Sample records for middeck augmentation module

  1. Spacehab

    NASA Technical Reports Server (NTRS)

    Rossi, David

    1991-01-01

    Information is given in viewgraph form on the Spacehab company and its work on a pressurized module to be carried on the Space Shuttle. The module augments the Shuttle's capability to support man-tended microgravity experiments. The augmentation modules are designed to duplicate the resources, such as power, environmental control, and data management that are available in the Shuttle's middeck. Topics covered include a company overview, company financing, system overview, module description, payload resources, locker accommodations, program status, and a listing of candidate payloads.

  2. Human factors assessments of the STS-57 SpaceHab-1 mission

    NASA Technical Reports Server (NTRS)

    Mount, Frances E.; Adam, Sue; Mckay, Tim; Whitmore, Mihriban; Merced-Moore, Darlene; Holden, Tina; Wheelwright, Charles; Koros, Anton, Sr.; Oneal, Michael; Toole, Jennifer

    1994-01-01

    SpaceHab-1 (STS-57) was the first of six scheduled Commercial Middeck Augmentation Module (CMAM) missions seeking to offer entrepreneurial companies an opportunity to use the resource of microgravity. The SpaceHab module, which occupies about one-fourth of the payload bay, is approximately 2-3/4 meters (9 feet) long and 4 meters (13.5 feet) in diameter. It provides a shirt-sleeve working environment and contains the storage space equivalent of 50 middeck lockers, considerably over and above the number of experiments that can be carried in the orbiter middeck alone. A modified Spacelab tunnel links the SpaceHab module to the middeck. While in orbit, the orbiter payload bay doors remain open, exposing the padded exterior of the lab and tunnel to space until preparation for reentry at the end of the flight. The crew for SpaceHab-1 was comprised of four males and two females, each of whom participated in some part of the human factors assessment (HFA) evaluation. The HFA was one of over twenty experiments manifested on this maiden flight of the SpaceHab module. HFA consisted of HFA-EPROC, HFA-LIGHT, HFA-SOUND, HFA-QUEST, and HFA-TRANS. The goal of HFA-EPROC was to assess the advantages and disadvantages of paper versus computer presentation for procedural tasks. The next two evaluations investigated the module's lighting and acoustic environment. HFA-TRANS sought to evaluate the design of the SpaceHab tunnel and to characterize translation through it. HFA-QUEST represented a consolidation of the in-flight questions generated by the HFA principal investigators involved in the acoustic, lighting, and translation studies.

  3. STS-57 crewmembers examine stowage locker contents during bench review

    NASA Technical Reports Server (NTRS)

    1993-01-01

    STS-57 Endeavour, Orbiter Vehicle (OV) 105, crewmembers, wearing clean suits, examine stowage locker contents during their bench review at Boeing's Flight Equipment Processing Facility (FEPF) located near JSC. Pilot Brian J. Duffy pulls equipment from a locker while Commander Ronald J. Grabe (behind him), Mission Specialist 2 (MS2) Nancy J. Sherlock, Payload Commander (PLC) G. David Low (holding checklist), and MS3 Peter J.K. Wisoff discuss checklist procedures. The crewmembers reviewed equipment locations for OV-105 as well as the SPACEHAB-01 (Commercial Middeck Augmentation Module (CMAM)) experiment stowage locations. Photo taken by NASA JSC contract photographer Benny Benavides.

  4. ksc-84pc-248

    NASA Image and Video Library

    2013-10-19

    KSC-84PC-248 (For release Aug. 27, 1984) --- The Continuous Flow Electrophoresis System (CFES) is being installed in the middeck of the Orbiter Discovery in preparation for the flight of mission STS-41D in June. The CFES, originating from the McDonnell Douglas Astronautics Co. includes a fluid systems module, and experiment control and monitoring module, a sample storage module and a pump/accumulator package along with miscellaneous equipment stored in a middeck locker. Photo credit: NASA

  5. STS-44 Atlantis, OV-104, MS Musgrave on FB-SMS middeck during JSC training

    NASA Technical Reports Server (NTRS)

    1991-01-01

    STS-44 Atlantis, Orbiter Vehicle (OV) 104, Mission Specialist (MS) F. Story Musgrave, wearing lightweight headset (HDST), adjusts controls on communications module mounted on a middeck overhead panel. Musgrave is on the middeck of the Fixed Base (FB) Shuttle Mission Simulator (SMS) located in JSC's Mission Simulation and Training Facility Bldg 5. The STS-44 crewmembers are participating in a flight simulation.

  6. Columbia, OV-102, forward middeck locker experiments and meal tray assemblies

    NASA Technical Reports Server (NTRS)

    1982-01-01

    Overall view of forward middeck locker shows Continuous Flow Electrophoresis System (CFES) experiment control and monitoring module and sample storage module (on port side) and Monodisperse Latex Reactor (MLR) (on starboard side). Water Dispenser Kit water gun (above CFES module) and meal tray assemblies covered with snack food packages and beverage containers appear around the two experiments. Thanks to a variety of juices and other food items, this array in the middeck probably represents the most colorful area onboard the Earth-orbiting Columbia, Orbiter Vehicle (OV) 102. Most of the meal items have been carefully fastened to meal tray assemblies (foodtrays) and locker doors (or both). What has not been attached by conventional methods has been safely 'tucked' under something heavy (note jacket shoved into space occupied MLR). MLR is making its second flight and is designed to test the flexibility of making large-size, monodisperse (same size), polystyrene latex micro-spheres using

  7. STS-42 Payload Specialist Bondar checks Pilot Oswald's blood flow on middeck

    NASA Technical Reports Server (NTRS)

    1992-01-01

    STS-42 Payload Specialist Roberta L. Bondar monitors Pilot Stephen S. Oswald's blood flow on the middeck of Discovery, Orbiter Vehicle (OV) 103. Bondar holds a device just above Oswald's ear and analyzes reading displayed on output module on her right. Behind the two crewmembers is the sleep station.

  8. Astronaut Norman Thagard rests on middeck while other team is on duty

    NASA Image and Video Library

    1985-05-03

    Astronaut Norman E. Thagard, mission specialist for the "silver" team, rests on the middeck while the "gold" team is on duty in the science module. Don L. Lind, left, "gold" team member, meanwhile participates in autogenic feedback training (AFT), designed to help flight crewmembers overcome the effects of zero-gravity adaptation.

  9. Astronaut Norman Thagard rests on middeck while other team is on duty

    NASA Technical Reports Server (NTRS)

    1985-01-01

    Astronaut Norman E. Thagard, mission specialist for the 'silver' team, rests on the middeck while the 'gold' team is on duty in the science module. Don L. Lind, left, 'gold' team member, meanwhile participates in autogenic feedback training (AFT), designed to help flight crewmembers overcome the effects of zero-gravity adaptation.

  10. STS-57 Pilot Duffy uses TDS soldering tool in SPACEHAB-01 aboard OV-105

    NASA Technical Reports Server (NTRS)

    1993-01-01

    STS-57 Pilot Brian J. Duffy, at a SPACEHAB-01 (Commercial Middeck Augmentation Module (CMAM)) work bench, handles a soldering tool onboard the Earth-orbiting Endeavour, Orbiter Vehicle (OV) 105. Duffy is conducting a soldering experiment (SE) which is part of the Tools and Diagnostic Systems (TDS) project. He is soldering on a printed circuit board, positioned in a specially designed holder, containing 45 connection points and will later de-solder 35 points on a similar board. TDS' sponsor is the Flight Crew Support Division, Space and Life Sciences Directorate, JSC. It represents a group of equipment selected from tools and diagnostic hardware to be supported by the Space Station program. TDS was designed to demonstrate the maintenance of experiment hardware on-orbit and to evaluate the adequacy of its design and the crew interface.

  11. MS Anderson checks on the CEBAS

    NASA Image and Video Library

    1998-01-22

    STS089-357-003 (22-31 Jan. 1998) --- Astronaut Michael P. Anderson, STS-89 mission specialist, works on Endeavour's middeck with the Closed Equilibrated Biological Aquatic System (CEBAS), an experiment developed by the German Space Agency (DLR). The CEBAS mini-module, a middeck habitat for aquatic organisms, enables scientists to conduct various gravity-related experiments in the areas of zoology, botany and developmental biology, as well as in interdisciplinary areas such as scientific research on artificial ecosystems. Photo credit: NASA

  12. Increasing the usefulness of Shuttle with SPACEHAB

    NASA Astrophysics Data System (ADS)

    Stone, Barbara A.; Rossi, David A.

    1992-08-01

    SPACEHAB is a pressurized laboratory, approximately 10 feet long and 13 feet in diameter, which fits in the forward position of the Shuttle payload bay and connects to the crew compartment through the Orbiter airlock. SPACEHAB modules may contain up to 61 standard middeck lockers, providing 1100 cubic feet of pressurized work space. SPACEHAB'S capacity offers crew-tended access to the microgravity environment for experimentation, technology development, and small-scale production. The modules are designed to facilitate the user's ability to quickly and inexpensively develop and integrate a microgravity payload. Payloads are typically integrated into the SPACEHAB module in standard SPACEHAB lockers or SPACEHAB racks. Lockers are designed to offer identical user interfaces as standard Space Shuttle middeck lockers. SPACEHAB racks are interchangeable with Space Station Freedom racks, allowing hardware to be qualified for early station use.

  13. STS-40 MS Seddon, wearing blindfold, sleeps in SLS-1 module

    NASA Technical Reports Server (NTRS)

    1991-01-01

    STS-40 Mission Specialist (MS) M. Rhea Seddon, wearing light mask (blindfold) and tucked inside a sleep restraint, rests in Spacelab Life Sciences 1 (SLS-1) module. The module is loaded inside Columbia's, Orbiter Vehicle (OV) 102's, payload bay and connected to the middeck via a spacelab (SL) tunnel.

  14. STS-7 crewmembers during meal preparation on middeck

    NASA Technical Reports Server (NTRS)

    1983-01-01

    On middeck, Mission Specialist (MS) Thagard and MS Ride select food containers from forward modular locker single tray assembly (ASSY) and prepare containers for heating while Pilot Hauck (with mustache) adjusts SONY Walkman and MS Fabian opens containers. Carry-on food warmer appears overhead and control panel ML86B and Continuous Flow Electrophoresis System (CFES) fluid systems module appear on port side wall. Hauck wears a TFNG t-shirt as a tribute to the 1978 class of NASA astronauts.

  15. STS-26 MS Nelson operates controls for PVTOS-2 experiment on aft middeck

    NASA Technical Reports Server (NTRS)

    1988-01-01

    STS-26 Mission Specialist (MS) George D. Nelson operates generic electronics module for the Physical Vapor Transport of Organic Solids 2 (PVTOS-2) experiment on Discovery's, Orbiter Vehicle (OV) 103's, aft middeck. PVTOS-2 consists of nine independent experimental cells about 12 inches long and 3 inches in diameter. They are mounted in a circular base plate inside the drum-like experimental apparatus container (EAC). PVTOS-2 is sponsored by NASA's Office of Commercial Programs and is being conducted by 3M's Space Research and Applications Laboratory.

  16. Newman, Krikalev and Ross on Endeavour's middeck

    NASA Image and Video Library

    1998-12-08

    S88-E-5163 (12-08-98) --- Left to right, James H. Newman, Jerry L. Ross and Sergei K. Krikalev--all mission specialists--on Endeavour's middeck. Ross and Newman eventually participated in three space walks as part of the STS-88 work involved in readying the Unity and Zarya modules for their ISS roles. Krikalev, representing the Russian Space Agency, has been named as a member of the first ISS flight crew. This photo was taken with an electronic still camera (ESC) at 23:14:01 GMT, Dec. 8.

  17. STS-48 ESC image of the MODE-01 Fluid Test Article (FTA) on OV-103's middeck

    NASA Technical Reports Server (NTRS)

    1991-01-01

    An electronic still camera (ESC) closeup shows the STS-48 Middeck Zero ('0') Gravity Dynamics Experiment 01 (MODE-01) Fluid Test Article (FTA) attached to an experimental support module (ESM) located in a forward middeck locker onboard the earth-orbiting Discovery, Orbiter Vehicle (OV) 103. The FTA is a 3.1-cm diameter cylindrical sealed Lexan tank. The FTA electromagnetic actuator has excited the test article sinusoidally, which causes the fluid inside the tank to slosh. These slosh forces, along with other data such as acceleration levels of the entire assembly, are measured by the force balance and recorded in digital form on an optical disk for later ground analysis. Crewmembers were testing the ESC as part of Development Test Objective (DTO) 648, Electronic Still Photography. The digital image was stored on a removable hard disk or small optical disk, and could be converted to a format suitable for downlink transmission. The ESC is making its initial appearance on this Space Shutt

  18. New docking target taped to middeck locker

    NASA Image and Video Library

    1996-09-20

    STS79-E-5104 (20 September 1996) --- The STS-79 crew members removed the docking target from the Docking Module (DM) and attached it to a locker door to photograph it and examine a slight peel on the surface, during Flight Day 5.

  19. Line drawing of STS-34 middeck experiment Polymer Morphology (PM)

    NASA Technical Reports Server (NTRS)

    1989-01-01

    STS-34 middeck experiment Polymer Morphology (PM) and its apparatus is illustrated in this line drawing. Apparatus for the experiment, developed by 3M, includes a Fournier transform infrared (FTIR) spectrometer, an automatic sample manipulating system and a process control and data acquisition computer known as the Generic Electronics Module (GEM). STS-34 mission specialists will interface with the PM experiment through a small, NASA-supplied laptop computer that is used as an input and output device for the main PM computer. PM experiment is an organic materials processing experiment designed to explore the effects of microgravity on polymeric materials as they are processed in space and is being conducted by 3M's Space Research and Applications Laboratory.

  20. Fish-eye view of Williams, Searfoss and Pawelczyk on middeck during meal

    NASA Image and Video Library

    1998-05-15

    STS090-351-009 (17 April - 3 May 1998) --- Three members of the Neurolab crew were photographed during off-duty time on the mid-deck aboard the Earth-orbiting Space Shuttle Columbia. Left to right are James A. (Jim) Pawelczyk, payload specialist, and astronauts Richard A. Searfoss, mission commander; and Richard M. Linnehan, payload commander. Linnehan is in the hatchway of the tunnel that connected the crew members to the Spacelab Science Module in Columbia's cargo bay. A "fish-eye" lens on a 35mm camera gives the scene a slightly distorted look. Five NASA astronauts and two payload specialists went on to spend a little more than 16-days in Earth-orbit in support of the Neurolab mission.

  1. The middeck 0-gravity dynamics experiment

    NASA Technical Reports Server (NTRS)

    Crawley, Edward F.; Vanschoor, Marthinus C.; Bokhour, Edward B.

    1993-01-01

    The Middeck 0-Gravity Dynamics Experiment (MODE), flown onboard the Shuttle STS-48 Mission, consists of three major elements: the Experiment Support Module, a dynamics test bed providing computer experiment control, analog signal conditioning, power conditioning, an operator interface consisting of a keypad and display, experiment electrical and thermal control, and archival data storage: the Fluid Test Article assembly, used to investigate the dynamics of fluid-structure interaction in 0-gravity; and the Structural Test Article for investigating the open-loop dynamics of structures in 0-gravity. Deployable, erectable, and rotary modules were assembled to form three one- and two-dimensional structures, in which variations in bracing wire and rotary joint preload could be introduced. Change in linear modal parameters as well as the change in nonlinear nature of the response is examined. Trends in modal parameters are presented as a function of force amplitude, joint preload, and ambient gravity. An experimental study of the lateral slosh behavior of contained fluids is also presented. A comparison of the measured earth and space results identifies and highlights the effects of gravity on the linear and nonlinear slosh behavior of these fluids.

  2. Astronaut Thermal Exposure: Re-Entry After Low Earth Orbit Rescue Mission

    NASA Technical Reports Server (NTRS)

    Gillis, David B.; Hamilton, Douglas; Ilcus, Stana; Stepaniak, Phil; Son, Chang; Bue, Grant

    2009-01-01

    The STS-125 mission, launched May 11, 2009, is the final servicing mission to the Hubble Space Telescope. The repair mission's EVA tasks are described, including: installing a new wide field camera; installing the Cosmic Origins Spectrograph; repairing the Space Telescope Imaging Spectrograph; installing a new outer blanket layer; adding a Soft Capture and Rendezvous System for eventual controlled deorbit in about 2014; replacing the 'A' side Science Instrument Command and Data Handling module; repairing the Advanced Camera for surveys; and, replacing the rate sensor unit gyroscopes, fine guidance sensors and 3 batteries. Additionally, the Shuttle crew cabin thermal environment is described. A CFD model of per person CO2 demonstrates a discrepancy between crew breathing volume and general mid-deck levels of CO2. A follow-on CFD analysis of the mid-deck temperature distribution is provided. Procedural and engineering mitigation plans are presented to counteract thermal exposure upon reentry to the Earth atmosphere. Some of the procedures include: full cold soak the night prior to deorbit; modifying deck stowage to reduce interference with air flow; and early securing of avionics post-landing to reduce cabin thermal load prior to hatch opening. Engineering mitigation activities include modifying the location of the aft starboard ICUs, eliminating the X3 stack and eliminating ICU exhaust air directed onto astronauts; improved engineering data of ICU performance; and, verifying the adequacy of mid-deck temperature control using CFD models in addition to lumped parameter models. Post-mitigation CFD models of mid-deck temperature profiles and distribution are provided.

  3. Economy of middeck payloads

    NASA Technical Reports Server (NTRS)

    Michel, E. L.; Huffstetler, W. J.

    1986-01-01

    The utilization of the middeck, designed as the crew quarters, for experiments is examined. The dimensions of the middeck's standard lockers, double lockers, adapter plates, and the galley, which are applicable for experiments, are described. The utilities available for middeck payloads include ac and dc electrical power supply, active and passive cooling, vacuum/vent line connections, and data handling, and four basic payload configurations are possible. The development of a middeck accommodations rack to make payload space more flexible and to enable an optimum number and variety of experiments to be flown is proposed. Diagrams of the orbiter's middeck and experimental designs are provided.

  4. DSO 201 - Krikalev and Sega in the Spacehab module

    NASA Image and Video Library

    1999-03-01

    STS060-21-027 (3-11 Feb 1994) --- Astronaut Ronald M. Sega (left) and Russian cosmonaut Sergei K. Krikalev work on a joint U.S./Russian metabolic experiment on the Space Shuttle Discovery's middeck. A number of other U.S./Russian cooperative Detailed Supplementary Objectives (DSO) are included among the experiments conducted on the eight-day mission.

  5. STS-43 MS Lucid works with BIMDA-02 cell syringes on OV-104's middeck

    NASA Image and Video Library

    1991-08-11

    STS043-03-001 (2-11 Aug 1991) --- Astronaut Shannon W. Lucid, STS-43 mission specialist, is pictured with a sample from the Bio-serve Instrumentation Technology Associates Materials Dispersion Apparatus (BIMDA). BIMDA is designed to obtain data on scientific methods and commercial potential for growing large high quality protein crystals in microgravity. The experimental focus is on both synthetic and natural biological processes that provide the foundation of the assembly of large structures from macromolecules. In addition, cell processes and membrane (cell and artificial) processes are being evaluated. BIMDA experiments are stored and operated on the middeck in a refrigerator/incubator module (R/IM). During this flight, the R/IM maintains a constant internal temperature of 20 degrees Celsius. This experiment also flew on NASA?s STS-37 mission.

  6. Cutaway line drawing of STS-34 middeck experiment Polymer Morphology (PM)

    NASA Technical Reports Server (NTRS)

    1989-01-01

    Cutaway line drawing shows components of STS-34 middeck experiment Polymer Morphology (PM). Components include the EAC, heat exchanger, sample cell control (SCC), sample cells, source, interferometer, electronics, carousel drive, infrared (IR) beam, and carousel. PM, a 3M-developed organic materials processing experiment, is designed to explore the effects of microgravity on polymeric materials as they are processed in space. The samples of polymeric materials being studied in the PM experiment are thin films (25 microns or less) approximately 25mm in diameter. The samples are mounted between two infrared transparent windows in a specially designed infrared cell that provides the capability of thermally processing the samples to 200 degrees Celsius with a high degree of thermal control. The samples are mounted on a carousel that allows them to be positioned, one at a time, in the infrared beam where spectra may be acquired. The Generic Electronics Module (GEM) provides all carousel and

  7. Middeck zero-gravity dynamics experiment - Comparison of ground and flight test data

    NASA Technical Reports Server (NTRS)

    Crawley, Edward F.; Barlow, Mark S.; Van Schoor, Marthinus C.; Masters, Brett; Bicos, Andrew S.

    1992-01-01

    An analytic and experimental study of the changes in the modal parameters of space structural test articles from one- to zero-gravity is presented. Deployable, erectable, and rotary modules was assembled to form three one- and two-dimensional structures, in which variations in bracing wire and rotary joint preload could be introduced. The structures were modeled as if hanging from a suspension system in one gravity, and unconstrained, as if free floating in zero-gravity. The analysis is compared with ground experimental measurements, made on a spring/wire suspension system with a nominal plunge frequency of one Hertz, and with measurements made on the Shuttle middeck. The degree of change in linear modal parameters as well as the change in nonlinear nature of the response is examined. Trends in modal parameters are presented as a function of force amplitude, joint preload, and ambient gravity level.

  8. STS-33 MS Musgrave and MS Carter perform balancing act on OV-103's middeck

    NASA Technical Reports Server (NTRS)

    1989-01-01

    STS-33 Mission Specialist (MS) F. Story Musgrave demonstrates a microgravity trick by balancing MS Manley L. Carter, Jr on his index finger. During the performance on Discovery's, Orbiter Vehicle (OV) 103's, middeck, Carter freefloats at the middeck ceiling while Musgrave supports him from underneath. On the forward middeck lockers is a PURDUE Boilermakers decal.

  9. Pilot Hartsfield in sleep restraint tethered to forward middeck lockers

    NASA Technical Reports Server (NTRS)

    1982-01-01

    Pilot Hartsfield demonstrates the sleeping accomodations onboard the Earth-orbiting Columbia, Orbiter Vehicle (OV) 102. The sleep restraint is located in the middeck area of the spacecraft and is tethered to forward middeck lockers.

  10. Commander Truly cleans ARS filters on middeck

    NASA Image and Video Library

    1983-09-05

    STS008-13-336 (5 Sept 1983) --- On middeck, Richard M. Truly, STS-8 commander, uses vacuum cleaner to remove debris from air revitalization system (ARS) filter assembly. Open panel on middeck floor is the ARS access panel.

  11. Astronaut Bernard Harris monitors Spacehab experiments

    NASA Image and Video Library

    1995-02-03

    STS063-68-013 (3-11 Feb 1995) --- Astronaut Bernard A. Harris, Jr., a physician and payload commander, monitors several Spacehab-3 experiments which occupy locker space on the Space Shuttle Discovery's mid-deck. The Spacehab 3 Module is located in the cargo bay. Others onboard the Discovery were astronauts James D. Wetherbee, commander; Eileen M. Collins, pilot; mission specialists C. Michael Foale, Janice E. Voss, and Russian cosmonaut Vladimir G. Titov.

  12. MS Reilly at work on Endeavour

    NASA Image and Video Library

    1998-03-04

    S89-E-5534 (22-31 Jan 1998) --- This Electronic Still Camera (ESC) image shows astronaut James F. Reilly, mission specialist, floating in the tunnel connecting the Spacehab module to the mid-deck of the Earth-orbiting Space Shuttle Endeavour. Having disconnected from the Russian Mir Space Station a day earlier, the STS-89 crew was in a mode of wrapping up final chores before a scheduled January 31st landing.

  13. STS-55 crewmembers repair waste water tank on OV-102's middeck

    NASA Technical Reports Server (NTRS)

    1993-01-01

    Three STS-55 crewmembers participate in an inflight maintenance (IFM) exercise to counter problems experienced with a waste water tank below Columbia's, Orbiter Vehicle (OV) 102's, middeck. Mission Specialist 3 (MS3) Bernard A. Harris, Jr, inside the airlock, holds middeck floor access panel MD54G and looks below at Pilot Terence T. Henricks who is in the bilge area. Commander Steven R. Nagel is lying on middeck floor at the left.

  14. Candid views of STS-41C crew preparing food on middeck

    NASA Image and Video Library

    1984-04-08

    Candid views of the STS-41C crew preparing and eating food on the middeck include : Mission pilot Francis R. (Dick) Scobee goes bobbing for a morsel of food from his position on the middeck near the galley.

  15. Astronaut Ellison Onizuka eating with chopsticks on the middeck

    NASA Technical Reports Server (NTRS)

    1985-01-01

    Mission specialist Ellison S. Onizuka is attempting to use chopsticks to eat his meal on the middeck of the Discovery during the STS 51-C mission. A food tray is floating on his lap and another is attached to the middeck lockers.

  16. Pilot Richards on middeck wearing University of Missouri 'MIZZOU' t-shirt

    NASA Technical Reports Server (NTRS)

    1989-01-01

    Pilot Richard N. Richards takes a moment from middeck tasks to display his University of Missouri 'MIZZOU' t-shirt. Behind Richards are the forward middeck lockers, a net stowage bag filled with clothing, and the sleep restraints fastened to the starboard wall.

  17. A Stream lined Approach for the Payload Customer in Identifying Payload Design Requirements

    NASA Technical Reports Server (NTRS)

    Miller, Ladonna J.; Schneider, Walter F.; Johnson, Dexer E.; Roe, Lesa B.

    2001-01-01

    NASA payload developers from across various disciplines were asked to identify areas where process changes would simplify their task of developing and flying flight hardware. Responses to this query included a central location for consistent hardware design requirements for middeck payloads. The multidisciplinary team assigned to review the numerous payload interface design documents is assessing the Space Shuttle middeck, the SPACEHAB Inc. locker, as well as the MultiPurpose Logistics Module (MPLM) and EXpedite the PRocessing of Experiments to Space Station (EXPRESS) rack design requirements for the payloads. They are comparing the multiple carriers and platform requirements and developing a matrix which illustrates the individual requirements, and where possible, the envelope that encompasses all of the possibilities. The matrix will be expanded to form an overall envelope that the payload developers will have the option to utilize when designing their payload's hardware. This will optimize the flexibility for payload hardware and ancillary items to be manifested on multiple carriers and platforms with minimal impact to the payload developer.

  18. Cutaway line drawing of STS-34 middeck experiment Polymer Morphology (PM)

    NASA Technical Reports Server (NTRS)

    1989-01-01

    Cutaway line drawing shows components of STS-34 middeck experiment Polymer Morphology (PM). Generic Electronics Module (GEM) components include the control housing, circulating fans, hard disk, tape drives, computer boards, and heat exchanger. PM, a 3M-developed organic materials processing experiment, is designed to explore the effects of microgravity on polymeric materials as they are processed in space. The samples of polymeric materials being studied in the PM experiment are thin films (25 microns or less) approximately 25mm in diameter. The samples are mounted between two infrared transparent windows in a specially designed infrared cell that provides the capability of thermally processing the samples to 200 degrees Celsius with a high degree of thermal control. The samples are mounted on a carousel that allows them to be positioned, one at a time, in the infrared beam where spectra may be acquired. The GEM provides all carousel and sample cell control (SCC). The first flight of P

  19. Concepts for the evolution of the Space Station Program

    NASA Technical Reports Server (NTRS)

    Michaud, Roger B.; Miller, Ladonna J.; Primeaux, Gary R.

    1986-01-01

    An evaluation is made of innovative but pragmatic waste management, interior and exterior orbital module construction, Space Shuttle docking, orbital repair operation, and EVA techniques applicable to the NASA Space Station program over the course of its evolution. Accounts are given of the Space Shuttle's middeck extender module, an on-orbit module assembly technique employing 'Pringles' stack-transportable conformal panels, a flexible Shuttle/Space Station docking tunnel, an 'expandable dome' for transfer of objects into the Space Station, and a Space Station dual-hatch system. For EVA operations, pressurized bubbles with articulating manipulator arms and EVA hard suits incorporating maneuvering, life support and propulsion capabilities, as well as an EVA gas propulsion system, are proposed. A Space Station ultrasound cleaning system is also discussed.

  20. STS-5 crew on middeck

    NASA Image and Video Library

    1982-11-16

    STS005-06-206 (11-16 Nov. 1982) --- Astronaut Joseph P. Allen, STS-5 mission specialist, watches a can of food and a notebook drift on the middeck as Vance C. Brand, commander, (left) and William B. Lenoir, mission specialist, (far left) work at forward middeck lockers. Photo credit: NASA

  1. Payload specialist Wubbo Ockels in new sleeping restraint

    NASA Image and Video Library

    1985-10-30

    61A-08-018 (30 Oct.-6 Nov. 1985) --- Wubbo J. Ockels, a Dutch scientists representing the European Space Agency (ESA), crawls from an unique sleeping restraint in D-1 science module. Unlike the other crewmembers on STS 61A, Ockels did not sleep in the middeck of the Challenger. Ockels proposed this concept of sleeping facility and the actual hardware was developed by the Technisch Natur Wetenschappelyk Onderzoek (TNO), a Dutch government organization.

  2. STS-28 Columbia, OV-102, MS Adamson prepares meal on middeck

    NASA Technical Reports Server (NTRS)

    1989-01-01

    On middeck of Columbia, Orbiter Vehicle (OV) 102, Mission Specialist (MS) James C. Adamson watches as open jars of peanut butter and jelly and a jar lid freefloat in front of middeck lockers. Adamson holds a tortilla covered with the two ingredients. Behind Adamson is the galley.

  3. STS-29 MS Bagian juggles audio cassettes on Discovery's, OV-103's, middeck

    NASA Technical Reports Server (NTRS)

    1989-01-01

    On aft middeck, STS-29 Mission Specialist (MS) James P. Bagian juggles TEAC audio cassettes freefloating above foam insert as he attempts to organize them. In front of Bagian are aft middeck lockers and part of the open airlock hatch. Behind him are the starboard wall-mounted sleep restraints.

  4. Astronaut Anthony W. England with soft drink in middeck area near galley

    NASA Technical Reports Server (NTRS)

    1985-01-01

    Astronaut Anthony W. England, mission specialist, drinks from a special carbonated beverage dispenser labeled Coke while floating in the middeck area of the shuttle Challenger. Note the can appears to have its own built in straw. Just below him, food containers on a tray are attached to the middeck lockers.

  5. Commander Young removes CAP from FDF stowage locker on middeck

    NASA Technical Reports Server (NTRS)

    1981-01-01

    Commander Young removes Crew Activity Plans (CAP) from Flight Data File (FD/FDF) modular stowage locker single tray assembly located in forward middeck locker MF28E. Window shade and filter kit on port side bulkhead and potable water tank on middeck floor appear in view. Photo was taken by Pilot Crippen with a 35mm camera.

  6. STS-31 Pilot Bolden with beverages on the FB-SMS middeck during JSC training

    NASA Technical Reports Server (NTRS)

    1988-01-01

    STS-31 Pilot Charles F. Bolden holds three beverage containers while in front of the galley on the middeck of the fixed based (FB) shuttle mission simulator (SMS) during a training simulation at JSC's Mission Simulation and Training Facility Bldg 5. From the middeck, Bolden, wearing lightweight headset, simulates a communications link with ground controllers and fellow crewmembers.

  7. STS-26 MS Nelson adjusts ADSF power cable on Discovery's middeck

    NASA Technical Reports Server (NTRS)

    1988-01-01

    STS-26 Mission Specialist (MS) George D. Nelson adjusts power cable on automated directional solidification furnace (ADSF) support electronics package. ADSF is located in forward (starboard side) lockers on Discovery's, Orbiter Vehicle (OV) 103's, middeck. ADSF consists of the furnace container (left) and the control electronics container (right). An Air National Guard, Houston, Texas, decal appears on middeck locker above ADSF.

  8. Concept design and alternate arrangements of orbiter mid-deck habitability features

    NASA Technical Reports Server (NTRS)

    Church, R. A.; Ciciora, J. A.; Porter, K. L.; Stevenson, G. E.

    1976-01-01

    The evaluations and recommendations for habitability features in the space shuttle orbiter mid-deck are summarized. The orbiter mission plans, the mid-deck dimensions and baseline arrangements along with crew compliments and typical activities were defined. Female and male anthropometric data based on zero-g operations were also defined. Evaluations of baseline and alternate feasible concepts provided several recommendations which are discussed.

  9. Orbiter fire rescue and crew escape training for EVA crew systems support

    NASA Image and Video Library

    1993-01-28

    Photos of orbiter fire rescue and crew escape training for extravehicular activity (EVA) crew systems support conducted in Bldg 9A Crew Compartment Trainer (CCT) and Fuel Fuselage Trainer (FFT) include views of CCT interior of middeck starboard fuselage showing middeck forward (MF) locker and COAS assembly filter, artiflex film and camcorder bag (26834); launch/entry suit (LES) helmet assembly, neckring and helmet hold-down assembly (26835-26836); middeck aft (MA) lockers (26837); area of middeck airlock and crew escape pole (26838); connectors of crew escape pole in the middeck (268390); three test subjects in LES in the flight deck (26840); emergency side hatch slide before inflated stowage (26841); area of below adjacent to floor panel MD23R (26842); a test subject in LES in the flight deck (26843); control board and also showing sign of "orbital maneuvering system (OMS) secure and OMS TK" (26844); test subject in the flight deck also showing chart of "ascent/abort summary" (26845).

  10. STS-33 Pilot Blaha bats soccer ball (stuffed toy) on OV-103's middeck

    NASA Technical Reports Server (NTRS)

    1989-01-01

    STS-33 Pilot John E. Blaha is the goalie in an onboard soccer game using a soccer ball (stuffed toy). The game is on Discovery's, Orbiter Vehicle (OV) 103's, middeck. Wearing a crew polo shirt and shorts, Blaha, with open hands, dives to save ball from hitting the middeck forward lockers and passing the imaginary goal line on the cabin's port side.

  11. STS-40 Pilot Gutierrez changes LiOH canisters on OV-102's middeck

    NASA Image and Video Library

    1991-06-14

    STS040-43-026 (5-14 June 1991) --- Astronaut Sidney M. Gutierrez, pilot, changes out the lithium hydroxide canisters on the Space Shuttle Columbia's middeck. Gutierrez, making his first flight into space, was joined by six other crew members for the nine-day Spacelab Life Sciences (SLS-1) mission, devoted to life sciences research. This middeck scene was photographed with a 35mm camera.

  12. STS-44 Mission Specialist (MS) Runco floats on OV-104's middeck

    NASA Technical Reports Server (NTRS)

    1991-01-01

    STS-44 Mission Specialist (MS) Mario Runco, Jr, wearing communications kit assembly headset (HDST), freefloats on the middeck of Atlantis, Orbiter Vehicle (OV) 104. HDST interface unit (HIU) is strapped to Runco's thigh. Note that his back is against the middeck ceiling, his feet at the port side wall, and his left hand at the forward lockers. Runco is also wearing a United States Navy t-shirt.

  13. SPACEHAB: A giant step in the commercial development of space

    NASA Astrophysics Data System (ADS)

    Shepard, James E.

    SPACEHAB is a privately developed and operated system offering customers a crew-tended microgravity environment for experimentation and product development. The first SPACEHAB flight module was delivered to the SPACEHAB Payload Processing Facility (SPPF) in Florida and 22 experiments are being integrated for an April 1993 mission. SPACEHAB modules are flown in the forward quarter-bay of the NASA Orbiter and are supported by two crew members. The paylaod accommodations include up to 61 experiment lockers, double and single racks and standard mounting plates for mounting unique payload containers directly to the module structure. Experiments designed for the Orbiter mid-deck, Spacelab or Space Station Freedom can be flown in SPACEHAB. The 24-month integration cycle is currently the shortest for any crew-tended carrier; a goal of 18 months is being actively pursued.

  14. Pilot Fullerton prepares meal on middeck

    NASA Image and Video Library

    1982-03-30

    STS003-26-253 (30 March 1982) --- Astronaut Gordon Fullerton, STS-3 pilot, wearing communications kit assembly (assy) mini-headset (HDST), prepares meal on middeck. Fullerton clips corner of rehydratable food (cereal) package with scissors. The opening will allow Fullerton to insert JSC water dispenser kit water gun in order to heat contents with hot water. Meal tray assembly is secured to forward middeck locker and holds additional food packages and beverage containers. Photo credit: NASA

  15. KSC-03PD-0083

    NASA Technical Reports Server (NTRS)

    2003-01-01

    KENNEDY SPACE CENTER, FLA. - Students work on their experiments that will fly in SPACEHAB on Space Shuttle Columbia on mission STS-107. SPACEHAB's complement of commercial experiments includes six educational experiments designed and developed by students in six different countries under the auspices of Space Technology and Research Students (STARS), a global education program managed by SPACEHAB subsidiary Space Media. The countries represented are Australia, China, Israel, Japan, Liechtenstein and the United States. The student investigators who conceived these experiments will monitor their operations in space. The experiments will be housed in BioServe Space Technologies' Isothermal Containment Module (ICM --a small temperature-controlled facility that provides experiment support such as physical containment, lighting, and video imaging) and stowed in a middeck-size locker aboard the SPACEHAB Research Double Module.

  16. KSC-03PD-0079

    NASA Technical Reports Server (NTRS)

    2003-01-01

    KENNEDY SPACE CENTER, FLA. -- Students display an experiment that will fly in SPACEHAB on Space Shuttle Columbia on mission STS- 107. SPACEHAB's complement of commercial experiments includes six educational experiments designed and developed by students in six different countries under the auspices of Space Technology and Research Students (STARS), a global education program managed by SPACEHAB subsidiary Space Media. The countries represented are Australia, China, Israel, Japan, Liechtenstein and the United States. The student investigators who conceived these experiments will monitor their operations in space. The experiments will be housed in BioServe Space Technologies' Isothermal Containment Module (ICM --a small temperature-controlled facility that provides experiment support such as physical containment, lighting, and video imaging) and stowed in a middeck-size locker aboard the SPACEHAB Research Double Module.

  17. KSC-03PD-0087

    NASA Technical Reports Server (NTRS)

    2003-01-01

    KENNEDY SPACE CENTER, FLA. - Students work on their experiments that will fly in SPACEHAB on Space Shuttle Columbia on mission STS-107. SPACEHAB's complement of commercial experiments includes six educational experiments designed and developed by students in six different countries under the auspices of Space Technology and Research Students (STARS), a global education program managed by SPACEHAB subsidiary Space Media. The countries represented are Australia, China, Israel, Japan, Liechtenstein and the United States. The student investigators who conceived these experiments will monitor their operations in space. The experiments will be housed in BioServe Space Technologies' Isothermal Containment Module (ICM --a small temperature-controlled facility that provides experiment support such as physical containment, lighting, and video imaging) and stowed in a middeck-size locker aboard the SPACEHAB Research Double Module.

  18. KSC-03PD-0086

    NASA Technical Reports Server (NTRS)

    2003-01-01

    KENNEDY SPACE CENTER, FLA. - Students work on their experiments that will fly in SPACEHAB on Space Shuttle Columbia on mission STS-107. SPACEHAB's complement of commercial experiments includes six educational experiments designed and developed by students in six different countries under the auspices of Space Technology and Research Students (STARS), a global education program managed by SPACEHAB subsidiary Space Media. The countries represented are Australia, China, Israel, Japan, Liechtenstein and the United States. The student investigators who conceived these experiments will monitor their operations in space. The experiments will be housed in BioServe Space Technologies' Isothermal Containment Module (ICM --a small temperature-controlled facility that provides experiment support such as physical containment, lighting, and video imaging) and stowed in a middeck-size locker aboard the SPACEHAB Research Double Module.

  19. KSC-03PD-0081

    NASA Technical Reports Server (NTRS)

    2003-01-01

    KENNEDY SPACE CENTER, FLA. - Students look over their experiments that will fly in SPACEHAB on Space Shuttle Columbia on mission STS-107. SPACEHAB's complement of commercial experiments includes six educational experiments designed and developed by students in six different countries under the auspices of Space Technology and Research Students (STARS), a global education program managed by SPACEHAB subsidiary Space Media. The countries represented are Australia, China, Israel, Japan, Liechtenstein and the United States. The student investigators who conceived these experiments will monitor their operations in space. The experiments will be housed in BioServe Space Technologies' Isothermal Containment Module (ICM --a small temperature-controlled facility that provides experiment support such as physical containment, lighting, and video imaging) and stowed in a middeck-size locker aboard the SPACEHAB Research Double Module.

  20. KSC-03PD-0088

    NASA Technical Reports Server (NTRS)

    2003-01-01

    KENNEDY SPACE CENTER, FLA. - Students check out their experiments that will fly in SPACEHAB on Space Shuttle Columbia on mission STS-107. SPACEHAB's complement of commercial experiments includes six educational experiments designed and developed by students in six different countries under the auspices of Space Technology and Research Students (STARS), a global education program managed by SPACEHAB subsidiary Space Media. The countries represented are Australia, China, Israel, Japan, Liechtenstein and the United States. The student investigators who conceived these experiments will monitor their operations in space. The experiments will be housed in BioServe Space Technologies' Isothermal Containment Module (ICM --a small temperature-controlled facility that provides experiment support such as physical containment, lighting, and video imaging) and stowed in a middeck-size locker aboard the SPACEHAB Research Double Module.

  1. KSC-03PD-0082

    NASA Technical Reports Server (NTRS)

    2003-01-01

    KENNEDY SPACE CENTER, FLA. - Students check on their experiments that will fly in SPACEHAB on Space Shuttle Columbia on mission STS-107. SPACEHAB's complement of commercial experiments includes six educational experiments designed and developed by students in six different countries under the auspices of Space Technology and Research Students (STARS), a global education program managed by SPACEHAB subsidiary Space Media. The countries represented are Australia, China, Israel, Japan, Liechtenstein and the United States. The student investigators who conceived these experiments will monitor their operations in space. The experiments will be housed in BioServe Space Technologies' Isothermal Containment Module (ICM --a small temperature-controlled facility that provides experiment support such as physical containment, lighting, and video imaging) and stowed in a middeck-size locker aboard the SPACEHAB Research Double Module.

  2. KSC-03PD-0084

    NASA Technical Reports Server (NTRS)

    2003-01-01

    KENNEDY SPACE CENTER, FLA. - Students work on their experiments that will fly in SPACEHAB on Space Shuttle Columbia on mission STS-107. SPACEHAB's complement of commercial experiments includes six educational experiments designed and developed by students in six different countries under the auspices of Space Technology and Research Students (STARS), a global education program managed by SPACEHAB subsidiary Space Media. The countries represented are Australia, China, Israel, Japan, Liechtenstein and the United States. The student investigators who conceived these experiments will monitor their operations in space. The experiments will be housed in BioServe Space Technologies' Isothermal Containment Module (ICM --a small temperature-controlled facility that provides experiment support such as physical containment, lighting, and video imaging) and stowed in a middeck-size locker aboard the SPACEHAB Research Double Module.

  3. KSC-03PD-0094

    NASA Technical Reports Server (NTRS)

    2003-01-01

    KENNEDY SPACE CENTER, FLA. -- Students work on their experiments that will fly in SPACEHAB on Space Shuttle Columbia on mission STS-107. SPACEHAB's complement of commercial experiments includes six educational experiments designed and developed by students in six different countries under the auspices of Space Technology and Research Students (STARS), a global education program managed by SPACEHAB subsidiary Space Media. The countries represented are Australia, China, Israel, Japan, Liechtenstein and the United States. The student investigators who conceived these experiments will monitor their operations in space. The experiments will be housed in BioServe Space Technologies' Isothermal Containment Module (ICM --a small temperature-controlled facility that provides experiment support such as physical containment, lighting, and video imaging) and stowed in a middeck-size locker aboard the SPACEHAB Research Double Module.

  4. KSC-03PD-0091

    NASA Technical Reports Server (NTRS)

    2003-01-01

    KENNEDY SPACE CENTER, FLA. -- Students work on their experiments that will fly in SPACEHAB on Space Shuttle Columbia on mission STS-107. SPACEHAB's complement of commercial experiments includes six educational experiments designed and developed by students in six different countries under the auspices of Space Technology and Research Students (STARS), a global education program managed by SPACEHAB subsidiary Space Media. The countries represented are Australia, China, Israel, Japan, Liechtenstein and the United States. The student investigators who conceived these experiments will monitor their operations in space. The experiments will be housed in BioServe Space Technologies' Isothermal Containment Module (ICM --a small temperature-controlled facility that provides experiment support such as physical containment, lighting, and video imaging) and stowed in a middeck-size locker aboard the SPACEHAB Research Double Module.

  5. KSC-03PD-0090

    NASA Technical Reports Server (NTRS)

    2003-01-01

    KENNEDY SPACE CENTER, FLA. -- Students check out their experiments that will fly in SPACEHAB on Space Shuttle Columbia on mission STS-107. SPACEHAB's complement of commercial experiments includes six educational experiments designed and developed by students in six different countries under the auspices of Space Technology and Research Students (STARS), a global education program managed by SPACEHAB subsidiary Space Media. The countries represented are Australia, China, Israel, Japan, Liechtenstein and the United States. The student investigators who conceived these experiments will monitor their operations in space. The experiments will be housed in BioServe Space Technologies' Isothermal Containment Module (ICM --a small temperature-controlled facility that provides experiment support such as physical containment, lighting, and video imaging) and stowed in a middeck-size locker aboard the SPACEHAB Research Double Module.

  6. KSC-03PD-0096

    NASA Technical Reports Server (NTRS)

    2003-01-01

    KENNEDY SPACE CENTER, FLA. -- A student displays an experiment that will fly in SPACEHAB on Space Shuttle Columbia on mission STS-107. SPACEHAB's complement of commercial experiments includes six educational experiments designed and developed by students in six different countries under the auspices of Space Technology and Research Students (STARS), a global education program managed by SPACEHAB subsidiary Space Media. The countries represented are Australia, China, Israel, Japan, Liechtenstein and the United States. The student investigators who conceived these experiments will monitor their operations in space. The experiments will be housed in BioServe Space Technologies' Isothermal Containment Module (ICM --a small temperature-controlled facility that provides experiment support such as physical containment, lighting, and video imaging) and stowed in a middeck-size locker aboard the SPACEHAB Research Double Module.

  7. KSC-03PD-0097

    NASA Technical Reports Server (NTRS)

    2003-01-01

    KENNEDY SPACE CENTER, FLA. -- Students display an experiment that will fly in SPACEHAB on Space Shuttle Columbia on mission STS- 107. SPACEHAB's complement of commercial experiments includes six educational experiments designed and developed by students in six different countries under the auspices of Space Technology and Research Students (STARS), a global education program managed by SPACEHAB subsidiary Space Media. The countries represented are Australia, China, Israel, Japan, Liechtenstein and the United States. The student investigators who conceived these experiments will monitor their operations in space. The experiments will be housed in BioServe Space Technologies' Isothermal Containment Module (ICM --a small temperature-controlled facility that provides experiment support such as physical containment, lighting, and video imaging) and stowed in a middeck-size locker aboard the SPACEHAB Research Double Module.

  8. KSC-03PD-0095

    NASA Technical Reports Server (NTRS)

    2003-01-01

    KENNEDY SPACE CENTER, FLA. - A student works on an experiment that will fly in SPACEHAB on Space Shuttle Columbia on mission STS-107. SPACEHAB's complement of commercial experiments includes six educational experiments designed and developed by students in six different countries under the auspices of Space Technology and Research Students (STARS), a global education program managed by SPACEHAB subsidiary Space Media. The countries represented are Australia, China, Israel, Japan, Liechtenstein and the United States. The student investigators who conceived these experiments will monitor their operations in space. The experiments will be housed in BioServe Space Technologies' Isothermal Containment Module (ICM --a small temperature-controlled facility that provides experiment support such as physical containment, lighting, and video imaging) and stowed in a middeck-size locker aboard the SPACEHAB Research Double Module.

  9. KSC-03pd0095

    NASA Image and Video Library

    2003-01-15

    KENNEDY SPACE CENTER, FLA. - A student works on an experiment that will fly in SPACEHAB on Space Shuttle Columbia on mission STS-107. SPACEHAB's complement of commercial experiments includes six educational experiments designed and developed by students in six different countries under the auspices of Space Technology and Research Students (STARS), a global education program managed by SPACEHAB subsidiary Space Media. The countries represented are Australia, China, Israel, Japan, Liechtenstein and the United States. The student investigators who conceived these experiments will monitor their operations in space. The experiments will be housed in BioServe Space Technologies' Isothermal Containment Module (ICM --a small temperature-controlled facility that provides experiment support such as physical containment, lighting, and video imaging) and stowed in a middeck-size locker aboard the SPACEHAB Research Double Module.

  10. KSC-03pd0090

    NASA Image and Video Library

    2003-01-15

    KENNEDY SPACE CENTER, FLA. -- Students check out their experiments that will fly in SPACEHAB on Space Shuttle Columbia on mission STS-107. SPACEHAB's complement of commercial experiments includes six educational experiments designed and developed by students in six different countries under the auspices of Space Technology and Research Students (STARS), a global education program managed by SPACEHAB subsidiary Space Media. The countries represented are Australia, China, Israel, Japan, Liechtenstein and the United States. The student investigators who conceived these experiments will monitor their operations in space. The experiments will be housed in BioServe Space Technologies' Isothermal Containment Module (ICM --a small temperature-controlled facility that provides experiment support such as physical containment, lighting, and video imaging) and stowed in a middeck-size locker aboard the SPACEHAB Research Double Module.

  11. KSC-03pd0082

    NASA Image and Video Library

    2003-01-15

    KENNEDY SPACE CENTER, FLA. - Students check on their experiments that will fly in SPACEHAB on Space Shuttle Columbia on mission STS-107. SPACEHAB's complement of commercial experiments includes six educational experiments designed and developed by students in six different countries under the auspices of Space Technology and Research Students (STARS), a global education program managed by SPACEHAB subsidiary Space Media. The countries represented are Australia, China, Israel, Japan, Liechtenstein and the United States. The student investigators who conceived these experiments will monitor their operations in space. The experiments will be housed in BioServe Space Technologies' Isothermal Containment Module (ICM --a small temperature-controlled facility that provides experiment support such as physical containment, lighting, and video imaging) and stowed in a middeck-size locker aboard the SPACEHAB Research Double Module.

  12. KSC-03pd0084

    NASA Image and Video Library

    2003-01-15

    KENNEDY SPACE CENTER, FLA. - Students work on their experiments that will fly in SPACEHAB on Space Shuttle Columbia on mission STS-107. SPACEHAB's complement of commercial experiments includes six educational experiments designed and developed by students in six different countries under the auspices of Space Technology and Research Students (STARS), a global education program managed by SPACEHAB subsidiary Space Media. The countries represented are Australia, China, Israel, Japan, Liechtenstein and the United States. The student investigators who conceived these experiments will monitor their operations in space. The experiments will be housed in BioServe Space Technologies' Isothermal Containment Module (ICM --a small temperature-controlled facility that provides experiment support such as physical containment, lighting, and video imaging) and stowed in a middeck-size locker aboard the SPACEHAB Research Double Module.

  13. KSC-03pd0088

    NASA Image and Video Library

    2003-01-15

    KENNEDY SPACE CENTER, FLA. - Students check out their experiments that will fly in SPACEHAB on Space Shuttle Columbia on mission STS-107. SPACEHAB's complement of commercial experiments includes six educational experiments designed and developed by students in six different countries under the auspices of Space Technology and Research Students (STARS), a global education program managed by SPACEHAB subsidiary Space Media. The countries represented are Australia, China, Israel, Japan, Liechtenstein and the United States. The student investigators who conceived these experiments will monitor their operations in space. The experiments will be housed in BioServe Space Technologies' Isothermal Containment Module (ICM --a small temperature-controlled facility that provides experiment support such as physical containment, lighting, and video imaging) and stowed in a middeck-size locker aboard the SPACEHAB Research Double Module.

  14. KSC-03pd0094

    NASA Image and Video Library

    2003-01-15

    KENNEDY SPACE CENTER, FLA. -- Students work on their experiments that will fly in SPACEHAB on Space Shuttle Columbia on mission STS-107. SPACEHAB's complement of commercial experiments includes six educational experiments designed and developed by students in six different countries under the auspices of Space Technology and Research Students (STARS), a global education program managed by SPACEHAB subsidiary Space Media. The countries represented are Australia, China, Israel, Japan, Liechtenstein and the United States. The student investigators who conceived these experiments will monitor their operations in space. The experiments will be housed in BioServe Space Technologies' Isothermal Containment Module (ICM --a small temperature-controlled facility that provides experiment support such as physical containment, lighting, and video imaging) and stowed in a middeck-size locker aboard the SPACEHAB Research Double Module.

  15. KSC-03pd0087

    NASA Image and Video Library

    2003-01-15

    KENNEDY SPACE CENTER, FLA. - Students work on their experiments that will fly in SPACEHAB on Space Shuttle Columbia on mission STS-107. SPACEHAB's complement of commercial experiments includes six educational experiments designed and developed by students in six different countries under the auspices of Space Technology and Research Students (STARS), a global education program managed by SPACEHAB subsidiary Space Media. The countries represented are Australia, China, Israel, Japan, Liechtenstein and the United States. The student investigators who conceived these experiments will monitor their operations in space. The experiments will be housed in BioServe Space Technologies' Isothermal Containment Module (ICM --a small temperature-controlled facility that provides experiment support such as physical containment, lighting, and video imaging) and stowed in a middeck-size locker aboard the SPACEHAB Research Double Module.

  16. KSC-03pd0091

    NASA Image and Video Library

    2003-01-15

    KENNEDY SPACE CENTER, FLA. -- Students work on their experiments that will fly in SPACEHAB on Space Shuttle Columbia on mission STS-107. SPACEHAB's complement of commercial experiments includes six educational experiments designed and developed by students in six different countries under the auspices of Space Technology and Research Students (STARS), a global education program managed by SPACEHAB subsidiary Space Media. The countries represented are Australia, China, Israel, Japan, Liechtenstein and the United States. The student investigators who conceived these experiments will monitor their operations in space. The experiments will be housed in BioServe Space Technologies' Isothermal Containment Module (ICM --a small temperature-controlled facility that provides experiment support such as physical containment, lighting, and video imaging) and stowed in a middeck-size locker aboard the SPACEHAB Research Double Module.

  17. KSC-03pd0097

    NASA Image and Video Library

    2003-01-15

    KENNEDY SPACE CENTER, FLA. -- Students display an experiment that will fly in SPACEHAB on Space Shuttle Columbia on mission STS-107. SPACEHAB's complement of commercial experiments includes six educational experiments designed and developed by students in six different countries under the auspices of Space Technology and Research Students (STARS), a global education program managed by SPACEHAB subsidiary Space Media. The countries represented are Australia, China, Israel, Japan, Liechtenstein and the United States. The student investigators who conceived these experiments will monitor their operations in space. The experiments will be housed in BioServe Space Technologies' Isothermal Containment Module (ICM --a small temperature-controlled facility that provides experiment support such as physical containment, lighting, and video imaging) and stowed in a middeck-size locker aboard the SPACEHAB Research Double Module.

  18. KSC-03pd0083

    NASA Image and Video Library

    2003-01-15

    KENNEDY SPACE CENTER, FLA. - Students work on their experiments that will fly in SPACEHAB on Space Shuttle Columbia on mission STS-107. SPACEHAB's complement of commercial experiments includes six educational experiments designed and developed by students in six different countries under the auspices of Space Technology and Research Students (STARS), a global education program managed by SPACEHAB subsidiary Space Media. The countries represented are Australia, China, Israel, Japan, Liechtenstein and the United States. The student investigators who conceived these experiments will monitor their operations in space. The experiments will be housed in BioServe Space Technologies' Isothermal Containment Module (ICM --a small temperature-controlled facility that provides experiment support such as physical containment, lighting, and video imaging) and stowed in a middeck-size locker aboard the SPACEHAB Research Double Module.

  19. KSC-03pd0086

    NASA Image and Video Library

    2003-01-15

    KENNEDY SPACE CENTER, FLA. - Students work on their experiments that will fly in SPACEHAB on Space Shuttle Columbia on mission STS-107. SPACEHAB's complement of commercial experiments includes six educational experiments designed and developed by students in six different countries under the auspices of Space Technology and Research Students (STARS), a global education program managed by SPACEHAB subsidiary Space Media. The countries represented are Australia, China, Israel, Japan, Liechtenstein and the United States. The student investigators who conceived these experiments will monitor their operations in space. The experiments will be housed in BioServe Space Technologies' Isothermal Containment Module (ICM --a small temperature-controlled facility that provides experiment support such as physical containment, lighting, and video imaging) and stowed in a middeck-size locker aboard the SPACEHAB Research Double Module.

  20. KSC-03pd0096

    NASA Image and Video Library

    2003-01-15

    KENNEDY SPACE CENTER, FLA. -- A student displays an experiment that will fly in SPACEHAB on Space Shuttle Columbia on mission STS-107. SPACEHAB's complement of commercial experiments includes six educational experiments designed and developed by students in six different countries under the auspices of Space Technology and Research Students (STARS), a global education program managed by SPACEHAB subsidiary Space Media. The countries represented are Australia, China, Israel, Japan, Liechtenstein and the United States. The student investigators who conceived these experiments will monitor their operations in space. The experiments will be housed in BioServe Space Technologies' Isothermal Containment Module (ICM --a small temperature-controlled facility that provides experiment support such as physical containment, lighting, and video imaging) and stowed in a middeck-size locker aboard the SPACEHAB Research Double Module.

  1. SPACEHAB - Space Shuttle Columbia mission STS-107

    NASA Image and Video Library

    2003-01-14

    Students display an experiment that will fly in SPACEHAB on Space Shuttle Columbia on mission STS-107. SPACEHAB's complement of commercial experiments includes six educational experiments designed and developed by students in six different countries under the auspices of Space Technology and Research Students (STARS), a global education program managed by SPACEHAB subsidiary Space Media. The countries represented are Australia, China, Israel, Japan, Liechtenstein and the United States. The student investigators who conceived these experiments will monitor their operations in space. The experiments will be housed in BioServe Space Technologies' Isothermal Containment Module (ICM --a small temperature-controlled facility that provides experiment support such as physical containment, lighting, and video imaging) and stowed in a middeck-size locker aboard the SPACEHAB Research Double Module.

  2. KSC-03pd0081

    NASA Image and Video Library

    2003-01-15

    KENNEDY SPACE CENTER, FLA. - Students look over their experiments that will fly in SPACEHAB on Space Shuttle Columbia on mission STS-107. SPACEHAB's complement of commercial experiments includes six educational experiments designed and developed by students in six different countries under the auspices of Space Technology and Research Students (STARS), a global education program managed by SPACEHAB subsidiary Space Media. The countries represented are Australia, China, Israel, Japan, Liechtenstein and the United States. The student investigators who conceived these experiments will monitor their operations in space. The experiments will be housed in BioServe Space Technologies' Isothermal Containment Module (ICM --a small temperature-controlled facility that provides experiment support such as physical containment, lighting, and video imaging) and stowed in a middeck-size locker aboard the SPACEHAB Research Double Module.

  3. Swanson on Middeck (MDDK)

    NASA Image and Video Library

    2009-03-16

    S119-E-006168 (16 March 2009) --- Astronaut Steve Swanson, STS-119 mission specialist, reads a procedures checklist while working on the middeck of Space Shuttle Discovery during flight day two activities.

  4. Astronaut Stephen Oswald and fellow crew members on middeck

    NASA Technical Reports Server (NTRS)

    1995-01-01

    Astronaut Stephen S. Oswald (center), STS-67 mission commander, is seen with two of his fellow crew members and an experiment which required a great deal of his time on the middeck of the Earth orbiting Space Shuttle Endeavour. Astronaut John M. Grunsfeld inputs mission data on a computer while listening to a cassette. Astronaut William G. Gregory (right edge of frame), pilot, consults a check list. The Middeck Active Control Experiment (MACE), not in use here, can be seen in upper center.

  5. STS-35 crewmembers in sleep station compartments on OV-102's middeck

    NASA Image and Video Library

    1990-12-11

    Though they are not actually asleep, three STS-35 crewmembers demonstrate the bunk-style sleep compartments onboard Columbia's, Orbiter Vehicle (OV) 102's, middeck. From top to bottom are Payload Specialist Samuel T. Durrance, Mission Specialist (MS) Jeffrey A. Hoffman, and MS John M. Lounge. At the left is the shuttle amateur radio experiment (SAREX). The crew escape pole (CES) is visible overhead and the open airlock hatch in the foreground. The sleep station is located against the middeck starboard wall.

  6. STS-29 Pilot Blaha with SE83-9 'Chix in Space' incubator on OV-103's middeck

    NASA Technical Reports Server (NTRS)

    1989-01-01

    On aft middeck of Discovery, Orbiter Vehicle (OV) 103, Pilot John E. Blaha opens incubator hatch on STS-29 Student Experiment (SE) 83-9 Chicken Embryo Development in Space or 'Chix in Space'. SE83-9 developed by John C. Vellinger is located in middeck aft locker MA16F. The student's sponsor is Kentucky Fried Chicken (KFC). Behind Blaha are starboard wall-mounted sleep restraints, freefloating headset, and checklists velcroed to wall.

  7. STS-107 Crew Training Clip

    NASA Technical Reports Server (NTRS)

    2002-01-01

    The STS-107 is a Multidiscipline Microgravity and Earth Science Research Mission to conduct international scientific investigations in orbit. The crew consists of Payload Specialist Ilan Ramon, Commander Rick Husband, Pilot William McCool, and Mission Specialists David Brown, Laurel Clark, Michael Anderson, and Kalpana Chawla. The crewmembers are shown getting suited in the Pre-Launch Ingress and Egress training area. The other areas of training include Payload Experiment in Fixed Base/Spacehab, Mist Experiment Combustion Module 2, Phab 4 Experiment in CCT Mid-deck and Payload Experiment Demo-Protein Crystal Growth.

  8. Commander Lousma works with EEVT experiment and cryogenic tube on aft middeck

    NASA Image and Video Library

    1982-03-31

    Commander Jack Lousma works with Electrophoresis Equipment Verification Test (EEVT) electrophoresis unit, cryogenic freezer and tube, and stowage locker equipment located on crew compartment middeck aft bulkhead.

  9. Barratt on middeck

    NASA Image and Video Library

    2011-02-25

    S133-E-006027 (25 Feb. 2011) --- Astronaut Michael Barratt, STS-133 mission specialist, works out on the bicycle ergometer on Discovery's middeck during flight day 2 activities. Photo credit: NASA or National Aeronautics and Space Administration

  10. Phillips with National Lab Pathfinder (NLP) on Middeck (MDDK)

    NASA Image and Video Library

    2009-03-16

    S119-E-006156 (16 March 2009) --- Astronaut John Phillips, STS-119 mission specialist, works with Group Activation Packs (GAP) on the middeck of Space Shuttle Discovery during flight day two activities.

  11. Phillips with National Lab Pathfinder (NLP) on Middeck (MDDK)

    NASA Image and Video Library

    2009-03-16

    S119-E-006157 (16 March 2009) --- Astronaut John Phillips, STS-119 mission specialist, works with Group Activation Packs (GAP) on the middeck of Space Shuttle Discovery during flight day two activities.

  12. STS-115 MS Tanner on Atlantis Middeck

    NASA Image and Video Library

    2006-09-10

    S115-E-05337 (10 Sept. 2006) --- Astronaut Joseph R. Tanner, STS-115 mission specialist, works on the middeck of the Space Shuttle Atlantis on the eve of docking day with the International Space Station.

  13. Fish-eye view of MS Wolf on middeck

    NASA Image and Video Library

    2002-10-09

    STS112-309-008 (7-18 October 2002) --- Astronaut David A. Wolf, STS-112 mission specialist, is pictured near an Extravehicular Mobility Unit (EMU) space suit on the middeck of the Space Shuttle Atlantis.

  14. Astronaut Karl Henize with soft drink in middeck area

    NASA Technical Reports Server (NTRS)

    1985-01-01

    Astronaut Karl Henize drinks from a special carbonated beverage dispenser labeled Pepsi while floating in the middeck area of the shuttle Challenger. Note the can appears to have its own built in straw.

  15. Ferguson Uses a Computer on Atlantis Middeck

    NASA Image and Video Library

    2011-07-13

    S135-E-007705 (13 July 2011) --- NASA astronaut Chris Ferguson, STS-135 commander, inputs data on a computer on Atlantis' middeck during the sixth day in space for him and three crewmates. Photo credit: NASA

  16. Arnold on Discovery Middeck (MDDK)

    NASA Image and Video Library

    2009-03-16

    S119-E-005004 (15 March 2009) --- Astronaut Richard Arnold, STS-119 mission specialist, attired in his shuttle launch and entry suit, gives a “thumbs-up” signal on the middeck of Space Shuttle Discovery during postlaunch activities.

  17. Pilot Overmyer on middeck

    NASA Technical Reports Server (NTRS)

    1982-01-01

    On middeck port side, Pilot Overmyer, looks down at freefloating object. On his left, attached to port side wall, are a dessert package, a prepackaged meal, control panel ML86B, and water dispenser kit with water gun.

  18. Astronaut Curtis Brown works with SAMS on Shuttle Atlantis middeck

    NASA Image and Video Library

    1994-11-14

    STS066-14-021 (3-14 Nov 1994) --- On the Space Shuttle Atlantis' mid-deck, astronaut Curtis L. Brown, Jr., pilot, works with the Space Acceleration Measurement System (SAMS), which is making its eleventh Shuttle flight. This system supports the Protein Crystal Growth (PCG) experiments onboard by collecting and recording data characterizing the microgravity environment in the Shuttle mid-deck. Brown joined four other NASA astronauts and a European Space Agency (ESA) astronaut for 11-days aboard Atlantis in support of the Atmospheric Laboratory for Applications and Science (ATLAS-3) mission.

  19. STS-35 MS Hoffman and MS Parker on the middeck of Columbia, OV-102

    NASA Image and Video Library

    1990-12-10

    STS035-49-029 (2-10 Dec 1990) --- Posing on the middeck of Columbia, Orbiter Vehicle (OV) 102, are Mission Specialist (MS) Jeffrey A. Hoffman (mustache) and MS Robert A. R. Parker. Determining who is right side up is complicated by the microgravity of space. Hoffman's head is at the middeck floor and his feet are at the ceiling. The two crewmembers are in front of OV-102's port side with the waste collection system (WCS) contingency unit, side hatch, and galley visible behind them.

  20. STS-125 CDR Scott Altman replaces LiOH Cannisters on the Shuttle Atlantis Middeck

    NASA Image and Video Library

    2009-05-18

    S125-E-011450 (18 May 2009) --- Astronaut Scott Altman, STS-125 commander, works with lithium hydroxide (LiOH) canisters from beneath Space Shuttle Atlantis' middeck during flight day eight activities.

  1. STS-125 Pilot Johnson replaces LiOH Cannisters on the Shuttle Atlantis Middeck

    NASA Image and Video Library

    2009-05-18

    S125-E-009749 (18 May 2009) --- Astronaut Gregory C. Johnson, STS-125 pilot, works with lithium hydroxide (LiOH) canisters from beneath Space Shuttle Atlantis' middeck during flight day eight activities.

  2. STS-125 CDR Scott Altman replaces LiOH Cannisters on the Shuttle Atlantis Middeck

    NASA Image and Video Library

    2009-05-18

    S125-E-011454 (18 May 2009) --- Astronaut Scott Altman, STS-125 commander, works with lithium hydroxide (LiOH) canisters from beneath Space Shuttle Atlantis' middeck during flight day eight activities.

  3. STS-125 Crew Members replace LiOH Cannisters on the Shuttle Atlantis Middeck

    NASA Image and Video Library

    2009-05-13

    S125-E-006611 (13 May 2009) --- Astronaut John Grunsfeld, STS-125 mission specialist, works with lithium hydroxide (LiOH) canisters from beneath Space Shuttle Atlantis' middeck during flight day three activities.

  4. STS-125 Pilot Johnson replaces LiOH Cannisters on the Shuttle Atlantis Middeck

    NASA Image and Video Library

    2009-05-18

    S125-E-009752 (18 May 2009) --- Astronaut Gregory C. Johnson, STS-125 pilot, works with lithium hydroxide (LiOH) canisters from beneath Space Shuttle Atlantis' middeck during flight day eight activities.

  5. Four STS 51-G crewmembers on Discovery's middeck

    NASA Image and Video Library

    1985-06-17

    Four STS 51-G crewmembers huddle in a corner of the Discovery's middeck area. Daniel C. Brandenstein, mission commander, assists Steven R. Nagel with the treadmill device while John O. Creighton and Shannon W. Lucid look on.

  6. Mission Specialist (MS) Gardner sleeps in middeck sleep restraint

    NASA Image and Video Library

    1983-09-05

    STS008-05-145 (5 Sept 1983) --- On middeck (MDK), Mission Specialist (MS) Gardner sleeps in sleep restraint attached to starboard wall. Open airlock hatch, airlock hatch hinge, and free-floating footwear appear in view.

  7. Sturckow uses Cycle Ergometer on Middeck (MDDK) during STS-128

    NASA Image and Video Library

    2009-08-29

    S128-E-006315 (29 Aug. 2009) --- Astronaut Rick Sturckow, STS-128 commander, gives a “thumbs-up” signal while exercising on a bicycle ergometer on the middeck of the Earth-orbiting Space Shuttle Discovery.

  8. STS-129 Crew Members on the Middeck

    NASA Image and Video Library

    2009-11-20

    S129-E-007132 (20 Nov. 2009) --- Astronauts Charles O. Hobaugh (left), STS-129 commander; and Robert L. Satcher Jr., mission specialist, are pictured on the middeck of Space Shuttle Atlantis while docked with the International Space Station.

  9. KSC-03PD-0089

    NASA Technical Reports Server (NTRS)

    2003-01-01

    KENNEDY SPACE CENTER, FLA. - A student shows off one of the experiments that will fly in SPACEHAB on Space Shuttle Columbia on mission STS-107. SPACEHAB's complement of commercial experiments includes six educational experiments designed and developed by students in six different countries under the auspices of Space Technology and Research Students (STARS), a global education program managed by SPACEHAB subsidiary Space Media. The countries represented are Australia, China, Israel, Japan, Liechtenstein and the United States. The student investigators who conceived these experiments will monitor their operations in space. The experiments will be housed in BioServe Space Technologies' Isothermal Containment Module (ICM --a small temperature-controlled facility that provides experiment support such as physical containment, lighting, and video imaging) and stowed in a middeck-size locker aboard the SPACEHAB Research Double Module.

  10. KSC-03PD-0085

    NASA Technical Reports Server (NTRS)

    2003-01-01

    KENNEDY SPACE CENTER, FLA. - Students pause during their work on their experiments that will fly in SPACEHAB on Space Shuttle Columbia on mission STS-107. SPACEHAB's complement of commercial experiments includes six educational experiments designed and developed by students in six different countries under the auspices of Space Technology and Research Students (STARS), a global education program managed by SPACEHAB subsidiary Space Media. The countries represented are Australia, China, Israel, Japan, Liechtenstein and the United States. The student investigators who conceived these experiments will monitor their operations in space. The experiments will be housed in BioServe Space Technologies' Isothermal Containment Module (ICM --a small temperature-controlled facility that provides experiment support such as physical containment, lighting, and video imaging) and stowed in a middeck-size locker aboard the SPACEHAB Research Double Module.

  11. KSC-03PD-0093

    NASA Technical Reports Server (NTRS)

    2003-01-01

    KENNEDY SPACE CENTER, FLA. -- Students show off one of the experiments that will fly in SPACEHAB on Space Shuttle Columbia on mission STS-107. SPACEHAB's complement of commercial experiments includes six educational experiments designed and developed by students in six different countries under the auspices of Space Technology and Research Students (STARS), a global education program managed by SPACEHAB subsidiary Space Media. The countries represented are Australia, China, Israel, Japan, Liechtenstein and the United States. The student investigators who conceived these experiments will monitor their operations in space. The experiments will be housed in BioServe Space Technologies' Isothermal Containment Module (ICM --a small temperature-controlled facility that provides experiment support such as physical containment, lighting, and video imaging) and stowed in a middeck-size locker aboard the SPACEHAB Research Double Module.

  12. KSC-03PD-0092

    NASA Technical Reports Server (NTRS)

    2003-01-01

    KENNEDY SPACE CENTER, FLA. -- Students show off one of the experiments that will fly in SPACEHAB on Space Shuttle Columbia on mission STS-107. SPACEHAB's complement of commercial experiments includes six educational experiments designed and developed by students in six different countries under the auspices of Space Technology and Research Students (STARS), a global education program managed by SPACEHAB subsidiary Space Media. The countries represented are Australia, China, Israel, Japan, Liechtenstein and the United States. The student investigators who conceived these experiments will monitor their operations in space. The experiments will be housed in BioServe Space Technologies' Isothermal Containment Module (ICM --a small temperature-controlled facility that provides experiment support such as physical containment, lighting, and video imaging) and stowed in a middeck-size locker aboard the SPACEHAB Research Double Module.

  13. KSC-03pd0093

    NASA Image and Video Library

    2003-01-15

    KENNEDY SPACE CENTER, FLA. -- Students show off one of the experiments that will fly in SPACEHAB on Space Shuttle Columbia on mission STS-107. SPACEHAB's complement of commercial experiments includes six educational experiments designed and developed by students in six different countries under the auspices of Space Technology and Research Students (STARS), a global education program managed by SPACEHAB subsidiary Space Media. The countries represented are Australia, China, Israel, Japan, Liechtenstein and the United States. The student investigators who conceived these experiments will monitor their operations in space. The experiments will be housed in BioServe Space Technologies' Isothermal Containment Module (ICM --a small temperature-controlled facility that provides experiment support such as physical containment, lighting, and video imaging) and stowed in a middeck-size locker aboard the SPACEHAB Research Double Module.

  14. KSC-03pd0089

    NASA Image and Video Library

    2003-01-15

    KENNEDY SPACE CENTER, FLA. - A student shows off one of the experiments that will fly in SPACEHAB on Space Shuttle Columbia on mission STS-107. SPACEHAB's complement of commercial experiments includes six educational experiments designed and developed by students in six different countries under the auspices of Space Technology and Research Students (STARS), a global education program managed by SPACEHAB subsidiary Space Media. The countries represented are Australia, China, Israel, Japan, Liechtenstein and the United States. The student investigators who conceived these experiments will monitor their operations in space. The experiments will be housed in BioServe Space Technologies' Isothermal Containment Module (ICM --a small temperature-controlled facility that provides experiment support such as physical containment, lighting, and video imaging) and stowed in a middeck-size locker aboard the SPACEHAB Research Double Module.

  15. KSC-03pd0092

    NASA Image and Video Library

    2003-01-15

    KENNEDY SPACE CENTER, FLA. -- Students show off one of the experiments that will fly in SPACEHAB on Space Shuttle Columbia on mission STS-107. SPACEHAB's complement of commercial experiments includes six educational experiments designed and developed by students in six different countries under the auspices of Space Technology and Research Students (STARS), a global education program managed by SPACEHAB subsidiary Space Media. The countries represented are Australia, China, Israel, Japan, Liechtenstein and the United States. The student investigators who conceived these experiments will monitor their operations in space. The experiments will be housed in BioServe Space Technologies' Isothermal Containment Module (ICM --a small temperature-controlled facility that provides experiment support such as physical containment, lighting, and video imaging) and stowed in a middeck-size locker aboard the SPACEHAB Research Double Module.

  16. KSC-03pd0085

    NASA Image and Video Library

    2003-01-15

    KENNEDY SPACE CENTER, FLA. - Students pause during their work on their experiments that will fly in SPACEHAB on Space Shuttle Columbia on mission STS-107. SPACEHAB's complement of commercial experiments includes six educational experiments designed and developed by students in six different countries under the auspices of Space Technology and Research Students (STARS), a global education program managed by SPACEHAB subsidiary Space Media. The countries represented are Australia, China, Israel, Japan, Liechtenstein and the United States. The student investigators who conceived these experiments will monitor their operations in space. The experiments will be housed in BioServe Space Technologies' Isothermal Containment Module (ICM --a small temperature-controlled facility that provides experiment support such as physical containment, lighting, and video imaging) and stowed in a middeck-size locker aboard the SPACEHAB Research Double Module.

  17. STS-129 MS1 Melvin plays with water globules on the Middeck

    NASA Image and Video Library

    2009-11-24

    S129-E-008267 (24 Nov. 2009) --- Astronaut Leland Melvin, STS-129 mission specialist, watches a water bubble float between him and the camera, showing his image refracted, on the middeck of space shuttle Atlantis.

  18. Fossum in sleeping bag on middeck

    NASA Image and Video Library

    2008-06-09

    S124-E-007975 (9 June 2008) --- Astronaut Mike Fossum, STS-124 mission specialist, sleeps in his sleeping bag, which is attached to the lockers on the middeck of the Space Shuttle Discovery, while docked with the International Space Station.

  19. Fossum in sleeping bag on middeck

    NASA Image and Video Library

    2008-06-09

    S124-E-007977 (9 June 2008) --- Astronaut Mike Fossum, STS-124 mission specialist, is pictured in his sleeping bag, which is attached to the lockers on the middeck of the Space Shuttle Discovery, while docked with the International Space Station.

  20. Antonelli and Phillips setup Cycle Ergometer on Middeck (MDDK)

    NASA Image and Video Library

    2009-03-19

    S119-E-006662 (19 March 2009) --- Astronauts Tony Antonelli (left), STS-119 pilot; and John Phillips, mission specialist, pose for a photo on the middeck of Space Shuttle Discovery while docked with the International Space Station.

  1. MS Guidoni exercises on the cycle ergometer on the middeck of Endeavour

    NASA Image and Video Library

    2001-04-25

    S100-E-5356 (25 April 2001) --- Astronaut Umberto Guidoni, STS-100 mission specialist representing the European Space Agency (ESA), works out on a bicycle ergometer on the middeck of the Space Shuttle Endeavour.

  2. Pilot Fullerton dons EES anti-gravity suit lower torso on middeck

    NASA Technical Reports Server (NTRS)

    1982-01-01

    Pilot Fullerton dons ejection escape suit (EES) anti-gravity (anti-g) suit lower torso on forward port side middeck above potable water tank. Anti-g suit is an olive drab inner garment that complements EES.

  3. Barratt on middeck

    NASA Image and Video Library

    2011-03-07

    S133-E-011718 (7 March 2011) --- NASA astronaut Michael Barratt, STS-133 mission specialist, watches a water bubble float freely near him on the middeck of space shuttle Discovery during flight day 12 activities. Photo credit: NASA or National Aeronautics and Space Administration

  4. Barratt on Middeck with camera

    NASA Image and Video Library

    2011-02-28

    S133-E-007943 (28 Feb. 2011) --- NASA astronaut Michael Barratt, STS-133 mission specialist, uses a still camera on the middeck of space shuttle Discovery while docked with the International Space Station. Photo credit: NASA or National Aeronautics and Space Administration

  5. Barratt on middeck

    NASA Image and Video Library

    2011-03-07

    S133-E-011715 (7 March 2011) --- NASA astronaut Michael Barratt, STS-133 mission specialist, watches a water bubble float freely near him on the middeck of space shuttle Discovery during flight day 12 activities. Photo credit: NASA or National Aeronautics and Space Administration

  6. Krikalev on middeck with laptop computer

    NASA Image and Video Library

    1998-12-06

    S88-E-5041 (12-06-98) --- Sergei Krikalev, mission specialist representing the Russian Space Agency (RSA), works on a laptop computer on Endeavour's middeck. The scene was photographed shortly after the successful mating of Unity with the shuttle's docking system.

  7. Plt Rominger and MS Curbeam float in the middeck airlock hatch

    NASA Image and Video Library

    1997-08-14

    S85-E-5090 (14 August 1997) --- Astronauts Kent V. Rominger (left), pilot, and Robert L. Curbeam Jr., mission specialist, float onto the middeck of the Earth-orbiting Space Shuttle Discovery during flight day 8 activity.

  8. Myelopotentiating effect of curcumin in tumor-bearing host: Role of bone marrow resident macrophages

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Vishvakarma, Naveen Kumar; Kumar, Anjani; Kumar, Ajay

    2012-08-15

    The present investigation was undertaken to study if curcumin, which is recognized for its potential as an antineoplastic and immunopotentiating agent, can also influence the process of myelopoiesis in a tumor-bearing host. Administration of curcumin to tumor-bearing host augmented count of bone marrow cell (BMC) accompanied by an up-regulated BMC survival and a declined induction of apoptosis. Curcumin administration modulated expression of cell survival regulatory molecules: Bcl2, p53, caspase-activated DNase (CAD) and p53-upregulated modulator of apoptosis (PUMA) along with enhanced expression of genes of receptors for M-CSF and GM-CSF in BMC. The BMC harvested from curcumin-administered hosts showed an up-regulatedmore » colony forming ability with predominant differentiation into bone marrow-derived macrophages (BMDM), responsive for activation to tumoricidal state. The number of F4/80 positive bone marrow resident macrophages (BMM), showing an augmented expression of M-CSF, was also augmented in the bone marrow of curcumin-administered host. In vitro reconstitution experiments indicated that only BMM of curcumin-administered hosts, but not in vitro curcumin-exposed BMM, augmented BMC survival. It suggests that curcumin-dependent modulation of BMM is of indirect nature. Such prosurvival action of curcumin is associated with altered T{sub H1}/T{sub H2} cytokine balance in serum. Augmented level of serum-borne IFN-γ was found to mediate modulation of BMM to produce enhanced amount of monokines (IL-1, IL-6, TNF-α), which are suggested to augment the BMC survival. Taken together the present investigation indicates that curcumin can potentiate myelopoiesis in a tumor-bearing host, which may have implications in its therapeutic utility. Highlights: ► Curcumin augments myelopoiesis in tumor-bearing host. ► Bone marrow resident macrophages mediate curcumin-dependent augmented myelopoiesis. ► Serum borne cytokine are implicated in modulation of bone marrow resident macrophages.« less

  9. Mission Specialist (MS) Lenoir cuts Pilot Overmyer's hair on middeck

    NASA Technical Reports Server (NTRS)

    1982-01-01

    Mission Specialist (MS) Lenoir, using hairbrush and scissors, cuts Pilot Overmyer's hair and trims his sideburns in front of forward middeck lockers. Personal hygiene kit (open), towels, and field sequential (FS) crew cabin camera are attached to lockers.

  10. STS-26 MS Nelson on fixed based (FB) shuttle mission simulator (SMS) middeck

    NASA Technical Reports Server (NTRS)

    1988-01-01

    STS-26 Discovery, Orbiter Vehicle (OV) 103, Mission Specialist (MS) George D. Nelson trains on the middeck of the fixed based (FB) shuttle mission simulator (SMS). Nelson, wearing communications assembly headset, adjusts camera mounting bracket.

  11. STS-28 Columbia, OV-102, MS Brown juggles food containers on middeck

    NASA Image and Video Library

    1989-08-13

    STS028-13-013 (August 1989) --- Astronaut Mark N. Brown, STS-28 mission specialist, assembles various components of a meal at the stowage locker area of Columbia's middeck, as James C. Adamson, mission specialist, looks on.

  12. STS-28 Columbia, OV-102, Commander Shaw on middeck

    NASA Technical Reports Server (NTRS)

    1989-01-01

    At open middeck stowage locker, Commander Brewster H. Shaw pauses to have his picture taken. Behind Shaw on port side wall are solid sorbent air sampler, a plastic storage bag filled with wheat crackers, and various food and beverage containers.

  13. Phillips and Acaba work with LiOH cartridges on Middeck (MDDK)

    NASA Image and Video Library

    2009-03-25

    S119-E-008447 (25 March 2009) --- Astronaut John Phillips (left) and Joseph Acaba, both STS-119 mission specialists, work with the lithium hydroxide (LiOH) canisters beneath Space Shuttle Discovery's middeck during flight day 11 activities.

  14. STS-125 MS2 McArthur works with the LiOH Cannisters on the Middeck

    NASA Image and Video Library

    2009-05-19

    S125-E-011510 (19 May 2009) --- Astronaut Megan McArthur, STS-125 mission specialist, works with lithium hydroxide (LiOH) canisters from beneath Space Shuttle Atlantis' middeck during flight day nine activities.

  15. STS-125 MS2 McArthur works with the LiOH Cannisters on the Middeck

    NASA Image and Video Library

    2009-05-19

    S125-E-011507 (19 May 2009) --- Astronaut Megan McArthur, STS-125 mission specialist, works with lithium hydroxide (LiOH) canisters from beneath Space Shuttle Atlantis' middeck during flight day nine activities.

  16. STS-125 MS2 McArthur works with the LiOH Cannisters on the Middeck

    NASA Image and Video Library

    2009-05-19

    S125-E-011505 (19 May 2009) --- Astronaut Megan McArthur, STS-125 mission specialist, works with lithium hydroxide (LiOH) canisters from beneath Space Shuttle Atlantis' middeck during flight day nine activities.

  17. STS-125 MS2 McArthur works with the LiOH Cannisters on the Middeck

    NASA Image and Video Library

    2009-05-19

    S125-E-011511 (19 May 2009) --- Astronaut Megan McArthur, STS-125 mission specialist, works with lithium hydroxide (LiOH) canisters from beneath Space Shuttle Atlantis' middeck during flight day nine activities.

  18. STS-35 Commander Brand talks to family using SAREX on OV-102's middeck

    NASA Technical Reports Server (NTRS)

    1990-01-01

    STS-35 Commander Vance D. Brand, wearing headset, communicates with family members using Shuttle Amateur Radio Experiment (SAREX) on Columbia's, Orbiter Vehicle (OV) 102's, middeck. SAREX and its portable laptop computer mounted on the outside of the middeck sleep station allowed the STS-35 crewmembers to 'visit' and briefly share some of their inspace experiences with family members. It also provided radio transmissions between ground based amateur radio operators around the world and OV-102. The experiment enabled students from all over the United States to have a chance to communicate with a crewmember in space.

  19. Microgravity Science Laboratory (MSL-1)

    NASA Technical Reports Server (NTRS)

    Robinson, M. B. (Compiler)

    1998-01-01

    The MSL-1 payload first flew on the Space Shuttle Columbia (STS-83) April 4-8, 1997. Due to a fuel cell problem, the mission was cut short, and the payload flew again on Columbia (STS-94) July 1-17, 1997. The MSL-1 investigations were performed in a pressurized Spacelab module and the Shuttle middeck. Twenty-nine experiments were performed and represented disciplines such as fluid physics, combustion, materials science, biotechnology, and plant growth. Four accelerometers were used to record and characterize the microgravity environment. The results demonstrate the range of quality science that can be conducted utilizing orbital laboratories in microgravity.

  20. Astronaut Harris checks response of muscles to microgravity

    NASA Image and Video Library

    1995-02-03

    STS063-86-016 (3-11 Feb 1995) --- With astronaut Janice E. Voss, mission specialist, as his test subject, astronaut Bernard A. Harris, Jr., payload commander and a physician, uses a special biomedical harness experiment to check the response of muscles to microgravity. They are on the mid-deck, where many of the SpaceHab 3 experiments are located. The SpaceHab 3 Module is in the cargo bay. Others onboard the Space Shuttle Discovery were astronauts James D. Wetherbee, commander; Eileen M. Collins, pilot; mission specialists C. Michael Foale and Russian cosmonaut Vladimir G. Titov.

  1. Mission Specialist (MS) Lenoir cuts Pilot Overmyer's hair on middeck

    NASA Technical Reports Server (NTRS)

    1982-01-01

    Mission Specialist (MS) Lenoir, using hairbrush and scissors, cuts Pilot Overmyer's hair and trims his sideburns in front of forward middeck lockers. Personal hygiene kit (open), towels, meal tray assemblies, and field sequential (FS) crew cabincamera are attached to lockers.

  2. Pilot Overmyer reviews TAGS teleprinter printout on middeck

    NASA Technical Reports Server (NTRS)

    1982-01-01

    Pilot Overmyer reviews Text and Graphics System (TAGS) teleprinter printout of instructions and messages from Houston Mission Control Center (MCC) in front of the forward middeck lockers. Development Flight Instrument (DFI) unit and control panels on starboard wall appear in the background.

  3. Phillips and Acaba with Lithium Hydroxide (LiOH) canisters on Middeck (MDDK)

    NASA Image and Video Library

    2009-03-19

    S119-E-006645 (19 March 2009) --- Astronauts John Phillips (left) and Joseph Acaba, both STS-119 mission specialists, work with the lithium hydroxide (LiOH) canisters beneath Space Shuttle Discovery's middeck while docked with the International Space Station.

  4. Brown on middeck with drink packet

    NASA Image and Video Library

    1998-10-31

    STS095-E-5125 (31 Oct. 1998) --- Astronaut Curtis L. Brown Jr., STS-95 commander, has just added water to a snack at Discovery's galley on the middeck. The photo was taken with an electronic still camera (ESC) at 9:52:32, Oct. 31.

  5. MS Guidoni and MS Parazynski in sleep restraints on the middeck of Endeavour during STS-100

    NASA Image and Video Library

    2001-04-30

    STS100-363-012 (19 April-1 May 2001) --- Astronaut Umberto Guidoni, STS-100 mission specialist, sleeps while astronaut Scott E. Parazynski, mission specialist, prepares for his sleep shift on the Space Shuttle Endeavour's middeck.

  6. Mission Specialist (MS) Allen experiments with beverage on middeck

    NASA Technical Reports Server (NTRS)

    1982-01-01

    Mission Specialist (MS) Allen, using beverage container and drinking straw, experiments with microgravity chararcteristics of orange juice on middeck in front of the Development Flight Instrument (DFI) unit and forward lockers. Allen laughes as he watches the results of his experimentation.

  7. Sen. Jake Garn and payload specialist Charles Waler in middeck simulation

    NASA Technical Reports Server (NTRS)

    1985-01-01

    Two payload specialists for the STS 51-D mission get in some training time in the crew compartment trainerat JSC. Charles D. Walker, left, rehearses photography of U.S. Senator E.J. (Jake) Garn in the middeck section of the trainer.

  8. Sen. Jake Garn and payload specialist Charles Waler in middeck simulation

    NASA Image and Video Library

    1985-04-12

    Two payload specialists for the STS 51-D mission get in some training time in the crew compartment trainerat JSC. Charles D. Walker, left, rehearses photography of U.S. Senator E.J. (Jake) Garn in the middeck section of the trainer.

  9. MS2 Megan McArthur sleeps on the Middeck

    NASA Image and Video Library

    2009-05-19

    S125-E-011488 (18 May 2009) --- Astronaut Megan McArthur, STS-125 mission specialist, rests in her sleeping bag, which is attached to the lockers on the middeck of the Earth-orbiting Space Shuttle Atlantis at the end of flight day eight.

  10. STS-26 Mission Specialist (MS) Hilmers prepares meal on OV-103's middeck

    NASA Image and Video Library

    1988-10-03

    STS026-06-033 (5 Oct 1988) --- Astronaut David C. Hilmers, STS-26 mission specialist, reads teleprinted message which has been clipped to stowage locker doors on the middeck. Food, a galley and various experiments surround the mission specialist.

  11. MS2 Megan McArthur sleeps on the Middeck

    NASA Image and Video Library

    2009-05-19

    S125-E-011487 (18 May 2009) --- Astronaut Megan McArthur, STS-125 mission specialist, rests in her sleeping bag, which is attached to the lockers on the middeck of the Earth-orbiting Space Shuttle Atlantis at the end of flight day eight.

  12. Bowen with LiOH cans on Discovery middeck

    NASA Image and Video Library

    2011-03-01

    S133-E-007462 (28 Feb. 2011) --- NASA astronaut Steve Bowen, STS-133 mission specialist, works with lithium hydroxide (LiOH) canisters from beneath space shuttle Discovery’s middeck while docked with the International Space Station. Photo credit: NASA or National Aeronautics and Space Administration

  13. Cabana shaves on middeck

    NASA Image and Video Library

    1998-12-08

    S88-E-5166 (12-08-98) --- Astronaut Robert D. Cabana, mission commander, shaves on Endeavour's middeck. Sergei K. Krikalev, mission specialist representing the Russian Space Agency, is in the background. The photo was taken with an electronic still camera (ESC) at 23:20:40 GMT, Dec. 8.

  14. STS-112 crew in their sleep restraints on the orbiter middeck

    NASA Image and Video Library

    2002-10-18

    STS112-345-028 (7-18 October 2002) --- The STS-112 crewmembers sleep on the middeck of the Space Shuttle Atlantis. Pictured are astronauts Sandra H. Magnus, David A. Wolf, Piers J. Sellers, mission specialists, and Jeffrey S. Ashby, mission commander.

  15. Boe, Stott and Barratt on middeck

    NASA Image and Video Library

    2011-03-03

    S133-E-008336 (3 March 2011) --- NASA astronauts Eric Boe (left), STS-133 pilot; Nicole Stott and Michael Barratt, both mission specialists, work on the middeck of space shuttle Discovery while docked with the International Space Station. Photo credit: NASA or National Aeronautics and Space Administration

  16. STS-5 Columbia, OV-102, middeck documentation

    NASA Technical Reports Server (NTRS)

    1982-01-01

    Items stowed temporarily on forward middeck lockers include (left to right) field sequential (FS) crew cabin camera, procedural notebook, communications kit assembly (assy) headset (HDST) interface unit (HIU), personal hygiene kit, personal hygiene mirror assy, meal tray assemblies, towels, and Vestibular Study Experiment headset and antenna.

  17. STS-93 Commander Collins uses a digital camera on the middeck of Columbia

    NASA Image and Video Library

    2013-11-18

    STS093-347-015 (23-27 July 1999) --- Astronaut Eileen M. Collins, mission commander, loads a roll of film into a still camera on Columbia's middeck. Collins is the first woman mission commander in the history of human space flight.

  18. Astronaut Andrew M. Allen looks over procedure book in middeck

    NASA Technical Reports Server (NTRS)

    1994-01-01

    On Columbia's middeck, astronaut Andrew M. Allen, pilot, looks over a procedures book in the midst of a 14-day mission. Allen is attired in a new thermally controlled undergarment. Allen wore the garment during the launch and entry phases of the flight.

  19. Orbiter middeck/payload standard interfaces control document

    NASA Technical Reports Server (NTRS)

    1984-01-01

    The interfaces which shall be provided by the baseline shuttle mid-deck for payload use within the mid-deck area are defined, as well as all constraints which shall be observed by all the users of the defined interfaces. Commonality was established with respect to analytical approaches, analytical models, technical data and definitions for integrated analyses by all the interfacing parties. Any payload interfaces that are out of scope with the standard interfaces defined shall be defined in a Payload Unique Interface Control Document (ICD) for a given payload. Each Payload Unique ICD will have comparable paragraphs to this ICD and will have a corresponding notation of A, for applicable; N/A, for not applicable; N, for note added for explanation; and E, for exception. On any flight, the STS reserves the right to assign locations to both payloads mounted on an adapter plate(s) and payloads stored within standard lockers. Specific locations requests and/or requirements exceeding standard mid-deck payload requirements may result in a reduction in manifesting opportunities.

  20. Pigment composition and concentrations within the plant (Ceratophyllum demersum L.) component of the STS-89 C.E.B.A.S. Mini-Module spaceflight experiment

    NASA Technical Reports Server (NTRS)

    Voeste, D.; Levine, L. H.; Levine, H. G.; Blum, V.; Wheeler, R. M. (Principal Investigator)

    2003-01-01

    The Closed Equilibrated Biological Aquatic System (C.E.B.A.S.) Mini-Module, a Space Shuttle middeck locker payload which supports a variety of aquatic inhabitants (fish, snails, plants and bacteria) in an enclosed 8.6 L chamber, was tested for its biological stability in microgravity. The aquatic plant, Ceratophyllum demersum L., was critical for the vitality and functioning of this artificial mini-ecosystem. Its photosynthetic pigment concentrations were of interest due to their light harvesting and protective functions. "Post-flight" chlorophyll and carotenoid concentrations within Ceratophyllum apical segments were directly related to the quantities of light received in the experiments, with microgravity exposure (STS-89) failing to account for any significant deviation from ground control studies. Published by Elsevier Science Ltd on behalf of COSPAR.

  1. Astronaut Thomas Jones opens food package on middeck

    NASA Image and Video Library

    1994-04-10

    STS059-14-004 (9-20 April 1994) --- On the Space Shuttle Endeavour's middeck astronaut Thomas D. Jones, mission specialist, cuts open a package of food as he prepares for mealtime. Jones was joined by five other NASA astronauts aboard Endeavour for the STS-59 mission.

  2. Runco and Thomas show off trays of food on the middeck

    NASA Image and Video Library

    1996-05-26

    S77-E-5120 (26 May 1996) --- Astronauts Mario Runco, Jr. and Andrew S. W. Thomas, both mission specialists, pose for photo while in the middeck of the Earth-orbiting Space Shuttle Endeavour. The scene was recorded with an Electronic Still Camera (ESC).

  3. STS-28 Columbia, OV-102, Commander Shaw on middeck

    NASA Image and Video Library

    1989-08-13

    STS028-11-017 (August 1989) --- Astronaut Brewster H. Shaw Jr., mission commander, is captured with a 35mm camera on the middeck of the space shuttle Columbia during the STS-28 flight. Nearby are a couple of beverage containers and a packet of wheat crackers.

  4. STS-125 Crew Members replace LiOH Cannisters on the Shuttle Atlantis Middeck

    NASA Image and Video Library

    2009-05-13

    S125-E-006610 (13 May 2009) --- Astronauts John Grunsfeld (bottom), STS-125 mission specialist; and Gregory C. Johnson (partially out of frame), pilot, work with lithium hydroxide (LiOH) canisters from beneath Space Shuttle Atlantis' middeck during flight day three activities.

  5. Astronaut William Gregory works with pharmaceutical experiments on middeck

    NASA Technical Reports Server (NTRS)

    1995-01-01

    Astronaut William G. Gregory, STS-67 pilot, works with a pharmaceutical experiment on the middeck of the Earth-orbiting Space Shuttle Endeavour. Commercial Materials Dispersion Apparatus Instruments Technology Associates Experiments (CMIX-03) includes not only pharmaceutical but also biotechnology, cell biology, fluids and crystal growth investigations.

  6. Astronauts Onizuka and Shriver pose in middeck

    NASA Technical Reports Server (NTRS)

    1985-01-01

    Mission specialist Ellison S. Onizuka, wearing the Kamakze headband, appears to be keeping a sleeping Loren J. Shriver, pilot, from floating in his sleep restraints through the middeck of the Discovery during the 51-C mission. Behind them is a decal which reads 'Aim High, Air Force'.

  7. BRIC - Brown works with middeck experiment

    NASA Image and Video Library

    1997-08-12

    S85-E-5058 (12 August 1997) --- Astronaut Curtis L. Brown, Jr., commander, performs operations with an experiment called Biological Research in Canisters (BRIC) operations on the mid-deck of the Space Shuttle Discovery during flight day six. The photograph was taken with the Electronic Still Camera (ESC).

  8. Sturckow uses Cycle Ergometer on Middeck (MDDK) during STS-128

    NASA Image and Video Library

    2009-08-29

    S128-E-006313 (29 Aug. 2009) --- Astronaut Rick Sturckow, STS-128 commander, gives a “thumbs-up” signal while exercising on a bicycle ergometer on the middeck of the Earth-orbiting Space Shuttle Discovery. Astronaut Nicole Stott, mission specialist, is visible at right.

  9. National Institutes of Health, Rodent 4 (NIH.R4); Calcium Metabolism and Vascular Function After Spaceflight: A Collaborative Series with NASA and NIH

    NASA Technical Reports Server (NTRS)

    Reiss-Bubenheim, Debra; Steele, Marianne; Aquillina, Rudy; Savage, Paul D. (Technical Monitor)

    1997-01-01

    The NIH.R4 payload was a collaborative experiment conducted by NASA's Ames Research Center in conjunction with the National Institutes of Health (NIH). This middeck payload was the fourth in a series of experiments focusing on developmental biology and the effects of microgravity on mammalian systems. The NIH.R4 payload was flown onboard STS-80, which launched November 19, 1996, and landed at Kennedy Space Center on December 7, 1996, and was the longest shuttle mission to date. Fourteen male Spontaneously Hypertensive rats (SHR) were flown; seven in each of two Animal Enclosure Modules (AEM) in the shuttle middeck. The flight animals were exposed to 18 days of microgravity. Two synchronous control groups were utilized for this study in addition to an asynchronous post-flight AEM control study conducted at the PI lab. The animals were fed two different calcium diets in the NASA food bar (2.0% and 0.2%) three weeks prior to launch and insight. Blood pressures were taken at pre-determined intervals and were the basis for flight selection. Upon recovery Dwight animals blood pressure was measured and a variety of tissues were collected. Project testing and data will be presented.

  10. Functional Redundancy Between Canonical Endocannabinoid Signaling Systems in the Modulation of Anxiety.

    PubMed

    Bedse, Gaurav; Hartley, Nolan D; Neale, Emily; Gaulden, Andrew D; Patrick, Toni A; Kingsley, Philip J; Uddin, Md Jashim; Plath, Niels; Marnett, Lawrence J; Patel, Sachin

    2017-10-01

    Increasing the available repertoire of effective treatments for mood and anxiety disorders represents a critical unmet need. Pharmacological augmentation of endogenous cannabinoid (eCB) signaling has been suggested to represent a novel approach to the treatment of anxiety disorders; however, the functional interactions between two canonical eCB pathways mediated via anandamide (N-arachidonylethanolamine [AEA]) and 2-arachidonoylglycerol (2-AG) in the regulation of anxiety are not well understood. We utilized pharmacological augmentation and depletion combined with behavioral and electrophysiological approaches to probe the role of 2-AG signaling in the modulation of stress-induced anxiety and the functional redundancy between AEA and 2-AG signaling in the modulation of anxiety-like behaviors in mice. Selective 2-AG augmentation reduced anxiety in the light/dark box assay and prevented stress-induced increases in anxiety associated with limbic AEA deficiency. In contrast, acute 2-AG depletion increased anxiety-like behaviors, which was normalized by selective pharmacological augmentation of AEA signaling and via direct cannabinoid receptor 1 stimulation with Δ 9 -tetrahydrocannabinol. Electrophysiological studies revealed 2-AG modulation of amygdala glutamatergic transmission as a key synaptic correlate of the anxiolytic effects of 2-AG augmentation. Although AEA and 2-AG likely subserve distinct physiological roles, a pharmacological and functional redundancy between these canonical eCB signaling pathways exists in the modulation of anxiety-like behaviors. These data support development of eCB-based treatment approaches for mood and anxiety disorders and suggest a potentially wider therapeutic overlap between AEA and 2-AG augmentation approaches than was previously appreciated. Copyright © 2017 Society of Biological Psychiatry. Published by Elsevier Inc. All rights reserved.

  11. STS-40 Pilot Gutierrez changes LiOH canisters on OV-102's middeck

    NASA Technical Reports Server (NTRS)

    1991-01-01

    STS-40 Pilot Sidney M. Gutierrez changes lithium hydroxide (LiOH) canisters on the middeck of Columbia, Orbiter Vehicle (OV) 102. Next to Gutierrez is the open airlock hatch and behind him is the port side wall. A plastic stowage bag freefloats over his head.

  12. Commander Brand shaves in front of forward middeck lockers

    NASA Technical Reports Server (NTRS)

    1982-01-01

    Commander Brand, wearing shorts, shaves in front of forward middeck lockers using personal hygiene mirror assembly (assy). Open modular locker single tray assy, Field Sequential (FS) crew cabin camera, communications kit assy mini headset (HDST) and HDST interface unit (HIU), personal hygiene kit, and meal tray assemblies appear in view.

  13. PGIM-01, Coleman at middeck locker with rigged plastic air duct

    NASA Image and Video Library

    1999-07-25

    S93-E-5043 (24 July 1999) --- Astronaut Catherine G. (Cady) Coleman, mission specialist, checks the support system for the Plant Growth Investigations in Microgravity 1 (PGIM-1) experiment on Columbia's middeck. The photo was recorded with an electronic still camera (ESC) on Flight Day 2.

  14. Mission Specialist (MS) Fabian in middeck sleep restraint

    NASA Image and Video Library

    1983-06-24

    STS007-06-0314 (18-24 June 1983) --- Astronaut John M. Fabian, STS-7 mission specialist, sleeps in a zip-up blue sleep restraint device in the locker area of the Earth-orbiting space shuttle Challenger's middeck. The frame was exposed with a 35mm camera. Photo credit: NASA

  15. STS-28 Columbia, OV-102, Mission Specialist Adamson eating on middeck

    NASA Technical Reports Server (NTRS)

    1989-01-01

    On middeck, Mission Specialist (MS) James C. Adamson enjoys the rare opportunity of eating in a weightless environment as he flips a shrimp with a spoon. In the background is a second crewmember holding a meal tray assembly (food tray) and sleep restraints fastened to starboard wall.

  16. Astronaut Nelson wipes off helmet visor in the middeck of Shuttle Challenger

    NASA Technical Reports Server (NTRS)

    1984-01-01

    Astronaut George D. Nelson, 41-C mission specialist, wipes off his helmet visor in the middeck of Shuttle Challenger. Astronaut James D. van. Hoften, is seen in the background. Both crew members are wearing the liquid cooled undergarments for the extravehicular mobility unit (EMU).

  17. Boe and Bowen on Middeck with LiOH canisters

    NASA Image and Video Library

    2011-02-28

    S133-E-007942 (28 Feb. 2011) --- NASA astronauts Eric Boe (left), STS-133 pilot; and Steve Bowen, mission specialist, work with lithium hydroxide (LiOH) canisters from beneath space shuttle Discovery’s middeck while docked with the International Space Station. Photo credit: NASA or National Aeronautics and Space Administration

  18. Crewmember in the middeck exercising on the MK-1 rowing machine (DTO 653).

    NASA Image and Video Library

    1994-04-20

    STS059-11-014 (9-20 April 1994) --- Astronaut Michael R. (Rich) Clifford, mission specialist, uses the rowing machine temporarily deployed on the Space Shuttle Endeavour's middeck. Many of the crew members put in time on the device during the week and a half mission.

  19. STS-120 crew on Discovery middeck

    NASA Image and Video Library

    2007-10-31

    S120-E-007889 (1 Nov. 2007) --- Astronauts Pam Melroy (left), STS-120 commander; George Zamka (bottom right), pilot; and European Space Agency's (ESA) Paolo Nespoli, mission specialist, sleep in their sleeping bags, which are secured on the middeck of the Space Shuttle Discovery while docked with the International Space Station.

  20. Pilot Fullerton dons ejection escape suit (EES) on middeck

    NASA Image and Video Library

    1982-03-30

    STS003-23-165 (22-30 March 1982) --- Astronaut Gordon Fullerton, STS-3 pilot, dons ejection escape suit (EES) (high altitude pressure garment) life preserver unit (LPU) on forward port side of middeck above potable water tank. Fullerton also adjusts lapbelt fitting and helmet holddown strap. Photo credit: NASA

  1. Astronaut Harbaugh on middeck with messages from TIPS

    NASA Image and Video Library

    1995-07-10

    STS071-122-018 (27 June-7 July 1995) --- Astronaut Gregory J. Harbaugh, STS-71 mission specialist, is pictured on the space shuttle Atlantis' middeck, with a roll of messages from the Thermal Imaging Printing System (TIPS). The volume of information had been up-linked by ground controllers in Houston, Texas.

  2. STS-35 Commander Brand talks to family using SAREX on OV-102's middeck

    NASA Image and Video Library

    1990-12-11

    STS035-05-036 (2-10 Dec 1990) --- STS-35 Commander Vance D. Brand, wearing headset, communicates with family members using Shuttle Amateur Radio Experiment (SAREX) on Columbia's, Orbiter Vehicle (OV) 102's, middeck. SAREX and its portable laptop computer mounted on the outside of the middeck sleep station allowed the STS-35 crewmembers to "visit" and briefly share some of their in space experiences with family members. It also provided radio transmissions between ground based amateur radio operators around the world and OV-102. The experiment enabled students from all over the United States to have a chance to communicate with a crewmember in space.

  3. Commander Brand stows trash in jettison bag on middeck

    NASA Technical Reports Server (NTRS)

    1982-01-01

    Commander Brand disposes of empty food containers and dry trash in jettison bag and stows bag in middeck volume under MA73C control panel. Side hatch is visible behind Brand. Brand is wearing constant wear garment with communications kit assembly headset interface unit (HIU) and note pad strapped to his thighs.

  4. STS-37 Mission Specialist (MS) Godwin during simulation in JSC's FB-SMS

    NASA Technical Reports Server (NTRS)

    1991-01-01

    STS-37 Mission Specialist (MS) Linda M. Godwin rehearses some phases of her scheduled duties on the middeck of the fixed-based (FB) shuttle mission simulator (SMS) located in JSC's Mission Simulation and Training Facility Bldg 5. Godwin is inspecting supplies stowed in the middeck lockers during this unsuited simulation.

  5. View of STS-134 Crew Members working on the Middeck

    NASA Image and Video Library

    2011-05-17

    S134-E-006520 (17 May 2011) --- Astronauts Andrew Feustel (foreground) and Michael Fincke, both STS-134 mission specialists, work to keep order with the large inventory of supplies and equipment on Endeavour's middeck and airlock on the eve of docking day with the International Space Station. Photo credit: NASA.

  6. STS-44 MS Musgrave looks out OV-104's side hatch viewport on middeck

    NASA Technical Reports Server (NTRS)

    1991-01-01

    STS-44 Mission Specialist (MS) F. Story Musgrave, wearing communications kit assembly lightweight headset (HDST), looks out side hatch viewport on Atlantis', Orbiter Vehicle (OV) 104's, middeck. Just behind him is the waste management compartment (WMC). The stainless steel cylinder is the temporary wet trash can.

  7. Stott on middeck

    NASA Image and Video Library

    2011-02-25

    STS133-E-006008 (25 Feb. 2011) --- On space shuttle Discovery’s middeck, astronaut Nicole Stott, STS-133 mission specialist, enjoys a flight day 2 snack. She is holding an apple and a tortilla, food items that do not tend to create burdensome crumbs in the weightless environment of space. Photo credit: NASA or National Aeronautics and Space Administration

  8. Commander Rominger on a cycle ergometer on the middeck of Endeavour during STS-100

    NASA Image and Video Library

    2001-04-23

    S100-E-5342 (23 April 2001) --- Astronaut Kent V. Rominger, STS-100 mission commander, economizes his time as he looks over flight data while working out on an ergometer device on the middeck of the Space Shuttle Endeavour. The scene was recorded with a digital still camera.

  9. Astronaut Daniel T. Barry asleep in the middeck

    NASA Image and Video Library

    1996-01-20

    STS072-306-024 (11-20 Jan. 1996) --- Astronaut Daniel T. Barry sleeps on the middeck of the Earth-orbiting Space Shuttle Endeavour. The sleeping bag is considered advantageous primarily because it restricts movement in the microgravity environment, as Barry’s crew mates pointed out during a televised NASA briefing following the mission.

  10. STS-27 Atlantis, OV-104, crewmembers repair 3/4 inch video reel on middeck

    NASA Image and Video Library

    1988-12-06

    STS027-05-020 (2-6 Dec. 1988) --- In the foreground, astronauts Robert L. Gibson (left) and Guy S. Gardner, commander and pilot, respectively, for the STS-27 mission, repair a 3/4-inch video reel on the middeck of the Earth-orbiting space shuttle Atlantis. Photo credit: NASA

  11. Summary Status of the Space Acceleration Measurement System (SAMS), September 1993

    NASA Technical Reports Server (NTRS)

    DeLombard, Richard

    1993-01-01

    The Space Acceleration Measurement System (SAMS) was developed to measure the microgravity acceleration environment to which NASA science payloads are exposed during microgravity science missions on the shuttle. Six flight units have been fabricated to date. The inaugural flight of a SAMS unit was on STS-40 in June 1991 as part of the flrst Spacelab Life Sciences mission. Since that time, SAMS has flown on six additional missions and gathered 18 gigabytes of data representing 68 days of microgravity environment. The SAMS units have been flown in the shuttle middeck and cargo bay, in the Spacelab module, and in the Spacehab module. This paper summarizes the missions and experiments which SAMS has supported. The quantity of data and the utilization of the SAMS data is described. Future activities are briefly described for the SAMS project and.the Microgravity Measurement and Analysis Project (MMAP) to support science experiments and scientists with microgravity environment measurement and analysis.

  12. Flexible augmented reality architecture applied to environmental management

    NASA Astrophysics Data System (ADS)

    Correia, Nuno M. R.; Romao, Teresa; Santos, Carlos; Trabuco, Adelaide; Santos, Rossana; Romero, Luis; Danado, Jose; Dias, Eduardo; Camara, Antonio; Nobre, Edmundo

    2003-05-01

    Environmental management often requires in loco observation of the area under analysis. Augmented Reality (AR) technologies allow real time superimposition of synthetic objects on real images, providing augmented knowledge about the surrounding world. Users of an AR system can visualize the real surrounding world together with additional data generated in real time in a contextual way. The work reported in this paper was done in the scope of ANTS (Augmented Environments) project. ANTS is an AR project that explores the development of an augmented reality technological infrastructure for environmental management. This paper presents the architecture and the most relevant modules of ANTS. The system"s architecture follows the client-server model and is based on several independent, but functionally interdependent modules. It has a flexible design, which allows the transfer of some modules to and from the client side, according to the available processing capacities of the client device and the application"s requirements. It combines several techniques to identify the user"s position and orientation allowing the system to adapt to the particular characteristics of each environment. The determination of the data associated to a certain location involves the use of both a 3D Model of the location and the multimedia geo-referenced database.

  13. STS-125 Crew Members on the Middeck

    NASA Image and Video Library

    2009-05-19

    S125-E-011491 (18 May 2009) --- Astronauts Mike Massimino (left), Michael Good and Megan McArthur (mostly out of frame at right), all STS-125 mission specialists, are pictured in their sleeping bags, which are attached to the lockers on the middeck of the Earth-orbiting Space Shuttle Atlantis at the end of flight day eight.

  14. Parazynski reviews a checklist on the middeck

    NASA Image and Video Library

    1998-10-30

    STS095-E-5176 (30 Oct. 1998) --- Astronaut Scott E. Parazynski (left), STS-95 mission specialist, checks a note attached to one of the stowage lockers on Discovery's middeck. Nearby is astronaut Steven W. Lindsey, pilot, seated on one of the bunk beds. The photo was taken with an electronic still camera (ESC) at 23:43:51 GMT, Oct. 30.

  15. Mission Specialist (MS) Allen experiments with beverage on middeck

    NASA Image and Video Library

    1982-11-16

    STS005-04-134 (11-16 Nov. 1982) --- Astronaut Joseph P. Allen IV, STS-5 mission specialist, uses beverage container and drinking straw, experiments with microgravity characteristics of orange juice on middeck in front of the Development Flight Instrument (DFI) unit and forward lockers. Allen laughs as he watches the results of his experimentation. Photo credit: NASA

  16. STS-42 IPMP experiment stowed in locker MF71O on OV-103's middeck

    NASA Technical Reports Server (NTRS)

    1992-01-01

    STS-42 Investigations into Polymer Membrane Processing (IPMP) experiment stainless steel cylinders are stowed in locker MF71O on the middeck of Discovery, Orbiter Vehicle (OV) 103. A checklist with numerous handwritten notations floats above the open forward locker and a roll of duct tape is secured on nearby locker.

  17. STS-93 Pilot Ashby works with the STL-B experiment on the middeck

    NASA Image and Video Library

    2013-11-18

    STS093-319-029 (23-27 July 1999) --- Astronaut Jeffrey S. Ashby, pilot, works with the Space Tissue Loss-B experiment on Columbia's middeck. The experiment is set up to observe cells in culture with a video microscope imaging system to record near-real-time interactions of detecting and inducing cellular responses (macromorphological changes).

  18. Crewmember in the middeck beside the Commercial Generic Bioprocessing exp.

    NASA Image and Video Library

    1993-01-19

    STS054-07-003 (13-19 Jan 1993) --- Astronaut John H. Casper, mission commander, floats near the Commercial Generic Bioprocessing Apparatus (CGBA) station on Endeavour's middeck. A friction car and its accompanying loop -- part of the Toys in Space package onboard -- can be seen just above Casper's head. The photograph was taken with a 35mm camera.

  19. STS-36 Commander Creighton and drinking water containers on OV-104's middeck

    NASA Technical Reports Server (NTRS)

    1990-01-01

    On Atlantis', Orbiter Vehicle (OV) 104's, middeck, STS-36 Commander John O. Creighton, holding his bifocals, reads labels on drinking water containers attached to the forward lockers. Creighton and four other NASA astronauts spent four days, 10 hours and 19 minutes aboard OV-104 for the Department of Defense (DOD) devoted mission.

  20. STS-99 Mohri and Thiele change LiOH canisters on OV-105's middeck

    NASA Image and Video Library

    2000-03-29

    STS099-311-026 (11-22 February 2000) ---Astronauts Mamoru Mohri (left) and Gerhard P. J. Thiele, both mission specialists, change out lithium hydroxide canisters on the middeck of the Earth-orbiting Space Shuttle Endeavour. Mohri represents Japan?s National Space Development Agency (NASDA) and Thiele represents the European Space Agency (ESA).

  1. Controlled Structures Technology Steering Committee Workshop

    NASA Technical Reports Server (NTRS)

    1992-01-01

    Viewgraphs on controlled structures technology presented at the steering committee workshop on 22-23 Jan. 1992 are included. Topics addressed include: interferometer testbed; middeck 0-gravity dynamics experiment; middeck active control experiment; multivariable identification for control; strain actuated aeroelastic control; sensor/actuator technology development; input command shaping; and other research projects. A description of the organization and committee are included.

  2. STS-99 MS Voss and MS Mohri pose in sleep stations on OV-105's middeck

    NASA Image and Video Library

    2000-03-28

    STS099-308-019 (11-22 February 2000) ---Astronauts Janice E. Voss and Mamoru Mohri, both members of the Blue Team portion of 24-hour SRTM support, prepare for their sleep shift on the middeck of the Earth-orbiting Space Shuttle Endeavour. Mohri represents Japan?s National Space Development Agency (NASDA).

  3. Kadenyuk sleeps strapped to the middeck wall

    NASA Image and Video Library

    1997-11-28

    STS087-323-030 (19 November – 5 December 1997) --- Ukrainian payload specialist Leonid K. Kadenyuk blocks out the world and much more as he sleeps on the mid-deck of the Earth-orbiting Space Shuttle Columbia. Kadenyuk joined five NASA astronauts for 16 days aboard Columbia in support of the United States Microgravity Payload (USMP) mission.

  4. Crewmember activity in the shuttle middeck and flight deck

    NASA Image and Video Library

    1997-06-20

    STS084-356-017 (15-24 May 1997) --- Prior to the Space Shuttle Atlantis' docking with Russia's Mir Space Station, astronaut C. Michael Foale was photographed on the middeck going over checklists. Before the mission was complete, Foale had traded in his current attire for that of his scheduled environs for the next several months onboard Mir.

  5. STS-33 Commander Gregory displays Japanese student banner on OV-103's middeck

    NASA Technical Reports Server (NTRS)

    1989-01-01

    STS-33 Commander Frederick D. Gregory displays banner drawn and signed by Japanese students on Discovery's, Orbiter Vehicle (OV) 103's, middeck. Gregory's right foot is positioned under the open airlock hatch. Behind him is the port side wall. Gregory wears shorts and a United States Air Force Academy (USAFA) t-shirt.

  6. STS-5 crew onboard portrait on port side middeck

    NASA Technical Reports Server (NTRS)

    1982-01-01

    Crew onboard portrait taken on port side middeck shows Commander Brand holding Ace Moving Co sign (partially obscured, near center) and surrounded by Pilot Overmyer (in light t-shirt), Mission Specialist (MS) Allen (center bottom) and MS Lenoir (center top). The sign refers to the successful deployment of two commercial communications satellites on the flight's first two days.

  7. STS-5 crew onboard portrait on port side middeck

    NASA Image and Video Library

    1982-11-16

    Crew onboard portrait taken on port side middeck shows Commander Brand holding Ace Moving Co sign (partially obscured, near center) and surrounded by Pilot Overmyer (in light t-shirt), Mission Specialist (MS) Allen (center bottom) and MS Lenoir (center top). The sign refers to the successful deployment of two commercial communications satellites on the flight's first two days.

  8. STS-37 crewmembers watch Pilot Cameron juggle cassettes on OV-104's middeck

    NASA Technical Reports Server (NTRS)

    1991-01-01

    STS-37 crewmembers watch Pilot Kenneth D. Cameron juggle cassette tapes on the middeck of Atlantis, Orbiter Vehicle (OV) 104. Laughing at Cameron's stunt are Mission Specialist (MS) Linda M. Godwin (foreground), Commander Steven R. Nagel (behind Cameron), and MS Jerry L. Ross (at floor level). Ross snacks on chocolate candy during the performance.

  9. Magnus on Middeck

    NASA Image and Video Library

    2011-07-10

    S135-E-007107 (10 July 2011) --- NASA astronaut Sandy Magnus, STS-135 mission specialist, is pictured with only a small portion of supplies and equipment on the middeck of the space shuttle Atlantis during the very busy third day in space as the four astronauts prepare to join a six-person crew aboard the International Space Station. Photo credit: NASA

  10. Astronaut Sam Gemar works with Middeck O-Gravity Dynamics Experiment (MODE)

    NASA Technical Reports Server (NTRS)

    1994-01-01

    Astronaut Charles D. (Sam) Gemar, mission specialist, works with the Middeck O-Gravity Dynamics Experiment (MODE) aboard the Earth-orbiting Space Shuttle Columbia. The reusable test facility is designed to study the nonlinear, gravity-dependent behavior of two types of space hardware - contained fluids and (as depicted here) large space structures - planned for future spacecraft.

  11. Astronaut Pierre J. Thuot works with Middeck O-Gravity Dynamics Experiment (MODE)

    NASA Technical Reports Server (NTRS)

    1994-01-01

    Astronaut Pierre J. Thuot, mission specialist, works with the Middeck O-Gravity Dynamics Experiment (MODE) aboard the Earth-orbiting Space Shuttle Columbia. The reusable test facility is designed to study the nonlinear, gravity-dependent behavior of two types of space hardware - contained fluids and (as depicted here) large space structures - planned for future spacecraft.

  12. Precursor SSF utilization: The MODE experiments

    NASA Technical Reports Server (NTRS)

    Crawley, Edward F.

    1992-01-01

    The MIT Space Engineering Research Center is the principal investigator for a series of experiments which utilize the Shuttle Middeck as an engineering dynamics laboratory. The first, which flew on STS-48 in Sep. 1991, was the Middeck O-gravity Dynamics Experiment (MODE). This experiment focused on the dynamics of a scaled deployable truss, similar to that of SSF, and contained liquids in tanks. MODE will be reflown in the fall of 1993. In mid-1994, the Middeck Active Control Experiment (MACE) will examine the issues associated with predicting and verifying the closed loop behavior of a controlled structure in zero gravity. The paper will present experiment background, planning, operational experience, results, and lessons learned from these experiments which are pertinent to SSF utilization.

  13. Normative Data for Interpreting the BREAST-Q: Augmentation

    PubMed Central

    Mundy, Lily R.; Homa, Karen; Klassen, Anne F.; Pusic, Andrea L.; Kerrigan, Carolyn L.

    2016-01-01

    Background The BREAST-Q is a rigorously developed, well-validated, patient-reported outcome (PRO) instrument with a module designed for evaluating breast augmentation outcomes. However, there are no published normative BREAST-Q scores, limiting interpretation. Methods Normative data were generated for the BREAST-Q Augmentation Module via the Army of Women (AOW), an online community of women (with and without breast cancer) engaged in breast-cancer related research. Members were recruited via email, with women 18 years or older without a history of breast cancer or breast surgery invited to participate. Descriptive statistics and a linear multivariate regression were performed. A separate analysis compared normative scores to findings from previously published BREAST-Q augmentation studies. Results The preoperative BREAST-Q Augmentation Module was completed by 1,211 women. Mean age was 54 ±24 years, mean body mass index (BMI) was 27 ±6, and 39% (n=467) had a bra cup size ≥D. Mean scores were Satisfaction with Breasts (54 ±19), Psychosocial Well-being (66 ±20), Sexual Well-being (49 ±20), and Physical Well-being (86 ±15). Women with a BMI of 30 or greater and bra cup size D or greater had lower scores. In comparison to AOW scores, published BREAST-Q augmentation scores were lower before and higher after surgery for all scales except Physical Well-being. Conclusions The AOW normative data represent breast-related satisfaction and well-being in woman not actively seeking breast augmentation. This data may be used as normative comparison values for those seeking and undergoing surgery as we did, demonstrating the value of breast augmentation in this patient population. PMID:28350657

  14. STS-31 crewmembers review checklist with instructor on JSC's FB-SMS middeck

    NASA Technical Reports Server (NTRS)

    1988-01-01

    STS-31 Discovery, Orbiter Vehicle (OV) 103, Mission Specialist (MS) Bruce McCandless II (left) and Pilot Charles F. Bolden (right) discuss procedures with a training instructor on the middeck of JSC's fixed-based (FB) Shuttle Mission Simulator (SMS). The three are pointing to a checklist during this training simulation in the Mission Simulation and Training Facility Bldg 5.

  15. STS-26 MS Hilmers on fixed based (FB) shuttle mission simulator (SMS) middeck

    NASA Technical Reports Server (NTRS)

    1988-01-01

    STS-26 Discovery, Orbiter Vehicle (OV) 103, Mission Specialist (MS) David C. Hilmers prepares to ascend a ladder representing the interdeck access hatch from the shuttle middeck to the flight deck. The STS-26 crew is training in the fixed base (FB) shuttle mission simulator (SMS) located in JSC Mission Simulation and Training Facility Bldg 5.

  16. STS-42 Commander Grabe uses DTO 653 MK1 Rowing Machine on OV-103's middeck

    NASA Technical Reports Server (NTRS)

    1992-01-01

    STS-42 Commander Ronald J. Grabe exercises using MK1 Rowing Machine on the middeck of Discovery, Orbiter Vehicle (OV) 103. Grabe is using the exercise device as part of Development Test Objective (DTO) 653, Evaluation of MK1 Rowing Machine. The forward lockers appear at Grabe's right and the sleep station behind him.

  17. STS-38 crewmembers eat meal on OV-104's middeck

    NASA Technical Reports Server (NTRS)

    1990-01-01

    STS-38 Pilot Frank L. Culbertson, holding spoon to his mouth, prepares to take a bite of food. Mission Specialist (MS) Charles D. Gemar licks his upper lip in anticipation of his next bite. The two crewmembers are on the middeck of Atlantis, Orbiter Vehicle (OV) 104, while enjoying their meal. Behind them are the starboard wall-mounted sleep restraints.

  18. Pilot Fullerton uses hairbrush on middeck

    NASA Image and Video Library

    1982-03-30

    STS003-22-119 (30 March 1982) --- Astronaut Gordon Fullerton, STS-3 pilot, wearing communications kit assembly (ASSY) mini-headset (HDST), uses hygiene kit hair brush on aft middeck. He makes light of his lack of hair during a freshening up session. He makes a token effort with a hair brush. Side hatch and panel ML31C appear behind him. Photo credit: NASA

  19. STS-40 DTO 647 prototype filter documented under OV-102's middeck subfloor

    NASA Technical Reports Server (NTRS)

    1991-01-01

    STS-40 Detailed Test Objective (DTO) 647, Water Separator Filter Performance Evaluation, prototype filter installed at the inlet of the water separator is documented under middeck subfloor aboard Columbia, Orbiter Vehicle (OV) 102. The proposed filter is being tested for its ability to remove debris from the air/water stream coming from the cabin heat exchanger.

  20. Payload specialists Baudry and Al-Saud in the middeck

    NASA Image and Video Library

    1985-06-17

    51G-102-035 (17-24 June 1985) --- The two payload specialists for the week-long flight share a middeck scene on the earth-orbiting Discovery. Sultan Salman Abdelazize Al-Saud (left) is in the midst of a meal while Patrick Baudry conducts a phase of the French Postural Experiment (FPE) on himself. Sleep restraints are in the background.

  1. Kregel sleeping in middeck sleep restraints wearing mask

    NASA Image and Video Library

    1995-07-31

    STS070-334-031 (13-22 JULY 1995) --- Astronaut Kevin R. Kregel demonstrates the new shuttle sleep restraints on the space shuttle Discovery?s middeck. During an August 11, 1995, post flight presentation to fellow employees at the Johnson Space Center (JSC), the STS-70 pilot discussed features of the device and lauded its ability to add comfort for crew members.

  2. Astronaut Thuot and Gemar work with Middeck O-Gravity Dynamics Experiment (MODE)

    NASA Technical Reports Server (NTRS)

    1994-01-01

    Astronauts Pierre J. Thuot (top) and Charles D. (Sam) Gemar show off the Middeck O-Gravity Dynamics Experiment (MODE) aboard the Earth-orbiting Space Shuttle Columbia. The reusable test facility is designed to study the non-linear gravity-dependent behavior of two types of space hardware - large space structures (as depicted here) and contained fluids - planned for future spacecraft.

  3. Modeling Heat-Transfer in Animal Habitats in the Shuttle Orbiter Middeck

    NASA Technical Reports Server (NTRS)

    Eodice, Michael T.; Sun, Sid (Technical Monitor)

    2000-01-01

    A mathematical model has been developed to evaluate the heat transfer characteristics of an Animal Enclosure Module (AEM) in the microgravity environment. The AEM is a spaceflight habitat that provides life support for up to six rodents in the Space Shuttle Middeck. Currently, temperatures within the AEM are recorded in real time using a solid state data recorder; however, the data are only available for analysis post-flight. This temperature information is useful for characterizing the thermal environment of the AEM for researchers, but is unavailable during flight operations. Because animal health in microgravity is directly linked to the thermal environment, the ability to predict internal AEM temperatures is extremely useful to life science researchers. NASA flight crews typically carry hand-held temperature measurement devices which allow them to provide ground researchers with near real time readings of AEM inlet temperature; however, higher priority operations limit the frequency at which these measurements can be made and subsequently downlinked. The mathematical model developed allows users to predict internal cage volume temperatures based on knowledge of the ambient air temperature entering the AEM air intake ports. Additionally, an average convective heat transfer coefficient for the AEM has been determined to provide engineers with the requisite information to facilitate future design improvements and product upgrades. The model has been validated using empirical data from a series of three Space Shuttle missions.

  4. STS-96 crew takes part in payload Interface Verification Test

    NASA Technical Reports Server (NTRS)

    1999-01-01

    Posing on the platform next to the SPACEHAB Logistics Double Module in the SPACEHAB Facility are the STS-96 crew (from left) Mission Specialists Dan Barry, Tamara Jernigan, Valery Tokarev of Russia, and Julie Payette; Pilot Rick Husband; Mission Specialist Ellen Ochoa; and Commander Kent Rominger. The crew is at KSC for a payload Interface Verification Test for their upcoming mission to the International Space Station. Mission STS-96 carries the SPACEHAB Logistics Double Module, which will have equipment to further outfit the International Space Station service module and equipment that can be off-loaded from the early U.S. assembly flights. It carries internal logistics and resupply cargo for station outfitting, plus an external Russian cargo crane to be mounted to the exterior of the Russian station segment and used to perform space walking maintenance activities. The double module stowage provides capacity of up to 10,000 lbs. with the ability to accommodate powered payloads, four external rooftop stowage locations, four double-rack locations (two powered), up to 61 bulkhead-mounted middeck locker locations, and floor storage for large unique items and Soft Stowage. STS-96 is targeted to launch May 20 about 9:32 a.m.

  5. STS-96 crew takes part in payload Interface Verification Test

    NASA Technical Reports Server (NTRS)

    1999-01-01

    During a payload Interface Verification Test (IVT) for the upcoming mission to the International Space Station , Chris Jaskolka of Boeing points out a piece of equipment in the SPACEHAB module to STS-96 Commander Kent Rominger, Mission Specialist Ellen Ochoa and Pilot Rick Husband. Other crew members visiting KSC for the IVT are Mission Specialists Tamara Jernigan, Dan Barry, Julie Payette and Valery Tokarev of Russia. Mission STS-96 carries the SPACEHAB Logistics Double Module, which will have equipment to further outfit the International Space Station service module and equipment that can be off-loaded from the early U.S. assembly flights. It carries internal logistics and resupply cargo for station outfitting, plus an external Russian cargo crane to be mounted to the exterior of the Russian station segment and used to perform space walking maintenance activities. The double module stowage provides capacity of up to 10,000 lbs. with the ability to accommodate powered payloads, four external rooftop stowage locations, four double-rack locations (two powered), up to 61 bulkhead-mounted middeck locker locations, and floor storage for large unique items and Soft Stowage. STS-96 is targeted to launch May 20 about 9:32 a.m. EDT.

  6. STS-56 inflight maintenance (IFM) air duct routing on OV-103's middeck

    NASA Technical Reports Server (NTRS)

    1993-01-01

    STS-56 inflight maintenance (IFM) repair on Discovery's, Orbiter Vehicle (OV) 103's, middeck was required to offset overheating problems with one of the onboard experiments -- Detailed Supplementary Objective (DSO) 322, Human lymphocyte locomotion in microgravity. This 'elephant's trunk' fix was rigged from the airlock's air recirculation duct to DSO 322's forward locker location by Commander Kenneth Cameron. The 'elephant's trunk' was fashioned from trash bags and other plastic items to extend an airline to the troubled area. DSO 322 is collecting data on the locomotion and migration of human lymphocytes through intercellular matrix and is testing the rotating wall vessel and the specimen temperature controller. In the background is the port side wall with the side hatch, middeck accomodations rack (MAR), and shuttle orbiter repackaged galley (SORG) visible.

  7. Microgravity Acceleration Measurement System (MAMS) Flight Configuration Verification and Status

    NASA Technical Reports Server (NTRS)

    Wagar, William

    2000-01-01

    The Microgravity Acceleration Measurement System (MAMS) is a precision spaceflight instrument designed to measure and characterize the microgravity environment existing in the US Lab Module of the International Space Station. Both vibratory and quasi-steady triaxial acceleration data are acquired and provided to an Ethernet data link. The MAMS Double Mid-Deck Locker (DMDL) EXPRESS Rack payload meets all the ISS IDD and ICD interface requirements as discussed in the paper which also presents flight configuration illustrations. The overall MAMS sensor and data acquisition performance and verification data are presented in addition to a discussion of the Command and Data Handling features implemented via the ISS, downlink and the GRC Telescience Center displays.

  8. Life and Microgravity Spacelab (LMS)

    NASA Technical Reports Server (NTRS)

    Downey, James Patton (Compiler)

    1998-01-01

    This document reports the results and analyses presented at the Life and Microgravity Spacelab One Year Science Review meeting. The science conference was held in Montreal, Canada, on August 20-21, 1997, and was hosted by the Canadian Space Agency. The LMS payload flew on the Space Shuttle Columbia (STS-78) from June 20 - July 7, 1996. The LMS investigations were performed in a pressurized Spacelab module and the Shuttle middeck. Forty scientific experiments were performed in fields such as fluid physics, solidification of metals, alloys, and semiconductors, the growth of protein crystals, and animal, human, and plant life sciences. The results demonstrate the range of quality science that can be conducted utilizing orbital laboratories in microgravity.

  9. MS Wisoff moves stowage item through transfer tunnel

    NASA Image and Video Library

    1997-01-12

    STS081-E-05100 (12 Jan. 1997) --- Astronaut Peter J. K. (Jeff) Wisoff, mission specialist, carries a stowage drawer from the middeck of the Space Shuttle Atlantis' crew cabin through a connective tunnel into the Spacehab Double Module (DM). In a few days, Wisoff and his five crew mates are scheduled to dock with Russia's Mir Space Station and pick up John E. Blaha, NASA astronaut who has been serving as a cosmonaut guest researcher since September, 1996. Astronaut Jerry M. Linenger will replace Blaha onboard Mir and the transfer will mark the second such direct exchange of cosmonaut guest researchers, though Linenger will be the fourth United States astronaut to spend a lengthy stay on Mir.

  10. Biorack

    NASA Image and Video Library

    1997-01-12

    STS081-E-05094 (12 Jan. 1997) --- Astronauts Peter J. K. (Jeff) Wisoff (left) and John M. Grunsfeld, mission specialists, deploy two Passive Thermal Conditioning Units (PTCU) onboard the SPACEHAB Double Module (DM) late on Day 1 of the mission. The two units had been transported by the pair through the tunnel connecting SPACEHAB and the mid-deck of crew cabin of the Space Shuttle Atlantis. They are joined by four other NASA astronauts for the almost ten-day mission. The crew is scheduled to dock with Russia's Mir Space Station and pick up John E. Blaha, NASA astronaut who has been serving as a cosmonaut guest researcher since September 1996. Jerry M. Linenger (out of frame) will replace Blaha onboard Mir.

  11. STS-48 MS Buchli and MS Gemar on MB SMS middeck during JSC training session

    NASA Technical Reports Server (NTRS)

    1991-01-01

    STS-48 Discovery, Orbiter Vehicle (OV) 103, Mission Specialist (MS) James F. Buchli (left) and MS Charles D. Gemar listen to instructions while on the middeck of JSC's Motion Based (MB) Shuttle Mission Simulator (SMS). Buchli and Gemar are reviewing inflight procedures during this preflight familiarization session held in the Mission Simulation and Training Facility Bldg 5.

  12. MS Thagard conducts DSO 404 on middeck

    NASA Technical Reports Server (NTRS)

    1983-01-01

    On middeck, Mission Specialist (MS) Thagard conducts Detailed Supplementary Objective (DSO) 404 - On Orbit Head and Eye Tracking Tasks. In MS seat positioned with seat back on the floor and headrest at starboard wall, Thagard, wearing unicorn cap (pantograph attached) and with electrodes on his face and forehead, monitors DC Ampere (Amp) control box. Forward lockers, intravehicular (IVA) foot restraint, and stowed treadmill appear in view.

  13. Astronaut Pierre Thuot works with Middeck O-Gravity Dynamics Experiment

    NASA Image and Video Library

    1994-03-04

    STS062-52-025 (4-18 March 1994) --- Astronaut Pierre J. Thuot, mission specialist, works with the Middeck 0-Gravity Dynamics Experiment (MODE) aboard the earth-orbiting Space Shuttle Columbia. The reusable test facility is designed to study the nonlinear, gravity-dependent behavior of two types of space hardware -- contained fluids and (as depicted here) large space structures -- planned for future spacecraft.

  14. Astronaut Sam Gemar works with Middeck O-Gravity Dynamics Experiment (MODE)

    NASA Image and Video Library

    1994-03-04

    STS062-23-017 (4-18 March 1994) --- Astronaut Charles D. (Sam) Gemar, mission specialist, works with Middeck 0-Gravity Dynamics Experiment (MODE) aboard the earth-orbiting Space Shuttle Columbia. The reusable test facility is designed to study the nonlinear, gravity-dependent behavior of two types of space hardware -- contained fluids and (as depicted here) large space structures -- planned for future spacecraft.

  15. STS-40 Exp. No. 192 urine monitoring system (UMS) on OV-102's middeck

    NASA Technical Reports Server (NTRS)

    1991-01-01

    STS-40 Experiment No. 192, Fluid-Electrolyte Regulation During Space Flight, urine monitoring system (UMS) is set up on the middeck of Columbia, Orbiter Vehicle (OV) 102, at the side hatch. The UMS is attached to OV-102's waste collection system (WCS). The urine specimen tray with sample tubes appears to the right of the UMS equipment.

  16. STS-41 MS Shepherd uses DTO 1206 portable computer on OV-103's middeck

    NASA Image and Video Library

    1990-10-10

    STS-41 Mission Specialist (MS) William M. Shepherd uses Detailed Test Objective (DTO) Space Station Cursor Control Device Evaluation MACINTOSH portable computer on the middeck of Discovery, Orbiter Vehicle (OV) 103. The computer is velcroed to forward lockers MF71C and MF71E. Surrounding Shepherd are checklists, the field sequential (FS) crew cabin camera, and a lighting fixture.

  17. CUE - Kadenyuk checks the status of the PGCs in the middeck PGF locker

    NASA Image and Video Library

    1998-01-15

    STS087-385-005 (19 November - 5 December 1997) --- Leonid Kadenyuk, Ukrainian payload specialist, retrieves a plant specimen from the plant growth facility on the mid-deck of the Earth-orbiting Space Shuttle Columbia. Kadenyuk and five United States astronauts went on to spend 16-days in Earth-orbit in support of the United States Microgravity Payload (USMP-4) mission.

  18. Commander Lousma adjusts MLR controls on middeck

    NASA Image and Video Library

    1982-03-30

    STS003-22-127 (22-30 March 1982) --- Astronaut Jack R. Lousma, STS-3 commander, wearing communications kit assembly (assy) mini-headset, adjusts controls on Monodisperse Latex Reactor (MLR) experiment located in forward middeck lockers MF57H and MF57K. To reach MLR support electronics assy controls, Lousma squeezes in between forward lockers and Development Flight Instrument (DFI) unit on starboard bulkhead. Photo credit: NASA

  19. STS-5 crewmembers with meal tray assembly on middeck

    NASA Technical Reports Server (NTRS)

    1982-01-01

    Commander Brand (in dark blue shirt), Pilot Overmyer (left), and Mission Specialist (MS) Lenoir (right) conduct microgravity experiments with food containers and meal tray assemblies in front of middeck port side wall and side hatch. Brand prepares to eat as meal tray assembly floats above his chest and Overmeyer and Lenoir look on. Sign on port side wall is labeled STS-5 Message Board.

  20. STS-41 crewmembers pose on OV-103's middeck for inflight (in-space) portrait

    NASA Image and Video Library

    1990-10-10

    STS041-26-007 (6-10 Oct 1990) --- A 35mm preset camera on Discovery's middeck captures the traditional in-space portrait of the STS-41 crewmembers. In front are (l.-r.) Astronauts Richard N. Richards, mission commander; and Robert D. Cabana, pilot. In the rear are (l.-r.) Astronauts Thomas D. Akers, Bruce E. Melnick and William M. Shepherd.

  1. STS-33 crewmember pose on Discovery, OV-103, middeck for onboard portrait

    NASA Image and Video Library

    1989-11-27

    STS033-22-035 (22-27 Nov. 1989) --- STS-33 crewmembers, wearing mission polo shirts, pose on the middeck of the Space Shuttle Discovery for an in-flight crew portrait. Clockwise (starting at left) are astronauts Frederick D. Gregory, commander; Kathryn C. Thornton, mission specialist; John E. Blaha, pilot; Manley L. (Sonny) Carter Jr., and F. Story Musgrave, mission specialists.

  2. STS-41 MS Akers assisted by technician on SMS middeck at JSC

    NASA Technical Reports Server (NTRS)

    1990-01-01

    STS-41 Mission Specialist (MS) Thomas D. Akers, wearing launch and entry suit (LES) and launch and entry helmet (LEH), is assisted by a technician on the middeck of JSC's Shuttle Mission Simulator (SMS). Akers seated in the mission specialists chairis participating in a simulation of mission events. The SMS is located in JSC's Mission Simulation and Training Facility Bldg 5.

  3. Astronaut Andrew Allen looks over procedure book in middeck

    NASA Image and Video Library

    1994-03-05

    STS062-12-015 (4-18 March 1994) --- On Coumbia's middeck, astronaut Andrew M. Allen, pilot, looks over a procedures book in the midst of a 14-day mission. Allen is attired in a new thermally controlled undergarment. As part of a detailed test objective, both Allen and John H. Casper, mission commander, wore the undergarments during the launch and entry phases of the flight.

  4. Student experimenter stands near middeck lockers in JSC Bldg 9A mockup

    NASA Technical Reports Server (NTRS)

    1991-01-01

    Student experimenter Constantine Costes, STS-42 Commander Ronald J. Grabe, STS-42 Mission Specialist (MS) William F. Readdy, and Integration Engineer Neal Christie discuss Coates' student experiment 83-02 (SE 83-02) entitled 'Zero-G Capillary Rise of Liquid through Granular Porous Media' in JSC Mockup and Integration Laboratory Bldg 9A Full Fuselage Trainer (FFT). On FFT middeck, Costes stands behind Readdy (kneeling) as Christie demonstrates experiment setup and Grabe looks on (47326). The team also examines experiment components at middeck stowage locker (47323) and at FFT open side hatch (47324, 47325). The experiment is designed to investigate the capillary and forced flow characteristics of blue-tinted water in three glass tubes with three sizes of glass beads. SE 83-02 is scheduled to be flown on STS-42 aboard Discovery, Orbiter Vehicle (OV) 103.

  5. STS-30 crewmembers pose for informal portrait on JSC FB-SMS middeck

    NASA Image and Video Library

    1988-11-15

    S88-52187 (22 Nov 1988) --- Five astronauts pause from their training schedule to pose for a photograph. Pictured, left to right, are astronauts David M. Walker, mission commander; Mark C. Lee, Mary L. Cleave, Ronald J. Grabe and Norman E. Thagard. They are on the middeck section of the Shuttle mission simulator (fixed base) in the Johnson Space Center's mission simulation and training facility.

  6. STS-45 Pilot Duffy with inflatable Earth globe on OV-104's middeck

    NASA Technical Reports Server (NTRS)

    1992-01-01

    STS-45 Pilot Brian Duffy, wearing headset, uses inflatable globe to demonstrate Earth observations for an educational program to be distributed to classrooms following the mission. This demonstration is part of Detailed Supplementary Objective (DSO) 802, Educational Activities (The Atmosphere Below). Duffy is on the middeck of Atlantis, Orbiter Vehicle (OV) 104, in front of the airlock hatch and alongside the starboard sleep station.

  7. STS-42 Commander Grabe uses DTO 653 MK1 Rowing Machine on OV-103's middeck

    NASA Image and Video Library

    1992-01-30

    STS042-05-037 (30 Jan 1992) --- Astronaut Ronald J. Grabe, STS-42 commander, exercises using MK1 Rowing Machine on the middeck of Discovery, Orbiter Vehicle (OV) 103. Grabe is using the exercise device as part of Development Test Objective (DTO) 653, Evaluation of MK1 Rowing Machine. The forward lockers appear at Grabe's right and the sleep station behind him.

  8. Pilot Crippen prepares meal on middeck

    NASA Image and Video Library

    1981-04-14

    STS001-07-502 (12-14 April 1981) --- A smiling Robert L. Crippen, STS-1 pilot, is about to prepare a meal aboard the space shuttle Columbia in Earth orbit. Prepared meals, which need only water added, and beverages, can be seen attached to trays, which are mounted on locker doors in Columbia's middeck area. Astronaut John W. Young, commander, took this photograph with a 35mm camera. Photo credit: NASA

  9. Astronaut Jean-Francois Clervoy in middeck during launch/entry training

    NASA Technical Reports Server (NTRS)

    1994-01-01

    Astronaut Jean-Francois Clervoy, STS-66 international mission specialist, sits securely on a collapsible seat on the middeck of a shuttle trainer during a rehearsal of procedures to be followed during launch and entry phases of the scheduled November flight of STS-66. This rehearsal, held in the crew compartment trainer (CCT) of JSC's Shuttle mockup and integration laboratory, was followed by a training session on emergency egress procedures.

  10. Astronaut Ellen Ochoa in middeck during launch/entry training

    NASA Technical Reports Server (NTRS)

    1994-01-01

    Secured in a collapsible seat on the middeck of the Shuttle trainer, astronaut Ellen Ochoa, STS-66 payload commander, participates in a rehearsal of procedures to be followed during launch and entry phases of the scheduled November flight of STS-66. This rehearsal, held in the crew compartment trainer (CCT) of JSC's Shuttle mockup and integration laboratory, was followed by a training session on emergency egress procedures.

  11. STS-28 Columbia, OV-102, crewmembers pose for group portrait on middeck

    NASA Image and Video Library

    1989-08-13

    STS028-22-030 (August 1989) --- An in-space crew portrait of the astronauts for the STS-28 mission. Brewster H. Shaw Jr., mission commander, is at lower left corner. Others are, clockwise from Shaw's position, James C. Adamson, David C. Leestma and Mark N. Brown, all mission specialists; and Richard N. Richards, pilot. The photo was taken on the middeck of the earth-orbiting Columbia.

  12. STS-26 crewmembers eat on middeck as TAGS printout drifts among them

    NASA Technical Reports Server (NTRS)

    1988-01-01

    STS-26 Commander Frederick H. Hauck (center) reviews lengthy text and graphics system (TAGS) printout as it drifts across the middeck while his fellow crewmembers (left to right) Mission Specialist (MS) David C. Hilmers, MS George D. Nelson, and Pilot Richard O. Covey eat various snack items. The open airlock hatch and the sleep restraints on the starboard wall are visible in the background.

  13. Mission Specialist (MS) Fabian sleeps on middeck

    NASA Image and Video Library

    1983-06-24

    STS007-26-1439 (18-24 June 1983) --- Astronaut John M. Fabian, STS-7 mission specialist, is captured with a 35mm camera at his sleep station in the middeck of the Earth-orbiting space shuttle Challenger. This scene was selected by the five-member astronaut crew for showing at its July 1, 1983 Post Flight Press Conference (PFPC) at the Johnson Space Center's (JSC) main auditorium. Photo credit: NASA

  14. STS-93 crewmembers assemble for crew inflight portrait on the middeck

    NASA Image and Video Library

    2013-11-18

    STS093-322-017 (23-27 July 1999) --- The five STS-93 astronauts pose for the traditional inflight crew portrait on Columbia's middeck. In front are astronauts Eileen M. Collins, mission commander, and Michel Tognini, mission specialist, representing France's Centre National d'Etudes Spatiales (CNES). Behind them are (from the left) astronauts Steven A. Hawley, mission specialist; Jeffrey S. Ashby, pilot; and Catherine G. (Cady) Coleman, mission specialist.

  15. SMOKE: Characterization of Smoke Particulate for Spacecraft Fire Detection

    NASA Technical Reports Server (NTRS)

    Urban, D. L.; Mulholland, G.; Yuan, Z. G.; Yang, J.; Cleary, T.

    2001-01-01

    'Smoke' is a flight definition investigation whose purpose is to characterize the smoke particulate from microgravity smoke sources to enable improved design of future space-craft smoke detectors. In the earliest missions (Mercury, Gemini and Apollo), the crew quarters were so cramped that it was considered reasonable that the astronauts would rapidly detect any fire. The Skylab module, however, included approximately 30 UV-sensing fire detectors. The Space Shuttle Orbiter has nine particle-ionization smoke detectors in the mid-deck and flight deck. The detectors for the US segments of the International Space Station (ISS) are laser-diode, forward-scattering, smoke detectors. Current plans for the ISS call for two detectors in the open area of the module, and detectors in racks that have cooling air-flow. Due to the complete absence of microgravity data, all three of these detector systems were designed based upon 1-g test data and experience. As planned mission durations and complexity increase and the volume of spacecraft increases, the need for and importance of effective, crew-independent, fire detection will grow significantly, necessitating more research into microgravity fire phenomena. In 1997 the Comparative Soot Diagnostics Experiment (CSD) flew in the Orbiter Middeck as a Glovebox payload. The CSD experiment was designed to produce small quantities of smoke from several sources to obtain particulate samples and to determine the response of the ISS and Orbiter smoke detectors to these sources. Marked differences in the performance of the detectors compared to their behavior in 1-g were observed. In extreme cases, the detector used in the orbiter was completely blind to easily visible smoke from sources that were readily detected in 1-g. It is hypothesized but as yet unverified that this performance difference was due to enhanced growth of liquid smoke droplets in low-g. These CSD results clearly demonstrate that spacecraft smoke detector design cannot be based on 1-g experience.

  16. MS Musgrave conducts CFES experiment on middeck

    NASA Image and Video Library

    1983-04-09

    STS006-03-381 (4-9 April 1983) --- Astronaut F. Story Musgrave, STS-6 mission specialist, monitors the activity of a sample in the continuous flow electrophoresis system (CFES) aboard the Earth-orbiting space shuttle Challenger. Dr. Musgrave is in the middeck area of the spacecraft. He has mounted a 35mm camera to record the activity through the window of the experiment. This frame was also photographed with a 35mm camera. Photo credit: NASA

  17. STS-93 MS Hawley works with data associated with the OCA on the middeck

    NASA Image and Video Library

    2013-11-18

    STS093-327-004 (23-27 July 1999) --- Astronaut Steven A. Hawley works with data associated with the Orbital Communications Adapter (OCA) on the middeck of the Space Shuttle Columbia. Not far away from him is the window-mounted instrument which supports the Southwest Ultraviolet Imaging System (SWUIS). SWUIS is an innovative telescope/charge-coupled device camera system designed to image planets and other solar system bodies.

  18. Pilot Fullerton plans menu as packaged food and beverages float around him

    NASA Technical Reports Server (NTRS)

    1982-01-01

    Pilot C. Gordon Fullerton, wearing the communications carrier assembly (ASSY) mini headset (HDST), beings food preparation on the middeck. Canned goods, sealed packages, beverage containers, etc are attached with velcro to meal tray assemblies (secured on middeck forward lockers) and freefloat around Fullerton. JSC water dispenser kit and portrait of G.W.S. Abbey appears behind Fullerton on port side bulkhead and potable water tank appears below him.

  19. BRIC - Brown with canisters on middeck

    NASA Image and Video Library

    1998-11-02

    STS095-E-5166 (2 Nov. 1998) --- Astronaut Curtis L. Brown Jr. (left), STS-95 commander, and U.S. Sen. John H. Glenn Jr., payload specialist, are seen on the middeck of the Space Shuttle Discovery during Flight Day three activity. Brown has retrieved an experiment from a stowage locker and Glenn works out on the ergometer device. The photo was taken with an electronic still camera (ESC) at 05:55:42 GMT, Nov. 2.

  20. STS-57 MS3 Wisoff monitors FARE II activity on the middeck of OV-105

    NASA Image and Video Library

    1993-07-01

    STS057-39-021 (21 June-1 July 1993) --- Astronaut Peter J. K. (Jeff) Wisoff, mission specialist, monitors the Fluid Acquisition and Resupply Experiment (FARE II), housed in four middeck lockers onboard the Space Shuttle Endeavour. The successor to FARE I (STS 53, 1992), FARE II was designed to demonstrate the effectiveness of a device to alleviate the problems associated with vapor-free liquid transfer.

  1. STS-38 Pilot Culbertson removes film from an OV-104 middeck stowage locker

    NASA Technical Reports Server (NTRS)

    1990-01-01

    STS-38 Pilot Frank L. Culbertson removes photographic film from stowage locker MF43E located on the middeck of Atlantis, Orbiter Vehicle (OV) 104. Additional items fastened to the forward lockers include a doll, meal tray assemblies, a SONY Walkman, a camera lens, and a Department of Air Force insignia (decal). The crew escape pole (CEP) extends over Culbertson's head and the open airlock hatch appears behind him.

  2. STS-34 crewmembers conduct DSO 0470 on OV-104's middeck

    NASA Image and Video Library

    1989-10-23

    STS034-08-007 (18-23 Oct. 1989) --- Astronaut Ellen S. Baker, an STS-34 mission specialist and medical doctor, conducts a medical examination on astronaut Franklin R. Chang-Diaz, mission specialist, on the middeck of the Earth-orbiting space shuttle Atlantis. Dr. Baker was monitoring Chang-Diaz's blood flow. The scene was recorded on film with a 35mm camera.Photo credit: NASA or National Aeronautics and Space Administration

  3. French payload specialist Patrick Baudry prepares a meal

    NASA Technical Reports Server (NTRS)

    1985-01-01

    Payload specialist Patrick Baudry, representing the Centre National d'Etudes Spatiales of France, prepares to open a can of lobster. The bag attached to the nearby middeck locker door appears to contain several other French snacks. His food tray is also attached to the middeck lockers. Behind his head are other food trays attached to the shuttle rehydration unit. A roll of duct tape floats in space to one side of Baudry.

  4. Barratt on middeck

    NASA Image and Video Library

    2011-02-24

    S133-E-005034 (24 Feb. 2011) --- Astronaut Michael Barratt, STS-133 mission specialist, is seen on the middeck of the space shuttle Discovery soon after reaching Earth orbit on flight day one. Barratt is preparing to stow his launch and entry escape suit, which will be called upon again in a week and a half from now when Discovery comes back to Earth for the final time. Photo credit: NASA or National Aeronautics and Space Administration

  5. STS-57 MS4 Voss, wearing goggles, handles SCG equipment on OV-105's middeck

    NASA Technical Reports Server (NTRS)

    1993-01-01

    STS-57 Mission Specialist 4 (MS4) Janice E. Voss, wearing goggles, handles plastic-wrapped Support of Crystal Growth (SCG) experiment equipment on the middeck of Endeavour, Orbiter Vehicle (OV) 105. Holding the SCG equipment over a portable light fixture, Voss determines the proper autoclave mixing protocols for the zeolite crystal growth experiment. The lighting fixture bracket is attached to the open airlock hatch in the foreground.

  6. Barratt on middeck

    NASA Image and Video Library

    2011-02-25

    S133-E-006036 (25 Feb. 2011) --- Astronaut Michael Barratt, STS-133 mission specialist, works with the Microbe Group Activation Pack containing eight Fluid Processing Apparatuses on the middeck of space shuttle Discovery while en route to a rendezvous with the International Space Station. A previous set of similar tests made a key discovery about the mechanism that makes salmonella more infectious, aiding the fight against food poisoning on Earth. Photo credit: NASA or National Aeronautics and Space Administration

  7. STS-26 crew stowage review in Bldg 9A crew compartment trainer (CCT)

    NASA Technical Reports Server (NTRS)

    1988-01-01

    STS-26 Discovery, Orbiter Vehicle (OV) 103, crewmembers rehearse for their upcoming mission in the crew compartment trainer (CCT) located in the JSC Mockup and Integration Laboratory Bldg 9A. Standing on the CCT middeck, Pilot Richard O. Covey hands a snack package to Mission Specialist (MS) John M. Lounge (back to the camera). Covey selected the snack from the meal tray assemblies (foodtrays) mounted on the forward middeck lockers.

  8. Commander Lousma adds water to a beverage container on middeck

    NASA Technical Reports Server (NTRS)

    1982-01-01

    Commander Lousma, wearing communications kit assembly (assy) mini headset (HDST), fills beverage container using the JSC water dispenser kit water gun to prepare a juice drink. Lousma is wearing the trousers and shirt of a three-piece shuttle constant wear garment as he floats above the potable water tank on the middeck floor. The constant wear garment jacket is secured on a side hatch handle (background) to avoid zero gravity effect.

  9. Summary Status of the Space Acceleration Measurement System (SAMS), September 1993

    NASA Technical Reports Server (NTRS)

    DeLombard, Richard

    1994-01-01

    The Space Acceleration Measurement System (SAMS) was developed to measure the microgravity acceleration environment to which NASA science payloads are exposed during microgravity science missions on the shuttle. Six flight units have been fabricated to date. The inaugural flight of a SAMS unit was on STS-40 in June 1991 as part of the First Spacelab Life Sciences mission. Since that time, SAMS has flown on six additional missions and gathered eighteen gigabytes of data representing sixty-eight days of microgravity environment. The SAMS units have been flown in the shuttle middeck and cargo bay, in the Spacelab module, and in the Spacehab module. This paper summarizes the missions and experiments which SAMS has supported. The quantity of data and the utilization of the SAMS data is described. Future activities are briefly described for the SAMS project and the Microgravity Measurement and Analysis project (MMAP) to support science experiments and scientists with microgravity environment measurement and analysis.

  10. STS-96 crew takes part in payload Interface Verification Test

    NASA Technical Reports Server (NTRS)

    1999-01-01

    In the SPACEHAB Facility, STS-96 Mission Specialist Valery Tokarev (in foreground) of the Russian Space Agency closes a container, part of the equipment that will be in the SPACEHAB module on mission STS-96. Behind Tokarev are Pilot Rick Husband (left) and Mission Specialist Dan Barry (right). Other crew members at KSC for a payload Interface Verification Test for the upcoming mission to the International Space Station are Commander Kent Rominger and Mission Specialists Ellen Ochoa, Tamara Jernigan and Julie Payette. Mission STS-96 carries the SPACEHAB Logistics Double Module, which has equipment to further outfit the International Space Station service module and equipment that can be off-loaded from the early U.S. assembly flights. The SPACEHAB carries internal logistics and resupply cargo for station outfitting, plus an external Russian cargo crane to be mounted to the exterior of the Russian station segment and used to perform space walking maintenance activities. The double module stowage provides capacity of up to 10,000 lbs. with the ability to accommodate powered payloads, four external rooftop stowage locations, four double-rack locations (two powered), up to 61 bulkhead-mounted middeck locker locations, and floor storage for large unique items and Soft Stowage. STS-96 is targeted to launch May 20 about 9:32 a.m.

  11. Crewmembers in the middeck with the Retinal Photography experiment.

    NASA Image and Video Library

    1992-12-09

    STS053-02-007 (2 - 9 Dec 1992) --- Astronaut Robert D. Cabana, pilot, uses a tonometer to check the intraocular pressure of astronaut Michael R. U. (Rich) Clifford, mission specialist. The two are on the Space Shuttle Discovery's mid-deck. This test is one of the mission's Detailed Supplementary Objectives (DSO) 472. The purpose of this DSO is to establish a data base of changes in intraocular pressures that can be used to evaluate crew health.

  12. STS-30 crewmembers pose for informal portrait on JSC FB-SMS middeck

    NASA Technical Reports Server (NTRS)

    1988-01-01

    STS-30 Atlantis, Orbiter Vehicle (OV) 104, crewmembers pause briefly from their training schedule to pose for informal portrait in JSC fixed base (FB) shuttle mission simulator (SMS). On FB-SMS middeck are (left to right) Commander David M. Walker, Mission Specialist (MS) Mark C. Lee, MS Mary L. Cleave, Pilot Ronald J. Grabe, and MS Norman E. Thagard. FB-SMS is located in JSC's Mission Simulation and Training Facility Bldg 5.

  13. STS-41 crewmembers conduct DSO 0474 Retinal Photography on OV-103's middeck

    NASA Technical Reports Server (NTRS)

    1990-01-01

    STS-41 Pilot Robert D. Cabana photographs Mission Specialist (MS) Bruce E. Melnick's retina for Detailed Supplementary Objective (DSO) 0474 Retinal Photography on the middeck of Discovery, Orbiter Vehicle (OV) 103, during presleep period. DSO 0474 is designed to collect retinal photographs in flight to determine if microgravity-induced cephalid international pressure (ICP) shifts elevate intracranial pressure. Behind the two crewmembers in the forward lockers is the Solid Surface Combustion Experiment (SSCE).

  14. Pilot Overmyer looks over food selections and experiments with beverage

    NASA Technical Reports Server (NTRS)

    1982-01-01

    Pilot Overmyer, using beverage container and drinking straw secured in meal tray assembly (ASSY), experiments with microgravity chararcteristics of liquid on middeck in front of forward lockers. Overmyer also looks over packages of food attached to middeck lockers in meal tray assemblies. Carry-on food warmer appears overhead and other meal tray assemblies, personal hygiene mirror assy, personal hygiene kit, and portrait of G.W.S. Abbey, JSC's Director of Flight Operations, appear on lockers.

  15. STS-55 crewmembers repair waste water tank under OV-102's middeck subfloor

    NASA Technical Reports Server (NTRS)

    1993-01-01

    STS-55 Pilot Terence T. Henricks uses a spotlight and pen to point out a possible problem area on a waste water tank in the bilge area below Columbia's, Orbiter Vehicle (OV) 102's, middeck. Mission Specialist 1 (MS1) and Payload Commander (PLC) Jerry L. Ross records the activity with a video camcorder. The crewmembers are participating in an inflight maintenance (IFM) exercise to counter problems experienced with the waste water tank.

  16. MS Peterson eats while reviewing procedures with Commander Weitz on middeck

    NASA Technical Reports Server (NTRS)

    1983-01-01

    Mission Specialist (MS) Peterson, holding food container, eats while reviewing procedures with Commander Weitz (wearing bifocals) on middeck in front of starboard wall. Weitz points out an item in the frew activity plan (CAP) to Peterson as the mission specialist uses a spoon to eat a meal aboard the Earth-orbiting Challenger, Orbiter Vehicle (OV) 099. Weitz and Peterson are wearing the shirt and trouser portions of the light blue cotton multi-piece constant wear garments.

  17. General view of the middeck of the Orbiter Discovery while ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    General view of the mid-deck of the Orbiter Discovery while in the Orbiter Processing Facility at Kennedy Space Center. The view is looking through the air lock and into the payload bay. In the foreground note the ladders and access hatches to the flight deck and the ground support panels used to protect the floors. - Space Transportation System, Orbiter Discovery (OV-103), Lyndon B. Johnson Space Center, 2101 NASA Parkway, Houston, Harris County, TX

  18. STS-51 astronauts photographed during sleep period on Discovery's middeck

    NASA Technical Reports Server (NTRS)

    1993-01-01

    Four of the five STS-51 crew members were photographed during one of their sleep periods on Discovery's middeck. At bottom center, astronaut Frank L. Culbertson Jr., mission commander, is barely visible, with most of his body zipped securely in the sleep restraint. Others, left to right, are astronauts Daniel W. Bursch and Carl E. Walz, mission specialists, and William F. Readdy, pilot. The photograph was taken by astronaut James H. Newman, mission specialist.

  19. STS-26 crew stowage review in Bldg 9A crew compartment trainer (CCT)

    NASA Technical Reports Server (NTRS)

    1988-01-01

    STS-26 Discovery, Orbiter Vehicle (OV) 103, crewmembers rehearse for their upcoming mission in the crew compartment trainer (CCT) located in the JSC Mockup and Integration Laboratory Bldg 9A. Standing on the CCT middeck, the crewmembers have just selected a snack from the meal tray assembly (foodtray) mounted on the forward middeck lockers. Left to right are Mission Specialist (MS) John M. Lounge, Commander Frederick H. Hauck, and MS George D. Nelson.

  20. STS-49 MS Hieb changes ESC batteries on the middeck of OV-105

    NASA Image and Video Library

    1992-05-08

    STS049-S-218 (8 May 1992) --- Astronaut Richard J. Hieb, on Endeavour's middeck, changes batteries on the electronic still camera to begin a series of snapshots with the experiment, a detailed test objective. DTO 648 is making its fourth flight into space. At various times during the week-long mission, crewmembers will downlink images from the camera. The scene was recorded at 16:51:15:05 GMT, May 8, 1992.

  1. STS-96 crew takes part in payload Interface Verification Test

    NASA Technical Reports Server (NTRS)

    1999-01-01

    At the SPACEHAB Facility, STS-96 Mission Specialist Ellen Ochoa and Commander Kent Rominger pause during a payload Interface Verification Test (IVT) for their upcoming mission to the International Space Station. Other crew members at KSC for the IVT are Pilot Rick Husband and Mission Specialists Tamara Jernigan, Dan Barry, Julie Payette and Valery Tokarev of Russia. Mission STS-96 carries the SPACEHAB Logistics Double Module, which will have equipment to further outfit the International Space Station service module and equipment that can be off-loaded from the early U.S. assembly flights. It carries internal logistics and resupply cargo for station outfitting, plus an external Russian cargo crane to be mounted to the exterior of the Russian station segment and used to perform space walking maintenance activities. The double module stowage provides capacity of up to 10,000 lbs. with the ability to accommodate powered payloads, four external rooftop stowage locations, four double-rack locations (two powered), up to 61 bulkhead-mounted middeck locker locations, and floor storage for large unique items and Soft Stowage. STS-96 is targeted to launch May 20 about 9:32 a.m. EDT.

  2. STS-96 crew takes part in payload Interface Verification Test

    NASA Technical Reports Server (NTRS)

    1999-01-01

    In the SPACEHAB Facility, STS-96 Mission Specialist Julie Payette closes a container, part of the equipment to be carried on the SPACEHAB and mission STS-96. She and other crew members Commander Kent Rominger, Pilot Rick Husband, and Mission Speciaists Ellen Ochoa, Tamara Jernigan, Dan Barry and Valery Tokarev of Russia are at KSC for a payload Interface Verification Test for the upcoming mission to the International Space Station . Mission STS-96 carries the SPACEHAB Logistics Double Module, which has equipment to further outfit the International Space Station service module and equipment that can be off-loaded from the early U.S. assembly flights. The SPACEHAB carries internal logistics and resupply cargo for station outfitting, plus an external Russian cargo crane to be mounted to the exterior of the Russian station segment and used to perform space walking maintenance activities. The double module stowage provides capacity of up to 10,000 lbs. with the ability to accommodate powered payloads, four external rooftop stowage locations, four double-rack locations (two powered), up to 61 bulkhead-mounted middeck locker locations, and floor storage for large unique items and Soft Stowage. STS-96 is targeted to launch May 20 about 9:32 a.m.

  3. STS-96 crew takes part in payload Interface Verification Test

    NASA Technical Reports Server (NTRS)

    1999-01-01

    At the SPACEHAB Facility, STS-96 Mission Specialist Ellen Ochoa and Commander Kent Rominger smile for the camera during a payload Interface Verification Test (IVT) for their upcoming mission to the International Space Station. Other crew members at KSC for the IVT are Pilot Rick Husband and Mission Specialists Tamara Jernigan, Dan Barry, Julie Payette and Valery Tokarev of Russia. Mission STS-96 carries the SPACEHAB Logistics Double Module, which will have equipment to further outfit the International Space Station service module and equipment that can be off-loaded from the early U.S. assembly flights. It carries internal logistics and resupply cargo for station outfitting, plus an external Russian cargo crane to be mounted to the exterior of the Russian station segment and used to perform space walking maintenance activities. The double module stowage provides capacity of up to 10,000 lbs. with the ability to accommodate powered payloads, four external rooftop stowage locations, four double-rack locations (two powered), up to 61 bulkhead-mounted middeck locker locations, and floor storage for large unique items and Soft Stowage. STS-96 is targeted to launch May 20 about 9:32 a.m. EDT.

  4. STS-96 crew takes part in payload Interface Verification Test

    NASA Technical Reports Server (NTRS)

    1999-01-01

    In the SPACEHAB Facility, STS-96 Mission Specialists Dan Barry and Tamara Jernigan discuss procedures during a payload Interface Verification Test (IVT) for their upcoming mission to the International Space Station. Other STS-96 crew members at KSC for the IVT are Commander Kent Rominger, Pilot Rick Husband and Mission Specialists Ellen Ochoa, Julie Payette and Valery Tokarev of Russia. Mission STS-96 carries the SPACEHAB Logistics Double Module, which will have equipment to further outfit the International Space Station service module and equipment that can be off-loaded from the early U.S. assembly flights. It carries internal logistics and resupply cargo for station outfitting, plus an external Russian cargo crane to be mounted to the exterior of the Russian station segment and used to perform space walking maintenance activities. The double module stowage provides capacity of up to 10,000 lbs. with the ability to accommodate powered payloads, four external rooftop stowage locations, four double-rack locations (two powered), up to 61 bulkhead-mounted middeck locker locations, and floor storage for large unique items and Soft Stowage. STS-96 is targeted to launch May 20 about 9:32 a.m.

  5. STS-96 crew takes part in payload Interface Verification Test

    NASA Technical Reports Server (NTRS)

    1999-01-01

    In the SPACEHAB Facility, James Behling, with Boeing, talks about equipment for mission STS-96 during a payload Interface Verification Test (IVT). Watching are (from left) Mission Specialists Ellen Ochoa, Julie Payette and Dan Berry, and Pilot Rick Husband. Other STS-96 crew members at KSC for the IVT are Commander Kent Rominger and Mission Specialists Tamara Jernigan and Valery Tokarev of Russia. Mission STS-96 carries the SPACEHAB Logistics Double Module, which will have equipment to further outfit the International Space Station service module and equipment that can be off-loaded from the early U.S. assembly flights. It carries internal logistics and resupply cargo for station outfitting, plus an external Russian cargo crane to be mounted to the exterior of the Russian station segment and used to perform space walking maintenance activities. The double module stowage provides capacity of up to 10,000 lbs. with the ability to accommodate powered payloads, four external rooftop stowage locations, four double-rack locations (two powered), up to 61 bulkhead-mounted middeck locker locations, and floor storage for large unique items and Soft Stowage. STS-96 is targeted to launch May 20 about 9:32 a.m.

  6. STS-96 crew takes part in payload Interface Verification Test

    NASA Technical Reports Server (NTRS)

    1999-01-01

    During a payload Interface Verification Test (IVT) for their upcoming mission to the International Space Station, STS-96 Mission Specialists Julie Payette, Dan Barry, and Valery Tokarev of Russia, look at a Sequential Shunt Unit in the SPACEHAB Facility. Other crew members at KSC for the IVT are Commander Kent Rominger, Pilot Rick Husband, and Mission Specialists Ellen Ochoa and Tamara Jernigan. Mission STS-96 carries the SPACEHAB Logistics Double Module, which will have equipment to further outfit the International Space Station service module and equipment that can be off-loaded from the early U.S. assembly flights. It carries internal logistics and resupply cargo for station outfitting, plus an external Russian cargo crane to be mounted to the exterior of the Russian station segment and used to perform space walking maintenance activities. The double module stowage provides capacity of up to 10,000 lbs. with the ability to accommodate powered payloads, four external rooftop stowage locations, four double-rack locations (two powered), up to 61 bulkhead-mounted middeck locker locations, and floor storage for large unique items and Soft Stowage. STS-96 is targeted to launch May 20 about 9:32 a.m. EDT.

  7. STS-96 crew takes part in payload Interface Verification Test

    NASA Technical Reports Server (NTRS)

    1999-01-01

    In the SPACEHAB Facility for a payload Interface Verification Test (IVT) for their upcoming mission to the International Space Station are (left to right) Mission Specialists Valery Tokarev, Julie Payette (holding a lithium hydroxide canister) and Dan Barry. Other crew members at KSC for the IVT are Commander Kent Rominger, Pilot Rick Husband and Mission Specialists Ellen Ochoa and Tamara Jernigan. Mission STS-96 carries the SPACEHAB Logistics Double Module, which has equipment to further outfit the International Space Station service module and equipment that can be off-loaded from the early U.S. assembly flights. The SPACEHAB carries internal logistics and resupply cargo for station outfitting, plus an external Russian cargo crane to be mounted to the exterior of the Russian station segment and used to perform space walking maintenance activities. The double module stowage provides capacity of up to 10,000 lbs. with the ability to accommodate powered payloads, four external rooftop stowage locations, four double-rack locations (two powered), up to 61 bulkhead-mounted middeck locker locations, and floor storage for large unique items and Soft Stowage. STS-96 is targeted to launch May 20 about 9:32 a.m.

  8. STS-96 crew takes part in payload Interface Verification Test

    NASA Technical Reports Server (NTRS)

    1999-01-01

    In the SPACEHAB Facility, the STS-96 crew looks over equipment during a payload Interface Verification Test for the upcoming mission to the International Space Station. From left are Commander Kent Rominger, Mission Specialists Tamara Jernigan and Valery Tokarev of Russia, Pilot Rick Husband, and Mission Specialists Ellen Ochoa and Julie Payette (backs to the camera). They are listening to Chris Jaskolka of Boeing talk about the equipment. Mission STS-96 carries the SPACEHAB Logistics Double Module, which will have equipment to further outfit the International Space Station service module and equipment that can be off-loaded from the early U.S. assembly flights. It carries internal logistics and resupply cargo for station outfitting, plus an external Russian cargo crane to be mounted to the exterior of the Russian station segment and used to perform space walking maintenance activities. The double module stowage provides capacity of up to 10,000 lbs. with the ability to accommodate powered payloads, four external rooftop stowage locations, four double-rack locations (two powered), up to 61 bulkhead-mounted middeck locker locations, and floor storage for large unique items and Soft Stowage. STS-96 is targeted to launch May 20 about 9:32 a.m. EDT.

  9. KSC-99pp0208

    NASA Image and Video Library

    1999-02-11

    KENNEDY SPACE CENTER, FLA. -- In the SPACEHAB Facility for a payload Interface Verification Test (IVT) for their upcoming mission to the International Space Station are (left to right) Mission Specialists Valery Tokarev, Julie Payette (holding a lithium hydroxide canister) and Dan Barry. Other crew members at KSC for the IVT are Commander Kent Rominger, Pilot Rick Husband and Mission Specialists Ellen Ochoa and Tamara Jernigan. Mission STS-96 carries the SPACEHAB Logistics Double Module, which has equipment to further outfit the International Space Station service module and equipment that can be off-loaded from the early U.S. assembly flights. The SPACEHAB carries internal logistics and resupply cargo for station outfitting, plus an external Russian cargo crane to be mounted to the exterior of the Russian station segment and used to perform space walking maintenance activities. The double module stowage provides capacity of up to 10,000 lbs. with the ability to accommodate powered payloads, four external rooftop stowage locations, four double-rack locations (two powered), up to 61 bulkhead-mounted middeck locker locations, and floor storage for large unique items and Soft Stowage. STS-96 is targeted to launch May 20 about 9:32 a.m

  10. Development of a mobile borehole investigation software using augmented reality

    NASA Astrophysics Data System (ADS)

    Son, J.; Lee, S.; Oh, M.; Yun, D. E.; Kim, S.; Park, H. D.

    2015-12-01

    Augmented reality (AR) is one of the most developing technologies in smartphone and IT areas. While various applications have been developed using the AR, there are a few geological applications which adopt its advantages. In this study, a smartphone application to manage boreholes using AR has been developed. The application is consisted of three major modules, an AR module, a map module and a data management module. The AR module calculates the orientation of the device and displays nearby boreholes distributed in three dimensions using the orientation. This module shows the boreholes in a transparent layer on a live camera screen so the user can find and understand the overall characteristics of the underground geology. The map module displays the boreholes on a 2D map to show their distribution and the location of the user. The database module uses SQLite library which has proper characteristics for mobile platforms, and Binary XML is adopted to enable containing additional customized data. The application is able to provide underground information in an intuitive and refined forms and to decrease time and general equipment required for geological field investigations.

  11. BoreholeAR: A mobile tablet application for effective borehole database visualization using an augmented reality technology

    NASA Astrophysics Data System (ADS)

    Lee, Sangho; Suh, Jangwon; Park, Hyeong-Dong

    2015-03-01

    Boring logs are widely used in geological field studies since the data describes various attributes of underground and surface environments. However, it is difficult to manage multiple boring logs in the field as the conventional management and visualization methods are not suitable for integrating and combining large data sets. We developed an iPad application to enable its user to search the boring log rapidly and visualize them using the augmented reality (AR) technique. For the development of the application, a standard borehole database appropriate for a mobile-based borehole database management system was designed. The application consists of three modules: an AR module, a map module, and a database module. The AR module superimposes borehole data on camera imagery as viewed by the user and provides intuitive visualization of borehole locations. The map module shows the locations of corresponding borehole data on a 2D map with additional map layers. The database module provides data management functions for large borehole databases for other modules. Field survey was also carried out using more than 100,000 borehole data.

  12. Research on Design of MUH Attitude Stability Augmentation Control System

    NASA Astrophysics Data System (ADS)

    Fan, Shigang

    2017-09-01

    Attitude stability augmentation control system with a lower cost need to be designed so that MUH (Mini Unmanned Helicopter) can adapt to different types of geographic environment and fly steadily although the weather may be bad. Attitude feedback was calculated mainly by filtering estimation within attitude acquisition module in this system. Stability augmentation can be improved mainly by PI. This paper will depict running principle and designing process of MUH attitude stability augmentation control system and algorithm that is considered as an important part in this system.

  13. Role of cranial and spinal virtual and augmented reality simulation using immersive touch modules in neurosurgical training.

    PubMed

    Alaraj, Ali; Charbel, Fady T; Birk, Daniel; Tobin, Matthew; Tobin, Mathew; Luciano, Cristian; Banerjee, Pat P; Rizzi, Silvio; Sorenson, Jeff; Foley, Kevin; Slavin, Konstantin; Roitberg, Ben

    2013-01-01

    Recent studies have shown that mental script-based rehearsal and simulation-based training improve the transfer of surgical skills in various medical disciplines. Despite significant advances in technology and intraoperative techniques over the last several decades, surgical skills training on neurosurgical operations still carries significant risk of serious morbidity or mortality. Potentially avoidable technical errors are well recognized as contributing to poor surgical outcome. Surgical education is undergoing overwhelming change, as a result of the reduction of work hours and current trends focusing on patient safety and linking reimbursement with clinical outcomes. Thus, there is a need for adjunctive means for neurosurgical training, which is a recent advancement in simulation technology. ImmersiveTouch is an augmented reality system that integrates a haptic device and a high-resolution stereoscopic display. This simulation platform uses multiple sensory modalities, re-creating many of the environmental cues experienced during an actual procedure. Modules available include ventriculostomy, bone drilling, percutaneous trigeminal rhizotomy, and simulated spinal modules such as pedicle screw placement, vertebroplasty, and lumbar puncture. We present our experience with the development of such augmented reality neurosurgical modules and the feedback from neurosurgical residents.

  14. STS-48 crew poses for onboard (inflight) portrait on OV-103's middeck

    NASA Image and Video Library

    1991-09-15

    STS048-21-04 (15 Sept 1991) --- The five astronauts pose on the Space Shuttle Discovery's middeck for the traditional in-flight crew portrait. Astronaut John O. Creighton, mission commander, is at center. Others are (front row, left to right) Kenneth S. Reightler, pilot; and James F. Buchli, mission specialist; and (rear row, left to right) astronauts Mark N. Brown and Charles D. (Sam) Gemar, both mission specialists. The image was photographed with a pre-set 35mm camera.

  15. STS-35 crewmembers watch a sphere of water float on OV-102's middeck

    NASA Image and Video Library

    1990-12-10

    STS035-15-035 (2-10 Dec 1990) --- STS-35 crewmembers perform a microgravity experiment using their drinking water while on the middeck of Columbia, Orbiter Vehicle (OV) 102. Mission Specialist (MS) Jeffrey A. Hoffman (left) has released some water from a drinking container which he holds in his hand. MS John M. Lounge (wearing glasses, center) and Payload Specialist Samuel T. Durrance along with Hoffman study the changing shape and movement of the sphere of water.

  16. Camarada on middeck

    NASA Image and Video Library

    2005-08-04

    S114-E-7003 (4 August 2005) --- Astronaut Charles J. Camarda, STS-114 mission specialist, performs a middeck evaluation of the mechanical "plug" option for Reinforced Carbon-Carbon (RCC) repair aboard the Space Shuttle Discovery. Camarda used special pre-designated tools to accomplish the procedure, along with round thin, flexible 7-inch-diamter carbon-silicon cover plates designed to flex up to 0.25 inch to conform to the wing leading edge RCC panels, a hardware attachment mechanism similar to a toggle bolt and sealant.

  17. STS-44 crew poses for their onboard (in-space) portrait on OV-104's middeck

    NASA Image and Video Library

    1991-12-01

    STS044-50-033 (24 Nov-1 Dec 1991) --- The six crewmembers for STS-44 assemble on the middeck. An auto-set 35mm camera recorded this view of them enroute to a more formal pose. Astronaut Frederick D. Gregory, Mission Commander, is at center. Clockwise from his position, other crewmembers are Payload Specialist Thomas J. Hennen; and astronauts James S. Voss, Mario Runco Jr. and F. Story Musgrave, all Mission Specialists, and Terence T. (Tom) Henricks, Pilot.

  18. STS-93 Tognini and Hawley pose with the SWUIS on the middeck of Columbia

    NASA Image and Video Library

    2013-11-18

    STS093-347-027 (23-27 July 1999) --- Astronauts Steven A. Hawley (left) and Michel Tognini, mission specialists, are pictured with the Southwest Ultraviolet Imaging System (SWUIS) on the middeck of the Space Shuttle Columbia. SWUIS was used during the mission to image planets and other solar system bodies in order to explore their atmospheres and surfaces in ultraviolet (UV) region of the spectrum, which astronomers value for diagnostic work. Tognini represents the Centre National d'Etudes Spatiales (CNES) of France.

  19. CCM-C,Collins checks the middeck experiment

    NASA Image and Video Library

    1999-07-24

    S93-E-5016 (23 July 1999) --- Astronaut Eileen M. Collins, mission commander, checks on an experiment on Columbia's middeck during Flight Day 1 activity. The experiment is called the Cell Culture Model, Configuration C. Objectives of it are to validate cell culture models for muscle, bone and endothelial cell biochemical and functional loss induced by microgravity stress; to evaluate cytoskeleton, metabolism, membrane integrity and protease activity in target cells; and to test tissue loss pharmaceuticals for efficacy. The photo was recorded with an electronic still camera (ESC).

  20. STS-35 MS Hoffman's height is recorded by MS Lounge on OV-102's middeck

    NASA Technical Reports Server (NTRS)

    1990-01-01

    STS-35 Mission Specialist (MS) Jeffrey A. Hoffman stretches out on the middeck floor while MS John M. Lounge records his height. The two crewmembers are in front of the forward lockers aboard Columbia, Orbiter Vehicle (OV) 102. Hoffman steadies himself using the stowed treadmill and the lockers. Above Hoffman's head is a plastic bag filled with Development Test Objective (DTO) 634, Trash Compaction and Retention System Demonstration, trash compactor charcoal filtered bag lids.

  1. STS-46 crewmembers participate in Fixed Base (FB) SMS training at JSC

    NASA Technical Reports Server (NTRS)

    1992-01-01

    STS-46 Atlantis, Orbiter Vehicle (OV) 104, Pilot Andrew M. Allen hands Mission Specialist (MS) and Payload Commander (PLC) Jeffrey A. Hoffman checklists from middeck locker MF43E during training session in JSC's fixed base (FB) shuttle mission simulator (SMS) located in Mission Simulation and Training Facility Bldg 5. European Space Agency (ESA) MS Claude Nicollier outfitted with communications kit assembly headset (HDST) and equipment looks beyond Hoffman to the opposite side of the middeck.

  2. STS-31 crew activity on the middeck of the Earth-orbiting Discovery, OV-103

    NASA Image and Video Library

    1990-04-29

    STS031-05-002 (24-29 April 1990) --- A 35mm camera with a "fish eye" lens captured this high angle image on Discovery's middeck. Astronaut Kathryn D. Sullivan works with the IMAX camera in foreground, while Astronaut Steven A. Hawley consults a checklist in corner. An Arriflex motion picture camera records student ion arc experiment in apparatus mounted on stowage locker. The experiment was the project of Gregory S. Peterson, currently a student at Utah State University.

  3. Astronaut Joseph R. Tanner works with PCG experiment on middeck

    NASA Image and Video Library

    1994-11-14

    On the Space Shuttle Atlantis' mid-deck, astronaut Joseph R. Tanner, mission specialist, works at area amidst several lockers onboard the Shuttle which support the Protein Crystal Growth (PCG) experiment. This particular section is called the Crystal Observation System, housed in the Thermal Enclosure System (COS/TES). Together with the Vapor Diffusion Apparatus (VDA), housed in a Single Locker Thermal Enclosure (SLTES) which is out of frame, the Cos/TES represents the continuing research into the structures of proteins and other macromolecules such as viruses.

  4. Astronauts Young and Merbold have meal in the middeck of Columbia

    NASA Image and Video Library

    1983-11-28

    STS009-003-075 (28 November - 8 December 1983) --- Astronaut John W. Young (left), STS-9 crew commander; and Ulf Merbold, payload specialist, enjoy a meal in the middeck of the Earth-orbiting Space Shuttle Columbia. Merbold is a physicist from the Federal Republic of Germany, representing the European Space Agency (ESA) on this 10-day flight. Many of the nearby stowage lockers are used for clothing and food. The photograph was made with a 35mm camera.

  5. SSCE, Rominger works with middeck experiment

    NASA Image and Video Library

    1997-08-29

    STS085-339-006 (7 - 19 August 1997) --- Astronaut Kent V. Rominger, pilot, checks on the Solid Surface Combustion Experiment (SSCE) on the mid-deck of the Space Shuttle Discovery. The experiment, which occupies the space of four lockers, consists of a Polymethyl Methacrylate (PMMA) fuel sample internally mounted in the center of a pressurized chamber. Two windows orthogonal to each other in the chamber wall allow viewing by a 16mm camera of the side edge and top of the PMMA sample.

  6. Astronaut Jean-Francois Clervoy in middeck during launch/entry training

    NASA Technical Reports Server (NTRS)

    1994-01-01

    Wearing a training version of a partial pressure suit, Astronaut Jean-Francois Clervoy, STS-66 international mission specialist, secures himself on a collapsible seat on the middeck of a shuttle trainer during a rehearsal of procedures to be followed during launch and entry phases of the scheduled November flight of STS-66. This rehearsal, held in the crew compartment trainer (CCT) of JSC's Shuttle mockup and integration laboratory, was followed by a training session on emergency egress procedures.

  7. STS-35 crewmembers eat meal on the middeck of Columbia, OV-102

    NASA Technical Reports Server (NTRS)

    1990-01-01

    Enjoying a meal on the middeck of Columbia, Orbiter Vehicle (OV) 102, are STS-35 Mission Specialist (MS) Robert A.R. Parker (foreground), Payload Specialist Ronald A. Parise (center), and Commander Vance D. Brand. Parker spoons up bite from his food container as Parise lets a spoonful freefloat into his open mouth and Brand balances his meal tray assembly. The forward lockers, the shuttle treadmill, and the starboard side sleep station are seen in the view.

  8. MS Peterson eats while reviewing procedures with Commander Weitz on middeck

    NASA Image and Video Library

    1983-04-09

    STS006-06-456 (4-9 April 1983) --- Astronaut Paul J. Weitz, STS-6 commander, points out an item in the crew activity plan (CAP) to astronaut Donald H. Peterson as the mission specialist uses a spoon to eat a meal aboard the Earth-orbiting space shuttle Challenger. The two are on the middeck. They are wearing the shirt and trouser portions of the blue cotton multi-piece constant wear garments. This frame was photographed with a 35mm camera. Photo credit: NASA

  9. The MODE family of facility class experiments

    NASA Technical Reports Server (NTRS)

    Miller, David W.

    1992-01-01

    The objective of the Middeck 0-gravity Dynamics Experiment (MODE) is to characterize fundamental 0-g slosh behavior and obtain quantitative data on slosh force and spacecraft response for correlation of the analytical model. The topics are presented in viewgraph form and include the following: space results; STA objectives, requirements, and approach; comparison of ground to orbital data for the baseline configuration; conclusions of orbital testing; flight experiment resources; Middeck Active Control Experiment (MACE); MACE 1-G and 0-G models; and future efforts.

  10. Wakata with Glacier on Middeck (MDDK)

    NASA Image and Video Library

    2009-03-20

    S119-E-006764 (20 March 2009) --- Japan Aerospace Exploration Agency astronaut Koichi Wakata is pictured on Discovery's middeck with the General Laboratory Active Cryogenic ISS Experiment Refrigerator (GLACIER). The astronauts changed out the International Space Station's glacier with a new one on March 20 to return urine, saliva, and blood samples from the Expedition 18 crew to Earth with Discovery's STS-119 astronauts. Wakata will be serving with both the current (Expedition 18) and the following (Expedition 19) crews aboard the station.

  11. STS-44 MS Voss "Bilge Man" under OV-104's middeck subfloor repairs separator

    NASA Image and Video Library

    1991-12-01

    STS-44 Mission Specialist (MS) James S. Voss works under the middeck subfloor of Atlantis, Orbiter Vehicle (OV) 104, to repair humidity separator leakage problems. Voss is surrounded by several water tanks and a maze of shuttle wiring and plumbing. Voss earned the nickname of "Bilge Man" because of his time spent on the lower deck tending to the leakage problem. This is the first photo released of a crewmember in this area of the shuttle.

  12. STS-51 astronauts photographed during sleep period on Discovery's middeck

    NASA Image and Video Library

    1993-09-20

    STS051-20-037 (12-22 Sept 1993) --- Four of the five astronaut crew members were photographed during one of their sleep periods on the Space Shuttle Discovery's mid-deck. At bottom center, astronaut Frank L. Culbertson, Jr., mission commander, is barely visible, with most of his body zipped securely in the sleep restraint. Others, left to right, are astronauts Daniel W. Bursch and Carl E. Walz, mission specialists, and William F. Readdy, pilot. The photograph was taken by astronaut James H. Newman, mission specialist.

  13. Crewmember in the middeck with Commercial Generic Bioprocessing experiment.

    NASA Image and Video Library

    1993-01-19

    STS054-30-009 (13 Jan 1993) --- Astronaut Susan J. Helms communicates with ground controllers about the Commercial Generic Bioprocessing Apparatus (CGBA) on Endeavour's middeck. The mission specialist holds samples from the CGBA in her left hand. Sleep restraints can be seen in their temporary stow position in the left part of the frame, near the airlock hatch. Also onboard the spacecraft for the six-day mission were astronauts John H. Casper, Donald R. McMonagle, Gregory J. Harbaugh and Mario Runco Jr.

  14. STS-46 Italian Payload Specialist Malerba uses laptop PGSC on OV-104 middeck

    NASA Technical Reports Server (NTRS)

    1992-01-01

    STS-46 Italian Payload Specialist Franco Malerba, wearing communications kit assembly headset (HDST), uses laptop payload and general support computer (PGSC) on the middeck of Atlantis, Orbiter Vehicle (OV) 104. Malerba is positioned in front of the airlock and surrounded by the interdeck access ladder (foreground), a cycle ergometer (directly behind him), the forward lockers (background), and the sleep station (at his left). Food, candy, hygiene kits, beverage containers, and film reels are attached to the forward lockers.

  15. Arnold and Acaba on Middeck (MDDK)

    NASA Image and Video Library

    2009-03-20

    S119-E-006712 (20 March 2009) --- Astronaut Tony Antonelli (left), Discovery pilot, almost appears to be saying "I've got next" as he hovers over an exercising astronaut Joseph Acaba. The STS-119 mission specialist is working out on the bicycle ergometer which the crew earlier deployed on the floor of Discovery's middeck. While Acaba goes outside the International Space Station on March 21 to participate in a spacewalk, Antonelli will remain inside to contribute support, along with other astronauts and a Russian cosmonaut.

  16. STS-35 payload specialists perform balancing act on OV-102's middeck

    NASA Technical Reports Server (NTRS)

    1990-01-01

    Aided by the microgravity environment aboard Columbia, Orbiter Vehicle (OV) 102, STS-35 Payload Specialist Ronald A. Parise balances Payload Specialist Samuel T. Durrance on his index finger in front of the middeck starboard wall. Durrance is wearing a blood pressure cuff and is holding a beverage container and food package during the microgravity performance. The waste management compartment (WMC), side hatch, and orbiter galley are seen behind the two crewmembers. Durrance's feet are at the forward lockers.

  17. STS-39 crewmembers pose on OV-103's middeck for onboard portrait

    NASA Image and Video Library

    1991-05-06

    STS039-07-017 (28 April - 6 May 1991) --- The seven member astronaut crew for the STS-39 mission poses on the middeck of the Earth-orbiting space shuttle Discovery for an in-flight crew portrait. Left to right (front) are astronauts Donald R. McMonagle, Michael L. Coats, Charles L. (Lacy) Veach and Gregory J. Harbaugh; and left to right (rear) are astronauts Guion S. Bluford Jr., L. Blaine Hammond and Richard J. Hieb. Photo credit: NASA

  18. The microgravity environment of the Space Shuttle Columbia middeck during STS-32

    NASA Technical Reports Server (NTRS)

    Dunbar, Bonnie J.; Thomas, Donald A.; Schoess, Jeff N.

    1991-01-01

    Four hours of three-axis microgravity accelerometer data were successfully measured at the MA9F locker location in the Orbiter middeck of Columbia as part of the Microgravity Disturbances Experiment (MDE) on STS-32. These data were measured using the Honeywell In-Space Accelerometer, a small three-axis accelerometer that was hard-mounted onto the Fluid Experiment Apparatus to record the microgravity environment at the exact location of the MDE. Data were recorded during specific mission events such as Orbiter quiescent periods, crew exercise on the treadmill, and numerous Orbiter engine burns. Orbiter background levels were measured to be in the 3 x 10(exp -5) to 2 x 10(exp -4) G range, treadmill operations in the 6 x 10(exp -4) to 5 x 10(exp -3) G range, and Orbiter engine burns from 4 x 10(exp -3) to in excess of 1 x 10(exp -2) G. These data represent some of the first microgravity accelerometer data ever recorded in the middeck area of the Orbiter.

  19. MS Wisoff and Linenger perform Lioh changeout

    NASA Image and Video Library

    1997-01-12

    STS081-E-5007 (12 Jan. 1997) --- Astronauts Peter J. K. (Jeff) Wisoff (left) and Jerry M. Linenger begin early housekeeping by putting in fresh lithium hydroxide canisters beneath the Space Shuttle Atlantis' middeck. Not far away in Atlantis' cargo bay, the two mission specialists and their four crew mates are flying the Spacehab Double Module (DM), replete with supplies for the three-man crew aboard Russia's Mir Space Station with which Atlantis will be docking later in the week. Linenger will trade places with John E. Blaha, marking the second such exchange of American astronaut - cosmonaut guest researcher's aboard Mir. Blaha had replaced Shannon W. Lucid in September of 1996. The scene was recorded with an Electronic Still Camera (ESC) and later downlinked to flight controllers in Houston, Texas.

  20. Camarada and Thomas on middeck

    NASA Image and Video Library

    2005-08-07

    S114-E-7001 (4 August 2005) --- Astronaut Andrew S. W. Thomas, STS-114 mission specialist, photographs a middeck evaluation of the mechanical "plug" option for Reinforced Carbon-Carbon (RCC) repair aboard the Space Shuttle Discovery. Astronaut Charles J. Camarda, mission specialist, uses special pre-designated tools to accomplish the procedure, along with round thin, flexible 7-inch-diamter carbon-silicon cover plates designed to flex up to 0.25 inch to conform to the wing leading edge RCC panels, a hardware attachment mechanism similar to a toggle bolt and sealant.

  1. Thomas and Camarda on middeck

    NASA Image and Video Library

    2005-08-04

    S114-E-7005 (4 August 2005) --- Astronaut Andrew S. W. Thomas, STS-114 mission specialist, photographs a middeck evaluation of the mechanical "plug" option for Reinforced Carbon-Carbon (RCC) repair aboard the Space Shuttle Discovery. Astronaut Charles J. Camarda, mission specialist, uses special pre-designated tools to accomplish the procedure, along with round thin, flexible 7-inch-diamter carbon-silicon cover plates designed to flex up to 0.25 inch to conform to the wing leading edge RCC panels, a hardware attachment mechanism similar to a toggle bolt and sealant.

  2. Pilot Overmyer looks over food selections and experiments with beverage

    NASA Image and Video Library

    1982-11-16

    STS005-07-255 (19 Nov. 1982) --- Astronaut Robert F. Overmyer, STS-5 pilot, using beverage container and drinking straw secured in meal tray assembly (ASSY), experiments with microgravity characteristics of liquid on middeck in front of forward lockers. Overmyer also looks over packages of food attached to middeck lockers in meal tray assemblies. Carry-on food warmer appears overhead and other meal tray assemblies, personal hygiene mirror assembly, personal hygiene kit, and portrait of G.W.S. Abbey, Johnson Space Center's (JSC) Director of Flight Operations, appear on lockers. Photo credit: NASA

  3. STS-28 Columbia, OV-102, MS Brown juggles food containers on middeck

    NASA Technical Reports Server (NTRS)

    1989-01-01

    At open middeck stowage locker MF14G single tray assembly, Mission Specialist (MS) Mark N. Brown removes food containers during meal preparation activities. Fellow crewmember MS James C. Adamson looks on as food and beverage containers, cans, and bags freefloat in front of Brown and above the open locker. At Brown's left along the port side wall are the side hatch, galley, and control panel ML86B. Brown is wearing a t-shirt and light blue constant wear garment with notepad strapped above his knee.

  4. STS-85 crew portraits in the middeck hatch and in front of lockers

    NASA Image and Video Library

    1997-08-26

    STS085-320-020 (7 - 19 August 1997) --- For their traditional in-flight crew portrait, the six crew members for this mission float on the mid-deck of the Space Shuttle Discovery. On top, left to right, are Bjarni Tryggvason, payload specialist of the Canadian Space Agency (CSA); along with astronauts Stephen K. Robinson, mission specialist; and Curtis L. Brown, Jr., mission commander. On bottom, from the left, are astronauts Robert L. Curbeam, Jr., mission specialist; N. Jan Davis, payload commander; and Kent V. Rominger, pilot.

  5. View of Mission Specialist Judith Resnik on the middeck

    NASA Image and Video Library

    1984-09-08

    41D-13-025 (30 Aug 1984) --- Astronaut Judith A. Resnik, one of three mission specialists, positions herself on the floor of the Space Shuttle Discovery's mid-deck to note some items on a clipboard pad. Nearby, Charles D. Walker, payload specialist (partially out of frame at left), anchors himself with a foot restraint while working at a stowage locker. Between the two is a sign fashioned by Dr. Resnik and held up to a nearby TV camera during early STS-41D downlinked television. This is a 35mm frame.

  6. Pilot Fullerton dons EES anti-gravity suit lower torso on middeck

    NASA Image and Video Library

    1982-03-30

    STS003-23-161 (24 March 1982) --- Astronaut C. Gordon Fullerton, STS-3 pilot, dons an olive drab inner garment which complements the space shuttle Extravehicular Mobility Unit (EMU) spacesuit. Since there are no plans for an extravehicular activity (EVA) on the flight, Fullerton is just getting some practice time ?in the field? as he is aboard the Earth-orbiting Columbia. He is in the middeck area of the vehicle. The photograph was taken with a 35mm camera by astronaut Jack R. Lousma, STS-3 commander. Photo credit: NASA

  7. Commander Lousma records PGU data on middeck

    NASA Image and Video Library

    1982-03-30

    STS003-22-122 (30 March 1982) --- STS-3 Commander Lousma, wearing communications kit assembly (ASSY) mini-headset (HDST), records Plant Growth Unit (PGU) data for the Influence of Weightlessness on Plant Lignification Experiment at forward middeck locker MF14K. The experiment is designed to demonstrate the effect of weightlessness on the quantity and rate of lignin formation in different plant species during early stages of development. Port side bulkhead with window shade and filter kit appears behind Lousma and potable water tank below him. Trash bag also appears in view. Photo credit: NASA

  8. John Glenn during preflight training for STS-95

    NASA Image and Video Library

    1998-04-14

    S98-06944 (28 April 1998) --- U.S. Sen. John H. Glenn Jr. (D.-Ohio) prepares to rehearse launch readiness procedures on the middeck of a crew trainer at the Johnson Space Center (JSC). Sharon Jones, involved in crew training, briefs the STS-95 payload specialist. When he lifts off aboard the Space Shuttle Discovery in October of this year and later lands in Florida, Sen. Glenn will be seated in a temporary middeck chair like the one used in this training exercise. The photo was taken by Joe McNally, National Geographic, for NASA.

  9. Foale on middeck with tea

    NASA Image and Video Library

    1997-09-30

    S86-E-5346 (30 September 1997) --- This Electronic Still Camera (ESC) image shows astronaut C. Michael Foale, mission specialist, hydrating tea in the middeck of the Earth-orbiting Space Shuttle Atlantis. Foale, now a STS-86 crew member, has been onboard the Russian Mir Space Station as a cosmonaut guest researcher since mid-May 1997. He was replaced by astronaut David A. Wolf during the STS-86 Atlantis/Mir docking mission. This is the seventh Atlantis/Mir docking mission. This view was taken at 00:35:35 GMT on September 30, 1997.

  10. Crewmember activity in the flight deck and middeck

    NASA Image and Video Library

    1996-12-30

    STS080-375-023 (19 Nov.-7 Dec. 1996) --- Astronauts Kenneth D. Cockrell, STS-80 mission commander, and Tamara E. Jernigan, payload commander, share a moment of off-duty time with astronaut Story Musgrave on the middeck of the Earth-orbiting space shuttle Columbia. Musgrave was making his sixth flight aboard the Space Shuttle as a mission specialist. His fellow crewmembers presented him with a patch that reads, "Master of Space." Before and during his 30 years with NASA, Musgrave obtained several academic degrees, including several Masters, a medical doctorate and several Ph.D.

  11. STS-47 MS Davis and Pilot Brown monitor ISAIAH on OV-105's middeck

    NASA Technical Reports Server (NTRS)

    1992-01-01

    STS-47 Mission Specialist (MS) N. Jan Davis (left) and Pilot Curtis L. Brown, Jr, monitor the Israel Space Agency Investigation About Hornets (ISAIAH) on the middeck of Endeavour, Orbiter Vehicle (OV) 105. ISAIAH, an enclosure located in locker MF43H, contains 180 female Oriental Hornets and will examine the effects of microgravity on the orientation, reproductive capability and social activity of the hornets. Also, the direction of comb-building by hornet workers in microgravity, as well as the structural integrity of the combs, will be examined.

  12. STS-26 crewmembers pose for onboard portrait on middeck with 51L mementos

    NASA Image and Video Library

    1988-10-03

    STS026-08-007 (29 Sept-3 Oct 1988) --- An in-space crew portrait on the middeck of Discovery. Left to right are Astronauts David C. Hilmers, George D. Nelson, Frederick H. (Rick) Hauck, John M. (Mike) Lounge and Richard O. Covey (front). The crew portrait for STS 51-L, its flight insignia and the STS 26 flight insignia are at top edge of the frame. This photo was shown by the STS 26 astronaut crew during its Oct. 11, l988 post-flight press conference.

  13. The role of selective estrogen receptor modulators in the treatment of schizophrenia.

    PubMed

    Bratek, Agnieszka; Krysta, Krzysztof; Drzyzga, Karolina; Barańska, Justyna; Kucia, Krzysztof

    2016-09-01

    Gender differences in schizophrenia have been recognized for a long time and it has been widely accepted that sex steroid hormones, especially estradiol, are strongly attributed to this fact. Two hypotheses regarding estradiol action in psychoses gained special research attention - the estrogen protection hypothesis and hypoestrogenism hypothesis. A growing number of studies have shown benefits in augmenting antipsychotic treatment with estrogens or selective estrogen receptor modulators (SERM). This review is focused on the role of selective estrogen receptor modulators in the treatment of schizophrenic patients. In order to achieve this result PubMed was searched using the following terms: schizophrenia, raloxifene, humans. We reviewed only randomized, placebo-controlled studies. Raloxifene, a selective estrogen receptor modulator was identified as useful to improve negative, positive, and general psychopathological symptoms, and also cognitive functions. All reviewed studies indicated improvement in at least one studied domain. Augmentation with raloxifene was found to be a beneficial treatment strategy for chronic schizophrenia both in female and male patients, however potential side effects (a small increase in the risk of venous thromboembolism and endometrial cancer) should be carefully considered. SERMs could be an effective augmentation strategy in the treatment of both men women with schizophrenia, although further research efforts are needed to study potential long-term side effects.

  14. Spacelab

    NASA Image and Video Library

    1983-01-01

    This double exposure image shows Spacelab-1 in the cargo bay of orbiter Columbia. From top to bottom inside the cargo bay are the Spacelab Access Turnel, which is connected to the mid-deck of the orbiter; the Spacelab module, a pressurized module in which scientists conduct experiments not possible on Earth; and Spacelab pallets, which can hold instruments for the experiments requiring direct exposure to space. The first Spacelab mission, Spacelab-1, sponsored jointly and shared equally by NASA and the European Space Agency, was a multidisciplinary mission; that is, investigations were performed in several different fields of scientific research. The overall goal of the mission was to verify Spacelab performance through a variety of scientific experiments. The disciplines represented by these experiments were astronomy and solar physics, earth observations, space plasma physics, materials sciences, atmospheric physics, and life sciences. International in nature, Spacelab-1 conducted experiments from the United States, Japan, the Netherlands, United Kingdom, Beluga, France, Germany, Italy, and Switzerland. Spacelab-1 was launched from the Kennedy Space Center on November 28, 1983 aboard the orbiter Columbia (STS-9). The Marshall Space Flight Center was responsible for managing the Spacelab missions.

  15. Six Month Report on Tissue Cultured Avian Skeletal Myofibers in the STL/A Module Aboard STS-77

    NASA Technical Reports Server (NTRS)

    Vandenburgh, Herman H.

    1997-01-01

    Space travel is know to effect skeletal muscle, causing rapid and pronounced atrophy in humans and animals, even when strenuous exercise is used as a countermeasure. The cellular and molecular bases of this atrophy are unknown. Space travel may cause muscle atrophy by a direct effect on the muscle fibers and/or indirectly by reducing circulating levels of growth factors such as growth hormone. The recent development of a tissue culture incubator system for Shuttle Middeck basic science experiments [Space Tissue Loss (STL) Module] by the Walter Reed Army Institute of Research (WRAIR) allows the study of the effects of space travel directly on isolated skeletal myofibers. Avian bioartificial skeletal muscle 'organoids' containing differentiated skeletal myofibers and connective tissue fibroblasts were flown aboard the Space Shuttle (Space Transportation System, STS) on Flight STS-77, a repeat of a similar experiment flown on STS-66. The results from these two flight experiments show for the first time that space travel has a direct effect on skeletal muscle cells separate from any systemic effects resulting from altered circulating growth factors.

  16. Middeck Active Control Experiment (MACE), phase A

    NASA Technical Reports Server (NTRS)

    Crawley, Edward F.; Deluis, Javier; Miller, David W.

    1989-01-01

    A rationale to determine which structural experiments are sufficient to verify the design of structures employing Controlled Structures Technology was derived. A survey of proposed NASA missions was undertaken to identify candidate test articles for use in the Middeck Active Control Experiment (MACE). The survey revealed that potential test articles could be classified into one of three roles: development, demonstration, and qualification, depending on the maturity of the technology and the mission the structure must fulfill. A set of criteria was derived that allowed determination of which role a potential test article must fulfill. A review of the capabilities and limitations of the STS middeck was conducted. A reference design for the MACE test article was presented. Computing requirements for running typical closed-loop controllers was determined, and various computer configurations were studied. The various components required to manufacture the structure were identified. A management plan was established for the remainder of the program experiment development, flight and ground systems development, and integration to the carrier. Procedures for configuration control, fiscal control, and safety, reliabilty, and quality assurance were developed.

  17. STS-96 crew takes part in payload Interface Verification Test

    NASA Technical Reports Server (NTRS)

    1999-01-01

    In the SPACEHAB Facility, the STS-96 crew looks at equipment as part of a payload Interface Verification Test (IVT) for their upcoming mission to the International Space Station . From left are Mission Specialist Ellen Ochoa (behind the opened storage cover ), Commander Kent Rominger, Pilot Rick Husband (holding a lithium hydroxide canister) and Mission Specialists Dan Barry, Valery Tokarev of Russia and Julie Payette. In the background is TTI interpreter Valentina Maydell. The other crew member at KSC for the IVT is Mission Specialist Tamara Jernigan. Mission STS-96 carries the SPACEHAB Logistics Double Module, which has equipment to further outfit the International Space Station service module and equipment that can be off-loaded from the early U.S. assembly flights. The SPACEHAB carries internal logistics and resupply cargo for station outfitting, plus an external Russian cargo crane to be mounted to the exterior of the Russian station segment and used to perform space walking maintenance activities. The double module stowage provides capacity of up to 10,000 lbs. with the ability to accommodate powered payloads, four external rooftop stowage locations, four double-rack locations (two powered), up to 61 bulkhead-mounted middeck locker locations, and floor storage for large unique items and Soft Stowage. STS-96 is targeted to launch May 20 about 9:32 a.m.

  18. STS-96 crew takes part in payload Interface Verification Test

    NASA Technical Reports Server (NTRS)

    1999-01-01

    In the SPACEHAB Facility, STS-96 crew members look over equipment during a payload Interface Verification Test (IVT) for their upcoming mission to the International Space Station. From left are Khristal Parker, with Boeing; Mission Specialist Dan Barry, Pilot Rick Husband, Mission Specialist Tamara Jernigan, and at the far right, Mission Specialist Julie Payette. An unidentified worker is in the background. Also at KSC for the IVT are Commander Kent Rominger and Mission Specialists Ellen Ochoa and Valery Tokarev of Russia. Mission STS-96 carries the SPACEHAB Logistics Double Module, which will have equipment to further outfit the International Space Station service module and equipment that can be off-loaded from the early U.S. assembly flights. It carries internal logistics and resupply cargo for station outfitting, plus an external Russian cargo crane to be mounted to the exterior of the Russian station segment and used to perform space walking maintenance activities. The double module stowage provides capacity of up to 10,000 lbs. with the ability to accommodate powered payloads, four external rooftop stowage locations, four double-rack locations (two powered), up to 61 bulkhead-mounted middeck locker locations, and floor storage for large unique items and Soft Stowage. STS-96 is targeted to launch May 20 about 9:32 a.m.

  19. STS-96 crew takes part in payload Interface Verification Test

    NASA Technical Reports Server (NTRS)

    1999-01-01

    In the SPACEHAB Facility, (left to right) STS-96 Pilot Rick Husband and Mission Specialists Julie Payette and Ellen Ochoa work the straps on the Sequential Shunt Unit (SSU) in front of them. The STS-96 crew is at KSC for a payload Interface Verification Test (IVT) for its upcoming mission to the International Space Station . Other crew members at KSC for the IVT are Commander Kent Rominger and Mission Specialists Tamara Jernigan, Dan Barry and Valery Tokarev of Russia. The SSU is part of the cargo on Mission STS-96, which carries the SPACEHAB Logistics Double Module, with equipment to further outfit the International Space Station service module and equipment that can be off-loaded from the early U.S. assembly flights. The SPACEHAB carries internal logistics and resupply cargo for station outfitting, plus an external Russian cargo crane to be mounted to the exterior of the Russian station segment and used to perform space walking maintenance activities. The double module stowage provides capacity of up to 10,000 lbs. with the ability to accommodate powered payloads, four external rooftop stowage locations, four double-rack locations (two powered), up to 61 bulkhead-mounted middeck locker locations, and floor storage for large unique items and Soft Stowage. STS-96 is targeted to launch May 20 about 9:32 a.m.

  20. STS-96 crew takes part in payload Interface Verification Test

    NASA Technical Reports Server (NTRS)

    1999-01-01

    In the SPACEHAB Facility, STS-96 Mission Specialist Valery Tokarev of Russia (left) and Commander Kent Rominger (second from right) listen to Lynn Ashby (far right), with JSC, talking about the SPACEHAB equipment in front of them during a payload Interface Verification Test (IVT). In the background behind Tokarev is TTI interpreter Valentina Maydell. Other STS-96 crew members at KSC for the IVT are Pilot Rick Husband and Mission Specialists Dan Barry, Ellen Ochoa, Tamara Jernigan and Julie Payette. Mission STS-96 carries the SPACEHAB Logistics Double Module, which will have equipment to further outfit the International Space Station service module and equipment that can be off-loaded from the early U.S. assembly flights. It carries internal logistics and resupply cargo for station outfitting, plus an external Russian cargo crane to be mounted to the exterior of the Russian station segment and used to perform space walking maintenance activities. The double module stowage provides capacity of up to 10,000 lbs. with the ability to accommodate powered payloads, four external rooftop stowage locations, four double-rack locations (two powered), up to 61 bulkhead-mounted middeck locker locations, and floor storage for large unique items and Soft Stowage. STS-96 is targeted to launch May 20 about 9:32 a.m.

  1. STS-96 crew takes part in payload Interface Verification Test

    NASA Technical Reports Server (NTRS)

    1999-01-01

    During a payload Interface Verification Test (IVT) in the SPACEHAB Facility, STS-96 Mission Specialist Valery Tokarev of Russia (second from left) and Commander Kent Rominger learn about the Sequential Shunt Unit (SSU) in front of them from Lynn Ashby (far right), with Johnson Space Center. At the far left looking on is TTI interpreter Valentina Maydell. Other crew members at KSC for the IVT are Pilot Rick Husband and Mission Specialists Ellen Ochoa, Tamara Jernigan, Dan Barry and Julie Payette. The SSU is part of the cargo on Mission STS-96, which carries the SPACEHAB Logistics Double Module, with equipment to further outfit the International Space Station service module and equipment that can be off-loaded from the early U.S. assembly flights. The SPACEHAB carries internal logistics and resupply cargo for station outfitting, plus an external Russian cargo crane to be mounted to the exterior of the Russian station segment and used to perform space walking maintenance activities. The double module stowage provides capacity of up to 10,000 lbs. with the ability to accommodate powered payloads, four external rooftop stowage locations, four double-rack locations (two powered), up to 61 bulkhead-mounted middeck locker locations, and floor storage for large unique items and Soft Stowage. STS-96 is targeted to launch May 20 about 9:32 a.m.

  2. STS-96 crew takes part in payload Interface Verification Test

    NASA Technical Reports Server (NTRS)

    1999-01-01

    During a payload Interface Verification Test (IVT) in the SPACEHAB Facility, STS-96 Mission Specialist Tamara Jernigan checks over instructions while Mission Specialist Dan Barry looks up from the Sequential Shunt Unit (SSU) in front of him to other equipment Lynn Ashby (right), with Johnson Space Center, is pointing at. Other crew members at KSC for the IVT are Commander Kent Rominger, Pilot Rick Husband, and Mission Specialists Ellen Ochoa, Julie Payette and Valery Tokarev of Russia. The SSU is part of the cargo on Mission STS-96, which carries the SPACEHAB Logistics Double Module, with equipment to further outfit the International Space Station service module and equipment that can be off-loaded from the early U.S. assembly flights. The SPACEHAB carries internal logistics and resupply cargo for station outfitting, plus an external Russian cargo crane to be mounted to the exterior of the Russian station segment and used to perform space walking maintenance activities. The double module stowage provides capacity of up to 10,000 lbs. with the ability to accommodate powered payloads, four external rooftop stowage locations, four double-rack locations (two powered), up to 61 bulkhead-mounted middeck locker locations, and floor storage for large unique items and Soft Stowage. STS-96 is targeted to launch May 20 about 9:32 a.m.

  3. STS-96 crew takes part in payload Interface Verification Test

    NASA Technical Reports Server (NTRS)

    1999-01-01

    During a payload Interface Verification Test (IVT) in the SPACEHAB Facility, STS-96 Pilot Rick Husband and Mission Specialist Ellen Ochoa (on the left) and Mission Specialist Julie Payette (on the far right) listen to Khristal Parker (second from right), with Boeing, explain about the equipment in front of them. Other crew members at KSC for the IVT are Commander Kent Rominger and Mission Specialists Tamara Jernigan, Dan Barry and Valery Tokarev of Russia. The SSU is part of the cargo on Mission STS-96, which carries the SPACEHAB Logistics Double Module, with equipment to further outfit the International Space Station service module and equipment that can be off-loaded from the early U.S. assembly flights. The SPACEHAB carries internal logistics and resupply cargo for station outfitting, plus an external Russian cargo crane to be mounted to the exterior of the Russian station segment and used to perform space walking maintenance activities. The double module stowage provides capacity of up to 10,000 lbs. with the ability to accommodate powered payloads, four external rooftop stowage locations, four double-rack locations (two powered), up to 61 bulkhead-mounted middeck locker locations, and floor storage for large unique items and Soft Stowage. STS-96 is targeted to launch May 20 about 9:32 a.m.

  4. STS-96 crew takes part in payload Interface Verification Test

    NASA Technical Reports Server (NTRS)

    1999-01-01

    In the SPACEHAB Facility for a payload Interface Verification Test (IVT) for their upcoming mission to the International Space Station are (kneeling) STS-96 Mission Specialists Julie Payette and Ellen Ochoa, Pilot Rick Husband, and (standing at right) Mission Specialist Dan Barry. At the left is James Behling, with Boeing, explaining some of the equipment that will be on board STS-96. Other STS-96 crew members at KSC for the IVT are Commander Kent Rominger and Mission Specialists Tamara Jernigan and Valery Tokarev of Russia. Mission STS-96 carries the SPACEHAB Logistics Double Module, which will have equipment to further outfit the International Space Station service module and equipment that can be off-loaded from the early U.S. assembly flights. It carries internal logistics and resupply cargo for station outfitting, plus an external Russian cargo crane to be mounted to the exterior of the Russian station segment and used to perform space walking maintenance activities. The double module stowage provides capacity of up to 10,000 lbs. with the ability to accommodate powered payloads, four external rooftop stowage locations, four double-rack locations (two powered), up to 61 bulkhead-mounted middeck locker locations, and floor storage for large unique items and Soft Stowage. STS-96 is targeted to launch May 20 about 9:32 a.m.

  5. KSC-99pd0209

    NASA Image and Video Library

    1999-02-11

    KENNEDY SPACE CENTER, FLA. -- In the SPACEHAB Facility, the STS-96 crew looks at equipment as part of a payload Interface Verification Test (IVT) for their upcoming mission to the International Space Station . From left are Mission Specialist Ellen Ochoa (behind the opened storage cover ), Commander Kent Rominger, Pilot Rick Husband (holding a lithium hydroxide canister) and Mission Specialists Dan Barry, Valery Tokarev of Russia and Julie Payette. In the background is TTI interpreter Valentina Maydell. The other crew member at KSC for the IVT is Mission Specialist Tamara Jernigan. Mission STS-96 carries the SPACEHAB Logistics Double Module, which has equipment to further outfit the International Space Station service module and equipment that can be off-loaded from the early U.S. assembly flights. The SPACEHAB carries internal logistics and resupply cargo for station outfitting, plus an external Russian cargo crane to be mounted to the exterior of the Russian station segment and used to perform space walking maintenance activities. The double module stowage provides capacity of up to 10,000 lbs. with the ability to accommodate powered payloads, four external rooftop stowage locations, four double-rack locations (two powered), up to 61 bulkhead-mounted middeck locker locations, and floor storage for large unique items and Soft Stowage. STS-96 is targeted to launch May 20 about 9:32 a.m

  6. KSC-99pp0201

    NASA Image and Video Library

    1999-02-11

    KENNEDY SPACE CENTER, FLA. -- In the SPACEHAB Facility, STS-96 Mission Specialist Valery Tokarev of Russia (left) and Commander Kent Rominger (second from right) listen to Lynn Ashby (far right), with JSC, talking about the SPACEHAB equipment in front of them during a payload Interface Verification Test (IVT). In the background behind Tokarev is TTI interpreter Valentina Maydell. Other STS-96 crew members at KSC for the IVT are Pilot Rick Husband and Mission Specialists Dan Barry, Ellen Ochoa, Tamara Jernigan and Julie Payette. Mission STS-96 carries the SPACEHAB Logistics Double Module, which will have equipment to further outfit the International Space Station service module and equipment that can be off-loaded from the early U.S. assembly flights. It carries internal logistics and resupply cargo for station outfitting, plus an external Russian cargo crane to be mounted to the exterior of the Russian station segment and used to perform space walking maintenance activities. The double module stowage provides capacity of up to 10,000 lbs. with the ability to accommodate powered payloads, four external rooftop stowage locations, four double-rack locations (two powered), up to 61 bulkhead-mounted middeck locker locations, and floor storage for large unique items and Soft Stowage. STS-96 is targeted to launch May 20 about 9:32 a.m

  7. KSC-99pd0214

    NASA Image and Video Library

    1999-02-11

    KENNEDY SPACE CENTER, FLA. -- During a payload Interface Verification Test (IVT) in the SPACEHAB Facility, STS-96 Mission Specialist Valery Tokarev of Russia (second from left) and Commander Kent Rominger learn about the Sequential Shunt Unit (SSU) in front of them from Lynn Ashby (far right), with Johnson Space Center. At the far left looking on is TTI interpreter Valentina Maydell. Other crew members at KSC for the IVT are Pilot Rick Husband and Mission Specialists Ellen Ochoa, Tamara Jernigan, Dan Barry and Julie Payette. The SSU is part of the cargo on Mission STS-96, which carries the SPACEHAB Logistics Double Module, with equipment to further outfit the International Space Station service module and equipment that can be off-loaded from the early U.S. assembly flights. The SPACEHAB carries internal logistics and resupply cargo for station outfitting, plus an external Russian cargo crane to be mounted to the exterior of the Russian station segment and used to perform space walking maintenance activities. The double module stowage provides capacity of up to 10,000 lbs. with the ability to accommodate powered payloads, four external rooftop stowage locations, four double-rack locations (two powered), up to 61 bulkhead-mounted middeck locker locations, and floor storage for large unique items and Soft Stowage. STS-96 is targeted to launch May 20 about 9:32 a.m

  8. Development of an Advanced Animal Habitat for Spaceflight

    NASA Technical Reports Server (NTRS)

    Baer, L.; Vasques, M.; Martwick, F.; Hines, M.; Grindeland, R. E.

    1994-01-01

    It is necessary to fly a group-housed animals for many Life Science spaceflight studies. Currently, group-housed rodents are flown aboard the shuttle in the Animal Enclosure Module (AEM). Although the AEM has been used successfully for a number of flights, it has significant limitations in the number of animals it can accommodate, limited flight duration, passive temperature control and limited in flight data acquisition capability. An Advanced Animal Habitat (AAH) is being developed, which can be flown on the shuttle middeck, both spacelab and spacehab shuttle payload modules, and the space station. The AAH is designed to house 12 rats or 30 mice for up to 30 days. The AAH will have active temperature control, a window mechanism to facilitate video monitoring/recording of the animals, and biotelemetry capabilities. In addition, the design will permit access to the animals for experimental manipulations in space. The AAH can be refitted to experiment-specific requirements as needed. In initial 7-day hardware tests 12 male rats and 10 female mice show no adverse affects with respect to final body and organ weights as compared to vivarium. controls. The Advanced Animal Habitat will provide the science community opportunities to perform a greater variety of studies for longer duration in the microgravity environment than the current Animal Enclosure Module.

  9. Pilot Kent Rominger compacts trash container

    NASA Image and Video Library

    1995-11-05

    STS073-356-018 (20 October - 5 November 1995) --- Astronaut Kent V. Rominger, pilot, demonstrates an age-old trash-compacting method on the middeck of the Earth-orbiting Space Shuttle Columbia. Following a meal, Rominger had collected the residue wrappers, etc. and filled a plastic bag. Following his compacting maneuvers, Rominger went on to deposit the sack into a temporary trash-stowage area beneath the middeck. Making his first flight into space, Rominger joined four other NASA astronauts and two guest researchers for more than two weeks' research in support of the United States Microgravity Laboratory (USML-2) mission.

  10. Aboard the mid-deck of the Earth-orbiting Space Shuttle Columbia, astronaut Charles J. Brady,

    NASA Technical Reports Server (NTRS)

    1996-01-01

    STS-78 ONBOARD VIEW --- Aboard the mid-deck of the Earth-orbiting Space Shuttle Columbia, astronaut Charles J. Brady, mission specialist and a licensed amateur radio operator or ham, talks to students on Earth. Some of the crew members devoted some of their off-duty time to continue a long-standing Shuttle tradition of communicating with students and other hams between their shifts of assigned duty. Brady joined four other NASA astronauts and two international payload specialists for almost 17-days of research in support of the Life and Microgravity Spacelab (LMS-1) mission.

  11. STS-35 MS Hoffman's height is recorded by MS Lounge on OV-102's middeck

    NASA Image and Video Library

    1990-12-10

    STS035-19-021 (December 1990) --- STS-35 Mission Specialist Jeffrey A. Hoffman stretches out on the middeck floor while MS John M. (Mike) Lounge records his height. The two crew members are in front of the forward lockers aboard Columbia, Orbiter Vehicle (OV) 102. Hoffman steadies himself using the stowed treadmill and the lockers. Above Hoffman's head is a plastic bag filled with Development Test Objective (DTO) 634, Trash Compaction and Retention System Demonstration, trash compactor charcoal filtered bag lids. This image was selected by the Public Affairs Office (PAO) for public release.

  12. STS-44 MS Musgrave assists Pilot Henricks with DSO 478 LBNP device on middeck

    NASA Technical Reports Server (NTRS)

    1991-01-01

    STS-44 Mission Specialist (MS) F. Story Musgrave assists Pilot Terence T. Henricks with Detailed Supplementary Objective (DSO) 478, Inflight Lower Body Negative Pressure (LBNP), equipment on the middeck of Atlantis, Orbiter Vehicle (OV) 104. Sensors are secured on Henricks' chest and are connected to a monitoring device. Cables freefloat around the crewmembers. A SONY Walkman and headset drift above Musgrave's head and in front of the starboard wall-mounted sleep restraints. Several banners representing the crewmembers alma maters are displayed on the starboard wall including Rutgers, CCNY, and Auburn.

  13. Newman and Krikalev on middeck

    NASA Image and Video Library

    1998-12-14

    S88-E-5159 (12-14-98) --- Less than 48-hours prior to the completion of their 11-day mission in Earth orbit, two of the seven STS-88 crew members are pictured on Endeavour's middeck. They are James H. Newman (left) and Sergei K. Krikalev, both mission specialists. Krikalev represents the Russian Space Agency (RSA) and has been named to the first ISS crew. Newman earlier had joined astronaut Jerry L. Ross on three space walks to perform a number of tasks to ready the first components of ISS. The photo was taken with an electronic still camera (ESC) at 03:00:43, Dec. 14.

  14. STS-40 crewmembers use inflight blood collection system (IBCS) kit on middeck

    NASA Technical Reports Server (NTRS)

    1991-01-01

    STS-40 crewmembers follow procedures for Experiment No. 261, The Influence of Space Flight on Erythrokinetics in Man, while on the middeck of Columbia, Orbiter Vehicle (OV) 102. Payload Specialist F. Drew Gaffney (center) draws blood from Payload Specialist Millie Hughes-Fulford (left) as Mission Specialist (MS) James P. Bagian looks on. The crewmembers are using the inflight blood collection system (IBCS) kit in front of the forward lockers and the orbiter refrigerator freezer (ORF). Displayed on the forward lockers are decals representing the Air Force, the Air Force Reserves (AFRES), University of Tennessee, Colorado State, and Stanford University.

  15. STS-36 Mission Specialist Thuot operates 16mm camera on OV-104's middeck

    NASA Image and Video Library

    1990-03-03

    STS-36 Mission Specialist (MS) Pierre J. Thuot operates 16mm ARRIFLEX motion picture camera mounted on the open airlock hatch via a bracket. Thuot uses the camera to record activity of his fellow STS-36 crewmembers on the middeck of Atlantis, Orbiter Vehicle (OV) 104. Positioned between the airlock hatch and the starboard wall-mounted sleep restraints, Thuot, wearing a FAIRFAX t-shirt, squints into the cameras eye piece. Thuot and four other astronauts spent four days, 10 hours and 19 minutes aboard OV-104 for the Department of Defense (DOD) devoted mission.

  16. Commander Mattingly prepares meal on middeck

    NASA Image and Video Library

    1982-07-04

    STS004-28-312 (27 June-4 July 1982) --- Astronaut Thomas K. Mattingly II, STS-4 crew commander, prepares a meal in the middeck area of space shuttle Columbia. He uses scissors to open a drink container. Various packages of food and meal accessories are attached to locker doors. At far left edge of the frame is the tall payload called continuous flow electrophoresis experiment (CFES) system-designed to separate biological materials according to their surface electrical charges as they pass through an electrical field. Astronaut Henry W. Hartsfield Jr. exposed this frame with a 35mm camera. Photo credit: NASA

  17. John Glenn during preflight training for STS-95

    NASA Image and Video Library

    1998-04-14

    S98-06939 (28 April 1998) --- U.S. Sen. John H. Glenn Jr. (D.-Ohio) prepares to rehearse launch readiness procedures on the middeck of a crew trainer at the Johnson Space Center (JSC). Sharon Jones, involved in crew training, goes over a check list. When the STS-95 payload specialist lifts off aboard the Space Shuttle Discovery in October of this year and later lands in Florida, he will be seated in a temporary middeck chair like the one used in this training exercise. The photo was taken by Joe McNally, National Geographic, for NASA.

  18. Pilot Overmyer eats on middeck

    NASA Image and Video Library

    1982-11-16

    STS005-15-588 (13 Nov. 1982) --- Astronaut Robert F. Overmyer, STS-5 pilot, enjoys a meal from a jury-rigged set-up in the middeck area of the Earth-orbiting space shuttle Columbia. He wears a T-shirt and the trouser portion of a multi-piece constant wear garment. His feet are positioned in recently-rigged foot restraints to avoid involuntary movement in the micro-gravity environment of space. Behind Overmyer are components of the suit, including helmet, worn during landing and takeoff for shuttle flights. The trousers he is presently wearing are part of that attire. Photo credit: NASA

  19. STS-36 Mission Specialist Thuot operates 16mm camera on OV-104's middeck

    NASA Technical Reports Server (NTRS)

    1990-01-01

    STS-36 Mission Specialist (MS) Pierre J. Thuot operates 16mm ARRIFLEX motion picture camera mounted on the open airlock hatch via a bracket. Thuot uses the camera to record activity of his fellow STS-36 crewmembers on the middeck of Atlantis, Orbiter Vehicle (OV) 104. Positioned between the airlock hatch and the starboard wall-mounted sleep restraints, Thuot, wearing a FAIRFAX t-shirt, squints into the cameras eye piece. Thuot and four other astronauts spent four days, 10 hours and 19 minutes aboard OV-104 for the Department of Defense (DOD) devoted mission.

  20. STS-48 MS Buchli, eating crackers on OV-103's middeck, is captured by ESC

    NASA Technical Reports Server (NTRS)

    1991-01-01

    STS-48 Mission Specialist (MS) James F. Buchli 'catches' goldfish snack crackers as they float in the weightless environment of the earth-orbiting Discovery, Orbiter Vehicle (OV) 103. Buchli's eating activity on the middeck was documented using the Electronic Still Camera (ESC). Crewmembers were testing the ESC as part of Development Test Objective (DTO) 648, Electronic Still Photography. The digital image was stored on a removable hard disk or small optical disk, and could be converted to a format suitable for downlink transmission. The ESC is making its initial appearance on this Space Shuttle mission.

  1. PRISMA-MAR: An Architecture Model for Data Visualization in Augmented Reality Mobile Devices

    ERIC Educational Resources Information Center

    Gomes Costa, Mauro Alexandre Folha; Serique Meiguins, Bianchi; Carneiro, Nikolas S.; Gonçalves Meiguins, Aruanda Simões

    2013-01-01

    This paper proposes an extension to mobile augmented reality (MAR) environments--the addition of data charts to the more usual text, image and video components. To this purpose, we have designed a client-server architecture including the main necessary modules and services to provide an Information Visualization MAR experience. The server side…

  2. Biona-C Cell Culture pH Monitoring System

    NASA Technical Reports Server (NTRS)

    Friedericks, C.

    1999-01-01

    Sensors 2000! is developing a system to demonstrate the ability to perform accurate, real-time measurements of pH and CO2 in a cell culture media in Space. The BIONA-C Cell Culture pH Monitoring System consists of S2K! developed ion selective sensors and control electronics integrated with the fluidics of a cell culture system. The integrated system comprises a "rail" in the Cell Culture Module (CCM) of WRAIR (Space Biosciences of Walter Read Army Institute of Research). The CCM is a Space Shuttle mid-deck locker experiment payload. The BIONA-C is displayed along with associated graphics and text explanations. The presentation will stimulate interest in development of sensor technology for real-time cell culture measurements. The transfer of this technology to other applications will also be of interest. Additional information is contained in the original document.

  3. NASA's Microgravity Science Program

    NASA Technical Reports Server (NTRS)

    Salzman, Jack A.

    1994-01-01

    Since the late 1980s, the NASA Microgravity Science Program has implemented a systematic effort to expand microgravity research. In 1992, 114 new investigators were selected to enter the program and more US microgravity experiments were conducted in space than in all the years combined since Skylab (1973-74). The use of NASA Research Announcements (NRA's) to solicit research proposals has proven to be highly successful in building a strong base of high-quality peer-reviewed science in both the ground-based and flight experiment elements of the program. The ground-based part of the program provides facilities for low gravity experiments including drop towers and aircraft for making parabolic flights. Program policy is that investigations should not proceed to the flight phase until all ground-based investigative capabilities have been exhausted. In the space experiments program, the greatest increase in flight opportunities has been achieved through dedicated or primary payload Shuttle missions. These missions will continue to be augmented by both mid-deck and GAS-Can accommodated experiments. A US-Russian cooperative flight program envisioned for 1995-97 will provide opportunities for more microgravity research as well as technology demonstration and systems validation efforts important for preparing for experiment operations on the Space Station.

  4. Garlic compounds modulate macrophage and T-lymphocyte functions.

    PubMed

    Lau, B H; Yamasaki, T; Gridley, D S

    1991-06-01

    Organosulfur compounds of garlic have been shown to inhibit growth of animal tumors and to modulate the activity of diverse chemical carcinogens. There is also evidence that garlic may modulate antitumor immunity. In this study, we determined the effects of an aqueous garlic extract and a protein fraction isolated from the extract on the chemiluminescent oxidative burst of the murine J774 macrophage cell line and thioglycollate-elicited peritoneal macrophages obtained from BALB/c mice. T-lymphocyte activity was determined using mouse splenocytes incubated with phytohemagglutinin, labeled with [3H]-thymidine and assayed for lymphoproliferation. Significant dose-related augmentation of oxidative burst was observed with garlic extract and the protein fraction. The protein fraction also enhanced the T-lymphocyte blastogenesis. The data suggest that garlic compounds may serve as biological response modifiers by augmenting macrophage and T-lymphocyte functions.

  5. Augmenting the spectral efficiency of enhanced PAM-DMT-based optical wireless communications.

    PubMed

    Islim, Mohamed Sufyan; Haas, Harald

    2016-05-30

    The energy efficiency of pulse-amplitude-modulated discrete multitone modulation (PAM-DMT) decreases as the modulation order of M-PAM modulation increases. Enhanced PAM-DMT (ePAM-DMT) was proposed as a solution to the reduced energy efficiency of PAM-DMT. This was achieved by allowing multiple streams of PAM-DMT to be superimposed and successively demodulated at the receiver side. In order to maintain a distortion-free unipolar ePAM-DMT system, the multiple time-domain PAM-DMT streams are required to be aligned. However, aligning the antisymmetry in ePAM-DMT is complex and results in efficiency losses. In this paper, a novel simplified method to apply the superposition modulation on M-PAM modulated discrete multitone (DMT) is introduced. Contrary to ePAM-DMT, the signal generation of the proposed system, termed augmented spectral efficiency discrete multitone (ASE-DMT), occurs in the frequency domain. This results in an improved spectral and energy efficiency. The analytical bit error rate (BER) performance bound of the proposed system is derived and compared with Monte-Carlo simulations. The system performance is shown to offer significant electrical and optical energy savings compared with ePAM-DMT and DC-biased optical orthogonal frequency division multiplexing (DCO-OFDM).

  6. STS-37 MS Godwin balances MS Ross using her index finger on OV-104's middeck

    NASA Image and Video Library

    1991-04-11

    STS037-29-002 (5-11 April 1991) --- Astronauts Linda M. Godwin and Jerry L. Ross perform a balancing act on Atlantis' middeck. With little effort Godwin is able to hold Ross up near the ceiling with her index finger. Although the area the two occupy is very small, a number of articles are seen, including two sleep restraints, the escape pole and Bioserve ITA Materials Dispersion Apparatus bioprocessing test bed (attached to stowage lockers at left). This was one of the visuals used by the STS-37 crewmembers during their April 19 post-flight press conference at the Johnson Space Center (JSC).

  7. Commander Rominger chooses between tea or coffee on the middeck of Endeavour

    NASA Image and Video Library

    2001-04-21

    S100-E-5072 (21 April 2001) --- Astronaut Kent V. Rominger, mission commander for STS-100, is pictured on the middeck of the Space Shuttle Endeavour as the shuttle steadily makes its way toward the International Space Station (ISS) following an April 19 launch. Rominger is taking a brief pause from a very heavy work agenda that'll only get busier once the shuttle and the orbiting outpost have docked. The mission commander is obviously trying to decide between black coffee (right) or tea with lemon. This image was recorded by a fellow crew member using a digital still camera.

  8. Ohio Senator John Glenn tours the orbiter Columbia's middeck

    NASA Technical Reports Server (NTRS)

    1998-01-01

    Astronaut Stephen Oswald, at left, explains Shuttle operations to Ohio Senator John Glenn on the orbiter Columbia's middeck at the Orbiter Processing Facility 3 at Kennedy Space Center. Senator Glenn arrived at KSC on Jan. 20 to tour KSC operational areas and to view the launch of STS-89 later this week. Glenn, who made history in 1962 as the first American to orbit the Earth, completing three orbits in a five-hour flight aboard Friendship 7, will fly his second space mission aboard Space Shuttle Discovery this October. Glenn is retiring from the Senate at the end of this year and will be a payload specialist aboard STS-95.

  9. Ohio Senator John Glenn tours the orbiter Columbia's middeck

    NASA Technical Reports Server (NTRS)

    1998-01-01

    Astronaut Stephen Oswald, at right, explains Shuttle operations to Ohio Senator John Glenn on the orbiter Columbia's middeck at the Orbiter Processing Facility 3 at Kennedy Space Center. Senator Glenn arrived at KSC on Jan. 20 to tour KSC operational areas and to view the launch of STS-89 later this week. Glenn, who made history in 1962 as the first American to orbit the Earth, completing three orbits in a five-hour flight aboard Friendship 7, will fly his second space mission aboard Space Shuttle Discovery this October. Glenn is retiring from the Senate at the end of this year and will be a payload specialist aboard STS-95.

  10. STS-26 crewmembers experiment with microgravity and eat on middeck

    NASA Technical Reports Server (NTRS)

    1988-01-01

    STS-26 Mission Specialist John M. Lounge, using a beverage container, experiments with microgravity as Commander Frederick H. Hauck (left) and MS David C. Hilmers (right) look on. Lounge freefloats as he closes in on a sphere of the red liquid drifting in front of his mouth. Hauck holds a spoon while sipping from a beverage container as he balances a meal tray assembly on his thighs. Hilmers, partially blocked by the open airlock hatch and holding a spoon and a can of food, pauses to watch the experiment. Automated Directional Solidification Furnace (ADSF) and forward middeck lockers appear on Lounge's right.

  11. STS-45 blue shift crewmembers enjoy eating a meal on OV-104's middeck

    NASA Technical Reports Server (NTRS)

    1992-01-01

    STS-45 Commander Charles F. Bolden retrieves a straw from his meal tray assembly secured on the middeck ceiling as other blue shift crewmembers around him enjoy eating their meals. Below Bolden, Pilot Brian Duffy balances a meal tray assembly on his lap as a food package and spoon freefloat between his hands. Payload Specialist Dirk D. Frimout, holding a food package and a spoon, steadies himself while eating by positioning his feet under a forward locker handhold strap. In the background, Mission Specialist (MS) and Payload Commander (PLC) Kathryn D. Sullivan prepares to take a bite of food.

  12. STS-40 crewmembers use inflight blood collection system (IBCS) kit on middeck

    NASA Technical Reports Server (NTRS)

    1991-01-01

    STS-40 crewmembers follow procedures for Experiment No. 261, The Influence of Space Flight on Erythrokinetics in Man, while on the middeck of Columbia, Orbiter Vehicle (OV) 102. Mission Specialist (MS) James P. Bagian (right) draws blood from Payload Specialist F. Drew Gaffney (center) as the second Spacelab Life Sciences 1 (SLS-1) Payload Specialist Millie Hughes-Fulford looks on. The crewmembers are using the inflight blood collection system (IBCS) kit in front of the forward lockers and the orbiter refrigerator freezer (ORF). Displayed on the forward lockers are decals representing the University of Tennessee, Colorado State, and Stanford University and several drink containers.

  13. Pilot Fullerton dons anti-g and ejection escape suit (EES) on middeck

    NASA Image and Video Library

    1982-03-31

    S82-28922 (30 March 1982) --- Astronaut C. Gordon Fullerton, STS-3 pilot, floats upside down in the zero-gravity environment of the middeck area of the Earth-orbiting space shuttle Columbia as he dons a modified USAF high altitude pressure garment. The brownish ejection/escape suit is used by the astronauts at launch and entry. Most of the remainder of their mission time, they are attired in a blue constant-wear garment. Astronaut Jack R. Lousma, crew commander, took this picture with a 35mm camera. The crew spent eight full days in the reusable spacecraft, a shuttle record. Photo credit: NASA

  14. STS-35 MS Hoffman and PS Durrance on OV-102's middeck for 'Space Classroom'

    NASA Technical Reports Server (NTRS)

    1990-01-01

    STS-35 Mission Specialist (MS) Jeffrey A. Hoffman (mustache) and Payload Specialist (PS) Samuel T. Durrance conduct 'Space Classroom Assignment: The Stars' on the middeck of Columbia, Orbiter Vehicle (OV) 102. These crewmembers are giving students a lesson on the electromagnetic spectrum. Displayed behind them on the orbiter galley is a chart showing the range of light visible by each telescope that is operating in OV-102's payload bay (PLB) during the Astronomy Laboratory 1 (ASTRO-1) mission. Live television allowed the space experts to give real-time observations and commentaries to the Earth-based academic audiences.

  15. Apparatus analysis and preliminary design of low gravity porous solids experiment for STS Orbiter mid-deck

    NASA Technical Reports Server (NTRS)

    Fleeter, R. D.; Kropp, J. L.

    1983-01-01

    The apparatus analysis laboratory equipment design and fabrication and the preliminary design of the Combustion of Porous Solids Experiment for operation in the mid-deck area of the Shuttle are described. The apparatus analysis indicated that the mid-deck region of the STS was a feasible region of the Shuttle for operation. A sixteen tube concept was developed with tubes of 75 cm length and up to 5.6 cm accommodated. The experiment is viewed by IR sensors and a 16 mm camera. Laboratory equipment was designed and fabricated to test the parible injection, mixing and venting concepts. This equipment was delivered to NASA/LeRC. A preliminary design was made for the experiment based upon the apparatus analysis. The design incorporated results from the Phase ""O'' Safety Review. This design utilizes a closed tube concept in which the particles are stored, injected and burned with no coupling to the Shuttle environment. Drawings of the major components and an assembly are given. The electronics are described for the experiment. An equipment list is presented and an experiment weight estimate is determined. The mission operation requirements are outlined.

  16. Sleeve reaction chamber system

    DOEpatents

    Northrup, M Allen [Berkeley, CA; Beeman, Barton V [San Mateo, CA; Benett, William J [Livermore, CA; Hadley, Dean R [Manteca, CA; Landre, Phoebe [Livermore, CA; Lehew, Stacy L [Livermore, CA; Krulevitch, Peter A [Pleasanton, CA

    2009-08-25

    A chemical reaction chamber system that combines devices such as doped polysilicon for heating, bulk silicon for convective cooling, and thermoelectric (TE) coolers to augment the heating and cooling rates of the reaction chamber or chambers. In addition the system includes non-silicon-based reaction chambers such as any high thermal conductivity material used in combination with a thermoelectric cooling mechanism (i.e., Peltier device). The heat contained in the thermally conductive part of the system can be used/reused to heat the device, thereby conserving energy and expediting the heating/cooling rates. The system combines a micromachined silicon reaction chamber, for example, with an additional module/device for augmented heating/cooling using the Peltier effect. This additional module is particularly useful in extreme environments (very hot or extremely cold) where augmented heating/cooling would be useful to speed up the thermal cycling rates. The chemical reaction chamber system has various applications for synthesis or processing of organic, inorganic, or biochemical reactions, including the polymerase chain reaction (PCR) and/or other DNA reactions, such as the ligase chain reaction.

  17. Spacelab

    NASA Image and Video Library

    1983-01-01

    This photograph shows the Spacelab-1 module and Spacelab access turnel being installed in the cargo bay of orbiter Columbia for the STS-9 mission. The oribiting laboratory, built by the European Space Agency, is capable of supporting many types of scientific research that can best be performed in space. The Spacelab access tunnel, the only major piece of Spacelab hardware made in the U.S., connects the module with the mid-deck level of the orbiter cabin. The first Spacelab mission, Spacelab-1, sponsored jointly and shared equally by NASA and the European Space Agency, was a multidisciplinary mission; that is, investigations were performed in several different fields of scientific research. The overall goal of the mission was to verify Spacelab performance through a variety of scientific experiments. The disciplines represented by these experiments were: astronomy and solar physics, earth observations, space plasma physics, materials sciences, atmospheric physics, and life sciences. International in nature, Spacelab-1 conducted experiments from the United States, Japan, the Netherlands, United Kingdom, Beluga, France, Germany, Italy, and Switzerland. Spacelab-1, was launched from the Kennedy Space Center on November 28, 1983 aboard the orbiter Columbia (STS-9). The Marshall Space Flight Center was responsible for managing the Spacelab missions.

  18. Modal parameters of space structures in 1 G and 0 G

    NASA Technical Reports Server (NTRS)

    Bicos, Andrew S.; Crawley, Edward F.; Barlow, Mark S.; Van Schoor, Marthinus C.; Masters, Brett

    1993-01-01

    Analytic and experimental results are presented from a study of the changes in the modal parameters of space structural test articles from one- to zero-gravity. Deployable, erectable, and rotary modules was assembled to form three one- and two-dimensional structures, in which variations in bracing wire and rotary joint preload could be introduced. The structures were modeled as if hanging from a suspension system in one gravity, and unconstrained, as if free floating in zero-gravity. The analysis is compared with ground experimental measurements, which were made on a spring-wire suspension system with a nominal plunge frequency of one Hertz, and with measurements made on the Shuttle middeck. The degree of change in linear modal parameters as well as the change in nonlinear nature of the response is examined. Trends in modal parameters are presented as a function of force amplitude, joint preload, reassembly, shipset, suspension, and ambient gravity level.

  19. STS-77 Flight Day 6

    NASA Technical Reports Server (NTRS)

    1996-01-01

    On this sixth day of the STS-77 mission, the flight crew, Cmdr. John H. Casper, Pilot Curtis L. Brown, Jr., and Mission Specialists Andrew S.W. Thomas, Ph.D., Daniel W. Bursch, Mario Runco, Jr., and Marc Garneau, Ph.D., spend some time relaxing, then go back to working in the Spacehab module and preparing to revisit a small cylindrical satellite that they deployed on the mission's third day. Commander John Casper and Pilot Curt Brown monitor Endeavour's systems. Mission Specialist Mario Runco tests an attitude determination system using the GPS attitude and navigation experiment called GANE. The remaining crew members, Mission Specialists Andy Thomas, Dan Bursch and Marc Garneau monitor the health of experiments ongoing in the Spacehab and on the middeck of the orbiter. The crew also conduct a health check of the Aquatic Research Facility (ARF) which contains starfish, mussels and sea urchins.

  20. STS-79 Space Shuttle Mission Report

    NASA Technical Reports Server (NTRS)

    Fricke, Robert W., Jr.

    1996-01-01

    STS-79 was the fourth of nine planned missions to the Russian Mir Space Station. This report summarizes the activities such as rendezvous and docking and spaceborne experiment operations. The report also discusses the Orbiter, External Tank (ET), Solid Rocket Boosters (SRB), Reusable Solid Rocket Motor (RSRM) and the space shuttle main engine (SSME) systems performance during the flight. The primary objectives of this flight were to rendezvous and dock with the Mir Space Station and exchange a Mir Astronaut. A double Spacehab module carried science experiments and hardware, risk mitigation experiments (RME's) and Russian logistics in support of program requirements. Additionally, phase 1 program science experiments were carried in the middeck. Spacehab-05 operations were performed. The secondary objectives of the flight were to perform the operations necessary for the Shuttle Amateur Radio Experiment-2 (SAREX-2). Also, as a payload of opportunity, the requirements of Midcourse Space Experiment (MSX) were completed.

  1. Crewmember in the mid deck with the Zeolite Crystal Growth experiment.

    NASA Image and Video Library

    1992-07-09

    STS50-262-004 (25 June-9 July 1992) --- Astronaut Kenneth D. Bowersox, STS-50 pilot, holds an autoclave used in the growing of zeolite crystals on the middeck of the Earth-orbiting Space Shuttle Columbia. He is standing near the Zeolite Crystal Growth (ZCG) furnace, which is housed in the space of two stowage lockers. On the 14-day U.S. Microgravity Laboratory mission, zeolite crystals were grown in 38 individual autoclaves, which were joined in pairs to be inserted into the 19 furnace orifices. While the autoclaves appear the same externally, there are several types of internal arrangements that were tested to determine which one provides the best mixing of the component solutions. The portrait of alternate payload specialist Albert Sacco, Jr. is mounted nearby. Sacco, serving as a ground controller at Marshall Space Flight Center in Alabama, worked in conjunction with the red shift crew in the science module.

  2. STS mission duration enhancement study: (orbiter habitability)

    NASA Technical Reports Server (NTRS)

    Carlson, A. D.

    1979-01-01

    Habitability improvements for early flights that could be implemented with minimum impact were investigated. These included: (1) launching the water dispenser in the on-orbit position instead of in a locker; (2) the sleep pallet concept; and (3) suction cup foot restraints. Past studies that used volumetric terms and requirements for crew size versus mission duration were reviewed and common definitions of key habitability terms were established. An accurately dimensioned drawing of the orbiter mid-deck, locating all of the known major elements was developed. Finally, it was established that orbiter duration and crew size can be increased with minimum modification and impact to the crew module. Preliminary concepts of the aft med-deck, external versions of expanded tunnel adapters (ETA), and interior concepts of ETA-3 were developed and comparison charts showing the various factors of volume, weight, duration, size, impact to orbiter, and number of sleep stations were generated.

  3. STS-96 crew takes part in payload Interface Verification Test

    NASA Technical Reports Server (NTRS)

    1999-01-01

    In the SPACEHAB Facility, (from left) STS-96 Mission Specialist Julie Payette, Pilot Rick Husband and Mission Specialist Ellen Ochoa learn about the Sequential Shunt Unit (SSU) in front of them from Lynn Ashby (far right), with Johnson Space Center. The STS-96 crew is at KSC for a payload Interface Verification Test (IVT) for their upcoming mission to the International Space Station . Other crew members at KSC for the IVT are Commander Kent Rominger and Mission Specialists Tamara Jernigan, Dan Barry and Valery Tokarev of Russia. The SSU is part of the cargo on Mission STS-96, which carries the SPACEHAB Logistics Double Module, with equipment to further outfit the International Space Station service module and equipment that can be off-loaded from the early U.S. assembly flights. The SPACEHAB carries internal logistics and resupply cargo for station outfitting, plus an external Russian cargo crane to be mounted to the exterior of the Russian station segment and used to perform space walking maintenance activities. The double module stowage provides capacity of up to 10,000 lbs. with the ability to accommodate powered payloads, four external rooftop stowage locations, four double-rack locations (two powered), up to 61 bulkhead-mounted middeck locker locations, and floor storage for large unique items and Soft Stowage. STS-96 is targeted to launch May 20 about 9:32 a.m.

  4. Glutamate-Modulating Drugs as a Potential Therapeutic Strategy in Obsessive-Compulsive Disorder

    PubMed Central

    Marinova, Zoya; Chuang, De-Maw; Fineberg, Naomi

    2017-01-01

    Objective: Abstract: Obsessive-compulsive disorder (OCD) is a mental disease commonly associated with severe distress and impairment of social functioning. Serotonin reuptake inhibitors and/or cognitive behavioural therapy are the therapy of choice, however up to 40% of patients do not respond to treatment. Glutamatergic signalling has also been implicated in OCD. The aim of the current study was to review the clinical evidence for therapeutic utility of glutamate-modulating drugs as an augmentation or monotherapy in OCD patients. Methods: We conducted a search of the MEDLINE database for clinical studies evaluating the effect of glutamate-modulating drugs in OCD. Results: Memantine is the compound most consistently showing a positive effect as an augmentation therapy in OCD. Anti-convulsant drugs (lamotrigine, topiramate) and riluzole may also provide therapeutic benefit to some OCD patients. Finally, ketamine may be of interest due to its potential for a rapid onset of action. Conclusion: Further randomized placebo-controlled trials in larger study populations are necessary in order to draw definitive conclusions on the utility of glutamate-modulating drugs in OCD. Furthermore, genetic and epigenetic factors, clinical symptoms and subtypes predicting treatment response to glutamate-modulating drugs need to be investigated systematically. PMID:28322166

  5. Adrenal-Derived Hormones Differentially Modulate Intestinal Immunity in Experimental Colitis

    PubMed Central

    de Souza, Patrícia Reis; Basso, Paulo José; Nardini, Viviani; Silva, Angelica; Banquieri, Fernanda

    2016-01-01

    The adrenal glands are able to modulate immune responses through neuroimmunoendocrine interactions and cortisol secretion that could suppress exacerbated inflammation such as in inflammatory bowel disease (IBD). Therefore, here we evaluated the role of these glands in experimental colitis induced by 3% dextran sulfate sodium (DSS) in C57BL/6 mice subjected to adrenalectomy, with or without glucocorticoid (GC) replacement. Mice succumbed to colitis without adrenals with a higher clinical score and augmented systemic levels of IL-6 and lower LPS. Furthermore, adrenalectomy negatively modulated systemic regulatory markers. The absence of adrenals resulted in augmented tolerogenic lamina propria dendritic cells but no compensatory local production of corticosterone and decreased mucosal inflammation associated with increased IFN-γ and FasL in the intestine. To clarify the importance of GC in this scenario, GC replacement in adrenalectomized mice restored different markers to the same degree of that observed in DSS group. Finally, this is the first time that adrenal-derived hormones, especially GC, were associated with the differential local modulation of the gut infiltrate, also pointing to a relationship between adrenalectomy and the modulation of systemic regulatory markers. These findings may elucidate some neuroimmunoendocrine mechanisms that dictate colitis outcome. PMID:27403034

  6. Status of Sundstrand research

    NASA Technical Reports Server (NTRS)

    Bateman, Don

    1991-01-01

    Wind shear detection status is presented in the form of view-graphs. The following subject areas are covered: second generation detection (Q-bias, gamma bias, temperature biases, maneuvering flight modulation, and altitude modulation); third generation wind shear detection (use wind shear computation to augment flight path and terrain alerts, modulation of alert thresholds based on wind/terrain data base, incorporate wind shear/terrain alert enhancements from predictive sensor data); and future research and development.

  7. Ohio Senator John Glenn tours the orbiter Columbia's middeck

    NASA Technical Reports Server (NTRS)

    1998-01-01

    Astronaut Stephen Oswald, at left, listens to Ohio Senator John Glenn on the orbiter Columbia's middeck as the senator asks questions regarding Shuttle operations at the Orbiter Processing Facility 3 at Kennedy Space Center. Senator Glenn arrived at KSC on Jan. 20 to tour KSC operational areas and to view the launch of STS-89 later this week. Glenn, who made history in 1962 as the first American to orbit the Earth, completing three orbits in a five-hour flight aboard Friendship 7, will fly his second space mission aboard Space Shuttle Discovery this October. Glenn is retiring from the Senate at the end of this year and will be a payload specialist aboard STS-95.

  8. STS-47 crewmembers eat on OV-105's middeck using chopsticks

    NASA Technical Reports Server (NTRS)

    1992-01-01

    STS-47 Pilot Curtis L. Brown, Jr, with chopsticks in his mouth, juggles a handheld computer and a food container while trying to get a bite to eat. Commander Robert L. Gibson (right), holding chopsticks in his hand, watches Brown as Payload Specialist Mamoru Mohri, in the background, prepares to consume his meal in the manner he is accustomed to. Mohri represents Japan's National Space Development Agency (NASDA). The three crewmembers are on the middeck of Endeavour, Orbiter Vehicle (OV) 105. Several months of training, as well as the eight-days of sharing research on the Spacelab Japan (SLJ) mission, allowed the astronauts and payload specialist to learn a great deal about the two cultures.

  9. STS-34 crewmembers eat meal on OV-104's middeck

    NASA Technical Reports Server (NTRS)

    1989-01-01

    STS-34 crewmembers, on their first space flight, appear to enjoy mealtime in a zero-gravity environment. They are Pilot Michael J. McCulley and Mission Specialist (MS) Ellen S. Baker. The two, who were in the 1984 class of NASA astronauts, balance their meal trays and attempt to eat in an area of Atlantis', Orbiter Vehicle (OV) 104's, middeck that pays tribute to their astronaut roots. The 'maggot' decal or insignia has direct reference to the group. During the flight, the two made former Astronaut Paul J. Weitz, now JSC Deputy Director, an honorary member of the 1984 class. Weitz's flight suit portrait hangs on the galley facing.

  10. KSC-04pd0545

    NASA Image and Video Library

    2004-03-17

    KENNEDY SPACE CENTER, FLA. - In the middeck of Endeavour, in the Orbiter Processing Facility, Center Director Jim Kennedy (far left) watches as a technician gets ready to lower himself through the LiOH door into the Environmental Control and Life Support System (ECLSS) bay. LiOH refers to lithium hydroxide, canisters of which are stored in the ECLSS bay under the middeck floor. During flight, cabin air from the cabin fan is ducted to two LiOH canisters, where carbon dioxide is removed and activated charcoal removes odors and trace contaminants. Kennedy is taking an opportunity to learn first-hand what workers are doing to enable Return to Flight. Endeavour is in an Orbiter Major Modification period.

  11. STS-54 MS3 Helms uses DSO 802 & Physics of Toys fish toy on OV-105's middeck

    NASA Image and Video Library

    1993-01-15

    STS054-S-019 (15 Jan 1993) --- Helms with a fish toy on the middeck demonstrates some of the physics of toys to students watching on television. Four schools were chosen to ask questions of the astronauts during the lengthy program. Helms fielded questions from students at Shaver Elementary School in Portland, Oregon. The fish was used to demonstrate Newton's third law of motion and the conservation of angular momentum. The entire collection of toys will be videotaped for an educational program to be distributed to schools in the fall of this year. The scene was recorded at 17:50:08:27 GMT, Jan. 15, 1993.

  12. STS-54 MS3 Helms uses DSO 802 & Physics of Toys frog toy on OV-105's middeck

    NASA Image and Video Library

    1993-01-15

    STS054-S-021 (15 Jan 1993) --- Helms with a frog swimmer toy on the middeck demonstrates some of the physics of toys to students watching on television. Four schools were chosen to ask questions of the astronauts during the lengthy program. Helms fielded questions from students at Shaver Elementary School in Portland, Oregon. The swimmer frog was used to demonstrate Newton's third law of motion and the conservation of angular momentum. The entire collection of toys will be videotaped for an educational program to be distributed to schools in the fall of this year. The scene was recorded at 17:51:38:12 GMT, Jan. 15, 1993.

  13. STS-40 crewmembers pose for onboard (in space) portrait on OV-102's middeck

    NASA Image and Video Library

    1991-06-14

    STS040-605-009 (5-14 June 1991) --- The seven crew members for STS-40 pose for an in-space portrait on the Space Shuttle Columbia's mid-deck. Left to right, in front are F. Andrew Gaffney, Sidney M. Gutierrez, Rhea Seddon and James P. Bagian; in back, Bryan D. O'Connor, Tamara E. Jernigan and Millie Hughes-Fulford. The five astronauts and two payload specialists are spending nine days in space in support of the Spacelab Life Sciences (SLS-1) mission. The image was one of 25 visuals used by the STS-40 crew at its Post Flight Press Conference (PFPC) on June 28, 1991.

  14. Astronaut Jean-Francois Clervoy in middeck during launch/entry training

    NASA Image and Video Library

    1994-06-23

    S94-40074 (23 June 1994) --- Astronaut Jean-Francois Clervoy, STS-66 international mission specialist, sits securely on a collapsible seat on the middeck of a Shuttle trainer during a rehearsal of procedures to be followed during launch and entry phases of his scheduled November flight. This rehearsal, held in the crew compartment trainer of the Johnson Space Center's (JSC) Shuttle Mockup and Integration Laboratory, was followed by a training session on emergency egress procedures. Clervoy, a European astronaut, will join five NASA astronauts for a week and a half aboard the Space Shuttle Atlantis in Earth-orbit in support of the Atmospheric Laboratory for Applications and Science (ATLAS-3).

  15. Astronaut Ellen Ochoa in middeck during launch/entry training

    NASA Image and Video Library

    1994-06-23

    S94-40061 (23 June 1994) --- Secured in a collapsible seat on the middeck of a Shuttle trainer, astronaut Ellen Ochoa, payload commander, participates in a rehearsal of procedures to be followed during launch and entry phases of the scheduled November flight of STS-66. This rehearsal, held in the crew compartment trainer of the Johnson Space Center's (JSC) Shuttle Mockup and Integration Laboratory, was followed by a training session on emergency egress procedures. In November Ochoa will join four other NASA astronauts and a European mission specialist for a week and a half aboard the Space Shuttle Atlantis in Earth-orbit in support of the Atmospheric Laboratory for Applications and Science (ATLAS-3).

  16. Asymptotic representations of augmented q-Onsager algebra and boundary K-operators related to Baxter Q-operators

    NASA Astrophysics Data System (ADS)

    Baseilhac, Pascal; Tsuboi, Zengo

    2018-04-01

    We consider intertwining relations of the augmented q-Onsager algebra introduced by Ito and Terwilliger, and obtain generic (diagonal) boundary K-operators in terms of the Cartan element of Uq (sl2). These K-operators solve reflection equations. Taking appropriate limits of these K-operators in Verma modules, we derive K-operators for Baxter Q-operators and corresponding reflection equations.

  17. Augmented macrophage differentiation and polarization of tumor-associated macrophages towards M1 subtype in listeria-administered tumor-bearing host.

    PubMed

    Rai, Rakesh K; Vishvakarma, Naveen K; Mohapatra, Tribhuban M; Singh, Sukh Mahendra

    2012-09-01

    This study investigates the effect of Listeria administration on differentiation of macrophages from precursor bone marrow cells and functional status of tumor-associated macrophages (TAM). Listeria administration not only resulted in an augmented infiltration of tumor by F4/80 macrophages but also repolarized the functional status of TAM displaying features of some M1 macrophage subtype with upregulated phagocytosis and tumoricidal activity accompanied by altered expression of monocarboxylate transporter-1, toll-like receptor-2, surface markers: CD11c, interleukin-2 receptor, CD62L, and secreted molecules: nitric oxide, interleukin (IL)-1, IL-6, tumor necrosis factor-α, and vascular endothelial growth factor. Declined tumor cell survival and modulated repertoire of cytokines: interferon-γ, IL-6, IL-10, and transforming growth factor-β in tumor microenvironment indicated their role in polarization of TAM towards proinflammatory state. Bone marrow cell of Listeria-administered tumor-bearing mice showed augmented survival, declined expression of p53 upregulated modulator of apoptosis with an upregulated differentiation into activation responsive bone marrow-derived macrophages along with altered expression of macrophage-colony stimulating factor, macrophage-colony stimulating factor receptor, and granulocyte macrophage-colony stimulating factor receptor. These findings indicate that Listeria infection is associated with an augmented differentiation of macrophages accompanied by tumoricidal activation of TAM.

  18. Near-to-eye electroholography via guided-wave acousto-optics for augmented reality

    NASA Astrophysics Data System (ADS)

    Jolly, Sundeep; Savidis, Nickolaos; Datta, Bianca; Smalley, Daniel; Bove, V. Michael

    2017-03-01

    Near-to-eye holographic displays act to directly project wavefronts into a viewer's eye in order to recreate 3-D scenes for augmented or virtual reality applications. Recently, several solutions for near-to-eye electroholography have been proposed based on digital spatial light modulators in conjunction with supporting optics, such as holographic waveguides for light delivery; however, such schemes are limited by the inherent low space-bandwidth product available with current digital SLMs. In this paper, we depict a fully monolithic, integrated optical platform for transparent near-to-eye holographic display requiring no supporting optics. Our solution employs a guided-wave acousto-optic spatial light modulator implemented in lithium niobate in conjunction with an integrated Bragg-regime reflection volume hologram.

  19. STS 107 Shuttle Press Kit: Providing 24/7 Space Science Research

    NASA Technical Reports Server (NTRS)

    2002-01-01

    Space shuttle mission STS-107, the 28th flight of the space shuttle Columbia and the 113th shuttle mission to date, will give more than 70 international scientists access to both the microgravity environment of space and a set of seven human researchers for 16 uninterrupted days. Columbia's 16-day mission is dedicated to a mixed complement of competitively selected and commercially sponsored research in the space, life and physical sciences. An international crew of seven, including the first Israeli astronaut, will work 24 hours a day in two alternating shifts to carry out experiments in the areas of astronaut health and safety; advanced technology development; and Earth and space sciences. When Columbia is launched from Kennedy Space Center's Launch Pad 39A it will carry a SPACEHAB Research Double Module (RDM) in its payload bay. The RDM is a pressurized environment that is accessible to the crew while in orbit via a tunnel from the shuttle's middeck. Together, the RDM and the middeck will accommodate the majority of the mission's payloads/experiments. STS-107 marks the first flight of the RDM, though SPACEHAB Modules and Cargo Carriers have flown on 17 previous space shuttle missions. Astronaut Rick Husband (Colonel, USAF) will command STS-107 and will be joined on Columbia's flight deck by pilot William 'Willie' McCool (Commander, USN). Columbia will be crewed by Mission Specialist 2 (Flight Engineer) Kalpana Chawla (Ph.D.), Mission Specialist 3 (Payload Commander) Michael Anderson (Lieutenant Colonel, USAF), Mission Specialist 1 David Brown (Captain, USN), Mission Specialist 4 Laurel Clark (Commander, USN) and Payload Specialist 1 Ilan Ramon (Colonel, Israeli Air Force), the first Israeli astronaut. STS-107 marks Husband's second flight into space - he served as pilot during STS-96, a 10-day mission that saw the first shuttle docking with the International Space Station. Husband served as Chief of Safety for the Astronaut Office until his selection to command the STS-107 crew. Anderson and Chawla will also be making their second spaceflights. Anderson first flew on STS-89 in January 1998 (the eighth Shuttle-Mir docking mission) while Chawla flew on STS-87 in November 1997 (the fourth U.S. Microgravity Payload flight). McCool, Brown, Clark and Ramon will be making their first flights into space.

  20. STS-107 Mission Highlights Resource, Part 4 of 4

    NASA Technical Reports Server (NTRS)

    2003-01-01

    This video, Part 4 of 4, shows the activities of the STS-107 crew during flight days 13 through 15 of the Columbia orbiter's final flight. The crew consists of Commander Rick Husband, Pilot William McCool, Payload Commander Michael Anderson, Mission Specialists David Brown, Kalpana Chawla, and Laurel Clark, and Payload Specialist Ilan Ramon. The highlight of flight day 13 is Kalpana Chawla conversing with Mission Control Center in Houston during troubleshooting of the Combustion Module in a recovery procedure to get the MIST fire suppression experiment back online. Chawla is shown replacing an atomizer head. At Mission Control Center a vase of flowers commemorating the astronauts who died on board Space Shuttle Challenger's final flight is shown and explained. The footage of flight day 14 consists of a tour of Columbia's flight deck, middeck, and Spacehab research module. Rick Husband narrates the tour, which features Kalpana Chawla, Laurel Clark, and himself. The astronauts demonstrate hygene, a dining tray, the orbiter's toilet, and a space iron, which is a rack for strapping down shirts. The Earth limb is shown with the Spacehab module in the foreground. Clark exercises on a bicycle for a respiration experiment, and demonstrates how a compact disk player gyrates in microgravity. On flight day 15, the combustion module is running again, and footage is shown of the Water Mist Fire-Suppression Experiment (Mist) in operation. Laurel Clark narrates a segment of the video in which Ilan Ramon exercises on a bicycle, Rick Husband, Kalpana Chawla, and Ramon demonstrate spinning and push-ups in the Spacehab module, and Clark demonstrates eating from a couple of food packets. The video ends with a shot of the Earth limb reflected on the radiator on the inside of Columbia's open payload bay door with the Earth in the background.

  1. Suturing training in Augmented Reality: gaining proficiency in suturing skills faster.

    PubMed

    Botden, S M B I; de Hingh, I H J T; Jakimowicz, J J

    2009-09-01

    Providing informative feedback and setting goals tends to motivate trainees to practice more extensively. Augmented Reality simulators retain the benefit of realistic haptic feedback and additionally generate objective assessment and informative feedback during the training. This study researched the performance curve of the adapted suturing module on the ProMIS Augmented Reality simulator. Eighteen novice participants were pretrained on the MIST-VR to become acquainted with laparoscopy. Subsequently, they practiced 16 knots on the suturing module, of which the assessment scores were recorded to evaluate the gain in laparoscopic suturing skills. The scoring of the assessment method was calculated from the "time spent in the correct area" during the knot tying and the quality of the knot. Both the baseline knot and the knot at the top of the performance curve were assessed by two independent objective observers, by means of a standardized evaluation form, to objectify the gain in suturing skills. There was a statistically significant difference between the scores of the second knot (mean 72.59, standard deviation (SD) 16.28) and the top of the performance curve (mean 95.82, SD 3.05; p < 0.001, paired t-test). The scoring of the objective observers also differed significantly (mean 11.83 and 22.11, respectively; SD 3.37 and 3.89, respectively; p < 0.001) (interobserver reliability Cronbach's alpha = 0.96). The median amount of repetitions to reach the top of the performance curve was eight, which also showed significant differences between both the assessment score (mean 88.14, SD 13.53, p < 0.001) and scoring of the objective observers of the second knot (mean 20.51, SD 4.14; p < 0.001). This adapted suturing module on the ProMIS Augmented Reality laparoscopic simulator is a potent tool for gaining laparoscopic suturing skills.

  2. Water System Adaptation to Hydrological Changes: Module 2, Stormwater Management and Sewer Performance under Intense Storms: Case Study from Lawrence, Massachusetts, U.S.A.

    EPA Science Inventory

    This course focuses on water system adaptation to short-term and long-term climate and hydrologic stressors that affect water availability, water quality, security, and resilience. The course is organized into 15 sequential modules. The lectures will be augmented by weekly assign...

  3. Water System Adaptation To Hydrological Changes: Module 3, Consequences of Prolonged Drought on Urban Water System Resilience: Case Study from Las Vegas, Nevada, USA

    EPA Science Inventory

    This course focuses on water system adaptation to short-term and long-term climate and hydrologic stressors that affect water availability, water quality, security, and resilience. The course is organized into 15 sequential modules. The lectures will be augmented by weekly assign...

  4. Water System Adaptations To Hydrological Changes: Module 4, Water Quality Response to Land-use and Precipitation Changes : Case Study of Ohio River Valley, USA

    EPA Science Inventory

    This course focuses on water system adaptation to short-term and long-term climate and hydrologic stressors that affect water availability, water quality, security, and resilience. The course is organized into 15 sequential modules. The lectures will be augmented by weekly assign...

  5. Thomas checks the condition of the MIS-B middeck locker experiment

    NASA Image and Video Library

    1995-07-28

    STS070-329-022 (13-22 JULY 1995)--- Astronaut Donald A. Thomas, mission specialist, prepares to activate the Microcapsules in Space (MIS-B) experiment on the space shuttle Discovery?s middeck. MIS-B is an Army project to improve the understanding of microencapsulated drug technology and demonstrate the feasibility of producing pharmaceutical microcapsules in the weightlessness of space. This is the second flight of the experiment, which originally flew on STS-53 in 1992. Microcapsules are tiny spheres about 50 to 100 micrometers in diameter (about the thickness of a strand of human hair). They are used to develop high-performance chemical products and innovative pharmaceuticals such as time-release prescriptions. The drug used in the MIS experiments was ampicillin.

  6. STS-41 crewmembers conduct DSO 0472 Intraocular Pressure on OV-103's middeck

    NASA Image and Video Library

    1990-10-10

    STS-41 crewmembers conduct Detailed Supplementary Objective (DSO) 0472 Intraocular Pressure on the middeck of Discovery, Orbiter Vehicle (OV) 103. Mission Specialist (MS) William M. Shepherd rests his head on the stowed treadmill while Pilot Robert D. Cabana, holding Shepherd's eye open, prepares to measure Shepherd's intraocular pressure using a tono pen (in his right hand). Objectives include: establishing a database of changes in intraocular pressures that can be used to evaluate crew health; validating ten degree head down bedrest as a model for cephalad fluid shifts in microgravity; facilitating the interpretation of data by providing a quantative measure of microgravity induced cephalad fluid shifts; and validating the tono pen as an effective tool for diagnostic and scientific data collection.

  7. STS-54 Commander Casper with DSO 802 & Physics of Toys on OV-105's middeck

    NASA Image and Video Library

    1993-01-15

    STS054-S-023 (15 Jan 1993) --- Casper holds up a paper boomerang before sailing it across Endeavour's middeck. The demonstration was part of a lengthy "physics of toys" program conducted by all five crewmembers on their third day aboard the Shuttle. Through telephone and TV downlinks, students in four schools around the country participated in a special lesson to discover how specific toys function differently in the classroom compared to those on the Shuttle. The boomerang was used to demonstrate Bernouli's principle and gyroscopic stability. The entire collection of toys will be videotaped for an educational program to be distributed to schools in the autumn. The scene was downlinked at 18:11:04:26 GMT, Jan. 15, 1993.

  8. Development of the Plant Growth Facility for Use in the Shuttle Middeck and Test Units for Ground-Based Experiments

    NASA Technical Reports Server (NTRS)

    Chapman, David K.; Wells, H. William

    1996-01-01

    The plant growth facility (PGF), currently under development as a Space Shuttle middeck facility for the support of research on higher plants in microgravity, is presented. The PGF provides controlled fluorescent lighting and the active control of temperature, relative humidity and CO2 concentration. These parameters are designed to be centrally controlled by a dedicated microprocessor. The status of the experiment can be displayed for onboard analysis, and will be automatically archived for post-flight analysis. The facility is designed to operate for 15 days and will provide air filtration to remove ethylene and trace organics with replaceable potassium permanganate filters. Similar ground units will be available for pre-flight experimentation.

  9. Astronaut Jean-Francois Clervoy in middeck during launch/entry training

    NASA Image and Video Library

    1994-06-23

    S94-40081 (23 June 1994) --- Wearing a training version of a partial pressure suit, Jean-Francois Clervoy, STS-66 international mission specialist, secures himself on a collapsible seat on the middeck of a Shuttle trainer during a rehearsal of procedures to be followed during launch and entry phases of his scheduled November flight. This rehearsal, held in the Crew Compartment Trainer (CCT) of the Johnson Space Center's (JSC) Shuttle Mockup and Integration Laboratory, was followed by a training session on emergency egress procedures. Clervoy, a European astronaut, will join five NASA astronauts for a week and a half aboard the Space Shuttle Atlantis in Earth-orbit in support of the Atmospheric Laboratory for Applications and Science (ATLAS-3).

  10. STS-54 MS1 Runco uses DSO 802 and Physics of Toys racetrack on OV-105's middeck

    NASA Technical Reports Server (NTRS)

    1993-01-01

    STS-54 Mission Specialist 1 (MS1) Mario Runco, Jr watches as a toy friction car navigates a loop track on the middeck of the Earth-orbiting Endeavour, Orbiter Vehicle (OV) 105. The demonstration was part of Application Specific Preprogrammed Experiment Culture System Physics of Toys (ASPEC) and Detailed Supplementary Objective (DSO) 802, Educational activities. Through telephone and television (TV) downlinks, students at Sacred Heart School (notice banner in the background) in Bronx, New York -- Runco's birthplace -- asked him questions about the several toys he demonstrated. The entire collection of toys will be videotaped for an educational program to be distributed to schools in the autumn. This scene was downlinked at 17:37:03:12 GMT.

  11. Augmented microscopy: real-time overlay of bright-field and near-infrared fluorescence images.

    PubMed

    Watson, Jeffrey R; Gainer, Christian F; Martirosyan, Nikolay; Skoch, Jesse; Lemole, G Michael; Anton, Rein; Romanowski, Marek

    2015-10-01

    Intraoperative applications of near-infrared (NIR) fluorescent contrast agents can be aided by instrumentation capable of merging the view of surgical field with that of NIR fluorescence. We demonstrate augmented microscopy, an intraoperative imaging technique in which bright-field (real) and electronically processed NIR fluorescence (synthetic) images are merged within the optical path of a stereomicroscope. Under luminance of 100,000 lx, representing typical illumination of the surgical field, the augmented microscope detects 189 nM concentration of indocyanine green and produces a composite of the real and synthetic images within the eyepiece of the microscope at 20 fps. Augmentation described here can be implemented as an add-on module to visualize NIR contrast agents, laser beams, or various types of electronic data within the surgical microscopes commonly used in neurosurgical, cerebrovascular, otolaryngological, and ophthalmic procedures.

  12. Augmented microscopy: real-time overlay of bright-field and near-infrared fluorescence images

    NASA Astrophysics Data System (ADS)

    Watson, Jeffrey R.; Gainer, Christian F.; Martirosyan, Nikolay; Skoch, Jesse; Lemole, G. Michael, Jr.; Anton, Rein; Romanowski, Marek

    2015-10-01

    Intraoperative applications of near-infrared (NIR) fluorescent contrast agents can be aided by instrumentation capable of merging the view of surgical field with that of NIR fluorescence. We demonstrate augmented microscopy, an intraoperative imaging technique in which bright-field (real) and electronically processed NIR fluorescence (synthetic) images are merged within the optical path of a stereomicroscope. Under luminance of 100,000 lx, representing typical illumination of the surgical field, the augmented microscope detects 189 nM concentration of indocyanine green and produces a composite of the real and synthetic images within the eyepiece of the microscope at 20 fps. Augmentation described here can be implemented as an add-on module to visualize NIR contrast agents, laser beams, or various types of electronic data within the surgical microscopes commonly used in neurosurgical, cerebrovascular, otolaryngological, and ophthalmic procedures.

  13. Different brain activity in response to emotional faces alone and augmented by contextual information.

    PubMed

    Lee, Kyung Hwa; Siegle, Greg J

    2014-11-01

    This study examined the extent to which emotional face stimuli differ from the neural reactivity associated with more ecological contextually augmented stimuli. Participants were scanned when they viewed contextually rich pictures depicting both emotional faces and context, and pictures of emotional faces presented alone. Emotional faces alone were more strongly associated with brain activity in paralimbic and social information processing regions, whereas emotional faces augmented by context were associated with increased and sustained activity in regions potentially representing increased complexity and subjective emotional experience. Furthermore, context effects were modulated by emotional intensity and valence. These findings suggest that cortical elaboration that is apparent in contextually augmented stimuli may be missed in studies of emotional faces alone, whereas emotional faces may more selectively recruit limbic reactivity. Copyright © 2014 Society for Psychophysiological Research.

  14. Analysis of Remote Site Energy Storage and Generation Systems

    DTIC Science & Technology

    1979-07-01

    Identify by block numIber) Wind Turbines Solar Energy Energy Wheels Solar Cells Wind Energy Hydrogen Energy Storage The rmion ics Energy Storage...using two separate nominal eight kilowatt wind turbine modules in con- * DD JAN 73 1473 UNCLASSIFIED41 SECURITY CLASSIFICATION OF THIS PAGE (When Dot...2. 1.3 Advanced Wind Energy Converters 28 2. 1. 3. 1 Cyclogyro 28 2. 1.3.2 Diffuser Augmented Wind Turbine (DAWT) 28 2.1.3.3 Vortex Augmenter Wind

  15. Love on MDDK

    NASA Image and Video Library

    2008-02-18

    S122-E-011207 (18 Feb. 2008) --- Astronaut Stanley Love, STS-122 mission specialist, looks over procedures checklists while occupying the bicycle ergometer on the middeck of the Space Shuttle Atlantis.

  16. Nucleus Accumbens Acetylcholine Receptors Modulate Dopamine and Motivation.

    PubMed

    Collins, Anne L; Aitken, Tara J; Greenfield, Venuz Y; Ostlund, Sean B; Wassum, Kate M

    2016-11-01

    Environmental reward-predictive cues can motivate reward-seeking behaviors. Although this influence is normally adaptive, it can become maladaptive in disordered states, such as addiction. Dopamine release in the nucleus accumbens core (NAc) is known to mediate the motivational impact of reward-predictive cues, but little is known about how other neuromodulatory systems contribute to cue-motivated behavior. Here, we examined the role of the NAc cholinergic receptor system in cue-motivated behavior using a Pavlovian-to-instrumental transfer task designed to assess the motivating influence of a reward-predictive cue over an independently-trained instrumental action. Disruption of NAc muscarinic acetylcholine receptor activity attenuated, whereas blockade of nicotinic receptors augmented cue-induced invigoration of reward seeking. We next examined a potential dopaminergic mechanism for this behavioral effect by combining fast-scan cyclic voltammetry with local pharmacological acetylcholine receptor manipulation. The data show evidence of opposing modulation of cue-evoked dopamine release, with muscarinic and nicotinic receptor antagonists causing suppression and augmentation, respectively, consistent with the behavioral effects of these manipulations. In addition to demonstrating cholinergic modulation of naturally-evoked and behaviorally-relevant dopamine signaling, these data suggest that NAc cholinergic receptors may gate the expression of cue-motivated behavior through modulation of phasic dopamine release.

  17. Role of Cranial and Spinal Virtual and Augmented Reality Simulation Using Immersive Touch Modules in Neurosurgical Training

    PubMed Central

    Alaraj, Ali; Charbel, Fady T.; Birk, Daniel; Tobin, Mathew; Luciano, Cristian; Banerjee, Pat P.; Rizzi, Silvio; Sorenson, Jeff; Foley, Kevin; Slavin, Konstantin; Roitberg, Ben

    2013-01-01

    Recent studies have shown that mental script-based rehearsal and simulation-based training improves the transfer of surgical skills in various medical disciplines. Despite significant advances in technology and intraoperative techniques over the last several decades, surgical skills training on neurosurgical operations still carries significant risk of serious morbidity or mortality. Potentially avoidable technical errors are well recognized as contributing to poor surgical outcome. Surgical education is undergoing overwhelming change, with reduction of working hours and current trends to focus on patient’s safety and linking reimbursement with clinical outcomes, and there is a need for adjunctive means for neurosurgical training;this has been recent advancement in simulation technology. ImmersiveTouch (IT) is an augmented reality (AR) system that integrates a haptic device and a high-resolution stereoscopic display. This simulation platform utilizes multiple sensory modalities, recreating many of the environmental cues experienced during an actual procedure. Modules available include ventriculostomy, bone drilling, percutaneous trigeminal rhizotomy, in addition to simulated spinal modules such as pedicle screw placement, vertebroplasty, and lumbar puncture. We present our experience with development of such AR neurosurgical modules and the feedback from neurosurgical residents. PMID:23254799

  18. Kimbrough on MDDK

    NASA Image and Video Library

    2008-11-24

    S126-E-009241 (23 Nov. 2008) --- Astronaut Shane Kimbrough, STS-126 mission specialist, reads a procedures document on the middeck of Space Shuttle Endeavour while docked with the International Space Station.

  19. Microgravity

    NASA Image and Video Library

    1995-03-02

    Onboard Space Shuttle Endeavour (STS-67) astronaut John Grunsfeld works at a laptop computer while wearing a headset. Commander Stephen Oswald watches Grunsfeld and Pilot Bill Gregory reads a checklist on the shuttle mid-deck.

  20. Crewmembers in the middeck with the Retinal Photography experiment.

    NASA Technical Reports Server (NTRS)

    1992-01-01

    Mission Pilot Robert Cabana conducting the Retinal Photography life sciences experiment on test subject Mission Specialist Michael Clifford. The Retinal Photography experiment is Detailed Supplementary Objective # 474.

  1. STS-54 Commander Casper at airlock hatch on CCT middeck during JSC training

    NASA Technical Reports Server (NTRS)

    1992-01-01

    STS-54 Endeavour, Orbiter Vehicle (OV) 105, Commander John H. Casper manipulates the airlock hatch and its equalization valves on the middeck of JSC's Crew Compartment Trainer (CCT). Casper is rehearsing the sequence of events necessary for extravehicular activity (EVA) egress for the upcoming STS-54 mission. Visible in the airlock is an extravehicular mobility unit (EMU). Two of the STS-54 crewmembers will don EMUs and egress through the EV hatch into the payload bay (PLB) after Casper closes the intravehicular (IV) hatch behind them. The EVA crewmembers will spend four-plus hours on a planned spacewalk to evaluate EVA techniques and gear for the Space Station Freedom (SSF). The CCT is located in JSC's Mockup and Integration Laboratory (MAIL) Bldg 9NE.

  2. Importance of gravity for plant growth and behavior

    NASA Technical Reports Server (NTRS)

    Brown, A. H.

    1984-01-01

    Accomplishments during the past fiscal year consisted of (1) completion of research on a study of the kinetics of damping out of circummutation when the axially directed g-force was abruptly eliminated (Research Task NULYRL). (2) Further experiments were accomplished on a comprehensive study, underway for several years, to validate (or invalidate) the use of clinostat rotation as a hypogravity simulation device. (3) Some of our earlier (unpublished) observations on plant seedlings resistance to g-loading were evaluated, interpreted, and a paper was submitted for publication (Research Task HYGEFF). (4) In what has been called ""Shuttle middeck locker ecology" an attempt to acquire reliable empirical information on the thermal profile experienced by test packages housed in middeck lockers (MDDL) during shuttle flights at long last seems to be yielding some results.

  3. Astronaut Scott Parazynski works with PCG experiment on middeck

    NASA Image and Video Library

    1994-11-14

    STS066-13-029 (3-14 Nov 1994) --- On the Space Shuttle Atlantis' mid-deck, astronaut Scott E. Parazynski, mission specialist, works at one of two areas onboard the Shuttle which support the Protein Crystal Growth (PCG) experiment. This particular section is called the Vapor Diffusion Apparatus (VDA), housed in a Single Locker Thermal Enclosure (STES). Together with the Crystal Observation System, housed in the Thermal Enclosure System (COS/TES) the VDA represents the continuing research into the structures of proteins and other macromolecules such as viruses. In addition to using the microgravity of space to grow high-quality protein crystals for structural analyses, the experiments are expected to help develop technologies and methods to improve the protein crystallization process on Earth as well as in space.

  4. STS-37 crewmembers watch Pilot Cameron juggle cassettes on OV-104's middeck

    NASA Image and Video Library

    1991-04-11

    STS037-54-004 (5-11 April 1991) --- Four crew members have fun with weightlessness on the Space Shuttle Atlantis' middeck. Astronaut Kenneth D. Cameron, pilot, performs a "quick hands" feat with three tape cassettes -- obviously a feat much more difficult on Earth. Looking on, left to right, are astronauts Linda M. Godwin, mission specialist; Steven R. Nagel, mission commander; and Jerry L. Ross, mission specialist. Ross later used the microgravity environment to have some fun with the bag of malted milk balls in his hands. This 35mm frame was exposed by astronaut Jerome (Jay) Apt, mission specialist. This was one of the visuals used by the crew members during their April 19 Post Flight Press Conference (PFPC) at the Johnson Space Center (JSC).

  5. Impact of low gravity on water electrolysis operation

    NASA Technical Reports Server (NTRS)

    Powell, F. T.; Schubert, F. H.; Lee, M. G.

    1989-01-01

    Advanced space missions will require oxygen and hydrogen utilities for several important operations including the following: (1) propulsion; (2) electrical power generation and storage; (3) environmental control and life support; (4) extravehicular activity; (5) in-space manufacturing and (6) in-space science activities. An experiment suited to a Space Shuttle standard middeck payload has been designed for the Static Feed Water Electrolysis technology which has been viewed as being capable of efficient, reliable oxygen and hydrogen generation with few subsystem components. The program included: end use design requirements, phenomena to be studied, Space Shuttle Orbiter experiment constraints, experiment design and data requirements, and test hardware requirements. The objectives are to obtain scientific and engineering data for future research and development and to focus on demonstrating and monitoring for safety of a standard middeck payload.

  6. STS-54 Pilot McMonagle with DSO 802 and Physics of Toys top on OV-105's middeck

    NASA Technical Reports Server (NTRS)

    1993-01-01

    STS-54 Pilot Donald R. McMonagle watches as a top spins above his head on the middeck of the Earth-orbiting Endeavour, Orbiter Vehicle (OV) 105. The demonstration was part of Application Specific Preprogrammed Experiment Culture System Physics of Toys (ASPEC) and Detailed Supplementary Objective (DSO) 802, Educational activities. Through telephone and television (TV) downlinks, students at Westwood Elementary School in Flint, Michigan -- McMonagle's hometown -- asked him questions about the several toys he demonstrated. The top demonstrates gyroscopic motion, the center of mass and angular momentum. The entire collection of toys will be videotaped for an educational program to be distributed to schools in the autumn. This scene was downlinked at 18:01:59:11 GMT.

  7. STS-54 Commander Casper with DSO 802 and Physics of Toys on OV-105's middeck

    NASA Technical Reports Server (NTRS)

    1993-01-01

    STS-54 Commander John H. Casper holds up a paper boomerang before sailing it across the middeck of the Earth-orbiting Endeavour, Orbiter Vehicle (OV) 105. The demonstration was part of Application Specific Preprogrammed Experiment Culture System Physics of Toys (ASPEC) and Detailed Supplementary Objective (DSO) 802, Educational activities. Through telephone and TV downlinks, Casper conversed with students in four schools who participated in a special lesson to discover how specific toys function differently in the classroom compared to those on the Shuttle. The boomerang was used to demonstrate Bernouli's principle and gyroscopic stability. The entire collection of toys will be videotaped for an educational program to be distributed to schools in the fall of this year. This scene was downlinked at 18:11:04:26 GMT.

  8. Augmented microscopy: real-time overlay of bright-field and near-infrared fluorescence images

    PubMed Central

    Watson, Jeffrey R.; Gainer, Christian F.; Martirosyan, Nikolay; Skoch, Jesse; Lemole, G. Michael; Anton, Rein; Romanowski, Marek

    2015-01-01

    Abstract. Intraoperative applications of near-infrared (NIR) fluorescent contrast agents can be aided by instrumentation capable of merging the view of surgical field with that of NIR fluorescence. We demonstrate augmented microscopy, an intraoperative imaging technique in which bright-field (real) and electronically processed NIR fluorescence (synthetic) images are merged within the optical path of a stereomicroscope. Under luminance of 100,000 lx, representing typical illumination of the surgical field, the augmented microscope detects 189 nM concentration of indocyanine green and produces a composite of the real and synthetic images within the eyepiece of the microscope at 20 fps. Augmentation described here can be implemented as an add-on module to visualize NIR contrast agents, laser beams, or various types of electronic data within the surgical microscopes commonly used in neurosurgical, cerebrovascular, otolaryngological, and ophthalmic procedures. PMID:26440760

  9. Spacelab

    NASA Image and Video Library

    1994-03-04

    Space Shuttle Columbia (STS-62) onboard photo of Astronaut Charles (Sam) Gemar talking to ground controllers while assisting astronaut Andrew M. Allen with a soak in the Lower Body Negative Pressure (LBNP) apparatus on the middeck.

  10. Summary Report of Mission Acceleration Measurements for STS-65, Launched 8 July 1994

    NASA Technical Reports Server (NTRS)

    Rogers, Melissa J. B.; Delombard, Richard

    1995-01-01

    The second flight of the International Microgravity Laboratory (IML-2) payload on board the STS-65 mission was supported by three accelerometer instruments: The Orbital Acceleration Research Experiment (OARE) located close to the orbiter center of mass; the Quasi-Steady Acceleration Measurement experiment, and the Space Acceleration Measurement System (SAMS), both in the Spacelab module. A fourth accelerometer, the Microgravity Measuring Device recorded data in the middeck in support of exercise isolation tests.Data collected by OARE and SAMS during IML-2 are displayed in this report. The OARE data represent the microgravity environment below 1 Hz. The SAMS data represent the environment in the 0.01 Hz to 100 Hz range. Variations in the environment caused by unique activities are presented. Specific events addressed are: crew activity, crew exercise, experiment component mixing activities, experiment centrifuge operations, refrigerator/freezer operations and circulation pump operations. The analyses included in this report complement analyses presented in other mission summary reports.

  11. STS-101: Crew Activity Report CAR/Flight Day 04 Highlights

    NASA Technical Reports Server (NTRS)

    2000-01-01

    On this fourth day of the STS-101 Atlantis mission, the flight crew, Commander James D. Halsell Jr., Pilot Scott J. Horowitz, and Mission Specialists Mary Ellen Weber, Jeffrey N. Williams, James S. Voss, Susan J. Helms, and Yuri Vladimirovich Usachev are seen performing final preparations for the scheduled space walk. Horowitz, Williams and Voss are seen in the mid-deck before the space walk. Horowitz and Weber are also seen in the flight deck, powering-up the robot-arm. During the space walk Voss is seen checking the American Cargo Crane-Orbital Replacement Unit Transfer Device. Voss and Williams are shown securing the American-built crane that was installed on the station last year. They are seen as they install the final parts (boom extension) of a Russian-built crane on the station. Voss and Williams are also shown as they replace a faulty antenna for one of the station's communications systems on the Unity Module, and install several handrails and a camera cable on the station's exterior.

  12. Microgravity

    NASA Image and Video Library

    2000-07-01

    Mechanics of Granular Materials (MGM) flight hardware takes two twin double locker assemblies in the Space Shuttle middeck or the Spacehab module. Sand and soil grains have faces that can cause friction as they roll and slide against each other, or even cause sticking and form small voids between grains. This complex behavior can cause soil to behave like a liquid under certain conditions such as earthquakes or when powders are handled in industrial processes. MGM experiments aboard the Space Shuttle use the microgravity of space to simulate this behavior under conditions that carnot be achieved in laboratory tests on Earth. MGM is shedding light on the behavior of fine-grain materials under low effective stresses. Applications include earthquake engineering, granular flow technologies (such as powder feed systems for pharmaceuticals and fertilizers), and terrestrial and planetary geology. Nine MGM specimens have flown on two Space Shuttle flights. Another three are scheduled to fly on STS-107. The principal investigator is Stein Sture of the University of Colorado at Boulder. (Credit: NASA/MSFC).

  13. STS-81 Post Flight Presentation

    NASA Technical Reports Server (NTRS)

    1997-01-01

    The flight crew of the STS-81 mission, Commander Michael A. Baker, Pilot Brent W. Jett Jr, and Mission Specialists John M. Grunsfeld, Marsha S. Ivins, Peter J.K. Wisoff, and Jerry M. Linenger present a video mission over-view of their space flight. Images include prelaunch activities such as eating the traditional breakfast, crew suit-up, and the ride out to the launch pad. Also included are various panoramic views of the shuttle on the pad. The crew can be seen being readied in the "white room" for their mission. After the closing of the hatch and arm retraction, launch activities are shown including countdown, engine ignition, launch, and the separation of the Solid Rocket Boosters. During the presentation the astronauts take turns discussing aspects of the mission including: the SPACEHAB a double module that provides additional middeck locker space for secondary experiments. During the five days of docked operations with Mir, the crews is seen transferring water and supplies from one spacecraft to the other.

  14. STS-107 Flight Day 14 Highlights

    NASA Astrophysics Data System (ADS)

    2003-01-01

    This video shows the activities of the STS-107 crew on flight day 14 of the Columbia orbiter's final mission. The crew includes Commander Rick Husband, Pilot William McCool, Mission Specialists Kalpana Chawla, David Brown, Michael Anderson, and Laurel Clark, and Payload Specialist Ilan Ramon. Most of the video shows a press conference on board Columbia featuring all seven astronauts. Reporters ask the crew members questions, who reply via a handset. Most of the questions cover life in space and the mission's spaceborne experiments. Each astronaut answers multiple questions, and in response to one of the questions, each of the seven describes an 'O Wow!' moment. The remainder of the video consists of a tour of the orbiter, including the flight deck, mid-deck, and the SpaceHab Research Double Module (RDM) in the payload bay. Mission Specialist Chawla demonstrates eating at the shuttle's galley, and Commander Husband shows his toiletries. In the RDM, Mission Specialist Clark exercises on a machine for an experiment on respiration.

  15. Mechanics of Granular Materials labeled hardware

    NASA Technical Reports Server (NTRS)

    2000-01-01

    Mechanics of Granular Materials (MGM) flight hardware takes two twin double locker assemblies in the Space Shuttle middeck or the Spacehab module. Sand and soil grains have faces that can cause friction as they roll and slide against each other, or even cause sticking and form small voids between grains. This complex behavior can cause soil to behave like a liquid under certain conditions such as earthquakes or when powders are handled in industrial processes. MGM experiments aboard the Space Shuttle use the microgravity of space to simulate this behavior under conditions that carnot be achieved in laboratory tests on Earth. MGM is shedding light on the behavior of fine-grain materials under low effective stresses. Applications include earthquake engineering, granular flow technologies (such as powder feed systems for pharmaceuticals and fertilizers), and terrestrial and planetary geology. Nine MGM specimens have flown on two Space Shuttle flights. Another three are scheduled to fly on STS-107. The principal investigator is Stein Sture of the University of Colorado at Boulder. (Credit: NASA/MSFC).

  16. 2-arachidonoylglycerol signaling impairs short-term fear extinction

    PubMed Central

    Hartley, N D; Gunduz-Cinar, O; Halladay, L; Bukalo, O; Holmes, A; Patel, S

    2016-01-01

    Impairments in fear extinction are thought to be central to the psychopathology of posttraumatic stress disorder, and endocannabinoid (eCB) signaling has been strongly implicated in extinction learning. Here we utilized the monoacylglycerol lipase inhibitor JZL184 to selectively augment brain 2-AG levels combined with an auditory cue fear-conditioning paradigm to test the hypothesis that 2-AG-mediated eCB signaling modulates short-term fear extinction learning in mice. We show that systemic JZL184 impairs short-term extinction learning in a CB1 receptor-dependent manner without affecting non-specific freezing behavior or the acquisition of conditioned fear. This effect was also observed in over-conditioned mice environmentally manipulated to re-acquire fear extinction. Cumulatively, the effects of JZL184 appear to be partly due to augmentation of 2-AG signaling in the basolateral nucleus of the amygdala (BLA), as direct microinfusion of JZL184 into the BLA produced similar results. Moreover, we elucidate a short ~3-day temporal window during which 2-AG augmentation impairs extinction behavior, suggesting a preferential role for 2-AG-mediated eCB signaling in the modulation of short-term behavioral sequelae to acute traumatic stress exposure. PMID:26926885

  17. Augmented reality with image registration, vision correction and sunlight readability via liquid crystal devices.

    PubMed

    Wang, Yu-Jen; Chen, Po-Ju; Liang, Xiao; Lin, Yi-Hsin

    2017-03-27

    Augmented reality (AR), which use computer-aided projected information to augment our sense, has important impact on human life, especially for the elder people. However, there are three major challenges regarding the optical system in the AR system, which are registration, vision correction, and readability under strong ambient light. Here, we solve three challenges simultaneously for the first time using two liquid crystal (LC) lenses and polarizer-free attenuator integrated in optical-see-through AR system. One of the LC lens is used to electrically adjust the position of the projected virtual image which is so-called registration. The other LC lens with larger aperture and polarization independent characteristic is in charge of vision correction, such as myopia and presbyopia. The linearity of lens powers of two LC lenses is also discussed. The readability of virtual images under strong ambient light is solved by electrically switchable transmittance of the LC attenuator originating from light scattering and light absorption. The concept demonstrated in this paper could be further extended to other electro-optical devices as long as the devices exhibit the capability of phase modulations and amplitude modulations.

  18. MYCN drives glutaminolysis in neuroblastoma and confers sensitivity to an ROS augmenting agent.

    PubMed

    Wang, Tingting; Liu, Lingling; Chen, Xuyong; Shen, Yuqing; Lian, Gaojian; Shah, Nilay; Davidoff, Andrew M; Yang, Jun; Wang, Ruoning

    2018-02-14

    Heightened aerobic glycolysis and glutaminolysis are characteristic metabolic phenotypes in cancer cells. Neuroblastoma (NBL), a devastating pediatric cancer, is featured by frequent genomic amplification of MYCN, a member of the Myc oncogene family that is primarily expressed in the early stage of embryonic development and required for neural crest development. Here we report that an enriched glutaminolysis gene signature is associated with MYCN amplification in children with NBL. The partial knockdown of MYCN suppresses glutaminolysis in NBL cells. Conversely, forced overexpression of MYCN in neural crest progenitor cells enhances glutaminolysis. Importantly, glutaminolysis induces oxidative stress by producing reactive oxygen species (ROS), rendering NBL cells sensitive to ROS augmentation. Through a small-scale metabolic-modulator screening, we have found that dimethyl fumarate (DMF), a Food and Drug Administration-approved drug for multiple sclerosis, suppresses NBL cell proliferation in vitro and tumor growth in vivo. DMF suppresses NBL cell proliferation through inducing ROS and subsequently suppressing MYCN expression, which is rescued by an ROS scavenger. Our findings suggest that the metabolic modulation and ROS augmentation could be used as novel strategies in treating NBL and other MYC-driven cancers.

  19. [STS-41 Onboard 16mm Photography Quick Release

    NASA Technical Reports Server (NTRS)

    1990-01-01

    This videotape features scenes of onboard activities. The videotape was shot by the crew. The scenes include the following: Ulysses' deployment, middeck experiments, computer workstations, and Earth payload bay views.

  20. Microgravity

    NASA Image and Video Library

    1995-10-20

    Onboard Space Shuttle Columbia (STS-73) Payload Specialist Albert Sacco loads autoclaves using a power screwdriver into the Zeolite Crystal Growth (ZCG) experiment in the middeck for the United States Microgravity Laboratory 2 (USML-2) Spacelab mission.

  1. Patrick in Interdeck Access Hatch

    NASA Image and Video Library

    2010-02-09

    S130-E-006314 (9 Feb. 2010) --- NASA astronaut Nicholas Patrick, STS-130 mission specialist, is pictured in the hatch which connects the flight deck and middeck of space shuttle Endeavour during flight day two activities.

  2. Behnken in Interdeck Access Hatch

    NASA Image and Video Library

    2010-02-08

    S130-E-005229 (8 Feb. 2010) --- NASA astronaut Robert Behnken, STS-130 mission specialist, is pictured in the hatch which connects the flight deck and middeck of space shuttle Endeavour during flight day one activities.

  3. Mission commander Readdy on middeck

    NASA Image and Video Library

    1996-09-18

    STS79-E-5022 (18 September 1996) --- William F. Readdy, mission commander, checks on Spacehab prior to preparing for Day 4 docking of the Space Shuttle Atlantis with Russia's Mir Space Station, on flight day 3.

  4. Love and Walheim on MDDK

    NASA Image and Video Library

    2008-02-14

    S122-E-008521 (14 Feb. 2008) --- Astronauts Stanley Love (left) and Rex Walheim, both STS-122 mission specialists, look over checklists on the middeck of Space Shuttle Atlantis while docked with the International Space Station.

  5. Virts on MDDK

    NASA Image and Video Library

    2010-02-15

    S130-E-008276 (15 Feb. 2010) --- NASA astronaut Terry Virts, STS-130 pilot, is pictured near food packages and scissors floating freely on the middeck of space shuttle Endeavour while docked with the International Space Station.

  6. Virtual Planning, Control, and Machining for a Modular-Based Automated Factory Operation in an Augmented Reality Environment

    PubMed Central

    Pai, Yun Suen; Yap, Hwa Jen; Md Dawal, Siti Zawiah; Ramesh, S.; Phoon, Sin Ye

    2016-01-01

    This study presents a modular-based implementation of augmented reality to provide an immersive experience in learning or teaching the planning phase, control system, and machining parameters of a fully automated work cell. The architecture of the system consists of three code modules that can operate independently or combined to create a complete system that is able to guide engineers from the layout planning phase to the prototyping of the final product. The layout planning module determines the best possible arrangement in a layout for the placement of various machines, in this case a conveyor belt for transportation, a robot arm for pick-and-place operations, and a computer numerical control milling machine to generate the final prototype. The robotic arm module simulates the pick-and-place operation offline from the conveyor belt to a computer numerical control (CNC) machine utilising collision detection and inverse kinematics. Finally, the CNC module performs virtual machining based on the Uniform Space Decomposition method and axis aligned bounding box collision detection. The conducted case study revealed that given the situation, a semi-circle shaped arrangement is desirable, whereas the pick-and-place system and the final generated G-code produced the highest deviation of 3.83 mm and 5.8 mm respectively. PMID:27271840

  7. Virtual Planning, Control, and Machining for a Modular-Based Automated Factory Operation in an Augmented Reality Environment.

    PubMed

    Pai, Yun Suen; Yap, Hwa Jen; Md Dawal, Siti Zawiah; Ramesh, S; Phoon, Sin Ye

    2016-06-07

    This study presents a modular-based implementation of augmented reality to provide an immersive experience in learning or teaching the planning phase, control system, and machining parameters of a fully automated work cell. The architecture of the system consists of three code modules that can operate independently or combined to create a complete system that is able to guide engineers from the layout planning phase to the prototyping of the final product. The layout planning module determines the best possible arrangement in a layout for the placement of various machines, in this case a conveyor belt for transportation, a robot arm for pick-and-place operations, and a computer numerical control milling machine to generate the final prototype. The robotic arm module simulates the pick-and-place operation offline from the conveyor belt to a computer numerical control (CNC) machine utilising collision detection and inverse kinematics. Finally, the CNC module performs virtual machining based on the Uniform Space Decomposition method and axis aligned bounding box collision detection. The conducted case study revealed that given the situation, a semi-circle shaped arrangement is desirable, whereas the pick-and-place system and the final generated G-code produced the highest deviation of 3.83 mm and 5.8 mm respectively.

  8. Virtual Planning, Control, and Machining for a Modular-Based Automated Factory Operation in an Augmented Reality Environment

    NASA Astrophysics Data System (ADS)

    Pai, Yun Suen; Yap, Hwa Jen; Md Dawal, Siti Zawiah; Ramesh, S.; Phoon, Sin Ye

    2016-06-01

    This study presents a modular-based implementation of augmented reality to provide an immersive experience in learning or teaching the planning phase, control system, and machining parameters of a fully automated work cell. The architecture of the system consists of three code modules that can operate independently or combined to create a complete system that is able to guide engineers from the layout planning phase to the prototyping of the final product. The layout planning module determines the best possible arrangement in a layout for the placement of various machines, in this case a conveyor belt for transportation, a robot arm for pick-and-place operations, and a computer numerical control milling machine to generate the final prototype. The robotic arm module simulates the pick-and-place operation offline from the conveyor belt to a computer numerical control (CNC) machine utilising collision detection and inverse kinematics. Finally, the CNC module performs virtual machining based on the Uniform Space Decomposition method and axis aligned bounding box collision detection. The conducted case study revealed that given the situation, a semi-circle shaped arrangement is desirable, whereas the pick-and-place system and the final generated G-code produced the highest deviation of 3.83 mm and 5.8 mm respectively.

  9. Hoshide in intra-deck hatch

    NASA Image and Video Library

    2008-06-01

    S124-E-005419 (1 June 2008) --- Japan Aerospace Exploration Agency (JAXA) astronaut Akihiko Hoshide, STS-124 mission specialist, smiles for a photo while in the hatch which connects the flight deck and middeck of Space Shuttle Discovery.

  10. STS-34 Onboard 16mm Photography Quick Release

    NASA Technical Reports Server (NTRS)

    1989-01-01

    This video features scenes shot by the crew of onboard activities including Galileo deploy, Shuttle Solar Backscatter Ultraviolet (SSBUV) student experiments, other activities on the flight deck and middeck, and Earth and payload bay views.

  11. [STS-31 Onboard 16mm Photography Quick Release]. [Onboard Activities

    NASA Technical Reports Server (NTRS)

    1990-01-01

    This video features scenes shot by the crew of onboard activities including Hubble Space Telescope deploy, remote manipulator system (RMS) checkout, flight deck and middeck experiments, and Earth and payload bay views.

  12. Crewmember exercising on the mid deck ergometer.

    NASA Technical Reports Server (NTRS)

    1992-01-01

    Mission Specialist Ellen Baker exercising on an excercise bike attached to the Isolated/Stabilized Exercise Platform (ISEP) on the shuttle middeck. The ISEP is intended to insulate sensitive micregravity experiments from vibration caused by crew excercise.

  13. Mastracchio eats on MDDK

    NASA Image and Video Library

    2010-04-11

    S131-E-008742 (11 April 2010) --- NASA astronaut Rick Mastracchio, STS-131 mission specialist, is pictured near a spoon and food package floating freely on the middeck of space shuttle Discovery while docked with the International Space Station.

  14. Retinal Photography during STS-34

    NASA Image and Video Library

    2009-07-01

    STS034-10-015 (18-23 Oct. 1989) --- Astronaut Franklin R. Chang-Diaz performs an eye examination on astronaut Ellen S. Baker, both STS-34 mission specialists, on the middeck of the Earth-orbiting space shuttle Atlantis.

  15. Pilot Overmyer completes hygiene activities / demostrates IVA foot restraint

    NASA Technical Reports Server (NTRS)

    1982-01-01

    On middeck, Pilot Overmyer, drying his face with a towel from forward single tray personal item stowage locker, completes personal hygiene activities (shaving) and demostrates use of intravehicular activity (IVA) foot restraint on floor.

  16. An Astrobiology Microbes Exhibit and Education Module

    NASA Technical Reports Server (NTRS)

    Lindstrom, Marilyn M.; Allen, Jaclyn S.; Stocco, Karen; Tobola, Kay; Olendzenski, Lorraine

    2001-01-01

    Telling the story of NASA-sponsored scientific research to the public in exhibits is best done by partnerships of scientists and museum professionals. Likewise, preparing classroom activities and training teachers to use them should be done by teams of teachers and scientists. Here we describe how we used such partnerships to develop a new astrobiology augmentation to the Microbes! traveling exhibit and a companion education module. "Additional information is contained in the original extended abstract."

  17. KSC-01pp0953

    NASA Image and Video Library

    2001-05-07

    KENNEDY SPACE CENTER, FLA. -- In the Operations and Checkout Building, workers check out the placement of one of four gas tanks on the Spacelab Logistics Double Pallet. Part of the STS-104 payload, the storage tanks two gaseous oxygen and two gaseous nitrogen comprise the high pressure gas assembly that will be attached to the Joint Airlock Module during two spacewalks. The tanks will support future spacewalk operations from the Station and augment the Service Module gas resupply system

  18. Olivas with Chocolate on MDDK

    NASA Image and Video Library

    2009-09-06

    S128-E-007771 (6 Sept. 2009) --- NASA astronaut John “Danny” Olivas, STS-128 mission specialist, is pictured on the middeck of Space Shuttle Discovery with a floating piece of chocolate while docked with the International Space Station.

  19. Microgravity

    NASA Image and Video Library

    1994-03-04

    Onboard Space Shuttle Columbia (STS-62) Mission specialist Charles D. (Sam) Gemar works with the Middeck 0-Gravity Dynamics Experiment (MODE). The reusable test facility is designed to study the nonlinear, gravity-dependent behavior of liquids and skewed space structures in the microgravity environment.

  20. Behnken in Interdeck Access Hatch

    NASA Image and Video Library

    2010-02-08

    S130-E-005218 (8 Feb. 2010) --- NASA astronaut Robert Behnken, STS-130 mission specialist, smiles for the camera while in the hatch which connects the flight deck and middeck of space shuttle Endeavour during flight day one activities.

  1. Astronaut James Newman with latch hook for tether device

    NASA Technical Reports Server (NTRS)

    1993-01-01

    Astronaut James H. Newman, mission specialist, shows off a latch hook for a tether device used during the STS-51 extravehicular activity (EVA) on September 16, 1993. Newman, on Discovery's middeck, appears surrounded by sleep restraints.

  2. Fossum washes his hair during STS-121 / Expedition 13 joint operations

    NASA Image and Video Library

    2006-07-13

    S121-E-06509 (13 July 2006) --- Astronaut Michael E. Fossum, STS-121 mission specialist, washes his hair on the middeck of the Space Shuttle Discovery while docked with the International Space Station.

  3. Love on MDDK

    NASA Image and Video Library

    2008-02-18

    S122-E-011227 (18 Feb. 2008) --- NASA astronaut Stanley Love, STS-122 mission specialist, poses for a photo as he floats on the middeck of Space Shuttle Atlantis. European Space Agency (ESA) astronaut Hans Schlegel, mission specialist, is visible at left.

  4. Astronauts Hoffman and Seddon demonstrate effect of weightlessness on slinky

    NASA Image and Video Library

    1985-04-14

    51D-06-015 (12-19 April 1985) --- Astronaut Jeffrey A. Hoffman and Rhea Seddon mission specialists, demonstrate the effect of weightlessness on a slinky toy in the mid-deck of the Space Shuttle Discovery.

  5. Sellers in sleeping bag on the MDDK during STS-132

    NASA Image and Video Library

    2010-05-17

    S132-E-007710 (17 May 2010) --- NASA astronaut Piers Sellers, STS-132 mission specialist, rests in his sleeping bag on the middeck of the space shuttle Atlantis while docked with the International Space Station.

  6. MS Reilly at work on Endeavour

    NASA Image and Video Library

    1998-03-04

    S89-E-5536 (22-31 Jan 1998) --- This Electronic Still Camera (ESC) image taken on the Space Shuttle Endeavour's middeck, shows astronaut James F. Reilly, mission specialist, looks over a long roll of "mail" from ground controllers.

  7. Stefanyshyn-Piper works with NLP-Vaccine-2 on MDDK

    NASA Image and Video Library

    2008-11-19

    S126-E-008304 (19 Nov. 2008) --- Astronaut Heidemarie Stefanyshyn-Piper, STS-126 mission specialist, works with Group Activation Packs (GAP) on the middeck of Space Shuttle Endeavour while docked with the International Space Station.

  8. s125e008027

    NASA Image and Video Library

    2009-05-16

    S125-E-008027 (16 May 2009) --- Astronauts John Grunsfeld (left) and Andrew Feustel, both STS-125 mission specialists, give a `thumbs-up? sign on the middeck of Space Shuttle Atlantis following the mission?s third session of extravehicular activity (EVA).

  9. Agmatine enhances antidepressant potency of MK-801 and conventional antidepressants in mice.

    PubMed

    Neis, Vivian Binder; Moretti, Morgana; Manosso, Luana Meller; Lopes, Mark W; Leal, Rodrigo Bainy; Rodrigues, Ana Lúcia S

    2015-03-01

    Agmatine, an endogenous guanidine amine, has been shown to produce antidepressant-like effects in animal studies. This study investigated the effects of the combined administration of agmatine with either conventional monoaminergic antidepressants or the N-methyl-D-aspartate (NMDA) receptor antagonist MK-801 in the tail suspension test (TST) in mice. The aim was to evaluate the extent of the antidepressant synergism by examining the ability of a fixed dose of agmatine to shift the antidepressant potency of fluoxetine, imipramine, bupropion and MK-801. A sub-effective dose of agmatine (0.0001 mg/kg, p.o.) significantly increased the potency by which fluoxetine, imipramine, bupropion and MK-801 decreased immobility time in the TST by 2-fold (fluoxetine), 10-fold (imipramine and bupropion) and 100-fold (MK-801). Combined with previous evidence indicating a role of monoaminergic systems in the effect of agmatine, the current data suggest that agmatine may modulate monoaminergic neurotransmission and augment the activity of conventional antidepressants. Moreover, this study found that agmatine substantially augmented the antidepressant-like effect of MK-801, reinforcing the notion that this compound modulates NMDA receptor activation. These preclinical data may stimulate future clinical studies testing the effects of augmentation therapy with agmatine for the management of depressive disorders. Copyright © 2014 Elsevier Inc. All rights reserved.

  10. General view of the middeck area looking forward and starboard. ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    General view of the mid-deck area looking forward and starboard. On the far left of the images are the avionics equipment bays. During missions the forward avionics bays would be fronted by lockers for mission equipment and the flight crew's personal equipment. Sleep stations would be located along the far wall if the orbiter was in a flight ready configuration. The hose and ladder on the right side of the image are pieces of ground support equipment. The hose is part of the climate control apparatus used while orbiters are being processed. The ladder is used to access the inter-deck passage, leading to the flight deck, while the orbiter is in 1g (earth's gravity). This view was taken in the Orbiter Processing Facility at the Kennedy Space Center. - Space Transportation System, Orbiter Discovery (OV-103), Lyndon B. Johnson Space Center, 2101 NASA Parkway, Houston, Harris County, TX

  11. General view of the middeck looking aft and port. In ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    General view of the mid-deck looking aft and port. In this view you can clearly see the crew access hatch and the airlock hatch. The hose and ladder in the image are pieces of ground support equipment. The hose is part of the climate control apparatus used while orbiters are being processed. The ladder is used to access the inter-deck passage, leading to the flight deck, while the orbiter is in 1g (earth's gravity). A careful observer will notice a void in the wall near the base of the access ladder, this is the Waste Management Compartment with the Waste Management System, i.e. Space Potty, removed. This view was taken in the Orbiter Processing Facility at the Kennedy Space Center. - Space Transportation System, Orbiter Discovery (OV-103), Lyndon B. Johnson Space Center, 2101 NASA Parkway, Houston, Harris County, TX

  12. STS-54 Pilot McMonagle with DSO 802 & Physics of Toys top on OV-105's middeck

    NASA Image and Video Library

    1993-01-15

    STS054-S-020 (15 Jan 1993) --- McMonagle watches as a top spins above his head on the middeck of the Earth-orbiting Endeavour. The demonstration was part of a lengthy "physics of toys" program conducted by all five crewmembers on their third day aboard the Shuttle. Through telephone and TV downlinks, students in four schools around the country participated in a special lesson to discover how specific toys function differently in the classroom compared to those on the Shuttle. Students at Westwood Elementary School in Flint, Michigan -- McMonagle's hometown -- asked him questions about the several toys he demonstrated. The top demonstrates gyroscopic motion, the center of mass and angular momentum. The entire collection of toys will be videotaped for an educational program to be distributed to schools in the autumn. The scene was downlinked at 18:01:59:11 GMT, Jan. 15, 1993.

  13. RME 1323, AERCam/Sprint held by Lindsey in the middeck

    NASA Image and Video Library

    1998-01-14

    STS087-371-013 (19 November - 5 December 1997) --- On the Space Shuttle Columbia's mid-deck, astronaut Steven W. Lindsey proves that the Autonomous Extravehicular Activity Robotic Camera/Sprint (AERCam/Sprint) experiment is in fact bigger than a soccer ball, to which it is often erroneously compared for dimensional frame of reference, as he allows the Sprint to float near him. The AERCam is a prototype free-flying television camera that could be used for remote inspections of the exterior of the International Space Station (ISS). Later, astronauts Winston E. Scott and Takao Doi took the experiment outside for a brief test during the mission's second Extravehicular Activity (EVA). Lindsey, pilot, is standing with his back to the galley and his left hand on the microgravity glovebox, used extensively during the mission to support the United States Microgravity Payload (USMP-4) mission.

  14. STS-35 Payload Specialist Parise sets up SAREX on OV-102's middeck

    NASA Image and Video Library

    1990-12-10

    STS-35 Payload Specialist Ronald A. Parise enters data into the payload and general support computer (PGSC) in preparation for Earth communication via the Shuttle Amateur Radio Experiment (SAREX) aboard Columbia, Orbiter Vehicle (OV) 102. The SAREX equipment is secured to the middeck starboard sleep station. SAREX provided radio transmissions between ground based amateur radio operators around the world and Parise, a licensed amateur radio operator. The experiment enabled students to communicate with an astronaut in space, as Parise (call-sign WA4SIR) devoted some of his off-duty time to that purpose. Displayed on the forward lockers beside Parise is a AMSAT (Amateur Radio Satellite Corporation) / ARRL (American Radio Relay League) banner. Food items and checklists are attached to the lockers. In locker position MF43G, the Development Test Objective (DTO) Trash Compaction and Retention System Demonstration extended duration orbiter (EDO) compactor is visible.

  15. STS-54 crewmembers with DSO 802 and Physics of Toys on OV-105's middeck

    NASA Technical Reports Server (NTRS)

    1993-01-01

    STS-54 Commander John H. Casper, holding microphone, talks to a television (TV) audience including students on the middeck of the Earth-orbiting Endeavour, Orbiter Vehicle (OV) 105. Surrounded by crewmembers, Casper explains how specific toys function differently in the classroom versus in space as part of Application Specific Preprogrammed Experiment Culture System Physics of Toys (ASPEC) and Detailed Supplementary Objective (DSO) 802, Educational activities. Through telephone and TV downlinks, Casper and crewmembers conversed with students in four schools who participated in the special lesson. Counter clockwise from the left are Mission Specialist 3 (MS3) Susan J. Helms, Casper, Pilot Donald R. McMonagle, MS1 Mario Runco, Jr, and MS2 Gregory J. Harbaugh. The entire collection of toys will be videotaped for an educational program to be distributed to schools in the autumn. This scene was downlinked at 18:28:04:18 GMT.

  16. STS-54 MS3 Helms uses DSO 802 and Physics of Toys frog toy on OV-105's middeck

    NASA Technical Reports Server (NTRS)

    1993-01-01

    STS-54 Mission Specialist 3 (MS3) Susan J. Helms with a frog swimmer toy on the middeck of the Earth-orbiting Endeavour, Orbiter Vehicle (OV) 105, demonstrates some of the physics of toys to students watching on television (TV). The demonstration was part of Application Specific Preprogrammed Experiment Culture System Physics of Toys (ASPEC) and Detailed Supplementary Objective (DSO) 802, Educational activities. Through telephone and TV downlinks, Helms fielded questions from students at Shaver Elementary School in Portland, Oregon. The swimmer frog was used to demonstrate Newton's third law of motion and the conservation of angular momentum. The entire collection of toys will be videotaped for an educational program to be distributed to schools in the fall of this year. Helms wears an Oregon Trail t-shirt. This scene was downlinked at 17:51:38:12 GMT.

  17. STS-54 MS3 Helms uses DSO 802 and Physics of Toys fish toy on OV-105's middeck

    NASA Technical Reports Server (NTRS)

    1993-01-01

    STS-54 Mission Specialist 3 (MS3) Susan J. Helms with a fish toy on the middeck of the Earth-orbiting Endeavour, Orbiter Vehicle (OV) 105, demonstrates some of the physics of toys to students watching on television (TV). The demonstration was part of Application Specific Preprogrammed Experiment Culture System Physics of Toys (ASPEC) and Detailed Supplementary Objective (DSO) 802, Educational activities. Through telephone and TV downlinks, Helms fielded questions from students at Shaver Elementary School in Portland, Oregon. The fish was used to demonstrate Newton's third law of motion and the conservation of angular momentum. The entire collection of toys will be videotaped for an educational program to be distributed to schools in the fall of this year. Helms wears an Oregon Trail t-shirt. This scene was downlinked at 17:50:08:27 GMT.

  18. Laparoscopic skill improvement after virtual reality simulator training in medical students as assessed by augmented reality simulator.

    PubMed

    Nomura, Tsutomu; Mamada, Yasuhiro; Nakamura, Yoshiharu; Matsutani, Takeshi; Hagiwara, Nobutoshi; Fujita, Isturo; Mizuguchi, Yoshiaki; Fujikura, Terumichi; Miyashita, Masao; Uchida, Eiji

    2015-11-01

    Definitive assessment of laparoscopic skill improvement after virtual reality simulator training is best obtained during an actual operation. However, this is impossible in medical students. Therefore, we developed an alternative assessment technique using an augmented reality simulator. Nineteen medical students completed a 6-week training program using a virtual reality simulator (LapSim). The pretest and post-test were performed using an object-positioning module and cholecystectomy on an augmented reality simulator(ProMIS). The mean performance measures between pre- and post-training on the LapSim were compared with a paired t-test. In the object-positioning module, the execution time of the task (P < 0.001), left and right instrument path length (P = 0.001), and left and right instrument economy of movement (P < 0.001) were significantly shorter after than before the LapSim training. With respect to improvement in laparoscopic cholecystectomy using a gallbladder model, the execution time to identify, clip, and cut the cystic duct and cystic artery as well as the execution time to dissect the gallbladder away from the liver bed were both significantly shorter after than before the LapSim training (P = 0.01). Our training curriculum using a virtual reality simulator improved the operative skills of medical students as objectively evaluated by assessment using an augmented reality simulator instead of an actual operation. We hope that these findings help to establish an effective training program for medical students. © 2015 Japan Society for Endoscopic Surgery, Asia Endosurgery Task Force and Wiley Publishing Asia Pty Ltd.

  19. Behnken open food package in the MDDK on Space Shuttle Endeavour

    NASA Image and Video Library

    2008-03-12

    S123-E-006495 (12 March 2008) --- Astronaut Robert L. Behnken, STS-123 mission specialist, opens a food package near the galley on the middeck of Space Shuttle Endeavour while docked with the International Space Station.

  20. Poindexter and water bubble

    NASA Image and Video Library

    2010-04-12

    S131-E-009294 (12 April 2010) --- NASA astronaut Alan Poindexter, STS-131 commander, watches a water bubble float freely between him and the camera, showing his image refracted, on the middeck of space shuttle Discovery while docked with the International Space Station.

  1. Astronaut Carl Walz shows off stowage locker for GPS on-orbit operations

    NASA Technical Reports Server (NTRS)

    1993-01-01

    On Discovery's middeck Astronaut Carl E. Walz shows off stowage locker for gear supporting the Global Positioning System (GPS) on-orbit operations. To the left is a sign which reads 'Ace HST Tool Testers'.

  2. KSC-2012-3185

    NASA Image and Video Library

    2012-06-05

    Technicians install lockers on the middeck of space shuttle Atlantis as the spacecraft is prepared for public display. The work is taking place as Atlantis sits inside Orbiter Processing Facility-1 at NASA's Kennedy Space Center in Florida. Photo credit: NASA/Dmitri Gerondidakis

  3. KSC-2012-3184

    NASA Image and Video Library

    2012-06-05

    Technicians install lockers on the middeck of space shuttle Atlantis as the spacecraft is prepared for public display. The work is taking place as Atlantis sits inside Orbiter Processing Facility-1 at NASA's Kennedy Space Center in Florida. Photo credit: NASA/Dmitri Gerondidakis

  4. Astronauts Onizuka and Shriver pose in middeck

    NASA Image and Video Library

    1985-01-25

    51C-08-017 (24-27 Jan 1985) --- Astronaut Ellison S. Onizuka, mission specialist, (left) turns 180 degrees near airlock hatch, while Loren J. Shriver, pilot, records verbal mission - pertinent notes. For orientation hold the picture with lockers on right.

  5. KSC-2012-3186

    NASA Image and Video Library

    2012-06-05

    A locker installed on the middeck of space shuttle Atlantis as the spacecraft is prepared for public display. The work is taking place as Atlantis sits inside Orbiter Processing Facility-1 at NASA's Kennedy Space Center in Florida. Photo credit: NASA/Dmitri Gerondidakis

  6. Noguchi on middeck

    NASA Image and Video Library

    2005-07-30

    S114-E-5937 (30 July 2005) --- Japanese Aerospace Agency astronaut Soichi Noguchi has changed into clothing more suitable for indoor transfer work after spending six-plus hours outside Space Shuttle Discovery on a spacewalk with astronaut Stephen K. Robinson (out of frame).

  7. BRIC - Brown with canisters on middeck

    NASA Image and Video Library

    1998-11-02

    STS095-E-5171 (2 Nov. 1998) --- Astronaut Curtis L. Brown, STS-95 commander, during Flight Day 3 activity aboard the Space Shuttle Discovery. The photo was taken with an electronic still camera (ESC) at 05:57:03 GMT, Nov. 2.

  8. Commander Bloomfield poses on the middeck of Atlantis during STS-110

    NASA Image and Video Library

    2002-04-08

    STS110-E-5033 (8 April 2002) --- Astronaut Michael J. Bloomfield, STS-110 mission commander, is photographed on the mid deck of the Space Shuttle Atlantis. The image was taken with a digital still camera.

  9. Commander Lousma is surrounded by a week's worth of trash on the middeck

    NASA Technical Reports Server (NTRS)

    1982-01-01

    Commander Lousma, wearing communication kit assembly (ASSY) mini headset (HDST), gathers three freefloating plastic trash bags filled with empty containers, paper towels, straws, etc. Lousma will stow them in a designated stowage volume.

  10. Kimbrough works with NLP-Vaccine-2 on MDDK

    NASA Image and Video Library

    2008-11-16

    S126-E-007561 (16 Nov. 2008) --- Astronaut Shane Kimbrough, STS-126 mission specialist, works with the National Lab Pathfinder-Vaccine Group Activation Pack on the middeck of Space Shuttle Endeavour while docked with the International Space Station.

  11. Research objectives, opportunities, and facilities for microgravity science

    NASA Technical Reports Server (NTRS)

    Bayuzick, Robert J.

    1992-01-01

    Microgravity Science in the U.S.A. involves research in fluids science, combustion science, materials science, biotechnology, and fundamental physics. The purpose is to achieve a thorough understanding of the effects of gravitational body forces on physical phenomena relevant to those disciplines. This includes the study of phenomena which are usually overwhelmed by the presence of gravitational body forces and, therefore, chiefly manifested when gravitational forces are weak. In the pragmatic sense, the research involves gravity level as an experimental parameter. Calendar year 1992 is a landmark year for research opportunities in low earth orbit for Microgravity Science. For the first time ever, three Spacelab flights will fly in a single year: IML-1 was launched on January 22; USML-1 was launched on June 25; and, in September, SL-J will be launched. A separate flight involving two cargo bay carriers, USMP-1, will be launched in October. From the beginning of 1993 up to and including the Space Station era (1997), nine flights involving either Spacelab or USMP carriers will be flown. This will be augmented by a number of middeck payloads and get away specials flying on various flights. All of this activity sets the stage for experimentation on Space Station Freedom. Beginning in 1997, experiments in Microgravity Science will be conducted on the Space Station. Facilities for doing experiments in protein crystal growth, solidification, and biotechnology will all be available. These will be joined by middeck-class payloads and the microgravity glove box for conducting additional experiments. In 1998, a new generation protein crystal growth facility and a facility for conducting combustion research will arrive. A fluids science facility and additional capability for conducting research in solidification, as well as an ability to handle small payloads on a quick response basis, will be added in 1999. The year 2000 will see upgrades in the protein crystal growth and fluids science facilities. From the beginning of 1997 to the fall of 1999 (the 'man-tended capability' era), there will be two or three utilization flights per year. Plans call for operations in Microgravity Science during utilization flights and between utilization flights. Experiments conducted during utilization flights will characteristically require crew interaction, short duration, and less sensitivity to perturbations in the acceleration environment. Operations between utilization flights will involve experiments that can be controlled remotely and/or can be automated. Typically, the experiments will require long times and a pristine environment. Beyond the fall of 1999 (the 'permanently-manned capability' era), some payloads will require crew interaction; others will be automated and will make use of telescience.

  12. KSC-01pp0952

    NASA Image and Video Library

    2001-05-07

    KENNEDY SPACE CENTER, FLA. -- An overhead crane in the Operations and Checkout Building lowers one of four gas tanks onto the Spacelab Logistics Double Pallet while workers help guide it. Part of the STS-104 payload, the storage tanks two gaseous oxygen and two gaseous nitrogen comprise the high pressure gas assembly that will be attached to the Joint Airlock Module during two spacewalks. The tanks will support future spacewalk operations from the Station and augment the Service Module gas resupply system

  13. Gamma activity modulated by naming of ambiguous and unambiguous images: intracranial recording

    PubMed Central

    Cho-Hisamoto, Yoshimi; Kojima, Katsuaki; Brown, Erik C; Matsuzaki, Naoyuki; Asano, Eishi

    2014-01-01

    OBJECTIVE Humans sometimes need to recognize objects based on vague and ambiguous silhouettes. Recognition of such images may require an intuitive guess. We determined the spatial-temporal characteristics of intracranially-recorded gamma activity (at 50–120 Hz) augmented differentially by naming of ambiguous and unambiguous images. METHODS We studied ten patients who underwent epilepsy surgery. Ambiguous and unambiguous images were presented during extraoperative electrocorticography recording, and patients were instructed to overtly name the object as it is first perceived. RESULTS Both naming tasks were commonly associated with gamma-augmentation sequentially involving the occipital and occipital-temporal regions, bilaterally, within 200 ms after the onset of image presentation. Naming of ambiguous images elicited gamma-augmentation specifically involving portions of the inferior-frontal, orbitofrontal, and inferior-parietal regions at 400 ms and after. Unambiguous images were associated with more intense gamma-augmentation in portions of the occipital and occipital-temporal regions. CONCLUSIONS Frontal-parietal gamma-augmentation specific to ambiguous images may reflect the additional cortical processing involved in exerting intuitive guess. Occipital gamma-augmentation enhanced during naming of unambiguous images can be explained by visual processing of stimuli with richer detail. SIGNIFICANCE Our results support the theoretical model that guessing processes in visual domain occur following the accumulation of sensory evidence resulting from the bottom-up processing in the occipital-temporal visual pathways. PMID:24815577

  14. Microgravity

    NASA Image and Video Library

    1995-03-02

    Astronaut Tamara Jernigan, STS-67 payload commander, and payload specialist Samuel T. Durrance use the absence of gravity for a perusal of Astro-2 targets in a loose-leaf, Rolodex-type collection of data. The two are in the mid-deck of the Earth-orbiting Space Shuttle Endeavour.

  15. STS-129 MS1 Melvin poses for a photo with a Water Globule

    NASA Image and Video Library

    2009-11-24

    S129-E-008320 (24 Nov. 2009) --- This close-up view of a water bubble floating freely on the middeck of space shuttle Atlantis shows a refracted image of astronaut Leland Melvin, STS-129 mission specialist.

  16. Anderson and water bubble

    NASA Image and Video Library

    2010-04-12

    S131-E-009277 (12 April 2010) --- NASA astronaut Clayton Anderson, STS-131 mission specialist, watches a water bubble float freely between him and the camera, showing his image refracted, on the middeck of space shuttle Discovery while docked with the International Space Station.

  17. Anderson and water bubble

    NASA Image and Video Library

    2010-04-12

    S131-E-009299 (12 April 2010) --- NASA astronaut Clayton Anderson, STS-131 mission specialist, watches a water bubble float freely between him and the camera, showing his image refracted, on the middeck of space shuttle Discovery while docked with the International Space Station.

  18. Fossum wets his hair for washing during STS-121 / Expedition 13 joint operations

    NASA Image and Video Library

    2006-07-13

    S121-E-06500 (13 July 2006) --- Astronaut Michael E. Fossum, STS-121 mission specialist, prepares to wash his hair on the middeck of the Space Shuttle Discovery while docked with the International Space Station.

  19. RME 1328, MIM - PS Tryggvason works with FLEX experiment

    NASA Image and Video Library

    1997-08-25

    STS085-312-006 (7-19 August 1997) --- Payload specialist Bjarni Tryggvason, representing the Canadian Space Agency (CSA), inputs data into a computer regarding the Microgravity Vibration Isolation Mount (MIM) experiment on the mid-deck of the Space Shuttle Discovery.

  20. Wakata in the MDDK during STS-127

    NASA Image and Video Library

    2009-07-28

    S127-E-009756 (28 July 2009) --- Japan Aerospace Exploration Agency (JAXA) astronaut Koichi Wakata, STS-127 mission specialist, is pictured near a lithium hydroxide (LiOH) canister floating freely on the middeck of Space Shuttle Endeavour during flight day 14 activities.

Top