditioned media acted synergistically with fibroblastic growth factor and leukemia inhibitory factor to induce the expression of the DA marker, tyrosine hydroxylase (TH), in the hNSC progeny. The glial-derived neurotrophic factor did not fully mimic the effects of conditioned media. The hNSCs expressed the midbrain-specific transcription factors Nurr1 and Pitx3. The inductive effects did not modify the level of the glutamic acid decarboxylase (GAD) transcript, a marker for GABAergic neurons, while the TH transcript increased 10-fold. Immunocytochemical analysis demonstrated that the TH-expressing cells did not co-localize with GAD. The transplantation of these DA-induced hNSCs into the non-human primate MPTP model of PD demonstrated that the cells maintain their DA-induced phenotype, extend neurite outgrowths and express synaptic markers. PMID:22815935

  4. Morphological Properties in Dopaminergic Neurons of the Rat Midbrain during Early Developmental Stages and One Numerical Approach to Passive-Membrane Modeling

    NASA Astrophysics Data System (ADS)

    Tateno, Takashi

    In this study, I aim to understand morphological changes in dopaminergic neurons of the rat midbrain during early developmental stages and their computational properties in the dendrites. To this end, firstly, I measured morphological details of dopaminergic neurons using an immunochemical double-staining technique. In the viewpoint of the Rall's equivalent-cylinder model, secondly, I tested if the data satisfied one of conditions (3/2 power law) of the Rall's model. On the basis of the experimental data, I next investigated if some branches in the individual dendrites had special selectivity in efficient passive propagation of membrane potentials between the branches of individual cells and different cells. The results show that the Rall's 3/2 power law was not satisfied in many branch points and that among branches of each dendrite, specific selectivity in efficient propagation was not found. In addition, I note an implementation method in which the finite element method is applied to one-dimensional cable model of dendrites and give some numerical examples.

  5. Conditional Expression of Parkinson disease-related Mutant α-synuclein in the Midbrain Dopaminergic Neurons causes Progressive Neurodegeneration and Degradation of Transcription Factor Nuclear Receptor Related 1

    PubMed Central

    Lin, Xian; Parisiadou, Loukia; Sgobio, Carmelo; Liu, Guoxiang; Yu, Jia; Sun, Lixin; Shim, Hoon; Gu, Xing-Long; Luo, Jing; Long, Cai-Xia; Ding, Jinhui; Mateo, Yolanda; Sullivan, Patricia H.; Wu, Ling-Gang; Goldstein, David S.; Lovinger, David; Cai, Huaibin

    2012-01-01

    α-synuclein(α-syn) plays a prominent role in the degeneration of midbrain dopaminergic (mDA) neurons in Parkinson disease (PD). However, only a few studies on α-syn have been carried out in the mDA neurons in vivo, which may be attributed to a lack of α-syn transgenic mice that develop PD-like severe degeneration of mDA neurons. To gain mechanistic insights into the α-syn-induced mDA neurodegeneration, we generated a new line of tetracycline-regulated inducible transgenic mice that overexpressed the PD-related α-syn A53T missense mutation in the mDA neurons. Here we show that the mutant mice developed profound motor disabilities and robust mDA neurodegeneration, resembling some key motor and pathological phenotypes of PD. We further systematically examined the subcellular abnormalities appeared in the mDA neurons of mutant mice, and observed a profound decrease of dopamine release, the fragmentation of Golgi apparatus, and impairments of autophagy/lysosome degradation pathways in these neurons. To further understand the specific molecular events leading to the α-syn-dependent degeneration of mDA neurons, we found that over-expression of α-syn promoted a proteasome-dependent degradation of nuclear receptor related 1 protein (Nurr1); while inhibition of Nurr1 degradation ameliorated the α-syn-induced loss of mDA neurons. Given that Nurr1 plays an essential role in maintaining the normal function and survival of mDA neurons, our studies suggest that the α-syn-mediated suppression of Nurr1 protein expression may contribute to the preferential vulnerability of mDA neurons in the pathogenesis of PD. PMID:22764233

  6. Protection of midbrain dopaminergic neurons by the end-product of purine metabolism uric acid: potentiation by low-level depolarization.

    PubMed

    Guerreiro, Serge; Ponceau, Aurélie; Toulorge, Damien; Martin, Elodie; Alvarez-Fischer, Daniel; Hirsch, Etienne C; Michel, Patrick P

    2009-05-01

    High plasma levels of the end product of purine metabolism uric acid (UA) predict a reduced risk of developing Parkinson's disease suggesting that UA may operate as a protective factor for midbrain dopaminergic neurons. Consistent with this view, UA exerted partial but long-term protection in a culture model in which these neurons die spontaneously. The rescued neurons were functional as they accumulated dopamine, efficiently. The use of the fluorescent probe dihydrorhodamine-123 revealed that UA operated by an antioxidant mechanism. The iron chelating agent desferrioxamine, the H(2)O(2) scavenger enzyme catalase and the inhibitor of lipid peroxidation Trolox mimicked the effects of UA, suggesting that UA neutralized reactive oxygen species produced via a Fenton-type chemical reaction. UA was, however, not significantly accumulated into neurons, which indicates that the antioxidant effect occurred probably extracellularly. Structure - activity relationships among purine derivatives revealed that the antioxidant properties of UA resulted from the presence of a 8-one substituent in its chemical structure. Of interest, the stimulation of L-type Ca(2+) channels by high K(+)-induced depolarization and the ensuing activation of extracellular signal-regulated kinases 1/2 strongly improved the neuroprotective effect of UA whereas the depolarizing signal alone had no effect. In summary, our data indicate that UA may interfere directly with the disease's pathomechanism.

  7. Selective expression of Parkinson's disease-related Leucine-rich repeat kinase 2 G2019S missense mutation in midbrain dopaminergic neurons impairs dopamine release and dopaminergic gene expression.

    PubMed

    Liu, Guoxiang; Sgobio, Carmelo; Gu, Xinglong; Sun, Lixin; Lin, Xian; Yu, Jia; Parisiadou, Loukia; Xie, Chengsong; Sastry, Namratha; Ding, Jinhui; Lohr, Kelly M; Miller, Gary W; Mateo, Yolanda; Lovinger, David M; Cai, Huaibin

    2015-09-15

    Preferential dysfunction/degeneration of midbrain substantia nigra pars compacta (SNpc) dopaminergic (DA) neurons contributes to the main movement symptoms manifested in Parkinson's disease (PD). Although the Leucine-rich repeat kinase 2 (LRRK2) G2019S missense mutation (LRRK2 G2019S) is the most common causative genetic factor linked to PD, the effects of LRRK2 G2019S on the function and survival of SNpc DA neurons are poorly understood. Using a binary gene expression system, we generated transgenic mice expressing either wild-type human LRRK2 (WT mice) or the LRRK2 G2019S mutation (G2019S mice) selectively in the midbrain DA neurons. Here we show that overexpression of LRRK2 G2019S did not induce overt motor abnormalities or substantial SNpc DA neuron loss. However, the LRRK2 G2019S mutation impaired dopamine homeostasis and release in aged mice. This reduction in dopamine content/release coincided with the degeneration of DA axon terminals and decreased expression of DA neuron-enriched genes tyrosine hydroxylase (TH), vesicular monoamine transporter 2, dopamine transporter and aldehyde dehydrogenase 1. These factors are responsible for dopamine synthesis, transport and degradation, and their expression is regulated by transcription factor paired-like homeodomain 3 (PITX3). Levels of Pitx3 mRNA and protein were similarly decreased in the SNpc DA neurons of aged G2019S mice. Together, these findings suggest that PITX3-dependent transcription regulation could be one of the many potential mechanisms by which LRRK2 G2019S acts in SNpc DA neurons, resulting in downregulation of its downstream target genes critical for dopamine homeostasis and release.

  8. Morphine regulates Argonaute 2 and TH expression and activity but not miR-133b in midbrain dopaminergic neurons.

    PubMed

    García-Pérez, Daniel; López-Bellido, Roger; Hidalgo, Juana M; Rodríguez, Raquel E; Laorden, Maria Luisa; Núñez, Cristina; Milanés, Maria Victoria

    2015-01-01

    Epigenetic changes such as microRNAs (miRs)/Ago2-induced gene silencing represent complex molecular signature that regulate cellular plasticity. Recent studies showed involvement of miRs and Ago2 in drug addiction. In this study, we show that changes in gene expression induced by morphine and morphine withdrawal occur with concomitant epigenetic modifications in the mesolimbic dopaminergic (DA) pathway [ventral tegmental area (VTA)/nucleus accumbens (NAc) shell], which is critically involved in drug-induced dependence. We found that acute or chronic morphine administration as well as morphine withdrawal did not modify miR-133b messenger RNA (mRNA) expression in the VTA, whereas Ago2 protein levels were decreased and increased in morphine-dependent rats and after morphine withdrawal, respectively. These changes were paralleled with enhanced and decreased NAc tyrosine hydroxylase (TH) protein (an early DA marker) in morphine-dependent rats and after withdrawal, respectively. We also observed changes in TH mRNA expression in the VTA that could be related to Ago2-induced translational repression of TH mRNA during morphine withdrawal. However, the VTA number of TH-positive neurons suffered no alterations after the different treatment. Acute morphine administration produced a marked increase in TH activity and DA turnover in the NAc (shell). In contrast, precipitated morphine withdrawal decreased TH activation and did not change DA turnover. These findings provide new information into the possible correlation between Ago2/miRs complex regulation and DA neurons plasticity during opiate addiction.

  9. Oxygen Tension Within the Neurogenic Niche Regulates Dopaminergic Neurogenesis in the Developing Midbrain

    PubMed Central

    Wagenführ, Lisa; Meyer, Anne Karen; Marrone, Lara

    2016-01-01

    Oxygen tension is an important factor controlling stem cell proliferation and maintenance in various stem cell populations with a particular relevance in midbrain dopaminergic progenitors. Further studies have shown that the oxygen-dependent transcription factor hypoxia-inducible factor 1α (HIF-1α) is involved in these processes. However, all available studies on oxygen effects in dopaminergic neuroprogenitors were performed in vitro and thus it remains unclear whether tissue oxygen tension in the embryonic midbrain is also relevant for the regulation of dopaminergic neurogenesis in vivo. We thus dissect here the effects of oxygen tension in combination with HIF-1α conditional knockout on dopaminergic neurogenesis by using a novel experimental design allowing for the control of oxygen tension within the microenvironment of the neurogenic niche of the murine fetal midbrain in vivo. The microenvironment of the midbrain dopaminergic neurogenic niche was detected as hypoxic with oxygen tensions below 1.1%. Maternal oxygen treatment of 10%, 21%, and 75% atmospheric oxygen tension for 48 h translates into robust changes in fetal midbrain oxygenation. Fetal midbrain hypoxia hampered the generation of dopaminergic neurons and is accompanied with restricted fetal midbrain development. In contrast, induced hyperoxia stimulated proliferation and differentiation of dopaminergic progenitors during early and late embryogenesis. Oxygen effects were not directly mediated through HIF-1α signaling. These data—in agreement with in vitro data—indicate that oxygen is a crucial regulator of developmental dopaminergic neurogenesis. Our study provides the initial framework for future studies on molecular mechanisms mediating oxygen regulation of dopaminergic neurogenesis within the fetal midbrain as its natural environment. PMID:26577812

  10. Oxygen Tension Within the Neurogenic Niche Regulates Dopaminergic Neurogenesis in the Developing Midbrain.

    PubMed

    Wagenführ, Lisa; Meyer, Anne Karen; Marrone, Lara; Storch, Alexander

    2016-02-01

    Oxygen tension is an important factor controlling stem cell proliferation and maintenance in various stem cell populations with a particular relevance in midbrain dopaminergic progenitors. Further studies have shown that the oxygen-dependent transcription factor hypoxia-inducible factor 1α (HIF-1α) is involved in these processes. However, all available studies on oxygen effects in dopaminergic neuroprogenitors were performed in vitro and thus it remains unclear whether tissue oxygen tension in the embryonic midbrain is also relevant for the regulation of dopaminergic neurogenesis in vivo. We thus dissect here the effects of oxygen tension in combination with HIF-1α conditional knockout on dopaminergic neurogenesis by using a novel experimental design allowing for the control of oxygen tension within the microenvironment of the neurogenic niche of the murine fetal midbrain in vivo. The microenvironment of the midbrain dopaminergic neurogenic niche was detected as hypoxic with oxygen tensions below 1.1%. Maternal oxygen treatment of 10%, 21%, and 75% atmospheric oxygen tension for 48 h translates into robust changes in fetal midbrain oxygenation. Fetal midbrain hypoxia hampered the generation of dopaminergic neurons and is accompanied with restricted fetal midbrain development. In contrast, induced hyperoxia stimulated proliferation and differentiation of dopaminergic progenitors during early and late embryogenesis. Oxygen effects were not directly mediated through HIF-1α signaling. These data--in agreement with in vitro data-indicate that oxygen is a crucial regulator of developmental dopaminergic neurogenesis. Our study provides the initial framework for future studies on molecular mechanisms mediating oxygen regulation of dopaminergic neurogenesis within the fetal midbrain as its natural environment.

  11. Perinatal Exposure to Neuregulin-1 Results in Disinhibition of Adult Midbrain Dopaminergic Neurons: Implication in Schizophrenia Modeling

    PubMed Central

    Namba, Hisaaki; Okubo, Takeshi; Nawa, Hiroyuki

    2016-01-01

    Aberrant neuregulin-1 (NRG1) signals are suggested to associate with the neuropathophysiology of schizophrenia. Employing a mouse schizophrenia model established by neonatal neuregulin-1 challenge, we analysed postpubertal consequence of the NRG1 pretreatment for the electrophysiological property of nigral dopamine neurons. In vivo single unit recordings from anaesthetized NRG1-pretreated mice revealed increased spike bursting of nigral dopamine neurons. In slice preparations from NRG1-pretreated mice, spontaneous firing was elevated relative to controls. The relative increase in firing rates was abolished by a GABAA receptor antagonist. Whole-cell recording showed that perinatal NRG1 pretreatment diminished inhibitory miniature synaptic currents as well as GABAA receptor sensitivity. These results collectively suggest that perinatal exposure to neuregulin-1 results in the disinhibition of nigral dopamine neurons to influence their firing properties at the adult stage when the behavioral deficits are evident. PMID:26935991

  12. Efficient Generation of A9 Midbrain Dopaminergic Neurons by Lentiviral Delivery of LMX1A in Human Embryonic Stem Cells and Induced Pluripotent Stem Cells

    PubMed Central

    Sánchez-Danés, A.; Richaud, Y.; Rodríguez-Pizà, I.; Dehay, B.; Edel, M.; Bové, J.; Memo, M.; Vila, M.; Raya, A.

    2012-01-01

    Abstract Human embryonic stem cells (hESC) and induced pluripotent stem cells (iPSC) offer great hope for in vitro modeling of Parkinson's disease (PD), as well as for designing cell-replacement therapies. To realize these opportunities, there is an urgent need to develop efficient protocols for the directed differentiation of hESC/iPSC into dopamine (DA) neurons with the specific characteristics of the cell population lost to PD, i.e., A9-subtype ventral midbrain DA neurons. Here we use lentiviral vectors to drive the expression of LMX1A, which encodes a transcription factor critical for ventral midbrain identity, specifically in neural progenitor cells. We show that clonal lines of hESC engineered to contain one or two copies of this lentiviral vector retain long-term self-renewing ability and pluripotent differentiation capacity. Greater than 60% of all neurons generated from LMX1A-engineered hESC were ventral midbrain DA neurons of the A9 subtype, compared with ∼10% in green fluorescent protein–engineered controls, as judged by specific marker expression and functional analyses. Moreover, DA neuron precursors differentiated from LMX1A-engineered hESC were able to survive and differentiate when grafted into the brain of adult mice. Finally, we provide evidence that LMX1A overexpression similarly increases the yield of DA neuron differentiation from human iPSC. Taken together, our data show that stable genetic engineering of hESC/iPSC with lentiviral vectors driving controlled expression of LMX1A is an efficient way to generate enriched populations of human A9-subtype ventral midbrain DA neurons, which should prove useful for modeling PD and may be helpful for designing future cell-replacement strategies. PMID:21877920

  13. Fast transmission from the dopaminergic ventral midbrain to the sensory cortex of awake primates.

    PubMed

    Mylius, Judith; Happel, Max F K; Gorkin, Alexander G; Huang, Ying; Scheich, Henning; Brosch, Michael

    2015-11-01

    Motivated by the increasing evidence that auditory cortex is under control of dopaminergic cell structures of the ventral midbrain, we studied how the ventral tegmental area and substantia nigra affect neuronal activity in auditory cortex. We electrically stimulated 567 deep brain sites in total within and in the vicinity of the two dopaminergic ventral midbrain structures and at the same time, recorded local field potentials and neuronal discharges in cortex. In experiments conducted on three awake macaque monkeys, we found that electrical stimulation of the dopaminergic ventral midbrain resulted in short-latency (~35 ms) phasic activations in all cortical layers of auditory cortex. We were also able to demonstrate similar activations in secondary somatosensory cortex and superior temporal polysensory cortex. The electrically evoked responses in these parts of sensory cortex were similar to those previously described for prefrontal cortex. Moreover, these phasic responses could be reversibly altered by the dopamine D1-receptor antagonist SCH23390 for several tens of minutes. Thus, we speculate that the dopaminergic ventral midbrain exerts a temporally precise, phasic influence on sensory cortex using fast-acting non-dopaminergic transmitters and that their effects are modulated by dopamine on a longer timescale. Our findings suggest that some of the information carried by the neuronal discharges in the dopaminergic ventral midbrain, such as the motivational value or the motivational salience, is transmitted to auditory cortex and other parts of sensory cortex. The mesocortical pathway may thus contribute to the representation of non-auditory events in the auditory cortex and to its associative functions.

  14. Purified Wnt-5a increases differentiation of midbrain dopaminergic cells and dishevelled phosphorylation.

    PubMed

    Schulte, Gunnar; Bryja, Vítezslav; Rawal, Nina; Castelo-Branco, Goncalo; Sousa, Kyle M; Arenas, Ernest

    2005-03-01

    The Wnt family of lipoproteins regulates several aspects of the development of the nervous system. Recently, we reported that Wnt-3a enhances the proliferation of midbrain dopaminergic precursors and that Wnt-5a promotes their differentiation into dopaminergic neurones. Here we report the purification of hemagglutinin-tagged Wnt-5a using a three-step purification method similar to that previously described for Wnt-3a. Haemagglutinin-tagged Wnt-5a was biologically active and induced the differentiation of immature primary midbrain precursors into tyrosine hydroxylase-positive dopaminergic neurones. Using a substantia nigra-derived dopaminergic cell line (SN4741), we found that Wnt-5a, unlike Wnt-3a, did not promote beta-catenin phosphorylation or stabilization. However, both Wnt-5a and Wnt-3a activated dishevelled, as assessed by a phosphorylation-dependent mobility shift. Moreover, the activity of Wnt-5a on dishevelled was blocked by pre-treatment with acyl protein thioesterase-1, indicating that palmitoylation of Wnt-5a is necessary for its function. Thus, our results suggest that Wnt-3a and Wnt-5a, respectively, activate canonical and non-canonical Wnt signalling pathways in ventral midbrain dopaminergic cells. Furthermore, we identify dishevelled as a key player in transducing both Wnt canonical and non-canonical signals in dopaminergic cells.

  15. Ascending midbrain dopaminergic axons require descending GAD65 axon fascicles for normal pathfinding

    PubMed Central

    García-Peña, Claudia M.; Kim, Minkyung; Frade-Pérez, Daniela; Ávila-González, Daniela; Téllez, Elisa; Mastick, Grant S.; Tamariz, Elisa; Varela-Echavarría, Alfredo

    2014-01-01

    The Nigrostriatal pathway (NSP) is formed by dopaminergic axons that project from the ventral midbrain to the dorsolateral striatum as part of the medial forebrain bundle. Previous studies have implicated chemotropic proteins in the formation of the NSP during development but little is known of the role of substrate-anchored signals in this process. We observed in mouse and rat embryos that midbrain dopaminergic axons ascend in close apposition to descending GAD65-positive axon bundles throughout their trajectory to the striatum. To test whether such interaction is important for dopaminergic axon pathfinding, we analyzed transgenic mouse embryos in which the GAD65 axon bundle was reduced by the conditional expression of the diphtheria toxin. In these embryos we observed dopaminergic misprojection into the hypothalamic region and abnormal projection in the striatum. In addition, analysis of Robo1/2 and Slit1/2 knockout embryos revealed that the previously described dopaminergic misprojection in these embryos is accompanied by severe alterations in the GAD65 axon scaffold. Additional studies with cultured dopaminergic neurons and whole embryos suggest that NCAM and Robo proteins are involved in the interaction of GAD65 and dopaminergic axons. These results indicate that the fasciculation between descending GAD65 axon bundles and ascending dopaminergic axons is required for the stereotypical NSP formation during brain development and that known guidance cues may determine this projection indirectly by instructing the pathfinding of the axons that are part of the GAD65 axon scaffold. PMID:24926237

  16. Androgen decreases dopamine neurone survival in rat midbrain.

    PubMed

    Johnson, M L; Day, A E; Ho, C C; Walker, Q D; Francis, R; Kuhn, C M

    2010-04-01

    Clinical studies show that men are more likely to develop disorders affecting midbrain dopaminergic pathways, such as drug addiction and Parkinson's disease (PD). Although a great deal of focus has been given to the role of oestrogen in the maintenance of midbrain dopaminergic pathways, little is known about how testosterone influences these pathways. In the present study, we used stereological analysis of tyrosine hydroxylase-immunoreactive (TH-IR) cell bodies to determine how testosterone influences the dopaminergic cell bodies of the substantia nigra pars compacta (SNpc) and ventral tegmental area (VTA). Rats and mice were castrated at postnatal day (PN) 60, and these midbrain cell populations were counted on PN 90. One month after castration, TH-IR cell number had increased in the SNpc and VTA of rats and mice. Replacement with testosterone or the non-aromatisable analogue dihydrotestosterone (DHT) in castrated animals reduced TH-IR cell number in the SNpc and VTA in rats. In mice, the decrease of TH-IR cell number with testosterone or DHT replacement was observed only in the SNpc. The apparent increase in TH-IR neurone number after castration is not explained by an increase in TH expression because the number of nondopaminergic cells (TH-immunonegative, TH-IN) did not decrease proportionally after castration. TH-IN cell number did not change after castration or hormone replacement in rat or mouse SNpc or VTA. These findings suggest that testosterone may play a suppressive role in midbrain dopaminergic pathways.

  17. Wnt5a Regulates Midbrain Dopaminergic Axon Growth and Guidance

    PubMed Central

    Blakely, Brette D.; Bye, Christopher R.; Fernando, Chathurini V.; Horne, Malcolm K.; Macheda, Maria L.; Stacker, Steven A.; Arenas, Ernest; Parish, Clare L.

    2011-01-01

    During development, precise temporal and spatial gradients are responsible for guiding axons to their appropriate targets. Within the developing ventral midbrain (VM) the cues that guide dopaminergic (DA) axons to their forebrain targets remain to be fully elucidated. Wnts are morphogens that have been identified as axon guidance molecules. Several Wnts are expressed in the VM where they regulate the birth of DA neurons. Here, we describe that a precise temporo-spatial expression of Wnt5a accompanies the development of nigrostriatal projections by VM DA neurons. In mice at E11.5, Wnt5a is expressed in the VM where it was found to promote DA neurite and axonal growth in VM primary cultures. By E14.5, when DA axons are approaching their striatal target, Wnt5a causes DA neurite retraction in primary cultures. Co-culture of VM explants with Wnt5a-overexpressing cell aggregates revealed that Wnt5a is capable of repelling DA neurites. Antagonism experiments revealed that the effects of Wnt5a are mediated by the Frizzled receptors and by the small GTPase, Rac1 (a component of the non-canonical Wnt planar cell polarity pathway). Moreover, the effects were specific as they could be blocked by Wnt5a antibody, sFRPs and RYK-Fc. The importance of Wnt5a in DA axon morphogenesis was further verified in Wnt5a−/− mice, where fasciculation of the medial forebrain bundle (MFB) as well as the density of DA neurites in the MFB and striatal terminals were disrupted. Thus, our results identify a novel role of Wnt5a in DA axon growth and guidance. PMID:21483795

  18. Histamine impairs midbrain dopaminergic development in vivo by activating histamine type 1 receptors

    PubMed Central

    2014-01-01

    Background Histamine (HA) regulates the sleep-wake cycle, synaptic plasticity and memory in adult mammals. Dopaminergic specification in the embryonic ventral midbrain (VM) coincides with increased HA brain levels. To study the effect of HA receptor stimulation on dopamine neuron generation, we administered HA to dopamine progenitors, both in vitro and in vivo. Results Cultured embryonic day 12 (E12) VM neural stem/progenitor cells expressed transcripts for HA receptors H1R, H2R and H3R. These undifferentiated progenitors increased intracellular calcium upon HA addition. In HA-treated cultures, dopamine neurons significantly decreased after activation of H1R. We performed intrauterine injections in the developing VM to investigate HA effects in vivo. HA administration to E12 rat embryos notably reduced VM Tyrosine Hydroxylase (TH) staining 2 days later, without affecting GABA neurons in the midbrain, or serotonin neurons in the mid-hindbrain boundary. qRT-PCR and Western blot analyses confirmed that several markers important for the generation and maintenance of dopaminergic lineage such as TH, Lmx1a and Lmx1b were significantly diminished. To identify the cell type susceptible to HA action, we injected embryos of different developmental stages, and found that neural progenitors (E10 and E12) were responsive, whereas differentiated dopaminergic neurons (E14 and E16) were not susceptible to HA actions. Proliferation was significantly diminished, whereas neuronal death was not increased in the VM after HA administration. We injected H1R or H2R antagonists to identify the receptor responsible for the detrimental effect of HA on dopaminergic lineage and found that activation of H1R was required. Conclusion These results reveal a novel action of HA affecting dopaminergic lineage during VM development. PMID:25112718

  19. Midbrain dopaminergic neurogenesis and behavioural recovery in a salamander lesion-induced regeneration model.

    PubMed

    Parish, Clare L; Beljajeva, Anna; Arenas, Ernest; Simon, András

    2007-08-01

    Death and lack of functional regeneration of midbrain dopaminergic (DA) neurons, decreased DA input in the target striatum and movement anomalies characterise Parkinson's disease (PD). There is currently no cure for PD. One way to promote recovery would be to induce or enhance DA neurogenesis. Whether DA neurogenesis occurs in the adult midbrain is a matter of debate. Here, we describe the creation of a salamander 6-hydroxydopamine model of PD to examine midbrain DA regeneration. We demonstrate a robust and complete regeneration of the mesencephalic and diencephalic DA system after elimination of DA neurons. Regeneration is contributed by DA neurogenesis, leads to histological restoration, and to full recovery of motor behaviour. Molecular analyses of the temporal expression pattern of DA determinants indicate that the regenerating DA neurons mature along a similar developmental program as their mammalian counterparts during embryogenesis. We also find that the adult salamander midbrain can reactivate radial glia-like ependymoglia cells that proliferate. The salamander model provides insights into the mechanisms of DA regeneration/neurogenesis and may contribute to the development of novel regenerative strategies for the mammalian brain.

  20. Diverse roles for Wnt7a in ventral midbrain neurogenesis and dopaminergic axon morphogenesis.

    PubMed

    Fernando, Chathurini V; Kele, Julianna; Bye, Christopher R; Niclis, Jonathan C; Alsanie, Walaa; Blakely, Brette D; Stenman, Jan; Turner, Brad J; Parish, Clare L

    2014-09-01

    During development of the central nervous system, trophic, together with genetic, cues dictate the balance between cellular proliferation and differentiation. Subsequent to the birth of new neurons, additional intrinsic and extrinsic signals regulate the connectivity of these cells. While a number of regulators of ventral midbrain (VM) neurogenesis and dopaminergic (DA) axon guidance are known, we identify a number of novel roles for the secreted glycoprotein, Wnt7a, in this context. We demonstrate a temporal and spatial expression of Wnt7a in the VM, indicative of roles in neurogenesis, differentiation, and axonal growth and guidance. In primary VM cultures, and validated in Wnt7a-deficient mice, we show that the early expression within the VM is important for regulating VM progenitor proliferation, cell cycle progression, and cell survival, thereby dictating the number of midbrain Nurr1 precursors and DA neurons. During early development of the midbrain DA pathways, Wnt7a promotes axonal elongation and repels DA neurites out of the midbrain. Later, Wnt7a expression in the VM midline suggests a role in preventing axonal crossing while expression in regions flanking the medial forebrain bundle (thalamus and hypothalamus) ensured appropriate trajectory of DA axons en route to their forebrain targets. We show that the effects of Wnt7a in VM development are mediated, at least in part, by the β-catenin/canonical pathways. Together, these findings identify Wnt7a as a new regulator of VM neurogenesis and DA axon growth and guidance.

  1. Intracellular Nogo-A facilitates initiation of neurite formation in mouse midbrain neurons in vitro.

    PubMed

    Kurowska, Z; Brundin, P; Schwab, M E; Li, J-Y

    2014-01-03

    Nogo-A is a transmembrane protein originally discovered in myelin, produced by postnatal CNS oligodendrocytes. Nogo-A induces growth cone collapse and inhibition of axonal growth in the injured adult CNS. In the intact CNS, Nogo-A functions as a negative regulator of growth and plasticity. Nogo-A is also expressed by certain neurons. Neuronal Nogo-A depresses long-term potentiation in the hippocampus and modulates neurite adhesion and fasciculation during development in mice. Here we show that Nogo-A is present in neurons derived from human midbrain (Lund human mesencephalic (LUHMES) cell line), as well as in embryonic and postnatal mouse midbrain (dopaminergic) neurons. In LUHMES cells, Nogo-A was upregulated threefold upon differentiation and neurite extension. Nogo-A was localized intracellularly in differentiated LUHMES cells. Cultured midbrain (dopaminergic) neurons from Nogo-A knock-out mice exhibited decreased numbers of neurites and branches when compared with neurons from wild-type (WT) mice. However, this phenotype was not observed when the cultures from WT mice were treated with an antibody neutralizing plasma membrane Nogo-A. In vivo, neither the regeneration of nigrostriatal tyrosine hydroxylase fibers, nor the survival of nigral dopaminergic neurons after partial 6-hydroxydopamine lesions was affected by Nogo-A deletion. These results indicate that during maturation of cultured midbrain (dopaminergic) neurons, intracellular Nogo-A supports neurite growth initiation and branch formation. Copyright © 2013 IBRO. Published by Elsevier Ltd. All rights reserved.

  2. Physiological Characterisation of Human iPS-Derived Dopaminergic Neurons

    PubMed Central

    Ribeiro Fernandes, Hugo J.; Vowles, Jane; James, William S.; Cowley, Sally A.; Wade-Martins, Richard

    2014-01-01

    Human induced pluripotent stem cells (hiPSCs) offer the potential to study otherwise inaccessible cell types. Critical to this is the directed differentiation of hiPSCs into functional cell lineages. This is of particular relevance to research into neurological disease, such as Parkinson’s disease (PD), in which midbrain dopaminergic neurons degenerate during disease progression but are unobtainable until post-mortem. Here we report a detailed study into the physiological maturation over time of human dopaminergic neurons in vitro. We first generated and differentiated hiPSC lines into midbrain dopaminergic neurons and performed a comprehensive characterisation to confirm dopaminergic functionality by demonstrating dopamine synthesis, release, and re-uptake. The neuronal cultures include cells positive for both tyrosine hydroxylase (TH) and G protein-activated inward rectifier potassium channel 2 (Kir3.2, henceforth referred to as GIRK2), representative of the A9 population of substantia nigra pars compacta (SNc) neurons vulnerable in PD. We observed for the first time the maturation of the slow autonomous pace-making (<10 Hz) and spontaneous synaptic activity typical of mature SNc dopaminergic neurons using a combination of calcium imaging and electrophysiology. hiPSC-derived neurons exhibited inositol tri-phosphate (IP3) receptor-dependent release of intracellular calcium from the endoplasmic reticulum in neuronal processes as calcium waves propagating from apical and distal dendrites, and in the soma. Finally, neurons were susceptible to the dopamine neuron-specific toxin 1-methyl-4-phenylpyridinium (MPP+) which reduced mitochondrial membrane potential and altered mitochondrial morphology. Mature hiPSC-derived dopaminergic neurons provide a neurophysiologically-defined model of previously inaccessible vulnerable SNc dopaminergic neurons to bridge the gap between clinical PD and animal models. PMID:24586273

  3. Telencephalic neural precursor cells show transient competence to interpret the dopaminergic niche of the embryonic midbrain.

    PubMed

    Baizabal, José-Manuel; Valencia, Concepción; Guerrero-Flores, Gilda; Covarrubias, Luis

    2011-01-15

    Neural Precursor Cells (NPCs) generate complex stereotypic arrays of neuronal subtypes in the brain. This process involves the integration of patterning cues that progressively restrict the fate of specific NPCs. Yet the capacity of NPCs to interpret foreign microenvironments during development remains poorly defined. The aim of this work was to test the competence of mouse telencephalic NPCs to respond to the dopaminergic niche of the mesencephalon. Telencephalic NPCs isolated from midgestation mouse embryos (E10.5) and transplanted to age-matched mesencephalic explants efficiently differentiated into neurons but were largely unable to produce midbrain dopaminergic (mDA) neurons. Instead, E10.5 telencephalic NPCs behaved as restricted gabaergic progenitors that maintained ectopic expression of Foxg1 and Pax6. In contrast, E8.5 telencephalic NPCs were able to differentiate into Lmx1a(+)/Foxa2(+)/TH(+) neurons in the dopaminergic niche of the mesencephalic explants. In addition, these early telencephalic NPCs showed region-dependent expression of Nkx6.1, Nkx2.2 and site-specific differentiation into gabaergic neurons within the mesencephalic tissue. Significant dopaminergic differentiation of E8.5 telencephalic NPCs was not observed after transplantation to E12.5 mesencephalic explants, suggesting that inductive signals in the dopaminergic niche rapidly decay after midgestation. Moreover, we employed transplantation of embryonic stem cells-derived precursors to demonstrate that extinction of inductive signals within the telencephalon lags behind the commitment of residing NPCs. Our data indicate that the plasticity to interpret multiple instructive niches is an early and ephemeral feature of the telencephalic neural lineage.

  4. Dopaminergic Neurons and Brain Reward Pathways

    PubMed Central

    Luo, Sarah X.; Huang, Eric J.

    2017-01-01

    Midbrain dopaminergic (DA) neurons in the substantia nigra pars compacta and ventral tegmental area regulate extrapyramidal movement and important cognitive functions, including motivation, reward associations, and habit learning. Dysfunctions in DA neuron circuitry have been implicated in several neuropsychiatric disorders, including addiction and schizophrenia, whereas selective degeneration of DA neurons in substantia nigra pars compacta is a key neuropathological feature in Parkinson disease. Efforts to understand these disorders have focused on dissecting the underlying causes, as well as developing therapeutic strategies to replenish dopamine deficiency. In particular, the promise of cell replacement therapies for clinical intervention has led to extensive research in the identification of mechanisms involved in DA neuron development. It is hoped that a comprehensive understanding of these mechanisms will lead to therapeutic strategies that improve the efficiency of DA neuron production, engraftment, and function. This review provides a comprehensive discussion on how Wnt/β-catenin and sonic hedgehog–Smoothened signaling mechanisms control the specification and expansion of DA progenitors and the differentiation of DA neurons. We also discuss how mechanisms involving transforming growth factor-β and transcriptional cofactor homeodomain interacting protein kinase 2 regulate the survival and maturation of DA neurons in early postnatal life. These results not only reveal fundamental mechanisms regulating DA neuron development, but also provide important insights to their potential contributions to neuropsychiatric and neurodegenerative diseases. PMID:26724386

  5. The embryonic midbrain directs neuronal specification of embryonic stem cells at early stages of differentiation.

    PubMed

    Baizabal, José-Manuel; Covarrubias, Luis

    2009-01-01

    Specific neuronal differentiation of Embryonic Stem Cells (ESCs) depends on their capacity to interpret environmental cues. At present, it is not clear at which stage of differentiation ESCs become competent to produce multiple neuronal lineages in response to the niche of the embryonic brain. To unfold the developmental potential of ESC-derived precursors, we transplanted these cells into the embryonic midbrain explants, where neurogenesis occurs as in normal midbrain development. Using this experimental design, we show that the transition from ESCs to Embryoid Body (EB) precursors is necessary to differentiate into Lmx1a(+)/Ptx3(+)/TH(+) dopaminergic neurons around the ventral midline of the midbrain. In addition, EB cells placed at other dorsal-ventral levels of the midbrain give rise to Nkx6.1(+) red nucleus (RN) neurons, Nkx2.2(+) ventral interneurons and Pax7(+) dorsal neurons at the correct positions. Notably, differentiation of ESCs into Neural Precursor Cells (NPCs) prior to transplantation markedly reduces specification at the Lmx1a, Nkx6.1 and Pax7 expression domains, without affecting neuronal differentiation. Finally, exposure to Fgf8 and Shh in vitro promotes commitment of some ESC-derived NPCs to differentiate into putative Lmx1a(+) dopaminergic neurons in the midbrain. Our data demonstrate intrinsic developmental potential differences among ESC-derived precursor populations.

  6. Molecular regulation of GABAergic neuron differentiation and diversity in the developing midbrain.

    PubMed

    Lahti, L; Achim, K; Partanen, J

    2013-04-01

    The midbrain GABAergic neurones control several aspects of behaviour, play important roles in psychiatric disease and are targets of medical treatments as well as drugs of abuse. However, their molecular diversity and regulation of development are only beginning to be understood. In this review, we briefly introduce distinct subpopulations of the midbrain GABAergic neurones and discuss knowledge on their development, including the developmental origins of midbrain GABAergic neurones as well as transcriptional regulatory mechanisms guiding their differentiation and identity. Important GABAergic neuron subpopulations are found within the dopaminergic (DA) nuclei in the ventral midbrain. GABAergic substantia nigra pars reticulata is the main output pathway of the basal ganglia system regulating voluntary movements. Recent studies have also highlighted importance of the GABAergic neurones associated with the ventral tegmental area for the control of DA neuron activity and motivated behaviours. Interestingly, the development of the GABAergic neurones associated with the DA nuclei is very different from the rest of the midbrain. Knowledge on developmental regulation can lead to insights into the molecular, structural and functional diversity of the midbrain GABAergic neurones and their subpopulations, cell groups of great physiological and medical interest. © 2013 The Authors Acta Physiologica © 2013 Scandinavian Physiological Society.

  7. Neurofeedback-mediated self-regulation of the dopaminergic midbrain.

    PubMed

    Sulzer, James; Sitaram, Ranganatha; Blefari, Maria Laura; Kollias, Spyros; Birbaumer, Niels; Stephan, Klaas Enno; Luft, Andreas; Gassert, Roger

    2013-12-01

    The dopaminergic system is involved in reward encoding and reinforcement learning. Dopaminergic neurons from this system in the substantia nigra/ventral tegmental area complex (SN/VTA) fire in response to unexpected reinforcing cues. The goal of this study was to investigate whether individuals can gain voluntary control of SN/VTA activity, thereby potentially enhancing dopamine release to target brain regions. Neurofeedback and mental imagery were used to self-regulate the SN/VTA. Real-time functional magnetic resonance imaging (rtfMRI) provided abstract visual feedback of the SN/VTA activity while the subject imagined rewarding scenes. Skin conductance response (SCR) was recorded as a measure of emotional arousal. To examine the effect of neurofeedback, subjects were assigned to either receiving feedback directly proportional (n=15, veridical feedback) or inversely proportional (n=17, inverted feedback) to SN/VTA activity. Both groups of subjects were able to up-regulate SN/VTA activity initially without feedback. Veridical feedback improved the ability to up-regulate SN/VTA compared to baseline while inverted feedback did not. Additional dopaminergic regions were activated in both groups. The ability to self-regulate SN/VTA was differentially correlated with SCR depending on the group, suggesting an association between emotional arousal and neurofeedback performance. These findings indicate that SN/VTA can be voluntarily activated by imagery and voluntary activation is further enhanced by neurofeedback. The findings may lead the way towards a non-invasive strategy for endogenous control of dopamine.

  8. Trace amines depress D2-autoreceptor-mediated responses on midbrain dopaminergic cells

    PubMed Central

    Ledonne, Ada; Federici, Mauro; Giustizieri, Michela; Pessia, Mauro; Imbrici, Paola; Millan, Mark J; Bernardi, Giorgio; Mercuri, Nicola B

    2010-01-01

    Background and purpose: Although trace amines (TAs) are historically considered ‘false neurotransmitters’ on the basis of their ability to induce catecholamine release, there is evidence that they directly affect neuronal activity via TA receptors, ligand-gated receptor channels and/or σ receptors. Here, we have investigated the effects of two TAs, tyramine (TYR) and β-phenylethylamine (β-PEA), on electrophysiological responses of substantia nigra pars compacta (SNpc) dopaminergic cells to the D2 receptor agonist, quinpirole. Experimental approach: Electrophysiological recordings of D2 receptor-activated G-protein-gated inward rectifier K+ channel (GIRK) currents were performed on dopaminergic cells from midbrain slices of mice and on Xenopus oocytes expressing D2 receptors and GIRK channels. Key results: TYR and β-PEA reversibly reduced D2 receptor-activated GIRK currents in a concentration-dependent manner on SNpc neurones. The inhibitory effect of TAs was still present in transgenic mice with genetically deleted TA1 receptors and they could not be reproduced by the selective TA1 agonist, o-phenyl-3-iodotyramine (O-PIT). Pretreatment with antagonists of σ1 and σ2 receptors did not block TA-induced effects. In GTPγS-loaded neurones, the irreversibly-activated GIRK-current was still reversibly reduced by β-PEA. Moreover, β-PEA did not affect basal or dopamine-evoked GIRK-currents in Xenopus oocytes. Conclusions and implications: TAs reduced dopamine-induced responses on SNpc neurones by acting at sites different from TA1, σ-receptors, D2 receptors or GIRK channels. Although their precise mechanism of action remains to be identified, TAs, by antagonizing the inhibitory effects of dopamine, may render dopaminergic neurones less sensitive to autoreceptor feedback inhibition and hence enhance their sensitivity to stimulation. PMID:20590640

  9. Influence of Oxygen Tension on Dopaminergic Differentiation of Human Fetal Stem Cells of Midbrain and Forebrain Origin

    PubMed Central

    Krabbe, Christina; Bak, Sara Thornby; Jensen, Pia; von Linstow, Christian; Martínez Serrano, Alberto; Hansen, Claus; Meyer, Morten

    2014-01-01

    Neural stem cells (NSCs) constitute a promising source of cells for transplantation in Parkinson's disease (PD), but protocols for controlled dopaminergic differentiation are not yet available. Here we investigated the influence of oxygen on dopaminergic differentiation of human fetal NSCs derived from the midbrain and forebrain. Cells were differentiated for 10 days in vitro at low, physiological (3%) versus high, atmospheric (20%) oxygen tension. Low oxygen resulted in upregulation of vascular endothelial growth factor and increased the proportion of tyrosine hydroxylase-immunoreactive (TH-ir) cells in both types of cultures (midbrain: 9.1±0.5 and 17.1±0.4 (P<0.001); forebrain: 1.9±0.4 and 3.9±0.6 (P<0.01) percent of total cells). Regardless of oxygen levels, the content of TH-ir cells with mature neuronal morphologies was higher for midbrain as compared to forebrain cultures. Proliferative Ki67-ir cells were found in both types of cultures, but the relative proportion of these cells was significantly higher for forebrain NSCs cultured at low, as compared to high, oxygen tension. No such difference was detected for midbrain-derived cells. Western blot analysis revealed that low oxygen enhanced β-tubulin III and GFAP expression in both cultures. Up-regulation of β-tubulin III was most pronounced for midbrain cells, whereas GFAP expression was higher in forebrain as compared to midbrain cells. NSCs from both brain regions displayed less cell death when cultured at low oxygen tension. Following mictrotransplantation into mouse striatal slice cultures predifferentiated midbrain NSCs were found to proliferate and differentiate into substantial numbers of TH-ir neurons with mature neuronal morphologies, particularly at low oxygen. In contrast, predifferentiated forebrain NSCs microtransplanted using identical conditions displayed little proliferation and contained few TH-ir cells, all of which had an immature appearance. Our data may reflect differences in

  10. Influence of oxygen tension on dopaminergic differentiation of human fetal stem cells of midbrain and forebrain origin.

    PubMed

    Krabbe, Christina; Bak, Sara Thornby; Jensen, Pia; von Linstow, Christian; Martínez Serrano, Alberto; Hansen, Claus; Meyer, Morten

    2014-01-01

    Neural stem cells (NSCs) constitute a promising source of cells for transplantation in Parkinson's disease (PD), but protocols for controlled dopaminergic differentiation are not yet available. Here we investigated the influence of oxygen on dopaminergic differentiation of human fetal NSCs derived from the midbrain and forebrain. Cells were differentiated for 10 days in vitro at low, physiological (3%) versus high, atmospheric (20%) oxygen tension. Low oxygen resulted in upregulation of vascular endothelial growth factor and increased the proportion of tyrosine hydroxylase-immunoreactive (TH-ir) cells in both types of cultures (midbrain: 9.1 ± 0.5 and 17.1 ± 0.4 (P<0.001); forebrain: 1.9 ± 0.4 and 3.9 ± 0.6 (P<0.01) percent of total cells). Regardless of oxygen levels, the content of TH-ir cells with mature neuronal morphologies was higher for midbrain as compared to forebrain cultures. Proliferative Ki67-ir cells were found in both types of cultures, but the relative proportion of these cells was significantly higher for forebrain NSCs cultured at low, as compared to high, oxygen tension. No such difference was detected for midbrain-derived cells. Western blot analysis revealed that low oxygen enhanced β-tubulin III and GFAP expression in both cultures. Up-regulation of β-tubulin III was most pronounced for midbrain cells, whereas GFAP expression was higher in forebrain as compared to midbrain cells. NSCs from both brain regions displayed less cell death when cultured at low oxygen tension. Following mictrotransplantation into mouse striatal slice cultures predifferentiated midbrain NSCs were found to proliferate and differentiate into substantial numbers of TH-ir neurons with mature neuronal morphologies, particularly at low oxygen. In contrast, predifferentiated forebrain NSCs microtransplanted using identical conditions displayed little proliferation and contained few TH-ir cells, all of which had an immature appearance. Our data may reflect differences

  11. Vulnerability of Mesostriatal Dopaminergic Neurons in Parkinson's Disease

    PubMed Central

    González-Hernández, Tomás; Cruz-Muros, Ignacio; Afonso-Oramas, Domingo; Salas-Hernandez, Josmar; Castro-Hernandez, Javier

    2010-01-01

    The term vulnerability was first associated with the midbrain dopaminergic neurons 85 years ago, before they were identified as monoaminergic neurons, when Foix and Nicolesco (1925) reported the loss of neuromelanin containing neurons in the midbrain of patients with post-encephalitic Parkinson's disease (PD). A few years later, Hassler (1938) showed that degeneration is more intense in the ventral tier of the substantia nigra compacta than in its dorsal tier and the ventral tegmental area (VTA), outlining the concept of differential vulnerability of midbrain dopaminergic (DA-) neurons. Nowadays, we know that other neuronal groups degenerate in PD, but the massive loss of nigral DA-cells is its pathological hallmark, having a pivotal position in the pathophysiology of the disease as it is responsible for the motor symptoms. Data from humans as well as cellular and animal models indicate that DA-cell degeneration is a complex process, probably precipitated by the convergence of different risk factors, mediated by oxidative stress, and involving pathogenic factors arising within the DA-neuron (intrinsic factors), and from its environment and distant interconnected brain regions (extrinsic factors). In light of current data, intrinsic factors seem to be preferentially involved in the first steps of the degenerative process, and extrinsic factors in its progression. A controversial issue is the relative weight of the impairment of common cell functions, such as energy metabolism and proteostasis, and specific dopaminergic functions, such as pacemaking activity and DA handling, in the pathogenesis of DA-cell degeneration. Here we will review the current knowledge about the relevance of these factors at the beginning and during the progression of PD, and in the differential vulnerability of midbrain DA-cells. PMID:21079748

  12. Primary cilia are critical for Sonic hedgehog-mediated dopaminergic neurogenesis in the embryonic midbrain.

    PubMed

    Gazea, Mary; Tasouri, Evangelia; Tolve, Marianna; Bosch, Viktoria; Kabanova, Anna; Gojak, Christian; Kurtulmus, Bahtiyar; Novikov, Orna; Spatz, Joachim; Pereira, Gislene; Hübner, Wolfgang; Brodski, Claude; Tucker, Kerry L; Blaess, Sandra

    2016-01-01

    Midbrain dopaminergic (mDA) neurons modulate various motor and cognitive functions, and their dysfunction or degeneration has been implicated in several psychiatric diseases. Both Sonic Hedgehog (Shh) and Wnt signaling pathways have been shown to be essential for normal development of mDA neurons. Primary cilia are critical for the development of a number of structures in the brain by serving as a hub for essential developmental signaling cascades, but their role in the generation of mDA neurons has not been examined. We analyzed mutant mouse lines deficient in the intraflagellar transport protein IFT88, which is critical for primary cilia function. Conditional inactivation of Ift88 in the midbrain after E9.0 results in progressive loss of primary cilia, a decreased size of the mDA progenitor domain, and a reduction in mDA neurons. We identified Shh signaling as the primary cause of these defects, since conditional inactivation of the Shh signaling pathway after E9.0, through genetic ablation of Gli2 and Gli3 in the midbrain, results in a phenotype basically identical to the one seen in Ift88 conditional mutants. Moreover, the expansion of the mDA progenitor domain observed when Shh signaling is constitutively activated does not occur in absence of Ift88. In contrast, clusters of Shh-responding progenitors are maintained in the ventral midbrain of the hypomorphic Ift88 mouse mutant, cobblestone. Despite the residual Shh signaling, the integrity of the mDA progenitor domain is severely disturbed, and consequently very few mDA neurons are generated in cobblestone mutants. Our results identify for the first time a crucial role of primary cilia in the induction of mDA progenitors, define a narrow time window in which Shh-mediated signaling is dependent upon normal primary cilia function for this purpose, and suggest that later Wnt signaling-dependent events act independently of primary cilia. Copyright © 2015 Elsevier Inc. All rights reserved.

  13. Representation of spontaneous movement by dopaminergic neurons is cell-type selective and disrupted in parkinsonism

    PubMed Central

    Dreyer, Jakob K.; Jennings, Katie A.; Syed, Emilie C. J.; Wade-Martins, Richard; Cragg, Stephanie J.; Bolam, J. Paul; Magill, Peter J.

    2016-01-01

    Midbrain dopaminergic neurons are essential for appropriate voluntary movement, as epitomized by the cardinal motor impairments arising in Parkinson’s disease. Understanding the basis of such motor control requires understanding how the firing of different types of dopaminergic neuron relates to movement and how this activity is deciphered in target structures such as the striatum. By recording and labeling individual neurons in behaving mice, we show that the representation of brief spontaneous movements in the firing of identified midbrain dopaminergic neurons is cell-type selective. Most dopaminergic neurons in the substantia nigra pars compacta (SNc), but not in ventral tegmental area or substantia nigra pars lateralis, consistently represented the onset of spontaneous movements with a pause in their firing. Computational modeling revealed that the movement-related firing of these dopaminergic neurons can manifest as rapid and robust fluctuations in striatal dopamine concentration and receptor activity. The exact nature of the movement-related signaling in the striatum depended on the type of dopaminergic neuron providing inputs, the striatal region innervated, and the type of dopamine receptor expressed by striatal neurons. Importantly, in aged mice harboring a genetic burden relevant for human Parkinson’s disease, the precise movement-related firing of SNc dopaminergic neurons and the resultant striatal dopamine signaling were lost. These data show that distinct dopaminergic cell types differentially encode spontaneous movement and elucidate how dysregulation of their firing in early Parkinsonism can impair their effector circuits. PMID:27001837

  14. Representation of spontaneous movement by dopaminergic neurons is cell-type selective and disrupted in parkinsonism.

    PubMed

    Dodson, Paul D; Dreyer, Jakob K; Jennings, Katie A; Syed, Emilie C J; Wade-Martins, Richard; Cragg, Stephanie J; Bolam, J Paul; Magill, Peter J

    2016-04-12

    Midbrain dopaminergic neurons are essential for appropriate voluntary movement, as epitomized by the cardinal motor impairments arising in Parkinson's disease. Understanding the basis of such motor control requires understanding how the firing of different types of dopaminergic neuron relates to movement and how this activity is deciphered in target structures such as the striatum. By recording and labeling individual neurons in behaving mice, we show that the representation of brief spontaneous movements in the firing of identified midbrain dopaminergic neurons is cell-type selective. Most dopaminergic neurons in the substantia nigra pars compacta (SNc), but not in ventral tegmental area or substantia nigra pars lateralis, consistently represented the onset of spontaneous movements with a pause in their firing. Computational modeling revealed that the movement-related firing of these dopaminergic neurons can manifest as rapid and robust fluctuations in striatal dopamine concentration and receptor activity. The exact nature of the movement-related signaling in the striatum depended on the type of dopaminergic neuron providing inputs, the striatal region innervated, and the type of dopamine receptor expressed by striatal neurons. Importantly, in aged mice harboring a genetic burden relevant for human Parkinson's disease, the precise movement-related firing of SNc dopaminergic neurons and the resultant striatal dopamine signaling were lost. These data show that distinct dopaminergic cell types differentially encode spontaneous movement and elucidate how dysregulation of their firing in early Parkinsonism can impair their effector circuits.

  15. NMDA Receptors in Dopaminergic Neurons are Crucial for Habit Learning

    PubMed Central

    Wang, Lei Phillip; Li, Fei; Wang, Dong; Xie, Kun; Wang, Deheng; Shen, Xiaoming; Tsien, Joe Z.

    2011-01-01

    Summary Dopamine is crucial for habit learning. Activities of midbrain dopaminergic neurons are regulated by the cortical and subcortical signals among which glutamatergic afferents provide excitatory inputs. Cognitive implications of glutamatergic afferents in regulating and engaging dopamine signals during habit learning however remain unclear. Here we show that mice with dopaminergic neuron-specific NMDAR1 deletion are impaired in a variety of habit learning tasks while normal in some other dopamine-modulated functions such as locomotor activities, goal directed learning, and spatial reference memories. In vivo neural recording revealed that DA neurons in these mutant mice could still develop the cue-reward association responses, but their conditioned response robustness was drastically blunted. Our results suggest that integration of glutamatergic inputs to DA neurons by NMDA receptors, likely by regulating associative activity patterns, is a crucial part of the cellular mechanism underpinning habit learning. PMID:22196339

  16. Midbrain dopaminergic development in vivo and in vitro from embryonic stem cells

    PubMed Central

    Maxwell, Sarah L; Li, Meng

    2005-01-01

    The midbrain dopaminergic (mDA) neurons play a key role in the function of a variety of brain systems, including motor control and reward pathways. This has led to much interest in these neurons as targets for intervention in human disorders such as Parkinson's disease and schizophrenia. A major area of interest is to direct embryonic stem (ES) cells to differentiate into mDA neurons in vitro, which can then be used for cell therapy or drug screening. At present, our understanding of mDA development in vivo is limited. However, recent studies have identified a number of regulatory factors that influence the development of mDA neurons in vivo. Such studies will not only increase our understanding of mDA development in vivo, they may also promote new paradigms for regulating mDA production from ES cells in vitro. Here we review the current knowledge on mDA development in vivo and mDA differentiation. PMID:16185245

  17. GABAergic and glutamatergic identities of developing midbrain Pitx2 neurons

    PubMed Central

    Waite, MR; Skidmore, JM; Billi, AC; Martin, JF; Martin, DM

    2010-01-01

    Pitx2, a paired-like homeodomain transcription factor, is expressed in post-mitotic neurons within highly restricted domains of the embryonic mouse brain. Previous reports identified critical roles for PITX2 in histogenesis of the hypothalamus and midbrain, but the cellular identities of PITX2-positive neurons in these regions were not fully explored. This study characterizes Pitx2 expression with respect to midbrain transcription factor and neurotransmitter phenotypes in mid-to-late mouse gestation. In the dorsal midbrain, we identified Pitx2-positive neurons in the stratum griseum intermedium (SGI) as GABAergic and observed a requirement for PITX2 in GABAergic differentiation. We also identified two Pitx2-positive neuronal populations in the ventral midbrain, the red nucleus and a ventromedial population, both of which contain glutamatergic precursors. Our data suggest that PITX2 is present in regionally restricted subpopulations of midbrain neurons and may have unique functions which promote GABAergic and glutamatergic differentiation. PMID:21246650

  18. Dopaminergic regulation of orexin neurons.

    PubMed

    Bubser, Michael; Fadel, Jim R; Jackson, Lela L; Meador-Woodruff, James H; Jing, Deqiang; Deutch, Ariel Y

    2005-06-01

    Orexin/hypocretin neurons in the lateral hypothalamus and adjacent perifornical area (LH/PFA) innervate midbrain dopamine (DA) neurons that project to corticolimbic sites and subserve psychostimulant-induced locomotor activity. However, it is not known whether dopamine neurons in turn regulate the activity of orexin cells. We examined the ability of dopamine agonists to activate orexin neurons in the rat, as reflected by induction of Fos. The mixed dopamine agonist apomorphine increased Fos expression in orexin cells, with a greater effect on orexin neurons located medial to the fornix. Both the selective D1-like agonist, A-77636, and the D2-like agonist, quinpirole, also induced Fos in orexin cells, suggesting that stimulation of either receptor subtype is sufficient to activate orexin neurons. Consistent with this finding, combined SCH 23390 (D1 antagonist)-haloperidol (D2 antagonist) pretreatment blocked apomorphine-induced activation of medial as well as lateral orexin neurons; in contrast, pretreatment with either the D1-like or D2-like antagonists alone did not attenuate apomorphine-induced activation of medial orexin cells. In situ hybridization histochemistry revealed that LH/PFA cells rarely express mRNAs encoding dopamine receptors, suggesting that orexin cells are transsynaptically activated by apomorphine. We therefore lesioned the nucleus accumbens, a site known to regulate orexin cells, but this treatment did not alter apomorphine-elicited activation of medial or lateral orexin neurons. Interestingly, apomorphine failed to activate orexin cells in isoflurane-anaesthetized animals. These data suggest that apomorphine-induced arousal but not accumbens-mediated hyperactivity is required for dopamine to transsynaptically activate orexin neurons.

  19. Midbrain dopamine neurons sustain inhibitory transmission using plasma membrane uptake of GABA, not synthesis

    PubMed Central

    Tritsch, Nicolas X; Oh, Won-Jong; Gu, Chenghua; Sabatini, Bernardo L

    2014-01-01

    Synaptic transmission between midbrain dopamine neurons and target neurons in the striatum is essential for the selection and reinforcement of movements. Recent evidence indicates that nigrostriatal dopamine neurons inhibit striatal projection neurons by releasing a neurotransmitter that activates GABAA receptors. Here, we demonstrate that this phenomenon extends to mesolimbic afferents, and confirm that the released neurotransmitter is GABA. However, the GABA synthetic enzymes GAD65 and GAD67 are not detected in midbrain dopamine neurons. Instead, these cells express the membrane GABA transporters mGAT1 (Slc6a1) and mGAT4 (Slc6a11) and inhibition of these transporters prevents GABA co-release. These findings therefore indicate that GABA co-release is a general feature of midbrain dopaminergic neurons that relies on GABA uptake from the extracellular milieu as opposed to de novo synthesis. This atypical mechanism may confer dopaminergic neurons the flexibility to differentially control GABAergic transmission in a target-dependent manner across their extensive axonal arbors. DOI: http://dx.doi.org/10.7554/eLife.01936.001 PMID:24843012

  20. Making a mes: A transcription factor-microRNA pair governs the size of the midbrain and the dopaminergic progenitor pool.

    PubMed

    Anderegg, Angela; Awatramani, Rajeshwar

    2015-01-01

    Canonical Wnt signaling is critical for midbrain dopaminergic progenitor specification, proliferation, and neurogenesis. Yet mechanisms that control Wnt signaling remain to be fully elucidated. Wnt1 is a key ligand in the embryonic midbrain, and directs proliferation, survival, specification and neurogenesis. In a recent study, we reveal that the transcription factor Lmx1b promotes Wnt1/Wnt signaling, and dopaminergic progenitor expansion, consistent with earlier studies. Additionally, Lmx1b drives expression of a non-coding RNA called Rmst, which harbors miR135a2 in its last intron. miR135a2 in turn targets Lmx1b as well as several Wnt pathway targets. Conditional overexpression of miR135a2 in the midbrain, particularly during an early time, results in a decreased dopaminergic progenitor pool, and less dopaminergic neurons, consistent with decreased Wnt signaling. We propose a model in which Lmx1b and miR135a2 influence levels of Wnt1 and Wnt signaling, and expansion of the dopaminergic progenitor pool. Further loss of function experiments and biochemical validation of targets will be critical to verify this model. Wnt agonists have recently been utilized for programming stem cells toward a dopaminergic fate in vitro, highlighting the importance of agents that modulate the Wnt pathway.

  1. Mitochondrial complex I inhibition is not required for dopaminergic neuron death induced by rotenone, MPP+, or paraquat

    PubMed Central

    Choi, Won-Seok; Kruse, Shane E.; Palmiter, Richard D.; Xia, Zhengui

    2008-01-01

    Inhibition of mitochondrial complex I is one of the leading hypotheses for dopaminergic neuron death associated with Parkinson's disease (PD). To test this hypothesis genetically, we used a mouse strain lacking functional Ndufs4, a gene encoding a subunit required for complete assembly and function of complex I. Deletion of the Ndufs4 gene abolished complex I activity in midbrain mesencephalic neurons cultured from embryonic day (E) 14 mice, but did not affect the survival of dopaminergic neurons in culture. Although dopaminergic neurons were more sensitive than other neurons in these cultures to cell death induced by rotenone, MPP+, or paraquat treatments, the absence of complex I activity did not protect the dopaminergic neurons, as would be expected if these compounds act by inhibiting complex 1. In fact, the dopaminergic neurons were more sensitive to rotenone. These data suggest that dopaminergic neuron death induced by treatment with rotenone, MPP+, or paraquat is independent of complex I inhibition. PMID:18812510

  2. The lifelong maintenance of mesencephalic dopaminergic neurons by Nurr1 and engrailed

    PubMed Central

    2014-01-01

    Specific vulnerability and degeneration of the dopaminergic neurons in the substantia nigra pars compacta of the midbrain is the pathological hallmark of Parkinson’s disease. A number of transcription factors regulate the birth and development of this set of neurons and some remain constitutively expressed throughout life. These maintenance transcription factors are closely associated with essential neurophysiological functions and are required ultimately for the long-term survival of the midbrain dopaminergic neurons. The current review describes the role of two such factors, Nurr1 and engrailed, in differentiation, maturation, and in normal physiological functions including acquisition of neurotransmitter identity. The review will also elucidate the relationship of these factors with life, vulnerability, degeneration and death of mesencephalic dopaminergic neurons in the context of Parkinson’s disease. PMID:24685177

  3. Reduced noradrenergic innervation of ventral midbrain dopaminergic cell groups and the subthalamic nucleus in MPTP-treated parkinsonian monkeys.

    PubMed

    Masilamoni, Gunasingh Jeyaraj; Groover, Olivia; Smith, Yoland

    2017-04-01

    There is anatomical and functional evidence that ventral midbrain dopaminergic (DA) cell groups and the subthalamic nucleus (STN) receive noradrenergic innervation in rodents, but much less is known about these interactions in primates. Degeneration of NE neurons in the locus coeruleus (LC) and related brainstem NE cell groups is a well-established pathological feature of Parkinson's disease (PD), but the development of such pathology in animal models of PD has been inconsistent across species and laboratories. We recently demonstrated 30-40% neuronal loss in the LC, A5 and A6 NE cell groups of rhesus monkeys rendered parkinsonian by chronic administration of 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP). In this study, we used dopamine-beta-hydroxylase (DβH) immunocytochemistry to assess the impact of this neuronal loss on the number of NE terminal-like varicosities in the substantia nigra pars compacta (SNC), ventral tegmental area (VTA), retrorubral field (RRF) and STN of MPTP-treated parkinsonian monkeys. Our findings reveal that the NE innervation of the ventral midbrain and STN of normal monkeys is heterogeneously distributed being far more extensive in the VTA, RRF and dorsal tier of the SNC than in the ventral SNC and STN. In parkinsonian monkeys, all regions underwent a significant (~50-70%) decrease in NE innervation. At the electron microscopic level, some DβH-positive terminals formed asymmetric axo-dendritic synapses in VTA and STN. These findings demonstrate that the VTA, RRF and SNCd are the main ventral midbrain targets of ascending NE inputs, and that these connections undergo a major break-down in chronically MPTP-treated parkinsonian monkeys. This severe degeneration of the ascending NE system may contribute to the pathophysiology of ventral midbrain and STN neurons in PD.

  4. Endocannabinoid signaling in midbrain dopamine neurons: more than physiology?

    PubMed

    Melis, M; Pistis, M

    2007-12-01

    Different classes of neurons in the CNS utilize endogenous cannabinoids as retrograde messengers to shape afferent activity in a short- and long-lasting fashion. Transient suppression of excitation and inhibition as well as long-term depression or potentiation in many brain regions require endocannabinoids to be released by the postsynaptic neurons and activate presynaptic CB1 receptors. Memory consolidation and/or extinction and habit forming have been suggested as the potential behavioral consequences of endocannabinoid-mediated synaptic modulation. HOWEVER, ENDOCANNABINOIDS HAVE A DUAL ROLE: beyond a physiological modulation of synaptic functions, they have been demonstrated to participate in the mechanisms of neuronal protection under circumstances involving excessive excitatory drive, glutamate excitotoxicity, hypoxia-ischemia, which are key features of several neurodegenerative disorders. In this framework, the recent discovery that the endocannabinoid 2-arachidonoyl-glycerol is released by midbrain dopaminergic neurons, under both physiological synaptic activity to modulate afferent inputs and pathological conditions such as ischemia, is particularly interesting for the possible implication of these molecules in brain functions and dysfunctions. Since dopamine dysfunctions underlie diverse neuropsychiatric disorders including schizophrenia, psychoses, and drug addiction, the importance of better understanding the correlation between an unbalanced endocannabinoid signal and the dopamine system is even greater. Additionally, we will review the evidence of the involvement of the endocannabinoid system in the pathogenesis of Parkinson's disease, where neuroprotective actions of cannabinoid-acting compounds may prove beneficial.The modulation of the endocannabinoid system by pharmacological agents is a valuable target in protection of dopamine neurons against functional abnormalities as well as against their neurodegeneration.

  5. Genome-wide characterisation of Foxa1 binding sites reveals several mechanisms for regulating neuronal differentiation in midbrain dopamine cells.

    PubMed

    Metzakopian, Emmanouil; Bouhali, Kamal; Alvarez-Saavedra, Matías; Whitsett, Jeffrey A; Picketts, David J; Ang, Siew-Lan

    2015-04-01

    Midbrain dopamine neuronal progenitors develop into heterogeneous subgroups of neurons, such as substantia nigra pars compacta, ventral tegmental area and retrorubal field, that regulate motor control, motivated and addictive behaviours. The development of midbrain dopamine neurons has been extensively studied, and these studies indicate that complex cross-regulatory interactions between extrinsic and intrinsic molecules regulate a precise temporal and spatial programme of neurogenesis in midbrain dopamine progenitors. To elucidate direct molecular interactions between multiple regulatory factors during neuronal differentiation in mice, we characterised genome-wide binding sites of the forkhead/winged helix transcription factor Foxa1, which functions redundantly with Foxa2 to regulate the differentiation of mDA neurons. Interestingly, our studies identified a rostral brain floor plate Neurog2 enhancer that requires direct input from Otx2, Foxa1, Foxa2 and an E-box transcription factor for its transcriptional activity. Furthermore, the chromatin remodelling factor Smarca1 was shown to function downstream of Foxa1 and Foxa2 to regulate differentiation from immature to mature midbrain dopaminergic neurons. Our genome-wide Foxa1-bound cis-regulatory sequences from ChIP-Seq and Foxa1/2 candidate target genes from RNA-Seq analyses of embryonic midbrain dopamine cells also provide an excellent resource for probing mechanistic insights into gene regulatory networks involved in the differentiation of midbrain dopamine neurons. © 2015. Published by The Company of Biologists Ltd.

  6. Enduring, Sexually Dimorphic Impact of In Utero Exposure to Elevated Levels of Glucocorticoids on Midbrain Dopaminergic Populations

    PubMed Central

    Gillies, Glenda E.; Virdee, Kanwar; Pienaar, Ilse; Al-Zaid, Felwah; Dalley, Jeffrey W.

    2016-01-01

    Glucocorticoid hormones (GCs) released from the fetal/maternal glands during late gestation are required for normal development of mammalian organs and tissues. Accordingly, synthetic glucocorticoids have proven to be invaluable in perinatal medicine where they are widely used to accelerate fetal lung maturation when there is risk of pre-term birth and to promote infant survival. However, clinical and pre-clinical studies have demonstrated that inappropriate exposure of the developing brain to elevated levels of GCs, either as a result of clinical over-use or after stress-induced activation of the fetal/maternal adrenal cortex, is linked with significant effects on brain structure, neurological function and behaviour in later life. In order to understand the underlying neural processes, particular interest has focused on the midbrain dopaminergic systems, which are critical regulators of normal adaptive behaviours, cognitive and sensorimotor functions. Specifically, using a rodent model of GC exposure in late gestation (approximating human brain development at late second/early third trimester), we demonstrated enduring effects on the shape and volume of the ventral tegmental area (VTA) and substantia nigra pars compacta (SNc) (origins of the mesocorticolimbic and nigrostriatal dopaminergic pathways) on the topographical organisation and size of the dopaminergic neuronal populations and astrocytes within these nuclei and on target innervation density and neurochemical markers of dopaminergic transmission (receptors, transporters, basal and amphetamine-stimulated dopamine release at striatal and prefrontal cortical sites) that impact on the adult brain. The effects of antenatal GC treatment (AGT) were both profound and sexually-dimorphic, not only in terms of quantitative change but also qualitatively, with several parameters affected in the opposite direction in males and females. Although such substantial neurobiological changes might presage marked behavioural

  7. Spatial and Temporal Distribution of Dopaminergic Neurons during Development in Zebrafish.

    PubMed

    Du, Yuchen; Guo, Qiang; Shan, Minghui; Wu, Yongmei; Huang, Sizhou; Zhao, Haixia; Hong, Huarong; Yang, Ming; Yang, Xi; Ren, Liyi; Peng, Jiali; Sun, Jing; Zhou, Hongli; Li, Shurong; Su, Bingyin

    2016-01-01

    As one of the model organisms of Parkinson's disease (PD) research, the zebrafish has its advantages, such as the 87% homology with human genome and transparent embryos which make it possible to observe the development of dopaminergic neurons in real time. However, there is no midbrain dopaminergic system in zebrafish when compared with mammals, and the location and projection of the dopaminergic neurons are seldom reported. In this study, Vmat2:GFP transgenic zebrafish was used to observe the development and distribution of dopaminergic neurons in real time. We found that diencephalons (DC) 2 and DC4 neuronal populations were detected at 24 h post fertilization (hpf). All DC neuronal populations as well as those in locus coeruleus (LC), raphe nuclei (Ra) and telencephalon were detected at 48 hpf. Axons were detected at 72 hpf. At 96 hpf, all the neuronal populations were detected. For the first time we reported axons from the posterior tubercle (PT) of ventral DC projected to subpallium in vivo. However, when compared with results from whole mount tyrosine hydroxylase (TH) immunofluorescence staining in wild type (WT) zebrafish, we found that DC2 and DC4 neuronal populations were mainly dopaminergic, while DC1, DC3, DC5 and DC6 might not. Neurons in pretectum (Pr) and telencephalon were mainly dopaminergic, while neurons in LC and Ra might be noradrenergic. Our study makes some corrections and modifications on the development, localization and distribution of zebrafish dopaminergic neurons, and provides some experimental evidences for the construction of the zebrafish PD model.

  8. Gene regulatory logic of dopaminergic neuron differentiation

    PubMed Central

    Flames, Nuria; Hobert, Oliver

    2009-01-01

    Dopamine signaling regulates a variety of complex behaviors and defects in dopaminergic neuron function or survival result in severe human pathologies, such as Parkinson's disease 1. The common denominator of all dopaminergic neurons is the expression of dopamine pathway genes, which code for a set of phylogenetically conserved proteins involved in dopamine synthesis and transport. Gene regulatory mechanisms that result in the activation of dopamine pathway genes and thereby ultimately determine the identity of dopaminergic neurons are poorly understood in any system studied to date 2. We show here that a simple cis-regulatory element, the DA motif, controls the expression of all dopamine pathway genes in all dopaminergic cell types in C. elegans. The DA motif is activated by the ETS transcription factor, AST-1. Loss of ast-1 results in the failure of all distinct dopaminergic neuronal subtypes to terminally differentiate. Ectopic expression of ast-1 is sufficient to activate the dopamine production pathway in some cellular contexts. Vertebrate dopaminergic pathway genes also contain phylogenetically conserved DA motifs that can be activated by the mouse ETS transcription factor Etv1/ER81 and a specific class of dopaminergic neurons fails to differentiate in mice lacking Etv1/ER81. Moreover, ectopic Etv1/ER81 expression induces dopaminergic fate marker expression in neuronal primary cultures. Mouse Etv1/ER81 can also functionally substitute for ast-1 in C.elegans. Our studies reveal an astoundingly simple and apparently conserved regulatory logic of dopaminergic neuron terminal differentiation and may provide new entry points into the diagnosis or therapy of conditions in which dopamine neurons are defective. PMID:19287374

  9. Differences in Number of Midbrain Dopamine Neurons Associated with Summer and Winter Photoperiods in Humans.

    PubMed

    Aumann, Tim D; Raabus, Mai; Tomas, Doris; Prijanto, Agustinus; Churilov, Leonid; Spitzer, Nicholas C; Horne, Malcolm K

    2016-01-01

    Recent evidence indicates the number of dopaminergic neurons in the adult rodent hypothalamus and midbrain is regulated by environmental cues, including photoperiod, and that this occurs via up- or down-regulation of expression of genes and proteins that are important for dopamine (DA) synthesis in extant neurons ('DA neurotransmitter switching'). If the same occurs in humans, it may have implications for neurological symptoms associated with DA imbalances. Here we tested whether there are differences in the number of tyrosine hydroxylase (TH, the rate-limiting enzyme in DA synthesis) and DA transporter (DAT) immunoreactive neurons in the midbrain of people who died in summer (long-day photoperiod, n = 5) versus winter (short-day photoperiod, n = 5). TH and DAT immunoreactivity in neurons and their processes was qualitatively higher in summer compared with winter. The density of TH immunopositive (TH+) neurons was significantly (~6-fold) higher whereas the density of TH immunonegative (TH-) neurons was significantly (~2.5-fold) lower in summer compared with winter. The density of total neurons (TH+ and TH- combined) was not different. The density of DAT+ neurons was ~2-fold higher whereas the density of DAT- neurons was ~2-fold lower in summer compared with winter, although these differences were not statistically significant. In contrast, midbrain nuclear volume, the density of supposed glia (small TH- cells), and the amount of TUNEL staining were the same in summer compared with winter. This study provides the first evidence of an association between environmental stimuli (photoperiod) and the number of midbrain DA neurons in humans, and suggests DA neurotransmitter switching underlies this association.

  10. Differences in Number of Midbrain Dopamine Neurons Associated with Summer and Winter Photoperiods in Humans

    PubMed Central

    Aumann, Tim D.; Raabus, Mai; Tomas, Doris; Prijanto, Agustinus; Churilov, Leonid; Spitzer, Nicholas C.; Horne, Malcolm K.

    2016-01-01

    Recent evidence indicates the number of dopaminergic neurons in the adult rodent hypothalamus and midbrain is regulated by environmental cues, including photoperiod, and that this occurs via up- or down-regulation of expression of genes and proteins that are important for dopamine (DA) synthesis in extant neurons (‘DA neurotransmitter switching’). If the same occurs in humans, it may have implications for neurological symptoms associated with DA imbalances. Here we tested whether there are differences in the number of tyrosine hydroxylase (TH, the rate-limiting enzyme in DA synthesis) and DA transporter (DAT) immunoreactive neurons in the midbrain of people who died in summer (long-day photoperiod, n = 5) versus winter (short-day photoperiod, n = 5). TH and DAT immunoreactivity in neurons and their processes was qualitatively higher in summer compared with winter. The density of TH immunopositive (TH+) neurons was significantly (~6-fold) higher whereas the density of TH immunonegative (TH-) neurons was significantly (~2.5-fold) lower in summer compared with winter. The density of total neurons (TH+ and TH- combined) was not different. The density of DAT+ neurons was ~2-fold higher whereas the density of DAT- neurons was ~2-fold lower in summer compared with winter, although these differences were not statistically significant. In contrast, midbrain nuclear volume, the density of supposed glia (small TH- cells), and the amount of TUNEL staining were the same in summer compared with winter. This study provides the first evidence of an association between environmental stimuli (photoperiod) and the number of midbrain DA neurons in humans, and suggests DA neurotransmitter switching underlies this association. PMID:27428306

  11. Midbrain dopamine neurons associated with reward processing innervate the neurogenic subventricular zone.

    PubMed

    Lennington, Jessica B; Pope, Sara; Goodheart, Anna E; Drozdowicz, Linda; Daniels, Stephen B; Salamone, John D; Conover, Joanne C

    2011-09-14

    Coordinated regulation of the adult neurogenic subventricular zone (SVZ) is accomplished by a myriad of intrinsic and extrinsic factors. The neurotransmitter dopamine is one regulatory molecule implicated in SVZ function. Nigrostriatal and ventral tegmental area (VTA) midbrain dopamine neurons innervate regions adjacent to the SVZ, and dopamine synapses are found on SVZ cells. Cell division within the SVZ is decreased in humans with Parkinson's disease and in animal models of Parkinson's disease following exposure to toxins that selectively remove nigrostriatal neurons, suggesting that dopamine is critical for SVZ function and nigrostriatal neurons are the main suppliers of SVZ dopamine. However, when we examined the aphakia mouse, which is deficient in nigrostriatal neurons, we found no detrimental effect to SVZ proliferation or organization. Instead, dopamine innervation of the SVZ tracked to neurons at the ventrolateral boundary of the VTA. This same dopaminergic neuron population also innervated the SVZ of control mice. Characterization of these neurons revealed expression of proteins indicative of VTA neurons. Furthermore, exposure to the neurotoxin MPTP depleted neurons in the ventrolateral VTA and resulted in decreased SVZ proliferation. Together, these results reveal that dopamine signaling in the SVZ originates from a population of midbrain neurons more typically associated with motivational and reward processing.

  12. Dorsal-to-Ventral Shift in Midbrain Dopaminergic Projections and Increased Thalamic/Raphe Serotonergic Function in Early Parkinson Disease.

    PubMed

    Joutsa, Juho; Johansson, Jarkko; Seppänen, Marko; Noponen, Tommi; Kaasinen, Valtteri

    2015-07-01

    Loss of nigrostriatal neurons leading to dopamine depletion in the dorsal striatum is the pathologic hallmark of Parkinson disease contributing to the primary motor symptoms of the disease. However, Parkinson pathology is more widespread in the brain, affecting also other dopaminergic pathways and neurotransmitter systems, but these changes are less well characterized. This study aimed to investigate the mesencephalic striatal and extrastriatal dopaminergic projections together with extrastriatal serotonin transporter binding in Parkinson disease. Two hundred sixteen patients with Parkinson disease and 204 control patients (patients without neurodegenerative parkinsonism syndromes and normal SPECT imaging) were investigated with SPECT using the dopamine/serotonin transporter ligand (123)I-N-ω-fluoropropyl-2β-carbomethoxy-3β-(4-iodophenyl)nortropane ((123)I-FP-CIT) in the clinical setting. The group differences and midbrain correlations were analyzed voxel by voxel over the entire brain. We found that Parkinson patients had lower (123)I-FP-CIT uptake in the striatum and ventral midbrain but higher uptake in the thalamus and raphe nuclei than control patients. In patients with Parkinson disease, the correlation of the midbrain tracer uptake was shifted from the putamen to widespread corticolimbic areas. All findings were highly significant at the voxel level familywise error-corrected P value of less than 0.05. Our findings show that Parkinson disease is associated not only with the degeneration of the nigrostriatal dopamine neurotransmission, but also with a parallel shift toward mesolimbic and mesocortical function. Furthermore, Parkinson disease patients seem to have upregulation of brain serotonin transporter function at the early phase of the disease. © 2015 by the Society of Nuclear Medicine and Molecular Imaging, Inc.

  13. Diversity matters - heterogeneity of dopaminergic neurons in the ventral mesencephalon and its relation to Parkinson's Disease.

    PubMed

    Vogt Weisenhorn, Daniela Maria; Giesert, Florian; Wurst, Wolfgang

    2016-10-01

    Dopaminergic neurons in the ventral mesencephalon (the ventral mesencephalic dopaminergic complex) are known for their role in a multitude of behaviors, including cognition, reward, addiction and voluntary movement. Dysfunctions of these neurons are the underlying cause of various neuropsychiatric disorders, such as depression, addiction and schizophrenia. In addition, Parkinson's disease (PD), which is the second most common degenerative disease in developed countries, is characterized by the degeneration of dopaminergic neurons, leading to the core motor symptoms of the disease. However, only a subset of dopaminergic neurons in the ventral mesencephalon is highly vulnerable to the disease process. Indeed, research over several decades revealed that the neurons in the ventral mesencephalic dopaminergic complex do not form a homogeneous group with respect to anatomy, physiology, function, molecular identity or vulnerability/dysfunction in different diseases. Here, we review how the concept of dopaminergic neuron diversity, assisted by the advent and application of new technologies, evolved and was refined over time and how it shaped our understanding of PD pathogenesis. Understanding this diversity of neurons in the ventral mesencephalic dopaminergic complex at all levels is imperative for the development of new and more selective drugs for both PD and various other neuropsychiatric diseases. Several decades of research revealed that the neurons in the ventral mesencephalic dopaminergic complex do not form a homogeneous group in respect to anatomy, physiology, function, molecular identity or vulnerability/dysfunction in diseases like Parkinson's disease (PD). Here, we review how this concept evolved and was refined over time and how it shaped our understanding of the pathogenesis of PD. Source of the midbrain image: www.wikimd.org/wiki/index.php/The_Midbrain_or_Mesencephalon; downloaded 28.01.2016. See also Figures and of the paper. This article is part of a

  14. [Impact of opiates on dopaminergic neurons].

    PubMed

    Kaufling, Jennifer; Freund-Mercier, Marie-José; Barrot, Michel

    2016-01-01

    Since the work of Johnson and North, it is known that opiates increase the activity of dopaminergic neurons by a GABA neuron-mediated desinhibition. This model should however be updated based on recent advances. Thus, the neuroanatomical location of the GABA neurons responsible for this desinhibition has been recently detailed: they belong to a brain structure in continuity with the posterior part of the ventral tegmental area and discovered this past decade. Other data also highlighted the critical role played by glutamatergic transmission in the opioid regulation of dopaminergic neuron activity. During protracted opiate withdrawal, the inhibitory/excitatory balance exerted on dopaminergic neurons is altered. These results are now leading to propose an original hypothesis for explaining the impact of protracted opiate withdrawal on mood.

  15. Age-related changes in midbrain dopaminergic regulation of the human reward system

    PubMed Central

    Dreher, Jean-Claude; Meyer-Lindenberg, Andreas; Kohn, Philip; Berman, Karen Faith

    2008-01-01

    The dopamine system, which plays a crucial role in reward processing, is particularly vulnerable to aging. Significant losses over a normal lifespan have been reported for dopamine receptors and transporters, but very little is known about the neurofunctional consequences of this age-related dopaminergic decline. In animals, a substantial body of data indicates that dopamine activity in the midbrain is tightly associated with reward processing. In humans, although indirect evidence from pharmacological and clinical studies also supports such an association, there has been no direct demonstration of a link between midbrain dopamine and reward-related neural response. Moreover, there are no in vivo data for alterations in this relationship in older humans. Here, by using 6-[18F]FluoroDOPA (FDOPA) positron emission tomography (PET) and event-related 3T functional magnetic resonance imaging (fMRI) in the same subjects, we directly demonstrate a link between midbrain dopamine synthesis and reward-related prefrontal activity in humans, show that healthy aging induces functional alterations in the reward system, and identify an age-related change in the direction of the relationship (from a positive to a negative correlation) between midbrain dopamine synthesis and prefrontal activity. These results indicate an age-dependent dopaminergic tuning mechanism for cortical reward processing and provide system-level information about alteration of a key neural circuit in healthy aging. Taken together, our findings provide an important characterization of the interactions between midbrain dopamine function and the reward system in healthy young humans and older subjects, and identify the changes in this regulatory circuit that accompany aging. PMID:18794529

  16. Inputs to the Midbrain Dopaminergic Complex in the Rat with Emphasis on Extended Amygdala-recipient Sectors

    PubMed Central

    Zahm, Daniel S.; Cheng, Anita Y.; Lee, Tristan J.; Ghobadi, Comeron W.; Schwartz, Zachary M.; Geisler, Stefanie; Parsely, Kenneth P.; Gruber, Clemens; Veh, Ruediger W.

    2011-01-01

    The midbrain dopaminergic neuronal groups A8, A9, A10 and A10dc occupy, respectively, the retrorubral field (RRF), substantia nigra compacta (SNc), ventral tegmental area (VTA) and ventrolateral periaqueductal gray (PAGvl). Collectively, these structures give rise to a mixed dopaminergic and non-dopaminergic projection system that essentially permits adaptive behavior. Yet, knowledge is incomplete regarding how the afferents of these structures are organized. While the VTA is known to get numerous afferents from cortex, basal forebrain and brainstem and the SNc is widely perceived as receiving inputs mainly from the striatum, the afferents of the RRF and PAGvl have yet to be addressed comprehensively. This study was done to provide an account of those connections and seek a better understanding of how afferents might contribute to the functional interrelatedness of the VTA, SNc, RRF and PAGvl. Ventral midbrain structures received injections of retrograde tracer and resulting retrogradely labeled structures were targeted with injections of anterogradely transported Phaseolus vulgaris-leucoagglutinin. While all injections of retrograde tracer into the VTA, SNc, RRF or PAGvl produced labeling in many of a long list of structures extending from the cortex to caudal brainstem, pronounced labeling of structures comprising the central division of the extended amygdala occurred following injections that involved the RRF and PAGvl. The anterograde tracing supported this finding and, interestingly, the combination of retrograde and anterograde labeling data also confirmed reports from other groups indicating that the SNc receives robust input from many of the same structures that innervate the VTA, RRF and PAGvl. PMID:21618227

  17. On the properties of identified dopaminergic neurons in the mouse substantia nigra and ventral tegmental area.

    PubMed

    Krashia, Paraskevi; Martini, Alessandro; Nobili, Annalisa; Aversa, Daniela; D'Amelio, Marcello; Berretta, Nicola; Guatteo, Ezia; Mercuri, Nicola Biagio

    2017-01-01

    We studied the properties of dopaminergic neurons in the substantia nigra pars compacta (SNpc) and ventral tegmental area (VTA) in mice expressing the enhanced green fluorescent protein (eGFP) under the control of the tyrosine hydroxylase promoter (TH-GFP). By using a practical map of cell positioning in distinct SNpc and VTA subregions in horizontal midbrain slices we saw that the spontaneous firing, membrane properties, cell body size and magnitude of the hyperpolarization-activated current (Ih ) in TH-GFP-positive neurons (TH-GFP(+) ) vary significantly among subregions, following a mediolateral gradient. Block of Ih with Zd7288 inhibited firing in the most lateral subregions, but had little effect in the intermediate/medial VTA. In addition, TH-GFP(+) cells were excited by Met(5) -Enkephalin. Extracellular recordings from a large neuron number showed that all TH-GFP(+) cells were inhibited by dopamine, suggesting that this is a reliable approach for identifying dopaminergic neurons in vitro. Simultaneous recordings from dopamine-sensitive and dopamine-insensitive neurons showed that dopamine-insensitive cells (putative non-dopaminergic neurons) are unaffected by Zd7288 but inhibited by Met(5) -Enkephalin. Under patch-clamp, dopamine generated a quantitatively similar outward current in most TH-GFP(+) neurons, although medial VTA cells showed reduced dopamine sensitivity. Pargyline prolonged the dopamine current, whereas cocaine enhanced dopamine-mediated responses in both the SNpc and the VTA. Our work provides new insights into the variability in mouse midbrain dopaminergic neurons along the medial-lateral axis and points to the necessity of a combination of different electrophysiological and pharmacological approaches for reliably identifying these cells to distinguish them from non-dopaminergic neurons in the midbrain.

  18. Temporally controlled modulation of FGF/ERK signaling directs midbrain dopaminergic neural progenitor fate in mouse and human pluripotent stem cells.

    PubMed

    Jaeger, Ines; Arber, Charles; Risner-Janiczek, Jessica R; Kuechler, Judit; Pritzsche, Diana; Chen, I-Cheng; Naveenan, Thulasi; Ungless, Mark A; Li, Meng

    2011-10-01

    Effective induction of midbrain-specific dopamine (mDA) neurons from stem cells is fundamental for realizing their potential in biomedical applications relevant to Parkinson's disease. During early development, the Otx2-positive neural tissues are patterned anterior-posteriorly to form the forebrain and midbrain under the influence of extracellular signaling such as FGF and Wnt. In the mesencephalon, sonic hedgehog (Shh) specifies a ventral progenitor fate in the floor plate region that later gives rise to mDA neurons. In this study, we systematically investigated the temporal actions of FGF signaling in mDA neuron fate specification of mouse and human pluripotent stem cells and mouse induced pluripotent stem cells. We show that a brief blockade of FGF signaling on exit of the lineage-primed epiblast pluripotent state initiates an early induction of Lmx1a and Foxa2 in nascent neural progenitors. In addition to inducing ventral midbrain characteristics, the FGF signaling blockade during neural induction also directs a midbrain fate in the anterior-posterior axis by suppressing caudalization as well as forebrain induction, leading to the maintenance of midbrain Otx2. Following a period of endogenous FGF signaling, subsequent enhancement of FGF signaling by Fgf8, in combination with Shh, promotes mDA neurogenesis and restricts alternative fates. Thus, a stepwise control of FGF signaling during distinct stages of stem cell neural fate conversion is crucial for reliable and highly efficient production of functional, authentic midbrain-specific dopaminergic neurons. Importantly, we provide evidence that this novel, small-molecule-based strategy applies to both mouse and human pluripotent stem cells.

  19. Temporally controlled modulation of FGF/ERK signaling directs midbrain dopaminergic neural progenitor fate in mouse and human pluripotent stem cells

    PubMed Central

    Jaeger, Ines; Arber, Charles; Risner-Janiczek, Jessica R.; Kuechler, Judit; Pritzsche, Diana; Chen, I-Cheng; Naveenan, Thulasi; Ungless, Mark A.; Li, Meng

    2011-01-01

    Effective induction of midbrain-specific dopamine (mDA) neurons from stem cells is fundamental for realizing their potential in biomedical applications relevant to Parkinson’s disease. During early development, the Otx2-positive neural tissues are patterned anterior-posteriorly to form the forebrain and midbrain under the influence of extracellular signaling such as FGF and Wnt. In the mesencephalon, sonic hedgehog (Shh) specifies a ventral progenitor fate in the floor plate region that later gives rise to mDA neurons. In this study, we systematically investigated the temporal actions of FGF signaling in mDA neuron fate specification of mouse and human pluripotent stem cells and mouse induced pluripotent stem cells. We show that a brief blockade of FGF signaling on exit of the lineage-primed epiblast pluripotent state initiates an early induction of Lmx1a and Foxa2 in nascent neural progenitors. In addition to inducing ventral midbrain characteristics, the FGF signaling blockade during neural induction also directs a midbrain fate in the anterior-posterior axis by suppressing caudalization as well as forebrain induction, leading to the maintenance of midbrain Otx2. Following a period of endogenous FGF signaling, subsequent enhancement of FGF signaling by Fgf8, in combination with Shh, promotes mDA neurogenesis and restricts alternative fates. Thus, a stepwise control of FGF signaling during distinct stages of stem cell neural fate conversion is crucial for reliable and highly efficient production of functional, authentic midbrain-specific dopaminergic neurons. Importantly, we provide evidence that this novel, small-molecule-based strategy applies to both mouse and human pluripotent stem cells. PMID:21880784

  20. Antenatal Glucocorticoid Treatment Induces Adaptations in Adult Midbrain Dopamine Neurons, which Underpin Sexually Dimorphic Behavioral Resilience

    PubMed Central

    Virdee, Kanwar; McArthur, Simon; Brischoux, Frédéric; Caprioli, Daniele; Ungless, Mark A; Robbins, Trevor W; Dalley, Jeffrey W; Gillies, Glenda E

    2014-01-01

    We demonstrated previously that antenatal glucocorticoid treatment (AGT, gestational days 16–19) altered the size and organization of the adult rat midbrain dopaminergic (DA) populations. Here we investigated the consequences of these AGT-induced cytoarchitectural disturbances on indices of DA function in adult rats. We show that in adulthood, enrichment of striatal DA fiber density paralleled AGT-induced increases in the numbers of midbrain DA neurons, which retained normal basal electrophysiological properties. This was co-incident with changes in (i) striatal D2-type receptor levels (increased, both sexes); (ii) D1-type receptor levels (males decreased; females increased); (iii) DA transporter levels (males increased; females decreased) in striatal regions; and (iv) amphetamine-induced mesolimbic DA release (males increased; females decreased). However, despite these profound, sexually dimorphic changes in markers of DA neurotransmission, in-utero glucocorticoid overexposure had a modest or no effect on a range of conditioned and unconditioned appetitive behaviors known to depend on mesolimbic DA activity. These findings provide empirical evidence for enduring AGT-induced adaptive mechanisms within the midbrain DA circuitry, which preserve some, but not all, functions, thereby casting further light on the vulnerability of these systems to environmental perturbations. Furthermore, they demonstrate these effects are achieved by different, often opponent, adaptive mechanisms in males and females, with translational implications for sex biases commonly found in midbrain DA-associated disorders. PMID:23929547

  1. Isolation, culture and long-term maintenance of primary mesencephalic dopaminergic neurons from embryonic rodent brains.

    PubMed

    Weinert, Maria; Selvakumar, Tharakeswari; Tierney, Travis S; Alavian, Kambiz N

    2015-02-19

    Degeneration of mesencephalic dopaminergic (mesDA) neurons is the pathological hallmark of Parkinson's diseae. Study of the biological processes involved in physiological functions and vulnerability and death of these neurons is imparative to understanding the underlying causes and unraveling the cure for this common neurodegenerative disorder. Primary cultures of mesDA neurons provide a tool for investigation of the molecular, biochemical and electrophysiological properties, in order to understand the development, long-term survival and degeneration of these neurons during the course of disease. Here we present a detailed method for the isolation, culturing and maintenance of midbrain dopaminergic neurons from E12.5 mouse (or E14.5 rat) embryos. Optimized cell culture conditions in this protocol result in presence of axonal and dendritic projections, synaptic connections and other neuronal morphological properties, which make the cultures suitable for study of the physiological, cell biological and molecular characteristics of this neuronal population.

  2. Wnt5a regulates ventral midbrain morphogenesis and the development of A9-A10 dopaminergic cells in vivo.

    PubMed

    Andersson, Emma R; Prakash, Nilima; Cajanek, Lukas; Minina, Eleonora; Bryja, Vitezslav; Bryjova, Lenka; Yamaguchi, Terry P; Hall, Anita C; Wurst, Wolfgang; Arenas, Ernest

    2008-01-01

    Wnt5a is a morphogen that activates the Wnt/planar cell polarity (PCP) pathway and serves multiple functions during development. PCP signaling controls the orientation of cells within an epithelial plane as well as convergent extension (CE) movements. Wnt5a was previously reported to promote differentiation of A9-10 dopaminergic (DA) precursors in vitro. However, the signaling mechanism in DA cells and the function of Wnt5a during midbrain development in vivo remains unclear. We hereby report that Wnt5a activated the GTPase Rac1 in DA cells and that Rac1 inhibitors blocked the Wnt5a-induced DA neuron differentiation of ventral midbrain (VM) precursor cultures, linking Wnt5a-induced differentiation with a known effector of Wnt/PCP signaling. In vivo, Wnt5a was expressed throughout the VM at embryonic day (E)9.5, and was restricted to the VM floor and basal plate by E11.5-E13.5. Analysis of Wnt5a-/- mice revealed a transient increase in progenitor proliferation at E11.5, and a precociously induced NR4A2+ (Nurr1) precursor pool at E12.5. The excess NR4A2+ precursors remained undifferentiated until E14.5, when a transient 25% increase in DA neurons was detected. Wnt5a-/- mice also displayed a defect in (mid)brain morphogenesis, including an impairment in midbrain elongation and a rounded ventricular cavity. Interestingly, these alterations affected mostly cells in the DA lineage. The ventral Sonic hedgehog-expressing domain was broadened and flattened, a typical CE phenotype, and the domains occupied by Ngn2+ DA progenitors, NR4A2+ DA precursors and TH+ DA neurons were rostrocaudally reduced and laterally expanded. In summary, we hereby describe a Wnt5a regulation of Wnt/PCP signaling in the DA lineage and provide evidence for multiple functions of Wnt5a in the VM in vivo, including the regulation of VM morphogenesis, DA progenitor cell division, and differentiation of NR4A2+ DA precursors.

  3. Physiology of midbrain head movement neurons in cervical dystonia.

    PubMed

    Sedov, Alexey; Popov, Valentin; Shabalov, Vladimir; Raeva, Svetlana; Jinnah, H A; Shaikh, Aasef G

    2017-06-01

    Early theories for cervical dystonia, as promoted by Hassler, emphasized the role of the midbrain interstitial nucleus of Cajal. Focus then shifted to the basal ganglia, and it was further supported with the success of deep brain stimulation. Contemporary theories suggested the role of the cerebellum, but even more recent hypotheses renewed interest in the midbrain. Although the pretectum was visited on several occasions, we still do not know about the physiology of midbrain neurons in cervical dystonia. We analyzed the unique database of pretectal neurons collected in the 1970s and 1980s during historic stereotactic surgeries aimed to treat cervical dystonia. This database is valuable because such recordings could otherwise never be obtained from humans. We found the following 3 types of eye or neck movement sensitivity: eye-only neurons responded to pure vertical eye movements, neck-only neurons were sensitive to pure neck movements, and the combined eye-neck neurons responded to eye and neck movements. There were the 2 neuronal subtypes: burst-tonic and tonic. The eye-neck or eye-only neurons sustained their activity during eccentric gaze holding. In contrast, the response of neck-only and eye-neck neurons exponentially decayed during neck movements. Modern quantitative analysis of a historic database of midbrain single units from patients with cervical dystonia might support novel hypotheses for normal and abnormal head movements. This data, collected almost 4 decades ago, must be carefully viewed, especially because it was acquired using a less sophisticated technology available at that time and the aim was not to address specific hypothesis, but to make an accurate lesion providing optimal relief from dystonia. © 2017 International Parkinson and Movement Disorder Society. © 2017 International Parkinson and Movement Disorder Society.

  4. Different mechanisms for dopaminergic excitation induced by opiates and cannabinoids in the rat midbrain.

    PubMed

    Melis, M; Gessa, G L; Diana, M

    2000-08-01

    1. The mechanism underlying morphine and cannabinoid-induced excitation of meso-accumbens and nigro-striatal dopaminergic neurons was investigated by extracellular single unit recording techniques coupled with antidromic activation from the nucleus accumbens and striatum respectively, in unanesthetized rats. 2. The intravenous administration of cumulative doses (1-4 mg/kg) of morphine, dose-dependently increased the firing rate of dopaminergic neurons projecting to the nucleus accumbens and neostriatum, while the same doses inhibited the activity of pars reticulata neurons of the substantia nigra. Both effects were antagonized by naloxone (0.1 mg/kg i.v.) but not by the selective CB1 receptor antagonist SR 141716A (1 mg/kg i.v.). 3. The intravenous administration of cumulative doses (0.125-0.5 mg/kg) of delta9-tetrahydrocannabinol (delta9-THC) also increased the firing rate of meso-accumbens and nigro-striatal dopaminergic neurons; this effect was antagonized by SR 141716A (1 mg/kg i.v.), but not by naloxone. 4. Furthermore, nor delta9-THC up to a dose of 1 mg/kg, maximally effective in stimulating dopamine neurons, neither SR 141716A (1 mg/kg i.v.) at a dose able to reverse the stimulatory effect of delta9, THC on dopamine cells, did alter the activity of SNr neurons. 5. The results indicate that morphine and delta9-THC activate dopaminergic neurons through distinct receptor-mediated mechanisms; morphine may act by removing the inhibitory input from substantia nigra pars reticulata neurons (an effect mediated by mu-opioid receptors). Alternatively, the delta9-THC-induced excitation of dopaminergic neurons seems to be mediated by CB1 cannabinoid receptors, while neither mu-opioid receptors nor substantia nigra pars reticulata neurons are involved.

  5. The Dopaminergic Midbrain Mediates an Effect of Average Reward on Pavlovian Vigor.

    PubMed

    Rigoli, Francesco; Chew, Benjamin; Dayan, Peter; Dolan, Raymond J

    2016-09-01

    Dopamine plays a key role in motivation. Phasic dopamine response reflects a reinforcement prediction error (RPE), whereas tonic dopamine activity is postulated to represent an average reward that mediates motivational vigor. However, it has been hard to find evidence concerning the neural encoding of average reward that is uncorrupted by influences of RPEs. We circumvented this difficulty in a novel visual search task where we measured participants' button pressing vigor in a context where information (underlying an RPE) about future average reward was provided well before the average reward itself. Despite no instrumental consequence, participants' pressing force increased for greater current average reward, consistent with a form of Pavlovian effect on motivational vigor. We recorded participants' brain activity during task performance with fMRI. Greater average reward was associated with enhanced activity in dopaminergic midbrain to a degree that correlated with the relationship between average reward and pressing vigor. Interestingly, an opposite pattern was observed in subgenual cingulate cortex, a region implicated in negative mood and motivational inhibition. These findings highlight a crucial role for dopaminergic midbrain in representing aspects of average reward and motivational vigor.

  6. White noise improves learning by modulating activity in dopaminergic midbrain regions and right superior temporal sulcus.

    PubMed

    Rausch, Vanessa H; Bauch, Eva M; Bunzeck, Nico

    2014-07-01

    In neural systems, information processing can be facilitated by adding an optimal level of white noise. Although this phenomenon, the so-called stochastic resonance, has traditionally been linked with perception, recent evidence indicates that white noise may also exert positive effects on cognitive functions, such as learning and memory. The underlying neural mechanisms, however, remain unclear. Here, on the basis of recent theories, we tested the hypothesis that auditory white noise, when presented during the encoding of scene images, enhances subsequent recognition memory performance and modulates activity within the dopaminergic midbrain (i.e., substantia nigra/ventral tegmental area, SN/VTA). Indeed, in a behavioral experiment, we can show in healthy humans that auditory white noise-but not control sounds, such as a sinus tone-slightly improves recognition memory. In an fMRI experiment, white noise selectively enhances stimulus-driven phasic activity in the SN/VTA and auditory cortex. Moreover, it induces stronger connectivity between SN/VTA and right STS, which, in addition, exhibited a positive correlation with subsequent memory improvement by white noise. Our results suggest that the beneficial effects of auditory white noise on learning depend on dopaminergic neuromodulation and enhanced connectivity between midbrain regions and the STS-a key player in attention modulation. Moreover, they indicate that white noise could be particularly useful to facilitate learning in conditions where changes of the mesolimbic system are causally related to memory deficits including healthy and pathological aging.

  7. Reward and choice encoding in terminals of midbrain dopamine neurons depends on striatal target

    PubMed Central

    Parker, Nathan F.; Cameron, Courtney M.; Taliaferro, Joshua P.; Lee, Junuk; Choi, Jung Yoon; Davidson, Thomas J.; Daw, Nathaniel D.; Witten, Ilana B.

    2016-01-01

    Dopaminergic (DA) neurons in the midbrain provide rich, topographic innervation of the striatum and are central to learning and to generating actions. Despite the importance of this DA innervation, it remains unclear if and how DA neurons are specialized based on the location of their striatal target. Thus, we sought to compare the function of subpopulations of DA neurons that target distinct striatal subregions in the context of an instrumental reversal learning task. We identified key differences in the encoding of reward and choice in dopamine terminals in dorsal versus ventral striatum: DA terminals in ventral striatum responded more strongly to reward consumption and reward-predicting cues, whereas DA terminals in dorsomedial striatum responded more strongly to contralateral choices. In both cases the terminals encoded a reward prediction error. Our results suggest that the DA modulation of the striatum is spatially organized to support the specialized function of the targeted subregion. PMID:27110917

  8. Spatial and Temporal Distribution of Dopaminergic Neurons during Development in Zebrafish

    PubMed Central

    Du, Yuchen; Guo, Qiang; Shan, Minghui; Wu, Yongmei; Huang, Sizhou; Zhao, Haixia; Hong, Huarong; Yang, Ming; Yang, Xi; Ren, Liyi; Peng, Jiali; Sun, Jing; Zhou, Hongli; Li, Shurong; Su, Bingyin

    2016-01-01

    As one of the model organisms of Parkinson’s disease (PD) research, the zebrafish has its advantages, such as the 87% homology with human genome and transparent embryos which make it possible to observe the development of dopaminergic neurons in real time. However, there is no midbrain dopaminergic system in zebrafish when compared with mammals, and the location and projection of the dopaminergic neurons are seldom reported. In this study, Vmat2:GFP transgenic zebrafish was used to observe the development and distribution of dopaminergic neurons in real time. We found that diencephalons (DC) 2 and DC4 neuronal populations were detected at 24 h post fertilization (hpf). All DC neuronal populations as well as those in locus coeruleus (LC), raphe nuclei (Ra) and telencephalon were detected at 48 hpf. Axons were detected at 72 hpf. At 96 hpf, all the neuronal populations were detected. For the first time we reported axons from the posterior tubercle (PT) of ventral DC projected to subpallium in vivo. However, when compared with results from whole mount tyrosine hydroxylase (TH) immunofluorescence staining in wild type (WT) zebrafish, we found that DC2 and DC4 neuronal populations were mainly dopaminergic, while DC1, DC3, DC5 and DC6 might not. Neurons in pretectum (Pr) and telencephalon were mainly dopaminergic, while neurons in LC and Ra might be noradrenergic. Our study makes some corrections and modifications on the development, localization and distribution of zebrafish dopaminergic neurons, and provides some experimental evidences for the construction of the zebrafish PD model. PMID:27965546

  9. Histofluorescence studies on the effect of 1,3-dimethyl-5-adamantanamine (D-145) on serotonin neurons in midbrain raphe nuclei.

    PubMed

    Smialowska, M

    1976-01-01

    1,3-Dimethyl-5-adamantanamine (D-145), a dopamine system stimulating agent, given at doses of 10-40 mg/kg ip, 2-5 hr before sacrifice, depressed the intensity of serotonin fluorescence in the rat midbrain raphe nuclei. Spiroperidol, 2 mg/kg ip, given 5 min before D-145, prevented the depression of serotonin fluorescence in the dorsal raphe nucleus (NDR), but not in the other groups of serotonin midbrain neurons. The results suggest a functional interaction between dopaminergic neurons and serotoninergic neurons in NDR.

  10. Cell-autonomous FGF signaling regulates anteroposterior patterning and neuronal differentiation in the mesodiencephalic dopaminergic progenitor domain.

    PubMed

    Lahti, Laura; Peltopuro, Paula; Piepponen, T Petteri; Partanen, Juha

    2012-03-01

    The structure and projection patterns of adult mesodiencephalic dopaminergic (DA) neurons are one of the best characterized systems in the vertebrate brain. However, the early organization and development of these nuclei remain poorly understood. The induction of midbrain DA neurons requires sonic hedgehog (Shh) from the floor plate and fibroblast growth factor 8 (FGF8) from the isthmic organizer, but the way in which FGF8 regulates DA neuron development is unclear. We show that, during early embryogenesis, mesodiencephalic neurons consist of two distinct populations: a diencephalic domain, which is probably independent of isthmic FGFs; and a midbrain domain, which is dependent on FGFs. Within these domains, DA progenitors and precursors use partly different genetic programs. Furthermore, the diencephalic DA domain forms a distinct cell population, which also contains non-DA Pou4f1(+) cells. FGF signaling operates in proliferative midbrain DA progenitors, but is absent in postmitotic DA precursors. The loss of FGFR1/2-mediated signaling results in a maturation failure of the midbrain DA neurons and altered patterning of the midbrain floor. In FGFR mutants, the DA domain adopts characteristics that are typical for embryonic diencephalon, including the presence of Pou4f1(+) cells among TH(+) cells, and downregulation of genes typical of midbrain DA precursors. Finally, analyses of chimeric embryos indicate that FGF signaling regulates the development of the ventral midbrain cell autonomously.

  11. Limitations of In Vivo Reprogramming to Dopaminergic Neurons via a Tricistronic Strategy.

    PubMed

    Theodorou, Marina; Rauser, Benedict; Zhang, Jingzhong; Prakash, Nilima; Wurst, Wolfgang; Schick, Joel A

    2015-08-01

    Parkinson's disease is one of the most common neurodegenerative disorders characterized by cell death of dopaminergic neurons in the substantia nigra. Recent research has focused on cellular replacement through lineage reprogramming as a potential therapeutic strategy. This study sought to use genetics to define somatic cell types in vivo amenable to reprogramming. To stimulate in vivo reprogramming to dopaminergic neurons, we generated a Rosa26 knock-in mouse line conditionally overexpressing Mash1, Lmx1a, and Nurr1. These proteins are characterized by their role in neuronal commitment and development of midbrain dopaminergic neurons and have previously been shown to convert fibroblasts to dopaminergic neurons in vitro. We show that a tricistronic construct containing these transcription factors can reprogram astrocytes and fibroblasts in vitro. However, cassette overexpression triggered cell death in vivo, in part through endoplasmic reticulum stress, while we also detected "uncleaved" forms of the polyprotein, suggesting poor "cleavage" efficiency of the 2A peptides. Based on our results, the cassette overexpression induced apoptosis and precluded reprogramming in our mouse model. Therefore, we suggest that alternatives must be explored to balance construct design with efficacious reprogramming. It is evident that there are still biological obstacles to overcome for in vivo reprogramming to dopaminergic neurons.

  12. Ebf2 is required for development of dopamine neurons in the midbrain periaqueductal gray matter of mouse.

    PubMed

    Yang, Qiaoqiao; Liu, Shuxi; Yin, Min; Yin, Yanqing; Zhou, Guomin; Zhou, Jiawei

    2015-11-01

    Dopaminergic (DA) neurons in the midbrain ventral periaqueductal gray matter (PAG) play critical roles in various physiological and pathophysiological processes including sleep-wake rhyme, antinociception, and drug addiction. However, the molecular mechanisms underlying their development are poorly understood. Here, we showed that PAG DA neurons arose as early as E15.5 in mouse embryos. During the prenatal period, the majority of PAG DA neurons was distributed in the intermediate and caudal regions of the PAG. In the postnatal brain, ∼50% of PAG DA neurons were preferentially located in the caudal portion of the PAG. Moreover, transcription factor early B-cell factor 2 (Ebf2) was transiently expressed in a subset of DA neurons in embryonic ventral mesencephalon. Functional analysis revealed that loss of Ebf2 in vivo caused a marked reduction in the number of DA neurons in the midbrain PAG but not in the substantia nigra and ventral tegmental area. Thus, Ebf2 is identified as a novel and important regulator selectively required for midbrain PAG DA neuron development.

  13. Necrostatin-1 protection of dopaminergic neurons

    PubMed Central

    Wu, Jing-ru; Wang, Jie; Zhou, Sheng-kui; Yang, Long; Yin, Jia-le; Cao, Jun-ping; Cheng, Yan-bo

    2015-01-01

    Necroptosis is characterized by programmed necrotic cell death and autophagic activation and might be involved in the death process of dopaminergic neurons in Parkinson's disease. We hypothesized that necrostatin-1 could block necroptosis and give protection to dopaminergic neurons. There is likely to be crosstalk between necroptosis and other cell death pathways, such as apoptosis and autophagy. PC12 cells were pretreated with necroststin-1 1 hour before exposure to 6-hydroxydopamine. We examined cell viability, mitochondrial membrane potential and expression patterns of apoptotic and necroptotic death signaling proteins. The results showed that the autophagy/lysosomal pathway is involved in the 6-hydroxydopamine-induced death process of PC12 cells. Mitochondrial disability induced overactive autophagy, increased cathepsin B expression, and diminished Bcl-2 expression. Necrostatin-1 within a certain concentration range (5–30 μM) elevated the viability of PC12 cells, stabilized mitochondrial membrane potential, inhibited excessive autophagy, reduced the expression of LC3-II and cathepsin B, and increased Bcl-2 expression. These findings suggest that necrostatin-1 exerted a protective effect against injury on dopaminergic neurons. Necrostatin-1 interacts with the apoptosis signaling pathway during this process. This pathway could be a new neuroprotective and therapeutic target in Parkinson's disease. PMID:26330837

  14. Necrostatin-1 protection of dopaminergic neurons.

    PubMed

    Wu, Jing-Ru; Wang, Jie; Zhou, Sheng-Kui; Yang, Long; Yin, Jia-le; Cao, Jun-Ping; Cheng, Yan-Bo

    2015-07-01

    Necroptosis is characterized by programmed necrotic cell death and autophagic activation and might be involved in the death process of dopaminergic neurons in Parkinson's disease. We hypothesized that necrostatin-1 could block necroptosis and give protection to dopaminergic neurons. There is likely to be crosstalk between necroptosis and other cell death pathways, such as apoptosis and autophagy. PC12 cells were pretreated with necroststin-1 1 hour before exposure to 6-hydroxydopamine. We examined cell viability, mitochondrial membrane potential and expression patterns of apoptotic and necroptotic death signaling proteins. The results showed that the autophagy/lysosomal pathway is involved in the 6-hydroxydopamine-induced death process of PC12 cells. Mitochondrial disability induced overactive autophagy, increased cathepsin B expression, and diminished Bcl-2 expression. Necrostatin-1 within a certain concentration range (5-30 μM) elevated the viability of PC12 cells, stabilized mitochondrial membrane potential, inhibited excessive autophagy, reduced the expression of LC3-II and cathepsin B, and increased Bcl-2 expression. These findings suggest that necrostatin-1 exerted a protective effect against injury on dopaminergic neurons. Necrostatin-1 interacts with the apoptosis signaling pathway during this process. This pathway could be a new neuroprotective and therapeutic target in Parkinson's disease.

  15. Brief Dopaminergic Stimulations Produce Transient Physiological Changes in Prefrontal Pyramidal Neurons

    PubMed Central

    Moore, Anna R.; Zhou, Wen-Liang; Potapenko, Evgeniy S.; Kim, Eun-Ji; Antic, Srdjan D.

    2010-01-01

    In response to food reward and other pertinent events, midbrain dopaminergic neurons fire short bursts of action potentials causing a phasic release of dopamine in the prefrontal cortex (rapid and transient increases in cortical dopamine concentration). Here we apply short (2 sec) iontophoretic pulses of glutamate, GABA, dopamine and dopaminergic agonists locally, onto layer 5 pyramidal neurons in brain slices of the rat medial prefrontal cortex (PFC). Unlike glutamate and GABA, brief dopaminergic pulses had negligible effects on the resting membrane potential. However, dopamine altered action potential firing in an extremely rapid (<1s) and transient (<5min) manner, as every neuron returned to baseline in less than 5-min post-application. The physiological responses to dopamine differed markedly among individual neurons. Pyramidal neurons with a preponderance of D1-like receptor signaling respond to dopamine with a severe depression in action potential firing rate, while pyramidal neurons dominated by the D2 signaling pathway respond to dopamine with an instantaneous increase in spike production. Increasing levels of dopamine concentrations around the cell body resulted in a dose dependent response, which resembles an “inverted U curve” (Vijayraghavan et al., 2007), but this effect can easily be caused by an iontophoresis current artifact. Our present data imply that one population of PFC pyramidal neurons receiving direct synaptic contacts from midbrain dopaminergic neurons would stall during the 0.5 sec of the phasic dopamine burst. The spillover dopamine, on the other hand, would act as a positive stimulator of cortical excitability (30% increase) to all D2-receptor carrying pyramidal cells, for the next 40 seconds. PMID:21059342

  16. Diversity and homogeneity in responses of midbrain dopamine neurons.

    PubMed

    Fiorillo, Christopher D; Yun, Sora R; Song, Minryung R

    2013-03-13

    Dopamine neurons of the ventral midbrain have been found to signal a reward prediction error that can mediate positive reinforcement. Despite the demonstration of modest diversity at the cellular and molecular levels, there has been little analysis of response diversity in behaving animals. Here we examine response diversity in rhesus macaques to appetitive, aversive, and neutral stimuli having relative motivational values that were measured and controlled through a choice task. First, consistent with previous studies, we observed a continuum of response variability and an apparent absence of distinct clusters in scatter plots, suggesting a lack of statistically discrete subpopulations of neurons. Second, we found that a group of "sensitive" neurons tend to be more strongly suppressed by a variety of stimuli and to be more strongly activated by juice. Third, neurons in the "ventral tier" of substantia nigra were found to have greater suppression, and a subset of these had higher baseline firing rates and late "rebound" activation after suppression. These neurons could belong to a previously identified subgroup of dopamine neurons that express high levels of H-type cation channels but lack calbindin. Fourth, neurons further rostral exhibited greater suppression. Fifth, although we observed weak activation of some neurons by aversive stimuli, this was not associated with their aversiveness. In conclusion, we find a diversity of response properties, distributed along a continuum, within what may be a single functional population of neurons signaling reward prediction error.

  17. Genetic dissection of midbrain dopamine neuron development in vivo.

    PubMed

    Ellisor, Debra; Rieser, Caroline; Voelcker, Bettina; Machan, Jason T; Zervas, Mark

    2012-12-15

    Midbrain dopamine (MbDA) neurons are partitioned into medial and lateral cohorts that control complex functions. However, the genetic underpinnings of MbDA neuron heterogeneity are unclear. While it is known that Wnt1-expressing progenitors contribute to MbDA neurons, the role of Wnt1 in MbDA neuron development in vivo is unresolved. We show that mice with a spontaneous point mutation in Wnt1 have a unique phenotype characterized by the loss of medial MbDA neurons concomitant with a severe depletion of Wnt1-expressing progenitors and diminished LMX1a-expressing progenitors. Wnt1 mutant embryos also have alterations in a hierarchical gene regulatory loop suggesting multiple gene involvement in the Wnt1 mutant MbDA neuron phenotype. To investigate this possibility, we conditionally deleted Gbx2, Fgf8, and En1/2 after their early role in patterning and asked whether these genetic manipulations phenocopied the depletion of MbDA neurons in Wnt1 mutants. The conditional deletion of Gbx2 did not result in re-positioning or distribution of MbDA neurons. The temporal deletion of Fgf8 did not result in the loss of either LMX1a-expressing progenitors nor the initial population of differentiated MbDA neurons, but did result in a complete loss of MbDA neurons at later stages. The temporal deletion and species specific manipulation of En1/2 demonstrated a continued and species specific role of Engrailed genes in MbDA neuron development. Notably, our conditional deletion experiments revealed phenotypes dissimilar to Wnt1 mutants indicating the unique role of Wnt1 in MbDA neuron development. By placing Wnt1, Fgf8, and En1/2 in the context of their temporal requirement for MbDA neuron development, we further deciphered the developmental program underpinning MbDA neuron progenitors.

  18. Parkin protects dopaminergic neurons from excessive Wnt/{beta}-catenin signaling

    SciTech Connect

    Rawal, Nina; Corti, Olga; Sacchetti, Paola; Ardilla-Osorio, Hector; Sehat, Bita; Brice, Alexis; Arenas, Ernest

    2009-10-23

    Parkinson's disease (PD) is caused by degeneration of the dopaminergic (DA) neurons of the substantia nigra but the molecular mechanisms underlying the degenerative process remain elusive. Several reports suggest that cell cycle deregulation in post-mitotic neurons could lead to neuronal cell death. We now show that Parkin, an E3 ubiquitin ligase linked to familial PD, regulates {beta}-catenin protein levels in vivo. Stabilization of {beta}-catenin in differentiated primary ventral midbrain neurons results in increased levels of cyclin E and proliferation, followed by increased levels of cleaved PARP and loss of DA neurons. Wnt3a signaling also causes death of post-mitotic DA neurons in parkin null animals, suggesting that both increased stabilization and decreased degradation of {beta}-catenin results in DA cell death. These findings demonstrate a novel regulation of Wnt signaling by Parkin and suggest that Parkin protects DA neurons against excessive Wnt signaling and {beta}-catenin-induced cell death.

  19. Parkin protects dopaminergic neurons from excessive Wnt/beta-catenin signaling.

    PubMed

    Rawal, Nina; Corti, Olga; Sacchetti, Paola; Ardilla-Osorio, Hector; Sehat, Bita; Brice, Alexis; Arenas, Ernest

    2009-10-23

    Parkinson's disease (PD) is caused by degeneration of the dopaminergic (DA) neurons of the substantia nigra but the molecular mechanisms underlying the degenerative process remain elusive. Several reports suggest that cell cycle deregulation in post-mitotic neurons could lead to neuronal cell death. We now show that Parkin, an E3 ubiquitin ligase linked to familial PD, regulates beta-catenin protein levels in vivo. Stabilization of beta-catenin in differentiated primary ventral midbrain neurons results in increased levels of cyclin E and proliferation, followed by increased levels of cleaved PARP and loss of DA neurons. Wnt3a signaling also causes death of post-mitotic DA neurons in parkin null animals, suggesting that both increased stabilization and decreased degradation of beta-catenin results in DA cell death. These findings demonstrate a novel regulation of Wnt signaling by Parkin and suggest that Parkin protects DA neurons against excessive Wnt signaling and beta-catenin-induced cell death.

  20. Integrin α5β1 expression on dopaminergic neurons is involved in dopaminergic neurite outgrowth on striatal neurons

    PubMed Central

    Izumi, Yasuhiko; Wakita, Seiko; Kanbara, Chisato; Nakai, Toshie; Akaike, Akinori; Kume, Toshiaki

    2017-01-01

    During development, dopaminergic neurons born in the substantia nigra extend their axons toward the striatum. However, the mechanisms by which the dopaminergic axons extend the striatum to innervate their targets remain unclear. We previously showed that paired-cultivation of mesencephalic cells containing dopaminergic neurons with striatal cells leads to the extension of dopaminergic neurites from the mesencephalic cell region to the striatal cell region. The present study shows that dopaminergic neurites extended along striatal neurons in the paired-cultures of mesencephalic cells with striatal cells. The extension of dopaminergic neurites was suppressed by the pharmacological inhibition of integrin α5β1. Using lentiviral vectors, short hairpin RNA (shRNA)-mediated knockdown of integrin α5 in dopaminergic neurons suppressed the neurite outgrowth to the striatal cell region. In contrast, the knockdown of integrin α5 in non-dopaminergic mesencephalic and striatal cells had no effect. Furthermore, overexpression of integrin α5 in dopaminergic neurons differentiated from embryonic stem cells enhanced their neurite outgrowth on striatal cells. These results indicate that integrin α5β1 expression on dopaminergic neurons plays an important role in the dopaminergic neurite outgrowth on striatal neurons. PMID:28176845

  1. Prostaglandin receptor EP2 protects dopaminergic neurons against 6-OHDA-mediated low oxidative stress

    PubMed Central

    Carrasco, Emilce; Werner, Peter; Casper, Diana

    2008-01-01

    Dopaminergic neurons in the substantia nigra (SN) selectively die in Parkinson’s disease (PD), but it is unclear how and why this occurs. Recent findings implicate prostaglandin E2 (PGE2) and two of its four receptors, namely EP1 and EP2, as mediators of degenerative and protective events in situations of acute and chronic neuronal death. EP1 activation can exacerbate excitotoxic damage in stroke models and our recent study showed that EP1 activation may explain the selective sensitivity of dopaminergic neurons to oxidative stress. Conversely, EP2 activation may be neuroprotective, although toxic effects have also been demonstrated. Here we investigated if and how EP2 activation might alter the survival of dopaminergic neurons following selective low-level oxidative injury evoked by the neurotoxin 6-hydroxydopamine (6-OHDA) in primary neuronal cultures prepared from embryonic rat midbrain. We found that cultured dopaminergic neurons displayed EP2 receptors. Butaprost, a selective EP2 agonist, significantly reduced 6-OHDA neurotoxicity. EP2 receptors are coupled to stimulatory G-proteins (Gs), which activate adenylate cyclase, increasing cAMP synthesis, which then activates protein kinase A (PKA). Both dibutyryl cAMP and forskolin reduced dopaminergic cell loss after 6-OHDA exposure. Conversely, KT5720 and H-89, two structurally distinct high-affinity PKA inhibitors, abolished the protective effect of butaprost, implicating cAMP-dependent PKA activity in the neuroprotection by EP2 activation. Finally, we show that melanized dopaminergic neurons in the human SN express EP2. This pathway warrants consideration as a neuroprotective strategy for PD. PMID:18597941

  2. Prostaglandin receptor EP2 protects dopaminergic neurons against 6-OHDA-mediated low oxidative stress.

    PubMed

    Carrasco, Emilce; Werner, Peter; Casper, Diana

    2008-08-15

    Dopaminergic neurons in the substantia nigra (SN) selectively die in Parkinson's disease (PD), but it is unclear how and why this occurs. Recent findings implicate prostaglandin E(2) (PGE(2)) and two of its four receptors, namely EP1 and EP2, as mediators of degenerative and protective events in situations of acute and chronic neuronal death. EP1 activation can exacerbate excitotoxic damage in stroke models and our recent study showed that EP1 activation may explain the selective sensitivity of dopaminergic neurons to oxidative stress. Conversely, EP2 activation may be neuroprotective, although toxic effects have also been demonstrated. Here we investigated if and how EP2 activation might alter the survival of dopaminergic neurons following selective low-level oxidative injury evoked by the neurotoxin 6-hydroxydopamine (6-OHDA) in primary neuronal cultures prepared from embryonic rat midbrain. We found that cultured dopaminergic neurons displayed EP2 receptors. Butaprost, a selective EP2 agonist, significantly reduced 6-OHDA neurotoxicity. EP2 receptors are coupled to stimulatory G-proteins (Gs), which activate adenylate cyclase, increasing cAMP synthesis, which then activates protein kinase A (PKA). Both dibutyryl cAMP and forskolin reduced dopaminergic cell loss after 6-OHDA exposure. Conversely, KT5720 and H-89, two structurally distinct high-affinity PKA inhibitors, abolished the protective effect of butaprost, implicating cAMP-dependent PKA activity in the neuroprotection by EP2 activation. Finally, we show that melanized dopaminergic neurons in the human SN express EP2. This pathway warrants consideration as a neuroprotective strategy for PD.

  3. Environmental modulations of the number of midbrain dopamine neurons in adult mice.

    PubMed

    Tomas, Doris; Prijanto, Augustinus H; Burrows, Emma L; Hannan, Anthony J; Horne, Malcolm K; Aumann, Tim D

    2015-01-20

    Long-lasting changes in the brain or 'brain plasticity' underlie adaptive behavior and brain repair following disease or injury. Furthermore, interactions with our environment can induce brain plasticity. Increasingly, research is trying to identify which environments stimulate brain plasticity beneficial for treating brain and behavioral disorders. Two environmental manipulations are described which increase or decrease the number of tyrosine hydroxylase immunopositive (TH+, the rate-limiting enzyme in dopamine (DA) synthesis) neurons in the adult mouse midbrain. The first comprises pairing male and female mice together continuously for 1 week, which increases midbrain TH+ neurons by approximately 12% in males, but decreases midbrain TH+ neurons by approximately 12% in females. The second comprises housing mice continuously for 2 weeks in 'enriched environments' (EE) containing running wheels, toys, ropes, nesting material, etc., which increases midbrain TH+ neurons by approximately 14% in males. Additionally, a protocol is described for concurrently infusing drugs directly into the midbrain during these environmental manipulations to help identify mechanisms underlying environmentally-induced brain plasticity. For example, EE-induction of more midbrain TH+ neurons is abolished by concurrent blockade of synaptic input onto midbrain neurons. Together, these data indicate that information about the environment is relayed via synaptic input to midbrain neurons to switch on or off expression of 'DA' genes. Thus, appropriate environmental stimulation, or drug targeting of the underlying mechanisms, might be helpful for treating brain and behavioral disorders associated with imbalances in midbrain DA (e.g. Parkinson's disease, attention deficit and hyperactivity disorder, schizophrenia, and drug addiction).

  4. Zhichan decoction induces differentiation of dopaminergic neurons in Parkinson's disease rats after neural stem cell transplantation

    PubMed Central

    Shi, Huifen; Song, Jie; Yang, Xuming

    2014-01-01

    The goal of this study was to increase the dopamine content and reduce dopaminergic metabolites in the brain of Parkinson's disease rats. Using high-performance liquid chromatography, we found that dopamine and dopaminergic metabolite (dihydroxyphenylacetic acid and homovanillic acid) content in the midbrain of Parkinson's disease rats was increased after neural stem cell transplantation + Zhichan decoction, compared with neural stem cell transplantation alone. Our genetic algorithm results show that dihydroxyphenylacetic acid and homovanillic acid levels achieve global optimization. Neural stem cell transplantation + Zhichan decoction increased dihydroxyphenylacetic acid levels up to 10-fold, while transplantation alone resulted in a 3-fold increment. Homovanillic acid levels showed no apparent change. Our experimental findings show that after neural stem cell transplantation in Parkinson's disease rats, Zhichan decoction can promote differentiation of neural stem cells into dopaminergic neurons. PMID:25206914

  5. Correlation between ethanol behavioral sensitization and midbrain dopamine neuron reactivity to ethanol.

    PubMed

    Didone, Vincent; Masson, Sébastien; Quoilin, Caroline; Seutin, Vincent; Quertemont, Etienne

    2016-03-01

    Repeated ethanol injections lead to a sensitization of its stimulant effects in mice. Some recent results argue against a role for ventral tegmental area (VTA) dopamine neurons in ethanol behavioral sensitization. The aim of the present study was to test whether in vivo ethanol locomotor sensitization correlates with changes in either basal- or ethanol-evoked firing rates of dopamine neurons in vitro. Female Swiss mice were daily injected with 2.5 g/kg ethanol (or saline in the control group) for 7 days and their locomotor activity was recorded. At the end of the sensitization procedure, extracellular recordings were made from dopaminergic neurons in midbrain slices from these mice. Significantly higher spontaneous basal firing rates of dopamine neurons were recorded in ethanol-sensitized mice relative to control mice, but without correlations with the behavioral effects. The superfusion of sulpiride, a dopamine D2 antagonist, induced a stronger increase of dopamine neuron firing rates in ethanol-sensitized mice. This shows that the D2 feedback in dopamine neurons is preserved after chronic ethanol administration and argues against a reduced D2 feedback as an explanation for the increased dopamine neuron basal firing rates in ethanol-sensitized mice. Finally, ethanol superfusion (10-100 mM) significantly increased the firing rates of dopamine neurons and this effect was of higher magnitude in ethanol-sensitized mice. Furthermore, there were significant correlations between such a sensitization of dopamine neuron activity and ethanol behavioral sensitization. These results support the hypothesis that changes in brain dopamine neuron activity contribute to the behavioral sensitization of the stimulant effects of ethanol. © 2014 Society for the Study of Addiction.

  6. Transient activation of midbrain dopamine neurons by reward risk.

    PubMed

    Fiorillo, C D

    2011-12-01

    Dopamine neurons of the ventral midbrain are activated transiently following stimuli that predict future reward. This response has been shown to signal the expected value of future reward, and there is strong evidence that it drives positive reinforcement of stimuli and actions associated with reward in accord with reinforcement learning models. Behavior is also influenced by reward uncertainty, or risk, but it is not known whether the transient response of dopamine neurons is sensitive to reward risk. To investigate this, monkeys were trained to associate distinct visual stimuli with certain or uncertain volumes of juice of nearly the same expected value. In a choice task, monkeys preferred the stimulus predicting an uncertain (risky) reward outcome. In a Pavlovian task, in which the neuronal responses to each stimulus could be measured in isolation, it was found that dopamine neurons were more strongly activated by the stimulus associated with reward risk. Given extensive evidence that dopamine drives reinforcement, these results strongly suggest that dopamine neurons can reinforce risk-seeking behavior (gambling), at least under certain conditions. Risk-seeking behavior has the virtue of promoting exploration and learning, and these results support the hypothesis that dopamine neurons represent the value of exploration.

  7. Minocycline enhances MPTP toxicity to dopaminergic neurons.

    PubMed

    Yang, Lichuan; Sugama, Shuei; Chirichigno, Jason W; Gregorio, Jason; Lorenzl, Stefan; Shin, Dong H; Browne, Susan E; Shimizu, Yoshinori; Joh, Tong H; Beal, M Flint; Albers, David S

    2003-10-15

    Minocycline has been shown previously to have beneficial effects against ischemia in rats as well as neuroprotective properties against excitotoxic damage in vitro, nigral cell loss via 6-hydroxydopamine, and to prolong the life-span of transgenic mouse models of Huntington's disease (HD) and amyotrophic lateral sclerosis (ALS). We investigated whether minocycline would protect against toxic effects of 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP), a toxin that selectively destroys nigrostriatal dopaminergic (DA) neurons and produces a clinical state similar to Parkinson's disease (PD) in rodents and primates. We found that although minocycline inhibited microglial activation, it significantly exacerbated MPTP-induced damage to DA neurons. We present evidence suggesting that this effect may be due to inhibition of DA and 1-methyl-4-phenylpridium (MPP+) uptake into striatal vesicles. Copyright 2003 Wiley-Liss, Inc.

  8. Midbrain dopaminergic axons are guided longitudinally through the diencephalon by Slit/Robo signals.

    PubMed

    Dugan, James P; Stratton, Andrea; Riley, Hilary P; Farmer, W Todd; Mastick, Grant S

    2011-01-01

    Dopaminergic neurons from the ventral mesencephalon/diencephalon (mesodiencephalon) form vital pathways constituting the majority of the brain's dopamine systems. Mesodiencephalic dopaminergic (mdDA) neurons extend longitudinal projections anteriorly through the diencephalon, ascending toward forebrain targets. The mechanisms by which mdDA axons initially navigate through the diencephalon are poorly understood. Recently the Slit family of secreted axon guidance proteins, and their Robo receptors, have been identified as important guides for descending longitudinal axons. To test the potential roles of Slit/Robo guidance in ascending trajectories, we examined tyrosine hydroxylase-positive (TH+) projections from mdDA neurons in mutant mouse embryos. We found that mdDA axons grow out of and parallel to Slit-positive ventral regions within the diencephalon, and that subsets of the mdDA axons likely express Robo1 and possibly also Robo2. Slit2 was able to directly inhibit TH axon outgrowth in explant co-culture assays. The mdDA axons made significant pathfinding errors in Slit1/2 and Robo1/2 knockout mice, including spreading out in the diencephalon to form a wider tract. The wider tract resulted from a combination of invasion of the ventral midline, consistent with Slit repulsion, but also axons wandering dorsally, away from the ventral midline. Aberrant dorsal trajectories were prominent in Robo1 and Robo1/2 knockout mice, suggesting that an aspect of Robo receptor function is Slit-independent. These results indicate that Slit/Robo signaling is critical during the initial establishment of dopaminergic pathways, with roles in the dorsoventral positioning and precise pathfinding of these ascending longitudinal axons.

  9. Glutamate neurons are intermixed with midbrain dopamine neurons in nonhuman primates and humans

    PubMed Central

    Root, David H.; Wang, Hui-Ling; Liu, Bing; Barker, David J.; Mód, László; Szocsics, Péter; Silva, Afonso C.; Maglóczky, Zsófia; Morales, Marisela

    2016-01-01

    The rodent ventral tegmental area (VTA) and substantia nigra pars compacta (SNC) contain dopamine neurons intermixed with glutamate neurons (expressing vesicular glutamate transporter 2; VGluT2), which play roles in reward and aversion. However, identifying the neuronal compositions of the VTA and SNC in higher mammals has remained challenging. Here, we revealed VGluT2 neurons within the VTA and SNC of nonhuman primates and humans by simultaneous detection of VGluT2 mRNA and tyrosine hydroxylase (TH; for identification of dopamine neurons). We found that several VTA subdivisions share similar cellular compositions in nonhuman primates and humans; their rostral linear nuclei have a high prevalence of VGluT2 neurons lacking TH; their paranigral and parabrachial pigmented nuclei have mostly TH neurons, and their parabrachial pigmented nuclei have dual VGluT2-TH neurons. Within nonhuman primates and humans SNC, the vast majority of neurons are TH neurons but VGluT2 neurons were detected in the pars lateralis subdivision. The demonstration that midbrain dopamine neurons are intermixed with glutamate or glutamate-dopamine neurons from rodents to humans offers new opportunities for translational studies towards analyzing the roles that each of these neurons play in human behavior and in midbrain-associated illnesses such as addiction, depression, schizophrenia, and Parkinson’s disease. PMID:27477243

  10. Wnt2 regulates progenitor proliferation in the developing ventral midbrain.

    PubMed

    Sousa, Kyle M; Villaescusa, J Carlos; Cajanek, Lukas; Ondr, Jennifer K; Castelo-Branco, Goncalo; Hofstra, Wytske; Bryja, Vitezslav; Palmberg, Carina; Bergman, Tomas; Wainwright, Brandon; Lang, Richard A; Arenas, Ernest

    2010-03-05

    Wnts are secreted, lipidated proteins that regulate multiple aspects of brain development, including dopaminergic neuron development. In this study, we perform the first purification and signaling analysis of Wnt2 and define the function of Wnt2 in ventral midbrain precursor cultures, as well as in Wnt2-null mice in vivo. We found that purified Wnt2 induces the phosphorylation of both Lrp5/6 and Dvl-2/3, and activates beta-catenin in SN4741 dopaminergic cells. Moreover, purified Wnt2 increases progenitor proliferation, and the number of dopaminergic neurons in ventral midbrain precursor cultures. In agreement with these findings, analysis of the ventral midbrain of developing Wnt2-null mice revealed a decrease in progenitor proliferation and neurogenesis that lead to a decrease in the number of postmitotic precursors and dopaminergic neurons. Collectively, our observations identify Wnt2 as a novel regulator of dopaminergic progenitors and dopaminergic neuron development.

  11. Wnt2 Regulates Progenitor Proliferation in the Developing Ventral Midbrain*

    PubMed Central

    Sousa, Kyle M.; Villaescusa, J. Carlos; Cajanek, Lukas; Ondr, Jennifer K.; Castelo-Branco, Goncalo; Hofstra, Wytske; Bryja, Vitezslav; Palmberg, Carina; Bergman, Tomas; Wainwright, Brandon; Lang, Richard A.; Arenas, Ernest

    2010-01-01

    Wnts are secreted, lipidated proteins that regulate multiple aspects of brain development, including dopaminergic neuron development. In this study, we perform the first purification and signaling analysis of Wnt2 and define the function of Wnt2 in ventral midbrain precursor cultures, as well as in Wnt2-null mice in vivo. We found that purified Wnt2 induces the phosphorylation of both Lrp5/6 and Dvl-2/3, and activates β-catenin in SN4741 dopaminergic cells. Moreover, purified Wnt2 increases progenitor proliferation, and the number of dopaminergic neurons in ventral midbrain precursor cultures. In agreement with these findings, analysis of the ventral midbrain of developing Wnt2-null mice revealed a decrease in progenitor proliferation and neurogenesis that lead to a decrease in the number of postmitotic precursors and dopaminergic neurons. Collectively, our observations identify Wnt2 as a novel regulator of dopaminergic progenitors and dopaminergic neuron development. PMID:20018874

  12. Enhancement of Dopaminergic Differentiation in Proliferating Midbrain Neuroblasts by Sonic Hedgehog and Ascorbic Acid

    PubMed Central

    Volpicelli, Floriana; Consales, Claudia; Caiazzo, Massimiliano; Colucci-D'Amato, Luca; Perrone-Capano, Carla; di Porzio, Umberto

    2004-01-01

    We analyzed the molecular mechanisms involved in the acquisition and maturation of dopaminergic (DA) neurons generated in vitro from rat ventral mesencephalon (MES) cells in the presence of mitogens or specific signaling molecules. The addition of basic fibroblast growth factor (bFGF) to MES cells in serum-free medium stimulates the proliferation of neuroblasts but delays DA differentiation. Recombinant Sonic hedgehog (SHH) protein increases up to three fold the number of tyrosine hydroxylase (TH)-positive cells and their differentiation, an effect abolished by anti-SHH antibodies. The expanded cultures are rich in nestin-positive neurons, glial cells are rare, all TH+ neurons are DA, and all DA and GABAergic markers analyzed are expressed. Adding ascorbic acid to bFGF/SHH-treated cultures resulted in a further five- to seven-fold enhancement of viable DA neurons. This experimental system also provides a powerful tool to generate DA neurons from single embryos. Our strategy provides an enriched source of MES DA neurons that are useful for analyzing molecular mechanisms controlling their function and for experimental regenerative approaches in DA dysfunction. PMID:15303305

  13. Methamphetamine Self-Administration in Mice Decreases GIRK Channel-Mediated Currents in Midbrain Dopamine Neurons

    PubMed Central

    Sharpe, Amanda L.; Varela, Erika; Bettinger, Lynne

    2015-01-01

    Background: Methamphetamine is a psychomotor stimulant with abuse liability and a substrate for catecholamine uptake transporters. Acute methamphetamine elevates extracellular dopamine, which in the midbrain can activate D2 autoreceptors to increase a G-protein gated inwardly rectifying potassium (GIRK) conductance that inhibits dopamine neuron firing. These studies examined the neurophysiological consequences of methamphetamine self-administration on GIRK channel-mediated currents in dopaminergic neurons in the substantia nigra and ventral tegmental area. Methods: Male DBA/2J mice were trained to self-administer intravenous methamphetamine. A dose response was conducted as well as extinction and cue-induced reinstatement. In a second study, after at least 2 weeks of stable self-administration of methamphetamine, electrophysiological brain slice recordings were conducted on dopamine neurons from self-administering and control mice. Results: In the first experiment, ad libitum-fed, nonfood-trained mice exhibited a significant increase in intake and locomotion following self-administration as the concentration of methamphetamine per infusion was increased (0.0015–0.15mg/kg/infusion). Mice exhibited extinction in responding and cue-induced reinstatement. In the second experiment, dopamine cells in both the substantia nigra and ventral tegmental area from adult mice with a history of methamphetamine self-administration exhibited significantly smaller D2 and GABAB receptor-mediated currents compared with control mice, regardless of whether their daily self-administration sessions had been 1 or 4 hours. Interestingly, the effects of methamphetamine self-administration were not present when intracellular calcium was chelated by including BAPTA in the recording pipette. Conclusions: Our results suggest that methamphetamine self-administration decreases GIRK channel-mediated currents in dopaminergic neurons and that this effect may be calcium dependent. PMID:25522412

  14. Methamphetamine self-administration in mice decreases GIRK channel-mediated currents in midbrain dopamine neurons.

    PubMed

    Sharpe, Amanda L; Varela, Erika; Bettinger, Lynne; Beckstead, Michael J

    2014-10-31

    Methamphetamine is a psychomotor stimulant with abuse liability and a substrate for catecholamine uptake transporters. Acute methamphetamine elevates extracellular dopamine, which in the midbrain can activate D2 autoreceptors to increase a G-protein gated inwardly rectifying potassium (GIRK) conductance that inhibits dopamine neuron firing. These studies examined the neurophysiological consequences of methamphetamine self-administration on GIRK channel-mediated currents in dopaminergic neurons in the substantia nigra and ventral tegmental area. Male DBA/2J mice were trained to self-administer intravenous methamphetamine. A dose response was conducted as well as extinction and cue-induced reinstatement. In a second study, after at least 2 weeks of stable self-administration of methamphetamine, electrophysiological brain slice recordings were conducted on dopamine neurons from self-administering and control mice. In the first experiment, ad libitum-fed, nonfood-trained mice exhibited a significant increase in intake and locomotion following self-administration as the concentration of methamphetamine per infusion was increased (0.0015-0.15mg/kg/infusion). Mice exhibited extinction in responding and cue-induced reinstatement. In the second experiment, dopamine cells in both the substantia nigra and ventral tegmental area from adult mice with a history of methamphetamine self-administration exhibited significantly smaller D2 and GABAB receptor-mediated currents compared with control mice, regardless of whether their daily self-administration sessions had been 1 or 4 hours. Interestingly, the effects of methamphetamine self-administration were not present when intracellular calcium was chelated by including BAPTA in the recording pipette. Our results suggest that methamphetamine self-administration decreases GIRK channel-mediated currents in dopaminergic neurons and that this effect may be calcium dependent. © The Author 2015. Published by Oxford University Press on

  15. Sensitization of midbrain dopamine neuron reactivity promotes the pursuit of amphetamine.

    PubMed

    Vezina, Paul; Lorrain, Daniel S; Arnold, Gretchen M; Austin, Jennifer D; Suto, Nobuyoshi

    2002-06-01

    Stimulant drugs such as amphetamine are readily self-administered by humans and laboratory animals by virtue of their actions on dopamine (DA) neurons of the midbrain. Repeated exposure to this drug systemically or exclusively in the cell body region of these neurons in the ventral tegmental area (VTA) leads to long-lasting changes in dopaminergic function that can be assessed by increased locomotor activity and enhanced DA overflow in the nucleus accumbens (NAcc) after re-exposure to the drug. Three experiments were conducted to evaluate the possibility that this enduring sensitized reactivity underlies compulsive drug self-administration. In all experiments, rats were pre-exposed to amphetamine and, starting 10 d later, their intravenous self-administration of the drug was assessed. In the first experiment, rats previously exposed to amphetamine systemically or exclusively in the VTA subsequently worked harder than untreated animals to obtain the drug when the work required to obtain successive infusions was increased progressively. In the second experiment, this progressively increasing workload was found to decrease the magnitude of amphetamine-induced DA overflow observed with successive infusions until responding ceased. Rats previously exposed to amphetamine were more resistant to this decline and more apt to maintain responding. Finally, in experiment three, a noncontingent priming injection of the drug produced a greater NAcc DA response and a greater parallel increase in lever pressing in drug compared with saline pre-exposed rats. Together, these results demonstrate a direct relation between drug-induced sensitization of midbrain dopamine neuron reactivity and the excessive pursuit and self-administration of an abused substance.

  16. Oestrogen receptors enhance dopamine neurone survival in rat midbrain.

    PubMed

    Johnson, M L; Ho, C C; Day, A E; Walker, Q D; Francis, R; Kuhn, C M

    2010-04-01

    Previous findings in our laboratory and elsewhere have shown that ovariectomy of rats in adulthood attenuates cocaine-stimulated locomotor behaviour. Ovarian hormones enhance both cocaine-stimulated behaviour and increase dopamine overflow after psychomotor stimulants. The present study aimed to determine whether ovarian hormones have these effects in part by maintaining dopamine neurone number in the substantia nigra pars compacta (SNpc) and ventral tegmental area (VTA) and to investigate the roles of specific oestrogen receptors (ERs) in the maintenance of mesencephalic dopamine neurones. To accomplish this goal, we used unbiased stereological techniques to estimate the number of tyrosine hydroxylase-immunoreactive (TH-IR) cell bodies in midbrain regions of intact, ovariectomised and hormone-replaced female rats and mice. Animals received active or sham gonadectomy on postnatal day 60 and received vehicle, 17beta-oestradiol (E(2)) or selective ER agonists propyl-pyrazole-triol (PPT, ERalpha) or diarylpropionitrile (DPN, ERbeta) for 1 month post-surgery. In both rats and mice, ovariectomy reduced the number of TH-IR cells in the SNpc and VTA. Replacement with E(2), PPT or DPN prevented or attenuated the loss observed with ovariectomy in both rats and mice. An additional study using ER knockout mice revealed that adult female mice lacking ERalpha had fewer TH-IR cells in midbrain regions than wild-type mice, whereas mice lacking ERbeta had TH-IR cell counts comparable to wild-type. These findings suggest that, although both ER subtypes play a role in the maintenance of TH-IR cell number in the SNpc and VTA, ERalpha may play a more significant role.

  17. Wnt/B-Catenin Signaling is Required to Rescue Midbrain Dopaminergic Progenitors and Promote Neurorepair in Ageing Mouse Model of Parkinson’s Disease

    PubMed Central

    L’Episcopo, Francesca; Tirolo, Cataldo; Testa, Nunzio; Caniglia, Salvatore; Morale, Maria Concetta; Serapide, Maria Francesca; Pluchino, Stefano; Marchetti, Bianca

    2014-01-01

    SUMMARY Wnt/β-catenin signaling is required for specification and neurogenesis of midbrain dopaminergic (mDA) neurons, the pivotal neuronal population that degenerates in Parkinson’s disease (PD) and in 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) mouse model of PD. Wnt/β-catenin signaling plays a vital role in adult neurogenesis but whether it might engage DA neurogenesis/neurorepair in the affected PD brain is yet unresolved. Recently, the adult midbrain aqueduct periventricular regions (Aq-PVRs) were shown to harbor neural stem/progenitor cells (mNPCs) with DA potential in vitro, but restrictive mechanisms in vivo are believed to limit their DA regenerative capacity. Using in vitro mNPC culture systems we herein demonstrate that aging is one most critical factor restricting mNPC neurogenic potential via dysregulation of Wnt/β-catenin signaling. Cococulture paradigms between young/aged (Y/A) mNPCs and Y/A astrocytes identified glial age and a decline of glial-derived factors including Wnts as key determinants of impaired neurogenic potential, whereas Wnt activation regimens efficiently reversed the diminished proliferative, neuronal and DA differentiation potential of A-mNPCs. Next, in vivo studies in wild (Wt) and transgenic β-catenin reporter mice uncovered Wnt/β-catenin signaling activation and remarkable astrocyte remodeling of Aq-PVR in response to MPTP-induced DA neuron death. Spatio-temporal analyses unveiled β-catenin signaling in predopaminergic (Nurr1+/TH−) and imperiled or rescuing DAT+ neurons during MPTP-induced DA neuron injury and self-repair. Aging inhibited Wnt signaling, whereas β-catenin activation in situ with a specific GSK-3β antagonist promoted a significant degree of DA neurorestoration associated with reversal of motor deficit, with implications for neurorestorative approaches in PD. PMID:24648001

  18. Loss of Dopamine Phenotype Among Midbrain Neurons in Lesch–Nyhan Disease

    PubMed Central

    Göttle, Martin; Prudente, Cecilia N.; Fu, Rong; Sutcliffe, Diane; Pang, Hong; Cooper, Deborah; Veledar, Emir; Glass, Jonathan D.; Gearing, Marla; Visser, Jasper E.; Jinnah, H. A.

    2016-01-01

    Objective Lesch–Nyhan disease (LND) is caused by congenital deficiency of the purine recycling enzyme, hypoxanthine-guanine phosphoribosyltransferase (HGprt). Affected patients have a peculiar neurobehavioral syndrome linked with reductions of dopamine in the basal ganglia. The purpose of the current studies was to determine the anatomical basis for the reduced dopamine in human brain specimens collected at autopsy. Methods Histopathological studies were conducted using autopsy tissue from 5 LND cases and 6 controls. Specific findings were replicated in brain tissue from an HGprt-deficient knockout mouse using immunoblots, and in a cell model of HGprt deficiency by flow-activated cell sorting (FACS). Results Extensive histological studies of the LND brains revealed no signs suggestive of a degenerative process or other consistent abnormalities in any brain region. However, neurons of the substantia nigra from the LND cases showed reduced melanization and reduced immunoreactivity for tyrosine hydroxylase (TH), the rate-limiting enzyme in dopamine synthesis. In the HGprt-deficient mouse model, immunohistochemical stains for TH revealed no obvious loss of midbrain dopamine neurons, but quantitative immunoblots revealed reduced TH expression in the striatum. Finally, 10 independent HGprt-deficient mouse MN9D neuroblastoma lines showed no signs of impaired viability, but FACS revealed significantly reduced TH immunoreactivity compared to the control parent line. Interpretation These results reveal an unusual phenomenon in which the neurochemical phenotype of dopaminergic neurons is not linked with a degenerative process. They suggest an important relationship between purine recycling pathways and the neurochemical integrity of the dopaminergic phenotype. PMID:24891139

  19. Loss of dopamine phenotype among midbrain neurons in Lesch-Nyhan disease.

    PubMed

    Göttle, Martin; Prudente, Cecilia N; Fu, Rong; Sutcliffe, Diane; Pang, Hong; Cooper, Deborah; Veledar, Emir; Glass, Jonathan D; Gearing, Marla; Visser, Jasper E; Jinnah, H A

    2014-07-01

    Lesch-Nyhan disease (LND) is caused by congenital deficiency of the purine recycling enzyme, hypoxanthine-guanine phosphoribosyltransferase (HGprt). Affected patients have a peculiar neurobehavioral syndrome linked with reductions of dopamine in the basal ganglia. The purpose of the current studies was to determine the anatomical basis for the reduced dopamine in human brain specimens collected at autopsy. Histopathological studies were conducted using autopsy tissue from 5 LND cases and 6 controls. Specific findings were replicated in brain tissue from an HGprt-deficient knockout mouse using immunoblots, and in a cell model of HGprt deficiency by flow-activated cell sorting (FACS). Extensive histological studies of the LND brains revealed no signs suggestive of a degenerative process or other consistent abnormalities in any brain region. However, neurons of the substantia nigra from the LND cases showed reduced melanization and reduced immunoreactivity for tyrosine hydroxylase (TH), the rate-limiting enzyme in dopamine synthesis. In the HGprt-deficient mouse model, immunohistochemical stains for TH revealed no obvious loss of midbrain dopamine neurons, but quantitative immunoblots revealed reduced TH expression in the striatum. Finally, 10 independent HGprt-deficient mouse MN9D neuroblastoma lines showed no signs of impaired viability, but FACS revealed significantly reduced TH immunoreactivity compared to the control parent line. These results reveal an unusual phenomenon in which the neurochemical phenotype of dopaminergic neurons is not linked with a degenerative process. They suggest an important relationship between purine recycling pathways and the neurochemical integrity of the dopaminergic phenotype. © 2014 American Neurological Association.

  20. Endorphinic neurons are contacting the tuberoinfundibular dopaminergic neurons in the rat brain

    SciTech Connect

    Morel, G.; Pelletier, G.

    1986-11-01

    The anatomical relationships between endorphinic neurons and dopaminergic neurons were evaluated in the rat hypothalamus using a combination of immunocytochemistry and autoradiography. In the arcuate nucleus, endorphinic endings were seen making contacts with dopaminergic cell bodies and dendrites. No synapsis could be observed at the sites of contacts. These results strongly suggest that the endorphinic neurons are directly acting on dopaminergic neurons to modify the release of dopamine into the pituitary portal system.

  1. Sequential Loss of LC Noradrenergic and Dopaminergic Neurons Results in a Correlation of Dopaminergic Neuronal Number to Striatal Dopamine Concentration.

    PubMed

    Szot, Patricia; Franklin, Allyn; Sikkema, Carl; Wilkinson, Charles W; Raskind, Murray A

    2012-01-01

    Noradrenergic neurons in the locus coeruleus (LC) are significantly reduced in Parkinson's disease (PD) and the LC exhibits neuropathological changes early in the disease process. It has been suggested that a loss of LC neurons can enhance the susceptibility of dopaminergic neurons to damage. To determine if LC noradrenergic innervation protects dopaminergic neurons from damage, the dopaminergic neurotoxin 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) was administered to adult male C57Bl/6 mice 3 days after bilateral LC administration of 6-hydroxydopamine (6OHDA), a time when there is a significant reduction in LC neuronal number and innervation to forebrain regions. To assess if LC loss can affect dopaminergic loss four groups of animals were studied: control, 6OHDA, MPTP, and 6OHDA + MPTP; animals sacrificed 3 weeks after MPTP administration. The number of dopaminergic neurons in the substantia nigra (SN) and ventral tegmental area (VTA), and noradrenergic neurons in the LC were determined. Catecholamine levels in striatum were measured by high-pressure liquid chromatography. The loss of LC neurons did not affect the number of dopaminergic neurons in the SN and VTA compared to control; however, LC 6OHDA significantly reduced striatal dopamine (DA; 29% reduced) but not norepinephrine (NE) concentration. MPTP significantly reduced SN and VTA neuronal number and DA concentration in the striatum compared to control; however, there was not a correlation of striatal DA concentration with SN or VTA neuronal number. Administration of 6OHDA prior to MPTP did not enhance MPTP-induced damage despite an effect of LC loss on striatal DA concentration. However, the loss of LC neurons before MPTP resulted now in a correlation between SN and VTA neuronal number to striatal DA concentration. These results demonstrate that the loss of either LC or DA neurons can affect the function of each others systems, indicating the importance of both the noradrenergic and

  2. Sequential Loss of LC Noradrenergic and Dopaminergic Neurons Results in a Correlation of Dopaminergic Neuronal Number to Striatal Dopamine Concentration

    PubMed Central

    Szot, Patricia; Franklin, Allyn; Sikkema, Carl; Wilkinson, Charles W.; Raskind, Murray A.

    2012-01-01

    Noradrenergic neurons in the locus coeruleus (LC) are significantly reduced in Parkinson’s disease (PD) and the LC exhibits neuropathological changes early in the disease process. It has been suggested that a loss of LC neurons can enhance the susceptibility of dopaminergic neurons to damage. To determine if LC noradrenergic innervation protects dopaminergic neurons from damage, the dopaminergic neurotoxin 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) was administered to adult male C57Bl/6 mice 3 days after bilateral LC administration of 6-hydroxydopamine (6OHDA), a time when there is a significant reduction in LC neuronal number and innervation to forebrain regions. To assess if LC loss can affect dopaminergic loss four groups of animals were studied: control, 6OHDA, MPTP, and 6OHDA + MPTP; animals sacrificed 3 weeks after MPTP administration. The number of dopaminergic neurons in the substantia nigra (SN) and ventral tegmental area (VTA), and noradrenergic neurons in the LC were determined. Catecholamine levels in striatum were measured by high-pressure liquid chromatography. The loss of LC neurons did not affect the number of dopaminergic neurons in the SN and VTA compared to control; however, LC 6OHDA significantly reduced striatal dopamine (DA; 29% reduced) but not norepinephrine (NE) concentration. MPTP significantly reduced SN and VTA neuronal number and DA concentration in the striatum compared to control; however, there was not a correlation of striatal DA concentration with SN or VTA neuronal number. Administration of 6OHDA prior to MPTP did not enhance MPTP-induced damage despite an effect of LC loss on striatal DA concentration. However, the loss of LC neurons before MPTP resulted now in a correlation between SN and VTA neuronal number to striatal DA concentration. These results demonstrate that the loss of either LC or DA neurons can affect the function of each others systems, indicating the importance of both the noradrenergic and

  3. Developmental regulation of nicotinic acetylcholine receptors within midbrain dopamine neurons

    PubMed Central

    Azam, Layla; Chen, Yiling; Leslie, Frances M.

    2007-01-01

    We have combined anatomical and functional methodologies to provide a comprehensive analysis of the properties of nicotinic acetylcholine receptors (nAChRs) on developing dopamine (DA) neurons. Double-labeling in situ hybridization was used to examine the expression of nAChR subunit mRNAs within developing midbrain DA neurons. As brain maturation progressed there was a change in the pattern of subunit mRNA expression within DA neurons, such that α3 and α4 subunits declined and α6 mRNA increased. Although there were strong similarities in subunit mRNA expression in substantia nigra (SNc) and ventral tegmental area (VTA), there was higher expression of α4 mRNA in SNc than VTA at gestational day (G)15, and of α5, α6 and β3 mRNAs during postnatal development. Using a superfusion neurotransmitter release paradigm to functionally characterize nicotine-stimulated release of [3H]DA from striatal slices, the properties of the nAChRs on DA terminals were also found to change with age. Functional nAChRs were detected on striatal terminals at G18. There was a decrease in maximal release in the first postnatal week, followed by an increase in nicotine efficacy and potency during the second and third postnatal weeks. In the transition from adolescence (postnatal days (P) 30 and 40) to adulthood, there was a complex pattern of functional maturation of nAChRs in ventral, but not dorsal, striatum. In males, but not females, there were significant changes in both nicotine potency and efficacy during this developmental period. These findings suggest that nAChRs may play critical functional roles throughout DA neuronal maturation. PMID:17197101

  4. Neuroprotection of resveratrol against neurotoxicity induced by methamphetamine in mouse mesencephalic dopaminergic neurons.

    PubMed

    Sun, Dong; Yue, Qingwei; Guo, Weihua; Li, Tao; Zhang, Jing; Li, Guibao; Liu, Zengxun; Sun, Jinhao

    2015-01-01

    Resveratrol is originally extracted from huzhang, a Chinese herbal medicine. Recently, resveratrol has attracted a great of attention due to its antioxidant and antiapoptotic properties. Although the neuroprotection of resveratrol on neural damages in various models has been well characterized, little is known about the role of resveratrol in methamphetamine (MA) induced neurotoxicity in mesencephalic dopaminergic neurons. Dopaminergic neurons were isolated from midbrain of mouse embryos at embryonic day 15 and cultured in the presence of MA and resveratrol. Cell viability was examined by MTT assay and the apoptosis was assessed using Hoechst33342/PI double staining. To evaluate the Oxidative damage, ROS assay was performed. Moreover, the changes of time course of intracellular free calcium concentration ([Ca(2+) ]i) were analyzed with Fluo-3/AM tracing. The data showed that MA induced the neurotoxicity of cultured cells in a dose-dependent manner. Resveratrol significantly increased cellular viability and retarded cell apoptosis. Furthermore, resveratrol also attenuated MA induced ROS production and intracellular free calcium overload. Our results suggest that resveratrol protects dopaminergic neurons from MA-induced neuronal cytotoxicity, which, at least partly, is mediated by inhibition of [Ca(2+) ]i and oxidative stress. © 2015 BioFactors 41(4):252-260, 2015.

  5. ETHANOL ACTION ON DOPAMINERGIC NEURONS IN THE VENTRAL TEGMENTAL AREA: INTERACTION WITH INTRINSIC ION CHANNELS AND NEUROTRANSMITTER INPUTS

    PubMed Central

    Morikawa, Hitoshi; Morrisett, Richard A.

    2010-01-01

    The dopaminergic system originating in the midbrain ventral tegmental area (VTA) has been extensively studied over the past decades as a critical neural substrate involved in the development of alcoholism and addiction to other drugs of abuse. Accumulating evidence indicates that ethanol modulates the functional output of this system by directly affecting the firing activity of VTA dopamine neurons, whereas withdrawal from chronic ethanol exposure leads to a reduction in the functional output of these neurons. This chapter will provide an update on the mechanistic investigations of the acute ethanol action on dopamine neuron activity and the neuroadaptations/plasticities in the VTA produced by previous ethanol experience. PMID:20813245

  6. A PBX1 transcriptional network controls dopaminergic neuron development and is impaired in Parkinson's disease.

    PubMed

    Villaescusa, J Carlos; Li, Bingsi; Toledo, Enrique M; Rivetti di Val Cervo, Pia; Yang, Shanzheng; Stott, Simon Rw; Kaiser, Karol; Islam, Saiful; Gyllborg, Daniel; Laguna-Goya, Rocio; Landreh, Michael; Lönnerberg, Peter; Falk, Anna; Bergman, Tomas; Barker, Roger A; Linnarsson, Sten; Selleri, Licia; Arenas, Ernest

    2016-09-15

    Pre-B-cell leukemia homeobox (PBX) transcription factors are known to regulate organogenesis, but their molecular targets and function in midbrain dopaminergic neurons (mDAn) as well as their role in neurodegenerative diseases are unknown. Here, we show that PBX1 controls a novel transcriptional network required for mDAn specification and survival, which is sufficient to generate mDAn from human stem cells. Mechanistically, PBX1 plays a dual role in transcription by directly repressing or activating genes, such as Onecut2 to inhibit lateral fates during embryogenesis, Pitx3 to promote mDAn development, and Nfe2l1 to protect from oxidative stress. Notably, PBX1 and NFE2L1 levels are severely reduced in dopaminergic neurons of the substantia nigra of Parkinson's disease (PD) patients and decreased NFE2L1 levels increases damage by oxidative stress in human midbrain cells. Thus, our results reveal novel roles for PBX1 and its transcriptional network in mDAn development and PD, opening the door for new therapeutic interventions.

  7. Wnt5a Regulates Ventral Midbrain Morphogenesis and the Development of A9–A10 Dopaminergic Cells In Vivo

    PubMed Central

    Andersson, Emma R.; Prakash, Nilima; Bryja, Vitezslav; Bryjova, Lenka; Yamaguchi, Terry P.; Hall, Anita C.

    2008-01-01

    Wnt5a is a morphogen that activates the Wnt/planar cell polarity (PCP) pathway and serves multiple functions during development. PCP signaling controls the orientation of cells within an epithelial plane as well as convergent extension (CE) movements. Wnt5a was previously reported to promote differentiation of A9–10 dopaminergic (DA) precursors in vitro. However, the signaling mechanism in DA cells and the function of Wnt5a during midbrain development in vivo remains unclear. We hereby report that Wnt5a activated the GTPase Rac1 in DA cells and that Rac1 inhibitors blocked the Wnt5a-induced DA neuron differentiation of ventral midbrain (VM) precursor cultures, linking Wnt5a-induced differentiation with a known effector of Wnt/PCP signaling. In vivo, Wnt5a was expressed throughout the VM at embryonic day (E)9.5, and was restricted to the VM floor and basal plate by E11.5–E13.5. Analysis of Wnt5a−/− mice revealed a transient increase in progenitor proliferation at E11.5, and a precociously induced NR4A2+ (Nurr1) precursor pool at E12.5. The excess NR4A2+ precursors remained undifferentiated until E14.5, when a transient 25% increase in DA neurons was detected. Wnt5a−/− mice also displayed a defect in (mid)brain morphogenesis, including an impairment in midbrain elongation and a rounded ventricular cavity. Interestingly, these alterations affected mostly cells in the DA lineage. The ventral Sonic hedgehog-expressing domain was broadened and flattened, a typical CE phenotype, and the domains occupied by Ngn2+ DA progenitors, NR4A2+ DA precursors and TH+ DA neurons were rostrocaudally reduced and laterally expanded. In summary, we hereby describe a Wnt5a regulation of Wnt/PCP signaling in the DA lineage and provide evidence for multiple functions of Wnt5a in the VM in vivo, including the regulation of VM morphogenesis, DA progenitor cell division, and differentiation of NR4A2+ DA precursors. PMID:18953410

  8. Effects of molindone on central dopaminergic neuronal activity and metabolism: similarity to other neuroleptics.

    PubMed

    Bunney, B S; Roth, R H; Aghajanian, G K

    1975-01-01

    The effect of molindone on the activity of dopaminergic (DA) neurons in the rat midbrain and on DA metabolism in the striatum and olfactory tubercles was studied using extracellular single unit recording and biochemical techniques respectively. Molindone in low intravenous doses (0.4-0.8 mg/kg) was found to reverse d-amphetamine and apomorphine induced depression of DA neurons and to block apomorphine induced depression of these cells. Molindone was also found to increase dopamine synthesis and dihydroxyphenylactic acid levels in the striatum and olfacotry tubercles. In all of these respects molindone behaves identically to most classical neuroleptics. However, unlike most antipsychotic drugs previously tested, molindone failed to increase the baseline firing rate of DA cells and blocked haloperidol induced increases in DA neuron activity. In this regard molindone most closely resembles thioridazine and clozapine. Possible mechanisms of action of molindone are discussed based on these findings.

  9. Differentiation and Characterization of Dopaminergic Neurons From Baboon Induced Pluripotent Stem Cells

    PubMed Central

    Grow, Douglas A.; Simmons, DeNard V.; Gomez, Jorge A.; Wanat, Matthew J.; McCarrey, John R.; Paladini, Carlos A.

    2016-01-01

    The progressive death of dopamine producing neurons in the substantia nigra pars compacta is the principal cause of symptoms of Parkinson’s disease (PD). Stem cells have potential therapeutic use in replacing these cells and restoring function. To facilitate development of this approach, we sought to establish a preclinical model based on a large nonhuman primate for testing the efficacy and safety of stem cell-based transplantation. To this end, we differentiated baboon fibroblast-derived induced pluripotent stem cells (biPSCs) into dopaminergic neurons with the application of specific morphogens and growth factors. We confirmed that biPSC-derived dopaminergic neurons resemble those found in the human midbrain based on cell type-specific expression of dopamine markers TH and GIRK2. Using the reverse transcriptase quantitative polymerase chain reaction, we also showed that biPSC-derived dopaminergic neurons express PAX6, FOXA2, LMX1A, NURR1, and TH genes characteristic of this cell type in vivo. We used perforated patch-clamp electrophysiology to demonstrate that biPSC-derived dopaminergic neurons fired spontaneous rhythmic action potentials and high-frequency action potentials with spike frequency adaption upon injection of depolarizing current. Finally, we showed that biPSC-derived neurons released catecholamines in response to electrical stimulation. These results demonstrate the utility of the baboon model for testing and optimizing the efficacy and safety of stem cell-based therapeutic approaches for the treatment of PD. Significance Functional dopamine neurons were produced from baboon induced pluripotent stem cells, and their properties were compared to baboon midbrain cells in vivo. The baboon has advantages as a clinically relevant model in which to optimize the efficacy and safety of stem cell-based therapies for neurodegenerative diseases, such as Parkinson's disease. Baboons possess crucial neuroanatomical and immunological similarities to humans, and

  10. Sirt3 Protects Dopaminergic Neurons from Mitochondrial Oxidative Stress.

    PubMed

    Shi, Han; Deng, Han-Xiang; Gius, David; Schumacker, Paul T; James Surmeier, D; Ma, Yong-Chao

    2017-03-24

    Age-dependent elevation in mitochondrial oxidative stress is widely posited to be a major factor underlying the loss of substantia nigra pars compacta (SNc) dopaminergic neurons in Parkinson's disease (PD). However, mechanistic links between aging and oxidative stress are not well understood. Sirtuin-3 (Sirt3) is a mitochondrial deacetylase that could mediate this connection. Indeed, genetic deletion of Sirt3 increased oxidative stress and decreased the membrane potential of mitochondria in SNc dopaminergic neurons. This change was attributable to increased acetylation and decreased activity of manganese superoxide dismutase (MnSOD). Site directed mutagenesis of lysine 68 to glutamine (K68Q), mimicking acetylation, decreased MnSOD activity in SNc dopaminergic neurons, whereas mutagenesis of lysine 68 to arginine (K68R), mimicking deacetylation, increased activity. Introduction of K68R MnSOD rescued mitochondrial redox status and membrane potential of SNc dopaminergic neurons from Sirt3 knockouts. Moreover, deletion of DJ-1, which helps orchestrate nuclear oxidant defenses, and Sirt3 in mice led to a clear age-related loss of SNc dopaminergic neurons. Lastly, K68 acetylation of MnSOD was significantly increased in the SNc of PD patients. Taken together, our studies suggest that an age-related decline in Sirt3 protective function is a major factor underlying increasing mitochondrial oxidative stress and loss of SNc dopaminergic neurons in PD.

  11. Proneural Transcription Factor Atoh1 Drives Highly Efficient Differentiation of Human Pluripotent Stem Cells Into Dopaminergic Neurons

    PubMed Central

    Sagal, Jonathan; Zhan, Xiping; Xu, Jinchong; Tilghman, Jessica; Karuppagounder, Senthilkumar S.; Chen, Li; Dawson, Valina L.; Dawson, Ted M.; Laterra, John

    2014-01-01

    Human pluripotent stem cells (PSCs) are a promising cell resource for various applications in regenerative medicine. Highly efficient approaches that differentiate human PSCs into functional lineage-specific neurons are critical for modeling neurological disorders and testing potential therapies. Proneural transcription factors are crucial drivers of neuron development and hold promise for driving highly efficient neuronal conversion in PSCs. Here, we study the functions of proneural transcription factor Atoh1 in the neuronal differentiation of PSCs. We show that Atoh1 is induced during the neuronal conversion of PSCs and that ectopic Atoh1 expression is sufficient to drive PSCs into neurons with high efficiency. Atoh1 induction, in combination with cell extrinsic factors, differentiates PSCs into functional dopaminergic (DA) neurons with >80% purity. Atoh1-induced DA neurons recapitulate key biochemical and electrophysiological features of midbrain DA neurons, the degeneration of which is responsible for clinical symptoms in Parkinson’s disease (PD). Atoh1-induced DA neurons provide a reliable disease model for studying PD pathogenesis, such as neurotoxin-induced neurodegeneration in PD. Overall, our results determine the role of Atoh1 in regulating neuronal differentiation and neuron subtype specification of human PSCs. Our Atoh1-mediated differentiation approach will enable large-scale applications of PD patient-derived midbrain DA neurons in mechanistic studies and drug screening for both familial and sporadic PD. PMID:24904172

  12. Natural apoptosis in developing mice dopamine midbrain neurons and vermal Purkinje cells.

    PubMed

    Martí-Clúa, J

    2016-01-01

    Natural cell death by apoptosis was studied in two neuronal populations of BALB/c, C57BL/6 and B6CBA-Aw-j/A hybrid stock mice: (I) dopaminergic (DA) neurons in choosing coronal levels throughout the anteroposterior extent of the substantia nigra pars compacta (SNc), and (II) Purkinje cells (PCs) in each vermal lobe of the cerebellar cortex. Mice were collected at postnatal day (P) 2 and P14 for the midbrain study, and at P4 and P7 for the analysis of the cerebellum. No DA cells with morphologic criteria for apoptosis were found. Moreover, when the combination of tyrosine hydroxylase and TUNEL or tyrosine hydroxylase and active caspase-3 immunohistochemistry were performed in the same tissue section, no DA cells TUNEL positives or active caspase-3-stained DA neurons were seen. On the other hand, when PCs were considered, data analysis revealed that more dying PCs were observed at P4 than at P7. Values of neuron death were highest in the central lobe; this was followed by the posterior and anterior lobes and then by the inferior lobe. To determine if apoptotic death of PCs is linked to their time-of-origin profiles, pregnant dams were administered with [3H]TdR on embryonic days 11-12, 12-13, 13-14 and 14-15. When TUNEL and [3H]TdR autoradiography or active caspase-3 immunohistochemistry and [3H]TdR autoradiography were combined in the same tissue section, results reveal that the naturally occurring PC death is not related to its time of origin but, rather, is random across age.

  13. Ghrelin inhibits LPS-induced release of IL-6 from mouse dopaminergic neurones

    PubMed Central

    2013-01-01

    Background Ghrelin is an orexigenic stomach hormone that acts centrally to increase mid-brain dopamine neurone activity, amplify dopamine signaling and protect against neurotoxin-induced dopamine cell death in the mouse substantia nigra pars compacta (SNpc). In addition, ghrelin inhibits the lipopolysaccharide (LPS)-induced release of pro-inflammatory cytokines from peripheral macrophages, T-cells and from LPS stimulated microglia. Here we sought to determine whether ghrelin attenuates pro-inflammatory cytokine release from dopaminergic neurones. Findings The dopaminergic SN4741 cell-line, which derives from the mouse substantia nigra (SN) and expresses the ghrelin-receptor (growth hormone secretagogue receptor (GHS-R)) and the ghrelin-O-acyl transferase (GOAT) enzyme, was used to determine the neuro-immunomodulatory action of ghrelin. We induced innate immune activation via LPS challenge (1 μg/ml) of SN4741 neurones that had been pre-cultured in the presence or absence of ghrelin (1, 10, 100 nM) for 4 h. After 24 h supernatants were collected for detection of IL-1 beta (IL-1β ), TNF alpha (TNF-α) and IL-6 cytokines via enzyme linked immunosorbent assay (ELISA) analysis. Nuclear translocation of the transcription factor nuclear factor kappa B (NF-κB) was analyzed by Western blotting, and to determine viability of treatments a cell viability assay and caspase-3 immunohistochemistry were performed. We provide evidence that while IL-1β and TNF-α were not detectable under any conditions, SN4741 neurones constitutively released IL-6 under basal conditions and treatment with LPS significantly increased IL-6 secretion. Pre-treatment of neurones with ghrelin attenuated LPS-mediated IL-6 release at 24 h, an affect that was inhibited by the GHS-R antagonist [D-Lys3]-GHRP-6. However, while ghrelin pre-treatment attenuated the LPS-mediated increase in NF-κB, there was no alteration in its nuclear translocation. Cell viability assay and caspase-3 immunocytochemistry

  14. Ghrelin inhibits LPS-induced release of IL-6 from mouse dopaminergic neurones.

    PubMed

    Beynon, Amy L; Brown, M Rowan; Wright, Rhiannon; Rees, Mark I; Sheldon, I Martin; Davies, Jeffrey S

    2013-03-19

    Ghrelin is an orexigenic stomach hormone that acts centrally to increase mid-brain dopamine neurone activity, amplify dopamine signaling and protect against neurotoxin-induced dopamine cell death in the mouse substantia nigra pars compacta (SNpc). In addition, ghrelin inhibits the lipopolysaccharide (LPS)-induced release of pro-inflammatory cytokines from peripheral macrophages, T-cells and from LPS stimulated microglia. Here we sought to determine whether ghrelin attenuates pro-inflammatory cytokine release from dopaminergic neurones. The dopaminergic SN4741 cell-line, which derives from the mouse substantia nigra (SN) and expresses the ghrelin-receptor (growth hormone secretagogue receptor (GHS-R)) and the ghrelin-O-acyl transferase (GOAT) enzyme, was used to determine the neuro-immunomodulatory action of ghrelin. We induced innate immune activation via LPS challenge (1 μg/ml) of SN4741 neurones that had been pre-cultured in the presence or absence of ghrelin (1, 10, 100 nM) for 4 h. After 24 h supernatants were collected for detection of IL-1 beta (IL-1β ), TNF alpha (TNF-α) and IL-6 cytokines via enzyme linked immunosorbent assay (ELISA) analysis. Nuclear translocation of the transcription factor nuclear factor kappa B (NF-κB) was analyzed by Western blotting, and to determine viability of treatments a cell viability assay and caspase-3 immunohistochemistry were performed.We provide evidence that while IL-1β and TNF-α were not detectable under any conditions, SN4741 neurones constitutively released IL-6 under basal conditions and treatment with LPS significantly increased IL-6 secretion. Pre-treatment of neurones with ghrelin attenuated LPS-mediated IL-6 release at 24 h, an affect that was inhibited by the GHS-R antagonist [D-Lys3]-GHRP-6. However, while ghrelin pre-treatment attenuated the LPS-mediated increase in NF-κB, there was no alteration in its nuclear translocation. Cell viability assay and caspase-3 immunocytochemistry demonstrated that the

  15. VTA dopaminergic neurons regulate ethologically relevant sleep–wake behaviors

    PubMed Central

    Eban-Rothschild, Ada; Rothschild, Gideon; Giardino, William J; Jones, Jeff R; de Lecea, Luis

    2017-01-01

    Dopaminergic ventral tegmental area (VTA) neurons are critically involved in a variety of behaviors that rely on heightened arousal, but whether they directly and causally control the generation and maintenance of wakefulness is unknown. We recorded calcium activity using fiber photometry in freely behaving mice and found arousal-state-dependent alterations in VTA dopaminergic neurons. We used chemogenetic and optogenetic manipulations together with polysomnographic recordings to demonstrate that VTA dopaminergic neurons are necessary for arousal and that their inhibition suppresses wakefulness, even in the face of ethologically relevant salient stimuli. Nevertheless, before inducing sleep, inhibition of VTA dopaminergic neurons promoted goal-directed and sleep-related nesting behavior. Optogenetic stimulation, in contrast, initiated and maintained wakefulness and suppressed sleep and sleep-related nesting behavior. We further found that different projections of VTA dopaminergic neurons differentially modulate arousal. Collectively, our findings uncover a fundamental role for VTA dopaminergic circuitry in the maintenance of the awake state and ethologically relevant sleep-related behaviors. PMID:27595385

  16. Detailed Analysis of the Genetic and Epigenetic Signatures of iPSC-Derived Mesodiencephalic Dopaminergic Neurons

    PubMed Central

    Roessler, Reinhard; Smallwood, Sebastien A.; Veenvliet, Jesse V.; Pechlivanoglou, Petros; Peng, Su-Ping; Chakrabarty, Koushik; Groot-Koerkamp, Marian J.A.; Pasterkamp, R. Jeroen; Wesseling, Evelyn; Kelsey, Gavin; Boddeke, Erik; Smidt, Marten P.; Copray, Sjef

    2014-01-01

    Summary Induced pluripotent stem cells (iPSCs) hold great promise for in vitro generation of disease-relevant cell types, such as mesodiencephalic dopaminergic (mdDA) neurons involved in Parkinson’s disease. Although iPSC-derived midbrain DA neurons have been generated, detailed genetic and epigenetic characterizations of such neurons are lacking. The goal of this study was to examine the authenticity of iPSC-derived DA neurons obtained by established protocols. We FACS purified mdDA (Pitx3Gfp/+) neurons derived from mouse iPSCs and primary mdDA (Pitx3Gfp/+) neurons to analyze and compare their genetic and epigenetic features. Although iPSC-derived DA neurons largely adopted characteristics of their in vivo counterparts, relevant deviations in global gene expression and DNA methylation were found. Hypermethylated genes, mainly involved in neurodevelopment and basic neuronal functions, consequently showed reduced expression levels. Such abnormalities should be addressed because they might affect unambiguous long-term functionality and hamper the potential of iPSC-derived DA neurons for in vitro disease modeling or cell-based therapy. PMID:24749075

  17. Midbrain and forebrain patterning delivers immunocytochemically and functionally similar populations of neuropeptide Y containing GABAergic neurons.

    PubMed

    Khaira, S K; Nefzger, C M; Beh, S J; Pouton, C W; Haynes, J M

    2011-09-01

    Neurons differentiated in vitro from embryonic stem cells (ESCs) have the potential to serve both as models of disease states and in drug discovery programs. In this study, we use sonic hedgehog (SHH) and fibroblast growth factor 8 (FGF-8) to enrich for forebrain and midbrain phenotypes from mouse ESCs. We then investigate, using Ca(2+) imaging and [(3)H]-GABA release studies, whether the GABAergic neurons produced exhibit distinct functional phenotypes. At day 24 of differentiation, reverse transcriptase-PCR showed the presence of both forebrain (Bf-1, Hesx1, Pgc-1α, Six3) and midbrain (GATA2, GATA3) selective mRNA markers in developing forebrain-enriched cultures. All markers were present in midbrain cultures except for Bf-1 and Pgc-1α. Irrespective of culture conditions all GABA immunoreactive neurons were also immunoreactive to neuropeptide Y (NPY) antibodies. Forebrain and midbrain GABAergic neurons responded to ATP (1 mM), L-glutamate (30 μM), noradrenaline (30 μM), acetylcholine (30 μM) and dopamine (30 μM), with similar elevations of intracellular Ca(2+)([Ca(2+)](i)). The presence of GABA(A) and GABA(B) antagonists, bicuculline (30 μM) and CGP55845 (1 μM), increased the elevation of [Ca(2+)](i) in response to dopamine (30 μM) in midbrain, but not forebrain GABAergic neurons. All agonists, except dopamine, elicited similar [(3)H]-GABA release from forebrain and midbrain cultures. Dopamine (30 μM) did not stimulate significant [(3)H]-GABA release in midbrain cultures, although it was effective in forebrain cultures. This study shows that differentiating neurons toward a midbrain fate restricts the expression of forebrain markers. Forebrain differentiation results in the expression of forebrain and midbrain markers. All GABA(+) neurons contain NPY, and show similar agonist-induced elevations of [Ca(2+)](i) and [(3)H]-GABA release. This study indicates that the pharmacological phenotype of these particular neurons may be independent of the addition of

  18. Transient high-frequency firing in a coupled-oscillator model of the mesencephalic dopaminergic neuron.

    PubMed

    Kuznetsov, Alexey S; Kopell, Nancy J; Wilson, Charles J

    2006-02-01

    Dopaminergic neurons of the midbrain fire spontaneously at rates <10/s and ordinarily will not exceed this range even when driven with somatic current injection. When driven at higher rates, these cells undergo spike failure through depolarization block. During spontaneous bursting of dopaminergic neurons in vivo, bursts related to reward expectation in behaving animals, and bursts generated by dendritic application of N-methyl-d-aspartate (NMDA) agonists, transient firing attains rates well above this range. We suggest a way such high-frequency firing may occur in response to dendritic NMDA receptor activation. We have extended the coupled oscillator model of the dopaminergic neuron, which represents the soma and dendrites as electrically coupled compartments with different natural spiking frequencies, by addition of dendritic AMPA (voltage-independent) or NMDA (voltage-dependent) synaptic conductance. Both soma and dendrites contain a simplified version of the calcium-potassium mechanism known to be the mechanism for slow spontaneous oscillation and background firing in dopaminergic cells. The compartments differ only in diameter, and this difference is responsible for the difference in natural frequencies. We show that because of its voltage dependence, NMDA receptor activation acts to amplify the effect on the soma of the high-frequency oscillation of the dendrites, which is normally too weak to exert a large influence on the overall oscillation frequency of the neuron. During the high-frequency oscillations that result, sodium inactivation in the soma is removed rapidly after each action potential by the hyperpolarizing influence of the dendritic calcium-dependent potassium current, preventing depolarization block of the spike mechanism, and allowing high-frequency spiking.

  19. Dopamine selectively sensitizes dopaminergic neurons to rotenone-induced apoptosis.

    PubMed

    Ahmadi, Ferogh A; Grammatopoulos, Tom N; Poczobutt, Andy M; Jones, Susan M; Snell, Laurence D; Das, Mita; Zawada, W Michael

    2008-05-01

    Among various types of neurons affected in Parkinson's disease, dopamine (DA) neurons of the substantia nigra undergo the most pronounced degeneration. Products of DA oxidation and consequent cellular damage have been hypothesized to contribute to neuronal death. To examine whether elevated intracellular DA will selectively predispose the dopaminergic subpopulation of nigral neurons to damage by an oxidative insult, we first cultured rat primary mesencephalic cells in the presence of rotenone to elevate reactive oxygen species. Although MAP2(+) neurons were more sensitive to rotenone-induced toxicity than type 1 astrocytes, rotenone affected equally both DA (TH(+)) neurons and MAP2(+) neurons. In contrast, when intracellular DA concentration was elevated, DA neurons became selectively sensitized to rotenone. Raising intracellular DA levels in primary DA neurons resulted in dopaminergic neuron death in the presence of subtoxic concentrations of rotenone. Furthermore, mitochondrial superoxide dismutase mimetic, manganese (III) meso-tetrakis (4-benzoic acid) porphyrin, blocked activation of caspase-3, and consequent cell death. Our results demonstrate that an inhibitor of mitochondrial complex I and increased cytosolic DA may cooperatively lead to conditions of elevated oxidative stress and thereby promote selective demise of dopaminergic neurons.

  20. Regulation of dopamine quantal size in midbrain and hippocampal neurons.

    PubMed

    Pothos, Emmanuel N

    2002-03-10

    Since the pioneering work of Bernard Katz and his colleagues decades ago, neurotransmitter quantal size (defined as the number of neurotransmitter molecules released by a single synaptic vesicle during exocytosis) is often modeled as invariant. This assumption had tremendous implications for basic research on synaptic plasticity. For instance, it focused attention on the postsynaptic rather than the presynaptic component in studies of learning and memory (the field of long-term potentiation comes to mind as the best example). Furthermore, this assumption somehow 'spilled over' onto studies of monoamine neurotransmitters, which apparently use diffusion and slow action to exert their modulatory effects, in contrast to the fast acting neurotransmitters studied by Katz. Consequently, research on dopamine-related diseases (e.g. psychotic and movement disorders) did not pay as much attention to presynaptic mechanisms that regulate dopamine release, as to postsynaptic receptor action. Part of the problem, of course, has been the lack of technology to directly measure quanta from presynaptic sites and the obligatory reliance on measurements of miniature postsynaptic potentials (minis) for reaching conclusions about presynaptic quantal events. Due to the introduction of the carbon fiber amperometric microelectrode in tissue electrophysiology, initially by Francois Gonon (University of Bordeaux) and then by Mark Wightman (University of North Carolina), we were able to directly measure dopamine quanta from neurites of cultured midbrain dopamine neurons by amperometry. This was the first approach to provide direct measurement of the number of molecules and kinetics of presynaptic quantal release from CNS neuronal terminals. The interventions altering dopamine quantal size are so far the following. (1) Alteration of neurotransmitter synthesis--an increase of cytosolic dopamine availability (e.g. by exposure to L-DOPA) increases quantal size and a decrease of cytosolic dopamine

  1. [Effect of interrupting hippocampal connections on the neuronal activity of several midbrain nuclei].

    PubMed

    Kichigina, V F; Vinogradova, O S

    1979-01-01

    Experiments were performed on unanaesthetized rabbits with intact brain and with septo-hippocampal disconnection depriving midbrain structures of descending hippocampal influences. General characteristics of neuronal reactions in midbrain raphe (MR) and ventral tegmental nucleus (VT) did not change following deafferentation. The level of reactivity increased in VT and decreased in MR. The mean latencies of on-responses in MR became longer (15,5 msec for auditory stimuli versus 10,5 msec in intact brain); in VT they became shorter (14,5 msec versus 17 msec). Habituation of reactions, normally present in about half of neurones, disappeared. Neurones with incremental responses gradually increasing in strength and duration were observed. Complex functional relations between the hippocampus and unspecific midbrain structures are discussed.

  2. Dissecting the role of Engrailed in adult dopaminergic neurons--Insights into Parkinson disease pathogenesis.

    PubMed

    Rekaik, Hocine; Blaudin de Thé, François-Xavier; Prochiantz, Alain; Fuchs, Julia; Joshi, Rajiv L

    2015-12-21

    The homeoprotein Engrailed (Engrailed-1/Engrailed-2, collectively En1/2) is not only a survival factor for mesencephalic dopaminergic (mDA) neurons during development, but continues to exert neuroprotective and physiological functions in adult mDA neurons. Loss of one En1 allele in the mouse leads to progressive demise of mDA neurons in the ventral midbrain starting from 6 weeks of age. These mice also develop Parkinson disease-like motor and non-motor symptoms. The characterization of En1 heterozygous mice have revealed striking parallels to central mechanisms of Parkinson disease pathogenesis, mainly related to mitochondrial dysfunction and retrograde degeneration. Thanks to the ability of homeoproteins to transduce cells, En1/2 proteins have also been used to protect mDA neurons in various experimental models of Parkinson disease. This neuroprotection is partly linked to the ability of En1/2 to regulate the translation of certain nuclear-encoded mitochondrial mRNAs for complex I subunits. Other transcription factors that govern mDA neuron development (e.g. Foxa1/2, Lmx1a/b, Nurr1, Otx2, Pitx3) also continue to function for the survival and maintenance of mDA neurons in the adult and act through partially overlapping but also diverse mechanisms.

  3. Differentiation of Neural Precursors and Dopaminergic Neurons from Human Embryonic Stem Cells

    PubMed Central

    Zhang, Xiao-Qing; Zhang, Su-Chun

    2010-01-01

    Directed differentiation of human embryonic stem cells (hESCs) to a functional cell type, including neurons, is the foundation for application of hESCs. We describe here a reproducible, chemically-defined protocol that allows directed differentiation of hESCs to nearly pure neuroectodermal cells and neurons. First, hESC colonies are detached from mouse fibroblast feeder layers and form aggregates to initiate the differentiation procedure. Second, after 4 days of suspension culture, the ESC growth medium is replaced with neural induction medium to guide neuroectodermal specification. Third, the differentiating hESC aggregates are attached onto the culture surface at day 6-7, where columnar neural epithelial cells appear and organize into rosettes. Fourth, the neural rosettes are enriched by detaching rosettes and leaving the peripheral flat cells attached, and expanded as neuroepithelial aggregates in the same medium. Finally, the neuroepithelial aggregates are dissociated and differentiated to nearly pure neurons. This stepwise differentiation protocol results in the generation of primitive neuroepithelia at day 8-10, neural progenitors at the 2nd and 3rd week, and postmitotic neurons at the 4th week, which mirrors the early phase of neural development in a human embryo. Identification of the primitive neuroepithelial cells permits efficient patterning of region-specific progenitors and neuronal subtypes such as midbrain dopaminergic neurons. PMID:19907987

  4. X-ray fluorescence analysis of iron and manganese distribution in primary dopaminergic neurons

    PubMed Central

    Dučić, Tanja; Barski, Elisabeth; Salome, Murielle; Koch, Jan C; Bähr, Mathias; Lingor, Paul

    2013-01-01

    Transition metals have been suggested to play a pivotal role in the pathogenesis of Parkinson's disease. X-ray microscopy combined with a cryogenic setup is a powerful method for elemental imaging in low concentrations and high resolution in intact cells, eliminating the need for fixation and sectioning of the specimen. Here, we performed an elemental distribution analysis in cultured primary midbrain neurons with a step size in the order of 300 nm and ∼ 0.1 ppm sensitivity under cryo conditions by using X-ray fluorescence microscopy. We report the elemental mappings on the subcellular level in primary mouse dopaminergic (DAergic) and non-DAergic neurons after treatment with transition metals. Application of Fe2+ resulted in largely extracellular accumulation of iron without preference for the neuronal transmitter subtype. A quantification of different Fe oxidation states was performed using X-ray absorption near edge structure analysis. After treatment with Mn2+, a cytoplasmic/paranuclear localization of Mn was observed preferentially in DAergic neurons, while no prominent signal was detectable after Mn3+ treatment. Immunocytochemical analysis correlated the preferential Mn uptake to increased expression of voltage-gated calcium channels in DAergic neurons. We discuss the implications of this differential elemental distribution for the selective vulnerability of DAergic neurons and Parkinson's disease pathogenesis. PMID:23106162

  5. Correlation between dopaminergic phenotype and expression of calretinin in the midbrain nuclei of the opossum (Monodelphis domestica): an immunohistological study.

    PubMed

    Klejbor, Ilona; Ludkiewicz, Beata; Wojcik, Sławomir; Turlejski, Krzysztof

    2013-01-01

    We investigated distribution and morphology of neurons of the midbrain nuclei: the ventral tegmental area (VTA), substantia nigra (SN) and periaqueductal gray (PAG) of the adult grey short-tailed opossums that were double immunolabeled for the presence of calretinin (CR) and/or tyrosine hydroxylase (TH). The majority of TH-immunopositive neurons and fibers were located in the VTA, SN, and only scarce population of small neurons expressing TH was present in the PAG. In the SN 80 percent of TH-expressing neurons had large cell bodies, and only a small fraction had small perikarya. In the PAG populations of large and medium sized neurons were equal and 20 percent of neurons had small perikarya. Much scarcer population of TH-immunoreactive neurons in the PAG consisted of large or small neurons in its dorsal part (PAGd) and almost exclusively small neurons in the ventral part (PAGv). Distribution of neurons expressing TH and their types in the opossum are similar to those in rodents. The majority of CR-immunolabeled neurons were found in the VTA. In its subdivision, the parabrachal pigmented nucleus (PBP) cells expressing CR were approximately 28 percent more numerous than cells expressing TH. In spite of that, only 42 percent of TH-expressing neurons coexpressed CR. The high degree of colocalization TH and CR was observed in the SN. We propose that a higher percentage of TH/CR colocalization, which is observed in the opossums SN, may give them the ability to adapt to changes in their motor functions.

  6. Human polymorphisms in nicotinic receptors: a functional analysis in iPS-derived dopaminergic neurons.

    PubMed

    Deflorio, Cristina; Blanchard, Stéphane; Carisì, Maria Carla; Bohl, Delphine; Maskos, Uwe

    2017-02-01

    Tobacco smoking is a public health problem, with ∼5 million deaths per year, representing a heavy burden for many countries. No effective therapeutic strategies are currently available for nicotine addiction, and it is therefore crucial to understand the etiological and pathophysiological factors contributing to this addiction. The neuronal α5 nicotinic acetylcholine receptor (nAChR) subunit is critically involved in nicotine dependence. In particular, the human polymorphism α5D398N corresponds to the strongest correlation with nicotine dependence risk found to date in occidental populations, according to meta-analysis of genome-wide association studies. To understand the specific contribution of this subunit in the context of nicotine addiction, an efficient screening system for native human nAChRs is needed. We have differentiated human induced pluripotent stem (iPS) cells into midbrain dopaminergic (DA) neurons and obtained a comprehensive characterization of these neurons by quantitative RT-PCR. The functional properties of nAChRs expressed in these human DA neurons, with or without the polymorphism in the α5 subunit, were studied with the patch-clamp electrophysiological technique. Our results in human DA neurons carrying the polymorphism in the α5 subunit showed an increase in EC50, indicating that, in the presence of the polymorphism, more nicotine or acetylcholine chloride is necessary to obtain the same effect. This human cell culturing system can now be used in drug discovery approaches to screen for compounds that interact specifically with human native and polymorphic nAChRs.-Deflorio, C., Blanchard, S., Carisì, M. C., Bohl, D., Maskos, U. Human polymorphisms in nicotinic receptors: a functional analysis in iPS-derived dopaminergic neurons.

  7. Dopaminergic neurons generated from monkey embryonic stem cells function in a Parkinson primate model.

    PubMed

    Takagi, Yasushi; Takahashi, Jun; Saiki, Hidemoto; Morizane, Asuka; Hayashi, Takuya; Kishi, Yo; Fukuda, Hitoshi; Okamoto, Yo; Koyanagi, Masaomi; Ideguchi, Makoto; Hayashi, Hideki; Imazato, Takayuki; Kawasaki, Hiroshi; Suemori, Hirofumi; Omachi, Shigeki; Iida, Hidehiko; Itoh, Nobuyuki; Nakatsuji, Norio; Sasai, Yoshiki; Hashimoto, Nobuo

    2005-01-01

    Parkinson disease (PD) is a neurodegenerative disorder characterized by loss of midbrain dopaminergic (DA) neurons. ES cells are currently the most promising donor cell source for cell-replacement therapy in PD. We previously described a strong neuralizing activity present on the surface of stromal cells, named stromal cell-derived inducing activity (SDIA). In this study, we generated neurospheres composed of neural progenitors from monkey ES cells, which are capable of producing large numbers of DA neurons. We demonstrated that FGF20, preferentially expressed in the substantia nigra, acts synergistically with FGF2 to increase the number of DA neurons in ES cell-derived neurospheres. We also analyzed the effect of transplantation of DA neurons generated from monkey ES cells into 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine-treated (MPTP-treated) monkeys, a primate model for PD. Behavioral studies and functional imaging revealed that the transplanted cells functioned as DA neurons and attenuated MPTP-induced neurological symptoms.

  8. Dopamine controls neurogenesis in the adult salamander midbrain in homeostasis and during regeneration of dopamine neurons.

    PubMed

    Berg, Daniel A; Kirkham, Matthew; Wang, Heng; Frisén, Jonas; Simon, András

    2011-04-08

    Appropriate termination of regenerative processes is critical for producing the correct number of cells in tissues. Here we provide evidence for an end-product inhibition of dopamine neuron regeneration that is mediated by dopamine. Ablation of midbrain dopamine neurons leads to complete regeneration in salamanders. Regeneration involves extensive neurogenesis and requires activation of quiescent ependymoglia cells, which express dopamine receptors. Pharmacological compensation for dopamine loss by L-dopa inhibits ependymoglia proliferation and regeneration in a dopamine receptor-signaling-dependent manner, specifically after ablation of dopamine neurons. Systemic administration of the dopamine receptor antagonist haloperidol alone causes ependymoglia proliferation and the appearance of excessive number of neurons. Our data show that stem cell quiescence is under dopamine control and provide a model for termination once normal homeostasis is restored. The findings establish a role for dopamine in the reversible suppression of neurogenesis in the midbrain and have implications for regenerative strategies in Parkinson's disease.

  9. Melanocortin 3 Receptor Signaling in Midbrain Dopamine Neurons Increases the Motivation for Food Reward.

    PubMed

    Pandit, Rahul; Omrani, Azar; Luijendijk, Mieneke C M; de Vrind, Véronne A J; Van Rozen, Andrea J; Ophuis, Ralph J A Oude; Garner, Keith; Kallo, Imre; Ghanem, Alexander; Liposits, Zsolt; Conzelmann, Karl-Klaus; Vanderschuren, Louk J M J; la Fleur, Susanne E; Adan, Roger A H

    2016-08-01

    The central melanocortin (MC) system mediates its effects on food intake via MC3 (MC3R) and MC4 receptors (MC4R). Although the role of MC4R in meal size determination, satiation, food preference, and motivation is well established, the involvement of MC3R in the modulation of food intake has been less explored. Here, we investigated the role of MC3R on the incentive motivation for food, which is a crucial component of feeding behavior. Dopaminergic neurons within the ventral tegmental area (VTA) have a crucial role in the motivation for food. We here report that MC3Rs are expressed on VTA dopaminergic neurons and that pro-opiomelanocortinergic (POMC) neurons in the arcuate nucleus of the hypothalamus (Arc) innervate these VTA dopaminergic neurons. Our findings show that intracerebroventricular or intra-VTA infusion of the selective MC3R agonist γMSH increases responding for sucrose under a progressive ratio schedule of reinforcement, but not free sucrose consumption in rats. Furthermore, ex vivo electrophysiological recordings show increased VTA dopaminergic neuronal activity upon γMSH application. Consistent with a dopamine-mediated effect of γMSH, the increased motivation for sucrose after intra-VTA infusion of γMSH was blocked by pretreatment with the dopamine receptor antagonist α-flupenthixol. Taken together, we demonstrate an Arc POMC projection onto VTA dopaminergic neurons that modulates motivation for palatable food via activation of MC3R signaling.

  10. Neuroprotection and neuronal differentiation studies using substantia nigra dopaminergic cells derived from transgenic mouse embryos.

    PubMed

    Son, J H; Chun, H S; Joh, T H; Cho, S; Conti, B; Lee, J W

    1999-01-01

    The major pathological lesion of Parkinson's disease (PD) is the selective cell death of dopaminergic (DA) neurons in substantia nigra (SN). Although the initial cause and subsequent molecular signaling mechanisms leading to DA cell death underlying the PD process remain elusive, brain-derived neurotrophic factor (BDNF) is thought to exert neuroprotective as well as neurotrophic roles for the survival and differentiation of DA neurons in SN. Addressing molecular mechanisms of BDNF action in both primary embryonic mesencephalic cultures and in vivo animal models has been technically difficult because DA neurons in SN are relatively rare and present with many heterogeneous cell populations in midbrain. We have developed and characterized a DA neuronal cell line of embryonic SN origin that is more accessible to molecular analysis and can be used as an in vitro model system for studying SN DA neurons. A clonal SN DA neuronal progenitor cell line SN4741, arrested at an early DA developmental stage, was established from transgenic mouse embryos containing the targeted expression of the thermolabile SV40Tag in SN DA neurons. The phenotypic and morphological differentiation of the SN4741 cells could be manipulated by environmental cues in vitro. Exogenous BDNF treatment produced significant neuroprotection against 1-methyl-4-phenylpyridinium, glutamate, and nitric oxide-induced neurotoxicity in the SN4741 cells. Simultaneous phosphorylation of receptor tyrosine kinase B accompanied the neuroprotection. This SN DA neuronal cell line provides a unique model system to circumvent the limitations associated with primary mesencephalic cultures for the elucidation of molecular mechanisms of BDNF action on DA neurons of the SN.

  11. Menthol Alone Upregulates Midbrain nAChRs, Alters nAChR Subtype Stoichiometry, Alters Dopamine Neuron Firing Frequency, and Prevents Nicotine Reward.

    PubMed

    Henderson, Brandon J; Wall, Teagan R; Henley, Beverley M; Kim, Charlene H; Nichols, Weston A; Moaddel, Ruin; Xiao, Cheng; Lester, Henry A

    2016-03-09

    Upregulation of β2 subunit-containing (β2*) nicotinic acetylcholine receptors (nAChRs) is implicated in several aspects of nicotine addiction, and menthol cigarette smokers tend to upregulate β2* nAChRs more than nonmenthol cigarette smokers. We investigated the effect of long-term menthol alone on midbrain neurons containing nAChRs. In midbrain dopaminergic (DA) neurons from mice containing fluorescent nAChR subunits, menthol alone increased the number of α4 and α6 nAChR subunits, but this upregulation did not occur in midbrain GABAergic neurons. Thus, chronic menthol produces a cell-type-selective upregulation of α4* nAChRs, complementing that of chronic nicotine alone, which upregulates α4 subunit-containing (α4*) nAChRs in GABAergic but not DA neurons. In mouse brain slices and cultured midbrain neurons, menthol reduced DA neuron firing frequency and altered DA neuron excitability following nAChR activation. Furthermore, menthol exposure before nicotine abolished nicotine reward-related behavior in mice. In neuroblastoma cells transfected with fluorescent nAChR subunits, exposure to 500 nm menthol alone also increased nAChR number and favored the formation of (α4)3(β2)2 nAChRs; this contrasts with the action of nicotine itself, which favors (α4)2(β2)3 nAChRs. Menthol alone also increases the number of α6β2 receptors that exclude the β3 subunit. Thus, menthol stabilizes lower-sensitivity α4* and α6 subunit-containing nAChRs, possibly by acting as a chemical chaperone. The abolition of nicotine reward-related behavior may be mediated through menthol's ability to stabilize lower-sensitivity nAChRs and alter DA neuron excitability. We conclude that menthol is more than a tobacco flavorant: administered alone chronically, it alters midbrain DA neurons of the nicotine reward-related pathway.

  12. Functional Rescue of Dopaminergic Neuron Loss in Parkinson's Disease Mice After Transplantation of Hematopoietic Stem and Progenitor Cells.

    PubMed

    Altarche-Xifro, Wassim; di Vicino, Umberto; Muñoz-Martin, Maria Isabel; Bortolozzi, Analía; Bové, Jordi; Vila, Miquel; Cosma, Maria Pia

    2016-06-01

    Parkinson's disease is a common neurodegenerative disorder, which is due to the loss of dopaminergic neurons in the substantia nigra pars compacta (SNpc) and for which no definitive cure is currently available. Cellular functions in mouse and human tissues can be restored after fusion of bone marrow (BM)-derived cells with a variety of somatic cells. Here, after transplantation of hematopoietic stem and progenitor cells (HSPCs) in the SNpc of two different mouse models of Parkinson's disease, we significantly ameliorated the dopaminergic neuron loss and function. We show fusion of transplanted HSPCs with neurons and with glial cells in the ventral midbrain of Parkinson's disease mice. Interestingly, the hybrids can undergo reprogramming in vivo and survived up to 4weeks after transplantation, while acquiring features of mature astroglia. These newly generated astroglia produced Wnt1 and were essential for functional rescue of the dopaminergic neurons. Our data suggest that glial-derived hybrids produced upon fusion of transplanted HSPCs in the SNpc can rescue the Parkinson's disease phenotype via a niche-mediated effect, and can be exploited as an efficient cell-therapy approach. Copyright © 2016 The Authors. Published by Elsevier B.V. All rights reserved.

  13. Transcription factors FOXA1 and FOXA2 maintain dopaminergic neuronal properties and control feeding behavior in adult mice

    PubMed Central

    Pristerà, Alessandro; Lin, Wei; Kaufmann, Anna-Kristin; Brimblecombe, Katherine R.; Threlfell, Sarah; Dodson, Paul D.; Magill, Peter J.; Fernandes, Cathy; Cragg, Stephanie J.; Ang, Siew-Lan

    2015-01-01

    Midbrain dopaminergic (mDA) neurons are implicated in cognitive functions, neuropsychiatric disorders, and pathological conditions; hence understanding genes regulating their homeostasis has medical relevance. Transcription factors FOXA1 and FOXA2 (FOXA1/2) are key determinants of mDA neuronal identity during development, but their roles in adult mDA neurons are unknown. We used a conditional knockout strategy to specifically ablate FOXA1/2 in mDA neurons of adult mice. We show that deletion of Foxa1/2 results in down-regulation of tyrosine hydroxylase, the rate-limiting enzyme of dopamine (DA) biosynthesis, specifically in dopaminergic neurons of the substantia nigra pars compacta (SNc). In addition, DA synthesis and striatal DA transmission were reduced after Foxa1/2 deletion. Furthermore, the burst-firing activity characteristic of SNc mDA neurons was drastically reduced in the absence of FOXA1/2. These molecular and functional alterations lead to a severe feeding deficit in adult Foxa1/2 mutant mice, independently of motor control, which could be rescued by l-DOPA treatment. FOXA1/2 therefore control the maintenance of molecular and physiological properties of SNc mDA neurons and impact on feeding behavior in adult mice. PMID:26283356

  14. Regional differences in the vulnerability of substantia nigra dopaminergic neurons in weaver mice.

    PubMed

    Marti, Joaquín; Santa-Cruz, María C; Molina, Vanessa; Serra, Roger; Bayer, Shirley A; Ghetti, Bernardino; Hervás, José P

    2009-01-01

    Vulnerability of midbrain dopaminergic (DA) neurons in the weaver mouse was studied at postnatal (P) days 8 and 90, in chosen coronal levels throughout the anteroposterior (AP) extent of the substantia nigra pars compacta (SNc). Wild-type (+/+) and homozygous weaver (wv/wv) mice used were the offspring of pregnant dams injected in several cases with tritiated thymidine on embryonic days 11-15. DA neurons were identified for their tyrosine hydroxylase immunoreactivity. Data reveal that at P8, the frequency of both +/+ and wv/wv late-generated DA cells increases from rostral to caudal SNc. No apparent DA-cell loss was observed at P8 in the mutant genotype, irrespective of the AP level considered. However, throughout the AP, there was a significant reduction in the number of these neurons at any level in 90-day-old weavers. Comparison of P8 and P90 +/+ SNc suggests that cell death is not a major aspect in the developmental regulation of normal DA neurons, although numerical cell depletion in the postnatal development of weaver SNc probably results from the amplification of a basal cell-death process, which affected all the coronal levels studied.

  15. Electrical and Ca2+ signaling in dendritic spines of substantia nigra dopaminergic neurons

    PubMed Central

    Hage, Travis A; Sun, Yujie; Khaliq, Zayd M

    2016-01-01

    Little is known about the density and function of dendritic spines on midbrain dopamine neurons, or the relative contribution of spine and shaft synapses to excitability. Using Ca2+ imaging, glutamate uncaging, fluorescence recovery after photobleaching and transgenic mice expressing labeled PSD-95, we comparatively analyzed electrical and Ca2+ signaling in spines and shaft synapses of dopamine neurons. Dendritic spines were present on dopaminergic neurons at low densities in live and fixed tissue. Uncaging-evoked potential amplitudes correlated inversely with spine length but positively with the presence of PSD-95. Spine Ca2+ signals were less sensitive to hyperpolarization than shaft synapses, suggesting amplification of spine head voltages. Lastly, activating spines during pacemaking, we observed an unexpected enhancement of spine Ca2+ midway throughout the spike cycle, likely involving recruitment of NMDA receptors and voltage-gated conductances. These results demonstrate functionality of spines in dopamine neurons and reveal a novel modulation of spine Ca2+ signaling during pacemaking. DOI: http://dx.doi.org/10.7554/eLife.13905.001 PMID:27163179

  16. Differential Neuronal Plasticity of Dental Pulp Stem Cells From Exfoliated Deciduous and Permanent Teeth Towards Dopaminergic Neurons.

    PubMed

    Majumdar, Debanjana; Kanafi, Mohammad; Bhonde, Ramesh; Gupta, Pawan; Datta, Indrani

    2016-09-01

    Based on early occurrence in chronological age, stem-cells from human exfoliated deciduous teeth (SHED) has been reported to possess better differentiation-potential toward certain cell-lineage in comparison to stem-cells from adult teeth (DPSCs). Whether this same property between them extends for the yield of functional central nervous system neurons is still not evaluated. Hence, we aim to assess the neuronal plasticity of SHED in comparison to DPSCs toward dopaminergic-neurons and further, if the difference is reflected in a differential expression of sonic-hedgehog (SHH)-receptors and basal-expressions of tyrosine-hydroxylase [TH; through cAMP levels]. Human SHED and DPSCs were exposed to midbrain-cues [SHH, fibroblast growth-factor8, and basic fibroblast growth-factor], and their molecular, immunophenotypical, and functional characterization was performed at different time-points of induction. Though SHED and DPSCs spontaneously expressed early-neuronal and neural-crest marker in their naïve state, only SHED expressed a high basal-expression of TH. The upregulation of dopaminergic transcription-factors Nurr1, Engrailed1, and Pitx3 was more pronounced in DPSCs. The yield of TH-expressing cells decreased from 49.8% to 32.16% in SHED while it increased from 8.09% to 77.47% in DPSCs. Dopamine release and intracellular-Ca(2+) influx upon stimulation (KCl and ATP) was higher in induced DPSCs. Significantly lower-expression of SHH-receptors was noted in naïve SHED than DPSCs, which may explain the differential neuronal plasticity. In addition, unlike DPSCs, SHED showed a down-regulation of cyclic adenosine-monophosphate (cAMP) upon exposure to SHH; possibly another contributor to the lesser differentiation-potential. Our data clearly demonstrates for the first time that DPSCs possess superior neuronal plasticity toward dopaminergic-neurons than SHED; influenced by higher SHH-receptor and lower basal TH expression. J. Cell. Physiol. 231: 2048-2063, 2016. © 2016

  17. Remote control of induced dopaminergic neurons in parkinsonian rats

    PubMed Central

    Dell’Anno, Maria Teresa; Caiazzo, Massimiliano; Leo, Damiana; Dvoretskova, Elena; Medrihan, Lucian; Colasante, Gaia; Giannelli, Serena; Theka, Ilda; Russo, Giovanni; Mus, Liudmila; Pezzoli, Gianni; Gainetdinov, Raul R.; Benfenati, Fabio; Taverna, Stefano; Dityatev, Alexander; Broccoli, Vania

    2014-01-01

    Direct lineage reprogramming through genetic-based strategies enables the conversion of differentiated somatic cells into functional neurons and distinct neuronal subtypes. Induced dopaminergic (iDA) neurons can be generated by direct conversion of skin fibroblasts; however, their in vivo phenotypic and functional properties remain incompletely understood, leaving their impact on Parkinson’s disease (PD) cell therapy and modeling uncertain. Here, we determined that iDA neurons retain a transgene-independent stable phenotype in culture and in animal models. Furthermore, transplanted iDA neurons functionally integrated into host neuronal tissue, exhibiting electrically excitable membranes, synaptic currents, dopamine release, and substantial reduction of motor symptoms in a PD animal model. Neuronal cell replacement approaches will benefit from a system that allows the activity of transplanted neurons to be controlled remotely and enables modulation depending on the physiological needs of the recipient; therefore, we adapted a DREADD (designer receptor exclusively activated by designer drug) technology for remote and real-time control of grafted iDA neuronal activity in living animals. Remote DREADD-dependent iDA neuron activation markedly enhanced the beneficial effects in transplanted PD animals. These data suggest that iDA neurons have therapeutic potential as a cell replacement approach for PD and highlight the applicability of pharmacogenetics for enhancing cellular signaling in reprogrammed cell–based approaches. PMID:24937431

  18. Direct conversion of human fibroblasts to dopaminergic neurons

    PubMed Central

    Pfisterer, Ulrich; Kirkeby, Agnete; Torper, Olof; Wood, James; Nelander, Jenny; Dufour, Audrey; Björklund, Anders; Lindvall, Olle; Jakobsson, Johan; Parmar, Malin

    2011-01-01

    Recent reports demonstrate that somatic mouse cells can be directly converted to other mature cell types by using combined expression of defined factors. Here we show that the same strategy can be applied to human embryonic and postnatal fibroblasts. By overexpression of the transcription factors Ascl1, Brn2, and Myt1l, human fibroblasts were efficiently converted to functional neurons. We also demonstrate that the converted neurons can be directed toward distinct functional neurotransmitter phenotypes when the appropriate transcriptional cues are provided together with the three conversion factors. By combining expression of the three conversion factors with expression of two genes involved in dopamine neuron generation, Lmx1a and FoxA2, we could direct the phenotype of the converted cells toward dopaminergic neurons. Such subtype-specific induced neurons derived from human somatic cells could be valuable for disease modeling and cell replacement therapy. PMID:21646515

  19. Immortalization of neuronal progenitors using SV40 large T antigen and differentiation towards dopaminergic neurons

    PubMed Central

    Alwin Prem Anand, A; Gowri Sankar, S; Kokila Vani, V

    2012-01-01

    Transplantation is common in clinical practice where there is availability of the tissue and organ. In the case of neurodegenerative disease such as Parkinson's disease (PD), transplantation is not possible as a result of the non-availability of tissue or organ and therefore, cell therapy is an innovation in clinical practice. However, the availability of neuronal cells for transplantation is very limited. Alternatively, immortalized neuronal progenitors could be used in treating PD. The neuronal progenitor cells can be differentiated into dopaminergic phenotype. Here in this article, the current understanding of the molecular mechanisms involved in the differentiation of dopaminergic phenotype from the neuronal progenitors immortalized with SV40 LT antigen is discussed. In addition, the methods of generating dopaminergic neurons from progenitor cells and the factors that govern their differentiation are elaborated. Recent advances in cell-therapy based transplantation in PD patients and future prospects are discussed. PMID:22863662

  20. Parthanatos Mediates AIMP2 Activated Age Dependent Dopaminergic Neuronal Loss

    PubMed Central

    Lee, Yunjong; Karuppagounder, Senthilkumar S.; Shin, Joo-Ho; Lee, Yun-Il; Ko, Han Seok; Swing, Debbie; Jiang, Haisong; Kang, Sung-Ung; Lee, Byoung Dae; Kang, Ho Chul; Kim, Donghoon; Tessarollo, Lino; Dawson, Valina L.; Dawson, Ted M.

    2013-01-01

    The defining pathogenic feature of Parkinson’s disease is the age dependent loss of dopaminergic neurons. Mutations and inactivation of parkin, an ubiquitin E3 ligase, cause Parkinson’s disease through accumulation of pathogenic substrates. Here we show that transgenic overexpression of the parkin substrate, aminoacyl-tRNA synthetase complex interacting multifunctional protein-2 (AIMP2) leads to a selective, age-dependent progressive loss of dopaminergic neurons via activation of poly(ADP-ribose) polymerase-1 (PARP1). AIMP2 accumulation in vitro and in vivo results in PARP1 overactivation and dopaminergic cell toxicity via direct association of these proteins in the nucleus providing a new path to PARP1 activation other than DNA damage. Inhibition of PARP1 through gene deletion or drug inhibition reverses behavioral deficits and protects in vivo against dopamine neuron death in AIMP2 transgenic mice. These data indicate that brain permeable PARP inhibitors could be effective in delaying or preventing disease progression in Parkinson’s disease. PMID:23974709

  1. Dorsal Striatal-Midbrain Connectivity in Humans Predicts How Reinforcements Are Used to Guide Decisions

    ERIC Educational Resources Information Center

    Kahnt, Thorsten; Park, Soyoung Q.; Cohen, Michael X.; Beck, Anne; Heinz, Andreas; Wrase, Jana

    2009-01-01

    It has been suggested that the target areas of dopaminergic midbrain neurons, the dorsal (DS) and ventral striatum (VS), are differently involved in reinforcement learning especially as actor and critic. Whereas the critic learns to predict rewards, the actor maintains action values to guide future decisions. The different midbrain connections to…

  2. Dorsal Striatal-Midbrain Connectivity in Humans Predicts How Reinforcements Are Used to Guide Decisions

    ERIC Educational Resources Information Center

    Kahnt, Thorsten; Park, Soyoung Q.; Cohen, Michael X.; Beck, Anne; Heinz, Andreas; Wrase, Jana

    2009-01-01

    It has been suggested that the target areas of dopaminergic midbrain neurons, the dorsal (DS) and ventral striatum (VS), are differently involved in reinforcement learning especially as actor and critic. Whereas the critic learns to predict rewards, the actor maintains action values to guide future decisions. The different midbrain connections to…

  3. Dopaminergic modulation of striatal neurons, circuits and assemblies

    PubMed Central

    Surmeier, D. James; Carrillo-Reid, Luis; Bargas, Jose

    2011-01-01

    In recent years, there has been a great deal of progress toward understanding the role of the striatum and dopamine in action selection. The advent of new animal models and the development of optical techniques for imaging and stimulating select neuronal populations has provided the means by which identified synapses, cells and circuits can be reliably studied. This review attempts to summarize some of the key advances in this broad area, focusing on dopaminergic modulation of intrinsic excitability and synaptic plasticity in canonical microcircuits in the striatum as well as recent work suggesting that there are neuronal assemblies within the striatum devoted to particular types of computation and possibly action selection. PMID:21906660

  4. Sex-dependent diversity in ventral tegmental dopaminergic neurons and developmental programing: A molecular, cellular and behavioral analysis.

    PubMed

    Gillies, G E; Virdee, K; McArthur, S; Dalley, J W

    2014-12-12

    The knowledge that diverse populations of dopaminergic neurons within the ventral tegmental area (VTA) can be distinguished in terms of their molecular, electrophysiological and functional properties, as well as their differential projections to cortical and subcortical regions has significance for key brain functions, such as the regulation of motivation, working memory and sensorimotor control. Almost without exception, this understanding has evolved from landmark studies performed in the male sex. However, converging evidence from both clinical and pre-clinical studies illustrates that the structure and functioning of the VTA dopaminergic systems are intrinsically different in males and females. This may be driven by sex differences in the hormonal environment during adulthood ('activational' effects) and development (perinatal and/or pubertal 'organizational' effects), as well as genetic factors, especially the SRY gene on the Y chromosome in males, which is expressed in a sub-population of adult midbrain dopaminergic neurons. Stress and stress hormones, especially glucocorticoids, are important factors which interact with the VTA dopaminergic systems in order to achieve behavioral adaptation and enable the individual to cope with environmental change. Here, also, there is male/female diversity not only during adulthood, but also in early life when neurobiological programing by stress or glucocorticoid exposure differentially impacts dopaminergic developmental trajectories in male and female brains. This may have enduring consequences for individual resilience or susceptibility to pathophysiological change induced by stressors in later life, with potential translational significance for sex bias commonly found in disorders involving dysfunction of the mesocorticolimbic dopaminergic systems. These findings highlight the urgent need for a better understanding of the sexual dimorphism in the VTA if we are to improve strategies for the prevention and treatment of

  5. Sex-dependent diversity in ventral tegmental dopaminergic neurons and developmental programing: A molecular, cellular and behavioral analysis

    PubMed Central

    Gillies, G.E.; Virdee, K.; McArthur, S.; Dalley, J.W.

    2014-01-01

    The knowledge that diverse populations of dopaminergic neurons within the ventral tegmental area (VTA) can be distinguished in terms of their molecular, electrophysiological and functional properties, as well as their differential projections to cortical and subcortical regions has significance for key brain functions, such as the regulation of motivation, working memory and sensorimotor control. Almost without exception, this understanding has evolved from landmark studies performed in the male sex. However, converging evidence from both clinical and pre-clinical studies illustrates that the structure and functioning of the VTA dopaminergic systems are intrinsically different in males and females. This may be driven by sex differences in the hormonal environment during adulthood (‘activational’ effects) and development (perinatal and/or pubertal ‘organizational’ effects), as well as genetic factors, especially the SRY gene on the Y chromosome in males, which is expressed in a sub-population of adult midbrain dopaminergic neurons. Stress and stress hormones, especially glucocorticoids, are important factors which interact with the VTA dopaminergic systems in order to achieve behavioral adaptation and enable the individual to cope with environmental change. Here, also, there is male/female diversity not only during adulthood, but also in early life when neurobiological programing by stress or glucocorticoid exposure differentially impacts dopaminergic developmental trajectories in male and female brains. This may have enduring consequences for individual resilience or susceptibility to pathophysiological change induced by stressors in later life, with potential translational significance for sex bias commonly found in disorders involving dysfunction of the mesocorticolimbic dopaminergic systems. These findings highlight the urgent need for a better understanding of the sexual dimorphism in the VTA if we are to improve strategies for the prevention and

  6. Task-load-dependent activation of dopaminergic midbrain areas in the absence of reward.

    PubMed

    Boehler, Carsten N; Hopf, Jens-Max; Krebs, Ruth M; Stoppel, Christian M; Schoenfeld, Mircea A; Heinze, Hans-Jochen; Noesselt, Toemme

    2011-03-30

    Dopamine release in cortical and subcortical structures plays a central role in reward-related neural processes. Within this context, dopaminergic inputs are commonly assumed to play an activating role, facilitating behavioral and cognitive operations necessary to obtain a prospective reward. Here, we provide evidence from human fMRI that this activating role can also be mediated by task-demand-related processes and thus extends beyond situations that only entail extrinsic motivating factors. Using a visual discrimination task in which varying levels of task demands were precued, we found enhanced hemodynamic activity in the substantia nigra (SN) for high task demands in the absence of reward or similar extrinsic motivating factors. This observation thus indicates that the SN can also be activated in an endogenous fashion. In parallel to its role in reward-related processes, reward-independent activation likely serves to recruit the processing resources needed to meet enhanced task demands. Simultaneously, activity in a wide network of cortical and subcortical control regions was enhanced in response to high task demands, whereas areas of the default-mode network were deactivated more strongly. The present observations suggest that the SN represents a core node within a broader neural network that adjusts the amount of available neural and behavioral resources to changing situational opportunities and task requirements, which is often driven by extrinsic factors but can also be controlled endogenously.

  7. Hyperpolarizing inhibition develops without trophic support by GABA in cultured rat midbrain neurons.

    PubMed

    Titz, Stefan; Hans, Michael; Kelsch, Wolfgang; Lewen, Andrea; Swandulla, Dieter; Misgeld, Ulrich

    2003-08-01

    During a limited period of early neuronal development, GABA is depolarizing and elevates [Ca2+]i, which mediates the trophic action of GABA in neuronal maturation. We tested the attractive hypothesis that GABA itself promotes the developmental change of its response from depolarizing to hyperpolarizing (Ganguly et al. 2001). In cultured midbrain neurons we found that the GABA response changed from depolarizing to hyperpolarizing, although GABAA receptors had been blocked throughout development. In immature neurons prolonged exposure of the cells to nanomolar concentrations of GABA or brief repetitive applications of GABA strongly diminished the elevation of [Ca+]i by GABA. As revealed by gramicidin perforated-patch recording, reduced [Ca2+]i responses were due to a diminished driving force for Cl-. This suggests that immature neurons do not have an efficient inward transport that can compensate the loss of cytosolic Cl-resulting from sustained GABAA receptor activation by ambient GABA. Transient increases in external K+, which can induce voltage-dependent Cl- entry, restored GABA-induced [Ca2+]i elevations. In mature neurons, GABA reduced [Ca2+]i provided that background [Ca2+]i was elevated by the application of an L-type Ca2+ channel agonist. This was probably due to a hyperpolarization of the membrane by Cl- currents. K(+)-Cl- cotransport maintained the gradient for hyperpolarizing Cl-currents. We conclude that in immature midbrain neurons an inward Cl- transport is not effective although the GABA response is depolarizing. Further, GABA itself is not required for the developmental switch of GABAergic responses from depolarizing to hyperpolarizing in cultured midbrain neurons.

  8. Hyperpolarizing Inhibition Develops without Trophic support by GABA in Cultured Rat Midbrain Neurons

    PubMed Central

    Titz, Stefan; Hans, Michael; Kelsch, Wolfgang; Lewen, Andrea; Swandulla, Dieter; Misgeld, Ulrich

    2003-01-01

    During a limited period of early neuronal development, GABA is depolarizing and elevates [Ca2+]i, which mediates the trophic action of GABA in neuronal maturation. We tested the attractive hypothesis that GABA itself promotes the developmental change of its response from depolarizing to hyperpolarizing (Ganguly et al. 2001). In cultured midbrain neurons we found that the GABA response changed from depolarizing to hyperpolarizing, although GABAA receptors had been blocked throughout development. In immature neurons prolonged exposure of the cells to nanomolar concentrations of GABA or brief repetitive applications of GABA strongly diminished the elevation of [Ca2+]i by GABA. As revealed by gramicidin perforated-patch recording, reduced [Ca2+]i responses were due to a diminished driving force for Cl−. This suggests that immature neurons do not have an efficient inward transport that can compensate the loss of cytosolic Cl− resulting from sustained GABAA receptor activation by ambient GABA. Transient increases in external K+, which can induce voltage-dependent Cl− entry, restored GABA-induced [Ca2+]i elevations. In mature neurons, GABA reduced [Ca2+]i provided that background [Ca2+]i was elevated by the application of an L-type Ca2+ channel agonist. This was probably due to a hyperpolarization of the membrane by Cl− currents. K+-Cl− cotransport maintained the gradient for hyperpolarizing Cl− currents. We conclude that in immature midbrain neurons an inward Cl− transport is not effective although the GABA response is depolarizing. Further, GABA itself is not required for the developmental switch of GABAergic responses from depolarizing to hyperpolarizing in cultured midbrain neurons. PMID:12938674

  9. Smoking-Relevant Nicotine Concentration Attenuates the Unfolded Protein Response in Dopaminergic Neurons

    PubMed Central

    Srinivasan, Rahul; Henley, Beverley M.; Henderson, Brandon J.; Indersmitten, Tim; Cohen, Bruce N.; Kim, Charlene H.; McKinney, Sheri; Deshpande, Purnima; Xiao, Cheng

    2016-01-01

    Retrospective epidemiological studies show an inverse correlation between susceptibility to Parkinson's disease and a person's history of tobacco use. Animal model studies suggest nicotine as a neuroprotective agent and nicotinic acetylcholine (ACh) receptors (nAChRs) as targets for neuroprotection, but the underlying neuroprotective mechanism(s) are unknown. We cultured mouse ventral midbrain neurons for 3 weeks. Ten to 20% of neurons were dopaminergic (DA), revealed by tyrosine hydroxylase (TH) immunoreactivity. We evoked mild endoplasmic reticulum (ER) stress with tunicamycin (Tu), producing modest increases in the level of nuclear ATF6, phosphorylated eukaryotic initiation factor 2α, nuclear XBP1, and the downstream proapoptotic effector nuclear C/EBP homologous protein. We incubated cultures for 2 weeks with 200 nm nicotine, the approximate steady-state concentration between cigarette smoking or vaping, or during nicotine patch use. Nicotine incubation suppressed Tu-induced ER stress and the unfolded protein response (UPR). Study of mice with fluorescent nAChR subunits showed that the cultured TH+ neurons displayed α4, α6, and β3 nAChR subunit expression and ACh-evoked currents. Gene expression profile in cultures from TH-eGFP mice showed that the TH+ neurons also express several other genes associated with DA release. Nicotine also upregulated ACh-induced currents in DA neurons by ∼2.5-fold. Thus, nicotine, at a concentration too low to activate an appreciable fraction of plasma membrane nAChRs, induces two sequelae of pharmacological chaperoning in the ER: UPR suppression and nAChR upregulation. Therefore, one mechanism of neuroprotection by nicotine is pharmacological chaperoning, leading to UPR suppression. Measuring this pathway may help in assessing neuroprotection. SIGNIFICANCE STATEMENT Parkinson's disease (PD) cannot yet be cured or prevented. However, many retrospective epidemiological studies reveal that PD is diagnosed less frequently in

  10. The effect of multivalent Sonic hedgehog on differentiation of human embryonic stem cells into dopaminergic and GABAergic neurons.

    PubMed

    Vazin, Tandis; Ashton, Randolph S; Conway, Anthony; Rode, Nikhil A; Lee, Susan M; Bravo, Verenice; Healy, Kevin E; Kane, Ravi S; Schaffer, David V

    2014-01-01

    Stem cell differentiation is regulated by complex repertoires of signaling ligands which often use multivalent interactions, where multiple ligands tethered to one entity interact with multiple cellular receptors to yield oligomeric complexes. One such ligand is Sonic hedgehog (Shh), whose posttranslational lipid modifications and assembly into multimers enhance its biological potency, potentially through receptor clustering. Investigations of Shh typically utilize recombinant, monomeric protein, and thus the impact of multivalency on ligand potency is unexplored. Among its many activities, Shh is required for ventralization of the midbrain and forebrain and is therefore critical for the development of midbrain dopaminergic (mDA) and forebrain gamma-aminobutyric acid (GABA) inhibitory neurons. We have designed multivalent biomaterials presenting Shh in defined spatial arrangements and investigated the role of Shh valency in ventral specification of human embryonic stem cells (hESCs) into these therapeutically relevant cell types. Multivalent Shh conjugates with optimal valencies, compared to the monomeric Shh, increased the percentages of neurons belonging to mDA or forebrain GABAergic fates from 33% to 60% or 52% to 86%, respectively. Thus, multivalent Shh bioconjugates can enhance neuronal lineage commitment of pluripotent stem cells and thereby facilitate efficient derivation of neurons that could be used to treat Parkinson's and epilepsy patients.

  11. Hub and switches: endocannabinoid signalling in midbrain dopamine neurons.

    PubMed

    Melis, Miriam; Pistis, Marco

    2012-12-05

    The last decade has provided a wealth of experimental data on the role played by lipids belonging to the endocannabinoid family in several facets of physiopathology of dopamine neurons. We currently suggest that these molecules, being intimately connected with diverse metabolic and signalling pathways, might differently affect various functions of dopamine neurons through activation not only of surface receptors, but also of nuclear receptors. It is now emerging how dopamine neurons can regulate their constituent biomolecules to compensate for changes in either internal functions or external conditions. Consequently, dopamine neurons use these lipid molecules as metabolic and homeostatic signal detectors, which can dynamically impact cell function and fitness. Because dysfunctions of the dopamine system underlie diverse neuropsychiatric disorders, including schizophrenia and drug addiction, the importance of better understanding the correlation between an unbalanced endocannabinoid signal and the dopamine system is even greater. Particularly, because dopamine neurons are critical in controlling incentive-motivated behaviours, the involvement of endocannabinoid molecules in fine-tuning dopamine cell activity opened new avenues in both understanding and treating drug addiction. Here, we review recent advances that have shed new light on the understanding of differential roles of endocannabinoids and their cognate molecules in the regulation of the reward circuit, and discuss their anti-addicting properties, particularly with a focus on their potential engagement in the prevention of relapse.

  12. Menthol Alone Upregulates Midbrain nAChRs, Alters nAChR Subtype Stoichiometry, Alters Dopamine Neuron Firing Frequency, and Prevents Nicotine Reward

    PubMed Central

    Henderson, Brandon J.; Wall, Teagan R.; Henley, Beverley M.; Kim, Charlene H.; Nichols, Weston A.; Moaddel, Ruin; Xiao, Cheng

    2016-01-01

    Upregulation of β2 subunit-containing (β2*) nicotinic acetylcholine receptors (nAChRs) is implicated in several aspects of nicotine addiction, and menthol cigarette smokers tend to upregulate β2* nAChRs more than nonmenthol cigarette smokers. We investigated the effect of long-term menthol alone on midbrain neurons containing nAChRs. In midbrain dopaminergic (DA) neurons from mice containing fluorescent nAChR subunits, menthol alone increased the number of α4 and α6 nAChR subunits, but this upregulation did not occur in midbrain GABAergic neurons. Thus, chronic menthol produces a cell-type-selective upregulation of α4* nAChRs, complementing that of chronic nicotine alone, which upregulates α4 subunit-containing (α4*) nAChRs in GABAergic but not DA neurons. In mouse brain slices and cultured midbrain neurons, menthol reduced DA neuron firing frequency and altered DA neuron excitability following nAChR activation. Furthermore, menthol exposure before nicotine abolished nicotine reward-related behavior in mice. In neuroblastoma cells transfected with fluorescent nAChR subunits, exposure to 500 nm menthol alone also increased nAChR number and favored the formation of (α4)3(β2)2 nAChRs; this contrasts with the action of nicotine itself, which favors (α4)2(β2)3 nAChRs. Menthol alone also increases the number of α6β2 receptors that exclude the β3 subunit. Thus, menthol stabilizes lower-sensitivity α4* and α6 subunit-containing nAChRs, possibly by acting as a chemical chaperone. The abolition of nicotine reward-related behavior may be mediated through menthol's ability to stabilize lower-sensitivity nAChRs and alter DA neuron excitability. We conclude that menthol is more than a tobacco flavorant: administered alone chronically, it alters midbrain DA neurons of the nicotine reward-related pathway. SIGNIFICANCE STATEMENT Menthol, the most popular flavorant for tobacco products, has been considered simply a benign flavor additive. However, as we show here

  13. Photobiomodulation preserves behaviour and midbrain dopaminergic cells from MPTP toxicity: evidence from two mouse strains.

    PubMed

    Moro, Cécile; Torres, Napoleon; El Massri, Nabil; Ratel, David; Johnstone, Daniel M; Stone, Jonathan; Mitrofanis, John; Benabid, Alim-Louis

    2013-03-27

    We have shown previously that near-infrared light (NIr) treatment or photobiomodulation neuroprotects dopaminergic cells in substantia nigra pars compacta (SNc) from degeneration induced by 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) in Balb/c albino mice, a well-known model for Parkinson's disease. The present study explores whether NIr treatment offers neuroprotection to these cells in C57BL/6 pigmented mice. In addition, we examine whether NIr influences behavioural activity in both strains after MPTP treatment. We tested for various locomotive parameters in an open-field test, namely velocity, high mobility and immobility. Balb/c (albino) and C57BL/6 (pigmented) mice received injections of MPTP (total of 50 mg/kg) or saline and NIr treatments (or not) over 48 hours. After each injection and/or NIr treatment, the locomotor activity of the mice was tested. After six days survival, brains were processed for TH (tyrosine hydroxylase) immunochemistry and the number of TH⁺ cells in the substantia nigra pars compacta (SNc) was estimated using stereology. Results showed higher numbers of TH⁺ cells in the MPTP-NIr groups of both strains, compared to the MPTP groups, with the protection greater in the Balb/c mice (30% vs 20%). The behavioural tests revealed strain differences also. For Balb/c mice, the MPTP-NIr group showed greater preservation of locomotor activity than the MPTP group. Behavioural preservation was less evident in the C57BL/6 strain however, with little effect of NIr being recorded in the MPTP-treated cases of this strain. Finally, there were differences between the two strains in terms of NIr penetration across the skin and fur. Our measurements indicated that NIr penetration was considerably less in the pigmented C57BL/6, compared to the albino Balb/c mice. In summary, our results revealed the neuroprotective benefits of NIr treatment after parkinsonian insult at both cellular and behavioural levels and suggest that Balb/c strain, due to

  14. Generation of high-purity human ventral midbrain dopaminergic progenitors for in vitro maturation and intracerebral transplantation.

    PubMed

    Nolbrant, Sara; Heuer, Andreas; Parmar, Malin; Kirkeby, Agnete

    2017-09-01

    Generation of precisely patterned neural cells from human pluripotent stem cells (hPSCs) is instrumental in developing disease models and stem cell therapies. Here, we provide a detailed 16-d protocol for obtaining high-purity ventral midbrain (VM) dopamine (DA) progenitors for intracerebral transplantation into animal models and for in vitro maturation into neurons. We have successfully transplanted such cells into the rat; however, in principle, the cells can be used for transplantation into any animal model, and the protocol is designed to also be compatible with clinical transplantation into humans. We show how to precisely set the balance of patterning factors to obtain specifically the caudal VM progenitors that give rise to DA-rich grafts. By specifying how to perform quality control (QC), troubleshooting and adaptation of the procedure, this protocol will facilitate implementation in different laboratories and with a variety of hPSC lines. To facilitate reproducibility of experiments and enable shipping of cells between centers, we present a method for cryopreservation of the progenitors for subsequent direct transplantation or terminal differentiation into DA neurons. This protocol is free of xeno-derived products and can be performed under good manufacturing practice (GMP) conditions.

  15. Regeneration of dopaminergic neurons after 6-hydroxydopamine-induced lesion in planarian brain.

    PubMed

    Nishimura, Kaneyasu; Inoue, Takeshi; Yoshimoto, Kanji; Taniguchi, Takashi; Kitamura, Yoshihisa; Agata, Kiyokazu

    2011-12-01

    Planarians have robust regenerative ability dependent on X-ray-sensitive pluripotent stem cells, called neoblasts. Here, we report that planarians can regenerate dopaminergic neurons after selective degeneration of these neurons caused by treatment with a dopaminergic neurotoxin (6-hydroxydopamine; 6-OHDA). This suggests that planarians have a system to sense the degeneration of dopaminergic neurons and to recruit stem cells to produce dopaminergic neurons to recover brain morphology and function. We confirmed that X-ray-irradiated planarians do not regenerate brain dopaminergic neurons after 6-OHDA-induced lesioning, suggesting that newly generated dopaminergic neurons are indeed derived from pluripotent stem cells. However, we found that the majority of regenerated dopaminergic neurons were 5-bromo-2'-deoxyuridine-negative cells. Therefore, we carefully analyzed when proliferating stem cells became committed to become dopaminergic neurons during regeneration by a combination of 5-bromo-2'-deoxyuridine pulse-chase experiments, immunostaining/in situ hybridization, and 5-fluorouracil treatment. The results strongly suggested that G(2) -phase stem cells become committed to dopaminergic neurons in the mesenchymal space around the brain, after migration from the trunk region following S-phase. These new findings obtained from planarian regeneration provide hints about how to conduct cell-transplantation therapy for future regenerative medicine. © 2011 The Authors. Journal of Neurochemistry © 2011 International Society for Neurochemistry.

  16. Dynamic regulation of midbrain dopamine neuron activity: intrinsic, synaptic, and plasticity mechanisms.

    PubMed

    Morikawa, H; Paladini, C A

    2011-12-15

    Although the roles of dopaminergic signaling in learning and behavior are well established, it is not fully understood how the activity of dopaminergic neurons is dynamically regulated under different conditions in a constantly changing environment. Dopamine neurons must integrate sensory, motor, and cognitive information online to inform the organism to pursue outcomes with the highest reward probability. In this article, we provide an overview of recent advances on the intrinsic, extrinsic (i.e., synaptic), and plasticity mechanisms controlling dopamine neuron activity, mostly focusing on mechanistic studies conducted using ex vivo brain slice preparations. We also hope to highlight some unresolved questions regarding information processing that takes place at dopamine neurons, thereby stimulating further investigations at different levels of analysis.

  17. Dynamic Regulation of Midbrain Dopamine Neuron Activity: Intrinsic, Synaptic, and Plasticity Mechanisms

    PubMed Central

    Morikawa, Hitoshi; Paladini, Carlos A.

    2011-01-01

    Although the roles of dopaminergic signaling in learning and behavior are well established, it is not fully understood how the activity of dopaminergic neurons is dynamically regulated under different conditions in a constantly changing environment. Dopamine neurons must integrate sensory, motor, and cognitive information online to inform the organism to pursue outcomes with the highest reward probability. In this article, we provide an overview of recent advances on the intrinsic, extrinsic (i.e., synaptic), and plasticity mechanisms controlling dopamine neuron activity, mostly focusing on mechanistic studies conducted using ex vivo brain slice preparations. We also hope to highlight some unresolved questions regarding information processing that takes place at dopamine neurons, thereby stimulating further investigations at different levels of analysis. PMID:21872647

  18. Newly paired zebra finches have higher dopamine levels and immediate early gene Fos expression in dopaminergic neurons.

    PubMed

    Banerjee, Sunayana B; Dias, Brian G; Crews, David; Adkins-Regan, Elizabeth

    2013-12-01

    Most birds are socially monogamous, yet little is known about the neural pathways underlying avian monogamy. Recent studies have implicated dopamine as playing a role in courtship and affiliation in a socially monogamous songbird, the zebra finch (Taeniopygia guttata). In the present study, we sought to understand the specific contribution to pair formation in zebra finches of the mesolimbic dopaminergic pathway that projects from the midbrain ventral tegmental area to the nucleus accumbens. We observed that paired birds had higher levels of dopamine and its metabolite 3,4-dihydroxyphenylacetic acid in the ventral medial striatum, where the nucleus accumbens is situated, than unpaired birds. Additionally, we found that the percentage of dopaminergic neurons expressing immediate early gene Fos, a marker of neuronal activity, was higher in the ventral tegmental area of paired birds than in that of unpaired birds. These data are consistent with a role for the mesolimbic dopaminergic pathway in pair formation in zebra finches, suggesting the possibility of a conserved neural mechanism of monogamy in birds and mammals.

  19. Functional properties of dopaminergic neurones in the mouse olfactory bulb

    PubMed Central

    Pignatelli, Angela; Kobayashi, Kazuto; Okano, Hideyuki; Belluzzi, Ottorino

    2005-01-01

    The olfactory bulb of mammals contains a large population of dopaminergic interneurones within the glomerular layer. Dopamine has been shown both in vivo and in vitro to modulate several aspects of olfactory information processing, but the functional properties of dopaminergic neurones have never been described due to the inability to recognize these cells in living preparations. To overcome this difficulty, we used a transgenic mouse strain harbouring an eGFP (enhanced green fluorescent protein) reporter construct under the promoter of tyrosine hydroxylase, the rate-limiting enzyme for cathecolamine synthesis. As a result, we were able to identify dopaminergic neurones (TH-GFP cells) in living preparations and, for the first time, we could study the functional properties of such neurones in the olfactory bulb, in both slices and dissociated cells. The most prominent feature of these cells was the autorhythmicity. In these cells we identified five main voltage-dependent conductances: the two having largest amplitude were a fast transient Na+ current and a delayed rectifier K+ current. In addition, we observed three smaller inward currents, sustained by Na+ ions (persistent type) and by Ca2+ ions (LVA and HVA). Using pharmacological tools and ion substitution methods we showed that the pacemaking process is supported by the interplay of the persistent Na+ current and of a T-type Ca2+ current. We carried out a complete kinetical analysis of the five conductances present in these cells, and developed a Hodgkin-Huxley model of TH-GFP cells, capable of reproducing accurately the properties of living cells, including autorhytmicity, and allowing a precise understanding of the process. PMID:15731185

  20. Activin A Inhibits MPTP and LPS-Induced Increases in Inflammatory Cell Populations and Loss of Dopamine Neurons in the Mouse Midbrain In Vivo

    PubMed Central

    Stayte, Sandy; Rentsch, Peggy; Tröscher, Anna R.; Bamberger, Maximilian; Li, Kong M.; Vissel, Bryce

    2017-01-01

    Parkinson’s disease is a chronic neurodegenerative disease characterized by a significant loss of dopaminergic neurons within the substantia nigra pars compacta region and a subsequent loss of dopamine within the striatum. A promising avenue of research has been the administration of growth factors to promote the survival of remaining midbrain neurons, although the mechanism by which they provide neuroprotection is not understood. Activin A, a member of the transforming growth factor β superfamily, has been shown to be a potent anti-inflammatory following acute brain injury and has been demonstrated to play a role in the neuroprotection of midbrain neurons against MPP+-induced degeneration in vitro. We hypothesized that activin A may offer similar anti-inflammatory and neuroprotective effects in in vivo mouse models of Parkinson’s disease. We found that activin A significantly attenuated the inflammatory response induced by both MPTP and intranigral administration of lipopolysaccharide in C57BL/6 mice. We found that administration of activin A promoted survival of dopaminergic and total neuron populations in the pars compacta region both 8 days and 8 weeks after MPTP-induced degeneration. Surprisingly, no corresponding protection of striatal dopamine levels was found. Furthermore, activin A failed to protect against loss of striatal dopamine transporter expression in the striatum, suggesting the neuroprotective action of activin A may be localized to the substantia nigra. Together, these results provide the first evidence that activin A exerts potent neuroprotection and anti-inflammatory effects in the MPTP and lipopolysaccharide mouse models of Parkinson’s disease. PMID:28121982

  1. Interactions between calcium channels and SK channels in midbrain dopamine neurons and their impact on pacemaker regularity: Contrasting roles of N- and L-type channels.

    PubMed

    de Vrind, Veronne; Scuvée-Moreau, Jacqueline; Drion, Guillaume; Hmaied, Cyrine; Philippart, Fabian; Engel, Dominique; Seutin, Vincent

    2016-10-05

    Although small-conductance Ca(2+)-activated K(+) (SK) channels and various types of voltage-gated Ca(2+) (Cav) channels have been described in midbrain dopaminergic neurons, the nature of their interactions is unclear. More particularly, the role of various Cav channel types in either promoting irregularity of firing (by generating an inward current during SK channel blockade) or promoting regularity of firing (by providing the source of Ca(2+) for the activation of SK channels) has not been systematically explored. We addressed this question using intracellular and extracellular recordings from substantia nigra, pars compacta (SNc), dopaminergic neurons in rat midbrain slices. Neurons were pharmacologically isolated from their differences. When examining the ability of various Cav channel blockers to inhibit the SK-mediated afterhyperpolarization (AHP), we found that only the N-type Cav channel blocker ω-conotoxin-GVIA was able to reduce the apamin-sensitive AHP, but only partially (~40%). Specific blockers of L, P/Q, T or R channels had no effect on this AHP. Combining ω-conotoxin-GVIA and other specific blockers did not yield greater block and even the broad Cav blocker Cd(2+) induced a submaximal (~75%) effect. Extracellular recordings examining firing regularity yielded congruent results: none of the specific blockers was able to increase firing irregularity to the extent that the specific SK blocker apamin did. The irregularity of firing observed with apamin could only be reversed by blocking L-type Ca(2+) channels. Thus various sources of Ca(2+) appear to be required for SK channel activation in SNc neurons (some of them still unidentified), ensuring robustness of pacemaking regularity. Copyright © 2016 Elsevier B.V. All rights reserved.

  2. Temporally selective processing of communication signals by auditory midbrain neurons

    PubMed Central

    Christensen-Dalsgaard, Jakob; Kelley, Darcy B.

    2011-01-01

    Perception of the temporal structure of acoustic signals contributes critically to vocal signaling. In the aquatic clawed frog Xenopus laevis, calls differ primarily in the temporal parameter of click rate, which conveys sexual identity and reproductive state. We show here that an ensemble of auditory neurons in the laminar nucleus of the torus semicircularis (TS) of X. laevis specializes in encoding vocalization click rates. We recorded single TS units while pure tones, natural calls, and synthetic clicks were presented directly to the tympanum via a vibration-stimulation probe. Synthesized click rates ranged from 4 to 50 Hz, the rate at which the clicks begin to overlap. Frequency selectivity and temporal processing were characterized using response-intensity curves, temporal-discharge patterns, and autocorrelations of reduplicated responses to click trains. Characteristic frequencies ranged from 140 to 3,250 Hz, with minimum thresholds of −90 dB re 1 mm/s at 500 Hz and −76 dB at 1,100 Hz near the dominant frequency of female clicks. Unlike units in the auditory nerve and dorsal medullary nucleus, most toral units respond selectively to the behaviorally relevant temporal feature of the rate of clicks in calls. The majority of neurons (85%) were selective for click rates, and this selectivity remained unchanged over sound levels 10 to 20 dB above threshold. Selective neurons give phasic, tonic, or adapting responses to tone bursts and click trains. Some algorithms that could compute temporally selective receptive fields are described. PMID:21289132

  3. Loss of Mitochondrial Fission Depletes Axonal Mitochondria in Midbrain Dopamine Neurons

    PubMed Central

    Berthet, Amandine; Margolis, Elyssa B.; Zhang, Jue; Hsieh, Ivy; Zhang, Jiasheng; Hnasko, Thomas S.; Ahmad, Jawad; Edwards, Robert H.; Sesaki, Hiromi; Huang, Eric J.

    2014-01-01

    Disruptions in mitochondrial dynamics may contribute to the selective degeneration of dopamine (DA) neurons in Parkinson's disease (PD). However, little is known about the normal functions of mitochondrial dynamics in these neurons, especially in axons where degeneration begins, and this makes it difficult to understand the disease process. To study one aspect of mitochondrial dynamics—mitochondrial fission—in mouse DA neurons, we deleted the central fission protein dynamin-related protein 1 (Drp1). Drp1 loss rapidly eliminates the DA terminals in the caudate–putamen and causes cell bodies in the midbrain to degenerate and lose α-synuclein. Without Drp1, mitochondrial mass dramatically decreases, especially in axons, where the mitochondrial movement becomes uncoordinated. However, in the ventral tegmental area (VTA), a subset of midbrain DA neurons characterized by small hyperpolarization-activated cation currents (Ih) is spared, despite near complete loss of their axonal mitochondria. Drp1 is thus critical for targeting mitochondria to the nerve terminal, and a disruption in mitochondrial fission can contribute to the preferential death of nigrostriatal DA neurons. PMID:25339743

  4. Neuroprotection of midbrain dopamine neurons by nicotine is gated by cytoplasmic Ca2+.

    PubMed

    Toulorge, Damien; Guerreiro, Serge; Hild, Audrey; Maskos, Uwe; Hirsch, Etienne C; Michel, Patrick P

    2011-08-01

    Epidemiological and experimental evidence indicates that nicotine is protective for Parkinson disease vulnerable dopamine neurons, but the underlying mechanism of this effect remains only partly characterized. To address this question, we established rat midbrain cultures maintained in experimental conditions that favor the selective and spontaneous loss of dopamine neurons. We report here that nicotine afforded neuroprotection to dopamine neurons (EC(50)=0.32 μM) but only in a situation where cytosolic Ca(2+) (Ca(2+)(cyt)) was slightly and chronically elevated above control levels by concurrent depolarizing treatments. By a pharmacological approach, we demonstrated that the rise in Ca(2+)(cyt) was necessary to sensitize dopamine neurons to the action of nicotine through a mechanism involving α-bungarotoxin-sensitive (presumably α7) nicotinic acetylcholine receptors (nAChRs) and secondarily T-type voltage-gated calcium channels. Confirming the role played by α7 nAChRs in this effect, nicotine had no protective action in midbrain cultures prepared from genetically engineered mice lacking this receptor subtype. Signaling studies revealed that Ca(2+)(cyt) elevations evoked by nicotine and concomitant depolarizing treatments served to activate a survival pathway involving the calcium effector protein calmodulin and phosphatidylinositol 3-kinase. Collectively, our data support the idea that the protective action of nicotine for dopamine neurons is activity-dependent and gated by Ca(2+)(cyt).

  5. Loss of mitochondrial fission depletes axonal mitochondria in midbrain dopamine neurons.

    PubMed

    Berthet, Amandine; Margolis, Elyssa B; Zhang, Jue; Hsieh, Ivy; Zhang, Jiasheng; Hnasko, Thomas S; Ahmad, Jawad; Edwards, Robert H; Sesaki, Hiromi; Huang, Eric J; Nakamura, Ken

    2014-10-22

    Disruptions in mitochondrial dynamics may contribute to the selective degeneration of dopamine (DA) neurons in Parkinson's disease (PD). However, little is known about the normal functions of mitochondrial dynamics in these neurons, especially in axons where degeneration begins, and this makes it difficult to understand the disease process. To study one aspect of mitochondrial dynamics-mitochondrial fission-in mouse DA neurons, we deleted the central fission protein dynamin-related protein 1 (Drp1). Drp1 loss rapidly eliminates the DA terminals in the caudate-putamen and causes cell bodies in the midbrain to degenerate and lose α-synuclein. Without Drp1, mitochondrial mass dramatically decreases, especially in axons, where the mitochondrial movement becomes uncoordinated. However, in the ventral tegmental area (VTA), a subset of midbrain DA neurons characterized by small hyperpolarization-activated cation currents (Ih) is spared, despite near complete loss of their axonal mitochondria. Drp1 is thus critical for targeting mitochondria to the nerve terminal, and a disruption in mitochondrial fission can contribute to the preferential death of nigrostriatal DA neurons.

  6. A basal ganglia pathway drives selective auditory responses in songbird dopaminergic neurons via disinhibition.

    PubMed

    Gale, Samuel D; Perkel, David J

    2010-01-20

    Dopaminergic neurons in mammals respond to rewards and reward-predicting cues, and are thought to play an important role in learning actions or sensory cues that lead to reward. The anatomical sources of input that drive or modulate such responses are not well understood; these ultimately define the range of behavior to which dopaminergic neurons contribute. Primary rewards are not the immediate objective of all goal-directed behavior. For example, a goal of vocal learning is to imitate vocal-communication signals. Here, we demonstrate activation of dopaminergic neurons in songbirds driven by a basal ganglia region required for vocal learning, area X. Dopaminergic neurons in anesthetized zebra finches respond more strongly to the bird's own song (BOS) than to other sounds, and area X is critical for these responses. Direct pharmacological modulation of area X output, in the absence of auditory stimulation, is sufficient to bidirectionally modulate the firing rate of dopaminergic neurons. The only known pathway from song control regions to dopaminergic neurons involves a projection from area X to the ventral pallidum (VP), which in turn projects to dopaminergic regions. We show that VP neurons are spontaneously active and inhibited preferentially by BOS, suggesting that area X disinhibits dopaminergic neurons by inhibiting VP. Supporting this model, auditory-response latencies are shorter in area X than VP, and shorter in VP than dopaminergic neurons. Thus, dopaminergic neurons can be disinhibited selectively by complex sensory stimuli via input from the basal ganglia. The functional pathway we identify may allow dopaminergic neurons to contribute to vocal learning.

  7. Using High-Resolution MR Imaging at 7T to Evaluate the Anatomy of the Midbrain Dopaminergic System

    PubMed Central

    Eapen, M.; Zald, D.H.; Gatenby, J.C.; Ding, Z.; Gore, J.C.

    2011-01-01

    BACKGROUND AND PURPOSE Dysfunction of DA neurotransmission from the SN and VTA has been implicated in neuropsychiatric diseases, including Parkinson disease and schizophrenia. Unfortunately, these midbrain DA structures are difficult to define on clinical MR imaging. To more precisely evaluate the anatomic architecture of the DA midbrain, we scanned healthy participants with a 7T MR imaging system. Here we contrast the performance of high-resolution T2- and T2*-weighted GRASE and FFE MR imaging scans at 7T. MATERIALS AND METHODS Ten healthy participants were scanned by using GRASE and FFE sequences. CNRs were calculated among the SN, VTA, and RN, and their volumes were estimated by using a segmentation algorithm. RESULTS Both GRASE and FFE scans revealed visible contrast between midbrain DA regions. The GRASE scan showed higher CNRs compared with the FFE scan. The T2* contrast of the FFE scan further delineated substructures and microvasculature within the midbrain SN and RN. Segmentation and volume estimation of the midbrain SN, RN, and VTA showed individual differences in the size and volume of these structures across participants. CONCLUSIONS Both GRASE and FFE provide sufficient CNR to evaluate the anatomy of the midbrain DA system. The FFE in particular reveals vascular details and substructure information within the midbrain regions that could be useful for examining structural changes in midbrain pathologies. PMID:21183619

  8. Using high-resolution MR imaging at 7T to evaluate the anatomy of the midbrain dopaminergic system.

    PubMed

    Eapen, M; Zald, D H; Gatenby, J C; Ding, Z; Gore, J C

    2011-04-01

    Dysfunction of DA neurotransmission from the SN and VTA has been implicated in neuropsychiatric diseases, including Parkinson disease and schizophrenia. Unfortunately, these midbrain DA structures are difficult to define on clinical MR imaging. To more precisely evaluate the anatomic architecture of the DA midbrain, we scanned healthy participants with a 7T MR imaging system. Here we contrast the performance of high-resolution T2- and T2*-weighted GRASE and FFE MR imaging scans at 7T. Ten healthy participants were scanned by using GRASE and FFE sequences. CNRs were calculated among the SN, VTA, and RN, and their volumes were estimated by using a segmentation algorithm. Both GRASE and FFE scans revealed visible contrast between midbrain DA regions. The GRASE scan showed higher CNRs compared with the FFE scan. The T2* contrast of the FFE scan further delineated substructures and microvasculature within the midbrain SN and RN. Segmentation and volume estimation of the midbrain SN, RN, and VTA showed individual differences in the size and volume of these structures across participants. Both GRASE and FFE provide sufficient CNR to evaluate the anatomy of the midbrain DA system. The FFE in particular reveals vascular details and substructure information within the midbrain regions that could be useful for examining structural changes in midbrain pathologies.

  9. The human testis determining factor SRY localizes in midbrain dopamine neurons and regulates multiple components of catecholamine synthesis and metabolism

    PubMed Central

    Czech, Daniel P.; Lee, Joohyung; Sim, Helena; Parish, Clare L.; Vilain, Eric; Harley, Vincent R.

    2012-01-01

    The male sex is determined by the sex determining region on the Y chromosome (SRY) transcription factor. The unexpected action of SRY in the control of voluntary movement in male rodents suggests a role in regulation of dopamine transmission and dopamine-related disorders with sex bias such as Parkinson’s disease. We investigated SRY expression in the human brain and function in vitro. SRY immunoreactivity was detected in the human male, but not female, substantia nigra pars compacta (SNc) within a sub-population of tyrosine hydroxylase (TH) positive neurons. SRY protein also co-localised with TH positive neurons in the ventral tegmental area and GAD-positive neurons in the substantia nigra pars reticulate (SNr). Retinoic acid-induced differentiation of precursor NT2 cells into dopaminergic cells (NT2N) increased expression of TH, NURR1, D2R and SRY. In the human neuroblastoma cell line, M17, SRY knockdown resulted in a reduction in TH, DDC, DBH and MAO-A expression; enzymes which control dopamine synthesis and metabolism. Conversely, SRY overexpression increased TH, DDC, DBH, D2R and MAO-A levels, which was accompanied by increased extracellular dopamine levels. A luciferase assay demonstrated that SRY activated a 4.6 kb 5′ upstream regulatory region of the human TH promoter/nigral enhancer. Combined, these results suggest that SRY may play a role as a positive regulator of catecholamine synthesis and metabolism in the human male midbrain. Given the limitations of human tissue analysis, further studies are required to provide a definitive answer on SRY expression in human brain regions. PMID:22568433

  10. Inhibition of microglial activation by the herbal flavonoid baicalein attenuates inflammation-mediated degeneration of dopaminergic neurons.

    PubMed

    Li, F-Q; Wang, T; Pei, Z; Liu, B; Hong, J-S

    2005-03-01

    Accumulating evidence has suggested that inflammation in the brain participates in the pathogenesis of Parkinson's disease (PD). Therefore, anti-inflammatory therapy has attracted much attention as novel interference to neurodegenerative diseases. Baicalein, a major flavonoid extracted from a traditional Chinese herb Scutellaria baicalensis Georgi (Huangqin), possesses potent anti-inflammatory and antioxidant properties. To test the potential neuroprotective effect of baicalein on dopaminergic neurons, primary midbrain neuron-glia cultures from E-14 rat embryos were used. Cultures were pretreated with baicalein for 30 min prior to stimulation with lipopolysaccharide (LPS, 10 ng/ml). LPS leads to massive activation of microglial cells revealed by OX-42 immunostaining, and produced excessive quantities of NO. Excessive elevation of superoxide level was also observed in enriched-microglia after stimulating with LPS. LPS-induced damage to dopaminergic neurons was evaluated by uptake capacity for [3H]dopamine and tyrosine hydroxylase (TH)-immunocytochemistry. Pretreatment with baicalein concentration-dependently attenuated LPS-induced decrease in [3H]dopamine uptake and loss of TH-immunoreactive (TH-ir) neurons, which the maximum protective effect was observed at the concentration of 5 microM. Post-treatment with baicalein (5 microM) was also shown to be effective even if baicalein administered up to 2 h later than LPS application. Morphological study shows that baicalein (5 microM) almost completely blocked LPS-induced activation of microglia. Excessive production of TNF(alpha) and free radicals such as NO and superoxide by LPS stimulation were also attenuated by baicalein at a concentration-dependent pattern. The present study indicates that baicalein exerts potent neuroprotective effect on LPS-induced injury of dopaminergic neurons. We hypothesize that the inhibition of LPS-induced production of NO and free radicals from microglia may underlie the mechanism of

  11. Inhibition of the leucine-rich repeat protein LINGO-1 enhances survival, structure, and function of dopaminergic neurons in Parkinson's disease models.

    PubMed

    Inoue, Haruhisa; Lin, Ling; Lee, Xinhua; Shao, Zhaohui; Mendes, Shannon; Snodgrass-Belt, Pamela; Sweigard, Harry; Engber, Tom; Pepinsky, Blake; Yang, Lichuan; Beal, M Flint; Mi, Sha; Isacson, Ole

    2007-09-04

    The nervous system-specific leucine-rich repeat Ig-containing protein LINGO-1 is associated with the Nogo-66 receptor complex and is endowed with a canonical EGF receptor (EGFR)-like tyrosine phosphorylation site. Our studies indicate that LINGO-1 expression is elevated in the substantia nigra of Parkinson's disease (PD) patients compared with age-matched controls and in animal models of PD after neurotoxic lesions. LINGO-1 expression is present in midbrain dopaminergic (DA) neurons in the human and rodent brain. Therefore, the role of LINGO-1 in cell damage responses of DA neurons was examined in vitro and in experimental models of PD induced by either oxidative (6-hydroxydopamine) or mitochondrial (N-methyl-4-phenyl-1,2,3,6-tetrahydropyridine) toxicity. In LINGO-1 knockout mice, DA neuron survival was increased and behavioral abnormalities were reduced compared with WT. This neuroprotection was accompanied by increased Akt phosphorylation (p-Akt). Similar neuroprotective in vivo effects on midbrain DA neurons were obtained in WT mice by blocking LINGO-1 activity using LINGO-1-Fc protein. Neuroprotection and enhanced neurite growth were also demonstrated for midbrain DA neurons in vitro. LINGO-1 antagonists (LINGO-1-Fc, dominant negative LINGO-1, and anti-LINGO-1 antibody) improved DA neuron survival in response to MPP+ in part by mechanisms that involve activation of the EGFR/Akt signaling pathway through a direct inhibition of LINGO-1's binding to EGFR. These results show that inhibitory agents of LINGO-1 activity can protect DA neurons against degeneration and indicate a role for the leucine-rich repeat protein LINGO-1 and related classes of proteins in the pathophysiological responses of midbrain DA neurons in PD.

  12. β-synuclein aggregates and induces neurodegeneration in dopaminergic neurons.

    PubMed

    Taschenberger, Grit; Toloe, Johan; Tereshchenko, Julia; Akerboom, Jasper; Wales, Pauline; Benz, Roland; Becker, Stefan; Outeiro, Tiago F; Looger, Loren L; Bähr, Mathias; Zweckstetter, Markus; Kügler, Sebastian

    2013-07-01

    Whereas the contribution of α-synuclein to neurodegeneration in Parkinson disease is well accepted, the putative impact of its close homologue, β-synuclein, is enigmatic. β-Synuclein is widely expressed throughout the central nervous system, as is α-synuclein, but the physiological functions of both proteins remain unknown. Recent findings have supported the view that β-synuclein can act as an ameliorating regulator of α-synuclein-induced neurotoxicity, having neuroprotective rather than neurodegenerative capabilities, and being nonaggregating due to the absence of most of the aggregation-promoting NAC domain. However, a mutation of β-synuclein linked to dementia with Lewy bodies rendered the protein neurotoxic in transgenic mice, and fibrillation of β-synuclein has been demonstrated in vitro. Neurotoxicity and aggregation properties of α-, β-, and γ-synuclein were comparatively elucidated in the rat nigro-striatal projection and in cultured neurons. Supporting the hypothesis that β-synuclein can act as a neurodegeneration-inducing factor, we demonstrated that wild-type β-synuclein is neurotoxic for cultured primary neurons. Furthermore, β-synuclein formed proteinase K-resistant aggregates in dopaminergic neurons in vivo, leading to pronounced and progressive neurodegeneration in rats. Expression of β-synuclein caused mitochondrial fragmentation, but this fragmentation did not render mitochondria nonfunctional in terms of ion handling and respiration even at late stages of neurodegeneration. A comparison of the neurodegenerative effects induced by α-, β-, and γ-synuclein revealed that β-synuclein was eventually as neurotoxic as α-synuclein for nigral dopaminergic neurons, whereas γ-synuclein proved to be nontoxic and had very low aggregation propensity. Our results suggest that the role of β-synuclein as a putative modulator of neuropathology in aggregopathies like Parkinson disease and dementia with Lewy bodies needs to be revisited. © 2013

  13. Electrophysiological Effects of Trace Amines on Mesencephalic Dopaminergic Neurons

    PubMed Central

    Ledonne, Ada; Berretta, Nicola; Davoli, Alessandro; Rizzo, Giada Ricciardo; Bernardi, Giorgio; Mercuri, Nicola Biagio

    2011-01-01

    Trace amines (TAs) are a class of endogenous compounds strictly related to classic monoamine neurotransmitters with regard to their structure, metabolism, and tissue distribution. Although the presence of TAs in mammalian brain has been recognized for decades, until recently they were considered to be by-products of amino acid metabolism or as “false” neurotransmitters. The discovery in 2001 of a new family of G-protein-coupled receptors (GPCRs), namely trace amines receptors, has re-ignited interest in TAs. In particular, two members of the family, trace amine receptor 1 (TA1) and trace amine receptor 2 (TA2), were shown to be highly sensitive to these endogenous compounds. Experimental evidence suggests that TAs modulate the activity of catecholaminergic neurons and that TA dysregulation may contribute to neuropsychiatric disorders, including schizophrenia, attention deficit hyperactivity disorder, depression and Parkinson's disease, all of which are characterized by altered monoaminergic networks. Here we review recent data concerning the electrophysiological effects of TAs on the activity of mesencephalic dopaminergic neurons. In the context of recent data obtained with TA1 receptor knockout mice, we also discuss the mechanisms by which the activation of these receptors modulates the activity of these neurons. Three important new aspects of TAs action have recently emerged: (a) inhibition of firing due to increased release of dopamine; (b) reduction of D2 and GABAB receptor-mediated inhibitory responses (excitatory effects due to disinhibition); and (c) a direct TA1 receptor-mediated activation of GIRK channels which produce cell membrane hyperpolarization. While the first two effects have been well documented in our laboratory, the direct activation of GIRK channels by TA1 receptors has been reported by others, but has not been seen in our laboratory (Geracitano et al., 2004). Further research is needed to address this point, and to further characterize

  14. [Survival of dopaminergic neurons that were hibernated in vitro for seven days].

    PubMed

    de la Cuétara-Bernal, K; Castillo-Díaz, L; Martínez-Martí, L; García-Varona, A Y

    The use of fresh foetal tissue in neurotransplants entails considerable problems of logistics that limit its clinical applicability, something that can be resolved by the development of optimal tissue storage procedures that do not affect in vivo viability and survival of dopamine. AIMS. To determine whether 7 days' hibernation affects the survival of mesencephalic tissue in vitro, and to compare it to fresh tissue. The midbrains of rats were hibernated for 1, 3, 5 and 7 days at 4 degrees C. A cellular suspension was prepared for culture throughout a 7-day period. The number of TH+ cells present in the fresh and hibernated cultures was determined. The morphology of the hibernated and cultured dopaminergic neurons was very similar to that of the fresh cells. Comparing the viability of the hibernated and fresh cells did not reveal any significant differences. No significant differences between the numbers of TH+ neurons were observed at any of the hibernation times. The lowest rate of TH+ cell survival was reached at seven days' hibernation. Significant differences (p < 0.05) were found between the number of TH+ neurons for fresh and hibernated tissue. Hibernation at 4 degrees C for up to five days guarantees the survival of TH+ cells in vitro, but it is affected by longer times. This procedure could be considered useful for preserving human tissue in clinical transplant applications. These results refer to in vitro conditions; therefore, studies must be conducted to investigate the survival and functionality of hibernated and transplanted neurons in animal models to enable us to evaluate its applicability in neurorestorative therapy.

  15. Estradiol Facilitates Functional Integration of iPSC-Derived Dopaminergic Neurons into Striatal Neuronal Circuits via Activation of Integrin α5β1

    PubMed Central

    Nishimura, Kaneyasu; Doi, Daisuke; Samata, Bumpei; Murayama, Shigeo; Tahara, Tsuyoshi; Onoe, Hirotaka; Takahashi, Jun

    2016-01-01

    Summary For cell transplantation therapy for Parkinson's disease (PD) to be realized, the grafted neurons should be integrated into the host neuronal circuit to restore the lost neuronal function. Here, using wheat-germ agglutinin-based transsynaptic tracing, we show that integrin α5 is selectively expressed in striatal neurons that are innervated by midbrain dopaminergic (DA) neurons. In addition, we found that integrin α5β1 was activated by the administration of estradiol-2-benzoate (E2B) in striatal neurons of adult female rats. Importantly, we observed that the systemic administration of E2B into hemi-parkinsonian rat models facilitates the functional integration of grafted DA neurons derived from human induced pluripotent stem cells into the host striatal neuronal circuit via the activation of integrin α5β1. Finally, methamphetamine-induced abnormal rotation was recovered earlier in E2B-administered rats than in rats that received other regimens. Our results suggest that the simultaneous administration of E2B with stem cell-derived DA progenitors can enhance the efficacy of cell transplantation therapy for PD. PMID:26997644

  16. Dorsal pallidal neurons directly link the nidopallium and midbrain in the zebra finch (Taeniopygia guttata).

    PubMed

    Wild, J Martin

    2017-05-01

    The dorsal pallidum in birds is considered similar, if not homologous, to the globus pallidus (GP) of mammals. The dorsal pallidum projects to both thalamic and midbrain targets similar to the direct and indirect pathways arising from the internal and external segments of the GP. In the present study, retrograde and anterograde tracing studies revealed a previously undescribed projection of the avian dorsal pallidum. This arises from a specific dorsomedial component, which terminates in the intercollicular nucleus and partly surrounds the avian equivalent of the central nucleus of the inferior colliculus. The respiratory-vocal dorsomedial nucleus of the intercollicular complex, however, does not receive these projections. The somata of the pallidal neurons retrogradely labeled from injections in the intercollicular nucleus were large and generally multipolar and had extensive, sparsely branching central processes (presumptive dendrites) that together extended up to 2 mm dorsally into the intermediate and caudomedial nidopallium. The size and morphology of these neurons were similar to those of large pallidal neurons labeled by calretinin immunoreactivity, which could be co-localized to the same cells. Thus, rather than being directly involved in the control of movement, the large dorsomedial neurons of the caudal dorsal pallidum may be involved in sensory processing, in that they provide an unusual direct link between sensory (auditory/somatosensory) regions of the nidopallium and sensory regions of the intercollicular nucleus of the midbrain. J. Comp. Neurol. 525:1731-1742, 2017. © 2016 Wiley Periodicals, Inc. © 2017 Wiley Periodicals, Inc.

  17. Prokineticin-2 upregulation during neuronal injury mediates a compensatory protective response against dopaminergic neuronal degeneration

    PubMed Central

    Gordon, Richard; Neal, Matthew L.; Luo, Jie; Langley, Monica R.; Harischandra, Dilshan S.; Panicker, Nikhil; Charli, Adhithiya; Jin, Huajun; Anantharam, Vellareddy; Woodruff, Trent M.; Zhou, Qun-Yong; Kanthasamy, Anumantha G.; Kanthasamy, Arthi

    2016-01-01

    Prokineticin-2 (PK2), a recently discovered secreted protein, regulates important physiological functions including olfactory biogenesis and circadian rhythms in the CNS. Interestingly, although PK2 expression is low in the nigral system, its receptors are constitutively expressed on nigrostriatal neurons. Herein, we demonstrate that PK2 expression is highly induced in nigral dopaminergic neurons during early stages of degeneration in multiple models of Parkinson's disease (PD), including PK2 reporter mice and MitoPark mice. Functional studies demonstrate that PK2 promotes mitochondrial biogenesis and activates ERK and Akt survival signalling pathways, thereby driving neuroprotection. Importantly, PK2 overexpression is protective whereas PK2 receptor antagonism exacerbates dopaminergic degeneration in experimental PD. Furthermore, PK2 expression increased in surviving nigral dopaminergic neurons from PD brains, indicating that PK2 upregulation is clinically relevant to human PD. Collectively, our results identify a paradigm for compensatory neuroprotective PK2 signalling in nigral dopaminergic neurons that could have important therapeutic implications for PD. PMID:27703142

  18. Electric signals regulate directional migration of ventral midbrain derived dopaminergic neural progenitor cells via Wnt/GSK3β signaling.

    PubMed

    Liu, Jia; Zhu, Bangfu; Zhang, Gaofeng; Wang, Jian; Tian, Weiming; Ju, Gong; Wei, Xiaoqing; Song, Bing

    2015-01-01

    Neural progenitor cell (NPC) replacement therapy is a promising treatment for neurodegenerative disorders including Parkinson's disease (PD). It requires a controlled directional migration and integration of NPCs, for example dopaminergic (DA) progenitor cells, into the damaged host brain tissue. There is, however, only limited understanding of how to regulate the directed migration of NPCs to the diseased or damaged brain tissues for repair and regeneration. The aims of this study are to explore the possibility of using a physiological level of electrical stimulation to regulate the directed migration of ventral midbrain NPCs (NPCs(vm)), and to investigate their potential regulation via GSK3β and associated downstream effectors. We tested the effects of direct-current (DC) electric fields (EFs) on the migration behavior of the NPCs(vm). A DC EF induced directional cell migration toward the cathode, namely electrotaxis. Reversal of the EF polarity triggered a sharp reversal of the NPC(vm) electrotaxis. The electrotactic response was both time and EF voltage dependent. Pharmacologically inhibiting the canonical Wnt/GSK3β pathway significantly reduced the electrotactic response of NPCs(vm), which is associated with the down-regulation of GSK3β phosphorylation, β-catenin activation and CLASP2 expression. This was further proved by RNA interference of GSK3β, which also showed a significantly reduced electrotactic response in association with reduced β-catenin activation and CLASP2 expression. In comparison, RNA interference of β-catenin slightly reduced electrotactic response and CLASP2 expression. Both pharmacological inhibition of Wnt/GSK3β and RNA interference of GSK3β/β-catenin clearly reduced the asymmetric redistribution of CLASP2 and its co-localization with α-tubulin. These results suggest that Wnt/GSK3β signaling contributes to the electrotactic response of NPCs(vm) through the coordination of GSK3β phosphorylation, β-catenin activation, CLASP2

  19. Transduced PEP-1-PON1 proteins regulate microglial activation and dopaminergic neuronal death in a Parkinson's disease model.

    PubMed

    Kim, Mi Jin; Park, Meeyoung; Kim, Dae Won; Shin, Min Jea; Son, Ora; Jo, Hyo Sang; Yeo, Hyeon Ji; Cho, Su Bin; Park, Jung Hwan; Lee, Chi Hern; Kim, Duk-Soo; Kwon, Oh-Shin; Kim, Joon; Han, Kyu Hyung; Park, Jinseu; Eum, Won Sik; Choi, Soo Young

    2015-09-01

    Parkinson's disease (PD) is an oxidative stress-mediated neurodegenerative disorder caused by selective dopaminergic neuronal death in the midbrain substantia nigra. Paraoxonase 1 (PON1) is a potent inhibitor of low-density lipoprotein (LDL) and high-density lipoprotein (HDL) against oxidation by destroying biologically active phospholipids with potential protective effects against oxidative stress-induced inflammatory disorders. In a previous study, we constructed protein transduction domain (PTD) fusion PEP-1-PON1 protein to transduce PON1 into cells and tissue. In this study, we examined the role of transduced PEP-1-PON1 protein in repressing oxidative stress-mediated inflammatory response in microglial BV2 cells after exposure to lipopolysaccharide (LPS). Moreover, we identified the functions of transduced PEP-1-PON1 proteins which include, mitigating mitochondrial damage, decreasing reactive oxidative species (ROS) production, matrix metalloproteinase-9 (MMP-9) expression and protecting against 1-methyl-4-phenylpyridinium (MPP(+))-induced neurotoxicity in SH-SY5Y cells. Furthermore, transduced PEP-1-PON1 protein reduced MMP-9 expression and protected against dopaminergic neuronal cell death in a 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP)-induced PD mice model. Taken together, these results suggest a promising therapeutic application of PEP-1-PON1 proteins against PD and other inflammation and oxidative stress-related neuronal diseases. Copyright © 2015 Elsevier Ltd. All rights reserved.

  20. Selective increase of in vivo firing frequencies in DA SN neurons after proteasome inhibition in the ventral midbrain.

    PubMed

    Subramaniam, Mahalakshmi; Kern, Beatrice; Vogel, Simone; Klose, Verena; Schneider, Gaby; Roeper, Jochen

    2014-09-01

    The impairment of protein degradation via the ubiquitin-proteasome system (UPS) is present in sporadic Parkinson's disease (PD), and might play a key role in selective degeneration of vulnerable dopamine (DA) neurons in the substantia nigra pars compacta (SN). Further evidence for a causal role of dysfunctional UPS in familial PD comes from mutations in parkin, which results in a loss of function of an E3-ubiquitin-ligase. In a mouse model, genetic inactivation of an essential component of the 26S proteasome lead to widespread neuronal degeneration including DA midbrain neurons and the formation of alpha-synuclein-positive inclusion bodies, another hallmark of PD. Studies using pharmacological UPS inhibition in vivo had more mixed results, varying from extensive degeneration to no loss of DA SN neurons. However, it is currently unknown whether UPS impairment will affect the neurophysiological functions of DA midbrain neurons. To answer this question, we infused a selective proteasome inhibitor into the ventral midbrain in vivo and recorded single DA midbrain neurons 2 weeks after the proteasome challenge. We found a selective increase in the mean in vivo firing frequencies of identified DA SN neurons in anesthetized mice, while those in the ventral tegmental area (VTA) were unaffected. Our results demonstrate that a single-hit UPS inhibition is sufficient to induce a stable and selective hyperexcitability phenotype in surviving DA SN neurons in vivo. This might imply that UPS dysfunction sensitizes DA SN neurons by enhancing 'stressful pacemaking'.

  1. Passive and active membrane properties contribute to the temporal filtering properties of midbrain neurons in vivo.

    PubMed

    Fortune, E S; Rose, G J

    1997-05-15

    This study examined the contributions of passive and active membrane properties to the temporal selectivities of electrosensory neurons in vivo. The intracellular responses to time-varying (2-30 Hz) electrosensory stimulation and current injection of 27 neurons in the midbrain of the weakly electric fish Eigenmannia were recorded. Each neuron was filled with biocytin to reveal its anatomy. Neurons were divided into two biophysically distinct groups based on their frequency-dependent responses to sinusoidal current injection over the range 2-30 Hz. Fourteen neurons showed low-pass filtering, with a maximum decline in the amplitude of voltage responses of >2.6 dB (X = 4.30 dB, s = 1.10 dB) to sinusoidal current injection. These neurons also showed low-pass filtering of electrosensory information but with larger maximum declines in postsynaptic potential amplitude (X = 9.53 dB, s = 3.34 dB; n = 10). These neurons had broad dendritic arbors and relatively spiny dendrites. Five neurons showed all-pass filtering, having maximum decline in the amplitude of voltage responses of <2.0 dB (X = 1.16 dB, s = 0.61 dB). For electrosensory stimuli, however, these neurons showed low-, band-, or high-pass filtering. These neurons had small dendritic arbors and few or no spines. Voltage-dependent "active" conductances were revealed in eight neurons by using several levels of current clamp. In four of these neurons, the duration of the voltage-dependent conductances decreased in concert with the period of the electrosensory stimulus, whereas in the other four neurons the duration of the voltage-dependent conductances was relatively short (<30 msec) and nearly constant across sensory stimulation frequencies. These conductances enhanced the temporal filtering properties of neurons.

  2. The Timing of Sonic Hedgehog and Gli1 Expression Segregates Midbrain Dopamine Neurons

    PubMed Central

    Hayes, Lindsay; Zhang, Zhiwei; Albert, Paul; Zervas, Mark; Ahn, Sohyun

    2011-01-01

    The ventral midbrain (vMb) is organized into distinct anatomical domains and contains cohorts of functionally distinct subtypes of midbrain dopamine (mDA) neurons. We tested the hypothesis that genetic history and timing of gene expression within mDA neuron progenitors impart spatial diversity. Using Genetic Inducible Fate Mapping to mark the Sonic hedgehog (Shh) and Gli1 lineages at varying embryonic stages, we performed a quantitative and qualitative comparison of the two lineages’ contribution to the mDA neuron domains. Dynamic changes in Shh and Gli1 expression in the vMb primordia delineated their spatial contribution to the E12.5 vMb: Both lineages first contributed to the medial domain, but subsequently the Gli1 lineage exclusively contributed to the lateral vMb while the Shh lineage expanded more broadly across the vMb. The contribution of both lineages to the differentiated mDA neuron domain was initially biased anteriorly and became more uniform across the anterior/posterior vMb throughout development. Our findings demonstrate that the early Shh and Gli1 lineages specify mDA neurons of the substantia nigra pars compacta while the late Shh and Gli1 lineages maintain their progenitor state longer in the posterior vMb to extend the production of mDA neurons in the ventral tegmental area. Together, our study demonstrates that the timing of gene expression along with the genetic lineage (Shh or Gli1) within the neural progenitors segregate mDA neurons into distinct spatial domains. PMID:21713771

  3. Thyroid Hormone-Otx2 Signaling Is Required for Embryonic Ventral Midbrain Neural Stem Cells Differentiated into Dopamine Neurons

    PubMed Central

    Chen, Chunhai; Ma, Qinglong; Chen, Xiaowei; Zhong, Min; Deng, Ping; Zhu, Gang; Zhang, Yanwen; Zhang, Lei; Yang, Zhiqi; Zhang, Kuan; Guo, Lu; Wang, Liting; Yu, Zhengping

    2015-01-01

    Midbrain dopamine (DA) neurons are essential for maintaining multiple brain functions. These neurons have also been implicated in relation with diverse neurological disorders. However, how these neurons are developed from neuronal stem cells (NSCs) remains largely unknown. In this study, we provide both in vivo and in vitro evidence that the thyroid hormone, an important physiological factor for brain development, promotes DA neuron differentiation from embryonic ventral midbrain (VM) NSCs. We find that thyroid hormone deficiency during development reduces the midbrain DA neuron number, downregulates the expression of tyrosine hydroxylase (TH) and the dopamine transporter (DAT), and impairs the DA neuron-dependent motor behavior. In addition, thyroid hormone treatment during VM NSC differentiation in vitro increases the production of DA neurons and upregulates the expression of TH and DAT. We also found that the thyroid hormone enhances the expression of Otx2, an important determinant of DA neurogenesis, during DA neuron differentiation. Our in vitro gene silencing experiments indicate that Otx2 is required for thyroid hormone-dependent DA neuron differentiation from embryonic VM NSCs. Finally, we revealed both in vivo and in vitro that the thyroid hormone receptor alpha 1 is expressed in embryonic VM NSCs. Furthermore, it participates in the effects of thyroid hormone-induced Otx2 upregulation and DA neuron differentiation. These data demonstrate the role and molecular mechanisms of how the thyroid hormone regulates DA neuron differentiation from embryonic VM NSCs, particularly providing new mechanisms and a potential strategy for generating dopamine neurons from NSCs. PMID:25867707

  4. Repeated heat exposure impairs nigrostriatal dopaminergic neurons in mice.

    PubMed

    Kim, Hyo Geun; Kim, Tae-mi; Park, Gunhyuk; Lee, Tae Hee; Oh, Myung Sook

    2013-01-01

    Environmental heat stress is associated with physical stress responses, including changes in monoamines, protein expression, and neuronal circuits and damage to neurons in the brain. This study determined the effects of heat stress on the nigrostriatal dopaminergic system based on behavioral, histological, and neurochemical analyses. To evaluate behavioral changes after heat exposure, we subjected mice to the pole and open field tests. The data suggested that heat stress for 7 d significantly impaired movement. Then, we conducted a histological analysis using tyrosine hydroxylase (TH) immunoreactivity in the striatum and substantia nigra (SN). Heat stress induced a significant deficit in TH-positive fibers and cells after 14- and 21-d exposure, respectively. We also measured the striatal dopamine (DA), 4-hydroxy-3-methoxy-phenylacetic acid, and 3,4-dihydroxyphenylacetic acid levels. The data suggested that DA turnover rate increased with heat exposure in a time-dependent manner, resulting in the significant decrease of DA after 28 d. Moreover, the expression of heat shock protein 70 (HSP70) was increased in the mouse SN with up to 14-d heat exposure, but decreased after 21 d of the stress. And glucose-regulated protein 78 (GRP78) was gradually increased in the mouse SN with 28-d heat exposure. The caspase-3 activity was also increased after 14-d heat exposure. These findings are the first evidence that repeated heat stress impairs nigrostriatal dopaminergic neurons, motor function, and DA availability with changes of HSP70 and GRP78 expressions and caspase-3 activity in mice.

  5. Cellular manganese content is developmentally regulated in human dopaminergic neurons

    NASA Astrophysics Data System (ADS)

    Kumar, Kevin K.; Lowe, Edward W., Jr.; Aboud, Asad A.; Neely, M. Diana; Redha, Rey; Bauer, Joshua A.; Odak, Mihir; Weaver, C. David; Meiler, Jens; Aschner, Michael; Bowman, Aaron B.

    2014-10-01

    Manganese (Mn) is both an essential biological cofactor and neurotoxicant. Disruption of Mn biology in the basal ganglia has been implicated in the pathogenesis of neurodegenerative disorders, such as parkinsonism and Huntington's disease. Handling of other essential metals (e.g. iron and zinc) occurs via complex intracellular signaling networks that link metal detection and transport systems. However, beyond several non-selective transporters, little is known about the intracellular processes regulating neuronal Mn homeostasis. We hypothesized that small molecules that modulate intracellular Mn could provide insight into cell-level Mn regulatory mechanisms. We performed a high throughput screen of 40,167 small molecules for modifiers of cellular Mn content in a mouse striatal neuron cell line. Following stringent validation assays and chemical informatics, we obtained a chemical `toolbox' of 41 small molecules with diverse structure-activity relationships that can alter intracellular Mn levels under biologically relevant Mn exposures. We utilized this toolbox to test for differential regulation of Mn handling in human floor-plate lineage dopaminergic neurons, a lineage especially vulnerable to environmental Mn exposure. We report differential Mn accumulation between developmental stages and stage-specific differences in the Mn-altering activity of individual small molecules. This work demonstrates cell-level regulation of Mn content across neuronal differentiation.

  6. Cellular manganese content is developmentally regulated in human dopaminergic neurons

    PubMed Central

    Kumar, Kevin K.; Lowe, Jr., Edward W.; Aboud, Asad A.; Neely, M. Diana; Redha, Rey; Bauer, Joshua A.; Odak, Mihir; Weaver, C. David; Meiler, Jens; Aschner, Michael; Bowman, Aaron B.

    2014-01-01

    Manganese (Mn) is both an essential biological cofactor and neurotoxicant. Disruption of Mn biology in the basal ganglia has been implicated in the pathogenesis of neurodegenerative disorders, such as parkinsonism and Huntington's disease. Handling of other essential metals (e.g. iron and zinc) occurs via complex intracellular signaling networks that link metal detection and transport systems. However, beyond several non-selective transporters, little is known about the intracellular processes regulating neuronal Mn homeostasis. We hypothesized that small molecules that modulate intracellular Mn could provide insight into cell-level Mn regulatory mechanisms. We performed a high throughput screen of 40,167 small molecules for modifiers of cellular Mn content in a mouse striatal neuron cell line. Following stringent validation assays and chemical informatics, we obtained a chemical ‘toolbox' of 41 small molecules with diverse structure-activity relationships that can alter intracellular Mn levels under biologically relevant Mn exposures. We utilized this toolbox to test for differential regulation of Mn handling in human floor-plate lineage dopaminergic neurons, a lineage especially vulnerable to environmental Mn exposure. We report differential Mn accumulation between developmental stages and stage-specific differences in the Mn-altering activity of individual small molecules. This work demonstrates cell-level regulation of Mn content across neuronal differentiation. PMID:25348053

  7. In actio optophysiological analyses reveal functional diversification of dopaminergic neurons in the nematode C. elegans

    NASA Astrophysics Data System (ADS)

    Tanimoto, Yuki; Zheng, Ying Grace; Fei, Xianfeng; Fujie, Yukako; Hashimoto, Koichi; Kimura, Koutarou D.

    2016-05-01

    Many neuronal groups such as dopamine-releasing (dopaminergic) neurons are functionally divergent, although the details of such divergence are not well understood. Dopamine in the nematode Caenorhabditis elegans modulates various neural functions and is released from four left-right pairs of neurons. The terminal identities of these dopaminergic neurons are regulated by the same genetic program, and previous studies have suggested that they are functionally redundant. In this study, however, we show functional divergence within the dopaminergic neurons of C. elegans. Because dopaminergic neurons of the animals were supposedly activated by mechanical stimulus upon entry into a lawn of their food bacteria, we developed a novel integrated microscope system that can auto-track a freely-moving (in actio) C. elegans to individually monitor and stimulate the neuronal activities of multiple neurons. We found that only head-dorsal pair of dopaminergic neurons (CEPD), but not head-ventral or posterior pairs, were preferentially activated upon food entry. In addition, the optogenetic activation of CEPD neurons alone exhibited effects similar to those observed upon food entry. Thus, our results demonstrated functional divergence in the genetically similar dopaminergic neurons, which may provide a new entry point toward understanding functional diversity of neurons beyond genetic terminal identification.

  8. Semaphorin 3C Released from a Biocompatible Hydrogel Guides and Promotes Axonal Growth of Rodent and Human Dopaminergic Neurons.

    PubMed

    Carballo-Molina, Oscar A; Sánchez-Navarro, Andrea; López-Ornelas, Adolfo; Lara-Rodarte, Rolando; Salazar, Patricia; Campos-Romo, Aurelio; Ramos-Mejía, Verónica; Velasco, Iván

    2016-06-01

    Cell therapy in experimental models of Parkinson's disease replaces the lost dopamine neurons (DAN), but we still need improved methods to guide dopaminergic axons (DAx) of grafted neurons to make proper connections. The protein Semaphorin 3C (Sema3C) attracts DAN axons and enhances their growth. In this work, we show that the hydrogel PuraMatrix, a self-assembling peptide-based matrix, incorporates Sema3C and releases it steadily during 4 weeks. We also tested if hydrogel-delivered Sema3C attracts DAx using a system of rat midbrain explants embedded in collagen gels. We show that Sema3C released by this hydrogel attracts DAx, in a similar way to pretectum, which is known to attract growing DAN axons. We assessed the effect of Sema3C on the growth of DAx using microfluidic devices. DAN from rat midbrain or those differentiated from human embryonic stem cells showed enhanced axonal extension when exposed to hydrogel-released Sema3C, similar to soluble Sema3C. Notably, DAN of human origin express the cognate Sema3C receptors, Neuropilin1 and Neuropilin2. These results show that PuraMatrix is able to incorporate and release Sema3C, and such delivery guides and promotes the axonal growth of DAN. This biocompatible hydrogel might be useful as a Sema3C carrier for in vivo studies in parkinsonian animal models.

  9. Semaphorin 3C Released from a Biocompatible Hydrogel Guides and Promotes Axonal Growth of Rodent and Human Dopaminergic Neurons

    PubMed Central

    Carballo-Molina, Oscar A.; Sánchez-Navarro, Andrea; López-Ornelas, Adolfo; Lara-Rodarte, Rolando; Salazar, Patricia; Campos-Romo, Aurelio; Ramos-Mejía, Verónica

    2016-01-01

    Cell therapy in experimental models of Parkinson's disease replaces the lost dopamine neurons (DAN), but we still need improved methods to guide dopaminergic axons (DAx) of grafted neurons to make proper connections. The protein Semaphorin 3C (Sema3C) attracts DAN axons and enhances their growth. In this work, we show that the hydrogel PuraMatrix, a self-assembling peptide-based matrix, incorporates Sema3C and releases it steadily during 4 weeks. We also tested if hydrogel-delivered Sema3C attracts DAx using a system of rat midbrain explants embedded in collagen gels. We show that Sema3C released by this hydrogel attracts DAx, in a similar way to pretectum, which is known to attract growing DAN axons. We assessed the effect of Sema3C on the growth of DAx using microfluidic devices. DAN from rat midbrain or those differentiated from human embryonic stem cells showed enhanced axonal extension when exposed to hydrogel-released Sema3C, similar to soluble Sema3C. Notably, DAN of human origin express the cognate Sema3C receptors, Neuropilin1 and Neuropilin2. These results show that PuraMatrix is able to incorporate and release Sema3C, and such delivery guides and promotes the axonal growth of DAN. This biocompatible hydrogel might be useful as a Sema3C carrier for in vivo studies in parkinsonian animal models. PMID:27174503

  10. Fetal exposure to 2,3,7,8-tetrachlorodibenzo-p-dioxin transactivates aryl hydrocarbon receptor-responsive element III in the tyrosine hydroxylase immunoreactive neurons of the mouse midbrain.

    PubMed

    Tanida, Takashi; Tasaka, Ken; Akahoshi, Eiichi; Ishihara-Sugano, Mitsuko; Saito, Michiko; Kawata, Shigehisa; Danjo, Megumi; Tokumoto, Junko; Mantani, Youhei; Nagahara, Daichi; Tabuchi, Yoshiaki; Yokoyama, Toshifumi; Kitagawa, Hiroshi; Kawata, Mitsuhiro; Hoshi, Nobuhiko

    2014-02-01

    Fetal exposure to dioxins and related compounds is known to disrupt normal development of the midbrain dopaminergic system, which regulates behavior, cognition and emotion. The toxicity of these chemicals is mediated mainly by aryl hydrocarbon receptor (AhR) signaling. Previously, we identified a novel binding motif of AhR, the AhR-responsive element III (AHRE-III), in vitro. This motif is located upstream from the gene encoding tyrosine hydroxylase (TH), the rate-limiting enzyme of dopamine biosynthesis. To provide in vivo evidence, we investigated whether 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD) could regulate AHRE-III transcriptional activity in midbrain dopaminergic neurons. We produced transgenic mice with inserted constructs of the AHRE-III enhancers, TH gene promoter and the c-myc-tagged luciferase gene. Single oral administrations of TCDD (0-2000 ng kg⁻¹ body weight) to the transgenic dams markedly enhanced TH-immunoreactive (ir) intensity in the A9, A10 and A8 areas of their offspring at 3 days and 8 weeks of age. The offspring of dams treated with 200 ng kg⁻¹ TCDD exhibited significant increases in the numbers of TH- and double (TH and c-myc)-ir neurons in area A9 compared with controls at 8 weeks. These results show that fetal exposure to TCDD upregulates TH expression and increases TH-ir neurons in the midbrain. Moreover, the results suggest that TCDD directly transactivates the TH promoter via the AhR-AHRE-III-mediated pathway in area A9. Fetal exposure to TCDD caused stable upregulation of TH via the AhR-AHRE-III signaling pathway and overgrowth of TH-ir neurons in the midbrain, implying possible involvement in the etiology of neurodevelopmental disorders such as attention-deficit/hyperactivity disorder (ADHD).

  11. Essential function of HIPK2 in TGFβ-dependent survival of midbrain dopamine neurons

    PubMed Central

    Zhang, Jiasheng; Pho, Vanee; Bonasera, Stephen J; Holzmann, Jed; Tang, Amy T; Hellmuth, Joanna; Tang, Siuwah; Janak, Patricia H; Tecott, Laurence H; Huang, Eric J

    2013-01-01

    Transforming growth factor beta (TGFβ) is a potent trophic factor for midbrain dopamine (DA) neurons, but its in vivo function and signaling mechanisms are not entirely understood. We show that the transcriptional cofactor homeodomain interacting protein kinase 2 (HIPK2) is required for the TGFβ-mediated survival of mouse DA neurons. The targeted deletion of Hipk2 has no deleterious effect on the neurogenesis of DA neurons, but leads to a selective loss of these neurons that is due to increased apoptosis during programmed cell death. As a consequence, Hipk2−/− mutants show an array of psychomotor abnormalities. The function of HIPK2 depends on its interaction with receptor-regulated Smads to activate TGFβ target genes. In support of this notion, DA neurons from Hipk2−/− mutants fail to survive in the presence of TGFβ3 and Tgfβ3−/− mutants show DA neuron abnormalities similar to those seen in Hipk2−/− mutants. These data underscore the importance of the TGFβ-Smad-HIPK2 pathway in the survival of DA neurons and its potential as a therapeutic target for promoting DA neuron survival during neurodegeneration. PMID:17159989

  12. Comparative study of efficacy of dopaminergic neuron differentiation between embryonic stem cell and protein-based induced pluripotent stem cell.

    PubMed

    Kwon, Yoo-Wook; Chung, Yeon-Ju; Kim, Joonoh; Lee, Ho-Jae; Park, Jihwan; Roh, Tae-Young; Cho, Hyun-Jai; Yoon, Chang-Hwan; Koo, Bon-Kwon; Kim, Hyo-Soo

    2014-01-01

    In patients with Parkinson's disease (PD), stem cells can serve as therapeutic agents to restore or regenerate injured nervous system. Here, we differentiated two types of stem cells; mouse embryonic stem cells (mESCs) and protein-based iPS cells (P-iPSCs) generated by non-viral methods, into midbrain dopaminergic (mDA) neurons, and then compared the efficiency of DA neuron differentiation from these two cell types. In the undifferentiated stage, P-iPSCs expressed pluripotency markers as ES cells did, indicating that protein-based reprogramming was stable and authentic. While both stem cell types were differentiated to the terminally-matured mDA neurons, P-iPSCs showed higher DA neuron-specific markers' expression than ES cells. To investigate the mechanism of the superior induction capacity of DA neurons observed in P-iPSCs compared to ES cells, we analyzed histone modifications by genome-wide ChIP sequencing analysis and their corresponding microarray results between two cell types. We found that Wnt signaling was up-regulated, while SFRP1, a counter-acting molecule of Wnt, was more suppressed in P-iPSCs than in mESCs. In PD rat model, transplantation of neural precursor cells derived from both cell types showed improved function. The present study demonstrates that P-iPSCs could be a suitable cell source to provide patient-specific therapy for PD without ethical problems or rejection issues.

  13. Vitamin C facilitates dopamine neuron differentiation in fetal midbrain through TET1- and JMJD3-dependent epigenetic control manner.

    PubMed

    He, Xi-Biao; Kim, Mirang; Kim, Seon-Young; Yi, Sang-Hoon; Rhee, Yong-Hee; Kim, Taeho; Lee, Eun-Hye; Park, Chang-Hwan; Dixit, Shilpy; Harrison, Fiona E; Lee, Sang-Hun

    2015-04-01

    Intracellular Vitamin C (VC) is maintained at high levels in the developing brain by the activity of sodium-dependent VC transporter 2 (Svct2), suggesting specific VC functions in brain development. A role of VC as a cofactor for Fe(II)-2-oxoglutarate-dependent dioxygenases has recently been suggested. We show that VC supplementation in neural stem cell cultures derived from embryonic midbrains greatly enhanced differentiation toward midbrain-type dopamine (mDA) neurons, the neuronal subtype associated with Parkinson's disease. VC induced gain of 5-hydroxymethylcytosine (5hmC) and loss of H3K27m3 in DA phenotype gene promoters, which are catalyzed by Tet1 and Jmjd3, respectively. Consequently, VC enhanced DA phenotype gene transcriptions in the progenitors by Nurr1, a transcription factor critical for mDA neuron development, to be more accessible to the gene promoters. Further mechanism studies including Tet1 and Jmjd3 knockdown/inhibition experiments revealed that both the 5hmC and H3K27m3 changes, specifically in the progenitor cells, are indispensible for the VC-mediated mDA neuron differentiation. We finally show that in Svct2 knockout mouse embryos, mDA neuron formation in the developing midbrain decreased along with the 5hmC/H3k27m3 changes. These findings together indicate an epigenetic role of VC in midbrain DA neuron development. © 2014 AlphaMed Press.

  14. Differentiation of neuroepithelial stem cells into functional dopaminergic neurons in 3D microfluidic cell culture.

    PubMed

    Moreno, Edinson Lucumi; Hachi, Siham; Hemmer, Kathrin; Trietsch, Sebastiaan J; Baumuratov, Aidos S; Hankemeier, Thomas; Vulto, Paul; Schwamborn, Jens C; Fleming, Ronan M T

    2015-06-07

    A hallmark of Parkinson's disease is the progressive loss of nigrostriatal dopaminergic neurons. We derived human neuroepithelial cells from induced pluripotent stem cells and successfully differentiated them into dopaminergic neurons within phase-guided, three-dimensional microfluidic cell culture bioreactors. After 30 days of differentiation within the microfluidic bioreactors, in situ morphological, immunocytochemical and calcium imaging confirmed the presence of dopaminergic neurons that were spontaneously electrophysiologically active, a characteristic feature of nigrostriatal dopaminergic neurons in vivo. Differentiation was as efficient as in macroscopic culture, with up to 19% of differentiated neurons immunoreactive for tyrosine hydroxylase, the penultimate enzyme in the synthesis of dopamine. This new microfluidic cell culture model integrates the latest innovations in developmental biology and microfluidic cell culture to generate a biologically realistic and economically efficient route to personalised drug discovery for Parkinson's disease.

  15. Neuroprotective effects of phytochemicals on dopaminergic neuron cultures.

    PubMed

    Sandoval-Avila, S; Diaz, N F; Gómez-Pinedo, U; Canales-Aguirre, A A; Gutiérrez-Mercado, Y K; Padilla-Camberos, E; Marquez-Aguirre, A L; Díaz-Martínez, N E

    2016-06-21

    Parkinson's disease is a progressive neurodegenerative disorder characterised by a loss of dopaminergic neurons in the substantia nigra pars compacta, which results in a significant decrease in dopamine levels and consequent functional motor impairment. Although its aetiology is not fully understood, several pathogenic mechanisms, including oxidative stress, have been proposed. Current therapeutic approaches are based on dopamine replacement drugs; these agents, however, are not able to stop or even slow disease progression. Novel therapeutic approaches aimed at acting on the pathways leading to neuronal dysfunction and death are under investigation. In recent years, such natural molecules as polyphenols, alkaloids, and saponins have been shown to have a neuroprotective effect due to their antioxidant and anti-inflammatory properties. The aim of our review is to analyse the most relevant studies worldwide addressing the benefits of some phytochemicals used in in vitro models of Parkinson's disease. Copyright © 2016 Sociedad Española de Neurología. Published by Elsevier España, S.L.U. All rights reserved.

  16. An Optimized Method for Histological Detection of Dopaminergic Neurons in Drosophila melanogaster

    PubMed Central

    Drobysheva, Daria; Ameel, Kristen; Welch, Brandon; Ellison, Esther; Chaichana, Khan; Hoang, Bryan; Sharma, Shilpy; Neckameyer, Wendi; Srinakevitch, Irina; Murphy, Kelley J.; Schmid, Aloisia

    2008-01-01

    Parkinson's disease (PD) affects >1 million Americans and is marked by the loss of dopaminergic neurons in the substantia nigra. PD has been linked to two causative factors: genetic risks (hereditary PD) and environmental toxins (idiopathic PD). In recent years, considerable effort has been devoted to the development of a Drosophila model of human PD that might be useful for examining the cellular mechanisms of PD pathology by genetic screening. In 2000, Feany and Bender reported a Drosophila model of PD in which transgenic flies expressing human mutant α-synuclein exhibited shortened life spans, dopaminergic losses, Parkinsonian behaviors, and Lewy bodies in surviving dopaminergic neurons. Since then, a number of studies have been published that validate the model or build on it; conversely, a number report an inability to replicate the results and suggest that most protocols for dopaminergic histology underreport the actual numbers of dopaminergic neurons in the insect brain. Here we report the optimization of dopaminergic histology in Drosophila and identification of new dopaminergic neurons, show the remarkable dendritic complexity of these neurons, and provide an updated count of these neurons in adult brains. This manuscript contains online supplemental material at http://www.jhc.org. Please visit this article online to view these materials. (J Histochem Cytochem 56:1049–1063, 2008) PMID:18574253

  17. Atrazine Causes Autophagy- and Apoptosis-Related Neurodegenerative Effects in Dopaminergic Neurons in the Rat Nigrostriatal Dopaminergic System

    PubMed Central

    Song, Xiao-Yao; Li, Jia-Nan; Wu, Yan-Ping; Zhang, Bo; Li, Bai-Xiang

    2015-01-01

    Atrazine (2-chloro-4-ethytlamino-6-isopropylamine-1,3,5-triazine; ATR) is widely used as a broad-spectrum herbicide. Animal studies have demonstrated that ATR exposure can cause cell death in dopaminergic neurons. The molecular mechanisms underlying ATR-induced neuronal cell death, however, are unknown. In this study, we investigated the autophagy and apoptosis induced by ATR in dopaminergic neurons in vivo. Wistar rats were administered with ATR at doses of 10, 50 and 100 mg/kg body weight by oral gavage for three months. In terms of histopathology, the expression of autophagy- and apoptosis-related genes as well as proteins related to the Beclin-1/B-cell lymphoma 2 (Bcl-2) autophagy and apoptosis pathways were examined in the rat nigrostriatal dopaminergic system. We observed degenerative micromorphology indicative of neuronal apoptosis and mitochondrial autophagy by electron microscopy in ATR-exposed rat striatum. The rat ventral mesencephalon in the ATR-exposed groups also showed increased expression of Beclin-1, LC3-II, Bax and Caspase-9, and decreased expression of tyrosine hydroxylase (TH), Bcl-xl and Bcl-2. These findings indicate that ATR may induce autophagy- and apoptosis-related changes in doparminergic neurons. Furthermore, this induction may be regulated by the Beclin-1 and Bcl-2 autophagy and apoptosis pathways, and this may help to better understand the mechanism underlying the neurotoxicity of ATR. PMID:26075868

  18. Endocannabinoid release from midbrain dopamine neurons: a potential substrate for cannabinoid receptor antagonist treatment of addiction.

    PubMed

    Lupica, Carl R; Riegel, Arthur C

    2005-06-01

    Substantial evidence suggests that all commonly abused drugs act upon the brain reward circuitry to ultimately increase extracellular concentrations of the neurotransmitter dopamine in the nucleus accumbens and other forebrain areas. Many drugs of abuse appear to increase dopamine levels by dramatically increase the firing and bursting rates of dopamine neurons located in the ventral mesencephalon. Recent clinical evidence in humans and behavioral evidence in animals indicate that cannabinoid receptor antagonists such as SR141716A (Rimonabant) can reduce the self-administration of, and craving for, several commonly addictive drugs. However, the mechanism of this potentially beneficial effect has not yet been identified. We propose, on the basis of recent studies in our laboratory and others, that these antagonists may act by blocking the effects of endogenously released cannabinoid molecules (endocannabinoids) that are released in an activity- and calcium-dependent manner from mesencephalic dopamine neurons. It is hypothesized that, through the antagonism of cannabinoid CB1 receptors located on inhibitory and excitatory axon terminals targeting the midbrain dopamine neurons, the effects of the endocannabinoids are occluded. The data from these studies therefore suggest that the endocannabinoid system and the CB1 receptors located in the ventral mesencephalon may play an important role in regulating drug reward processes, and that this substrate is recruited whenever dopamine neuron activity is increased.

  19. Presynaptic recording of quanta from midbrain dopamine neurons and modulation of the quantal size.

    PubMed

    Pothos, E N; Davila, V; Sulzer, D

    1998-06-01

    The observation of quantal release from central catecholamine neurons has proven elusive because of the absence of evoked rapid postsynaptic currents. We adapted amperometric methods to observe quantal release directly from axonal varicosities of midbrain dopamine neurons that predominantly contain small synaptic vesicles. Quantal events were elicited by high K+ or alpha-latrotoxin, required extracellular Ca2+, and were abolished by reserpine. The events indicated the release of 3000 molecules over 200 microsec, much smaller and faster events than quanta associated with large dense-core vesicles previously recorded in vertebrate preparations. The number of dopamine molecules per quantum increased as a population to 380% of controls after glial-derived neurotrophic factor (GDNF) exposure and to 350% of controls after exposure to the dopamine precursor L-dihydroxyphenylalanine (L-DOPA). These results introduce a means to measure directly the number of transmitter molecules released from small synaptic vesicles of CNS neurons. Moreover, quantal size was not an invariant parameter in CNS neurons but could be modulated by neurotrophic factors and altered neurotransmitter synthesis.

  20. Short-Term Depression, Temporal Summation, and Onset Inhibition Shape Interval Tuning in Midbrain Neurons

    PubMed Central

    Baker, Christa A.

    2014-01-01

    A variety of synaptic mechanisms can contribute to single-neuron selectivity for temporal intervals in sensory stimuli. However, it remains unknown how these mechanisms interact to establish single-neuron sensitivity to temporal patterns of sensory stimulation in vivo. Here we address this question in a circuit that allows us to control the precise temporal patterns of synaptic input to interval-tuned neurons in behaviorally relevant ways. We obtained in vivo intracellular recordings under multiple levels of current clamp from midbrain neurons in the mormyrid weakly electric fish Brienomyrus brachyistius during stimulation with electrosensory pulse trains. To reveal the excitatory and inhibitory inputs onto interval-tuned neurons, we then estimated the synaptic conductances underlying responses. We found short-term depression in excitatory and inhibitory pathways onto all interval-tuned neurons. Short-interval selectivity was associated with excitation that depressed less than inhibition at short intervals, as well as temporally summating excitation. Long-interval selectivity was associated with long-lasting onset inhibition. We investigated tuning after separately nullifying the contributions of temporal summation and depression, and found the greatest diversity of interval selectivity among neurons when both mechanisms were at play. Furthermore, eliminating the effects of depression decreased sensitivity to directional changes in interval. These findings demonstrate that variation in depression and summation of excitation and inhibition helps to establish tuning to behaviorally relevant intervals in communication signals, and that depression contributes to neural coding of interval sequences. This work reveals for the first time how the interplay between short-term plasticity and temporal summation mediates the decoding of temporal sequences in awake, behaving animals. PMID:25339741

  1. Nkx6-1 controls the identity and fate of red nucleus and oculomotor neurons in the mouse midbrain

    PubMed Central

    Prakash, Nilima; Puelles, Eduardo; Freude, Kristine; Trümbach, Dietrich; Omodei, Daniela; Di Salvio, Michela; Sussel, Lori; Ericson, Johan; Sander, Maike; Simeone, Antonio; Wurst, Wolfgang

    2009-01-01

    Summary Little is known about the cues controlling the generation of motoneuron populations in the mammalian ventral midbrain. We show that Otx2 provides the crucial anterior-posterior positional information for the generation of red nucleus neurons in the murine midbrain. Moreover, the homeodomain transcription factor Nkx6-1 controls the proper development of the red nucleus and of the oculomotor and trochlear nucleus neurons. Nkx6-1 is expressed in ventral midbrain progenitors and acts as a fate determinant of the Brn3a+ (also known as Pou4f1) red nucleus neurons. These progenitors are partially dorsalized in the absence of Nkx6-1, and a fraction of their postmitotic offspring adopts an alternative cell fate, as revealed by the activation of Dbx1 and Otx2 in these cells. Nkx6-1 is also expressed in postmitotic Isl1+ oculomotor and trochlear neurons. Similar to hindbrain visceral (branchio-) motoneurons, Nkx6-1 controls the proper migration and axon outgrowth of these neurons by regulating the expression of at least three axon guidance/neuronal migration molecules. Based on these findings, we provide additional evidence that the developmental mechanism of the oculomotor and trochlear neurons exhibits more similarity with that of special visceral motoneurons than with that controlling the generation of somatic motoneurons located in the murine caudal hindbrain and spinal cord. PMID:19592574

  2. Dopaminergic neurons in the brain and dopaminergic innervation of the albumen gland in mated and virgin helisoma duryi (mollusca: pulmonata)

    PubMed Central

    Kiehn, Lana; Saleuddin, Saber; Lange, Angela

    2001-01-01

    Background Dopamine was shown to stimulate the perivitelline fluid secretion by the albumen gland. Even though the albumen gland has been shown to contain catecholaminergic fibers and its innervation has been studied, the type of catecholamines, distribution of fibers and the precise source of this neural innervation has not yet been deduced. This study was designed to address these issues and examine the correlation between dopamine concentration and the sexual status of snails. Results Dopaminergic neurons were found in all ganglia except the pleural and right parietal, and their axons in all ganglia and major nerves of the brain. In the albumen gland dopaminergic axons formed a nerve tract in the central region, and a uniform net in other areas. Neuronal cell bodies were present in the vicinity of the axons. Dopamine was a major catecholamine in the brain and the albumen gland. No significant difference in dopamine quantity was found when the brain and the albumen gland of randomly mating, virgin and first time mated snails were compared. Conclusions Our results represent the first detailed studies regarding the catecholamine innervation and quantitation of neurotransmitters in the albumen gland. In this study we localized catecholaminergic neurons and axons in the albumen gland and the brain, identified these neurons and axons as dopaminergic, reported monoamines present in the albumen gland and the brain, and compared the dopamine content in the brain and the albumen gland of randomly mating, virgin and first time mated snails. PMID:11513757

  3. Programming of Dopaminergic Neurons by Neonatal Sex Hormone Exposure: Effects on Dopamine Content and Tyrosine Hydroxylase Expression in Adult Male Rats.

    PubMed

    Espinosa, Pedro; Silva, Roxana A; Sanguinetti, Nicole K; Venegas, Francisca C; Riquelme, Raul; González, Luis F; Cruz, Gonzalo; Renard, Georgina M; Moya, Pablo R; Sotomayor-Zárate, Ramón

    2016-01-01

    We sought to determine the long-term changes produced by neonatal sex hormone administration on the functioning of midbrain dopaminergic neurons in adult male rats. Sprague-Dawley rats were injected subcutaneously at postnatal day 1 and were assigned to the following experimental groups: TP (testosterone propionate of 1.0 mg/50 μL); DHT (dihydrotestosterone of 1.0 mg/50 μL); EV (estradiol valerate of 0.1 mg/50 μL); and control (sesame oil of 50 μL). At postnatal day 60, neurochemical studies were performed to determine dopamine content in substantia nigra-ventral tegmental area and dopamine release in nucleus accumbens. Molecular (mRNA expression of tyrosine hydroxylase) and cellular (tyrosine hydroxylase immunoreactivity) studies were also performed. We found increased dopamine content in substantia nigra-ventral tegmental area of TP and EV rats, in addition to increased dopamine release in nucleus accumbens. However, neonatal exposure to DHT, a nonaromatizable androgen, did not affect midbrain dopaminergic neurons. Correspondingly, compared to control rats, levels of tyrosine hydroxylase mRNA and protein were significantly increased in TP and EV rats but not in DHT rats, as determined by qPCR and immunohistochemistry, respectively. Our results suggest an estrogenic mechanism involving increased tyrosine hydroxylase expression, either by direct estrogenic action or by aromatization of testosterone to estradiol in substantia nigra-ventral tegmental area.

  4. Programming of Dopaminergic Neurons by Neonatal Sex Hormone Exposure: Effects on Dopamine Content and Tyrosine Hydroxylase Expression in Adult Male Rats

    PubMed Central

    Espinosa, Pedro; Silva, Roxana A.; Sanguinetti, Nicole K.; Venegas, Francisca C.; Riquelme, Raul; González, Luis F.; Cruz, Gonzalo; Renard, Georgina M.; Moya, Pablo R.; Sotomayor-Zárate, Ramón

    2016-01-01

    We sought to determine the long-term changes produced by neonatal sex hormone administration on the functioning of midbrain dopaminergic neurons in adult male rats. Sprague-Dawley rats were injected subcutaneously at postnatal day 1 and were assigned to the following experimental groups: TP (testosterone propionate of 1.0 mg/50 μL); DHT (dihydrotestosterone of 1.0 mg/50 μL); EV (estradiol valerate of 0.1 mg/50 μL); and control (sesame oil of 50 μL). At postnatal day 60, neurochemical studies were performed to determine dopamine content in substantia nigra-ventral tegmental area and dopamine release in nucleus accumbens. Molecular (mRNA expression of tyrosine hydroxylase) and cellular (tyrosine hydroxylase immunoreactivity) studies were also performed. We found increased dopamine content in substantia nigra-ventral tegmental area of TP and EV rats, in addition to increased dopamine release in nucleus accumbens. However, neonatal exposure to DHT, a nonaromatizable androgen, did not affect midbrain dopaminergic neurons. Correspondingly, compared to control rats, levels of tyrosine hydroxylase mRNA and protein were significantly increased in TP and EV rats but not in DHT rats, as determined by qPCR and immunohistochemistry, respectively. Our results suggest an estrogenic mechanism involving increased tyrosine hydroxylase expression, either by direct estrogenic action or by aromatization of testosterone to estradiol in substantia nigra-ventral tegmental area. PMID:26904299

  5. Protective effects of a polysaccharide from Spirulina platensis on dopaminergic neurons in an MPTP-induced Parkinson's disease model in C57BL/6J mice

    PubMed Central

    Zhang, Fang; Lu, Jian; Zhang, Ji-guo; Xie, Jun-xia

    2015-01-01

    The present study aimed to determine whether a polysaccharide obtained from Spirulina platensis shows protective effects on dopaminergic neurons. A Parkinson's disease model was established through the intraperitoneal injection of 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) in C57BL/6J mice. Prior to the MPTP injection, some mice were pretreated with intraperitoneal injections of a polysaccharide derived from Spirulina platensis once daily for 10 days. The results showed that the immunoreactive staining and mRNA expression of the dopamine transporter and tyrosine hydroxylase, the rate-limiting enzyme in dopamine synthesis, in the substantia nigra, were significantly increased in mice pretreated with 800 mg/kg of the polysaccharide compared with those in MPTP-treated mice. The activities of superoxide dismutase and glutathione peroxidase in the serum and midbrain were also increased significantly in mice injected with MPTP after pretreatment with the polysaccharide from Spirulina platensis. By contrast, the activity of monoamine oxidase B in serum and midbrain maintained unchanged. These experimental findings indicate that the polysaccharide obtained from Spirulina platensis plays a protective role against the MPTP-induced loss of dopaminergic neurons in C57BL/6J mice, and that the antioxidative properties of this polysaccharide likely underlie its neuroprotective effect. PMID:25883632

  6. DJ-1 mediates paraquat-induced dopaminergic neuronal cell death.

    PubMed

    Kwon, Hyun Joo; Heo, Jun Young; Shim, Jung Hee; Park, Ji Hoon; Seo, Kang Sik; Ryu, Min Jeong; Han, Jeong Su; Shong, Minho; Son, Jin H; Kweon, Gi Ryang

    2011-04-25

    There are two causes of Parkinson's disease (PD): environmental insults and genetic mutations of PD-associated genes. Environmental insults and genetic mutations lead to mitochondrial dysfunction, and a combination of mitochondrial dysfunction and increased oxidative stress in dopaminergic neurons is thought to contribute to the pathogenesis of PD. Among the PD-associated genes, DJ-1 acts as a redox sensor for oxidative stress and has been also proposed to maintain mitochondrial complex I activity. To understand molecular functions of DJ-1 in the cell, we have generated DJ-1 null cells from the DJ-1(-/-) mouse embryos. Using these null cells, we investigated the susceptibility to an environmental toxin, paraquat, which is known to inhibit mitochondrial complex I. Interestingly, we found that DJ-1 null cells showed a resistance to paraquat-induced apoptosis, including reduced poly (ADP-ribose) polymerase and procaspase-3. Also DJ-1 null cells generated less superoxide than SN4741 cells by paraquat treatment. Consistent with the reduced paraquat sensitivity, DJ-1 null cells showed reduced complex I activity, which was partially rescued by ectopic DJ-I expression. In summary, our results suggest that DJ-1 is critical to maintain mitochondrial complex I and complex I could be a key target in interaction of paraquat toxicity and DJ-1 for giving rise to PD.

  7. Sweet Taste and Nutrient Value Subdivide Rewarding Dopaminergic Neurons in Drosophila

    PubMed Central

    Huetteroth, Wolf; Perisse, Emmanuel; Lin, Suewei; Klappenbach, Martín; Burke, Christopher; Waddell, Scott

    2015-01-01

    Summary Dopaminergic neurons provide reward learning signals in mammals and insects [1–4]. Recent work in Drosophila has demonstrated that water-reinforcing dopaminergic neurons are different to those for nutritious sugars [5]. Here, we tested whether the sweet taste and nutrient properties of sugar reinforcement further subdivide the fly reward system. We found that dopaminergic neurons expressing the OAMB octopamine receptor [6] specifically convey the short-term reinforcing effects of sweet taste [4]. These dopaminergic neurons project to the β′2 and γ4 regions of the mushroom body lobes. In contrast, nutrient-dependent long-term memory requires different dopaminergic neurons that project to the γ5b regions, and it can be artificially reinforced by those projecting to the β lobe and adjacent α1 region. Surprisingly, whereas artificial implantation and expression of short-term memory occur in satiated flies, formation and expression of artificial long-term memory require flies to be hungry. These studies suggest that short-term and long-term sugar memories have different physiological constraints. They also demonstrate further functional heterogeneity within the rewarding dopaminergic neuron population. PMID:25728694

  8. Menthol enhances phasic and tonic GABAA receptor-mediated currents in midbrain periaqueductal grey neurons

    PubMed Central

    Lau, Benjamin K; Karim, Shafinaz; Goodchild, Ann K; Vaughan, Christopher W; Drew, Geoffrey M

    2014-01-01

    Background and Purpose Menthol, a naturally occurring compound in the essential oil of mint leaves, is used for its medicinal, sensory and fragrant properties. Menthol acts via transient receptor potential (TRPM8 and TRPA1) channels and as a positive allosteric modulator of recombinant GABAA receptors. Here, we examined the actions of menthol on GABAA receptor-mediated currents in intact midbrain slices. Experimental Approach Whole-cell voltage-clamp recordings were made from periaqueductal grey (PAG) neurons in midbrain slices from rats to determine the effects of menthol on GABAA receptor-mediated phasic IPSCs and tonic currents. Key Results Menthol (150–750 μM) produced a concentration-dependent prolongation of spontaneous GABAA receptor-mediated IPSCs, but not non-NMDA receptor-mediated EPSCs throughout the PAG. Menthol actions were unaffected by TRPM8 and TRPA1 antagonists, tetrodotoxin and the benzodiazepine antagonist, flumazenil. Menthol also enhanced a tonic current, which was sensitive to the GABAA receptor antagonists, picrotoxin (100 μM), bicuculline (30 μM) and Zn2+ (100 μM), but unaffected by gabazine (10 μM) and a GABAC receptor antagonist, 1,2,5,6-tetrahydropyridin-4-yl)methylphosphinic acid hydrate (TPMPA; 50 μM). In addition, menthol potentiated currents induced by the extrasynaptic GABAA receptor agonist THIP/gaboxadol (10 μM). Conclusions and Implications These results suggest that menthol positively modulates both synaptic and extrasynaptic populations of GABAA receptors in native PAG neurons. The development of agents that potentiate GABAA-mediated tonic currents and phasic IPSCs in a manner similar to menthol could provide a basis for novel GABAA-related pharmacotherapies. PMID:24460753

  9. Comparison of midbrain and thalamic space-specific neurons in barn owls.

    PubMed

    Pérez, María Lucía; Peña, José Luis

    2006-02-01

    Spatial receptive fields of neurons in the auditory pathway of the barn owl result from the sensitivity to combinations of interaural time (ITD) and level differences across stimulus frequency. Both the forebrain and tectum of the owl contain such neurons. The neural pathways, which lead to the forebrain and tectal representations of auditory space, separate before the midbrain map of auditory space is synthesized. The first nuclei that belong exclusively to either the forebrain or the tectal pathways are the nucleus ovoidalis (Ov) and the external nucleus of the inferior colliculus (ICx), respectively. Both receive projections from the lateral shell subdivision of the inferior colliculus but are not interconnected. Previous studies indicate that the owl's tectal representation of auditory space is different from those found in the owl's forebrain and the mammalian brain. We addressed the question of whether the computation of spatial cues in both pathways is the same by comparing the ITD tuning of Ov and ICx neurons. Unlike in ICx, the relationship between frequency and ITD tuning had not been studied in single Ov units. In contrast to the conspicuous frequency independent ITD tuning of space-specific neurons of ICx, ITD selectivity varied with frequency in Ov. We also observed that the spatially tuned neurons of Ov respond to lower frequencies and are more broadly tuned to ITD than in ICx. Thus there are differences in the integration of frequency and ITD in the two sound-localization pathways. Thalamic neurons integrate spatial information not only within a broader frequency band but also across ITD channels.

  10. The effect of different durations of morphine exposure on mesencephalic dopaminergic neurons in morphine dependent rats.

    PubMed

    Shi, Weibo; Ma, Chunling; Qi, Qian; Liu, Lizhe; Bi, Haitao; Cong, Bin; Li, Yingmin

    2015-12-01

    Mesencephalic dopaminergic neurons are heavily involved in the development of drug dependence. Thyrosine hydroxylase (TH), the rate-limiting enzyme in dopamine synthesis, plays an important role in the survival of dopaminergic neurons. Therefore, this study investigated TH changes in dopaminergic neurons of the ventral tegmental area (VTA) and substantia nigra (SN), as well as the morphine effects on dopaminergic neurons induced by different durations of morphine dependence. Models of morphine dependence were established in rats, and paraffin-embedded sections, immunohistochemistry and western blotting were used to observe the changes in the expression of TH protein. Fluoro-Jade B staining was used to detect degeneration and necrosis, and terminal deoxynucleotidyl transferase-mediated dUTP nick-end-labeling (TUNEL) detected the apoptosis of mesencephalic dopaminergic nerve cells. Immunohistochemistry and western blotting showed that the number of TH positive cells and the protein levels in the VTA and SN were significantly decreased in the rats with a long period of morphine dependency. With prolonged morphine exposure, the dopaminergic nerve cells in the VTA and SN showed degeneration and necrosis, while apoptotic cells were not observed. The number of VTA and SN dopaminergic nerve cells decreased with increasing periods of morphine dependence, which was most likely attributable to the degeneration and necrosis of nerve cells induced by morphine toxicity. Copyright © 2015 Elsevier Inc. All rights reserved.

  11. Habenula-Induced Inhibition of Midbrain Dopamine Neurons Is Diminished by Lesions of the Rostromedial Tegmental Nucleus.

    PubMed

    Brown, P Leon; Palacorolla, Heather; Brady, Dana; Riegger, Katelyn; Elmer, Greg I; Shepard, Paul D

    2017-01-04

    Neurons in the lateral habenula (LHb) are transiently activated by aversive events and have been implicated in associative learning. Functional changes associated with tonic and phasic activation of the LHb are often attributed to a corresponding inhibition of midbrain dopamine (DA) neurons. Activation of GABAergic neurons in the rostromedial tegmental nucleus (RMTg), a region that receives dense projections from the LHb and projects strongly to midbrain monoaminergic nuclei, is believed to underlie the transient inhibition of DA neurons attributed to activation of the LHb. To test this premise, the effects of axon-sparing lesions of the RMTg were assessed on LHb-induced inhibition of midbrain DA cell firing in anesthetized rats. Quinolinic acid lesions decreased the number of NeuN-positive neurons in the RMTg significantly while largely sparing cells in neighboring regions. Lesions of the RMTg reduced both the number of DA neurons inhibited by, and the duration of inhibition resulting from, LHb stimulation. Although the firing rate was not altered, the regularity of DA cell firing was increased in RMTg-lesioned rats. Locomotor activity in an open field was also elevated. These results are the first to show that RMTg neurons contribute directly to LHb-induced inhibition of DA cell activity and support the widely held proposition that GABAergic neurons in the mesopontine tegmentum are an important component of a pathway that enables midbrain DA neurons to encode the negative valence associated with failed expectations and aversive stimuli. Phasic changes in the activity of midbrain dopamine cells motivate and guide future behavior. Activation of the lateral habenula by aversive events inhibits dopamine neurons transiently, providing a neurobiological representation of learning models that incorporate negative reward prediction errors. Anatomical evidence suggests that this inhibition occurs via the rostromedial tegmental nucleus, but this hypothesis has yet to be

  12. Ceramide sphingolipid signaling mediates Tumor Necrosis Factor (TNF)-dependent toxicity via caspase signaling in dopaminergic neurons

    PubMed Central

    2012-01-01

    Background Dopaminergic (DA) neurons in the ventral midbrain selectively degenerate in Parkinson’s disease (PD) in part because their oxidative environment in the substantia nigra (SN) may render them vulnerable to neuroinflammatory stimuli. Chronic inhibition of soluble Tumor Necrosis Factor (TNF) with dominant-negative TNF inhibitors protects DA neurons in rat models of parkinsonism, yet the molecular mechanisms and pathway(s) that mediate TNF toxicity remain(s) to be clearly identified. Here we investigated the contribution of ceramide sphingolipid signaling in TNF-dependent toxicity. Results Ceramide dose-dependently reduced the viability of DA neuroblastoma cells and primary DA neurons and pharmacological inhibition of sphingomyelinases (SMases) with three different inhibitors during TNF treatment afforded significant neuroprotection by attenuating increased endoplasmic reticulum (ER) stress, loss of mitochondrial membrane potential, caspase-3 activation and decreases in Akt phosphorylation. Using lipidomics mass spectrometry we confirmed that TNF treatment not only promotes generation of ceramide, but also leads to accumulation of several atypical deoxy-sphingoid bases (DSBs). Exposure of DA neuroblastoma cells to atypical DSBs in the micromolar range reduced cell viability and inhibited neurite outgrowth and branching in primary DA neurons, suggesting that TNF-induced de novo synthesis of atypical DSBs may be a secondary mechanism involved in mediating its neurotoxicity in DA neurons. Conclusions We conclude that TNF/TNFR1-dependent activation of SMases generates ceramide and sphingolipid species that promote degeneration and caspase-dependent cell death of DA neurons. Ceramide and atypical DSBs may represent novel drug targets for development of neuroprotective strategies that can delay or attenuate the progressive loss of nigral DA neurons in patients with PD. PMID:22973882

  13. Responses of midbrain auditory neurons in rats to FM and AM tones presented simultaneously.

    PubMed

    Lee, M F; So, Edmund C; Poon, Paul W F

    2010-12-31

    Speech and other communication signals contain components of frequency and amplitude modulations (FM, AM) that often occur together. Auditory midbrain (or inferior colliculus, IC) is an important center for coding time-varying features of sounds. It remains unclear how IC neurons respond when FM and AM stimuli are both presented. Here we studied IC neurons in the urethane-anesthetized rats when animals were simultaneously stimulated with FM and AM tones. Of 122 units that were sensitive to the dual stimuli, the responses could be grossly divided into two types: one that resembled the respective responses to FM or AM stimuli presented separately ("simple" sensitivity, 45% of units), and another that appeared markedly different from their respective responses to FM or AM tones ("complex" sensitivity, 55%). These types of combinational sensitivities were further correlated with individual cell's frequency tuning pattern (response area) and with their common response pattern to FM and AM sounds. Results suggested that such combinational sensitivity could reflect local synaptic interactions on IC neurons and that the neural mechanisms could underlie more developed sensitivities to acoustic combinations found at the auditory cortex.

  14. Midbrain Dopamine Neurons Signal Belief in Choice Accuracy during a Perceptual Decision.

    PubMed

    Lak, Armin; Nomoto, Kensaku; Keramati, Mehdi; Sakagami, Masamichi; Kepecs, Adam

    2017-03-20

    Central to the organization of behavior is the ability to predict the values of outcomes to guide choices. The accuracy of such predictions is honed by a teaching signal that indicates how incorrect a prediction was ("reward prediction error," RPE). In several reinforcement learning contexts, such as Pavlovian conditioning and decisions guided by reward history, this RPE signal is provided by midbrain dopamine neurons. In many situations, however, the stimuli predictive of outcomes are perceptually ambiguous. Perceptual uncertainty is known to influence choices, but it has been unclear whether or how dopamine neurons factor it into their teaching signal. To cope with uncertainty, we extended a reinforcement learning model with a belief state about the perceptually ambiguous stimulus; this model generates an estimate of the probability of choice correctness, termed decision confidence. We show that dopamine responses in monkeys performing a perceptually ambiguous decision task comply with the model's predictions. Consequently, dopamine responses did not simply reflect a stimulus' average expected reward value but were predictive of the trial-to-trial fluctuations in perceptual accuracy. These confidence-dependent dopamine responses emerged prior to monkeys' choice initiation, raising the possibility that dopamine impacts impending decisions, in addition to encoding a post-decision teaching signal. Finally, by manipulating reward size, we found that dopamine neurons reflect both the upcoming reward size and the confidence in achieving it. Together, our results show that dopamine responses convey teaching signals that are also appropriate for perceptual decisions.

  15. Midbrain dopamine neurons compute inferred and cached value prediction errors in a common framework

    PubMed Central

    Sadacca, Brian F; Jones, Joshua L; Schoenbaum, Geoffrey

    2016-01-01

    Midbrain dopamine neurons have been proposed to signal reward prediction errors as defined in temporal difference (TD) learning algorithms. While these models have been extremely powerful in interpreting dopamine activity, they typically do not use value derived through inference in computing errors. This is important because much real world behavior – and thus many opportunities for error-driven learning – is based on such predictions. Here, we show that error-signaling rat dopamine neurons respond to the inferred, model-based value of cues that have not been paired with reward and do so in the same framework as they track the putative cached value of cues previously paired with reward. This suggests that dopamine neurons access a wider variety of information than contemplated by standard TD models and that, while their firing conforms to predictions of TD models in some cases, they may not be restricted to signaling errors from TD predictions. DOI: http://dx.doi.org/10.7554/eLife.13665.001 PMID:26949249

  16. Incorporating naturalistic correlation structure improves spectrogram reconstruction from neuronal activity in the songbird auditory midbrain.

    PubMed

    Ramirez, Alexandro D; Ahmadian, Yashar; Schumacher, Joseph; Schneider, David; Woolley, Sarah M N; Paninski, Liam

    2011-03-09

    Birdsong is comprised of rich spectral and temporal organization, which might be used for vocal perception. To quantify how this structure could be used, we have reconstructed birdsong spectrograms by combining the spike trains of zebra finch auditory midbrain neurons with information about the correlations present in song. We calculated maximum a posteriori estimates of song spectrograms using a generalized linear model of neuronal responses and a series of prior distributions, each carrying different amounts of statistical information about zebra finch song. We found that spike trains from a population of mesencephalicus lateral dorsalis (MLd) neurons combined with an uncorrelated Gaussian prior can estimate the amplitude envelope of song spectrograms. The same set of responses can be combined with Gaussian priors that have correlations matched to those found across multiple zebra finch songs to yield song spectrograms similar to those presented to the animal. The fidelity of spectrogram reconstructions from MLd responses relies more heavily on prior knowledge of spectral correlations than temporal correlations. However, the best reconstructions combine MLd responses with both spectral and temporal correlations.

  17. Incorporating Naturalistic Correlation Structure Improves Spectrogram Reconstruction from Neuronal Activity in the Songbird Auditory Midbrain

    PubMed Central

    Ramirez, Alexandro D.; Ahmadian, Yashar; Schumacher, Joseph; Schneider, David; Woolley, Sarah M. N.; Paninski, Liam

    2011-01-01

    Birdsong is comprised of rich spectral and temporal organization, which might be used for vocal perception. To quantify how this structure could be used, we have reconstructed birdsong spectrograms by combining the spike trains of zebra finch auditory midbrain neurons with information about the correlations present in song. We calculated maximum a posteriori estimates of song spectrograms using a generalized linear model of neuronal responses and a series of prior distributions, each carrying different amounts of statistical information about zebra finch song. We found that spike trains from a population of mesencephalicus lateral dorsalis (MLd) neurons combined with an uncorrelated Gaussian prior can estimate the amplitude envelope of song spectrograms. The same set of responses can be combined with Gaussian priors that have correlations matched to those found across multiple zebra finch songs to yield song spectrograms similar to those presented to the animal. The fidelity of spectrogram reconstructions from MLd responses relies more heavily on prior knowledge of spectral correlations than temporal correlations. However, the best reconstructions combine MLd responses with both spectral and temporal correlations. PMID:21389238

  18. An Lmx1b-miR135a2 Regulatory Circuit Modulates Wnt1/Wnt Signaling and Determines the Size of the Midbrain Dopaminergic Progenitor Pool

    PubMed Central

    Anderegg, Angela; Lin, Hsin-Pin; Chen, Jun-An; Caronia-Brown, Giuliana; Cherepanova, Natalya; Yun, Beth; Joksimovic, Milan; Rock, Jason; Harfe, Brian D.; Johnson, Randy; Awatramani, Rajeshwar

    2013-01-01

    MicroRNAs regulate gene expression in diverse physiological scenarios. Their role in the control of morphogen related signaling pathways has been less studied, particularly in the context of embryonic Central Nervous System (CNS) development. Here, we uncover a role for microRNAs in limiting the spatiotemporal range of morphogen expression and function. Wnt1 is a key morphogen in the embryonic midbrain, and directs proliferation, survival, patterning and neurogenesis. We reveal an autoregulatory negative feedback loop between the transcription factor Lmx1b and a newly characterized microRNA, miR135a2, which modulates the extent of Wnt1/Wnt signaling and the size of the dopamine progenitor domain. Conditional gain of function studies reveal that Lmx1b promotes Wnt1/Wnt signaling, and thereby increases midbrain size and dopamine progenitor allocation. Conditional removal of Lmx1b has the opposite effect, in that expansion of the dopamine progenitor domain is severely compromised. Next, we provide evidence that microRNAs are involved in restricting dopamine progenitor allocation. Conditional loss of Dicer1 in embryonic stem cells (ESCs) results in expanded Lmx1a/b+ progenitors. In contrast, forced elevation of miR135a2 during an early window in vivo phenocopies the Lmx1b conditional knockout. When En1::Cre, but not Shh::Cre or Nes::Cre, is used for recombination, the expansion of Lmx1a/b+ progenitors is selectively reduced. Bioinformatics and luciferase assay data suggests that miR135a2 targets Lmx1b and many genes in the Wnt signaling pathway, including Ccnd1, Gsk3b, and Tcf7l2. Consistent with this, we demonstrate that this mutant displays reductions in the size of the Lmx1b/Wnt1 domain and range of canonical Wnt signaling. We posit that microRNA modulation of the Lmx1b/Wnt axis in the early midbrain/isthmus could determine midbrain size and allocation of dopamine progenitors. Since canonical Wnt activity has recently been recognized as a key ingredient for

  19. Effect of acupuncture on 6-hydroxydopamine-induced nigrostratal dopaminergic neuronal cell death in rats.

    PubMed

    Kim, Yeung-Kee; Lim, Hyung-Ho; Song, Yun-Kyung; Lee, Hee-Hyuk; Lim, Sabina; Han, Seung-Moo; Kim, Chang-Ju

    In this study, we investigated the effect of acupuncture at the Zusanli acupoint (ST36) on the nigrostriatal dopaminergic neuronal cell death in the rats with Parkinson's disease. Two weeks after unilateral injection of 6-hydroxydopamine (6-OHDA) into the striatum, an apomorphine-induced rotational behavior test showed significant rotational asymmetry in the rats with Parkinson's disease. Immunostaining for tyrosine hydroxylase demonstrated a dopaminergic neuronal loss in the substantia nigra and dopaminergic fiber loss in the striatum. Acupuncture at the ST36 for 14 days significantly inhibited rotational asymmetry in the rats with Parkinson's disease, and also protected against 6-OHDA-induced nigrostriatal dopaminergic neuronal loss. These effects of acupuncture were not observed for the non-acupoint (hip) acupuncture. The present study shows that acupuncture at the ST36 acupoint can be used as a useful strategy for the treatment of Parkinson's disease.

  20. Treadmill exercise alleviates nigrostriatal dopaminergic loss of neurons and fibers in rotenone-induced Parkinson rats.

    PubMed

    Shin, Mal-Soon; Kim, Tae-Woon; Lee, Jae-Min; Ji, Eun-Sang; Lim, Baek-Vin

    2017-02-01

    Parkinson disease is one of the common brain diseases caused by dopaminergic neuronal loss in the substantia nigra and dopaminergic fiber loss in the striatum. In the present study, the effects of treadmill exercise on motor performance, dopaminergic loss of neurons and fibers, and α-synuclein expression in the nigrostriatum were evaluated using rotenone-induced Parkinson rats. For the induction of Parkinson rats, 3-mg/kg rotenone was injected, once a day for 14 consecutive days. Treadmill running was conducted for 30 min once a day during 14 consecutive days. Rota-rod test for motor balance and coordination and immunohistochemistry for tyrosine hydroxylase and α-synuclein in the nigrostriatum were performed. In the present study, motor balance and coordination was disturbed by induction of rotenone-induced Parkinson disease, in contrast, treadmill exercise alleviated motor dysfunction in the rotenone-induced Parkinson rats. Nigrostriatal dopaminergic loss of neurons and fibers was occurred by induction of rotenone-induced Parkinson disease, in contrast, treadmill exercise alleviated nigrostriatal dopaminergic loss of neurons and fibers in the rotenone-induced Parkinson rats. α-Synuclein expression in the nigrostriatum was enhanced by induction of rotenone-induced Parkinson disease, in contrast, treadmill exercise suppressed α-synuclein expression in the rotenone-induced Parkinson rats. Treadmill exercise improved motor function through preservation of nigrostriatal dopaminergic neurons and fibers and suppression of nigrostriatal formation of Lewy bodies in rotenone-induced Parkinson rats.

  1. Treadmill exercise alleviates nigrostriatal dopaminergic loss of neurons and fibers in rotenone-induced Parkinson rats

    PubMed Central

    Shin, Mal-Soon; Kim, Tae-Woon; Lee, Jae-Min; Ji, Eun-Sang; Lim, Baek-Vin

    2017-01-01

    Parkinson disease is one of the common brain diseases caused by dopaminergic neuronal loss in the substantia nigra and dopaminergic fiber loss in the striatum. In the present study, the effects of treadmill exercise on motor performance, dopaminergic loss of neurons and fibers, and α-synuclein expression in the nigrostriatum were evaluated using rotenone-induced Parkinson rats. For the induction of Parkinson rats, 3-mg/kg rotenone was injected, once a day for 14 consecutive days. Treadmill running was conducted for 30 min once a day during 14 consecutive days. Rota-rod test for motor balance and coordination and immunohistochemistry for tyrosine hydroxylase and α-synuclein in the nigrostriatum were performed. In the present study, motor balance and coordination was disturbed by induction of rotenone-induced Parkinson disease, in contrast, treadmill exercise alleviated motor dysfunction in the rotenone-induced Parkinson rats. Nigrostriatal dopaminergic loss of neurons and fibers was occurred by induction of rotenone-induced Parkinson disease, in contrast, treadmill exercise alleviated nigrostriatal dopaminergic loss of neurons and fibers in the rotenone-induced Parkinson rats. α-Synuclein expression in the nigrostriatum was enhanced by induction of rotenone-induced Parkinson disease, in contrast, treadmill exercise suppressed α-synuclein expression in the rotenone-induced Parkinson rats. Treadmill exercise improved motor function through preservation of nigrostriatal dopaminergic neurons and fibers and suppression of nigrostriatal formation of Lewy bodies in rotenone-induced Parkinson rats. PMID:28349030

  2. Reward Dependent Invigoration Relates to Theta Oscillations and Is Predicted by Dopaminergic Midbrain Integrity in Healthy Elderly

    PubMed Central

    Steiger, Tineke K.; Bunzeck, Nico

    2017-01-01

    Motivation can have invigorating effects on behavior via dopaminergic neuromodulation. While this relationship has mainly been established in theoretical models and studies in younger subjects, the impact of structural declines of the dopaminergic system during healthy aging remains unclear. To investigate this issue, we used electroencephalography (EEG) in healthy young and elderly humans in a reward-learning paradigm. Specifically, scene images were initially encoded by combining them with cues predicting monetary reward (high vs. low reward). Subsequently, recognition memory for the scenes was tested. As a main finding, we can show that response times (RTs) during encoding were faster for high reward predicting images in the young but not elderly participants. This pattern was resembled in power changes in the theta-band (4–7 Hz). Importantly, analyses of structural MRI data revealed that individual reward-related differences in the elderlies’ response time could be predicted by the structural integrity of the dopaminergic substantia nigra (SN; as measured by magnetization transfer (MT)). These findings suggest a close relationship between reward-based invigoration, theta oscillations and age-dependent changes of the dopaminergic system. PMID:28174533

  3. A Wnt1 regulated Frizzled-1/β-Catenin signaling pathway as a candidate regulatory circuit controlling mesencephalic dopaminergic neuron-astrocyte crosstalk: Therapeutical relevance for neuron survival and neuroprotection

    PubMed Central

    2011-01-01

    Background Dopamine-synthesizing (dopaminergic, DA) neurons in the ventral midbrain (VM) constitute a pivotal neuronal population controlling motor behaviors, cognitive and affective brain functions, which generation critically relies on the activation of Wingless-type MMTV integration site (Wnt)/β-catenin pathway in their progenitors. In Parkinson's disease, DA cell bodies within the substantia nigra pars compacta (SNpc) progressively degenerate, with causes and mechanisms poorly understood. Emerging evidence suggests that Wnt signaling via Frizzled (Fzd) receptors may play a role in different degenerative states, but little is known about Wnt signaling in the adult midbrain. Using in vitro and in vivo model systems of DA degeneration, along with functional studies in both intact and SN lesioned mice, we herein highlight an intrinsic Wnt1/Fzd-1/β-catenin tone critically contributing to the survival and protection of adult midbrain DA neurons. Results In vitro experiments identifie Fzd-1 receptor expression at a mRNA and protein levels in dopamine transporter (DAT) expressing neurons, and demonstrate the ability of exogenous Wnt1 to exert robust neuroprotective effects against Caspase-3 activation, the loss of tyrosine hydroxylase-positive (TH+) neurons and [3H] dopamine uptake induced by different DA-specific insults, including serum and growth factor deprivation, 6-hydroxydopamine and MPTP/MPP+. Co-culture of DA neurons with midbrain astrocytes phenocopies Wnt1 neuroprotective effects, whereas RNA interference-mediated knockdown of Wnt1 in midbrain astrocytes markedly reduces astrocyte-induced TH+ neuroprotection. Likewise, silencing β-catenin mRNA or knocking down Fzd-1 receptor expression in mesencephalic neurons counteract astrocyte-induced TH+ neuroprotection. In vivo experiments document Fzd-1 co-localization with TH+ neurons within the intact SNpc and blockade of Fzd/β-catenin signaling by unilateral infusion of a Fzd/β-catenin antagonist within the SN

  4. Interactions between Kisspeptin Neurons and Hypothalamic Tuberoinfundibular Dopaminergic Neurons in Aged Female Rats

    PubMed Central

    Iwata, Kinuyo; Ikehara, Masaaki; Kunimura, Yuyu; Ozawa, Hitoshi

    2016-01-01

    Kisspeptin neurons in the arcuate nucleus (ARC) regulate prolactin secretion, and are in physical contact with tuberoinfundibular dopaminergic (TIDA) neurons, which inhibit prolactin secretion. Prolactin levels in the blood are increased with advancing age in rats; therefore, we investigated the interactions with TIDA neurons and kisspeptin neurons in aged female rats (24 months of age), relative to those of young adult female rats (9–10 weeks of age). Plasma prolactin levels in the aged rats were significantly higher than those of young adult rats. Tyrosine hydroxylase (TH)-immunoreactive (ir) cell bodies and kisspeptin-ir nerve fibers were found in the dorsomedial ARC of both groups. The number of TH-ir cell bodies in the dorsomedial ARC did not differ significantly between groups. Additionally, no significant differences in the number of TH-ir cells in contact with kisspeptin-ir fibers was observed between groups. However, the number of kisspeptin-ir or Kiss1 mRNA-expressing cells in the ARC was significantly reduced in the aged rats compared with that of the young rats. These results suggest that the contacts between TIDA neurons and kisspeptin neurons are maintained after reproductive senescence, while production of kisspeptin in the ARC decreases significantly during aging. PMID:28127107

  5. Intranasal Administration of Rotenone to Mice Induces Dopaminergic Neurite Degeneration of Dopaminergic Neurons in the Substantia Nigra.

    PubMed

    Sasajima, Hitoshi; Miyazono, Sadaharu; Noguchi, Tomohiro; Kashiwayanagi, Makoto

    2017-01-01

    Exposure to environmental neurotoxins is suspected to be a risk factor for sporadic progressive neurodegenerative diseases. Parkinson's disease has been associated with exposure to the pesticide rotenone, a mitochondrial respiration inhibitor. We previously reported that intranasal administration of rotenone in mice induced dopaminergic (DA) neurodegeneration in the olfactory bulb (OB) and reduced olfactory functions. In the present study, we investigated the DA neurons in the brains of mice that were administered rotenone intranasally for an extended period. We found that the olfactory function of mice was attenuated by rotenone administration. Electrophysiological analysis of the mitral cells, which are output neurons in the OB, revealed that the inhibitory input into the mitral cells was retarded. In the immunohistochemical analysis, neurite degeneration of DA neurons in the substantia nigra was observed in rotenone-administered mice, indicating that rotenone progressively initiated the degeneration of cerebral DA neurons via the nasal route.

  6. Dopamine-Dependent Compensation Maintains Motor Behavior in Mice with Developmental Ablation of Dopaminergic Neurons

    PubMed Central

    DeMaro, Joseph A.; Knoten, Amanda; Hoshi, Masato; Pehek, Elizabeth; Johnson, Eugene M.; Gereau, Robert W.

    2013-01-01

    The loss of dopaminergic neurons in the substantia nigra pars compacta (SNc) and consequent depletion of striatal dopamine are known to underlie the motor deficits observed in Parkinson's disease (PD). Adaptive changes in dopaminergic terminals and in postsynaptic striatal neurons can compensate for significant losses of striatal dopamine, resulting in preservation of motor behavior. In addition, compensatory changes independent of striatal dopamine have been proposed based on PD therapies that modulate nondopaminergic circuits within the basal ganglia. We used a genetic strategy to selectively destroy dopaminergic neurons in mice during development to determine the necessity of these neurons for the maintenance of normal motor behavior in adult and aged mice. We find that loss of 90% of SNc dopaminergic neurons and consequent depletion of >95% of striatal dopamine does not result in changes in motor behavior in young-adult or aged mice as evaluated by an extensive array of motor behavior tests. Treatment of aged mutant mice with the dopamine receptor antagonist haloperidol precipitated motor behavior deficits in aged mutant mice, indicating that <5% of striatal dopamine is sufficient to maintain motor function in these mice. We also found that mutant mice exhibit an exaggerated response to l-DOPA compared with control mice, suggesting that preservation of motor function involves sensitization of striatal dopamine receptors. Our results indicate that congenital loss of dopaminergic neurons induces remarkable adaptions in the nigrostriatal system where limited amounts of dopamine in the dorsal striatum can maintain normal motor function. PMID:24155314

  7. Control of dopaminergic neuron survival by the unfolded protein response transcription factor XBP1

    PubMed Central

    Valdés, Pamela; Mercado, Gabriela; Vidal, Rene L.; Molina, Claudia; Parsons, Geoffrey; Court, Felipe A.; Martinez, Alexis; Galleguillos, Danny; Armentano, Donna; Schneider, Bernard L.; Hetz, Claudio

    2014-01-01

    Parkinson disease (PD) is characterized by the selective loss of dopaminergic neurons of the substantia nigra pars compacta (SNpc). Although growing evidence indicates that endoplasmic reticulum (ER) stress is a hallmark of PD, its exact contribution to the disease process is not well understood. Here we report that developmental ablation of X-Box binding protein 1 (XBP1) in the nervous system, a key regulator of the unfolded protein response (UPR), protects dopaminergic neurons against a PD-inducing neurotoxin. This survival effect was associated with a preconditioning condition that resulted from induction of an adaptive ER stress response in dopaminergic neurons of the SNpc, but not in other brain regions. In contrast, silencing XBP1 in adult animals triggered chronic ER stress and dopaminergic neuron degeneration. Supporting this finding, gene therapy to deliver an active form of XBP1 provided neuroprotection and reduced striatal denervation in animals injected with 6-hydroxydopamine. Our results reveal a physiological role of the UPR in the maintenance of protein homeostasis in dopaminergic neurons that may help explain the differential neuronal vulnerability observed in PD. PMID:24753614

  8. Effect of total flavonoids from Scutellaria baicalensis on dopaminergic neurons in the substantia nigra

    PubMed Central

    Li, Xue-Li; Xu, Xiao-Fan; Bu, Qing-Xia; Jin, Wei-Rong; Sun, Qian-Ru; Feng, De-Peng; Zhang, Qing-Jv; Wang, Le-Xin

    2016-01-01

    The aim of the present study was to investigate the effect of Scutellaria baicalensis stem-leaf total flavonoid (SSTF) on the dopaminergic neurons in the substantia nigra in a mouse model of Parkinson's disease (PD). The mouse model was established by intravenous injection of 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP). SSTF (5 mg/kg) was administered to the mice before or after MPTP injection, and the effects of SSTF on the behavior of the mice and the dopaminergic neurons in the substantia nigra were assessed. In addition, the level of serum malondialdehyde (MDA) was measured. Following injection of MPTP, the number of dopaminergic neurons in the substantia nigra was decreased and the neurons appeared atrophic. In addition, the level of serum MDA in the MPTP mice increased. The mean behavioral scores and the number of dopaminergic neurons in the SSTF treatment groups were significantly higher than in the MPTP group (P<0.05), and the mean serum MDA levels were significantly lower (P<0.05). Thus, SSTF improves the behaviors and the numbers of dopaminergic neurons in the substantia nigra in MPTP-induced PD in mice. These beneficial effects appear to be associated with the reduction in serum MDA. PMID:27446544

  9. Non-Monotonic Relation between Noise Exposure Severity and Neuronal Hyperactivity in the Auditory Midbrain

    PubMed Central

    Hesse, Lara Li; Bakay, Warren; Ong, Hui-Ching; Anderson, Lucy; Ashmore, Jonathan; McAlpine, David; Linden, Jennifer; Schaette, Roland

    2016-01-01

    The occurrence of tinnitus can be linked to hearing loss in the majority of cases, but there is nevertheless a large degree of unexplained heterogeneity in the relation between hearing loss and tinnitus. Part of the problem might be that hearing loss is usually quantified in terms of increased hearing thresholds, which only provides limited information about the underlying cochlear damage. Moreover, noise exposure that does not cause hearing threshold loss can still lead to “hidden hearing loss” (HHL), i.e., functional deafferentation of auditory nerve fibers (ANFs) through loss of synaptic ribbons in inner hair cells. While it is known that increased hearing thresholds can trigger increases in spontaneous neural activity in the central auditory system, i.e., a putative neural correlate of tinnitus, the central effects of HHL have not yet been investigated. Here, we exposed mice to octave-band noise at 100 and 105 dB SPL to generate HHL and permanent increases of hearing thresholds, respectively. Deafferentation of ANFs was confirmed through measurement of auditory brainstem responses and cochlear immunohistochemistry. Acute extracellular recordings from the auditory midbrain (inferior colliculus) demonstrated increases in spontaneous neuronal activity (a putative neural correlate of tinnitus) in both groups. Surprisingly, the increase in spontaneous activity was most pronounced in the mice with HHL, suggesting that the relation between hearing loss and neuronal hyperactivity might be more complex than currently understood. Our computational model indicated that these differences in neuronal hyperactivity could arise from different degrees of deafferentation of low-threshold ANFs in the two exposure groups. Our results demonstrate that HHL is sufficient to induce changes in central auditory processing, and they also indicate a non-monotonic relationship between cochlear damage and neuronal hyperactivity, suggesting an explanation for why tinnitus might occur

  10. Non-Monotonic Relation between Noise Exposure Severity and Neuronal Hyperactivity in the Auditory Midbrain.

    PubMed

    Hesse, Lara Li; Bakay, Warren; Ong, Hui-Ching; Anderson, Lucy; Ashmore, Jonathan; McAlpine, David; Linden, Jennifer; Schaette, Roland

    2016-01-01

    The occurrence of tinnitus can be linked to hearing loss in the majority of cases, but there is nevertheless a large degree of unexplained heterogeneity in the relation between hearing loss and tinnitus. Part of the problem might be that hearing loss is usually quantified in terms of increased hearing thresholds, which only provides limited information about the underlying cochlear damage. Moreover, noise exposure that does not cause hearing threshold loss can still lead to "hidden hearing loss" (HHL), i.e., functional deafferentation of auditory nerve fibers (ANFs) through loss of synaptic ribbons in inner hair cells. While it is known that increased hearing thresholds can trigger increases in spontaneous neural activity in the central auditory system, i.e., a putative neural correlate of tinnitus, the central effects of HHL have not yet been investigated. Here, we exposed mice to octave-band noise at 100 and 105 dB SPL to generate HHL and permanent increases of hearing thresholds, respectively. Deafferentation of ANFs was confirmed through measurement of auditory brainstem responses and cochlear immunohistochemistry. Acute extracellular recordings from the auditory midbrain (inferior colliculus) demonstrated increases in spontaneous neuronal activity (a putative neural correlate of tinnitus) in both groups. Surprisingly, the increase in spontaneous activity was most pronounced in the mice with HHL, suggesting that the relation between hearing loss and neuronal hyperactivity might be more complex than currently understood. Our computational model indicated that these differences in neuronal hyperactivity could arise from different degrees of deafferentation of low-threshold ANFs in the two exposure groups. Our results demonstrate that HHL is sufficient to induce changes in central auditory processing, and they also indicate a non-monotonic relationship between cochlear damage and neuronal hyperactivity, suggesting an explanation for why tinnitus might occur

  11. Abnormal Development of Glutamatergic Synapses Afferent to Dopaminergic Neurons of the Pink1−/− Mouse Model of Parkinson’s Disease

    PubMed Central

    Pearlstein, Edouard; Michel, François J.; Save, Laurène; Ferrari, Diana C.; Hammond, Constance

    2016-01-01

    In a preceding study, we showed that in adult pink1−/− mice, a monogenic animal model of Parkinson’s disease (PD), striatal neurons display aberrant electrical activities that precede the onset of overt clinical manifestations. Here, we tested the hypothesis that the maturation of dopaminergic (DA) neurons of the pink1−/− substantia nigra compacta (SNc) follows, from early stages on, a different developmental trajectory from age-matched wild type (wt) SNc DA neurons. We used immature (postnatal days P2–P10) and young adult (P30–P90) midbrain slices of pink1−/− mice expressing the green fluorescent protein in tyrosine hydroxylase (TH)-positive neurons. We report that the developmental sequence of N-Methyl-D-aspartic acid (NMDA) spontaneous excitatory postsynaptic currents (sEPSCs) is altered in pink1−/− SNc DA neurons, starting from shortly after birth. They lack the transient episode of high NMDA receptor-mediated neuronal activity characteristic of the immature stage of wt SNc DA neurons. The maturation of the membrane resistance of pink1−/− SNc DA neurons is also altered. Collectively, these observations suggest that electrical manifestations occurring shortly after birth in SNc DA neurons might lead to dysfunction in dopamine release and constitute an early pathogenic mechanism of PD. PMID:27445695

  12. Pleiotrophin over-expression provides trophic support to dopaminergic neurons in parkinsonian rats.

    PubMed

    Taravini, Irene Re; Chertoff, Mariela; Cafferata, Eduardo G; Courty, José; Murer, Mario G; Pitossi, Fernando J; Gershanik, Oscar S

    2011-06-07

    Pleiotrophin is known to promote the survival and differentiation of dopaminergic neurons in vitro and is up-regulated in the substantia nigra of Parkinson's disease patients. To establish whether pleiotrophin has a trophic effect on nigrostriatal dopaminergic neurons in vivo, we injected a recombinant adenovirus expressing pleiotrophin in the substantia nigra of 6-hydroxydopamine lesioned rats. The viral vector induced pleiotrophin over-expression by astrocytes in the substantia nigra pars compacta, without modifying endogenous neuronal expression. The percentage of tyrosine hydroxylase-immunoreactive cells as well as the area of their projections in the lesioned striatum was higher in pleiotrophin-treated animals than in controls. These results indicate that pleiotrophin over-expression partially rescues tyrosine hydroxylase-immunoreactive cell bodies and terminals of dopaminergic neurons undergoing 6-hydroxydopamine-induced degeneration.

  13. Pleiotrophin over-expression provides trophic support to dopaminergic neurons in parkinsonian rats

    PubMed Central

    2011-01-01

    Background Pleiotrophin is known to promote the survival and differentiation of dopaminergic neurons in vitro and is up-regulated in the substantia nigra of Parkinson's disease patients. To establish whether pleiotrophin has a trophic effect on nigrostriatal dopaminergic neurons in vivo, we injected a recombinant adenovirus expressing pleiotrophin in the substantia nigra of 6-hydroxydopamine lesioned rats. Results The viral vector induced pleiotrophin over-expression by astrocytes in the substantia nigra pars compacta, without modifying endogenous neuronal expression. The percentage of tyrosine hydroxylase-immunoreactive cells as well as the area of their projections in the lesioned striatum was higher in pleiotrophin-treated animals than in controls. Conclusions These results indicate that pleiotrophin over-expression partially rescues tyrosine hydroxylase-immunoreactive cell bodies and terminals of dopaminergic neurons undergoing 6-hydroxydopamine-induced degeneration. PMID:21649894

  14. Endogenous Parkin Preserves Dopaminergic Substantia Nigral Neurons following Mitochondrial DNA Mutagenic Stress.

    PubMed

    Pickrell, Alicia M; Huang, Chiu-Hui; Kennedy, Scott R; Ordureau, Alban; Sideris, Dionisia P; Hoekstra, Jake G; Harper, J Wade; Youle, Richard J

    2015-07-15

    Parkinson's disease (PD) is a neurodegenerative disease caused by the loss of dopaminergic neurons in the substantia nigra. PARK2 mutations cause early-onset forms of PD. PARK2 encodes an E3 ubiquitin ligase, Parkin, that can selectively translocate to dysfunctional mitochondria to promote their removal by autophagy. However, Parkin knockout (KO) mice do not display signs of neurodegeneration. To assess Parkin function in vivo, we utilized a mouse model that accumulates dysfunctional mitochondria caused by an accelerated generation of mtDNA mutations (Mutator mice). In the absence of Parkin, dopaminergic neurons in Mutator mice degenerated causing an L-DOPA reversible motor deficit. Other neuronal populations were unaffected. Phosphorylated ubiquitin was increased in the brains of Mutator mice, indicating PINK1-Parkin activation. Parkin loss caused mitochondrial dysfunction and affected the pathogenicity but not the levels of mtDNA somatic mutations. A systemic loss of Parkin synergizes with mitochondrial dysfunction causing dopaminergic neuron death modeling PD pathogenic processes.

  15. The cellular and Genomic response of rat dopaminergic neurons (N27) to coated nanosilver

    EPA Science Inventory

    This study examined if nanosilver (nanoAg) of different sizes and coatings were differentially toxic to oxidative stress-sensitive neurons. N27 rat dopaminergic neurons were exposed (0.5-5ppm) to a set of nanoAg of different sizes (10nm, 75nm) and coatings (PVP, citrate) and thei...

  16. The cellular and Genomic response of rat dopaminergic neurons (N27) to coated nanosilver

    EPA Science Inventory

    This study examined if nanosilver (nanoAg) of different sizes and coatings were differentially toxic to oxidative stress-sensitive neurons. N27 rat dopaminergic neurons were exposed (0.5-5ppm) to a set of nanoAg of different sizes (10nm, 75nm) and coatings (PVP, citrate) and thei...

  17. Dopaminergic Neurons Respond to Iron-Induced Oxidative Stress by Modulating Lipid Acylation and Deacylation Cycles

    PubMed Central

    Sánchez Campos, Sofía; Rodríguez Diez, Guadalupe; Oresti, Gerardo Martín; Salvador, Gabriela Alejandra

    2015-01-01

    Metal-imbalance has been reported as a contributor factor for the degeneration of dopaminergic neurons in Parkinson Disease (PD). Specifically, iron (Fe)-overload and copper (Cu) mis-compartmentalization have been reported to be involved in the injury of dopaminergic neurons in this pathology. The aim of this work was to characterize the mechanisms of membrane repair by studying lipid acylation and deacylation reactions and their role in oxidative injury in N27 dopaminergic neurons exposed to Fe-overload and Cu-supplementation. N27 dopaminergic neurons incubated with Fe (1mM) for 24 hs displayed increased levels of reactive oxygen species (ROS), lipid peroxidation and elevated plasma membrane permeability. Cu-supplemented neurons (10, 50 μM) showed no evidence of oxidative stress markers. A different lipid acylation profile was observed in N27 neurons pre-labeled with [3H] arachidonic acid (AA) or [3H] oleic acid (OA). In Fe-exposed neurons, AA uptake was increased in triacylglycerols (TAG) whereas its incorporation into the phospholipid (PL) fraction was diminished. TAG content was 40% higher in Fe-exposed neurons than in controls. This increase was accompanied by the appearance of Nile red positive lipid bodies. Contrariwise, OA incorporation increased in the PL fractions and showed no changes in TAG. Lipid acylation profile in Cu-supplemented neurons showed AA accumulation into phosphatidylserine and no changes in TAG. The inhibition of deacylation/acylation reactions prompted an increase in oxidative stress markers and mitochondrial dysfunction in Fe-overloaded neurons. These findings provide evidence about the participation of lipid acylation mechanisms against Fe-induced oxidative injury and postulate that dopaminergic neurons cleverly preserve AA in TAG in response to oxidative stress. PMID:26076361

  18. Mesodiencephalic Dopaminergic Neuronal Differentiation Does Not Involve GLI2A-Mediated SHH-Signaling and Is under the Direct Influence of Canonical WNT Signaling

    PubMed Central

    Mesman, Simone; von Oerthel, Lars; Smidt, Marten P.

    2014-01-01

    Sonic Hedgehog (SHH) and WNT proteins are key regulators in many developmental processes, like embryonic patterning and brain development. In the brain, SHH is expressed in a gradient starting in the floor plate (FP) progressing ventrally in the midbrain, where it is thought to be involved in the development and specification of mesodiencephalic dopaminergic (mdDA) neurons. GLI2A-mediated SHH-signaling induces the expression of Gli1, which is inhibited when cells start expressing SHH themselves. To determine whether mdDA neurons receive GLI2A-mediated SHH-signaling during differentiation, we used a BAC-transgenic mouse model expressing eGFP under the control of the Gli1 promoter. This mouse-model allowed for mapping of GLI2A-mediated SHH-signaling temporal and spatial in the mouse midbrain. Since mdDA neurons are born from E10.5, peaking at E11.0–E12.0, we examined Gli1-eGFP embryos at E11.5, E12.5, and E13.5, indicating whether Gli1 was induced before or during mdDA development and differentiation. Our data indicate that GLI2A-mediated SHH-signaling is not involved in mdDA neuronal differentiation. However, it appears to be involved in the differentiation of neurons which make up a subset of the red nucleus (RN). In order to detect whether mdDA neuronal differentiation may be under the control of canonical WNT-signaling, we used a transgenic mouse-line expressing LacZ under the influence of stable β-catenin. Here, we show that TH+ neurons of the midbrain receive canonical WNT-signaling during differentiation. Therefore, we suggest that early SHH-signaling is indirectly involved in mdDA development through early patterning of the midbrain area, whereas canonical WNT-signaling is directly involved in the differentiation of the mdDA neuronal population. PMID:24865218

  19. Glutathione depletion in a midbrain-derived immortalized dopaminergic cell line results in limited tyrosine nitration of mitochondrial complex I subunits: implications for Parkinson's disease.

    PubMed

    Bharath, Srinivas; Andersen, Julie Kay

    2005-01-01

    Oxidative stress and mitochondrial dysfunction signify two important biochemical events associated with the loss of dopaminergic neurons in Parkinson's disease (PD). Studies using in vitro and in vivo PD models and in affected tissues from the disease itself have demonstrated a selective inhibition of mitochondrial complex I activity that appears to affect normal mitochondrial physiology leading to neuronal cell death. Earlier experiments from our laboratory have demonstrated that induced depletion of glutathione (GSH + GSSG) in cultured dopaminergic cells resulted in increased oxidative stress and a decrease in mitochondrial function. Furthermore, this dysfunction was linked to a selective decrease in mitochondrial complex I activity that appears to be due to oxidation of this complex. Glutathione depletion is the earliest detectable biochemical event during PD progression and occurs prior to complex I inhibition. Recent observations have also indicated that oxidative damage to complex I via naturally occurring free radicals such as peroxynitrite leads to modification of tyrosine and/or cysteine residues resulting in complex I inhibition. Using the sucrose gradient method, we detected in complex I-enriched fractions from a glutathione-depleted dopaminergic cell line two bands corresponding to approximately 25-kDa and approximately 30-kDa polypeptides that demonstrate anti-nitrotyrosine immunoreactivity, suggesting the possible involvement of protein nitration by peroxynitrite in glutathione depletion-mediated complex I inhibition.

  20. Brain angiotensin regulates iron homeostasis in dopaminergic neurons and microglial cells.

    PubMed

    Garrido-Gil, Pablo; Rodriguez-Pallares, Jannette; Dominguez-Meijide, Antonio; Guerra, Maria J; Labandeira-Garcia, Jose L

    2013-12-01

    Dysfunction of iron homeostasis has been shown to be involved in ageing, Parkinson's disease and other neurodegenerative diseases. Increased levels of labile iron result in increased reactive oxygen species and oxidative stress. Angiotensin II, via type-1 receptors, exacerbates oxidative stress, the microglial inflammatory response and progression of dopaminergic degeneration. Angiotensin activates the NADPH-oxidase complex, which produces superoxide. However, it is not known whether angiotensin affects iron homeostasis. In the present study, administration of angiotensin to primary mesencephalic cultures, the dopaminergic cell line MES23.5 and to young adult rats, significantly increased levels of transferrin receptors, divalent metal transporter-1 and ferroportin, which suggests an increase in iron uptake and export. In primary neuron-glia cultures and young rats, angiotensin did not induce significant changes in levels of ferritin or labile iron, both of which increased in neurons in the absence of glia (neuron-enriched cultures, dopaminergic cell line) and in the N9 microglial cell line. In aged rats, which are known to display high levels of angiotensin activity, ferritin levels and iron deposits in microglial cells were enhanced. Angiotensin-induced changes were inhibited by angiotensin type-1 receptor antagonists, NADPH-oxidase inhibitors, antioxidants and NF-kB inhibitors. The results demonstrate that angiotensin, via type-1 receptors, modulates iron homeostasis in dopaminergic neurons and microglial cells, and that glial cells play a major role in efficient regulation of iron homeostasis in dopaminergic neurons.

  1. Mutant PINK1 upregulates tyrosine hydroxylase and dopamine levels, leading to vulnerability of dopaminergic neurons.

    PubMed

    Zhou, Zhi Dong; Refai, Fathima Shaffra; Xie, Shao Ping; Ng, Shin Hui; Chan, Christine Hui Shan; Ho, Patrick Ghim Hoe; Zhang, Xiao Dong; Lim, Tit Meng; Tan, Eng King

    2014-03-01

    PINK1 mutations cause autosomal recessive forms of Parkinson disease (PD). Previous studies suggest that the neuroprotective function of wild-type (WT) PINK1 is related to mitochondrial homeostasis. PINK1 can also localize to the cytosol; however, the cytosolic function of PINK1 has not been fully elucidated. In this study we demonstrate that the extramitochondrial PINK1 can regulate tyrosine hydroxylase (TH) expression and dopamine (DA) content in dopaminergic neurons in a PINK1 kinase activity-dependent manner. We demonstrate that overexpression of full-length (FL) WT PINK1 can downregulate TH expression and DA content in dopaminergic neurons. In contrast, overexpression of PD-linked G309D, A339T, and E231G PINK1 mutations upregulates TH and DA levels in dopaminergic neurons and increases their vulnerability to oxidative stress. Furthermore transfection of FL WT PINK1 or PINK1 fragments with the PINK1 kinase domain can inhibit TH expression, whereas kinase-dead (KD) FL PINK1 or KD PINK1 fragments upregulate TH level. Our findings highlight a potential novel function of extramitochondrial PINK1 in dopaminergic neurons. Deregulation of these functions of PINK1 may contribute to PINK1 mutation-induced dopaminergic neuron degeneration. However, deleterious effects caused by PINK1 mutations may be alleviated by iron-chelating agents and antioxidant agents with DA quinone-conjugating capacity.

  2. An In Vitro Model of Human Dopaminergic Neurons Derived from Embryonic Stem Cells: MPP+ Toxicity and GDNF Neuroprotection

    PubMed Central

    Zeng, Xianmin; Chen, Jia; Deng, Xiaolin; Liu, Ying; Rao, Mahendra S.; Cadet, Jean-Lud; Freed, William J.

    2007-01-01

    Human embryonic stem cells (hESCs) can proliferate indefinitely yet also differentiate in vitro, allowing normal human neurons to be generated in unlimited numbers. Here, we describe the development of an in vitro neurotoxicity assay using human dopaminergic neurons derived from hESCs. We showed that the dopaminergic neurotoxin 1-methyl-4-phenylpyridinium (MPP+) which produces features of Parkinson’s disease (PD) in humans, was toxic for hESC-derived dopaminergic neurons. Treatment with glial cell line-derived neurotrophic factor (GDNF), protected tyrosine hydroxylase (TH)-positive neurons against MPP+-induced apoptotic cell death and loss of neuronal processes, as well as against formation of intracellular reactive oxygen species (ROS). The availability of human dopaminergic neurons, derived from hESCs, therefore allows for the possibility of directly examining the unique features of human dopaminergic neurons with respect to their responses to pharmacological agents as well as environmental and chemical toxins. PMID:17109014

  3. Activation of transcription factor MEF2D by bis(3)-cognitin protects dopaminergic neurons and ameliorates Parkinsonian motor defects.

    PubMed

    Yao, Lu; Li, Wenming; She, Hua; Dou, Juan; Jia, Leili; He, Yingli; Yang, Qian; Zhu, Jinqiu; Cápiro, Natalie L; Walker, Douglas I; Pennell, Kurt D; Pang, Yuanping; Liu, Yong; Han, Yifan; Mao, Zixu

    2012-10-05

    Parkinson disease (PD) is characterized by the selective demise of dopaminergic (DA) neurons in the substantial nigra pars compacta. Dysregulation of transcriptional factor myocyte enhancer factor 2D (MEF2D) has been implicated in the pathogenic process in in vivo and in vitro models of PD. Here, we identified a small molecule bis(3)-cognitin (B3C) as a potent activator of MEF2D. We showed that B3C attenuated the toxic effects of neurotoxin 1-methyl-4-phenylpyridinium (MPP(+)) by activating MEF2D via multiple mechanisms. B3C significantly reduced MPP(+)-induced oxidative stress and potentiated Akt to down-regulate the activity of MEF2 inhibitor glycogen synthase kinase 3β (GSK3β) in a DA neuronal cell line SN4741. Furthermore, B3C effectively rescued MEF2D from MPP(+)-induced decline in both nucleic and mitochondrial compartments. B3C offered SN4741 cells potent protection against MPP(+)-induced apoptosis via MEF2D. Interestingly, B3C also protected SN4741 cells from wild type or mutant A53T α-synuclein-induced cytotoxicity. Using the in vivo PD model of C57BL/6 mice treated with 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine hydrochloride (MPTP), we showed that B3C maintained redox homeostasis, promoted Akt function activity, and restored MEF2D level in midbrain neurons. Moreover, B3C greatly prevented the loss of tyrosine hydroxylase signal in substantial nigra pars compacta DA neurons and ameliorated behavioral impairments in mice treated with MPTP. Collectedly, our studies identified B3C as a potent neuroprotective agent whose effectiveness relies on its ability to effectively up-regulate MEF2D in DA neurons against toxic stress in models of PD in vitro and in vivo.

  4. Interleukin-4 Protects Dopaminergic Neurons In vitro but Is Dispensable for MPTP-Induced Neurodegeneration In vivo

    PubMed Central

    Hühner, Laura; Rilka, Jennifer; Gilsbach, Ralf; Zhou, Xiaolai; Machado, Venissa; Spittau, Björn

    2017-01-01

    Microglia are involved in physiological as well as neuropathological processes in the central nervous system (CNS). Their functional states are often referred to as M1-like and M2-like activation, and are believed to contribute to neuroinflammation-mediated neurodegeneration or neuroprotection, respectively. Parkinson’s disease (PD) is one the most common neurodegenerative disease and is characterized by the progressive loss of midbrain dopaminergic (mDA) neurons in the substantia nigra resulting in bradykinesia, tremor, and rigidity. Interleukin 4 (IL4)-mediated M2-like activation of microglia, which is characterized by upregulation of alternative markers Arginase 1 (Arg1) and Chitinase 3 like 3 (Ym1) has been well studied in vitro but the role of endogenous IL4 during CNS pathologies in vivo is not well understood. Interestingly, microglia activation by IL4 has been described to promote neuroprotective and neurorestorative effects, which might be important to slow the progression of neurodegenerative diseases. In the present study, we addressed the role of endogenous and exogenous IL4 during MPP+-induced degeneration of mDA neurons in vitro and further addressed the impact of IL4-deficiency on neurodegeneration in the 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) mouse model of PD in vivo. Our results clearly demonstrate that exogenous IL4 is important to protect mDA neurons in vitro, but endogenous IL4 seems to be dispensable for development and maintenance of the nigrostriatal system as well as MPTP-induced loss of TH+ neurons in vivo. These results underline the importance of IL4 in promoting a neuroprotective microglia activation state and strengthen the therapeutic potential of exogenous IL4 for protection of mDA neurons in PD models. PMID:28337124

  5. Activation of Transcription Factor MEF2D by Bis(3)-cognitin Protects Dopaminergic Neurons and Ameliorates Parkinsonian Motor Defects*

    PubMed Central

    Yao, Lu; Li, Wenming; She, Hua; Dou, Juan; Jia, Leili; He, Yingli; Yang, Qian; Zhu, Jinqiu; Cápiro, Natalie L.; Walker, Douglas I.; Pennell, Kurt D.; Pang, Yuanping; Liu, Yong; Han, Yifan; Mao, Zixu

    2012-01-01

    Parkinson disease (PD) is characterized by the selective demise of dopaminergic (DA) neurons in the substantial nigra pars compacta. Dysregulation of transcriptional factor myocyte enhancer factor 2D (MEF2D) has been implicated in the pathogenic process in in vivo and in vitro models of PD. Here, we identified a small molecule bis(3)-cognitin (B3C) as a potent activator of MEF2D. We showed that B3C attenuated the toxic effects of neurotoxin 1-methyl-4-phenylpyridinium (MPP+) by activating MEF2D via multiple mechanisms. B3C significantly reduced MPP+-induced oxidative stress and potentiated Akt to down-regulate the activity of MEF2 inhibitor glycogen synthase kinase 3β (GSK3β) in a DA neuronal cell line SN4741. Furthermore, B3C effectively rescued MEF2D from MPP+-induced decline in both nucleic and mitochondrial compartments. B3C offered SN4741 cells potent protection against MPP+-induced apoptosis via MEF2D. Interestingly, B3C also protected SN4741 cells from wild type or mutant A53T α-synuclein-induced cytotoxicity. Using the in vivo PD model of C57BL/6 mice treated with 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine hydrochloride (MPTP), we showed that B3C maintained redox homeostasis, promoted Akt function activity, and restored MEF2D level in midbrain neurons. Moreover, B3C greatly prevented the loss of tyrosine hydroxylase signal in substantial nigra pars compacta DA neurons and ameliorated behavioral impairments in mice treated with MPTP. Collectedly, our studies identified B3C as a potent neuroprotective agent whose effectiveness relies on its ability to effectively up-regulate MEF2D in DA neurons against toxic stress in models of PD in vitro and in vivo. PMID:22891246

  6. BDNF interacts with endocannabinoids to regulate cocaine-induced synaptic plasticity in mouse midbrain dopamine neurons.

    PubMed

    Zhong, Peng; Liu, Yong; Hu, Ying; Wang, Tong; Zhao, Yong-ping; Liu, Qing-song

    2015-03-11

    Brain-derived neurotrophic factor (BDNF) and endocannabinoids (eCBs) have been individually implicated in behavioral effects of cocaine. The present study examined how BDNF-eCB interaction regulates cocaine-induced synaptic plasticity in the ventral tegmental area and behavioral effects. We report that BDNF and selective tyrosine kinase receptor B (TrkB) agonist 7,8-dihydroxyflavone (DHF) activated the TrkB receptor to facilitate two forms of eCB-mediated synaptic depression, depolarization-induced suppression of inhibition (DSI), and long-term depression (I-LTD) of IPSCs in ventral tegmental area dopamine neurons in mouse midbrain slices. The facilitation appears to be mediated by an increase in eCB production via phospholipase Cγ pathway, but not by an increase in CB1 receptor responsiveness or a decrease in eCB hydrolysis. Using Cre-loxP technology to specifically delete BDNF in dopamine neurons, we showed that eCB-mediated I-LTD, cocaine-induced reduction of GABAergic inhibition, and potentiation of glutamatergic excitation remained intact in wild-type control mice, but were impaired in BDNF conditional knock-out mice. We also showed that cocaine-induced conditioned place preference was attenuated in BDNF conditional knock-out mice, in vivo pretreatments with DHF before place conditioning restored cocaine conditioned place preference in these mice, and the behavioral effect of DHF was blocked by a CB₁ receptor antagonist. Together, these results suggest that BDNF in dopamine neurons regulates eCB responses, cocaine-induced synaptic plasticity, and associative learning. Copyright © 2015 the authors 0270-6474/15/354469-13$15.00/0.

  7. BDNF Interacts with Endocannabinoids to Regulate Cocaine-Induced Synaptic Plasticity in Mouse Midbrain Dopamine Neurons

    PubMed Central

    Zhong, Peng; Liu, Yong; Hu, Ying; Wang, Tong; Zhao, Yong-ping

    2015-01-01

    Brain-derived neurotrophic factor (BDNF) and endocannabinoids (eCBs) have been individually implicated in behavioral effects of cocaine. The present study examined how BDNF-eCB interaction regulates cocaine-induced synaptic plasticity in the ventral tegmental area and behavioral effects. We report that BDNF and selective tyrosine kinase receptor B (TrkB) agonist 7,8-dihydroxyflavone (DHF) activated the TrkB receptor to facilitate two forms of eCB-mediated synaptic depression, depolarization-induced suppression of inhibition (DSI), and long-term depression (I-LTD) of IPSCs in ventral tegmental area dopamine neurons in mouse midbrain slices. The facilitation appears to be mediated by an increase in eCB production via phospholipase Cγ pathway, but not by an increase in CB1 receptor responsiveness or a decrease in eCB hydrolysis. Using Cre-loxP technology to specifically delete BDNF in dopamine neurons, we showed that eCB-mediated I-LTD, cocaine-induced reduction of GABAergic inhibition, and potentiation of glutamatergic excitation remained intact in wild-type control mice, but were impaired in BDNF conditional knock-out mice. We also showed that cocaine-induced conditioned place preference was attenuated in BDNF conditional knock-out mice, in vivo pretreatments with DHF before place conditioning restored cocaine conditioned place preference in these mice, and the behavioral effect of DHF was blocked by a CB1 receptor antagonist. Together, these results suggest that BDNF in dopamine neurons regulates eCB responses, cocaine-induced synaptic plasticity, and associative learning. PMID:25762688

  8. Simultaneous activation of mitophagy and autophagy by staurosporine protects against dopaminergic neuronal cell death.

    PubMed

    Ha, Ji-Young; Kim, Ji-Soo; Kim, Seo-Eun; Son, Jin H

    2014-02-21

    Abnormal autophagy is frequently observed during dopaminergic neurodegeneration in Parkinson's disease (PD). However, it is not yet firmly established whether active autophagy is beneficial or pathogenic with respect to dopaminergic cell loss. Staurosporine, a common inducer of apoptosis, is often used in mechanistic studies of dopaminergic cell death. Here we report that staurosporine activates both autophagy and mitophagy simultaneously during dopaminergic neuronal cell death, and evaluate the physiological significance of these processes during cell death. First, staurosporine treatment resulted in induction of autophagy in more than 75% of apoptotic cells. Pharmacological inhibition of autophagy by bafilomycin A1 decreased significantly cell viability. In addition, staurosporine treatment resulted in activation of the PINK1-Parkin mitophagy pathway, of which deficit underlies some familial cases of PD, in the dopaminergic neuronal cell line, SN4741. The genetic blockade of this pathway by PINK1 null mutation also dramatically increased staurosporine-induced cell death. Taken together, our data suggest that staurosporine induces both mitophagy and autophagy, and that these pathways exert a significant neuroprotective effect, rather than a contribution to autophagic cell death. This model system may therefore be useful for elucidating the mechanisms underlying crosstalk between autophagy, mitophagy, and cell death in dopaminergic neurons.

  9. The melanoma-linked "redhead" MC1R influences dopaminergic neuron survival.

    PubMed

    Chen, Xiqun; Chen, Hongxiang; Cai, Waijiao; Maguire, Michael; Ya, Bailiu; Zuo, Fuxing; Logan, Robert; Li, Hui; Robinson, Katey; Vanderburg, Charles R; Yu, Yang; Wang, Yinsheng; Fisher, David E; Schwarzschild, Michael A

    2017-03-01

    Individuals with Parkinson disease are more likely to develop melanoma, and melanoma patients are reciprocally at higher risk of developing Parkinson disease. Melanoma is strongly tied to red hair/fair skin, a phenotype of loss-of-function polymorphisms in the MC1R (melanocortin 1 receptor) gene. Loss-of-function variants of MC1R have also been linked to increased risk of Parkinson disease. The present study is to investigate the role of MC1R in dopaminergic neurons in vivo. Genetic and pharmacological approaches were employed to manipulate MC1R, and nigrostriatal dopaminergic integrity was determined by comprehensive behavioral, neurochemical, and neuropathological measures. MC1R(e/e) mice, which carry an inactivating mutation of MC1R and mimic the human redhead phenotype, have compromised nigrostriatal dopaminergic neuronal integrity, and they are more susceptible to dopaminergic neuron toxins 6-hydroxydopamine and 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP). Furthermore, a selective MC1R agonist protects against MPTP-induced dopaminergic neurotoxicity. Our findings reveal a protective role of MC1R in the nigrostriatal dopaminergic system, and they provide a rationale for MC1R as a potential therapeutic target for Parkinson disease. Together with its established role in melanoma, MC1R may represent a common pathogenic pathway for melanoma and Parkinson disease. Ann Neurol 2017;81:395-406. © 2016 American Neurological Association.

  10. Efficient Generation of Functional Dopaminergic Neurons from Human Induced Pluripotent Stem Cells Under Defined Conditions

    PubMed Central

    Swistowski, Andrzej; Peng, Jun; Liu, Qiuyue; Mali, Prashant; Rao, Mahendra S; Cheng, Linzhao; Zeng, Xianmin

    2010-01-01

    Human induced pluripotent stem cells (iPSCs) reprogrammed from somatic cells represent a promising unlimited cell source for generating patient-specific cells for biomedical research and personalized medicine. As a first step, critical to clinical applications, we attempted to develop defined culture conditions to expand and differentiate human iPSCs into functional progeny such as dopaminergic neurons for treating or modeling Parkinson's disease (PD). We used a completely defined (xeno-free) system that we previously developed for efficient generation of authentic dopaminergic neurons from human embryonic stem cells (hESCs), and applied it to iPSCs. First, we adapted two human iPSC lines derived from different somatic cell types for the defined expansion medium and showed that the iPSCs grew similarly as hESCs in the same medium regarding pluripotency and genomic stability. Second, by using these two independent adapted iPSC lines, we showed that the process of differentiation into committed neural stem cells (NSCs) and subsequently into dopaminergic neurons was also similar to hESCs. Importantly, iPSC-derived dopaminergic neurons were functional as they survived and improved behavioral deficits in 6-hydroxydopamine-leasioned rats after transplantation. In addition, iPSC-derived NSCs and neurons could be efficiently transduced by a baculoviral vector delivering episomal DNA for future gene function study and disease modeling using iPSCs. We also performed genome-wide microarray comparisons between iPSCs and hESCs, and we derived NSC and dopaminergic neurons. Our data revealed overall similarity and visible differences at a molecular level. Efficient generation of functional dopaminergic neurons under defined conditions will facilitate research and applications using PD patient-specific iPSCs. Stem Cells 2010;28:1893–1904 PMID:20715183

  11. The Effects of Age, from Young to Middle Adulthood, and Gender on Resting State Functional Connectivity of the Dopaminergic Midbrain

    PubMed Central

    Peterson, Andrew C.; Zhang, Sheng; Hu, Sien; Chao, Herta H.; Li, Chiang-shan R.

    2017-01-01

    Dysfunction of the dopaminergic ventral tegmental area (VTA) and substantia nigra pars compacta (SNc) is implicated in psychiatric disorders including attention-deficit/ hyperactivity disorder (ADHD), addiction, schizophrenia and movement disorders such as Parkinson’s disease (PD). Although the prevalence of these disorders varies by age and sex, the underlying neural mechanism is not well understood. The objective of this study was to delineate the distinct resting state functional connectivity (rsFC) of the VTA and SNc and examine the effects of age, from young to middle-adulthood, and sex on the rsFC of these two dopaminergic structures in a data set of 250 healthy adults (18–49 years of age, 104 men). Using blood oxygenation level dependent (BOLD) signals, we correlated the time course of the VTA and SNc to the time courses of all other brain voxels. At a corrected threshold, paired t-test showed stronger VTA connectivity to bilateral angular gyrus and superior/middle and orbital frontal regions and stronger SNc connectivity to the insula, thalamus, parahippocampal gyrus (PHG) and amygdala. Compared to women, men showed a stronger VTA/SNc connectivity to the left posterior orbital gyrus. In linear regressions, men but not women showed age-related changes in VTA/SNc connectivity to a number of cortical and cerebellar regions. Supporting shared but also distinct cerebral rsFC of the VTA and SNc and gender differences in age-related changes from young and middle adulthood in VTA/SNc connectivity, these new findings help advance our understanding of the neural bases of many neuropsychiatric illnesses that implicate the dopaminergic systems. PMID:28223929

  12. The Effects of Age, from Young to Middle Adulthood, and Gender on Resting State Functional Connectivity of the Dopaminergic Midbrain.

    PubMed

    Peterson, Andrew C; Zhang, Sheng; Hu, Sien; Chao, Herta H; Li, Chiang-Shan R

    2017-01-01

    Dysfunction of the dopaminergic ventral tegmental area (VTA) and substantia nigra pars compacta (SNc) is implicated in psychiatric disorders including attention-deficit/ hyperactivity disorder (ADHD), addiction, schizophrenia and movement disorders such as Parkinson's disease (PD). Although the prevalence of these disorders varies by age and sex, the underlying neural mechanism is not well understood. The objective of this study was to delineate the distinct resting state functional connectivity (rsFC) of the VTA and SNc and examine the effects of age, from young to middle-adulthood, and sex on the rsFC of these two dopaminergic structures in a data set of 250 healthy adults (18-49 years of age, 104 men). Using blood oxygenation level dependent (BOLD) signals, we correlated the time course of the VTA and SNc to the time courses of all other brain voxels. At a corrected threshold, paired t-test showed stronger VTA connectivity to bilateral angular gyrus and superior/middle and orbital frontal regions and stronger SNc connectivity to the insula, thalamus, parahippocampal gyrus (PHG) and amygdala. Compared to women, men showed a stronger VTA/SNc connectivity to the left posterior orbital gyrus. In linear regressions, men but not women showed age-related changes in VTA/SNc connectivity to a number of cortical and cerebellar regions. Supporting shared but also distinct cerebral rsFC of the VTA and SNc and gender differences in age-related changes from young and middle adulthood in VTA/SNc connectivity, these new findings help advance our understanding of the neural bases of many neuropsychiatric illnesses that implicate the dopaminergic systems.

  13. CB2 Receptor Agonists Protect Human Dopaminergic Neurons against Damage from HIV-1 gp120

    PubMed Central

    Hu, Shuxian; Sheng, Wen S.; Rock, R. Bryan

    2013-01-01

    Despite the therapeutic impact of anti-retroviral therapy, HIV-1-associated neurocognitive disorder (HAND) remains a serious threat to AIDS patients, and there currently remains no specific therapy for the neurological manifestations of HIV-1. Recent work suggests that the nigrostriatal dopaminergic area is a critical brain region for the neuronal dysfunction and death seen in HAND and that human dopaminergic neurons have a particular sensitivity to gp120-induced damage, manifested as reduced function (decreased dopamine uptake), morphological changes, and reduced viability. Synthetic cannabinoids inhibit HIV-1 expression in human microglia, suppress production of inflammatory mediators in human astrocytes, and there is substantial literature demonstrating the neuroprotective properties of cannabinoids in other neuropathogenic processes. Based on these data, experiments were designed to test the hypothesis that synthetic cannabinoids will protect dopaminergic neurons against the toxic effects of the HIV-1 protein gp120. Using a human mesencephalic neuronal/glial culture model, which contains dopaminergic neurons, microglia, and astrocytes, we were able to show that the CB1/CB2 agonist WIN55,212-2 blunts gp120-induced neuronal damage as measured by dopamine transporter function, apoptosis and lipid peroxidation; these actions were mediated principally by the CB2 receptor. Adding supplementary human microglia to our cultures enhances gp120-induced damage; WIN55,212-2 is able to alleviate this enhanced damage. Additionally, WIN55,212-2 inhibits gp120-induced superoxide production by purified human microglial cells, inhibits migration of human microglia towards supernatants generated from gp120-stimulated human mesencephalic neuronal/glial cultures and reduces chemokine and cytokine production from the human mesencephalic neuronal/glial cultures. These data suggest that synthetic cannabinoids are capable of protecting human dopaminergic neurons from gp120 in a variety

  14. Differential effects of histamine on the activity of hypothalamic dopaminergic neurons in the rat.

    PubMed

    Fleckenstein, A E; Lookingland, K J; Moore, K E

    1994-01-01

    The effect of intracerebroventricular administration of histamine on hypothalamic dopaminergic neuronal activity was estimated in male rats by measuring concentrations of dopamine and its metabolite 3,4-dihydroxyphenylacetic acid (DOPAC) in brain regions containing terminals or perikarya of these neurons. Three distinct, regionally specific neurochemical responses were apparent. In the median eminence and intermediate lobe of the pituitary, histamine affected neither DOPAC nor dopamine concentrations, suggesting no effect on tuberoinfundibular or periventricular-hypophysial dopaminergic neuronal activity. In the medial zona incerta and in the dorsomedial, rostral periventricular and medial preoptic hypothalamic nuclei, histamine effected a dose- and time-related increase in both DOPAC and dopamine concentrations; these effects were blocked by destruction of noradrenergic neurons projecting to these regions, suggesting that these changes are attributable to noradrenergic neuronal activation, and that histamine does not affect the activity of incertohypothalamic or periventricular-preoptic dopaminergic neurons located in these brain regions. In the suprachiasmatic, caudal periventricular and paraventricular hypothalamic nuclei, histamine effected a dose- and time-related increase in DOPAC, but not dopamine, concentrations; these effects were blocked by the H1 antagonist mepyramine, but not the H2 antagonist zolantidine. Destruction of noradrenergic neurons projecting to these regions did not prevent the histamine-induced increases in DOPAC concentrations. These data indicate that histamine increases the activity of dopaminergic neurons projecting to the suprachiasmatic, caudal periventricular and paraventricular nuclei via an action at H1 receptors. Overall, these results reveal that i.c.v. administration of histamine differentially affects the activity of the various dopaminergic neuronal systems of the rat hypothalamus.

  15. [Effect of beclin1 on vincristine-induced dopaminergic neurons injury in zebrafish].

    PubMed

    Hu, Zhan-Ying; Zhang, Jing-Pu

    2014-06-01

    To investigate vincristine-induced dopaminergic neurons toxicity and mechanism, and explore the molecular target to reduce the toxicity, zebrafish was chosen as a model animal, based on RT-PCR, Western blotting, whole mount in situ immunofluorescence and other technical means. The results showed that the transcription levels of tyrosine hydroxylase gene and dopamine transporter protein gene were inhibited. Furthermore, the number of dopaminergic neurons was decreased by vincristine. Autophagy was suppressed and beclin1 gene expression was inhibited in a dose-dependent manner by vincristine in larval zebrafish. Up-regulated beclin1 partly reduced vincristine-induced neurotoxicity, and down-regulated beclin1 increased toxicity. Beclin1 plays an important role in vincristine-induced dopaminergic neurons toxicity.

  16. Salidroside induces rat mesenchymal stem cells to differentiate into dopaminergic neurons.

    PubMed

    Zhao, Hong-Bin; Ma, Hui; Ha, Xiao-Qin; Zheng, Ping; Li, Xiao-Yun; Zhang, Ming; Dong, Ju-Zi; Yang, Yin-Shu

    2014-04-01

    Parkinson's disease (PD) is a neurodegenerative disorder characterised by the loss of substantia nigra dopaminergic neurons that leads to a reduction in striatal dopamine (DA) levels. Replacing lost cells by transplanting dopaminergic neurons has potential value to repair the damaged brain. Salidroside (SD), a phenylpropanoid glycoside isolated from plant Rhodiola rosea, is neuroprotective. We examined whether salidroside can induce mesenchymal stem cells (MSCs) to differentiate into neuron-like cells, and convert MSCs into dopamine neurons that can be applied in clinical use. Salidroside induced rMSCs to adopt a neuronal morphology, upregulated the expression of neuronal marker molecules, such as gamma neuronal enolase 2 (Eno2/NSE), microtubule-associated protein 2 (Map2), and beta 3 class III tubulin (Tubb3/β-tubulin III). It also increased expression of brain-derived neurotrophic factor (BDNF), neurotrophin-3 (NT-3) and nerve growth factor (NGF) mRNAs, and promoted the secretion of these growth factors. The expression of dopamine neurons markers, such as dopamine-beta-hydroxy (DBH), dopa decarboxylase (DDC) and tyrosine hydroxylase (TH), was significantly upregulated after treatment with salidroside for 1-12 days. DA steadily increased after treatment with salidroside for 1-6 days. Thus salidroside can induce rMSCs to differentiate into dopaminergic neurons. © 2014 The Authors Cell Biology International Published by John Wiley & Sons Ltd on behalf of International Federation of Cell Biology.

  17. Salidroside induces rat mesenchymal stem cells to differentiate into dopaminergic neurons

    PubMed Central

    Zhao, Hong-Bin; Ma, Hui; Ha, Xiao-Qin; Zheng, Ping; Li, Xiao-Yun; Zhang, Ming; Dong, Ju-Zi; Yang, Yin-Shu

    2014-01-01

    Parkinson’s disease (PD) is a neurodegenerative disorder characterised by the loss of substantia nigra dopaminergic neurons that leads to a reduction in striatal dopamine (DA) levels. Replacing lost cells by transplanting dopaminergic neurons has potential value to repair the damaged brain. Salidroside (SD), a phenylpropanoid glycoside isolated from plant Rhodiola rosea, is neuroprotective. We examined whether salidroside can induce mesenchymal stem cells (MSCs) to differentiate into neuron-like cells, and convert MSCs into dopamine neurons that can be applied in clinical use. Salidroside induced rMSCs to adopt a neuronal morphology, upregulated the expression of neuronal marker molecules, such as gamma neuronal enolase 2 (Eno2/NSE), microtubule-associated protein 2 (Map2), and beta 3 class III tubulin (Tubb3/β-tubulin III). It also increased expression of brain-derived neurotrophic factor (BDNF), neurotrophin-3 (NT-3) and nerve growth factor (NGF) mRNAs, and promoted the secretion of these growth factors. The expression of dopamine neurons markers, such as dopamine-beta-hydroxy (DBH), dopa decarboxylase (DDC) and tyrosine hydroxylase (TH), was significantly upregulated after treatment with salidroside for 1–12 days. DA steadily increased after treatment with salidroside for 1–6 days. Thus salidroside can induce rMSCs to differentiate into dopaminergic neurons. PMID:24323403

  18. Eight Different Types of Dopaminergic Neurons Innervate the Drosophila Mushroom Body Neuropil: Anatomical and Physiological Heterogeneity

    PubMed Central

    Mao, Zhengmei; Davis, Ronald L.

    2009-01-01

    We examined tyrosine hydroxylase (TH-GAL4) expression and anti-TH immunoreactivity in the Drosophila protocerebrum and characterized single cell clones of the TH-GAL4 neurons. Eight clusters of putative dopaminergic neurons were characterized. Neurons in three of the clusters project to the mushroom body neuropil: PAM neurons project to the medial portion of the horizontal lobes; PPL1 neurons project to the vertical lobes, the junction area, the heel and distal peduncle; and PPL2ab neurons project to the calyx. Five types of PPL1 neurons were discovered that innervate different zones of the mushroom body lobes. Functional imaging experiments showed that the dopaminergic processes in four of the zones differ in response properties to odor, electric shock, or following the pairing of odor and electric shock. These results indicate that distinct dopaminergic neurons define separate zones of the mushroom body lobes and are probably involved in different functions. Differences in functional response properties of these neurons suggest that they are involved in different behavioral processes. PMID:19597562

  19. Hemispheric Asymmetries in Striatal Reward Responses Relate to Approach-Avoidance Learning and Encoding of Positive-Negative Prediction Errors in Dopaminergic Midbrain Regions.

    PubMed

    Aberg, Kristoffer Carl; Doell, Kimberly C; Schwartz, Sophie

    2015-10-28

    Some individuals are better at learning about rewarding situations, whereas others are inclined to avoid punishments (i.e., enhanced approach or avoidance learning, respectively). In reinforcement learning, action values are increased when outcomes are better than predicted (positive prediction errors [PEs]) and decreased for worse than predicted outcomes (negative PEs). Because actions with high and low values are approached and avoided, respectively, individual differences in the neural encoding of PEs may influence the balance between approach-avoidance learning. Recent correlational approaches also indicate that biases in approach-avoidance learning involve hemispheric asymmetries in dopamine function. However, the computational and neural mechanisms underpinning such learning biases remain unknown. Here we assessed hemispheric reward asymmetry in striatal activity in 34 human participants who performed a task involving rewards and punishments. We show that the relative difference in reward response between hemispheres relates to individual biases in approach-avoidance learning. Moreover, using a computational modeling approach, we demonstrate that better encoding of positive (vs negative) PEs in dopaminergic midbrain regions is associated with better approach (vs avoidance) learning, specifically in participants with larger reward responses in the left (vs right) ventral striatum. Thus, individual dispositions or traits may be determined by neural processes acting to constrain learning about specific aspects of the world.

  20. Neurogenic differentiation of dental pulp stem cells to neuron-like cells in dopaminergic and motor neuronal inductive media.

    PubMed

    Chang, Chia-Chieh; Chang, Kai-Chun; Tsai, Shang-Jye; Chang, Hao-Hueng; Lin, Chun-Pin

    2014-12-01

    Dental pulp stem cells (DPSCs) have been proposed as a promising source of stem cells in nerve regeneration due to their close embryonic origin and ease of harvest. The aim of this study was to evaluate the efficacy of dopaminergic and motor neuronal inductive media on transdifferentiation of human DPSCs (hDPSCs) into neuron-like cells. Isolation, cultivation, and identification of hDPSCs were performed with morphological analyses and flow cytometry. The proliferation potential of DPSCs was evaluated with an XTT [(2,3-bis-(2-methoxy-4-nitro-5-sulfophenyl)-2H-tetrazolium-5-carboxanilide)] assay. Media for the induction of dopaminergic and spinal motor neuronal differentiation were prepared. The efficacy of neural induction was evaluated by detecting the expression of neuron cell-specific cell markers in DPSCs by immunocytochemistry and quantitative real-time reverse transcription polymerase chain reaction (RT-PCR). In the XTT assay, there was a 2.6- or 2-fold decrease in DPSCs cultured in dopaminergic or motor neuronal inductive media, respectively. The proportions of βIII-tubulin (βIII-tub), glial fibrillary acidic protein (GFAP), and oligodendrocyte (O1)-positive cells were significantly higher in DPSCs cultured in both neuronal inductive media compared with those cultured in control media. Furthermore, hDPSC-derived dopaminergic and spinal motor neuron cells after induction expressed a higher density of neuron cell markers than those before induction. These findings suggest that in response to the neuronal inductive stimuli, a greater proportion of DPSCs stop proliferation and acquire a phenotype resembling mature neurons. Such neural crest-derived adult DPSCs may provide an alternative stem cell source for therapy-based treatments of neuronal disorders and injury. Copyright © 2014. Published by Elsevier B.V.

  1. Effects of chlorpyrifos on neuronal development in rat embryo midbrain micromass cultures.

    PubMed

    Cosenza, M E; Bidanset, J

    1995-04-01

    Chlorpyrifos (CPF) is a broad-spectrum organophosphate insecticide used to control mosquitos and household insects. In man it has toxic effects on the central nervous system, the cardiovascular system and the respiratory system. This study investigated the toxicity of CPF on nervous system development using the midbrain micromass culture system. Chlorpyrifos was tested as a marketed formulation and in 3 solvents. All demonstrated toxicity in midbrain micromass cells with IC50 values below 30 ug/mL, indicating a potent teratogen.

  2. c-Jun N-terminal kinase 3 (JNK3) Mediates Paraquat- and Rotenone-Induced Dopaminergic Neuron Death

    PubMed Central

    Choi, Won Seok; Abel, Glen; Klintworth, Heather; Flavell, Richard A.; Xia, Zhengui

    2011-01-01

    Mechanistic studies underlying dopaminergic neuron death may identify new drug targets for the treatment of Parkinson disease (PD). Epidemiological studies have linked pesticide exposure to increased risk for sporadic PD. Here, we investigated the role of c-Jun N-terminal kinase 3 (JNK3), a neural-specific JNK isoform, in dopaminergic neuron death induced by the pesticides rotenone and paraquat. The role of JNK3 was evaluated using RNA silencing and gene deletion to block JNK3 signaling. Using an antibody that recognizes all isoforms of activated JNKs, we found that paraquat and rotenone stimulate JNK phosphorylation in primary cultured dopaminergic neurons. In cultured neurons transfected with Jnk3-specific siRNA and in neurons from Jnk3−/− mice, JNK phosphorylation was nearly abolished, suggesting that JNK3 is the main JNK isoform activated in dopaminergic neurons by these pesticides. Paraquat- and rotenone-induced death of dopaminergic neurons was also significantly reduced by Jnk3 siRNA or Jnk3 gene deletion and deletion of the Jnk3 gene completely attenuated paraquat-induced dopaminergic neuron death and motor-deficits in vivo. Our data identify JNK3 as a common and critical mediator of dopaminergic neuron death induced by paraquat and rotenone, suggesting that it is a potential drug target for PD treatment. PMID:20418776

  3. The human testis-determining factor SRY localizes in midbrain dopamine neurons and regulates multiple components of catecholamine synthesis and metabolism.

    PubMed

    Czech, Daniel P; Lee, Joohyung; Sim, Helena; Parish, Clare L; Vilain, Eric; Harley, Vincent R

    2012-07-01

    The male gender is determined by the sex-determining region on the Y chromosome (SRY) transcription factor. The unexpected action of SRY in the control of voluntary movement in male rodents suggests a role in the regulation of dopamine transmission and dopamine-related disorders with gender bias, such as Parkinson's disease. We investigated SRY expression in the human brain and function in vitro. SRY immunoreactivity was detected in the human male, but not female substantia nigra pars compacta, within a sub-population of tyrosine hydroxylase (TH) positive neurons. SRY protein also co-localized with TH positive neurons in the ventral tegmental area, and with GAD-positive neurons in the substantia nigra pars reticulata. Retinoic acid-induced differentiation of human precursor NT2 cells into dopaminergic cells increased expression of TH, NURR1, D2 R and SRY. In the human neuroblastoma cell line, M17, SRY knockdown resulted in a reduction in TH, DDC, DBH and MAO-A expression; enzymes which control dopamine synthesis and metabolism. Conversely, SRY over-expression increased TH, DDC, DBH, D2 R and MAO-A levels, accompanied by increased extracellular dopamine levels. A luciferase assay demonstrated that SRY activated a 4.6 kb 5' upstream regulatory region of the human TH promoter/nigral enhancer. Combined, these results suggest that SRY plays a role as a positive regulator of catecholamine synthesis and metabolism in the human male midbrain. This ancillary genetic mechanism might contribute to gender bias in fight-flight behaviours in men or their increased susceptibility to dopamine disorders, such as Parkinson's disease and schizophrenia.

  4. A bi-modal function of Wnt signalling directs an FGF activity gradient to spatially regulate neuronal differentiation in the midbrain.

    PubMed

    Dyer, Carlene; Blanc, Eric; Hanisch, Anja; Roehl, Henry; Otto, Georg W; Yu, Tian; Basson, M A; Knight, Robert

    2014-01-01

    FGFs and Wnts are important morphogens during midbrain development, but their importance and potential interactions during neurogenesis are poorly understood. We have employed a combination of genetic and pharmacological manipulations in zebrafish to show that during neurogenesis FGF activity occurs as a gradient along the anterior-posterior axis of the dorsal midbrain and directs spatially dynamic expression of the Hairy gene her5. As FGF activity diminishes during development, Her5 is lost and differentiation of neuronal progenitors occurs in an anterior-posterior manner. We generated mathematical models to explain how Wnt and FGFs direct the spatial differentiation of neurons in the midbrain through Wnt regulation of FGF signalling. These models suggested that a negative-feedback loop controlled by Wnt is crucial for regulating FGF activity. We tested Sprouty genes as mediators of this regulatory loop using conditional mouse knockouts and pharmacological manipulations in zebrafish. These reveal that Sprouty genes direct the positioning of early midbrain neurons and are Wnt responsive in the midbrain. We propose a model in which Wnt regulates FGF activity at the isthmus by driving both FGF and Sprouty gene expression. This controls a dynamic, posteriorly retracting expression of her5 that directs neuronal differentiation in a precise spatiotemporal manner in the midbrain.

  5. A bi-modal function of Wnt signalling directs an FGF activity gradient to spatially regulate neuronal differentiation in the midbrain

    PubMed Central

    Dyer, Carlene; Blanc, Eric; Hanisch, Anja; Roehl, Henry; Otto, Georg W.; Yu, Tian; Basson, M. A.; Knight, Robert

    2014-01-01

    FGFs and Wnts are important morphogens during midbrain development, but their importance and potential interactions during neurogenesis are poorly understood. We have employed a combination of genetic and pharmacological manipulations in zebrafish to show that during neurogenesis FGF activity occurs as a gradient along the anterior-posterior axis of the dorsal midbrain and directs spatially dynamic expression of the Hairy gene her5. As FGF activity diminishes during development, Her5 is lost and differentiation of neuronal progenitors occurs in an anterior-posterior manner. We generated mathematical models to explain how Wnt and FGFs direct the spatial differentiation of neurons in the midbrain through Wnt regulation of FGF signalling. These models suggested that a negative-feedback loop controlled by Wnt is crucial for regulating FGF activity. We tested Sprouty genes as mediators of this regulatory loop using conditional mouse knockouts and pharmacological manipulations in zebrafish. These reveal that Sprouty genes direct the positioning of early midbrain neurons and are Wnt responsive in the midbrain. We propose a model in which Wnt regulates FGF activity at the isthmus by driving both FGF and Sprouty gene expression. This controls a dynamic, posteriorly retracting expression of her5 that directs neuronal differentiation in a precise spatiotemporal manner in the midbrain. PMID:24284206

  6. Characterization of the axon initial segment of mice substantia nigra dopaminergic neurons.

    PubMed

    González-Cabrera, Cristian; Meza, Rodrigo; Ulloa, Lorena; Merino-Sepúlveda, Paulina; Luco, Valentina; Sanhueza, Ana; Oñate-Ponce, Alejandro; Bolam, J Paul; Henny, Pablo

    2017-11-01

    The axon initial segment (AIS) is the site of initiation of action potentials and influences action potential waveform, firing pattern, and rate. In view of the fundamental aspects of motor function and behavior that depend on the firing of substantia nigra pars compacta (SNc) dopaminergic neurons, we identified and characterized their AIS in the mouse. Immunostaining for tyrosine hydroxylase (TH), sodium channels (Nav ) and ankyrin-G (Ank-G) was used to visualize the AIS of dopaminergic neurons. Reconstructions of sampled AIS of dopaminergic neurons revealed variable lengths (12-60 μm) and diameters (0.2-0.8 μm), and an average of 50% reduction in diameter between their widest and thinnest parts. Ultrastructural analysis revealed submembranous localization of Ank-G at nodes of Ranvier and AIS. Serial ultrathin section analysis and 3D reconstructions revealed that Ank-G colocalized with TH only at the AIS. Few cases of synaptic innervation of the AIS of dopaminergic neurons were observed. mRNA in situ hybridization of brain-specific Nav subunits revealed the expression of Nav 1.2 by most SNc neurons and a small proportion expressing Nav 1.6. The presence of sodium channels, along with the submembranous location of Ank-G is consistent with the role of AIS in action potential generation. Differences in the size of the AIS likely underlie differences in firing pattern, while the tapering diameter of AIS may define a trigger zone for action potentials. Finally, the conspicuous expression of Nav 1.2 by the majority of dopaminergic neurons may explain their high threshold for firing and their low discharge rate. © 2017 Wiley Periodicals, Inc.

  7. Degeneration of Dopaminergic Neurons Due to Metabolic Alterations and Parkinson’s Disease

    PubMed Central

    Song, Juhyun; Kim, Jongpil

    2016-01-01

    The rates of metabolic diseases, such as type 2 diabetes mellitus (T2DM), obesity, and cardiovascular disease (CVD), markedly increase with age. In recent years, studies have reported an association between metabolic changes and various pathophysiological mechanisms in the central nervous system (CNS) in patients with metabolic diseases. Oxidative stress and hyperglycemia in metabolic diseases lead to adverse neurophysiological phenomena, including neuronal loss, synaptic dysfunction, and improper insulin signaling, resulting in Parkinson’s disease (PD). In addition, several lines of evidence suggest that alterations of CNS environments by metabolic changes influence the dopamine neuronal loss, eventually affecting the pathogenesis of PD. Thus, we reviewed recent findings relating to degeneration of dopaminergic neurons during metabolic diseases. We highlight the fact that using a metabolic approach to manipulate degeneration of dopaminergic neurons can serve as a therapeutic strategy to attenuate pathology of PD. PMID:27065205

  8. Ciliary neurotrophic factor prevents degeneration of adult rat substantia nigra dopaminergic neurons in vivo.

    PubMed Central

    Hagg, T; Varon, S

    1993-01-01

    We have investigated the neuroprotective effects of recombinant human ciliary neurotrophic factor (CNTF) for injured dopaminergic neurons of the adult rat substantia nigra compacta. Fourteen days after a unilateral transection of the nigrostriatal pathway two-thirds of the neurons (identified by retrograde labeling) had degenerated. In sharp contrast, 73% (a few cases, > 90%) of this cell loss was prevented by continuous infusion of CNTF close to the injured neurons. However, CNTF did not prevent the disappearance of the transmitter-synthesizing enzyme tyrosine hydroxylase. Thus, CNTF has potent neurotrophic effects for injured adult rat dopaminergic substantia nigra neurons, whose degeneration plays a major causative role in Parkinson disease. Images Fig. 2 Fig. 3 PMID:8101002

  9. Ceftriaxone Ameliorates Motor Deficits and Protects Dopaminergic Neurons in 6-Hydroxydopamine-Lesioned Rats

    PubMed Central

    2011-01-01

    Parkinson’s disease is caused by the degeneration of dopaminergic neurons in substantia nigra. There is no current promising treatment for neuroprotection of dopaminergic neurons. Ceftriaxone is a beta-lactam antibiotic and has been reported to offer neuroprotective effects (Rothstein, J.-D., Patel, S., Regan, M.-R., Haenggeli, C., Huang, Y.-H., Bergles, D.-E., Jin, L., Dykes, H.-M., Vidensky, S., Chung, D.-S., Toan, S.-V., Bruijn, L.-I., Su, Z.-Z., Gupta, P., and Fisher, P.-B. (2005) Beta-lactam antibiotics offer neuroprotection by increasing glutamate transporter expression Nature433, 73–77). In the present study, efficacy of ceftriaxone in neuroprotection of dopaminergic neurons and amelioration of motor deficits in a rat model of Parkinson’s disease were investigated. Ceftriaxone was administrated in 6-hydroxydopamine-lesioned rats. Using behavioral tests, grip strength and numbers of apomorphine-induced contralateral rotation were declined in the ceftriaxone-treated group. More importantly, cell death of dopaminergic neurons was found to decrease. In addition, both the protein expression and immunoreactivity for GLT-1 were up-regulated. The present results strongly indicate that ceftriaxone is a potential agent in the treatment of Parkinson’s disease. PMID:22860178

  10. NANOMETER DIESEL EXHAUST PARTICLES ARE NEUROTOXIC TO DOPAMINERGIC NEURONS THROUGH MICROGLIAL ACTIVATION.

    EPA Science Inventory

    NANOMETER DIESEL EXHAUST PARTICLES ARE NEUROTOXIC TO DOPAMINERGIC NEURONS THROUGH MICROGLIAL ACTIVATION. M.L. Block1,2, X. Wu1, P. Zhong1, G. Li1, T. Wang1, J.S. Hong1 & B.Veronesi.2
    1The Laboratory of Pharmacology and Chemistry, NIEHS, RTP, NC and 2 National Health and Envi...

  11. NANOMETER DIESEL EXHAUST PARTICLES ARE NEUROTOXIC TO DOPAMINERGIC NEURONS THROUGH MICROGLIAL ACTIVATION.

    EPA Science Inventory

    NANOMETER DIESEL EXHAUST PARTICLES ARE NEUROTOXIC TO DOPAMINERGIC NEURONS THROUGH MICROGLIAL ACTIVATION. M.L. Block1,2, X. Wu1, P. Zhong1, G. Li1, T. Wang1, J.S. Hong1 & B.Veronesi.2
    1The Laboratory of Pharmacology and Chemistry, NIEHS, RTP, NC and 2 National Health and Envi...

  12. Phosphodiesterase 7 Inhibition Preserves Dopaminergic Neurons in Cellular and Rodent Models of Parkinson Disease

    PubMed Central

    Morales-Garcia, Jose A.; Redondo, Miriam; Alonso-Gil, Sandra; Gil, Carmen; Perez, Concepción; Martinez, Ana; Santos, Angel; Perez-Castillo, Ana

    2011-01-01

    Background Phosphodiesterase 7 plays a major role in down-regulation of protein kinase A activity by hydrolyzing cAMP in many cell types. This cyclic nucleotide plays a key role in signal transduction in a wide variety of cellular responses. In the brain, cAMP has been implicated in learning, memory processes and other brain functions. Methodology/Principal Findings Here we show a novel function of phosphodiesterase 7 inhibition on nigrostriatal dopaminergic neuronal death. We found that S14, a heterocyclic small molecule inhibitor of phosphodiesterase 7, conferred significant neuronal protection against different insults both in the human dopaminergic cell line SH-SY5Y and in primary rat mesencephalic cultures. S14 treatment also reduced microglial activation, protected dopaminergic neurons and improved motor function in the lipopolysaccharide rat model of Parkinson disease. Finally, S14 neuroprotective effects were reversed by blocking the cAMP signaling pathways that operate through cAMP-dependent protein kinase A. Conclusions/Significance Our findings demonstrate that phosphodiesterase 7 inhibition can protect dopaminergic neurons against different insults, and they provide support for the therapeutic potential of phosphodiesterase 7 inhibitors in the treatment of neurodegenerative disorders, particularly Parkinson disease. PMID:21390306

  13. Brain endogenous liver X receptor ligands selectively promote midbrain neurogenesis.

    PubMed

    Theofilopoulos, Spyridon; Wang, Yuqin; Kitambi, Satish Srinivas; Sacchetti, Paola; Sousa, Kyle M; Bodin, Karl; Kirk, Jayne; Saltó, Carmen; Gustafsson, Magnus; Toledo, Enrique M; Karu, Kersti; Gustafsson, Jan-Åke; Steffensen, Knut R; Ernfors, Patrik; Sjövall, Jan; Griffiths, William J; Arenas, Ernest

    2013-02-01

    Liver X receptors (Lxrα and Lxrβ) are ligand-dependent nuclear receptors critical for ventral midbrain neurogenesis in vivo. However, no endogenous midbrain Lxr ligand has so far been identified. Here we used LC/MS and functional assays to identify cholic acid as a new Lxr ligand. Moreover, 24(S),25-epoxycholesterol (24,25-EC) was found to be the most potent and abundant Lxr ligand in the developing mouse midbrain. Both Lxr ligands promoted neural development in an Lxr-dependent manner in zebrafish in vivo. Notably, each ligand selectively regulated the development of distinct midbrain neuronal populations. Whereas cholic acid increased survival and neurogenesis of Brn3a-positive red nucleus neurons, 24,25-EC promoted dopaminergic neurogenesis. These results identify an entirely new class of highly selective and cell type-specific regulators of neurogenesis and neuronal survival. Moreover, 24,25-EC promoted dopaminergic differentiation of embryonic stem cells, suggesting that Lxr ligands may thus contribute to the development of cell replacement and regenerative therapies for Parkinson's disease.

  14. Regulation of differentiation flux by Notch signalling influences the number of dopaminergic neurons in the adult brain.

    PubMed

    Trujillo-Paredes, Niurka; Valencia, Concepción; Guerrero-Flores, Gilda; Arzate, Dulce-María; Baizabal, José-Manuel; Guerra-Crespo, Magdalena; Fuentes-Hernández, Ayari; Zea-Armenta, Iván; Covarrubias, Luis

    2016-02-24

    Notch signalling is a well-established pathway that regulates neurogenesis. However, little is known about the role of Notch signalling in specific neuronal differentiation. Using Dll1 null mice, we found that Notch signalling has no function in the specification of mesencephalic dopaminergic neural precursor cells (NPCs), but plays an important role in regulating their expansion and differentiation into neurons. Premature neuronal differentiation was observed in mesencephalons of Dll1-deficient mice or after treatment with a Notch signalling inhibitor. Coupling between neurogenesis and dopaminergic differentiation was indicated from the coincident emergence of neuronal and dopaminergic markers. Early in differentiation, decreasing Notch signalling caused a reduction in NPCs and an increase in dopaminergic neurons in association with dynamic changes in the proportion of sequentially-linked dopaminergic NPCs (Msx1/2+, Ngn2+, Nurr1+). These effects in differentiation caused a significant reduction in the number of dopaminergic neurons produced. Accordingly, Dll1 haploinsufficient adult mice, in comparison with their wild-type littermates, have a consistent reduction in neuronal density that was particularly evident in the substantia nigra pars compacta. Our results are in agreement with a mathematical model based on a Dll1-mediated regulatory feedback loop between early progenitors and their dividing precursors that controls the emergence and number of dopaminergic neurons.

  15. Regulation of differentiation flux by Notch signalling influences the number of dopaminergic neurons in the adult brain

    PubMed Central

    Trujillo-Paredes, Niurka; Valencia, Concepción; Guerrero-Flores, Gilda; Arzate, Dulce-María; Baizabal, José-Manuel; Guerra-Crespo, Magdalena; Fuentes-Hernández, Ayari; Zea-Armenta, Iván; Covarrubias, Luis

    2016-01-01

    ABSTRACT Notch signalling is a well-established pathway that regulates neurogenesis. However, little is known about the role of Notch signalling in specific neuronal differentiation. Using Dll1 null mice, we found that Notch signalling has no function in the specification of mesencephalic dopaminergic neural precursor cells (NPCs), but plays an important role in regulating their expansion and differentiation into neurons. Premature neuronal differentiation was observed in mesencephalons of Dll1-deficient mice or after treatment with a Notch signalling inhibitor. Coupling between neurogenesis and dopaminergic differentiation was indicated from the coincident emergence of neuronal and dopaminergic markers. Early in differentiation, decreasing Notch signalling caused a reduction in NPCs and an increase in dopaminergic neurons in association with dynamic changes in the proportion of sequentially-linked dopaminergic NPCs (Msx1/2+, Ngn2+, Nurr1+). These effects in differentiation caused a significant reduction in the number of dopaminergic neurons produced. Accordingly, Dll1 haploinsufficient adult mice, in comparison with their wild-type littermates, have a consistent reduction in neuronal density that was particularly evident in the substantia nigra pars compacta. Our results are in agreement with a mathematical model based on a Dll1-mediated regulatory feedback loop between early progenitors and their dividing precursors that controls the emergence and number of dopaminergic neurons. PMID:26912775

  16. Response properties of neighboring neurons in the auditory midbrain for pure-tone stimulation: a tetrode study.

    PubMed

    Seshagiri, Chandran V; Delgutte, Bertrand

    2007-10-01

    The complex anatomical structure of the central nucleus of the inferior colliculus (ICC), the principal auditory nucleus in the midbrain, may provide the basis for functional organization of auditory information. To investigate this organization, we used tetrodes to record from neighboring neurons in the ICC of anesthetized cats and studied the similarity and difference among the responses of these neurons to pure-tone stimuli using widely used physiological characterizations. Consistent with the tonotopic arrangement of neurons in the ICC and reports of a threshold map, we found a high degree of correlation in the best frequencies (BFs) of neighboring neurons, which were mostly <3 kHz in our sample, and the pure-tone thresholds among neighboring neurons. However, width of frequency tuning, shapes of the frequency response areas, and temporal discharge patterns showed little or no correlation among neighboring neurons. Because the BF and threshold are measured at levels near the threshold and the characteristic frequency (CF), neighboring neurons may receive similar primary inputs tuned to their CF; however, at higher levels, additional inputs from other frequency channels may be recruited, introducing greater variability in the responses. There was also no correlation among neighboring neurons' sensitivity to interaural time differences (ITD) measured with binaural beats. However, the characteristic phases (CPs) of neighboring neurons revealed a significant correlation. Because the CP is related to the neural mechanisms generating the ITD sensitivity, this result is consistent with segregation of inputs to the ICC from the lateral and medial superior olives.

  17. Biochanin A protects dopaminergic neurons against lipopolysaccharide-induced damage and oxidative stress in a rat model of Parkinson's disease.

    PubMed

    Wang, Jun; He, Can; Wu, Wang-Yang; Chen, Feng; Wu, Yang-Yang; Li, Wei-Zu; Chen, Han-Qing; Yin, Yan-Yan

    2015-11-01

    Parkinson's disease (PD) is the second most common neurodegenerative disease, which is characterized by loss of dopaminergic neurons in the substantia nigra pars compacta (SNpc). Accumulated evidences have suggested that oxidative stress is closely associated with the dopaminergic neurodegeneration of PD that can be protected by antioxidants. Biochanin A that is an O-methylated isoflavone in chickpea is investigated to explore its protective mechanism on dopaminergic neurons of the unilateral lipopolysaccharide (LPS)-injected rat. The results showed that biochanin A significantly improved the animal model's behavioral symptoms, prevented the loss of dopaminergic neurons and inhibited the deleterious microglia activation in the LPS-induced rats. Moreover, biochanin A inhibited nicotinamide adenine dinucleotide phosphate oxidase (NADPH oxidase) activation and malondialdehyde (MDA) production, increased superoxide dismutase (SOD) and glutathione peroxidase (GPx) activities in the rat brain. These results suggested that biochanin A might be a natural candidate with protective properties on dopaminergic neurons against the PD.

  18. Cabergoline protects dopaminergic neurons against rotenone-induced cell death in primary mesencephalic cell culture.

    PubMed

    Meinel, J; Radad, K; Rausch, W-D; Reichmann, H; Gille, G

    2015-01-01

    In the present study, primary mesencephalic cell cultures prepared from embryonic mouse mesencephala were used to investigate the neuroprotective effect of cabergoline, an ergoline D2 receptor agonist, against the pesticide and neurotoxin rotenone relevant to Parkinson disease (PD). Treatment of cultures with cabergoline alone significantly increased the number of tyrosine hydroxylase immunoreactive (THir) neurons and reduced the release of lactate dehydrogenase (LDH) into the culture medium compared to untreated controls. Against rotenone toxicity, cabergoline significantly rescued degenerating THir neurons, reduced the release of LDH into the culture medium and improved the morphology of surviving THir neurons. The neuroprotective effects afforded by cabergoline were independent of dopaminergic stimulation as blocking of dopamine receptors by the dopamine receptor antagonist sulpiride did not prevent them. Furthermore, rotenone-induced formation of reactive oxygen species (ROS) was significantly reduced by cabergoline. Although cabergoline increased the glutathione (GSH) content in the culture, the protective effect for dopaminergic neurons seemed not to be predominantly mediated by increasing GSH, as depletion of GSH by L-buthionine-(S,R)-sulfoximine (BSO), a GSH biosynthesis inhibitor, did not prevent cabergoline-mediated neuroprotection of THir neurons in rotenone-treated cultures. Moreover, cabergoline significantly increased the ATP/protein ratio in primary mesencephalic cell cultures when added alone or prior to rotenone treatment. These results indicate a neuroprotective effect of cabergoline for dopaminergic neurons against rotenone toxicity. This effect was independent of dopamine receptor stimulation and was at least partially mediated by reducing ROS production and increasing the ATP/protein ratio.

  19. Complementary neural correlates of motivation in dopaminergic and noradrenergic neurons of monkeys

    PubMed Central

    Bouret, Sebastien; Ravel, Sabrina; Richmond, Barry J.

    2012-01-01

    Rewards have many influences on learning, decision-making, and performance. All seem to rely on complementary actions of two closely related catecholaminergic neuromodulators, dopamine (DA), and noradrenaline (NA). We compared single unit activity of dopaminergic neurons of the substantia nigra pars compacta (SNc) and noradrenergic neurons of the locus coeruleus (LC) in monkeys performing a reward schedule task. Their motivation, indexed using operant performance, increased as they progressed through schedules ending in reward delivery. The responses of dopaminergic and noradrenergic neurons around the time of major task events, visual cues predicting trial outcome and operant action to complete a trial were similar in that they occurred at the same time. They were also similar in that they both responded most strongly to the first cues in schedules, which are the most informative cues. The neuronal responses around the time of the monkeys' actions were different, in that the response intensity profiles changed in opposite directions. Dopaminergic responses were stronger around predictably rewarded correct actions whereas noradrenergic responses were greater around predictably unrewarded correct actions. The complementary response profiles related to the monkeys operant actions suggest that DA neurons might relate to the value of the current action whereas the noradrenergic neurons relate to the psychological cost of that action. PMID:22822392

  20. Roles of octopaminergic and dopaminergic neurons in appetitive and aversive memory recall in an insect.

    PubMed

    Mizunami, Makoto; Unoki, Sae; Mori, Yasuhiro; Hirashima, Daisuke; Hatano, Ai; Matsumoto, Yukihisa

    2009-08-04

    In insect classical conditioning, octopamine (the invertebrate counterpart of noradrenaline) or dopamine has been suggested to mediate reinforcing properties of appetitive or aversive unconditioned stimulus, respectively. However, the roles of octopaminergic and dopaminergic neurons in memory recall have remained unclear. We studied the roles of octopaminergic and dopaminergic neurons in appetitive and aversive memory recall in olfactory and visual conditioning in crickets. We found that pharmacological blockade of octopamine and dopamine receptors impaired aversive memory recall and appetitive memory recall, respectively, thereby suggesting that activation of octopaminergic and dopaminergic neurons and the resulting release of octopamine and dopamine are needed for appetitive and aversive memory recall, respectively. On the basis of this finding, we propose a new model in which it is assumed that two types of synaptic connections are formed by conditioning and are activated during memory recall, one type being connections from neurons representing conditioned stimulus to neurons inducing conditioned response and the other being connections from neurons representing conditioned stimulus to octopaminergic or dopaminergic neurons representing appetitive or aversive unconditioned stimulus, respectively. The former is called 'stimulus-response connection' and the latter is called 'stimulus-stimulus connection' by theorists studying classical conditioning in higher vertebrates. Our model predicts that pharmacological blockade of octopamine or dopamine receptors during the first stage of second-order conditioning does not impair second-order conditioning, because it impairs the formation of the stimulus-response connection but not the stimulus-stimulus connection. The results of our study with a cross-modal second-order conditioning were in full accordance with this prediction. We suggest that insect classical conditioning involves the formation of two kinds of memory

  1. Dopaminergic Neurons Controlling Anterior Pituitary Functions: Anatomy and Ontogenesis in Zebrafish.

    PubMed

    Fontaine, Romain; Affaticati, Pierre; Bureau, Charlotte; Colin, Ingrid; Demarque, Michaël; Dufour, Sylvie; Vernier, Philippe; Yamamoto, Kei; Pasqualini, Catherine

    2015-08-01

    Dopaminergic (DA) neurons located in the preoptico-hypothalamic region of the brain exert a major neuroendocrine control on reproduction, growth, and homeostasis by regulating the secretion of anterior pituitary (or adenohypophysis) hormones. Here, using a retrograde tract tracing experiment, we identified the neurons playing this role in the zebrafish. The DA cells projecting directly to the anterior pituitary are localized in the most anteroventral part of the preoptic area, and we named them preoptico-hypophyseal DA (POHDA) neurons. During development, these neurons do not appear before 72 hours postfertilization (hpf) and are the last dopaminergic cell group to differentiate. We found that the number of neurons in this cell population continues to increase throughout life proportionally to the growth of the fish. 5-Bromo-2'-deoxyuridine incorporation analysis suggested that this increase is due to continuous neurogenesis and not due to a phenotypic change in already-existing neurons. Finally, expression profiles of several genes (foxg1a, dlx2a, and nr4a2a/b) were different in the POHDA compared with the adjacent suprachiasmatic DA neurons, suggesting that POHDA neurons develop as a distinct DA cell population in the preoptic area. This study offers some insights into the regional identity of the preoptic area and provides the first bases for future functional genetic studies on the development of DA neurons controlling anterior pituitary functions.

  2. Doublesex and mab-3–related transcription factor 5 promotes midbrain dopaminergic identity in pluripotent stem cells by enforcing a ventral-medial progenitor fate

    PubMed Central

    Gennet, Nicole; Gale, Emily; Nan, Xinsheng; Farley, Emma; Takacs, Katalin; Oberwallner, Barbara; Chambers, David; Li, Meng

    2011-01-01

    Understanding the control of cell-fate choices during embryonic stem cell (ESC) differentiation is crucial for harnessing strategies for efficient production of desired cell types for pharmaceutical drug screening and cell transplantation. Here we report the identification of the zinc finger-like doublesex and mab-3–related transcription factor 5 (Dmrt5) as a marker for mammalian ventral-medial mesencephalic neuroepithelium that give rise to dopamine neurons. Gain- and loss-of-function studies in ESC demonstrate that Dmrt5 is critically involved in the specification of ventral-medial neural progenitor cell fate and the subsequent generation of dopamine neurons expressing essential midbrain characteristics. Genome-wide analysis of Dmrt5-mediated transcriptome changes and expression profiling of ventral-medial and ventral-lateral mesencephalic neuroepithelium revealed suppressive and inductive regulatory roles for Dmrt5 in the transcription program associated with the ventral-medial neural progenitor fates. Together, these data identify Dmrt5 as an important player in ventral mesencephalic neural fate specification. PMID:21576465

  3. Functional Genomics of Dopaminergic Neurons and Cellular Susceptibility in Parkinson’s Disease

    DTIC Science & Technology

    2005-07-01

    AD Award Number: W81XWH-04-1-0599 TITLE: Functional Genomics of Dopaminergic Neurons and Cellular Susceptibility in Parkinson’s Disease PRINCIPAL... Disease 5b. GRANTNUMBER W81XWH-04-1-0599 5c. PROGRAM ELEMENT NUMBER 6. AUTHOR(S) 5d. PROJECT NUMBER Stefano Gustincich, Ph.D. 5e. TASK NUMBER 5f. WORK UNIT...vulnerability of selected classes of dopaminergic cells in Parkinson’s Disease (PD). During the first year of research we have established an in house cDNA

  4. Transgenic Zebrafish Expressing mCherry in the Mitochondria of Dopaminergic Neurons.

    PubMed

    Noble, Sandra; Godoy, Rafael; Affaticati, Pierre; Ekker, Marc

    2015-10-01

    Genetic mutations and environmental toxins are known to affect mitochondrial health and have been implicated in the progressive degeneration of dopaminergic neurons in Parkinson's disease. To visualize mitochondria in dopaminergic neurons of live zebrafish, we used the regulatory elements of the dopamine transporter (dat) gene to target a reporter, mCherry, after fusion with the mitochondrial localizing signal (MLS) of Tom20. Immunoblot analysis of mitochondrial and cytosolic fractions from Tg(dat:tom20 MLS-mCherry) larvae shows that mCherry is efficiently targeted to the mitochondria. Confocal imaging of live fish was carried out from 1 day postfertilization (dpf) to 9 dpf. We also colocalized dat mRNA expression with the mCherry protein in the olfactory bulb (OB), subpallium (SP), pretectum (Pr), diencephalic clusters 2 and 3 (DC2/3), caudal hypothalamus (Hc), locus coeruleus (LC), anterior preoptic area (POa), retinal amacrine cells (RAC), caudal hypothalamus (Hc), and preoptic area (PO). Treating Tg(dat:tom20 MLS-mCherry) larvae with the dopaminergic neurotoxin MPTP (1-Methyl-4-phenyl-1,2,3,6-tetrahydropyridine) at 2 or 3 dpf resulted in a decrease in mCherry fluorescence in the pretectum, olfactory bulb, subpallium, diencephalic clusters 2 and 3, and the caudal hypothalamus. Labeling of mitochondria in nigrostriatal dopaminergic neurons of zebrafish could allow their visualization in vivo following genetic or pharmacological manipulations.

  5. Activity of nigral dopaminergic neurons after lesion of the neostriatum in rats.

    PubMed

    Doudet, D; Gross, C; Seal, J; Bioulac, B

    1984-06-04

    As shown by post-mortem analysis the major neuropathological trait of Huntington's chorea is a degeneration of the intrinsic neurons of the neostriatum (caudate nucleus and putamen). Such a situation can be reproduced by a destruction of the neostriatum by kainic acid. When injected into the caudate nucleus this excitatory amino acid destroys the intrinsic neurons of the neostriatum and spares fairly well the passing fibers. In the present work, we have chosen to examine the influence of neostriatal destruction on the activity of identified dopaminergic cells in the pars compacta of the substantia nigra. As a key element in the nigro-neostriato-nigral loop, this structure is a relevant site for observing the functional effects of neostriatal lesion. Our research hypothesis was based on the generally accepted view that the suppression of the important neostriato-nigral pathway and in particular the inhibitory GABAergic contingent, could generate a hyperactivity of nigral dopaminergic cells. One may therefore consider that the dopaminergic hyperactivity produces abnormal messages which can influence via several pathways the motoneurons, and which participates in the genesis of the hyperkinetic movements characteristic of chorea. After destruction of the neostriatum, we have shown that the pattern of discharge of most identified nigral dopaminergic neurons becomes greatly disorganized. This drastic change in the pattern of activity cannot be interpreted as the simple 'lift of a brake' on these cells by the suppression of the inhibitory GABAergic striato-nigral tract.

  6. A Tyrosine-Hydroxylase Characterization of Dopaminergic Neurons in the Honey Bee Brain

    PubMed Central

    Tedjakumala, Stevanus R.; Rouquette, Jacques; Boizeau, Marie-Laure; Mesce, Karen A.; Hotier, Lucie; Massou, Isabelle; Giurfa, Martin

    2017-01-01

    Dopamine (DA) plays a fundamental role in insect behavior as it acts both as a general modulator of behavior and as a value system in associative learning where it mediates the reinforcing properties of unconditioned stimuli (US). Here we aimed at characterizing the dopaminergic neurons in the central nervous system of the honey bee, an insect that serves as an established model for the study of learning and memory. We used tyrosine hydroxylase (TH) immunoreactivity (ir) to ensure that the neurons detected synthesize DA endogenously. We found three main dopaminergic clusters, C1–C3, which had been previously described; the C1 cluster is located in a small region adjacent to the esophagus (ES) and the antennal lobe (AL); the C2 cluster is situated above the C1 cluster, between the AL and the vertical lobe (VL) of the mushroom body (MB); the C3 cluster is located below the calyces (CA) of the MB. In addition, we found a novel dopaminergic cluster, C4, located above the dorsomedial border of the lobula, which innervates the visual neuropils of the bee brain. Additional smaller processes and clusters were found and are described. The profuse dopaminergic innervation of the entire bee brain and the specific connectivity of DA neurons, with visual, olfactory and gustatory circuits, provide a foundation for a deeper understanding of how these sensory modules are modulated by DA, and the DA-dependent value-based associations that occur during associative learning. PMID:28740466

  7. Parkin cooperates with GDNF/RET signaling to prevent dopaminergic neuron degeneration

    PubMed Central

    Meka, Durga Praveen; Müller-Rischart, Anne Kathrin; Nidadavolu, Prakash; Mohammadi, Behnam; Motori, Elisa; Ponna, Srinivas Kumar; Aboutalebi, Helia; Bassal, Mahmoud; Annamneedi, Anil; Finckh, Barbara; Miesbauer, Margit; Rotermund, Natalie; Lohr, Christian; Tatzelt, Jörg; Winklhofer, Konstanze F.; Kramer, Edgar R.

    2015-01-01

    Parkin and the glial cell line–derived neurotrophic factor (GDNF) receptor RET have both been independently linked to the dopaminergic neuron degeneration that underlies Parkinson’s disease (PD). In the present study, we demonstrate that there is genetic crosstalk between parkin and the receptor tyrosine kinase RET in two different mouse models of PD. Mice lacking both parkin and RET exhibited accelerated dopaminergic cell and axonal loss compared with parkin-deficient animals, which showed none, and RET-deficient mice, in which we found moderate degeneration. Transgenic expression of parkin protected the dopaminergic systems of aged RET-deficient mice. Downregulation of either parkin or RET in neuronal cells impaired mitochondrial function and morphology. Parkin expression restored mitochondrial function in GDNF/RET-deficient cells, while GDNF stimulation rescued mitochondrial defects in parkin-deficient cells. In both cases, improved mitochondrial function was the result of activation of the prosurvival NF-κB pathway, which was mediated by RET through the phosphoinositide-3-kinase (PI3K) pathway. Taken together, these observations indicate that parkin and the RET signaling cascade converge to control mitochondrial integrity and thereby properly maintain substantia nigra pars compacta dopaminergic neurons and their innervation in the striatum. The demonstration of crosstalk between parkin and RET highlights the interplay in the protein network that is altered in PD and suggests potential therapeutic targets and strategies to treat PD. PMID:25822020

  8. Species-specificity of temporal processing in the auditory midbrain of gray treefrogs: interval-counting neurons.

    PubMed

    Rose, Gary J; Hanson, Jessica L; Leary, Christopher J; Graham, Jalina A; Alluri, Rishi K; Vasquez-Opazo, Gustavo A

    2015-05-01

    Interval-counting neurons (ICNs) respond after a threshold number of sound pulses have occurred with specific intervals; a single aberrant interval can reset the counting process. Female gray treefrogs, Hyla chrysoscelis and H. versicolor, discriminate against synthetic 'calls' possessing a single interpulse interval 2-3 three times the optimal value, suggesting that ICNs are important for call recognition. The calls of H. versicolor consist of pulses that are longer in duration, rise more slowly in amplitude and are repeated at a slower rate than those of H. chrysoscelis. Results of recordings from midbrain auditory neurons in these species include: (1) ICNs were found in both species and their temporal selectivity appeared to result from interplay between excitation and inhibition; (2) band-pass cells in H. versicolor were tuned to slower pulse rates than those in H. chrysoscelis; (3) ICNs that were selective for slow-rise pulse shape were found almost exclusively in H. versicolor, but fast-rise-selective neurons were found in both species, and (4) band-suppression ICNs in H. versicolor showed response minima at higher pulse rates than those in H. chrysoscelis. Selectivity of midbrain ICNs for pulse rise time and repetition rate thus correlate well with discriminatory abilities of these species that promote reproductive isolation.

  9. Dopaminergic Neuronal Differentiation from the Forebrain-Derived Human Neural Stem Cells Induced in Cultures by Using a Combination of BMP-7 and Pramipexole with Growth Factors

    PubMed Central

    Yang, HongNa; Wang, Jing; Wang, Feng; Liu, XiaoDun; Chen, Heng; Duan, WeiMing; Qu, TingYu

    2016-01-01

    Transplantation of dopaminergic (DA) neurons is considered to be the most promising therapeutic strategy for replacing degenerated dopamine cells in the midbrain of Parkinson's disease (PD), thereby restoring normal neural circuit function and slow clinical progression of the disease. Human neural stem cells (hNSCs) derived from fetal forebrain are thought to be the important cell sources for producing DA neurons because of their multipotency for differentiation and long-term expansion property in cultures. However, low DA differentiation of the forebrain-derived hNSCs limited their therapeutic potential in PD. In the current study, we explored a combined application of Pramipexole (PRX), bone morphogenetic proteins 7 (BMP-7), and growth factors, including acidic fibroblast factor (aFGF), forskolin, and phorbol-12-myristae-13-acetate (TPA), to induce differentiation of forebrain-derived hNSCs toward DA neurons in cultures. We found that DA neuron-associated genes, including Nurr1, Neurogenin2 (Ngn2), and tyrosine hydroxylase (TH) were significantly increased after 24 h of differentiation by RT-PCR analysis (p < 0.01). Fluorescent examination showed that about 25% of cells became TH-positive neurons at 24 h, about 5% of cells became VMAT2 (vascular monoamine transporter 2)-positive neurons, and less than 5% of cells became DAT (dopamine transporter)-positive neurons at 72 h following differentiation in cultures. Importantly, these TH-, VMAT2-, and DAT-expressing neurons were able to release dopamine into cultures under both of the basal and evoked conditions. Dopamine levels released by DA neurons produced using our protocol were significantly higher compared to the control groups (P < 0.01), as examined by ELISA. Our results demonstrated that the combination of PRX, BMP-7, and growth factors was able to greatly promote differentiation of the forebrain-derived hNSCs into DA-releasing neurons. PMID:27147976

  10. Alcohol consumption induces global gene expression changes in VTA dopaminergic neurons

    PubMed Central

    Marballi, Ketan; Genabai, Naresh K.; Blednov, Yuri A.; Harris, R. Adron; Ponomarev, Igor

    2016-01-01

    Alcoholism is associated with dysregulation in the neural circuitry that mediates motivated and goal-directed behaviors. The dopaminergic connection between the ventral tegmental area (VTA) and the nucleus accumbens is viewed as a critical component of the neurocircuitry mediating alcohol’s rewarding and behavioral effects. We sought to determine the effects of binge alcohol drinking on global gene expression in VTA dopaminergic (DA) neurons. Alcohol-preferring C57BL/6J × FVB/NJ F1 hybrid female mice were exposed to a modified drinking in the dark (DID) procedure for 3 weeks, while control animals had access to water only. Global gene expression of laser-captured tyrosine hydroxylase - positive VTA DA neurons was measured using microarrays. 644 transcripts were differentially expressed between the drinking and non-drinking mice and 930 transcripts correlated with alcohol intake during the last two days of drinking in the alcohol group. Bioinformatics analysis of alcohol-responsive genes identified molecular pathways and networks perturbed in DA neurons by alcohol consumption, which included neuroimmune and epigenetic functions, alcohol metabolism and brain disorders. The majority of genes with high and specific expression in DA neurons were down regulated by or negatively correlated with alcohol consumption, suggesting a decreased activity of DA neurons in high drinking animals. These changes in the dopaminergic transcriptome provide a foundation for alcohol-induced neuroadaptations that may play a crucial role in the transition to addiction. PMID:26482798

  11. The Peptidyl-prolyl Isomerase Pin1 Up-regulation and Proapoptotic Function in Dopaminergic Neurons

    PubMed Central

    Ghosh, Anamitra; Saminathan, Hariharan; Kanthasamy, Arthi; Anantharam, Vellareddy; Jin, Huajun; Sondarva, Gautam; Harischandra, Dilshan S.; Qian, Ziqing; Rana, Ajay; Kanthasamy, Anumantha G.

    2013-01-01

    Parkinson disease (PD) is a chronic neurodegenerative disease characterized by a slow and progressive degeneration of dopaminergic neurons in substantia nigra. The pathophysiological mechanisms underlying PD remain unclear. Pin1, a major peptidyl-prolyl isomerase, has recently been associated with certain diseases. Notably, Ryo et al. (Ryo, A., Togo, T., Nakai, T., Hirai, A., Nishi, M., Yamaguchi, A., Suzuki, K., Hirayasu, Y., Kobayashi, H., Perrem, K., Liou, Y. C., and Aoki, I. (2006) J. Biol. Chem. 281, 4117–4125) implicated Pin1 in PD pathology. Therefore, we sought to systematically characterize the role of Pin1 in PD using cell culture and animal models. To our surprise we observed a dramatic up-regulation of Pin1 mRNA and protein levels in dopaminergic MN9D neuronal cells treated with the parkinsonian toxicant 1-methyl-4-phenylpyridinium (MPP+) as well as in the substantia nigra of the 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP)-induced PD mouse model. Notably, a marked expression of Pin1 was also observed in the substantia nigra of human PD brains along with a high co-localization of Pin1 within dopaminergic neurons. In functional studies, siRNA-mediated knockdown of Pin1 almost completely prevented MPP+-induced caspase-3 activation and DNA fragmentation, indicating that Pin1 plays a proapoptotic role. Interestingly, multiple pharmacological Pin1 inhibitors, including juglone, attenuated MPP+-induced Pin1 up-regulation, α-synuclein aggregation, caspase-3 activation, and cell death. Furthermore, juglone treatment in the MPTP mouse model of PD suppressed Pin1 levels and improved locomotor deficits, dopamine depletion, and nigral dopaminergic neuronal loss. Collectively, our findings demonstrate for the first time that Pin1 is up-regulated in PD and has a pathophysiological role in the nigrostriatal dopaminergic system and suggest that modulation of Pin1 levels may be a useful translational therapeutic strategy in PD. PMID:23754278

  12. Structure-activity relationship of sulfated hetero/galactofucan polysaccharides on dopaminergic neuron.

    PubMed

    Wang, Jing; Liu, Huaide; Jin, Weihua; Zhang, Hong; Zhang, Quanbin

    2016-01-01

    Parkinson's disease (PD) is associated with progressive loss of dopaminergic neurons and more-widespread neuronal changes that cause complex symptoms. The aim of this study was to investigate the structure-activity relationship of sulfated hetero-polysaccharides (DF1) and sulfated galactofucan polysaccharides (DF2) on dopaminergic neuron in vivo and in vitro. Treatment with samples significantly ameliorated the depletion of both DA and TH-, Bcl-2- and Bax-positive neurons in MPTP-induced PD mice, DF1 showed the highest activity. The in vitro results found that DF1 and DF2 could reverse the decreased mitochondrial activity and the increased LDL release induced by MPP(+) (P<0.01 or P<0.001) which provides further evidence that DF1 and DF2 also exerts a direct protection against the neuronal injury caused by MPP(+). Furthermore, the administration of samples effectively decreased lipid peroxidation and increased the level/activities of GSH, GSH-PX, MDA and CAT in MPTP mice. Thus, the neuron protective effect may be mediated, in part, through antioxidant activity and the prevention of cell apoptosis. The chemical composition of DF1, DF2 and DF differed markedly, the DF1 fraction had the most complex chemical composition and showed the highest neuron protective activity. These results suggest that diverse monosaccharides and uronic acid might contribute to neuron protective activity.

  13. Conditional deletion of Ndufs4 in dopaminergic neurons promotes Parkinson’s disease-like non-motor symptoms without loss of dopamine neurons

    PubMed Central

    Choi, Won-Seok; Kim, Hyung-Wook; Tronche, François; Palmiter, Richard D.; Storm, Daniel R.; Xia, Zhengui

    2017-01-01

    Reduction of mitochondrial complex I activity is one of the major hypotheses for dopaminergic neuron death in Parkinson’s disease. However, reduction of complex I activity in all cells or selectively in dopaminergic neurons via conditional deletion of the Ndufs4 gene, a subunit of the mitochondrial complex I, does not cause dopaminergic neuron death or motor impairment. Here, we investigated the effect of reduced complex I activity on non-motor symptoms associated with Parkinson’s disease using conditional knockout (cKO) mice in which Ndufs4 was selectively deleted in dopaminergic neurons (Ndufs4 cKO). This conditional deletion of Ndufs4, which reduces complex I activity in dopamine neurons, did not cause a significant loss of dopaminergic neurons in substantia nigra pars compacta (SNpc), and there was no loss of dopaminergic neurites in striatum or amygdala. However, Ndufs4 cKO mice had a reduced amount of dopamine in the brain compared to control mice. Furthermore, even though motor behavior were not affected, Ndufs4 cKO mice showed non-motor symptoms experienced by many Parkinson’s disease patients including impaired cognitive function and increased anxiety-like behavior. These data suggest that mitochondrial complex I dysfunction in dopaminergic neurons promotes non-motor symptoms of Parkinson’s disease and reduces dopamine content in the absence of dopamine neuron loss. PMID:28327638

  14. Activation of β-Glucocerebrosidase Reduces Pathological α-Synuclein and Restores Lysosomal Function in Parkinson's Patient Midbrain Neurons.

    PubMed

    Mazzulli, Joseph R; Zunke, Friederike; Tsunemi, Taiji; Toker, Nicholas J; Jeon, Sohee; Burbulla, Lena F; Patnaik, Samarjit; Sidransky, Ellen; Marugan, Juan J; Sue, Carolyn M; Krainc, Dimitri

    2016-07-20

    Parkinson's disease (PD) is characterized by the accumulation of α-synuclein (α-syn) within Lewy body inclusions in the nervous system. There are currently no disease-modifying therapies capable of reducing α-syn inclusions in PD. Recent data has indicated that loss-of-function mutations in the GBA1 gene that encodes lysosomal β-glucocerebrosidase (GCase) represent an important risk factor for PD, and can lead to α-syn accumulation. Here we use a small-molecule modulator of GCase to determine whether GCase activation within lysosomes can reduce α-syn levels and ameliorate downstream toxicity. Using induced pluripotent stem cell (iPSC)-derived human midbrain dopamine (DA) neurons from synucleinopathy patients with different PD-linked mutations, we find that a non-inhibitory small molecule modulator of GCase specifically enhanced activity within lysosomal compartments. This resulted in reduction of GCase substrates and clearance of pathological α-syn, regardless of the disease causing mutations. Importantly, the reduction of α-syn was sufficient to reverse downstream cellular pathologies induced by α-syn, including perturbations in hydrolase maturation and lysosomal dysfunction. These results indicate that enhancement of a single lysosomal hydrolase, GCase, can effectively reduce α-syn and provide therapeutic benefit in human midbrain neurons. This suggests that GCase activators may prove beneficial as treatments for PD and related synucleinopathies. The presence of Lewy body inclusions comprised of fibrillar α-syn within affected regions of PD brain has been firmly documented, however no treatments exist that are capable of clearing Lewy bodies. Here, we used a mechanistic-based approach to examine the effect of GCase activation on α-syn clearance in human midbrain DA models that naturally accumulate α-syn through genetic mutations. Small molecule-mediated activation of GCase was effective at reducing α-syn inclusions in neurons, as well as associated

  15. Role of Slit and Robo proteins in the development of dopaminergic neurons.

    PubMed

    Cornide-Petronio, María Eugenia; Barreiro-Iglesias, Antón

    2013-01-01

    Dopamine plays a number of important roles in the nervous system and the dopaminergic system is affected in several brain disorders. It is therefore of great interest to study the axonal guidance systems that specifically participate in the correct establishment of dopaminergic projections during development and possibly during regenerative processes. In recent years, several reports have shown that Slits and their Robo receptors control the growth of longitudinal (both ascending and descending) mesodiencephalic dopaminergic axons to their appropriate target areas. In vitro studies have shown that Slit1, 2 and 3 are potent repellents of dopamine neurite extension. In vivo studies using both mice and zebrafish mutants for Slits and Robos have shown that Slits and Robos control the lateral and dorsoventral positioning of dopaminergic longitudinal projections during early development. In the present review, we aimed to compile the existing knowledge from both in vitro and in vivo studies on the role of Slit and Robo proteins in the development of dopaminergic neurons as a basis for future studies.

  16. Oleuropein Prevents Neuronal Death, Mitigates Mitochondrial Superoxide Production and Modulates Autophagy in a Dopaminergic Cellular Model.

    PubMed

    Achour, Imène; Arel-Dubeau, Anne-Marie; Renaud, Justine; Legrand, Manon; Attard, Everaldo; Germain, Marc; Martinoli, Maria-Grazia

    2016-08-09

    Parkinson's disease (PD) is a progressive neurodegenerative disorder, primarily affecting dopaminergic neurons in the substantia nigra. There is currently no cure for PD and present medications aim to alleviate clinical symptoms, thus prevention remains the ideal strategy to reduce the prevalence of this disease. The goal of this study was to investigate whether oleuropein (OLE), the major phenolic compound in olive derivatives, may prevent neuronal degeneration in a cellular dopaminergic model of PD, differentiated PC12 cells exposed to the potent parkinsonian toxin 6-hydroxydopamine (6-OHDA). We also investigated OLE's ability to mitigate mitochondrial oxidative stress and modulate the autophagic flux. Our results obtained by measuring cytotoxicity and apoptotic events demonstrate that OLE significantly decreases neuronal death. OLE could also reduce mitochondrial production of reactive oxygen species resulting from blocking superoxide dismutase activity. Moreover, quantification of autophagic and acidic vesicles in the cytoplasm alongside expression of specific autophagic markers uncovered a regulatory role for OLE against autophagic flux impairment induced by bafilomycin A1. Altogether, our results define OLE as a neuroprotective, anti-oxidative and autophagy-regulating molecule, in a neuronal dopaminergic cellular model.

  17. Oleuropein Prevents Neuronal Death, Mitigates Mitochondrial Superoxide Production and Modulates Autophagy in a Dopaminergic Cellular Model

    PubMed Central

    Achour, Imène; Arel-Dubeau, Anne-Marie; Renaud, Justine; Legrand, Manon; Attard, Everaldo; Germain, Marc; Martinoli, Maria-Grazia

    2016-01-01

    Parkinson’s disease (PD) is a progressive neurodegenerative disorder, primarily affecting dopaminergic neurons in the substantia nigra. There is currently no cure for PD and present medications aim to alleviate clinical symptoms, thus prevention remains the ideal strategy to reduce the prevalence of this disease. The goal of this study was to investigate whether oleuropein (OLE), the major phenolic compound in olive derivatives, may prevent neuronal degeneration in a cellular dopaminergic model of PD, differentiated PC12 cells exposed to the potent parkinsonian toxin 6-hydroxydopamine (6-OHDA). We also investigated OLE’s ability to mitigate mitochondrial oxidative stress and modulate the autophagic flux. Our results obtained by measuring cytotoxicity and apoptotic events demonstrate that OLE significantly decreases neuronal death. OLE could also reduce mitochondrial production of reactive oxygen species resulting from blocking superoxide dismutase activity. Moreover, quantification of autophagic and acidic vesicles in the cytoplasm alongside expression of specific autophagic markers uncovered a regulatory role for OLE against autophagic flux impairment induced by bafilomycin A1. Altogether, our results define OLE as a neuroprotective, anti-oxidative and autophagy-regulating molecule, in a neuronal dopaminergic cellular model. PMID:27517912

  18. Endogenous Parkin Preserves Dopaminergic Substantia Nigral Neurons following Mitochondrial DNA Mutagenic Stress

    PubMed Central

    Pickrell, Alicia M.; Huang, Chiu-Hui; Kennedy, Scott R.; Ordureau, Alban; Sideris, Dionisia P.; Hoekstra, Jake G.; Harper, J. Wade; Youle, Richard J.

    2016-01-01

    SUMMARY Parkinson's disease (PD) is a neurodegenerative disease caused by the loss of dopaminergic neurons in the substantia nigra. PARK2 mutations cause early-onset forms of PD. PARK2 encodes an E3 ubiquitin ligase, Parkin, that can selectively translocate to dysfunctional mitochondria to promote their removal by autophagy. However, Parkin knockout (KO) mice do not display signs of neurodegeneration. To assess Parkin function in vivo, we utilized a mouse model that accumulates dysfunctional mitochondria caused by an accelerated generation of mtDNA mutations (Mutator mice). In the absence of Parkin, dopaminergic neurons in Mutator mice degenerated causing an L-DOPA reversible motor deficit. Other neuronal populations were unaffected. Phosphorylated ubiquitin was increased in the brains of Mutator mice, indicating PINK1-Parkin activation. Parkin loss caused mitochondrial dysfunction and affected the pathogenicity but not the levels of mtDNA somatic mutations. A systemic loss of Parkin synergizes with mitochondrial dysfunction causing dopaminergic neuron death modeling PD pathogenic processes. PMID:26182419

  19. Tetraspanin (TSP-17) Protects Dopaminergic Neurons against 6-OHDA-Induced Neurodegeneration in C. elegans

    PubMed Central

    Masoudi, Neda; Holmes, Alexander; Gartner, Anton

    2014-01-01

    Parkinson's disease (PD), the second most prevalent neurodegenerative disease after Alzheimer's disease, is linked to the gradual loss of dopaminergic neurons in the substantia nigra. Disease loci causing hereditary forms of PD are known, but most cases are attributable to a combination of genetic and environmental risk factors. Increased incidence of PD is associated with rural living and pesticide exposure, and dopaminergic neurodegeneration can be triggered by neurotoxins such as 6-hydroxydopamine (6-OHDA). In C. elegans, this drug is taken up by the presynaptic dopamine reuptake transporter (DAT-1) and causes selective death of the eight dopaminergic neurons of the adult hermaphrodite. Using a forward genetic approach to find genes that protect against 6-OHDA-mediated neurodegeneration, we identified tsp-17, which encodes a member of the tetraspanin family of membrane proteins. We show that TSP-17 is expressed in dopaminergic neurons and provide genetic, pharmacological and biochemical evidence that it inhibits DAT-1, thus leading to increased 6-OHDA uptake in tsp-17 loss-of-function mutants. TSP-17 also protects against toxicity conferred by excessive intracellular dopamine. We provide genetic and biochemical evidence that TSP-17 acts partly via the DOP-2 dopamine receptor to negatively regulate DAT-1. tsp-17 mutants also have subtle behavioral phenotypes, some of which are conferred by aberrant dopamine signaling. Incubating mutant worms in liquid medium leads to swimming-induced paralysis. In the L1 larval stage, this phenotype is linked to lethality and cannot be rescued by a dop-3 null mutant. In contrast, mild paralysis occurring in the L4 larval stage is suppressed by dop-3, suggesting defects in dopaminergic signaling. In summary, we show that TSP-17 protects against neurodegeneration and has a role in modulating behaviors linked to dopamine signaling. PMID:25474638

  20. β-Caryophyllene, a phytocannabinoid attenuates oxidative stress, neuroinflammation, glial activation, and salvages dopaminergic neurons in a rat model of Parkinson disease.

    PubMed

    Ojha, Shreesh; Javed, Hayate; Azimullah, Sheikh; Haque, M Emdadul

    2016-07-01

    Parkinson disease (PD) is a neurodegenerative disease characterized by progressive dopaminergic neurodegeneration in the substantia nigra pars compacta (SNc) area. The present study was undertaken to evaluate the neuroprotective effect of β-caryophyllene (BCP) against rotenone-induced oxidative stress and neuroinflammation in a rat model of PD. In the present study, BCP was administered once daily for 4 weeks at a dose of 50 mg/kg body weight prior to a rotenone (2.5 mg/kg body weight) challenge to mimic the progressive neurodegenerative nature of PD. Rotenone administration results in oxidative stress as evidenced by decreased activities of superoxide dismutase, catalase, and depletion of glutathione with a concomitant rise in lipid peroxidation product, malondialdehyde. Rotenone also significantly increased pro-inflammatory cytokines in the midbrain region and elevated the inflammatory mediators such as cyclooxygenase-2 (COX-2) and inducible nitric oxide synthase (iNOS) in the striatum. Further, immunohistochemical analysis revealed loss of dopaminergic neurons in the SNc area and enhanced expression of ionized calcium-binding adaptor molecule-1 (Iba-1) and glial fibrillary acidic protein (GFAP), indicators of microglia activation, and astrocyte hypertrophy, respectively, as an index of inflammation. However, treatment with BCP rescued dopaminergic neurons and decreased microglia and astrocyte activation evidenced by reduced Iba-1 and GFAP expression. BCP in addition to attenuation of pro-inflammatory cytokines and inflammatory mediators such as COX-2 and iNOS, also restored antioxidant enzymes and inhibited lipid peroxidation as well as glutathione depletion. The findings demonstrate that BCP provides neuroprotection against rotenone-induced PD and the neuroprotective effects can be ascribed to its potent antioxidant and anti-inflammatory activities.

  1. Neural Precursors Derived from Embryonic Stem Cells, but Not Those from Fetal Ventral Mesencephalon, Maintain the Potential to Differentiate into Dopaminergic Neurons After Expansion In Vitro

    PubMed Central

    Chung, Sangmi; Shin, Byoung-Soo; Hwang, Michelle; Lardaro, Thomas; Kang, Un Jung; Isacson, Ole; Kima, Kwang-Soo

    2008-01-01

    Neural precursors (NPs) derived from ventral mesencephalon (VM) normally generate dopaminergic (DA) neurons in vivo but lose their potential to differentiate into DA neurons during mitogenic expansion in vitro, hampering their efficient use as a transplantable and experimental cell source. Because embryonic stem (ES) cell-derived NPs (ES NP) do not go through the same maturation process during in vitro expansion, we hypothesized that expanded ES NPs may maintain their potential to differentiate into DA neurons. To address this, we expanded NPs derived from mouse embryonic day-12.5 (E12.5) VM or ES cells and compared their developmental properties. Interestingly, expanded ES NPs fully sustain their ability to differentiate to the neuronal as well as to the DA fate. In sharp contrast, VM NPs almost completely lost their ability to become neurons and tyrosine hydroxylase-positive (TH+) neurons after expansion. Expanded ES NP-derived TH+ neurons coexpressed additional DA markers such as dopa decarboxylase and DAT (dopamine transporter). Furthermore, they also expressed other midbrain DA markers, including Nurr1 and Pitx3, and released significant amounts of DA. We also found that these ES NPs can be cryopreserved without losing their proliferative and developmental potential. Finally, we tested the in vivo characteristics of the expanded NPs derived from J1 ES cells with low passage number. When transplanted into the mouse striatum, the expanded NPs as well as control NPs efficiently generated DA neurons expressing mature DA markers, with approximately 10% tumor formation in both cases. We conclude that ES NPs maintain their developmental potential during in vitro expansion, whereas mouse E12.5 VM NPs do not. PMID:16543488

  2. Transient Activation of GABAB Receptors Suppresses SK Channel Currents in Substantia Nigra Pars Compacta Dopaminergic Neurons

    PubMed Central

    Estep, Chad M.; Galtieri, Daniel J.; Zampese, Enrico; Goldberg, Joshua A.; Brichta, Lars; Greengard, Paul; Surmeier, D. James

    2016-01-01

    Dopaminergic (DA) neurons in the substantia nigra pars compacta (SNc) are richly innervated by GABAergic neurons. The postsynaptic effects of GABA on SNc DA neurons are mediated by a mixture of GABAA and GABAB receptors. Although activation of GABAA receptors inhibits spike generation, the consequences of GABAB receptor activation are less well characterized. To help fill this gap, perforated patch recordings were made from young adult mouse SNc DA neurons. Sustained stimulation of GABAB receptors hyperpolarized SNc DA neurons, as previously described. However, transient stimulation of GABAB receptors by optical uncaging of GABA did not; rather, it reduced the opening of small-conductance, calcium-activated K+ (SK) channels and increased the irregularity of spiking. This modulation was attributable to inhibition of adenylyl cyclase and protein kinase A. Thus, because suppression of SK channel activity increases the probability of burst spiking, transient co-activation of GABAA and GABAB receptors could promote a pause-burst pattern of spiking. PMID:28036359

  3. Hemoglobin is present as a canonical α2β2 tetramer in dopaminergic neurons.

    PubMed

    Russo, Roberta; Zucchelli, Silvia; Codrich, Marta; Marcuzzi, Federica; Verde, Cinzia; Gustincich, Stefano

    2013-09-01

    Hemoglobin is the oxygen carrier in blood erythrocytes. Oxygen coordination is mediated by α2β2 tetrameric structure via binding of the ligand to the heme iron atom. This structure is essential for hemoglobin function in the blood. In the last few years, expression of hemoglobin has been found in atypical sites, including the brain. Transcripts for α and β chains of hemoglobin as well as hemoglobin immunoreactivity have been shown in mesencephalic A9 dopaminergic neurons, whose selective degeneration leads to Parkinson's disease. To gain further insights into the roles of hemoglobin in the brain, we examined its quaternary structure in dopaminergic neurons in vitro and in vivo. Our results indicate that (i) in mouse dopaminergic cell line stably over-expressing α and β chains, hemoglobin exists as an α2β2 tetramer; (ii) similarly to the over-expressed protein, endogenous hemoglobin forms a tetramer of 64kDa; (iii) hemoglobin also forms high molecular weight insoluble aggregates; and (iv) endogenous hemoglobin retains its tetrameric structure in mouse mesencephalon in vivo. In conclusion, these results suggest that neuronal hemoglobin may be endowed with some of the biochemical activities and biological function associated to its role in erythroid cells. This article is part of a Special Issue entitled: Oxygen Binding and Sensing Proteins.

  4. The Sensory Impact of Nicotine on Noradrenergic and Dopaminergic Neurons of the Nicotine Reward - Addiction Neurocircuitry

    PubMed Central

    Rose, Jed E; Dehkordi, Ozra; Manaye, Kebreten F; Millis, Richard M; Cianaki, Salman Ameri; Jayam-Trouth, Annapurni

    2016-01-01

    The sensory experience of smoking is a key component of nicotine addiction known to result, in part, from stimulation of nicotinic acetylcholine receptors (nAChRs) at peripheral sensory nerve endings. Such stimulation of nAChRs is followed by activation of neurons at multiple sites in the mesocorticolimbic reward pathways. However, the neurochemical profiles of CNS cells that mediate the peripheral sensory impact of nicotine remain unknown. In the present study in mice, we first used c-Fos immunohistochemistry to identify CNS cells stimulated by nicotine (NIC, 40 μg/kg, IP) and by a peripherally-acting analog of nicotine, nicotine pyrrolidine methiodide (NIC-PM, 30 μg/kg, IP). Sequential double-labelling was then performed to determine whether noradrenergic and dopaminergic neurons of the nicotine reward-addiction circuitry were primary targets of NIC and NIC-PM. Double-labelling of NIC and/or NIC-PM activated c-Fos immunoreactive cells with tyrosine hydroxylase (TH) showed no apparent c-Fos expression by the dopaminergic cells of the ventral tegmental area (VTA). With the exception of sparse numbers of TH immunoreactive D11 cells, dopamine-containing neurons in other areas of the reward-addiction circuitry, namely periaqueductal gray, and dorsal raphe, were also devoid of c-Fos immunoreactivity. Noradrenergic neurons of locus coeruleus (LC), known to innervate VTA, were activated by both NIC and NIC-PM. These results demonstrate that noradrenergic neurons of LC are among the first structures that are stimulated by single acute IP injection of NIC and NIC-PM. Dopaminergic neurons of VTA and other CNS sites, did not respond to acute IP administration of NIC or NIC-PM by induction of c-Fos. PMID:27347434

  5. The Sensory Impact of Nicotine on Noradrenergic and Dopaminergic Neurons of the Nicotine Reward - Addiction Neurocircuitry.

    PubMed

    Rose, Jed E; Dehkordi, Ozra; Manaye, Kebreten F; Millis, Richard M; Cianaki, Salman Ameri; Jayam-Trouth, Annapurni

    2016-04-01

    The sensory experience of smoking is a key component of nicotine addiction known to result, in part, from stimulation of nicotinic acetylcholine receptors (nAChRs) at peripheral sensory nerve endings. Such stimulation of nAChRs is followed by activation of neurons at multiple sites in the mesocorticolimbic reward pathways. However, the neurochemical profiles of CNS cells that mediate the peripheral sensory impact of nicotine remain unknown. In the present study in mice, we first used c-Fos immunohistochemistry to identify CNS cells stimulated by nicotine (NIC, 40 μg/kg, IP) and by a peripherally-acting analog of nicotine, nicotine pyrrolidine methiodide (NIC-PM, 30 μg/kg, IP). Sequential double-labelling was then performed to determine whether noradrenergic and dopaminergic neurons of the nicotine reward-addiction circuitry were primary targets of NIC and NIC-PM. Double-labelling of NIC and/or NIC-PM activated c-Fos immunoreactive cells with tyrosine hydroxylase (TH) showed no apparent c-Fos expression by the dopaminergic cells of the ventral tegmental area (VTA). With the exception of sparse numbers of TH immunoreactive D11 cells, dopamine-containing neurons in other areas of the reward-addiction circuitry, namely periaqueductal gray, and dorsal raphe, were also devoid of c-Fos immunoreactivity. Noradrenergic neurons of locus coeruleus (LC), known to innervate VTA, were activated by both NIC and NIC-PM. These results demonstrate that noradrenergic neurons of LC are among the first structures that are stimulated by single acute IP injection of NIC and NIC-PM. Dopaminergic neurons of VTA and other CNS sites, did not respond to acute IP administration of NIC or NIC-PM by induction of c-Fos.

  6. Lack of CCR5 modifies glial phenotypes and population of the nigral dopaminergic neurons, but not MPTP-induced dopaminergic neurodegeneration.

    PubMed

    Choi, Dong-Young; Lee, Myung Koo; Hong, Jin Tae

    2013-01-01

    Constitutive expression of C-C chemokine receptor (CCR) 5 has been detected in astrocytes, microglia and neurons, but its physiological roles in the central nervous system are obscure. The bidirectional interactions between neuron and glial cells through CCR5 and its ligands were thought to be crucial for maintaining normal neuronal activities. No study has described function of CCR5 in the dopaminergic neurodegeneration in Parkinson's disease. In order to examine effects of CCR5 on 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP)-induced dopaminergic neurodegeneration, we employed CCR5 wild type (WT) and knockout (KO) mice. Immunostainings for tyrosine hydroxylase (TH) exhibited that CCR5 KO mice had lower number of TH-positive neurons even in the absence of MPTP. Difference in MPTP (15mg/kg×4 times, 2hr interval)-mediated loss of TH-positive neurons was subtle between CCR5 WT and KO mice, but there was larger dopamine depletion, behavioral impairments and microglial activation in CCR5 deficient mice. Intriguingly, CCR5 KO brains contained higher immunoreactivity for monoamine oxidase (MAO) B which was mainly localized within astrocytes. In agreement with upregulation of MAO B, concentration of MPP+ was higher in the substantia nigra and striatum of CCR5 KO mice after MPTP injection. We found remarkable activation of p38 MAPK in CCR5 deficient mice, which positively regulates MAO B expression. These results indicate that CCR5 deficiency modifies the nigrostriatal dopaminergic neuronal system and bidirectional interaction between neurons and glial cells via CCR5 might be important for dopaminergic neuronal survival.

  7. The substantia nigra and ventral tegmental dopaminergic neurons from development to degeneration.

    PubMed

    Fu, YuHong; Paxinos, George; Watson, Charles; Halliday, Glenda M

    2016-10-01

    The pathology of Parkinson's disease (PD) is characterised by the loss of neurons in the substantia nigra parcompacta (A9), which results in the insufficient release of dopamine, and the appearance of motor symptoms. Not all neurons in the A9 subregions degenerate in PD, and the dopaminergic (DA) neurons located in the neighboring ventral tegmental area (A10) are relatively resistant to PD pathogenesis. An increasing number of quantitative studies using human tissue samples of these brain regions have revealed important biological differences. In this review, we first describe current knowledge on the multi-segmental neuromere origin of these DA neurons. We then compare the continued transcription factor and protein expression profile and morphological differences distinguishing subregions within the A9 substantia nigra, and between A9 and A10 DA neurons. We conclude that the expression of three types of factors and proteins contributes to the diversity observed in these DA neurons and potentially to their differential vulnerability to PD. In particular, the specific axonal structure of A9 neurons and the way A9 neurons maintain their DA usage makes them easily exposed to energy deficits, calcium overload and oxidative stress, all contributing to their decreased survival in PD. We highlight knowledge gaps in our understanding of the cellular biomarkers for and their different functions in DA neurons, knowledge which may assist to identify underpinning disease mechansims that could be targeted for the treatment of any subregional dysfunction and loss of these DA neurons.

  8. Disruption of LRRK2 Does Not Cause Specific Loss of Dopaminergic Neurons in Zebrafish

    PubMed Central

    Ren, Guiqi; Xin, Shengchang; Li, Song; Zhong, Hanbing; Lin, Shuo

    2011-01-01

    Mutations in LRRK2 are genetically linked to Parkinson's disease (PD) but its normal biological function is largely unknown. Sheng et al. recently reported that deletion of the WD40 domain of LRRK2 in zebrafish specifically causes PD-like loss of neurons and behavior defect. However, our similar early study and recent confirming experiments using the same reagents reported by Sheng et al. failed to reproduce the phenotype of the loss of dopaminergic neurons, although the mRNA of LRRK2 was molecularly disrupted. Our study suggests that function of LRRK2 and its usefulness to generate zebrafish PD model needs further evaluation. PMID:21698186

  9. Coupled oscillator model of the dopaminergic neuron of the substantia nigra.

    PubMed

    Wilson, C J; Callaway, J C

    2000-05-01

    Calcium imaging using fura-2 and whole cell recording revealed the effective location of the oscillator mechanism on dopaminergic neurons of the substantia nigra, pars compacta, in slices from rats aged 15-20 days. As previously reported, dopaminergic neurons fired in a slow rhythmic single spiking pattern. The underlying membrane potential oscillation survived blockade of sodium currents with TTX and was enhanced by blockade of voltage-sensitive potassium currents with TEA. Calcium levels increased during the subthreshold depolarizing phase of the membrane potential oscillation and peaked at the onset of the hyperpolarizing phase as expected if the pacemaker potential were due to a low-threshold calcium current and the hyperpolarizing phase to calcium-dependent potassium current. Calcium oscillations were synchronous in the dendrites and soma and were greater in the dendrites than in the soma. Average calcium levels in the dendrites overshot steady-state levels and decayed over the course of seconds after the oscillation was resumed after having been halted by hyperpolarizing currents. Average calcium levels in the soma increased slowly, taking many cycles to achieve steady state. Voltage clamp with calcium imaging revealed the voltage dependence of the somatic calcium current without the artifacts of incomplete spatial voltage control. This showed that the calcium current had little or no inactivation and was half-maximal at -40 to -30 mV. The time constant of calcium removal was measured by the return of calcium to resting levels and depended on diameter. The calcium sensitivity of the calcium-dependent potassium current was estimated by plotting the slow tail current against calcium concentration during the decay of calcium to resting levels at -60 mV. A single compartment model of the dopaminergic neuron consisting of a noninactivating low-threshold calcium current, a calcium-dependent potassium current, and a small leak current reproduced most features of the

  10. AAV.shRNA-mediated downregulation of ROCK2 attenuates degeneration of dopaminergic neurons in toxin-induced models of Parkinson's disease in vitro and in vivo.

    PubMed

    Saal, Kim-Ann; Koch, Jan C; Tatenhorst, Lars; Szegő, Eva M; Ribas, Vinicius Toledo; Michel, Uwe; Bähr, Mathias; Tönges, Lars; Lingor, Paul

    2015-01-01

    Parkinson's disease (PD) is a neurodegenerative disorder with prominent neuronal cell death in the substantia nigra (SN) and other parts of the brain. Previous studies in models of traumatic and neurodegenerative CNS disease showed that pharmacological inhibition of Rho-associated kinase (ROCK), a molecule involved in inhibitory signaling in the CNS, by small-molecule inhibitors improves neuronal survival and increases regeneration. Most small-molecule inhibitors, however, offer only limited target specificity and also inhibit other kinases, including both ROCK isoforms. To establish the role of the predominantly brain-expressed ROCK2 isoform in models of regeneration and PD, we used adeno-associated viral vectors (AAV) to specifically knockdown ROCK2 in neurons. Rat primary midbrain neurons (PMN) were transduced with AAV expressing short-hairpin-RNA (shRNA) against ROCK2 and LIM-domain kinase 1 (LIMK1), one of the downstream targets of ROCK2. While knock-down of ROCK2 and LIMK1 both enhanced neurite regeneration in a traumatic scratch lesion model, only ROCK2-shRNA protected PMN against 1-methyl-4-phenylpyridinium (MPP+) toxicity. Moreover, AAV.ROCK2-shRNA increased levels of the pro-survival markers Bcl-2 and phospho-Erk1. In vivo, AAV.ROCK2-shRNA vectors were injected into the ipsilateral SN and a unilateral 6-OHDA striatal lesion was performed. After four weeks, behavioral, immunohistochemical and biochemical alterations were investigated. Downregulation of ROCK2 protected dopaminergic neurons in the SN from 6-OHDA-induced degeneration and resulted in significantly increased TH-positive neuron numbers. This effect, however, was confined to nigral neuronal somata as striatal terminal density, dopamine and metabolite levels were not significantly preserved. Interestingly, motor behavior was improved in the ROCK2-shRNA treated animals compared to control after four weeks. Our studies thus confirm ROCK2 as a promising therapeutic target in models of PD and

  11. Social Isolation Blunted the Response of Mesocortical Dopaminergic Neurons to Chronic Ethanol Voluntary Intake

    PubMed Central

    Lallai, Valeria; Manca, Letizia; Dazzi, Laura

    2016-01-01

    Previous studies have shown that stress can increase the response of mesolimbic dopaminergic neurons to acute administration of drugs of abuse included ethanol. In this study, we investigated the possible involvement of the mesocortical dopaminergic pathway in the development of ethanol abuse under stress conditions. To this aim we trained both socially isolated (SI) and group housed (GH) rats to self administer ethanol which was made available only 2 ha day (from 11:00 to 13:00 h). Rats have been trained for 3 weeks starting at postnatal day 35. After training, rats were surgically implanted with microdialysis probes under deep anesthesia, and 24 hlater extracellular dopamine concentrations were monitored in medial prefrontal cortex (mPFC) for the 2 hpreceding ethanol administration (anticipatory phase), during ethanol exposure (consummatory phase) and for 2 hafter ethanol removal. Results show that, in GH animals, dopamine extracellular concentration in the mPFC increased as early as 80 min before ethanol presentation (+50% over basal values) and remained elevated for 80 min during ethanol exposure. In SI rats, on the contrary, dopamine extracellular concentration did not show any significant change at any time point. Ethanol consumption was significantly higher in SI than in GH rats. Moreover, mesocortical dopaminergic neurons in SI animals also showed a decreased sensitivity to an acute administration of ethanol with respect to GH rats. Our results show that prolonged exposure to stress, as in social isolation, is able to induce significant changes in the response of mesocortical dopaminergic neurons to ethanol exposure and suggest that these changes might play an important role in the compulsivity observed in ethanol addiction. PMID:27378852

  12. Social Isolation Blunted the Response of Mesocortical Dopaminergic Neurons to Chronic Ethanol Voluntary Intake.

    PubMed

    Lallai, Valeria; Manca, Letizia; Dazzi, Laura

    2016-01-01

    Previous studies have shown that stress can increase the response of mesolimbic dopaminergic neurons to acute administration of drugs of abuse included ethanol. In this study, we investigated the possible involvement of the mesocortical dopaminergic pathway in the development of ethanol abuse under stress conditions. To this aim we trained both socially isolated (SI) and group housed (GH) rats to self administer ethanol which was made available only 2 ha day (from 11:00 to 13:00 h). Rats have been trained for 3 weeks starting at postnatal day 35. After training, rats were surgically implanted with microdialysis probes under deep anesthesia, and 24 hlater extracellular dopamine concentrations were monitored in medial prefrontal cortex (mPFC) for the 2 hpreceding ethanol administration (anticipatory phase), during ethanol exposure (consummatory phase) and for 2 hafter ethanol removal. Results show that, in GH animals, dopamine extracellular concentration in the mPFC increased as early as 80 min before ethanol presentation (+50% over basal values) and remained elevated for 80 min during ethanol exposure. In SI rats, on the contrary, dopamine extracellular concentration did not show any significant change at any time point. Ethanol consumption was significantly higher in SI than in GH rats. Moreover, mesocortical dopaminergic neurons in SI animals also showed a decreased sensitivity to an acute administration of ethanol with respect to GH rats. Our results show that prolonged exposure to stress, as in social isolation, is able to induce significant changes in the response of mesocortical dopaminergic neurons to ethanol exposure and suggest that these changes might play an important role in the compulsivity observed in ethanol addiction.

  13. HIV Subtypes B and C gp120 and Methamphetamine Interaction: Dopaminergic System Implicates Differential Neuronal Toxicity.

    PubMed

    Samikkannu, Thangavel; Rao, Kurapati V K; Salam, Abdul Ajees Abdul; Atluri, Venkata S R; Kaftanovskaya, Elena M; Agudelo, Marisela; Perez, Suray; Yoo, Changwon; Raymond, Andrea D; Ding, Hong; Nair, Madhavan P N

    2015-06-09

    HIV subtypes or clades differentially induce HIV-associated neurocognitive disorders (HAND) and substance abuse is known to accelerate HIV disease progression. The HIV-1 envelope protein gp120 plays a major role in binding and budding in the central nervous system (CNS) and impacts dopaminergic functions. However, the mechanisms utilized by HIV-1 clades to exert differential effects and the methamphetamine (METH)-associated dopaminergic dysfunction are poorly understood. We hypothesized that clade B and C gp120 structural sequences, modeling based analysis, dopaminergic effect, and METH potentiate neuronal toxicity in astrocytes. We evaluated the effect of clade B and C gp120 and/or METH on the DRD-2, DAT, CaMKs and CREBP transcription. Both the structural sequence and modeling studies demonstrated that clade B gp120 in V1-V4, α -2 and N-glycosylated sites are distinct from clade C gp120. The distinct structure and sequence variation of clade B gp120 differentially impact DRD-2, DAT, CaMK II and CaMK IV mRNA, protein and intracellular expression compared to clade C gp120. However, CREB transcription is upregulated by both clade B and C gp120, and METH co-treatment potentiated these effects. In conclusion, distinct structural sequences of HIV-1 clade B and C gp120 differentially regulate the dopaminergic pathway and METH potentiates neurotoxicity.

  14. Recent Advances in Imaging of Dopaminergic Neurons for Evaluation of Neuropsychiatric Disorders

    PubMed Central

    Shen, Lie-Hang; Liao, Mei-Hsiu; Tseng, Yu-Chin

    2012-01-01

    Dopamine is the most intensely studied monoaminergic neurotransmitter. Dopaminergic neurotransmission plays an important role in regulating several aspects of basic brain function, including motor, behavior, motivation, and working memory. To date, there are numerous positron emission tomography (PET) and single photon emission computed tomography (SPECT) radiotracers available for targeting different steps in the process of dopaminergic neurotransmission, which permits us to quantify dopaminergic activity in the living human brain. Degeneration of the nigrostriatal dopamine system causes Parkinson's disease (PD) and related Parkinsonism. Dopamine is the neurotransmitter that has been classically associated with the reinforcing effects of drug abuse. Abnormalities within the dopamine system in the brain are involved in the pathophysiology of attention deficit hyperactivity disorder (ADHD). Dopamine receptors play an important role in schizophrenia and the effect of neuroleptics is through blockage of dopamine D2 receptors. This review will concentrate on the radiotracers that have been developed for imaging dopaminergic neurons, describe the clinical aspects in the assessment of neuropsychiatric disorders, and suggest future directions in the diagnosis and management of such disorders. PMID:22570524

  15. Experimental strategy to identify genes susceptible to oxidative stress in nigral dopaminergic neurons.

    PubMed

    Yoo, Myung S; Kawamata, Hibiki; Kim, Dae J; Chun, Hong S; Son, Jin H

    2004-06-01

    Neuropathological evidence from both human and experimental models of Parkinson's disease (PD) firmly supports a significant role for oxidative stress (OS) in the death of dopaminergic (DA) neurons in substantia nigra. Largely unknown are the genes underlying selective susceptibility of nigral DA neuron to OS and how they effect nigral DA cell death. The major barriers to high-throughput identification of candidate genes are the paucity of nigral DA neurons as well as the dilution effect of non-DA cells both in primary cultures and brain tissues. To overcome these barriers, we have developed a DA cell line model, SN4741, appropriate for cDNA microarray analysis. Candidate genes were selected from both the microarray analysis and the molecular implication of their pathological mechanisms (i.e., decreased mitochondrial complex I activity and proteasomal dysfunction) of PD. Subsequent secondary validation tests were devised to characterize genes including clone #45 that may underlie selective vulnerability of nigral DA neuron to OS.

  16. Roles of octopaminergic and dopaminergic neurons in appetitive and aversive memory recall in an insect

    PubMed Central

    Mizunami, Makoto; Unoki, Sae; Mori, Yasuhiro; Hirashima, Daisuke; Hatano, Ai; Matsumoto, Yukihisa

    2009-01-01

    Background In insect classical conditioning, octopamine (the invertebrate counterpart of noradrenaline) or dopamine has been suggested to mediate reinforcing properties of appetitive or aversive unconditioned stimulus, respectively. However, the roles of octopaminergic and dopaminergic neurons in memory recall have remained unclear. Results We studied the roles of octopaminergic and dopaminergic neurons in appetitive and aversive memory recall in olfactory and visual conditioning in crickets. We found that pharmacological blockade of octopamine and dopamine receptors impaired aversive memory recall and appetitive memory recall, respectively, thereby suggesting that activation of octopaminergic and dopaminergic neurons and the resulting release of octopamine and dopamine are needed for appetitive and aversive memory recall, respectively. On the basis of this finding, we propose a new model in which it is assumed that two types of synaptic connections are formed by conditioning and are activated during memory recall, one type being connections from neurons representing conditioned stimulus to neurons inducing conditioned response and the other being connections from neurons representing conditioned stimulus to octopaminergic or dopaminergic neurons representing appetitive or aversive unconditioned stimulus, respectively. The former is called 'stimulus-response connection' and the latter is called 'stimulus-stimulus connection' by theorists studying classical conditioning in higher vertebrates. Our model predicts that pharmacological blockade of octopamine or dopamine receptors during the first stage of second-order conditioning does not impair second-order conditioning, because it impairs the formation of the stimulus-response connection but not the stimulus-stimulus connection. The results of our study with a cross-modal second-order conditioning were in full accordance with this prediction. Conclusion We suggest that insect classical conditioning involves the

  17. Relative contributions of severe dopaminergic neuron ablation and dopamine depletion to cognitive impairment.

    PubMed

    Morgan, R Garrett; Gibbs, Jeffrey T; Melief, Erica J; Postupna, Nadia O; Sherfield, Emily E; Wilson, Angela; Keene, C Dirk; Montine, Thomas J; Palmiter, Richard D; Darvas, Martin

    2015-09-01

    Parkinson's disease (PD) is characterized by the loss of dopaminergic neurons and produces a movement disorder and cognitive impairment that becomes more extensive with the duration of the disease. To what extent cognitive impairment in advanced PD can be attributed to severe loss of dopamine (DA) signaling is not well understood. Furthermore, it is unclear if the loss of DA neurons contributes to the cognitive impairment caused by the reduction in DA signaling. We generated genetic mouse models with equally severe chronic loss of DA achieved by either extensive ablation of DA neurons or inactivation of DA synthesis from preserved neurons and compared their motor and cognitive performance. Motor behaviors were equally blunted in both models, but we observed that DA neuron ablation caused more severe cognitive deficits than DA depletion. Both models had marked deficits in cue-discrimination learning. Yet, deficits in cue-discrimination learning were more severe in mice with DA neuron ablation and only mice with DA neuron ablation had drastically impaired performance in spatial learning, spatial memory and object memory tests. These results indicate that while a severe reduction in DA signaling results in motor and cognitive impairments, the loss of DA neurons promotes more extensive cognitive deficits and suggest that a loss of additional factors that depend on DA neurons may participate in the progressive cognitive decline found in patients with PD.

  18. Estrogen inhibits tuberoinfundibular dopaminergic neurons but does not cause irreversible damage.

    PubMed

    Morel, Gustavo R; Carón, Rubén W; Cónsole, Gloria M; Soaje, Marta; Sosa, Yolanda E; Rodríguez, Silvia S; Jahn, Graciela A; Goya, Rodolfo G

    2009-12-16

    Dopaminergic neurons of the hypothalamic tuberoinfundibular dopaminergic (TIDA) system exert a tonic inhibitory control on prolactin (PRL) secretion whereas estrogen, known to inhibit TIDA neuron function, has been postulated to be toxic to TIDA neurons when it is chronically high. In order to determine whether estrogen in high doses can cause permanent damage to TIDA function, we submitted young female rats to continue high doses of estrogen administered, either centrally (intrahypothalamic estrogen implants) or peripherally (subcutaneous estrogen implants or weekly intramuscular (i.m.) injections for 7 weeks), subsequently withdrawing the steroid and observing the evolution of lactotrophes, serum PRL and TIDA neurons. Serum PRL was measured by radioimmunoassay whereas tyrosine hydroxylase positive (TH+) neurons and PRL cells were morphometrically assessed in sections of fixed hypothalami and pituitaries, respectively. After 30 days, hypothalamic estrogen implants induced a significant increase in serum PRL, whereas TH+ neurons were not detectable in the arcuate-periventricular hypothalamic (ARC) region of estrogen-implanted rats. Removal of implants on day 30 restored TH expression in the ARC and brought serum PRL back to basal levels 30 days after estrogen withdrawal. Subcutaneous or i.m. administration of estrogen for 7 weeks induced a marked hyperprolactinemia. However, 30 weeks after estrogen withdrawal, TH neuron numbers in the ARC were back to normal and serum PRL returned to basal levels. After peripheral but not central estrogen withdrawal, pituitary weight and lactotrophic cell numbers remained slightly increased. Our data suggest that estrogen even at high doses, does not cause permanent damage to TIDA neurons.

  19. In vitro generation of mature midbrain-type dopamine neurons by adjusting exogenous Nurr1 and Foxa2 expressions to their physiologic patterns

    PubMed Central

    Kim, Taeho; Song, Jae-Jin; Puspita, Lesly; Valiulahi, Parvin; Shim, Jae-won; Lee, Sang-Hun

    2017-01-01

    Developmental information aids stem cell biologists in producing tissue-specific cells. Recapitulation of the developmental profile of a specific cell type in an in vitro stem cell system provides a strategy for manipulating cell-fate choice during the differentiation process. Nurr1 and Foxa2 are potential candidates for genetic engineering to generate midbrain-type dopamine (DA) neurons for experimental and therapeutic applications in Parkinson's disease (PD), as forced expression of these genes in neural stem/precursor cells (NPCs) yields cells with a complete battery of midbrain DA neuron-specific genes. However, simple overexpression without considering their expression pattern in the developing midbrain tends to generate DA cells without adequate neuronal maturation and long-term maintenance of their phenotype in vitro and in vivo after transplantation. We here show that the physiological levels and timing of Nurr1 and Foxa2 expression can be replicated in NPCs by choosing the right vectors and promoters. Controlled expression combined with a strategy for transgene expression maintenance induced generation of fully mature midbrain-type DA neurons. These findings demonstrate the feasibility of cellular engineering for artificial cell-fate specification. PMID:28280264

  20. Tiagabine Protects Dopaminergic Neurons against Neurotoxins by Inhibiting Microglial Activation.

    PubMed

    Liu, Jie; Huang, Dongping; Xu, Jing; Tong, Jiabin; Wang, Zishan; Huang, Li; Yang, Yufang; Bai, Xiaochen; Wang, Pan; Suo, Haiyun; Ma, Yuanyuan; Yu, Mei; Fei, Jian; Huang, Fang

    2015-10-26

    Microglial activation and inflammation are associated with progressive neuronal apoptosis in neurodegenerative disorders such as Parkinson's disease (PD). γ-Aminobutyric acid (GABA), the major inhibitory neurotransmitter in the central nervous system, has recently been shown to play an inhibitory role in the immune system. Tiagabine, a piperidine derivative, enhances GABAergic transmission by inhibiting GABA transporter 1 (GAT 1). In the present study, we found that tiagabine pretreatment attenuated microglial activation, provided partial protection to the nigrostriatal axis and improved motor deficits in a methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) mouse model of PD. The protective function of tiagabine was abolished in GAT 1 knockout mice that were challenged with MPTP. In an alternative PD model, induced by intranigral infusion of lipopolysaccharide (LPS), microglial suppression and subsequent neuroprotective effects of tiagabine were demonstrated. Furthermore, the LPS-induced inflammatory activation of BV-2 microglial cells and the toxicity of conditioned medium toward SH-SY5Y cells were inhibited by pretreatment with GABAergic drugs. The attenuation of the nuclear translocation of nuclear factor κB (NF-κB) and the inhibition of the generation of inflammatory mediators were the underlying mechanisms. Our results suggest that tiagabine acts as a brake for nigrostriatal microglial activation and that it might be a novel therapeutic approach for PD.

  1. Tiagabine Protects Dopaminergic Neurons against Neurotoxins by Inhibiting Microglial Activation

    PubMed Central

    Liu, Jie; Huang, Dongping; Xu, Jing; Tong, Jiabin; Wang, Zishan; Huang, Li; Yang, Yufang; Bai, Xiaochen; Wang, Pan; Suo, Haiyun; Ma, Yuanyuan; Yu, Mei; Fei, Jian; Huang, Fang

    2015-01-01

    Microglial activation and inflammation are associated with progressive neuronal apoptosis in neurodegenerative disorders such as Parkinson’s disease (PD). γ-Aminobutyric acid (GABA), the major inhibitory neurotransmitter in the central nervous system, has recently been shown to play an inhibitory role in the immune system. Tiagabine, a piperidine derivative, enhances GABAergic transmission by inhibiting GABA transporter 1 (GAT 1). In the present study, we found that tiagabine pretreatment attenuated microglial activation, provided partial protection to the nigrostriatal axis and improved motor deficits in a methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) mouse model of PD. The protective function of tiagabine was abolished in GAT 1 knockout mice that were challenged with MPTP. In an alternative PD model, induced by intranigral infusion of lipopolysaccharide (LPS), microglial suppression and subsequent neuroprotective effects of tiagabine were demonstrated. Furthermore, the LPS-induced inflammatory activation of BV-2 microglial cells and the toxicity of conditioned medium toward SH-SY5Y cells were inhibited by pretreatment with GABAergic drugs. The attenuation of the nuclear translocation of nuclear factor κB (NF-κB) and the inhibition of the generation of inflammatory mediators were the underlying mechanisms. Our results suggest that tiagabine acts as a brake for nigrostriatal microglial activation and that it might be a novel therapeutic approach for PD. PMID:26499517

  2. A new dopaminergic nigro-olfactory projection.

    PubMed

    Höglinger, Günter U; Alvarez-Fischer, Daniel; Arias-Carrión, Oscar; Djufri, Miriam; Windolph, Andrea; Keber, Ursula; Borta, Andreas; Ries, Vincent; Schwarting, Rainer K W; Scheller, Dieter; Oertel, Wolfgang H

    2015-09-01

    Parkinson disease (PD) is a neurodegenerative disorder characterized by massive loss of midbrain dopaminergic neurons. Whereas onset of motor impairments reflects a rather advanced stage of the disorder, hyposmia often marks the beginning of the disease. Little is known about the role of the nigro-striatal system in olfaction under physiological conditions and the anatomical basis of hyposmia in PD. Yet, the early occurrence of olfactory dysfunction implies that pathogens such as environmental toxins could incite the disease via the olfactory system. In the present study, we demonstrate a dopaminergic innervation from neurons in the substantia nigra to the olfactory bulb by axonal tracing studies. Injection of two dopaminergic neurotoxins-1-methyl-4-phenylpyridinium and 6-hydroxydopamine-into the olfactory bulb induced a decrease in the number of dopaminergic neurons in the substantia nigra. In turn, ablation of the nigral projection led to impaired olfactory perception. Hyposmia following dopaminergic deafferentation was reversed by treatment with the D1/D2/D3 dopamine receptor agonist rotigotine. Hence, we demonstrate for the first time the existence of a direct dopaminergic projection into the olfactory bulb and identify its origin in the substantia nigra in rats. These observations may provide a neuroanatomical basis for invasion of environmental toxins into the basal ganglia and for hyposmia as frequent symptom in PD.

  3. Positive reinforcement mediated by midbrain dopamine neurons requires D1 and D2 receptor activation in the nucleus accumbens.

    PubMed

    Steinberg, Elizabeth E; Boivin, Josiah R; Saunders, Benjamin T; Witten, Ilana B; Deisseroth, Karl; Janak, Patricia H

    2014-01-01

    The neural basis of positive reinforcement is often studied in the laboratory using intracranial self-stimulation (ICSS), a simple behavioral model in which subjects perform an action in order to obtain exogenous stimulation of a specific brain area. Recently we showed that activation of ventral tegmental area (VTA) dopamine neurons supports ICSS behavior, consistent with proposed roles of this neural population in reinforcement learning. However, VTA dopamine neurons make connections with diverse brain regions, and the specific efferent target(s) that mediate the ability of dopamine neuron activation to support ICSS have not been definitively demonstrated. Here, we examine in transgenic rats whether dopamine neuron-specific ICSS relies on the connection between the VTA and the nucleus accumbens (NAc), a brain region also implicated in positive reinforcement. We find that optogenetic activation of dopaminergic terminals innervating the NAc is sufficient to drive ICSS, and that ICSS driven by optical activation of dopamine neuron somata in the VTA is significantly attenuated by intra-NAc injections of D1 or D2 receptor antagonists. These data demonstrate that the NAc is a critical efferent target sustaining dopamine neuron-specific ICSS, identify receptor subtypes through which dopamine acts to promote this behavior, and ultimately help to refine our understanding of the neural circuitry mediating positive reinforcement.

  4. Progressive loss of nigrostriatal dopaminergic neurons induced by inflammatory responses to fipronil.

    PubMed

    Park, Jae Hyeon; Park, Youn Sun; Koh, Hyun Chul

    2016-09-06

    Inflammatory responses are involved in mechanisms of neuronal cell damage in the pathogenesis of neurodegenerative diseases such as Parkinson's disease (PD). We investigated the mechanisms whereby inflammatory responses contribute to loss of dopaminergic neurons in fipronil (FPN)-treated rats. After stereotaxic injection of FPN in the substantia nigra (SN), the number of tyrosine hydroxylase (TH)-positive neurons and the levels of TH expression in the SN decreased at 7days, and a significant decrease was observed at 14days with a subsequent reduction in striatal TH expression. Decreases in dopamine (DA) levels, however, began at 3days post-injection, preceding the changes in TH expression. In contrast, glial fibrillary acidic protein (GFAP) expression was significantly increased at 3days and persisted for up to 14days post-lesion; these changes in GFAP expression appeared to be inversely correlated with TH expression. Furthermore, we found that FPN administration induced an inflammatory response characterized by increased levels of inducible NO synthase (iNOS), cyclooxygenase-2 (COX-2), and tumor necrosis factor-α (TNF-α), which was mediated by activated microglia following infusion of FPN unilaterally into the SN. Intranigral injection of FPN underwent an inflammatory response with a resultant ongoing loss of dopaminergic neurons, indicating that pesticides may have important implication for the study of PD. Crown Copyright © 2016. Published by Elsevier Ireland Ltd. All rights reserved.

  5. Parkin functionally interacts with PGC-1α to preserve mitochondria and protect dopaminergic neurons.

    PubMed

    Zheng, Lu; Bernard-Marissal, Nathalie; Moullan, Norman; D'Amico, Davide; Auwerx, Johan; Moore, Darren J; Knott, Graham; Aebischer, Patrick; Schneider, Bernard L

    2017-02-01

    To understand the cause of Parkinson's disease (PD), it is important to determine the functional interactions between factors linked to the disease. Parkin is associated with autosomal recessive early-onset PD, and controls the transcription of PGC-1α, a master regulator of mitochondrial biogenesis. These two factors functionally interact to regulate the turnover and quality of mitochondria, by increasing both mitophagic activity and mitochondria biogenesis. In cortical neurons, co-expressing PGC-1α and Parkin increases the number of mitochondria, enhances maximal respiration, and accelerates the recovery of the mitochondrial membrane potential following mitochondrial uncoupling. PGC-1α enhances Mfn2 transcription, but also leads to increased degradation of the Mfn2 protein, a key ubiquitylation target of Parkin on mitochondria. In vivo, Parkin has significant protective effects on the survival and function of nigral dopaminergic neurons in which the chronic expression of PGC-1α is induced. Ultrastructural analysis shows that these two factors together control the density of mitochondria and their interaction with the endoplasmic reticulum. These results highlight the combined effects of Parkin and PGC-1α in the maintenance of mitochondrial homeostasis in dopaminergic neurons. These two factors synergistically control the quality and function of mitochondria, which is important for the survival of neurons in Parkinson's disease. © The Authors 2017. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  6. Motor Behavior Mediated by Continuously Generated Dopaminergic Neurons in the Zebrafish Hypothalamus Recovers After Cell Ablation

    PubMed Central

    McPherson, Adam D.; Barrios, Joshua P.; Luks-Morgan, Sasha J.; Manfredi, John P.; Bonkowsky, Joshua L.; Douglass, Adam D.; Dorsky, Richard I.

    2015-01-01

    Summary Postembryonic neurogenesis has been observed in several regions of the vertebrate brain, including the dentate gyrus and rostral migratory stream in mammals, and is required for normal behavior [1–3]. Recently the hypothalamus has also been shown to undergo continuous neurogenesis as a way to mediate energy balance [4–10]. As the hypothalamus regulates multiple functional outputs, it is likely that additional behaviors may be affected by postembryonic neurogenesis in this brain structure. Here, we have identified a progenitor population in the zebrafish hypothalamus that continuously generates neurons that express tyrosine hydroxylase 2 (th2). We develop and use novel transgenic tools to characterize the lineage of th2+ cells and demonstrate that they are dopaminergic. Through genetic ablation and optogenetic activation we then show that th2+ neurons modulate the initiation of swimming behavior in zebrafish larvae. Finally we find that the generation of new th2+ neurons following ablation correlates with restoration of normal behavior. This work thus identifies for the first time a population of dopaminergic neurons that regulates motor behavior capable of functional recovery. PMID:26774784

  7. Brn4 and TH synergistically promote the differentiation of neural stem cells into dopaminergic neurons.

    PubMed

    Tan, Xuefeng; Zhang, Lei; Zhu, Huixia; Qin, Jianbing; Tian, Meiling; Dong, Chuanming; Li, Haoming; Jin, Guohua

    2014-06-13

    Neural stem cells (NSCs) are pluripotent cells capable of differentiation into dopaminergic (DA) neurons, which are the major cell types damaged in Parkinson's disease (PD). Therefore, NSCs are considered the most promising cell source for cell replacement therapy of PD. However, the poor differentiation and maturation of DA neurons and decreased cell survival after transplantation are a challenge. We have previously demonstrated that Brn4, a member of the POU domain family of transcription factors, induced the differentiation of NSCs into neurons and promoted their maturation. In this study, we directly transduced tyrosine hydroxylase (TH), the rate-limiting enzyme in dopamine biosynthesis, into NSCs to induce DA neuronal differentiation. However, these DA neurons were morphologically immature and seldom expressed dopamine transporter (DAT), a late marker of mature DA neurons. In contrast, TH co-transfected with Brn4 generated increased number of mature DA neurons. Furthermore, Brn4 significantly induced the expression of glial cell line-derived neurotrophic factor (GDNF) with its receptors GFRα-1 and Ret, which may contribute to the maturation and survival of differentiated DA neurons. Our findings may be of future importance for the use of NSCs in cell replacement therapy of PD. Copyright © 2014 Elsevier Ireland Ltd. All rights reserved.

  8. Automated and manual patch clamp data of human induced pluripotent stem cell-derived dopaminergic neurons

    PubMed Central

    Franz, Denise; Olsen, Hervør Lykke; Klink, Oliver; Gimsa, Jan

    2017-01-01

    Human induced pluripotent stem cells can be differentiated into dopaminergic neurons (Dopa.4U). Dopa.4U neurons expressed voltage-gated NaV and KV channels and showed neuron-like spontaneous electrical activity. In automated patch clamp measurements with suspended Dopa.4U neurons, delayed rectifier K+ current (delayed KV) and rapidly inactivating A-type K+ current (fast KV) were identified. Examination of the fast KV current with inhibitors yielded IC50 values of 0.4 mM (4-aminopyridine) and 0.1 mM (tetraethylammonium). In manual patch clamp measurements with adherent Dopa.4U neurons, fast KV current could not be detected, while the delayed KV current showed an IC50 of 2 mM for 4-aminopyridine. The NaV channels in adherent and suspended Dopa.4U neurons showed IC50 values for tetrodotoxin of 27 and 2.9 nM, respectively. GABA-induced currents that could be observed in adherent Dopa.4U neurons could not be detected in suspended cells. Application of current pulses induced action potentials in approx. 70 % of the cells. Our results proved the feasibility of automated electrophysiological characterization of neuronal cells. PMID:28440808

  9. Beneficial effects of carnosic acid on dieldrin-induced dopaminergic neuronal cell death.

    PubMed

    Park, Jeong Ae; Kim, Seung; Lee, Sook-Young; Kim, Chun-Sung; Kim, Do Kyung; Kim, Sung-Jun; Chun, Hong Sung

    2008-08-27

    Carnosic acid (CA) is one of the bioactive polyphenols present in extracts of the herb rosemary (Rosmarinus officinalis). In this study, we examined possible protective effects of CA on neurotoxicity induced by dieldrin, an organochlorine pesticide implicated in sporadic Parkinson's disease, in cultured dopaminergic cells (SN4741). CA (5-10 muM) pretreatment showed potent protective effects in a concentration-related manner and prevented dieldrin (10 muM)-induced caspase-3 activation, Jun N-terminal kinase phosphorylation, and caspase-12 activation. Furthermore, dieldrin-induced downregulation of brain-derived neurotrophic factor production was significantly attenuated by CA. These results suggest that CA may safeguard dopaminergic neuronal cells from environmental neurotoxins by enhancing brain-derived neurotrophic factor and repressing apoptotic molecules.

  10. Blockade of RyRs in the ER Attenuates 6-OHDA-Induced Calcium Overload, Cellular Hypo-Excitability and Apoptosis in Dopaminergic Neurons

    PubMed Central

    Huang, Lu; Xue, Ying; Feng, DaYun; Yang, RuiXin; Nie, Tiejian; Zhu, Gang; Tao, Kai; Gao, GuoDong; Yang, Qian

    2017-01-01

    Calcium (Ca2+) dyshomeostasis induced by endoplasmic reticulum (ER) stress is an important molecular mechanism of selective dopaminergic (DA) neuron loss in Parkinson’s disease (PD). Inositol 1,4,5-triphosphate receptors (IP3Rs) and ryanodine receptors (RyRs), which are located on the ER surface, are the main endogenous Ca2+ release channels and play crucial roles in regulating Ca2+ homeostasis. However, the roles of these endogenous Ca2+ release channels in PD and their effects on the function and survival of DA neurons remain unknown. In this study, using a 6-hydroxydopamine (6-OHDA)-induced in vitro PD model (SN4741 Cell line), we found that 6-OHDA significantly increased cytoplasmic Ca2+ levels ([Ca2+]i), which was attenuated by pretreatment with 4-phenyl butyric acid (4-PBA; an ER stress inhibitor) or ryanodine (a RyRs blocker). In addition, in acute midbrain slices of male Sprague-Dawley rats, we found that 6-OHDA reduced the spike number and rheobase of DA neurons, which were also reversed by pretreatment with 4-PBA and ryanodine. TUNEL staining and MTT assays also showed that 4-PBA and ryanodine obviously alleviated 6-OHDA-induced cell apoptosis and devitalization. Interestingly, a IP3Rs blocker had little effect on the above 6-OHDA-induced neurotoxicity in DA neurons. In conclusion, our findings provide evidence of the different roles of IP3Rs and RyRs in the regulation of endogenous Ca2+ homeostasis, neuronal excitability, and viability in DA neurons, and suggest a potential therapeutic strategy for PD by inhibiting the RyRs Ca2+ channels in the ER. PMID:28316566

  11. Histone Hyperacetylation Up-regulates Protein Kinase Cδ in Dopaminergic Neurons to Induce Cell Death

    PubMed Central

    Jin, Huajun; Kanthasamy, Arthi; Harischandra, Dilshan S.; Kondru, Naveen; Ghosh, Anamitra; Panicker, Nikhil; Anantharam, Vellareddy; Rana, Ajay; Kanthasamy, Anumantha G.

    2014-01-01

    The oxidative stress-sensitive protein kinase Cδ (PKCδ) has been implicated in dopaminergic neuronal cell death. However, little is known about the epigenetic mechanisms regulating PKCδ expression in neurons. Here, we report a novel mechanism by which the PKCδ gene can be regulated by histone acetylation. Treatment with histone deacetylase (HDAC) inhibitor sodium butyrate (NaBu) induced PKCδ expression in cultured neurons, brain slices, and animal models. Several other HDAC inhibitors also mimicked NaBu. The chromatin immunoprecipitation analysis revealed that hyperacetylation of histone H4 by NaBu is associated with the PKCδ promoter. Deletion analysis of the PKCδ promoter mapped the NaBu-responsive element to an 81-bp minimal promoter region. Detailed mutagenesis studies within this region revealed that four GC boxes conferred hyperacetylation-induced PKCδ promoter activation. Cotransfection experiments and Sp inhibitor studies demonstrated that Sp1, Sp3, and Sp4 regulated NaBu-induced PKCδ up-regulation. However, NaBu did not alter the DNA binding activities of Sp proteins or their expression. Interestingly, a one-hybrid analysis revealed that NaBu enhanced transcriptional activity of Sp1/Sp3. Overexpression of the p300/cAMP-response element-binding protein-binding protein (CBP) potentiated the NaBu-mediated transactivation potential of Sp1/Sp3, but expressing several HDACs attenuated this effect, suggesting that p300/CBP and HDACs act as coactivators or corepressors in histone acetylation-induced PKCδ up-regulation. Finally, using genetic and pharmacological approaches, we showed that NaBu up-regulation of PKCδ sensitizes neurons to cell death in a human dopaminergic cell model and brain slice cultures. Together, these results indicate that histone acetylation regulates PKCδ expression to augment nigrostriatal dopaminergic cell death, which could contribute to the progressive neuropathogenesis of Parkinson disease. PMID:25342743

  12. Nurr1 regulates Top IIβ and functions in axon genesis of mesencephalic dopaminergic neurons

    PubMed Central

    2012-01-01

    Background NURR1 (also named as NR4A2) is a member of the steroid/thyroid hormone receptor family, which can bind to DNA and modulate expression of target genes. Previous studies have shown that NURR1 is essential for the nigral dopaminergic neuron phenotype and function maintenance, and the defects of the gene are possibly associated with Parkinson's disease (PD). Results In this study, we used new born Nurr1 knock-out mice combined with Affymetrix genechip technology and real time polymerase chain reaction (PCR) to identify Nurr1 regulated genes, which led to the discovery of several transcripts differentially expressed in the nigro-striatal pathway of Nurr1 knock-out mice. We found that an axon genesis gene called Topoisomerase IIβ (Top IIβ) was down-regulated in Nurr1 knock-out mice and we identified two functional NURR1 binding sites in the proximal Top IIβ promoter. While in Top IIβ null mice, we saw a significant loss of dopaminergic neurons in the substantial nigra and lack of neurites along the nigro-striatal pathway. Using specific TOP II antagonist ICRF-193 or Top IIβ siRNA in the primary cultures of ventral mesencephalic (VM) neurons, we documented that suppression of TOP IIβ expression resulted in VM neurites shortening and growth cones collapsing. Furthermore, microinjection of ICRF-193 into the mouse medial forebrain bundle (MFB) led to the loss of nigro-striatal projection. Conclusion Taken together, our findings suggest that Top IIβ might be a down-stream target of Nurr1, which might influence the processes of axon genesis in dopaminergic neurons via the regulation of TOP IIβ expression. The Nurr1-Top IIβ interaction may shed light on the pathologic role of Nurr1 defect in the nigro-striatal pathway deficiency associated with PD. PMID:22296971

  13. Activity-dependent regulation of NMDA receptors in substantia nigra dopaminergic neurones

    PubMed Central

    Wild, Angela R; Jones, Susan; Gibb, Alasdair J

    2014-01-01

    N-Methyl-d-aspartate receptors (NMDARs) are Ca2+-permeable glutamate receptors that play a critical role in synaptic plasticity and promoting cell survival. However, overactive NMDARs can trigger cell death signalling pathways and have been implicated in substantia nigra pars compacta (SNc) pathology in Parkinson's disease. Calcium ion influx through NMDARs recruits Ca2+-dependent proteins that can regulate NMDAR activity. The surface density of NMDARs can also be regulated dynamically in response to receptor activity via Ca2+-independent mechanisms. We have investigated the activity-dependent regulation of NMDARs in SNc dopaminergic neurones. Repeated whole-cell agonist applications resulted in a decline in the amplitude of NMDAR currents (current run-down) that was use dependent and not readily reversible. Run-down was reduced by increasing intracellular Ca2+ buffering or by reducing Ca2+ influx but did not appear to be mediated by the same regulatory proteins that cause Ca2+-dependent run-down in hippocampal neurones. The NMDAR current run-down may be mediated in part by a Ca2+-independent mechanism, because intracellular dialysis with a dynamin-inhibitory peptide reduced run-down, suggesting a role for clathrin-mediated endocytosis in the regulation of the surface density of receptors. Synaptic NMDARs were also subject to current run-down during repeated low-frequency synaptic stimulation in a Ca2+-dependent but dynamin-independent manner. Thus, we report, for the first time, regulation of NMDARs in SNc dopaminergic neurones by changes in intracellular Ca2+ at both synaptic and extrasynaptic sites and provide evidence for activity-dependent changes in receptor trafficking. These mechanisms may contribute to intracellular Ca2+ homeostasis in dopaminergic neurones by limiting Ca2+ influx through the NMDAR. PMID:24344168

  14. Electrophysiological profile of the new atypical neuroleptic, sertindole, on midbrain dopamine neurones in rats: acute and repeated treatment.

    PubMed

    Skarsfeldt, T

    1992-01-01

    Sertindole (Lundbeck code No. Lu 23-174) (1-[2-[4-[5-chloro-1-(4-fluorophenyl)-1H-indol-3-yl]-1-piperidinyl] ethyl]-2-imidazolidinone) is a new potential neuroleptic compound. After 3 weeks of treatment sertindole shows an extreme selectivity to inhibit the number of spontaneously active dopaminergic (DA) neurones in ventral tegmental area (VTA) while leaving the number of active DA neurones in substantia nigra pars compacta (SNC) unaffected. Acute injection of apomorphine or baclofen reverse the inhibition of activity seen after repeated treatment with sertindole. This suggests that sertindole induces a depolarization inactivation of the DA neurones. The depolarization inactivation is reversible since normal activity of DA neurones is found in both SNC and VTA after two weeks withdrawal from repeated treatment with a low dose with sertindole. One or two weeks administration of a high dose of sertindole induced only minor effects on the DA neurones in VTA; i.e., in order to obtain the depolarization inactivation sertindole requires 3 weeks of treatment as has also been reported for other neuroleptics. Three weeks of treatment with clozapine induces a selective inhibition of the active DA neurones in VTA but at much higher doses than seen with sertindole, while haloperidol induces a non-selective decrease of spontaneously active DA neurones in both areas. In acute electrophysiological experiments intravenous (i.v.) administration of sertindole--in contrast to both clozapine and haloperidol--neither reverse d-amphetamine- nor apomorphine-induced inhibition of the firing frequencies of DA neurones in SNC or in VTA. In addition, sertindole does not--even in high doses--increase the firing frequency of DA neurones in SNC or VTA.(ABSTRACT TRUNCATED AT 250 WORDS)

  15. Whole-brain mapping of direct inputs to midbrain dopamine neurons.

    PubMed

    Watabe-Uchida, Mitsuko; Zhu, Lisa; Ogawa, Sachie K; Vamanrao, Archana; Uchida, Naoshige

    2012-06-07

    Recent studies indicate that dopamine neurons in the ventral tegmental area (VTA) and substantia nigra pars compacta (SNc) convey distinct signals. To explore this difference, we comprehensively identified each area's monosynaptic inputs using the rabies virus. We show that dopamine neurons in both areas integrate inputs from a more diverse collection of areas than previously thought, including autonomic, motor, and somatosensory areas. SNc and VTA dopamine neurons receive contrasting excitatory inputs: the former from the somatosensory/motor cortex and subthalamic nucleus, which may explain their short-latency responses to salient events; and the latter from the lateral hypothalamus, which may explain their involvement in value coding. We demonstrate that neurons in the striatum that project directly to dopamine neurons form patches in both the dorsal and ventral striatum, whereas those projecting to GABAergic neurons are distributed in the matrix compartment. Neuron-type-specific connectivity lays a foundation for studying how dopamine neurons compute outputs.

  16. Effect of Cell Adhesion Molecules on the Neurite Outgrowth of Induced Pluripotent Stem Cell-Derived Dopaminergic Neurons.

    PubMed

    Peng, Su-Ping; Schachner, Melitta; Boddeke, Erik; Copray, Sjef

    2016-04-01

    Intrastriatal transplantation of dopaminergic neurons has been shown to be a potentially very effective therapeutic approach for the treatment of Parkinson's disease (PD). With the detection of induced pluripotent stem cells (iPSCs), an unlimited source of autologous dopaminergic (DA) neurons became available. Although the iPSC-derived dopaminergic neurons exhibited most of the fundamental dopaminergic characteristics, detailed analysis and comparison with primary DA neurons have shown some aberrations in the expression of genes involved in neuronal development and neurite outgrowth. The limited outgrowth of the iPSC-derived DA neurons may hamper their potential application in cell transplantation therapy for PD. In the present study, we examined whether the forced expression of L1 cell adhesion molecule (L1CAM) and polysialylated neuronal cell adhesion molecule (PSA-NCAM), via gene transduction, can promote the neurite formation and outgrowth of iPSC-derived DA neurons. In cultures on astrocyte layers, both adhesion factors significantly increased neurite formation of the adhesion factor overexpressing iPSC-derived DA neurons in comparison to control iPSC-derived DA neurons. The same tendency was observed when the DA neurons were plated on postnatal organotypic striatal slices; however, this effect did not reach statistical significance. Next, we examined the neurite outgrowth of the L1CAM- or PSA-NCAM-overexpressing iPSC-derived DA neurons after implantation in the striatum of unilaterally 6-hydroxydopamine (6-OHDA)-lesioned rats, the animal model for PD. Like the outgrowth on the organotypic striatal slices, no significant L1CAM- and PSA-NCAM-enforced neurite outgrowth of the implanted DA neurons was observed. Apparently, induced expression of L1CAM or PSA-NCAM in the iPSC-derived DA neurons cannot completely restore the neurite outgrowth potential that was reduced in these DA neurons as a consequence of epigenetic aberrations resulting from the i

  17. Effects of Forskolin on Trefoil factor 1 expression in cultured ventral mesencephalic dopaminergic neurons.

    PubMed

    Jensen, P; Ducray, A D; Widmer, H R; Meyer, M

    2015-12-03

    Trefoil factor 1 (TFF1) belongs to a family of secreted peptides that are mainly expressed in the gastrointestinal tract. Notably, TFF1 has been suggested to operate as a neuropeptide, however, its specific cellular expression, regulation and function remain largely unknown. We have previously shown that TFF1 is expressed in developing and adult rat ventral mesencephalic tyrosine hydroxylase-immunoreactive (TH-ir) dopaminergic neurons. Here, we investigated the expression of TFF1 in rat ventral mesencephalic dopaminergic neurons (embryonic day 14) grown in culture for 5, 7 or 10 days in the absence (controls) or presence of either glial cell line-derived neurotrophic factor (GDNF), Forskolin or the combination. No TFF1-ir cells were identified at day 5 and only a few at day 7, whereas TH was markedly expressed at both time points. At day 10, several TFF1-ir cells were detected, and their numbers were significantly increased after the addition of GDNF (2.2-fold) or Forskolin (4.1-fold) compared to controls. Furthermore, the combination of GDNF and Forskolin had an additive effect and increased the number of TFF1-ir cells by 5.6-fold compared to controls. TFF1 expression was restricted to neuronal cells, and the percentage of TH/TFF1 co-expressing cells was increased to the same extent in GDNF and Forskolin-treated cultures (4-fold) as compared to controls. Interestingly, the combination of GDNF and Forskolin resulted in a significantly increased co-expression (8-fold) of TH/TFF1, which could indicate that GDNF and Forskolin targeted different subpopulations of TH/TFF1 neurons. Short-term treatment with Forskolin resulted in an increased number of TFF1-ir cells, and this effect was significantly reduced by the MEK1 inhibitor PD98059 or the protein kinase A (PKA) inhibitor H89, suggesting that Forskolin induced TFF1 expression through diverse signaling pathways. In conclusion, distinct populations of cultured dopaminergic neurons express TFF1, and their numbers can be

  18. Auditory Distance Coding in Rabbit Midbrain Neurons and Human Perception: Monaural Amplitude Modulation Depth as a Cue

    PubMed Central

    Zahorik, Pavel; Carney, Laurel H.; Bishop, Brian B.; Kuwada, Shigeyuki

    2015-01-01

    Mechanisms underlying sound source distance localization are not well understood. Here we tested the hypothesis that a novel mechanism can create monaural distance sensitivity: a combination of auditory midbrain neurons' sensitivity to amplitude modulation (AM) depth and distance-dependent loss of AM in reverberation. We used virtual auditory space (VAS) methods for sounds at various distances in anechoic and reverberant environments. Stimulus level was constant across distance. With increasing modulation depth, some rabbit inferior colliculus neurons increased firing rates whereas others decreased. These neurons exhibited monotonic relationships between firing rates and distance for monaurally presented noise when two conditions were met: (1) the sound had AM, and (2) the environment was reverberant. The firing rates as a function of distance remained approximately constant without AM in either environment and, in an anechoic condition, even with AM. We corroborated this finding by reproducing the distance sensitivity using a neural model. We also conducted a human psychophysical study using similar methods. Normal-hearing listeners reported perceived distance in response to monaural 1 octave 4 kHz noise source sounds presented at distances of 35–200 cm. We found parallels between the rabbit neural and human responses. In both, sound distance could be discriminated only if the monaural sound in reverberation had AM. These observations support the hypothesis. When other cues are available (e.g., in binaural hearing), how much the auditory system actually uses the AM as a distance cue remains to be determined. PMID:25834060

  19. Parkin and PINK1 Patient iPSC-Derived Midbrain Dopamine Neurons Exhibit Mitochondrial Dysfunction and α-Synuclein Accumulation.

    PubMed

    Chung, Sun Young; Kishinevsky, Sarah; Mazzulli, Joseph R; Graziotto, John; Mrejeru, Ana; Mosharov, Eugene V; Puspita, Lesly; Valiulahi, Parvin; Sulzer, David; Milner, Teresa A; Taldone, Tony; Krainc, Dimitri; Studer, Lorenz; Shim, Jae-Won

    2016-10-11

    Parkinson's disease (PD) is characterized by the selective loss of dopamine neurons in the substantia nigra; however, the mechanism of neurodegeneration in PD remains unclear. A subset of familial PD is linked to mutations in PARK2 and PINK1, which lead to dysfunctional mitochondria-related proteins Parkin and PINK1, suggesting that pathways implicated in these monogenic forms could play a more general role in PD. We demonstrate that the identification of disease-related phenotypes in PD-patient-specific induced pluripotent stem cell (iPSC)-derived midbrain dopamine (mDA) neurons depends on the type of differentiation protocol utilized. In a floor-plate-based but not a neural-rosette-based directed differentiation strategy, iPSC-derived mDA neurons recapitulate PD phenotypes, including pathogenic protein accumulation, cell-type-specific vulnerability, mitochondrial dysfunction, and abnormal neurotransmitter homeostasis. We propose that these form a pathogenic loop that contributes to disease. Our study illustrates the promise of iPSC technology for examining PD pathogenesis and identifying therapeutic targets. Copyright © 2016 The Authors. Published by Elsevier Inc. All rights reserved.

  20. Effect of inhibition of fatty acid amide hydrolase on MPTP-induced dopaminergic neuronal damage.

    PubMed

    Viveros-Paredes, J M; Gonzalez-Castañeda, R E; Escalante-Castañeda, A; Tejeda-Martínez, A R; Castañeda-Achutiguí, F; Flores-Soto, M E

    2017-01-16

    Parkinson's disease (PD) is a neurodegenerative disorder characterised by balance problems, muscle rigidity, and slow movement due to low dopamine levels and loss of dopaminergic neurons in the substantia nigra pars compacta (SNpc). The endocannabinoid system is known to modulate the nigrostriatal pathway through endogenous ligands such as anandamide (AEA), which is hydrolysed by fatty acid amide hydrolase (FAAH). The purpose of this study was to increase AEA levels using FAAH inhibitor URB597 to evaluate the modulatory effect of AEA on dopaminergic neur